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Abstract—Physical interaction with an object that has 

internal dynamics can be challenging, both for humans and 

robots. An example is carrying a cup of coffee, where the 

nonlinear dynamics between the cup and the liquid can be 

chaotic and unpredictable. This study examined how 

nonlinearity of an object’s dynamics contributed to the difficulty 

of a task and if linearization of the object dynamics facilitated 

performance. Human subjects did a task in a virtual set-up with 

a haptic interface using a robotic manipulandum. The task of 

transporting a cup of coffee was reduced to a 2D cart-and-

pendulum model; subjects moved the cart and felt the dynamics 

of the pendulum representing sloshing coffee. Performance with 

the nonlinear system was compared to a linearized mass-spring 

version of the system. Subjects (n=16) executed continuous 

rhythmic, self-paced movements. In the linearized system 

subjects chose to move at frequencies close to the resonant 

frequencies and clearly avoided the anti-resonance frequency. In 

the nonlinear system subjects did not avoid the anti-resonance 

frequency. To evaluate performance, mutual information 

quantified predictability between the interaction force and the 

cup and object dynamics. Mutual information was lower in trials 

when the cup moved close to the anti-resonance frequency in 

both linear and nonlinear systems. The magnitudes of the 

interaction forces were higher in the linear system, especially at 

frequencies slightly below the anti-resonance. These results run 

counter to the expectation that linearization would simplify this 

task. These findings may be useful as design considerations for 

robot control and human-robot interaction: if humans interact 

with robots that exhibit complex dynamics in the frequency 

range of human actions, linearizing a nonlinear system may 

potentially disturb intuitive and low-effort cooperation. 

I. INTRODUCTION 

Interaction between humans and robots, traditionally 
confined to the industrial sector, is gradually entering the daily 
lives of all humans. There is a variety of ways that humans and 
robots can interact: Supportive interaction involves providing 
humans with tools or materials. An example of this is 
homecare robots where direct contact is minimized. 
Collaborative interactions include direct or indirect contact 
through a common medium that exchanges forces between the 
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human and robot [1, 2]. Recent advances in physical human-
robot interaction also include soft robotics [3-5], such as 
control of passive elastic joints to improve performance [6], 
adaptive control methods to cope with uncertain inertia in 
robots with elastic joints [7], and adaptation of mechanical 
compliance during task execution [8]. It is noteworthy, though, 
that there is to date little understanding of how humans or 
robots interact with objects that have internal dynamics. This 
study examined human control of objects with passive internal 
dynamics. 

A key requirement for successful physical interaction is 
that the actor, human or robot, can predict the object’s 
dynamics. A large body of research, using various methods, 
has investigated robot prediction of human behavior, such as 
recognition of human actions and gestures using Markov 
decision processes [9] and classification algorithms [10]. 
However, strategies for “hands-on” interaction with complex 
actuated objects have yet to receive the same attention. Before 
turning to actuated objects, this study examines control of 
objects with passive dynamics. 

Due to the instantaneous nature of interaction forces when 
manipulating an underactuated object, predictability of the 
object’s dynamics is paramount. This is especially the case for 
complex dynamics, where nonlinearities may lead to chaotic 
behavior, which is essentially unpredictable. Previous research 
by our group examined human control of a ‘cup of coffee’, 
where the sloshing coffee creates complex interaction forces 
between hand and cup [11-13]. Using a simplified model of 
the real cup of coffee, a 2D cup with a ball sliding inside, 
previous research of our group reported evidence that humans 
increased the predictability of a complex underactuated object 
by exploiting the resonance frequencies of the system [14, 15]. 
These studies operationalized predictability by mutual 
information which quantified the mutual dependence between 
the hand and object dynamics. Results from these experiments 
showed that predictability was prioritized over low interaction 
forces. Three complementary studies operationalized 
predictability in terms of dynamic stability, using contraction 
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analysis [16-18]. Stability ensures predictability as small 
errors are rejected and the system returns to its stable state. 
Experimental results supported the hypothesis; human 
subjects indeed increased the contraction of their trajectories 
with practice. 

Following that previous research, this study focused on the 
effect of nonlinearity on predictability in human interactive 
strategies. Typically, linear object dynamics are more 
predictable as they eliminate the potential for chaotic behavior. 
Hence, interaction with a linear system should be easier.  

 To test this hypothesis, this study again used the task of 
transporting a ‘cup of coffee’. This everyday task exemplified 
the challenge of controlling a nonlinear system with its 
complex and potentially chaotic interactive dynamics, not only 
between the hand and the cup, but also between the cup and 
the liquid. The experimental system simplified the ‘sloshing 
coffee’ to the well-known cart-and-pendulum system that 
included nonlinear pendulum dynamics.  To assess the impact 
of this nonlinearity, the dynamics of the cart-and-pendulum 
were linearized. The experiment compared how human 
performance changed when presented with linear and 
nonlinear object dynamics. Both the nonlinear and linearized 
systems were implemented in a virtual environment in which 
the subjects interacted with visual and haptic interfaces. The 
hypothesis was that the linearized object dynamics had more 
predictable behavior that would make interaction more 
predictable and rendered the manipulation less effortful. 

II. EXPERIMENTAL APPARATUS  

A. Mechanical model of the task 

Transporting the cart-and-pendulum was presented on a 
projection screen as a 2D semicircular arc (cup) containing a 
freely-moving ball (Fig.1A,B). Assuming that the ball did not 
roll, but only slid without friction along the arc, the system was 
mathematically identical to the well-studied cart-and-
pendulum system (Fig.1C). The motion of the cup was limited 
to a horizontal direction, similar to previous implementations 
[11, 13-15]. Although the system was markedly simpler than a 
real 3D cup with sloshing coffee, it preserved two important 
dynamical properties: it was underactuated and nonlinear.   

 

Figure 1. Real task and the two models of the task. A) Cup of coffee 
interacting with the hand. B) Simplified 2D cup with a ball representing the 
sloshing coffee. C) Nonlinear cart-and-pendulum model. D) Equivalent 
linearized cart-and-pendulum model with the ball limited to horizontal motion. 

B. Nonlinear cart-and-pendulum system 

The motion of the cup was simulated as a cart with mass 𝑀 
and a simple pendulum with point mass 𝑚 (the ball) attached 
to a massless rod of length 𝑙 (Fig.1C). The equations of motion 

were: 

 

where  𝜃 , �̇�  and �̈�  represented the ball kinematics (angular 
position, velocity and acceleration): 𝑥, �̇�, and �̈� denoted the 
cup position, velocity and acceleration, respectively.  𝐹𝑖𝑛𝑡𝑒𝑟  
was the interaction force applied to the cup by the hand; and 𝑔 
was the gravitational acceleration. There were two distinct 
forces that determined the motion of the cup: those applied by 
the user onto the cup 𝐹𝑖𝑛𝑡𝑒𝑟  and the reaction forces generated 
by the motion of the ball 𝐹𝑏𝑎𝑙𝑙 . In the experimental 
implementation, the values of 𝑀, 𝑚 and 𝑙 were set to 2.4kg, 
0.6kg and 0.45m, respectively. The angle of the ball 𝜃 was 
defined as 0deg at the downward vertical position and positive 
values described the counter-clockwise direction.  

C. Linearization of the system 

The system dynamics were linearized using the small angle 

approximation around the downward vertical position of the 

pendulum. The linear behavior of the ball was enforced over 

the full range of ball motion. As a result, the ball force was 

generated by a linear spring; ball position was relabeled to y 

(Fig.1D). In the linear case the force of the ball could grow 

without bound. The ball force was multiplied by a scaling 

factor 𝑐 to ensure that the magnitude of the ball force was not 

too large; in the experiment, 𝑐 was set to .10. The resultant 

equations of motion for the linearized dynamic system of the 

cup-and-ball were:  

D. Experimental apparatus and protocol 

Sixteen healthy subjects (24.2 ± 2.1yrs, 5 male) were seated 

on a chair in front of a back-projection screen positioned 2.0m 

in front of them; they interacted with the virtual environment 

via a robotic manipulandum (HapticMaster®, Motekforce, 

Amsterdam, NL). Details of the robot are reported in [19]. 

Using their dominant hand, subjects grasped a small knob at 

the end of the HapticMaster robot with a three-finger grip to 

interact with the simulated cup-and-ball system (Fig.2). The 

cup was represented by a semicircular arc with a radius equal 

to the pendulum length 𝑙; the arc was drawn below the ball so 

that the ball appeared to roll in the cup. The ball could not 

escape from the cup and would continue swinging around the 

cup if the pendular rotation exceeded 90deg. Both the linear 

and nonlinear system showed the same ‘cup’ display. Two 

green rectangular targets were displayed on the screen as 

amplitude targets. The on-screen minimum distance between 

the centers of each target was 66.8cm, but the target width 

provided a large tolerance, allowing a maximum movement 

amplitude of 82.5cm. This permitted subjects to freely move 

at their preferred amplitude and frequency. The actual 

physical distance traversed with the robot manipulandum 

between the target centers was only 16.7cm due to the screen-

scaling factor of 4.  

(𝑚 + 𝑀)�̈� = 𝑐𝑚�̈� + 𝐹𝐼𝑛𝑡𝑒𝑟 (3) 

�̈� =  �̈� −
𝑔

𝑙
𝑦 (4) 

 

 

 

(𝑚 + 𝑀)�̈� = 𝐹𝐵𝑎𝑙𝑙+ 𝐹𝐼𝑛𝑡𝑒𝑟   (1) 

 = 𝑚𝑙(�̈� cos 𝜃 − �̇�2 sin 𝜃) + 𝐹𝐼𝑛𝑡𝑒𝑟  

𝑙�̈� = �̈� cos 𝜃 − 𝑔𝑠𝑖𝑛 θ 
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Participants applied force on the knob of the robotic arm 

𝐹𝑖𝑛𝑡𝑒𝑟  to control the 1D horizontal position of the virtual cup 

x. Participants sensed the ball’s reaction force 𝐹𝑏𝑎𝑙𝑙  via the 

haptic force feedback from the robotic manipulandum [20]. A 

custom-written C++ program based on the HapticAPI (Moog 

FCS Control Systems) computed the ball kinematics and the 

virtual display as well as the feedback force.  

III. EXPERIMENTAL PROTOCOL 

Subjects were instructed to move the cup back and forth 

rhythmically and as comfortably as possible between the two 

green target boxes; they were encouraged to freely choose 

their amplitude (Fig.2). In the self-paced (SP) trials, subjects 

were also free to choose their frequency of oscillations. 

 
Figure 2. Experimental apparatus and protocol. The participant used the 

HapticMaster robot to interact with the virtual cup-and-ball system. The 
position of the end-effector of the robot was mapped to the position of the 

cup. 
 

These 16 self-paced trials were interleaved with 

metronome-paced (MET) trials set to one of seven different 

frequencies: 0.6, 0.7, 0.8, 0.9, 1, 1.1 and 1.2Hz (Fig.2). The 

purpose of these paced trials was to expose subjects to a wide 

range of frequencies and discourage them from continuing at 

their initial choice of frequency. Subjects performed 2 

experimental sessions on 2 consecutive days. On one day they 

manipulated the nonlinear system, on the other day the 

linearized system; the order of the two conditions was 

counterbalanced across subjects. Each session comprised 2 

self-paced trials followed by 4 metronome-paced trials at 2 

randomly selected frequencies, again succeeded by 2 self-

paced trials. This sequence of un-paced and paced trials was 

repeated until every MET frequency was presented 4 times; 

this summed to a total of 44 trials, each lasting 35s. In each 

trial the cup started at the center of the left target box with the 

ball positioned at the bottom of the cup. This paper presents 

analysis of only the self-paced trials.  

A. Estimation of mechanical hand impedance  

The interactive dynamics that coupled the hand and object 

were approximated by a stiffness k in parallel with a damping 

b both set to constant value as shown in Fig.3. This impedance 

system served to minimize the errors between the actual cup 

trajectory and the cup trajectory desired by the human. 

Humans are imperfect actuators and due to the internal 

dynamics of the system their cup trajectories were not always 

accurate. The impedance served as a simple proportional-

derivative controller to minimize the human error. The 

trajectories were simulated by forward dynamics with the 

force 𝐹𝑖𝑛𝑡𝑒𝑟  of the hand applying force onto the system. In the 

following equation, 𝑥 is the actual cup position, 𝑥𝑑𝑒𝑠  is the 

desired cup position, �̇� is the actual cup velocity, and �̇�𝑑𝑒𝑠 is 

the desired cup velocity.  

 

 

 

Since the parameters for hand impedance k and b could not 

be measured directly, their values were estimated by an 

optimization procedure. This procedure identified the best fit 

between the simulated and experimental trajectories (see [14]). 

To determine the impedance parameters, an optimization 

procedure was conducted that tested k and b values in the 

ranges: 50 < k < 350 N/m, step size: 2 N/m, 3 < b < 53 N·m/s, 

step size: 1 N·m/s. The simulations were performed for all 

combinations of k and b. Each simulation run matched the 

frequency of the respective trial.  For each trial, those k and b 

values were selected that yielded the smallest root mean 

square errors rms of the 4 state variables 𝑥(𝑡), �̇�(𝑡), 𝜃(𝑡), �̇�(𝑡): 

 

𝐶 =  
1

4
[

𝑟𝑚𝑠(𝑥𝑒−𝑥𝑠)

‖𝑥𝑒‖
∞

+
𝑟𝑚𝑠(�̇�𝑒−�̇�𝑠)

‖�̇�𝑒‖
∞

+
𝑟𝑚𝑠(𝜃𝑒−𝜃𝑠)

‖𝜃𝑒‖
∞

+
𝑟𝑚𝑠(�̇�𝑒−�̇�𝑠)

‖�̇�𝑒‖
∞

]        (6) 

where superscript s and e denotes simulation and experiment, 

respectively. The two impedance parameters were obtained 

for each individual trial and then averaged across trials. The 

average parameter values were: k=92.9±33.8N/m, 

𝑏=38.8±21.4N·s/m, which were consistent with values from 

the literature [21, 22]. Using these estimated parameters in the 

coupled model (Fig.3), a frequency response analysis of the 

linearized system could be conducted. 

 
Figure 3. Control model of the cart-and-pendulum system with desired 

trajectory and hand impedance.  
 

The internal degree of freedom of the cup-and-ball interacted 

with the hand impedance to produce two resonant 

frequencies. Due to bidirectional interactions, both resonant 

frequencies were determined by the subjects’ interactive 

dynamics as well as the object dynamics. These two 

resonances were separated by an anti-resonance, a dynamic 

zero. For both the linear and nonlinear system, the anti-

resonance was independent of subjects’ interactive dynamics, 

determined by the natural behavior of the pendulum when the 

cart was stationary: 

𝐹𝑖𝑛𝑡𝑒𝑟 = − 𝑘(𝑥 − 𝑥𝑑𝑒𝑠) − 𝑏(�̇� − �̇�𝑑𝑒𝑠) (5) 

 



  

 

 

B. Data processing and analysis 

The force applied by the subject and the position, velocity, 

and acceleration of the cup and ball were recorded at 120Hz 

for offline analysis. To eliminate transients only the last 25s 

of each trial were analyzed. All data processing and analysis 

was performed in MATLAB v.2017b and Simulink v.9.0 (The 

Mathworks, Natick, MA). The force data were smoothed 

using a second-order Savitzky-Golay FIR filter.  

Each subject’s behavior was characterized by three 

measures: 1) frequency of cup oscillation, 2) mutual 

information between interaction force and cup motion as a 

measure of predictability, 3) magnitude of interaction force 

between hand and cup to quantify exerted effort. 

Movement frequency: Each trial’s frequency was 

determined by finding the zero crossings of cup velocity �̇�, 

calculating the period of each cycle and its inverse, and 

averaging the values over the last 25s. 

Mutual information: To quantify the predictability of the 

object dynamics mutual information MI, a measure of mutual 

dependence between two variables, was calculated between 

the cup movement and the interaction force 𝐹𝑖𝑛𝑡𝑒𝑟(𝑡). The cup 

dynamics was represented by its phase 𝜑(𝑡) =
arctan (�̇� 2𝑓𝜋𝑥)⁄ . 

 

𝑀𝐼(𝜑 , 𝐹𝑖𝑛𝑡𝑒𝑟) = ∬ 𝑝(𝜑 , 𝐹𝑖𝑛𝑡𝑒𝑟) ln [
𝑝(𝜑 ,𝐹𝑖𝑛𝑡𝑒𝑟)

𝑝(𝜑)𝑝(𝐹𝑖𝑛𝑡𝑒𝑟)
] 𝑑𝜑𝑑𝐹𝑖𝑛𝑡𝑒𝑟    (8)     

where p denotes the probability density functions for 𝜑(𝑡) 

and 𝐹𝑖𝑛𝑡𝑒𝑟(𝑡).  The probability density functions were 

estimated by linear interpolation of nonlinear Gaussian 

smoothing kernels, using Silverman’s method for finding the 

parameters [23].  

Interaction force: The continuous interaction force was 

measured and the root mean square (RMSF) over the trial’s 

time series was calculated: 
 

𝑅𝑀𝑆𝐹 =  
1

𝑇
∫ 𝐹𝑖𝑛𝑡𝑒𝑟

2(𝑡)𝑑𝑡
𝑇

0

 (9) 

 

where T was the 25s duration of the trial.  

IV. RESULTS 

A. Time series of kinematics  

Fig.4 shows exemplary time series of ball kinematics and 

interaction forces at three different frequencies: 1) below anti-

resonance, 2) near anti-resonance, and 3) above anti-

resonance, for 15s each. For both linear and nonlinear 

systems, the cup and ball positions were in-phase at 

frequencies below the anti-resonance, and in anti-phase 

relation at frequencies above the anti-resonance. This was 

confirmed via forward simulations of the model. Near anti-

resonance the ball and cup kinematics showed erratic 

behavior, reflecting the subjects’ inability to achieve 

consistent movements due to unpredictable interaction forces. 

There were no visible differences between the time-series in 

the linear and nonlinear trials, except near the anti-resonance 

frequency. There were also no visible differences in the 

chosen amplitudes of cup movements. 

 

 

Figure 4. Exemplary time series data. Linear system with the cup frequency 

below, near, above anti-resonance. Nonlinear system with the cup frequency 

below, near, above anti-resonance. For the given parameters of the cup and 
ball system in the lower frequency strategy, the cup and ball position are in 

phase. For the high frequency strategy, the cup and ball position are in anti-

phase. Near the anti-resonance the system exhibits quasi-chaotic behavior. 
 

B. Histogram of chosen cup frequencies  

The histograms in Fig.5 show the preferred frequencies of 

cup motions for the self-paced trials for all subjects; each 

count represents the mean frequency per trial (bin size=0.08 

Hz). The visible bimodal distribution for the linear system 

indicates that subjects avoided frequencies around 0.74Hz, 

the anti-resonance frequency. In contrast, in the nonlinear 

system the preferred frequencies were distributed more 

evenly and did not show this ‘dip’. The Hartigan’s dip test, a 

statistical test for unimodality, confirms that the linear system 

was bimodally distributed (D=0.0509, p=1.4e-4), and the 

nonlinear system was not (D=0.0329, p=0.0810), where 

p<0.05 indicates significant bimodality. This suggests that the 

linear system presented more challenges for interactions as it 

appeared to discourage subjects from moving at frequencies 

close to the anti-resonance.  

To interpret the frequency preferences of subjects in the 

linear system, a frequency response was calculated using the 

mean estimated impedance parameters (k=92.9N/m, 

b=38.8N·s/m). The cup amplitude/input force was overlaid on 

the histogram (not to scale). The frequency response of the 

cup movement matched the frequency peaks in the histogram 

for the linear system, although the model peaks were not as 

𝑓𝑧𝑒𝑟𝑜 =  
1

2𝜋
√𝑔/𝑙 = 0.74 Hz (7) 

 



  

pronounced (Fig.5A,B). This analysis was not conducted for 

the nonlinear system as a more complex, amplitude-

dependent response is observed. 

C. Mutual information and predictability 

Fig.6A shows the mutual information values for each trial 

plotted against its mean frequency for all 16 subjects. The 

pattern of mutual information across frequencies was similar 

for the linear and nonlinear systems, showing a marked 

decrease of MI at the anti-resonance frequency. However, in 

the nonlinear system there were a few trials with frequencies 

close to the anti-resonance. In contrast, in the linear system 

subjects completely avoided moving at the anti-resonance. 

Especially at frequencies slightly higher than 0.74Hz, the MI 

values were very low indicating that hand-object dynamics 

was more complex and less predictable. Note that these data 

do not support the hypothesis that the linear system provided 

the subject with more predictable dynamics. 

 

 
Figure 5. Histogram of chosen frequencies and the frequency response 

calculated from the model. A) Chosen cup frequencies in the linear system. 

B) Chosen cup frequencies in the nonlinear system. C) Histogram of the 
linear system with the frequency response from the coupled model (the hand 

impedance coupled to the cup and ball system).  

D. Interaction force and effort 

Fig.6B shows the root mean square of the continuous 

interaction force RMSF as a measure of the exerted effort. The 

RMSF value of each trial was plotted versus its mean 

frequency for all 16 subjects. In the linear system, RMSF 

steeply increased from the lower frequency range to the anti-

resonance at .74Hz. In contrast, in the nonlinear system, 

RMSF did not show the same sensitivity to the frequency; it 

only gradually increased at the higher frequencies, 

independent of the anti-resonance. This pattern was counter 

to the expectation that subjects could lower their interaction 

forces in the linear system.  

 

 

Figure 6. Mutual information and root mean square interaction force (RMSF) 

for all 16 subjects. A) Mutual information between the interaction force and 
object kinematics for the linear and nonlinear system, plotted across chosen 

frequencies. Each dot represents a trial. B) RMSF for the linear and nonlinear 

system across the chosen frequencies. The dotted vertical lines indicate the 
anti-resonance frequency. 

 
Figure 7. Zero dynamics force solution for the linear and nonlinear system 

both at .74 Hz. The time series starts 20s after the beginning of the trial to 

eliminate the initial transients. 

E. Anti-resonance and zero dynamics 

In both the linear and nonlinear cases at anti-resonance, 

reaction forces from the pendulum induce zero dynamics, a 

time-history of non-zero input force that yields zero cup 

motion. Why did the linear system seem to present more 

difficulties at the anti-resonance frequency? To address this 

question the two input force profiles that resulted in zero 

output motion of the cup were computed. Fig.7 shows that the 

zero-dynamics profile for the linear system was a simple 

sinusoidal function, whereas for the nonlinear system the 

input force had more than one frequency component. As the 

cup movements were instructed to be approximately 

sinusoidal, the zero-dynamics condition could be relatively 

easily met in the linear system, leading to a significant 

disruption or even cancelling of the intended movement. 



  

Also, in the linear system the input that resulted in the zero-

dynamics condition had much higher force values relative to 

the zero-dynamics condition in the nonlinear case. Therefore, 

subjects may have avoided the anti-resonance because Fball at 

.74Hz transmitted relatively high forces onto the hand. In 

contrast, in the nonlinear system the zero-dynamics profile 

was easier to miss as it was less likely that subjects would 

follow the more complex profile for any length of time to 

experience the disruptive zero dynamics. With the task-

instructed sinusoidal force subjects could be at, or close to this 

frequency without encountering the nulling effect.  

V.  DISCUSSION 

This study examined strategies adopted by humans when 

manipulating objects with both linear and nonlinear internal 

dynamics. The hypothesis was that when humans 

manipulated objects with linear dynamics the interactions 

would be more predictable and less effortful. To test human 

behavior in these two cases the experimental instruction did 

not specify frequency or amplitude, but rather examined the 

range of preferred movements that humans adopted. Counter 

to the hypothesis, the interactions were more effortful in the 

linear system. Also contrary to prior belief, the linear system 

afforded only a restricted range of frequencies due to its 

disruptive zero dynamics and relatively high forces at the anti-

resonance. Therefore, for human-robot cooperation, linear 

dynamics may not necessarily simplify interaction. 

The frequencies that subjects adopted showed a clear 

bimodal distribution in the linearized system, while in the 

nonlinear system participants visited the whole range of 

frequencies, including the system’s dynamic zero, or anti-

resonance. This highlighted that the ‘simple’ dynamics of the 

linear system actually may have made the system more 

difficult to manipulate for the human participant. The zero-

dynamics condition is an important consideration in the 

design and analysis of nonlinear control systems, e.g. in 

feedback linearization. The nonlinear system required a more 

complex interaction force to achieve its zero-dynamic state. 

Subsequently, subjects could move the cup at anti-resonance 

in the nonlinear system because they were unlikely to match 

the interaction force profile that would cause zero cup motion.   

Note that a previous study on the same experimental 

paradigm reported a bimodal distribution of frequencies for 

the nonlinear system [14]. However, in the previous study the 

amplitude of cup movement was fixed, which limited the 

movement frequency choices above and below the anti-

resonance frequency.  

It is important to note that the two resonances were 

generated by the coupled system that included the impedance 

of the hand. Thus, the location of these resonant frequencies 

could be influenced by the subjects’ movements and their 

chosen impedances. Note, however that anti-resonance is 

determined solely by the natural behavior of the pendulum. 

For the simulations reported here, the impedance values were 

obtained from an optimization procedure estimating the best 

fit to the state variables of the system [14]. The frequency 

response was calculated for the mean impedance parameters. 

As the parameters tended to be different for the lower and 

higher frequencies, a better fit on the peaks of the histogram 

may be obtained if two different response functions were 

calculated for the lower and higher frequencies [14]. 

One corollary of the hypothesis about predictability was 

that the human interaction force would be less effortful when 

interacting with the linear model. The results did not support 

this expectation. In the nonlinear case, the ball force was 

limited by its periodic dependence on ball angle. The 

linearized model had no comparable limitation. The 

linearized spring forces were not bounded by the circular 

motion of the pendulum as in the nonlinear model. 

In summary, the main expectations of this study were that 

linearity affords less effortful performance and easier 

prediction of the system dynamics. Counter to expectations, 

movements with the linearized system created relatively 

higher forces, especially at the anti-resonant frequency. 

Assessing predictability by mutual information, the metric 

showed that, contrary to prior assumptions, there were no 

clear differences between the linear and the nonlinear system 

except at anti-resonance. Simulations confirmed that for the 

linear system a simple sinusoidal input force at the anti-

resonant frequency would cause the zero-dynamic state. As 

such a simple sinusoid coincided with the task-instructed 

movement, subjects avoided moving at the anti-resonant 

frequency.  

VI. CONCLUSION 

This study investigated the strategies that human 

participants adopted to interact with a non-rigid object with 

complex dynamics during a rhythmic manipulation task. 

Specifically, the study examined how the system’s 

nonlinearity contributed to the challenge of controlling a 

complex object by contrasting the human’s interaction with 

nonlinear and linear systems. Contrary to our hypothesis, 

linearized object dynamics were neither more predictable, nor 

less effortful to interact with. In the linear system the chosen 

cup movements clearly avoided the zero-dynamic frequency 

which restricted the range of interaction frequencies.  

These results suggest that it may not always be necessary 

to linearize haptic feedback in human-robot interaction. 

Although enforcing linear behavior might be useful for 

certain controller designs, e.g. feedback linearization, this 

may potentially restrict interactive behavior, especially if 

dynamic zeros coincide with the frequency range of human 

actions. These results may inform the design of a range of 

robotic applications including assisted industrial 

manipulation, collaborative assembly, home assistance and 

rehabilitation.  
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