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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Measuring functional coupling in complex systems is an important task for good design practice, though historically it has been an art of subjective 
judgement. With the recent advancements in Deep Learning and Natural Language Processing, functional requirements (FRs) and design 
parameters (DPs), which are expressed as words and sentences, can be represented in a vector space. The sentence embedding model, BERT, 
was used in this paper to vectorize FRs and DPs, to calculate functional independence and to study how metrics for functional coupling 
measurement can be enhanced. It was found that semantic similarity among FRs and DPs, represented in vector space, could be used to compute 
quantitative values for metrics of functional independence. It was also found that design cases where coupling was unambiguous yielded the best 
results, while cases where laws of physics needed to define the FR-DP relationship did not transliterate well to the natural language used to 
express the FR-DP highlighted the limitations of the model in its current state. This study, however, demonstrates a great opportunity to develop 
a robust, fine-tuned design language representation model for accurately measuring functional independence as a part of our effort to enhance 
design intelligence. 
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1. Introduction 

The task of large and complex systems design relies heavily 
on expert’s heuristic knowledge and insight in delivering a 
systems solution. Success at this scale results in elegant and 
efficient engineering, social or service systems that can provide 
users and the society with a better quality of life, while failure 
can result in long-delayed, over-budgeted, and sometimes 
unfinished projects and even catastrophic loss of life. A well- 
established and widely-accepted metric for good design is the 
concept of functional independence [1], where maintaining 
functional independence is key for good design, and functional 
coupling can lead to inefficiency and aforementioned 
catastrophic failure. Axiomatic Design (AD) has provided a 
way of design thinking that the heuristic-based system design 

could be better structured with the concept of domains and 
securing functional independence (Axiom One). But many still 
find it difficult to apply AD principles, such as functional 
independence, to practical problems since assessing functional 
coupling requires subjective judgement and substantial amount 
of experience.  While existing designs can be analyzed for 
functional coupling retrospectively by an experienced systems 
designer, it is difficult to measure coupling during the early 
design process prospectively, especially when the design 
parameters and functional requirements are difficult to quantify 
and normalize. For this reason, most efforts to apply AD 
principles to industrial practice have fallen short of becoming 
widely applied tools for design success yet. 

A framework of AI for design was developed by the authors 
to facilitate the functional thinking of junior designers by 
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representing designer’s intention in the syntax of functional 
requirements, assisting human designers in making good design 
decisions with AD principles [2]. Deep learning-based 
algorithms have been applied to  translate (encode) user needs 
and specifications to a collection of functional requirements 
(FRs) that can be vectorized and then understood by the 
machine learning tools to create structure and hierarchy of 
them. Once vectorized, FRs and design parameters (DPs) could 
utilize the rich set of AD principles, theorems and corollaries to 
assess the designer’s decision and provide adequate advices.  
This paper reports on whether vectorized FRs and DPs could be 
assessed algorithmically whether they are coupled or not.  

 
Recent breakthroughs in the field of machine learning as a 

result of relatively cheap graphic processing units (GPUs) that 
can power deep neural networks, combined with large amounts 
of readily available data have resulted in a resurgence in interest 
in artificial intelligence (AI). In particular, the field of natural 
language processing (NLP) has seen great advancements as 
industry seeks to make use of massive amounts of text created 
by queries on search engines, posts on social media, and even 
published academic papers. While unprocessed words and 
statements by themselves have no quantitative value for 
computing similarity, sentiment, or other attributes of natural 
language, powerful language models trained on large corpora 
of text can represent words and sentences in multidimensional 
vector space. Work in the field of applying neural networks to 
statistical language modeling can be traced to Rumelhart, 
Hinton et. al. [3], but with the aforementioned availability of 
corpuses containing billions of words, recent word embedding 
techniques, specifically the work of Mikolov et. al [4] has 
resulted in models that can vectorize text such that simple linear 
translations of word vectors yield intuitive responses. As 
demonstrated in [5], the sum of vectors for Germany and 
capital when added together is closest to the vector for 
Berlin, showing how linguistic patterns can be accurately 
captured by deep learning-based language representation 
models. Further NLP breakthroughs in vectorizing phrases, 
whole sentences, and even documents have followed. Most 
recently, a new language representation model, “Bidirectional 
Encoder Representations from Transformers” or BERT [6], has 
released a pre-trained language model demonstrating record-
breaking performance on eleven benchmark NLP tasks. The 
field of NLP is so fast-paced that during the work on this paper 
itself, BERT was outperformed by a new autoregressive model 
named “XLNet” [7], showing new state-of-the-art tools 
emerging from the research area of natural language 
representation.  

This work leverages deep language representation models 
such as BERT to quantify FR-DP coupling relationships and to 
facilitate the integration of AI and human intelligence in the 
domain of design, building on the concept of hybrid intelligence 
as introduced in Kim et. al [2]. 

2. Axiomatic Design & Deep Language Representation  

Among a multitude of theories for how to best execute good 
design, Axiomatic Design (AD) stands out as a principle-based 
methodology to designing systems [8]. AD provides a 

framework for mapping between the functional domain and 
physical domain. While it is a powerful tool for facilitating 
early-stage top-down systems design thinking in research and 
academic settings, it has not been widely incorporated into 
industrial practice. AD holds two key Axioms: that functional 
independence must be maintained, and complexity must be 
minimized. Functional independence relates to the relationships 
between “what” and “how” of a design. Functional 
requirements (FRs) represent the former, and are derived from 
users’ needs: the problem the design addresses. Design 
Parameters (DPs) are “how” a solution solves the problem. The 
relationship between FRs and DPs can be mathematically 
represented using equation 1, known as the “Design Equation” 
[1]: 

 
{𝐹𝐹𝐹𝐹} = [𝐴𝐴]{𝐷𝐷𝐷𝐷}    (1) 

 
{FR} represents the functional requirement vector (design 
goals) and {DP} is the design parameter vector (how these 
goals will be addressed). The remaining term [A] is the design 
matrix, each element of which represents a relation between a 
component of the FR vector to a component of the DP vector. 
For example, a design with n FRs and m DPs could be 
represented by equation 2: 
 

{
𝐹𝐹𝐹𝐹1
⋮

𝐹𝐹𝐹𝐹𝑛𝑛
} = [

𝐴𝐴11 ⋯ 𝐴𝐴1𝑚𝑚
⋮ ⋱ ⋮

𝐴𝐴𝑛𝑛1 ⋯ 𝐴𝐴𝑛𝑛𝑚𝑚
] {
𝐷𝐷𝐷𝐷1
⋮

𝐷𝐷𝐷𝐷𝑚𝑚
}    (2) 

 
For the case of an uncoupled design, the design matrix [A] 

would be diagonal, meaning Aij = 0 when i  j. In this case, 
each DP satisfies a single FR in an ideal design. For the case of 
coupled design, any change in an FR cannot be addressed by an 
adjustment of any combination of DPs without also affecting 
other FRs. The significance of functional coupling in design, 
especially of complex systems, cannot be understated. Small 
design updates to one portion of a system can have undesired 
and even initially unnoticed effects on other aspects of the 
overall design in the case of a coupled design. A classic 
comparison of a coupled and uncoupled design in everyday life 
is apparent in faucet design. Considering the FRs of a faucet to 
allow the user to control temperature of water and control flow 
rate of water, a commonly implemented but coupled instance of 
faucet design has two valves (Figure 1a); one for cold and one 
for hot water. Controlling temperature and flow rate is difficult 
for the user because of functional coupling; adjusting each knob 
affects both variables. The uncoupled instance of the design 
(Figure 1b) allows the user to adjust flow rate with a vertical 
lever, and temperature by moving the lever horizontally. 
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Fig. 1. (a) right: coupled faucet; (b) left: uncoupled faucet design. 
Photography by Rebecca Wiggins and Sasikan Ulevik on unsplash.com 

While clear in some simple cases, functional coupling can 
be difficult to measure in more complex designs with multiple 
FRs and DPs, or where the relationship between the functional 
and physical domains can be ambiguous. Efforts have been 
made to determine metrics to measure degree of coupling in 
such cases, based on the representation of FRs and DPs as 
vectors without actually quantifying them [9-10]. FRs, by 
definition, are independent, and so can be represented as 
orthogonal vectors. DP isograms, when plotted in the functional 
domain, may or may not be parallel to FR axes, depending on 
how many FRs they affect. For a design with two FRs and DPs, 
the design can be visualized with isograms as in Figure 2 below.  

 

 

Fig. 2. DP isograms plotted in the functional domain. 

There are two metrics for coupling, Reangularity (R) and 
Semiangularity (S). Reangularity R reflects the degree to which 
different DPs have the same effect on the set of FRs [9], 
essentially a measure of orthogonality between DPs, 
corresponding to the angle  between DPs in Figure 2. R is 
related to the cosine similarity of the elements of the design 
matrix relating each DP component to the FR vector, and can 
be generalize for an n-dimensional case as follows in equation 
3 [9]. 

 

𝑅𝑅 =  ∏ (1 − (∑ 𝐴𝐴𝑘𝑘𝑘𝑘𝐴𝐴𝑘𝑘𝑘𝑘
𝑛𝑛
𝑘𝑘=1 )2

(∑ 𝐴𝐴𝑘𝑘𝑘𝑘
2𝑛𝑛

𝑘𝑘=1 )(∑ 𝐴𝐴𝑘𝑘𝑘𝑘
2𝑛𝑛

𝑘𝑘=1 ))
1/2

𝑘𝑘=1,𝑛𝑛−1
𝑘𝑘=1+𝑘𝑘,𝑛𝑛

     (3) 
 

The second metric, Semiangularity S reflects the degree to 
which each DP affects one and only one FR of the design [9]. 
DPs may be independent of each other yet may still affect 
multiple FRs as can be visualized in the case of an orthogonal 
pair of DPs oriented at a non-parallel angle to the functional 
domain. S can be expressed as the product of the absolute 

values of the diagonal elements of the design matrix [A], 
normalized as in equation 4 [9]. 

 

𝑆𝑆 =  ∏ ( |𝐴𝐴𝑘𝑘𝑘𝑘|
(∑ 𝐴𝐴𝑘𝑘𝑘𝑘

2𝑛𝑛
𝑘𝑘=1 )1/2)

𝑛𝑛

𝑘𝑘=1
 

(4) 
 

When Reangularity and Semiangularity of a design are close 
to zero, this indicates the design is fully coupled (worst case); 
when R and S values are close to 1, this is an indication of 
functional independence, an ideal design case.  

 
This framework for quantifying coupling in design [9] was 

interesting but has been difficult to apply to real-world design 
cases because of the challenge presented by determining the 
values of the elements in the design matrix [A] accurately, when 
various FR-DP pairs may deal with quantities measured in 
different units, or when the FR in question is simply qualitative 
at the early stage of design. It is at this limitation of measuring 
functional independence with AD principles that deep language 
representation models become highly applicable. 

3. Language and function embedding 

Words and phrases, expressed as strings in digital texts, have 
no quantifiable meaning in their raw form. Mathematically 
there is no way to quantify the relationship between the word 
“temperature” and “flow” simply based on their form as a 
sequence of letters from a given alphabet. The simplest and 
least efficient method of converting all the words in the 
dictionary to multi-dimensional vector space (where 
mathematic manipulation can occur) would be to create an n-
dimensional vector for each word where n is the number of total 
words in the dictionary. Using the “one-hot encoding 
procedure,” each word vector would be made up entirely of 
zeros except for the position that the word in question occupies 
alphabetically.  

The goal of vectorizing words and sentences is to place them 
in n-dimensional space such that language of similar context 
occupies nearby positions. State of the art sentence embedding 
models such as BERT [6] use deep neural networks to 
accomplish this task. In the BERTLARGE model configuration, a 
neural network with 24 layers is pre-trained on unlabeled data 
from the BooksCorpus and the English Wikipedia, amounting 
to more than 3 billion words in the form of documents, because 
continuous sequences of sentences are important for the model 
to learn context. The same model architecture is then fine-tuned 
by initializing the same neural network with parameters 
obtained from pre-training and learning this time with labeled 
data. The network architecture used by the developers of BERT 
is a multi-layer bidirectional transformer.  

Based on the transformer architecture proposed by Vaswani 
et. al [11], BERT is capable of “reading” text bi-directionally, 
where word tokens can consider context to both right and left 
in a sentence. The model is trained on two tasks. Given an input 
of a small number of sentences, a random selection of tokenized 
words is masked, and the model trains by predicting correct 
words by choosing from a probability distribution of 
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appropriate words, a process known as a Masked Language 
Model (MLM). The second task is simply predicting a 
subsequent sentence, which helps the model gain a sense of 
context.   At the time of its release, BERT reached state-of-the-
art results in numerous benchmarks for language embedding 
performance. For the experiments demonstrated in this paper, 
the pretrained BERTBASE model (12-layer architecture) was 
used to demonstrate how powerful state-of-the-art word 
embedding tools integrated with theories of functional 
independence can be for measuring coupling in design. 

Both semantic and sentiment understanding is a key goal of 
language representation models such as word2vec and BERT 
developed by social media companies (Facebook and Google 
respectively). For example, a task of interest in this industry is 
differentiating between sarcastic statements and text suggesting 
the author wishes to seriously cause harm. This paper proposes 
that the same tool can be used for design analysis in the 
functional domain by representing functional requirements and 
design parameters in vector space.  

 

4. Measuring Functional Independence 

Given the framework that Axiomatic Design provides for 
translating FRs and DPs into linear algebra equations, and the 
properties of the design matrix that relate to measures for 
coupling in terms of Reangularity and Semiangularity, 
language representation in the form of vectorized phrases 
proves to be a valuable tool for assessing functional coupling 
quantitatively. Rather than considering FRs and DPs as design 
variables measured with units in disagreement such as the 
faucet example where the units for flow rate [volume / time] 
and temperature [degrees] are incongruous, we can instead 
consider FRs and DPs as design statements positioned in the 
same multidimensional vector space. In this space, contextual 
relationships between phrases can lend an understanding of 
coupling if manipulated correctly.  

 
If we recall equation (2) which describes how multiple FR 

and DP pairs are related via the design matrix [A], we can 
consider a somewhat idealized case where the number of FRs 
is equal to the number of DPs. This case is not necessarily 
coupled or uncoupled. Leveraging any number of pre-trained 
language representation models, each design statement (FR + 
DP chosen) can be converted from a string of characters to an n 
dimensional vector. Later, for demonstration purposes, 
BERTBASE will be used for this task. By inserting the statement 
vectors into a design equation with m FR-DP pairs, we end up 
with the following expression for equation 5. 

 

{
[𝐹𝐹𝐹𝐹11, 𝐹𝐹𝐹𝐹12 ⋯𝐹𝐹𝐹𝐹1𝑛𝑛]

⋮
[𝐹𝐹𝐹𝐹𝑚𝑚1, 𝐹𝐹𝐹𝐹𝑚𝑚2 ⋯𝐹𝐹𝐹𝐹𝑚𝑚𝑛𝑛]

} = [
𝐴𝐴11 ⋯ 𝐴𝐴1𝑚𝑚
⋮ ⋱ ⋮

𝐴𝐴𝑚𝑚1 ⋯ 𝐴𝐴𝑚𝑚𝑚𝑚

] {
[𝐷𝐷𝐷𝐷11, 𝐷𝐷𝐷𝐷12⋯𝐷𝐷𝐷𝐷1𝑛𝑛]

⋮
[𝐷𝐷𝐷𝐷𝑚𝑚1, 𝐷𝐷𝐷𝐷𝑚𝑚2 ⋯𝐷𝐷𝐷𝐷𝑚𝑚𝑛𝑛]

} (5) 

 
Now both the {FR} and {DP} matrices have dimensions m 

by n where m represents the number of FR-DP pairs, and n 
represents the dimensionality of the statement vectors. The 
design matrix [A] still has dimensions m by m, and remains the 
most interesting component of the expression. If we recall the 
expressions for Reangularity R and Semiangularity S from 

equations 3 and 4, we see that using the values of elements from 
[A], measures of functional coupling can be determined from 
the vectorized design statements of equation 5. The matrix A 
can be solved for using regression, and the value of R and S, 
each on a scale of 0 to 1 can be computed. R values close to 
zero indicate great similarity between DPs, while values closer 
to 1 indicate orthogonality between DPs. However, even 
orthogonal DPs can be coupled if not aligned with FRs in the 
functional domain. S values close to 1 indicate perfect 
alignment of FR-DP pairs, such that a design with perfect 
functional independence would have an R and S value both of 
1. The opportunities and limitations of directly inserting 
statement vectors into the design equation are demonstrated in 
the subsequent section. 

5. Experiments 

In this section, four designs of two separate products are 
considered. For each product, an example of a coupled design 
followed by a design where functional independence is 
maintained are compared, and metrics for coupling are 
computed using equation 5 to evaluate the design matrix, and 
equations 3 and 4 to evaluate Reangularity R and 
Semiangularity S. Each design is described by two FR-DP pairs 
for simplicity. The design statements are converted to n-
dimensional vectors where n = 768 using a BERTBASE pre-
trained model. The Hugging Face implementation [12] of 
Devlin et. al's BERT model was used to produce sentence 
embeddings for the following examples 

5.1. Water Faucet 

Consider the two common designs for a faucet, illustrated 
previously in figure 1. The first design featuring separate valves 
for hot and cold water flow is clearly coupled because adjusting 
either knob affects both flow rate and temperature, making it 
difficult for the user to control both at once. The FRs and DPs 
for a fully coupled case can be expressed with matrices in 
equation 6, and in natural language below. 

 

{𝐹𝐹𝐹𝐹1𝐹𝐹𝐹𝐹2
} = [× ×

× ×] {
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2}    (6) 

 
Faucet (coupled): 
FR1: Allow control of water temperature 
FR2: Allow control of water flow rate 
DP1: One valve to control flow rate of cold water 
DP2: One valve to control flow rate of hot water 
 
For the coupled case, R is 0.369, and S is 0.056. These 

metrics suggest functional coupling in this design. Next, we 
consider the second design illustrated in figure 1b, which 
features a lever that when moved horizontally controls water 
temperature, and when adjusted vertically increases flow rate. 
This is a functionally independent case, described by equation 
7, as the user can independently control temperature and flow 
rate. The natural language description of the design is below. 

 

{𝐹𝐹𝐹𝐹1𝐹𝐹𝐹𝐹2
} = [× 0

0 ×] {
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2}    (7) 
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Faucet (uncoupled): 
FR1: Allow control of water temperature 
FR2: Allow control of water flow rate 
DP1: One lever to control temperature of water 
DP2: One lever to control flow rate of water 
 
For this uncoupled case, R is 0.991 and S is 0.911. These 

metrics reflect a nearly perfectly functionally independent 
design. The isograms for each faucet design case can be used to 
illustrate, in Figure 3, how the computed values of R and S 
reflect functional coupling. 

 

 

Fig. 3. Functional Domain Isograms for Coupled (left) and Uncoupled (right) 
faucet design cases 

5.2. Steam Engine 

Next, we consider steam engine design from the 18th 
century. For more than half a century, the “Atmospheric” steam 
engine designed by Thomas Newcomen in 1712 was the point 
of reference for industry at the time, used extensively for a 
number of applications for decades [13]. The engine cycle 
operated by pulling a piston head upwards in a cylinder using 
some application-related weight fixed to a pulley. During this 
upstroke, a boiler injects steam into the piston-cylinder 
assembly. To pull the piston head down again and raise the 
weight at the end of the pulley, the cylinder is cooled to below 
atmospheric pressure (hence the name) by spraying cold water 
into the cylinder. This creates a partial vacuum which pulls the 
piston back down to the bottom of the cylinder. 
This is a case of coupled design because cooling and reheating 
occurs in the same cylinder, increasing the cycle time needed to 
create a partial vacuum before the next stroke. The design can 
be described in natural language, decomposing the DP into two 
DPs to address each FR. 
 

Newcomen Steam Engine (coupled): 
FR1: Lower pressure to a partial vacuum in the cylinder 
FR2: Raise pressure back to atmosphere in the cylinder 
DP1: Condense steam by cooling the cylinder with cold 

water 
DP2: Draw high temperature steam from the boiler into the 

cylinder 
 
For the coupled case, R is 0.004, and S is 0.596. The 

especially low value for Reangularity suggests that the two DPs 
are very similar and not orthogonal. Such a design where two 
FRs are satisfied by one DP is inherently coupled and can be 
described by equation 8.   

 

{𝐹𝐹𝐹𝐹1𝐹𝐹𝐹𝐹2
} = [××] {𝐷𝐷𝐷𝐷1}   (8) 

 
We can visualize these as isograms in the functional domain, 

where they reflect the fact that the Newcomen engine uses one 
DP to address two FRs, resulting in a coupled design, shown in 
Figure 4. It was more than fifty years before James Watt, while 
repairing a Newcomen engine, identified the inefficiencies of 
its design and decoupled functionality by introducing a new 
component: a condensation chamber which could be cooled 
separately to create a vacuum to pull the piston down to the 
bottom of the cylinder [13]. The James Watt steam engine 
design can be described below in natural language, and is also 
represented by equation 7. 

 
Steam Engine (uncoupled): 
FR1: Lower pressure to a partial vacuum in the cylinder 
FR2: Raise pressure back to atmosphere in the cylinder 
DP1: Draw steam into a separate low temperature 

condensation chamber connected to the cylinder by a valve 
DP2: Draw high temperature steam from the boiler into the 

cylinder 
 
For this uncoupled case, R is 0.437 and S is 0.892. The 

addition of an independent design parameter (the condensation 
chamber) is reflected in the increase in value of Reangularity.  

 

 

Fig. 4. Functional Domain Isograms for Single DP (coupled) (left) and 
Uncoupled (right) steam engine design cases  

The results of these demonstrations are summarized in Table 1. 

Table 1. Results for Reangularity R and Semiangularity S. 

Design Case Reangularity (R) Semiangularity (S) 

Faucet (coupled) 0.369 0.056 

Faucet (uncoupled)  0.991 0.911 

Steam engine (coupled) 0.004 0.596 

Steam engine (uncoupled) 0.437 0.892 

 

6. Discussion 

Two unique design areas were used to demonstrate the 
applicability of language representation models such as BERT 
in measuring functional independence. The faucet design case 
yielded the most difference between metrics for coupled and 
uncoupled designs. When statements are converted to vectors, 
similar sentences and phrases occupy a closer location in vector 
space than unrelated phrases. For the faucet design, it was very 
simply stated in a succinct phrase in the uncoupled case that 



 Haluk Akay  et al. / Procedia CIRP 91 (2020) 528–533 533
6 Author name / Procedia CIRP 00 (2020) 000–000 

one DP clearly addressed temperature, and the other addressed 
waterflow. The control of these two exact variables being the 
top-level FRs meant high vector similarity, reflected in the 
computed values for Reangularity and Semiangularity.  

The single-DP coupled case of the Newcomen steam engine 
showed how such designs can also be identified in vector space. 
The solution to address each FR both resulted in 
raising/lowering pressure in the same cylinder, leading to high 
sentence similarity between DPs, reflected in the functional 
domain where indeed one DP was being tasked to both FRs. 
Reangularity of near zero reflects a design where the DPs are 
nearly identical.   

Design cases with no more than two FR – DP pairs were 
demonstrated, with very precisely and concisely stated 
descriptions. When integrated into a user-facing system, more 
“noisy” descriptions can be expected from novice designers 
attempting to make better design choices with this 
computational aid. In the model’s current form, if the level of 
“noise” in these descriptions is increased to the point where 
they have inconsistencies, or convey only partially complete 
information, then the feature representation model will less 
consistently produce a vector indicating the key semantic 
context of the sentence, depending on how poorly stated is the 
input. For these cases, a pre-processing step would be needed 
before the representation model could produce meaningful 
vectors that accurately represent the semantics of each design 
statement. Longer descriptions, possibly including multiple 
sentences, with verbose descriptions, can be abstracted to key 
FRs and DPs to provide concise and precise inputs to the 
feature representation model. 

7. Conclusion 

The concept of functional independence in the case of 
system design was introduced, and two metrics for quantifying 
coupling were referenced as ways to compare alternative 
design solutions for similar problems. Powerful tools in the 
field of Natural Language processing, specifically deep 
language representation models were also identified as being 
relevant to the area of engineering design. At the intersection 
of Axiomatic Design theory and these deep neural networks, an 
area of applicability was discovered where design statements 
in the form of Functional Requirements and Design Parameters 
could be mapped to multidimensional vector space, and then 
manipulated to evaluate certain designs and compare functional 
coupling between various solutions.  

For simple cases where the semantic similarity between 
respective FR-DP pairs was unambiguous, the computed 
metrics for functional coupling aligned with expectations for 
these design cases.  While the results of these experiments were 
sometimes in agreement with AD theory, in the case where 

coupling was not explicitly apparent to the language model 
used, the uncoupled design was evaluated as being 
insignificantly different from the coupled case. For design 
cases where functional independence is a result of isolating a 
design parameter based on a law of nature with which the 
sentence representation model is not familiar, the coupling 
metrics prove not to be as meaningful. This limitation 
highlights the need for further fine-tuning of the models to 
ensure that laws of science are passed to the model during 
training. This work provides a starting point for further 
research leveraging the power of deep learning tools in the field 
of systems design. 
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