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Abstract

Good design practice and digital tools have enabled industry to produce valuable products. Early-stage design research involves rigorous back-
ground study of large volumes of design documentation which designers must analyze manually, to extract functional requirements which are
abstracted and prioritized to guide a design. Recent advances in Machine Learning, specifically Natural Language Processing (NLP), can be ap-
plied to enhance the time-consuming and difficult practice of the human designer by performing tasks such as extracting functional requirements
from long-form written documentation. This work demonstrates how extractive question-answering by neural networks can be applied to design
as a tool for automating this initial step in the design process. We applied the language model BERT, fine-tuned on question-answering, to identify
functional requirements in written documentation. Limitations due to wording sensitivity are discussed and an outline for training a design-specific
model is discussed with a MEMS product design case. This work presents how this application of Al to design could enhance the work of human
designers using the power of computing, which will open the door for learning from big data of past product designs by allowing machines to

“read” them.
© 2021 The Authors. Published by Elsevier Ltd.
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1. Introduction

Design is a creative process, heavily dependent on the inge-
nuity of human designers to synthesize concepts that solve com-
plex problems satisfying the world’s needs with novel products
and systems. The activity of creative ideation is a uniquely hu-
man ability, but there still exist tasks in the early-stage design
process, which may benefit from human creativity working in
harmony with the computational power and large memory of
machines.

In the domain of solution prototyping and concept genera-
tion, designers have enjoyed the use of CAD, for decades now,
to create digital models and quickly obtain performance as-
sessments (static, dynamic, and thermal analyses) of their cre-
ations, before physical prototyping and testing, with ease. Re-
cently, Machine Learning methods have been applied to phys-
ical object creation where a model is trained to synthesize a
digital geometry with minimal designer guidance. Generative
models have been demonstrated to create high-resolution 3D
reconstructions of products such as furniture [17], as well as ex-
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plore physical parameters to generate novel geometries of com-
ponents such as airfoils based on maximizing certain perfor-
mance objectives [4]. In contrast to applying Artificial Intelli-
gence (Al) to generate design solutions, this work seeks to sup-
port human designers in the early-stage labor-intensive phase of
the design research process which may benefit from the support
of Machine Learning methods.

This work builds on the idea of Hybrid Intelligence in de-
sign [8], a framework for close collaboration between human
designer and machine where, rather than replacing the role of
the designer with generative models, the tasks which humans
find difficult, time-consuming, and require considerable expe-
rience, are facilitated with Machine Learning-based methods,
allowing designers to practice the creative aspects of their craft
with more focus. Before novel solutions can be ideated by a
designer, a problem must be identified. Although terminology
may vary based on different schools of design, the importance
of accurately identifying functional requirements in Axiomatic
Design Thinking [12] or in the Product Design and Develop-
ment process [15] is universally significant in initializing a rig-
orous design process. Practitioners of design research spend
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substantial resources on conducting thorough background re-
search with the aim of surfacing functional insights which may
translate to concrete requirements. Griffin et al. estimated that
98% of a product domain’s functional information will only be
surfaced after 25 hours of stakeholder interviews [6], generat-
ing hundreds of pages of transcripts that must be analyzed to
surface functional information. Equivalent lengths of academic
papers and theses in scientific domains must also be read and
dissected to assemble a thorough corpus or text body of design
research.

Processing massive amounts of textual information to sur-
face functional requirements may be prone to inefficiency, inac-
curacy, and bias when tasked to a human designer. These chal-
lenges increase when significant time has passed between data
collection and analysis, or when design research projects are
passed between human collaborators. Likewise if a design re-
search process is paused and re-started by a new collaborator
with low topic familiarity, the task becomes increasingly chal-
lenging.

This paper presents an application of Machine Learning
methods, specifically in the area of Natural Language Process-
ing (NLP), to develop a process for automating the task of
extracting functional information from long-form textual doc-
umentation. This work is conducted with the aim of provid-
ing a tool for design researchers so that they may focus their
craft on creative tasks currently outside the scope of AI’s ca-
pabilities, and so that Al may be responsible for repetitive
computationally-intensive aspects of their process which are
difficult for humans.

2. Background
2.1. Language Representation

While humans are able to read words, phrases, sentences,
and paragraphs to gain a contextual meaning of information be-
ing communicated, machines gain no such abstracted meaning
from alphabetical characters. In 2003, Bengio et al. proposed
an Al framework for representing language to machines based
on a probabilistic model to essentially convert words to vectors
[3]. This framework demonstrated how embedding elements of
language (words) in a distributed feature vector positioned in
multi-dimensional space could create a notion of semantic sim-
ilarity between words.

One of the first neural network-based models to successfully
execute this word vectorization task is known as Word2vec [10]
in 2013. Word2vec was trained on word-prediction tasks on a
large corpus (text dataset) such that the model learned a set of
parameters that could represent words in high-dimensional vec-
tor space with remarkable results. Dimension-reduction tech-
niques can be used to visualize how these language represen-
tations are spatially located, an example of which is shown in
Figure 1. Vector embeddings of words closely mirrors semantic
meaning; this is apparent in the visualization, where the words
for numbers are closely clustered, as are geographic words, and
so on. Furthermore, simple vector arithmetic similarly captured
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Fig. 1. The semantic meaning of language can be encoded into feature vectors
where similar words occupy closer positions in multi-dimensional space. Using
dimension reduction methods like t-SNE, this space may be visualized in 2D,
shown above, adapted from [9]

semantics. For example, if the vector for “man” was subtracted
from the vector for “king,” the resultant vector was more closest
to “queen” than any other word vector. The model was able to
capture the contextual meaning of words such that the feature
vectors for more similar words had higher cosine similarity.

As neural networks grew more sophisticated, and “deeper”
with hardware able to efficiently train an increasing number
of parameters on even larger datasets, the capabilities of NLP
models intensified as well. In 2017, the framework for a novel
neural network architecture called the Transformer [16] was
proposed by researchers at Google. The Transformer architec-
ture’s specialty is its use of the Attention mechanism, which
gives the model the ability to intelligently place greater weight
on more important elements in a sequence, or rather “pay atten-
tion” to more relevant words in linguistic context.

Following the Transformer architecture, in 2018 Google re-
leased a novel language model Bidirectional Encoder Repre-
sentations from Transformers, or BERT [5]. BERT was built
using the Transformer architecture, but was also unique in that
rather than processing language from left-to-right or right-to-
left, it processed sequences bi-directionally to gain a compre-
hensive understanding of context. BERT immediately outper-
formed other similar language models and set new records in
various NLP benchmark performance tasks, such as question-
answering, which will be analyzed in detail in this paper.

Perhaps the feature of BERT which makes it most use-
ful to the scientific community was the method in which it
is trained. Training is broken into two phases: “pre-training”
and “fine-tuning.” The pre-training phase allows BERT to learn
parameters used for producing vector representations of lan-
guage through two tasks: Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP). MLM involves randomly
“masking” certain words in a span of text, and training BERT
to correctly predict the masked word. NSP trains BERT on un-
derstanding sentence-level relationships through the binary pre-
diction task of whether two sentences occur consecutively in a
context. Pre-training is conducted over datasets totaling approx-
imately 3.3 billion words, a computational resource-intensive
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feat, which Google performs itself, releasing the pre-trained
model parameters to the scientific community.

2.2. NLP for Design: Task-specific Analysis and Generation

The field of Design has not benefited from developments in
Machine Learning (ML) in the way NLP has been transformed.
A major challenge for implementing ML methods for design
tasks is the lack of sizeable design-relevant datasets available.
In the face of low-resource domains (with respect to training
data) such as design, alternative paths may be taken. The con-
cept of transfer learning involves transferring knowledge of a
learned source task to improve performance in a related but dis-
tinct target task [14]. The target task in this work has been iden-
tified as surfacing relevant functional information from long-
form text documents. In the absence of many curated examples
of design documentation with corresponding key functional in-
formation labeled, a more generalized language-related source
task analogous to the target task may be identified for applica-
tion to design.

In previous work [2], we have demonstrated how vector rep-
resentations of language, obtained from neural-network based
language models such as BERT, can be used to quantify metrics
of system design, because the functional domain of design mir-
rors the semantic domain of language in simple cases. It was
shown how succinct natural language descriptions of various
designs of products such as faucets or refrigerators may be vec-
torized to accurately measure if the designs were functionally
coupled or independent, purely based on the semantic similarity
between descriptions of a matrix of requirements and solutions
in simple systems. This was evidence of the relevancy of adapt-
ing NLP models to use in processing design documentation.

Alternatively, in the absence of available design task-specific
data, synthetic data may be generated to use for the task at
hand. In other previous work [1], we have demonstrated how
generative text models, similar to those used when suggesting
auto-complete options on social messaging apps, can be used
to complete a prompting “seed” design statement with the aim
of building a dataset of different types of design descriptions.
This dataset was used to train a binary classifier to identify if an
unlabeled statement described a problem or a solution.

Although large design-specific datasets may be rare, meth-
ods in Machine Learning and specifically NLP present an op-
portunity to transform the field of design. When early-stage
design is considered, a significant amount of information is
captured in textual documentation, before physical components
and modules are prototyped. It is at this stage of design that
NLP models may be applied; this paper describes how the chal-
lenge of extracting functional requirements from design texts
may be approached using Machine Learning and NLP.

3. Method
3.1. Surfacing Information

The motivating problem statement can be described as: given
long-form textual documentation, surface the functional do-

main information from within, for a human to subsequently
prioritize and abstract to formal requirements of an eventual
design. This involves identifying the highest-level functional
requirements of a design given documentation. In order to be
able to automate this process, a module with the following crit-
ical ability must be developed: given a span of text as contextual
input, identify functional information, and return this as output.

The task of identifying functional information in linguistic
context can be carried out extractively or abstractively. Extract-
ing functional information from a sequence simply involves
returning a sub-sequence from the original context. The sub-
sequence is of shorter length, and has a higher “density” of in-
formation of interest. This is akin to a human analyzing a docu-
ment and highlighting certain lines which are interesting to the
reader. Abstracting functional information from a language se-
quence is a generative process, where based on information of
interest in the original sequence, a novel sequence of shorter
length is succinctly composed. This is akin to a human reading
a document and summarizing the interesting portions in their
own words.

From a feasibility standpoint, extracting function from con-
text is the simpler task; just the start and end positions demar-
cating the functional information in the original context must
be identified. In contrast, abstracting function from context re-
quires a generative text module which adds unwarranted com-
plexity to the solution, with just benefit of more succinct sum-
maries. Futhermore, extracted functional information preserves
the original ordering and identity of elements in a sub-sequence,
which provides an opportunity for applying recursive methods
for more structured decomposition in the future. This paper
therefore focuses on an extractive solution.

With a rule-based system, an algorithm could theoretically
be developed to satisfy the goal of extractively highlighting
functional information. Such an algorithmic model would re-
quire a logic system (series of if — then statements) to parse
the input text. The insurmountable challenge of applying such
logic in practice is the diversity of style that humans use to ex-
press themselves verbally (in user interviews) or describe con-
cepts formally (in scientific papers). The advantage of machine-
learning-based NLP is that a model can be trained to extract
functional information by learning from examples of context
and extracted function. Because a dataset of adequate size does
not exist, an NLP model trained on a source task analogous to
the target task can be applied to extractively surface functional
information from context. The following section describes the
language task of question-answering, an analogous source task
which may be applied to design.

3.2. Mechanics of Question-Answering

Question-answering is a benchmark language processing
task, analogous to the target task of extracting function from
context, but more generalized in nature. Given context, the an-
swer to any question posed must be extractively returned. For
application to design, this puts great importance on posing the
correct question which will provoke the resultant answer to con-
tain functional information. The task of extracting an answer



34 Haluk Akay et al. / Procedia CIRP 100 (2021) 31-36

from context involves identifying the sub-sequence, contained
inside the context, which contains the answer to the question
posed. Mathematically, this means finding the indices denoting
the start position i, and the end position j, of the span of text
defining the answer, where i < j. The context is broken, or to-
kenized, into a list of word-units which correspond to words,
punctuation, or acronyms. Figure 3 in Section 4 indexes the
context by word-unit.

A neural network can be trained to perform this extractive
question-answering task. A measure of performance in this task
is test accuracy on the Stanford Question Answering Dataset
(SQuAD) [11], which is a set of 100,000 crowd-sourced exam-
ples of contexts, questions, and correct answers. The language
model BERT, previously introduced, demonstrated state-of-the-
art performance on this metric at the time of its release. With re-
gard to NLP tasks, BERT is a multi-purpose tool due to the two-
step process in which it is trained. An initial pre-training step
provides a Transformer Neural Network with a set of learned
parameters which can represent language with vector embed-
dings. For each word in an inputted language span, a vector
containing that unit’s semantic information is returned.

During fine-tuning of BERT on the SQuAD dataset, new
learnable parameters are introduced which are trained to re-
turn the probability of a given word in the context being the
start of the answer P; and the probability P; of being the end
of the answer. The example questions, contexts, and answers in
the SQuUAD dataset are used to optimize the model’s parame-
ters to eventually perform extractive question-answering rival-
ing human reading comprehension. This model may be applied
to design to extract functional requirements from context, if the
correct inputs are used.

3.3. Application to Design

The source task of question-answering has analogous inputs
and outputs to the target task of functional information extrac-
tion, except with the additional input of the question Q. Directly
applying a question-answering model, such as BERT fine-tuned
on SQuAD, requires a question to be worded in a way that [, j]
bound the position of functional information in context.

As a basis for wording such a question, we can borrow from
various schools of design theory. In Ulrich’s process for user
research as a step of Product Design and Development [15], the
primary guideline for identifying design requirements is elicit-
ing information that describes “What, not How.” In Axiomatic
Design thinking, Suh defines the functional domain as repre-
senting “What we want to achieve” [13]. This declarative state-
ment describes the desired output from the question-answering
model. It may be modified to be a question input by chang-
ing the sentence type to that of an interrogative, to read: What
do we want to achieve? The wording of the question may
be further generalized, because the tensed Verb Phrase [YPwe
want to achieve] introduces specific thematic roles such as
an agent “we” that is distracting from the desired functional
information being sought. The Verb Phrase may be replaced
by a more generalized semantically synonymous Noun Phrase

Context™]
0.6 1 Lo — G
—

make

Start Position P;

lace

0.8 A p
[y
S 0.6 A
S potable
[
& 041 water
kel
& 0.2 /\

00 T T T T / \ T T

0 5 10 15 20 25

Word-Unit Index in Context

Fig. 2. Answer start and end position probability distributions across word-units
in each context, to the question “What is the goal?”

[NPthe goal]. The question can be rephrased to read: What
is the goal?

The wording of the question is important in that differently
worded questions asking for synonymous information may
yield different answers. In particular, the choice of the word for
the object of the interrogative sentence, which is “goal” above,
can trigger different responses based on context. This sensitiv-
ity is shown in the following test. Three nearly similar con-
texts C_3 are considered. Each context contains two sentences,
each of which includes different functional information. One
word, boldfaced below, is synonymously interchanged among
the three contexts below:

C, The design must make the world a better place. The
aim is to purify dirty water so that it becomes potable.

C, The design must make the world a better place. The
goal is to purify dirty water so that it becomes potable.

C; The design must make the world a better place. The
requirement is to purify dirty water so that it becomes
potable.

Three questions Q;-3, identical except for one word, are
posed. The resulting answers for each context C|_3, extracted
by BERT-SQuAD, are shown below.

Q; What is the aim?

Ay, to purify dirty water so that it becomes potable A »
to purify dirty water so that it becomes potable A;;
make the world a better place

O, What is the goal?

A, to purify dirty water so that it becomes potable A, »
to purify dirty water so that it becomes potable A;;
make the world a better place

Q3 What is the requirement?

Aj the design must make the world a better place Az,
the design must make the world a better place A;3 to
purify dirty water so that it becomes potable
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Despite the contexts and the questions being nearly synony-
mous, the answer span extracted does depend on the wording
of both. The probabilities of a given word being either the start
or end position of the answer to the question Q, are calculated
based on the BERT-SQuAD model outputs, and are plotted as a
distribution over the context length, shown in Figure 2.

Language models are sensitive to even small adjustments in
question wording. Q; and @, result in similar answers, differ-
ent from that of Q3 which uses the less generalized key word
“requirement.” Furthermore, the models are also sensitive to
keyword matches between the question and context. For exam-
ple, without any shared words in these sequences between QO3
and C;_,, the extracted answer is from the first sentence in the
context. However, when the requirement is specified in the
second sentence C3, the extracted answer shifts to the second
sentence. This is true for each combination where a keyword
match occurs, in Ay j, Az, and Az 3. Keyword matches can po-
tentially bias the extracted answer span. As a result, the most
generalized wording of the question, O, is used in the experi-
ments in this work. A framework for eliminating the possible
bias stemming by removing the need to pose a question entirely
is suggested in the discussion section of this paper.

4. Experiments

In order to demonstrate the efficacy of applying question-
answering to surface functional information, a case study from
a complex real-world design problem is considered. In the field
of Micro-Electromechanical Systems (MEMS), vibrational en-
ergy harvesting is such a complex problem. Natural linear reso-
nance w scales inversely with mass m, as shown by the funda-

mental relationship wy = \/g . Simply because many naturally
occurring vibrations are low frequency (>100Hz), it is a chal-
lenge to create a micro-scale device to operate in this range.
Two abstracts of papers describing designs of micro-scale
vibrational energy harvesters are analyzed. Excepts from aca-
demic literature are used because of the expectation that they
explicitly state the key functional requirement of the design be-
ing presented. Furthermore such texts may be publicly shared
whereas actual design specifications from industry are less
structured and often protected by stringent intellectual prop-
erty restrictions. The first abstract (A) [18] describes a buckled-
beam oscillator design, and the second (B) [7] describes a non-
linear doubly-clamped beam design. For each paper, the key
functional information from the abstract are surfaced using
extractive question-answering from the BERT-SQuAD model.
The pre-trained neural network parameters assess a probabil-
ity distribution of the most likely positions of the start and end
indices of the answer to be returned, similar to the scoring vi-
sualized in Figure 2. For these experiments, the context C is the
entire abstract passage, and the question Q posed is What is
the goal?. The answer spans A of which the model has the
highest confidence are shown, highlighted, in Figure 3, where
the abstracts are indexed according to word-units to illustrate
how the context is tokenized by the model. The two answer A
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Fig. 3. Key functional information is highlighted in red in the design context,
showing the span demarcated by BERT as having the maximum likelihood of
containing the answer; context is indexed by word-unit

spans of surfaced functional information are shown in (A) and
(B) below.

(A) lowering the operating frequency window below
100Hz for the first time at the MEMS scale

(B) overcomes the limitations of conventional linear res-
onance beam-based piezoelectric energy harvesters in
terms of power bandwidth and power density

The purpose of this experiment is to demonstrate the ability
to take in a long-form textual context and return a single key
functional requirement. This validates a critical part of what
can be a powerful framework of design document decomposi-
tion if NLP-based question-answering is applied recursively to
exhaustively return all functional information contained within
text.

5. Discussion

The use of extractive question-answering results in sub-
sequences from the original which provide opportunity for fur-
ther decomposition of design context. The surfaced spans of
functional information correctly identify high-level functional
requirements of vibrational energy harvester design. Back-
ground information in the abstracts are correctly disregarded,
as are portions which detail the solution domain instead of
functional requirements. By referencing the outputted surfaced
spans from the initial processing, which appear to be high-level
functional information, more detailed sub-requirements may
potentially be mapped through recursive use of this method.

The main drawback of directly applying a question-
answering model to extractively surface functional information
is that a question must be posed. In Section 3.3, the potential
for bias arising from wording of the question was identified
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as a consequence of introducing a question input. Question-
answering was identified as an appropriate source task from
which a pre-trained model could be applied to the target task
of surfacing function because of the sizeable data available for
this standard NLP task, and the lack thereof in design. However,
if such a dataset of context — extracted functional information
examples could be crowdsourced or generatively created, pre-
trained language models such as BERT could be easily fine-
tuned directly on the task targeted by this paper, bypassing the
need for a question input. The learnable parameters introduced
during fine-tuning of BERT would now be trained directly on
producing high scores for functional information, without a
question input. The experiments in this paper demonstrate the
value of this application, and the challenges with wording sen-
sitivity can be addressed with design-specific data. A limita-
tion of using academic design documentation for testing is that
industry design specification are generally less structured and
documented with less elaboration. When analyzing such doc-
umentation, additional processing may be required before the
method outlined in this paper can be deployed.

6. Conclusion

The goal of this work is to enhance a designer’s practice
by providing a tool to automate the time-consuming, tedious
steps in the design process using Machine Learning methods
such that a human designer may focus their creative energy on
their craft which cannot be performed by machines. The task
of surfacing functional information from large corpora of de-
sign research documentation (prior to abstraction to formal re-
quirements by a human) was identified as such a step apt for
automation. In the absence of an annotated dataset specific to
this design task, a Natural Language Processing (NLP) model
trained on extractive question-answering was demonstrated to
perform the task of functional extraction on engineering design
publications in the field of MEMS.

This method is superior to simple keyword-searches widely
used in design-related information retrieval tasks because rather
than matching sequences of characters to a query, the BERT
language model seeks to identify spans of text containing an-
swer information. This ability is learned from a massive pre-
training exercise teaching the model the meaning of language,
followed by a detailed fine-tuning step where the model learns
from examples of question-answering. The drawbacks due to
sensitivity to wording stemming from the introduction of a
question input necessitated by the question-answering model
were discussed, and the process for bypassing the need of such
an input through direct fine-tuning of a language model on a
design-specific dataset was discussed. In conclusion, this paper
presents a modular functionality for automating design infor-
mation processing through the application of Artificial Intelli-
gence in language processing to design, for future development
to the goal of transforming the field of Design with Al methods
in a manner similar to which many other fields have benefited
over the past decade.
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