MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Quantum-inspired algorithms in practice

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Arrazola, Juan Miguel, Delgado, Alain, Bardhan, Bhaskar Roy and Lloyd, Seth. 2020.
"Quantum-inspired algorithms in practice.” Quantum, 4.

As Published: 10.22331/Q-2020-08-13-307
Publisher: Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Persistent URL: https://hdl.handle.net/1721.1/138871

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/138871
https://creativecommons.org/licenses/by/4.0/

arXiv:1905.10415v3 [quant-ph] 4 Aug 2020

Quantum-inspired algorithms in practice

Juan Miguel Arrazola!, Alain Delgado!, Bhaskar Roy Bardhan?, and Seth Lloyd?!

1Xanadu, Toronto, Ontario, M5G 2C8, Canada
2Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge,

Massachusetts 02139, USA

We study the practical performance of quantum-inspired algorithms for recommen-
dation systems and linear systems of equations. These algorithms were shown to have
an exponential asymptotic speedup compared to previously known classical methods
for problems involving low-rank matrices, but with complexity bounds that exhibit a
hefty polynomial overhead compared to quantum algorithms. This raised the question
of whether these methods were actually useful in practice. We conduct a theoreti-
cal analysis aimed at identifying their computational bottlenecks, then implement and
benchmark the algorithms on a variety of problems, including applications to portfolio
optimization and movie recommendations. On the one hand, our analysis reveals that
the performance of these algorithms is better than the theoretical complexity bounds
would suggest. On the other hand, their performance as seen in our implementation
degrades noticeably as the rank and condition number of the input matrix are in-
creased. Overall, our results indicate that quantum-inspired algorithms can perform
well in practice provided that stringent conditions are met: low rank, low condition
number, and very large dimension of the input matrix. By contrast, practical datasets
are often sparse and high-rank, precisely the type that can be handled by quantum
algorithms.

1 Introduction

A driving force for studying quantum computing is the conviction that quantum algorithms can
solve some problems more efficiently than classical methods. But the boundary between classi-
cal and quantum computing changes constantly: new classical and quantum algorithms disrupt
the landscape, continuously updating the border that separates these two paradigms. This in-
terplay is fruitful; it allows classical and quantum algorithm developers to feed off each other’s
innovations and advance our understanding of the limits of computation. Indeed, several classical
algorithms have been reported that rely at least partially on developments in quantum computing
[1, 3, 5, 6, 12, 20, 26, 31, 32].

Quantum algorithms for linear algebra are a flagship application of quantum computing, partic-
ularly due to their relevance in machine learning [2, 14, 16, 17, 23]. These algorithms typically scale
polylogarithmically with dimension, which, at the time they were reported, implied an asymptotic
exponential speedup compared to state-of-the-art classical methods. For this reason, significant
interest has been generated in the dequantization approach that led to breakthrough quantum-
inspired classical algorithms for linear algebra problems with sublinear complexity [4, 10, 30, 31].
These dequantized algorithms work for general low-rank matrices, whereas quantum computers
still exhibit an exponential speedup over all known classical algorithms for sparse, full-rank matrix
problems, including the quantum Fourier transform, eigenvector and eigenvalue analysis, linear
systems, and others. Dequantized algorithms for such problems — high-rank matrix inversion, for
example — would imply that classical computers can efficiently simulate quantum computers, i.e.,

Juan Miguel Arrazola: juanmiguel©@xanadu.ai

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 1

https://quantum-journal.org/?s=Quantum-inspired%20algorithms%20in%20practice&reason=title-click
mailto:juanmiguel@xanadu.ai

BQP = P, which is not currently considered to be likely.

The proof techniques used to determine the complexity of quantum-inspired algorithms lead
to bounds that suggest that runtimes might be prohibitively large for practical applications: the
proven complexity of the linear systems algorithm is O(x'9k°(| A]|%. /%) [10], while for recommen-
dation systems it is O(k'?/e'?) [31]'. Here, A is the input matrix, ||A| r is the Frobenius norm of
A, k is the condition number, k is the rank, and ¢ is the precision of the algorithm. These results
raise a few immediate questions: are these complexity bounds the consequence of proof techniques,
or do they reflect a fundamental limitation on the capabilities of these algorithms? How do these
algorithms actually perform in practice?

We address these questions by analyzing, implementing, and testing quantum-inspired algo-
rithms for linear algebra. First, we perform a theoretical analysis aimed at identifying potential
bottlenecks in their practical implementation. This allows us to anticipate the regimes where
quantum-inspired algorithms may outperform previously-known classical methods. We then test
the algorithms on artifical examples based on random matrices, where it is possible to control the
dimension, rank, and condition number of the input matrix. We conclude by testing the algorithms
on problems of practical interest. Specifically, we run the quantum-inspired algorithm for linear
systems of equations applied to portfolio optimization on stocks from the S&P 500, and analyze
the algorithm for recommendation systems on the MovieLens dataset [13]. Based on our analysis
and tests, we find that, provided that the input matrices have small rank and condition number,
quantum-inspired algorithms can perform well in practice: they provide good approximations in
reasonable times, even for very large-dimensional problems. This shows that quantum-inspired
algorithms can have significantly smaller runtimes than their worst-case complexity bounds would
suggest, although we find evidence that the dependence on the error € may be tight for the linear
systems algorithm. For problems whose input matrices have larger ranks and condition numbers,
our implementation of the algorithms struggles noticeably to produce good results.

In the following sections, we begin by providing a brief description of quantum-inspired algo-
rithms for linear algebra. This high-level summary may prove useful for those wishing to become
more familiar with these techniques. We then analyze each of the main steps of the algorithm in
further detail, focusing on identifying potential practical bottlenecks. We continue by implement-
ing the algorithms and benchmarking their performance on artificially-generated problems and on
real-world data. We conclude by summarizing the implications of our analysis.

2 Quantum-inspired algorithms for linear algebra

In this section, we give an overview of quantum-inspired algorithms for linear systems of equations
and recommendation systems. More details can be found in Refs. [4, 10, 30, 31]. A unique feature
of our description is that we view both algorithms as specific examples of a more general method
to sample from vectors expressed in terms of the singular value decomposition (SVD) of an input
matrix. Henceforth, capital letters are employed to denote matrices and bold letters to denote
column vectors. For example, a linear system of equations is written as Ax = b, where A € R™*",
x = (r1,79,...,2,)7, and b = (by,ba,...,bn)T

We consider problems of the following form: Given an m x n matrix A € R™*" with SVD

k
A= Zaz u(@v(@T, (1)
=1

the goal is to sample entries of the n-dimensional vector

k
2=3 Aol®), @
{=1

1'We have taken o = O(||A||p/Vk) as stated in [31] and ignored scaling with respect to the error parameter 7.

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 2

with respect to the length-square probability distribution p, (i) = z?/||z||?>. The coefficients A,
depend on the matrix A and possibly on other inputs. For linear systems of equations, « is the
solution vector given by & = Atb, with AT the Moore-Penrose pseudoinverse. As discussed in
Ref. [10], the coefficients Ay of Eq. (2) are given by the inner product

_ L0 gy
- 72<'U A b>' (3)

0y

A

Similarly, for recommendation systems, A is the preference matrix, whose entries A;; denote
the rating that user 7 has given to product j. In this case, the solution vector « is the i-th row of
a low-rank approximation of A, which contains all the preferences of user i. The coefficients are
given by

WS <A1T7'U(l)>’ (4)

where A; is the i-th row of A [31].

Quantum-inspired algorithms assume that the entries of A are given in a way that allows
length-square sampling to be performed. This can be accomplished, for example, if the entries of
A are stored in a data structure of the form proposed by [16], which stores both entries of vectors
and their sub-norms. Length-square sampling allows us to preferentially sample the rows of A
with large norm, and the large entries within each row. Given access to length-squared sampling,
quantum-inspired algorithms solve low-rank linear algebra problems in three main steps:

1. Approzimate SVD: The Frieze-Kannan-Vempala (FKV) algorithm [9] is used to compute
approximate singular values &, and approximate right singular vectors #©). The singular

vectors are not calculated in their entirety; instead, a description is found allowing efficient
0

i

computation of any given entry v

2. Coefficient estimation: Based on the results of step 1, the coefficients \¢ are approximated
using Monte Carlo estimation techniques.

3. Sampling solution vectors: Using Eq. (2) and the results from steps 1 and 2, rejection sam-
pling is employed to perform length-square sampling from the approximate vectors & =

PV

Before describing each of these steps in more detail, it is important to understand that the
innovations of quantum-inspired algorithms are steps 2 and 3. In these steps, coefficient estima-
tion and sampling from the solution vectors is performed in time O(poly(k, k, e,logn,logm)). By
contrast, the strategy originally suggested in Ref. [9] is simply to compute coefficients and solution
vectors directly from the approximate SVD of step 1, which requires time O(kn). Asymptotically,
quantum-inspired algorithms thus achieve an exponential asymptotic speedup in dimension, from
O(n,m) to polylog(n,m), at the cost of a polynomial dependency on other parameters. In prac-
tice, the direct calculation can be done extremely fast since it scales only linearly with dimension,
meaning that quantum-inspired algorithms require very large-dimensional problems before it be-
comes preferable to employ their sampling techniques.

2.1 Approximate SVD

The Frieze-Kannan-Vempala (FKV) algorithm [9] is a method to compute low-rank approximations
of matrices. The FKV algorithm is a pioneering example of a randomized method for computing
approximate matrix decompositions. These techniques have been studied extensively and several
improvements have since been described (7, 8, 19, 24, 25, 27, 33, 34], see Ref. [11] for a survey
of these techniques. As described in Ref. [11], these algorithms are variants of the same main
strategy: (i) preprocess the matrix to calculate sampling probabilities, (ii) generate samples from
the matrix, and (iii) use linear algebra techniques to postprocess the samples to compute a final
approximation. It is an interesting question to understand to what extent other randomized meth-
ods for approximate matrix decompositions can be used to improve quantum-inspired algorithms.
For concreteness and to allow a direct connection to Refs. [4, 10, 30, 31], in this work we focus on

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 3

—-2.04 0.02 079 03 204 068 -037 04 -0.08 0.66
ij[—344 1.5 268 —093 4.04 —-0.02 —0.78 0.96 —0.58 —1.99
i 525 —2.78 =33 —-1.97 —4.99 —-5.27 1.16 1.38 -3.31 2.16
—-0.03 3.14 249 -033 1.04 081 -0.21 —-0.84 1.8 —3.86
—2.51 245 335 —048 3.87 0.17 -0.59 0.62 048 -—1.63
A= i,| —0.89 —-0.79 —-1.5 1.41 -0.97 3.14 -0.19 —-1.58 1.37 —0.68
042 131 1.36 —-0.12 0.69 -0.47 0.06 0.14 0.55 —0.18
i =022 2,63 194 0.78 085 208 -0.18 —-1.3 258 —231
00 129 109 084 06 117 -0.02 —-06 1.6 0.06
3.69 148 127 -199 -12 —-443 069 124 -1.13 —0.39

l

i; /—94.51 41.21 73.63 —25.55 111. —0.55 —21.43 26.38 —15.93 —54.67

R = Iy —7.33 87.64 64.64 25.99 2832 69.31 —6. —43.32 85.97 —76.97
T 13| 87.04 —46.09 —54.71 —32.66 —82.73 —87.37 19.23 22.88 —54.87 35.81
14 \=35.23 —31.27 —59.38 55.82 —38.4 12431 —-7.52 —62.55 ©54.24 —26.92

J3 Ji Ja l J2
—94.51 41.21 73.63 —25.55 111. —0.55 —21.43 26.38 —15.93 —54.67
R = —7.33 87.64 64.64 2599 2832 69.31 —6. —43.32 8597 -76.97

87.04 —46.09 —54.71 —32.66 —82.73 —87.37 19.23 22.88 —54.87 35.81
—35.23 —31.27 =59.38 55.82 —38.4 12431 —-7.52 —62.55 54.24 —26.92

o1 J2 J3 Ja
106.02 57.6 —129.5 106.02
93.08 —94.6 —10.04 93.08
C= —T78.78 49.96 119.26 —78.78
—85.561 —136.6 —48.28 —85.51

Figure 1: Schematic representation of the FKV algorithm. The input is an m X n matrix A, which in this
example has ten rows and columns. After performing one pass through the matrix, it is possible to perform
length-square sampling of rows and columns. A total of r rows are sampled from this length-square distribution,
then renormalized and stacked together to construct a new r x n matrix R. In this example, we set r = 4
and obtain the row indices (i1,%2,13,44) = (2,8,3,6). Once the matrix R has been built, ¢ column indices
are drawn by repeatedly choosing rows of R uniformly at random, then sampling from the corresponding
length-square distribution of column indices. In this example, we set ¢ = 4 and obtain the column indices
(j1, j2, 43, ja) = (3,8,1,3). Note that repeated indices are allowed in the algorithm. The final matrix C is built
by renormalizing these columns of R and grouping them together. The singular values of C' approximate those
of A, while the singular vectors of C' can be used to reconstruct approximations to the singular vectors of A.

analyzing the FKV algorithm and implement quantum-inspired algorithms that rely on FKV. The
conclusions and performance of the implementation are therefore subject to the specific properties
of this algorithm.

The main idea behind FKV is the following: instead of performing a singular value decompo-
sition of the large input matrix A € R™*" a smaller matrix C' € R"*¢ is constructed by sampling
r rows and ¢ columns of A. The only restriction on r and c is that they have to be larger than
the rank of the low-rank approximation of A: in particular, they can be independent of m and
n, i.e., not even O(logm), O(logn). The matrix C' captures the important features of A, making
it possible to perform an SVD of the smaller matrix C' to retrieve information about the singular
values and vectors of A. Since the rank of C is bounded by its dimension, this approach is only
possible when A is low-rank or when a low-rank approximation of A is sufficient.

In more detail, the first step of FKV is to perform a pass through the matrix A and compute
the Frobenius norm of each row ||A;| , as well as the norm of the matrix ||A||r. These quantitites
define a length-square distribution over rows: p(i) = [|A;||%/||A||%. For each row i, a length-
square distribution over its entries is also computed, ¢;(j) = || A;]|%/||Ai|/%. To sample from these
distributions, it is possible to employ a specialized data structure as suggested in Refs. [9, 16, 31]

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 4

that allows sampling in time that is logarithmic in dimension. The algorithm proceeds as follows:

1. Sample r row indices 41,2, .. .,%, from the row distribution p(i). For each row index, select

oo A
the row A,, and renormalize it as R;, = \#”llf i
s

A;,. This defines an r xn matrix R consisting
of the rescaled rows R;_.

2. Select an index s € {1,2,...,r} uniformly at random, then sample a column index j from
the column distribution ¢;_ (j). Repeat this a total of ¢ times to obtain column indices

J1,J2,-+-,Jc. For each column index, select the column R.;, and renormalize it as C. ;, =
Al

mR"jt' This defines a matrix C consisting of the rescaled columns C. ;,.
It

3. Compute the singular value decomposition of C'.

These steps are illustrated in Fig. 1. The FKV algorithm performs a useful tradeoff: it is possible
to perform SVDs of a significantly smaller matrix C at the cost of obtaining only approximations
of the singular values and vectors of the original matrix A. We denote by &, the singular values
of C and by w® its left singular vectors. The FKV algorithm directly provides approximations
of singular values, 6, ~ oy for £ = 1,2,...,k. Approximate right singular vectors ¥ of A are
obtained using the expression

B = NiRTw“), (5)
o

while approximate left singular vectors @¥) are given by

1
a®) =4 (ﬂRTw“)) . (6)

Oy

In existing classical methods, these vectors are computed directly, whereas in quantum-inspired
algorithms it suffices to query their entries.

The quality of the FKV approximations depends on the number of sampled rows r and columns
c. The challenge is to find values of r and ¢ such that sufficiently good approximations are ob-
tained, while also ensuring that the complexity of computing the SVD of matrix C' is significantly
less than for the original input matrix A, i.e., such that » < m and ¢ < n. Since 7, ¢ can be much
smaller than m, n, a substantial runtime reduction can potentially be achieved.

FKYV is the core of quantum-inspired algorithms for linear algebra. Without the use of ran-
domized methods, computing the SVD of an m x n matrix A requires O(min{m?n, mn?}) time
using naive matrix multiplication. From that point onwards, computing coefficients A and the
solution vector « takes only linear time in m,n. In FKV, we instead calculate the SVD of an r x ¢
matrix, which requires O(min{r?c,7c?}) time. When r, ¢ are much smaller than m, n, this is where
the real savings of quantum-inspired algorithms happen. As explained previously, the subsequent
steps of coefficient estimation and sampling from the solution vector are used to reduce a linear
runtime to polylogarithmic runtime. As we discuss later, for practical problem sizes that are far
from the asymptotic limit, it is preferable to compute coeflicients and solution vectors explicitly by
employing Egs. (5) and (6) starting from the approximate SVD of matrix C' in the FKV algorithm.

2.2 Coefficient estimation

The coefficients A appearing in Eq. (2) are inner products between vectors, multiplied by a power
of the singular values in the case of linear systems. Quantum-inspired algorithms compute approx-
imations of these coefficients using Monte Carlo estimation. In general, a coefficient A is given
by

A=(y,2) = iz, (7)
=1

for some appropriate vectors vy, z, as in Eqgs. (3) and (4). The strategy to estimate this inner
product is to perform length-square sampling from one of the vectors. Without loss of generality,

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 5

we take this vector to be y. Define the random variable x that takes values x; = v;2;/p= (i), where
the indices i are sampled from the length-square distribution p, (i) = y?/||y|>. The expectation
value of the random variable satisfies

E(x) = Z

Similarly, the second moment is

B0) =3 (25) i) = lwlPlal?,)

gam@Z@Jﬁﬂ- 8)

and 0’>2(= E(x?) — E(x)? is the variance of x. The strategy to estimate coefficients \ is to draw

. . N N ;
N samples xV, x@ ... x®™) from x and compute the unbiased estimator A\ = % ijl PL2ESDY
This constitutes a form of importance sampling in Monte Carlo estimation: large entries of y
are preferably selected since they contribute more significantly to the inner product. The error
in the estimation is quantified by the ratio between the standard deviation and the mean of the

estimator: € := 1/Var(A)/|Al. The variance of the estimator is Var(\) = 0%/N, leading to a

precision € = o, /(|A|VN) in the estimator. This implies that the number of samples N needed to,
with high probability, achieve a precision € is

1 llPlel?
N=X =_ -1 10
el @

where 0 is the angle between the vectors y and z.

2.3 Complexity of coefficient estimation

Quantum-inspired algorithms differ from the FKV algorithm because they estimate the coefficients
A rather than calculating them directly from the approximate SVD of the input matrix. There-
fore, it is worthwhile to examine the complexity of coefficient estimation step to determine the
regime where quantum-inspired algorithms become beneficial. For n-dimensional random vectors,
the expectation value of the angle between two vectors satisfies E [—15] = n, so we can anticipate
that the number of samples needed may scale linearly with dimension. If ﬁ = poly(m,n), the
algorithm no longer has the desired polylogarithmic complexity. In fact, as we show in Appendix
A, regardless of what coefficient estimation strategy is employed, in a worst-case setting, inner
products of vectors cannot be approximated in sublinear time. However, for matrices of low rank

and condition number, as we show below, it is possible to achieve good estimation of coefficients.

For linear systems of equations, the coefficients A\, are given by

1 1
AK = 72<,v(£)7ATb> = 7<u(€)’ b> (12)

oy oy

In the quantum-inspired algorithm, we do not have direct access to the length-square distri-
butions of either ATb or v©). Instead, the strategy in Ref. [10] is to express the coefficients as

o

A = HTr(ATb v(e)T) and sample the entries A;; of A. In this case the the number of samples
I3

needed in the estimation is [10]:

@2 2 2 2 2
v L (WAL) o (LI 10y, 13

€2 (v, ATp)2 € o2 p2
where we have defined o := (01,09,...,0%), B¢ := (u'¥,b) such that b = Zif:l Beu'®, and we
have used Eq. (12) as well as the identity ||A||% = ||o||?. In the special cases of recommendation

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 6

systems and portfolio optimization, the coefficients are proportional to an inner product (A7 v(£)>.
4 nT
Writing A4; = ZIZ’:l ogluge)" we have

k
(AT 00) = 3" opul () 0 = opul”). (14)
=1

The number of samples then satisfies

1 AT|12]|0© 2 k 2
€ (47, 019) GQUful(.e)
Define the k-dimensional vectors o := (01, 09,...,0%)7, p = (ugl),ugm, e ,uz(-k))T and their

Hadamard product v = o o p with entries vy = Ugugé). It follows that

]V:O(IHZP). (16)

2
€ vy

In all cases, the number of samples depends on the ratio between the norm squared of a k-
dimensional vector and the square of the ¢-th entry of that vector. We now determine the worst-case
scaling for these ratios. We consider the ratio ||o||? /o7 for concreteness; the same will apply for b
and v. The largest ratio occurs for the smallest singular value op,;, and we have

ol _ lloll® ofax _ llol? - 17
2. T 2 s A (17)
O min Omax min Omax

Similarly, this ratio is largest when o,.x is as small as possible. This occurs when the largest k£ — 1

singular values are equal to each other. In that case, defining o} := o,/||o|| such that ||o’|| = 1 we
have
712 / 2 1
o[= (w? (=1 7) =1 (18)
1
= (0)2=—""" —0(/k), 19
(Thwd® = T = OU/D (19)
and therefore)
Bux @

Defining x4 := fBmax/Pmin and Ky, = Vmax/Vmin, Where Buax/min and Viax/min are the largest and
smallest entries of their corresponding vectors, we conclude that the number of samples required
to estimate coefficients in quantum-inspired algorithms for linear systems scales as

k2 K2 K2
NO(2ﬁ>, (21)

€

and for recommendation systems as

N:O(kj>. (22)

These asymptotic formulas — or more precisely Egs. (13) and (15) — can be used to estimate the
problem sizes for which the complexity of coeflicient estimation is smaller than a direct calculation.
As an illustration, in linear systems, setting k = x = kg = 100 means that an order of N = 10'¢
samples are needed to estimate the coefficients with an error of € = 1072, Finally, it is important to
understand that a large number of samples can improve the precision of the estimation, but not its
accuracy: if the singular values and vectors obtained from FKV have large errors, the expectation
value of the estimator will not coincide with the actual value of the coefficient.

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 7

2.4 Sampling solution vectors

The approximate SVD and coefficient estimation steps respectively provide approximate singular
values 6, and approximate coefficients \,. The approximate right singular vectors of A are not
constructed explicitly, but are implicitly defined by Eq. (5), namely) = &%RT'w(Z). This allows
an implicit calculation of the approximate solution vector & = RTw, where

k

w = Z gw“). (23)

g,
=1

The challenge is to sample from these vectors using only query access to the entries of w and
R. Quantum-inspired algorithms achieve this using a well-known technique known as rejection
sampling. The steps are as follows [31]:

1. Sample a row index ¢ uniformly at random.
2. Sample a column index j from the length-square distribution ¢;(j) = |R;;|*/||R;|*.

3. Output j with probability Mif;“fm, or sample j again.
The expected number of repetitions before outputting a column index j is r||w||2/(Z:?:1 (w, R. ;)|?)
rl|w|?/||Z||?. The steps of rejection sampling can be performed quickly. The overhead arises from
calculating the inner product (w, R.;), which requires O(rk) time; significantly less than com-
puting the approximate SVD. As we illustrate in the following sections, the number of expected
repetitions is usually moderate in practice, so sampling from the approximate solution vector can
be performed in comparatively less time than other steps in the algorithm.

3 Numerical benchmarking

In the previous section we performed a theoretical analysis of quantum-inspired algorithms. Here,
we complement that analysis by benchmarking the algorithms on specific problems. The main goal
of this numerical implementation is to individually examine the performance of each step of the
algorithm and use this information to reveal which steps contribute most to the overall runtime
as well as which ones lead to the most significant source of errors. A secondary goal is to gain
insights on the actual scaling of the algorithm with respect to its various parameters.

As an initial benchmark, we study the algorithm for linear systems of equations on artificial
problems of extremely large dimension. We design matrices such that performing length-square
sampling from its rows and columns, as well as all other steps of the quantum-inspired algorithm,
can be done using only query access to its entries. This allows to study the performance of the
algorithms in their intended asymptotic regime, without handling large datasets directly. We then
test the algorithm for linear systems on Gaussian random matrices. This choice is made to allow
full control over properties of the input matrices: dimension, rank, and condition number, while
collecting large amounts of statistics. Afterwards, we apply the algorithms to portfolio optimization
and movie recommendations. All algorithms were implemented in Python and the source code is
available at https://github.com/XanaduAI/quantum-inspired-algorithms.

3.1 Design principles

In conducting numerical experiments, choices must be made regarding how the algorithms are
implemented. Here we describe the principles that guide the numerical experiments performed
to benchmark quantum-inspired algorithms. The first choice is the programming language. To
implement resource-intensive algorithms, it is common to employ compiler-based languages such
as C++. However, our main goal is not to develop high-performance implementation of quantum-
inspired algorithms. Rather, the goal is to identify practical bottlenecks. Crucially, it is also
important to share code that is easily-reproducible by the quantum information community. For
these reasons, the algorithm is in Python. The runtimes reported in this work can therefore be

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 8

https://github.com/XanaduAI/quantum-inspired-algorithms

likely improved by using a language more suitable for high-performance computation, and by em-
ploying specialized hardware.

In implementing the algorithms, whenever possible, we have been faithful to the descriptions
in Refs. [10] and [31]. These algorithms require the use of a specialized data structure to ensure
polylogarithmic scaling of length-square sampling. As shown in Fig. 2, for the matrix sizes that we
study in this work, which have dimensions smaller than 10°, using built-in sampling functions is
orders-of-magnitude faster than employing our implementation of the data structure. Therefore,
to speed up the practical runtime of the algorithm for these problems, we employ direct sampling
from the distribution using built-in functions.

10—1 4
m
kel
C
S
@ 10724
)
[
£
'_
10-3 4
—e— Data Structure
—e— Direct

103 10¢ 10° 106
Dimension

Figure 2: Runtimes for generating one thousand samples from a length-square distribution. We compare
performance of the data structure of Ref. [16] and of direct sampling with built-in functions. Runtimes are
plotted as a function of the dimension of the distribution. The polylogarithmic scaling is evident for the data
structure, but highly-optimized direct sampling functions are orders-of-magnitude lower for dimensions smaller
than 10°, as considered in this work.

Finally, although it is natural to consider the total variation distance as a way to quantify
errors, we identify that the mean relative error, defined as n =3, %
is more informative in determining the quality of approximations. Moreover, it can be simultane-
ously used to measure errors in approximating singular values, coefficients, and solution vectors.

for two vectors x and 7,

3.2 High-dimensional problems

Quantum-inspired algorithms for linear algebra are aimed at tackling extremely large datasets,
but it is very challenging to test them in such scenarios. Instead, we design a class of problems
where it is possible to run quantum-inspired algorithms using only black-box access to the entries
of the input matrix and vector. We focus on the algorithm for linear systems and report the main
formulas, whose derivations can be found in Appendix B.

Define the matrices
vo_ 1 ()R (24)
2 y,z€{0,1}"

where x,y, z are n-bit strings, the vectors () form a basis of the 2"-dimensional vector space, and
the x() are distinct n-bit strings for £ =1,2,..., k. We define the input matrix as

k

1 T

4 z

A ::ZO-EV() — 27 Z ay7Z€(Y)6() , (25)
=1 y,z€{0,1}n

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 9

where 01, 09, ..., 0, are the singular values and we have implicitly defined ay , = 2521 Ug(—l)””m (y®2)

The right and left singular vectors of A are the same, given by v(¥) = \/% Zye{oyl}n (—1)"(2)‘3'6(37).
As we show in the Appendix B, by construction, all rows of A have the same norm, therefore length-
square sampling can be done by choosing rows uniformly at random. For length-square sampling
of columns, we use rejection sampling: given a row y, we select a column index z uniformly at

random and accept it with probability

p(z) = % (26)
ma [y
The optimization is trivial since max, |ay |* = 2521(04)2. Once row indices i1, ..., 4, and
column indices ji,...,Jj. have been sampled, the entries of the r x ¢ matrix C' in FKV can be
expressed as
1 lal
CS t = a; j (27)
/ k sy Jt)
2re PO —1(ai, 5.)?
where @ = (a1, as,...,a::)7 is a vector containing all the possible values of the entries @y,. The

approximate singular values and vectors of A can be reproduced from the SVD of C' as detailed in
previous sections. To estimate the coefficient Ay = U%(v“), ATb), we sample the random variable
£

¥,z

_ lal? (-1 zk: x0.y (28)

S VETHEEEE

and use its sample mean as an estimator for the coefficients. Finally, the approximate solution
vector & is given by

&1

\/27 Z i (29)

Any entry of the approximate solution vector can be computed efficiently from the entries of the
approximate right singular vectors #(©), which can be obtained from the approximate SVD of C.

The crucial property of this construction is that the only dependency on dimension comes
from the sampling of rows and columns, which can be done efficiently even for extremely high-
dimensional problems. The limitations arise in computing the matrix C, which takes O(r?c) time,
and from computing the 2% different matrix elements. This limits the values of r, ¢ and k that
can be explored in this approach. We fix the input matrices to have an extremely large dimension
of 259 = 10'®. We set r = ¢ = 150, the largest that could be handled in a reasonable amount
of time. This means that we are aiming to approximate the SVD of the input matrix by using
a smaller matrix whose dimension differs by thirteen orders of magnitude. The bit strings x(©)
that define each singular vector are chosen uniformly at random. We study three examples with
k =k = kg = 3,5, 10, employing N = 10* samples in the estimation of the coefficients. We report
the average and standard deviation of the errors 7, = 1 Ze 1 mwm and 7y = %Zéﬁ:l |>‘f)_2 T‘Zl
over ten repetitions of the algorithms. For vectors, we evaluate the first L entries and similarly

4 [4
report the average and standard deviation of the errors n, = - ZZ 1 ZIZ 1 % and 7, =

= SE ‘"C"i;fi‘. The results are summarized in Table 1.

These results show that for problems with the appropriate properties — namely very low rank
and condition number — quantum-inspired algorithms can provide good estimates even for ex-
tremely high-dimensional problems. Importantly, these results are obtained in considerably less
time than would be expected from the theoretical complexity bound O(k'®kS|| A% /£%). Even set-
ting |Allp =1 and e = 1, for k = k = kg = 10, the bound would suggest that an order of 10%?
operations would be needed; this is not compatible with the runtimes we experience. This suggests
that these theoretical bounds do not in fact reflect the practical runtime of the algorithms and
therefore should not be used to evaluate their performance. Nevertheless, our findings do reflect
that the quality of the estimates worsens considerably as rank and condition number are increased.

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 10

Table 1: Errors in estimating singular values, singular vectors, coefficients, and solution vectors for input matrices
of dimension n,m = 2°°. The coefficients were estimated using N = 10* samples and the errors in the vectors
were calculated by computing their first L = 100 entries. The error bars correspond to one standard deviation
taken over ten repetitions of the algorithm. Runtimes correspond to a Python implementation of the algorithms
running on 20 Intel Xeon CPUs operating at 2.4GHz with access to 252GB of shared memory.

Errors
Case study ‘ No i I N ‘ Runtime (hours)
k=k= =3 ‘ 0.011 +0.012 0.124 +0.071 0.285 +0.276 0.414 £ 0.154 ‘ 4.3
k=k= =5 ‘ 0.129 + 0.016 0.212 £ 0.070 0.530 £0.616 1.235+ 0.615 ‘ 8.6
k=kKk= =10 ‘ 0.626 £+ 0.018 1.619 £ 0.264 1.193 £1.720 4.138 £2.321 ‘ 29.0

3.3 Random matrices

We study the quantum-inspired algorithm for linear systems of equations Ax = b for randomly
chosen A and b. To generate a random matrix A of dimension m x n, rank k, and condition number
k, instead of creating A directly, we build the components of its singular value decomposition in
matrix form, A = UXV. Here, U is an m X k matrix whose columns are the left singular vectors of
A. Similarly, V is a k x n matrix whose rows are the right singular vectors, and X is a k x k diagonal
matrix whose entries are the corresponding singular values of A, which has rank k by construction.
The details of numerical methods used to generate matrices U, V' and X are explained in Appendix
C. The vector b has been chosen to have the form b = Z§=1 Beu'®, with coefficients 5, drawn
from the standard normal distribution A(0, 1).

We consider matrices consisting of m = 40,000 rows and n = 20,000 columns. These num-
bers are chosen to deal with the general case of rectangular matrices, while working at the limit
of dimensions for which it would still be possible to calculate SVDs in a reasonable amount of
time. This means, for simplicity, that in this setting we are not required to use specialized data
structures to perform length-square sampling: we can instead use fast built-in numerical sampling
algorithms in Python which are very fast in practice. More precisely, generating a single sample
from a distribution of dimension 40,000 using built-in algorithms takes approximately 2 x 1073
seconds on a standard desktop computer. This is even more efficient when several samples are
taken: generating one million samples from such vectors requires roughly 0.2 seconds.

loezoel 5
gy

estimating the singular values as well as the errors na = ||A — A||p/|A|lF and 7}, = |AT —
A*||p/||AT||F of the reconstructed matrices A and A*. The approximation is accurate across all
singular values even for a relatively small number of sampled rows and columns.

In Figs. 3(a)-3(c) we monitor, respectively, the mean relative error n, = Ze 1

0.12 0.7

_ oos 1@ SVDof C:c=r - (b) SVDof C:c=r @ Al () SVDof C:c=r -
o X
£ fin =12 — 0.1 fn=27/r"% — t & i) = 1272 —
o S +
o 0.035 x <
[} = =
=} =5 ~
© L L

0.025 = 5
5 B <
> < ¥
& 0015 = <
7]

0.005 : I 0

500 1250 2000 2750 3500 4250 5000 500 1250 2000 2750 3500 4250 5000 500 1250 2000 2750 3500 4250 5000
Number of sampled rows r Number of sampled rows r Number of sampled rows r

Figure 3: Errors in the approximate SVD of the random matrix A of dimension 40,000 x 20,000, rank k = 5
and condition number k = 5 as the number of sampled rows r and columns ¢ = r is increased. The figures show
the error of the (a) singular values 1, = ZLI |G¢ — oe|/oe (b) reconstructed matrix na = ||A — A||r/||A|lr
with A = Zj Efg '&(l)N(Z)T and (c) reconstructed pseudo-inverse n}; = |[AT — AT||p/||AT||F with AT =

E L 1/Ge 2@a®" . In all cases, error bars denote the standard deviation for 10 repetitions of the algorithm.

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 11

04 1@ c=r,N=10* ~®- 241 (b) r=c=4250, N=10* @ 1000 | () r=c=4250, N=10* ~®-~
3 S 2 f(k)=0.016 k — & f(K) = 0.01 k
S 5] @ 100
sn S S
3 3 SR
> 0.2 1 = =
c c c
g + * + ++ + + + S SR
3o + + + + s & od
0 0 0.01
500 1250 2000 2750 3500 4250 5000 5 20 40 60 80 100 5 10 100 1000 10000
Number of sampled rows r Rank of A Condition number of A

Figure 4: Error 1, of the solution vector for a 40,000 x 20,000 random matrix. (a) Error of the solution vector
as a function of the number of sampled rows r and columns ¢ entering the FKV algorithm, where we have
fixed ¢ = r. We set a rank kK = 5 and condition number x = 5. (b) Error in the solution vector as a function
of matrix rank. There is a clear linear dependency as the matrix rank is increased. (c) Error in the solution
vector as a function of the condition number of the input matrix. There is also a clear linear dependency,
even for values spanning different orders of magnitude. In all cases, the coefficients A, have been estimated by
performing N = 10* samples. Error bars show the standard deviation over 10 independent repetitions of the
FKV algorithm.

Empirically, the error in the approximation scales roughly as 1/4/r for these random matrices,
which is in agreement with the matrix Chernoff bound appearing in Theorem 3 of Ref. [10]. We
also observe that the reconstructed matrix A has smaller errors compared to the approximated
pseudo-inverse matrix AT, This is because in reconstructing matrix A, the largest singular values
— which carry the dominant contributions — are approximated better by the FKV algorithm.

The main results are shown in Fig. 4, where we plot the error n, of the approximated solution
vector & calculated as the median of the relative errors |&; — x;|/|z;| with respect to all n entries
of vector &. First, we investigate in Fig. 4(a) how the error n, changes as we increase the number
of sampled rows 7 and columns ¢ = r. All results have been obtained by taking N = 10* samples
to estimate the coefficients A\, defined in Eq. (12). As expected, 7, decreases as the number
of sampled rows and columns is increased. We have also superimposed error bars to show the
standard deviation over 10 independent repetitions of the FKV algorithm.

In Fig. 4(b) we set r = ¢ = 4250 and x = 5 and investigate the error of the solution vector as
a function of the rank k of matrix A. This plot reveals that the error 7, increases linearly with
rank. For k = 5, a remarkably small relative error of 8.7% is found for the entries of the approx-
imated vector. However, we observe that the accuracy of the algorithm deteriorates rapidly for
larger values of the rank. A similar trend is observed in Fig. 4(c) for the solution vector error
as a function of the condition number x. Small errors of the order of 10% are only obtained for
small condition numbers, while large values of 7, > 100% already appear for x > 100. Note that
this is the behaviour we would expect from Eq. (21) if the dominant source of errors originates
from coefficient estimation. Similar plots for the error in the approximate SVD of matrix A and in
coefficients estimation are shown in Appendix C. Overall, we conclude that for random matrices,
errors decrease as 1/4/r, and increase linearly with both rank and condition number.

Finally, Tables 2 and 3 respectively summarize the errors and running time of the quantum-
inspired algorithm for the case where the matrix A has rank & = 5 and condition number x = 5.
In Table 2, we show the average relative errors of singular values 7, and coefficients 7, as de-
fined in the previous section. We also report the relative errors na = ||[A — A||r/||Allr and
na+ = ||AT — AT g/||AT|| of the reconstructed matrices A and A*. Sampling 4250 rows and
columns from the original 40000 x 20000 matrix A is enough to have a good approximation full
matrix. The largest error in Table 2 corresponds to the estimated coefficients.

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 12

Table 3 shows that the time to compute the approximate SVD using the FKV algorithm
is orders-of-magnitude smaller than a direct calculation. Most of the overhead in running the
quantum-inspired algorithms is associated with constructing the length-square distributions and
estimating the coefficients. However, it is important to keep in mind that length-square distri-
butions can in principle be constructed on-the-fly as the data from the matrix is generated, so it
is best to separate this from the runtime of the actual algorithm. For this particular case of a
matrix A with low rank and small condition number, we find that the quantum-inspired algorithm
outperforms the direct calculation.

We can place these runtimes into perspective by attempting to identify whether they are due to
our implementation or are inherent to the algorithm. There are 8 x 108 entries in this matrix, so our
implementation is taking roughly ~ 1.8 x 1076 seconds per entry to compute the length-squared
distribution. Similarly, to estimate the coefficients, we generate 10* samples, repeated 10 times
to calculate the median. This is done for each of the five coefficients. For each such sample, the
entries of the right singular vectors of the matrix R must be estimated, which requires summing
over the r = 4, 250 sampled rows. Multiplying these numbers gives a total of 2 x 10° operations,
for roughly 2.6 x 107 seconds per operation. In both cases, runtimes per operation are reasonably
low, showing that total runtimes are inherently large given the number of required operations.

Table 2: Relative errors with corresponding standard deviations computed over 10 repetitions of the FKV
algorithm of the quantum-inspired algorithm for linear systems Ax = b. A is a random matrix with dimension
m = 40000, n = 20000, rank k£ = 5, and condition number x = 5. Approximated singular values and vectors
were obtained by decomposing matrix C' with dimension » = 4250 and ¢ = 4250. The coefficients A have been
estimated by performing N = 10* samples. Here, 7, is the error in approximating singular values &, while na
and 74+ are the errors of the reconstructed matrices A and AT, respectively. 7, is the error in estimating
coefficients, and 7, is the the median of the relative errors |&; — x;|/|z:| with respect to all n = 20000 entries
of the approximate vector &.

Parameters Error
Case study ‘ T c N ‘ No na nNA+ 7 Nz
Random matrix ‘ 4250 4250 10* ‘ 0.010 £+ 0.005 0.028 £+ 0.004 0.101 £+ 0.027 0.387 £ 0.191 0.087 £ 0.053

Table 3: Running times (in seconds) for the quantum-inspired algorithm applied to solve the system of linear
equations Ax = b with the same parameters as reported in Table 2. The parameter t,s is the time required
to construct length-squared (LS) probability distributions over rows and columns. S, accounts for the time
spent sampling rows and columns from matrix A and building and decomposing the sampled matrix C. tx
is the running time of the estimation of the coefficients A\. Analogous quantities are defined for the direct
calculation method. i is the elapsed time to sample 500 entries of the approximated solution vector in the
quantum-inspired algorithm and the time spent to compute the exact solution vector in the direct calculation
method. Runtimes correspond to a Python implementation of the algorithms running on two Intel Xeon CPUs
operating at 2.4GHz with access to 252GB of shared memory.

Quantum-inspired algorithm Direct calculation
Case study | tLs tSp ty te total | D tx te tiotal
Random matrix ‘ 1488.8 83.9 554.7 343 2470.4 ‘ 5191.1 14 0.0003 5192.5

3.4 Portfolio optimization

We study an application of the quantum-inspired algorithm for linear systems of equations to a
canonical financial problem: portfolio optimization. In its simplest version, commonly known as
the Markowitz mean-variance model [18], the goal is to optimally invest wealth across n possible
assets that are modeled only by their expected returns and correlations. Consider a vector of
returns r; = (r1,,724,.--,7n,j) ", Where r; ; is the return of asset i on the j-th day. The vector of

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 13

expected returns r and the correlation matrix 3 are defined as

1 n 1 n
I . - T 30
r n;rh n;rJrj ()

The vector r captures the expected returns for each asset, while the correlation matrix X expresses
fluctuations around mean values, which in the model is interpreted as risk. An optimal portfolio
in this setting is one that minimizes risk for any given target expected return. This corresponds
to the optimization problem

Minimize: w! Zw (31)
subject to: rlw = p, (32)

where w is a portfolio allocation vector that determines how much wealth is invested in each
asset. We allow w to have negative entries, which is interpreted as an indication to short-sell the
corresponding asset. As discussed in Ref. [22], this problem can be equivalently cast as a linear

system of equations:
0 »T[v] _[u
skl ®

T
where v is a Lagrange multiplier. In this case, the linear system Ax = b is given by A = {2 TZ } ,

b= {g] ,and ¢ = Lﬂ . To compute a solution to the linear system, we employ the Moore-Penrose

pseudo-inverse AT, which can be expressed in terms of the singular values and vectors of A as
T . .
At = Zf L))" | The solution vector x is then

O¢

k
1
— Atp = Iy ()] (£)
x b Z = (u'™,b)v
=1
L k
_ Z ?<v(z)7ATb> v® = Z Ao, (34)
1 %¢

1 (=1

where we have identified the coefficients A\, = (v(¥), ATb) /o2 as in Eq. (3). The vector b has only
one non-zero entry, so it holds that ATb = pA;, where A; is the first row of A.

To test the algorithm in this setting, we employ publicly-available pricing data for the stocks
comprising the S&P 500 stock index during the five-year period 2013-2018 [21]. Since not all stocks
remain in the index during this time, we restrict to the 474 stocks that do, leading to a matrix A of
dimension 475 x 475. Returns are calculated on a daily basis based on opening price. The matrix
has full rank of &k = 475, its largest and smallest singular values are respectively o4, = 40.2,
Omin = 1.8 x 1074, and its condition number is k = 2.23 x 10%. More details can be found in
Appendix D. We set a target return p equal to the average return over all 474 stocks in the index.

In Tables 4 we report the errors of the quantum-inspired algorithm. The SVD of matrix A was
approximated by sampling 340 rows and columns from the full matrix. As in the previous example,
we took N = 10* samples to estimate the coefficients \,. The relative errors characterizing the
approximate solution vector are considerable, with values of 7, = 0.74. In this example, we have
calculated the approximate solution vector by using Eq. (34) within a low-rank approximation with
k = 10. Notice from Table 4 that the large errors n; in the reconstructed pseudo-inverse matrix
and estimated coefficients 7, translate into large relative errors of the solution vector.

Finally, in Table 5 we report the running-times for the algorithm. Since the matrices involved
in this example are small, exact and approximate SVDs can be computed quickly, but for the
quantum-inspired algorithm, there is significant overhead due to coefficient estimation and sampling
from the solution vector.

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 14

Table 4: Relative errors with corresponding standard deviations computed over 10 repetitions of the quantum-
inspired algorithm applied to a portfolio optimization problem. Approximated singular values and vectors were
obtained by decomposing matrix C with dimension r = 340 and ¢ = 340. Coefficients A\ have been estimated
by performing N = 10* samples. Here, 7o _is the error in approximating singular values &, while 74 and 74+ are
the errors of the reconstructed matrices A and AT, respectively. 7 is the error in estimating coefficients, and
7Nz is the the median of the relative errors |Z; — x;|/|x;:| with respect to all n = 475 entries of the approximated
vector &.

Parameters Error
Case study ‘ r c N ‘ No na njg N Ne
S&P 500 stock index ‘ 340 340 10% ‘ 0.08 £ 0.02 0.16 +£0.03 1.13+0.12 1.58 £0.79 0.74+0.19

Table 5: Running times (in seconds) for the quantum-inspired algorithm applied to the portfolio optimization
problem. The algorithm was run using the parameters reported in Table 4. The parameter trg is the time
required to construct length-squared (LS) probability distributions over rows and columns. Sy, accounts for
the time spent sampling rows and columns from matrix A and building and decomposing the sampled matrix
C'. ty is the running time of the estimation of the coefficients A. Analogous quantities are defined for the direct
calculation method. t, is the elapsed time to sample 50 entries of the approximated solution vector in the
quantum-inspired algorithm, and the time spent to compute the exact solution vector in the direct calculation
method. Runtimes correspond to a python implementation of the algorithms running on two Intel Xeon CPUs
operating at 2.4GHz with access to 252GB of shared memory.

Quantum-inspired algorithm Direct calculation
Case study ‘ tLs tSb [5Y 2 ttotal ‘ t&p [5Y te total
S&P 500 stock index ‘ 0.46 0.36 88.7 24.63 114.15 ‘ 0.15 0.0005 0.0006 0.15

3.5 Movie recommendations

We analyze the performance of the algorithm for recommendation systems on the MovieLens 100K
database [13], which consists of a preference matrix with 100,000 ratings from 611 users across
9,724 movies. Ratings are specified on a half-star scale in the range [0.5,5]. For example, an
entry of 4.5 corresponds to a rating of four-and-a-half stars. The lowest possible rating is 0.5 and
the zero entries in the preference matrix correspond to movies that have not been rated by the
user. Since most users watch only a small fraction of available movies, the matrix is sparse. The
preference matrix has full rank of £ = 611, its largest and smallest singular values are respectively
Omaz = 934.4, 0pmin = 2.95, and its condition number is x = 181.2. More details can be found in
Appendix D.

The goal of the algorithm is to predict missing ratings and subsequently recommend movies
that have a high predicted rating. The approach is to consider a low-rank approximation A’ of the

. . . T
preference matrix A, which can be written in terms of the SVD of A as A’ = Z]Z:I ouDou®"
Here k is a parameter of choice in the algorithm, not the actual rank of the original preference

T
matrix. This low-rank approximation can be equivalently written as A’ = AZ§:1 v@Wov®" and
therefore the i-th row of A’ is given by

k k
PUSYT SrICHCLNS RTINS (35)

/=1 {=1

Expressing A} as a column vector, we recognize the target vector as
k
zi= A" =3 A, (36)
=1

where Ay = (AT v as in Eq. (4).

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 15

The matrix A’ is typically no longer sparse, so the previously missing ratings can be predicted
based on the non-zero entries of this low-rank approximation. In this sense, the algorithm can be
interpreted as an approximate reconstruction of a preference matrix P that contains ratings for all
users and movies, of which we are only given a few sample ratings in the form of the sparse matrix
A. If P is well approximated by a low-rank matrix and A has sufficiently many entries of P, then
a low-rank approximation of A is also close to P.

As in the previous section, we summarize the results of applying the quantum-inspired algo-
rithm for recommendation systems in Tables 6 and 7. We observe from Table 6 that sampling 450
rows and 4500 columns from the full preference matrix is enough to describe the first ten singular
values with a small relative error of n, = 0.06. On the other hand, the errors of the reconstructed
matrices A, AT, and estimated coefficients show larger values of 0.32, 0.66 and 0.58, respectively.
Finally, we find that the entries of the approximated solution vector, computed using Eq. (36)
within the low-rank approximation with & = 10 show typical relative errors of 1, = 0.71. In
Table 7 we compare the running times between the quantum-inspired algorithm and the direct
calculation method. As in the portfolio optimization example, the matrices are small enough that
computing their SVD can be done in a short time. The runtime of the quantum-inspired algorithm
is again dominated by the coefficient estimation step, even when the resulting errors in estimating
these coefficients is relatively large.

The numerical examples we have studied indicate that when applied to moderately-sized real-
life data sets, because they rely on a more intricate procedure, the quantum-inspired algorithms
take more time than exact diagonalization, and because they rely on sampling for coefficient
estimation, lead to higher inaccuracies. These results suggest that in order to provide a speedup
over preexisting classical algorithms, the quantum-inspired algorithms must be applied to very
large data sets where exact diagonalization is impossible and where even the linear scaling of FKV
prevents its direct application.

Table 6: Relative errors with corresponding standard deviations computed over 10 repetitions of the FKV
algorithm in the quantum-inspired algorithm for recommendation systems. Here, matrix A is a preference
matrix with dimension m = 611 and n = 9274. Approximated singular values and vectors were obtained by
decomposing matrix C' with dimension r = 450 and ¢ = 4500. The coefficients A have been estimated by
performing N = 10" samples. Here, 7, is the error in approximating singular values &, while na and n4+ are
the errors of the reconstructed matrices A and A™, respectively. 7, is the error in estimating coefficients, and
7z is the the median of the relative errors |Z; — z;|/|x;| with respect to all n = 9274 entries of the approximated
solution vector x.

Parameters Error
Case study ‘ r c N ‘ Neo nA nNA+ A N
MovieLens 100K | 450 4500 10* | 0.06+0.01 0.32+0.02 0.66+£005 0.58+0.18 0.71+0.13

Table 7: Running times (in seconds) for the quantum-inspired algorithm for recommendation systems. The
algorithm was run using the parameters reported in Table 6. The parameter 1,5 is the time required to construct
length-squared (LS) probability distributions over rows and columns. tSyp accounts for the time spent sampling
rows and columns from matrix A and building and decomposing the sampled matrix C. ¢ is the running time
of the estimation of the coefficients A. Analogous quantities are defined for the direct calculation method. t, is
the elapsed time to sample 500 entries of the approximated solution vector in the quantum-inspired algorithm
and the time spent to compute the exact solution vector in the direct calculation method. Runtimes correspond
to a python implementation of the algorithms running on two Intel Xeon CPUs operating at 2.4GHz with access
to 252GB of shared memory.

Quantum-inspired algorithm Direct calculation
Case study | tLs tSb X 25 tootal | tévp 2 125 Ltotal
MovieLens 100K ‘ 11.05 6.22 124.2 14.2 155.7 ‘ 2.00 0.0003 0.001 2.00

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 16

3.6 Practical complexity of quantum-inspired algorithms

In this section, we comment on the complexity of quantum-inspired algorithms based on the nu-
merical tests and theoretical analysis performed thus far. The matrix Chernoff bound of Ref. [10]
indicates that the error in the FKV algorithm scales as € = O(1/4/r) with the dimension r of the
matrix C. This is consistent with the results of empirical tests on Gaussian random matrices as
reported in Sec. 3.3. Since the complexity of computing the SVD of an r x ¢ matrix with ¢ = O(r)
scales as O(r?), this shows that the complexity of approximate SVD calculations with the FKV
algorithm grows as O(1/£%). This is compatible with the complexity bound from Ref. [10], sug-
gesting that complexity with respect to error may be tight.

It was shown in Ref. [9] that the FKV algorithm can produce an approximate SVD with error
¢ by asymptotically setting r = ¢ = O(max{k*/e?, k?/e*}). This was improved in Ref. [10], where
it was shown that an error ¢ could be obtained when r # ¢ by choosing r = O(c) = O(k?/£?).
This implies a complexity of O(k%/c®) when all other parameters are fixed. Importantly, such a
choice of r only makes sense if the resulting r x ¢ matrix is smaller than the original input matrix,
ie., if r < m and ¢ < n. In practice, it is always possible to set » < m and ¢ < n, resulting in
a guaranteed reduced runtime in computing the SVD at the expense of an error in the approx-
imation. This is the strategy adopted in our experiments. It is important to understand that,
when implemented properly, the runtime of quantum-inspired algorithms is never larger than a
direct calculation. The crucial point is whether the resulting errors are sufficiently low, since it be-
comes prohibitively expensive to reduce them to arbitrarily small values due to the O(1/g%) scaling.

In regimes where the largest source of errors originates from coefficient estimation, it is possible
that the runtime of quantum-inspired algorithms is dominated by the complexity of this step. This
occurred in several examples considered in this work, including high-dimensional problems with
low-rank matrices. The complexity of coefficient estimation is captured in Egs. (13) and (15),
which have smaller exponents than the complexity bounds of Refs. [10] and [31]. Numerical tests
support the theoretical calculations. The linear dependency shown in Fig. 4 between error, rank,
and condition number for a fixed number of samples N indicates that N must be a polynomial in
(kr /). Our bound states that N = O(k?k?/e?) in accordance with this behavior. Depending on
the properties of the input problem, different complexity regimes are possible, each determined by
the steps of the algorithms that dominate the runtime.

4 Conclusion

In terms of asymptotic complexity, quantum-inspired algorithms constitute a breakthrough in our
understanding of the boundary between classical and quantum algorithms: they imply that certain
linear algebra problems can be performed in sublinear classical time. Our results show that the
proven complexity bounds for these algorithms do not actually reflect their practical runtimes.
The proven complexity of the linear systems algorithm is O (k.S A||%/£%) [10], while for recom-
mendation systems it is O(k'2/(¢'21%)) [31], where 7 is an error parameter. In the implementation
of the algorithm, we observe a significantly faster runtime than these bounds would suggest. This
indicates that care must be taken when employing these bounds to make statements about the
performance of the algorithms. Our results are also encouraging for complexity theorists aiming
to improve these bounds.

In our analysis, we showed that quantum-inspired algorithms can provide reasonably low errors
in relatively short times even in the regime of extremely large-dimensional problems. However, in
our implementation, the performance requires matrices of very low rank and condition number; the
errors in the outputs grow noticeably when rank and condition number are increased. Compared
to previously-known methods such as the Frieze-Kannan-Vempala (FKV) algorithm, quantum-
inspired algorithms differ in their use of sampling techniques to estimate coefficients and sample
from the solution vectors. On the one hand, a direct calculation, as done in FKV, requires linear
time in the dimension of the input matrix, which can be done extremely fast even for problems
of large size. On the other hand, sampling methods scale polylogarithmically with dimension, but

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 17

they incur additional polynomial costs in the rank, condition number, and error in the estima-
tion. Therefore, one conclusion from our work is that despite their asymptotic scaling, sampling
techniques for coefficient estimation do not lead to practical improvements compared to the direct
computation used in previously-existing classical algorithms: quantum-inspired techniques only
become advantageous for problems of extremely large dimension.

Additionally, we have shown that when employing the FKV algorithm for approximate SVD, a
scaling of O(k® /%) with respect to the error € and rank k follows directly from the matrix Chernoff
bound and the error bounds from Ref. [10]. Therefore, these exponents are likely to be fundamen-
tal and not the result of proof techniques. Overall, our results indicate that quantum-inspired
algorithms perform well in practice, but only under the restrictive conditions of large-dimensional
input matrices with very low rank and condition number. It remains unclear whether datasets
with these properties actually appear in practice.

By contrast, the complexity of quantum algorithms does not depend on matrix rank, and there-
fore they work properly even for full-rank problems. Matrices originating in practical applications
are often sparse and they typically have large effective ranks; these are the problems that can be
tackled by quantum algorithms. Dealing with matrices of large condition number remains chal-
lenging for all techniques.

Several open questions remain. The numerical tests on random matrices performed in Section
3.3 indicate that when all other parameters are fixed, errors in the approximation of the output
vector increase linearly with rank and condition number. It is important to understand whether
this is a general feature of the algorithm. Additionally, it is still of interest to determine the
empirical scaling of quantum-inspired algorithms with respect to all relevant parameters. Our
results indicate that for linear systems, the dependency on rank and error is likely tight, but the
findings of section 3.2 show that not all exponents are tight. Finally, it would be of great interest to
implement highly-optimized versions of our code on powerful supercomputers capable of operating
much larger datasets than those tested in this work.

Acknowledgements

We thank Christian Weedbrook, Nathan Killoran, Nicolds Quesada, and lordanis Kerenidis for
useful discussions. We are grateful to Andras Gilyén for providing valuable feedback on an early
draft of this manuscript. S. Lloyd was funded by AFOSR under a MURI on Optimal Quantum
Measurements and State Verification, by IJARPA under the QEO program, by ARO, and by NSF.

Appendix

A Worst-case hardness of coefficient estimation

Here we show that the coefficient estimation cannot generally done in sublinear time. The main
strategy is to encode an NP-Hard problem — approximating the partition function of Ising models
— into the coefficients to be estimated. The exponential time hypothesis then implies that this
coefficients cannot be estimated in sublinear time.

We begin by noting that, for any sum of the form Z = Y"!" | w;, it is possible to find vectors
y, z such that w; = y;2; for all i = 1,2,...,n. This means that any sum Z can be expressed as
an inner product Z = (y, z). If estimating Z is NP-Hard, then so is calculating the coefficient
A= (x,y). As a concrete example, consider the partition function of the Ising model

Z = ZefﬁE(S)’ (37)

S
where s = (s1,...,8m) € {—1,1}™ is the configuration of m spins, J is the inverse temperature,
and E(s) = —ZKJ- Jijsisj — sz hjs; is the energy of the configuration. It is known that

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 18

approximating this partition function is NP-Hard in a general setting [29]. Since there are n := 2™
different configurations s, each can be labeled by a number k& = 1,...,n, also expressing energies
as a function of k. As discussed above, we can also define n-dimensional vectors x,y such that
Zr =Y p_ wpyr = (z,y), for instance by setting v = y = e PF*)/2. Therefore, there exist
vectors such that computing their inner product is as difficult as computing the NP-Hard partition
function Z;. The exponential time hypothesis [15] states that the best possible algorithms for
computing NP-complete problems require 2° time for some 6 > 0. Thus, unless this hypothesis
is false, estimating coefficients requires 2°™ = O(n) time in a worst-case setting.

B Formulas for high-dimensional problems

We begin by showing that all rows of the high-dimensional matrices considered in this paper have
equal norm. Denote by A, the y-th row of A. This can be written as

k
1 - (z@y) (2)T
Ay = o E E oo(=1)* " (ZEY)e(@)
l=1

z

k
1 ’ ’
= on [> o(—1)] e@en’
1 k) T
Ton lE oe(=1)*] e, (38)

where z' = z @ y and we have defined a new basis {¢2)} = {e(#®¥)}. Therefore the norm of the
row is

2!

k
1407 = 5 [Z az<—1>’<‘“'2’] : (39)
(=1

which does not depend on y, meaning it is the same for all rows. Indeed, the rows of A have the
same elements; they simply appear in different positions depending on the corresponding row label
y.

The entries of matrix C' can be expressed in terms of known quantities as

oo A
S, t — 1s,Jt
Vel Ai IR g I
_2MALl
- Aith
Vel R ;. |l
e,
= is,J
V2rtR e | R
_ lal
- k 1s,]t
V2ke ST A?S,yjt
al
= Qi jes (40)
ok
2% ZZ':1 ai,,jt
where a = (ay,as,...,as:)7 is the vector containing all the possible values of the entries ay . and

we used [|R.;, || = /25 /301 47 -

Finally, to estimate the coefficient \; = 25

= (v®), ATb), we sample the random variable X, =
£

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 19

byv,) whose average is equal to (v(¥), ATb). This random variable is given by

_ 42
Aij
ank 2
2 Hal?
Qy,z

m=klal]2 (=1)*7 = 1 & ®.
_ 2 (-) S -1y
ay,z \/ 271 \/2” E:l

|al? (1)<
2k S (10 ve)

Xyz Uéz)by

0) by

z

(]~
il
E
—
\
-
=
s
2
<

C Complementary results for random matrices

In this section we explain the methodology to generate the low-rank Gaussian random matrices
used in Section 3.3 and show further numerical results to benchmark the accuracy of the algorithms
used to approximate the SVD of matrix A and to estimate the coefficients A. To generate U, we
first sample an m x k Gaussian random matrix U’ with entries drawn independently from the
standard normal distribution A(0,1). The columns of this matrix are generally not orthogonal, so
we perform a QR decomposition U’ = QR, where Q) is an m x k orthogonal matrix and R is a k x k
upper triangular matrix. We then simply set U := @. An analogous method is used to generate
V. Finally, given a target condition number k, we select the largest singular value oy,,x uniformly
at random in the interval [1,500]. This fixes the smallest singular value as opin = Omax/x. Other
singular values are sampled from the interval (omin, Omax) by using the quadrant law for singular
values [28].

In Figs. 5(a)-5(c), we benchmark the approximate SVD of random matrices with the same
dimensions as the one in Fig. 3, but with increasing values of the rank k. In this case the condi-
tion number of these matrices has been fixed to k = 5. Although the errors in the estimation of
singular values does not appear to be strongly influenced by the rank, errors in the approximated
singular vector become apparent in the relative errors 4 and n4+ for the reconstructed matrices
as k increases. In particular, we notice that the error of the pseudo-inverse matrix, which is the one
required to compute the solution vector, scales linearly with rank showing relatively large errors
larger than 45 % for k = 100.

In Figs. 6(a)-6(c) we benchmark the approximate SVD of low-rank random matrices with k = 5
while increasing their condition number. We observe from Figs 6(a)-6(b) almost no dependence
of the errors 1, and n4 with condition number. On the contrary, Fig. 6(c) demonstrates that
the relative error n4+ of the reconstructed pseudo-inverse matrix grows linearly with condition
number, exhibiting values greater than 100% already for x > 100. The latter is somehow expected
since the error of the approximated singular vectors are propagated to matrix AT roughly as 1/0y,
i.e., the smaller the singular values, the larger the error n4+ due to the approximate SVD of matrix
A.

In Figs. 7(a)-(c) we investigate the error ny = Zif:l |Ae — Ae|/|\e| of the estimated coefficients
A¢. In all cases, the estimation of the coefficients was performed by taking N = 10* samples of
the corresponding random variable. In Fig. 7(a) we show that the values of 7, display a weak
dependence on the number of sampled rows and columns. We notice, however, that this is not
the case as we increase the rank and condition number of the matrix. For example, large values
of mx > 100 % are observed for matrices with rank & > 20 as shown in Fig. 7(b). Furthermore,
Fig. 7(c) shows clearly that even for a matrix with rank as low as k = 5, when the condition
number is increased, the error of the estimated coefficients ramps up rapidly to large values.

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 20

0.024 0.22 0.65

- () SVD of C: r=c= 4250 --®- (b) SVD of C: r=c=4250 —®- () SVD of C: r=c=4250 @
S 002 5 B 0.18 f(k)=0.02 K2 — + u 058 f(K) = 0.004 k+ 0.1 ——,
[0 e L +
o = o =i
2 0.016 = =5
5 A 3 3
§ 0012 |/ + < >
3 < +
(<) = <
= —
& 0008

0.004

5 20 40 6 80 100 5 20 40 60 80 100 5 20 40 60 8 100
Rank of A Rank of A Rank of A

Figure 5: Errors in the approximate SVD of random matrices A of dimension 40,000 x 20,000 and condition

L . ; ko=
number x = 5 as the rank k is increased. The figures show the error of the (a) smgularTvaIues No =D p_y |60—
oe|/oe, (b) reconstructed matrix na = ||A — A||r/||Allr with A = Z’Zzl Ge aP8®" | and (c) reconstructed
pseudo-inverse i}y = |A* — A¥|p/|At|F with A* =3 1/5¢ #0a®" In all cases, error bars denote
the standard deviation for 10 repetitions of the algorithm.

0.035
(@) SVDofC:r=c=4250 - 004 {(B) SVDofC:r=c=4250 - 1000 {(6©) SVDofCir=c=4250 --e-

g 003 A k) =0.019 k

) X 0.036 £ 100 fix

@ 0.025 < <

3 oo T 0032 7 EE I 10

> = 9. &5

< ¢ <C 1<C

< o015 + + o o 00 . L

» 001 + + + """ 0.024 = 04

0.005 1— 0.02 0.01
(i) 100 1000 10000 5 10 100 1000 10000 5 10 100 1000 10000
Condition number of A Condition number of A Condition number of A

Figure 6: Errors in the approximate SVD of random matrices A of dimension 40,000 x 20,000 and rank &k =5
as the condition number k is increased from 5 to 10000. Error of the (a) singular values n, = Z’Zzl |Ge—0¢l|/oe

(b) reconstructed matrix na = ||A — A||r/||Al|r with A = Z;f:l 5o w®90" and (c) reconstructed pseudo-
inverse n} = ||AT — AT r/||AT||F with AT = ZIZZI 1/6¢ #Oa®” . In all cases, error bars denote the
standard deviation for 10 repetitions of the algorithm.

12 5 + 100

(a) c=r,N=10* - (b) r=c=4250, N=10* @ (©) r=c=4250, N= 10" -
1
g 5 5 10 At
G 08 o + @
2 @3 A]) T
2 o y - L2 - = g
g 04 H ' T S N T
8 8, B § o1y
0.2
o
(XS
0 0 0.01
500 1250 2000 2750 3500 4250 5000 5 20 40 60 80 100 5 10 100 1000 10000
Number of sampled rows r Rank of A Condition number of A

Figure 7: Mean relative error ny = Zle |Ae — Xe|/|Xe| of the estimated coefficients A\, = (v, ATb) for
random matrices matrices A of dimension 40,000 x 20,000 as a function of (a) the number of rows r and
columns ¢ sampled from matrix A with k = x = 5, (b) the rank k and (c) condition number k of matrix A. In
all cases, coefficients have been estimated by performing N = 10* samples of the random variable. Error bars
denote the standard deviation for 10 repetitions of the algorithm.

D Singular values and coefficients for portfolio optimization and recom-
mendation systems

In Fig. 8, we show the first ten singular values of the portfolio optimization matrix as well as the
exact and approximate coefficients. Similarly, Fig. 9 shows analogous plots for the case of movie
recommendations.

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 21

10 le SVDOICir=c=340 -e- < 6x10° o Exact - G-
g S \ Estimated: r= c= 340, N= 10* - -®-
35 S
o 5 .
2 304 g 4x10% 1
i 25 ' 5 S
© i
ol HE
s 15 } S 2x10°
? 0l g ér -3,
SRS 3 R
() 0 Q@@ @ ol < 01(b) ot
1 2 3 4 5 6 7 10 1 2 3 4 5 6 7 8 9 10

Singular value index

Coefficient index

Figure 8: (a) First ten singular values o, calculated with FKV by sampling » = ¢ = 340 rows and columns of
the full-rank input matrix A with dimension 475 x 475 for the portfolio optimization problem on S&P 500 data
(see Sec. 3.4). (b) Exact and estimated coefficients), for indices £ = 1,...,10 by taking N = 10* samples
of the corresponding random variable. The coefficient corresponding to the largest singular value is estimated
very accurately with a relative error of 0.1 %. Error bars denote the standard deviation for 10 repetitions of the
algorithm.

550 T4 —_— 20 T —
500 SVD of C: r= 450 ¢ = 4500 @ = Exact - 3-
S Estimated: r= 450 ¢ = 4500, N = 10* - @~
450 S 15 |
S 4001 2 |m ;
g i 2 \ B &
c 350 ; S 10 | SO
3, 300 E MY
c i © v N
& 250 o ; 5 | f‘ / \ |
200 g 5 . .)
150 A 3 ?#
@ ®-eo--9 2] ? I
100 , < oy e
2 3 4 5 6 7 8 9 10 i 2 3 4 5 6 7 8 9 10

Singular value index

Coefficient index

Figure 9: (a) First ten singular values oy calculated with FKV by sampling » = 450 rows and ¢ = 4500 columns
of the full-rank preference matrix A of dimension 611 x 9724 for the recommendation system on the MovielLens
100K database (see Sec. 3.5). (b) Exact and estimated coefficients A, for indices £ = 1,...,10 by taking
N = 10" samples of the corresponding random variable. The coefficients corresponding to the two largest
singular values are estimated very accurately with relative errors of 0.4 % and 1.5 %, respectively. Error bars
denote the standard deviation for 10 repetitions of the algorithm.

References
[1] Boaz Barak, Ankur Moitra, Ryan O’Donnell, Prasad Raghavendra, Oded Regev, David
Steurer, Luca Trevisan, Aravindan Vijayaraghavan, David Witmer, and John Wright.
Beating the random assignment on constraint satisfaction problems of bounded degree.
arXiww:1505.03424, 2015. URL https://arxiv.org/abs/1505.03424.
Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth
Lloyd. Quantum machine learning. Nature, 549(7671):195, 2017. doi:10.1038/nature23474.
L Chakhmakhchyan, NJ Cerf, and R Garcia-Patron. Quantum-inspired algorithm for estimat-
ing the permanent of positive semidefinite matrices. Physical Review A, 96(2):022329, 2017.
doi:10.1103 /PhysRevA.96.022329.

(6]

Nai-Hui Chia, Han-Hsuan Lin, and Chunhao Wang. Quantum-inspired sublinear classical
algorithms for solving low-rank linear systems. arXiv:1811.04852, 2018. URL https://
arxiv.org/abs/1811.04852.

Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, and Chunhao Wang. Quantum-inspired clas-
sical sublinear-time algorithm for solving low-rank semidefinite programming via sampling
approaches. arXiv:1901.03254, 2019. URL https://arxiv.org/abs/1901.03254.

AV Abs da Cruz, Marley Maria Bernardes Rebuzzi Vellasco, and Marco Aurélio Cavalcanti

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0.

22

https://arxiv.org/abs/1505.03424
http://dx.doi.org/10.1038/nature23474
http://dx.doi.org/10.1103/PhysRevA.96.022329
https://arxiv.org/abs/1811.04852
https://arxiv.org/abs/1811.04852
https://arxiv.org/abs/1901.03254

Pacheco. Quantum-inspired evolutionary algorithm for numerical optimization. In Hybrid
evolutionary algorithms, pages 19-37. Springer, 2007. doi:10.1007/978-3-540-73297-6_2.
Yogesh Dahiya, Dimitris Konomis, and David P Woodruff. An empirical evaluation of
sketching for numerical linear algebra. In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pages 1292-1300. ACM, 2018.
doi:10.1145/3219819.3220098.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for
matrices ii: Computing a low-rank approximation to a matrix. SIAM Journal on computing,
36(1):158-183, 2006. doi:10.1137/S0097539704442696.

Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for find-
ing low-rank approximations. Journal of the ACM (JACM), 51(6):1025-1041, 2004.
doi:10.1145/1039488.1039494.

Andras Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank stochastic regression
with logarithmic dependence on the dimension. arXiw:1811.04909, 2018. URL https://
arxiv.org/abs/1811.04909.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM
review, 53(2):217-288, 2011. doi:10.1137/090771806.

Kuk-Hyun Han and Jong-Hwan Kim. Quantum-inspired evolutionary algorithm for a class
of combinatorial optimization. IEEFE transactions on evolutionary computation, 6(6):580-593,
2002. doi:10.1109/TEVC.2002.804320.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems (TIIS), 5(4):19, 2016. doi:10.1145/2827872.
Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm
for linear systems of equations. Physical Review Letters, 103(15):150502, 2009.
doi:10.1103/PhysRevLett.103.150502.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of Com-
puter and System Sciences, 62(2):367-375, 2001. doi:10.1006/jcss.2000.1727.

Tordanis Kerenidis and Anupam Prakash. Quantum recommendation systems.
arXi:1603.08675, 2016. URL https://arxiv.org/abs/1603.08675.

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component analy-
sis. Nature Physics, 10(9):631, 2014. doi:10.1038 /nphys3029.

Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77-91, 1952.
Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. A randomized algorithm for
the decomposition of matrices. Applied and Computational Harmonic Analysis, 30(1):47-68,
2011. doi:10.1016/j.acha.2007.12.002.

Ajit Narayanan and Mark Moore. Quantum-inspired genetic algorithms. In Ewolutionary
Computation, 1996., Proceedings of IEEE International Conference on, pages 61-66. IEEE,
1996. doi:10.1109/ICEC.1996.542334.

Cam Nugent. S and P 500 stock data. 2018. URL https://www.kaggle.com/camnugent/
sandp500.

Patrick Rebentrost and Seth Lloyd. Quantum computational finance: quantum algorithm for
portfolio optimization. arXiv:1811.03975, 2018. URL https://arxiv.org/abs/1811.03975.
Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector
machine for big data classification. Physical Review Letters, 113(13):130503, 2014.
doi:10.1103/PhysRevLett.113.130503.

Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdetermined linear
least-squares regression. Proceedings of the National Academy of Sciences, 105(36):13212—
13217, 2008. doi:10.1073/pnas.0804869105.

Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. A randomized algorithm for principal
component analysis. SIAM Journal on Matriz Analysis and Applications, 31(3):1100-1124,
2009. doi:10.1137/080736417.

Troels F Rgnnow, Zhihui Wang, Joshua Job, Sergio Boixo, Sergei V Isakov, David Wecker,
John M Martinis, Daniel A Lidar, and Matthias Troyer. Defining and detecting quantum
speedup. Science, 345(6195):420-424, 2014. doi:10.1126/science.1252319.

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 23

http://dx.doi.org/10.1007/978-3-540-73297-6_2
http://dx.doi.org/10.1145/3219819.3220098
http://dx.doi.org/10.1137/S0097539704442696
http://dx.doi.org/10.1145/1039488.1039494
https://arxiv.org/abs/1811.04909
https://arxiv.org/abs/1811.04909
http://dx.doi.org/10.1137/090771806
http://dx.doi.org/10.1109/TEVC.2002.804320
http://dx.doi.org/10.1145/2827872
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1006/jcss.2000.1727
https://arxiv.org/abs/1603.08675
http://dx.doi.org/10.1038/nphys3029
http://dx.doi.org/10.1016/j.acha.2007.12.002
http://dx.doi.org/10.1109/ICEC.1996.542334
https://www.kaggle.com/camnugent/sandp500
https://www.kaggle.com/camnugent/sandp500
https://arxiv.org/abs/1811.03975
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1073/pnas.0804869105
http://dx.doi.org/10.1137/080736417
http://dx.doi.org/10.1126/science.1252319

[27] Tamas Sarlos. Improved approximation algorithms for large matrices via random projections.
In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on,
pages 143-152. IEEE, 2006. doi:10.1109/FOCS.2006.37.

[28] Jianhong Shen. On the singular values of Gaussian random matrices. Linear Algebra and its
Applications, 326(1):1 — 14, 2001. ISSN 0024-3795. doi:10.1016/S0024-3795(00)00322-0.

[29] Allan Sly and Nike Sun. The computational hardness of counting in two-spin models on
d-regular graphs. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual
Symposium on, pages 361-369. IEEE, 2012. doi:10.1109/FOCS.2012.56.

[30] Ewin Tang. Quantum-inspired classical algorithms for principal component analysis and su-
pervised clustering. arXiv:1811.00414, 2018. URL https://arxiv.org/abs/1811.00414.

[31] Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 217-228,
2019. doi:10.1145/3313276.3316310.

[32] Leslie G Valiant. Holographic algorithms. SIAM Journal on Computing, 37(5):1565-1594,
2008. doi:10.1137/070682575.

[33] David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and
Trends® in Theoretical Computer Science, 10(1-2):1-157, 2014. doi:10.1561/0400000060.

[34] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert. A fast randomized algorithm
for the approximation of matrices. Applied and Computational Harmonic Analysis, 25(3):335—
366, 2008. doi:10.1016/j.acha.2007.12.002.

Accepted in {Yuantum 2020-07-30, click title to verify. Published under CC-BY 4.0. 24

http://dx.doi.org/10.1109/FOCS.2006.37
http://dx.doi.org/10.1016/S0024-3795(00)00322-0
http://dx.doi.org/10.1109/FOCS.2012.56
https://arxiv.org/abs/1811.00414
http://dx.doi.org/10.1145/3313276.3316310
http://dx.doi.org/10.1137/070682575
http://dx.doi.org/10.1561/0400000060
http://dx.doi.org/10.1016/j.acha.2007.12.002

	1 Introduction
	2 Quantum-inspired algorithms for linear algebra
	2.1 Approximate SVD
	2.2 Coefficient estimation
	2.3 Complexity of coefficient estimation
	2.4 Sampling solution vectors

	3 Numerical benchmarking
	3.1 Design principles
	3.2 High-dimensional problems
	3.3 Random matrices
	3.4 Portfolio optimization
	3.5 Movie recommendations
	3.6 Practical complexity of quantum-inspired algorithms

	4 Conclusion
	A Worst-case hardness of coefficient estimation
	B Formulas for high-dimensional problems
	C Complementary results for random matrices
	D Singular values and coefficients for portfolio optimization and recommendation systems

