
MIT Open Access Articles

Quantum-inspired algorithms for solving low-rank linear
equation systems with logarithmic dependence on the dimension

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Chia, NH, Gilyén, A, Lin, HH, Lloyd, S, Tang, E et al. 2020. "Quantum-inspired
algorithms for solving low-rank linear equation systems with logarithmic dependence on the
dimension." Leibniz International Proceedings in Informatics, LIPIcs, 181.

As Published: 10.4230/LIPIcs.ISAAC.2020.47

Persistent URL: https://hdl.handle.net/1721.1/138872

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/138872

Quantum-Inspired Algorithms for Solving
Low-Rank Linear Equation Systems with
Logarithmic Dependence on the Dimension
Nai-Hui Chia
Department of Computer Science, University of Texas at Austin, TX, USA
Joint Center for Quantum Information and Computer Science, University of Maryland,
College Park, MD, USA
nchia@umd.edu

András Gilyén
QuSoft, CWI and University of Amsterdam, The Netherlands
agilyen@caltech.edu

Han-Hsuan Lin
Department of Computer Science, University of Texas at Austin, TX, USA
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
linhh@cs.nthu.edu.tw

Seth Lloyd
MIT, Departments of Mechanical Engineering and Physics, Cambridge, MA, USA
Xanadu, Toronto, Canada
slloyd@mit.edu

Ewin Tang
University of Washington, Seattle, WA, USA
ewint@cs.washington.edu

Chunhao Wang
Department of Computer Science, University of Texas at Austin, TX, USA
Department of Computer Science and Engineering, Pennsylvania State University,
Philadelphia, PA, USA
cwang@psu.edu

Abstract
We present two efficient classical analogues of the quantum matrix inversion algorithm [16] for
low-rank matrices. Inspired by recent work of Tang [27], assuming length-square sampling access to
input data, we implement the pseudoinverse of a low-rank matrix allowing us to sample from the
solution to the problem Ax = b using fast sampling techniques. We construct implicit descriptions of
the pseudo-inverse by finding approximate singular value decomposition of A via subsampling, then
inverting the singular values. In principle, our approaches can also be used to apply any desired
“smooth” function to the singular values. Since many quantum algorithms can be expressed as
a singular value transformation problem [15], our results indicate that more low-rank quantum
algorithms can be effectively “dequantised” into classical length-square sampling algorithms.

2012 ACM Subject Classification Theory of computation → Sketching and sampling

Keywords and phrases sublinear algorithms, quantum-inspired, regression, importance sampling,
quantum machine learning

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.47

Related Version This paper is a merge of two submitted papers, whose full versions are available at
https://arxiv.org/abs/1811.04852 and https://arxiv.org/abs/1811.04909.

Funding NHC, HHL, and CW were supported by Scott Aaronson’s Vannevar Bush Faculty Fellowship.
AG was supported by ERC Consolidator Grant QPROGRESS and partially supported by QuantERA
project QuantAlgo 680-91-034. SL was supported by ARO and OSD under a Blue Sky Program.

© Nai-Hui Chia, András Gilyén, Han-Hsuan Lin, Seth Lloyd, Ewin Tang, and Chunhao Wang;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 47; pp. 47:1–47:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nchia@umd.edu
mailto:agilyen@caltech.edu
mailto:linhh@cs.nthu.edu.tw
mailto:slloyd@mit.edu
mailto:ewint@cs.washington.edu
mailto:cwang@psu.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2020.47
https://arxiv.org/abs/1811.04852
https://arxiv.org/abs/1811.04909
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems

Acknowledgements NHC, HHL, and CW thank Scott Aaronson for the valuable feedback on a draft
of this paper. AG thanks Márió Szegedy for introduction to the problem and sharing insights, Ravi
Kannan for helpful discussions and Ronald de Wolf for useful comments on the manuscript. We
thank the anonymous reviewers for their valuable feedback on both submissions.

1 Introduction

Quantum computing provides potential exponential speed-ups over classical computers for a
variety of linear algebraic tasks, including an operational version of matrix inversion [16].
Recently, inspired by the quantum algorithm for recommendation systems [20], Tang showed
how to generalise the well-known FKV algorithm [13] to sample from the singular vectors
of low-rank matrices [27] and to implement principal component analysis [26]. Intriguingly,
Tang’s work suggested that many of the quantum algorithms for low-rank matrix manipulation
[25] can be extended to provide fast classical algorithms under suitable sampling assumptions,
achieving logarithmic dependence on the dimension. In this work, we show that such
exponential speed-ups are indeed possible in the case of low-rank matrix inversion. That is,
we present proof-of-principle algorithms for approximately inverting low-rank matrices in
runtime that is logarithmic in the dimensions. Our treatment is self-contained and improves
some aspects of previous approaches [27], leading to smaller exponents in our runtime bounds.

The main motivation of this paper comes from the quantum algorithm of Harrow, Hassidim,
and Lloyd [16] for matrix inversion. This algorithm is central to the current landscape of
quantum machine learning algorithms [4]. HHL and its improved variants [1, 3, 5] have many
applications in quantum machine learning, including least squares approximation [28], support
vector machines [24], and kernel-based methods such as Gaussian process regression [30].
However, HHL requires strong input assumptions: it needs some efficient quantum way of
accessing the input matrix A. If the matrix A is sparse [16] or has low Frobenius norm
(thereby can be well approximated by a low-rank matrix) and is stored in quantum RAM using
an efficient data structure [20, 29], then it is possible to run the HHL algorithm efficiently. It is
well known that HHL for sparse input matrices is BQP-complete [16], so it arguably achieves
exponential speedups in certain situations. However, the small-Frobenius-norm scenario is
often more relevant for machine learning problems. By dequantising HHL in the low-rank
regime, we indicate that this use case does not yield exponential speedups by default, contrary
to earlier high hopes. The situation is analogous to the case of quantum recommendation
systems [20] which was initially also believed to provide exponential quantum speedups. To
summarise, the intuitive message of our work is that quantum matrix inversion does not
give exponential quantum speedups for low-rank datasets (unless for some reason another
high-rank, e.g. Fourier, transformation plays a crucial role in the problem).

In this paper, we give two algorithms (Algorithm 1 and Algorithm 2) for solving Ax = b

in time depending only logarithmically on input dimension, by assuming “length-square
access” to input and applying sketching techniques exploiting this access.1 We want to solve
Ax = b, where we are given A ∈ Rm×n and b ∈ Rm, and wish to recover x ∈ Rn. The
equation might not have a solution, but we can always find an x minimizing ‖Ax− b‖2.
Namely, x = A+b works, where A+ is the pseudoinverse of A. If A =

∑k
`=1 σ` u

(`)v(`)T is
a singular value decomposition of A, such that σ` > 0, then the pseudoinverse is simply
A+ =

∑k
`=1 v

(`)u(`)T /σ`, and x =
∑k
`=1 v

(`)〈u(`), b〉/σ`. The central tool to our result is

1 This paper is a merge of two arXiv preprints [9, 14], containing Algorithm 1 and Algorithm 2, respectively.

N.-H. Chia, A. Gilyén, H.-H. Lin, S. Lloyd, E. Tang, and C. Wang 47:3

working with a vector v via length-square access, allowing queries to the norm ‖v‖ and
individual coordinates vi, as well as providing samples from the length-square distribution
|vi|2
‖v‖2 . In our algorithms we assume length-square access to the input matrix A, requiring
length-square access to the rows of A as well as to the vector of row-norms. The output of
our algorithms is a description of an approximate solution x̃, providing efficient length-square
access to x̃.

Applications of the classical stochastic regression algorithms presented here include a
wide variety of data analysis problems. Consider, for example, the problem of finding the
optimal investment portfolio amongst n stocks. As shown in [23], under typical assumptions
used for classical portfolio management, finding and sampling from the optimal portfolio and
mapping out the optimal risk-return curve is a low-rank matrix inversion problem which can
be solved on a quantum computer in complexity that has logarithmic dependence on the
dimensions; in contrast conventional classical portfolio optimization methods have polynomial
dimension dependence. The results presented here show that our quantum-inspired classical
algorithms can similarly allow one to map out the risk-return curve and sample from the
optimal portfolio with classical complexity that depends logarithmically on the dimensions.

1.1 Discussion and related work
In a 2019 preprint, Arrazola et al. [2] implements and benchmarks the algorithms described
in this work. They conclude that our algorithms perform well for very low-rank matrices,
but that the key aspects of this work that make it comparable to quantum algorithms (e.g.
inner product estimation and length-square sampling of the output vector) don’t provide
significant improvements over naive classical approaches. While such results suggest that
quantum-inspired algorithms typically don’t improve over existing classical techniques, our
main conclusion – that quantum algorithms for low-rank linear systems likely don’t yield
exponential speedups – still stands. Notably, we are lacking complete end-to-end analyses
of QML algorithms to compare these benchmarks to, which we need in order to make solid
conclusions about whether quantum algorithms would suffer comparable slowdowns as these
quantum-inspired ones, particularly with the high overhead of running quantum algorithms
using current techniques.

Although in this paper we focus on implementing the pseudo-inverse of a matrix by
inverting the singular values, one could in principle apply any desired function to the singular
values, particularly for problems assuming close-to-low-rank input. A follow-up line of
work [8, 10, 6, 11, 18] does precisely this to effectively dequantise other quantum machine
learning results. The work of Chia et al. [7] unifies this line of research, showing that all
of these applications can be studied in a common framework via singular value transforma-
tion, a problem known to generalize many quantum algorithms [15]. This supports Tang’s
suggestion [26] that many quantum algorithms can be effectively turned to randomised clas-
sical algorithms via length-square sampling techniques incurring only polynomial overheads.
Exponential quantum speed-ups appear to be tightly related to problems where high-rank
matrices play a crucial role, like in Hamiltonian simulation or the Fourier transform. However,
more work remains to be done on understanding the class of problems for which exponential
quantum speed-up can be achieved.

2 Our algorithms

We use the following notation. For v ∈ Cd we denote the Euclidean norm by ‖v‖. For a
matrix A ∈ Cm×n we denote by ‖A‖ the operator norm, and by ‖A‖F the Frobenius norm.
We use notation Ai. for the i-th row, A.j for the j-th column, and A† for the adjoint of A. We

ISAAC 2020

47:4 Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems

use “bra-ket” notation: for v ∈ Cd we denote the corresponding column vector by |v〉 ∈ Cd×1,
and by 〈v| ∈ C1×d its adjoint. Accordingly we denote the inner product 〈v, w〉 by 〈v|w〉. For
a nonzero vector x ∈ Cn, we denote by Dx the probability distribution on {1, . . . , n} where
the probability that i is chosen is defined as Dx(i) = |x(i)|2/‖x‖2 for all i ∈ {1, . . . , n}.

2.1 Sampling
To have any hope for solving matrix inversion in sublinear time, we need additional assump-
tions on the input. In the case of quantum machine learning, the main assumption is typically
that one can prepare certain quantum states related to the input matrix. We work with the
quantum-inspired classical analogue of state preparation which is length-square sampling.

I Definition 1 (Length-square distribution). For a non-zero vector v ∈ Cn, we define the
length-square probability distribution q(v) on [n] to satisfy q(v)

i := |vi|2
‖v‖2 .

This is a classical analogue of preparing quantum states |v〉: if v describes a normalised
pure quantum state, the above distribution is exactly the distribution we get through
measurement in the computational basis, as described by Born’s rule. Moreover, the usual
data structures that support fast quantum state preparation also support fast length-square
sampling. We will describe a prominent example of such a data structure: it has been used
to support previous quantum-inspired algorithms [27, 26], QML algorithms [22, 21, 20], and
randomised linear algebra algorithms [13]. This data structure supports all the operations
necessary to run our matrix inversion algorithms, and yields only logarithmic overheads in
the runtime.

Specifically, to run Algorithm 1, we need length-square access to the input matrix A (and
standard query access to b). We define length-square access below, first for a vector, then for
a matrix.

I Definition 2 (Length-square access to a vector). We say that we have length-square access
to the vector v ∈ Cn if we can request a sample from the distribution q(v) at cost S(v). We
also assume that we can query the elements of v with cost Q(v), and that we can query the
value of ‖v‖ with cost N(v).2 We denote by L(v) := S(v) +Q(v) +N(v) the overall access
cost.

I Definition 3 (Length-square access to a matrix). We say that we have (row) length-square
access to the matrix A ∈ Cm×n if we have length-square access to the rows Ai. of A for all
i ∈ [m] and length-square access to the vector of row norms a ∈ Rm, where ai := ‖Ai.‖. We
denote by L(A) the complexity of the length-square access to A.

Note that length-square access to A implies the ability to determine ‖A‖F in N(A) time.

2.1.1 Data structures for length-square access
We can build a data structure for length-square access to a vector v ∈ Cn in the following
way. For each i ∈ [n], we store vi as |vi|2 and vi/|vi|. Then, we build a binary tree, with |vi|2
as the leaves. In each interior node we store the sum of the left node and the right node. In
particular, the root node stores ‖v‖2. Further, we can perform length-squared sampling on v
in O(logn) time by starting from the root node and recursing on a child with probability

2 We assume for simplicity that S(v), Q(v), and N(v) ≥ 1.

N.-H. Chia, A. Gilyén, H.-H. Lin, S. Lloyd, E. Tang, and C. Wang 47:5

‖a‖2 = ‖A‖2
F

|a1|2 = ‖A1.‖2 |a2|2 = ‖A2.‖2

|A11|2 + |A12|2 |A13|2 + |A14|2 |A21|2 + |A22|2 |A23|2 + |A24|2

|A11|2 |A12|2 |A13|2 |A14|2 |A21|2 |A22|2 |A23|2 |A24|2

A11
|A11|

A12
|A12|

A13
|A13|

A14
|A14|

A21
|A21|

A22
|A22|

A23
|A23|

A24
|A24|

Figure 1 The length-square data structure for A ∈ C2×4. We compose the data structure for a
in orange with the data structure for A’s rows in blue.

proportional to its weight. Finally, this data structure supports finding and updating entries
in O(logn) time and can be modified to support sparsity, pruning down the tree to take
space linear in the number of non-zero entries.

Now that we have length-square access data structures for a vector, we can get the same
for a matrix A ∈ Cm×n by simply creating the vector data structure for each row of A and
a the vector of row norms (see Figure 1). We can view the data structure for a as simply
placing another tree onto the root nodes of each row’s tree. This view makes it evident that
this data structure supports: O(logmn) update time, O(logn) time length-squared sampling
to the rows of A and O(logm) time length-squared sampling to a. In light of this data
structure, for simplicity, some portions of our complexity analysis will assume L(A) = Õ(1).

2.2 Main results
For simplicity, we treat the case when the matrix A has rank k � m,n, and does not have
too small singular values.3 In order to execute our algorithms, we use length-square sampling
techniques, which have found great applications in randomised linear algebra [19] and the
recent quantum-inspired classical algorithm for recommendation systems [27]. For simplicity
we assign unit cost to arithmetic operations such as addition or multiplication of real or
complex numbers, assuming that all numbers are represented with a small number of bits.

We present two algorithms, whose only essential difference is the parameters chosen. The
time complexity of the first is better when rank(A) < ‖A‖2/σ2

min, while the time complexity
of the second is better when rank(A) > ‖A‖2/σ2

min, where σmin(A) denotes the minimum
nonzero singular value of A.

In our first algorithm, by renormalizing, we can assume that ‖A‖ ≤ 1 and ‖A+‖ ≤ κ.
Our program is the following: we first show how to describe an approximate singular value
decomposition

∑k
`=1 σ̃` |ũ(`)〉〈ṽ(`)| using a succinct representation of the vectors. Then we

show how to estimate the values 〈ũ(`)|b〉/σ̃` via sampling, and how to sample from the

3 This assumption can be relaxed by inverting A on the “well-conditioned” subspace, and dealing with
small singular values similarly to the earlier works [13, 27], see follow-up work [7] for more details.

ISAAC 2020

47:6 Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems

corresponding linear combination of the vectors ṽ(`). The overall algorithm allows us to
sample, query elements, and estimate the norm of an approximate solution x̃ ≈ A+b to the
equation Ax = b in time poly-logarithmic in the size of the matrix. Essentially, we get fast
length-square access to x̃.

The idea of the approximate singular value decomposition of A using length-square
sampling comes from [13]. Consider using length-square sampling to sample some rows R. If
we sample enough rows, then

∥∥ATA−RTR∥∥ is small as shown by Theorem 6. This means
that R’s singular values and right singular vectors are close to A’s singular values and right
singular vectors. Further, as shown by Lemma 7, by applying the matrix A to R’s right
singular vectors, we can recover approximate left singular vectors of A. This is promising, but
since R’s rows are still length n, computing its singular value decomposition is prohibitively
slow. However, we can apply the trick once more! We can sample columns of R to form the
submatrix C. Again the singular values and left singular vectors of C are very close to the
singular values and left singular vectors of R provided that

∥∥RRT − CCT∥∥ is small. Since C
will have logarithmic size in terms of the input dimensions, we can compute its singular value
decomposition quickly, and using the above techniques, translate this to an approximate
singular value decomposition of A.

Algorithm 1 Low-rank stochastic regression via length-square sampling.

Input: A vector b ∈ Cm and a matrix A ∈ Cm×n s.t. ‖A‖ ≤ 1, rank(A) = k and
‖A+‖ ≤ κ.
Goal 1: Query elements of a vector x̃ such that ‖x̃− x‖ ≤ ε‖x‖ for x = A+b.
Goal 2: Sample from a distribution 2ε-close in total-variation distance to |xj |

2

‖x‖2 .
Goal 3: Output a ν such that |ν − ‖x‖| ≤ 3ε‖x‖.

1: Init: Set r = 210 ln
(

8n
η

)
κ4k2‖A‖2

F

ε2 and c = 26 · 34 ln
(

8r
η

)
κ8k2‖A‖2

F

ε2 .

2: Sample rows: Sample r row indices i1, i2, . . . , ir according to the row norms q(a)
i = ‖Ai.‖2

‖A‖2
F

.
Define R to be the matrix whose s-th row is ‖A‖F√

r

Ais.
‖Ais.‖

.
3: Sample columns: Sample s ∈ [r] uniformly, then sample a column index j according

to q(Rs.)
j = q

(Ais.)
j = |Aisj |

2

‖Ais.‖2 . Sample a total number of c column indices j1, j2, . . . , jc this

way. Define the matrix C whose t-th column is ‖R‖F√
c

R.jt
‖R.jt‖

= ‖A‖F√
c

R.jt
‖R.jt‖

.
4: SVD: Query all elements of A corresponding to elements of C. Compute C’s top k left

singular vectors w(1), . . . , w(k) and corresponding singular values σ̃1, . . . , σ̃k.
5: Approximate right singular vectors of A: Implicitly define ṽ(`) := 1

σ̃`
R†w

(`)
s .

6: Matrix elements: For each ` ∈ [k] compute λ̃` such that
∣∣λ̃` − 〈ṽ(`)|A†|b〉

∣∣ =
O
(
εσ̃2
`‖b‖√
k

)
.

7: Output: Row indices i1, i2, . . . , ir and w :=
∑k
`=1

λ̃`
σ̃3
`

w(`) ∈ Cr s.t. ‖w‖ = O
(
κ2
√
k‖b‖

)
.

This implicitly describes x̃ := R†w. The goals follow from length-square access to x̃
described in Lemma 12; the routines are summarised below.
Queries to x̃: x̃j =

∑
R†j,sws, so query Rs,j for all s ∈ [r] and compute naively.

Sampling from |x̃j |2/‖x̃‖2: Perform rejection sampling; each round uses one sample
according to q(Rs.)

j = |Rs,j |2

‖Rs,.‖2 for some s ∈ [r] and r queries to entries of R, in expectation,
sampling takes ‖w‖2‖A‖2

F /‖x̃‖
2 rounds.

Estimating ‖x̃‖: Perform rejection sampling for a fixed number of rounds; the probability
of success over those rounds approximates ‖x̃‖2

/(‖w‖2‖A‖2
F).

N.-H. Chia, A. Gilyén, H.-H. Lin, S. Lloyd, E. Tang, and C. Wang 47:7

The correctness and complexity of Algorithm 1 is summarized in the following theorem,
which is proven in Section 3. (We only work out the constant factors for the number of rows
and columns to be sampled, because these parameters dominate the complexity.)

I Theorem 4 (For Algorithm 1). Assume that A has rank at most4 k, ‖A‖ ≤ 1, ‖A+‖ ≤ κ,
and the projection of b to the column space of A has norm Ω(‖b‖). Also assume that we have
Õ(1)-time5 query access to b and Õ(1)-time length-square access to A. Then Algorithm 1
solves Ax = b up to ε-multiplicative accuracy, such that ‖x̃−A+b‖ ≤ ε‖A+b‖ with probability
at least 1−η and we can execute Algorithm 1 in complexity Õ

(
κ16k6‖A‖6

F /ε
6
)
, outputting an

implicit description of x̃ that supports length-square access, with Q(v) = Õ
(
κ4k2‖A‖2

F /ε
2
)
,

S(v) = Õ
(
κ8k3‖A‖4

F /ε
2
)
(with high probability), and N(v) = Õ

(
κ8k3‖A‖4

F /ε
4
)
(outputting

an estimate of the norm to (1± ε) multiplicative error).

Our second algorithm has a similar flavor as Algorithm 1.

Algorithm 2 The algorithm for sampling from and querying to A+b.

1: Input: ε, κ′, ‖A‖, ‖A‖F , and A ∈ Cm×n with the length square access as defined in
Definition 3.

2: Set s = Θ(‖A‖
6‖A‖2

Fκ
′8 ln(n/δ)

ε2), and p = Θ(‖A‖
10‖A‖2

Fκ
′12 ln(n/δ)

ε2).
3: Independently sample s row indices i1, . . . , is according to the probability distribution
{P1, . . . , Pm} where Pi = ‖Ai.‖2

‖A‖2
F

.
4: Let S ∈ Cs×n be the matrix formed by the normalized rows A(it, ·)/

√
pPit for t ∈

{1, . . . , s}.
5: Independently sample p column indices j1, . . . , jp by the following procedure: first sample

a row index t ∈ {1, . . . , s} uniformly at random; then sample a column index j from the
probability distribution DAit. .

6: Let W ∈ Cs×p be the matrix formed by the normalized columns S.jt/
√
pP ′jt for t ∈

{1, . . . , p}, where P ′j =
∑s
`=1DAi`.(j)/p, and i1, . . . , is are the indices sampled in step 2.

7: Compute the singular values σ1, . . . , σk ofW and their corresponding left singular vectors
u1, . . . , uk, where k is the rank of W . Define the matrix V ∈ Cn×k as V.j = S†

uj
σj
.

8: Construct the vector w ∈ Cs as wi = V †.iA
†b by applying Lemma 15.

9: Compute w′ as w′i = wi/σ
2
i .

To query the j-th entry of of the solution: output the inner product Vj.w′.
To sample from the solution: use Lemma 13 to sample from V w′.

The correctness and complexity of Algorithm 2 is summarized in the following theorem,
which we prove in Section 4.

I Theorem 5 (For Algorithm 2). Let A ∈ Cm×n be a matrix whose length square access
defined in Definition 3 can be obtained in Õ(1) time, and b ∈ Cm be a vector. Assume ‖b‖ = 1
and the norm of the projection of b onto the column space of A is at least some constant.

4 While running the algorithm we can actually detect if A has lower rank and adapt the algorithm
accordingly.

5 In this paper by Õ(T) we hide poly-logarithmic factors in T , the dimensions m,n and the failure
probability η.

ISAAC 2020

47:8 Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems

Let6 κ′ := 1/σmin(A), where σmin(A) is the minimum nonzero singular value of A. Then,
Algorithm 2 succeeds with probability 1− δ, can (1) approximate (A+b)i for a given index
i ∈ {1, . . . , n} with error ε‖A+b‖, and (2) sample from a distribution that is ε-close to DA+b

with time complexity

Õ

(
‖A‖6ω+4‖A‖2ω

F κ′8ω+4

ε2ω

)
, (1)

where ω < 2.373 is the matrix multiplication exponent.

Note that our complexity bound has smaller exponents than e.g. [27]. This partly comes
from the fact that we only consider low-rank matrices, but we also get improvements by
adapting and reanalysing the FKV algorithm [13].

We can achieve Õ(1)-time for the input accesses in Theorems 4 and 5 using, for example,
the data structure in Section 2.1.1. If input access takes some different O(L) time instead,
Algorithm 1’s runtime increases by an additive term of Õ

(
Lκ12k4‖A‖4

F /ε
4), which is L times

the query complexity; the runtimes of S(v) and N(v) also increase by a factor of L. Similarly,
Algorithm 2’s runtime increases by an additive term at most Õ

(
Lκ′20‖A‖16‖A‖4

F /ε
4).

For comparison with the quantum analogue, note that under the assumption that the
data structure for A is stored in quantum memory, an ε-approximate quantum state |x̃〉/‖x̃‖
can be prepared in complexity Õ(κ‖A‖Fpolylog(1/ε)), as shown in [5, 15]. This directly
enables length-square sampling, and its entries can be estimated with poly(κ/ε) overheads.

3 Proof of Theorem 4

In Algorithm 1, we first convert left singular vectors of C (w(`)) to approximate right singular
vectors of R (ṽ(`)), which also approximate right singular vectors of A. Then we “convert”
these to left singular vectors of A in the form (〈ṽ(`)|A†/σ̃`). To clarify the formula for x̃,
notice the following sequence of approximations:

A+b = (A†A)+A†b ≈ (R†R)+A†b ≈
(k∑
`=1

1
σ̃2
`

|ṽ(`)〉〈ṽ(`)|
)
A†|b〉 = R†

k∑
`=1
|w(`)〉 〈ṽ

(`)|A†|b〉
σ̃3
`

≈ R†
k∑
`=1
|w(`)〉 λ̃`

σ̃3
`

= x̃

The conversion step from right to left singular vectors of A magnifies previous inaccuracies.
For this reason, unlike in earlier works [13, 27], it is beneficial to sample a higher number of
columns than rows.

3.1 Correctness of Algorithm 1
To show correctness, we will show that ‖x̃− x‖ ≤ ε‖x‖ as desired. (If this holds, then the
length-square distributions of x and x̃ are 2ε-close by Lemma 10 and a (1± ε)-approximation
to ‖x̃‖ is a (1± 3ε)-approximation to ‖x‖.) The methods to query and sample from x̃ given
the output of Algorithm 1 are exact, so this suffices for correctness.

6 Note that κ′ is different from κ in Algorithm 1. In order to compare the runtimes in Theorem 4 and
Theorem 5 one should set κ = κ′‖A‖ and replace ‖A‖F by ‖A‖F /‖A‖ in Theorem 4 while setting ω = 3
in Theorem 5.

N.-H. Chia, A. Gilyén, H.-H. Lin, S. Lloyd, E. Tang, and C. Wang 47:9

We break the correctness argument in two parts. In Section 3.1.1, we show that the
approximate right singular vectors ṽ(`) and approximate singular values σ̃` described in the
algorithm satisfy∥∥∥∥∥

k∑
`=1

|ṽ(`)〉〈ṽ(`)|
σ̃2
`

A†A−Πrows(A)

∥∥∥∥∥ ≤ ε

2 . (2)

If we could compute exact versions of our λ̃`’s from Algorithm 1, λ` := 〈ṽ(`)|A†|b〉, then the
corresponding output of the algorithm,

|x′〉 :=
k∑
`=1

|ṽ(`)〉〈ṽ(`)|
σ̃2
`

A†|b〉 =
k∑
`=1

〈ṽ(`)|A†|b〉
σ̃2
`

|ṽ(`)〉 =
k∑
`=1

λ`
σ̃2
`

|ṽ(`)〉, (3)

would be sufficiently close to x due to Equation (2):

‖x′ − x‖ =

∥∥∥∥∥
k∑
`=1

|ṽ(`)〉〈ṽ(`)|
σ̃2
`

A†|b〉 − |x〉

∥∥∥∥∥ =

∥∥∥∥∥
(

k∑
`=1

|ṽ(`)〉〈ṽ(`)|
σ̃2
`

A†A−Πrows(A)

)
|x〉

∥∥∥∥∥ ≤ ε

2‖x‖.

Remember that we assumed that the projection of b to the column space of A has norm
Ω(‖b‖). Since ‖A‖ ≤ 1 we also have that ‖x‖ = Ω(‖b‖). Therefore it suffices to find x̃ such
that ‖x̃− x′‖ = O(ε‖b‖) in order to ensure ‖x̃− x′‖ ≤ ε

2‖x‖.
In Section 3.1.2, we show that using the λ̃` from Algorithm 1, which satisfies

∣∣λ` − λ̃`∣∣ =
O
(
εσ̃2
`‖b‖√
k

)
, does not perturb the solution too much. Namely, ‖x̃− x′‖ can be bounded by

O(ε‖b‖) and ‖w‖ = O
(
κ2k‖b‖

)
.

3.1.1 Finding approximate singular values and right singular vectors
First we invoke some improved bounds on length-square sampling from [19, Theorem 4.4].7

Length-square row sampling of a matrix A ∈ Cm×n is as follows: pick a row index i ∈ [m]
with probability pi = ‖Ai.‖2

‖A‖2
F

, and upon picking index i set the random output Y = Ai.√
pi
.

Notice that in Algorithm 1 both R and C can be characterised as length-square (row) sampled
matrices (the latter holding because every row of R has the same norm).

I Theorem 6. Let A ∈ Cm×n be a matrix and let R ∈ Cs×n be the sample matrix obtained by
length-squared sampling and scaling to have E[R†R] = A†A. (R consists of rows Y1, Y2, . . . , Ys,
which are i.i.d. copies of Y/

√
s, as defined above.) Then, for all ε ∈ [0, ‖A‖/‖A‖F],8 we have

P
[∥∥R†R−A†A∥∥ ≥ ε‖A‖‖A‖F] ≤ 2ne− ε

2s
4 .

Hence, for s ≥ 4 ln(2n/η)
ε2 , with probability at least (1− η) we have∥∥R†R−A†A∥∥ ≤ ε‖A‖‖A‖F .

In the following lemma ‖M‖ denotes the operator norm, but the proof would also work
for the Frobenius norm. Note that the following lemmas are independent of the dimensions
of the matrices, which is the reason why we do not specify the dimensions. We use δij to
denote the Kronecker delta function, which is defined to be 1 if i = j and 0 otherwise.

7 In [19] the theorem is stated for real matrices, but the proof works for complex matrices as well.
8 If ε ≥ ‖A‖/‖A‖F , then the zero matrix is a good enough approximation to AA†.

ISAAC 2020

47:10 Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems

I Lemma 7 (Converting approximate left and right singular vectors). Suppose that w(`) is a
system of orthonormal vectors spanning the column space of C such that

k∑
`=1
|w(`)〉〈w(`)| = Πcols(C) and 〈w(i)|CC†|w(j)〉 = δij σ̃

2
i .

Suppose that rank(R) = rank(C) = k and
∥∥RR† − CC†∥∥ ≤ γ. Let ṽ(`) := R†w(`)

σ̃`
, then

|〈ṽ(i)|ṽ(j)〉 − δij | ≤
γ

σ̃iσ̃j
, and

∣∣∣〈ṽ(i)|R†R|ṽ(j)〉 − δij σ̃2
i

∣∣∣ ≤ γ
(

2‖R‖2 + γ
)

σ̃iσ̃j
.

Proof. Let V be the matrix whose `-th column is the vector ṽ(`) and let us define the Gram
matrix G = V †V . We have that

Gij = |〈ṽ(i), ṽ(j)〉 − δij | =
∣∣∣∣ 〈w(i)|RR†|w(j)〉

σ̃iσ̃j
− δij

∣∣∣∣ ≤ ∣∣∣∣ 〈w(i)|CC†|w(j)〉
σ̃iσ̃j

− δij
∣∣∣∣+ γ

σ̃iσ̃j
= γ

σ̃iσ̃j
.

Now observe that∥∥RR†RR† − CC†CC†∥∥ ≤ ∥∥RR†(RR† − CC†)∥∥+
∥∥(RR† − CC†)CC†

∥∥ ≤ γ(2‖R‖2 + γ
)
.

Let i, j ∈ [k], then

〈w(i)|CC†CC†|w(j)〉 = 〈w(i)|CC†
(

k∑
`=1
|w(`)〉〈w(`)|

)
CC†|w(j)〉 = δijσ

4
i .

Finally we get that∣∣∣〈ṽ(i)|R†R|ṽ(j)〉 − δijσ2
i

∣∣∣ =
∣∣∣∣ 〈w(i)|RR†RR†|w(j)〉

σ̃iσ̃j
− δijσ2

i

∣∣∣∣
≤
∣∣∣∣ 〈w(i)|CC†CC†|w(j)〉

σ̃iσ̃j
− δijσ2

i

∣∣∣∣+
γ
(

2‖R‖2 + γ
)

σ̃iσ̃j

=
γ
(

2‖R‖2 + γ
)

σ̃iσ̃j
. J

I Lemma 8. Let B be a matrix of rank at most k, and suppose that V has k columns that
span the row and column spaces of B. Then

‖B‖ ≤
∥∥(V †V)−1∥∥∥∥V †BV ∥∥.

Proof. Let G := V †V be the Gram matrix of V and let Ṽ := V G−
1
2 . It is easy to see that

Ṽ is an isometry and its columns still span the the row and column spaces of B. Since Ṽ is
an isometry we get that

‖B‖ =
∥∥Ṽ †BṼ ∥∥ =

∥∥∥G− 1
2V †BV G−

1
2

∥∥∥ ≤ ∥∥G−1∥∥∥∥V †BV ∥∥ =
∥∥(V †V)−1∥∥∥∥V †BV ∥∥. J

I Lemma 9 (Approximate left and right singular vectors). Suppose that ṽ(i) is a system of
approximately orthonormal vectors spanning the row space of A such that

|〈ṽ(i)|ṽ(j)〉 − δij | ≤ α ≤
1
4k and

∣∣∣〈ṽ(i)|R†R|ṽ(j)〉 − δij σ̃2
i

∣∣∣ ≤ β, (4)

where σ̃2
i ≥ 4

5κ2 . Suppose that rank(A) = rank(R) = k and
∥∥A†A−R†R∥∥ ≤ θ, then∥∥∥∥∥Πrows(A) −

k∑
`=1

|ṽ(`)〉〈ṽ(`)|
σ̃2
`

A†A

∥∥∥∥∥ ≤ 8k
3 (βκ2 + θκ2 + α). (5)

N.-H. Chia, A. Gilyén, H.-H. Lin, S. Lloyd, E. Tang, and C. Wang 47:11

Proof. Let B :=
∑k
`=1

|ṽ(`)〉〈ṽ(`)|
σ̃2
`

A†A−Πrows(A), we will apply Lemma 8. For this observe

∣∣〈ṽ(i)|B|ṽ(j)〉
∣∣ =

∣∣∣∣∣
k∑
`=1

〈ṽ(i)|ṽ(`)〉〈ṽ(`)|A†A|ṽ(j)〉
σ̃2
`

− 〈ṽ(i)|ṽ(j)〉

∣∣∣∣∣
≤

∣∣∣∣∣
k∑
`=1

〈ṽ(i)|ṽ(`)〉〈ṽ(`)|R†R|ṽ(j)〉
σ̃2
`

− δij

∣∣∣∣∣+
k∑
`=1

|〈ṽ(i)|ṽ(`)〉|θ
∥∥ṽ(`)

∥∥∥∥ṽ(j)
∥∥

σ̃2
`

+ α

≤

∣∣∣∣∣
k∑
`=1

〈ṽ(i)|ṽ(`)〉〈ṽ(`)|R†R|ṽ(j)〉
σ̃2
`

− δij

∣∣∣∣∣+ 2θκ2 + α

≤

∣∣∣∣∣
k∑
` 6=j

〈ṽ(i)|ṽ(`)〉〈ṽ(`)|R†R|ṽ(j)〉
σ̃2
`

∣∣∣∣∣+
∣∣∣∣〈ṽ(i)|ṽ(j)〉 〈ṽ

(j)|R†R|ṽ(j)〉
σ̃2
j

− δij
∣∣∣∣+ 2θκ2 + α

≤

∣∣∣∣∣
k∑
` 6=j

〈ṽ(i)|ṽ(`)〉〈ṽ(`)|R†R|ṽ(j)〉
σ̃2
`

∣∣∣∣∣+ α(1 + β/σ2
j) + δijβ/σ

2
j + 2θκ2 + α

≤ (1 + kα)β 5
4κ

2 + 2θκ2 + 2α ≤ 2(βκ2 + θκ2 + α).

Let e` ∈ Ck denote the `-th standard basis vector and let us define V :=
∑k
`=1 |ṽ(`)〉〈e`|. It

follows that
∥∥V †BV ∥∥ ≤ 2k(βκ2 + θκ2 + α). By (4) we have that

∥∥V †V − I∥∥ ≤ kα ≤ 1/4,
and thus

∥∥(V †V)−1
∥∥ ≤ 4/3. By Lemma 8 we get that ‖B‖ ≤ 8k(βκ2 + θκ2 + α)/3. J

If γ ≤ 1
10κ2 and θ ≤ 1

10κ2 , we get σ̃2
min ≥ 4

5κ2 . Then by Lemma 7 we get that α ≤ 5
4κ

2γ

and β ≤ 3κ2γ. Substituting this into Equation (5) we get the upper bound

γ
(
8kκ4 + 10kκ2/3

)
+ θ

8k
3 κ2 ≤ γ12kκ4 + θ

8k
3 κ2. (6)

Choosing θ = 1
16

ε
kκ2 and γ = 1

36
ε
kκ4 , the above bound (6) becomes ε/2. Therefore to succeed

with probability at least 1 − η/2 it suffices to sample r = 210 ln(8n/η)κ4k2‖A‖2
F /ε

2 row
indices, and then subsequently c = 26 · 34 ln(8r/η)κ8k2‖A‖2

F /ε
2 column indices as shown by

Theorem 6.

3.1.2 The required precision for matrix element estimation
Recall from Equation (3) that x′ =

∑k
`=1

λ`
σ̃2
`

ṽ(`), and x̃ is as above except we replace λ`
with λ̃`. As we argued in the beginning of the section, for the correctness of Algorithm 1
it suffices to ensure ‖x̃− x′‖ = O(ε), assuming that ‖b‖ = 1. Now we show that if we have∣∣λ` − λ̃`∣∣ = O

(
εσ̃2
`‖b‖√
k

)
, then the magnitude of perturbation can be bounded by O(ε), and

we also get that ‖w‖ = O
(
κ2
√
k
)
. Let e` ∈ Ck denote the `-th standard basis vector; we

rewrite ‖x̃− x′‖ as∥∥∥∥∥
k∑
`=1

λ` − λ̃`
σ̃2
`

|ṽ(`)〉

∥∥∥∥∥ =

√√√√∥∥∥∥∥
k∑
`=1

λ` − λ̃`
σ̃2
`

|ṽ(`)〉〈e`|e`〉

∥∥∥∥∥
2

=

√√√√∥∥∥∥∥
(

k∑
`=1

|ṽ(`)〉〈e`|

)(
k∑
`=1

λ` − λ̃`
σ̃2
`

|e`〉

)∥∥∥∥∥
2

.

Let us define V :=
∑k
`=1 |ṽ(`)〉〈e`|, and |z〉 :=

∑k
`=1

λ`−λ̃`
σ̃2
`

|e`〉, then we have that∥∥∥∥∥
k∑
`=1

λ` − λ̃`
σ̃2
`

|ṽ(`)〉

∥∥∥∥∥ =
√
〈z|V †V |z〉 ≤

√
‖V †V ‖‖z‖ = O(ε),

where we used that
∥∥V †V ∥∥ ≤ 1 + kα ≤ 4

3 as we have shown in the proof of Lemma 9.

ISAAC 2020

47:12 Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems

Now we show that ‖w‖ = O
(
κ2
√
k
)
. Remember that ṽ(`) = R†w(`)

σ̃`
, thus x̃ =

R†.`
∑k
`=1

λ̃`
σ̃3
`

w(`). Let w :=
∑k
`=1

λ̃`
σ̃3
`

w(`), then we get

‖w‖ =

√√√√ k∑
`=1

|λ̃`|2
σ̃2
`

≤

√√√√ k∑
`=1

|λ`|2
σ̃6
`

+

√√√√ k∑
`=1

|λ̃` − λ`|2
σ̃6
`

≤ O
(
κ2)√√√√ k∑

`=1

|λ`|2
σ̃2
`

+O
(
κ2ε
)
.

Finally observe that
k∑
`=1

|λ`|2

σ̃2
`

=
k∑
`=1

〈b|A|ṽ(`)〉〈ṽ(`)|A†|b〉
σ̃2
`

≤ Tr

[
k∑
`=1

A|ṽ(`)〉〈ṽ(`)|A†

σ̃2
`

]
= Tr

[
k∑
`=1

〈ṽ(`)|A†A|ṽ(`)〉
σ̃2
`

]

≤
k∑
`=1

〈ṽ(`)|R†R|ṽ(`)〉
σ̃2
`

+O
(
kκ2)∥∥A†A−R†R∥∥ ≤ O(k + kβκ2 + kθκ2) ≤ O(k + ε),

where the last two inequalities follow from Lemma 9 and its follow-up discussion.

3.2 Complexity of Algorithm 1
The complexity is dominated by two parts of the algorithm: finding the left singular vectors
of an r by c matrix, and estimating some matrix elements of A. If we use naive matrix
multiplication, then computing the singular value decomposition of CC† costs

O
(
r2c
)

= Õ
(
κ16k6 ‖A‖

6
F

ε6

)
.

In this section, we prove that this dominates the runtime of the algorithm. First, we use
length-square sampling techniques similarly to Tang [27] to approximate the matrix elements
λ` := 〈ṽ(`)|A†|b〉, which has complexity Õ

(
κ8k4 ‖A‖4

F

ε4

)
as we show in Section 3.2.2. Second,

we show how to efficiently length-square sample from x̃ :=
∑k
`=1

λ̃`
σ̃2
`

ṽ(`) using rejection
sampling.

3.2.1 Length-square sampling techniques
Before we begin discussion of the two sampling techniques used, we note that the closeness
of two vectors in Euclidean distance implies closeness of their corresponding distributions.

I Lemma 10 (Bounding Total Variation distance by Euclidean distance [27, Lemma 4.1]). For
v, w ∈ Cn,

∥∥q(v), q(w)
∥∥
TV
≤ 2‖v−w‖

max(‖v‖,‖w‖) .

3.2.2 Estimating the matrix element 〈ṽ(`)|A†|b〉
We use the inner product estimation method of Tang [27] for matrix element estimation.
The proof can be found in one of the full versions [15].

I Lemma 11 (Trace inner product estimation). Suppose that we have length-square access
to A ∈ Cm×n and query access to the matrix B ∈ Cm×n in complexity Q(B). Then we can
estimate Tr

[
A†B

]
to precision ξ‖A‖F ‖B‖F with probability at least 1−η in time

O
(

log(1/η)
ξ2 (L(A) +Q(B))

)
.

N.-H. Chia, A. Gilyén, H.-H. Lin, S. Lloyd, E. Tang, and C. Wang 47:13

We can estimate λ` = 〈ṽ(`)|A†|b〉 = Tr
[
〈ṽ(`)|A†|b〉

]
= Tr

[
A†|b〉〈ṽ(`)|

]
using this lemma.

Observe that
∥∥|b〉〈ṽ(`)|

∥∥
F

=
∥∥ṽ(`)

∥∥‖b‖ ≤ (1+ε)‖b‖, and we can query the (i, j) matrix element
of |b〉〈ṽ(`)| by querying bi and ṽ(`)

j , which has Õ(1) and Õ(r) cost respectively. We desire
to estimate λ` to additive precision O

(
εσ2
`‖b‖√
k

)
with success probability η

2k . By applying
Lemma 11, we can compute such an estimate λ̃` with complexity

Õ

(
log(2k/η)

k‖A‖2
F

ε2σ4
`

r

)
= Õ

(
κ4k
‖A‖2

F

ε2 r

)
= Õ

(
κ8k3 ‖A‖

4
F

ε4

)
.

3.2.3 Sampling from the approximate solution
Our goal is to sample from the length-square distribution of x̃ = R†w. In order to tackle
this problem we invoke a result from [27] about length-square sampling a vector that is a
linear-combination of length-square accessible vectors. The proof can be found in one of the
full versions [15].

I Lemma 12 (Length-square sample a linear combination of vectors [27, Proposition 4.3]).
Suppose that we have length-square access to R ∈ Cr×n having normalised rows, and we are
given w ∈ Cr (as a list of numbers in memory). Then we can implement length-square access
to y := R†w ∈ Cn, so that we can
1. query for entries with complexity Q(y) = O(rQ(R));
2. sample from q(y) with complexity S(y) satisfying9 E[S(y)] = O

(
r‖w‖2

‖y‖2 (S(R) + rQ(R))
)
;

3. estimate ‖y‖ to (1± ε) multiplicative error with success probability ≥ 1− δ in complexity
Ñ(y) = O

(
r‖w‖2

‖y‖2ε2 (S(R) + rQ(R)) log 1
δ

)
.

Since all rows of R have norm ‖A‖F /
√
r, and ‖x̃‖ = Ω(1) by Lemma 12 we can length-

square sample from x̃ in expected complexity

O

(
r‖w‖2‖A‖2

F /r

‖x̃‖2 r

)
= O

(
‖w‖2‖A‖2

F

‖x̃‖2 r

)
= O

(
κ4k‖A‖2

F r
)

= Õ
(
κ8k3‖A‖4

F

ε2

)
.

Computing the complexity for the other routines follows similarly.

4 Proof of Theorem 5

We need some technique tools to prove Theorem 5. We first summarize how to sample the
vector resulted from a matrix-vector multiplication.

I Lemma 13 ([27]). Let M ∈ Cn×k and v ∈ Ck. Given length square access to M as
in Definition 3, one can output a sample from the vector Mv with probability 9/10 in
O(k2C(M,v)) query and time complexity, where C(M, v) :=

∑k
j=1 ‖ vjM.j ‖2 / ‖Mv ‖2.

I Lemma 14 ([27]). Let M ∈ Cn×k and v ∈ Ck. If there exists an isometry U ∈ Cn×k
whose column vectors span the column space of M such that ‖M − U‖F ≤ α, then one can
sample from a distribution which is (α+O(α2))-close to DMv in O(k2(1 +O(α))) expected
query and time complexity.

9 We also show the high probability form of this expected complexity bound: with probability ≥ 1− δ,
S(y) = O

(
r‖w‖2

‖y‖2 (S(R) + rQ(R)) log 1
δ

)
.

ISAAC 2020

47:14 Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems

We need the following lemma for estimating x†Ay,10 whose proof can be found in one of
the full versions [9].

I Lemma 15. Let x ∈ Cm, y ∈ Cn, and A ∈ Cm×n. Given the sampling and query access
to A, the query access to x and y, and the knowledge of ‖x‖ and ‖y‖, one can approximate
x†Ay to additive error ε with at least 1− δ success probability using O(‖x‖

2‖y‖2‖A‖2
F

ε2 log 1
δ)

queries and samples and the same time complexity.

We also need the following result by Farforovskaya and Nikolskaya [12] to bound the
error of inverting matrices.

I Lemma 16 ([12]). Let f : [0, xmax]→ C be L-Lipschitz continuous and A,B be Hermitian
matrices with ‖A‖, ‖B‖ ≤ xmax, and ‖A−B‖ ≤ ε. Then it holds that

‖f(A)− f(B)‖ ≤ 4Lε(log(1 + 2xmax/ε) + 1)2.

Now, we are ready to prove the main theorem.

Proof of Theorem 5. First note that the last two steps of Algorithm 2 are dealing with
the vector V w′, which, by the previous steps, can be written as V w′ = V D−2V †A†b, where
D ∈ Rk×k is the diagonal matrix with diagonal entries σ1, . . . , σk. This vector can also be
written as

V D−2V †A†b =
k∑
j=1

1
σ2
j

S†
uju
†
j

σ2
j

SA†b = S†(WW †)−2SA†b,

where W is the matrix obtained in Algorithm 2 of Algorithm 2. To analyze the distance
between the above vector to (A†A)+A†b, we define functions f, g : [0, 1]→ R as

f(x) =
{

1
x when x ∈

[1
2κ′2 , 1

]
2κ′2 when x ∈

[
0, 1

2κ′2
) and g(x) =

{
1
x2 when x ∈

[1
2κ′2 , 1

]
4κ′4 when x ∈

[
0, 1

2κ′2
)
.

(7)

We show that f is 4κ′4-Lipschitz continuous and g is 4κ′6-Lipschitz continuous. We first
consider the case where x, x′ ∈ [1

2κ′2 , 1]. Then, |f(x)−f(x′)|
|x−x′| ≤ 1

4κ′4 and |g(x)−g(x′)|
|x−x′| ≤ 1

4κ′6 . For
the case where x, x′ ∈ [0, 1/2κ′2), it is trivial that |f(x)−f(x′)|

|x−x′| = |g(x)−g(x′)|
|x−x′| = 0. Finally, if

x ∈ [0, 1/2κ′2) and x′ ∈ [1/2κ′2, 1], then |f(x)−f(x′)|
|x−x′| ≤ 1

4κ′4 and |g(x)−g(x′)|
|x−x′| ≤ 1

4κ′6 still hold
since |f(x)−f(x′)|

|x−x′| and |g(x)−g(x′)|
|x−x′| must be less than the slopes of f and g on the singular

point 1/2κ′2.
By Theorem 6 and the choice of s in Algorithm 2, we have that, with high probability,∥∥S†S −A†A∥∥ ≤ ε

2κ′4‖A‖2 , and
∥∥WW † − SS†

∥∥ ≤ ε

2κ′6‖S‖4 . (8)

As a consequence of Weyl’s inequalities (see, for example, [17]), we have that, with high
probability,

|σk(S†S)− σk(A†A)| ≤
∥∥A†A− S†S∥∥ ≤ ε

2κ′4 , and

|σk(SS†)− σk(WW †)| ≤
∥∥SS† −WW †

∥∥ ≤ ε

2κ′6 .

10Note that this lemma can be viewed a special case of Lemma 11.

N.-H. Chia, A. Gilyén, H.-H. Lin, S. Lloyd, E. Tang, and C. Wang 47:15

Assuming ε ≤ 1/2, this further implies that

σmin(S†S) ≥ σmin(A†A)− ε

2κ′4 ≥
3

4κ′4 , and

σmin(WW †) ≥ σmin(SS†)− ε

2κ′6 ≥
1

2κ′6 .

According to Equation (8), ‖S‖2 ≤ ‖A‖2 + ε
2κ′4 and ‖W‖2 ≤ ‖S‖2 + ε

2κ′6 with high
probability. Now, Equation (8) together with applying Lemma 16 on f and g defined in
Equation (7) imply that∥∥(S†S)+ − (A†A)+∥∥ ≤ ε

2‖A‖2 , and
∥∥(WW †)−2 − (SS†)−2∥∥ ≤ ε

2‖S‖4 . (9)

Hence, we have that, with high probability,∥∥S†(WW †)−2S − (A†A)+∥∥ ≤ ∥∥S†(WW †)−2S − S†(SS†)−2S + S†(SS†)−2S − (A†A)+∥∥
≤
∥∥S†(WW †)−2S − S†(SS†)−2S

∥∥+
∥∥(S†S)+ − (A†A)+∥∥

≤ ε

‖A‖2 .

Therefore, we have∥∥S†(WW †)−2SA†b− (A†A)+A†b
∥∥ ≤ ε

‖A‖
= O(ε‖A+b‖)

with high probability, where the second inequality follows from the assumption that the norm
of the projection of b onto the columns space of A is at least some constant c, which implies that
c ≤ ‖AA+b‖ ≤ ‖A‖‖A+b‖. Note that this implies that (DS†(WW †)−2SA†b−D(A†A)+A†b)TV ≤
2ε by Lemma 10 (with appropriate choices of constant factors in p and s).

Now, we argue that V is approximately orthogonal. To see this, we bound the distance
between the inner product V (i, ·)V (·, j) and δij as follows

|V (i, ·)V (·, j)− δij | =
∣∣∣∣u†iσi SS† ujσj − δij

∣∣∣∣ ≤ ∣∣∣∣u†iσiWW †
uj
σj
− δij

∣∣∣∣+ ε

2κ′6‖S‖3σiσj
≤ ε

2κ′4‖S‖3 .

We use s = Θ(‖A‖
6‖A‖2

Fκ
′8 ln(n/δ)

ε2) samples of rows from A to build S. We use p =
Θ(‖A‖

10‖A‖2
Fκ
′12 ln(n/δ)

ε2) samples of columns from S to build W . Finally, we can compute the
matrix WW † in Θ

(
‖A‖4κ′4 ·

(
κ′8‖A‖6‖A‖2

F ln n
δ

ε2

)ω)
time by dealing with the dp/se blocks of

W . We can also compute the spectral decomposition of WW † in Θ
((

κ′8‖A‖6‖A‖2
F ln n

δ

ε2

)ω)
time.

Given query access to b, we can get query and sampling access to S†(WW †)−2SA†b as
follows: first, we compute W †W , its spectral decomposition, and apply the function g on the
eigenvalues, this step takes Θ

(
‖A‖4κ′4 ·

(
κ′8‖A‖6‖A‖2

F ln n
δ

ε2

)ω)
. Then, we obtain query access

and sampling access (by Lemma 13) to V , where V.i := S† uiσi for ui and σi the ith eigenvalue
and eigenvector of W †W . Note that with this definition, S†(WW †)−2SA†b = V V †A†b. We
compute b′ := V †A†b ∈ Cs by using Lemma 15. Finally, the query access can be obtained
directly by computing (V b′)j for any j ∈ [m] and the sampling access to V b′ can be obtained
by using Lemma 14. J

ISAAC 2020

47:16 Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems

References

1 Andris Ambainis. Variable time amplitude amplification and quantum algorithms for linear
algebra problems. In Proceedings of the 29th Symposium on Theoretical Aspects of Computer
Science (STACS), pages 636–647, 2012. arXiv:1010.4458 doi:10.4230/LIPIcs.STACS.2012.
636.

2 Juan Miguel Arrazola, Alain Delgado, Bhaskar Roy Bardhan, and Seth Lloyd. Quantum-
inspired algorithms in practice. Quantum, 4:307, 2020. arXiv:1905.10415 doi:10.22331/
q-2020-08-13-307.

3 Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma.
Exponential improvement in precision for simulating sparse Hamiltonians. In Proceedings
of the 46th ACM Symposium on the Theory of Computing (STOC), pages 283–292, 2014.
arXiv:1312.1414 doi:10.1145/2591796.2591854.

4 Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and
Seth Lloyd. Quantum machine learning. Nature, 549:195–202, 2017. arXiv:1611.09347
doi:10.1038/nature23474.

5 Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The power of block-encoded matrix
powers: improved regression techniques via faster Hamiltonian simulation. In Proceedings
of the 46th International Colloquium on Automata, Languages, and Programming (ICALP),
pages 33:1–33:14, 2019. arXiv:1804.01973 doi:10.4230/LIPIcs.ICALP.2019.33.

6 Zhihuai Chen, Yinan Li, Xiaoming Sun, Pei Yuan, and Jialin Zhang. A quantum-inspired
classical algorithm for separable non-negative matrix factorization. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, pages 4511–4517. AAAI Press, 2019.
arXiv:1907.05568

7 Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang.
Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum
machine learning. In Proceedings of the 52nd ACM Symposium on the Theory of Computing
(STOC), page 387–400, 2020. arXiv:1910.06151 doi:10.1145/3357713.3384314.

8 Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, and Chunhao Wang. Quantum-inspired sub-
linear algorithm for solving low-rank semidefinite programming. In Proceedings of the 45th
International Symposium on Mathematical Foundations of Computer Science (MFCS), pages
23:1–23:15, 2020. arXiv:1901.03254 doi:10.4230/LIPIcs.MFCS.2020.23.

9 Nai-Hui Chia, Han-Hsuan Lin, and Chunhao Wang. Quantum-inspired sublinear classical
algorithms for solving low-rank linear systems. arXiv:1811.04852, 2018.

10 Chen Ding, Tian-Yi Bao, and He-Liang Huang. Quantum-inspired support vector machine.
arXiv:1906.08902, 2019.

11 Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao. Quantum-inspired algorithm
for general minimum conical hull problems. Physical Review Research, 2(3):033199, 2020.
arXiv:1907.06814 doi:10.1103/PhysRevResearch.2.033199.

12 Yuliya B. Farforovskaya and Ludmila N. Nikolskaya. Modulus of continuity of operator
functions. St. Petersburg Math. J. – Algebra i Analiz, 20(3):493–506, 2009. doi:10.1090/
S1061-0022-09-01058-9.

13 Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast Monte-Carlo algorithms for finding
low-rank approximations. Journal of the ACM, 51(6):1025–1041, 2004. doi:10.1145/1039488.
1039494.

14 András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank stochastic regression
with logarithmic dependence on the dimension. arXiv:1811.04909, 2018.

15 András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value
transformation and beyond: exponential improvements for quantum matrix arithmetics. In
Proceedings of the 51st ACM Symposium on the Theory of Computing (STOC), pages 193–204,
2019. arXiv:1806.01838 doi:10.1145/3313276.3316366.

https://arxiv.org/abs/1010.4458
https://doi.org/10.4230/LIPIcs.STACS.2012.636
https://doi.org/10.4230/LIPIcs.STACS.2012.636
https://arxiv.org/abs/1905.10415
https://doi.org/10.22331/q-2020-08-13-307
https://doi.org/10.22331/q-2020-08-13-307
https://arxiv.org/abs/1312.1414
https://doi.org/10.1145/2591796.2591854
https://arxiv.org/abs/1611.09347
https://doi.org/10.1038/nature23474
https://arxiv.org/abs/1804.01973
https://doi.org/10.4230/LIPIcs.ICALP.2019.33
https://arxiv.org/abs/1907.05568
https://arxiv.org/abs/1910.06151
https://doi.org/10.1145/3357713.3384314
https://arxiv.org/abs/1901.03254
https://doi.org/10.4230/LIPIcs.MFCS.2020.23
https://arxiv.org/abs/1811.04852
https://arxiv.org/abs/1906.08902
https://arxiv.org/abs/1907.06814
https://doi.org/10.1103/PhysRevResearch.2.033199
https://doi.org/10.1090/S1061-0022-09-01058-9
https://doi.org/10.1090/S1061-0022-09-01058-9
https://doi.org/10.1145/1039488.1039494
https://doi.org/10.1145/1039488.1039494
https://arxiv.org/abs/1811.04909
https://arxiv.org/abs/1806.01838
https://doi.org/10.1145/3313276.3316366

N.-H. Chia, A. Gilyén, H.-H. Lin, S. Lloyd, E. Tang, and C. Wang 47:17

16 Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear
systems of equations. Physical Review Letters, 103(15):150502, 2009. arXiv:0811.3171
doi:10.1103/PhysRevLett.103.150502.

17 Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1990.
18 Dhawal Jethwani, François Le Gall, and Sanjay K. Singh. Quantum-inspired classical algo-

rithms for singular value transformation. In Proceedings of the 45th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS), pages 53:1–53:14, 2020.
arXiv:1910.05699 doi:10.4230/LIPIcs.MFCS.2020.53.

19 Ravindran Kannan and Santosh Vempala. Randomized algorithms in numerical linear algebra.
Acta Numerica, 26:95–135, 2017. doi:10.1017/S0962492917000058.

20 Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. In Proceedings
of the 8th Innovations in Theoretical Computer Science Conference (ITCS), pages 49:1–49:21,
2017. arXiv:1603.08675 doi:10.4230/LIPIcs.ITCS.2017.49.

21 Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent for linear systems and
least squares. Physical Review A, 101(2):022316, 2020. arXiv:1704.04992 doi:10.1103/
PhysRevA.101.022316.

22 Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component analysis.
Nature Physics, 10:631–633, 2014. arXiv:1307.0401 doi:10.1038/nphys3029.

23 Patrick Rebentrost and Seth Lloyd. Quantum computational finance: quantum algorithm for
portfolio optimization. arXiv:1811.03975, 2018.

24 Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine
for big data classification. Physical Review Letters, 113(13):130503, 2014. arXiv:1307.0471
doi:10.1103/PhysRevLett.113.130503.

25 Patrick Rebentrost, Adrian Steffens, Iman Marvian, and Seth Lloyd. Quantum singular-
value decomposition of nonsparse low-rank matrices. Physical Review A, 97:012327, 2018.
arXiv:1607.05404 doi:10.1103/PhysRevA.97.012327.

26 Ewin Tang. Quantum-inspired classical algorithms for principal component analysis and
supervised clustering. arXiv:1811.00414, 2018.

27 Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In Proceedings
of the 51st ACM Symposium on the Theory of Computing (STOC), pages 217–228, 2019.
arXiv:1807.04271 doi:10.1145/3313276.3316310.

28 Nathan Wiebe, Daniel Braun, and Seth Lloyd. Quantum algorithm for data fitting. Physical Re-
view Letters, 109(5):050505, 2012. arXiv:1204.5242 doi:10.1103/PhysRevLett.109.050505.

29 Leonard Wossnig, Zhikuan Zhao, and Anupam Prakash. Quantum linear system algorithm
for dense matrices. Physical Review Letters, 120(5):050502, 2018. arXiv:1704.06174 doi:
10.1103/PhysRevLett.120.050502.

30 Zhikuan Zhao, Jack K. Fitzsimons, and Joseph F. Fitzsimons. Quantum-assisted Gaussian
process regression. Physical Review A, 99(5):052331, 2019. arXiv:1512.03929 doi:10.1103/
PhysRevA.99.052331.

ISAAC 2020

https://arxiv.org/abs/0811.3171
https://doi.org/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/1910.05699
https://doi.org/10.4230/LIPIcs.MFCS.2020.53
https://doi.org/10.1017/S0962492917000058
https://arxiv.org/abs/1603.08675
https://doi.org/10.4230/LIPIcs.ITCS.2017.49
https://arxiv.org/abs/1704.04992
https://doi.org/10.1103/PhysRevA.101.022316
https://doi.org/10.1103/PhysRevA.101.022316
https://arxiv.org/abs/1307.0401
https://doi.org/10.1038/nphys3029
https://arxiv.org/abs/1811.03975
https://arxiv.org/abs/1307.0471
https://doi.org/10.1103/PhysRevLett.113.130503
https://arxiv.org/abs/1607.05404
https://doi.org/10.1103/PhysRevA.97.012327
https://arxiv.org/abs/1811.00414
https://arxiv.org/abs/1807.04271
https://doi.org/10.1145/3313276.3316310
https://arxiv.org/abs/1204.5242
https://doi.org/10.1103/PhysRevLett.109.050505
https://arxiv.org/abs/1704.06174
https://doi.org/10.1103/PhysRevLett.120.050502
https://doi.org/10.1103/PhysRevLett.120.050502
https://arxiv.org/abs/1512.03929
https://doi.org/10.1103/PhysRevA.99.052331
https://doi.org/10.1103/PhysRevA.99.052331

	Introduction
	Discussion and related work

	Our algorithms
	Sampling
	Data structures for length-square access

	Main results

	Proof of Theorem 4
	Correctness of Algorithm 1
	Finding approximate singular values and right singular vectors
	The required precision for matrix element estimation

	Complexity of Algorithm 1
	Length-square sampling techniques
	Estimating the matrix element <v~^(l)|A^+|b>
	Sampling from the approximate solution

	Proof of Theorem 5

