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A Two-Level Parameterized Model-Order Reduction Approach for
Time-Domain Elastodynamics ?

Mohamed Aziz BHOURIa,1,∗, Anthony T. PATERAa,

aDepartment of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA

Abstract

We present a two-level parameterized Model Order Reduction (pMOR) technique for the linear hyperbolic Partial
Differential Equation (PDE) of time-domain elastodynamics. In order to approximate the frequency-domain PDE, we
take advantage of the Port-Reduced Reduced-Basis Component (PR-RBC) method to develop (in the offline stage)
reduced bases for subdomains; the latter are then assembled (in the online stage) to form the global domains of interest.
The PR-RBC approach reduces the effective dimensionality of the parameter space and also provides flexibility in
topology and geometry. In the online stage, for each query, we consider a given parameter value and associated global
domain. In the first level of reduction, the PR-RBC reduced bases are used to approximate the frequency-domain
solution at selected frequencies. In the second level of reduction, these instantiated PR-RBC approximations are
used as surrogate truth solutions in a Strong Greedy approach to identify a reduced basis space; the PDE of time-
domain elastodynamics is then projected on this reduced space. We provide a numerical example to demonstrate the
computational capability and assess the performance of the proposed two-level approach.

Keywords: Model order reduction, domain decomposition, parametrized partial differential equations,
elastodynamics

1. Introduction

Model Order Reduction (MOR) for time-dependent problems has received a great deal of attention in the reduced-
order modeling community. These methods are particularly appropriate for many-query applications. For example,
MOR methods for the linear time-domain elastodynamics equation are of great interest in the context of Simulation
Based Classification (SBC) for Structural Health Monitoring (SHM) based on time-domain cross-correlation func-
tions [1, 2]; the latter requires the construction of large (synthetic) training data sets of the time-domain response of
mechanical structures under ambient localized excitations.

Existing MOR techniques for time-dependent problems include Proper Orthogonal Decomposition (POD) ap-
proaches [3, 4, 5], Greedy methods [6, 7], hybrid approaches combining POD (in time) and Greedy procedures (in
parameter space) [8], and space-time approaches [9]. A second set of approaches are based on the frequency-time
duality: the reduced space is constructed in the frequency domain, and the time-domain equation is then projected on
the reduced space. One such technique, used extensively within the control and dynamics community, is interpolatory
model reduction [10, 11]. A similar reduced basis method for the time-domain heat equation and wave equation has
also been developed [12]. However, most existing methods can not address many parameters, local excitation, or
topology variation, all of which are important in (say) the SBC-SHM context.
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Recent advances in MOR offer new opportunities for the development of more efficient approaches for linear
time-domain PDEs. In particular, domain decomposition (DD)-based MOR techniques can reduce the effective di-
mensionality of the parameter space considered in the construction of the local reduced bases. Among those tech-
niques, the Port-Reduced, Reduced-Basis Component (PR-RBC) method [13, 14, 15, 16, 17] provides both rapid
response and also flexibility in topology and geometry. The PR-RBC is essentially a combination of the Component
Model Synthesis (CMS) technique [18, 19, 20] — as regards components and ports — and the Reduced Basis method
[21, 22, 23, 24] — as regards bubbles and in particular parametric treatment. The first synthesis of CMS and RB is
the Reduced Basis Element method (RBE) [25]; PR-RBC may be viewed as a Reduced Basis Element method for a
particular (Static Condensation [26]) choice for the interface treatment and particular strategies for port mode training
[15] and bubble-mode training [27].

In the PR-RBC approach, we define a library of parameterized archetype components: each of these components is
characterized by “local” parameters, a reference finite element (FE) mesh, and local ports for interconnection; the latter
induce an associated library of reference ports. For every archetype component, reduced bases are built to approximate
the solution inside the domain due to any sources; the latter are referred to as the “Reduced Bubble Spaces for
Inhomogeneity”. For every reference port, a low-dimensional space — a set of “port modes” — is built to approximate
the behavior of the solution over the reference port by a component-pairwise training procedure [15, 17]. For each
such port mode, a low-dimensional space, denoted Reduced Bubble Space for Port Mode Liftings, is constructed to
approximate the port mode lifting. The space construction proceeds in an offline stage. Then, in the online stage,
instantiated components are assembled into a global system and associated RB spaces are considered; the global
parameter is prescribed and the linear equations are solved by static condensation.

Our goal here is to develop an efficient RB method for long-time integration of the linear time-domain elastody-
namics PDE for large geometric domains with localized excitations and relatively many parameters. Towards that end,
we develop a two-level parameterized model-order reduction approach, henceforth referred to as two-level PR-RBC
method, by extending frequency-to-time-domain methods to incorporate component approaches [13, 14, 15, 16, 17].
The standard PR-RBC method is applied to the frequency-domain equation, where an augmented parameter set is
considered that also includes the frequency. In an offline stage, the necessary spaces are formed for a given library
of components. Then a global structure is formed as an assembly of instantiated archetype components. The PR-
RBC approximation is then used to compute the global frequency-domain solutions at well-selected frequencies. This
corresponds to the first-level reduction. Thereafter, these solutions are taken as high-fidelity approximations — a
surrogate for the FE “truth” — to form a (final) reduced basis to approximate the global time-domain solution. This
corresponds to the second level of reduction. In this work, we choose a strong greedy procedure to form the (final)
reduced basis from the PR-RBC snapshots: this approach is justified by the efficiency of the PR-RBC method. Our
two-level approach arises from the incorporation of the PR-RBC procedure — applied to the frequency-domain PDE
— into the approximation of the time-domain PDE. Therefore, the two levels of reduction are completely distinct: the
first level consists of the PR-RBC approximation of the frequency-domain solution, while the second level consists
of RB approximation of the time-domain solution. In contrast, earlier two-level model reduction approaches rely on
standard RB methods for both levels [28].

This paper is organized as follows. In Section 2, we introduce the weak form of the time-domain elastodynamics
equation of interest and the corresponding frequency-domain equation. In Section 3, we present the finite-element and
finite-difference discretizations which constitute our “truth” approximation — the point of departure for subsequent
model order reduction. An overview of the PR-RBC method is given in Section 4. The proposed two-level PR-RBC
method is developed in Section 5: we present the formulation and provide an operation count. Finally, in order to
demonstrate the capability and assess the performance of the proposed technique, a numerical example is presented
in Section 6.

2. Elastodynamics Formulation

The two-level PR-RBC method proposed in this work can be applied to any linear time-domain PDE which admits
an affine representation of the parameter. The latter can be recovered by means of EQP [29] or EIM [24, 6] if needed.
For sake of clarity, we restrict ourselves to the PDE of linear elastodynamics in this work.
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2.1. Time-Domain Equation
Let Ω ⊂ Rd, d = 2 be a bounded domain, with boundary ∂Ω. The proposed method can be naturally applied

to the 3D-elastodynamics case, but for purposes of presentation we limit ourselves to the 2D case in this work. The
boundary ∂Ω is assumed to be partitioned into ΓD and ΓN , such that Dirichlet boundary conditions are imposed on ΓD,
while natural boundary conditions are satisfied on ΓN . Without loss of generality, the Dirichlet boundary conditions
are assumed to be homogeneous, and the non-essential boundary conditions are assumed to be of Neumann type;
more details on treating non-homogeneous Dirichlet boundary conditions can be found in [30]. The simulation time
interval is noted [0,Tfinal], Tfinal > 0. Let X ≡ {v ∈ [H1(Ω)]d | v|ΓD = 0} be the Hilbert space of admissible real-valued
functions; X is imbued with inner product (w, v)X ≡

∫
Ω
∇w · ∇v + wv dV and induced norm ‖w‖X ≡

√
(w,w)X . The

problem parameterization is denoted µ ∈ P, where P ∈ RnP is a suitable compact set.
Let m(·, ·; ·); c(·, ·; ·); a(·, ·; ·) :

(
H1(Ω)

)d
×

(
H1(Ω)

)d
× P → R be the bilinear forms corresponding to the mass,

damping and stiffness terms of the 2D-elastodynamics equation respectively. These bilinear forms are defined as
follows:

m(w, v; µ) ≡ ρ
∫

Ω

w · v dx , (1)

a(w, v; µ) ≡
ν E

(1 + ν) (1 − 2ν)

∫
Ω

∂wi

∂x j

∂vk

∂xl
δikδ jl dx +

E
2(1 + ν)

∫
Ω

∂wi

∂x j

∂vk

∂xl
(δikδ jl + δilδ jk) dx , (2)

c(w, v; µ) ≡ αRay m(w, v; µ) + βRay a(w, v; µ) , (3)

where in equation (2) we use the convention of summation over repeated indices, ν denotes the Poisson ratio, ρ > 0 is
the material density, αRay > 0 and βRay > 0 are the Rayleigh damping coefficients, and E > 0 is the Young’s modulus.
Here f (·, ·; ·) :

(
H1(Ω)

)d
× [0,Tfinal]×P → R refers to linear form corresponding to the Neumann boundary conditions

imposed on ΓN . In order to realize an efficient offline-online decomposition, the bilinear and linear forms are assumed
to have an affine dependence on the parameter µ. We further assume that the linear form f (·, ·; ·) satisfies the following
space-time separation of variable:

f (v, t; µ) = ft(t; µt) fx(v; µ0) ,∀v ∈ X ,∀t ∈ [0,Tfinal] ,∀µ ∈ P , (4)

where µt denotes the parameters governing ft(t, ·), and µ0 refers to all remaining parameters, with µ = (µt, µ0).
The variational formulation of the elastodynamics equation then reads as follows: Find u(t ∈ [0,Tfinal]; µ) such

that ∀t ∈ [0,Tfinal] ,

m
(∂2u(t; µ)

∂t2 , v; µ
)

+ c
(∂u(t; µ)

∂t
, v; µ

)
+ a

(
u(t; µ), v; µ

)
= f (v, t; µ) ,∀v ∈ X ,∀t ∈ [0,Tfinal] , (5)

u(t; µ) = 0 , on ΓD ,∀t ∈ [0,Tfinal] , (6)

and
u(t = 0; µ) = 0 ;

∂u
∂t

(
t = 0; µ

)
= 0 . (7)

Extension to non-zero initial conditions can also be considered.

2.2. Frequency-Domain Equation
Let X̂ ≡ {v | v = w + iy ,w, y ∈ X} be the Hilbert space of admissible complex-valued functions; X̂ is imbued

with inner product (w, v)X̂ ≡
∫

Ω
∇w · ∇v + wv̄ dV and induced norm ‖w‖X̂ ≡

√
(w,w)X̂ , where · refers to the complex

conjugate operator. The complex problem parameterization is denoted µ̃ = (µ, ω) ∈ P̃, which corresponds to the
real-valued problem parameter concatenated with the angular frequency ω as an additional parameter; here P̃ ∈ RnP+1

refers to the augmented compact parameter set.

We assume that we have non-zero damping such that
∞∫
0
|u(t; µ)|dt < ∞, and write u(t; µ) = <{û

[
µ̃ = (µ, ω)

]
eiωt},

where < refers to real part. It follows that û(µ̃) satisfies the variational formulation of the Helmholtz equation: Find
û(µ̃) ∈ X̂ such that:

â(û(µ̃), v; µ̃) = f̂ (v; µ̃) ,∀v ∈ X̂ , (8)
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where â(·, ·; ·) : X̂ × X̂ × P̃ → C is a sesquilinear form given by

â(·, ·; ·) = −ω2 m̂(·, ·; ·) + iω ĉ(·, ·; ·) + k̂(·, ·; ·) . (9)

Here m̂(·, ·; ·), ĉ(·, ·; ·) and k̂(·, ·; ·) are defined as

m̂(w, v; µ̃) = ρ

∫
Ω

w · v̄ dx , (10)

k̂(w, v; µ̃) =
ν E

(1 + ν) (1 − 2ν)

∫
Ω

∂wi

∂x j

∂vk

∂xl
δikδ jl dx +

E
2(1 + ν)

∫
Ω

∂wi

∂x j

∂vk

∂xl
(δikδ jl + δilδ jk) dx , (11)

ĉ(w, v; µ̃) = αRay m̂(w, v; µ̃) + βRay â(w, v; µ̃) , (12)

where in equation (11) we use the convention of summation over repeated indices and f̂ (·; ·) : X̂ × P̃ → R is a
continuous anti-linear form associated to the Laplace transform of the f (·, ·; ·) term.

Since m(·, ·; µ), c(·, ·; µ), a(·, ·; µ) and f (·, ·; µ) are assumed to have an affine dependence on the parameter µ, it
follows that â(·, ·; µ̃) and f̂ (·; µ̃) also have an affine dependence on the parameter µ̃. Moreover, since f (·, ·; ·) is assumed
to satisfy the space-time separation of variable (4), and since ft(t; µt) → u(t; µ) is a linear time invariant system, we
can write:

u
(
t; µ = (µt, µ0)

)
=

∫ ∞

−∞

ft(τ; µt) h(t − τ; µ0) dτ , (13)

û
(
µ̃ = (ω, µt, µ0)

)
= ĥ(ω, µ0) f̂t(ω, µt) , (14)

where f̂t(ω, µt) = LT [ ft(·; µt)] (LT refers to the Laplace transform operator) and h(·; µ0), and ĥ(·, µ0) denote the
space-dependent time-domain and frequency-domain representations of the transfer function respectively. If f̂t(ω, µt) =

1, then û
(
(ω, µt, µ0)

)
= ĥ(ω, µ0). Therefore, if we take f̂t(ω, µt) = 1 and perform a model order reduction approach,

the reduced basis will learn ĥ(ω, µ0) and thus we can well approximate û
(
(ω, µt, µ0)

)
= ĥ(ω, µ0) f̂t(ω, µt), for any

given f̂t(ω; µt). Since u(t; µ) = LT −1[û(µ̃)], we can also well approximate u(·; µ). For the remainder of this work, any
frequency-domain problem will be considered to have an anti-linear form which is constant and equal to 1, indepen-
dent of the time-dependence of the linear form of the time-domain problem.

3. Finite Element Approximation

3.1. Finite Element Discretization

In order to approximate equations (5) and (8), we consider a suitably refined finite element (FE) Galerkin ap-
proximation: a triangulation T h for domain Ω; associated conforming FE approximation spaces X0

h ⊂
(
H1(Ω)

)d for
real-valued functions and X̂0

h for complex-valued functions, both of dimensionN0
h . Let Xh ≡ X∩X0

h and X̂h ≡ X̂∩ X̂0
h ,

and let {ϕ j} j=1,...,Nh denote the associated (real) standard FE nodal basis; here Nh is the dimension of Xh and X̂h.

3.1.1. Time-Domain equation
The FE approximation uh(t ∈ [0,Tfinal]; µ) to u(t ∈ [0,Tfinal]; µ) can be obtained by projecting equation (5) on Xh:

uh(t; µ) ∈ Xh ,∀t ∈ [0,Tfinal] satisfies

m
(∂2uh(t; µ)

∂t2 , v; µ
)

+ c
(∂uh(t; µ)

∂t
, v; µ

)
+ a

(
uh(t; µ), v; µ

)
= f (v, t; µ) ,∀v ∈ Xh ,∀t ∈ [0,Tfinal] , (15)

uh(t = 0; µ) = 0 ;
∂uh

∂t

(
t = 0; µ

)
= 0 . (16)
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3.1.2. Frequency-Domain equation
Similarly to the time-domain equation, the FE approximation ûh(µ̃) to û(µ̃) can be obtained by projecting equation

(8) on Xh: ûh(µ̃) ∈ X̂h satisfies
â(ûh(µ̃), v; µ̃) = f̂ (v; µ̃) ,∀v ∈ X̂h . (17)

We now present the discrete equations. Let Âh ∈ RNh×Nh and f̂h ∈ RNh be the frequency-domain FE matrix and vector
defined as (

Âh(µ̃)
)

qq′
≡ â(ϕq′ , ϕq; µ̃) , 1 ≤ q, q′ ≤ Nh , (18)(

f̂h(µ̃)
)

q
≡ f̂ (ϕq; µ̃) , 1 ≤ q ≤ Nh (19)

The FE basis vector for ûh(µ̃) ∈ RNh is then given by

Âh(µ̃) ûh(µ̃) = f̂h(µ̃) . (20)

Note that Âh(µ̃) is typically large but very sparse.

3.2. Finite Element – Finite Difference Discretization
In order to solve equation (15), a finite-difference discretization scheme for time marching with Nt time steps

is considered. Let ∆t = Tfinal/Nt ; t j ≡ j ∆t, 0 ≤ j ≤ Nt. Note that the proposed method can be applied to any
finite-difference scheme. A particular scheme is selected in this work for sake of clarity: the unconditionally stable
Newmark-β scheme with βt = 1

4 and γt = 1
2 (such that the average constant acceleration scheme, or mid-point rule, is

obtained) [31, 32].
Let u j

h,∆t(µ), 0 ≤ j ≤ Nt denote the finite element – finite difference solution at time step t j, and u̇ j
h,∆t(µ) and ü j

h,∆t(µ)
the corresponding first and second derivatives in time respectively. Since u0

h,∆t(µ) = 0 and u̇0
h,∆t(µ) = 0, then ü0

h,∆t is
determined as the solution to

m
(
ü0

h,∆t(µ), v; µ
)

= f (v, t = 0; µ) ,∀v ∈ Xh . (21)

The fields ü j
h,∆t(µ), u̇ j

h,∆t(µ) and u j
h,∆t(µ), 1 ≤ j ≤ Nt, are then determined as the solutions to the following equations,

respectively:

m
(
ü j

h,∆t(µ), v; µ
)

+ ∆tγt c
(
ü j

h,∆t(µ), v; µ
)

+ ∆t2βt a
(
ü j

h,∆t(µ), v; µ
)

= f (v, t j; µ)

− c
(
u̇ j−1

h,∆t(µ) + ∆t(1 − γt) ü j−1
h,∆t(µ), v; µ

)
− a

(
u j−1

h,∆t(µ) + ∆t u̇ j−1
h,∆t(µ) + ∆t2(1 − βt) ü j−1

h,∆t(µ), v; µ
)
,∀v ∈ Xh , (22)

u̇ j
h,∆t(µ) = u̇ j−1

h,∆t(µ) + ∆t
[
(1 − γt) ü j−1

h,∆t(µ) + γt ü j
h,∆t(µ)

]
(23)

u j
h,∆t(µ) = u j−1

h,∆t(µ) + ∆t u̇ j−1
h,∆t(µ) + ∆t2

[(1
2
− βt

)
ü j−1

h,∆t(µ) + βt ü j
h,∆t(µ)

]
. (24)

We note that the scheme is implicit.
We next present the discrete equations in matrix form. LetMh ∈ RNh×Nh , Ch ∈ RNh×Nh andAh ∈ RNh×Nh be the mass,
damping and stiffness FE matrices, respectively:(

Mh(µ)
)

qq′
≡ m(ϕq′ , ϕq; µ) , 1 ≤ q, q′ ≤ Nh , (25)(

Ch(µ)
)

qq′
≡ c(ϕq′ , ϕq; µ) , 1 ≤ q, q′ ≤ Nh , (26)(

Ah(µ)
)

qq′
≡ a(ϕq′ , ϕq; µ) , 1 ≤ q, q′ ≤ Nh . (27)

Furthermore, let f j
h ∈ RNh , 0 ≤ j ≤ Nt, be the FE vectors corresponding to the linear form of the time-domain

variational formulation at time instance t j, and let Th ∈ RNh×Nh be the time marching matrix:(
f j
h (µ)

)
q
≡ f (ϕq, t j; µ̃) , 1 ≤ q ≤ Nh ; (28)
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Th(µ) =Mh(µ) + ∆t γt Ch(µ) + ∆t2 βt Ah(µ) . (29)

Finally, if u j
h,∆t(µ) ∈ RNh , u̇ j

h,∆t(µ) ∈ RNh and ü j
h,∆t(µ) ∈ RNh , 0 ≤ j ≤ Nt, denote the FE basis vectors for u j

h,∆t(µ),

u̇ j
h,∆t(µ) and ü j

h,∆t(µ) respectively, we initialize u0
h,∆t(µ) = 0, u̇0

h,∆t(µ) = 0, and u̇0
h,∆t(µ) solution of

Mh(µ) ü0
h,∆t(µ) = f 0

h (µ) ; (30)

we then solve for u j
h,∆t(µ), u̇ j

h,∆t(µ), and ü j
h,∆t(µ), for 1 ≤ j ≤ Nt, from

Th(µ) ü j
h,∆t(µ) =

[
f j
h (µ)−Ch(µ)

(
u̇ j−1

h,∆t(µ)+∆t(1−γt) ü j−1
h,∆t(µ)

)
−Ah(µ)

(
u j−1

h,∆t(µ)+∆t u̇ j−1
h,∆t(µ)+∆t2(1−βt) ü j−1

h,∆t(µ)
)]
, (31)

u̇ j
h,∆t(µ) = u̇ j−1

h,∆t(µ) + ∆t
[
(1 − γt) ü j−1

h,∆t(µ) + γt ü j
h,∆t(µ)

]
, (32)

u j
h,∆t(µ) = u j−1

h,∆t(µ) + ∆t u̇ j−1
h,∆t(µ) + ∆t2

[(1
2
− βt

)
ü j−1

h,∆t(µ) + βt ü j
h,∆t(µ)

]
. (33)

This completes the FE “truth” discretization.

4. PR-RBC Approach: Overview

In this section, we provide a very brief summary of the Port-Reduced Reduced-Basis Component (PR-RBC)
Method. This method will be used for Level 1 reduction of the two-level reduced basis method proposed in this work
and described in Section 5. A complete description can be found in [30]. Since the Level 1 reduction is carried out on
the frequency-domain equation, the parameter spaces considered in this section correspond to the parameter spaces
introduced for the time-domain PDE augmented with the angular frequency. Referring to the notations introduced in
the previous section, the global parameter considered for the Level 1 reduction is µ̃ = (µ, ω) ∈ P̃, where P̃ ∈ RnP+1

refers to the augmented compact parameter set.

4.1. Components – Ports – System Assembly

The PR-RBC method is a domain decomposition technique in which the global system is decomposed into smaller
components, which will be referred to as instantiated components. This decomposition creates an ensemble of pa-
rameterized instantiated components which can be mapped to an ensemble of parameterized archetype components;
multiple instantiated components of the global system can correspond to the same archetype component. Moreover,
the domain decomposition creates an ensemble of ports, defined as the intersection of the closures of each two adja-
cent instantiated components, with the latter forming a parameterized bi-component system. These ports can also be
mapped to an ensemble of reference ports associated with archetype bi-component systems.

This decomposition technique can be applied to a variety of global systems related through a common physical
discipline and hence PDE operator. Therefore, the PR-RBC method can be presented by starting from a library of
archetype components and reference ports. Moreover, for simplicity, the ports are presumed to be mutually disjoint,
such that the reference port is associated to two local ports. Figure 1 shows an example of archetype components
(left figure), reference ports (middle figure), and a global system assembly (right figure). In our context, the port and
component parameterizations correspond to the frequency-domain equation, and the corresponding sesquilinear and
anti-linear forms are assumed to have an affine dependence on the parameters. By consequence, any global system
built from the library of the archetype components will be governed by a frequency-domain PDE whose sesquilinear
and anti-linear forms have an affine dependence on the system parameter. The latter is intrinsically related to the
parameters considered for the different instantiated components forming the global system.
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Figure 1: PR-RBC Component–Port–System Assembly: an example with three archetype components, three bi-component systems of compatible
archetype components, and a global system with five instantiated components

4.2. PR-RBC Offline Stage

The PR-RBC offline stage corresponds to the construction of reduced bases to approximate the solution within
the parameterized archetype components and over reference ports. Hence, it is informed by the library of archetype
components and reference ports, and is independent of any subsequent (feasible) system assembly. Since the system
is assembled in the online stage, we need to consider a reference port for each possible bi-component system of
compatible archetype components.

For every reference port, a reduced port space needs to be built by port training in order to approximate the
solution on the reference port joining each compatible pair of archetype components (red boundary in the middle
figure of Figure 1). This construction is carried out by solving a transfer eigenvalue problem such that the reduced
port space is optimal in the sense of Kolmogorov n-width as shown in [17]. In addition to the port modes obtained via
the transfer eigenvalue problem, additional port modes are considered in order to also account for the inhomogeneity.

The PR-RBC offline stage also includes the construction of reduced bubble spaces for port mode liftings, and a
reduced bubble space for each archetype component with non-zero linear form [33]. These reduced bases approx-
imate the solution inside the archetype components domains (zero on the ports). Within our context, the archetype
component bubble spaces reduce to the bubble spaces for inhomogeneity associated with non-zero source terms. In
this work, all reduced bubble spaces (for port mode liftings and for inhomogeneity) are constructed by Proper Orthog-
onal Decomposition (POD). In a more general setting, non-homogeneous Dirichlet boundary conditions for archetype
components can be treated by constructing corresponding reduced spaces to approximate the lifting functions [30].

Finally, in the context of an offline-online decomposition, all parameter-independent sesquilinear and anti-linear
forms needed for the PR-RBC online stage (detailed in Section 4.3) are computed and stored once in an offline stage.
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4.3. PR-RBC Online Stage
For the online stage, we consider a global system characterized by a global parameter and defined as an assembly

of instantiated archetype components.
For a given global parameter µ̃, the instantiated component and bi-component parameters are well defined. Using

the pre-computed and stored sesquilinear and anti-linear form evaluations, the reduced bubble functions for port mode
liftings and for inhomogeneity can be computed at very small computational cost compared to a full FE evaluation.
Invoking again the pre-computed and stored sesquilinear and anti-linear forms evaluations, the system Schur com-
plement can be formed and solved. We opt for a Petrov-Galerkin projection to construct the reduced system Schur
complement, such that our test space is spanned by the lifted port modes, and not by the “harmonic” functions which
form the (statically condensed) trial space. The Petrov-Galerkin approach is more efficient not only computationally
but also in terms of memory storage compared to a Galerkin projection; there is it typically no degradation of stability
[34]. Figure 2 shows the sparsity pattern of the system PR-RBC Schur complement obtained for the global system
considered in Section 6, resulting from the Petrov-Galerkin projection of the frequency-domain sesquilinear form (8)
using the test space and trial space detailed above. Only port modes which share a common component will result in
overlapping reduced spaces, and we thus obtain the “staircase” sparsity pattern observed in figure 2.

Figure 2: Sparsity pattern of the system Schur complement: 20.6% of the entries are non-zero

These solutions define the PR-RBC approximations. A first crucial point related to efficiency is the relatively low
dimension of the PR-RBC space. A second crucial point related to efficiency is the sparsity of the PR-RBC basis: the
support of a given basis function does not exceed two instantiated components for lifted port modes, and is further
restricted to just one instantiated component for reduced bubble spaces. Let Xh,D, of dimension Nh,D, be the PR-RBC
space for the global system considered, where D signifies the many port and bubble discretization parameters which
inform the PR-RBC approximation. Figure 3 shows the sparsity pattern of the Z ∈ RNh×Nh,D matrix containing the FE
representation of the PR-RBC basis obtained for the global system detailed in Section 6. The columns of Z correspond
to the coefficients of the reduced port modes and reduced bubble modes used for the global domain system considered
in Section 6 as represented by the FE nodal basis {ϕ j} j=1,...,Nh : a member Ûh,D(µ̃) ∈ Xh,D can be expressed as

Ûh,D(µ̃) =

Nh∑
j=1

(
Z Ûh,D(µ̃)

)
jϕ j , (34)

where Ûh,D(µ̃) ∈ RNh,D refers to the PR-RBC basis vector corresponding to Ûh,D(µ̃).
We emphasize the important role of components. In general, the components distribute the parameter domain: we

reduce a large problem with many global parameters to many small problems each with just a few (local) parameters.
Components also permit consideration of very large systems: even in the PR-RBC offline stage, we are required to
solve FE problems over at most pairs of components — never the full system. Also, components provide geometry
and topology parametric variation. And finally, components permit us to more easily justify the PR-RBC Offline
investment: we may amortize the offline effort not only over many queries for any particular global system, but over

8



Figure 3: Z matrix: 6.9% of the entries are non-zero

all possible global systems in our family. Note in this sense we can formally define our family of feasible global
systems as the set of all systems which may be constructed from the associated library of archetype components.
This family of global systems can then be well approximated either in the PR-RBC online stage, or in the proposed
two-level reduced basis method proposed in this work.

5. Two-Level Reduced Basis Method

To compute an approximation to the time-domain elastodynamics equation for a given global system and a param-
eter value µ, we propose a two-level model order reduction approach. The first-level reduction consists of evaluating
the PR-RBC solutions to the frequency-domain PDE for the global system at well-selected frequencies, and hence
involves the PR-RBC online stage. The second-level reduction consists of building a “final” reduced basis by a Strong
Greedy approach in which the inexpensive PR-RBC solutions to the frequency-domain equation serve as surrogate
“truth” solutions. The time-domain elastodynamics PDE is then projected and solved within the “final” reduced basis
in standard fashion. Note that the PR-RBC offline stage is conducted prior to execution of the two-level procedure.
Then, in the online stage, for the given parameter value µ, both levels of reduction are invoked, and hence both levels
must be computationally fast. In contrast, the PR-RBC offline stage is run only once independently of the number of
parameter values considered in the evaluation of the time-domain solution, hence, we do not give as much importance
to the computational cost of the PR-RBC offline stage.

5.1. Level 1

For a given global system test parameter µ, we consider a sufficiently rich angular frequency ω set Ξω, of size
nω, and we consider the online-train (o-t) dataset Ξo−t = {µ̃ ≡ (µ, ω);ω ∈ Ξω}. Hence Ξo−t can be expressed as:
Ξo−t = {µ̃ j, 1 ≤ j ≤ nω}, where µ̃ j = (µ, ω j) for ω j ∈ Ξω. Let σref

t refer to a characteristic time of ft(·; µt) (the latter
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being defined in equation (4)); then Ξω is chosen as

Ξω = {0, dω, . . . , ωmax} , dω =
1

cω σref
t
, ωmax =

cω
σref

t
, (35)

so that nω = cω cω + 1.
Note that for the PR-RBC offline stage described in Section 4.2, the training is performed over a frequency set

that at least contains Ξω. Nonetheless, the PR-RBC approach is still general in the sense that we can consider any
assembly of components forming a feasible global system as mentioned in section 4.3. For the numerical examples
considered in this work, the PR-RBC offline stage is performed over a frequency set that exactly matches Ξω. Then,
the PR-RBC online stage (Section 4.2) is performed to obtain approximations to the frequency-domain equation for
µ̃ j ∈ Ξo−t, which gives nω approximations, Ûh,D(µ̃ j) for µ̃ j ∈ Ξo−t, to nω FE solutions ûh(µ̃ j) for µ̃ j ∈ Ξo−t. This step
corresponds to the first-level of reduction.

5.2. Level 2

The second-level reduction consists of constructing a reduced basis from the PR-RBC approximations computed
in Level 1 by performing a Strong Greedy procedure to identify a reduced space XRB of size N, where ZRB ∈ RNh×N

is the FE representation of XRB. The column j of ZRB corresponds to the coefficients of the RB basis function j from
XRB as represented by the FE nodal basis {ϕi}i=1,...,Nh . Note that in this Level 2 reduction, only the angular frequency
ω varies. Therefore, the final reduced space XRB is expected to be of sufficiently small size and also able to provide a
sufficiently accurate reduced basis approximation to the full FE solution. Finally, the time-domain PDE is projected
on XRB. The exact time signature of the linear form is only used in the time marching performed using the reduced
space XRB.

The construction of XRB is carried out using a Strong Greedy approach on {Ûh,D(µ̃ j) , µ̃ j ∈ Ξo−t} evaluated at the
first-level reduction. These inexpensive PR-RBC approximations are considered as “truth” solutions. Let XRB i denote
the reduced space of size i, constructed prior to the i-th iteration of the Strong Greedy algorithm; let Ûh,D,i(µ̃ j) ∈ XRB i

denote the RB approximation to Ûh,D(µ̃ j) obtained using the reduced space XRB i. Since the PR-RBC approximations
are considered as high-fidelity solutions within the greedy algorithm, the next snapshot we add to the reduced space
XRB i among the PR-RBC solutions {Ûh,D(µ̃ j) , µ̃ j ∈ Ξo−t} is selected based on the norm of the error:

∣∣∣∣∣∣Ûh,D(µ̃) −
Ûh,D,i(µ̃)

∣∣∣∣∣∣
H1(Ω), for µ̃ ∈ Ξo−t. The Strong Greedy approach is summarized in Algorithm 1. An efficient computation of

the errors
∣∣∣∣∣∣Ûh,D(µ̃)−Ûh,D,i(µ̃)

∣∣∣∣∣∣
H1(Ω), for µ̃ ∈ Ξo−t, such that only the updated quantities depending on the new snapshot

are evaluated at every iteration of the Strong Greedy, is detailed in [30] .

Algorithm 1 Strong Greedy algorithm

1: function Strong Greedy({Ûh,D(µ̃ j) , µ̃ j ∈ Ξo−t}, nω,M, ε)
2: i← 1
3: e1 ← ∞

4: j is a random integer sampled from {1, . . . , nω}
5: XRB 1 ← span(Ûh,D(µ̃ j))
6: εa ← max

µ̃∈Ξo−t

∣∣∣∣∣∣Ûh,D(µ̃) − Ûh,D,1(µ̃)
∣∣∣∣∣∣

H1(Ω)

7: while i ≤ min(nω,M) and ei > ε do
8: Choose j ∈ {1, . . . , nω} such that,

∣∣∣∣∣∣Ûh,D(µ̃ j) − Ûh,D,i(µ̃ j)
∣∣∣∣∣∣

H1(Ω) = max
µ̃∈Ξo−t

∣∣∣∣∣∣Ûh,D(µ̃) − Ûh,D,i(µ̃)
∣∣∣∣∣∣

H1(Ω)

9: XRB i+1 ← XRB i ⊕ span(Ûh,D(µ̃ j))

10: ei+1 ←

∣∣∣∣∣∣Ûh,D(µ̃ j)−Ûh,D,i(µ̃ j)
∣∣∣∣∣∣

H1(Ω)

εa

11: i← i + 1
12: end while
13: return XRB i
14: end function
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We can compute the errors
∣∣∣∣∣∣Ûh,D(µ̃) − Ûh,D,i(µ̃)

∣∣∣∣∣∣
H1(Ω) for µ̃ ∈ Ξo−t within the strong greedy iterations using pre-

computed and stored parameter-independent inner products formed from the PR-RBC basis. The resulting operation
count would be independent of Nh, but dependent of the number of PR-RBC basis functions that have overlapping
supports. We found it was considerably less expensive, and simpler to use the full FE representation since we only
need sparse matrix-vector multiplication in order to determine

∣∣∣∣∣∣Ûh,D(µ̃) − Ûh,D,i(µ̃)
∣∣∣∣∣∣

H1(Ω), for µ̃ ∈ Ξo−t. Hence, the

errors computation is carried out using the FE representations given by ÛFE
h,D(µ̃) = Z Ûh,D(µ̃) , for µ̃ ∈ Ξo−t; here

Ûh,D(µ̃) ∈ RNh,D refers to the basis vector for Ûh,D(µ̃), and Z ∈ RNh×Nh,D is the sparse matrix containing the FE
representation of the PR-RBC basis as introduced in section 4.3 (see figure 3).

Similarly to the FE approximation uh(·, µ), the two-level reduced basis approximation, denoted Uh,D,N(t ∈ [0,Tfinal]; µ),
is obtained by projecting equation (5) on XRB: Uh,D,N(t; µ) ∈ XRB ,∀t ∈ [0,Tfinal] , such that

m
(∂2Uh,D,N(t; µ)

∂t2 , v; µ
)

+ c
(∂Uh,D,N(t; µ)

∂t
, v; µ

)
+ a

(
Uh,D,N(t; µ), v; µ

)
= f (v, t; µ) ,∀v ∈ XRB ,∀t ∈ [0,Tfinal] , (36)

Uh,D,N(t = 0; µ) = 0 ;
∂Uh,D,N

∂t

(
t = 0; µ

)
= 0 . (37)

We now incorporate a finite-difference scheme with the same time-discretization notations introduced in Section
3.2. Let U j

h,D,N,∆t(µ) for 0 ≤ j ≤ Nt denote the two-level reduced basis-finite difference solution at time step t j, and
U̇ j

h,D,N,∆t and Ü j
h,D,N,∆t the corresponding first and second derivatives in time respectively. We initialize U0

h,D,N,∆t(µ) = 0,
U̇0

h,D,N,∆t(µ) = 0, and Ü0
h,D,N,∆t solution of

m
(
Ü0

h,D,N,∆t(µ), v; µ
)

= f (v, t = 0; µ) ,∀v ∈ XRB ; (38)

we then solve for Ü j
h,D,N,∆t(µ), U̇ j

h,D,N,∆t(µ), and U j
h,D,N,∆t(µ), for 1 ≤ j ≤ Nt, from

m
(
Ü j

h,D,N,∆t(µ), v; µ
)

+ ∆tγt c
(
Ü j

h,D,N,∆t(µ), v; µ
)

+ ∆t2βt a
(
Ü j

h,D,N,∆t(µ), v; µ
)

= f (v, t j; µ)

−c
(
U̇ j−1

h,D,N,∆t(µ)+∆t(1−γt) Ü j−1
h,D,N,∆t(µ), v; µ

)
−a

(
U j−1

h,D,N,∆t(µ)+∆t U̇ j−1
h,D,N,∆t(µ)+∆t2(1−βt) Ü j−1

h,D,N,∆t(µ), v; µ
)
,∀v ∈ XRB ,

(39)

U̇ j
h,D,N,∆t(µ) = U̇ j−1

h,D,N,∆t(µ) + ∆t
[
(1 − γt) Ü j−1

h,D,N,∆t(µ) + γt Ü j
h,D,N,∆t(µ)

]
, (40)

U j
h,D,N,∆t(µ) = U j−1

h,D,N,∆t(µ) + ∆t U̇ j−1
h,D,N,∆t(µ) + ∆t2

[(1
2
− βt

)
Ü j−1

h,D,N,∆t(µ) + βt Ü j
h,D,N,∆t(µ)

]
, (41)

respectively.
We now provide the matrix equations. LetMRB ∈ RN×N , CRB ∈ RN×N and ARB ∈ RN×N be the mass, damping

and stiffness two-level reduced basis matrices, respectively,

MRB(µ) = ZRB(µ)H Mh(µ) ZRB(µ), (42)

CRB(µ) = ZRB(µ)H Ch(µ) ZRB(µ), (43)

ARB(µ) = ZRB(µ)H Ah(µ) ZRB(µ), (44)

where ·H denotes the Hermitian transpose operator. Similarly, let f j
RB ∈ RN , 0 ≤ j ≤ Nt, be the two-level reduced

basis vectors corresponding to the linear form of the time-domain variational formulation at time instance t j, and
TRB ∈ RN×N the time marching matrix,

f j
RB(µ) = ZRB(µ)† f j

h (µ) (45)

TRB(µ) =MRB(µ) + ∆t γt CRB(µ) + ∆t2 βt ARB(µ) , (46)

respectively.
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Let U j
h,D,N,∆t(µ) ∈ RN , U̇ j

h,D,N,∆t(µ) ∈ RN and Ü j
h,D,N,∆t(µ) ∈ RN , 0 ≤ j ≤ Nt, denote the two-level reduced basis

vectors of U j
h,D,N,∆t(µ), U̇ j

h,D,N,∆t(µ) and Ü j
h,D,N,∆t(µ) respectively. We initialize U0

h,D,N,∆t(µ) = 0, U̇0
h,D,N,∆t(µ) = 0, and

Ü0
h,D,N,∆t(µ) solution of

MRB(µ) Ü0
h,D,N,∆t(µ) = f 0

RB(µ) ; (47)

we then proceed to time-march as

TRB(µ) Ü j
h,D,N,∆t(µ) =[

f j
RB(µ)−CRB(µ)

(
U̇ j−1

h,D,N,∆t(µ)+∆t(1−γt) Ü j−1
h,D,N,∆t(µ)

)
−ARB(µ)

(
U j−1

h,D,N,∆t(µ)+∆t U̇ j−1
h,D,N,∆t(µ)+∆t2(1−βt) Ü j−1

h,D,N,∆t(µ)
)]
,

(48)

U̇ j
h,D,N,∆t(µ) = U̇ j−1

h,D,N,∆t(µ) + ∆t
[
(1 − γt) Ü j−1

h,D,N,∆t(µ) + γt Ü j
h,D,N,∆t(µ)

]
, (49)

U j
h,D,N,∆t(µ) = U j−1

h,D,N,∆t(µ) + ∆t U̇ j−1
h,D,N,∆t(µ) + ∆t2

[(1
2
− βt

)
Ü j−1

h,D,N,∆t(µ) + βt Ü j
h,D,N,∆t(µ)

]
, (50)

for 1 ≤ j ≤ Nt.
Since XRB is a complex-valued reduced basis, the actual two-step reduced basis approximation of the finite element

- finite difference solution u j
h,∆t(µ) is given by:

U j
h,D,N,∆t(µ) =

Nh∑
k=1

(
<

[
ZRB(µ) U j

h,D,N,∆t(µ)
])

k
ϕk , 1 ≤ j ≤ Nt . (51)

If a quantity of interest q ∈ RNq is considered, then the corresponding FE output matrix Qh ∈ RNq×Nh is multiplied by
ZRB(µ) once (offline) to obtain

QRB(µ) = Qh ZRB(µ), (52)

and the two-level reduced basis approximation of q at time step t j is simply given by:

q j
RB = <

[
QRB(µ) U j

h,D,N,∆t(µ)
]

; 1 ≤ j ≤ Nt. (53)

Note that the error between the two-level PR-RBC approximation and the FE solution has three sources. One
source is related to the discretization Ξω and truncation of the inverse Laplace transform. The two other sources relate
to reduction: one is introduced in Level 2 by the Strong Greedy-based reduction, and the other is introduced in Level
1 by considering the PR-RBC approximations as high-fidelity truth. This decomposition of the different sources of
the error can be useful for developing an a priori error estimate.

5.3. Operation Count

Let ncomp and nport be the number of instantiated components and the number of ports forming a global system.
The operation count to estimate U j

h,D,N,∆t(µ) for 1 ≤ j ≤ Nt and nt-t different parameters µ by the two-level reduced
basis method described above is given by:

nt-t nω
[ ncomp∑

i=1

O
(
(N inhom

i )3) +

nport∑
k=1

M′k∑
m=1

2∑
`=1

O
(
(Nk,m,`)3) +

( nport∑
k=1

M′k
)κ]

︸                                                                                ︷︷                                                                                ︸
(I)

+

nt-t nω O
(
nz + nh + N Nh + N4)︸                                   ︷︷                                   ︸

(II)

+ nt-t Nt O
(
N2 + Nq N

)︸                     ︷︷                     ︸
(III)

. (54)
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Here M′k refers to the size of reduced port space for port k, N inhom
i is the size of the reduced bubble space for inhomo-

geneity for component i, and Nk,m,` , for ` = 1, 2, refers to the size of reduced bubble spaces for port mode liftings for
port k and port mode m within the two components forming the port k. The exponent κ is a solver-dependent scaling
exponent for sparse matrix inversion — in particular, inversion of the sparse PR-RBC Schur complement (see figure
2). Finally, nz and nh refer to the number of non-zero entries of the Z matrix and the FE norm matrix respecively.

The term (I) of the operation count given in (54) corresponds to the first-level reduction in which the PR-RBC
online stage is run nω times; the term (II) corresponds to performing the Strong Greedy algorithm and projecting
the time-domain equation into XRB; the term (III) corresponds to (i) time marching using the reduced space XRB
via a forward-backward substitution (neglecting the computational cost of the initial LU decomposition), and (ii)
computation of the output of interest. Note that the proposed two-level reduced basis method does not contain any FE
matrix inversion. In contrast, computing the FE approximations uh,∆t(·; µ) for nt-t different parameters µ requires:

nt-t Nt · ((Nh)κ
′′

+ noutputs · Nh) , (55)

where κ′′ > 1 is a solver-dependent scaling exponent for (FE) sparse matrix forward-backward substitution.
As shown in the numerical example detailed in section 6, we generally have Nt � nω for large geometric domains

with localized excitations with relatively short time signatures. Moreover, unlike the proposed two-level reduced basis
method, the operation count of the FE approximation contains the term (Nh)κ

′′

. Hence, the two-level reduced basis
method is expected to have considerably smaller computation cost compared to the full FE approximation, as we will
show in the numerical experiments in section 6.

6. Numerical Example

6.1. Archetype Components and Bi-component Systems

In this section, we apply the two-level PR-RBC approach to the 2D-elastodynamics equation for the library of
archetype components shown in figure 4 and the associated reference ports shown in figure 5. There are two dif-
ferent approaches to port training: 1) train ports over all archetype bi-components which have the same reference
port geometry, 2) train ports over all distinct archetype bi-components. The former approach is useful if the number
of distinct archetype bi-components is relatively very large compared to the allocated memory ressources, while the
latter generally provides smaller reduced port spaces for a given accuracy criterion since every reduced port space
is constructed to approximate a specific port resulting from a single archetype bi-component. In this work, we opt
for the second approach since we have only three distinct archetype bi-components. The archetype component 1
has a rectangular geometry of dimension 3

2 L × H and contains a homogeneous Dirichlet boundary and homogeneous
Neumann boundaries. The archetype component number 2 has a T shape as detailed in figure 4 and also contains a
homogeneous Dirichlet boundary and homogeneous Neumann boundaries. The archetype components 3 and 4 have a
rectangular geometry of dimension L × H and do not contain any Dirichlet boundary. Components 3 has only homo-
geneous Neumann boundary conditions, while component 4 has a non-homogeneous Neumann term corresponding
to traction,

σ(u) · n =

 F × t × e−
t
σt × e

−
(x1−xc)2

σ2
x × 1{x2=H}

−cfriction × F × t × e−
t
σt × e

−
(x1−xc )2

σ2
x × 1{x2=H}

 ,∀x1 ∈
[
−

L
2
,

L
2

]
, x2 ∈ {0,H} . (56)

Here σ(u) denotes the stress tensor, F the load amplitude, σt the temporal parameter, xc the load center, σx the
load spatial width, cfriction the fraction coefficient, 1C the 2D-function equal to 1 if the condition C is satisfied and 0
otherwise, and n the outer normal of the geometric domain.

Each of the archetype components 1, 2 and 3 has 3 parameters which consist of the Young’s modulus and the
Rayleigh damping coefficients as introduced in equations (2) and (3). Hence, the corresponding frequency-domain
variational problem has 4 parameters — including the angular frequency. Archetype component 4 has 5 additional
parameters defining the non-homogeneous Neumann boundary condition detailed in equation (56): the load amplitude
F, the temporal parameter σt, the load center xc, the load spatial width σx, and the friction coefficient cfriction. Since
the frequency-domain representation of the load is taken constant and equal to 1 for any angular frequency value, the
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frequency-domain variational problem for archetype component 4 has 8 parameters in total. The reference ports pa-
rameters and the boundary conditions considered for the associated bi-component problems follow naturally from the
parameters and the boundary conditions defined for the archetype components. The variational problem for archetype
component-pairwise training has either 7 parameters, for reference ports not involving the archetype component 4, or
11 parameters for the reference port involving the archetype component 4. These local parameters associated with the
frequency-domain variational problems define the parameters spaces considered in building the reduced bases that are
used at Level 1 reduction.

Figure 4: Library of archetype components (considered for construction of elastodynamics bridges)

We choose acrylic as material for which αRay = 5.3785×10−4s−1 and βRay = 1.0634×10−4s correspond to nominal
values of the Rayleigh damping coefficients [35]. For acrylic, density and Poisson’s ratio are well-characterized in the
literature ([36] Chapter 3.6.2 for the Poisson’s ratio and the webpage pubchem.ncbi.nlm.nih.gov for the density). We
therefore set ρ = 1180 kg.m−3, Ē = 2.755 GPa, and ν̄ = 0.35 as nominal values, and we choose σref

t = 16 Tref (see

equation (35)), where Tref ≡
H
ct

and ct =

√
Ē

2 ρ (1+ν̄) is the celerity of the transverse wave in infinite domain without

damping. We take cω = 10 and cω = 4 (see equation (35)), such that nω = 41 and for µt ≡ σt ∈ [0.75 σref
t , 1.25 σref

t ],

| f̂t(ω, µt)| ≤ 0.06 max
ω′≥0
| f̂t(ω′, µt)| , ω ≥ ωmax . (57)

We take L = 5 m, H = 1 m and consider the following domains from which parameters are uniformly sampled for
training of archetype components and associated bi-components:

αRay ∈]0, αRay] , (58)

βRay ∈]0, βRay] , (59)

E ∈ [0.75 Ē, 1.25 Ē] , (60)

F ∈
[
− 20

Ē
Tref

,−10
Ē

Tref

]
, (61)

σx ∈ [0.02 m, 0.04 m] , (62)

xc ∈ [2.46 m, 2.54 m] , (63)

cfriction ∈ [0.5, 0.7] . (64)
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Figure 5: Library of reference ports (archetype bi-components) constructed from the archetype components defined in figure 4

We assume that we have non-zero damping such that we have the theoretical foundation justifying the existence of the
Laplace transform. Nonetheless, the proposed two-level reduced basis method still performs well even for the zero
damping case, mainly due to the stability introduced by the finite difference scheme in time. Hence, the proposed
two-level reduced basis method can be applied to non-damped or damped systems; we consider small damping.

The sizes of the different reduced bases formed at Level 1 reduction are chosen based on the decrease of the
eigenvalues of the transfer eigenvalue problem and the decrease of the POD modes for the reduced bubble space for
inhomogeneity, the reduced port space, and the reduced space for port mode lifting. Table 1 gathers the sizes of the
different reduced bases and the computation time to run the offline stage needed by Level 1 reduction. All simulations
considered in this work were run on a 4-core laptop (with a 3.5 GHz Intel CPU and 16 GB RAM). We also provide
the PR-RBC offline cost, though this cost is amortized over the many Level 1 - Level 2 queries.

Size of training set Ξo−t 41

Size of port spaces
10 for reference ports 1 and 3
12 for reference port 2

Size of bubble spaces for port mode lifting 6
Size of bubble space for inhomogeneity for archetype component 4 10
Computation time to run PR-RBC offline stage 24.3 s

Table 1: PR-RBC reduced bases sizes for elastodynamics bridge

As an example, figure 6 shows the decrease of the POD eigenvalues for the construction of reduced space for port
mode liftings for the first port mode retained for the reference port number 2 within the two archetype components
number 3 and 4. We chose the corresponding reduced bubble spaces for port mode liftings to be of size equal to 6.
In figure 7, we give the convergence of the POD eigenvalues for construction of bubble space for inhomogeneity for
archetype component number 4, which is then chosen to be of size equal to 10.
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Figure 6: Logarithm of the POD eigenvalues for constructing the reduced space for port mode liftings for the 1st port mode retained for the
reference port number 2 and (left plot) archetype component 3, and (right plot) archetype component 4

6.2. Global System

We consider the global system consisting of 15 instantiated components presented in figure 8. The mapping of
each instantiated component of the global system to the corresponding archetype is given in table 2. The time-domain
variational problem for the global system has a total of 63 parameters: the Young’s modulus and the two Rayleigh
damping coefficients for each component, in addition to 6 parameters for each of the three beams where we can have
a load (5 of these 6 parameters appear naturally in equation (56), and the last signals the existence or not of the
load). As mentioned above, the frequency-domain variational problem has either 4 or 8 parameters for the archetype
components, and 7 or 11 parameters for the archetype bi-components defining the reference ports. Those sizes are
lower than the size of the parameter space of the global domain (equal to 63) and thus it shows how the two-level PR-
RBC method reduces the effective dimensionality of the parameter spaces considered in the variational problems. This
reduction of the size of the parameter spaces is even more enhanced as larger global domains with more instantiated
components are considered, since the sizes of the parameter spaces considered for the archetype components and
reference ports do not change, while the size of the global parameter space will increase.

Instantiated component number in global system Archetype component number
1, 15 1
2, 6, 10, 14 2
3, 5, 7, 9, 11, 13 3
4, 8, 12 4

Table 2: Instantiated components to archetypes mapping

For the time-domain problem approximation, the simulation time Tfinal is taken equal to 800 Tref such that we
allow enough time for wave reflection. The size of the reduced space XRB constructed by Strong Greedy approach
(Algorithm 1) is fixed by imposing ε = 10−5 as a threshold for the relative error ei, 1 ≤ i ≤ N. The number of time
steps Nt, and equivalently the step-size ∆t, are fixed based on the convergence of the quantity:

δ∆t ≡

max
1≤ j≤Nt/2

∣∣∣∣∣∣∣∣U2 j
h,D,N,∆t(µ) − U j

h,D,N,2∆t(µ)
∣∣∣∣∣∣∣∣

H1(Ω)

max
1≤ j≤Nt

∣∣∣∣∣∣∣∣U j
h,D,N,∆t(µ)

∣∣∣∣∣∣∣∣
H1(Ω)

, (65)
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Figure 7: Logarithm of the POD eigenvalues for constructing the bubble space for inhomogeneity for archetype component number 4

Figure 8: Not-to-scale representation of the global system for elastodynamics bridge: the Gaussian curves on the top boundary indicate the potential
locations of the load

as Nt increases. As expected for the second order Newmark-β scheme (βt = 1
4 , γt = 1

2 ), the order of convergence in
time-discretization is equal to p = 2. Hence, a normalized Richardson’s extrapolation-based error indicator is given
by:

ε∆t ≡
1

max
1≤ j≤Nt

∣∣∣∣∣∣∣∣U j
h,D,N,∆t(µ)

∣∣∣∣∣∣∣∣
H1(Ω)

max
1≤ j≤Nt/2

∣∣∣∣∣∣∣∣U2 j
h,D,N,∆t(µ) − U j

h,D,N,2∆t(µ)
∣∣∣∣∣∣∣∣

H1(Ω)

2p − 1
. (66)

The number of time steps Nt is fixed such that we impose ε∆t ≤ 10−3.
For purposes of presentation, we consider a global parameter µexample such that the Young’s modulus of all the

components is taken equal to the nominal value, the Rayleigh damping coefficients are equal to half of their maximum
value, and three loads are applied on the structure such they are centered at the middle of components number 4, 8
and 12. The load parameters for the global parameter µexample are detailed in table 3. We also consider 10 randomly
sampled parameters Ξo ≡ {µrand i, 1 ≤ i ≤ 10}. For each of these sampled parameters, we allow any combination
regarding the existence or not of the load on components 4, 8 and 12 (in total there are 23−1 = 7 possible combinations
for the load existence), and the temporal parameter σt for the load applied on each of components 4, 8 and 12 is
sampled uniformly from the interval [0.75 σref

t , 1.25 σref
t ].

The size of XRB obtained by imposing ε = 10−5 in algorithm 1 for the global parameter µexample is N = 20 as
shown in figure 9 giving the convergence of the Strong Greedy algorithm in terms of the relative error ei, 1 ≤ i ≤ N.
The second order convergence of δ∆t with the number of time steps Nt is verified for µexample as shown in the left plot
of figure 10. Based on the right plot of figure 10, in which we present the convergence of ε∆t with Nt, the number of
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Load on component # 4 8 12
σx 0.02 m 0.03 m 0.04 m
F −20 Ē

Tref
−15 Ē

Tref
−10 Ē

Tref

σt 0.75 σref
t (= 12 Tref) σref

t (= 16 Tref) 1.25 σref
t (= 20 Tref)

cfriction 0.7 0.6 0.5

Table 3: Load parameters for the global parameter µexample

time steps is taken as Nt = 2 × 103. We also verified the second order convergence of δ∆t with Nt for the 10 randomly
sampled parameters in Ξo, and for 9 of these cases the criterion ε∆t ≤ 10−3 requires Nt = 2 × 103, while for the
remaining case, it requires Nt = 103. Note that using explicit finite difference schemes generally results in a larger
number of required time steps for stability reasons. For instance, using the explicit central difference scheme for the
global parameter µexample requires at least Nt = 5 × 105 time steps for stability (corresponding to 250 × (2 × 103), with
Nt = 2 × 103 being the number of time steps needed when using the implicit mid-point rule).

Figure 9: Strong Greedy algorithm (Algorithm 1) convergence for the elastodynamics bridge and the global parameter µexample; here nω = 41

Table 4 gathers the computation time to estimate U j
h,D,N,∆t(µ) , 1 ≤ j ≤ Nt, averaged over µexample and the 10

randomly sampled parameters Ξo. The size of the full P2 FE approximation space is Nh = 11376 and computing one
full FE simulation with Nt = 2 × 103 takes 1.77 min on average (without performing the Richardson extrapolation).
For confirmation purposes, we consider the time-domain relative error between the two-level PR-RBC solution and
the FE approximation for a global parameter µ,

||U j
h,D,N,∆t(µ) − u j

h,∆t(µ)||H1(Ω)

1
Tfinal

Tfinal∫
0
||u j

h,∆t(µ)||H1(Ω)dt j

, 1 ≤ j ≤ Nt .

Figure 11 gives the evolution of the relative error for the global parameter µexample and we can verify that it is well
below 1%, confirming the sufficiently refined time discretization thanks to the criterion ε∆t < 10−3, and the sufficiently
rich reduced space XRB thanks to the strong greedy criterion imposed with ε = 10−5 in algorithm 1. Considering
other relative errors, such as a normalization by the maximum value of ||u j

h,∆t(µ)||H1(Ω) for 1 ≤ j ≤ Nt, gives very
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Figure 10: Convergence of δ∆t and ε∆t with Nt for the global parameter µexample

similar results. Hence, having nω ≤ 50 is enough to obtain sufficiently accurate approximations. By consequence,
we typically have Nt � nω as mentioned in section 5.3. Note that the observed waves correspond well to dispersive
flexural waves [30].

PR-RBC online stage called nω = 41 times 3.32 s
Strong greedy (Algorithm 1) 0.22 s
Time marching (for Nt = 500, 1000, 2000, 4000 to perform the Richardson extrapola-
tion)

0.16 s

Total computation time to estimate U j
h,D,N,∆t(µ) , 1 ≤ j ≤ Nt 3.70 s

Table 4: Computation time of the proposed two-level reduced basis method for elastodynamics bridge

In conclusion, the two-level reduction approach has a computation cost 28.7 times lower than the FE simulation
for this example. For instance, in the context of Simulation Based Classification for Structural Health Monitoring,
construction of datasets of size of the order of 104 are often required to obtain satisfactory classification results [30].
Conducting such a task for this bridge example using the two-level PR-RBC approach has a total computation time
of 10.28 hours (taking into account the computational cost of the PR-RBC offline stage, which is run only once), as
opposed to an estimated 12.3 days using the full FE approximation.
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Figure 11: Time-domain relative error for the elastodynamics bridge and the global parameter µexample

References

References

[1] L.-S. Huo, X. Li, Y.-B. Yan, H.-N. Li, Damage detection of structures for ambient loading-based on cross-correlation function amplitude and
svm, Shock and Vibration 2016 (2016) 1–12.

[2] Z. Yang, L. Wang, H. Wang, Y. Ding, X. Dang, Damage detection in composite structures using vibration response under stochastic excitation,
Journal of Sound and Vibration 325 (4) (2009) 14–16.

[3] K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problem, Numerische Mathematik 90 (2001)
117–148.

[4] K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM Journal on
Numerical Analysis 40 (2) (2003) 492–515.

[5] M. Rathinam, L. R. Petzold, A new look at proper orthogonal decomposition, SIAM Journal on Numerical Analysis 41 (5) (2003) 1893–1925.
[6] M. A. Grepl, Y. Maday, N. C. Nguyen, A. T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations,

ESAIM Mathematical Modelling and Numerical Analysis 41 (3) (2007) 575–605.
[7] M. A. Grepl, A. T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations,

ESAIM Mathematical Modelling and Numerical Analysis 39 (1) (2005) 157–181.
[8] M. A. Grepl, Certified Reduced Basis Methods for Nonaffine Linear Time-Varying and Nonlinear Parabolic Partial Differential Equations,

Mathematical Models and Methods in Applied Sciences 22 (3), paper 1150015.
[9] Y. Masayuki, An optimization framework for adaptive higher-order discretizations of partial differential equations on anisotropic simplex

meshes, Ph.D. thesis, Massachusetts Institute of Technology, phD Thesis, Published (2012).
[10] A. C. Antoulas, C. A. Beattie, S. Gugercin, Interpolatory Model Reduction of Large-Scale Dynamical Systems, in: J. Mohammadpour,

K. Grigoriadis (Eds.), Efficient Modeling and Control of Large-Scale Systems, Springer, Boston, MA, 2010, pp. 3–58.
[11] C. Beattie, S. Gugercin, Model Reduction by Rational Interpolation, arXiv:1409.2140v1 [math.NA] (2014).

20



[12] D. Huynh, D. Knezevic, A. Patera, A laplace transform certified reduced basis method; application to the heat equation and wave equation,
C. R. Acad. Sci. Paris Series I 349 (7-8) (2011) 401–405.

[13] D. Huynh, D. Knezevic, A. Patera, A static condensation reduced basis element method: Approximation and a posteriori error estimation,
ESAIM Mathematical Modelling and Numerical Analysis 47 (1) (2013) 213–251.

[14] D. Huynh, D. Knezevic, A. Patera, A static condensation reduced basis element method: Complex problems, Computer Methods in Applied
Mechanics and Engineering 259 (2013) 197–216.

[15] J. L. Eftang, A. Patera, Port Reduction in Component-Based Static Condensation for Parametrized Problems: Approximation and a Posteriori
Eerror Estimation, International Journal for Numerical Methods in Engineering 96 (5) (2013) 269–302.

[16] K. Smetana, A new certification framework for the port reduced static condensation reduced basis element method, Computer Methods in
Applied Mechanics and Engineering 283 (2015) 352–383.

[17] K. Smetana, A. T. Patera, Optimal local approximation spaces for component-based static condensation procedures, SIAM Journal on Scien-
tific Computing 38 (5) (2016) A3318–A3356.

[18] R. J. Craig, M. Bampton, Coupling of Substructures for Dynamic Analyses, AIAA Journal 3 (4) (1968) 678–685.
[19] W. C. Hurty, Dynamic analysis of structural systems using component modes, AIAA Journal 3 (4) (1965) 678–684.
[20] U. Hetmaniuk, R. Lehoucq, A special finite element method based on component mode synthesis, ESAIM Mathematical Modelling and

Numerical Analysis 44 (3) (2010) 401–421.
[21] A. K. Noor, J. M. Peters, Reduced basis technique for nonlinear analysis of structures, AIAA Journal 18 (4) (1980) 455–462.
[22] B. O. Almroth, P. Stern, F. A. Brogan, Automatic Choice of Global Shape Functions in Structural Analysis, AIAA Journal 16 (5) (1978)

525–528.
[23] G. Rozza, D. B. P. Huynh, A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic

coercive partial differential equations, Archives of Computational Methods in Engineering 15 (3) (2008) 229–275.
[24] M. Barrault, Y. Maday, N. C. Nguyen, A. T. Patera, An empirical interpolation method: Application to efficient reduced-basis discretization

of partial differential equations, C. R. Acad. Sci. Paris Series I 339 (9) (2004) 667–672.
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