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Abstract

COVID-19 triggered an unprecedented global lockdown and severely dampened pub-
lic transit ridership, which was down 62% year-on-year across the U.S. through Q4
2020 [1]. Beyond these stark headline figures, more granular views of whose transit
ridership patterns changed and how are needed to aid cash-strapped transit agencies
in understanding both the operational and equity impacts of COVID-19 and assessing
possible recovery strategies [2].

This thesis examines these questions in the Metro Boston region by applying
k -means clustering to smart card data from the Massachusetts Bay Transportation
Authority (MBTA). We empirically determine customer segments based on passenger-
level pre-pandemic transit ridership patterns during January 13 - February 16, 2020,
using data from 22.6 million trips by 1.5 million passengers. We then trace how
COVID-19 produced differential churn rates and travel behaviour modifications among
these distinct passenger groups. We find that COVID-19 induced churn among rail
commuter segments key for supporting MBTA fare revenues, while bus riders and
those who frequently rode rail off-peak—groups that covered the majority of reduced-
fare and vulnerable passengers—were most likely to continue using the system.

Our findings suggest that in the near term, the MBTA can support a ridership
and revenue rebound by working closely with large employers involved in the MBTA
"Perq" corporate pass program to plan for reopening. This can also position the
MBTA to better gauge the need to redesign or reprice Perq to offer greater flexibility
for workers who may be adopting remote work longer term and therefore commuting
less frequently to the office. Further, our analysis reveals consistency in ridership
patterns among bus passengers even during crisis times. In the medium term as
the MBTA considers network redesigns to meet post-pandemic travel needs, existing
plans for bus upgrades do not necessarily need heavy modification because COVID-19
did not completely redefine these passengers’ transit usage patterns. This gives a base
level of certainty for the MBTA’s planning process, as it seeks to track and shape the
uncertainty that COVID-19 has brought to demand on the rail side of its network.
Finally, by supplementing our quantitative analysis with an overview of COVID-19
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responses by other major U.S. transit agencies, we suggest that the MBTA can better
weather future emergencies like COVID-19 by making longer-term efforts to shift its
operating revenue mix away from volatile fare revenues towards more stable and
resilient revenue sources such as sales and property taxes, and complementing this
with sustainable financial management.

The framework offered in this thesis for dissecting passenger ridership behavior and
tracking passenger churn and cluster-switching can be applied to other transit agencies
to detail either background ridership behavioral changes in normal years or rapid step-
changes during a mobility crisis. Understanding passengers’ ridership demand at the
cluster level can inform both immediate actions that transit agencies can take to
enable recovery, as well as support network redesign and long-term resilience.

Thesis Supervisor: Jinhua Zhao
Title: Edward H. and Joyce Linde Associate Professor

Thesis Supervisor: Jim Aloisi
Title: Lecturer of Transportation Policy and Planning

Thesis Supervisor: Joanna Moody
Title: MITEI Mobility Systems Center Research Program Manager
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Chapter 1

Introduction

1.1 Background and motivation

The World Health Organization declared COVID-19 a global pandemic on March

11, 2020, accelerating government attempts to limit mobility and enforce social dis-

tancing as preventive measures [3]. The resulting business closures and the mass

adoption of remote work for office workers led to a constriction of urban mobility and

plummeting transit ridership around the globe. The United States alone logged 19.6

million COVID-19 cases by December 31, 2020 and saw public transit ridership fall

62% year-on-year by the fourth quarter [4, 1]. This nosedive was already an improve-

ment from April 2020, when stay-at-home orders were rolling out across the U.S. and

pulling transit usage down by as much as 81% year-on-year.

Alongside the downward spiral in ridership came falling fare revenues, coupled with

a simultaneous shrinkage in other common but economy-dependent transit agency

revenue sources such as sales taxes [5]. Uncertainty about the trajectory of the virus,

the length of lockdowns, and the possibility of government stimulus created further

difficulties for transit agencies attempting to adjust service to both meet the remaining

demand and steward their finances. Newspaper headlines announced "apocalyptic"

conditions facing the survival of public transit and asked "Will Mass Transit Recover

From the Pandemic?" [6, 7]. Meanwhile, new studies seemed to indicate a positive

association between transit usage and the risks of COVID-19 infection in places like

17



Manhattan [8, 9].

Over one year later at the start of May 2021, 45% of the U.S. population has

received at least one vaccine dose and mobility appears to be returning across the

country [4]. Yet transit still faces an uncertain path to recovery. Study after study

indicate a seismic shift in employees’ acceptance of remote work. A McKinsey anal-

ysis of 2,000 work tasks across 800 jobs and nine countries suggested that over 20%

of the workforce can effectively work from home three to five days a week [10]. A

Federal Reserve Bank of Atlanta survey found as of May 2020, firms anticipate up

to 30% of their workforce to work from home at least once a week compared to only

10% pre-pandemic [11]. With the office commute potentially becoming less of a week-

day fixture, it is becoming increasingly questionable whether public transit ridership

patterns and volumes will be able to recover to pre-pandemic levels—or if recovery

will instead require re-shaping transit services. The future remains up for debate

and will be defined by negotiations between stakeholders including employers, their

employees, government agencies, and regulators. Yet, transit agencies are beginning

to plan for a robust recovery even in the face of uncertainty.

The roll-out of smart cards and automated fare collection (AFC) data in recent

years provides transit operators with a tool to capture the evolution of transit rid-

ership behavior in real time with trip-level granularity, for the entire passenger pop-

ulation [12]. During a sudden crisis like COVID-19, it also provides an established

data collection platform that requires little additional adjustment to provide infor-

mation during the crisis. As such, it can be a valuable complement to traditional

surveys, which will still remain valuable as they capture passenger profile details such

as socio-economics, access to alternative modes, and trip purposes. AFC data can

be used to identify distinctive travel behavior patterns and categorize passengers into

these rider "segments." Further, as the literature review in Chapter 2 will discuss,

the application of clustering methods to identifying these passenger segments can aid

transit agencies in operational and network planning.

This thesis applies a clustering approach to AFC data in order to give a granular

view of key transit usage patterns for a case study transit agency, the Massachusetts
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Bay Transportation Authority (MBTA) in the Metro Boston area. The continuation

of AFC data through most of the COVID-19 pandemic is then used for tracking

and dissecting the differential rates of churn and behavioral shifts among each major

passenger segment. As transit agencies look ahead towards coordinating a ridership,

service, and financial recovery, understanding the divergent ways in which their varied

passenger segments were affected by COVID-19 can help them chart more robust and

equitable paths towards recovery.

1.2 Research aims

This thesis aims to provide a framework for partitioning transit riders into behavioral

segments or clusters based on smart card data regarding each rider’s interactions

with the transit system. Attention is paid to conducting clustering through passen-

ger features interpretable for policy-making, and in applying other machine learning

techniques to understand the ways in which passenger features are being used by the

clustering algorithm to identify major underlying rider groups and sort individuals

into them. The framework seeks to produce clusters that capture distinctive demand

patterns being exerted upon the system, which can inform transit agency network

design and operations.

To exploit the value of AFC data for behavior tracking in emergency situations

such as the pandemic, this thesis also uses clustering to analyze how the composition

of distinctive demand patterns shifted once the pandemic hit Metro Boston. Addition-

ally, by tracking passengers who already existed in the baseline pre-pandemic dataset

through the pandemic period, this thesis is able to trace which behavioral clusters

were associated with higher churn rates, and how members of one cluster modified

their behavior during the pandemic and thereby entered other clusters. AFC data

has also been continuously available in Metro Boston for the years leading up to

COVID-19 and was collected in a methodologically consistent way, which allows for

comparison of the pandemic-period ridership changes to "background" changes ob-

served in non-pandemic years, thereby helping to isolate COVID-19 ridership impacts
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from underlying trends.

Smart card data also carries meta-data on the fare product type and whether

it is associated with reduced fares or other special fares like corporate passes. By

examining the meta-data profile of each cluster, this thesis demonstrates how such

additional smart card information can be used to create a more socio-economically

rich profile of the types of riders that tend to fall into each behavioral cluster—and

how these may relate to pandemic transit usage.

Finally, this thesis considers the COVID-19 response of the MBTA alongside that

of 12 other domestic transit agencies, and combines this comparison with the quan-

titative clustering and churn analysis to provide short-, medium-, and long-term rec-

ommendations for recovery planning.

In this policy section and also throughout the thesis, we discuss transit equity

from several angles including servicing reduced-fare riders and the differential impact

of COVID-19 across behavioral clusters. However, our analysis does not entail an

overarching synthesis of equity in transit planning and pandemic recovery because it

focuses mostly on describing ridership patterns pre-COVID, tracking behavioral shifts

during the pandemic, and comparing transit agencies’ pandemic responses. There is

room for future work to take up this important line of inquiry.

1.3 Thesis organization

This thesis begins with a literature and background review in Chapter 2, which covers

market segmentation in the business settings where the concept originated, as well as

how it has been applied to the public transit sector in particular. The chapter then

focuses on the usage of clustering methods for transit passenger segmentation before

giving an overview of recent studies published on the impact of COVID-19 on transit

ridership. It finishes by summarizing the pandemic’s effects in the Metro Boston

area and familiarizing readers with the MBTA’s bus and subway/trolley network,
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commonly called the "T."1

Chapter 3 gives an overview of the AFC derivative data source, called ODX,

that we use for this thesis. It then reviews the 𝑘-means method and associated

work necessary for running a clustering analysis, including data pre-processing, the

creation of policy-relevant features as candidates for clustering, automated criteria for

selecting among those features, and hyperparameter selection. Further, it lays out the

additional steps we took to ensure temporal robustness or stability of the model, since

we are applying it over time to track cluster evolution. The chapter then explains

the optimal classification tree (OCT) methodology used to interpret how 𝑘-means

created the final clusters. Finally, the chapter closes with a discussion of the data

used for socioeconomic profiling of the clusters, our churn analysis methodology, and

policy analysis.

Chapters 4 and 5 present our baseline and pandemic-era results, respectively.

This includes interpretation of baseline pre-COVID clusters using OCT, and profiling

with both smart card meta-data and separate, more aggregate MBTA survey data to

enrich our understanding of the who within each cluster. Chapter 4 further dissects

the operational and equity relevance of each cluster to MBTA planning. Chapter

5 follows by laying out the divergent ways in which each cluster responded to the

pandemic.

The thesis closes with Chapter 6, which assesses the MBTA’s COVID-19 response

in light of our findings and actions taken by U.S. and international transit agencies

facing similar crises. It provides immediate and longer-term priorities for considera-

tion by the agency as it aims for a robust recovery in the face of ample uncertainty.

Last but certainly not the least, we note that in this thesis, the pronoun "we" is

used in acknowledgement and thanks for the advice and guidance received from the

committee, other members of the JTL-Transit Lab, and our data providers at the

MBTA.

1This thesis does not analyze the MBTA’s commuter rail ridership, for which trip records are
stored in a separate database.
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Chapter 2

Literature Review

Understanding how riders use public transit is key to transit agencies’ ability to deliver

quality service, operate efficiently, and generate revenue. The advent of AFC and com-

putational methods for handling these types of high volume, real-time data opened

up new ways for transit operators and researchers to unpack the behavioral patterns

of public transit riders, simulate transit networks, and improve origin-destination es-

timation algorithms [13, 14]. The granularity and timeliness of such data provides

support for transit agencies planning across a range of scales, from daily operations

to longer-term network design.

Unlike traditional survey-based studies, AFC is also updated live by the existing

fare system, offering constantly refreshed views on the evolution of transit usage.

Further, while traditional surveys may or may not be comparable over time depending

on sampling methodology, AFC data captures the entire population of riders and is

more likely to be consistent over time, giving better ability for monitoring ridership

and revenue [12]. This automatic longitudinal tracking and comparability is especially

valuable for understanding behavioral shifts when exogenous shocks hit a transit

system, such as what urban areas around the world experienced with the COVID-19

pandemic in 2020.

For these reasons, an increasing number of studies have explored AFC to track

the mobility impact of COVID-19 and its potential equity implications. AFC is often

combined with other data sources such as the U.S. census for these purposes, since
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AFC by itself does not capture passenger socio-demographics [12]. By extrapolation

from census tracts adjacent to transit route stations and stops, such case studies

in cities across the U.S. have confirmed popular intuition that greater ridership loss

occurred in areas with higher-income households, and high shares of workers whose

jobs transitioned well into a work-from-home environment. Meanwhile, census tracts

dominated by lower-income and essential workers tended to continue using transit.

This thesis expands on the existing literature by applying 𝑘-means clustering to

AFC-derived data for the MBTA, in order to identify separate groups of passengers

who followed certain sets of transit usage patterns and therefore exerted diverging

demand pressures on the system pre-pandemic. Following this market segmentation

analysis, we trace each passenger cluster through COVID-19, to assess major demand

shifts and how they reflect mobility adaptations riders were making (or unable to

make) in response to the pandemic. By combining temporal features of the AFC-

derived data with modal, spatial, and user type information collected by the same

source, we profile each of these key behavioral clusters in terms of their modal affinities

and their connections to revenue generation. This also allows us to give preliminary

indications of socioeconomic differences in COVID-19’s ridership impact.

The rest of this chapter introduces market segmentation in terms of its broader

industry usage and its applications to public transit. Then, it will describe the clus-

tering approach to transit market segmentation before reviewing existing work on

COVID-19’s transit impact across a variety of cities. Finally, it will give an overview

of the emerging body of work on COVID-19’s effects on mobility, and our case study

area of Metro Boston.

2.1 Passenger segmentation for public transit

2.1.1 Market segmentation

The concept of segmentation is not unique to passengers in the transit domain. The

field of market segmentation was first established by Wendell Smith in 1956, who
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noted that neoclassical economic theories of perfect competition and pure monopoly

did not fully capture the realities of markets where competition is in fact imperfect

[15]. Smith noted that while perfect competition requires homogeneous markets,

demand for products is in fact heterogeneous and each market can be disaggregated

into smaller, more homogeneous sub-markets. The original goal of such segmentation

was to partition the demand side of a market to a scale where marketing and product

differentiation efforts can be adjusted to target the particular needs and tastes of

each sub-group of relatively more homogeneous customers. This is in contrast to

mass marketing, where large populations of potential customers are all provided the

same standardized marketing or product mix.

Market segmentation’s success as a business tool has led to its expanded applica-

tion in contemporary times, where firms "identify, profile, target, and reach segments

using their own customer transaction data-bases" for product and marketing cus-

tomization, making this a particularly useful method for customer retention [16].

Depending on the consumption habits and profile of a customer segment, businesses

can choose certain competitive strategies such as lowering costs or creating a more pre-

mium, differentiated product. Greater access to granular customer transactions data

and more sophisticated computational and statistical techniques have now extended

the customization spectrum from mass marketing, through customer segmentation,

to one-to-one tools targeting the individual.

However, companies operating in heterogeneous markets have not flocked directly

to one-to-one tactics, recognizing that segmentation into major customer groups is

often a relevant scale at which to operate in order to capture economies of scale in

production, logistics, or marketing [16]. Further, segmentation provides a scale that

has proven useful for strategy development by managers, even in cases where im-

plementation of the strategy involves one-to-one tools. For market segmentation to

be effective for these cases, researchers have argued that segments need to 1) have

measurable characteristics along which they can be distinguished, 2) be substantial

enough in size and profitability to serve, 3) capture customer segments actually acces-

sible or reachable for the business, 4) be clearly differentiable, i.e. members are similar
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to each other but clearly different from those of other segments, and 5) actionable,

giving rise to a basis for operational or product strategy [17].

Market segmentation faced by a particular business is generally empirically deter-

mined. A variety of techniques have evolved for this task including mixture models,

hierarchical Bayes’, clustering, and neural networks, and they have been applied to a

wide range of industries from tourism and beverages to transportation [18, 19, 20, 16].

Clustering methods are popular among such studies. Chiu et al (2009) and Huang,

Zeng, and Ong (2007) applied clustering to the education and beverages respectively.

Kuo et al (2002) used neural networks to generate self-organizing feature maps upon

which to run clustering analysis [20]. In transportation, the most famous colloquial

discussion of market segmentation breaks down transit users into "captive" riders

who depend upon the system due to a lack of alternatives, and "choice" riders who

have viable alternatives yet choose to travel by transit—but further decompositions

of transit riders have been undertaken by a number of studies, several of which use

AFC as the "customer transaction record" found in industry [19].

2.1.2 Application of market segmentation to public transit

Since AFC data became more widely available, researchers have applied clustering to

explore patterns in transit rider behavior and inform service enhancements by transit

authorities. These studies also seek to use measurable features of their passengers’

interactions with the transit system to identify differentiable customer sub-groups

that allow for actionable outcomes for transit planning.

However, market segmentation for transit provision also differs from business ap-

plications. In contemporary urban areas, transit is subsidized and regulated in recog-

nition of its role as a public good that provides access to economic and social op-

portunities while reducing the congestion, energy use, and air pollution associated

with travel [21, 22]. Further, it is subsidized out of recognition that transit and its

positive externalities have economies of scale and density [23]. As such, unlike in

other market segmentation cases, we believe the goal of passenger market segmenta-

tion here is not to better drive profit as in the private sector, but rather to improve
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operational and strategic decisions that allow the transit system to meet its goals of

providing access and sustainability [14]. Thus, more nuance is needed in discussions

of a "substantial" customer segment—segments that are smaller but important for a

transit system’s equity goals can, from a public policy perspective, merit attention

from planners despite its smaller size.

We note though that segmenting passengers based on smart card transaction

records—that is, rider behavior on the system—may help us to discover ways in

which groups typically considered "small" actually fit together into larger homoge-

neous segments. Transit systems often provide reduced-fare products for groups such

as students, seniors, the blind, and those with disabilities, which are expected to be

relatively smaller shares of the total ridership compared to full-fare adult riders. This

manual segmentation of rider groups does not, however, prevent some reduced fare

riders from having similar transit demand as other groups. This is one motivation

behind the structure of this particular thesis, which focuses on customer segmentation

based on behavior due to the operational relevance of this approach, then uses fare

user types to "profile" the behavioral clusters produced. In this respect, the thesis

follows Briand et al (2017).

Transit planners working with equity goals in mind may also approach the concept

of "reachable" in market segmentation differently than private businesses, because of

public transit’s role in reaching those currently without transit access. That said,

assessments of how to extend service to under-served passenger segments (or those

currently not served) requires data separate from the smart card transaction records

that are the core of this study, since by definition there is little transactions data

on the potential transit usage patterns of those who currently can rarely ride, if at

all. This aspect of achieving public transit’s equity and sustainability goals may find

more methodological commonality with the business sector’s work in reaching new

customer pools potentially with new products, rather than market segmentation of

existing customers based on transactions data.

Finally, while transit market segmentation should strive to produce actionable

results just as when segmentation is done for private enterprises, the types of actions
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under consideration can be significantly different. Some response strategies can be

shared, such as offering reduced fares to certain segments or providing differentiated

service (e.g. higher frequency service during peak hours for those who generally use

transit only for commutes) [16]. However, the degree to which pricing and service

provision can be changed are subject to regulatory and policy decisions that have

shaped system design. For example, current discussions about moving towards a

free transit system in our case study area of Metro Boston targets equity goals but

would, if passed, remove pricing as an actionable lever that can be customized to

each passenger segment [24]. The MBTA is also obligated under the Americans with

Disabilities Act to provide service to those with disabilities, which it does through its

paratransit service (RIDE) as well as TAP cards for those with disabilities who are

still able to physically use the existing transit system [25]. If a particular passenger

segment happens to be small but dominated by these riders, the MBTA is obligated

by law to meet the needs of these riders.

Overall, there are several major transit agency goals that can be supported by

passenger segmentation analysis [26]:

• Evaluation and strategy for service improvements that enhance re-

tention: Knowing the major categories of passenger travel needs can inform

efforts to cost-effectively enhance service quality and drive rider retention.

• Travel demand management: Passenger segmentation can help transit agen-

cies target their travel demand management and incentive schemes efforts to-

wards users with specific types of operationally relevant behavior patterns.

• Evaluating impact of a major supply- or demand-side "shock": This

includes understanding the impact of a crisis like COVID-19 on system ridership,

operational needs, and revenue; it further includes assessing the potential impact

of a network expansion, route change, or introduction of a competitor service

on ridership and user retention.

• Marketing and product differentiation: As in typical business applica-

tions of market segmentation, this type of analysis can be used by transit agen-
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cies to target different types of fare products (e.g., peak period pricing, com-

muter passes) and to optimize placement of revenue-generating advertisements

on transit vehicles and facilities.

• Informing survey sampling procedures: By distinguishing how passengers

are heterogeneous over space, modes, and time, passenger segmentation can

help inform more balanced sampling techniques for transit ridership surveys.

Because the focus of this particular study is on understanding the variegated

impacts of the COVID-19 crisis on the MBTA’s heterogeneous ridership and informing

a robust service recovery, we focus on the evaluation of a demand-side shock and how

customer segmentation can inform recovery and service during a crisis.

2.1.3 Clustering approaches to transit market segmentation

Clustering as a transit passenger market segmentation methodology is generally built

off AFC data, unlike traditional segmentation analysis using surveys [27, 14]. Such

unsupervised methods are popular in these settings where there is no available ground-

truth "label" to learn for passenger or trip classification. Though AFC enables

individual-level analysis, this is often too specific and noisy, while clustering based on

temporal and spatial habits offers a more actionable scale for network planning [14].

A variety of clustering methods have been used for passenger segmentation, using

the temporal aspects of smart card data, the spatial, or both. Hierarchical clustering

and 𝑘-means are common, as well as DBSCAN and Gaussian mixtures. Ghaemi et

al (2017) applied hierarchical clustering to temporal data of passengers entering the

public transit network, to classify users into behavioral groups based on the timing of

their system entries [28]. Ma et al (2013) applied DBSCAN to trip chains to detect

key historical travel patterns at the individual passenger level; it also used 𝑘-means

on several extracted features—number of travel days, number of similar first boarding

times, number of similar route sequences and number of similar stop ID sequences—

with rough-set theory to cluster riders according to their usage regularity [29]. Kieu et

al (2015) used k -means on trip chains to discover clusters of infrequent versus frequent
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riders, then put frequent riders’ trip chains through DBSCAN to give a more granular

clustering based on their boarding and alighting times and locations [27]. In Morency

et al (2006) k -means was again used to identify clusters with similar boarding times

based on the temporal profile of each passenger’s boardings [30]. Meanwhile, Lathia et

al (2013) used hierarchical clustering on the daily temporal profiles of each passenger’s

trip set to categorize rider behaviors and target information services [31].

Clustering based on temporal features has also been combined with other smart-

card level meta-data to offer a fuller "profile" of riders in each cluster that can

help transit agencies aiming to improve service for certain transit-dependent groups.

Briand et al (2017) applied Gaussian mixture models to group passengers based on

their temporal habits of transit ridership, identifying 10 rider clusters representing

for example regular afternoon ridership, riders with two-peak temporal profiles, and

riders with weekend morning activity [14]. They then profiled the clusters using card

types, finding for example that students and seniors tended to fall into the cluster

with a three-peak weekday commuting pattern—implications that can help transit

agencies plan for the transit usage needs of the vulnerable and transit-dependent.

Meanwhile, El Mahrsi et al (2017) clustered smart card data from the comple-

mentary perspective of station operations and passenger flows, using a generative

model-based approach to promote interpretability. On the station side, the paper

clustered on number of transactions at the station by hour and day, which allowed

the model to distinguish between stations with mostly balanced usage despite some

rush hour peaks, and other stations with unbalanced usage. On the passenger side,

temporal travel profiles of relatively frequent users were fed into a mixture of un-

igrams model. The model identified four clusters involving various sorts of diffuse

temporal patterns for transit usage, dominated by young subscribers, those traveling

on free passes, and the elderly. Two clusters exhibited typical commuting behavior

and were mostly composed of regular paying subscribers, while four more were com-

muters with a secondary peak on Wednesday midday reflecting the school schedule

of young riders.

Among MIT theses, Basu (2018) applied principal component analysis (PCA) to
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temporal and spatial features from AFC data from the Hong Kong Mass Transit Rail-

way (MTR), then 𝑘-means clustered riders based on the main features that emerged

from PCA [26]. His analysis was conducted for the MTR’s information targeting cam-

paign, in which the agency sought to better deliver system information to passengers

for whom the updates were relevant. The interpretability of features was therefore of

less importance in his analysis, hence his choice to use PCA rather than hand-crafted

features with policy content.

Separately, Fissinger (2020) applied 𝑘-means clustering to AFC data from the

Chicago Transit Authority, first to understand customer segments based on inter-

pretable, hand-crafted features in normal conditions, then extending the analysis to

COVID-19 passenger pattern changes [32]. The clustering portions of this thesis is

most closely tied to Fissinger (2020) and Briand et al (2017), focusing on clustering

using temporal AFC data but using spatial and smart card meta-data features for

subsequent clustering profiling. It introduces the MBTA’s operations in Metro Boston

as a new case study of this type of passenger segmentation analysis.

2.1.4 Evolution in passenger segments over time

Fewer studies tracked the evolution of customer behavioral segments over time. Basu

(2018) calculate correspondence scores for how stable cluster membership was between

two years, finding that for the MRT clusters were relatively stable over the medium

term, limiting the need to constantly update and maintain clusters [26]. Fissinger

(2020) assessed the degree to which members of each cluster churned during COVID-

19, discovering that free riders cluster and frequent off-peak bus users were most likely

to continue riding during the pandemic, while frequent rail riders mostly churned [32].

Linking to pass types, these findings confirm that disadvantaged riders were the most

likely to continue using the system during the pandemic.

Briand (2017) assessed temporal stability of cluster partitions over five years, to

inform transit network operators regarding the level of maintenance necessary from

year to year [14]. It found that riders were most likely to stay in the same cluster over

time, or move to other clusters most similar to it as measured by Kullback-Leibler
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divergence. Morency et al (2006) used 𝑘-means clustering on temporal patterns of

boarding to identify regular travel behaviors among transit users in Gatineau, Que-

bec. Subsequently, the paper looked at individual cards whose meta-data indicated

different sociodemographic groups—a regular pass and an elderly pass—comparing

the time series of their boardings over 277 consecutive days using 𝑘-means to iden-

tify groups of days exhibiting homogeneous behavior within each socio-demographic

group [30].

This study’s structure most resembles Briand’s work in 1) clustering baseline

ridership patterns from temporal AFC data, 2) profiling riders of each cluster using

sources including smart card meta-data, and 3) conducting longitudinal analysis to

track churn and cluster evolution. Further, our use of correspondence scores to assess

cluster stability between seasons and years draws most closely from Basu (2018), and

our focus on the churn impact of COVID-19 parallels Fissinger (2020).

This thesis contributes to the literature by tying these pieces together to give a

fuller picture of the impact of a severe public health and economic crisis on usage

patterns across socio-edemographic groups. The remaining sections of this literature

review gives background on the COVID-19 crisis and its mobility effects, before zoom-

ing in on the case of the Metro Boston area serviced by the MBTA. This will provide

context for our clustering and churn analysis as well as the policy recommendations

they inform.

2.2 COVID-19’s impact on transit ridership

COVID-19 prompted urban lockdowns and social distancing protocols across the

globe, severely dampening public transit ridership. In the U.S., public transit rider-

ship is still down 55% through the end of April 2021 compared to mid-February 2020,

directly before the pandemic’s presence became clear in the country [1].

Several studies have applied spatial analysis to smart card and U.S. census data

to track transit usage during COVID-19 and link it to socio-demographics in order

to understand its social implications [33, 34]. Liu, Miller, and Scheff (2020) applied
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logistic and regression analysis to data from the Transit app to describe the rate of

transit ridership declines across the U.S. and their socioeconomic linkages [2]. Hu

and Chen (2021) applied Bayesian structural time series models and regressions to

Chicago smart card data to establish the impact of the pandemic on ridership and

tie decline severity to census tract socio-economics [35]. Brough, Freedman, and

Phillips (2020) leveraged automated passenger counts (APC), census, and survey

data to study disparities in travel intensity declines in King County, Washington [36].

These studies found greater ridership loss in areas with higher-income, white, well-

educated households; non-physical jobs translatable to remote work; and commercial

real estate.

Public health and econometric studies using census data have also tied lower-

income and essential worker status to continued transit use [9, 37]. McLaren (2020)

specifically found a positive correlation between the share of African Americans and

First Nations peoples in a county, and the area’s total COVID-19 deaths. He fur-

ther claimed that public transit use explained a statistically significant share of the

variation in total pandemic deaths [9]. Sy et al (2020) conducted a spatial analysis

at the zip code level that suggested essential worker status, which is tied to lower

socio-economic conditions, was the risk factor with the strongest COVID-19 associ-

ation. The study further suggested that essential workers’ higher need to travel by

subway was associated with higher COVID-19 case rates per 100,000 people, though

this association became weaker after controlling for a zip code’s median income [37].

Our study builds on this emerging literature by contributing new passenger-level

analysis that is only made possible through access to transit agency AFC data. We

offer 1) analysis based on each passenger’s actual historical transit usage patterns

rather than socio-demographic inference from adjacent census tracts; 2) a different

approach to understanding customer behaviour using clustering and interpretation

of clustering results through decision trees, and 3) a case study using MBTA smart

card data and a system-wide passenger survey with subway station-level and bus

route-level characteristics of actual riders.
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2.3 Metro Boston during COVID-19

In response to COVID-19, Massachusetts entered a state of emergency on March 10,

2020, initiating a transit ridership freefall [38]. By August 2020 when fare collection

data fully resumed, transit usage was on average still stagnating at 28% of February

volumes. Figure 2-1 plots the state’s daily case load as recorded by the Center for

Disease Control against Google location history data on how visits to transit stations,

workplaces, and retail/recreation changed compared to a January 3 - February 6, 2020

baseline. The data shows that even when caseloads were low over summer and the

so-called "Phase II" stage of re-opening had commenced with the re-introduction of

limited retail, dining, and office work, transit ridership was below pre-pandemic levels.

Transit’s usage fluctuated even as workplace visits appeared to have stabilized at a

below-normal level, pointing to the role that choice work commuters and other trip

purposes such as shopping and leisure affect transit demand during this time.

Figure 2-1: Massachusetts daily caseload and mobility patterns

Figure 2-2 focuses in on the the Boston region and compares how key travel modes

used in the area—transit, walking, driving—evolved over the course of the pandemic
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Figure 2-2: Boston area mobility patterns (walking, transit, driving)

compared to a pre-COVID baseline.1 The data reveals the sharp fall of as much

as -81% in transit use by April 2020 and a slow recovery that has not yet returned

to pre-pandemic levels. This is in contrast to more private modes of transportation

like walking and driving. Walking saw a sharp rebound to as high as 91% above

pre-pandemic conditions by October 2020; driving rebounded as high as 50% above

baseline levels by the start of September 2020. Transit usage did not begin a steady

recovery until after vaccinations began in December 2020 (with a 1.5 month or so gap

to account for the time it takes for a person to receive a second dose then become fully

immune). News sources and the MBTA’s own analysis tracked these trends as well

as the impact it had on the agency’s budget and ability to provide services [39, 40].

The aggregate figures do not, however, tell us how the transit usage decline and

recovery occurred in different parts of the MBTA’s extensive system, called the "T."

The T is composed of a subway and bus rapid transit component (orange in Figure 2-3

below) that reflects a hub-and-spoke design, with dense service in downtown Boston

and thinner service in outlying parts that are instead filled in by bus (purple in the

same figure). Bus covers 8,047 stops and train service 166 stations including locations
1January 13 for Apple-derived time series, January 3-February 6, 2020 for transit data from

Google
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above and below ground; however, trips on rail outstrip bus trips on both weekdays

and weekends. Separately, the MBTA operates a commuter rail service which extends

outside of Metro Boston and is not considered in this study.

Outside of divergence in geographic reach between bus and rail, there are other

clear areas of ridership divergence in parts of the system that could suggest differ-

ences in behavior during COVID-19. The MBTA’s 2015-2017 System-wide Passenger

Survey found, for instance, that 17% of bus riders surveyed during that period were

reduced-fare pass users, compared to 10% on rail. At the route level, there is even

greater variation, with route 24 and 33 in South Boston showing 44% reduced fare

pass users. Bus riders were also, overall, 9 ppt less likely to have a household vehicle

compared to rail users (30% versus 39%), with the share carless running as high as

54% on route 28 which goes through the Roxbury neighborhood. Thus, a more gran-

ular analysis of passenger behavior and its evolution during COVID-19 is needed to

break down aggregate ridership trends to a level granular enough to provide insight

for operational decisions like service cuts and strategies for robust recovery in the face

of severe revenue shortages. Further, an approach incorporating temporal informa-

tion to passenger segmentation can be a useful operational support to existing MBTA

surveys, which only capture the spatial dimension.

2.4 Implications for this study

COVID-19 caused unprecedented upheaval to urban transit systems around the globe,

crushing ridership and revenues and leaving uncertainty as to the timeframe and the

shape of the subsequent recovery. This study builds on past works that tracked pas-

senger clusters over time to study the crisis at a scale granular enough to inform

operational and strategic planning for recovery [26, 14, 32, 30]. The pandemic was a

period that revealed the transit-dependent rider groups and their variegated transit

usage patterns, while simultaneously revealing riders who had the ability to opt out

of the system. Passenger segmentation in the baseline and tracking throughout the

pandemic and recovery therefore provide one way of deepening the MBTA’s under-
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Figure 2-3: MBTA bus system, rail + bus rapid transit system
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standing of the specific behavioral habits and mobility needs of its riders, as well as

the multi-pronged approach necessary to support each segment’s recovery.

Based on existing techniques, we leverage temporal and modal AFC features to

segment passengers into what we will call rider "clusters," to align with the name

of the unsupervised learning technique we are leveraging to create the segmentation.

Because the goal is to create clusters interpretable for transit planners and policy

makers, we hand-craft potential features to be used in clustering rather than rely

oon less interpretable feature creation processes like PCA. Based on findings from

Briand (2017), we also recognized that there is background churn and cluster switch-

ing among passengers even in non-crisis times. This will inform our use of temporal

stability/robustness checks prior to our COVID-19 analysis, so as not to confuse

natural churn and cluster-switching with the impact of COVID-19 on these same be-

haviors. Finally, following existing literature, we leverage smart card meta-data and

spatial data to profile each cluster, which gives the additional depth necessary for us

to use our quantitative results to provide qualitative policy recommendations that

can meet the needs of MBTA’s diverse ridership while supporting the restoration of

revenues.
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Chapter 3

Data and Methodology

3.1 Overview

The growing availability of automated fare collection (AFC) data has enabled the

application of machine learning methods to the detection of transit usage patterns

and their evolution over time. Additionally, since AFC collects data at the level of the

individual passenger (or, more strictly, the individual transit card or ticket), it offers

greater granularity for the analysis of temporal and geospatial ridership patterns than

was previously available with aggregated systems data and survey results.

As described in the literature review, existing analyses of COVID-19’s impact on

public transit ridership have begun to leverage these data sets, usually in combina-

tion with U.S. census or American Community Survey data. Regression and spatial

analysis methods are applied to infer the sociodemographic composition of AFC trip

records based upon the demographic profiles of adjacent census tracts and relate this

to ridership volume changes during COVID-19 [36, 33, 2, 34].

In contrast with these existing papers, this thesis analyzes rider behaviour during

COVID-19 at the passenger unit rather than at the geographic unit. AFC first allows

us to assess pre-pandemic transit rider behavior by using individual passengers’ pre-

pandemic baseline transit usage to categorize them into major behavioral clusters—

each of which creates a distinct set of demands on the transit system. Then, AFC

allows us to track how these clusters, and the associated demands they each create
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for the system, evolve during COVID-19. Thus, applying behavioral clustering on

AFC data can support transit agencies in making evidence-based planning decisions

for the future travel demands of their customers, based on historical rider behavior

collected by the agencies’ ticketing system.

Clustering also provides analysis at a level of granularity relevant to transit agency

operations. Briand et al. (2017) pointed out that working only at the individual rider

level introduces too much noise into transit analysis; by contrast, cluster-level aggrega-

tion can be useful for providing a unit of analysis with enough aggregated volumes to

describe extensive transit ridership activity on a network. That is, clustering strikes

the balance between extremely granular, individual-level analysis that capture too

much noise, and overly aggregated information that misses rider habit heterogeneity.

Analysis based on AFC is, however, not without its shortcomings. AFC will miss

the travel needs of those who are currently unable to access transit, those who pay by

cash, or those boarding without tapping in. This may translate to AFC data failing to

accurately capture the ridership patterns of lower-income riders, who are more likely

to rely on cash than other transit passenger groups, according to a joint MBTA-Boston

Region Metropolitan Planning Organization report in May 2020 [41]. Further, most

agencies including the MBTA do not collect key socio-demographic characteristics for

those purchasing its fare cards or tickets, so this data is not directly included in AFC.

However, card meta-data (e.g., fare type) give us some insight into full-fare versus

discount-fare passenger categories, providing a preliminary basis for considering the

socio-economic dimensions of each behavioral cluster. Further, by combining AFC

data with the latest MBTA System-wide Passenger Survey data at the station-level

for rail and route-level for bus, we can give some station- or route-level statistics

regarding the socio-demographics of actual riders.

In addition to data analysis, this thesis will contextualize the MBTA’s COVID-

19 policy response by providing a structured review of how transit agencies in other

major U.S. urban areas, as well as cities in other countries, sought to provide public

transit services while curbing the virus’ spread. The goal of this policy exercise is to

collect lessons learned that can be transferable to a Metro Boston context, while also
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Figure 3-1: Methods flow chart

identifying common pain points in emergency pandemic response that were difficult

for most transit agencies to overcome. This policy analysis will mostly focus on

pandemic responses, as the majority of urban areas within the U.S. and globally have

not yet confirmed full recovery plans as of the writing of this thesis.

The flow chart in Figure 3-1 lays out the analytical flow of this thesis, which is

also the flow of this data and methods overview chapter. We begin by discussing

our data source, which is an AFC derivative called ODX. We then review common

clustering methods seen in the passenger segmentation literature and justify our choice

of 𝑘-means. Subsequently, we detail the 𝑘-means algorithm and the steps we took

to pre-process our ODX data in preparation for clustering, the process of creating

features from the raw data, and the empirical selection of features for actual use in

the clustering step. Next, we describe our selection of hyperparameters including the

number of clusters 𝑘 and the distance measure used to assess similarity of data points

during cluster creation. These stages produce our baseline pre-COVID clusters.

Prior to moving on to interpreting the clusters and using them for COVID-19

churn analysis, we need to validate that the 𝑘-means model we trained is actually

valid across the time periods when we plan to apply it. Therefore, we describe the
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robustness checks we perform to provide confidence in the model’s validity across time.

Having validated our model, we then move on to the application of decision trees to

interpret the clustering results to give us a more intuitive understanding of how our

policy-relevant input features produced the distinct behavioral clusters the model

outputted. We also describe our process for giving more socio-economic profiling to

each cluster, using both smart card meta-data and integration of a separate MBTA

survey. The results of these steps, which are executed on baseline pre-pandemic data

and are captured in the blue box in Figure 3-1, will be presented in Chapter 4.

With a clear view of pre-pandemic rider behavior, we then move on to the COVID-

19 period analysis. The last two sections of this chapter discuss the application of

our 𝑘-means model to the pandemic era data, the quantification of churn, and the

tracking of passenger behavioral shifts during the pandemic. Finally, we describe the

case study "policy matrix" approach we took for overviewing the COVID-19 response

of other major U.S. transit agencies, in order to contextualize the MBTA’s response.

Chapter 5 of this thesis provides the results from the pandemic-era analysis, while

Chapter 6 combines the results from our quantitative analysis with our policy matrix

work to provide policy recommendations for MBTA’s recovery planning.

3.2 Data: Automated fare collection (AFC) and ODX

Data for the behavioral clustering analysis was drawn from the MBTA’s automated

fare collection (AFC) system, which records every smart card or ticket (i.e., Char-

lieCard or CharlieTicket) transaction. These transactions include taps onto an MBTA

vehicle, which is the object of our study. In addition, it includes sales transactions at

ticketing machines (e.g., topping up a CharlieCard) and machine errors (e.g., flags for

attempted taps into a T station that were mis-processed by the faregate). Because

the MBTA hosts commuter rail data separately from the data for its metropolitan

"T" subway and bus network, our AFC data does not cover commuter rail.

It is important to note upfront the limitations of the AFC data, since they shape

the features we were able to select for our behavioral clustering analysis. Because
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the MBTA has a flat-fare system where the fare does not scale with the distance

traveled, there are no tap-outs required of passengers. AFC therefore only records

origins or journey transfers where a tap-in onto a new vehicle is required. This means

it does not include information on destinations, and also does not capture in-station

transfers where no additional card tap was required for passengers to board their next

vehicle (i.e., transfers between subway vehicles). We were therefore unable to take

factors such as journey length accurately into account. In addition, because AFC

records CharlieCard and CharlieTicket transactions, it groups all cash transactions

under one placeholder "card" ID, which covered 1.8% of all taps for our baseline pre-

pandemic period of study. Though riders who pay by cash are essential to include

in analysis that intends to address transit equity, AFC data does not allow us to do

so since it does not provide passenger-level data on cash-paying riders that can be

tracked over time.

As noted earlier, AFC contains a variety of transaction data while our analysis

only considers the subset representing taps that form a passenger journey. Therefore,

we use MBTA’s processed Origin-Destination-Transfer (ODX) data as a starting point

for our analysis. ODX processes AFC transactions, stripping out records that do not

reflect valid taps into the system. It also scales down the AFC data by excluding taps

by MBTA system employees. Thus, the volume of transactions shrinks about 20-30%

from AFC to ODX, though the temporal patterns of taps are preserved. Figure 3-2

gives a side-by-side comparison of daily recorded trip stages (i.e., tap-ins) on AFC

(3-2a) versus ODX (3-2b) through the months of 2020 core to our analysis. As can

be seen from the y-axis, ODX recorded fewer trip stages each day, but maintained

AFC’s modal and temporal patterns. Note also that we lacked data between March

21 and July 20 for bus boardings, due to the MBTA’s rear door boarding policy—a

pandemic mitigation measure introduced to limit rider contact with the driver. This

rear-door policy also affected the surface portions of the Green Line and Mattapan

Line trains.

For the work included in this thesis, we focus on the processed ODX data. In

order to assess how ridership evolved under the pandemic, we first measured baseline,
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(a) AFC (b) ODX

Figure 3-2: MBTA tap-in data by mode and by source

pre-COVID transit usage. As is evident in Figure 3-2, this meant taking data prior

to March 2020. We specifically chose a baseline of January 13 - February 16, 2020,

because this was the longest baseline period we could gather while leaving reasonable

buffers after the New Year holiday and before we began to see usage declines due to

COVID-19 concerns.

This data consisted of 22.6 million trip stages, where each trip stage represents

a tap onto an MBTA vehicle and may be part of a longer journey. A record for

a trip stage includes information such as the card ID, tap-in time, tap-in location,

modal information, tariff information, card meta-data, and the trip stage’s position

within the journey sequence. We then aggregated the records to the passenger (i.e.,

CharlieCard or CharlieTicket) level, to allow us to calculate the clustering features

discussed in Section 3.4.3 for 1.55 million unique cards, each of which we assume

represents a unique passenger. The exact ODX data fields used are listed below.

1. Card ID: Unique ID of the card/ticket interacting with the system.

2. Time of tap: Service date, tap time (hour, minute, second), day type (weekend,

weekday, holiday)

3. Location of tap: Location of AFC data collection. This is the tap-in station

for subway rides. For surface transportation including all buses and the Green

and Mattapan Line trains which mostly run above ground, AFC only provides
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the garage where the farebox is checked, so the actual tap-in location is inferred

by ODX using bus schedules.

4. Trip stage attributes: How stages fit together into journeys as inferred by

ODX. Trip mode as inferred from attributes of the origin location. Origin, ODX

inferred destination, ODX route inference for bus lines based on GTFS. Overall

for our baseline period, the 22.6 million trip stages were linked into 19 million

journeys.

5. Tariff and card attributes: Ticket stock allows us to differentiate between

paper tickets facing higher per-stage fares, versus cards offering cheaper per-

stage fares. An MBTA and Boston Region Metropolitan Planning Organization

(MPO) joint technical memorandum in May 2020 on a proposal to eliminate this

paper ticket premium showed that low-income and minority riders were histori-

cally more likely to use paper tickets (or cash) for the T [41]. Tariff type captures

whether each stage was taken using a pass validation (for monthly, 1-day, or

7-day passes) or pay-as-you-go. User group indicates whether the card/ticket

is a regular adult fare product, or one of the special categories. The special

categories include blind, TAP (reduced fare for those with disabilities), RIDE

(for passengers with disabilities that also book paratransit), senior discounted,

student/youth discounted, or short (usually on the bus or Green line, when

the vehicle operator allows someone onto the vehicle without paying the full

fare). Joining ODX data to a separate database, we can also identify employer-

sponsored cards. These values will help us profile the socio-demographics of our

behavioral clusters. In total, 90% of baseline journeys were taken on adult fare,

5.5% on senior fare, 3.55% on student fare, 0.19% free, and 0.71% short.

We also pulled ODX data for a time period during COVID-19 in order to assess

how travel behavior evolved given the pandemic. Because rear-door boarding zeroed

out AFC and therefore ODX bus data for late March through late July, we were

obliged to pick a period after July 20, 2020 for our pandemic-era analysis. Speaking

with MBTA staff and members of local transit advocacy groups, we realized that rear
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door boarding likely took several weeks to be fully implemented across the system.

Therefore, we chose August 18 to September 21, 2020 as our analysis window in order

to give the system enough time to normalize. A five-week period was used to match

the length of the baseline.

We perform similar five-week data pulls throughout 2019 as well, on which to

assess the stability or robustness of our model over neighboring years and over seasons.

These validation datasets were pulled for January 14 - February 17, 2019, April 1 -

May 5, 2019, August 19 - September 23, 2019, and September 23 - October 27, 2019.

Two key assumptions we make in our analysis of ODX data are 1) each unique

smart card or smart ticket ID represents one unique passenger, and 2) each passenger

generally uses only using one card or ticket over an extended period of time, so we

capture and track his/her full transit usage by monitoring activity on that particu-

lar card or ticket. However, these data assumptions may not be strictly true. For

example, pay-as-you-go accounts, which are 34% of recorded cards, could allow for

instances where multiple riders use the same CharlieCard or CharlieTicket in turn.

Additionally, the MBTA is known to have a large share of riders on paper Charli-

eTickets instead of the more cost-effective CharlieCards. In our baseline period, for

example, 56% of riders used CharlieCards and the rest used paper tickets. The paper

tickets have shorter shelf lives, leading to concerns that CharlieTicket users could be

showing up in the system on multiple days but remain untrackable because they buy

a new CharlieTicket and thus appear under a different card ID each time. There is

little we can do to directly counter these data limitations, but we keep them in mind

as we design our approach and evaluate the results of our analysis.

3.3 Clustering methods

The passenger market segmentation methodology core to this thesis is clustering.

Clustering is an unsupervised method for partitioning items in a dataset into clus-

ters, where a high-quality partition groups similar items into the same cluster and

keeps clusters distinct. There are many approaches to solving this problem. In the
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transportation literature on AFC-based rider clustering, the common algorithms used

include 𝑘-means, hierarchical agglomerative clustering, DBSCAN, and Gaussian mix-

tures. These are applied to either temporal smart card features, spatial ones, or both

to produce a passenger segmentation. Here, we review the common methods and why

we adopted the 𝑘-means approach using temporal data.

𝐾-means is a widely-used example of a partitional clustering method, in which a

group of 𝑛 points are divided into 𝐾 groups according to an optimization objective,

with the value of 𝑘 determined a priori [42]. Though it requires manual determination

of the number of clusters and the distance measure used (often, Euclidean distance),

the method is popular because it is computationally efficient on large datasets such

as the one used for this thesis, with a run time as low as 𝑂(𝑙𝑜𝑔 𝑘) when using the

𝑘-means++ implementation [42, 43]. However, it only finds local optimums, tend

to produce rounder clusters (i.e., it is less effective with correlated features) and is

sensitive to outliers [43].

Hierarchical agglomerative clustering (HAC) is a a hierarchical clustering method,

which in contrast with partitional methods builds a set of nested clusterings extending

from a top "cluster" containing all datapoints down to a set of N final leaves that

contains one point per cluster [44]. HAC begins with the datapoints at the bottom and

merges the closest clusters until it reaches the single cluster at the top. The resulting

tree-like dendrogram is useful for visualizing the relationships between clusters and

the distance between them, and a certain number of clusters can be created by cutting

the dendrogram at a specified height based on model selection criteria such as BIC

or AIC combined with expert judgement [28]. This method’s strength lies in this

dendrogram visualization, and the fact that it requires little prior knowledge except for

a dissimilarity measure. However, finding the point at which to make the dendrogram

cut is a well-known problem. Further weaknesses include high time complexity at least

𝑂(𝑛2𝑙𝑜𝑔 𝑛), the process is sensitive to outliers, and merges that occurred earlier in

the agglomeration process cannot be undone at a later stage of the process.

DBSCAN is a clustering method that defines clusters by finding areas with greater

densities of points than elsewhere in the feature space. Its strength lies in its ability
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to discover clusters of arbitrary shape, and its robustness to outliers and noise [45].

However, it still relies on the specification of a distance measure and does not perform

well if a cluster contains areas of varying density [46].

Generative, model-based approaches learn probabilistic models from the data,

with each model representing a specific cluster. They have the advantage of not

needing a manual selection of a distance measure [47], as they instead maximize

the likelihood of a statistical model fitting the data distribution, which is a more

empirically driven approach. Generative clustering models such as Gaussian mixture

models follow a similar iterative procedure as 𝑘-means. However, instead of assigning

a point to the nearest centroid then re-estimating centroids on each iteration, the

algorithm assigns a probabilistic membership (soft classification) and re-estimates

model parameters based on this. Model-based clustering methods are frequently

more interpretable and produce parameter estimates that can be fed subsequently

into simulations [46]. However, initialization is still important for avoiding local

optima, and the number of clusters 𝑘 still needs to be manually specified.

As discussed in Chapter 2, hierarchical clustering was adopted by Ghaemi et al

(2017) and Lathia et al (2013) for their analyses. Ma et al (2013) and Kieu et al (2015)

used DBSCAN, while El Mahrsi et al (2017) and Briand et al (2017) used generative

approaches based on mixture models. Briand et al (2017), Kieu et al (2015), and Ma

et al (2013) also undertook 𝑘-means as a second step in their analyses, while Morency

et al (2006), Basu (2018), and Fissinger (2020) used only 𝑘-means.

This thesis uses a 𝑘-means approach. DBSCAN or soft classification using Gaus-

sian Mixture models are more equipped to handle outliers and HAC offers a visual

interpretability that could be advantageous for policy [43]. However, they are less

efficient to run on large datasets like ours, which contains 1.6 million riders in the

baseline and up to 2.02 million riders in the time periods used for model robustness

checks [43, 48].
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3.4 𝐾-means clustering for customer segmentation

3.4.1 Background on the 𝑘-means method

We establish pre-pandemic transit passenger segments by applying 𝑘-means clustering

to processed AFC data from the pre-pandemic baseline. Given a value for the number

of clusters, 𝑘, and a data set of 𝑛 points in 𝑅𝑑, 𝑘-means finds a set of 𝑘 points in 𝑅𝑑

to be cluster centroids [43]. That is, using each of the selected features 𝑋 associated

with 𝑛 observations, we partition the data points into 𝑘 clusters minimizing the mean

squared distance from any point to its closest centroid 𝜇𝑗:

𝑛∑︁
𝑖=0

min
𝜇𝑗∈𝐶

‖𝑥𝑖 − 𝜇𝑗‖2 (3.1)

We use the 𝑘-means implementation in the scikit-learn package written in Python,

which approximates 𝑘-means with a generalized version of Lloyd’s algorithm [49, 50].

The heuristic is based on the property that the optimal placement of a center is at

the centroid of its associated cluster. Given any set of 𝑘 centers 𝑍, for each center

𝑧 in 𝑍, let 𝑉 (𝑧) be its neighborhood (ie, its Voronoi cell). Then, Lloyd’s algorithm

does the following [49]:

1. Initialize 𝑍 in 𝑅𝑑

2. Assign each of the 𝑛 items in the dataset to the closest 𝑧, creating 𝑉 (𝑧).

3. Move every 𝑧 to the centroid of 𝑉 (𝑧). Update V(z) by recomputing distances

from each item to its nearest center.

4. Repeat the above step until the convergence condition is met—i.e., when no

data item changes cluster upon recalculation.

This process converges to a local minimum for the sum of squared distances, but

is not guaranteed to converge to a global minimum. Effective initialization or seeding

of 𝑍 to enable more efficient implementations of 𝑘-means with higher likelihood of

attaining the global optimum has been an extensive field of study [42, 51, 43]. We
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use the 𝑘-means++ seeding method included in scikit-learn, originally proposed by

Arthur and Vassilvitskii, to improve our chances of locating the global minimum [42].

𝐾-means++ also has a faster run-time at 𝑂(𝑙𝑜𝑔 𝑘) [42]. Additionally, we run 300

iterations for each value of 𝑘 to avoid being trapped in a local solution.

𝐾-means requires a distance measure to capture and minimize dissimilarity. As

shown in Equation 3.1, we use Euclidean distance, a common choice in applications

like this where features are continuous variables [52, 53, 54]. Typically, clustering

based directly on autocorrelated features like time series of AFC taps cannot be

done using Euclidean distance and require more complex metrics like cross-correlation

distance. However, because our clustering is run on features extracted from the time

series data, we do not encounter autocorrelation and its resulting complications [55].

Further, Euclidean distance is necessary for the Davies-Bouldin index we rely on to

set the hyperparameter, 𝑘 [56].

Analysis conducted with 𝑘-means has to be cognizant of several concerns in ad-

dition to the three already mentioned (possibility of falling into a local optimum,

dependence on initialization, and computational intensity) [57]. First, this clustering

algorithm requires users to manually set 𝑘, which is time-consuming and subjective

in unsupervised cases where the natural groupings in the data are not known. To

address this, we take the commonly used approach of leveraging the Davies-Bouldin

index and elbow heuristic to give scientific guidance to our hyperparameter selection

(Section 3.4.4). Second, 𝑘-means is sensitive to isolated outliers which can pull cal-

culated centroids far from the optimum. We address this by removing clear outliers

from our data prior to clustering (Section 3.4.3). Third, 𝑘-means tends to produce

rounder and more evenly sized clusters. This relates to the development of 𝑘-means

as a clustering method based on variance without consideration of covariance, which

also means we must avoid using highly correlated features [43]. We discuss our feature

selection process in Section 3.4.3.

Despite its limitations, 𝑘-means is extensively used on large-scale human activities

data because of its relative efficiency in the unsupervised clustering setting. Extensive

work has been done to enable faster, more efficient implementation of 𝑘-means over
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larger datasets, without requiring unreasonable data storage capacity [58, 59, 43].

Dong et al. (2015), for instance, applied this method to call detail records in Beijing

for the purpose of partitioning the city into land use zones and traffic zones. Zhang et

al. (2020) used 𝑘-means on transit smart card data to identify areas of Wuhu, China

where vulnerable populations follow similar travel behaviors—a setting similar to the

topic of this thesis.

3.4.2 Data pre-processing

As a first step, passengers were separated into two groups based on the number of

days they were active in the system. Those with one or more trips on only a single day

were put into the single-day category, while those with trips on multiple days were

put into the multi-day category. We made this high-level separation prior to creating

features for 𝑘-means. Since we cluster on temporal attributes, many potentially useful

measures of ridership intensity—e.g., days of active usage—take on only a single value

(i.e., one day) for the single-day users that make up 43% of cards recorded in the pre-

COVID baseline. Thus while these ridership intensity features have variability and

can be key to partitioning multi-day riders, they do not contribute to the large portion

of single-day riders in our data, who further can reasonably be expected to behave

in ways distinct from recurrent users. Lastly, the transient nature of the single-

day riders’ system engagement is highlighted by the fact that 75.5% of single-day

users possessed the more temporary CharlieTickets; by contrast CharlieTickets were

only 19.8% of multi-day users during the baseline. This type of manual separation

between major rider groups has been used in previous literature where clear behavioral

distinctions were known a priori [46, 32].

There is potential for mis-categorization for those who entered or left the system

at the boundaries of our sampled timeframe—e.g., multi-day users who stopped riding

the MBTA on January 13 would be miscategorized as a single-day user even if they

had ridden every day in the preceding week. However, we assume that this effect is

small compared to our full dataset. As we will see in chapter 4, the clear-cut nature of

our single-day rider results suggest there was not much contamination from multi-day
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users mis-categorized due to "boundary effects." Overall, we found that 57% of card

IDs were multi-day, and the remaining 43% single-day.

3.4.3 Feature creation/selection

With processed datasets in hand, the next step is to identify features within the

data with which 𝑘-means can efficiently partition the passengers. Some smart card-

based studies apply clustering techniques directly to the raw time series of taps. For

example, He, Agard, and Trepanier (2017) used this type of approach with hierarchical

clustering, segmenting transit riders in Gatineau, Canada based on daily ridership

behaviour [55]. Briand et al (2017) applied a Gaussian mixture generative model to

disaggregated time series of rider taps [14].

Meanwhile, other authors constructed features from the raw data prior to analysis.

El Mahrsi et al (2017) aggregated taps into 1-hour bins [46]. Basu (2018) applied

principal component analysis (PCA) to AFC to create orthogonal features that work

well for 𝑘-means [26]. Zhang et al (2021) calculated more aggregated passenger-level

metrics such as travel frequency and time entropy to use as features [54]. Ma et al

(2013) created features from temporal data, like number of active days logged by a

smart card and indicators for similar boarding times [29].

The diversity of methods for feature creation in the literature reflects the multiple

approaches to this question of dimension reduction. The approaches usually fall into

two categories. One is feature selection, which searches for irrelevant original features

to exclude, and also sometimes applies feature weighting to selected features. The

other is feature extraction, in which new features are created from the originals. This

thesis, similar to Fissinger (2020), Ma et al (2013) and Zhang et al (2021), first

uses feature extraction to create key temporal variables from ODX data; it then uses

feature selection to pick out the best extracted features for 𝑘-means [32, 29, 54]. Since

our study aims to provide interpretable input features to the clustering that can be

directly translated into urban planning dialogue, we chose this approach of extracting

more policy-relevant features from the ODX time series for clustering, rather than

attempting classification on the raw time series.
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We also decide to apply 𝑘-means only to temporal data, while as discussed in

Chapter 2 the literature sometimes clusters based on spatial data as well. Tempo-

ral patterns are useful for understanding user habits and network flows, which are

essential for system operations and tracking how passenger habits evolved during

COVID-19. Spatial considerations are also essential for transit planning and under-

standing the pandemic’s equity impacts on transit usage. The temporal dimension

is, however, the one that is ubiquitous across passenger segmentation studies, with

multiple authors finding that the frequency and temporal profile of daily ridership

are especially key for segmentation [14, 46, 28, 31, 30]. Further, working with spatial

data for the MBTA is limited by the fact that AFC does not collect alightings, only

boardings. Using spatial features would also require inferring home locations and

assuming some similarity of riders to the neighborhoods of their trip boardings [32].

This would add further uncertainty to the data that forms the basis of our cluster-

ing. Thus, we conservatively use the spatial information from AFC only during our

profiling stage.

Our feature extraction process closely follows Fissinger (2020) and Basu’s (2018)

procedure prior to the PCA. We focus on creating temporal variables that capture

the frequency and timing of rides, and variables that reflect modality which is central

to operations planning [26, 32]. Final features design was done with input from the

MBTA. Basu’s subsequent PCA step has the advantage of producing an orthogonal

basis supportive of more robust 𝑘-means clustering. However, PCA results are gen-

erally of low interpretability and therefore less fitting for this thesis’s audience [60].

We generate the following set of possible features from among which to select:

1. % peak journeys: The share of journeys on each card/ticket that begins

during peak hours (6:00-9:00 and 15:30-18:30). While MBTA morning peak

hours are officially 6:30-9:00 AM weekdays (i.e., that is when service runs more

frequently), our partners at the MBTA advised we start our morning peak

window at 6:00 AM, since a notable share of commuters have embarked on

their travels by then. The daily transit ridership profile in Figure 5-3 confirms

this. Meeting peak demand is critical for transit agency operations, and reflects
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one of the biggest areas of ridership change during COVID-19. Overall, 64% of

cards in the baseline had peak-period journeys.

2. % journeys with a transfer: The share of trips on each card/ticket with a

bus-related transfer, as labeled through trip chaining by ODX. In MBTA data,

rail-to-rail transfers are not captured as they are within-station, and ODX infer-

ence accuracy for it is unverified. Further, from a rider experience perspective,

transferring outside for a bus is a more significant and negative experience than

transferring trains inside a station, so there is some justification for differenti-

ating between rail-rail and bus-rail transfer experiences. Only 24% of all cards

in our baseline period had bus-related transfers.

3. % weekend trips: Share of trips on each card/ticket taken on a weekend

or holiday, as defined by the MBTA weekends and holiday service calendar.

Overall, 42% of cards had weekend or holiday travel, and the distribution is

fairly bimodal with modes at either end of the range.

4. % trip stages by bus: Share of trip stages on each card/ticket taken by bus.

Overall, 41% of smart cards had bus-based stages in the baseline.

5. Active range (days): The number of days between the first and last use of

the smart card during the study period. This is used as a measure of ridership

persistence. In the baseline, the peaks of the distribution are at 1 day and

around 29+ days (out of 35 total).

6. Average trips per active week: Average number of trips taken during an

active week (i.e., excluding weeks with no trips), used as a measure of usage

intensity.

7. Active days: Number of days during the study period when the smart card

was used.

8. Active weeks: Number of weeks during the study period when the smart card

was used. This is highly correlated with active days, and we anticipated one of

54



these will drop out during the feature selection process.

The last four potential features were normalized to [0, 1] to align with the mag-

nitudes of the percentage variables, since variations in cardinality can interfere with

𝑘-means.

We then picked our final feature sets for multi-day users and single-day users,

separately. The goal was to select a subset of possible features that is useful for cus-

tomer segmentation, but also sparse enough to be interpretable. We use two common

feature selection methods, greedy sequential forward selection and sequential back-

ward selection [60]. Greedy selection starts from an empty feature set, and on every

step adds the most rewarding feature from the unselected ones. Because this tends to

over-select features, we compare this against backward selection, which starts from

the full feature set and removes the least rewarding feature each round until some

stopping criterion is hit. In either case, the decision of whether a feature is "reward-

ing" is typically made by ranking using entropy scores, redundancy measures (which

penalizes highly correlated features), or relevance measures (an opposite approach

favoring correlated features, assuming correlation reflects cluster structure) [60, 61].

Our method is closest to ranking by entropy scores. We conduct a grid search

running greedy and backward selection for 𝑘 = 5 to 7 for multi-day users and 𝑘 = 2

to 5 for single-day users, randomizing the order of the features since these sequential

selection methods are influenced by the order of the features tried. Each time a

feature is added or removed, we calculate the "correspondence score," defined as the

share of datapoints that did not shift clusters between different model runs [26, 62].

Specifically, we take the points in the baseline period and cluster it using the

existing feature set to produce labels 𝐿1. We then cluster it again using the new

proposed feature set to produce labels 𝐿2. Thus, each passenger now has two labels,

generated by models trained on the two different feature sets. If arranged in a matrix

with 𝐿1 as the rows (𝑖) and 𝐿2 as the columns (𝑗), two models that produce similar

clustering results would therefore have high values along the diagonal (i.e., more

matched labels represented by the elements 𝑎𝑖𝑖) and low values away from the diagonal

(i.e., fewer mis-matched labels represented by the elements 𝑎𝑖𝑗). Using this structure,
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the correspondence score is defined as follows:

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =

∑︀𝑖=𝑛
𝑖=1 𝑎𝑖𝑖∑︀𝑗=𝑛

𝑗=1

∑︀𝑗=𝑛
𝑖=1 𝑎𝑖𝑗

(3.2)

This definition allows us to quantify the level of "similarity" or "agreement" be-

tween two models applied to the same dataset. If the correspondence score is above

90%, it means that over 90% of the data points did not change labels with the addi-

tion/removal of the latest feature under consideration. At this point, we consider the

latest feature assessed to be non-essential and discard it.

Though we also noted the changes in entropy during the feature selection process,

we did not use entropy scores directly for our evaluation. This is because the meaning

of any particular entropy value is hard to interpret, and therefore it is difficult to gauge

where to set the appropriate cut-off for variable inclusion. Meanwhile, correspondence

scores give a clearly interpretable way to assess the clustering impact of the latest

feature under consideration. The features selected by this process for the multi-day

and single-day user groups will be presented in chapter 4.

Finally, as previously noted, 𝑘-means is sensitive to outliers. We therefore ex-

cluded passengers with clear outlier values along selected features. This translated to

excluding 1,549 riders with average journeys per week in the top 0.1% (i.e., over 25.3

journeys/week).

3.4.4 Selecting the hyperparameter 𝑘

In 𝑘-means clustering, we must provide a value for the hyperparameter, 𝑘. Common

methods for finding 𝑘 include the elbow heuristic [54], Davies-Bouldin Index (DBI)

[56], and silhouette scores [60]. We choose DBI and the elbow heuristic because

these methods are computationally easier to calculate than silhouette scores for larger

datasets. DBI aims to minimize intra-cluster variance and maximize inter-cluster

distance, thereby identifying distinct, compact clusters. It is defined as the average

similarity between each cluster 𝐶𝑖 and the one most similar to it, 𝐶𝑗. The similarity

metric 𝑅𝑖𝑗 trades off the cluster diameter 𝑠𝑖 and the distance between the cluster
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centroids of 𝐶𝑖 and 𝐶𝑗. We use the sklearn implementation of DBI in Python, which

defines 𝑅𝑖𝑗 as

𝑅𝑖𝑗 =
𝑠𝑖 + 𝑠𝑗
𝑑𝑖𝑗

(3.3)

So DBI is:

𝐷𝐵𝐼 =
1

𝑘

𝑘∑︁
𝑖=1

max
𝑖 ̸=𝑗

𝑅𝑖𝑗 (3.4)

DBI only requires calculating distances of each point from its nearest centroid;

this is much less intensive than silhouette scores, which requires calculating distances

between every pair of points. Thus, DBI is more tractable for large datasets like

ours. The elbow method, on the other hand, is even simpler–it plots the fall in

inertia1 as 𝑘 increases, and the range where the rate of decrease in entropy slows

as more clusters are added marks the optimal number of clusters. Further, DBI

uses Euclidean distance, which works well with our data’s continuous features. DBI

also requires features to be normalized or standardized, since wide variations in the

cardinality of features would skew outputted values [60]. This is another reason

behind our decision to normalization features to [0,1].

There are additional improvements that can be made to our methodology. Fsea-

tures can be normalized by cross-projection to reduce bias [43]. Silhouette scores,

which has been validated as performing better than DBI in selecting k, could be run

if more computational power were available. Other clustering methods could also be

used and their outcomes compared, given greater computational power to handle the

longer running times. For example, DBSCAN or Gaussian mixtures can be leveraged

to diminish the influence of outliers [14].
1The sum of squared distances.
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3.5 Robustness check: Temporal stability of customer

segments

As discussed in Section 3.2, the baseline pre-COVID period upon which we base our

analysis is a 5-week period from January 13 to February 16. However, this baseline

period is in the winter and is also reflective of conditions in early 2020. There is the

possibility that in other seasons and in other years, ridership patterns would point

to a different customer segmentation; i.e., there is natural temporal drift in customer

behavior and segmentation. Since the COVID period stretches across multiple seasons

and at least two years, having a stable baseline customer segmentation is essential

for not confounding ordinary background shifts in ridership patterns, such as those

studied in Briand (2017), with COVID-induced shifts [14]. Therefore, we need to

perform robustness checks for our 𝑘-means model against data from at least one

other year and non-winter seasons.

We perform these checks with 5-week periods in each season of 2019, similar to

the procedure in Goulet-Langlois (2016) [62]. This includes January 14-February 17

2019 for the winter, April 1-May 5 2019 for the spring, August 19-September 23 2019

for the summer, and September 23-October 27 2019 for the fall. The summer sample

is close to the fall sample because we chose it to match our 2020 COVID period,

which was late in the summer due to the fact that bus AFC data was zeroed out until

July 16, 2020 because of MBTA’s bus rear-door boarding procedures for COVID-19

prevention.

For each robustness check period, we followed the same process as previously

described to train a 𝑘-means model on that sample and discover underlying behavioral

clusters. Then, we separately run each sample through the 𝑘-means model trained on

the baseline period data. This means we generated two separate cluster partitions for

each stability check period—one using the model trained on the baseline data, and

another using the model trained on the robustness check period data itself.

We then apply correspondence scores to compare the results from the two models,

as described in equation 3.2. Note that unlike before, the correspondence score is
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being used to compare models derived from two different sets of training data, instead

of two different feature sets drawn from the same training data. Again, a higher

correspondence score indicates greater similarity or agreement in the classification

decisions of the two models, and therefore greater temporal stability of models trained

on two different time periods.

To calculate appropriate correspondence scores, we also need to identify which

clusters from one model counts as a "match" with a cluster from the second model. We

do so by assuming that the label from the second model most frequently represented

in the members of a particular label produced by the first model is the matching

cluster. For example, if Cluster A from Model 1 is labeled as Cluster D 95% of the

time by Model 2, and only 5% of the time as Cluster A, B, or C, we will assert that

Model 1 Cluster A is matched to Model 2 Cluster D.

Even though we can automatically identify matching clusters between pairs of

models using the above procedure, it is still worth supplementing the correspondence

scores through a qualitative comparison of the centroids. This allows us to assess

how similar the representative point in each cluster is across models, when measured

against the clustering features we have chosen. Finally, we examine the percentage

of total riders in each cluster produced by the robustness check versus the baseline

period model, to see whether the distribution of cluster membership has shifted.

3.6 Optimal Classification Trees (OCT)

The goal of this thesis is to create and track interpretable, policy-relevant customer

segments through COVID-19 in Metro Boston. Therefore, we examine optimal clas-

sification trees (OCT) as a method for offering a more intuitive understanding of the

key factors that partition riders into different behavioral groups. The OCT method

used is based on Bertsimas, Orfanoudaki and Wiberg (2019) and Bertsimas and

Dunn (2017), with an implementation the authors made freely available online at

https://www.interpretable.ai/ [63, 52].

Decision trees are widely used for classification, and are often favored for their
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human-interpretable outputs compared to more accurate but much less parsable meth-

ods [63]. However, one disadvantage of single decision trees (as opposed to ensembles

like random forests, which are again less interpretable) is that the splits in the tree

are chosen in isolation, without taking into account the forward implications of the

future splits a particular decision generates. OCT skirts this problem by applying

mixed-integer optimization (MIO) to form the entire decision tree in a single step,

thereby allowing each split to be determined with full knowledge of all other splits.

Because it considers forward splits, it is not myopic like typical decision trees and can

better capture the structure of the underlying dataset. To avail ourselves of the leg-

ibility and interpretability of OCT in an unsupervised clustering setting, we use the

labels produced by 𝑘-means to turn the problem into a supervised one and apply an

optimal decision tree (OCT) to observe the decision criteria upon which the clusters

were originally split by 𝑘-means [52].

Building on the classification and regression tree (CART), the univariate OCT

splits along one decision variable at a time. However, because the problem is solved

in one step, there is no longer a need to update impurity measures when growing

the tree as is done in more traditional decision trees. The "optimal tree problem"

formulation given by Bertsimas and Dunn (2017) is reproduced below. 𝑅𝑥𝑦(𝑇 ) is tree

𝑇 ’s misclassification error on the training data (𝑥𝑖, 𝑦𝑖) for 𝑖 = 1,...,𝑛. A complexity

parameter 𝛼 is used to control the complexity-accuracy trade-off for 𝑇 . |T| is the

count of 𝑇 ’s branch nodes (hence the penalty term is attached to it). The number of

points in leaf node 𝑙 (denoted 𝑁𝑥(𝑙)) must be at least 𝑁𝑚𝑖𝑛.

min 𝑅𝑥𝑦(𝑇 ) + 𝛼|𝑇 | (3.5a)

s.t. 𝑁𝑥(𝑙) ≥ 𝑁𝑚𝑖𝑛, (3.5b)

∀𝑙 ∈ leaves(𝑇 ) (3.5c)

The hyperparameters are complexity and tree depth. These were tuned using grid

search; a smaller complexity penalty and greater depth leads to a "shrubbier" tree
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that produces fewer misclassifications but is more complex to interpret.

This method for using OCT to aid in the interpretation of clustering problems

is drawn from Bertsimas et al (2019). However, due to computational limitations

and the large size of our dataset, we do not follow the recommended approach of

simultaneous deciding the clustering and the OCT structure. Further, the authors

of the referenced paper have not yet made packages implementing the simultaneous

method available. Instead, we use the alternative method in which we first run

𝑘-means to generate labels for our baseline dataset, and subsequently apply OCT.

Though this approach does not produce optimal feature selection and clusters like

the simultaneous method, this is acceptable in our use case since our purpose is to

interpret rather than to further optimize our clusters. The result of this portion of

our analysis is one OCT for the multi-day passengers, and a separate OCT for the

single-day passengers.

3.7 Cluster profiling

We cluster on the temporal and modal attributes captured by smart cards, that is,

on rider behaviour only. However, MBTA AFC data also provides smart card meta-

data such as the use of passes versus tickets, company sponsorship, and card type

(e.g., discounted cards for vulnerable populations). Thus, to help us understand the

demographics of each cluster and equity implications across clusters, we cross-tabulate

clusters against the available smart card meta-data. The meta-data is available for

all cards in use at any time, so we are also able to assess how the profiles changed

from the baseline to the COVID-19 period.

ODX also includes boarding locations for each trip stage. This allows us to conduct

some spatial profiling of riders in each cluster, by 1) examining the top 10 boarding

locations listed for each cluster, and 2) assessing the entropy of boarding locations

at the passenger level and comparing the distributions of boarding location entropy

across clusters [14]. To measure this, we calculate the Shannon entropy for each

passenger, with 𝑖 indicating a station or bus stop [64]:
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𝐻(𝑋) = −𝐸[𝑙𝑜𝑔𝑃 (𝑋 = 𝑥𝑖)] = −Σ𝑛
𝑖=1𝑃𝑖𝑙𝑜𝑔𝑃𝑖 (3.6)

Entropy represents the probability of a smart card validation at stations most

active for the card, and is a measure of the dispersion/variation in station usage for

that card. This gives us a sense of the geographical breadth across which members of

each cluster tend to use transit, with higher entropy scores corresponding to greater

geographical spread.

For the purposes of cluster profiling, we also complement our AFC/ODX data

with data from periodic customer surveys conducted by the MBTA. The latest 2015-

2017 System-wide Passenger Survey captures rider socio-demographics, automobile

availability, and use of alternative modes. The data was collected by surveying riders

at each subway station and on board buses along each bus route [65]. This can be

matched to our trip origin and bus route data to further profile the rider composition

of each cluster in policy-relevant ways.

However, no similar survey was conducted during COVID-19. Thus, unlike the

smart card meta-data which is available for all time periods, the survey can only

be used to give us a sense of the baseline demographics and car ownership patterns

common across clusters. It cannot be used for tracking how these profile character-

istics evolved during COVID-19. To do so with high granularity would require an

additional survey to be conducted during the pandemic.

Differences in the method of data collection for the survey versus AFC/ODX

also limit our ability to fuse these datasets for analysis. For its rail component, the

passenger survey was conducted by soliciting anyone in a subway station, whether

they were entering, transferring or exiting—this is in contrast to AFC/ODX, which

captures tap-ins (i.e., only those entering a station). Therefore, joining survey data to

our ODX database by station is not completely accurate. For bus and above-ground

Green Line stations, the survey data is mostly at the route-level. This gives us very

limited specificity, especially considering that many bus and Green Line routes pass

through neighborhoods with diverging socio-demographic characteristics. Given these
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constraints, we only use the survey data to get a broad sense of where differences in

baseline cluster socio-demographics may be, and how observed travel behaviors are

correlated with factors such as car ownership and other available modal alternatives.

3.8 Churn analysis during the COVID-19 pandemic

There is limited literature tracking the evolution over time of customer segments,

especially during extended abnormal emergency periods like COVID-19. Our work in

this domain most closely follows that of Briand et al (2017), which tracked the compo-

sition of clusters and churn rates over five normal time periods [14]. However, unlike

Briand et al (2017), we specifically wish to describe the incremental churn associated

with the abnormal COVID-19 event. We thus need to compare the atypical situation

of tracking clusters from baseline into COVID-19 periods, against the "background"

or "natural" churn seen during similar seasons in normal years. Therefore, in all

our churn analysis, we compare the cluster evolution from baseline 2020 (winter) to

pandemic-period 2020 (summer) against winter to summer 2019.

We examine change over time in two ways:

1. Examine all rider accounts during COVID-19, including both new

and pre-existing passengers. We apply the model trained on the baseline

period data to the full set of pandemic period users to understand how cluster

membership and the share of each cluster in the overall population changed

during COVID-19. This gives us a comprehensive view of ridership patterns

during the pandemic, including those who decided to enter the MBTA system

during the crisis. This view is helpful for the MBTA as a transit operator trying

to better understand the full picture of the new demand patterns they are facing

during the pandemic.

2. Track pre-existing baseline-period riders through COVID-19, to as-

sess churn and cluster-switching. This gives us a narrower, longitudinal

view of how riders who were with the system at the start of the year chose to
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avoid transit, or shift their pattern of usage, in response to the pandemic and

associated restrictions and transit service changes. To produce this analysis,

we still apply the model trained on the baseline period data to the summer

2020 data, but only for cards that had already registered in the system in Jan-

uary/February. While this approach gives a less complete view of pandemic-era

travel behavior, it gives us a clearer sense of how individuals in the system

adapted to the crisis.

We apply the same two methods to compare winter 2019 versus summer 2019

data, in order to create a benchmark for "background" churn and cluster switching.

Further, we again utilize smart card meta-data to profile clusters during COVID-19,

in order to determine whether stickiness to transit usage is unequally distributed

across socio-demographic segments. Lastly, we calculate Shannon entropy and take

stock of the most active stations, to get a sense of whether the geographic spread of

transit usage and the busiest locations in the system have changed due to COVID-19.

An additional method that could be applied for pandemic-period analysis is to

re-train a 𝑘-means model on the COVID-19 period data to generate a new clustering,

which can capture any shifts in cluster number or centroids during the pandemic.

Because the clusters produced from this may be defined differently than the ones

from the baseline model, this approach makes it more difficult to compare baseline

to COVID-19 era for measuring churn and cluster-switching in an interpretable way.

However, future work providing a pandemic-period clustering and delving into meth-

ods for quantifying shifts in cluster centroids could provide a valuable complementary

analysis on how COVID-19 shifted the landscape of ridership behavior.

3.9 Policy Matrix

The quantitative analysis provided a window into the demand side of pandemic-era

transit usage. However, it does not capture the supply side, or the stakeholder and

planning complexities facing transit agencies trying to adapt to an unprecedented sit-

uation unleashing widespread uncertainty. To contextualize the policy-relevant con-
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clusions drawn from our quantitative analysis, we studied COVID-19 transit agency

responses across Boston and 12 other U.S. urban centers with relatively extensive

public transit systems. We also assess 12 international urban centers in Asia, South

America, and Europe, to broaden the number of case studies from which we can draw

lessons learned.

For each system, we collect the following information in order to get a view of

the natural state of the agency, how it was impacted by the pandemic, and how it

responded.

1. Transit usage and system design prior to the pandemic. Differences in sys-

tem design across cities can strongly influence the pandemic’s ridership impact

and the transit agencies’ response. We take this into account in order to better

assess where cities are comparable, and where they are not.

2. Transit agency structure and funding mechanisms during normal years.

The structure of authority and the financial health of transit agencies prior

to the pandemic can influence the rapidity of the agencies’ responses, and the

amount of funding they can dedicate to sanitation efforts, maintaining service

frequency, and ramping up for recovery.

3. COVID-19 severity and its impact on transit ridership and revenue,

including any pandemic-related funding received. Here, we seek to clarify ways

in which the pandemic had similar impacts on other major transit agencies,

and areas where its impact may have differed due to variations in COVID-19

response. Revenue and emergency funding are also key variables to track if we

are to understand the constraints upon agencies’ ability to effectively operate

during the pandemic.

4. COVID-19 responses by transit agencies, including mask mandates, service

cuts, sanitation, ventilation, social distancing guidelines, case tracking, COVID-

19 communication, and enforcement of instituted prevention measures.

We synthesize this information into a matrix format to facilitate comparison across

65



cities (matrix columns) for each data category (rows). The main goal of this com-

parative exercise is to understand whether the MBTA’s responses aligned with that

of other transit agencies, whether there are lessons learned from other locations that

can translate into the MBTA context, and whether there are common obstacles that

posed an insurmountable challenge to all agencies. We also highlight structural as

well as cultural differences that can limit transfer of policies across cities.
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Chapter 4

Baseline transit rider clusters:

Results and interpretation

4.1 Overview

Applying the 𝑘-means clustering methodology to ODX data in our baseline pre-

pandemic period of winter 2020 produced seven multi-day and three single-day MBTA

rider clusters. The two largest multi-day clusters represent categories of bus-oriented

riders, while the remaining five capture variegated ridership behavioral among rail-

oriented riders, with occasional rail riders providing the greatest variety. Among

multi-day clusters, the results of optimal classification trees (OCT) indicate that pas-

sengers’ primary transit mode (bus or rail) form the first major variable upon which

they were partitioned in the process of sorting passengers into behavioral clusters.

This is followed in the tree structure by the frequency of transit use and finally the

particular time of day during which a passenger typically enters the transit system.

Single-day riders, on the other hand, were rail-dominated and fell into clean categories

based upon the time of day and time of week of their ridership.

Figure 4-1 summarizes the features selected for clustering, and the multi-day as

well as single-day clusters that resulted from the 𝑘-means procedure. Multi-day clus-

ters are numbered 1 through 7, and single-day 8 through 10. Separately within

the multi-day and the single-day sections, clusters are listed in descending order of
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passenger count. The values listed in the leftmost panel of the table are generally

𝑘-means cluster centroids. However, unlike for the multi-day, for the single-day only

peak share and weekend share were selected as clustering features. Thus the values

provided for the remaining features of single-day clusters are averages rather than

𝑘-means centroids.

Figure 4-1: Feature centroids by cluster for multi-day users and single-day users,
cluster share of total ridership and total journey count in baseline 2020

Figure 4-2a and 4-2 illustrate the relative size and thus operational importance of

each cluster, in terms of their share of the total rider pool and their contributions to

the total journey count. From these charts and the heatmap table, it is evident that

the large number of single-day riders are extremely small contributors to the actual

usage of the MBTA network. Thus, we focus most of our analytic attention in this

and upcoming chapters on the multi-day rider clusters.

The rest of this chapter fleshes out the cluster results summarized above, then pro-

vides interpretations of each behavioral cluster based on complementary data pulled

in to give a clearer profile of the passengers sorted into each cluster. Following this

structure, we start with the results of cluster feature selection, 𝑘 selection, and 𝑘-

means results—for multi-day, then single-day clusters. We then report on our tem-

poral robustness checks, which indicate that the baseline 𝑘-means model we trained

on winter 2020 pre-pandemic data is applicable across adjacent years and between

seasons. This gives us more confidence going into the subsequent COVID-19 analysis

chapter, in which we must apply our baseline model trained on winter 2020 data to

ridership behavior during a different season, summer 2020.

Next, this chapter profiles the passenger composition of each cluster using two
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(a) Cluster contributions to passen-
ger count and journey count

(b) Distribution of passenger journeys by cluster,
baseline period

Figure 4-2: Cluster size in terms of passengers, journeys

data sources—smart card meta-data included in AFC and ODX, and less granular

data from the MBTA’s 2015-2017 System-wide Passenger Survey that gives informa-

tion on demographics and alternative modes. The smart card meta-data captures

each passengers’ usage of full adult fare products, reduced or free fare products, and

corporate-sponsored Perq passes. Analysis suggests that frequent bus riders, occa-

sional bus riders, and fairly frequent weekday off-peak rail riders are the behavioral

clusters capturing the majority of reduced-fare passengers, though they differ in the

sub-segments of reduced-fare riders that they tend to represent. The System-wide

Passenger Survey complements these conclusions, suggesting that the bus clusters

in particular may capture lower-income households, people of color, and those with

fewer alternatives to transit use. These conclusions suggest the evolution of these

bus clusters and the fairly frequent weekday off-peak rail rider cluster needs to be

carefully monitored going into the pandemic and post-pandemic recovery, to support

service for those whose behavior indicate greater levels of transit dependence.

Perq smart card meta-data indicates frequent rail commuters make up a dispro-

portionately large share of all Perq users (39%) compared to their share of the general

rider pool (7%). Since Perq historically contributes one-third of MBTA fare revenues

which are in turn around one-third of operating revenues, this suggests that the fre-

quent rail commuters cluster is key to post-pandemic revenue recovery [66]. However,
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Figure 4-3: Distribution of candidate clustering features for multi-day riders

managing ridership and revenue recovery by this group will look very different from

managing recovery for other clusters, because it will be heavily influenced by MBTA

negotiations with corporations subscribing to Perq.

4.2 Baseline transit rider clusters: Multi-day riders

4.2.1 Selected clustering features

As discussed in Chapter 3, our clustering analysis was performed separately for the

multi-day and single-day riders because they offer different sets of temporal features

as candidates for clustering. There were 880,738 multi-day riders in our baseline

data, or 57% of all riders that interacted with the system during that time. Of

these, 80.2% were CharlieCard users, rather than users of the more temporary paper

CharlieTickets—as could be reasonably expected of recurrent transit users.

We began the feature selection process by considering all eight features created

70



from the underlying ODX data. Descriptive analysis like Figure 4-3 shows that,

because most passengers had many trips over a substantial number of days, the multi-

day passenger data is much smoother compared to the single-day passenger data that

we will later show in Section 4.3, although there are still longer right tails especially

for the share of journeys with bus transfers. The share of peak journeys taken by

commuters is relatively evenly distributed, indicating a mix of commuters and non-

commuters in the data. Meanwhile, the share of weekend journeys and mean journeys

per active week show substantial variation as well, but mostly in the lower half of

the variables’ ranges. The share of bus-based trip stages and the active range were

relatively bi-modal, suggesting the dataset may be split between bus-heavy users

versus rail-heavy users, and between frequent versus more occasional riders. Further,

the contrast between the bi-modal nature of active range (and also active weeks),

versus the right-skewed shape of active days, suggest that there is a substantial group

of riders who used transit over a large time window, but were not using the system

at a very high frequency within that window (e.g., riders who rode twice per week for

all five weeks, as opposed to riders who rode five times per week for all five weeks).

We also check the correlation matrix between the candidate features. Since 𝑘-

means does not capture covariance between features, we prefer the final feature set

to show low correlation. Figure 4-4 displays the correlation matrix, and we examine

this with the heuristic that correlations greater than 0.7 in absolute value indicate

pairs of features that should not jointly enter our final feature set. The figure shows

that active range is, as expected, highly correlated with active days (𝑟 = 0.75); active

range is also highly correlated with active weeks (𝑟 = 0.93). Active days and active

weeks are highly correlated at 𝑟 = 0.8. We therefore expect that only a subset of less

correlated usage intensity features will be selected as our final feature set.

On the other hand, the correlation between peak period ridership and weekend

ridership are only of medium strength at 𝑟 = -0.47, because there is substantial off-

peak weekday ridership in the system. Further, the correlation between passengers’

share of trip stages by bus and share of journeys with transfers is fairly limited at

0.39, reflecting the large share of non-transfer trips observed in Figure 4-3. Even if
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Figure 4-4: Correlation matrix among candidate clustering features, multi-day riders

we filter out the 39.6% of passengers who did not use bus at all during the baseline

period, we find that mean bus-related transfer share is relatively low at 20.2%, though

the longer right tail remains. This alleviates our concern that bus share and transfer

share would be heavily correlated due to the nature of AFC data, which only captures

bus-related transfers.

We ran the greedy and backward feature selection methods for 𝑘 values of 5

through 7, since an initial elbow plot analysis with all candidate features suggested

the optimal 𝑘 may be in this range. For a feature to be selected by either method, the

addition or removal of the feature had to result in a correspondence score of under

90% — that is, the change in the feature set needs to induce more than 10% of the

passenger labels to switch to be considered significant. For each k-value, we also

randomized the order of the inputted feature list at least five times, to ensure our

results were not biased by the order of features tested in these sequential methods.

Bus share and peak share were universally selected, followed by active range (se-

lected by 88% of runs), weekend share (81%), transfer share (69%), and active days

72



(67%). Average weekly journey intensity was only selected in 33% of runs, so we

excluded it. On runs where active weeks was tested before active days, active weeks

was often chosen instead, suggesting that we could have used either active days or

active weeks as a final feature. However, we chose active days because the correlation

between active range (a feature we will definitively keep) and active days had a lower

correlation of 𝑟 = 0.75, compared to 𝑟 = 0.93 between active range and active weeks.

As discussed in Section 3.4.1, it is preferable to run 𝑘-means with less correlated fea-

tures. Thus, our final six selected features were bus share, peak share, active range,

weekend share, transfer share, and active days.

4.2.2 Selected 𝑘-value

Given the selected features, we ran 𝑘 values from 3 to 10 in order to assess the optimal

𝑘 with the elbow method and DBI. In the elbow method, we looked for the 𝑘 beyond

which the drop in inertia per incremental cluster slowed. This occurred around 𝑘 =

5 in Figure 4-5a. In DBI, we look for the 𝑘 that minimized the DBI score, which in

this case occurred at 𝑘 = 7 (Figure 4-5b) indicating that the features we chose were

successful at creating 7 clearly distinguishable clusters. We therefore proceeded with

seven clusters for multi-day riders.

(a) Elbow plot (b) Davies-Bouldin Index

Figure 4-5: Elbow method, Davies-Bouldin Index results for 𝑘 selection among multi-
day riders
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4.2.3 Multi-day rider clusters

Given the above hyperparameters, we ran 𝑘-means to generate seven distinct clusters

for multi-day riders. We present these below arranged by descending passenger count.

We describe these clusters in terms of the "centroid" value, which is the central or

representative point against which each datapoint is clustered. The heatmap table

shown previously in Figure 4-1 summarizes these feature centroids and, to help con-

textualize the relative operational importance of each cluster, it also indicates the

size of each cluster in terms of riders and journeys taken. Figure 4-6 visualizes each

cluster by its centroids, in order to provide a snapshot of what makes each cluster

unique. Values for each feature are normalized to [0%, 100%] so that we can plot all

features along the same set of radar chart axes (for variables that were not already

percentages, normalization means that a point taking on, for example, the minimum

active days value would map to 0%, and a point taking on the maximum value would

map to 100%).

Finally, to provide a sense of the compactness and distinctness of each cluster, we

visualize the variance of each feature within each cluster using violin charts in Figure

4-7. Wider areas of each violin is where more cluster members are concentrated; the

thicker, dark bar in the middle of each chart represents the interquartile range (IQR,

i.e., the box portion of a box plot).

Cluster #1: Frequent bus riders

The frequent bus riders cluster is the largest, capturing 11% of baseline period pas-

sengers, equivalent to 172,552 people. Given that these passengers were also frequent

users, the cluster contributed by far the largest share of journeys at 35%, equivalent

to 6.7 million journeys. Together, these statistics suggest the out-sized importance of

this bus-oriented group in terms of ridership, system operations, and potentially also

system revenue.

Riders in this cluster were heavy bus users. At the centroid, 75% of trip stages

were by bus. Figure 4-7 indicates that there was a wide spread in bus share within
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Figure 4-6: Characterization of multi-day rider clusters by feature centroids (normal-
ized to 0-100%)
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Figure 4-7: Variation of features within and between multi-day rider clusters
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this cluster (18% to 100%), but the majority of the distribution was above 50%, far

outstripping the bus usage of clusters 3 through 7 where the majority of passengers

took under 10% of their trip stages by this mode. Despite the high bus usage, bus-

related transfers were only moderately common (27% of journeys at the centroid and

with the distribution weighted towards the lower end of the range).

The time of day during which passengers in this cluster entered the MBTA system

is not dominated by rush hour commute trips. Instead, this cluster displays some of

the greatest diversity in the time of day of transit use. The centroid value for the

share of journeys begun during peak hours is moderate at 45%, indicating that the

average frequent bus rider had some peak-period commutes. However, Figure 4-7

indicates that passengers in this cluster ranged fairly evenly between having no rush

hour trips to only riding during rush hour. The only other cluster with somewhat

comparable timing diversity was cluster 2, the occasional bus riders. The rail clusters

(#3-7), on the other hand, show stark time of day specialization among rail riders,

with frequent and occasional rail commuters (clusters 6 and 5 respectively) heavily

skewed towards peak trips, while the remaining rail-oriented riders tended to avoid

those busy commuting hours. The moderate amount of peak travel in this frequent

bus riders cluster, alongside the fact that the centroid value for the share of weekend

journeys is very low at 14%, suggests that this cluster undertakes substantial off-peak

weekday travel and displays wide temporal range in transit usage.

This cluster also hosts some of the most intensive MBTA riders. The centroid

value of active range and active days were 31.98 days and 20.12 days respectively,

indicating consistent usage throughout nearly the full baseline period. Active range

also had relatively little variation across cluster members, according to Figure 4-7.

The number of active days within that window varied widely, but is more heavily

weighted towards the higher end of the distribution. The only other cluster with

a comparable usage intensity as measured by both active range and active days is

cluster 6, the frequent rail commuters.
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Cluster #2: Occasional bus riders

This cluster captured 10% of baseline period passengers, equivalent to 152,429 people.

Because its riders took transit more occasionally, this relatively large passenger pool

only contributed 8% of baseline journeys, or 1.6 million.

Similar to the frequent bus riders, this cluster is heavily bus-oriented. At the

centroid, 76% of journeys were taken by bus. Figure 4-7 suggests that the bus share

is dominated by higher values but is still quite varied among passengers of this group,

as it was for the frequent bus riders. The centroid value for transfer share (26%) as

well as its distribution were also similar to frequent bus riders.

These two bus-dominated groups were additionally similar in displaying wide vari-

ation in the share of peak trips, though among occasional bus riders there were clearer

modes around 0%, 50%, and 100% peak travel. At the centroid, the share of peak

journeys is 37% which is even lower than for frequent bus riders. Occasional bus

riders also tend to engage with the system on weekdays rather than weekends, with

only 14% of journeys taken on weekends at the centroid. Thus, this cluster again

suggests a wider dispersion to the travel schedules of bus passengers, with plenty of

off-peak weekday travel.

The key differentiator between this bus-oriented cluster and the previous one is

transit ridership frequency. Passengers in this cluster had fewer active days overall

(5.48 days at the centroid), and were also active over a smaller window (the centroid

value for active range was 11.91 days).

Cluster #3: Fairly frequent weekday off-peak rail riders

This is the largest group of rail-oriented passengers, capturing 9% of baseline period

riders, equivalent to 134,790 people. Because of the fairly frequent transit usage of

this cluster’s members, it is responsible for an even larger share of all journeys taken

during the baseline period—17% or 3.2 million journeys. The size of this cluster

attests to its importance for MBTA operational planning.

Fairly frequent weekday off-peak rail riders were more heavily tilted toward rail use
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than the bus-oriented groups were toward bus. Bus only contributed 11% of all trip

stages at this cluster’s centroid. More broadly, Figure 4-7 suggests the rail-oriented

clusters (#3-7) across the board had much lower cross-engagement with buses than

the bus-oriented clusters had with rail.

Temporally, travel in this cluster is neither peak-oriented nor weekend-oriented,

with the centroid value for share of peak journeys at only 24%, and for weekend share

at only 18%. This suggests that most travel in this cluster is instead off-peak weekday

usage. Figure 4-7 also indicates that there is much less spread in peak share here than

what we’ve observed so far with the two bus clusters—the entire IQR of peak share

falls within 12% to 37%.

The passengers in this cluster are active over almost the entire baseline period,

with a centroid value of 29.25 days for active range. The number of days they actually

ride transit within that window, 12.87 days at the centroid, is notably lower and

only 45% of the centroid active range value. This is still substantial usage frequency

though, reflecting one trip nearly every other day on average over most of the baseline

period.

Cluster #4: Occasional weekday off-peak rail riders

This cluster is one of three that describe the dispersed travel patterns of occasional

rail users. It captures 8% of all baseline period passengers, equivalent to 127,368 pas-

sengers. Because its members rarely engage with the transit system, its contribution

to the total baseline journey count is even lower at 5%, or only 918,451 journeys over

the five-week window.

This cluster is extremely skewed towards rail, with only 6% of trip stages taken

by bus at the centroid. It focuses on weekday off-peak users, with only 25% peak

journeys and 7% weekend journeys at the centroid. The usage rates are low, with the

centroid exhibiting a short 9.18 days of active range and only 4.07 in actual active

days.
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Cluster #5: Occasional rail commuters

The larger of our two clusters focused on rush hour travel, the occasional rail com-

muters segment captures 7% of baseline period passengers, equivalent to 110,398

riders. It also represents a similar proportion of total journeys, at 6% or 1.2 million.

At the centroid, 85% of journeys in this cluster began during peak hours. Looking

at the broader distribution pictured in Figure 4-7, there is a clear mode at 90% or

more rush hour travel. There is nearly no bus use, and both the active range and

active days are low (11.52 and 6.14 days at the centroid respectively).

Cluster #6: Frequent rail commuters

Though this cluster only represents 7% of all riders or 109,225 people, its intensive

transit usage means that it captures an out-sized share of total journeys—21% or 4.0

million journeys. The high volume of this cluster during the most congested hours

of the day attests to its importance for MBTA operational planning—as does its

relationship to corporate sponsored fare products, which we will discuss in section

4-18 below.

This cluster, like the occasional rail commuters, is heavily skewed away from bus

and towards peak-period travel. At the centroid, only 8% of trip stages are taken

by bus, with 74% of journeys occurring during peak hours. The weekend share of

journeys is only 5%. The intensity of usage is as high as for the frequent bus riders

group, with the centroid active range at 31.85 days and active days at 19.36.

Cluster #7 Occasional weekend rail riders

This is the smallest multi-day rider cluster in terms of both rider count and jour-

neys, contributing only 5% of riders (73,976 passengers) and 2% of journeys (391,277

journeys). It is predominantly rail, with only 15% of trip stages taken by bus at the

centroid. It is the only weekend-oriented multi-day cluster, with 68% of all journeys

taking place on the weekend at the centroid compared to under 18% for all other

multi-day rider clusters. There is little peak-period travel in this cluster—the cen-
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troid value is 10% and the overall distribution has very little mass at upper values

(Figure 4-7). The number of active days is the smallest of any of these multi-day

clusters, with a centroid value of 3.2 days spread over an active range of only 11.08

days. This segment likely reflects those who use transit mainly for leisure weekend

activities.

In summary, bus clusters are clearly distinct from rail clusters along the modal di-

mension largely because rail-oriented riders have low engagement with buses. Within

each mode, clusters are differentiated by usage frequency. The baseline clustering

results indicate greater dispersion in passenger habits for rail use than for bus use,

given that bus riders are grouped into two large clusters while rail users are spread

out over five smaller ones. Bus-oriented multi-day riders are a smaller subset of the

data than rail-oriented ones are to begin with (324,981 versus 555,757 riders), but

there are still proportionately fewer bus clusters than rail ones even after adjusting

for passenger numbers. For rail-oriented riders, there are distinct sub-groups that fo-

cused on certain times of the day or week, which 𝑘-means was able to distinguish and

return as separate clusters. Occasional multi-day rail users form the largest number

of distinct behavioral groups, with some focused on commuting during rush hour,

others on weekday off-peak travel, and still others on weekend activities.

4.3 Baseline transit rider clusters: Single-day riders

4.3.1 Selected clustering features

For single-day riders, several features previously selected for multi-day users can no

longer be included due to lack of variability. These include the active range and active

days features, each of which are now one day by definition. Further, there is little

variation in mean journeys per active week. In general, raw features for each card

show much more extreme values for single-day riders because of the lack of averaging

over multiple days; for example, weekend trips is actually categorical, since a single-

day user is either riding on the weekend or not (Figure 4-8). Only peak share and bus
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Figure 4-8: Distribution of candidate clustering features for single-day riders

share are more split between a small number of values. This already suggests that

only a few features would likely to be useful for partitioning single-day passengers.

The feature selection process was conducted with greedy and backward selection,

for 𝑘 values from two to five as suggested by a preliminary elbow plot. Peak share

and weekend share were selected in 85% and 92% of runs, while all other tested

features were selected at most 46% of the time. These features were only moderately

correlated (𝑟 = -0.4). We thus proceeded to clustering using only these two features.

4.3.2 Selected 𝑘-value

The elbow plot and Davies-Bouldin Index suggested between three and four clusters

as illustrated in Figure 4-9. We produced initial results with both three and four

clusters to assess the cleanliness and interpretability of the results. Either 𝑘 value

produced clean partitions, but we ultimately proceeded with three clusters because
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(a) Elbow plot (b) Davies-Bouldin index

Figure 4-9: MBTA tap-in data by mode and by source

the fourth cluster was extremely small (under 10% of single-day riders), within a

subset of the data that was otherwise cleanly partitioned by a small number of very

large clusters. The fourth potential cluster covered a limited group of weekday riders

with more mixed peak/off-peak schedules.

4.3.3 Single-day rider clusters

Running 𝑘-means with the above hyperparameter decisions produced three clusters

that were divided solely by the timing of transit usage. These clusters’ members

are rarely trackable over time due to their transient engagement with the system,

and as shown previously in Figure 4-1 they also are the smallest contributors to the

volume of journeys taken on the MBTA system (i.e., they have little impact on MBTA

operations and revenues). Thus we will not concentrate on profiling these riders in

detail. However, it is still essential to create and introduce these clusters upfront,

because during COVID-19 a notable volume of passengers reduced their transit usage

and took on the behavioral patterns observed in single-day rider clusters.

Figure 4-10 shows the distribution of peak and weekend journey shares among

members of single-day clusters, alongside the distributions for multi-day clusters for

comparison.
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Figure 4-10: Variation of single-day clustering features within and between rider
clusters

Cluster #8: Single-day off-peak weekday riders

This cluster was by far the largest among both multi-day and single-day riders, cap-

turing 18% of all baseline period cards or 271,676 passengers compared to only 11%

for the largest multi-day cluster of frequent bus riders. However, its operational and

revenue significance for the T is small as it contributes only 2% of journeys—compared

to 35% for frequent bus riders. At the centroid, 0% of journeys were on the weekend

and there were nearly no peak journeys (0.66%). Thus, cluster members only took

trips during off-peak hours of one weekday. There is also no variation in the weekend

share feature in this cluster; along the peak share feature, there is a long tail of higher

values. Lastly, as Figure 4-1 indicates, this group like all single-day rider groups is

dominated by rail use, with the average bus share at only 14%.

Cluster #9: Single-day peak riders

Contributing 15% of all riders (236,792 people) but only 2% of journeys, this cluster

represents passengers who took transit during rush hour for a single day. The centroid

value for peak journey share was 85%, similar to the shares for the multi-day rail
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commuter clusters, and weekend share was at 0%.

Cluster #10: Single-day weekend riders

Like the other single-day clusters, this was one of the largest clusters by rider count,

but the absolute smallest by journey count among all multi-day and single-day clus-

ters. It covered 10% of all cards or 155,101 passengers—similar in passenger volume

to the frequent and occasional bus rider clusters—but contributed only 1% of trips. It

contains single-day riders that utilized the system on a weekend day, with a weekend

share of 100% at the centroid and a corresponding peak share of 0%.

In conclusion, single-day riders mostly took rail and were small contributors to

demand for transit services. They were partitioned into clusters fairly cleanly by

whether they were weekend, peak, or weekday off-peak users.

4.4 Baseline model validation: Temporal robustness

checks

As illustrated in our methodology flowchart in Figure 3-1 of the previous chapter,

our next step after clustering was to validate the baseline 𝑘-means model by checking

its temporal robustness. To do so, we assess the stability of the established clusters

between seasons and between years by 1) training 𝑘-means models from scratch on

winter, spring, summer, and fall 2019 data, then 2) using correspondence scores to

compare the clustering results of these new models against the results we receive

when we apply the baseline model to these other periods of data (see Section 3.5).

The main focus here is whether the structural composition of the rider clusters is still

similar to what we found in our baseline winter 2020 period.

Figure 4-11 shows the aggregate trip stage count by mode from ODX across the

months of 2019 considered for our temporal robustness check. Usage appears to

trend up slightly from winter to spring, then drop over the summer holidays before

jumping back up in September for the fall. This uptick, which occurs for both bus
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Figure 4-11: Rail and bus ridership in 2019, from trip stages recorded in ODX

and rail, may be due to the usual return to work and school, given metropolitan

Boston’s student-oriented nature. Figures 4-12 shows in greater detail the rail and

bus ridership patterns for each of the four specific time windows sampled. Weekend

travel by train is notably lower in the winter and colder parts of fall than in the other

seasons; the weekend gap in ridership between bus- and train-based modes is also

closer together during these periods.

Overall, the features selected for multi-day and single-day clustering and the num-

ber of finalized clusters appear consistent over the time periods examined. The cen-

troid tendencies (i.e., the characterization) of the clusters are also qualitatively similar

across all time periods tested. For example, for each time period there are always

two clusters with much higher bus shares than all other clusters, two multi-day rider

clusters with extremely high peak journey shares compared to all others, etc. As a

result, the correspondence scores of each cluster is also high—above 90%—across all

clusters and all 2019 seasons tested.

However, the actual centroid values for multi-day clusters differed noticeably

across seasons in a few clusters. Figure 4-13 plots the difference in normalized centroid

value of each multi-day cluster between the baseline 2020 period and each season of

2019. Thus, for example, the "Cluster #1" radar chart within that figure displays the
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Figure 4-12: Trip stages by mode in 2019 time periods used for temporal robustness
checks (ODX)

baseline 2020 centroid values minus the winter 2019 centroid values for each feature;

it also does the same for spring, summer, and fall 2019. The winter 2019 centroid

differences are depicted in solid color since it is the season expected to match the

closest to baseline 2020 values. The spring 2019 centroid differences are dotted lines;

summer 2019 dashed lines, and fall 2019 the dot-dash. Single-day cluster centroids

were not included as they were all nearly identical between the robustness check pe-

riod models and the baseline 2020 model. Figure 4-13 shows that in general, winter

2019 and baseline period winter 2020 compare fairly well, with no centroid showing

extreme differences. The fairly frequent weekday off-peak rail riders, occasional week-

day off-peak rail riders, frequent rail commuters, and occasional weekend riders are

also similar, with the difference between baseline and 2019 seasonal model centroid

values differing by at most 4 ppt. On the other hand, frequent bus riders, occasional

bus riders, and occasional rail commuters showed notable centroid value differences

for spring and sometimes also one other season.
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Figure 4-13: Centroid differences between 2020 baseline model features and 2019
seasonal model features
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Figure 4-14: Cluster composition for baseline and winter, spring, summer, fall 2019
passengers

Finally, Figure 4-14 shows that there are seasonal differences in the proportion of

passengers falling into each behavioral cluster. While baseline 2020 and winter 2019

saw extremely similar cluster distributions, the warmer seasons saw greater shares

of all three single-day clusters. Cluster #5, occasional rail commuters, was also a

smaller share of the passenger pool in the shoulder seasons.

In summary, the temporal robustness check finds that the baseline winter 2020

𝑘-means model applies very well to the winter ridership of an adjacent year. It

also performs fairly well on other seasons, but the distribution of passengers across

clusters and the exact centroid value denoting representative cluster behavior sees

greater variation across seasons. Detailed results for each of the four 2019 seasons

tested are discussed in the sub-sections below.

4.4.1 Winter 2019: January 14 - February 17

For winter 2019, the data contained 22.9 million trip stages by 1.65 million riders,

similar to what was observed during the baseline winter 2020 period. The six cluster-

ing features selected by the greedy and backward selection methods when modelling

multi-day riders during the baseline were also selected during the winter 2019 mod-

elling. In addition, backward selection (but not the greedy method) recommended
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the use of average journeys per week for the winter 2019 data. However, we leave this

candidate out from the final feature set because it is highly correlated (𝑟 = 0.72) to

active day, the latter of which was selected by both methods.

The Davies-Bouldin index again recommends that 𝑘 = 7 clusters for multi-day

users. After running 𝑘-means for this hyperparameter value, we evaluate the similarity

of this clustering solution to the baseline period’s and find that correspondence scores

are above 95% for each cluster except the occasional weekday off-peak rail riders,

which scored 93%. The worst correspondence score belonged to the smallest cluster,

which is to be expected since estimates of population behavior made based on smaller

samples show greater variance. If we run an overall correspondence score at the full

sample level instead of at the cluster level—i.e., we calculate one correspondence score

over all sampled passengers, instead of seven scores one for each cluster—we find that

the score is satisfactorily high at 98%.

Qualitatively, the centroid values of the stability check model also align with that

of the baseline model, with no difference greater than 4 ppt (Figure 4-13). This sug-

gests that the detected clusters represent similar behavioral patterns to those observed

in the baseline period. Further, the distribution of passengers across clusters—i.e.,

the relative cluster sizes—are different from baseline figures by at most 2 ppt.

For single-day passengers, weekend and peak share are again the selected fea-

tures, and 𝑘 is again set at three clusters. Comparing classifications between the

model trained on the stability check dataset, versus the model trained on the base-

line dataset, we find that correspondence scores rounded to 100% for all single-day

clusters, testifying to the clean partitions that can be made among single-day riders

based on the timing of their journeys. The share of riders falling into each cluster is

similar to baseline 2020 values as well.

4.4.2 Spring 2019: April 1 - May 5

Here, 24.6 million trip stages were recorded by 1.88 million riders, reflecting a moder-

ate increase in trip stages (9%) alongside a large expansion in riders 22% compared to

baseline 2020 levels. CharlieCards are slightly less prevalent than during the baseline
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winter period, coming in at 49% of trip stages instead of the the 52% as in winter

2020. This may be due to the uptick in tourism and leisure trips among those who

generally do not depend on transit, as the weather warms. This qualitative differ-

ence appears in the pattern of correspondence scores we find across clusters and the

distribution of spring-time passengers across these clusters.

The feature selection process is similar to winter 2019, with average journeys per

week again recommended by the backward selection method in addition to the baseline

2020 model features. Since we are clustering at the passenger level and passenger

count is 22% higher than in the baseline period, there is increasing justification to

consider adding another feature as the dataset becomes larger and the chance that

additional distinct clusters exist increases. We do not do so at this time, but recognize

that there may be a need to do so if both the greedy and backward selection methods

consistently pick this candidate feature for other high-volume time periods.

We again select seven multi-day and three single-day clusters and find that the

correspondence scores are above 90% for every cluster. The sample-wide individual-

level correspondence score ignoring cluster distinctions is 97%, only 1 ppt below the

score found for winter 2019. These results seem to indicate inter-seasonal model

stability. The two clusters with the lowest correspondence scores are frequent rail

commuters (90.35%) and frequent bus riders (93.88%), both of which likely include

significant work-based travel.

Looking at the differences in centroids between spring 2019 and baseline 2020

model results (Figure 4-13), the frequent rail commuter cluster characteristics appear

highly similar between models trained across the two time periods. The frequent

bus riders cluster centroid, however, shows notable differences from baseline to the

spring. The baseline period’s transfer share is 11 ppt higher and its peak share 4

ppt higher. Occasional bus riders and occasional rail commuters also show notable

centroid differences between spring 2019 and baseline 2020 despite having higher

correspondence scores (94% and 97% respectively). For the occasional bus rider

cluster, the baseline model’s transfer share is 8 ppt higher than the spring 2019

model’s, and active range is 5 ppt higher. For occasional rail commuters, the baseline
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model’s active range is 11 ppt higher than the spring model’s and active days 7 ppt

higher. Both these deviations from baseline winter 2020 centroids (and winter 2019

centroids) may reflect an uptick in alternative modes like walking and biking as the

weather warms.

As Fig 4-14 indicates, single-day riders also contribute 7 ppt more to the overall

ridership pool in the spring than in the winter 2019 or 2020 periods, potentially

reflecting more ad-hoc ridership by locals and more visitors to the Boston Metro area

with the end of winter. The clusters that are more likely to reflect work-based riders or

transit-dependent riders fell as a share of the overall pool–occasional rail commuters

fell from 7% to 4%, and both the frequent and occasional bus rider groups fell 2-3

ppt each. Overall though, despite some change in the cluster composition and in

a handful of centroid values, the correspondence scores suggest a relatively robust

application of our baseline 𝑘-means model to spring 2019 data.

4.4.3 Summer 2019: August 19 - September 23

The summer 2019 dataset was substantially larger than the baseline winter 2020

dataset, with 2.02 million riders (31% above baseline winter 2020). However, the

number of trip stages is only 3% higher at 23.4 million, already suggesting that much

of the new cards in the system may be single-day or occasional users, perhaps tourists

and other leisure riders who do not consistently return to the system. This is further

suggested by the smart card meta-data, which indicates that a slightly smaller share

were CharlieCard users than is the case in the baseline (47% rather than 52%). The

distribution of active range among the multi-day riders also shows lower density at

the higher end (i.e., fewer people are riding over 30 active days or more).

The features and 𝑘-value selected match the results from the baseline winter 2020

model, for both the multi-day and the single-day rider pools. Results again show

that 8% more of passengers fell into the three single-day rider clusters than had been

the case in baseline winter 2020, and 5% more than in winter 2019. Meanwhile, the

frequent bus cluster was down from 11% to 7.4% of the total—a 50% drop. The fairly

frequent weekday off-peak rail cluster is down 20% from 9% of all riders to 7%, while
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the frequent rail riders cluster is down from 7% to 5%. In addition to workers and

students going on vacation in the summer, the better weather can also support more

biking and walking, which can help explain the drop in ridership among the more

frequent rail riders.

Correspondence scores indicate stability between the application of the 𝑘-means

model trained on winter 2020 baseline data and the model trained on the summer 2019

data itself. Overall ignoring cluster boundaries, 98% of all passengers are assigned the

same cluster by both models. At a cluster level, correspondence scores are above 94%

for all but the frequent rail commuters (91%) and occasional rail commuters (90%).

Journey counts suggest these groups show reduced activity over the summer than over

the winter. They therefore may have exhibited behavior that shifted them into one

of the five less-frequent rail user groups. Since this winter-summer comparison will

provide the "background" or "natural" behavioral shift against which we compare

the pre-COVID baseline winter 2020 versus COVID-period summer 2020 ridership

patterns, we will need to keep in mind this greater cluster shift among rail commuters

evident in the 2019 data.

The centroids from the summer 2019 model are similar to that from the baseline

model, with no differences greater than 4 ppt in absolute value. Across all clusters,

the baseline centroid value of active range is 1 ppt to 4 ppt higher than summer

2019 centroid values; this means there is a slight shift in the summer distribution

towards the lower end of active ranges seen in the sample, which is reasonable in

warmer weather months with more visitors using transit and fewer regular riders. The

occasional and frequent rail commuter clusters’ peak ridership is also 2 ppt higher in

the baseline than the summer model. Overall, the centroid values and correspondence

scores suggest that our 𝑘-means model trained on the baseline 2020 data is applicable

towards summer ridership, though we need to be aware that there is a natural shift

in cluster composition towards single-day ridership.
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4.4.4 Fall 2019: September 23 - October 27

Ridership in fall 2019 was substantially larger than during the winter, as both stu-

dents and workers returned from summer vacations to full-time work or study. The

robustness check dataset for this period includes 24.3 million trip stages (a significant

7% above baseline 2020) taken by 1.9 million riders (23% higher than the baseline).

The active range distribution resembles the winter baseline period’s in that the mode

at 30+ days has become more prominent again after the summer.

Feature selection performed upon the fall 2019 robustness check period again

produced similar results as during the baseline, except the greedy method suggested

the share of journeys with bus-based transfers may not be necessary. This is a detail

to follow up on for future model development, since in our original baseline clustering

results transfer share patterns mainly reflected patterns in the share of bus transfers,

perhaps because 1) our data fails to capture rail-rail transfers and 2) rail-based riders

have very low interaction with the bus system, limiting their opportunity for bus-rail

transfers. Separately, while larger spring volumes led our feature selection process to

suggest an additional candidate feature to better partition clusters, this was not the

case for fall 2019 despite the notably higher passenger volumes.

For multi-day riders, 𝑘 is again set at seven based on the Davies-Bouldin Index and

elbow method, while 𝑘 is set at three for single-day users. The overall correspondence

score ignoring cluster boundaries again indicates that 98% of passengers are classified

into the same clusters by both the baseline and the fall 2019 models. At the cluster

level, most clusters have correspondence scores of over 94%; the exceptions are the

frequent rail commuters (91%) and occasional bus riders (93%).

The fall 2019 model’s centroids deviate most clearly from the baseline 2020 model

for occasional rail commuters. The baseline model’s active range is 9 ppt and active

days is 6 ppt higher than for the fall 2019 model (Figure 4-13). Among frequent

rail commuters, these deviations are 4 ppt for both. For occasional bus riders, the

baseline centroid values is not much greater than the fall model’s along any feature,

but all features show noticeable deviation with active range, active days, peak share,
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and transfer share being the most prominent. Otherwise, the centroid values were

fairly in line with the baseline model’s.

One potential factor in the lower active day and active range seen among com-

muters could be weather–early fall weather in Metro Boston is much more amenable

to biking and walking than in the winter (or even most of spring), so riders with

shorter commutes or commutes along bike- or pedestrian-friendly routes may choose

this option. This would directly reduce active days. To impact active range, this

would have to occur systematically at the start or end of the dataset time period, but

this is not unreasonable given the cooler weather rolling in as fall deepens.

The overall cluster composition again favors single-day clusters compared to the

baseline by 6 ppt. This comes at the expense of multi-day user clusters, especially the

occasional bus riders and occasional rail commuter clusters which each experience 2

ppt decreases in their share of the total rider pool.

All together, the results suggest that the 𝑘-means model trained on the base-

line 2020 dataset is fairly stable across seasons, and that it may be stable across

neighboring years. The differences noted in the winter versus summer cluster compo-

sition again emphasizes the need to compare our churn analysis in 2020 against the

"background" winter-to-summer churn during a normal year, in order to separate the

COVID-19 effects from natural seasonal churn.

4.5 Cluster interpretation with optimal decision trees

As discussed in Chapter 3, one objective of this thesis is to interpret our baseline

clustering and subsequent COVID-19 era churn results in ways that facilitate policy

discussion. While most of the policy work is conducted in Chapter 6, this section

covers cluster interpretation with optimal decision trees (OCT) because methodolog-

ically, it is a direct extension of our quantitative 𝑘-means clustering work. Further,

we conduct this baseline interpretation step prior to considering COVID-19 churn so

as to improve our understanding of key factors driving transit behavior during typical

times and bring that mechanistic understanding to the upcoming churn analysis.
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Figure 4-15: OCT for multi-day riders using clustering features

Optimal decision trees (OCT) were applied separately to multi-day and single-

day passengers, following the division in our clustering results. Overall, the results

confirm the importance of modality, followed by usage intensity and time of day of

transit usage, in distinguishing between passenger groups.

4.5.1 OCT for multi-day riders

We first ran OCT using the multi-day rider dataset, applying the cluster values from

𝑘-means as labels to convert this unsupervised dataset into a supervised one. Grid

search was used to tune the complexity hyperparameter 𝛼 and the tree depth for

this univariate OCT. We attempted two grids: complexity [0.1, 0.01, 0.001, 0.0001]

with depth [1, 5] and complexity [0.1, 0.05, 0.01] with depth [1, 10]. Balancing tree

legibility and interpretability against the classification error rate, the finalized tree

for multi-day riders was found at 𝛼 = 0.01 and tree depth = 4. This tree is shown in

Figure 4-15, with the branching nodes in color and leaves with cluster labels in grey.

The resulting classification accuracy is fairly high, with at least 80% of points

classified correctly in each leaf. The first split is made on modal preference, that is,

the share of trip stages a passenger conducted by bus.1 Subsequently, active range,

which is a measure of usage intensity, tops the list among both bus-heavy and train-

heavy riders. Among bus-oriented riders, this additional feature is enough to deliver
1The cut-off OCT selected for splitting bus-oriented from rail-oriented riders was 40%, which is

near the bottom of the range for the two bus clusters (Figure 4-7). Yet because the bus share was
so low among nearly all rail-oriented riders (<15%), the 40% cutoff allowed a fairly clean split.
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the two bus clusters detected by 𝑘-means, though the accuracy is more modest at

83% for occasional bus riders.

There are more than twice as many rail-oriented rider clusters, so a larger number

of features are needed to distinguish between them. Among rail riders with high

active range (≥ 23.5 days out of 35 days in the baseline period) the share of journeys

taken during peak weekday hours is the main distinguishing feature that allows us

to clearly separate out frequent rail commuters (94% accuracy) from fairly frequent

weekday off-peak rail riders (83% accuracy).

On the other hand, among rail riders with limited active range (< 23.5 days),

the share of journeys conducted on weekends is the next branching point. Those

with heavy weekend travel (≥ 41% of all journeys) were labeled occasional weekend

riders. Those preferring weekday transit travel are subdivided by the share of peak

period trips into occasional weekday off-peak rail riders versus commuters. The order

of features used in this OCT appears to confirm the importance of modality, usage

intensity, and timing of transit usage in partitioning multi-day riders.

The share of journeys with transfers and the number of active days were not

needed for partitioning to the level of accuracy achieved in this OCT. The utility of

transfer share as a clustering feature does appear limited from our previous analysis

as well, due to both the lack of data for capturing rail-rail transfers and due to the the

low percentage of journeys with bus-based stages taken by rail-oriented passengers.

Though the accuracy of the OCT in categorization is strong as a whole, the

worst performance were seen in the three categories that include substantial off-

peak weekday travel. These are the occasional weekday off-peak rail, fairly frequent

weekday off-peak rail, and occasional bus riders who were shown in Figure 4-6 and

4-7 to have a wide mixture of peak- and non-peak trips. This suggests that future

work can assess whether more granular features can be created from the ODX time

series data (e.g. indicators for the most common off-peak hours during which a

passenger takes a trip) or new data sources can be introduced to more clearly delineate

behavioral patterns among these categories of riders.
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Figure 4-16: OCT for single-day riders using clustering features

4.5.2 OCT for single-day riders

The OCT for the single-day riders was as straightforward as the clustering, and robust

to hyperparameter tuning. From the feature selection process, share of peak trips and

share of weekend trips had been chosen as the only features. Thinking about this in

the context of the multi-day OCT results in Figure 4-15, the choice of these two

variables seem to be logical. The vast majority (86%) of single-day riders do not

use rail at all, and by definition the active range of single-day riders is only one day

(Figure 4-8. Thus the first two layers of the multi-day rider OCT diagram are not

applicable here and greater emphasis is put on the timing of the journeys taken.

This simple feature set delivered a fairly clean divide of single-day riders into

three clusters—36% into peak users, 41% into weekday off-peak users, and 23% into

weekend users. Figure 4-16 illustrates that the first branching point is based upon

the share of peak trips. Among those with less peak-period travel (that is, ≤ 43.7%

of journeys begin during peak hours), there is one last branching point based on

weekend share that separates the weekend and weekday off-peak passengers.

The OCT exercise provides us roadmaps for what passenger ridership features were

key to identifying distinctive patterns of transit usage behavior, and which rank as the

first and most major partitions. It confirmed that transit mode is a key differentiator

of passenger behavior, followed by the intensity of transit usage. Further, it confirmed

the wide behavioral variation observed among rail rider clusters and the role of journey

timing in separating these clusters.
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4.6 Cluster profiling

The baseline clustering results partitioned MBTA passengers by temporal and modal

ridership features built from ODX data. In this section, we leverage additional data

from ODX and other sources to deepen the profile of each cluster, with the goal of

enriching discussions of how our behavioral clusters relate to MBTA operations and

revenue, and how they may be associated with socio-demographic patterns.

In addition to trip information, CharlieCards and CharlieTickets contain meta-

data on passenger fare types. These include markers for full adult fare, one of

MBTA’s reduced fare programs, and corporate-sponsored "Perq" passes. Separately,

the MBTA also collects passenger socio-demographic information in its System-wide

Passenger Survey, the latest of which was run in 2015-2017. While the methodology of

the survey and its timing limit direct, granular compatibility with our analysis based

on automated data sources, we still leverage station- and route-level information from

this survey to gain higher-level perspective on cluster socio-demographics and cluster

members’ access to alternative non-transit modes. These characteristics are essential

to keep in mind when we examine the COVID-19 impact on passenger mobility and

policy responses in the next two chapters.

4.6.1 Cluster profiling with smart card data: MBTA opera-

tions and revenue lens

AFC and ODX data capture journeys but do not offer direct revenue figures. We

examine the journey contribution of each cluster to assess the cluster’s role in driving

travel demand on the MBTA network. We also examine the major fare types used in

each cluster; in this analysis we include Perq, the corporate pass program that made

up one-third of MBTA’s fare revenues, which were in turn 33% of operating revenues

in 2019 [66]. The extent of MBTA’s dependence on Perq income means that clusters

with greater Perq presence are essential for stable operating revenues, and that the

evolution of these clusters will also in part be affected by corporate negotiations with

the MBTA regarding the structure and pricing point of Perq products.
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This section also examines each cluster’s typical weekday and weekend temporal

profiles, as well as its most common origin locations. These perspectives speak to

the diverging scheduling demands and geographic distribution of riders following dis-

tinct behavioral patterns, which will have implications for service adjustments during

COVID-19 and the recovery.

Ridership volumes by cluster

The size of each behavioral cluster by passenger count can differ significantly from its

size in terms of the volume of journeys taken. Figure 4-17 plots the clusters ranked

by their journey volume against their contributions to the total number of passengers

during the baseline period. From an operational perspective, the volume of journeys

is the more essential metric of any behavioral cluster’s systems impact.

Figure 4-17: Distribution of journeys versus riders over behavioral clusters

Among multi-day rider clusters, frequent bus riders contribute 35% of all jour-

neys taken during the baseline period, far outstripping the next two clusters which

are frequent rail commuters (21%) and fairly frequent weekday off-peak rail riders

(17%). These also have the largest number of passengers with abnormally high jour-

ney counts, i.e. long upper tails in Figure 4-2b of up to 130 journeys over the 5-week
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baseline period. The frequent bus rider and frequent rail commuter clusters contribute

three times more to total baseline period journeys than they do to the number of total

passengers; the fairly frequent weekday off-peak riders cluster contributes two times

more. Other than these three groups, each multi-day cluster contribute more to the

passenger count than to the journey count.

The transit needs of passengers in these three high-volume clusters are also dis-

tinct, with one heavily utilizing buses throughout any given weekday, one riding

trains only during rush hour, and one riding trains in off-peak times. Therefore, from

the perspective of planning operations to meet expected travel volumes, tracking how

these high-volume clusters evolve during the pandemic and adjusting to shifts in their

demand patterns will be essential for understanding where services can be cut due to

a drop-off in previously intensive users, and where services must be maintained due

to continued heavy usage.

Finally, though single-day off-peak weekday riders and single-day peak riders are

the largest contributors to passenger count (15% and 18% respectively) they are

among the smallest contributors to journeys (1% each). Single-day weekend riders

are 10% of riders and only 0.4% of journeys. Therefore, any potential pandemic-

induced drop in ridership among these single-day clusters would have limited impact

on MBTA operations and the revenue derived from fare sales.

Perq usage by cluster

The distribution of Perq riders across behavioral clusters is even more concentrated

than the journey count. Figure 4-18a shows that frequent rail commuters dominate

the pool of Perq riders (39%), followed by frequent bus riders (21%) and fairly frequent

weekday off-peak riders (17%). Beyond these, the remaining seven clusters made at

most modest contributions to Perq, even in cases when they make up a large share

of the entire passenger pool (e.g., all single-day clusters, occasional bus riders who

are 10% of all riders but only 5% of Perq ones). Given that Perq is a pass program,

it is not surprising to find that only the clusters that display higher transit usage

intensity are the most represented; for more occasional riders passes are less likely to
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(a) Share of Perq riders versus share of all
riders by cluster

(b) Share of Perq journeys versus share of
all journeys by cluster

Figure 4-18: Cluster contributions to Perq corporate pass program

be cost-effective.

What is more surprising in Figure 4-18a is how dominant frequent rail commuters

are among Perq riders compared to their share of the total passenger pool. This

cluster contributes only 7% of all passengers but 39% of Perq riders, or 5.5 times

more than a baseline scenario where each cluster contributes evenly (1:1) to Perq.

Meanwhile, frequent bus riders are 11% of all riders and contribute 29% of Perq

riders, or 2.6 times more. Fairly frequent weekday off-peak riders contribute 9% of

all riders and 17% of Perq riders, or 1.7 times more. For occasional rail commuters

this ratio is nearly 1, and all other groups contribute less to Perq than to the overall

passenger count. This means that frequent rail commuters are disproportionately

affiliated with the corporate pass fare revenue stream.

From a Perq journey count perspective, the disproportionate nature of frequent

rail commuters’ Perq subscription emerges as well. Frequent rail commuters are 21%

of all journeys but 44% of Perq journeys; meanwhile bus commuters are 35% of

all journeys and a much more proportionate 37% of Perq journeys. Fairly frequent

weekday off-peak rail riders are a distant third in terms of Perq contributions, covering

15% of all Perq riders and a proportionate 14% of all Perq journeys. Frequent rail

riders’ ranking as number two in Perq journey count aligns with its position as the

second largest in overall journey count behind frequent bus riders. However, a much

bigger share of those journeys are affiliated with Perq-subscribing passengers than is
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seen in any other cluster. This again suggests the frequent rail commuters group may

have disproportionate impact on this source of corporate-based fare revenue stream

were their ridership behavior to shift during the pandemic or the subsequent recovery.

Perq is a pass program, so from a revenue perspective it is the rider numbers that

count more than the journeys. Nevertheless, how passengers’ journey counts evolved

during COVID-19 and the recovery will affect the number of passengers from each

cluster who still find Perq a cost-effective program at current pricing points.

Lastly, we note that the top Perq sponsor companies by cluster are fairly similar

across the three clusters with significant Perq subscriber shares. Though our data does

not include the names of the companies themselves due to confidentiality agreements,

we are given that the most frequently recurring sectors among these clusters are

hospitals and universities. Two third-party corporate benefits providers that serve

multiple employers—WageWorks and Edenred—are also among the most frequently

seen, but we cannot tie these to specific companies. These organizations are generally

located in the downtown Boston or Cambridge areas. The top origin locations in the

Perq-heavy frequent rail commuters cluster are in heavily commercial downtown areas,

and areas with university and medical facilities. The situation is similar in the fairly

frequent weekday off-peak rail cluster.

Cluster temporal profiles

The OCT exercise and feature selection process both noted the importance of the

time of day of ridership for distinguishing between clusters. Differences in the timing

for transit demand between major rider groups is a central consideration for transit

planners, for reducing crowding and providing service to meet demand patterns.

In this subsection, we take a more granular view at temporal patterns of clusters

beyond the simplified summary features used for the actual clustering. Figure 4-19

plots the distribution of journeys taken by riders by time of day on weekdays, for

each multi-day rider cluster as well as for all multi-day riders. Because the MBTA

is a tap-in only system, all time of day values indicate the beginning of journeys.

The y-axes of the plots show the percentage of journeys in each cluster that began
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Figure 4-19: Average weekday temporal profiles by multi-day cluster, and for all
baseline journeys

during the time of day specified on the x-axis. Time-of-day of travel is aggregated to

half-hour increments to reduce noise.

During the weekdays, the frequent and occasional rail commuter clusters capture

the peak-oriented travelers as expected. Figure 4-19 makes clear that these two

commuter groups are the ones driving the peak demand visible when we aggregate

all multi-day riders, and that the peak-period travel for the frequent and occasional

bus riders are much less pronounced. The ratio of peak travel at 8 AM to mid-day

at 11 AM is 25.5 for occasional rail commuters (cluster 5) and 15.2 for frequent rail

commuters (cluster 6); both groups had almost no travel volume during the middle

of the day. By contrast, this ratio is only 2.7 for frequent bus riders and 1.9 for

occasional bus riders, who show much more sustained demand throughout the day.

The fairly frequent weekday off-peak rail rider cluster still shows some presence

of morning and evening peaks despite a much more robust midday volume. This

cluster’s evening ridership also tails off much more gradually later into the night

than do the bus clusters or rail commuter clusters, potentially indicating recreation,

errands, or evening/late shift work. Lastly, weekend rail riders (cluster 7) do have

some weekday volumes despite its orientation towards weekend demand; the weekday

travel was mostly in the middle of the day trending up for the evening. This could
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Figure 4-20: Weekend temporal profiles by multi-day cluster, and for all baseline
journeys

again reflect the leisure-oriented nature of this cluster’s transit use.

Similarly, Figure 4-20 plots the average temporal profile for a weekend day, where

we see much less cluster-level variation in the distribution of journeys over time of

day. All clusters reached maxima during the afternoon and evening periods of the

weekend, with the weekend rail riders (cluster 7) showing slightly more sustained

volumes in the midday. The two rail commuter clusters (clusters 5 and 6) surprisingly

still show some morning peak, especially for occasional rail commuters. This could

indicate some weekend work travel for those with non-traditional work schedules (e.g.

for hospital staff) but our data does not give us the information to pinpoint the

reason behind these temporal patterns. The bus rider clusters (clusters 1 and 2) have

slightly higher volumes in the morning as well, but these are not as prominent as for

rail commuters.

Figure 4-20 is in relative terms since the y-axis indicates the share of cluster

journeys taken during a particular time. In absolute numbers, the occasional rail

commuters cluster has negligible weekend travel volumes. Frequent rail commuters

have substantial volumes but are still only one-third of the journey counts observed

for frequent bus riders, which tally the largest weekend volumes followed by fairly

frequent weekday off-peak rail riders. The weekend bumps in morning and evening
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travel of occasional rail commuters are therefore of little operational significance, while

the similar pattern among frequent rail commuters are more impactful for weekend

planning and travel demand.

Cluster spatial profiles

By definition, transit operations require spatial analysis. This section provides a high-

level look at the distinctive spatial profiles of each multi-day and single-day cluster

which provides further reason for MBTA planning to separately consider the mobility

needs of bus- versus rail-oriented riders.

Figure 4-21 presents a heat-map table of the top ten most frequented origin sta-

tions for each behavioral cluster. Highlighted in green are the stations or bus stops

that are particular to only one or two clusters, with no representation among the

majority of other segments.

Figure 4-21: Top 10 origin stations by cluster

Larger intermodal stations that serve as transfer hubs unsurprisingly top the list

for multiple clusters. For example, South Station appears for nine out of 10 clusters,

Downtown Crossing for eight, North Station for eight, and Park Street for seven.

However, more rail-dependent clusters do not list any bus stops among their top

origins, reflecting the less intermodal nature of the rail-oriented passenger clusters

that we first observed in Figure 4-6. Meanwhile, the frequent bus riders cluster lists
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four bus and six rail entry points among its top 10 and the occasional bus rider

cluster’s top origins were split in half between bus and rail.

ODX modal data also support this observation that bus riders are more likely to

use a combination of bus and rail, compared to rail-oriented rider clusters. Only 50%

of both the frequent bus riders and the occasional bus riders spend the overwhelming

majority of their trip stages traveling by bus (where overwhelming majority is defined

as over 75%). The other half of the passengers in these clusters use a well-mixed

combination of rail and bus.

Meanwhile, across all multi-day rail clusters the share of passengers with an over-

whelming majority (75% or more) of rail-based trip stages ranged from a low of 71%

for occasional weekend riders to a high of 86% for occasional weekday off-peak rail

riders. Single-day clusters are also heavily dominated by rail, and because of the

small average number of journeys per cluster (just under 1.5 for each of these groups)

the share of passengers in each single-day rider cluster taking the overwhelming ma-

jority of their trip stages by rail was generally high, ranging from 83% among the

off-peak weekday cluster to 87% for the weekend users. The off-peak weekday cluster

contains the largest number of single-day passengers dependent on bus. Supporting

the rail network thus appears essential for meeting the transit needs of both rail- and

bus-oriented repeat riders as well as single-day visitors, though the specifics would

require extensive spatial and network analysis.

There were also geographic differences in popular origins across clusters. While

the rail clusters generally favor stations in downtown Boston or Cambridge, the top

stops for both frequent and occasional bus riders are heavily tilted towards South

Boston locations including Forest Hills, Ashmont, and Nubian. These stations are

intermodal with train access but still are not popular among rail-oriented clusters.

The frequent bus riders’ top stations further include the northern Boston Sullivan

Square and Charlestown area, which is known as an intermodal transit hub connect-

ing bus, subway, and commuter rail. These are also not frequent origin points for rail

riders. Figure 4-22 maps the top origins of frequent bus riders (cluster 1), which is

representative of the occasional bus riders as well, against the top origins of frequent
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Figure 4-22: Map comparing top origin stations for Cluster #1 frequent bus riders v.
Cluster #4 frequent rail commuters 108



rail commuters (cluster 4) which is fairly representative of other rail clusters. From

this the spatial separation between popular stations used by the bus and rail clusters

becomes clear, with Central Square and Downtown Crossing being the two heavily

used by both subgroups. For rail commuters, seven of the ten top stations are specif-

ically along the Red Line. This already begins to suggest geographic and associated

socio-demographic differences between clusters that can affect MBTA’s service cut

decisions once COVID-19’s uneven impact on churn is felt across clusters.

Among rail-oriented clusters, the off-peak riders stand out. Both fairly frequent

weekday off-peak rail riders and occasional weekday off-peak rail riders heavily use

Maverick station, which is intermodal between several bus lines and the Blue Line.

It is also located in East Boston, away from the central Boston and Cambridge areas

highlighted by other rail clusters. The fairly frequent weekday off-peak rail group

includes the airport stop as well among its top ten origins, which is proximate to the

Maverick station in East Boston.

Journey tap-in times and origin data within ODX and AFC highlight the temporal

and/or geographic separation of bus riders from rail riders, and between the fairly

frequent weekday off-peak riders versus other rail clusters.

4.6.2 Cluster profiling with smart card data

Usage of pay-as-you-go versus transit passes

The ODX data used for clustering also contains smart card metadata on fare product

types that can be used to partially characterize the socio-demographic composition of

riders within each behavioral cluster. The fare product types recorded in AFC include

the 1-day pass, 7-day pass, monthly pass, and pay-as-you-go; Perq corporate pass

usage was also separately available from the Perq database as previously discussed.

The differentiation between pass types is of interest for supporting socio-economically

vulnerable riders in Metro Boston, because the higher up-front cost of longer-term

fare passes can prevent even riders making more frequent trips from adopting them

[41]. A one-day pass, for example, costs $12.75/day in 2020, while a 7-day pass is only
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Figure 4-23: Fare product type distribution by cluster

76% more at $22.50 for six additional days, and a monthly Link pass is $90 for one

calendar month (there is also a bus-only monthly pass for $55 per calendar month,

but our data does not distinguish this). Further, corporate-subsidized Perq passes

are tied to company sponsorship, making this pass type inaccessible for passengers

not employed by companies large enough to negotiate and design such contracts with

the MBTA.

Pairing clustering results with this smart card meta-data shows extremely low

1-day pass usage across all clusters. The single-day weekend users, who are likely

leisure-oriented, have the highest uptake of one-day passes at 1.8%. For the 7-day

pass, the uptake rate was highest among occasional bus riders where 19% typically

tapped in with such passes. The occasional weekday off-peak rail cluster is a close

second at 17.7%. Monthly passes are the most popular pass type across all clusters

except for the leisure-oriented occasional weekend users and single-day weekend users.

Frequent rail commuters are most likely to take advantage of monthly passes (62%),

with occasional rail commuters (48%) and frequent bus riders (45%) in distant second

and third place.

It is notable that occasional rail commuters, despite a significantly lower system

usage, still had a roughly equivalent share of monthly pass adopters as frequent bus

riders. For occasional rail commuters, Figure 4-7 shows that the interquartile range
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(IQR) fell between 5 and 17 days for active range and 3 to 10 days for active days.

By contrast in the frequent bus riders cluster, nearly all riders exhibited an active

range of 30 or more days while the IQR for active range was 13 to 25 days. Part

of the reason for occasional rail commuters’ out-sized monthly pass usage compared

to more transit-engaged clusters may be due to fare design: given that subway rides

were $2.40 per trip by CharlieCard ($2.75 by CharlieTicket) versus $1.70 for bus,

fewer trips are needed to justify monthly pass subscriptions by rail-oriented rather

than bus-oriented users.

However, comparing the monthly pass subscription rate of occasional rail com-

muters against that of fairly frequent weekday off-peak riders suggests that this is

not the entire reason. Fairly frequent weekday off-peak riders have greater transit

engagement than occasional rail commuters, with an IQR of 26-33 days for active

range and 6-17 days for active days. Both clusters typically ride rail and pay rail fare

prices. Yet, the off-peak cluster’s monthly pass subscription rate is only 29.9%, and

it shows high reliance on pay-as-you-go at 63% which is more similar to occasional

bus and occasional weekday off-peak riders than to frequent usage clusters. Occa-

sional rail commuters’ larger pass subscription rate may reflect a greater capacity for

affording the convenience of a monthly pass; it also may be because fairly frequent

weekday off-peak rail riders are more likely to have reduced fares (e.g. through se-

nior cards) which lowers the purchase price at which a monthly pass becomes the

most cost-effective choice. Figure 4-25 below does show that this cluster is one of the

largest for reduced-fare customers which seems to align with these hypotheses, but

our data does not allow us to draw causal conclusions.

Frequent rail riders are also the most likely to have monthly passes paid through

the corporate Perq program. Figure 4-24 illustrates that 33% of this cluster’s members

had Perq sponsorship, with frequent bus riders a far distance second at 16% followed

by fairly frequent weekday off-peak rail riders at only 10%. Note that this graph differs

from the preceding Figure 4-24 in that it depicts Perq uptake rate within each cluster,

rather than assessing how much each cluster contributes to the total Perq corporate

adopter pool. The fact that Perq sponsorship is twice as high among frequent rail
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Figure 4-24: Share of Perq users by cluster

commuters than among frequent bus riders and fairly frequent weekday off-peak rail

riders, who are also intensive users of the system, again suggests structural differences

between clusters in terms of the type of people riding and their access to corporate-

negotiated and corporate-subsidized transit benefits packages.

Full and reduced fare user types

Smart card meta-data carries "user type" information indicating whether the card

makes adult full-fare transactions (either as a pass validation or a pay-as-you-go trip)

or reduced fare transactions. This give a direct window into the transit usage behavior

of the socio-economically vulnerable who qualify for smart cards with adjusted fares.

The main fare categories are detailed in the list below. Using a CharlieCard, full

fares were $1.70/trip for bus and $2.40/trip for rail one way. At reduced fares, bus

was $0.85/trip and rail $1.10/trip. During the baseline 2020 period, CharlieTicket

full fares were more expensive for rail at $2.75, but this uptick for paper ticket versus

CharlieCard fares was eliminated during COVID-19.

1. Adult: Typical full-price fares.

2. Blind: Free MBTA pass for legally blind riders and accompanying guides.
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3. RIDE: Reduced fare pass for those with disabilities who have difficulties ac-

cessing the bus or rail (subway, trolley) services. RIDE passengers can access

paratransit services booked on-demand, and generally use RIDE more for para-

transit services rather than typical transit services.

4. Senior: Reduced MBTA fares for senior citizens aged 65 and over.

5. Student: Various tiers of discounts offered to students, from middle school

through university. The program is offered through institutions to their affili-

ated students.

6. TAP: TAP offers reduced MBTA fares for people with temporary or perma-

nent disabilities and Medicare cardholders. These riders typically use the main

MBTA system, unlike RIDE passholders who rely mostly on paratransit.

7. Other: This group includes all other groups, such as other types of youth

passes, police, firefighters, public officials, and retired MBTA employees. It also

counts short fares, which indicates when a driver allows a passenger to board a

vehicle using a card without enough value to cover the full fare.

Notably, we include short fares in the "other" category. Short fares mostly occur

on buses and overground segments of the Green and Mattapan lines since station

faregates on subway sections of the rail network do not allow conductor or driver

discretion in granting entry to prospective passengers paying partial fares. Thus,

the occurrence of short fares in the data will naturally occur mostly among the two

bus-oriented behavioral clusters simply due to the nature of this fare label. To avoid

drawing attention to this artificial pattern, we decided not to separate out this cate-

gory from the other smaller fare types.

Further, the data does not trace fares paid by cash since those transactions are

lumped under one "card number" in AFC and thus not traceable through smart card

data. This is a significant limitation to the ability of this ODX-based analysis to track

vulnerable transit riders, but one that cannot be addressed with the data sources on
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hand for this thesis. Follow-up studies can use survey-based methods to assess transit

usage patterns and trip purposes for these riders which is key for equity in planning.

Figures 4-25 decomposes each behavioral cluster by user type while 4-26 flips the

analysis, decomposing each user type by cluster to illustrate which clusters contribute

the most to vulnerable rider categories. Figure 4-25 shows that adult fare riders

compose the majority of any cluster, ranging from a low of 69% for frequent bus

riders up to a high of 96.8% for single-day weekend riders. Students, seniors, TAP

users, and Other are the remaining major user types appearing in multiple clusters;

the prevalence of Other is driven mostly by short fares among frequent bus riders.

Figure 4-25: Passenger behavioral clusters decomposed by smart card user type

Frequent bus riders, occasional bus riders, and fairly frequent weekday off-peak

rail riders have the largest share of passengers with discounted or free fares. Only

69% of frequent bus riders, the largest cluster, are adult full-fare. 13% are students,

6.4% senior reduced fare riders, 4.4% TAP riders, and 6.6% Other composing mainly

of short fares (5.6%). There is a greater portion of students here than anywhere else,
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Figure 4-26: Smart card user types distribution across clusters

which also translates to the greatest absolute number of students since frequent bus

riders is the largest cluster. Occasional bus riders are 84.1% adult full-fare riders, 5.6%

senior pass holders, 6% students, 2.9% tap, and 1.3% Other (mostly youth fares). The

two bus-oriented clusters therefore are also the categories with the largest share of

reduced fare riders, with seniors and students being the most notable categories. The

TAP portion within frequent bus riders is also higher than for any other cluster.

The fairly frequent weekday off-peak rail rider cluster has a larger share of senior

passengers than any other cluster (7.5%); it is also 3.9% students and 2.3% TAP riders.

Adult riders only make up 84.9% of the cluster. The occasional weekday off-peak rail

group also has a notable senior share (4.7%). Finally, while single-day clusters were

dominated by adult fares, seniors were the only reduced-fare category with a notable

presence, again preferring weekday off-peak travel (3%). Together, these suggest that

services meant to target seniors need to be conscientious of planning for off-peak

weekday travel demand.

Figure 4-26 also highlights the uneven spread of reduced fare riders across the

behavioral clusters, again pointing to diverging and distinct patterns of transit use

among the socioeconomically vulnerable versus other transit riders. The first column,
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adult fare users, is dominated by single-day clusters each of which contributes 11-19%

of all riders in this user type. The rest of the adult fare user type is spread fairly evenly

among multi-day clusters (7-9% each) except for occasional weekend riders which was

the smallest contributor (5%). This already suggests that the larger clusters, such as

frequent bus riders, occasional bus riders, and fairly frequent weekday off-peak rail

riders are under-represented in the pool of full-fare riders compared to their bigger

overall size.

Moving to the right in Figure 4-26, the reduced or free fare user types are again

clearly concentrated among the two clusters of bus riders as well as fairly frequent

weekday off-peak rail riders. The student, TAP, RIDE, and Blind user types are

especially heavy on passengers from the frequent bus rider cluster, which makes up

44.5%, 37.6%, 31.2% and 30.1% of those reduced fare user types, respectively. The

occasional bus riders group is another major contributor, making up 22.5% of RIDE,

21.6% of TAP, 18.0% of student, 14.6% of senior, and 14.6% of the blind user types.

Fairly frequent weekday off-peak rail cluster is a similarly important contributor to

vulnerable user types, making up 20.5% of RIDE, 17.9% of blind, 17.3% of senior,

15.5% of TAP, and 10.5% of student user types. Among seniors, these three clusters

are the top contributors. Additionally, single-day off-peak weekday riders also made

up 13.9% and occasional weekday off-peak rail riders 10.2%. This again emphasizes

seniors’ propensity to use the public transit system during off-peak weekday periods.

In summary, Figure 4-26 confirms that socioeconomically more vulnerable riders

using reduced fares have a greater tendency for bus-based travel and off-peak weekday

travel. The temporal and modal separation between these riders and the majority

of full adult-fare riders again highlight the distinctive ways in which sub-populations

within Metro Boston separately engage with the transit system.

Passenger-level spatial distribution of origin stations

A previous section discussed the greater representation of South Boston origin lo-

cations for journeys undertaken by passengers within bus-oriented clusters. For the

frequent bus riders cluster, the most frequent origin station is the intermodal Forest
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Hills station in southern Jamaica Plains; the subway platform and the upper and

lower bus decks each registered as a top entry point for this cluster (Figure 4-21, Fig-

ure 4-22). Bus boardings at Nubian station in the Roxbury neighborhood also topped

the list. The occasional bus rider group prominently features these origin locations

as well. Forest Hills and Ashmont are rapidly developing neighborhoods with varied

socio-economics, while Roxbury is a diverse area with 32% white, 53% Black/African

American, 29% Hispanic, 3% Asian/Pacific Islander, and 4% other [67]. By compar-

ison Boston as a whole is 45% white, 23% black/African American, 19% Hispanic,

and 9% Asian/Pacific Islander.

The ODX journey origins data also supports analysis of the distribution of lo-

cations from which passengers in each cluster access transit. We calculate Shannon

entropy scores for journey origins at the passenger level and plot the distribution of

entropy values found in each cluster. This helps to describe the variation in origin

stations used by riders in each cluster; the higher the median entropy, the more pas-

sengers in that group tend to rely on transit to access a wider variety of their mobility

needs. We do this only for the multi-day rider clusters, since the single-day riders

averaged under 1.5 journeys during the baseline study period which is too small a

number for meaningfully calculating entropy.

Figure 4-27: Distribution of passenger-level Shannon entropy scores of journey origins
for each multi-day rider cluster

Figure 4-27 illustrates the higher level of entropy in journey origins generally
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found among frequent bus riders compared to all other multi-day clusters. Though

the entropy among frequent bus riders also has longer tails than other clusters, this

group appears to use the bus from a wider range of origins even compared to frequent

rail commuters, though the distribution of total journeys per passenger was similar

between the two groups (Figure 4-2b). This suggests consistent bus users may be more

dependent on the bus for a wider range of mobility needs. We note, however, that

there are also many more bus stops spaced closer together (8,047 stops) than there

are rail and rapid transit stops (166 stops) in Metro Boston, which could contribute

to greater entropy in the bus results if we assume that bus riders sometimes board

using stops adjacent to their most typical ones [68]. However, it is reassuring for this

analysis that occasional bus riders do not appear to outstrip any of the occasional

rail rider groups in terms of journey origins entropy.

4.6.3 Cluster profiling with survey data

This sub-section leverages the MBTA’s 2015-2017 System-wide Passenger Survey to

give socio-demographic color to the profiles of each behavioral cluster, then to draw

high-level conclusions about access to alternative modes and ease of access to transit

stations by cluster. As discussed in Chapter 3.2, this survey was conducted at the

station level for subway services and at the route level for bus and above-ground

rail segments. Further, survey respondents were sampled from any passenger in the

station or bus/trolley vehicle including those entering, transferring, or exiting; by

contrast, ODX data only records passenger entry. Because of these methodological

differences between the survey and ODX data, it was not possible to perfectly join each

passenger card ID in the ODX database to an exact demographic profile. Additionally,

because bus riders were surveyed at the less granular route level while subway riders

were surveyed at the station level, we expect that the extrapolated results for the

frequent and occasional bus rider clusters may look more similar to each other than

for the rail-oriented clusters. Therefore, we do not use this data to draw causal

inferences or granular analytical results, but only use it for high-level insights that

give a sensibility check to the results from our smart card meta-data analysis.
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Difficulties of socio-demographic inference to transit riders are not unique to our

survey dataset. The most common alternative for socio-demographic data, the census,

also faces problems of specificity when applied to AFC or ODX, because analysis based

on the census seeks to infer the socio-demographics of transit riders based on the the

location of tap-ins [36, 33, 35, 2, 34]. Not all individuals in a census tract where a

tap-in occurs are regular transit users, and a tap-in does not necessarily indicate that

the rider resides and therefore is representative of the origin census tract.

Socio-demographics

Given these caveats, Figure 4-28 estimates each cluster’s income bracket breakdown

based on extrapolation from the System-wide Passenger Survey. The frequent and

occasional bus rider clusters outstrip all others in the share of households earning less

than $76,000 annually, with 51-52% in brackets below this threshold while all other

clusters contain at most 44% below this threshold. There is a significant share of

riders extrapolated as preferring not to share income information based on the survey

data. This share is steady at 16-17% across all clusters, but the underlying way in

which this category is spread among the known income buckets may not be the same

across clusters. This introduces more caveats to our income analysis. Keeping these in

mind, it appears that the frequent and occasional bus rider clusters reflect the transit

usage behaviors of lower income demographics. This aligns with our earlier finding

that bus-based clusters are more reflective of usage patterns by reduced-fare user types

including students, those paying short fares, seniors, and those with disabilities, based

on the more accurate direct analysis of ODX smart card meta-data.

On the other hand, the fairly frequent weekday off-peak rail rider cluster does

not appear to have as high a share of lower income bracket riders, despite earlier

ODX smart card meta-data analysis showing that several key reduced-fare user types

exhibited ridership behavior captured by this cluster. This can be reflective of the

composition of the reduced fare user types dominant in this cluster as well as the

occasional weekday off-peak rail cluster. Holders of senior reduced fare cards make

up the majority of those not paying full fares within these clusters (Figure 4-25), but
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Figure 4-28: Estimated household income breakdown by cluster based on MBTA
survey data

seniors may still have substantial work or investment income.

Figure 4-29 plots the extrapolation of ethnic breakdown by cluster based on sur-

vey data. The plot suggests that the frequent bus riders cluster and occasional bus

riders cluster hold higher proportions of people of color, in particular black or African

American riders and American Indian or Alaska Native riders. The American Indian

or Alaskan Native share of each bus rider cluster was around 2%, twice that of all

other clusters. Black or African American riders were around 19% of each of the two

bus rider clusters, compared to 9%-11% for the other clusters. Though the System-

wide Passenger Survey does not offer the passenger-level accuracy of our ODX data,

it seems to align with our findings from smart card meta-data that bus-oriented riders

could be from more reduced-fare groups.
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Figure 4-29: Estimated ethnicity breakdown by cluster based on MBTA survey data

Modal alternatives

The System-wide Passenger Survey includes information on access to alternative

modes, number of household vehicles accessible to the transit rider, and the mode

used to access the beginning of a rider’s transit journey. Figure 4-30 depicts, by

cluster, passengers’ alternatives to transit for the journey they were conducting when

interviewed for the survey. The extrapolated figures suggest frequent and occasional

bus riders are the least likely to drive alone as an alternative to transit, with 14-15%

stating they would drive alone compared to 18-21% in other groups. Extrapolations

also suggest, however, that they are not less likely to join a carpool as an alternative.

They may instead be slightly more likely to take a different MBTA transit service.

These results seem to align with patterns observable in Figure 4-31, which sug-

gest frequent and occasional bus riders are the most likely clusters to have no us-

able household vehicles, as are occasional weekend riders—for each of these clusters,

roughly one-third responded they had zero household vehicles. Fairly frequent week-

day off-peak and occasional weekday off-peak rail riders are close behind at 30-31%.
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Figure 4-30: Estimated access to alternative modes by cluster based on MBTA survey
data

On the other hand, occasional rail commuters are the most likely to have one or more

usable household vehicles, with only 27% responding that they had no access to a

usable household vehicle.

Finally, Figure 4-32 assesses the distribution of modes used to access the entry

point to the journey that the respondent was undertaking at the time of being inter-

viewed for the survey. For all clusters, walking or biking is the dominant first-mile

access mode, with at least 86% of any cluster extrapolated to be using these modes.

Frequent bus riders, occasional bus riders, and occasional weekend rail riders have

the highest usage of walking and biking for first mile access (over 90%).

In summary, the System-wide Passenger Survey results suggest that bus riders are

least likely to have car access, a factor that may translate to higher transit dependence

even during the pandemic.
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Figure 4-31: Estimated household vehicle count by cluster based on MBTA survey

Figure 4-32: Estimated distribution of modes used to access first transit entry point,
by cluster based on MBTA survey
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4.7 Leveraging baseline clusters for COVID-19 era

transit analysis

This chapter paints a picture of pre-pandemic ridership behavior, discussing how

distinct rider groups can be in terms of their modal usage, temporal travel patterns,

and geographic distribution. Tracking each rider cluster’s evolution in COVID-19 will

give insight on how the distribution of demand on the MBTA system evolves during

this crisis and how the evolving transit demand is distributed across riders from full

fare, reduced fare, and corporate-sponsored fare product categories. It will also help

target recovery by providing insight on the pattern of transit services reduced-fare

populations need, and services that revenue-driving rider clusters need to continue

contributing to MBTA coffers.
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Chapter 5

COVID-19 impact on ridership

behavior

5.1 Overview

Massachusetts was one of the earliest states in the U.S. to report positive COVID-

19 cases, with the first case confirmed on February 1, 2020 [69]. Governor Charlie

Baker announced the state’s first stay-at-home order on March 23 for a duration of

two weeks as cases began to skyrocket towards its first peak in spring 2020 (Figure

5-1) [70].1 During this time, public transit ridership began to plummet, especially

for train which fell 94%. The exact size of the collapse in bus ridership is known

with less certainty, since the implementation of rear-door boarding from March 21

through July 20 eliminated data flows to fareboxes and thus automated fare collection

(AFC) data.2 Once front-door boarding and fare collection recommenced, Origin-

Destination-Transfer (ODX) data derived from AFC indicates that rail trip stage

volumes had fallen 86% from our winter baseline (January 13-February 16, 2020) to

our COVID analysis period (August 18-September 21, 2020), compared to 63% for

bus (Figure 5-2).
1The figure is for Suffolk County, which covers Boston but not all areas of Metro Boston, such

as Cambridge, MA.
2Automatic passenger counting (APC) data was still available, but only for a subset of buses as

APC rollout was still in process during this time.
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Figure 5-1: Suffolk County COVID-19 cases, January 2020 - April 2021

Figure 5-2: MBTA transit ridership trends in 2020 (ODX), study periods shaded
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We selected August 18 - September 21, 2020 as our COVID-19 study period

because of the data limitations imposed by the rear-door boarding public health

policy, and to leave enough time after the end of that policy for front-door boarding

and fare payment to fully resume. With five months of COVID-19 experience, there

was also greater stabilization of pandemic mobility patterns among travelers in Metro

Boston [4]. However, caseloads were at record lows during this time frame, the weather

warm, and a portion of students were returning to university campuses, all of which

may be associated with the slight uptick in transit usage for both bus and rail. At

the same time, the MBTA was reducing the frequency and hours of service on the

supply side in response to COVID-19, as detailed in Chapter 6. This thesis takes a

demand-side approach, which means it does not explicitly account for the impact of

supply change and only captures the changes’ indirect effect on demand.

This chapter begins by taking an overview of ODX data during the summer

COVID-19 study period, where we find that peakiness in the weekday temporal profile

for transit was heavily attenuated but did not disappear with the onset of COVID-19

and remote work. The chapter then presents clustering results from applying the base-

line 2020 𝑘-means model from Chapter 4 to COVID-period data, and discusses the

shifts in behavioral clusters observed during the pandemic. Subsequently, it turns

to the subset of pandemic-period riders who were also in the pre-COVID baseline

period—that is, riders who continued riding through the pandemic. This allows us

to assess the share of passengers from the baseline who did not churn, and to track

how these retained members of each baseline cluster modified their behavior during

the pandemic such that they shifted over to a separate cluster by the COVID period.

We find that during the pandemic, the share of passengers following the travel

profile of frequent bus riders held more steady than could be expected given the

"background" cluster-switch rates observed in 2019. This cluster also became a larger

contributor to journey count than during even the baseline period. Tracking baseline

period frequent bus riders, we find that they were more likely than those from any

other baseline cluster to extend their existing ridership behavior into pandemic times.

Additionally, fairly frequent weekday off-peak rail riders also made up a slightly larger
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share of the summer rider and journey count than background rates would suggest.

In stark contrast, all clusters representing rail commuters collapsed, likely bringing

with it a nosedive in Perq revenues.

Results from this chapter suggest that, though it is unclear how transit ridership

overall will recover from COVID-19, greater certainty exists for the travel needs of bus-

oriented riders and to a lesser degree fairly frequent off-peak rail riders. The recovery

of both frequent and occasional rail commuters, and the significant Perq pass revenue

they used to bring for the MBTA, face enormous uncertainty. Addressing this may

require the agency to work more directly with institutions subscribing to Perq to

understand the timing and design of return-to-office plans, perhaps influence those

plans, and reshape the Perq program to keep it cost-effective for Perq workers given

their potentially reduced commuting needs.

5.2 COVID period 2020 ODX data: Temporal pro-

files of transit use

This pandemic analysis relies on ODX data for more direct comparability of results

between the pre-COVID baseline and the COVID era. In addition to the cumulative

drop in total bus and rail ridership noted in Figure 5-2 above, there were also clear

changes in the daily temporal profile of ridership.

Figure 5-3 compares the baseline 2020 temporal profiles of bus and train ridership

for a typical weekday, against those from the COVID period. During the pandemic,

the peakiness of rail ridership fell precipitously especially for the morning rush hour.

In baseline 2020, rail travel was roughly 3.5 time higher in the morning peak at 8 AM

or the evening peak at 6 PM than during the midday hour of 11 AM. By the COVID

period, this ratio had shrunk to 1.5 for the morning peak compared to midday, and

1.9 for the evening. Notably, train travel volumes during midday were slightly below

bus during COVID, whereas it had been above in the baseline. Bus travel also saw

reduced peakiness, but the change in the shape of its temporal profile was less drastic
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(a) Baseline 2020 (Jan-Feb) (b) COVID-19 2020 (Aug-Sept)

Figure 5-3: Temporal profile of weekday transit use by mode, baseline v COVID-19
(note the difference in the y-axis scale, which is in units of trip stages)

(a) Baseline 2020 (Jan-Feb) (b) COVID-19 2020 (Aug-Sept)

Figure 5-4: Temporal profile of weekend transit use by mode, baseline v COVID-19
(note the difference in the y-axis scale, which is in units of trip stages)

129



since bus travel already had significant off-peak, midday ridership during the baseline.

Similar to rail, bus ridership saw greater shrinkage for the morning rush hour than

for the evening, possibly because of the continuation of some evening social activities

even as commutes dwindled with the transition to remote work. The ratio of morning

peak bus ridership at its high point at 7 AM to the midday nadir at 11 AM was 2.7

during the baseline, and the ratio for the evening peak at 7 PM was 2.6. Once the

pandemic hit, these ratios shrank to 1.2 and 1.6 respectively. Unlike in some transit

systems such as Chicago’s, the peaks did not disappear completely, especially for the

evening rush hour [32].

The weekend temporal profile of travel underwent much less change during COVID-

19, especially among bus riders (Figure 5-4). Volumes shrank by roughly half instead

of the close to 80% seen during the weekday. Bus travel maintained a similar tempo-

ral distribution throughout a typical weekend day, though the rise in journey starts

between 5 AM and 8 AM is steeper than during the baseline. There is also a clearer

evening peak. On the other hand for trains, midday seems to capture a lower share of

trip stages than during the baseline, leaving the evening peak sharper by comparison.

Yet the evening peakiness of weekend train travel is no longer as different from that of

bus riders. These temporal profiles already hint at the differential impact of COVID-

19 on rail versus bus ridership, and the operational and scheduling impacts of shifting

behaviors especially when it comes to planning for weekends when frequencies tend

to be lower and schedules more evenly spaced.

In addition to comparing the COVID 2020 temporal profiles against the pre-

COVID baseline, we also check against a similar time period of summer 2019 (Figure

5-5). Since we noted seasonal differences in ridership in Section 3.5, it is helpful to

check COVID 2020 data against a previous period in the same season in order to con-

trol for the "background" differences between winter and summer ridership patterns.

Figure 5-5 indicates that a typical summer’s temporal profile for weekday or weekend

ridership much more closely resembles the baseline 2020 profile than the pandemic-

period summer 2020 profile, with an even clearer gap between weekend evening train

versus bus ridership. The COVID 2020 shifts in how travel is distributed throughout
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(a) Weekday summer 2019 (b) Weekend summer 2019

Figure 5-5: "Background" temporal profile of summer transit use by mode, summer
2019 (note the difference in the y-axis scale, which is in units of trip stages)

the day therefore appear to reflect a pandemic situation rather than natural seasonal

variation.

In Chapter 4, cluster profiling indicated that the time of day of ridership was a

key distinguishing feature among rail riders and also among single-day riders; there

were notable modal differences in ridership patterns as well. These factors also appear

prominent in the aggregated temporal and modal differences observed in how ridership

changed during the pandemic. In the next two sections, we drill down to the cluster

level and assess how clusters of passengers that differed in their pre-COVID transit

use patterns may have diverged in adapting their mobility behavior to the pandemic.

5.3 Clustering passengers based on pandemic transit

usage behavior

In this section, we examine the pandemic’s impact using the behavioral clustering

model trained on winter 2020 data, to assess 1) changes in the composition of be-

havioral clusters present among pandemic riders, and 2) changes in the distribution

of feature values within each cluster from the baseline to the COVID-19 period. For

this portion of the analysis, we take all passengers using the MBTA system during

the COVID-19 period in 2020, and assign them to behavioral clusters based on their
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continuing travel behavior. This is an out-of-sample application of the clustering

model trained on baseline 2020 data, since not all riders in the COVID-19 period

were present in the baseline.

5.3.1 Passenger and journey composition

Figure 5-6a and Figure 5-7 show how the allocation of passengers across the ten

behavioral clusters evolved from baseline 2020 to the COVID-19 period in summer

2020, and compare that against the "natural" seasonal change from winter to summer

2019. Figure 5-7 (and the corresponding Figure 5-8 for journeys), explicitly focuses

on this "difference-in-difference" for each cluster—that is, we examine the difference

in bar heights between the blue 2019 data, and compare that to the difference in bar

heights between the warm-colored 2020 data.

(a) Passenger composition (b) Journey composition

Figure 5-6: Cluster composition for winter 2019, summer 2019, baseline 2020, COVID-
period 2020

In the COVID-19 period, the three clusters most associated with reduced fare

users—that is, the frequent bus riders, occasional bus riders, and fairly frequent

weekday off-peak rail riders—provided roughly the same share of the passenger pool

as in baseline winter 2020. This is in stark contrast to the 2019 seasonal pattern

where these groups shrank as shares of the passenger count after winter.

In the pandemic, 10.4% of passengers were frequent bus riders, 12.1% occasional

bus riders, and 7.8% fairly frequent weekday off-peak rail riders. This reflects a strong
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Figure 5-7: Passenger composition change, baseline/COVID 2020 compared to cor-
responding seasons of 2019

Figure 5-8: Journey composition change, baseline/COVID 2020 compared to corre-
sponding seasons of 2019
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shift towards occasional bus ridership after the baseline, one that appears larger than

can typically be expected given summer 2019, when the passenger share of this cluster

(9.6%) was close to that of both winter of the same year (9.3%) and baseline 2020

(9.9%). Further, the share of frequent bus riders (10.4%) shrank only 6.9% from the

baseline (11.2%), in contrast to 2019 when frequent bus riders’ share shrank 27% from

9.9% down to 7.2%. As a result, the frequent bus riders’ share of passengers is 44.5%

larger than in the same season of 2019.

Fairly frequent weekday off-peak rail riders (7.8%) were also slightly down from

the baseline (8.7%) but larger than in the corresponding season of 2019 (6.7%) where

there was a stronger fall-off from winter to summer. The occasional weekday off-peak

rail riders shrank to 6.5% during the pandemic, down from 8.2-8.3% observed in the

other three time frames. The single-day off-peak weekday riders, who are mostly rail

users, rose to 18.5% during the pandemic from 17.6% in the baseline, but this seems

close to being in line with the winter-summer evolution observed in 2019.

As a segment, the single-day clusters surged between the baseline and summer.

However, the composition of these clusters tilted in favor of weekend single-day riders

(18.2%), much more so than was expected based on 2019 when the cluster expanded

from 12.0% to 14.7%. This aligns with the notable rise in multi-day weekend rail

riders, which expanded from 4.8% in the baseline to 8.7% in the pandemic summer,

outstripping the 2019 situation where this cluster held relatively flat inter-seasonally.

At the same time, the single-day peak period cluster declined from 15.3% of base-

line period riders to 13.0% in the pandemic period, which is in contrast to the uptick

observed from winter to summer 2019. This aligns with the virtual disappearance of

the two commuter clusters during the pandemic. Frequent rail commuters collapsed

to 2.0% of all passengers compared to 7.1% in the baseline. In 2019, the winter to

summer change was much more gradual, from 6.3% down to 5.0%. Occasional rail

commuters shrank to 2.8% during COVID, from 7.1% in the baseline. Again, this is

starkly sharper than the inter-seasonal change experienced in 2019, when this cluster’s

passenger share only dwindled slightly from 6.7% to 6.0%.

In summary, the two bus clusters and the two weekend travel clusters most clearly
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contributed a greater share to total passenger count during the pandemic period

than could be expected if we assume that 2019’s inter-seasonal ridership patterns

held. Commuters who use rail vanished almost entirely, while weekday off-peak travel

remained somewhat steady.

Figure 5-6b and Figure 5-8 complement the above passenger perspective by ex-

amining the evolution of each clusters’ contribution to journey count between the

time windows under consideration. As noted in Chapter 3, journey counts are more

essential to operational planning than passenger count, as it represents the actual

demand put upon the transit system.

As we move from summer 2019 to baseline 2020 and finally summer 2020, there is

a consistent rise in the share of each period’s journeys made by frequent bus riders.

Whereas this cluster contributed 35.4% in the baseline, 33.0% in winter 2019, and only

29.0% in summer 2019, it was 41.2% of all journeys in the pandemic period. Thus in

contrast to the inter-seasonal pattern in 2019, frequent bus riders took a larger share

of the total journeys in the pandemic than in the baseline. This is perhaps especially

striking given that the share of pandemic-period passengers categorized as frequent

bus riders was slightly lower than the baseline period’s, not higher. If we look instead

at the absolute value of the journey and passenger numbers, it appears that this is

occurring because the average number of journeys per frequent bus rider stayed flat

during the pandemic, while this ratio fell for some of the other large clusters.

Among occasional bus riders, an uptick in the share of total journeys was observed

as well from 8.4% in the baseline to 12.1% during the pandemic. However, this is not

a notable departure from the inter-seasonal pattern seen in 2019. Given the uptick

in the share of passengers categorized as occasional bus riders during this time, this

reflects that those in the growing pool of occasional bus riders remained mostly in

line with historical expectations or slightly reduced their journey count.

From the rail-oriented clusters, the fairly frequent weekday off-peak rail cluster

saw its share of total journeys rise from 16.9% to 19.8% in the pandemic, in contrast to

2019 when its share shrank from winter to summer. Similar to the frequent bus riders

cluster, this increase in the relative share of journeys from baseline to summer 2020
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comes alongside a fall in the share of riders, suggesting that journeys per passengers

is also rising for this group. The other two off-peak clusters with less intensive usage

did not, however, show this surge in their contributions to total journey count.

In contrast with the frequent bus riders and fairly frequent weekday off-peak

riders, both rail commuter groups again saw a precipitous fall in their contributions

to journey count once the pandemic hit. In 2019, frequent rail commuters were 20.2%

of journeys in the winter and slightly less at 18.0% in the summer. By contrast in

2020, this cluster began at a higher 21.2% in the winter baseline but finished at one-

third that level, 7.1%, once the pandemic hit. Occasional rail commuters actually

saw an increase in its journey share in 2019 going from winter to summer, but this

collapsed by two-thirds across the corresponding periods of 2020.

Finally, enforcing the previously observed trend in the relatively stronger perfor-

mance of weekend travel during the pandemic, the occasional weekend riders expe-

rienced a tripling of its share of total journeys from the baseline into the pandemic

summer, far above 2019 when it only rose from 2.7% to 3.4%. Single-day weekend

riders also saw a slight uptick compared to 2019.

Overall, journey-level results suggest that passengers who behave like frequent

bus riders during the pandemic were the notable cohort actively riding transit during

this emergency period, and that per passenger, their journey volumes may have risen

slightly. Those behaving as occasional bus riders were also more likely than most

other clusters to still use transit during COVID-19, but their average usage intensity

fell. Meanwhile, demand from rail commuter clusters was pummeled by the pandemic.

Lastly, passengers using transit for the weekend—likely, for leisure purposes—became

a larger share of the overall smaller rider and journey pool, but are still insignificant

contributors to journey volumes.

These observations already suggest the MBTA may need to continue serving the

temporal and spatial mobility patterns of frequent bus riders, who may be transit

dependent or essential workers given their high usage of transit during pandemic

times. Mid-day rail travel is another category where service needs to be maintained.

Meanwhile, rail usage, especially for commuting, has transformed entirely due to
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remote work, and depending on the evolution of the workweek in the COVID-19

recovery it may not return to the same state as winter 2020. Therefore, there is a

higher level of certainty in how the most intensively used bus services and midday

rail services will look going forward, than there is certainty on rail commuting.

5.3.2 Feature distribution by cluster, baseline versus COVID-

19

Throughout this chapter’s analysis, we apply the 𝑘-means model trained on baseline

2020 ODX data to tease out distinct behavioral patterns in the COVID-19 era data.

This means the centroids of each pandemic period cluster we are assessing is the same

as during the baseline. However, the distribution in feature values among the points

categorized into each cluster may still differ from the baseline—i.e., the distribution

of points in each cluster around each centroid can shift, even if the centroids do not.

Figure 5-9 presents violin plots for the features used to cluster multi-day transit

riders during the COVID-19 period in 2020. It is analogous to the baseline period plot

in Figure 4-7 of the previous chapter. Comparing these two figures reveals an upward

shift in the bus share of trip stages among the frequent and occasional bus riders still

using the MBTA system; the upward shift is evident in both the IQR and the median

value (clusters #1, #2). This is accompanied, however, by a slight downward shift

in transfers among these two groups.

Temporally, there is a decrease in peak-period travel among frequent bus riders

(cluster #1) as well as both frequent and occasional rail commuters (clusters #6, #5).

At the same time, the active range and active days distributions are shifting upward

for frequent bus riders. Frequent rail commuters shrank drastically as a group, but

those still riding following this commuting pattern are still highly engaged with the

system in terms of both active range and active days. Weekend travel shares were

also notably higher for this rider cluster, as well as for fairly frequent weekday off-

peak rail riders, frequent bus riders, and occasional bus riders. In fact, whereas the

weekend usage distribution in the baseline had offered a clean-cut contrast between
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Figure 5-9: Variation of features within and between multi-day rider clusters during
COVID-19
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the weekend rail riders cluster (#7) and the other multi-day groups, during COVID-

19 the distinction is less clear cut due to the upward shift along this dimension in

nearly all multi-day clusters.

Figure 5-10 compares the entropy in boarding locations of passenger clusters dur-

ing COVID-19 against the baseline. Among frequent bus riders the distribution of

entropy scores among members shifted upward compared to previously, as average

journeys per passenger also ticked up. This suggests that those still using the bus

intensively during COVID-19 are boarding more evenly across a range of locations

(rather than strongly favoring just a handful of stops). Examining top boarding

stops/stations for bus riders also suggests relatively high stability between the base-

line and the COVID-19 period. Among occasional bus riders and fairly frequent

weekday off-peak rail riders, the latter of which saw a slight uptick in average jour-

neys per passenger during COVID-19, there are also increases in entropy. Meanwhile,

the entropy distribution shifted down for the frequent rail commuter cluster as well

as the remaining rail groups. These observations mostly enforce our earlier discussion

on the operational need to pay close attention to the existing mobility demand of

frequent bus riders, and also of rail users intensively traveling off-peak.

(a) COVID-19 period summer 2020 (b) Baseline period winter 2020

Figure 5-10: Entropy of journey origins among multi-day rider clusters
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5.3.3 Cluster profiling

The previous chapter discussed the revenue importance of Perq riders. Given the

collapse of frequent rail commuters during COVID-19, this revenue stream is under

threat. Riders on Perq passes shrank 73.7% from the baseline to summer 2020, faster

than the 60.4% overall shrinkage in passenger count. Figure 5-11, which plots the

share of Perq riders in each cluster, shows that in particular, frequent rail commuters

is no longer dominant in its Perq passenger contributions. This group used to provide

39% of Perq passengers in the baseline, far exceeding frequent bus riders in second

place with 29% and fairly frequent weekday off-peak rail riders at 15%. It now only

contributes 17% of Perq passengers, behind both frequent bus riders (27%) and fairly

frequent off-peak riders (23%). Frequent rail commuters’ Perq passenger contributions

are still, however, punching far above its weight given how few riders of that category

are left in the system (2%), suggesting that there is a sub-category of institutionally

sponsored rail riders who remain consistently engaged with transit.

Figure 5-11: Cluster contributions to Perq v. general passenger pool, COVID-19
summer 2020

Other smart card meta-data reveal a general drop-off in the share of each cluster
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using monthly passes, accompanied by a shift towards pay-as-you-go. Frequent rail

commuters and fairly frequent weekday off-peak rail riders were the two groups where

the share of monthly passes remained relatively comparable to baseline (falling 62%

to 50% and 30% to 27% respectively).

As Metro Boston recovers from COVID-19 and large employers reassess the ex-

tent to which remote work becomes permanent, there may be further changes on the

horizon for Perq rail commuters and the revenue this group can promise for MBTA

operations. In the meantime, we observe again in the Perq setting that the degree

of uncertainty in ridership is lower among frequent bus riders and fairly frequent

off-peak rail riders, suggesting that even during the dynamic times of the pandemic

and subsequent recovery, transit planning efforts targeting these groups may be able

to continue without as drastic an overhaul as efforts targeting rail-based commuter

groups. There also appears to be a small sub-group of frequent rail commuters who

continue to exhibit high and consistent usage during emergencies, but they are cur-

rently a much smaller share of passengers than that covered by the other two clusters.

Smart card meta-data regarding user type shows that during the pandemic, the

frequent bus rider, occasional bus rider, and fairly frequent weekday off-peak rail rider

continued to be the top behavioral clusters for those on reduced fares (Figure 5-12).

However, the composition of reduced fare users remaining in the system changed.

The share of TAP user types rose in these three clusters. Seniors rose as a share of

frequent bus riders (from 6.4% in the baseline to 9% during COVID-19)—and also as

a share of frequent rail commuters (2.6% to 4%).

Students vanished from the frequent bus rider, frequent rail commuter, and fairly

frequent weekday off-peak clusters, while also falling as a share of occasional bus riders

from 6% to 4%. Meanwhile, the remaining students shifted towards the occasional

off-peak rail and occasional rail commuter clusters, showing a lessening intensity of

previously observed transit usage patterns. Further, there was a doubling of the Other

reduced fare category among remaining riders who are frequent bus users; this was

driven almost entirely by short fares. Adult fares, on the other hand, held relatively

steady as a percentage of each behavioral cluster.

141



Figure 5-12: Clusters broken down by user type, COVID-19 summer 2020

Figure 5-13 flips the previous analysis to assess the contribution of clusters to

each reduced fare type. This perspective highlights the shift in adult full fare-paying

riders away from the frequent bus rider, frequent rail commuter, occasional rail com-

muter, and single-day peak rider clusters towards the occasional bus rider, occasional

weekend rider, and single-day weekend clusters. This again emphasizes the overar-

ching movement away from regular work-based, consistent transit use towards more

occasional and leisure-oriented travel during the pandemic.

The occasional weekend cluster rose in importance not only for adult full fare

paying riders, but for students as well. Figure 5-13 makes the change in student

ridership behavior even clearer, showing a movement almost completely away from

frequent bus ridership (down from 44% to 1% from baseline to the COVID period)

towards occasional bus ridership (up from 15% to 32%). Students also no longer

rode frequently in the weekday off-peak times, shifting instead to occasional off-peak

use (up from 3% to 20%). Occasional weekend (up from 4% to 12%) and the three

single-day ridership clusters also saw dramatic expansions (up from 9% to 31%).

Finally, a larger share of seniors continuing to use transit during the pandemic are

shifting towards bus, expanding both the frequent bus rider cluster (up from 19% to
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Figure 5-13: User type broken down by clusters, COVID-19 summer 2020

23%) and the occasional bus rider cluster (15% to 19%). Among other major reduced

fare categories, the distribution of ridership patterns are more stable.

We do not join our summer ODX data to the 2015-2017 System-wide Survey as

we did in the baseline to gather demographic information. The survey’s sampling

methodology produced statistics that roughly reflected the demographics of those

traveling in non-pandemic times. Unlike ODX and associated smart card meta-data,

this survey effort does not continue into the pandemic era to capture shifts in rid-

ership during COVID-19. However, taking the high-level results we found from the

survey data in the previous chapter, it appears there may be associations between

the bus rider clusters’ lower household vehicle access and lower income status (which

is tied to essential work that cannot be done remotely) that can potentially drive the

continuation of bus ridership observed during the pandemic. Fairly frequent weekday

off-peak riders, though they also contain a higher share using reduced fares, appear

to have greater access to cars and alternative travel modes, and during the pandemic

we see a more muted volume change from this cluster.

In summary, cluster profiling using ODX smart card data showed that Perq, the

largest single source of fare revenues, was retaining more traction during the pan-

demic among frequent bus riders and fairly frequent weekday off-peak rail riders than
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among its typical bulwark, frequent rail commuters. This suggests that to drive both

ridership and fare revenue recovery, the MBTA may need to work closely on the

timing of service restoration and the structure as well as pricing of Perq to offer a

corporate pass program that can work well with increased remote work. Meanwhile,

reduced fare riders continued to make up a larger share of the two bus clusters and

fairly frequent weekday off-peak rail cluster than any others, though the composition

shifted with students diminishing while senior users rose, suggesting greater continued

transit dependence among these user types.

5.4 Churn: Tracking baseline transit passengers through

the pandemic

This section takes a more granular look at how transit behavior shifted among those

who were already riders in the baseline period, once COVID-19 struck. This differs

from the previous section’s examination of the COVID-19 summer 2020 riders in that

it excludes new passengers who entered the system during the pandemic.3 Whereas

the previous section assessed the overall characteristics of each behavioral cluster dur-

ing COVID-19, it could not tell us how passenger behavior evolved from the baseline

to the pandemic period, since it did not track riders longitudinally. Figure 5-14, by

contrast, tracks each baseline passenger longitudinally into the COVID period and

compares the patterns observed against the background churn and cluster-switching

seen in a typical year like 2019.

The left-hand side of Figure 5-14 shows the background rates of churn and cluster-

switch during our non-pandemic reference year, 2019. By contrast, the right-hand side

of the same figure shows churn and cluster-switch rates from baseline 2020 to COVID

2020. Within each graph, each bar represents one cluster from the winter season,

and each colored segment within the bar indicates the cluster that certain members
3Technically, we are not excluding new riders, only new smart card numbers not previously see in

the baseline. If the same individual rode in baseline 2020, then began riding again in August using
a new CharlieCard, such a person would be considered a "new" rider to ODX and AFC.
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switched to by the following summer. That is, each bar tracks how passengers of a

particular cluster shifted their transit usage patterns through the year. The portion

with the same color as the cluster label on the x-axis represents passengers who

maintained the same behavioral pattern throughout, and the grey portions represent

those who churned (i.e., left the system or were otherwise no longer traceable under

the same smart card ID). At least 60% of each cluster churned, with nearly 100%

churn for the single-day users.4

Frequent rail commuters, fairly frequent weekday off-peak rail riders, and frequent

bus riders were the three groups with the highest rider retention (i.e., lowest churn)

from winter to summer 2019.5 During the pandemic, they saw the largest rises in

churn, partially because there was more room for retention to fall. The churn rates

among these were 51 ppt, 33 ppt, and 24 ppt respectively above the background rates

seen in 2019; this also translates to churn rates that were 2.7 times, 1.8 times, and

1.7 times greater than the background rate.

4Because of the nearly complete churn among single-day clusters, Figure 5-14 does not include
bars for these (i.e., we do not track riders who were in a single-day cluster in the winter). However,
the figure keeps single-day clusters as one of the possible "destinations" for where a rider evolved
by the summer season, because a notable portion of multi-day riders became single-day especially
during the pandemic.

5Note that these graphs do not use the same cluster coloring scheme as preceding graphs. Darker
colors are used here to enable legibility of the x-axis.
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The drop-off in frequent rail commuters is particularly striking in Figure 3.8,

because this cluster used to have the highest passenger retention rate from winter

to summer (70%), with 43% even staying within the same cluster in the summer.

The frequent bus riders and fairly frequent weekday off-peak rail clusters had slightly

lower natural retention rates (63%, 61%). In addition to having the highest uptick in

churn, the frequent rail rider cluster experienced the largest decrease in the share of

passengers who stayed in the same cluster from baseline to the COVID period (-38

ppt from 43% down to 4.4%), when comparing 2020 figures against 2019 ones. There

was even a decrease in the share who became occasional rail commuters (-5.2 ppt)

or fairly frequent weekday off-peak rail riders (-3.8 ppt), suggesting that reduction

in travel intensity or shifting travel to a less crowded period of the day were not

clearly favored strategies. There was also only a small increase (0.9 ppt) in the share

who switched to occasional weekend users. Instead, these frequent rail commuters

preferred to leave the system; whether because they had eliminated their commutes

due to remote work or because they had switched to another mode like driving or

biking, we cannot discover from our existing data sources.

Frequent bus riders were the most likely to remain with the same cluster during

the pandemic (20.5% stayed in-cluster). Fairly frequent weekday off-peak rail riders

were a distance second (10.2%). No other clusters had more than 4.5% of baseline

period passengers remain in-cluster during the pandemic. In addition to scoring the

highest along this metric, the frequent bus rider cluster is notable in that the share

switching to occasional bus riders (8.5% of baseline passengers) was very close to

the background switch rate (9.5%) despite the cluster’s higher churn during 2020.

This seems again to indicate that pre-pandemic passengers who exhibited heavy bus

use are the most likely to continue riding transit, and retain more of their typical

inter-seasonal behavioral patterns.

Fairly frequent off-peak rail riders, as previously mentioned, were the third most

likely to stay in-cluster and retain their typical transit usage patterns during the

pandemic. This may be because off-peak rail was already less crowded compared to

rush hour travel, diminishing fear of COVID-19 contagion on the enclosed subway

147



cars. The share that shifted to more occasional off-peak ridership is still sizable

(3.4%), but is half the background rate; the share that switched to single-day off-

peak ridership stayed relatively flat (rising 0.6 ppt). Thus it appears that this cluster

of midday rail passengers tended to stay off-peak travelers during the pandemic if

they were retained, but sometimes rode with lower frequency.

The occasional bus rider cluster, like all occasional clusters, was already experienc-

ing high background churn. The additional churn in 2020 was therefore less dramatic,

at only 1.14 times that observed in summer 2019. Among those in the group who

remained, about 24% still increased their transit usage intensity to become frequent

bus riders (33% of those retained in summer 2019 did so).

The occasional weekday off-peak cluster saw its retention rate shrink from 22%

in 2019 to 8% during the pandemic. The shares staying in-cluster or switching to

fairly frequent off-peak rail use, which were the largest "destinations" for this cluster

going into summer 2019, did not maintain their clear leads as destinations during the

pandemic. Similarly, the collapse of occasional rail commuter retention rates in 2020

also meant the collapse of the share that, in normal years, increased transit usage

intensity to become frequent rail commuters. For occasional weekend users, staying

in-cluster was still the most common pattern among retained riders; meanwhile there

was a decrease in the second most popular destination, switching to fairly frequent

weekday off-peak rail.

When we compare each cluster’s retained riders from the baseline to the cluster’s

full pandemic passenger count including new riders, we observe that retained riders

are a larger share of the total for the frequent and fairly frequent rider clusters (80%

or above). By contrast, in occasional rider groups retained riders are no more than

30% of all cluster members—this may be because occasional riders find it easier to

leave the system during COVID, or because they are more likely to use a new smart

card when they return to transit (and thus show up to AFC as a new rider). For

frequent bus riders, frequent rail commuters, and fairly frequent weekday off-peak

rail riders, the share of retained passengers using 1-day passes, 7-day passes, monthly

passes, pay-as-you-go, or Perq is similar to that shown in Figure 4-23 for all cluster
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members. For occasional rider clusters, however, retained riders were nearly all pay-

as-you-go, despite the higher presence of various pass types in both the baseline

and full pandemic-period rider pool including new entrants. When including these

new pandemic passengers, 40% of occasional rail commuters and 20% of occasional

weekend riders used passes—higher than the 25% and 6% among retained riders.

Notable shares of new riders who entered the T during the pandemic as various sorts

of occasional travelers were thus pass users—most commonly, of the 7-day pass.

The user type smart card meta-data indicates that, unsurprisingly, adult full-fare

tickets, which contributed the most riders to any one cluster, was the share that

shrank the most among retained users. This is especially clear in the frequent bus

riders cluster, where 63% of retained riders were adult full-fare, compared to 69-

70% in the baseline and in the summer once we included new riders. Separately,

students made up 5% of retained frequent bus riders, whereas they were around 1%

of all COVID-era riders in this cluster; both figures however were still far below

baseline (13%), marking the general disappearance of students from regular transit

use. Among fairly frequent weekday off-peak riders, there was a higher share of senior

users among the retained (10%) than what was observed once new pandemic riders

were added (7%), and more also than the baseline (7.5%). Occasional bus riders

saw higher shares of both seniors and TAP riders among the retained (14% and 9%)

compared to the figures once new pandemic riders were added (6% and 4%) and the

baseline (6%, 2%). In general, then, it appears that reduced fare riders were more

likely to be among the retained members of each behavioral cluster, with those who

joined during the pandemic tending more towards adult full-fares.

The starkest takeaway from this churn and cluster switching chart is the collapse

in frequent rail commuter cluster, despite its historical role as a consistent bulwark

source of both ridership and journeys in summer. These riders made limited attempts

to keep engaged in transit through switching to a lower frequency usage pattern or

time-shifting to off-peak hours to avoid crowded vehicles; this likely reflects the ability

of these commuters to switch to remote work. Meanwhile, frequent bus riders again

showed they were the most likely to retain old patterns of transit usage; further, fairly
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frequent off-peak rail riders who stayed in the system tended to continue traveling

off-peak (though sometimes less frequently). This again suggests that bus ridership,

especially among the most intensive riders, do not pose as much uncertainty to the

COVID-19 transit recovery; to a lesser degree fairly frequent weekday off-peak rail

riders are similar. Meanwhile, managing the recovery of rail commuters requires

facing greater uncertainty, but also provides more room to shape the way which

which demand returns to the system.

5.5 Caveats

This chapter assessed COVID-19’ impact on the behavioral composition of those

riding the T. It also traced baseline period riders through to the subsequent summer

to examine how their behavior evolved due to the pandemic. This allowed us to draw

conclusions regarding the diverging ways in which users of various MBTA modes, and

those who rode during distinct times of the day, were differentially affected. However,

there are still major groups of riders who may have relied on transit during COVID-

19 missing from this analysis due to our data limitations. First, the lack of cash

transactions data and the inherent untraceable nature of cash means that we have no

visibility into the ridership patterns of some of the most socio-economically vulnerable

riders. Second, smart card data only captures the travel patterns of those already

riding transit. It does not capture the travel demand of those who lack transit access,

or changes existing users hope to see in the network design or system accessibility to

aid them during the pandemic. Additionally, smart card data also does not tell us

the reason behind the dramatic churn rates observed during the pandemic; we cannot

separate, for example, transit riders who switched from rail commuting to driving,

from those who switched to remote work.

Surveys and interviews will be needed to give greater clarity on these questions,

with sampling focused on churned riders, cash-based riders, and riders with both

limited transit access and limited access to other modal alternatives. MBTA Fiscal

and Management Control Board’s ongoing ridership survey effort, for example, has
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found that in April-May 2020, 40% of low-income riders (those making less than

$43,500 a year) interviewed said they had used the MBTA in the past week, while

only 10% did among individuals making over $76,000 a year [40]. By January 2021

with reopening underway, the gap had narrowed with 70% of low-income riders and

35% of those making over $76,000 a year reporting using MBTA services in the past

week. This is still far from the pre-pandemic baseline, however, when the shares were

roughly equal.

Finally, for comparability across the baseline and COVID-19 time periods, we

applied the 𝑘-means model trained on baseline 2020 data to tease out behavioral

clusters in the pandemic-era ridership ODX data. Future analysis can re-train a new

clustering model on ODX data across various stages of the pandemic, and assess how

the cluster characteristics, as represented by centroids, may have evolve over time.
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Chapter 6

MBTA’s COVID-19 response and

policy recommendations for recovery

The passenger clustering and churn analysis described the evolution of transit rid-

ership under the pandemic. In this chapter, we summarize the lessons from those

quantitative chapters and contextualize those results within the COVID-19 situa-

tion in Metro Boston and the MBTA response. Then, this chapter compares Metro

Boston’s situation against that faced by 12 other major transit agencies across the

U.S., before briefly looking to international transit agencies to broaden the horizon of

the types of innovative responses that agencies brought to bear. From this combina-

tion of quantitative analysis and policy comparison, it then draws some overarching

lessons for the MBTA’s recovery regarding its immediate, medium-term (next two to

five years), and long-term (five years or more) actions.

We frame recovery not only as an opportunity to return to pre-pandemic service

levels, but to leverage the crisis as a policy window to reconsider how transit delivers

on its goals of providing access and sustainable mobility. Substantial uncertainty re-

mains with regards to the trajectory of COVID-19 and the impact this will continue

to exert on transit and its user groups, so our recommendations can only be guide-

lines. However, we provide these in order to contribute to a framework for helping to

structure the MBTA’s thinking as the agency plans for recovery.

In the short term, the need to bring choice riders especially commuters back onto
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the system can be an opportunity for the MBTA to more closely engage its employer

Perq pass partners for service delivery planning. It also opens a window to discussing

both fare product restructuring and service delivery (e.g., changes to frequencies), to

improve transit’s attractiveness to riders with flexible work schedules post-pandemic.

In the medium-term, the MBTA will need to reconsider network design and upgrades

to meet the mobility needs of a post-pandemic population. The greater ridership

stability of bus riders and mid-day rail riders during COVID-19 means that capital

projects targeting these groups can move forward even as uncertainty complicates

planning for the return of rail commuters. Further, COVID-19 offers a view into the

ridership patterns of transit-dependent passengers with choice riders mostly removed,

which can be retroactively dissected to support equity objectives in system planning.

Finally longer term, a shift towards a more stable operating revenue mix can enable

and complement improved financial management to offer the MBTA greater resilience

for the next crisis.

6.1 Key lessons for COVID-19 response and recovery

from clustering, churn analysis

There are several key sets of interacting findings gained from the clustering and

COVID-19 churn analysis in Chapters 4 and 5. First, there are clear modal and

temporal splits in rider behavioral clusters, meaning that different rider clusters exert

distinctive operational demands on the system in volumes significant enough to make

each cluster relevant for operational planning, especially among the multi-day riders.

Among these, frequent and occasional bus riders, alongside fairly frequent weekday

off-peak rail riders, are important to track from an equity perspective because they

cover the majority of reduced fare riders and were the most likely to be retained on

the system during COVID-19. This could be due to a combination of factors including

transit dependence and jobs with specific, fixed shift schedules and no remote work

options (e.g. hospital work and home care). Because the two clusters of bus riders
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are active throughout the day and the fairly frequent weekday off-peak rail riders

ride during the midday hours, when the revenue-intensive rush hour commuters are

not on the system, these temporally separated behavioral clusters point to the equity

implications of retaining or upgrading bus and off-peak weekday rail service during

the recovery, especially as ridership for these segments show more continuity than

other rail clusters.

On the other hand, frequent rail commuters contributed disproportionately to

Perq, which is by itself about 10% of MBTA revenues. These riders also churned

the most heavily among multi-day clusters during COVID-19, relative to background

levels, bringing a stronger degree of uncertainty about their post-pandemic demand

patterns. Heavy employer engagement may be needed to coordinate and incentivize

the return of these riders, now potentially with more flexible office work schedules,

to return to the system and bring with them the associated fare revenues. Flexible

work schedules may also partially disperse demand from peak to off-peak hours, which

may synergize and give MBTA further justification to provide more frequent service

during off-peak hours both to service the choice riders shifting into this period, and

the fairly frequent weekday off-peak rail users who are transit dependent.

Finally, we note that ridership during COVID-19 offers a unique window into the

travel patterns of those who are most transit-dependent. Retroactive dissection of

ridership from this period can contribute to future planning for equity and resilience.

6.2 MBTA: Pandemic impact and response

6.2.1 The COVID-19 context in Metro Boston

Massachusetts was one of the hardest hit U.S. states in the early months of COVID-

19. The state registered its first case on February 1 and by early May had over 86,000

confirmed cases resulting in an estimated 5,700 deaths, giving it the third-highest

number of confirmed COVID-19 cases per 100,000 people, behind only New York and

New Jersey [71]. Governor Charlie Baker issued a state of emergency by March 10

155



and established a "command center" to coordinate the public health response four

days after [71]. By March 23, non-essential businesses were ordered to close, and

businesses that could enable remote work had transitioned its workers out of offices.

An executive order requiring face masks in public places, including MBTA vehicles

or facilities, was issued on May 6. On May 18, the Governor announced its "safer at

home" advisory asking residents to only leave home for essential activities including

healthcare, permitted work, worship, shopping, and outdoor activities. At the same

time, he issued the state’s four-phase reopening plan.

Massachusetts entered Phase I soon after on May 18, 2020, with limited opening

of manufacturing, construction, worship, and health centers. On June 22, 2020, Gov-

ernor Baker announced entry into Phase II, where a broader range of activities and

locations like retail, outdoor and indoor dining, and office spaces were phased in at

limited capacity. Phase III began on July 7 with the re-introduction of more leisure

activity venues like movie theatres and fitness centers. As Figure 6-1 shows, case loads

were low in the state during these warmer months, allowing for quick reopening. After

a winter roll-back in reopening due to a surge in cases, Governor Baker re-commenced

Phase III plans on March 1, with the state entering the first stage of Phase IV (the

"New Normal") on March 22, 2021 as vaccination became more widespread. Phase

1 of the state’s vaccination rollout also began during December 2020, with priority

for healthcare, first response, long-term/assisted living/home-based care workers [72].

Phase 2 began February 1, 2021 and opened vaccinations to seniors, those with multi-

ple medical conditions, those in low-income and affordable senior housing, educators

and child care workers, and certain additional worker categories. By April 19, 2021,

Phase 3 of the vaccination plan had been implemented, allowing all people aged 16

or older who live, work, or study in Massachusetts to be vaccinated.

Figure 6-1 shows that correspondingly, Google Mobility Reports indicate retail

and recreation travel recovered from 54% below the January 3 - February 6, 2020

reference levels at its nadir in April 2021 to only 15% below by March 31, 2021.

Travel to workplaces recovered from -59% to -39% over the same time period—still

substantially low compared to normal as offices that allow for remote work have not
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Figure 6-1: Massachusetts daily caseload and mobility patterns

fully transitioned back to in-person. Meanwhile, transit use lagged behind, recovering

only from -70% to -45%, potentially linked also to the large role that work commutes

contribute to transit ridership (commuting was the trip purpose for 71% of individuals

surveyed in the 2015-2017 System-wide Passenger Survey) [4]. Apple’s mobility data

indicate a similar lag in transit usage recovery for the Boston area in particular—

transit was down as much as -81% in April 2020 below a January 13, 2020 reference

date and recovered to -27% by April 22, 2021. In contrast, walking and driving have

recovered steadily from as low as -66% in April 2020 below the same reference date to

15% above for driving and 2% above for walking by April 22, 2021 with even higher

figures on weekends.1

As of April 2021, Suffolk and Middlesex counties, which are the two most encom-

passing of the Metro Boston area, tallied 208,617 cases among 2.4 million residents.

Daily case rates remain relatively high at 18.9 per 100,000 people in Suffolk County

and 15.9 per 100,000 in Middlesex County [73]. The share of individuals with at
1We use numbers from Google and Apple mobility reports here for transit rather than the

MBTA’s. This is so that they are comparable to the other data on walking/driving and retail/work
travel available from these services, which are not available from the MBTA.
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least one vaccine dose reached 47% in Suffolk County and 51% in Middlesex County,

facilitating the state’s continued Phase 4 reopening [74]. This continued reopening

makes more urgent long-term discussions of the recovery trajectory for the MBTA in

order to effectively and equitably service the Metro Boston population and continue

offering a high-quality sustainable transportation mode.

6.2.2 MBTA response and public reactions

The MBTA’s response to the pandemic under its Forge Ahead initiative included

enhanced sanitation and public health measures, as well as service cuts for 2021

which were rolled back when new federal relief funding enabled the restoration of pre-

pandemic service levels in April 2021. In March 2021, MBTA also released its long-

term budget outlook, to address long-term fiscal sustainability after federal funds run

dry. These response are summarized in Table 6.1, which the MBTA has proactively

communicated to the public via its website, social media, and announcements on

MBTA vehicles. Drastic service cuts proposed in November 2020 in particular led

to public outcry and independent fiscal evaluations by the Fiscal and Management

Control Board, which led to roll-backs to proposed cuts. These in turn were nullified

when the MBTA received another $845 million in federal funding on March 30, 2021.

These developments highlight not only the continued need to monitor the transit

usage patterns of transit-dependent passengers to fulfill access and equity objectives,

but the need to continually maintain fiscal health to enhance resilience in the face of

unanticipated crises.
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Personal sanitation/health measures

As of November 2020 by state and federal law, masks are required for operators and

riders on the MBTA network. The MBTA has tied enforcement mechanisms to this,

including penalties such as removal of non-compliant passengers from vehicles, denied

boarding, and civil fines up to $300 per violation. To facilitate compliance, the MBTA

is also distributing free masks during morning and evening rush hours at at Forest

Hills, Maverick, Orient Heights, Park Street, Downtown Crossing, Quincy Center,

Charles MGH, and Hynes which became a mass vaccination site.

Public transit advocates have voiced concerns about mask mandate enforcement

and how the $300 fine would be enforced, noting that this may more directly hit people

of color and those unable to afford a $300 fine. Recommendations have revolved

around enforcement that emphasizes reminding passengers for compliance, paired

with offering free masks [75].

In addition, our analysis in Chapter 5 suggests that distributing masks only during

peak times is likely not the most optimal strategy for targeting those who continue

to ride during the pandemic. Bus rider clusters and fairly frequent weekday off-peak

clusters exhibited more continued ridership than peak-hour commuting clusters, and

an aggregated view of pandemic-period ridership also pointed to the rising relative

prominence of midday ridership at least as of late summer 2020. Further, the station-

oriented nature of these mask giveaways may not be enough for the high share of

retained bus riders. The listed stations are already strong in that they cover key

intermodal points and points popular among riders of most clusters. However, while

Forest Hills is the top popular stop among bus riders (and Maverick is one of the

top ones for fairly frequent off-peak rail riders), other major stations used by these

high-retention clusters like Nubian or Sullivan Square are missing. To target these

continued and transit-dependent riders, who are also more likely to use reduced fare

products, MBTA can distribute masks in midday off-peak hours as well as on-board

buses along major bus routes. To reduce the labor cost for this expanded range of

mask distribution, the MBTA can install small mask dispensers on buses as used by
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Atlanta’s MARTA and Dallas’ DART.

Finally in the personal sanitation category, MBTA offers free hand sanitizer at

certain stations and encourages social distancing with messaging and decals. To

aid social distancing, the MBTA’s app and website provide real-time scheduling and

crowding info from automatic passenger counters (APC).

Facilities, vehicle sanitation/health measures

Improved sanitation measures are summarized in Table 6.1. The MBTA notes that

air circulation rates in its trains and buses are already better than most office build-

ings, and that they are attempting to upgrade filters to higher MERV values where

possible. The plans have not drawn much critique. In Boston as in other cities, riders

consistently cite increased routine cleaning as a factor in coming back onto the transit

system [76].

The MBTA’s existing air circulation rate is similar to those seen in other city

transit systems and on airplanes. However, the MERV level of its filters is low in

comparison to the MERV-13 recommended by the American Society of Heating, Re-

frigeration, and Air-Conditioning Engineers (ASHRAE) and EPA for virus protection

[77]. It is also low compared to the MERV-8 used by San Francisco’s BART, King

County Metro, Denver’s RTD, and Chicago’s CTA. Portland’s TriMet uses MERV-10.

CTA, Dallas’ DART, RTD, TriMet, and D.C.’s WMATA have further adopted elec-

trostatic fogging devices for deep cleaning, with TriMet also adding UV disinfection.

Ventilation and sanitation therefore appear to have room for improvement, and given

its potential role in bringing back riders may be worth considering as a priority for

MBTA’s tight recovery budget.

Service cuts & recovery planning

Transit service cuts and its ties to the financial re-planning necessary for recovery have

been the most major and most controversial aspect of MBTA’s pandemic response.

MBTA reduced service frequency in March 2020, with upward adjustments in the

Blue Line and essential bus routes to accommodate higher demand [78]. The focus at
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the time was to discourage mobility to slow the spread of COVID-19 and to protect

the health of the MBTA’s workforce.

Major service cuts were not proposed until November 2020, when the MBTA

cited a projected budget gap of $652 million in FY2022 as justification for scaling

back service, alongside data showing the average weekday ridership had fallen from

1.26m trips pre-pandemic to only 330,000 by fall 2020 [79]. The proposal, meant for

spring 2021, included cutting subway peak service by 20% on all lines and off-peak a

further 20%, as well as early termination for the Green Line E branch. Bus service will

no longer run as late into the night, instead stopping at midnight with early service

continuing on essential routes. 60 non-essential bus routes will operate 20-30% less

frequently; those more heavily used will be down at most 5% and 80 essential routes

will not change. 10 more routes were proposed for consolidation and 25 serving under

0.5% of pre-COVID volumes eliminated. These operational changes came on top of

a pause in capital projects and reallocation of federal funds to FY2022.

Public response indicated that riders wanted the MBTA to prioritize the time span

of its services and access over frequency, aligning schedules with the needs of essential

workers and vulnerable communities. Our analysis in Chapter 5 suggests that this

would involve re-assessing the scale of the cut to off-peak rail services, which are

already less frequent than peak periods, serve a larger share of trips during COVID-

19 than during normal years, and are disproportionately used by reduced-fare riders.

Off-peak services on bus and train are essential to three of the behavioral clusters that

saw the largest continued usage during COVID-19, especially given that bus riders

are more likely to use both modes.

The timing of the service changes could also have potentially slowed efforts to

prepare for recovery, though admittedly this only became clearer two weeks after the

proposal when vaccinations began and reopening re-commenced. Making cuts during

a period expected to be the beginning of recovery raised public concerns that services

cut will never come back, and questions about why cuts had not awaited further

information about the pace of vaccination and federal stimulus funding.

In response to public comments, the MBTA Advisory Board ran an independent
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analysis finding that the agency’s proposal posed long-term risks, and supplying an

alternative estimated FY2022 deficit of $528 million which is 20% smaller than the

MBTA budget forecasters’ worst-case scenario gap [80]. The MBTA then presented an

adjusted December 2020 service cut proposal, focusing on transit-critical populations

(low-income households, communities of color, disabled, households with no or few

cars, seniors). The cuts will eliminate weekend commuter rail services on seven lines,

suspend 20 bus routes, and reduce ferry services and bus frequency. They will also

reduce subway service by 20% on the Green, Red, and Orange lines and by up to 5%

on the Blue Line, which has shown higher ridership levels during the pandemic than

other lines. The plan began execution in January 2021 with ferry and commuter rail

cuts; in March the subway and bus cuts began with the aim of saving $21m for rest

of FY2021.

Immediately after at the end of March 2021, the arrival of $845 million from

the federal government enabled the MBTA to restore service to pre-pandemic levels.

The MBTA’s focus now is instead on planning for longer-term budget sustainability

after the expiration of federal dollars through managing its debt, professional service

contracts, and fiscal controls. It is also enhancing revenue streams based on its own

sources separate from government transfers, including revenues from its real estate

assets, parking, and advertising. Such own-source operating revenues had been $101.6

million of its $773 million FY2019 budget. This aspect of revenue mix is a central one

towards which transit agencies across the U.S. and internationally have taken varied

approaches, which we will briefly review in the two subsequent sections.

6.3 Comparison to other U.S. cities

How did MBTA’s initial response to COVID-19 and its subsequent evolution align or

diverge from responses taken by other major U.S. transit agencies in its peer group?

This section gives an overview of 12 additional major transit agencies in the U.S.,

excluding New York’s MTA which given its scale is arguably too extensive and large to

compare with the MBTA. These agencies include 1) Atlanta’s MARTA, 2) Chicago’s
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CTA, 3) Dallas’s DART, 4) Denver’s RTD, 5) Harris County METRO in the Houston

area, 6) Los Angeles’ LAMTA, 7) Portland’s TriMet, 8) Philadelphia’s SEPTA, 9)

King County Metro in the Seattle area, 10) Washington D.C.’s WMATA, and the 11)

BART and 12) MUNI, both located in the San Francisco Bay Area.

Figure 6-2 presents a heatmap comparing these agencies in terms of 1) system

characteristics such as typical ridership volumes, mode split, and revenue sources; 2)

COVID-19’s impact on the counties in its catchment area, ridership, agency’s bud-

getary situation, and availability of federal emergency funding; 3) agency response to

promote personal sanitation, 4) agency responses to improve facilities/vehicle sanita-

tion, and 5) service cuts. We note also that agencies are planning for recovery with

some service cuts reversed thanks to federal stimulus money under CARES in 2020

and CRSSA in 2021; however, none have fully restored service to pre-pandemic levels.

The heatmap colors are set by row, to indicate how values in one city compares to

those observed among its peers. Details about the response for each city are listed in

Appendix A.
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The heatmap shows that agencies of a range of modal splits, ridership volumes,

and budget sizes were hard-hit by COVID-19 in terms of ridership and finances.

LAMTA and Harris County Metro retained more ridership than most, with trip vol-

umes halving. Meanwhile the most-impacted, San Francisco’s BART, saw volumes

still down nearly 90% even in fall 2020. Because rail services tended to decline in rid-

ership more than bus across the board, BART’s poor ridership levels as a purely rail

service is not surprising. The MUNI, which has overlapping geographic territory but

a combination of trolley and bus lines, experienced closer to a 70% ridership decline,

more similar to that experienced by MBTA and CTA.

The sampled agencies also had a diverse array of revenue streams to support

day-to-day operations, with younger systems (MARTA, DART, RTD, Harris County

METRO, LAMTA, TriMet, King County Metro) generally less dependent on oper-

ating revenues. DART, for instance, met 88% of operating expenses from revenue

sources not directly affiliated with its operations. Sales taxes were the single largest

source, which collapsed by half once the pandemic hit. Harris County Metro, RTD,

LAMTA similarly suffered from a collapse in sales tax revenues during the pandemic

economic slowdown. WMATA and SEPTA are subsidies-dependent, with SEPTA’s

subsidies typically tied to operational metrics such as passenger volume. Advertising

and parking fees were also often listed among revenue sources.

Yet despite this variety of funding streams, none of the agencies were able to

consider restoring full pre-pandemic service prior to the influx of CARES and CRSSA

federal relief funding, which totalled between $185 million for the smaller TriMet

system to $1.97 billion for the MBTA. The economy-wide reverberations of COVID-

19 meant that agencies with more diversified revenue sources outside of fares and

other operating revenue sources did not necessarily survive notably better through

the crisis. As the MBTA Fiscal and Management Control Board pointed out in its

Five-Year Operating Budget Pro Forma (FY22–FY26), careful fiscal management is

essential in parallel to having strong sources of revenue.

MARTA was perhaps in the best fiscal shape, with its board putting the credit on

careful fiscal management that had led to nine consecutive years of balanced budgets
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[81]. This allowed it to set aside $150 million of its rescue funding for “COVID-

related losses” in FY2021 and $65.6 million in FY2022. Surpluses will be placed in

a sales tax reserve, which MARTA expects to reach $272.5 million by end FY2021;

this reserve will be used to cover any potential deficits through 2025 as the economy

and ridership recovers. It gave its union employees the previously negotiated 3% raise

in FY2021, avoided layoffs, set aside $20 million in contingency funds for COVID-

related personnel expenses, and pledged that it will not increase fares in FY2021.

It also continued with its MARTA 2040 expansion program, including bus vehicle

upgrades, BRT service, and rail renovations. MARTA did, however, undertake one

of the most drastic bus route reductions, although all 110 routes were again active

on a reduced schedule as of April 24, 2021 [82]. A year previously on April 20, 2021,

MARTA had cut 70 of its 110 routes to divert its full fleet of 540 buses onto 34

essential routes (while adding a circulator and maintaining 6 more routes) to increase

social distancing on vehicles along the most-trafficked corridors, and give time for the

buses to be outfitted with ionizing air filtration equipment.

MARTA’s was one of the largest set of route suspensions of any agency reviewed,

and occurred very early on in spring 2020. It drew concern from members of the

public regarding the impact on transit-dependent and vulnerable communities. The

MBTA, King County Metro, WMATA, MUNI were the only others that had begun to

make more than a handful of bus route suspensions; among these, King County Metro

announced suspensions in June and MUNI announced in April 2020 as well. MUNI’s

cuts were the steepest—70 lines were cut and only the 17 most-used remained. This

occurred around the time when 40% of operators were out in one week on quarantine

[83]. By contrast, all agencies made reductions to frequency and hours of operation.

This general approach also aligns with feedback the MBTA received in fall 2020 after

its service suspension proposals—riders would rather have less frequent service and

longer operating hours, than no service and therefore no transit access at all [80].

Mask-wearing and encouraging social distancing are the most commonly promoted

COVID-19 responses, though few places enforced either the mask mandate or its as-

sociated penalties. The MBTA, DART, LAMTA, and DART are among the few that
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do, and all these complemented enforcement with distribution of free masks to lessen

the burden on those with more limited mask access. MARTA, CTA, DART, and King

County Metro installed mask dispensers on buses, so that riders can obtain masks di-

rectly while keeping one’s distance from physical contact with a human transit agent.

Social distancing measures ranged from cost-effective signage and cordoning off ev-

ery other vehicle seat, to more expensive measures such as running more frequent

buses when necessary to reduce crowding (MBTA, MARTA, RTD, Harris County

Metro, BART, switching to longer buses to allow for more social distancing (MUNI,

LAMTA), and using automated passenger count data to offer "crowdedness" trackers

to riders to encourage to ride during less-busy times. With regards to case tracking,

Harris County Metro was the only agency to conduct any sort, in this case tem-

perature checks of those entering METRO facilities or buildings. Thus there seems

to be fairly broad agreement on masks and various physical and informational ser-

vice changes to promote social distancing—and also broad agreement not to heavily

enforce or case track.

Sanitation measures that required upgrades to vehicle ventilation and cleaning

were less popular, though all agencies increased the frequency of deep cleans using

existing equipment for vehicles, facilities, and high-touch surfaces. Nearly all agencies

decided not to take major upgrades to its ventilation and air filtration systems, though

most have MERV-8 which according to the American Society of Heating, Refriger-

ation, Air-Conditioning Engineers and the EPA may not be strong enough to block

viruses, which require MERV 13. MBTA, having filters of the lower MERV 4-7 types,

did invest in upgrading to MERV-8 on vehicles where this is possible, while MARTA

installed needlepoint bi-polar ionization capabilities to the air filtration system of all

buses in September 2020, to provide fresh air every 75-seconds. Only a handful of

agencies used electrostatic fogging to clean surfaces and the air (CTA, DART, RTD,

WMATA) or adopted hospital-grade UV disinfection systems (TriMet).

In summary, whether transit agencies were fare-dependent or not, their financial

situations were imperiled because of the wide-ranging economic consequences of the

pandemic. Sound long-term financial management and a focus on balancing the bud-
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get appeared to have allowed MARTA to weather the crisis and stretch out its federal

emergency funds more successfully than other agencies. To the extent possible, agen-

cies tried to save funds through reducing service frequency and hours of operation,

rather than cutting routes and therefore potentially depriving transit-dependent rid-

ers of access. Finally, while masks and social distancing were broadly encouraged,

investing the funding for ventilation upgrades and new hardware for deep cleans were

less frequently adopted, perhaps due to constraints in operations and financing. The

conclusions most applicable for the MBTA are likely those of long-term financial

management and greater wariness in cutting bus routes, both of which the agency

has come into focus for the agency over the past year. For the purposes of planning

more resilient financing, it would be valuable to track the financial recovery of these

different agencies to help assess which revenue mixes were most resilient.

6.4 Best practices from international case studies

COVID-19 is a global pandemic, which opens the gates for those researching U.S.

transit agencies to look across the globe for best practices in pandemic response and

recovery. However, differences in governance, urban mobility culture, transit system

structure and age, funding structure, and other factors limit our ability to directly

generalize to the MBTA. Therefore, this section simply presents a few high-level

takeaways with the goal of broadening the horizon of possible emergency responses

considered in this thesis. We draw from a review of COVID-19 responses by transit

agencies in Bogota, Hong Kong (MTR and KMB), London, Madrid, Montreal, Paris,

Seoul, Sydney, Taipei, and Tokyo.

Sanitation and service frequency cuts implemented across the board

In all international cities reviewed, masking was mandated while the frequency of

vehicle and facility deep-cleans were increased. Like in the U.S., most cities abroad

focused on intensivity and frequency of cleaning; fewer upgraded sanitation supplies

or brought in new technology to enable more thorough cleans. The exceptions were
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Transport for London which installed UV disinfection lights, Bogota which upgraded

to hospital-standard disinfectants, and Hong Kong which deployed robotic hydrogen

peroxide misters. Unlike in the U.S., the addition of free hand sanitizer dispensers in

stations was a much more common response overseas.

Social distancing was implemented through the range of tools also seen in the

U.S., including capacity limits on vehicles, signs and decals indicating safe distances,

apps for tracking vehicle crowdedness, encouraging off-peak travel, switching to bus

rear-door boarding, and installing transparent barriers to protect drivers. Service was

sometimes added (or added back after initial reductions) to reduce crowding. Sydney

added service around the Christmas shopping season, Paris introduced shuttles to

connect hospitals to more transportation hubs, and London boosted service along

school routes.

Besides these limited cases of service boosts, all agencies cut service frequency and

operating hours. However, again like in the U.S., there were very few suspensions of

entire routes. Hong Kong’s KMB suspended a handful of routes starting March 2020;

in some cases stations along a train line were closed to concentrate transit personnel

and resources in more essential locations (e.g. sMadrid closed 183 station entrances

with under 500 entries a day).

Investing in automation, distanced technologies to protect transit opera-

tors, enable service continuation

Several COVID-19 responses observed in other countries reflect attempts to use tech-

nology to automate tasks that have higher contagion risk, or to provide greater dis-

tance between individuals who have to undertake these types of tasks. Hong Kong’s

MTR, for example, deployed robots for spraying vaporised hydrogen into transit ve-

hicles and stations, enabling a deeper clean while protecting the health of transit staff

and avoiding the need to hire additional workers the way Sydney had done [84].

Mask distribution via vending machines was introduced in Barcelona, Hong Kong,

and Taipei, which from a sanitation perspective has a benefit over the mask distri-

bution seen in the U.S. where transit staff are involved, or where a user grabs masks
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out of a box and therefore could be physically in contact with multiple masks.

Distanced technologies, though not automated, have also been adopted by some

cities to run temperature checks and therefore protect both employees and riders.

Taipei deployed infrared systems in March 2020 across 16 high-volume stations and

people with temperatures over 38 Celsius were refused entry. Bogota used non-contact

infrared guns to check temperatures at BRT stations. Hong Kong’s KMB similarly

used infrared thermometers, but specifically to screen employees; thermal cameras

were similar used for employee temperature checks in London and Madrid.

On the more systemic end of the automation spectrum, Paris was able to keep

its fully automated Metro lines (Lines 1 and 14) running at 100%, facilitated by the

elimination of concerns regarding the safety of in-vehicle operators. In Madrid, 225

transit stations have electronic turnstiles, which were programmed to count smart

card taps and lock automatically for 2-3 minute blocks when too many passengers

have attempted to enter a station area during a pre-specified time interval, with

tighter thresholds set for higher-risk areas.

Capital expenditures like these more systemic improvements, however, require

both long-term financial health and political support for transit as an essential ser-

vice in the urban ecosystem. Hong Kong’s MTR is often held up as a model of a

financially stable and self-sufficient transit agency; 2020 was the first year it recorded

an annual loss since publicly listed as a corporation in 2000. Despite the loss, it has

brought service back to nearly 100% pre-pandemic levels and lowered fares by 1.5%

to regain demand. Hong Kong is, however, relatively unique in terms of its density

and the coordination of land use and transit planning. The MTR’s "Rail plus Prop-

erty" model is also unique, under which the government sells the MTR land rights

for the stations and depots along the route and the MTR makes revenue from the

development of properties, whose values it has increased through its transit develop-

ment [85]. However, U.S. cities generally do not have similar governance structure

and coordination between land use and transit agencies as Hong Kong.
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6.5 Implications for MBTA recovery

The clustering and churn analysis previously discussed in this thesis, combined with

this policy review and existing surveys conducted by the MBTA and its non-profit

partners, offer a few areas of recommendations for recovery. We divide these recom-

mendations into the immediate, the medium-term (two to five years), and the longer

term (five or more years).

The recommendations below view recovery is not only restoring service to pre-

pandemic levels, but also taking advantage of a policy window to reconsider how

transit delivers on its goals of providing access and sustainable mobility. With the

pandemic impact on transit ridership often measured against a pre-pandemic baseline,

there is impetus to consider recovery as a return of service to "typical" levels, or of

restoring service as demand returns. However, numerous studies already suggest that

the post-pandemic transit scene will not be simply to a return to the old normal.

Employers that have built up remote work capabilities are, for instance, considering

giving employees greater remote work flexibility even long term [11, 10]. The outlook

for these affected choice transit riders is therefore uncertain, complicating operational

and fiscal planning but also giving the MBTA a window to shape how choice riders

engage with transit as a sustainable transportation mode.

Immediate term: Driving ridership and recovering revenue

The most immediate concern for the MBTA is how to plan service provision in the

face of four years of projected deficits, alongside uncertain ridership projections and

therefore uncertain fare revenues [40]. To do so under their existing mix of revenue

sources, they would need to bring back ridership especially among the frequent rail

commuters who are revenue-intensive Perq pass holders, whose path back to com-

muting is still uncertain. The MBTA would need to negotiate with employers on the

timing and flexibility of returns to the office and assess how fare product structures

may need to evolve to appeal to new flexible work schedules. With all Massachusetts

adults now eligible for vaccines, the return to the office is rolling out and the window
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for the MBTA to shape this transition can close soon if no actions are taken.

A joint survey by A Better City and the City of Boston released November 2020

assessed plans to return to work among office workers, university workers, and hos-

pital staff [76]. It found the majority of respondents plan to return to pre-pandemic

commuting choices, although these shares differed by mode and showed the most neg-

ative results for transit. While 29% of respondents traveled by subway pre-pandemic,

only 16% planned to return afterwards; the figures for bus were 11% and 6%.2 How-

ever, those planning to drive alone soared from 22.9% to 38%, making it the most

popular alternative mode considered, although 92% said they had no plans to buy a

new vehicle. Biking also rose from 4% to 8%, while 5% planned to continue remote

work. Notably though, 45% of those planning to drive alone said they would switch

if given free or reduced fare MBTA passes.

Attracting back these riders, who tend to have greater access to alternative modes

and remote work, may comprise a key thrust of efforts to restore revenues and prevent

mode switch towards cars; however, methods such as lowering Perq pass prices to draw

demand would limit the size of the revenue rebound as ridership recovers. Further,

from an equity perspective, reductions in fare prices should also be geared towards

benefiting lower-income transit dependent riders who do not have corporate subsidies

to support them. This suggests that engagement with institutional Perq partners

on return-to-work and fare design, and consideration of other funding sources and

regulations (e.g. raising parking pricing, promotion of low-emission alternatives like

biking etc.) may be necessary for progressing towards both equity and sustainability

objectives throughout recovery.

Medium term (2-5 years): Re-design, upgrade network for post-pandemic

mobility needs

Consideration of the differing amounts of uncertainty in bus versus rail ridership can

help frame discussions regarding the continuation or delay of capital projects, and
2The bus usage figures are low for the MBTA as a whole, and could reflect the survey’s focus

return to work for office, university, and hospital staff, excluding many retail and essential service
sectors.

173



the use of federal funds, for upgrading the network for post-pandemic transit usage

patterns. Ridership on buses were more stable during COVID-19 than rail, especially

when contrasted against rail use by commuters. The greater certainty about the level

and patterns of bus ridership suggest that efforts to prioritize MBTA’s limited budget

may be enhanced by focusing on bus improvement projects planned using existing

bus usage data, for example bus network redesign in the Better Bus Project.

An action that they should not take would be to restart bus improvement initia-

tives from scratch because of anticipated changes to demand due to the pandemic—

our COVID period analysis showed substantial consistency in the pattern of bus use

among transit-dependent riders. In general, COVID-19 provided information on the

"base" levels of ridership on the MBTA system by transit-dependent riders. The

patterns revealed during the pandemic can help improve access and equity on the T

during and beyond the recovery.

Preparing for upgrades to rail services will require greater monitoring and plan-

ning, as rail’s demand recovery is more uncertain especially with regards to peak

period travel. However, our churn analysis showed greater retention of transit travel

patterns among weekday off-peak riders, so this could be a group to prioritize if the

MBTA were to target equity as a part of its service redesign. If commuter volumes

during peak hours lessen due to more flexible work schedules, this can support shift-

ing trains into the off-peak periods for higher frequency service, enhancing quality for

the cluster of rail riders who frequently ride off-peak.

The medium-term is also when the fare product restructuring conversations with

employers begun in the immediate term, as well as the contemporary debate on free

fares and other fare equity proposals, should be feeding into broader strategies for

fare structure. Our analysis is limited in what it can contribute here—whereas a

business market segmentation would apply a particular pricing or product differenti-

ation strategy to each segment in this situation, as described in Chapter 2, this is not

always possible with passenger segmentation done for transit analysis. Equity is a key

consideration for transit and is defined by user type, for example those who qualify

for reduced fares as a person who is blind, with a disability, seniors, or students. A
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transit cluster is relatively homogeneous in terms of its members’ behavior, but as we

showed in Figure 5-12 each cluster, though potentially more representative of some

reduced fare categories than others, never 100% overlaps with a user type. Reduced

or free fares are given according to these manually defined categories, which do not

completely match our behavioral clusters. Thus our behavioral clusters, though use-

ful for operational planning and for understanding travel patterns on the network,

cannot be directly translated into the basis for targeting pricing (e.g. automatically

offering a price discount to all people whose smart cards indicate they frequently use

the bus would, for instance, benefit mostly people able to pay full adult fares, even

though the frequent bus cluster is 31% reduced or free fare users).

Long term (5+ years): Sustainable, resilient financial management to sup-

port operations and service

During a crisis like the COVID-19 pandemic, revenue sources collapsed across the

board—fares, tax revenue available for transfers, parking fees, real estate values.

However, financial resilience during crisis is not only about the immediate budget

impact of the crisis and the response, but the state of the actor as it enters into

the crisis as well as how it manages its state over the course of the recovery. From

this angle, MBTA’s examination of own-source revenues growth as ways to boost

operating revenues, even as General Manager Steve Poftak signaled that fares will

remain integral to MBTA revenues, may be helpful in terms of preparing fiscally for

greater resilience and ways to potentially enable other policy items like free transit

fares [86]. Moving this forward would require reconsideration of the MBTA’s revenue

mix for operations, currently 33-35% from fares in a normal year. This farebox

recovery ratio is high compared to agencies like MARTA or DART, which have greater

infusions of sales or property tax income. MARTA, for instance, relies on fare revenues

for only around one-quarter of its operating expenses. As Figure 2-2 shows, other

modes like walking and driving are rebounding to higher levels than transit as the

economy reopens and the U.S. economic growth rate picks up, bringing with it a

restoration of sales, income, and property tax even as transit fare revenues remain
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highly uncertain on the back of an uncertain rebound in ridership demand. To inform

a more stable operational revenue mix, the MBTA would benefit from monitoring how

transit agencies with differing levels of reliance on fare revenue recover financially from

the pandemic.

Further, continued efforts to improve the structural health of MBTA’s financial

situation will prepare it for the next crisis as well as enable opportunities to improve

service in normal times, including for the most transit-dependent. More stable revenue

streams can aid the MBTA’s financial planning. Other considerations for enabling

greater financial health long-term include reconsiderations of service contracts, which

the MBTA is already undertaking with regards to its hired professional services.

Labor union contracts can also be another point of potential renegotiation as the

MBTA seeks to save on costs. MARTA, which has been able to balance its budget

for nine years leading up to the pandemic, is also taking lessons from the pandemic

to reassess how it delivers service on essential bus routes versus more peripheral ones.

Learning from this example, the MBTA in the long term may have room to consider

innovative solutions such as partnerships with ridehailing to reduce the agency’s costs

for providing service on routes that COVID-19 has revealed to be less essential for the

transit-dependent. Such measures for financial health require longer-term planning,

but can pay off in terms of leaving MBTA more resilient for the next crisis.
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Chapter 7

Conclusion

7.1 Summary of findings and contributions

This thesis leveraged smart card trip data to partition MBTA’s riders into clusters

based on the temporal and modal patterns of their engagement with the transit

network. Further, by using the cluster labels generated by 𝑘-means to turn the

unsupervised dataset into a supervised one, we were able to apply an optimal decision

tree algorithm to interpret the logic behind how the data was partitioned. We found

that for the baseline period of January - February 2020, MBTA’s entire passenger

population can be segmented into seven multi-day rider clusters and three single-day

ones. Among multi-day riders, the first major division was along travel mode. The

largest cluster contributor to both passengers (11%) and journeys (35%) was frequent

bus riders, pointing to the operational significance of this group. Occasional bus riders

were second in size by passenger share (10%). These bus-oriented users tend to ride

throughout the day and also engage significantly with rail services, suggesting that

this group may benefit from consistent service throughout the day and upgrades to

both bus and rail services.

Multi-day rail riders, on the other hand, were more finely split over five clusters

depending on the intensity of their transit usage and the time of day at which they

tend to ride. The largest among rail clusters by passenger share was the fairly fre-

quent weekday off-peak rider cluster (9%), which was also second among rail users
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in journey count (17%). The frequent rail commuters cluster was small as a share of

total passenger (7%), but because of the intensity of their usage made up 21% of all

journeys. Further, because these frequent rail commuters (as well as the occasional

rail commuters) are almost exclusively traveling during peak hours, they produce

concentrated operational strain on the system. Finally, there is a variegated set of

occasional rail riders, including the occasional rail commuters just mentioned, occa-

sional weekday off-peak riders, and occasional weekend riders. None of the rail clusters

showed heavy intermodal usage of bus, suggesting a relatively strong segregation of

these passengers from the other side of the T’s network.

Single-day riders, on the other hand, are clearly partitioned into clusters based

on their peak usage and weekend share. This created the single-day peak, off-peak,

and weekend clusters. These clusters were among the largest in terms of passenger

share (10-18% each) but, because of their rare T usage, contributed only a cumulative

5% of journeys. This suggests they are of little operational importance for MBTA

planning.

Joining the smart card trip data to the smart card meta-data and a separate

MBTA passenger survey, we found that the frequent rail commuter group was not

only operationally significant, but also likely revenue significant. Though they are

the second largest contributor to journeys and sixth to passengers, they were the

largest share of Perq riders (39%), punching far above their weight. On the other

hand, frequent bus riders, occasional bus riders, and fairly frequent weekday off-peak

rail riders host most of the reduced fare passengers, suggesting that from an equity

perspective, supporting bus and off-peak rail service are essential. This appears to be

supported by the observation that bus riders also are more likely to be Black/African

American and have lower access to cars or alternative travel modes, according to

extrapolations from survey data.

With a baseline model in hand, we then turn to tracking the evolution of these

clusters with the onset of the pandemic. Because the pandemic period we consider

is August - September and therefore a different season than the baseline, we begin

by verifying that the 𝑘-means model developed is robust across seasons and adjacent
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years. Having confirmed this, we apply the model to the reduced passenger pool

riding in the summer, which contained only 611,327 passengers, far below the 1.55

million in the baseline. After accounting for "background" cluster switching we saw

from winter to summer in a normal year like 2019, it appears that the pandemic

shifted the shrunken ridership pool and journey counts dramatically away from rail

commuters of both the frequent and occasional varieties. Meanwhile, the two bus

clusters saw clear upticks in their share of riders and journeys, as did weekend users

(both single-day and occasional). Fairly frequent weekday off-peak rail riders saw a

more moderate increase.

This suggests that bus service and to some extent off-peak rail service are sup-

porting more transit-dependent workers who could not avoid travel as easily (e.g.

through remote work) or shift to other modes. It also suggests that the corporate

Perq program’s revenue contributions have collapsed alongside rail commuters, and

that the MBTA would need to engage directly with employers to construct a rebound

in this major revenue stream. Similar lessons emerge when we track only riders who

were already on the T pre-COVID through the pandemic era—churn rates were high-

est among frequent rail riders, who in a normal year were the least likely to churn.

Frequent bus and off-peak rail users, on the other hand, were the most likely to be

retained during the pandemic.

Overall, the temporal and modal clustering performed in this thesis allowed us

to understand the T’s ridership in terms of the frequency and modes of their service

engagement, at a level of granularity that allows us to draw operational conclusions.

Further, smart card meta-data allowed us to tie clusters to prominent user groups

and recognize the importance of restoring Perq-using rail commuters to help plug

the revenue hole the pandemic has exerted upon the MBTA. Drawing from these

lessons and comparing against the COVID-19 response of 12 other U.S. agencies,

we find that in the immediate term, the MBTA needs to bring back commuters to

support ridership and revenue recovery while channeling workers back to downtown

areas to support economic activity. Because of the sea-change that remote work has

wrought on commutes, MBTA will likely need to keep in close negotiation with major
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employers to assess not only how to schedule service to match return-to-office plans,

but also to restructure Perq and potentially other fare products to meet more flexible

commuting needs. Meanwhile, bus service needs to continue (rather than be scaled

back) to provide service for those who are the mostly to keep riding, and to give them

access to economic centers to support a resilient recovery.

In the medium term, any reduction in peak commuting travel on rail can free

up resources for potentially improving off-peak service frequency, which through the

pandemic has shown more consistent transit demand. The consistency in bus rid-

ership over the pandemic also suggests that pre-existing plans for bus upgrades can

likely continue, even as the upending of rail demand would require further study to

understand and plan for.

Finally, to prepare for future crises, the example of other transit agencies like

MARTA in the U.S. and the Hong Kong MTR abroad point to the importance of

financial resilience–which would require the MBTA to establish a stable revenue mix

and careful fiscal management. Financial resilience for transit supports equity and

economic vibrancy in normal times, as well as in crises and recovery. Transit feeds

the agglomeration effect of cities and is a lifeline for transit dependent riders with

limited modal alternatives. A more financially resilient transit agency is able to

offer service through crisis to support the transit dependent and subsequently for

connecting residents to opportunities to fuel recovery.

7.2 Directions for future research

Future research following on this thesis can fall into five major categories—improvements

to the clustering analysis, spatial dimensions of demand, pandemic and recovery be-

havior tracking, surveys, and policy research.

On the clustering front, the application of other clustering methods accompanied

by greater computational resources may provide more robust results. Those in the

literature (Chapter 2) include hierarchical clustering, which can offer an intuitive

interpretation via the resulting dendrogram. Gaussian mixture models can also give
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a more nuanced view of passenger behavioral segmentation by giving the probabilities

of cluster membership for each passenger.

This thesis only produces a limited spatial analysis. More work can be done

on this front using census data to understand the socio-demographics of ridership

and compare this to the findings from the smart-card meta-data, to assess the de-

gree of agreement in socio-demographic analysis from these two approaches. Further,

a deeper discussion of how routes and stations were individually impacted by the

pandemic can be valuable for operational planning during the recovery, and for un-

derstanding the geography of transit-dependent riders at a more granular scale. This

can be done by, for example, clustering tap data at the station/stop level instead of

at the passenger level, following in the steps of El Mahrsi et al (2017) [46].

During the COVID-19 period, future work can re-train a clustering model on the

data to assess how centroids and therefore the definition (potentially also the num-

ber) of clusters changed. This would require quantitative methods for assessing the

"closeness" of clusters, in order for us to interpret how this new clustering relates to

the pre-pandemic one. Viallard et al (2020) explored methodologies for such track-

ing of centroid shifts [87]. Additionally, churn, cluster-switching, and re-clustering

analysis needs to be conducted for more time periods during the late pandemic and

subsequent recovery to track how each behavioral cluster evolved as vaccines rolled

out and Boston reopened.

The quantitative work can be supplemented by rider and employer surveys to

provide insight on why the mobility decisions we observed were made. Surveys can also

be used to gauge riders’ and employers’ outlook for medium-term recovery. Further,

ODX and AFC data miss two key rider groups that are central to equity discussions—

cash-paying riders who are untrackable in the system, and people who do not have

access to transit due to limitations in the current network design. Qualitative surveys

specifically targeting these populations can help us flesh out the transit needs of these

vulnerable or transit-limited populations during crisis times and during recovery.

Future work on the policy research side can pursue two key avenues: further tying

this descriptive analysis into planning for an equitable transit recovery, and consoli-
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dating lessons learned from other major transit agencies to determine how to enhance

resilience. Throughout the quantitative and policy sections of this thesis, we discuss

"equity" as a goal for public transit and use the term to refer to several different

concepts. First and most prominently, we assess equity in our cluster profiling by fo-

cusing on the travel patterns and needs of reduced fare passengers (i.e., those who are

blind, with a disability, seniors, or students). Second, when assessing the pandemic’s

impact, we discuss equity in terms of COVID-19’s differential behavioral effects across

clusters. Third, within cluster profiling we discuss equity in terms of the diverging

spatial distribution of rider clusters and their shifts in the pandemic. Fourth, when

assessing our data limitations, we discuss inequities in data coverage in the context of

groups not captured by smart card data, including cash-paying riders and those with-

out easy transit access. Finally, in the pandemic recovery discussion, we touch upon

equity in levels of service for groups of transit-dependent versus revenue-generating

choice riders. However, because this thesis is focused mostly on describing MBTA

ridership patterns, its evolution under COVID-19, and comparisons to other tran-

sit agencies, there was no overarching argument about how these aspects of transit

equity—and perhaps others not mentioned—can be considered systematically during

recovery planning. Discussion regarding the fourth and fifth angles on equity listed

in particular have much room for development. Future research can approach this

behavioral analysis with a cleaner lens on the equity impact of its quantitative results,

its data sources, and its operational implications.

Finally, the COVID-19 crisis offers an opportunity to study and learn from the

successes and failures of various agencies’ approaches to recovery. Tracking recovery of

the U.S. cities presented as well as international cases can help to build the knowledge

base on how diverse combinations of financial resilience and operational decisions

affect ridership recovery, agencies’ ability to invest in the future of their networks,

and their capacity to deliver on access and sustainable mobility.
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Appendix A

Policy Matrix inputs

A.1 Atlanta - MARTA

System description

• MARTA is composed of bus and rail, with ridership about evenly split between

the two. In March 2019, bus ridership was 4.7 million for bus and 5.3 million

for rail; in February 2020 the figures were lower at 3.7 million and 4.8 million

respectively.

• MARTA is funded by a 1% sales tax in Clayton, DeKlab, and Fulton counties,

and 1.5% sales tax in Atlanta. Its operating revenues in 2019 were $141m, and

net non-operating revenues $688m.

• It has had a balanced budget for 9 years before COVID hit in 2020.

COVID impact

• MARTA’s ridership was hit more heavily on the rail side. Bus trip volumes fell

47% from the average weekday in February 2020, as of April 6, 2021. This is

worse than last summer when ridership was down only 20-30% but similar to

early summer 2020 when ridership was recovering from a low of -62%.

• Rail was down 80% on average in April and May 2020 compared to February
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2020, with a slight recovery to -70% or so in summer, then up to -64% on April

6, 2021.

• Federal funding of $632m helped the agency to shore up COVID-related losses

in 2020 with $83m, set aside $150m for FY2021 expected losses and $66m for

this purpose in FY2022, with surpluses to be put into a sales tax reserve.

• MARTA moved forward with a 3% raise agreed to with its labor union in

FY2021.

• MARTA is able to deliver on its previous promise to not increase fares in FY2021

during recovery.

Sanitation/hygiene responses

• MARTA required masks for riders. In July 2020, MARTA began giving away

disposable masks to customers at transit stations. Starting in then, all cus-

tomers and riders were required to wear a face mask or cloth covering over their

mouth and nose.

• MARTA added “tissue-like” mask dispensers in buses. As of early September,

459,000 disposable masks have been given away, although MARTA prepared a

total of 2 million masks in July. As of April 7, 2021, free masks are still available

on all buses.

• Starting April 6, 2021, all buses were disinfected every 24 hours with additional

cleaning between select trips.

• In early September, MARTA added antimicrobial air filters in buses to improve

ventilation. Needlepoint bi-polar ionization was also added to all buses to pro-

vide fresh air every 75-seconds.

• Starting in March, MARTA began implementing “rear-door boarding” to sepa-

rate passengers from drivers. In early September, MARTA added polycarbonate

shields around bus operator cabs and resumed front-door boarding.
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• Standing in the aisles of buses was banned and “do not sit” signs were placed

in every other seat starting in early April 2020. MARTA also implemented the

use of “Bus Full” signs and a dedicated customer hotline to report a full bus

and request another bus. However, as of April 2021, all bus seats can be used,

though no standing is allowed–buses are limited to full seated capacity. Extra

buses will be provided as needed when existing buses are marked full.

Service cuts

• Starting on April 20, 2020 MARTA reduced its bus routes from 110 down to

40 “essential routes” and doubled the amount of buses on the 34 busiest routes

to meet the need for maintaining social distance. As of April 7, 2021, MARTA

was running buses on 53 essential routes. All 540 buses had been concentrated

on a few key routes to support social distancing–meaning lesser run routes had

to be eliminated because there were no buses available. This also gave them

enough time to upgrade air filtration on buses.

• As of April 24, 2021, all buses were back though they were not on their regular

schedule yet. Weekday rail operates from 5 AM to 1 AM, and runs every 15

min from 6 AM to 7 PM—20 min at other times. This isn’t too different from

normal schedules, which also do not run 24/7, though frequency could be as

often as every 10 minutes on weekdays.

• Changes were communicated by the MARTA On the Go app, social media,

website, facility announcements.

A.2 Chicago - CTA

System description

• CTA provides bus and rail, with greater bus ridership. In Dec 2019, bus rid-

ership was at 18.6m over 127 routes, 10,715 stops. The system hit 161k miles
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traveled per day, which is actually less than rail’s. In Dec 2019, rail ridership

was at 15.9m over 8 routes, 145 stations, and 230,563 miles per day.

• In 2019, fare revenue was around 44% of the operating revenue at $708m, public

funding 53% at $884, mainly from sales tax, and the remainder from advertising

and non-statutory funding.

COVID impact

• Bus down only around 60% as of summer 2020. Monthly ridership was down

to 5.85m in Apr 2020, and up a bit to 7.3m in June 2020

• Rail down about 80% as of summer 2020. Monthly ridership fell to 2.27m in

Apr 2020, and up to 2.955m in June 2020.

• $425m received in CARES funding in 2020, upped to $817m by spring 2021.

Sanitation/hygiene responses

• Masks mandated by the state. CTA has distributed 14,000+ “Travel Healthy

Kits” containing reusable face masks, hand sanitizer, and a note with healthy

riding tips.

• Overnight cleaning of airport line. Transit stations disinfected 4 times a day,

and vehicles cleaned before and during service. Applied electro-sprayers for

deeper cleans.

• June 2020 COVID era survey showed 40-50% of customers are dissatisfied with

various aspects of COVID response vehicle cleanliness.

• No ventilation upgrades. On rail cars, air is filtered more than once a minute

through MERV 8 filters, while on bus the air is filtered 50-70 times an hour.

This falls short of ASHRAE standards for keeping viral particles at bay.
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• Visual indicators and signs installed as guidance for 6 ft distancing (70,000+

signs and decals). Maximum of 22 passengers per rail car, and 15 per 40-ft bus,

22 per 60-ft bus.

Service cuts

• None completely cut except the overnight airport line. Maintained close to

normal schedule during pandemic to avoid overcrowding.

• CTA president said that this is financially difficult but they needed to prioritize

the people they were serving and their drivers. Extra buses added sometimes

where needed to cut crowding.

• As of March 28, 2021, they’ve doubled bus capacity as part of recovery.

A.3 Dallas - DART

System description

• DART offers rail, bus, commuter rail. In FY2019, the system saw 31m bus

rides, 29m light rail rides, 2m commuter rail rides. So, usage is relatively even

between bus and light rail.

• In 2019, the operating budget was $544m, while the total expected revenue to

cover operating and capex budget was $1bn. This was gained through $628m

from sales tax, $85m from operating revenue, $17m from interest income, $90m

from formula federal funding, $78m from discretionary federal funding, $91m

from long-term debt issuance, $27m from commercial paper issuances, $14m

from other operating contributions, $23 from other capital contributions.

COVID impact

• Overall, trip volumes down 55% overall since March, which means there’s still

more usage than in many other metro areas. DART expected 71m riders in
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2020, but now at 48m.

• Bus and rail down relatively similar percentages, at -70% and -64% respectively.

• $229m received in CARES funding in 2020. Sales tax down by about half due

to economic closing.

Sanitation/hygiene responses

• Masks required by governor. DART offers a mask dispenser on every bus and

train, as well as hand sanitizer. Local police and DART police have power to

execute penalties including $250 fines for non-compliance.

• Additional cleaning during day and h2o2 fogger at night. High touch surfaces

cleaned with strong chemical, and a hotline opened for those who wish to call

in and report unclean vehicles.

• No upgrades to ventilation. Buses already have germicidal air purification sys-

tem using UV light, silver, intense heat.

• Encouraged 6 feet social distance with limit of 47 passengers per train vehicle,

20 for 40ft bus and 17 for 31ft bus. Pre-booking system available for those who

want to avoid crowding.

• Rear door boarding until protective shields installed for operators.

Service cuts

• As of 10/19/2020, 65 routes returned to pre-COVID levels and 48 were on modi-

fied weekday schedules (ie, weekday with around 90% of pre-COVID frequency).
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A.4 Denver - RTD

System description

• Rail and bus system, with some smaller bus services contracted out to companies

like Transdev, First Transit, Denver Transit Partners, Via Mobility Services,

MV Transportation, and Eastern Seals Colorado. Denver Transit Operators

operate the commuter rail.

• Annual boardings of 95,041,289 (105,823,906 boardings including Free MallRide

and Free MetroRide) in 2019. This leans towards bus, which had 59,685,633

boardings. Light rail had 24,585,300.

• Operating revenue is only small part of total operating expenses: $164m com-

pared to $739.7m in the original 2020 fiscal plan. Non-operating revenue is

huge, with $996m including $569m from sales tax (just over half). Next largest

sources are grant revenue operating and capital, then use tax, investment in-

come.

COVID impact

• In March 2020, there were around 139k trips on average per weekday compared

to 348k at this time in 2019.

• $232 million in CARES funding received in 2020. Another similar amount

promised under CRSSA in 2021.

Sanitation/hygiene responses

• Follows state mask mandate.

• Capacity limits of 15 passengers per bus and 20 on larger buses, 30 per rail car.

Operators can skip stops if they think 6-feet distance cannot be maintained if

they onboard more passengers.

• Protective shields installed for drivers.
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• Daily cleaning and new electrostatic cleaning devices.

• No ventilation upgrades; vehicles were using MERV 7-8 filters with air recircu-

lated in each carriage in under one minute.

Service cuts

• Instituted cuts across local and regional bus lines, less frequency for most rail

lines.

• Added buses on popular routes to help with social distancing. Maintaining

social distancing means x2-x3 more buses and operators were needed to carry

the same number of customers. RTD thus rescinded layoffs as soon as it was

promised CRRSAA federal funding assistance in 2021, in order to make this

socially distanced ridership possible.

A.5 Harris County - Metro

System description

• The network is dominated by bus ridership. There were 17m METROrail board-

ings March 2019-Feb 2020 compared to 59.9m bus.

• Funding is driven by sales tax revenue. $582m was received in sales tax in 2019,

and $602m in 2020 original budget. Grants are next: $111m in 2019, $162m

budgeted for 2020. Next are bonds ($57m in 2019) and HOT lane revenue

($7m). BRT was started with a $3.5bn bond.

COVID impact

• Bus trip volumes fell 47% February to October 2020. Train trip volumes were

down 51% over the same time period.

• CARES funding totalled $289m in 2020.
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Sanitation/hygiene responses

• Masks required and offered for free.

• Hand sanitizer installed on vehicles and midday disinfection of vehicles added

as of May 2020. Shields for driver’s seat.

• Recommended 6 feet social distancing, with seats labeled as unavailable to

encourage separation. When vehicles reach 50% capacity, digital sign will advise

those waiting to board to wait for next bus.

• Riders submit to and pass a temperature and health screening for COVID symp-

toms before entering METRO facility or building.

Service cuts

• Agency is asking people to use Metro only for essential trips.

• Local bus routes are on modified schedules all days of week.

• There is reduced service on two of their lines, while increasing services on busier

lines to encourage social distancing.

• The red line, which is more used, will operate frequently during weekdays and

less so on weekends. Less used train lines (purple, green) are put on more

infrequent schedule.

A.6 Los Angeles - LAMTA

System description

• LAMTA offers bus, light rail, heavy rail, bus rapid transit. It also funds 27

local transit agencies, paratransit.

• 265m rides on directly operated buses in 2019, and 12m on privately operated.

93m rides in 2019 on rail. The system is thus heavily bus dominated.
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• Vast majority of revenue is from sales tax ($873m from 4 propositions/measures

in 2019), then $437m from the Transportation Development Act, $285m from

passenger fares. * also for capex: 1185m, and bonds 1408m

COVID impact

• Bus trip volumes fell about 50% 9/2019 to 9/2020. Rail down 42%, which seems

very small but is also reflective of how few rail lines there are in LA.

• $1bn received in CARES funding in 2020.

Sanitation/hygiene responses

• Masks mandated and agency aids riders in getting masks.

• Strengthened cleaning at major hubs, cleaned buses and trains once a day with

EPA approved materials.

• Hand sanitizer dispensers at major transit stops.

• Ridershp is low enough that crowding is not an issue, and there is no requirement

on distancing and bus capacity limits.

Service cuts

• Many bus lines suspended or working on reduced schedule (weekend schedule);

busier lines have additional weekday service.

• Over summer 2020, Metro added trips to 95 bus lines and increased the fre-

quency of stops on some heavily-used lines. It also adjusted running times

based on faster speeds due to reduced traffic.

• Larger, 60-foot articulated buses will continue to be employed on some lines to

the extent possible to reduce crowding.

• No change for the limited train service.
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A.7 Portland - TriMet

System description

• MAX light rail and bus are operated by TriMet; Portland and Western Railroad

operate a separate WES commuter rail. In 2019 there were 57m bus rides, but

only 39m light rail and 0.38m WES. This is a bus-heavy system.

• TriMet is also funded mostly from taxes and bonds, with an extremely low

farebox recovery ratio. 43% of revenues are from tax revenue in 2019 ($411m),

21% bonds, 11% federal opex grants, 12% fare revenues.

COVID impact

• Ridership down about 60% as of October 2017.

• $185m in CARES funding in 2020.

Sanitation/hygiene responses

• Free masks given away to meet mask requirement.

• Closed some seats to keep people apart for social distancing (3 feet).

• Capacity limits of 19-24 people on buses, 24-26 per MAX car.

• Safety panels for drivers.

• MAX (light rail) uses a MERV 10 filter that traps particles over 3-10 microns

in size, and replaces air every 7.5 minutes with 84/16 recycled to fresh air ratio.

Buses have MERV 8 filters (pretty much the same statistics as MERV 10) but

do not filter in air from the outside. Buses have every window open that is

possible and will not close them no matter the temperature or weather, because

that is the only source of fresh air. One type of bus didn’t have windows that

could open, so they took them off of the road.
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• Uses UV lights like in hospitals for disinfection. $4.4m additional spending on

material (non-labor) cost of cleaning efforts as of 5/29/2020.

Service cuts

• 20% service reduction to cut costs as of May 28, 2020. As of April 2021, there

was 10% service reduction for buses with only 1 line eliminated—the rest are

just less frequent. The MAX runs every 15 min for most of the day, Sunday

service for the weekend.

A.8 Philadelphia - SEPTA

System description

• SEPTA runs bus, trolley, subway, commuter rail. In 2019, there were 292.9m

unlinked trips. Of these, 138m were bus, 4.5m trackless trolley (like buses).

This is a similar volume to the rail modes, which consisted of 24.4m light rail,

51.9m on the MFSE line, 35.5m on the rail line BSS, 3m on NHSL

• In FY2019, 89% of operating revenue from fares. State subsidies make up most

of the subsidy income and depends on number of passengers, senior passen-

gers, revenue from vehicle hours and miles. 7.3% "Other income" includes the

subsidies, 2% shared ride program, 0.5% investment income.

COVID impact

• Ridership drops are around 70% for both subway and surface transit (mostly

bus here). This is a surprisingly even drop across the two modes—with bus

dropping more than in many other major metros.

• $643m in CARES funding in 2020.

Sanitation/hygiene responses

• Mask mandate installed June 2020
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• Enhanced cleaning to twice a day in every vehicle, evaluating new equipment

for effective cleaning. Only ran buses with plastic seats, for easy cleaning.

• No change to ventilation, which circulates air every 2-3 minutes.

• Maximum occupancies for 40 ft bus is 20 customers, for articulated bus is 30

customers, for routes 204, 310, 311, LUCY Gold/LUCY Green 10 customers,

for trolley 25 customers.

Service cuts

• Summer schedule run on most routes, school trip routes suspended, several key

rail stations closed.

A.9 King County - Metro

System description

• Metro contracted to operate and maintain Sound Transit’s Central Link light

rail line and eight of the Sound Transit Express bus routes along with Seattle

Streetcar lines owned by City of Seattle. In January 2020, ridership was still

equal to that of January 2019 at 400,000–then in February 2020, ridership was

actually up y-o-y, from about 380k to 410k.

• 2019-2020 opex totalled $1.9bn. Revenues include 52% from sales tax, 15% from

fares.

COVID impact

• Average weekday transit boardings fell from about 400k in January/February

to 140,000 by end-August–or a drop of about 65%. Boardings down about 76%

as of 9/28/2020 according to the Transit app.

• CARES funding totaled $530m in 2020, plus $1.5m from a public health fund

and $276 from the King County Council.
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Sanitation/hygiene responses

• Masks required and given to staff. Installed mask dispensers on 102 buses (105

masks per).

• Rear door boarding until partitions installed to protect drivers.

• Safety straps for holding on to, plus seat signs, to support 6-ft distancing be-

tween passengers on the bus.

• Capacity limits of 12 people on 40-ft bus, 18 on 60-foot bus.

• Pre-booking system available for those who want to beware of crowding

• MERV 8 filters used in HVAC were installed 2 years before COVID-19 began,

so no further upgrades were made.

• Metro maintenance staff begins daily use of Virex spray in backpacks to apply

stronger, more comprehensive disinfectant on high touch areas on buses.

Service cuts

• On April 18 2020, Metro enacted schedule reductions (27% fewer service trips

than typical weekday service, 15% fewer trips on Saturdays and 4% fewer trips

on Sundays) as ridership was 70% below normal. On May 4, Metro added

trips on high demand routes for essential workers and trips. On June 2020,

route cuts announced. By September 19, 2020, some routes remain cancelled.

More evening and weekend services are being added as well for shift workers,

east-west connections improvement, and integration with Commuter Rail, and

giving more direct service to key destinations.

• Metro is planning to turn the new Route 160 servicing several large suburbs

into a permanent RapidLink I route after COVID.

• Opened vanpool to groups of just 2 essential workers to promote distancing.
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A.10 Washington, D.C. - WMATA

System description

• FY2019 ridership was 301.8m, with monthly trips between 21m and 26m. Rail

was 175m trips, bus 124m, access 2.3m. WMATA is thus rail dominated. It

operates a subway, several bus systems, and paratransit.

• System is highly subsidy-dependent, with 43% of funding coming from federal

and jurisdictional subsidies.

COVID impact

• As of September 2020, weekday rail ridership was down 87% and weekend 77%.

Bus is down 60% weekdays, and only 46% on Saturdays. This is less severe

than over summer, when weekend was also as hard hit as weekday. Green line

had most continued usage, especially parts in suburbs and Anacostia....end of

Orange, Silver lines too.

• CARES funding totalled $546m in 2020.

Sanitation/hygiene responses

• Masks required, WMATA stockpiled 2m by August 2020.

• Electrostatic fogging of all rail cars and buses, including cleaning inaccessible

areas like air ducts.

• Closed key stations to prevent tourist trips.

Service cuts

• March 18 saw services reduced, with trains running every 15 minutes and ser-

vices closing at 11pm everyday. Bus services began operating on a Sunday

schedule with some supplemental routes to prevent crowding. On weekends,

services are further reduced, with trains running every 30 minutes and with
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only about 20-30 “essential” bus routes available. By April 6, rail services be-

gan closing at 9pm and bus services began closing at 11pm, a direct result

of stay-at-home executive orders issued by the Mayor of Washington DC, the

Governor of Virginia, and the Governor of Maryland.

• Services were restored starting on August 16 202

A.11 San Francisco - BART, MUNI

System description

• BART is heavy rail, 118m rides in FY 2019.

• MUNI is mostly bus, plus light rail, streetcars, cable cars. Average weekday bus

boarding was at 410K as of 3/9/2020.

• BART is fare-dependent for opex pre-pandemic ( 60%). Passenger revenue

$480m, sales tax proceeds $277m, property tax proceeds $51m, then state transit

assistance, parking revenue.

COVID impact

• BART: Drop in ridership was more extreme than in other places in the spring,

down 89% as of end-June 2020. By 11/23 it was still down 88%.... Starting on

March 1, 2020 the ridership was only down 5% from expected. That decline

increased to over 90% by March 23. Since that day, ridership has on average

been about 10% of expected from the budget.

• MUNI was down 70% on bus boardings.

• As of 9/2020, MUNI’s transit revenue down 93% and parking revenue down

53%.

• CARES funding of $252m in 2020 for BART, $197m for MUNI.
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Sanitation/hygiene responses

• Masks required, and all stations have extra face masks for dispensing.

• MUNI Will replace some of the 40 ft buses with 60 ft to allow for more distanc-

ing.

• BART gave away personal hold straps to help people distance without having to

touch bars. The vehicles already had MERV 8 and filtered air every 70 seconds,

so no new procedure was implemented. They also ran long trains all day and

put out distance markers to help with social distancing.

Service cuts

• BART running trains all day to allow for more distancing, and added trains

during commuting hours when data shows that there are over 30 people on

board.

• MUNI replaced Market Street subway with buses as of 3/30/2020. Servicing

only 17 most used routes as of 4/2020, with 70 lines cut; this occurred around

the time when 40% of operators were out in one week on quarantine.

Note: Data sourced from transit agency websites and press releases.
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