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Abstract
Decision-making requires timely and accurate information in order to understand the impli-
cations of the actions and to manage the potential risk. This thesis presents computational
methods to quantify risk in drug development programs, address current challenges in health
economics, and investigate and predict rare events in finance. The thesis is split into three
major parts.

Part I addresses a core issue in accessing the risk and value of drug development programs:
the probability of success (PoS). We introduce a Markov chain model of a drug development
program that allows us to fill in missing data and infer phase transitions from clinical trial
metadata. We investigate the PoSs across various therapeutic areas, and then conduct
further analysis for areas that are of public interest (e.g., oncology, vaccine, and anti-infective
therapeutic) in order to understand the bottlenecks in the drug development process.

Part II of the thesis focuses on the use of modeling and simulations to make informed
predictions and drive policy-making in healthcare. One chapter in this Part is devoted to
the use of data to estimate the financial impact of gene therapy in the U.S. between 2020
and 2035, while another chapter is dedicated to estimating the cost and benefit of various
clinical trial designs for the development of a vaccine to prevent COVID-19.

Part III presents a novel ‘big data’ analysis and machine learning prediction model of
panic selling behavior by retail investors. We document the frequency and timing of panic
selling, analyze the demographics of investors who tend to freak out and panic sell, and
determine if panic selling is a detrimental or optimal action financially. We also develop
machine learning models to predict if an investor might panic sell in the near future given
the demographic characteristics of the investor, their portfolio history, and the current and
past market conditions.

Thesis Supervisor: Andrew W. Lo
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Chapter 1

Introduction

1.1 Introduction

Decision-making requires timely and accurate information in order to understand the impli-

cations of the actions and to manage the potential risk. This thesis presents computational

methods to quantify risk in drug development programs, simulate and forecast possible out-

comes of healthcare policies, and investigate and predict rare events in finance.

The thesis is split into three major parts.

Part I addresses a core issue in the assessment of the risk and value of drug development

programs: the probability of success (PoS). While the PoSs of drug development programs are

critical inputs to economic models that allow biopharma investors to make smart investment

decisions and policymakers to allocate resources prudently, previous studies of success rates

suffer from the lack of accurate information on phase transitions. The collection of such

data is expensive, time-consuming, and susceptible to error. To overcome this, we introduce

a Markov chain model of a drug development program – defined as the set of clinical trials

with the same drug and indication – that allows us to fill in missing data and infer phase

transitions from clinical trial metadata. We apply the model on a database of clinical trial

metadata to create a dataset that is of a magnitude larger than any prior study. This allows

us to estimate PoSs more accurately and to update them quickly when the data is refreshed.

We investigate the PoSs across various therapeutic areas, and then conduct further analysis

for areas that are of public interest (e.g., oncology, vaccine, and anti-infective therapeutic)
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in order to understand the bottlenecks in the drug development process.

Part II of the thesis focuses on the use of modeling and simulations to make informed

predictions and drive policy-making in healthcare.

One chapter in this Part will be devoted to the use of data to estimate the financial

impact of gene therapy in the U.S. between 2020 and 2035. Gene therapy is a new class of

medical treatment that alters part of a patient’s genome through the replacement, deletion,

or insertion of genetic material to treat a disease. While still in its infancy, gene therapy

has demonstrated immense potential to treat and even cure previously intractable diseases.

However, the high prices of the few approved treatments have raised concerns regarding

affordability among budget constrained payers and patients alike. By building and using

a new model that estimates the future number of gene-therapy approvals, the size of their

potential patient populations, and the prices of these future treatments, we estimate the

patient impact and spending on gene therapy on private and public sector payers. It is our

hope that this study will clarify some of these unknowns, and allow policymakers, healthcare

providers, insurance companies and patients to make better informed decisions about the

future of this important therapeutic class.

A subsequent chapter will estimate the cost and benefit of various clinical trial designs for

the development of a vaccine for the prevention of COVID-19. The COVID-19 pandemic has

caused the deaths of hundreds of thousands, upended the lives of billions, and caused trillions

of dollars in economic loss. It has been hoped that the rapid approval of an effective vaccine

can reduce human suffering, save lives and allow economies to resume normal activities.

There are several clinical trial designs, such as a randomized clinical trial (RCT), a vaccine

efficacy RCT with an optimized surveillance period that maximizes the benefits of the trial

(O-RCT), an adaptive clinical trial (A-RCT) based on the group sequential design or a

human challenge trial (HCT), that can be used to develop a vaccine. Each trial design

requires a different length of time, number of patients and financial cost. In this study, we

compare the costs and benefits – as measured by the number of deaths and infections avoided

– of confirming the safety and efficacy of a COVID-19 vaccine using the four aforementioned

clinical trial designs. We calibrate our simulations using a set of estimated epidemiological

models for the SARS-CoV-2 virus (one for each of the 50 states and Washington, D.C.)
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to determine attack rates and cumulative numbers of infections and deaths in the United

States under various scenarios. We believe that the framework we proposed in this chapter

will allow stakeholders to make better informed practical and ethical decisions in regards to

accelerating the development of a COVID-19 vaccine amidst the ongoing pandemic.

Part III of the thesis presents a novel ‘big data’ analysis and machine learning prediction

model of panic selling behavior by retail investors. Panic selling is often discussed in the

financial press and media, but is rarely defined or quantified. To investigate this phenomenon,

we developed a method to identify panic selling and apply it to one of the large dataset of

brokerage account information spanning between 2003 to 2015 to examine panic selling and

‘freakout’ behavior . We document the frequency and timing of panic selling, analyze the

demographics of investors who tend to panic sell and freak out, and determine if panic selling

is a detrimental or optimal action financially. Finally, we develop machine learning models to

predict if an investor might panic sell in the near future given the demographic characteristics

of the investor, his portfolio history, and the current and past market conditions.

3



4



Part I

Quantifying Risk in Drug

Development Programs
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Chapter 2

Modeling the Probabilities of Success

of Development Programs

2.1 Background

The typical clinical development program spans decades [1], costs billions of dollars [3] and

faces great uncertainty on its returns. These attributes, together with the allure of higher

returns in other sectors [8], make investors reluctant to invest in translational research that

brings new drugs, medical devices and diagnostic tools from the bench to the bedside. This

funding gap is sometimes referred to as the biotechnology “valley of death”.

Many ideas, ranging from forging academic-industry partnerships [5] to creating mega-

funds to diversify the investment risk, have been proposed to bridge the valley of death. All

of them rely on being able to generate an acceptable risk-to-reward ratio – a metric that is

highly dependent on the technical probabilities of success (PoSs) of the underlying projects.

Getting accurate and updated PoSs of drug development programs is not an easy task

and previous studies of success rates have been constrained by the data in several respects.

Abrantes-Metz et al. [1] surveyed 2,328 drugs using 3,136 phase transitions (e.g., from Phase

1 to Phase 2 in the approval process) while DiMasi et al. [2] studied 1,316 drugs from just

50 companies. A landmark study in this area, Hay et al. [4], analyzed 7,372 development

paths of 4,451 drugs using 5,820 phase transitions. Smietana et al. [7] computed statistics

using 17,358 phase transitions for 9,200 compounds while Thomas et al. [9] used 9,985 phase
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transitions for 7,455 clinical drug development programs. In contrast, ClinicalTrials.gov, the

clinical trial repository maintained by the National Institutes of Health (NIH), contains over

356,000 clinical trial entries submitted by various organizations as of 30 October 2020 (see

www.clinicaltrials.gov). It is estimated that trained analysts would require tens of thousands

of man-hours to manually assimilate its full information to produce PoS estimates.

We seek an alternative way to infer phase transitions quickly and accurately. This is done

using a Markov chain model of a drug development program – defined as the set of clinical

trials with the same drug and indication – that allows us to fill in missing data and infer

phase transitions from clinical trial metadata. Applying the model on a database of clinical

trial metadata allows us to create a dataset that is a magnitude larger than any prior study.

In this chapter, we will describe the drug development process, introduce our Markov

chain model, define key terms, and explain the difference between how PoSs are estimated.

The description of our data, results, and analyses of PoSs and other drug development

statistics will be presented in the next chapter.

2.2 The Drug Development Process

A drug development program, also known as a drug development path, is the clinical in-

vestigation of the use of a drug for a disease. It typically consists of a sequence of clinical

trials, separated into three phases. Phase 1 trials test mainly the safety and tolerance of a

drug while phase 2 trials test the efficacy of the drug for a given indication. Phase 3 trials

attempt to confirm the drug’s efficacy for larger populations and against alternatives. Some

trials involve the combination of two phases into a single protocol, denoted ‘Phase 1/2’ (a

combination of Phases 1 and 2) and ‘Phase 2/3’ (a combination of Phases 2 and 3).

We say that a drug development program has reached phase 𝑖 if it is observed, or can

be inferred, that there is at least one trial in phase 𝑖. It is possible that a clinical trial

can be repeated in multiple development paths. In Figure 2-1, we show an example in

which a single phase 1 trial for a drug is involved in four different development paths, each

targeting a different disease. It is not uncommon that the result of the phase 1 trial is used

as supporting evidence for the safe use of a drug, allowing that drug to be used for different
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indications without additional phase 1 testing. For example, hydroxychloroquine — already

approved for the treatment of malaria — was tested for effectiveness against COVID-19

without another phase 1 clinical trial. There also exist clinical trials where different drug

combinations are tested for the same indication in different arms.

Phase 1

Phase 2
(Indication A)

Phase 2
(Indication B)

Phase 2
(Indication C)

Phase 2
(Indication D)

Phase 3
(Indication A)

Phase 3
(Indication B)

Phase 3
(Indication C)

Approval
(Indication B)

Figure 2-1: We define a drug development path as the development of a drug for a specific
indication. A single clinical trial can belong to multiple drug development programs. We
illustrate a hypothetical example where 4 drug development paths, all using the same drug,
share the same phase 1 clinical trial.

2.3 A Model of Drug Development

A phase transition between phase 𝑖 and 𝑗 is the change between the states of a drug devel-

opment program. We make the assumption that each program must transition from phase

1 to phase 2 to phase 3 to approval in this order, and model the possible states in a drug

development program as a Markov chain shown in Figure 2-2. Every drug development path

in our study must start from phase 1 (or ‘missing’ phase 1) and end up in one of the nodes

labeled as ‘in progress’, ‘terminated’ or ‘approval’.

We infer missing transitions in the development paths arising from incomplete records.

This is plausible since each of these stages involves distinct predefined tests, all of which are

required by regulators in any new drug application (NDA). If we observe data for phases 1
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Phase 1

Missing
(Phase 1)

In Progress

Terminated

Phase 2

Missing
(Phase 2)

In Progress

Terminated

Phase 3

Missing
(Phase 3)

In Progress

Terminated

Approval

Figure 2-2: Observed and unobserved states in a drug development, from phase 1 to approval.
A drug development is in phase 𝑖 if it has at least one trial in phase 𝑖. The ‘missing’ states
represent phases where we do not observe any clinical trial in that phase for the drug-
indication pair, but where we know must have occurred. Every drug development path in
our study must start from phase 1 (or ‘missing’ phase 1) and end up in one of the nodes
labeled as ‘in progress’, ‘terminated’ or ‘approval’.

and 3 but not phase 2 trials for a given drug-indication pair, our idealized process implies

that there was at least one phase 2 trial that occurred, but is missing from our dataset. Ac-

cordingly, we impute the successful completion of phase 2 in these cases. There exist some

rare cases where phase 2 trials are skipped, as with the example of aducanumab (BIIB037),

Biogen’s Alzheimer’s candidate, as reported by Root [6]. Since skipping phase 2 trials is mo-

tivated by compelling phase 1 data and is approved by the regulatory authorities, imputing

the successful completion of phase 2 trials in these cases to trace drug development paths is

a reasonable approximation. We make the standard assumption that phase 1/2 and phase

2/3 trials are to be considered as phase 2 and phase 3, respectively.

2.4 Computing the Probability of Success

We call the estimated probability of a drug development program transitioning from phase 𝑖

to phase 𝑖+1 the “phase 𝑖 PoS”, and the “estimated overall PoS” is defined as the estimated

probability of a drug development program going from phase 1 to regulatory approval in at

least one country.
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Phase 1

Missing
(Phase 1)

In Progress

Terminated

39,853

7,607

18,637

27,645

Phase 2

Missing
(Phase 2)

In Progress

Terminated

13,609

11,385

14,515

7,724

Phase 3

Missing
(Phase 3)

In Progress

Terminated

7,630

4,356

6,218

2

Approval
4,778

Figure 2-3: An example of the number of transitions computed.

The probability of a drug development program transitioning from phase 𝑖 to phase

𝑗 (PoS𝑖𝑗) can be computed using the simple ratio N𝑗/N𝑖, where N𝑖 is the number of drug

development programs that have reached phase 𝑖 (where 𝑖 = 1, 2, 3) of the drug development

process and are not in active development between phase 𝑖 and phase 𝑗 (where 𝑗 = 2, 3, or

“A” which denotes regulatory approval, 𝑖 < 𝑗), and N𝑗 is the number of drug development

programs among the former that made it to phase j. PoS1𝐴 is also known as the “overall

PoS”.

For clarity, we will walk our readers through some calculations using the example shown

in Figure 2-3. In that figure, we see that 13,609 development programs have conducted

phase 1 testing whereas 27,645 vaccine programs have skipped phase 1 to go to phase 2 or

3 testing directly. This is not uncommon in many drug development programs, where drug

candidates move directly to the higher phases based on safety studies conducted for other

indications. Among these 67,498 drug development programs, we know that 7,607 have yet

to conclude phase 1 testing while 59,891 have completed phase 1. Of these 59,891 programs,

41,254 have gone on to phase 2 while 18,637 have failed. In the notation introduced earlier,

N1= 59,891 and N2=41,254, yielding an estimate of 41,254
59,891 , or 68.9%, for PoS12. Repeating

the logic for the transitions between phase 2 and phase 3, and between phase 3 and approval,

gives 51.4% and 43.5% as estimates of PoS23 and PoS3𝐴 respectively.

In order to compute the probability of a drug development program making it all the

way from phase 1 to approval, we consider only the drug development programs that have
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definite outcomes. In other words, we do not consider development programs that are ‘in

progress’ in the denominator. In our example, the number of such programs is 27,645 +

39,853 - 7,607 - 11,385 - 4,356 = 44,150. Since 4,778 programs made it to approval, the

estimated PoS1𝐴 is 4,778
44,150 = 10.8%.

2.5 Path-by-path vs Phase-by-phase

The estimated probability of a drug development program transitioning from phase 1 to

approval – estimated directly using the method described above – is called the ‘path-by-

path’ estimate of the overall PoS, and is reported for all PoS calculations in this thesis.

It should be emphasized that because of the treatment of in-progress drug development

programs, path-by-path PoS estimates are not multiplicative:

PoS1A (path-by-path) ̸= PoS12 × PoS23 × PoS3A (2.1)

In contrast, the ‘phase-by-phase’ estimates used in prior studies (DiMasi et al., 2010,

2020; Hay et al., 2014; Thomas et al., 2016) do multiply:

PoS𝑖𝑗 =
∏︁

𝑥=𝑖,...,𝑗−1
PoS𝑥,𝑥+1 (2.2)

The phase-by-phase approach is valid under some circumstances, such as when one does

not have any development programs that are active in any of the phases in his database.

This is easily seen if one simply set the number of “in progress” development programs in

all phases in Figure 6 to zero and recomputing the PoS.

The path-by-path approach can also obtain the same results as the phase-by-phase ap-

proach if one is willing to make an additional assumption: programs that are “in progress”

in phase 𝑖 will transit to phase 𝑖 + 1 or to “terminated” with the same probability as going

from phase 𝑖 to phase 𝑖+1, or from phase 𝑖 to “terminated”, without “in progress” programs.

We will illustrate this with Figure 2-4, which shows the different states of a drug develop-

ment program with hypothetical transitions from “in progress” states to the next phase or to

the “terminated” state. The proportions are derived from the numbers shown in Figure 2-3.
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Phase 1

In Progress

Terminated

11.3%

27.6%

Phase 2

In Progress

Terminated

a

1-a

61.1%

27.6%

35.2%

Phase 3

In Progress

Terminated

b

1-b

37.2%

28.4%

40.5%

Approval

c

1-c

31.1%

Figure 2-4: A Markov chain that includes hypothetical transitions from “in progress” states
to the next phase or to the “terminated” state. The proportions are derived from the numbers
shown in Figure 2-3.

Without considering “in progress” programs, the probability of transiting from phase 1 to

phase 2 is 61.1/(61.1+27.6) = 68.9% and the probability of transiting from phase 1 into the

“terminated” state is 10.8%. Similarly, without considering “in progress” programs between

phase 2 and phase 3, or phase 3 to Approval, the probabilities of transiting from phase 2 to

phase 3, or phase 3 to approval are 51.4% and 43.5% respectively. If we set a, b and c to

be 68.9%, 51.4% and 43.5% respectively, we will obtain a PoS1𝐴 of 15.4%, which is exactly

PoS12× PoS23× PoS3𝐴. In contrast, the path-by-path approach obtains a PoS1𝐴 of 10.8%

as it does not make any assumptions and ignores programs that are “in progress” in either

phase 1, phase 2 or phase 3.

We believe that our method of inferring unobserved clinical development stages and then

applying the path-by-path approach is a better measure of the PoSs of clinical development

programs as it does not overestimate the PoSs, and makes no assumption about the programs

that are in active development.

That said, the path-by-path method of computation is only applicable when the variable

being investigated is constant throughout the drug development process. This may not be

true when we look at subsets of the data, such as when we investigate whether the use of

biomarkers for patient selection impacts the success rate of clinical drug development. This

is because biomarkers may not be used at all stages of a clinical drug development program.

In such cases, we default back to the ‘phase-by-phase’ estimation to get an insight into the

trend. This is done by considering only those drug development programs with phases that

ended between 𝑡1 and 𝑡2 in the computation of the PoS.
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TrialID Drug Name Phase Start Date End Date Disease Type Therapeutic Area Sponsor
48391 Loratadine 1/2 NULL 7/6/2003 Allergic Rhinitis Autoimmune/ Inflammation (Other Hospital/ Academic/ Medical Center)
70538 Loratadine 3 NULL 18/9/2007 Allergic Rhinitis Autoimmune/ Inflammation (Other Hospital/ Academic/ Medical Center)
100378 Loratadine 3 NULL 29/10/2008 Asthma Autoimmune/ Inflammation Merck & Co.
122164 Loratadine 4 1/1/2010 1/3/2012 Allergic Rhinitis Autoimmune/ Inflammation (Other Hospital/ Academic/ Medical Center)
151465 Loratadine 3 1/5/2011 14/5/2014 Pain (nociceptive) CNS Cancer and Leukemia Group B (CALGB)
153368 Loratadine 1 NULL 1/7/2006 Asthma Autoimmune/ Inflammation (Other Hospital/ Academic/ Medical Center)

Table 2.1: A sample of Citeline data entries.

2.6 Estimating the PoSs from data

Given our Markov-chain model of drug development, we will be able to estimate the PoSs

from clinical trial metadata.

2.6.1 Data

We use Citeline data provided by Informa Pharma Intelligence, which combines individual

clinical trial information from TrialTrove and drug approval data from Pharmaprojects.

Citeline is a superset of the most commonly data sources. In addition to incorporating

multiple data streams – including nightly feeds from official sources such as ClinicalTrials.gov

– Citeline contains data from primary sources such as institutional press releases, financial

reports, study reports, and drug marketing label applications, and secondary sources such as

analyst reports by consulting companies. Secondary sources are particularly important for

reducing potential biases that can arise from the tendency of organizations to report only

successful trials (especially prior to the FDA Amendments Act of 2007 requiring all clinical

trials to be registered and tracked via ClinicalTrials.gov).

We reproduce a sample of the clinical trial metadata used in Table 2.1. Each entry

contains the trial identification number, the drug being used, the phase of the clinical trial,

the start and the end dates, the disease being targeted, the therapeutic area that the disease

belongs to, and the sponsor(s).

It is possible that the same clinical trial, as classified by the trial’s unique identifier, may

appear multiple times in our analysis. For example, if a clinical trial targets two diseases, we

consider it to be two data points in which each entry contains the name of only one disease.

This reflects our assumption that the trial is part of different development programs.

Several snapshots of the data were used for the analyses in this thesis. We will describe
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and summarize the data used in the respective sections before we present the results of the

analyses.

2.6.2 An Algorithm for Computing PoSs

Given our Markov-chain model of drug development, we can compute PoSs using the al-

gorithm presented in Algorithm 1. The algorithm recursively considers all possible drug-

indication pairs and determines the maximum observed phase. Reaching phase 𝑖 would

imply that all lower phases were completed. To determine if a drug development program

has been terminated in the last observed phase or is still ongoing, we use a simple heuristic:

if the time elapsed between the end date of the most recent phase 𝑖 and the end of our sample

exceeds a certain threshold 𝑡𝑖, we conclude that the trial has terminated. Based on practical

considerations, we set 𝑡𝑖, to be 360, 540 and 720 days for Phases 1, 2, and 3, respectively.

For example, we assume that it can take up to 12 months to prepare documents for an NDA

filing after a Phase 3 trial has been completed. Since the FDA has a 60 days period to decide

if it wishes to follow up on a filing, and an additional 10 months to deliver a verdict, this

places the overall time between Phase 3 to approval to a maximum of 24 months, hence we

set 𝑡3 = 720 days.

This heuristic allows us to impute missing trial data, and by counting the number of

phase transitions, we can estimate the phase and overall PoSs.
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Algorithm 1: An algorithm for identifying phase transitions in drug development
and computing the path-by-path probability of success.

Input : data: A list of clinical trial metadata
𝑇 : date of database snapshot

Output: PoS12, PoS23, PoS3𝐴

Initialize 𝑛12,𝑠 = 𝑛12,𝑓 = 𝑛23,𝑠 = 𝑛23,𝑓 = 𝑛3𝐴,𝑠 = 𝑛3𝐴,𝑓 = 0
for every (𝑑𝑟𝑢𝑔, 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛) in data do

Filter and populate a list of trials conducted by organization on indication using
drug;

if (𝑑𝑟𝑢𝑔 is approved for 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛) then
𝑛12,𝑠++;
𝑛23,𝑠++;
𝑛3𝐴,𝑠++;

end
else

if ∃(at least one phase 3 trial) then
𝑛12,𝑠++;
𝑛23,𝑠++;
if (Most recent end date of phase 3 trials is < 𝑇 − 𝑡3) then

𝑛3𝐴,𝑓++;
end

end
else

if ∃(at least one phase 2 trial) then
𝑛12,𝑠++;
if (Most recent end date of phase 2 trials is < 𝑇 − 𝑡2) then

𝑛23,𝑓++;
end

end
else

if ∃(at least one phase 1 trial) &
(Most recent end date of phase 1 trials is < 𝑇 − 𝑡1) then

𝑛12,𝑓++;
end

end
end

end
end
PoS12 = 𝑛12,𝑠/(𝑛12,𝑠 + 𝑛12,𝑓 )
PoS23 = 𝑛23,𝑠/(𝑛23,𝑠 + 𝑛23,𝑓 )
PoS3𝐴 = 𝑛3𝐴,𝑠/(𝑛3𝐴,𝑠 + 𝑛3𝐴,𝑓 )
return PoS12, PoS23, PoS3𝐴
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Chapter 3

Data Analytics For The

Understanding Of The Drug

Development Process

3.1 Introduction

In the previous chapter, we explained our model of drug development, introduced a model

which can be used to infer phase transitions from clinical trial metadata and described the

computation of the probability of success (PoS) of drug development programs.

In this chapter, we will apply the methods, and others, onto data to derive meaningful

insights into the challenges confronting drug development. Section 3.2 investigates drug

development statistics across all the indications and compares them with prior studies. We

will also present the PoSs conditioned on the use of biomarkers and the PoSs of orphan

development programs. Section 3.3 presents the statistics for the development of oncological

drugs, an area that has always held the attention of the public and policymakers due to the

high cost of treatment drugs and massive spending by Medicare and Medicaid. Section 3.3

gives insights into the business of vaccine development, which has become a topic of great

interest due to the COVID-19 pandemic.
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3.2 General Drug Development Statistics

We will first summarize the general characteristics of drug development programs. This

section takes reference from Wong et al. [5], which was performed between 2016 and 2017

using data between 2000 and 2015. After the publication of the paper, we continued to

produce quarterly updates on the MIT Laboratory for Financial Engineering’s (LFE) Project

ALPHA (Analytics for Life-sciences Professionals and Healthcare Advocates) website, which

can be accessed via www.projectalpha.mit.edu/pos. In this thesis, we update the results of

the prior paper with data obtained in 2020 Q3.

3.2.1 Summary of Data

The clinical trials used in this analysis have start dates between January 1, 2000, and October

05, 2020, the latter being the date that we receive the snapshot of the data.

In Figure 3-1, we plot the cumulative number of clinical trials conducted over time, with

further breakdown by sponsor type. Our dataset consists of 210,755 clinical trials and 142,646

unique drug-indication pairs. We count 662,822 unique data points, defined as unique {drug,

indication, clinical trial identifier} triplets. Of these, 281,835 (42.5%) are industry-sponsored

– defined as clinical trials involving at least one industry sponsor – while 380,987 (57.5%)

do not involve any industry sponsorship.
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Figure 3-1: The cumulative number of clinical trials being conducted over time, by sponsor
type.
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3.2.2 PoSs by Therapeutic Area

Table 3.1 contains our estimates of the aggregate PoS for each clinical phase across all indi-

cations. Corresponding estimates from the prior literature are also included for comparison.

We find that 10.8% of all drug development programs eventually lead to approval, which is

slightly higher than the 10.4% reported by Hay et al. [2] and the 9.6% reported by Thomas

et al. [4]. The overall PoS presented in this study, Hay et al. [2] and Thomas et al. [4] are

much higher than the 1 to 3 percent that is colloquially seen as it is conditioned on the drug

development entering Phase 1. Our phase-specific PoS estimates are higher in all phases.

The largest increase is seen in PoS2,3, where we obtained a value of 51.4% compared to 32.4%

in Hay et al. [2] and 30.7% in Thomas et al. [4]. These differences may be due to our method

of imputing missing clinical trials.

This study - All indications (Industry)
Thomas and Hay and Hay and DiMasi and
others (2016) others (2014) others (2014) others (2010)

- All - All - Lead - Lead
Indications Indications Indications Indications

Method Path-by-Path Phase-by-Phase Phase-by-Phase Phase-by-Phase Phase-by-Phase Phase-by-Phase
PoS𝑖,𝑖+1 PoS𝑖,𝐴 PoS𝑖,𝐴 PoS𝑖,𝑖+1 PoS𝑖,𝐴 PoS𝑖,𝑖+1 PoS𝑖,𝐴 PoS𝑖,𝑖+1 PoS𝑖,𝐴 PoS𝑖,𝑖+1 PoS𝑖,𝐴

Phase 1 to 2 68.9% 10.8% 15.4% 63.2% 9.6% 64.5% 10.4% 66.5% 15.3% 71.0% 19.0%
Phase 2 to 3 51.4% 16.0% 22.4% 30.7% 15.2% 32.4% 16.2% 39.5% 23.1% 45.0% 26.8%
Phase 3 to Ap-
proval

43.5% 43.5% 43.5% 49.6% 49.6% 50.0% 50.0% 58.4% 58.4% 60.0% 59.5%

Phase 1 to Ap-
proval

10.8% 15.4% 9.6% 10.4% 15.3% 19.0%

Number of Drugs 22,760 ? 5,820 4,736 1,316
Years of source
data (time-span)

2000 - 2020 (20 years) 2006-2015 2003-2011 (9 years) 1993-2009 (17 years)

Number of Compa-
nies

6,271 1,103 835 50

Table 3.1: Comparison of the results of our paper with previous publications using data from
January 1, 2000, to October 8, 2020.

Table 3.2 contains phase and overall PoS estimates by therapeutic group. The overall

PoS (PoS1,A) ranges from a minimum of 4.0% for oncology to a maximum of 40.5% for

vaccines (infectious disease). The overall PoS for oncology drug development programs is

about two-thirds the previously reported estimates of 5.1% in Thomas et al. [4] and 6.7% in

Hay et al. [2].
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Table 3.2: The probability of success by therapeutic group, using data from January 1,
2000, to October 8, 2020. We computed this using the path-by-path method. SE denotes
the standard error.

Phase 1 Phase 2 Phase 3 Overall
Therapeutic Area Paths PoS12 S.E. Paths PoS23 S.E. PoS2A S.E. Paths PoS3A S.E. PoS1A S.E.
Oncology 29746 65.8 0.3 11390 37.1 0.5 7.0 0.3 2776 28.9 0.9 4.0 0.1
Metabolic/Endocrinology 4697 72.7 0.6 2884 60.1 0.9 21.1 0.8 1350 45.0 1.4 16.1 0.6
Cardiovascular 3640 72.3 0.7 2364 70.4 0.9 25.8 1.0 1285 47.5 1.4 20.4 0.7
CNS 6593 70.6 0.6 4003 56.0 0.8 14.5 0.6 1607 36.0 1.2 10.9 0.4
Autoimmune/Inflammation 6755 70.3 0.6 3924 52.7 0.8 17.0 0.7 1433 46.6 1.3 12.6 0.5
Genitourinary 1160 69.7 1.3 760 61.6 1.8 25.9 1.7 380 51.8 2.6 19.3 1.2
Infectious Disease 4552 67.6 0.7 2515 66.7 0.9 21.3 0.9 1102 48.6 1.5 15.7 0.6
Ophthalmology 746 88.3 1.2 549 54.6 2.1 16.8 1.8 194 47.4 3.6 17.4 1.6
Vaccines (Infectious Disease) 2002 83.6 0.8 1480 66.3 1.2 46.5 1.3 871 79.0 1.4 40.5 1.2
Overall 59891 68.9 0.2 29869 51.4 0.3 16.0 0.2 10998 43.5 0.5 10.8 0.1
All except oncology 30145 71.9 0.3 18479 60.2 0.4 21.5 0.3 8222 48.4 0.6 16.5 0.2

3.2.3 PoSs Conditioned on the Use of Biomarkers

As the use of biomarkers to select patients, enhance safety, and serve as surrogate clinical

endpoints has become more common, it has been hypothesized that trials using biomarkers

are more likely to succeed. We test this hypothesis by comparing the PoS of drugs with and

without the use of biomarkers for patient selection, an approach that is similar to Thomas

et al. [4]

In our database, only a small proportion (< 10%) of all drug development programs that

use biomarkers use them in all stages of development. As such, we adopt the phase-by-phase

approach instead of using the path-by-path approach.

Table 3.3 shows only trials that use biomarkers to stratify patients. As can be seen, there

is substantial variation in the use of biomarkers across therapeutic areas. Biomarkers are

seldom used outside of oncology. Trials using biomarkers exhibit almost twice the overall

PoS (PoS1,𝐴) compared to trials without biomarkers (13.0% vs. 4.3%). While the use of

biomarkers in the stratification of patients improves the POS in all phases, it is most sig-

nificant in Phases 1 and 2. (We caution against over-interpreting the results for therapeutic

areas outside oncology due to their small sample size.) These findings are similar in spirit

to the analysis by Thomas et al. [4], which also found substantial improvement in the PoS

when biomarkers were used.
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Table 3.3: Probability of success of drug development programs with and without biomarkers,
using data from January 1, 2005, to October 8, 2020, computed using the phase-by-phase
method. These results consider only trials that use biomarkers in patient stratification.

Phase 1 Phase 2 Phase 3 Overall
Therapeutic Area Paths PoS S.E. Paths PoS S.E. Paths PoS S.E. PoS S.E.
Oncology With Biomarker 4542 52.2 0.7 2821 41.7 0.9 6785 18.6 0.5 12.6 0.9

Without Biomarker 11638 31.4 0.4 666 57.8 1.9 2108 19.7 0.9 1.1 0.1
Metabolic/Endocrinology With Biomarker 27 59.3 9.5 19 84.2 8.4 1778 35.4 1.1 14.3 8.4

Without Biomarker 2151 41.0 1.1 42 28.6 7.0 1308 45.6 1.4 6.6 0.6
Cardiovascular With Biomarker 15 73.3 11.4 30 63.3 8.8 1202 42.7 1.4 29.6 14.5

Without Biomarker 1673 40.0 1.2 33 63.6 8.4 1252 47.0 1.4 8.0 0.8
CNS With Biomarker 73 54.8 5.8 77 41.6 5.6 2510 31.6 0.9 10.2 4.7

Without Biomarker 3025 37.0 0.9 47 44.7 7.3 1560 35.8 1.2 4.2 0.4
Autoimmune/Inflammation With Biomarker 17 64.7 11.6 52 34.6 6.6 2615 30.3 0.9 15.7 10.9

Without Biomarker 3203 37.5 0.9 10 70.0 14.5 1423 46.5 1.3 5.3 0.4
Genitourinary With Biomarker 16 43.8 12.4 0 − − 425 31.3 2.2 − −

Without Biomarker 488 29.9 2.1 7 42.9 18.7 373 52.0 2.6 4.9 1.0
Infectious Disease With Biomarker 13 61.5 13.5 87 74.7 4.7 1355 39.9 1.3 36.4 13.5

Without Biomarker 2239 34.3 1.0 77 79.2 4.6 1025 46.3 1.6 6.3 0.6
Ophthalmology With Biomarker 1 100.0 0.0 6 33.3 19.2 372 34.1 2.5 33.3 19.2

Without Biomarker 203 57.1 3.5 3 100.0 0.0 191 46.6 3.6 9.1 2.0
Vaccines (Infectious Disease) With Biomarker 8 37.5 17.1 24 20.8 8.3 836 42.6 1.7 − −

Without Biomarker 638 49.2 2.0 0 − − 871 79.0 1.4 16.6 1.7
Overall With Biomarker 4712 52.3 0.7 3116 42.8 0.9 885 58 1.7 13 0.8

Without Biomarker 25258 35.1 0.3 17878 28.8 0.3 10111 42.2 0.5 4.3 0.1

3.2.4 PoSs of Orphan Development Programs

Table 3.4 contains PoS estimates for drugs that treat rare diseases, also known as ‘orphan

drugs’. The classifications for rare diseases are obtained from both the EU and US rare

disease resources: OrphaNet and NIH GARD. Rare diseases may belong to any therapeutic

group, and the computation of the statistics for orphan drugs is identical to that used for

the trials in Table 3.2.

Broadly speaking, orphan drug development has slightly higher success rates, with 12.0%

of drug development projects reaching the market. Comparing these results against those

for all drug development, we see that while the Phase 3 success rate falls from 43.5% to

42.5%, the Phase 1 and Phase 2 PoS increase from 68.9% to 83.0% and from 51.4% to

52.1%, respectively, leading to an increase in the overall POS.

Our data reveals that most orphan drug trials are in oncology. Our overall PoS of 12.0% is

much lower than the 25.3% reported in Thomas et al. [4]. This discrepancy can be attributed

to their identification of only non-oncology indications as ‘rare diseases’, and their use of the

phase-by-phase method of computing the POS. Our estimated orphan drug PoS increases to
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19.4% after excluding all oncology indications from the calculations, which is more in line

with the findings of Thomas et al. [4].

Table 3.4: The probability of success of orphan drug development programs. We computed
the results using the path-by-path method. We used the entire dataset from January 1,
2000, to October 08, 2020.

Phase 1 Phase 2 Phase 3 Overall
Therapeutic Area Paths PoS12 S.E. Paths PoS23 S.E. PoS2A S.E. Paths PoS3A S.E. PoS1A S.E.
Oncology 4258 79.7 0.6 1886 45.3 1.1 10.2 0.8 512 37.7 2.1 8.0 0.6
Metabolic/Endocrinology 401 88.8 1.6 228 67.5 3.1 17.5 2.9 93 43.0 5.1 18.9 2.7
Cardiovascular 279 90.3 1.8 215 69.3 3.1 31.6 3.5 112 60.7 4.6 33.2 3.3
CNS 415 89.6 1.5 305 59.3 2.8 12.1 2.2 87 42.5 5.3 14.6 2.2
Autoimmune/Inflammation 475 89.1 1.4 346 61.6 2.6 8.1 1.7 118 23.7 3.9 9.2 1.7
Genitourinary 27 88.9 6.0 24 62.5 9.9 33.3 10.1 13 61.5 13.5 32.0 9.3
Infectious Disease 292 93.8 1.4 225 55.6 3.3 21.3 3.0 84 57.1 5.4 23.8 3.0
Ophthalmology 40 80.0 6.3 16 68.8 11.6 6.2 7.3 6 16.7 15.2 5.3 5.1
Vaccines (Infectious Disease) 82 92.7 2.9 71 32.4 5.6 31.0 5.5 22 100.0 0.0 28.9 5.2
Overall 6269 83.0 0.5 3316 52.1 0.9 13.4 0.7 1047 42.5 1.5 12.0 0.5
All except oncology 2011 90.0 0.7 1430 60.9 1.3 17.6 1.2 535 47.1 2.2 19.4 1.1

3.2.5 Discussion

Compared to Hay et al. [2] and Thomas et al. [4], we obtain higher PoS estimates for all

phases. Our numbers will result in a lower estimated drug development cost, especially in

Phase 3, where the cost of conducting a trial significantly exceeds that of other phases.

In Table 3.4, we show that orphan development programs have a slightly higher overall

PoS compared to the PoS of all drug development programs. This is a surprising finding,

given that we found lower PoS for orphan development programs in our previous study [5].

The slightly higher success rates of orphan drug development may be due to several factors,

including the maturation of new technologies such as gene replacement therapy.

We see heterogeneity in the PoSs across the different therapeutic areas, with oncology

development programs having the lowest success rates (4.0%, SE=0.1%) and vaccines having

the highest (40.5%, SE=1.2%). The variance in the PoSs will affect the optimal composition

of investors’ portfolio.

All else being equal, we would expect that drug development programs with lower PoSs

will face greater difficulty in raising sufficient capital to propel them into market. However,

reality cannot be more different; over the past decade, oncology drug development has at-
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tracted the lion’s share of all venture capitalist (VC) investments [3], while the number of

companies producing vaccines has dwindled over the years [1]. We will explore these areas

in detail over the next two sections in this chapter.
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3.3 Oncology Development Programs Statistics

Despite the billions of dollars spent annually on oncology research, effective treatments for

numerous types of cancer remain as elusive as ever. In the previous section, we find that even

though 49.7% of all drug development programs are being conducted in the field of oncology,

only 4.0% of all cancer drug development programs make it from phase 1 to regulatory

approval. This average masks the huge variation in the probability of success (PoS) for

treatment of the different diseases within oncology. Given the heterogeneous nature of cancer

[1], one would expect that some cancers are better studied than others, and that more drugs

and therapies would have been attempted for these better-known diseases. Nevertheless,

to the best of our knowledge, a comprehensive and fine-grained study of the PoS for drug

development programs in oncology has not been conducted.

In this section, we focus specifically on the performance of oncology drug development.

We shed light on the landscape and productivity of oncology clinical drug development

programs by calculating several different metrics, including the number of development pro-

grams, the probabilities of success, and the duration of trials for the various disease groups

within oncology. In addition, we investigate the change in these statistics considering only

the programs related to rare and orphan diseases, and similarly, considering only the pro-

grams using biomarkers in some phase of drug development.

3.3.1 Data Summary

In this analysis, we used an snapshot of the database where the trials have start dates

between January 1, 2000, and September 30, 2018. We filter our database for only industry-

sponsored trials relevant to the development of cancer drugs. Our dataset contains 108,248

unique {trial identification number, drug, disease} triplets after removing data points with

an unknown phase or disease.

Our path-by-path computation identifies 24,448 drug development programs across 40

different disease groups. From Figure 3-2, we can see that the three diseases with the most

drug development programs are non-small cell lung cancer (1,501), breast cancer (1,373) and

colorectal cancer (1,351), while the three diseases with the fewest number of drug develop-
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ment programs are unspecified hematological cancer (141), testicular cancer (123) and basal

cell carcinoma (123). The median number of drug development programs across all diseases

is 538.5.
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Figure 3-2: Number of drug development programs for disease groups in oncology.
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3.3.2 Duration of Oncology-related Clinical Trials

We compute the duration of clinical trials and produce boxplots by disease group and trial

phase (see Figures 3-3, 3-4, 3-5, 3-6, and 3-7). The median trial durations are 0.75–4.34

years for phase 1, 2.12–4.38 years for phase 2, 2.12-4.95 years for phase 3, 2.17–4.73 years for

phase 1/2 and 1.82–7.81 years for phase 2/3. We do not detect any pattern for the duration

of trials across disease groups. Within each disease group, we can see a large range of trial

durations, with some trials taking as much as 16 times the median duration of other trials

within the same disease group.
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Figure 3-3: Boxplot diagram of the duration of phase 1 clinical trials, in years, by disease.
The median value is displayed at the end of the box. We only compute the boxplot when
there are more than 5 trials.
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Figure 3-4: Boxplot diagram of the duration of phase 2 clinical trials, in years, by disease.
The median value is displayed at the end of the box. We only compute the boxplot when
there are more than 5 trials.
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Figure 3-5: Boxplot diagram of the duration of phase 3 clinical trials, in years, by disease.
The median value is displayed at the end of the box. We only compute the boxplot when
there are more than 5 trials.
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Figure 3-6: Boxplot diagram of the duration of phase 1/2 clinical trials, in years, by disease.
The median value is displayed at the end of the box. We only compute the boxplot when
there are more than 5 trials.
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Figure 3-7: Boxplot diagram of the duration of phase 2/3 clinical trials, in years, by disease.
The median value is displayed at the end of the box. We only compute the boxplot when
there are more than 5 trials.
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3.3.3 PoS across Oncology Indications

The PoS for all diseases is displayed in Table 3.5. We can see that the PoS vary quite

differently between phases and disease types. After eliminating drugs for use in supportive

care, we see that breast cancer has the highest overall PoS, with 9.5% of all drug development

programs making it from phase 1 to marketing approval. On the other hand, there are disease

types, such as osteosarcoma and uncategorized central nervous system-related cancer, for

which no drug development path has made it to approval. We do not detect any linear

relation between the number of development paths and the overall PoS (see Figure 3-8).

Disease Paths PoS12 PoS12err Paths PoS23 PoS23err PoS2A PoS2Aerr Paths PoS3A PoS3Aerr PoS1A PoS1Aerr
Lung, Non-Small Cell 1501 71.0 1.2 690 42.0 1.9 2.2 0.6 172 8.7 2.2 1.5 0.4
Breast 1373 70.0 1.2 641 47.1 2.0 15.1 1.5 214 45.3 3.4 10.1 1.0
Colorectal 1351 56.9 1.3 482 33.6 2.2 5.8 1.1 114 24.6 4.0 2.8 0.5
Prostate 1054 63.7 1.5 465 36.1 2.2 8.6 1.4 120 33.3 4.3 5.0 0.8
Pancreas 1052 57.7 1.5 342 27.5 2.4 2.9 1.0 60 16.7 4.8 1.3 0.4
Lymphoma, Non-Hodgkin’s 1038 75.3 1.3 474 44.5 2.3 3.4 0.9 101 15.8 3.6 2.6 0.6
Ovarian 1033 61.1 1.5 367 32.2 2.4 5.4 1.3 75 26.7 5.1 2.8 0.6
Melanoma 963 59.6 1.6 347 26.5 2.4 7.2 1.5 60 41.7 6.4 3.6 0.7
Unspecified Solid Tumor 888 54.2 1.7 163 38.0 3.8 1.2 1.0 31 6.5 4.4 0.4 0.3
Liver 874 63.6 1.6 328 36.6 2.7 2.7 1.0 58 15.5 4.8 1.5 0.5
Head/Neck 869 61.6 1.7 305 35.1 2.7 3.6 1.1 67 16.4 4.5 1.8 0.5
Renal 833 61.7 1.7 303 30.7 2.6 4.0 1.2 64 18.8 4.9 2.0 0.6
Soft Tissue Sarcoma 800 57.9 1.7 260 23.1 2.6 0.8 0.6 25 8.0 5.4 0.4 0.3
Gastric 762 61.9 1.8 296 35.5 2.8 13.5 2.1 73 54.8 5.8 7.2 1.1
Esophageal 636 58.5 2.0 245 36.3 3.1 3.3 1.3 45 17.8 5.7 1.7 0.6
Bladder 619 63.5 1.9 199 39.2 3.5 8.5 2.1 52 32.7 6.5 4.3 1.0
Leukemia, Acute Myelogenous 598 78.3 1.7 313 44.4 2.8 5.4 1.5 54 31.5 6.3 4.7 1.1
Multiple Myeloma 597 80.2 1.6 324 40.7 2.7 9.0 1.7 83 34.9 5.2 7.4 1.3
Unspecified Cancer 580 41.6 2.0 167 57.5 3.8 7.2 2.1 80 15.0 4.0 2.4 0.7
CNS, Glioblastoma 549 81.4 1.7 246 30.5 2.9 5.3 1.5 49 26.5 6.3 4.0 1.1
Leukemia, Chronic Lymphocytic 528 74.6 1.9 248 36.3 3.1 5.2 1.5 72 18.1 4.5 3.6 1.0
Lymphoma, Hodgkin’s 506 64.8 2.1 201 36.3 3.4 5.5 1.7 47 23.4 6.2 3.1 0.9
Lung, Small Cell 474 65.6 2.2 213 42.7 3.4 2.8 1.2 58 10.3 4.0 1.7 0.7
Leukemia, Acute Lymphocytic 457 78.3 1.9 227 41.0 3.3 7.0 1.9 43 37.2 7.4 5.8 1.4
Myelodysplastic Syndrome 444 81.8 1.8 229 37.6 3.2 0.0 0.0 30 0.0 0.0 0.0 0.0
Supportive Care 423 89.1 1.5 333 67.6 2.6 11.7 1.9 176 22.2 3.1 11.8 1.8
Endometrial 411 57.7 2.4 141 25.5 3.7 0.7 0.8 20 5.0 4.9 0.3 0.3
Leukemia, Chronic Myelogenous 364 71.7 2.4 174 27.6 3.4 6.9 2.0 39 30.8 7.4 4.5 1.3
Metastatic Cancer 351 86.3 1.8 231 55.4 3.3 6.1 1.8 78 17.9 4.3 6.1 1.6
CNS, Other 334 73.1 2.4 151 22.5 3.4 6.6 2.1 28 35.7 9.1 4.3 1.3
Thyroid 333 45.0 2.7 82 26.8 4.9 3.7 2.2 15 20.0 10.3 1.2 0.7
Mesothelioma 330 49.7 2.8 107 36.4 4.7 1.9 1.4 22 9.1 6.1 0.8 0.6
Osteosarcoma 303 48.2 2.9 87 12.6 3.6 0.0 0.0 10 0.0 0.0 0.0 0.0
Cervical 244 67.2 3.0 68 42.6 6.0 0.0 0.0 4 0.0 0.0 0.0 0.0
GIST 214 52.3 3.4 59 35.6 6.2 3.4 2.5 15 13.3 8.8 1.3 0.9
Myeloproliferative Neoplasms 207 83.1 2.6 105 37.1 4.7 2.9 1.7 26 11.5 6.3 2.4 1.3
CNS, Medulloblastoma 168 56.5 3.8 55 40.0 6.6 5.5 3.5 9 33.3 15.7 2.6 1.5
Unspecified Hematological Cancer 141 73.0 3.7 59 30.5 6.0 0.0 0.0 18 0.0 0.0 0.0 0.0
Testicular 123 65.0 4.3 58 32.8 6.2 1.7 1.7 19 5.3 5.1 1.0 1.0
Skin, Basal Cell Carcinoma 123 41.5 4.4 28 32.1 8.8 10.7 6.1 7 42.9 18.7 3.1 1.7
Total 24448 65.0 0.3 9813 38.0 0.5 5.7 0.3 2333 24.1 0.9 3.3 0.1

Table 3.5: Probability of success (PoS) for different disease groups in oncology.
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Variable Estimate Std Error t-statistic 𝑝-value
Intercept 4.15 ×10−2 8.57×10−3 4.83 2.20 ×10−5

𝑥 -1.74 ×10−5 1.21 ×10−5 -1.44 0.158
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Figure 3-8: Scatterplot of PoS vs. number of paths.

3.3.4 PoS of Oncology Trials using Biomarkers (Patient Selection)

It has been shown that the use of biomarkers in patient selection greatly enhances the effi-

ciency of the clinical trial process. We investigate if this holds true in oncology by computing

the PoS of drug development programs that use biomarkers in selecting patients and com-

paring them to those that do not (see Table 3.6). As can be seen, for the vast majority of

the disease types and phases, the use of biomarkers in patient selection improved the PoS.

On average across disease types, the use of biomarkers improves the PoS1,𝐴𝑝𝑝 by 13.3%.

3.3.5 PoS of Orphan Oncology Programs

We make further subsets of our data in order to investigate the probability of success of

oncology development programs involving rare diseases. We observe that for some diseases,

such as acute lymphocytic leukaemia, myelodysplastic syndrome and acute myelogenous

leukaemia, orphan drug development overlaps with more than 30% of all oncology drug

development programs (see Figure 3-10).

The breakdown of the PoS for orphan drug development programs is contained in Table
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3.7. We provide a comparison of the overall PoS of orphan diseases to the overall PoS of all

oncology trials in Figure 3-9. Orphan drug development programs in oncology seldom make

it to approval, with only 14 out of 40 disease groups having one approval or more.

In general, the overall PoS for orphan drug development programs across disease types

is lower than the PoS of all oncology programs across the same diseases. A closer look at

the individual phase probabilities reveals that, while orphan drugs have a higher phase 1

PoS (76.9% vs 65.0%) and a higher phase 2 PoS (44.6% vs 38.0%), a lower proportion of

development programs make it from phase 3 to approval (10.1% vs 24.1%). This results in

a lower overall PoS for orphan drugs. Admittedly, our analysis of orphan drugs suffers from

a low number of data points and a high uncertainty, and may not reflect the true situation.
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Figure 3-9: Comparison of the orphan drug PoS against the PoS for all oncology develop-
ment programs. Only 14 diseases have at least one approval. Full results for orphan drug
development programs are in Table 3.7
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Figure 3-10: Orphan drug development programs as a proportion of oncology drug develop-
ment programs.
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Disease Biomarkers? Paths PoS12 PoS12err Paths PoS23 PoS23err Paths PoS3A PoS3Aerr PoS1A PoS1Aerr
Breast No biomarkers 500 34.8 2.1 194 20.1 2.9 96 32.3 4.8 2.3 0.9

With biomarkers 252 65.9 3.0 317 42.0 2.8 118 55.9 4.6 15.5 3.2
Lung, Non-Small Cell No biomarkers 595 40.8 2.0 398 23.9 2.1 144 5.6 1.9 0.5 0.3

With biomarkers 224 62.5 3.2 181 46.4 3.7 28 25.0 8.2 7.3 3.7
Colorectal No biomarkers 658 27.5 1.7 276 16.3 2.2 84 14.3 3.8 0.6 0.3

With biomarkers 201 47.8 3.5 124 28.2 4.0 30 53.3 9.1 7.2 3.1
Ovarian No biomarkers 474 31.2 2.1 248 18.5 2.5 64 17.2 4.7 1.0 0.5

With biomarkers 168 54.8 3.8 74 36.5 5.6 11 81.8 11.6 16.3 6.7
Melanoma No biomarkers 429 27.5 2.2 231 13.4 2.2 39 23.1 6.7 0.9 0.5

With biomarkers 150 48.0 4.1 89 38.2 5.2 21 76.2 9.3 14.0 5.3
Pancreas No biomarkers 505 26.5 2.0 240 15.4 2.3 59 15.3 4.7 0.6 0.4

With biomarkers 138 46.4 4.2 59 23.7 5.5 1 100.0 0.0 11.0 3.8
Lymphoma, Non-Hodgkin’s No biomarkers 385 45.5 2.5 285 22.5 2.5 79 7.6 3.0 0.8 0.5

With biomarkers 138 66.7 4.0 127 66.9 4.2 22 45.5 10.6 20.3 7.9
Unspecified Solid Tumor No biomarkers 457 21.0 1.9 105 16.2 3.6 31 6.5 4.4 0.2 0.3

With biomarkers 131 64.9 4.2 22 40.9 10.5 0 − − − −
Gastric No biomarkers 328 28.7 2.5 172 10.5 2.3 43 51.2 7.6 1.5 0.8

With biomarkers 120 53.3 4.6 69 46.4 6.0 30 60.0 8.9 14.8 6.1
Esophageal No biomarkers 275 24.4 2.6 142 13.4 2.9 25 4.0 3.9 0.1 0.2

With biomarkers 118 52.5 4.6 61 45.9 6.4 20 35.0 10.7 8.4 5.2
Head/Neck No biomarkers 390 27.7 2.3 192 16.1 2.7 61 9.8 3.8 0.4 0.3

With biomarkers 110 52.7 4.8 62 40.3 6.2 6 83.3 15.2 17.7 8.7
Liver No biomarkers 395 31.9 2.3 239 21.3 2.7 57 14.0 4.6 1.0 0.6

With biomarkers 108 54.6 4.8 34 41.2 8.4 1 100.0 0.0 22.5 7.0
Prostate No biomarkers 500 33.8 2.1 349 24.4 2.3 114 29.8 4.3 2.5 0.8

With biomarkers 102 49.0 4.9 53 37.7 6.7 6 100.0 0.0 18.5 5.5
Renal No biomarkers 411 33.3 2.3 224 14.7 2.4 56 14.3 4.7 0.7 0.5

With biomarkers 91 50.5 5.2 40 52.5 7.9 8 50.0 17.7 13.3 9.5
Bladder No biomarkers 256 27.0 2.8 119 16.0 3.4 43 23.3 6.4 1.0 0.7

With biomarkers 87 55.2 5.3 39 46.2 8.0 9 77.8 13.9 19.8 10.2
Soft Tissue Sarcoma No biomarkers 458 34.5 2.2 199 14.6 2.5 17 5.9 5.7 0.3 0.4

With biomarkers 76 51.3 5.7 45 33.3 7.0 8 12.5 11.7 2.1 3.4
Leukemia, Acute Lymphocytic No biomarkers 128 39.1 4.3 124 16.1 3.3 19 21.1 9.4 1.3 1.2

With biomarkers 72 70.8 5.4 78 61.5 5.5 24 50.0 10.2 21.8 9.0
Endometrial No biomarkers 170 21.8 3.2 91 12.1 3.4 16 6.3 6.1 0.2 0.3

With biomarkers 71 42.3 5.9 32 21.9 7.3 4 0.0 0.0 0.0 0.0
Leukemia, Acute Myelogenous No biomarkers 217 49.8 3.4 200 26.0 3.1 41 14.6 5.5 1.9 1.2

With biomarkers 69 69.6 5.5 78 66.7 5.3 13 84.6 10.0 39.2 11.9
CNS, Glioblastoma No biomarkers 173 54.9 3.8 180 13.3 2.5 37 18.9 6.4 1.4 1.0

With biomarkers 59 59.3 6.4 34 55.9 8.5 12 50.0 14.4 16.6 10.7
Lymphoma, Hodgkin’s No biomarkers 207 28.5 3.1 127 9.4 2.6 44 18.2 5.8 0.5 0.4

With biomarkers 56 46.4 6.7 36 63.9 8.0 3 100.0 0.0 29.7 8.5
Leukemia, Chronic Lymphocytic No biomarkers 186 34.9 3.5 166 23.5 3.3 50 8.0 3.8 0.7 0.6

With biomarkers 54 75.9 5.8 54 42.6 6.7 22 40.9 10.5 13.2 7.5
Multiple Myeloma No biomarkers 193 50.8 3.6 234 25.2 2.8 75 28.0 5.2 3.6 1.5

With biomarkers 47 51.1 7.3 46 63.0 7.1 8 100.0 0.0 32.2 8.7
Thyroid No biomarkers 200 21.5 2.9 55 14.5 4.8 14 14.3 9.4 0.4 0.7

With biomarkers 44 40.9 7.4 17 23.5 10.3 1 100.0 0.0 9.6 6.7
Lung, Small Cell No biomarkers 212 34.9 3.3 142 22.5 3.5 58 10.3 4.0 0.8 0.6

With biomarkers 42 40.5 7.6 17 29.4 11.1 0 − − − −
Cervical No biomarkers 77 20.8 4.6 33 15.2 6.2 4 0.0 0.0 0.0 0.0

With biomarkers 39 51.3 8.0 20 45.0 11.1 0 − − − −
Myelodysplastic Syndrome No biomarkers 141 51.8 4.2 159 20.1 3.2 29 0.0 0.0 0.0 0.0

With biomarkers 37 64.9 7.8 38 57.9 8.0 1 0.0 0.0 0.0 0.0
Osteosarcoma No biomarkers 165 20.0 3.1 69 8.7 3.4 10 0.0 0.0 0.0 0.0

With biomarkers 34 26.5 7.6 13 0.0 0.0 0 − − − −
Mesothelioma No biomarkers 194 24.2 3.1 71 14.1 4.1 22 9.1 6.1 0.3 0.4

With biomarkers 31 38.7 8.7 19 63.2 11.1 0 − − − −
Leukemia, Chronic Myelogenous No biomarkers 148 37.8 4.0 103 8.7 2.8 29 17.2 7.0 0.6 0.6

With biomarkers 30 63.3 8.8 45 28.9 6.8 10 70.0 14.5 12.8 8.9
Metastatic Cancer No biomarkers 67 34.3 5.8 110 32.7 4.5 61 18.0 4.9 2.0 1.4

With biomarkers 20 80.0 8.9 57 49.1 6.6 17 17.6 9.2 6.9 6.4
CNS, Other No biomarkers 136 42.6 4.2 125 10.4 2.7 28 35.7 9.1 1.6 1.2

With biomarkers 19 36.8 11.1 8 37.5 17.1 0 − − − −
GIST No biomarkers 121 23.1 3.8 30 10.0 5.5 10 0.0 0.0 0.0 0.0

With biomarkers 17 47.1 12.1 21 47.6 10.9 5 40.0 21.9 9.0 12.5
Myeloproliferative Neoplasms No biomarkers 43 34.9 7.3 60 16.7 4.8 26 11.5 6.3 0.7 0.9

With biomarkers 15 53.3 12.9 23 30.4 9.6 0 − − − −
Unspecified Cancer No biomarkers 377 12.7 1.7 86 29.1 4.9 80 15.0 4.0 0.6 0.4

With biomarkers 13 23.1 11.7 11 9.1 8.7 0 − − − −
Unspecified Hematological Cancer No biomarkers 35 14.3 5.9 40 10.0 4.7 18 0.0 0.0 0.0 0.0

With biomarkers 11 27.3 13.4 5 0.0 0.0 0 − − − −
Testicular No biomarkers 43 18.6 5.9 51 25.5 6.1 19 5.3 5.1 0.2 0.6

With biomarkers 10 20.0 12.6 1 0.0 0.0 0 − − − −
Skin, Basal Cell Carcinoma No biomarkers 70 8.6 3.3 13 15.4 10.0 7 42.9 18.7 0.6 1.3

With biomarkers 9 11.1 10.5 9 11.1 10.5 0 − − − −
CNS, Medulloblastoma No biomarkers 87 23.0 4.5 35 28.6 7.6 9 33.3 15.7 2.2 2.7

With biomarkers 7 14.3 13.2 8 0.0 0.0 0 − − − −
Supportive Care No biomarkers 120 61.7 4.4 195 45.6 3.6 160 20.6 3.2 5.8 1.9

With biomarkers 0 − − 12 83.3 10.8 16 37.5 12.1 − −

Table 3.6: Phase-by-phase probability of success (PoS) for drug development programs, with
and without biomarkers for patient selection.
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Disease P1totalPaths PoS12 PoS12err P2totalPaths PoS23 PoS23err PoS2A PoS2Aerr Paths PoS3A PoS3Aerr PoS1A PoS1Aerr
Lymphoma, Non-Hodgkin’s 208 84.1 2.5 129 39.5 4.3 1.6 1.2 31 6.5 4.4 1.4 1.0
Leukemia, Acute Myelogenous 180 85.0 2.7 116 50.9 4.6 6.0 2.7 20 35.0 10.7 6.7 2.5
Leukemia, Acute Lymphocytic 142 83.1 3.1 87 55.2 5.3 4.6 2.6 24 16.7 7.6 4.6 2.2
Ovarian 136 75.0 3.7 57 47.4 6.6 1.8 1.9 20 5.0 4.9 1.2 1.2
Pancreas 134 74.6 3.8 71 50.7 5.9 4.2 2.8 15 20.0 10.3 3.6 2.0
Myelodysplastic Syndrome 134 79.9 3.5 72 36.1 5.7 0.0 0.0 5 0.0 0.0 0.0 0.0
Soft Tissue Sarcoma 127 69.3 4.1 58 39.7 6.4 0.0 0.0 8 0.0 0.0 0.0 0.0
Multiple Myeloma 122 77.0 3.8 73 53.4 5.8 8.2 3.5 27 22.2 8.0 6.7 2.7
Breast 118 72.9 4.1 56 37.5 6.5 0.0 0.0 15 0.0 0.0 0.0 0.0
Liver 117 79.5 3.7 59 61.0 6.3 0.0 0.0 13 0.0 0.0 0.0 0.0
Lung, Non-Small Cell 109 73.4 4.2 57 56.1 6.6 0.0 0.0 19 0.0 0.0 0.0 0.0
Leukemia, Chronic Lymphocytic 106 71.7 4.4 56 42.9 6.6 0.0 0.0 12 0.0 0.0 0.0 0.0
Melanoma 105 81.0 3.8 62 50.0 6.4 3.2 2.5 19 10.5 7.0 2.9 2.0
Renal 105 77.1 4.1 55 38.2 6.6 5.5 3.1 20 15.0 8.0 3.8 2.2
Colorectal 97 63.9 4.9 30 13.3 6.2 0.0 0.0 4 0.0 0.0 0.0 0.0
CNS, Glioblastoma 97 93.8 2.4 61 60.7 6.3 1.6 2.0 18 5.6 5.4 2.1 2.1
Leukemia, Chronic Myelogenous 82 70.7 5.0 44 22.7 6.3 4.5 3.2 8 25.0 15.3 3.0 2.1
Head/Neck 79 75.9 4.8 36 41.7 8.2 0.0 0.0 5 0.0 0.0 0.0 0.0
Lymphoma, Hodgkin’s 74 60.8 5.7 31 6.5 4.4 0.0 0.0 2 0.0 0.0 0.0 0.0
Gastric 68 79.4 4.9 32 40.6 8.7 9.4 6.2 3 100.0 0.0 8.3 4.6
Unspecified Solid Tumor 65 67.7 5.8 8 0.0 0.0 − − 0 − − − −
Esophageal 64 89.1 3.9 37 37.8 8.0 2.7 3.3 1 100.0 0.0 3.2 3.2
Bladder 63 66.7 5.9 26 38.5 9.5 0.0 0.0 2 0.0 0.0 0.0 0.0
Myeloproliferative Neoplasms 50 90.0 4.2 34 73.5 7.6 0.0 0.0 20 0.0 0.0 0.0 0.0
Prostate 47 53.2 7.3 16 0.0 0.0 − − 0 − − − −
Endometrial 45 75.6 6.4 19 26.3 10.1 0.0 0.0 5 0.0 0.0 0.0 0.0
Lung, Small Cell 43 90.7 4.4 33 33.3 8.2 0.0 0.0 3 0.0 0.0 0.0 0.0
Mesothelioma 42 69.0 7.1 19 57.9 11.3 0.0 0.0 5 0.0 0.0 0.0 0.0
Metastatic Cancer 40 87.5 5.2 27 63.0 9.3 0.0 0.0 17 0.0 0.0 0.0 0.0
CNS, Other 39 84.6 5.8 23 43.5 10.3 0.0 0.0 3 0.0 0.0 0.0 0.0
Thyroid 36 72.2 7.5 14 71.4 12.1 14.3 10.6 7 28.6 17.1 9.5 6.4
Osteosarcoma 34 61.8 8.3 15 6.7 6.4 0.0 0.0 1 0.0 0.0 0.0 0.0
Supportive Care 29 62.1 9.0 12 91.7 8.0 0.0 0.0 7 0.0 0.0 0.0 0.0
GIST 27 81.5 7.5 14 35.7 12.8 0.0 0.0 3 0.0 0.0 0.0 0.0
Cervical 22 81.8 8.2 8 100.0 0.0 − − 0 − − − −
Skin, Basal Cell Carcinoma 14 92.9 6.9 4 0.0 0.0 0.0 0.0 0 − − − −
CNS, Medulloblastoma 12 75.0 12.5 4 75.0 21.7 0.0 0.0 3 0.0 0.0 0.0 0.0
Testicular 12 100.0 0.0 7 0.0 0.0 − − 0 − − − −
Unspecified Cancer 6 16.7 15.2 0 − − − − 0 − − − −
Unspecified Hematological Cancer 2 0.0 0.0 0 − − − − 0 − − − −
Overall 3032 76.9 0.8 1562 44.6 1.3 2.4 0.4 365 10.1 1.6 1.9 0.3

Table 3.7: Probability of success (PoS) for orphan development programs in oncology.
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3.4 Statistics of Vaccine and Other Anti-Infective Ther-

apeutic Development Programs

In this section, we provide estimates of the historical probabilities of success (PoSs) of clinical

trials for vaccines and other therapeutic drugs for infectious diseases to inform discussions

on the planning and financing of the fight against one of humanity’s oldest foes. This is

of particular importance in light of the recent havoc wreaked by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease (COVID-

19).

While the PoSs of therapeutic drugs for various disease groups are well-documented

[2, 5, 11, 23, 24, 28, 29], relatively little has been published on treatments for infectious

diseases and vaccine development despite their importance [4, 20]. Prior studies have focused

on narrower subsets relevant to their specific interests and have relied on much more limited

data sets. For example, Young et al. [31] employed 10 to 25 data points per estimated value

from the Bill and Melinda Gates Foundation to estimate the PoSs of vaccines for neglected

diseases, and DiMasi et al. [6] reported PoS estimates on a per-drug basis using 2,575 trials

for diseases of interest to the Gates Foundation. In contrast, we employ a much larger

and broader data set of 16,328 unique clinical trials to estimate the PoSs of vaccines and

nonvaccine therapeutics targeting 29 different infectious diseases using all available drug-

indication pairs – a methodology that has been argued to be more relevant for evaluating

drug development R&D risk and productivity [29].

Vaccination is commonly recognized as one of the most cost-effective public health mea-

sures for combating infectious diseases [3, 7, 15, 20, 21, 22]. In developed countries, routine

prophylactic vaccination and effective treatment options have led to the control or com-

plete elimination of several deadly infectious diseases through individual and herd immunity,

preventing millions of deaths and untold suffering each year. This prophylaxis dramatically

reduces the burden on the health care system and society as a whole. In addition, the deaths,

hospitalizations, and treatment costs avoided by these measures have led to significant eco-

nomic savings [7, 18, 22].

As technology continues to advance, one expects that the human species will be better
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able to cope with these diseases. The fact remains, however, that we still do not have effective

treatments or vaccines for many infectious diseases. While the discovery of antibiotics has

reduced the mortality rate of bacterial infection, and the development of the smallpox vaccine

has led to the eradication of the devastating disease [19], other infectious diseases, such as

acquired immunodeficiency syndrome (AIDS) and malaria, still take the lives of tens of

millions every year. According to the World Health Organization, there are currently only

26 infectious diseases that are preventable by available vaccines [30].

By developing better risk measures for therapeutic development, we hope to facilitate

greater investment, identification of underserved areas that require public sector support,

and more efficient business and financing models in this critical field.

3.4.1 Data Summary

For this study, we used clinical trials metadata from the January 7, 2020, snapshots of

Citeline’s PharmaProjects and TrialTrove databases. We filter our data to include only

trials that have been tagged by Citeline as being in the ‘Infectious Disease’ or ‘Vaccines

(Infectious Diseases)’ therapeutic areas. Since the two therapeutic areas may overlap in

data points, we define clinical trials that are involved in any vaccine development as part of

a ‘vaccine’ development program. In addition, we process the data such that more specific

diseases (e.g., rabies) can be identified instead of broad vaccine classes (e.g., vector-borne

disease vaccines). Clinical trials that are not involved in any vaccine development program

will be deemed to be part of a ‘nonvaccine’ drug development program. We derive 43,414

data points in total. We define an ‘industry-sponsored’ development program as one where

there is at least one commercial company involved in any stage of clinical development.

The complement – in which there is no commercial company involved in any stage of the

vaccine or drug development program – shall be referred to as ‘non-industry-sponsored’.

Given these definitions, a drug or vaccine development program (and the clinical trials in

the program) can belong to only one of these mutually-exclusive sets: industry-sponsored

vaccines, industry-sponsored nonvaccine therapeutics, non-industry-sponsored vaccines, and,

non-industry-sponsored nonvaccine therapeutics.

The vaccines in TrialTrove are identified by broad categories such as “respiratory vac-
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cines”, “other viral vaccines”, or “hepatitis vaccines”. We attempt to infer the diseases

targeted by the vaccines by cross-referencing the disease tags for each clinical trial. For

example, a clinical trial may be tagged with both “hepatitis vaccines” and “HBV”, allowing

us to conclude that the vaccine is indicated for HBV (hepatitis B virus). Those clinical trials

that have only vaccine tags will have their disease labeled as “others.” Manual inspection

of some of the clinical trial titles shows that this category includes diseases such as measles

and tuberculosis.

We plot the number of development programs known to start in each month from January

2000 through December 2019 in Figure 3-11. There are 1,838 and 706 industry-sponsored and

non-industry-sponsored vaccine development programs, respectively, and, 3,851 and 2,978

industry-sponsored and non-industry-sponsored nonvaccine drug development programs tar-

geting infectious diseases, respectively. As can be seen from Figure 3-11, the number of

industry-sponsored clinical programs attempting to treat infectious diseases is often greater

than the number of vaccine development programs. We see a precipitous fall in the number

of infectious disease treatment development programs initiated between late 2018 and mid-

2019, which is likely to be related to declining investment in the research and development

(R&D) of novel antibiotics, precipitated by the closure of antibiotics biotechnology firms and

the withdrawal of pharmaceutical companies from the antibiotics business [13, 16].

Between January 2000 and June 2011, the number of non-industry-sponsored vaccine

development programs initiated is on par with the number of non-industry-sponsored, non-

vaccine anti-infective drug development programs initiated (see Figure 3-12). However, the

number of nonvaccine drug development programs initiated begin to outpace the number of

vaccine development programs after January 2012, and experience a rapid boom between

mid-2015 and mid-2018 before declining rapidly between October 2018 and January 2019.

3.4.2 Result

Vaccines

Overall, 2,544 vaccine development programs are observed in our data set, of which 1,838

are sponsored by industry and 706 do not involve any industry sponsor in any stage of
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Figure 3-11: The number of industry-sponsored development programs initiated per month
from January 2000 through December 2019 in the areas of vaccine and nonvaccine treatment
for infectious diseases (thin, light colored lines). The darker, thicker lines represent the
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Figure 3-12: The number of non-industry-sponsored development programs initiated per
month from January 2000 through December 2019 in the areas of vaccine and nonvaccine
treatment for infectious diseases (thin, light colored lines). The darker, thicker lines represent
the 6-month moving average of the individual series.

development. For industry-sponsored drug development programs, respiratory infections is

the most actively researched vaccine category, comprising 34.8% (𝑛 = 640) of all vaccine

development programs (see Figure 3-13). HBV and human immunodeficiency virus (HIV)

vaccines represent 11.6% (n=213) and 9.8% (n=181) of all vaccine development programs,
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respectively, whereas intra-abdominal infections, monkeypox, and severe acute respiratory

syndrome (SARS) vaccines are the least researched fields, with only one development path

observed per disease.
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Figure 3-13: Number of vaccine development programs observed for each vaccine type. HBV,
hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; HPV, human
papillomavirus.
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From Table 3.8, we can see that the overall PoS for industry-sponsored vaccine develop-

ment programs is 39.6% (standard error, or SE=1.2%), which is substantially higher than

the average overall PoS of 10.8% (SE=0.1%) across all industry-sponsored drug development

programs (see Table 3.2). These findings are largely in line with the results of Wong et al.

[29], who first observed this trend, and of DiMasi et al. [6], despite the fact that the latter

computed their estimates using a different method (a “phase-by-phase” approach) and con-

sidered only lead indications. We estimate PoS12, PoS23, and PoS3A to be 82.5% (SE=0.9%),

65.4% (SE=1.3%), and 80.1% (SE=1.4%), respectively.

Across all industry-sponsored vaccine development programs, we can see that monkey-

pox vaccines have had the most developmental success, followed by rotavirus and Japanese

encephalitis vaccines (see Table 3.8). Their overall success rates are 100% (SE=0.0%), 78.7%

(SE=5.2%), and 67.6% (SE=8.0%), respectively. The overall PoS for monkeypox is based

on only one sample. Only 12 diseases out of the 27 disease categories with at least one

development path observed have seen at least one approved vaccine.

Table 3.8: The probabilities of success (PoSs) of industry-sponsored vaccine development
programs.

Phase 1 Phase 2 Phase 3 Overall
Disease Paths PoS12 S.E. Paths PoS23 S.E. PoS2A S.E. Paths PoS3A S.E. Paths PoS1A S.E.
Bacterial Skin Infection 12 83.3 10.8 7 14.3 13.2 0.0 0.0 1 0.0 0.0 9 0.0 0.0
Chikungunya 6 83.3 15.2 0 − − − − 0 − − 1 0.0 0.0
Clostridium difficile 6 100.0 0.0 6 33.3 19.2 0.0 0.0 0 − − 4 0.0 0.0
Cytomegalovirus Infection (CMV) 14 57.1 13.2 3 33.3 27.2 0.0 0.0 0 − − 8 0.0 0.0
Ebola 13 53.8 13.8 7 57.1 18.7 28.6 20.2 2 100.0 0.0 11 18.2 11.6
Hepatitis B Virus (HBV) 213 94.8 1.5 187 74.9 3.2 54.5 3.7 132 77.3 3.6 190 53.7 3.6
Hepatitis C Virus (HCV) 27 70.4 8.8 15 0.0 0.0 0.0 0.0 0 − − 23 0.0 0.0
Human Immunodeficiency Virus (HIV) 181 65.2 3.5 95 36.8 4.9 0.0 0.0 21 0.0 0.0 144 0.0 0.0
Human Papillomavirus (HPV) 120 88.3 2.9 69 52.2 6.0 36.2 6.1 30 83.3 6.8 77 32.5 5.3
Intra−abdominal Infections 1 100.0 0.0 1 100.0 0.0 0.0 0.0 1 0.0 0.0 1 0.0 0.0
Japanese Encephalitis 35 100.0 0.0 35 71.4 7.6 65.7 8.1 24 95.8 4.1 34 67.6 8.0
Marburg 3 0.0 0.0 0 − − − − 0 − − 3 0.0 0.0
Middle East Respiratory Syndrome (MERS) 4 50.0 25.0 0 − − − − 0 − − 2 0.0 0.0
Monkeypox 1 100.0 0.0 1 100.0 0.0 100.0 0.0 1 100.0 0.0 1 100.0 0.0
Norovirus 6 100.0 0.0 5 0.0 0.0 0.0 0.0 0 − − 5 0.0 0.0
Otitis Media 23 95.7 4.3 22 81.8 8.2 45.5 10.6 18 55.6 11.7 23 43.5 10.3
Rabies 47 91.5 4.1 40 87.5 5.2 65.0 8.1 30 86.7 6.2 39 66.7 7.5
Respiratory Infections 640 79.1 1.6 465 66.9 2.2 50.1 2.4 287 81.2 2.3 575 40.5 2.0
Rotavirus 72 97.2 1.9 70 91.4 3.3 68.6 6.0 53 90.6 4.0 61 78.7 5.2
Sepsis 13 38.5 13.5 5 80.0 17.9 0.0 0.0 4 0.0 0.0 13 0.0 0.0
Severe Acute Respiratory Syndrome (SARS) 1 0.0 0.0 0 − − − − 0 − − 1 0.0 0.0
Smallpox 11 81.8 11.6 8 62.5 17.1 50.0 17.7 5 80.0 17.9 10 40.0 15.5
Urinary Tract Infections 3 100.0 0.0 3 100.0 0.0 0.0 0.0 1 0.0 0.0 1 0.0 0.0
West Nile Virus (WNV) 4 25.0 21.7 1 100.0 0.0 0.0 0.0 1 0.0 0.0 4 0.0 0.0
Yellow Fever 30 90.0 5.5 26 73.1 8.7 57.7 10.5 15 100.0 0.0 25 60.0 9.8
Zika 2 0.0 0.0 0 − − − − 0 − − 2 0.0 0.0
Others 350 87.1 1.8 268 63.4 2.9 47.0 3.2 142 88.7 2.7 285 44.2 2.9
Total 1,838 82.5 0.9 1,339 65.4 1.3 45.9 1.4 768 80.1 1.4 1552 39.6 1.2

In contrast, non-industry-sponsored vaccine development programs have an overall PoS of
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only 6.8% (SE=1.0%), with PoS12, PoS23, and PoS3A estimates of 63.3% (SE=1.8%), 37.3%

(SE=2.6%), and 39.8% (SE=4.9%), respectively (Table 3.9). The top three indications with

the highest overall success rates for non-industry-sponsored drug development programs

are otitis media (28.6%, SE=17.1%), rabies (25.0%, SE=10.8%), and Japanese encephalitis

(25.0%, SE=21.7%). The latter estimates are derived from only a handful of samples and

must be interpreted with caution as their large standard errors suggest.

Table 3.9: The probabilities of success (PoSs) of non-industry-sponsored vaccine development
programs.

Phase 1 Phase 2 Phase 3 Overall
Disease Paths PoS12 S.E. Paths PoS23 S.E. PoS2A S.E. Paths PoS3A S.E. Paths PoS1A S.E.
Bacterial Skin Infection 3 100.0 0.0 0 − − − − 0 − − 0 0.0 0.0
Clostridium difficile 3 66.7 27.2 0 − − − − 0 − − 1 0.0 0.0
Cytomegalovirus Infection (CMV) 14 50.0 13.4 5 40.0 21.9 40.0 21.9 2 100.0 0.0 12 16.7 10.8
Ebola 8 12.5 11.7 0 − − − − 0 − − 7 0.0 0.0
Hepatitis B Virus (HBV) 58 91.4 3.7 48 47.9 7.2 8.3 4.3 16 25.0 10.8 46 8.7 4.2
Hepatitis C Virus (HCV) 10 70.0 14.5 5 0.0 0.0 0.0 0.0 0 − − 8 0.0 0.0
HIV 144 48.6 4.2 62 3.2 2.2 0.0 0.0 2 0.0 0.0 136 0.0 0.0
Human Papillomavirus (HPV) 32 87.5 5.8 16 56.3 12.4 6.3 6.5 7 14.3 13.2 18 5.6 5.4
Intra−abdominal Infections 3 100.0 0.0 0 − − − − 0 − − 0 0.0 0.0
Japanese Encephalitis 4 100.0 0.0 4 100.0 0.0 25.0 21.7 4 25.0 21.7 4 25.0 21.7
Middle East Respiratory Syndrome (MERS) 1 100.0 0.0 0 − − − − 0 − − 0 0.0 0.0
Otitis Media 7 100.0 0.0 7 28.6 17.1 28.6 17.1 2 100.0 0.0 7 28.6 17.1
Rabies 16 81.3 9.8 13 53.8 13.8 30.8 12.8 7 57.1 18.7 16 25.0 10.8
Respiratory Infections 175 66.9 3.6 101 51.5 5.0 16.8 3.9 41 41.5 7.7 148 11.5 2.6
Rotavirus 5 80.0 17.9 4 50.0 25.0 0.0 0.0 1 0.0 0.0 4 0.0 0.0
Sepsis 7 42.9 18.7 2 0.0 0.0 0.0 0.0 0 − − 6 0.0 0.0
Severe Acute Respiratory Syndrome (SARS) 1 0.0 0.0 0 − − − − 0 − − 1 0.0 0.0
Smallpox 11 63.6 14.5 6 16.7 15.2 16.7 15.2 1 100.0 0.0 10 10.0 9.5
Urinary Tract Infections 3 100.0 0.0 1 0.0 0.0 0.0 0.0 0 − − 1 0.0 0.0
West Nile Virus (WNV) 4 0.0 0.0 0 − − − − 0 − − 4 0.0 0.0
Yellow Fever 9 66.7 15.7 6 33.3 19.2 0.0 0.0 1 0.0 0.0 8 0.0 0.0
Zika 5 40.0 21.9 0 − − − − 0 − − 3 0.0 0.0
Others 183 57.9 3.6 71 35.2 5.7 9.9 3.8 14 50.0 13.4 137 5.1 1.9
Total 706 63.3 1.8 351 37.3 2.6 11.1 1.8 98 39.8 4.9 577 6.8 1.0

Nonvaccine Anti-Infective Therapeutics

In contrast to vaccines, which are intended to prevent disease, a number of alternatives

have been developed to treat–and, in some cases, cure–patients afflicted with an infectious

disease. According to our data set, 3,851 and 2,978 industry-sponsored and non-industry-

sponsored nonvaccine drug development programs, respectively, have been initiated in the

area of infectious disease (see Figure 3-14). The top three diseases with the greatest number

of industry-sponsored drug development programs are respiratory infections (21.8%), HIV

(15.7%) and hepatitis C virus, or HCV (14.1%). Together, they comprise 51.6% of all

industry-sponsored nonvaccine development programs. Non-industry anti-infectious-disease
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drug development programs focus on treating respiratory infections (20.5%), HIV (13.9%),

and bacterial skin infection (12.1%).

With respect to addressing the most recent virus outbreaks–MERS, SARS, Ebola, and

Zika–a total of nine industry-sponsored and 36 non-industry-sponsored nonvaccine drug

development programs were initiated over the past 20 years, and there have been no approved

therapies to date.

From Table 3.10, we can see that the overall PoS across all industry-sponsored drug de-

velopment programs treating infectious diseases is 16.3% (SE=0.7%). The PoS12, PoS23, and

PoS3A are 65.0% (SE=0.8%), 64.3% (SE=1.0%), and 51.1% (SE=1.6%), respectively. Based

on our data, the highest success rates for industry-sponsored nonvaccine development pro-

grams have been for smallpox (100.0%, SE=0.0%), cytomegalovirus (CMV) infection (31.8%,

SE=7.0%), and onychomycosis (29.8%, SE=6.7%). There are currently no nonvaccine ther-

apies approved for rotavirus, SARS, rabies, Ebola, West Nile virus, Marburg, yellow fever,

chikungunya, MERS, monkeypox, or norovirus. With the exception of norovirus and MERS,

these diseases without any vaccine are predominantly prevalent in nonindustrialized nations,

and thus represent neglected diseases. It is also interesting that for the latter eight diseases,

even the PoS12 is low. Since phase 1 trials in the development of anti-infective therapies focus

primarily on safety, understanding the pharmacokinetics of the compound, and maximum

tolerable dose levels, it can be inferred that the drugs tested are either of high toxicity or

lack the necessary characteristics required for optimal absorption, distribution, metabolism,

and excretion (ODME), or perhaps failed to advance due to financial constraints.

For non-industry-sponsored nonvaccine development programs, the overall PoS is 8.2%

(SE=0.6%) while PoS12, PoS23, and PoS3A are 61.0% (SE=0.9%), 65.2% (SE=1.2%), and

30.0% (SE=1.8%), respectively (see Table 3.11). The top three indications with the high-

est overall success rates for non-industry-sponsored nonvaccine development programs are

CMV infection (23.5%, SE=5.9%), clostridium difficile (20.5%, SE=6.5%), and sepsis (17.4%,

SE=2.6%).
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(b) Number of non-industry-sponsored, nonvaccine drug development programs

Figure 3-14: Number of nonvaccine development programs observed for each vaccine type.
HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; HPV,
human papillomavirus.

PoS by Biological Family and Transmission Routes (Industry-Sponsored)

In an attempt to shed more light on the industry-sponsored vaccine and nonvaccine drug

development programs, we classify the diseases by their biological family and transmission
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Table 3.10: The probabilities of success (PoSs) of industry-sponsored nonvaccine drug de-
velopment programs.

Phase 1 Phase 2 Phase 3 Overall
Disease Paths PoS12 S.E. Paths PoS23 S.E. PoS2A S.E. Paths PoS3A S.E. Paths PoS1A S.E.
Bacterial Skin Infection 406 54.9 2.5 207 72.9 3.1 19.8 3.2 104 39.4 4.8 343 12.0 1.8
Chikungunya 1 0.0 0.0 0 − − − − 0 − − 1 0.0 0.0
Clostridium difficile 91 83.5 3.9 66 53.0 6.1 4.5 2.8 25 12.0 6.5 71 4.2 2.4
Cytomegalovirus Infection (CMV) 64 87.5 4.1 43 60.5 7.5 32.6 7.8 19 73.7 10.1 44 31.8 7.0
Ebola 7 28.6 17.1 1 0.0 0.0 0.0 0.0 0 − − 6 0.0 0.0
Hepatitis B Virus (HBV) 186 77.4 3.1 105 68.6 4.5 36.2 5.2 54 70.4 6.2 129 29.5 4.0
Hepatitis C Virus (HCV) 542 68.8 2.0 348 52.3 2.7 23.6 2.4 155 52.9 4.0 490 16.7 1.7
Human Immunodeficiency Virus (HIV) 604 63.2 2.0 326 59.8 2.7 39.3 2.8 167 76.6 3.3 520 24.6 1.9
Human Papillomavirus (HPV) 63 85.7 4.4 34 23.5 7.3 11.8 5.7 6 66.7 19.2 41 9.8 4.6
Intra−abdominal Infections 182 68.7 3.4 113 72.6 4.2 2.7 2.0 35 8.6 4.7 123 2.4 1.4
Marburg 3 0.0 0.0 0 − − − − 0 − − 3 0.0 0.0
Middle East Respiratory Syndrome (MERS) 1 0.0 0.0 0 − − − − 0 − − 1 0.0 0.0
Monkeypox 1 0.0 0.0 0 − − − − 0 − − 1 0.0 0.0
Non−tuberculous Mycobacteria (NTM) Infection 23 87.0 7.0 16 62.5 12.1 6.3 7.7 4 25.0 21.7 13 7.7 7.4
Norovirus 1 0.0 0.0 0 − − − − 0 − − 1 0.0 0.0
Onychomycosis 60 85.0 4.6 44 63.6 7.3 31.8 7.6 22 63.6 10.3 47 29.8 6.7
Otitis Media 152 48.0 4.1 68 80.9 4.8 51.5 6.2 51 68.6 6.5 143 24.5 3.6
Rabies 4 75.0 21.7 0 − − − − 0 − − 1 0.0 0.0
Respiratory Infections 841 64.2 1.7 476 70.0 2.1 22.9 2.2 222 49.1 3.4 666 16.4 1.4
Rotavirus 2 100.0 0.0 2 0.0 0.0 0.0 0.0 0 − − 2 0.0 0.0
Sepsis 334 66.8 2.6 206 64.6 3.3 10.2 2.4 81 25.9 4.9 265 7.9 1.7
Severe Acute Respiratory Syndrome (SARS) 1 100.0 0.0 1 0.0 0.0 0.0 0.0 0 − − 1 0.0 0.0
Smallpox 2 100.0 0.0 2 100.0 0.0 100.0 0.0 2 100.0 0.0 2 100.0 0.0
Urinary Tract Infections 276 55.1 3.0 143 72.0 3.8 10.5 3.2 51 29.4 6.4 215 7.0 1.7
West Nile Virus (WNV) 2 50.0 35.4 1 0.0 0.0 0.0 0.0 0 − − 2 0.0 0.0
Yellow Fever 2 0.0 0.0 0 − − − − 0 − − 2 0.0 0.0
Total 3,851 65.0 0.8 2,202 64.3 1.0 23.2 1.0 998 51.1 1.6 3133 16.3 0.7

Table 3.11: The probabilities of success (PoSs) of non-industry-sponsored nonvaccine drug
development programs.

Phase 1 Phase 2 Phase 3 Overall
Disease Paths PoS12 S.E. Paths PoS23 S.E. PoS2A S.E. Paths PoS3A S.E. Paths PoS1A S.E.
Bacterial Skin Infection 360 46.4 2.6 151 81.5 3.2 19.2 3.7 85 34.1 5.1 306 9.5 1.7
Chikungunya 2 100.0 0.0 2 50.0 35.4 0.0 0.0 1 0.0 0.0 2 0.0 0.0
Clostridium difficile 83 94.0 2.6 51 76.5 5.9 15.7 6.2 22 36.4 10.3 39 20.5 6.5
Cytomegalovirus Infection (CMV) 77 83.1 4.3 51 51.0 7.0 23.5 6.9 13 92.3 7.4 51 23.5 5.9
Ebola 30 96.7 3.3 28 14.3 6.6 0.0 0.0 2 0.0 0.0 27 0.0 0.0
Hepatitis B Virus (HBV) 171 49.1 3.8 73 47.9 5.8 1.4 1.4 31 3.2 3.2 156 0.6 0.6
Hepatits C Virus (HCV) 139 84.2 3.1 112 43.8 4.7 8.9 2.9 33 30.3 8.0 118 8.5 2.6
Human Immunodeficiency Virus (HIV) 414 61.1 2.4 195 49.2 3.6 13.3 2.6 75 34.7 5.5 335 7.8 1.5
Human Papillomavirus (HPV) 71 88.7 3.8 42 42.9 7.6 2.4 2.7 8 12.5 11.7 40 2.5 2.5
Intra-abdominal Infections 189 66.1 3.4 112 76.8 4.0 12.5 3.8 51 27.5 6.2 141 9.9 2.5
Japanese Encephalitis 2 100.0 0.0 2 0.0 0.0 0.0 0.0 0 - - 2 0.0 0.0
Middle East Respiratory Syndrome (MERS) 3 100.0 0.0 3 66.7 27.2 0.0 0.0 0 - - 1 0.0 0.0
Non-tuberculous Mycobacteria (NTM) Infection 13 84.6 10.0 9 44.4 16.6 11.1 11.9 2 50.0 35.4 9 11.1 10.5
Norovirus 2 100.0 0.0 1 0.0 0.0 0.0 0.0 0 - - 1 0.0 0.0
Onychomycosis 20 75.0 9.7 15 66.7 12.2 0.0 0.0 6 0.0 0.0 16 0.0 0.0
Otitis Media 186 30.1 3.4 53 56.6 6.8 7.5 3.9 24 16.7 7.6 177 2.3 1.1
Rabies 1 0.0 0.0 0 - - - - 0 - - 1 0.0 0.0
Respiratory Infections 610 58.5 2.0 323 72.8 2.5 11.5 2.1 141 26.2 3.7 482 7.7 1.2
Sepsis 310 80.0 2.3 227 77.5 2.8 15.9 3.0 94 38.3 5.0 207 17.4 2.6
Severe Acute Respiratory Syndrome (SARS) 3 100.0 0.0 3 100.0 0.0 0.0 0.0 2 0.0 0.0 2 0.0 0.0
Urinary Tract Infections 291 46.7 2.9 126 73.8 3.9 10.3 3.4 49 26.5 6.3 237 5.5 1.5
West Nile Virus (WNV) 1 100.0 0.0 1 0.0 0.0 0.0 0.0 0 - - 1 0.0 0.0
Total 2,978 61.0 0.9 1,580 65.2 1.2 12.2 0.9 639 30.0 1.8 2351 8.2 0.6

type. The classifications are presented in Table 3.12. We then compute the PoSs using these

classifications.

Looking at the vaccine PoSs by transmission route (see Table 3.13), we see that vaccines
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Table 3.12: List of transmission routes and biological family for the infectious diseases.

Disease Transmission Route Biological Family
Hepatitis B virus (HBV) Human-human (Others) Hepadnavirus
Other Multiple or others Multiple or others
Otitis Media Multiple or others Multiple or others
Bacterial Skin Infection Multiple or others Multiple or others
Sepsis Multiple or others Multiple or others
Human papillomavirus (HPV) Human-human (Others) Flaviviridae
Human immunodeficiency virus (HIV) Human-human (Others) Retroviridae
Intra-abdominal Infections Multiple or others Multiple or others
Onychomycosis Multiple or others Multiple or others
Clostridium difficile Multiple or others Clostridiaceae
Cytomegalovirus (CMV) Infection Human-human (Others) Herpesviridae
Hepatitis C virus (HCV) Human-human (Others) Flaviviridae
Respiratory Infections Multiple or others Multiple or others
Urinary Tract Infections Multiple or others Multiple or others
Rotavirus Human-human (Others) Reoviridae
Ebola Human-human (Others) Filoviridae
Marburg Human-human (Others) Filoviridae
Smallpox Human-human (Airborne) Poxvirus
Zika Animal bites Flaviviridae
Rabies Animal bites Rhabdoviridae
Yellow Fever Animal bites Flaviviridae
Chikungunya Animal bites Togaviridae
Norovirus Contaminated food or water Caliciviridae
Japanese Encephalitis Animal bites Flaviviridae
Non-tuberculous Mycobacteria (NTM) Infection Multiple or others Multiple or others
West Nile Virus (WNV) Animal bites Flaviviridae
Middle East Respiratory Syndrome (MERS) Human-human (Airborne) Coronaviridae
Severe Acute Respiratory Syndrome (SARS) Human-human (Airborne) Coronaviridae
Monkeypox Animal bites Poxviridae

for diseases transmitted through animal bites have the highest overall PoS (61.3%, SE=4.7%),

whereas no vaccine has been developed for diseases transmitted through contaminated food

or water.

Table 3.13: The probabilities of success (PoSs) of industry-sponsored vaccine development
programs, grouped by the transmission route.

Phase 1 Phase 2 Phase 3 Overall
Transmission route Paths PoS12 S.E. Paths PoS23 S.E. PoS2A S.E. Paths PoS3A S.E. Paths PoS1A S.E.
Animal bites 125 89.6 2.7 103 78.6 4.0 63.1 5.0 71 91.5 3.3 106 61.3 4.7
Contaminated food or water 6 100.0 0.0 5 0.0 0.0 0.0 0.0 0 - - 5 0.0 0.0
Human-human (Others) 643 82.4 1.5 446 62.8 2.3 39.7 2.4 238 74.4 2.8 517 34.2 2.1
Human-human (Airborne) 16 68.8 11.6 8 62.5 17.1 50.0 17.7 5 80.0 17.9 13 30.8 12.8
Multiple or others 1,048 81.9 1.2 777 65.6 1.7 47.5 1.9 454 81.3 1.8 911 40.5 1.6
Total 1,838 82.5 0.9 1,339 65.4 1.3 45.9 1.4 768 80.1 1.4 1552 39.6 1.2
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We find that companies have been most successful in developing nonvaccine treatments

for diseases transmitted between humans through the air, with 50.0% (SE=25.0%) of all

drug development programs making it from phase 1 to regulatory approval (see Table 3.14).

Unfortunately, this is based on only four drug development programs and may not be indica-

tive of the general trend. Treatments for diseases that transmit through ‘human to human

(others)’ have an overall PoS of 21.5% (SE=1.2%) while no approval is observed for diseases

transmitted through ‘animal bites’ or ‘contaminated food or water’.

Table 3.14: The probabilities of success (PoSs) of industry-sponsored, nonvaccine anti-
infective drug development programs, grouped by the transmission route.

Phase 1 Phase 2 Phase 3 Overall
Transmission Route Paths PoS12 S.E. Paths PoS23 S.E. PoS2A S.E. Paths PoS3A S.E. Paths PoS1A S.E.
Animal bites 10 40.0 15.5 1 0.0 0.0 0.0 0.0 0 - - 7 0.0 0.0
Contaminated food or water 1 0.0 0.0 0 - - - - 0 - - 1 0.0 0.0
Human-human (Others) 1,471 68.9 1.2 859 56.2 1.7 31.0 1.7 401 66.3 2.4 1235 21.5 1.2
Human-human (Airborne) 4 75.0 21.7 3 66.7 27.2 66.7 27.2 2 100.0 0.0 4 50.0 25.0
Multiple or others 2,365 62.7 1.0 1,339 69.5 1.3 18.1 1.2 595 40.7 2.0 1886 12.8 0.8
Total 3,851 65.0 0.8 2,202 64.3 1.0 23.2 1.0 998 51.1 1.6 3133 16.3 0.7

When we classify the vaccines by the biological family of the infectious agent (Table 3.15),

we see that reoviridae (e.g., rotavirus), rhabdoviridae (e.g., rabies), and hepadnaviridae (e.g.,

HBV) are the three biological families with the highest overall PoSs for vaccines at 78.7%,

(SE=5.2%), 66.7% (SE=7.5%), and 53.7% (SE=3.6%), respectively. We have yet to see a

vaccine for diseases caused by agents in the biological families of retroviridae (e.g., HIV),

caliciviridae (e.g., norovirus), clostridiaceae (e.g., clostridium difficile), coronaviridae (e.g.,

SARS, MERS), herpesviridae (e.g., CMV infection), or togaviridae (e.g., chikungunya).

When we consider nonvaccine PoSs by biological family of the infectious agent (see Ta-

ble 3.16), we see that nonvaccine therapies for poxviridae (e.g., smallpox), herpesviridae

(e.g., CMV infection), and hepadnaviridae (e.g., HBV) have the highest overall PoS at 66.7%

(SE=27.2%), 31.8% (SE=7.0%), and 29.5% (SE=4.0%), respectively. For viruses in the re-

oviridae (e.g., rotavirus), coronaviridae (e.g., SARS, MERS), caliciviridae (e.g., norovirus),

rhabdoviridae (e.g., rabies), and togaviridae (e.g., chikungunya) families, there have been

less than five development programs each, and no approved treatment.
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Table 3.15: The probabilities of success (PoSs) of industry-sponsored vaccine development
programs, grouped by the biological family.

Phase 1 Phase 2 Phase 3 Overall
Biological Family Paths PoS12 S.E. Paths PoS23 S.E. PoS2A S.E. Paths PoS3A S.E. Paths PoS1A S.E.
Caliciviridae 6 100.0 0.0 5 0.0 0.0 0.0 0.0 0 - - 5 0.0 0.0
Clostridiaceae 6 100.0 0.0 6 33.3 19.2 0.0 0.0 0 - - 4 0.0 0.0
Coronaviridae 5 40.0 21.9 0 - - - - 0 - - 3 0.0 0.0
Filoviridae 16 43.8 12.4 7 57.1 18.7 28.6 20.2 2 100.0 0.0 14 14.3 9.4
Flaviviridae 218 86.2 2.3 146 55.5 4.1 43.2 4.3 70 90.0 3.6 165 38.2 3.8
Hepadnaviridae 213 94.8 1.5 187 74.9 3.2 54.5 3.7 132 77.3 3.6 190 53.7 3.6
Herpesviridae 14 57.1 13.2 3 33.3 27.2 0.0 0.0 0 - - 8 0.0 0.0
Multiple or others 1,042 81.8 1.2 771 65.9 1.7 47.9 1.9 454 81.3 1.8 907 40.7 1.6
Poxviridae 12 83.3 10.8 9 66.7 15.7 55.6 16.6 6 83.3 15.2 11 45.5 15.0
Reoviridae 72 97.2 1.9 70 91.4 3.3 68.6 6.0 53 90.6 4.0 61 78.7 5.2
Retroviridae 181 65.2 3.5 95 36.8 4.9 0.0 0.0 21 0.0 0.0 144 0.0 0.0
Rhabdoviridae 47 91.5 4.1 40 87.5 5.2 65.0 8.1 30 86.7 6.2 39 66.7 7.5
Togaviridae 6 83.3 15.2 0 - - - - 0 - - 1 0.0 0.0
Total 1,838 82.5 0.9 1,339 65.4 1.3 45.9 1.4 768 80.1 1.4 1552 39.6 1.2

Table 3.16: The probabilities of success (PoSs) of industry-sponsored, nonvaccine anti-
infective drug development programs, grouped by the biological family.

Phase 1 Phase 2 Phase 3 Overall
Biological Family Paths PoS12 S.E. Paths PoS23 S.E. PoS2A S.E. Paths PoS3A S.E. Paths PoS1A S.E.
Caliciviridae 1 0.0 0.0 0 - - - - 0 - - 1 0.0 0.0
Clostridiaceae 91 83.5 3.9 66 53.0 6.1 4.5 2.8 25 12.0 6.5 71 4.2 2.4
Coronaviridae 2 50.0 35.4 1 0.0 0.0 0.0 0.0 0 - - 2 0.0 0.0
Filoviridae 10 20.0 12.6 1 0.0 0.0 0.0 0.0 0 - - 9 0.0 0.0
Flaviviridae 609 70.3 1.9 383 49.6 2.6 22.5 2.2 161 53.4 3.9 535 16.1 1.6
Hepadnaviridae 186 77.4 3.1 105 68.6 4.5 36.2 5.2 54 70.4 6.2 129 29.5 4.0
Herpesviridae 64 87.5 4.1 43 60.5 7.5 32.6 7.8 19 73.7 10.1 44 31.8 7.0
Poxviridae 3 66.7 27.2 2 100.0 0.0 100.0 0.0 2 100.0 0.0 1815 66.7 27.2
Reoviridae 2 100.0 0.0 2 0.0 0.0 0.0 0.0 0 - - 3 0.0 0.0
Retroviridae 604 63.2 2.0 326 59.8 2.7 39.3 2.8 167 76.6 3.3 2 24.6 1.9
Rhabdoviridae 4 75.0 21.7 0 - - - - 0 - - 520 0.0 0.0
Togaviridae 1 0.0 0.0 0 - - - - 0 - - 1 0.0 0.0
Multiple or others 2,274 61.9 1.0 1,273 70.3 1.3 18.8 1.3 570 41.9 2.1 1 13.2 0.8
Total 3,851 65.0 0.8 2,202 64.3 1.0 23.2 1.0 998 51.1 1.6 3133 16.3 0.7

3.4.3 Discussion

Companies producing vaccines and other therapeutics for infectious diseases have gradually

been retreating from these spaces in recent years. The number of companies producing

vaccines has dwindled over the past few decades, and the top four vaccine companies now

make up more than 90% of the global market [1]. Similarly, the top four companies produc-

ing antiviral drugs occupy about 80% of the global market [1]. Antibiotic developers such

Achaogen and Melinta Therapeutics have filed for bankruptcy in the past year, while large

pharmaceutical companies such as Novartis and Sanofi have withdrawn from the space [14],
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leading the Infectious Diseases Society of America to sound the alarm about the availability

of effective antibiotics [17].

It should be no surprise that investors are unwilling to invest in companies producing

vaccines and treatments for infectious diseases given the economics of this market [26]. These

have been generally regarded as low-margin products, and they have low expected growth

potential compared to chronic treatments in other therapeutic areas, such as oncology or

cardiovascular diseases. For example, Merck’s oncology assets are estimated to have con-

tributed $11.8 billion in incremental revenues from 2017 to 2020; for the same period, the

incremental contribution of its vaccines portfolio is estimated to be $2.7 billion [25]. And

Merck is the second largest vaccine maker in the world. This lack of investment has re-

sulted in a relatively low number of development programs for vaccines and treatments of

infectious diseases; only about 9.5% (5,869 programs out of about 59,891; see Table 3.2) of

all industry-sponsored drug development programs launched in the past two decades are in

these areas.

Our study indicates that the technical success rate is unlikely to be a barrier to invest-

ments in new vaccines and treatments for infectious diseases, unlike cancer drugs, where the

financial risk of new RD projects comes from the reduced chance of bringing a drug-indication

pair from phase 1 to market. The overall PoS of industry-sponsored vaccines and treatments

for infectious diseases are above the average for all therapeutic groups (see Table 3.2).

It is often suggested that the fundamental issue behind this lack of investment is that the

market for vaccines and treatments for infectious diseases is simply not lucrative enough.

Despite the expense of research and development and the need for large-scale production

[27], anti-infective disease treatments are used only occasionally, while vaccine companies

face an avalanche of liability lawsuits [12]. Furthermore, the companies are at the mercy of

government pricing decisions [13].

Apart from financial considerations, the dearth of vaccines and other treatments for

infectious diseases may be due to the lack of available subjects for testing these therapeutics,

especially during non-epidemic periods. This may be alleviated by having faster preclinical

and clinical pathways in cases of severe infectious diseases with no existing treatments. One

such pathway is the Animal Rule ([9, 10] whereby the “FDA may grant marketing approval
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based on adequate and well-controlled animal efficacy studies when the results of those

studies establish that the drug is reasonably likely to produce clinical benefit in humans”

[8]. This has been used to approve smallpox and monkeypox vaccines, and can be expanded

for the investigation of therapeutics for other potentially deadly infectious diseases with low

incidence rates, such as SARS.

Even though this pathway can expedite the development of vaccines and anti-infective

treatments, it still requires considerable development time as one needs to establish the

equivalence of the drug mechanism between animal models and humans. While it is desirable

to hasten the development of vaccines and medical product during an epidemic, biological

breakthroughs and science will ultimate drive the efficiency of our ability to fight pandemics

of novel pathogens.

It remains to be seen if more non-industry-sponsored research can alleviate the issue.

Our study shows that only 6.8% (SE=1.0%) and 8.2% (SE=0.6%) of non-industry-sponsored

vaccines and nonvaccine infectious disease development programs transition from phase 1 to

approval, respectively. However, this may be a result of selection bias: promising vaccine

and therapeutics initiated in non-industry settings are often pursued in conjunction with

industry-sponsored sponsors, whereas commercially less promising projects are more likely

to be pursued by non-profit organizations.
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Chapter 4

Estimating the Financial Impact of

Gene Therapy

4.1 Introduction

Gene therapy is a new class of medical treatment that alters part of a patient’s genome

through the replacement, deletion, or insertion of genetic material to treat a disease. While

still in its infancy, gene therapy has demonstrated immense potential to treat and even

cure previously intractable diseases. The introduction of voretigene neparvovec (marketed

as Luxturna® ) for inherited retinal disease and onasemnogene abeparvovec-xioi (marketed

as Zolgensma® ) for spinal muscular atrophy (SMA) in the U.S. have improved the lives

of patients [114, 124]. Yet the price per treatment of $425,000 per eye for Luxturna, and

$2.1 million per patient for Zolgensma, have raised concerns regarding affordability among

budget-constrained payers and patients alike.

Stakeholders have expressed concerns that gene therapy will be too expensive for in-

dividual patients to afford on their own, especially if they continue to be priced at more

than 30 times the median household income of $61,937 [103], (equivalently, at several mul-

tiples of the average U.S. home mortgage of $354,400 [126]). Insurance coverage for gene

therapy also varies by policy type. Many insurance policies do not cover access to gene

therapy, or they impose very restrictive policies to limit the number of patients who might

be treated [78, 156]. Widespread underinsurance in the U.S. [116]—requiring substantial
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out-of-pocket costs in the form of deductibles and coinsurance payments—may place gene

therapy out of reach for American patients who might benefit from treatment. Many health

plans, especially those facing fixed annual budgets, including state Medicaid policies, some

employer-offered plans, and insurance offered on the federal and state-sponsored exchanges,

have warned they may not be able or willing to absorb the additional spending should a

greater number of people become eligible for expensive gene therapy once it reaches the

market [159]. While some spending on novel gene therapies would likely be paid for by

Medicare, the taxpayer-supported health insurance for Americans over the age of 65, other

spending on these treatments might have an impact on the wages that private corporations

pay to their employees [70].

In this paper, we estimate the potential fiscal impact of gene therapy on the U.S. market.

To do so, we create a new model to estimate the future number of gene therapy approvals,

the size of their potential patient populations, and the prices of these future treatments. We

begin by surveying the clinical trial databases for late-stage gene therapy trials, defined here

as phase 2/3 or phase 3, and compile the prevalence and incidence of the diseases targeted in

these trials from a meta-analysis of published sources. We develop a novel method to estimate

the price of each gene therapy under consideration by calculating the expected quality-

adjusted life years gained for each therapy in the relevant patient population. Combining

these results and previously published probabilities of technical success by therapeutic area,

we simulate whether a disease will have an approved gene therapy over the next fifteen years,

the expected number of treated patients and the expected spending from January 2020 to

December 2034.

4.2 Simulation Design

A critical element in our simulation analysis is the number of gene therapies that will receive

regulatory approval over the next few years. Therefore, we begin with a brief review of the

approval process in the U.S.

Since the passing of the Food, Drug, and Cosmetic Act in 1938, pharmaceuticals devel-

oped by companies have to be reviewed by the Food and Drug Administration (FDA) for
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safety and efficacy before they can be marketed in the U.S. The application for marketing

approval differs slightly by the type of therapy: New Drug Applications (NDAs) are for

small molecules, and Biologics License Applications (BLAs) are for biologics. Gene therapy

is considered a biologic product, hence the BLA designation applies.

Clinical investigations in human subjects typically take place in three phases—phases 1,

2 and 3—before marketing approvals are sought. Phase 1 trials are designed to investigate

the dosage and safety of the treatment, while phase 2 trials attempt to detect early signs

of efficacy and possible side effects in a relatively small sample of patients. Phase 3 trials

are intended to demonstrate a statistically significant treatment effect when compared to

the best standard of care in a broader population of patients. Some clinical trials combine

multiple phases into a single design, with the phase numbers separated by a slash. For

example, a phase 2/3 trial combines elements of phase 2 and phase 3 investigations into a

single trial design in order to reduce the overall development time and cost, and maximize

the participation of subjects with orphan disease willing to participate in trials. The clinical

development of therapeutics is a tedious and costly process that may span decades and cost

billions of dollars, with the bulk of the cost and time spent conducting phase 3 clinical trials

[63, 84]. The process is also very risky, with only 13.8% of therapeutic development programs

entering phase 1 reaching approval [166].

To estimate the financial impact of gene therapies on the U.S. healthcare system, we

first identify all existing late-stage clinical trials of gene therapies, simulate their successes

or failures from phase 2/3 or 3 to approval, then estimate the spending on the successful

ones by summing the product of their expected prices and number of patients, as outlined

in Figure 4-1. By using simulation analysis rather than purely deterministic methods, we

are able to capture the inherent uncertainty in costs, revenues, and other parameters of this

new therapeutic class.

We organize the simulation into the following five distinct modules, and describe each

of these in some detail: (1) identifying the number of gene therapies currently in clinical

trials; (2) estimating the probabilities of success of these trials; (3) estimating the time

to approval; (4) simulating the expected number of patients treated by these therapies if

approved; and (5) estimating the expected market prices of the approved therapies. We
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Figure 4-1: A flowchart showing the performance of the simulation. After extracting the
information on each disease from the clinical trial databases, we simulate whether the disease
will obtain an approval. If it fails to do so, the simulation will end for this disease in
this iteration. Otherwise, we will estimate the expected number of patients to be treated,
compute the corresponding cost of treatment, and store the results. At each step of the
computation, we source data from literature and impute missing information.

describe the first four modules in Sections 4.2.1–4.2.4. Given the importance and potential

controversies surrounding the pricing of gene therapies, we devote a standalone section to

this issue in Section 4.3.

4.2.1 Clinical Trial Data

We use clinical trial metadata from the Citeline TrialTrove database and the U.S. National

Library of Medicine’s ClinicalTrials.gov database to determine the number of gene therapies

currently under development and their potential number of patients.

We download data from the Citeline database, isolating trials tagged with ‘gene therapy’

under the ‘therapeutic class’ field. We supplement this information by searching for trials

on the clinicaltrials.gov main page using the key words ‘gene therapy’, then reading the trial

description to determine if the trial is in fact related to a gene therapy. All database queries

were made before May 31, 2019. Clinical trials from both sources are merged before filtering

for clinical trials that are in either phase 2/3 or phase 3 of the development process and
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are not known to be compassionate uses of the treatment.1 The outcomes of compassionate

use are rarely used as data points in the clinical development process. Even though adverse

events from compassionate use are reported to the FDA and may, in rare cases, be used to

characterize the risk and benefits of a therapy, the FDA is cognizant that these uses often

occur outside of clinical trial settings, and has almost never given an unfavorable decision

to a product labeling because of an adverse outcome of compassionate use [88, 115]. We

include clinical trials without U.S. trial site in our dataset because it is currently possible

for the FDA, as empowered by Federal administrative law 21 CFR Part 312.120, to grant

marketing approval using evidence from foreign clinical trials [68].

Our filtering criteria are intended to remove trial entries unrelated to the clinical develop-

ment process, and to isolate gene therapies that are most likely to seek regulatory approval

in the U.S. in the near future.

We remove repeated entries, and identify the diseases and therapeutic areas targeted by

each gene therapy. Each clinical trial entry in our dataset contains a brief title of the trial,

its clinical phase, the disease being targeted, the start and end dates of the clinical trial, the

therapy name, and the companies involved in the clinical trial.

This process yields 109 trials investigating 57 distinct diseases, listed in Table 4.11 in

Supplementary Materials. We classify the diseases into three categories: cancer (oncology),2

rare disease, and general disease. The distribution of disease and the clinical trials by

category and therapeutic area are shown in Table 4.1 and Table 4.2. The majority of trials

and diseases are in the area of oncology, followed by rare diseases. These therapeutic areas

are notoriously risky. Only 3.1% and 6.2% of the drug development programs in oncology

and rare diseases go from Phase 1 to approval, respectively, compared to the baseline of

13.8% across all drugs and indications [166].

1Compassionate use, also known as ‘expanded access’, refers to the administration of investigational
treatments outside of the clinical trial to treat patients with serious or immediately life-threatening diseases,
or conditions when there are no comparable or satisfactory alternative treatment options.

2We classify Ewing’s Sarcoma—a rare form of cancer—as a rare disease instead of cancer.

65



Table 4.1: Count of number of clinical trials by category and therapeutic area.

Therapeutic Area Cancer General Rare Disease Subtotal
Autoimmune/Inflammation 3 2 5
Cardiovascular - 15 1 16
CNS - 3 7 10
Metabolic/Endocrinology - 3 15 18
Oncology 52 - 1 53
Ophthalmology - - 7 7
Subtotal 52 24 33 109

Table 4.2: Count of number of diseases by category and therapeutic area.

Therapeutic Area Cancer General Rare Disease Subtotal
Autoimmune/Inflammation - 2 1 3
Cardiovascular - 6 1 7
CNS - 1 4 5
Metabolic/Endocrinology - 3 6 9
Oncology 28 - 1 29
Ophthalmology - - 4 4
Subtotal 28 12 17 57

4.2.2 Probability of Success Estimates

We define a gene therapy development program as the set of clinical trials by a sponsor

testing a therapeutic for a disease. We consider whether a gene therapy will be developed

for a disease by simulating correlated coin flips’ for each gene therapy program, and observing

if there is at least one approval.

Our computational method assumes that clinical trials are always perfectly correlated

within the same development program. This is logical, since the FDA requires findings from

at least two pivotal trials in the BLA review process[171]3. Our assumption can also be

justified for clinical trials run by the same sponsor that target the same disease, but for

different patient segments. We reason that the sponsors are risking multiple expensive late-

stage trials for the same disease, thus have confidence that the treatment will work on all

patient sub-populations, and therefore any marketing licensing approval (or denial) will be

3It must be noted that several pathways, such as the priority review program, are exceptions to this rule.
The assumption of perfect correlation still holds if only one trial is required for regulatory review.
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Table 4.3: The probability of success of drug development programs from phase 3 to approval
(PoS3𝐴), categorized by therapeutic area. We assume that the probability of success for gene
therapy follows a similar pattern.

Therapeutic Area PoS3𝐴 (%)
Autoimmune/Inflammation 48.5
Cardiovascular 50.1
Central Nervous System (CNS) 37.0
Metabolic/Endocrinology 45.7
Oncology 28.5
Ophthalmology 45.9

similar for all the patient segments.

It can be argued that different gene therapy treatments for a disease are highly correlated,

since they operate on similar platforms (e.g. CAR-T or in-vivo gene delivery using adeno-

associated virus vectors), even though different gene sequences may be targeted. To reflect

this, we consider a correlation of 90% between development programs in our simulations.

Our sensitivity analysis, however, demonstrates that these computations are insensitive to

this parameter (see Section 4.4.3).

The phase 3 to approval probability of success (PoS3𝐴) for each disease is informed by

prior studies on the probabilities of success of drug development programs by therapeutic area

from the MIT Laboratory of Financial Engineering’s Project ALPHA website [96]. These

estimates for the probabilities of success are derived from over 55,000 drug development

programs between January 2000 and January 2020, and computed using the path-by-path

methods as introduced in Wong et al. [166]. The PoS3𝐴 values used in our simulations are

given in Table 4.3 and the mapping of diseases to therapeutic areas is shown in Table 4.12.

4.2.3 Time to Approval

We also require an estimate of the time to approval for gene therapy treatments in order to

assess the patient impact and cost over time. Typically, companies submit their Biologics

License Application (BLA) to the U.S. Food and Drug Administration (FDA) some time

after the end of the clinical trial period. We assume that the time between the end of the
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last clinical trial for the disease and the submission of the BLA is a variable drawn from

a triangular distribution between 0 and 365 days, with a median of 182.5 days. This is

informed by the practical knowledge that it takes an average of 6 months to prepare the

documents for the BLA submission [166].

In addition, there will be a lag time between the submission of the BLA and the decision

of the FDA. The FDA has 60 days to decide if it will follow up on a BLA filing [91], and it

can take another 10 months to deliver its verdict [90]. This implies the maximum possible

time between BLA submission and FDA approval will be 12 months. We thus assume that

the time between the BLA submission and the FDA decision is drawn from a triangular

distribution between 0 and 365 days, with a median of 182.5 days. Our assumptions are also

valid for therapies that use the priority review pathways.

We also assume that the BLA will be filed only after the last clinical trial for a disease

has ended. Trials with missing declared end dates will have their end dates imputed by

adding random durations to the trial start date, drawn from a gamma distribution fitted to

clinical trials with complete date information in our data (see Figure 4-2).

0 500 1,0
00

1,5
00

2,0
00

2,5
00

3,0
00

3,5
00

4,0
00

4,5
00

5,0
00

5,5
00

6,0
00

6,5
00

7,0
00

7,5
00

0

2

4

6

·10−4

𝑓(𝑥) = 𝑦2.38 𝑒−𝑦

661.6Γ(3.34) , where 𝑦 = 𝑥
661.6

Days

Pr
ob

ab
ili

ty
de

ns
ity

Figure 4-2: The empirical distribution of duration against our fitted gamma distribution.

Diseases with a prior approved therapy will automatically be considered to be approved

as of January 1st 2020. For some diseases, the last clinical trial will have ended more than

three years ago (i.e., before January 2017). For diseases that match this criterion, we treat
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them as though they have failed.

4.2.4 Number of Patients

The second module simulates the number of new and existing patients that will be treated

over time, conditioned on the disease receiving an approved gene therapy.

We consider only the superset of the patient segments listed in the clinical trials for each

disease. For example, if there are two clinical trials, one targeting ‘patients above the age

of 40’ and the other targeting ‘patients above the age of 18’, we only consider the latter

when estimating the patient population for the disease. If insufficient information about the

sub-population is given, we assume that all the patients with that disease are eligible. The

proportion of patients who are eligible for treatment and are willing to do so will be taken

into account later, as we will explain in Section 4.2.4.

Incidence and Prevalence

For the number of currently affected patients and the number of new patients per year

for each indication, we source medical journals and online data repositories, such as the

Surveillance, Epidemiology, and End Results (SEER) website and cancer.net. If we are able

to find an estimated patient population, we cite it directly. Otherwise, we multiply the

prevalence and incidence rates by the population of the U.S., which we take to be 327.7

million [74]. When necessary, we also make the assumption that the female to male ratio is

1:1.

In cases in which we are able to find estimates for the disease incidence but not the

prevalence, we combine the incidence of the disease (i.e., 𝑖 new patients a year) and the

disease survival rate (i.e., 𝑝% of the people with a disease will be alive after 𝑘 years) to

obtain the steady-state estimate of the prevalence (𝑗) using Equation Equation 4.1. The

incidence can also be estimate from the prevalence by rearranging Equation Equation 4.1 to

yield Equation 4.2.

Prevalence (𝑗) = 𝑘𝑖

1− 𝑝
(4.1)
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Incidence (𝑖) = 𝑗(1− 𝑝)
𝑘

(4.2)

The equations can be derived by assuming that the number of patients will be constant

through the years at a level 𝑗. Since 𝑘𝑖 new patients are added over 𝑘 years and 𝑗(1 − 𝑝)

patients that will die over the same period, 𝑘𝑖 = 𝑗(1 − 𝑝) for the number of patients to be

constant over time. Rearranging this equation will yield Equation 4.1 and Equation 4.2.

The number of patients for each disease are presented in Table 4.13 in the Supplementary

Materials. We adjust these estimates to avoid double-counting in cases of overlapping patient

populations, e.g., the number of patients for ‘Spinal Muscular Atrophy’ is the difference

between ‘Spinal Muscular Atrophy’ and ‘Spinal Muscular Atrophy I’ (a sub-category of the

former).

Treatment of Patients over Time

In our simulation, we assume that newly diagnosed patients are treated immediately upon

diagnosis. We further assume that the proportion of existing patients who seek treatment

do so in such a way that the existing stock of patient declines exponentially, with a half-life

of 𝜆. Mathematically, the proportion of existing patients that seek treatment between time

𝑡 and 𝑡 + 𝛿 after approval is given by 𝐸(𝑡, 𝛿, 𝜆), where:

𝐸(𝑡, 𝛿, 𝜆) = 𝑒− 𝑡 ln 2
𝜆 − 𝑒− (𝑡+𝛿) ln 2

𝜆 , 𝑡 ≥ 0 (4.3)

In the face of limited information, we assume that 25% of the existing stock of patients

will seek treatment in the first year of our simulation. This requires that the half-life be set

to 28.91 months, which in turn implies that 95% of all patients who are diagnosed prior to

the approval of the gene therapy want treatments within 10.5 years. Admittedly, this is just

an assumption, and we perform a sensitivity analysis to determine its impact on our results

in Section 4.4.3. Not everyone who seeks treatment will be given one; the effective number

of patients treated is determined by the patient penetration rate, as we shall describe next.
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Patient Penetration

It is unlikely that all the patients under consideration will receive gene therapy treatments.

This may be due to ineligibility, lack of awareness of the treatment, or simply lack of interest

in gene therapy, among many other reasons. We term the percentage of the patients that

receive gene therapy treatments the ‘patient penetration rate’, and model it using a ramp

function, 𝜌(𝑡, Θ𝑚𝑎𝑥, 𝑇𝑚𝑎𝑥). The ramp function is frequently used by the industry to model

the rate of adoption of a product or technology [142], and is given by:

𝜌(𝑡, Θ𝑚𝑎𝑥, 𝑇𝑚𝑎𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑡 ·Θ𝑚𝑎𝑥

𝑇𝑚𝑎𝑥

, 0 ≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥

Θ𝑚𝑎𝑥, otherwise
(4.4)

An illustration of the ramp function is given in Figure 4-3.

Θ𝑚𝑎𝑥 ∼ 𝑁(𝜇𝜃, 𝜎2
𝜃)

𝑇𝑚𝑎𝑥 ∼ 𝑁(𝜇𝑇 , 𝜎2
𝑇 )
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Figure 4-3: An illustration of the ramp function used to model the patient penetration rate
over time.

Θ𝑚𝑎𝑥 and 𝑇𝑚𝑎𝑥 are assumed to follow Gaussian distributions 𝑁(𝜇𝜃, 𝜎2
𝜃) and 𝑁(𝜇𝑇 , 𝜎2

𝑇 ),

respectively. The parameter settings are listed in Tables 4.4 and 4.5. When setting 𝜇𝜃 and

𝜇𝑇 , we need to take into the account the nature of the diseases. At one extreme, we have

rare diseases, which are often life-threatening, and affect a relatively small number of people.

Faced with these prospects of survival, more patients are willing to enroll in new treatments

quickly after they are approved. In addition, since the number of patients is relatively small,

insurers are more willing to cover these therapies and manufacturers are more able to cope
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with a larger proportion of patients. Given this, we assign a high value of 40% for 𝜇𝜃, and

a low value of 6 months for 𝜇𝑇 .

On the other hand, general diseases are seldom deadly, and affect a large number of

patients, possibly even in the millions. Since an acceptable standard of care is available

for these conditions, patients may be less inclined to use new treatments due to fear of the

unfamiliar. In addition, it is often financially difficult for insurance companies to cover so

many patients. We thus assume that the maximum penetration rate will be 1%, and the

ramp-up period, 5 years.

As an intermediate case, cancers have characteristics that fall between these two extremes,

but in general, they are more similar to rare diseases. We therefore assign values of 10% and

12 months to the maximum penetration rate and ramp-up period, respectively. All variances

are set to 10% of the means to model moderate uncertainty in our numbers. They do not

affect our mean estimates of the number of impacted patients or spending on gene therapy.

Classification 𝜇𝜃 𝜎2
𝜃

General 0.01 0.002
Rare Diseases 0.4 0.08
Cancer 0.1 0.02

Table 4.4: Parameter settings for Θ𝑚𝑎𝑥 ∼ 𝑁(𝜇𝜃, 𝜎2
𝜃).

Classification 𝜇𝑇 𝜎2
𝑇

General 60 6
Rare Diseases 6 0.6
Cancer 12 0.12

Table 4.5: Parameter settings for 𝑇𝑚𝑎𝑥 ∼ 𝑁(𝜇𝑇 , 𝜎2
𝑇 ). We consider the severity of the disease

and the number of patients when making the assumptions.

The net number of patients to be treated for the disease at time 𝑡 after the approval of

a gene therapy is given by:

Patients𝑡 = 𝜌(𝑡, 𝜃𝑚𝑎𝑥, 𝑇𝑚𝑎𝑥) · [New patients𝑡 + 𝐸(𝑡, 𝛿, 𝜆) · Existing patients𝑡] (4.5)

We do not consider the effect of market competition among different therapies for the
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same disease and patient groups on the number of treated patients. In our model, there

is only one approval per disease, and a fraction of the eligible patients will receive that

treatment.

4.3 Pricing

The cost to the healthcare system of providing the gene therapy for a disease for all patients

being treated at time 𝑡 after approval is given by 𝐶(𝑡), where

𝐶(𝑡) = Patients𝑡 × Price of gene therapy (4.6)

The price of each treatment is crucial to computing the expected total spending, and

a source of considerable controversy because of the high price of gene therapies relative to

many conventional therapeutics. The Institute for Clinical and Economic Review (ICER)—

an independent nonprofit organization that aims to evaluate the clinical and economic value

of healthcare innovation—has advocated pricing drugs and gene therapies by the relative

risk and benefit to the patient. This is typically done by comparing the quality-adjusted

life years (QALY) with and without the treatment, then multiplying the change in QALY

(ΔQALY) by a constant, typically set between $50,000 and $150,000 per ΔQALY [135].

Price of gene therapy = Price
ΔQALY ×ΔQALY (4.7)

ICER has published reports containing its estimates of QALY gained by patients with

vision loss associated with biallelic RPE65-mediated retinal disease following treatment with

Luxturna® [124], and with SMA Type I following treatment with Zolgensma® [82]. These

reports compute ΔQALY using the results of clinical trials to make informed estimates about

the potential improvements in the quality of life and life expectancy of the patients.

While ICER’s methods are considered by some stakeholders to be the gold standard for

this type of calculation, replicating its methods for all the clinical trials under consideration

is not feasible in this paper, given the fact that all the clinical trials in our analysis are

still pending. As an alternative, we develop a mathematical model to estimate the expected
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increase in QALY for each disease in our sample.

4.3.1 Estimating ΔQALY

We consider a representative patient who is expected to live to the age of 𝑥 with a probability

of 𝑙(𝑥). The function 𝑙(𝑥) is also known as the survival curve of the population. The patient

enjoys a quality of life, 𝑓(𝑠, 𝑥), that is dependent on his age, 𝑥, and his state of health, 𝑠.

The expected QALY of a typical person in the baseline state of 𝑠0 (the ‘healthy’ state) can

be computed by integrating 𝑙(𝑥)𝑓(𝑠0, 𝑥) over 𝑥.

Expected QALY (healthy) =
∫︁ ∞

0
𝑙(𝑥)𝑓(𝑠0, 𝑥)𝑑𝑥 (4.8)

Suppose that the patient is afflicted with a disease at time 𝑎, which changes his survival

curve after time 𝑎 from 𝑙(𝑥) to ̃︀𝑙(𝑥). Likewise, his quality of life after diagnosis changes from

𝑓(𝑠0, 𝑥) to 𝑓(𝑠𝑑, 𝑥). This patient will then have an expected QALY of:

Expected QALY (unhealthy) =
∫︁ 𝑎

0
𝑙(𝑥)𝑓(𝑠0, 𝑥)𝑑𝑥 +

∫︁ ∞

𝑎

̃︀𝑙(𝑥)𝑓(𝑠𝑑, 𝑥)𝑑𝑥 (4.9)

The change in the expected QALY due to the disease can then be expressed as:

ΔQALY = Expected QALY (unhealthy)− Expected QALY (healthy) (4.10)

=
∫︁ 𝑎

0
𝑙(𝑥)𝑓(𝑠0, 𝑥)𝑑𝑥 +

∫︁ ∞

𝑎

̃︀𝑙(𝑥)𝑓(𝑠𝑑, 𝑥)𝑑𝑥−
∫︁ ∞

0
𝑙(𝑥)𝑓(𝑠0, 𝑥)𝑑𝑥 (4.11)

=
∫︁ ∞

𝑎

̃︀𝑙(𝑥)𝑓(𝑠𝑑, 𝑥)− 𝑙(𝑥)𝑓(𝑠0, 𝑥)𝑑𝑥 (4.12)

≤ 0 (4.13)

It is customary in the literature to incorporate time preferences into the model. This is

done by multiplying the integrand by the discount factor, 𝑟(𝑥−𝑎). There is a normalization

term 𝑙(𝑎) to reflect conditional survival to age 𝑥.

ΔQALY =
∫︁ ∞

𝑎

𝑟(𝑥− 𝑎)
𝑙(𝑎)

[︁̃︀𝑙(𝑥)𝑓(𝑠𝑑, 𝑥)− 𝑙(𝑥)𝑓(𝑠0, 𝑥)
]︁

𝑑𝑥 (4.14)

If the distribution of age when the patient population contracts the disease is given by
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𝐴(𝑎), then the expected decrease in QALY over the patient population is given by:

E(ΔQALY) =
∫︁ ∞

0
𝐴(𝑎)

∫︁ ∞

𝑎

𝑟(𝑥− 𝑎)
𝑙(𝑎)

[︁̃︀𝑙(𝑥)𝑓(𝑠𝑑, 𝑥)− 𝑙(𝑥)𝑓(𝑠0, 𝑥)
]︁

𝑑𝑥𝑑𝑎 (4.15)

Equation 4.15 is a general formula that accounts for the expected value of the changes

in QALY between two states of health using only three variables: the time of disease onset,

and the utility of the two health states. By making the relevant substitutions, we can also

apply this formula to compute the expected changes in QALY given a gene therapy (𝑔𝑡) and

an alternative treatment (𝑎𝑙𝑡).

E(ΔQALY) =
∫︁ ∞

0
𝐴(𝑎)

∫︁ ∞

𝑎

𝑟(𝑥− 𝑎)
𝑙(𝑎)

[︁̃︀𝑙𝑔𝑡(𝑥)𝑓(𝑠𝑔𝑡, 𝑥)− ̃︀𝑙𝑎𝑙𝑡(𝑥)𝑓(𝑠𝑎𝑙𝑡, 𝑥)
]︁

𝑑𝑥𝑑𝑎 (4.16)

While death and patient statistics can be collected to determine 𝑙(𝑥) and 𝐴(𝑎) empirically,

determining 𝑓(𝑠, 𝑥) and ̃︀𝑙(𝑥) is challenging. Therefore, we use simple functions to modify

these variables. In particular, we assume that being afflicted with a severe disease will modify

the survival curve by a multiplicative factor, 𝐷(𝑡). That is, the survival curve of a patient

after he is diagnosed at age 𝑎 is given by:

̃︀𝑙(𝑥) = 𝑙(𝑥) ·𝐷(𝑥− 𝑎) (4.17)

This functional form assumes that the disease is age-agnostic, and affects the survival

curve only through the time elapsed since the patient has been diagnosed. For example, if

the disease does not affect mortality (e.g. blindness), then 𝐷(𝑥 − 𝑎) = 1 for all 𝑥 − 𝑎 > 0.

On the other hand, if the condition causes death immediately, then 𝐷(𝑥 − 𝑎) = 0 for all

𝑥− 𝑎 > 0.

For the utility function, 𝑓(𝑠, 𝑥), we assume that it can be decomposed into two multi-

plicative factors, one dependent only on age, 𝑓𝑎(𝑥), and the other dependent only on the

state of health, 𝑓ℎ(𝑠):

𝑓(𝑠, 𝑥) = 𝑓𝑎(𝑥) · 𝑓ℎ(𝑠) (4.18)
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Assuming that Equations 4.17 and 4.18 hold, Equation 4.16 can be simplified to:

E(ΔQALY) =
∫︁ ∞

0
𝐴(𝑎)

∫︁ ∞

𝑎

𝑙(𝑥)
𝑙(𝑎)𝑓𝑎(𝑥)𝑟(𝑥− 𝑎)𝐾(𝑥, 𝑎)𝑑𝑥𝑑𝑎 (4.19)

where 𝐾(𝑥, 𝑎) is the change in the quality-adjusted life years:

𝐾(𝑥, 𝑎) = 𝐷𝑔𝑡(𝑥− 𝑎)𝑓ℎ(𝑠𝑔𝑡)−𝐷𝑠𝑎𝑙𝑡
(𝑥− 𝑎)𝑓ℎ(𝑠𝑎𝑙𝑡) (4.20)

4.3.2 Calibration of ΔQALY

For each of these variables, we attempt to obtain empirical values from the literature as

much as possible. When necessary, we interpolate values, briefly explaining our assumptions

and the data collection methods for the inputs to the model.

For the age-dependent QoL, 𝑓𝑎(𝑥), we extract the general population utility values from

Institute for Clinical and Economic Review [114] and fit a linear model across the data. The

QoL values and the fitted model are shown in Figure 4-4.

Age Group Mean
18–29 0.922
30–39 0.901
40–49 0.871
50–59 0.842
60–69 0.823
70–79 0.790
≥80 0.736 0 10 20 30 40 50 60 70 80 90 100 110

0.0

0.2

0.4

0.6

0.8

1.0

QoL = 1 − 0.0028 * Age, R2 = 0.9575

Age

Q
oL

Figure 4-4: Age-dependent QoL, 𝑓𝑎(𝑥). The values extracted from ICER’s SMA final report
[114] are replicated in the table on the left and are presented as crosses in the figure on the
right. A linear line, with its intercept set to 1, is fitted with the data points.

Since we are unable to know the patient outcomes for these potential gene therapies

ahead of their approval, we assume that the gene therapy treatments will restore a person’s

survivability to that of a normal individual. This implies that 𝐷𝑔𝑡(𝑥− 𝑎) = 1. To estimate

the impact of a disease on patient survivability, we model its survival curve, 𝐷𝑎𝑙𝑡(𝑥−𝑎), using
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the exponential survival curve shown in Equation 4.21. In the equation, 𝜆 is the force of

mortality, and 𝜇 is the normalization factor. We estimate 𝜆 and 𝜇 by matching the function

to 𝑇 -year survival rates, which are the proportions of the patients (𝑘) who will be alive after

𝑇 years, from data. The parameter values and their sources are listed in Table 4.14 in the

Supplementary Material.

𝐷𝑎𝑙𝑡(𝑥− 𝑎) = 𝐷𝑎𝑙𝑡(𝑡) = 𝜆𝑒−𝜆(𝑡−𝜇), where 𝜇 = 1
𝜆

ln 1
𝜆

& 𝜆 = − ln 𝑘

𝑇
& 𝑡 = 𝑥− 𝑎 (4.21)

The health-related quality of life variables, 𝑓ℎ(𝑠𝑔𝑡) & 𝑓ℎ(𝑠𝑎𝑙𝑡), are treated separately,

depending on the disease classification. For cancerous indications, we assume that the quality

of life of the patients is not affected by the disease. For non-cancerous indications, we source

the medical literature for the available quality of life (QoL) estimates. We use the QoL

for the typical disease condition to approximate the ‘before treatment’ QoL, 𝑓ℎ(𝑠𝑎𝑙𝑡), and

use the best possible outcome for each condition as the ‘post-treatment’ QoL, 𝑓ℎ(𝑠𝑔𝑡). We

interpolate the missing values using linear regressions of the sourced QoLs against disease

severity. To do this, we first give scores, 𝜁, ranging from one to five for each disease, based

on our perception of disease severity. We then fit a line of 𝑓ℎ(𝑠𝑎𝑙𝑡) against 𝜁 in order to

estimate the missing ‘before treatment’ QoL values, 𝑓ℎ(𝑠𝑎𝑙𝑡) (see Figure 4-5). We define

ΔQoL = 𝑓ℎ(𝑠𝑔𝑡)− 𝑓ℎ(𝑠𝑎𝑙𝑡). Separately, we regress ΔQoL against 𝜁 to interpolate the change

in QoL (see Figure 4-6). Given ΔQoL and 𝑓ℎ(𝑠𝑎𝑙𝑡), we can then estimate the missing values

of 𝑓ℎ(𝑠𝑔𝑡). Our estimated values are reported in Table 4.15 in the Supplementary Material.

We are able to extract the distribution of the age of cancer onset from the National

Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) Program website.

However, empirical age distributions are practically nonexistent for non-cancerous diseases.

To overcome this lack, we search the literature for the average age of diagnosis of each

disease, and fit a triangle distribution for each disease using the optimization program shown

in Figure 4-7.

This program maximizes the domain’s interval (Equation 4.22) while imposing the re-

quirement that the distribution’s mode, 𝑐, has to be in the domain (Equation 4.23). In

addition, the area under the curve has to be equal to 1 (Equation 4.24), and the mean of
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Figure 4-5: Scatter plot of 𝑓ℎ(𝑠𝑎𝑙𝑡) against disease score (𝜁)
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Figure 4-6: Scatter plot of ΔQoL against disease score (𝜁)

the distribution has to be equal to the average age (Equation 4.25).

We experimented with an impulse function and an uniform distribution to model the age

distribution, but these functions created unrealistic scenarios. Modeling the age distribution

with the impulse function, while simple, will force Equation 4.15 to collapse into a single

point, and lose any nuance in the QALY gained by patients of different ages. On the

other hand, estimating a uniform distribution from the average age creates distributions

with narrow support. The distributions from our optimization program have a wider base

of support and avoid sharp changes in density. We illustrate this with some examples in

Figure 4-14 in the Supplementary Materials.
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maximize
𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑐, 𝑧

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 (4.22)

subject to 𝑥𝑚𝑖𝑛 ≤ 𝑐 ≤ 𝑥𝑚𝑎𝑥, (4.23)
1
2𝑧(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) = 1, (4.24)∫︁ 𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

𝑥𝑓(𝑥)𝑑𝑥 = 𝜇𝑎𝑔𝑒 (4.25)

where 𝑓(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧

𝑥− 𝑥𝑚𝑖𝑛

𝑐− 𝑥𝑚𝑖𝑛

if 𝑥 ≤ 𝑐

𝑧(1− 𝑥− 𝑐

𝑥𝑚𝑎𝑥 − 𝑐
) otherwise

(4.26)

Figure 4-7: An optimization program to obtain the triangle distribution given the average
age of diagnosis, 𝜇𝑎𝑔𝑒. 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are coordinates of the base of the triangle. 𝑐 and 𝑧 are
the mode and height of triangle.

We assume a 3% per annum discount rate, as suggested by ICER for high-impact single

or short-term therapy (SST) [92].

4.3.3 Price per ΔQALY

To estimate as realistic a market price of gene therapy as possible, we calibrate our assumed

price per ΔQALY with the 4 data points currently available: Zolgensma, priced at $2.1

million per patient [132], Luxturna, priced at $0.425 million per eye treated [157], Kymriah,

priced at $0.475 million for a one-time dose [67], and Yescarta, priced at $0.373 million for a

one-time dose [67]. Separately, Zynteglo, sold at a cost of 1.6 million Euros (approximately

$1.8 million), has been approved in the European Union. The data points are listed in

Table 4.6.

Table 4.6: Diseases under consideration, approved gene therapy treatments used as proxy,
prices of approved treatments, countries/areas in which treatments have been approved, and
computed expected change in QALY.

Disease Approved treatment Country approved List price E(ΔQALY)
Beta-Thalassemia Zynteglo E.U. 1.8M 4.58
Diffuse Large B Cell Lymphoma (DLBCL) Yescarta U.S. 0.373M 6.19
Leber Congenital Amaurosis due to RPE65 Mutations Luxturna U.S. 0.425M 4.63
Leukemia (Acute Lymphoblastic) Kymriah U.S. 0.475M 13.02
Spinal Muscular Atrophy Type 1 Zolgensma U.S. 2.125M 20.56

We calibrate the price per ΔQALY by minimizing the mean-squared error (MSE) between
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the estimated price given the expected change in QALY and the actual price. We report

the mean absolute percentage error (MAPE) between the estimated price and the actual

price in addition to the MSE. We note that Zolgensma, Zynteglo, and Luxturna are gene

replacement therapies for rare diseases, while Kymriah and Yescarta are chimeric antigen

receptor T-cell (CAR-T) therapies indicated for cancers. As such, we perform two separate

calibrations, one for rare diseases and the other for cancerous indications. We assume that

the price per ΔQALY for general diseases is identical to that for cancerous indications.

Considering only the therapies approved in the United States, we estimate a price per

E(ΔQALY) of $101,663 (MSE: 2.18×109, MAPE: 11.2%) for rare diseases and $40,797 (MSE:

1.77×1010, MAPE: 44.2%) for other diseases. Using all the data points, the price per

E(ΔQALY) for rare diseases increases to $114,781 (MSE: 1.70×1012, MAPE: 108%). In

this paper, we use the former for our calculations since it has a smaller mean-squared error

and better reflects prices in the U.S., our focus. This value will give us estimates of $2.09M

per patient for Zolgensma and $0.470M per eye for Luxturna.

Our calibrated price per E(ΔQALY) for cancerous indications is just slightly below

ICER’s $50,000 to $100,000 range for ‘intermediate care value’. The higher price per E(ΔQALY)

for rare diseases also reaffirms the general belief that developers of treatments for rare dis-

eases should be compensated more for their elevated R&D risk and the low financial prospects

of serving a small population of patients. It is assumed that the clinical cost of delivering

the gene therapy is a negligible fraction of the overall cost of development (though they are

considerably higher than the delivery cost of conventional therapeutics). It is also highly

likely that the outside option cost will be similar.

The expected increases in QALY computed by our model are close to those provided by

the ICER reports for the treatments [114, 124]. For example, we estimate that treatments

for Spinal Muscular Atrophy Type 1 and Leber Congenital Amaurosis due to RPE65 Mu-

tations provide 20.56 and 4.63 incremental QALYs, whereas ICER estimates Zolgensma and

Luxturna to provide 12.23 to 26.58 and 1.3 to 2.7 incremental QALYs4, respectively. We

have deliberately applied the same methods and assumptions used for the all other diseases

4ICER provides a range of ΔQALY estimates corresponding to different age groups. We have considered
the distribution of ages to produce a weighted average estimate.
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to estimate the expected changes in QALY for Spinal Muscular Atrophy Type 1 and Leber

Congenital Amaurosis due to RPE65 Mutations even though we could have obtained these

numbers directly from ICER reports. By doing so, our price per ΔQALY calibration will

correct for potential biases in our data, and our price estimates will be more realistic.

Our estimated change in QALY, the price per unit change in QALY, and the estimated

price of therapy for each disease are shown in Table 4.7.

Table 4.7: Estimated ΔQALY, assumed price per ΔQALY and estimated price of gene
therapies per disease. Prices are given to 3 significant figures for display in this table.

Disease ΔQALY Cost
ΔQALY ($) Price ($)

General Diseases:
Arteriosclerosis Obliterans 2.96 41K 121K
Critical Limb Ischemia 7.32 41K 299K
Degenerative Arthritis 3.53 41K 144K
Diabetic Foot Ulcers 7.92 41K 323K
Diabetic Peripheral Neuropathy 3.95 41K 161K
Heart Failure 6.92 41K 282K
Knee Osteoarthritis with Kellgren & Lawrence
Grade 3

10.62 41K 433K

Parkinson’s Disease 8.26 41K 337K
Peripheral Artery Disease 4.52 41K 184K
Refractory Angina due to Myocardial Ischemia
(AFFIRM)

3.80 41K 155K

Stable Angina 3.85 41K 157K
Rare Diseases:
Beta-Thalassemia 4.58 102K 466K
Cerebral Adrenoleukodystrophy (CALD) 20.33 102K 2.07M
Choroideremia 4.24 102K 431K
Cystic Fibrosis 13.20 102K 1.34M
Ewing’s Sarcoma 14.04 102K 1.43M
Hemophilia A 11.18 102K 1.14M
Hemophilia B 10.63 102K 1.08M
Leber Congenital Amaurosis due to RPE65
Mutations

4.63 102K 470K

Leber Hereditary Optic Neuropathy 3.97 102K 404K
Lipoprotein Lipase Deficiency (LPLD) 5.74 102K 584K
Metachromatic Leukodystrophy 21.06 102K 2.14M
Mucopolysaccharidosis Type IIIa 16.27 102K 1.65M
Recessive Dystrophic Epidermolysis Bullosa 5.89 102K 599K

Continued on next page
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Table 4.7 – continued from previous page
Disease ΔQALY Cost

ΔQALY ($) Price ($)

Retinitis Pigmentosa 3.28 102K 333K
Sickle Cell Anemia 7.36 102K 748K
Spinal Muscular Atrophy 19.23 102K 1.96M
Spinal Muscular Atrophy Type 1 20.56 102K 2.09M
Cancer:
B-Cell Non-Hodgkin’s Lymphoma 4.90 41K 200K
BCG Unresponsive NMIBC 2.86 41K 117K
Bladder Cancer, in situ concurrent with Papillary
Tumors

0.66 41K 26.9K

Diffuse Large B Cell Lymphoma (DLBCL) 6.19 41K 253K
Head and Neck Cancer 6.13 41K 250K
Hepatocellular Carcinoma 9.30 41K 380K
High-Grade Glioma 12.56 41K 512K
Leukemia (Acute Lymphoblastic) 13.04 41K 532K
Leukemia (Acute Myelogenous) 8.55 41K 349K
Lymphoma 4.90 41K 200K
Melanoma (Locally Advanced Cutaneous) 6.23 41K 254K
Melanoma (Metastatic) 9.22 41K 376K
Multiple Myeloma (Newly Diagnosed) 5.90 41K 241K
Nasopharyngeal Carcinoma 5.20 41K 212K
NSC Lung Cancer 7.04 41K 287K
NSC Lung Cancer Stage 3 6.52 41K 266K
Oral Cancer (Advanced) 8.21 41K 335K
Ovarian Cancer (Platinum-Resistant) 10.83 41K 442K
Ovarian Cancer, Primary Peritoneal Cavity Cancer 7.93 41K 324K
Pancreatic Cancer (Locally Advanced) 7.64 41K 312K
Prostate Cancer 0.42 41K 17.1K
Prostate Cancer (Localized) 0.42 41K 17.1K
Prostate Cancer (Metastatic Hormone-Refractory) 7.75 41K 316K
Prostate Cancer (Newly Diagnosed) 0.99 41K 40.4K
Recurrent Glioblastoma 12.55 41K 512K
Relapsed and Refractory Multiple Myeloma
(RRMM)

8.33 41K 340K

Squamous Cell Cancer of Head and Neck or
Esophagus

5.51 41K 225K

Synovial Sarcoma 8.65 41K 353K
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4.4 Results

All the equations are discretized from their continuous form in our computations. When

solving integrals using the trapezoidal rule to obtain the ΔQALY, we use strip widths of 1

year for an age range from 0 to 110 years old, the resolution offered by the life tables. When

simulating the number of patients and the cost over time, we use time intervals of 1 month.

Our code is implemented on Python 3.6 backed by Numpy, and executed on a single 2.2GHz

CPU core. Pseudo-code and further details of computation can be found in Section 4.6.8 in

the Supplementary Materials.

We perform 1,000,000 iterations of the simulation to compute the mean number of pa-

tients and the total spending. With this number of iterations, one can expect the computed

mean to be within 1.89% of the true mean 95% of the time (see Section 4.6.7 in the Supple-

mentary Materials). We also report the 5th and 95th percentiles of the computed values as

our upper and lower bounds respectively.

In the following section, we define a ‘minor’ to be a patient below the age of 18 and an

‘elderly’ patient to be one who is older than 62 years old. The remainder of the patients are

labeled as ‘adults’.

4.4.1 Expected Number of Approvals and Patients

Our simulations indicate that the expected number of gene therapies approved between

January 2020 and January 2034 is 18.3, with a 90% confidence interval of [14.0, 23.0] (see

Figure 4-8).

Table 4.8 shows the annual number of patients over time by age groups. Our simulations

expect the number of patients treated to grow from 16,244 in 2020 to 94,696 in 2025 before

declining to 65,612 in 2034. The decline can be attributed to the declining stock of existing

patients as they are treated, and the fact that we do not consider new development programs

launched in the future. The proportions of patients who are minors, adults and elderly are

17.9%, 35.4%, and 46.7% respectively.

We show the number of patients treated by month in Figure 4-9a. We can see that our

simulations expect the number of patients treated to peak at around 7911 (CI: [3978, 12477])
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Figure 4-8: Cumulative number of approvals between January 2020 and December 2034,
obtained from 1,000,000 simulation runs.

per month in Jul 2025 before declining to 5424 (CI: [2778, 8350]) by December 2034. The

monthly number of existing patients treated exceeds the monthly number of newly-diagnosed

patients treated until Sep 2024, when this trend is expected to reverse (see Figure 4-9b).

Only 7% of all patients treated in December 2034 are preexisting patients. Cancer patients

are expected to form the biggest group of patients receiving gene therapy treatments, simply

due to the number of cancer indications being targeted. We expect the relative proportions of

cancer, general disease, and rare disease patients to be 48.0%, 30.0%, and 22.0%, respectively,

in December 2034. The cumulative number of patients to be treated is expected to be 1.09

million (CI: [0.595M, 1.66M]) by the end of December 2034 (see Figure 4-9c).

4.4.2 Expected Spending

We expect an increase in spending up to $2.11 billion per month (CI: [1.01B, 3.88B]) in Apr

2026, before decreasing slowly to a steady-state rate of $1.62 billion (CI: [0.624B, 2.9B])

per month (see Figure 4-10a). We emphasize that the total spending eventually declines

because our simulations analyze a fixed stock of innovations, and do not account for new

development programs that may be launched in the future. Treating existing cancer patients

initially consumes over 45.6% of the total monthly expenditure, but declines to only 0.99%

by December 2034. In contrast, the proportion of spending on new patients in the ‘general

disease’ and ‘rare disease’ groups will increase from 0.0% and 4.26%, respectively, in Feb 2020

to 21.2% and 46.2% by December 2034. The monthly spending on treating existing patients
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shall exceed the monthly spending on treating newly diagnosed patients in Nov 2023. The

cumulative discounted spending on treating patients with approved gene therapy products

is expected to reach $241 billion (CI: [123B, 402B]) by December 2034, 15 years after the

start of our simulation.

In terms of annual spending on approved gene therapies, we expect that $5.15 billion

will be spent in 2020, increasing to $25.3B in 2026 before declining to $21.0B in 2034 (see

Table 4.9). Minors, adults and the elderly will consume 43.2%, 26.0%, and 30.9%, respec-

tively, of the total spending. In the U.S., all elderly people are covered by Medicare. It

is also estimated that two in five children and one in seven adults in the U.S. are covered

by Medicaid [98]. The remainder of the spending is expected to come from private sources

such as employer-provided or private insurance. Using these proportions, we estimate that

the expected annual spending by Medicare, Medicaid 5 and private sources respectively may

reach $8.1, $5.44, and $12.2 billion (see Table 4.10). We discuss the implications of these

estimates in Section 4.4.4.

The total expected increase in QALY over these 15 years is 5.59 million (see Figure 4-

11), which translates to an average increase of 5.12 in QALY per patient. This comes at an

average 2020 present value cost of $43,110 per unit change in QALY.

5The spending estimates for Medicaid do not take into account the 23.1% drug rebate that it is expected
to receive [97].
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Table 4.8: Expected annual number of patients treated by gene therapy between 2020 and
2035, conditioned on the age group and patient type. ‘Minor’, ‘adult’ and ‘elderly’ are
defined to be ‘below the age of 18’, ‘between the ages of 18 and 62’, and ‘greater than 62
years old’, respectively.

Year Minor Adult Elderly TotalExisting New Subtotal Existing New Subtotal Existing New Subtotal
2020 1,630 417 2,047 3,682 1,657 5,339 6,006 2,853 8,859 16,244

(1,283, 1,995) (322, 522) (1,614, 2,500) (2,557, 4,943) (1,080, 2,454) (3,670, 7,237) (3,928, 8,282) (1,813, 4,142) (5,785, 12,250) (11,349, 21,685)
2021 2,833 1,294 4,127 9,921 6,399 16,320 14,278 9,540 23,818 44,265

(2,001, 4,357) (681, 1,950) (2,770, 6,326) (5,857, 14,948) (2,970, 11,725) (9,380, 24,834) (8,578, 21,422) (4,783, 17,438) (14,050, 36,234) (26,876, 65,911)
2022 3,832 3,235 7,067 16,809 11,041 27,849 23,112 15,513 38,625 73,543

(2,000, 8,352) (947, 14,178) (3,224, 22,601) (6,965, 31,751) (4,364, 19,680) (12,843, 47,995) (9,343, 46,360) (6,561, 28,346) (17,258, 69,494) (35,001, 126,974)
2023 4,722 5,612 10,334 19,364 13,890 33,254 25,862 19,031 44,893 88,482

(2,001, 11,596) (1,243, 25,879) (3,614, 37,353) (7,340, 36,474) (5,999, 23,487) (15,161, 56,955) (9,222, 52,202) (8,407, 32,988) (19,347, 80,954) (41,055, 151,872)
2024 4,922 7,734 12,656 18,580 16,230 34,810 24,122 21,781 45,902 93,371

(1,832, 11,745) (1,490, 29,056) (3,681, 40,322) (7,284, 32,906) (7,683, 26,300) (16,794, 56,353) (8,817, 45,862) (10,261, 36,233) (21,011, 77,784) (45,504, 151,799)
2025 5,235 9,621 14,856 16,570 18,159 34,728 21,115 23,994 45,110 94,696

(1,865, 11,736) (1,741, 30,664) (3,996, 41,541) (6,585, 28,364) (9,026, 28,683) (17,320, 54,531) (7,795, 38,698) (11,748, 38,878) (21,451, 73,552) (47,833, 148,985)
2026 4,998 11,086 16,085 13,653 19,350 33,003 17,220 25,370 42,592 91,682

(1,667, 11,079) (1,918, 31,601) (3,996, 41,494) (5,511, 23,012) (9,839, 30,163) (16,868, 50,992) (6,444, 30,948) (12,692, 40,529) (20,887, 67,946) (47,432, 141,917)
2027 4,246 12,120 16,366 10,687 19,915 30,604 13,402 26,032 39,433 86,401

(1,323, 9,859) (2,004, 32,129) (3,676, 40,559) (4,403, 17,871) (10,254, 30,847) (15,948, 46,843) (5,129, 23,798) (13,206, 41,300) (19,847, 62,104) (45,218, 132,708)
2028 3,522 12,842 16,364 8,203 20,129 28,332 10,215 26,242 36,457 81,153

(1,024, 8,638) (2,052, 32,455) (3,369, 39,508) (3,402, 13,700) (10,409, 31,105) (14,899, 43,197) (3,945, 18,068) (13,367, 41,550) (18,583, 57,103) (42,510, 124,357)
2029 2,978 13,373 16,351 6,259 20,219 26,478 7,744 26,315 34,059 76,888

(851, 7,552) (2,114, 32,684) (3,217, 38,620) (2,594, 10,485) (10,480, 31,214) (13,969, 40,339) (3,002, 13,682) (13,432, 41,632) (17,475, 53,231) (40,221, 117,723)
2030 2,656 13,807 16,463 4,764 20,276 25,040 5,863 26,361 32,224 73,726

(712, 6,628) (2,222, 32,909) (3,228, 38,011) (1,969, 8,027) (10,526, 31,277) (13,223, 38,155) (2,275, 10,366) (13,473, 41,682) (16,597, 50,343) (38,538, 112,779)
2031 2,116 14,039 16,154 3,620 20,313 23,933 4,434 26,391 30,826 70,914

(540, 5,433) (2,241, 32,998) (3,032, 37,097) (1,490, 6,146) (10,558, 31,324) (12,635, 36,496) (1,720, 7,852) (13,501, 41,715) (15,896, 48,190) (36,887, 108,603)
2032 1,654 14,185 15,840 2,746 20,338 23,084 3,349 26,411 29,759 68,684

(408, 4,332) (2,251, 33,049) (2,861, 36,273) (1,125, 4,698) (10,577, 31,355) (12,174, 35,255) (1,298, 5,938) (13,518, 41,736) (15,350, 46,585) (35,539, 105,370)
2033 1,286 14,282 15,567 2,079 20,354 22,434 2,528 26,424 28,953 66,952

(308, 3,400) (2,257, 33,084) (2,726, 35,611) (847, 3,575) (10,591, 31,374) (11,813, 34,313) (978, 4,482) (13,529, 41,751) (14,926, 45,369) (34,479, 102,883)
2034 993 14,344 15,337 1,572 20,364 21,937 1,906 26,432 28,338 65,612

(232, 2,644) (2,262, 33,106) (2,619, 35,063) (638, 2,713) (10,601, 31,387) (11,533, 33,602) (735, 3,379) (13,536, 41,761) (14,597, 44,479) (33,666, 100,944)
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Table 4.9: Expected annual spending on gene therapy between 2020 and 2035, conditioned
on the age group and patient type. ‘Minor’, ‘adult’ and ‘elderly’ are defined to be ‘below
the age of 18’, ‘between the ages of 18 and 62’, and ‘greater than 62 years old’ respectively.
Numbers in billions.

Year Minor Adult Elderly TotalExisting New Subtotal Existing New Subtotal Existing New Subtotal
2020 1.77 0.32 2.10 0.91 0.37 1.29 1.20 0.57 1.77 5.15

(1.31, 2.25) (0.25, 0.40) (1.55, 2.65) (0.67, 1.18) (0.26, 0.53) (0.93, 1.69) (0.79, 1.65) (0.36, 0.80) (1.15, 2.45) (4.00, 6.39)
2021 2.23 0.72 2.94 2.19 1.31 3.51 2.76 1.80 4.56 11.01

(1.60, 3.19) (0.42, 0.86) (2.03, 4.06) (1.43, 3.16) (0.68, 2.33) (2.17, 5.31) (1.73, 3.98) (0.96, 3.42) (2.77, 7.20) (7.47, 15.85)
2022 2.37 1.79 4.16 2.91 2.09 5.01 3.52 2.70 6.22 15.38

(1.39, 5.76) (0.50, 9.98) (1.97, 15.78) (1.63, 4.41) (0.94, 3.70) (2.72, 7.76) (1.92, 5.30) (1.31, 5.03) (3.39, 9.99) (8.76, 27.15)
2023 2.91 3.33 6.25 3.37 2.67 6.04 3.79 3.34 7.13 19.41

(1.26, 8.02) (0.60, 18.48) (1.97, 26.43) (1.80, 5.12) (1.30, 4.42) (3.34, 9.10) (1.97, 5.77) (1.71, 5.81) (3.88, 11.05) (10.30, 39.86)
2024 3.06 4.79 7.85 3.46 3.26 6.72 3.84 4.02 7.86 22.43

(1.06, 8.12) (0.67, 20.70) (1.84, 28.46) (1.80, 5.27) (1.66, 5.17) (3.75, 9.99) (1.94, 5.89) (2.11, 6.65) (4.31, 11.92) (11.27, 44.10)
2025 3.50 6.11 9.61 3.18 3.76 6.94 3.51 4.59 8.10 24.65

(0.98, 8.37) (0.77, 21.79) (1.95, 29.48) (1.62, 4.88) (1.96, 5.81) (3.85, 10.27) (1.74, 5.43) (2.42, 7.36) (4.44, 12.19) (12.04, 46.08)
2026 3.49 7.15 10.64 2.67 4.08 6.75 2.94 4.96 7.89 25.28

(0.88, 8.08) (0.85, 22.43) (1.94, 29.57) (1.35, 4.12) (2.14, 6.25) (3.74, 10.00) (1.46, 4.53) (2.62, 7.84) (4.33, 11.85) (11.98, 45.94)
2027 2.97 7.89 10.86 2.14 4.27 6.40 2.34 5.17 7.51 24.77

(0.70, 7.18) (0.88, 22.79) (1.77, 28.88) (1.08, 3.32) (2.24, 6.51) (3.53, 9.49) (1.17, 3.59) (2.74, 8.11) (4.13, 11.27) (11.28, 44.52)
2028 2.47 8.42 10.89 1.66 4.34 6.00 1.80 5.24 7.04 23.92

(0.54, 6.30) (0.89, 23.01) (1.62, 28.11) (0.83, 2.63) (2.28, 6.61) (3.29, 8.93) (0.90, 2.75) (2.78, 8.20) (3.87, 10.61) (10.48, 42.84)
2029 2.25 8.86 11.10 1.28 4.36 5.64 1.37 5.26 6.63 23.37

(0.48, 5.71) (0.95, 23.22) (1.62, 27.70) (0.64, 2.07) (2.30, 6.64) (3.08, 8.42) (0.69, 2.10) (2.79, 8.22) (3.64, 10.04) (10.03, 41.59)
2030 2.37 9.31 11.68 0.98 4.38 5.36 1.04 5.27 6.31 23.35

(0.39, 5.52) (1.02, 23.53) (1.58, 27.89) (0.48, 1.62) (2.31, 6.66) (2.91, 8.02) (0.52, 1.60) (2.80, 8.24) (3.45, 9.60) (9.98, 41.08)
2031 1.90 9.49 11.39 0.75 4.39 5.14 0.79 5.28 6.07 22.59

(0.30, 4.51) (1.03, 23.61) (1.47, 27.11) (0.36, 1.26) (2.32, 6.67) (2.78, 7.71) (0.39, 1.22) (2.81, 8.25) (3.31, 9.28) (9.47, 39.80)
2032 1.47 9.60 11.07 0.57 4.40 4.97 0.60 5.28 5.88 21.92

(0.22, 3.57) (1.03, 23.64) (1.38, 26.37) (0.28, 0.97) (2.32, 6.68) (2.68, 7.47) (0.30, 0.93) (2.82, 8.25) (3.20, 9.03) (9.02, 38.69)
2033 1.14 9.67 10.81 0.43 4.40 4.84 0.45 5.29 5.74 21.38

(0.17, 2.78) (1.04, 23.67) (1.30, 25.78) (0.21, 0.74) (2.33, 6.69) (2.60, 7.29) (0.22, 0.70) (2.82, 8.25) (3.11, 8.84) (8.67, 37.83)
2034 0.87 9.72 10.59 0.33 4.41 4.73 0.34 5.29 5.63 20.95

(0.13, 2.15) (1.04, 23.68) (1.24, 25.31) (0.16, 0.57) (2.33, 6.69) (2.53, 7.15) (0.17, 0.53) (2.82, 8.26) (3.04, 8.70) (8.40, 37.13)
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Table 4.10: Expected annual spending on gene therapy between 2020 and 2035 by funding
source. Numbers in billions.

Medicare Medicaid Private
2020 1.77 1.02 2.36

(1.15, 2.45) (0.79, 1.26) (1.87, 2.87)
2021 4.56 1.68 4.77

(2.77, 7.20) (1.20, 2.28) (3.29, 6.78)
2022 6.22 2.38 6.79

(3.39, 9.99) (1.27, 7.02) (3.79, 13.75)
2023 7.13 3.36 8.92

(3.88, 11.05) (1.40, 11.44) (4.46, 21.11)
2024 7.86 4.10 10.47

(4.31, 11.92) (1.43, 12.37) (4.84, 23.19)
2025 8.10 4.83 11.71

(4.44, 12.19) (1.55, 12.82) (5.22, 24.14)
2026 7.89 5.22 12.17

(4.33, 11.85) (1.55, 12.83) (5.20, 24.08)
2027 7.51 5.26 12.01

(4.13, 11.27) (1.43, 12.50) (4.86, 23.37)
2028 7.04 5.21 11.68

(3.87, 10.61) (1.32, 12.14) (4.50, 22.55)
2029 6.63 5.25 11.50

(3.64, 10.04) (1.28, 11.92) (4.32, 21.97)
2030 6.31 5.44 11.60

(3.45, 9.60) (1.26, 11.96) (4.33, 21.81)
2031 6.07 5.29 11.24

(3.31, 9.28) (1.19, 11.61) (4.09, 21.13)
2032 5.88 5.14 10.90

(3.20, 9.03) (1.13, 11.29) (3.89, 20.54)
2033 5.74 5.01 10.63

(3.11, 8.84) (1.08, 11.03) (3.73, 20.06)
2034 5.63 4.91 10.41

(3.04, 8.70) (1.04, 10.83) (3.60, 19.69)
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(a) Monthly number of patients treated with gene therapy across all diseases. The line represents
the mean and the shaded region represents the 5th and 95th percentiles of our simulation.
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(b) Stacked chart depicting the proportion of existing and new patients treated in that month, by
disease category.
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(c) Cumulative number of patients treated. The line represents the mean and the shaded region
represents the 5th and 95th percentiles of our simulation.

Figure 4-9: Number of patients treated between January 2020 and December 2034, obtained
from 1,000,000 simulation runs.
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(a) Monthly spending on treating existing and new patients with gene therapy. The line represents
the mean and the shaded region represents the 5th and 95th percentiles from our simulation.
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(b) Stacked chart depicting the proportion of spending on treating existing and new patients in
that month, by disease category.
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(c) Cumulative spending on treating patients with gene therapy. The line represents the mean and
the shaded region represents the 5th and 95th percentiles of our simulation.

Figure 4-10: Spending on gene therapy between January 2020 and December 2034, obtained
from 1,000,000 simulation runs.
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(a) QALY gained by treating existing and new patients with gene therapy. The line represents the
mean and the shaded region represents the 5th and 95th percentiles from our simulation.
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(b) Stacked chart depicting the QALY gained by treating existing and new patients in that month,
by disease category.

Jan
202

0

Jan
202

1

Jan
202

2

Jan
202

3

Jan
202

4

Jan
202

5

Jan
202

6

Jan
202

7

Jan
202

8

Jan
202

9

Jan
203

0

Jan
203

1

Jan
203

2

Jan
203

3

Jan
203

4
0
1
2
3
4
5
6
7
8
9 ·106

C
um

ul
at

iv
e

Q
A

LY
ga

in
ed

(c) Cumulative QALY gained by treating patients with gene therapy. The line represents the mean
and the shaded region represents the 5th and 95th percentiles of our simulation.

Figure 4-11: Expected ΔQALY made possible by gene therapy treatments between January
2020 and December 2034, obtained from 1,000,000 simulation runs.
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4.4.3 Sensitivity Analysis

To test the sensitivity of our results to initial conditions, we simulate ±20% changes in the

following variables, analyzing their impact on our results.

1. The maximum penetration rate in the ramp function, Θ𝑚𝑎𝑥

2. The time to maximum penetration rate in the ramp function, 𝑇𝑚𝑎𝑥

3. The amount of QALY gained in each disease

4. The price per ΔQALY

5. The phase-3-to-approval probability of success (PoS3𝐴)

6. The number of new patients of each disease

7. The number of existing patients of each disease

8. The time from phase 3 to BLA

9. The time from BLA to approval

For each of these factors, we consider its impact on the the peak monthly spending and

the cumulative spending from January 2020 to December 2034 of patient treatment. We

also look at how the variables change the timing of the peak monthly spending.

As can be seen from Figure 4-12, the percentage change in the discounted cumulative

spending and the maximum monthly spending on treating all patients with gene therapy

scale linearly with the percentage change in several variables: the maximum penetration rate

(Θ𝑚𝑎𝑥) and the QALY gained (ΔQALY), the price per ΔQALY. Increasing or decreasing the

transition probability from phase 3 to approval, or the number of new or existing patients

only leads to sublinear increases or decreases in the discounted cumulative spending and the

maximum monthly spending. However, changing the time variables, such as the number of

days from phase 3 to BLA, from BLA to approval, or the ramp-up period (𝑇𝑚𝑎𝑥), induce a

small change in the opposite direction.

Introducing perturbations of 20% in the probability of success, the number of new pa-

tients, the number of days from Phase 3 to BLA or from BLA to approval, or the time to

maximum penetration rate in the ramp function (𝑇𝑚𝑎𝑥) will change the date of the peak

monthly spending in the same direction as the perturbation, by up to 10 months. Increasing

or decreasing the number of existing patients, on the other hand, will cause a shift of up to
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4 months in the date of peak spending in the opposite direction. Perturbing the maximum

penetration rate (Θ𝑚𝑎𝑥), the QALY gained (ΔQALY), and the price per ΔQALY will not

change the date of peak spending.

Θ𝑚𝑎𝑥 −20% +20%
ΔQALY −20% +20%

Price per ΔQALY −20% +20%
PoS3𝐴 −17.3% +17.4%

New patients −12.3% +12.5%
Existing patients −7.4% +7.7%

BLA to approval time +0.1%−0.2%
Phase 3 to BLA time +0.2%−0.3%

𝑇𝑚𝑎𝑥 +2.8%−3.2%

(a) Tornado chart of the impact of the variables on the peak value.
Θ𝑚𝑎𝑥 −20% +20%

ΔQALY −20% +20%
Price per ΔQALY −20% +20%

PoS3𝐴 −16.3% +16.31%
New patients −13.6% +13.59%

Existing patients −6.4% +6.41%
BLA to approval time +0.49%−0.49%
Phase 3 to BLA time +0.99%−0.98%

𝑇𝑚𝑎𝑥 +3.05%−2.79%

(b) Tornado chart of the impact of the variables on the cumulative spending (both nominal and
discounted).

𝑇𝑚𝑎𝑥 −4 months +10 months
New patients −2 months +4 months

Phase 3 to BLA time −3 months +2 months
PoS3𝐴 −1 months +0 months
Θ𝑚𝑎𝑥 0 months +0 months

BLA to approval time −2 months +0 months
ΔQALY 0 months +0 months

Price per ΔQALY 0 months +0 months
Existing patients +4 months−2 months

(c) Tornado chart of the impact of the variables on the date of peak value. Since we compute by
calendar month, a small machine precision error may change the results by 1 month.

Figure 4-12: Tornado charts showing the sensitivity of the variables on the different metrics.
The black bars represent the effect of increasing the variable by 20% and the red bars
represent the effect of decreasing the variable by 20%.

We also study the effect of changing the correlation between development programs.

Changing the correlation from our assumed value of 0.9 to 0 (i.e., perfectly uncorrelated)

increases the mean discounted cumulative spending by 3.4%, from $241 billion to $245 bil-

lion. Increasing the correlation to 1.0 instead will decrease the mean discounted cumulative

spending by 0.4% to $236 billion.

We vary the proportion of existing patients seeking treatment in the first year – which
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determines the 𝜆 parameter in Equation 4.3 – and observe that mean discounted cumulative

spending changes by between -32% and +0.08% (see Figure 4-13). We can expect the results

to differ by less than 5% from the baseline if the proportion of existing patients seeking

treatments in the first year is between 8% and 45%.
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Figure 4-13: Percentage change in the discounted cumulative spending compared to the
baseline when the proportion of existing patients seeking treatment in the first year changes.

Our study is independent of the results by Quinn et al. [142], who estimated that 341,775

patients will have been treated with gene therapy by December 2030, and increases by

approximately 50,000 per year in the steady state. The authors of this report did not

attempt to quantify the cost of providing gene therapy to these patients. In contrast, our

simulation expects that about 820,425 patients will be treated by the end of December 2030,

with a steady-state increase of around 61,170 per year in the long run.

Some of the differences between our estimates and this other report are due to differ-

ences in sample inclusion criteria and the use of different data for patient prevalence and

incidence of disease. For example, Quinn et al. [142] considers “durable" gene therapies under

all phases of clinical investigation whereas we consider any therapy with late-stage clinical

trial(s). Furthermore, they assume that the ‘potentially treatable pool in oncology is entirely

incident—there is no prevalence’. Another difference arises from our decision to start with

the broadest range of patients and then deflate these numbers through the penetration rate,

rather than attempting to estimate the prevalence and incidence for each patient segment.

If we removed existing oncology patients from our simulation, the cumulative number of

patients treated by December 2030 becomes 666,895, approximately 1.95 times the estimate
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in Quinn et al. [142]. We can obtain similar patient estimates to Quinn et al. [142] simply by

reducing our penetration rates by 48.8%, which will lower our estimated cumulative spending

on gene therapy between January 2020 and December 2034 to $149 billion.

4.4.4 Discussion

We estimate that 1.09 million patients are to be treated with gene therapy by the end of

December 2034, spending up to $25.3B annually. These estimates are likely to be lower

bounds since our simulation employs conservative assumptions about the speed and volume

of gene therapy development. Specifically, we consider only late-stage gene therapy develop-

ment programs, defined as those already in phase 2/3 or phase 3, and do not account for the

possibility that a program in phase 1 or phase 2 may be fast-tracked or granted accelerated

approval. We also do not account for any new gene therapies programs being added and

approved between 2020 and 2034.

A potential criticism of our approach is that estimating the cost of gene therapies solely

based on the change in QALY will overestimate the aggregate spending in the U.S. For

example, we do not take into account the potential cost savings to gene therapies due to

avoiding multiple costly therapeutic sessions over time based on the current standard of

care, or to the recovery of the opportunity cost of caregivers. We have omitted the clinical

costs of delivering gene therapy in our analysis, which are often higher than conventional

therapeutics due to the need for inpatient hospital care. While there are cases where gene

therapy is predicted to provide net cost-savings in treatment after accounting for the direct

medical cost (e.g., valoctocogene roxaparvovec for the management of hemophilia A [80]),

there is not yet evidence showing that gene therapy will result in net long-term cost savings.

In addition, research has shown that new medical technologies generally raise health costs,

and that cost-increasing changes in treatments outweigh cost-saving changes the majority

of the time [101]. We also do not consider any markup that happens under the prevalent

‘buy-and-bill’ process in the U.S. These considerations suggest that our approach is indeed

conservative, and that our estimates are likely to be lower bounds for realized costs over

the next 15 years. Nonetheless, we have taken care to calibrate our price per ΔQALY using

actual prices for approved therapeutics and estimating QALYs for those diseases, thereby
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allowing us to produce price estimates that closely track past data.

Another potential criticism is that we fail to consider the possibility that having multiple

gene therapies for the same disease may lower the prices of the therapies. However, there

is no analogous evidence that the presence of multiple brand-name drugs in the same class

lowers the list prices of the drugs [149].

Based on our assumptions, the annual spending on gene therapy will average $20.4 billion

and may reach $25.3 billion in 2026. The cumulative spending on all future gene therapies

from from January 2020 to January 2034 will be approximately $306 billion, or $241 billion

when discounted at a cost of capital of 3% per annum over the next 15 years. We estimate

the cost of gene therapy to average $43,110 per unit QALY, several times the average annual

expenditure of $16,346 for American cancer patients between 2010 and 2014 [138].

However, when viewed from the broader perspective of aggregate U.S. spending, these

figures seem less daunting. In 2018, the U.S. tax revenue was $3.33 trillion, of which indi-

vidual income tax and payroll tax revenues were $1.68 and $1.17 trillion, respectively [136].

If the average spending of $20.4 billion were to be fully funded through income and payroll

taxes, an increase of 0.612% would cover the expense. From a purely budgetary perspective,

universal access to gene therapy should be feasible if taxpayers are willing to pay for it.

This is probably the simplest and most direct way to provide access to gene therapy to all

Americans, though it may not be politically feasible.

Since all elderly patients are covered by Medicare, we estimate that the program would

need to increase its annual budget by up to $8.1 billion, or 1.1% of its 2018 spending of

$750.2 billion [19]. Funding this increase would require either an increase in payroll taxes or

a reduction in other expenditures.

We estimate that annual gene therapy spending by Medicaid may reach $5.44 billion.

This is approximately 0.9% of its 2018 spending of $597.4 billion [19]. Since Medicaid must

be provided to all eligible Americans without any preset cap, managing this increase will

require either raising funds from state and federal governments to pay for these additional

costs, or cutting benefits.

Annual spending by minors and adults who are ineligible for Medicare or Medicaid—and

therefore must rely on private insurers—is predicted to reach $12.2 billion. This spending
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poses a significant challenge for insurers and companies, who face annual budgets and com-

peting priorities. In order to manage spending, many insurance policies might choose not

to cover spending on gene therapy, or impose very restrictive policies to limit the number of

potential patients who might be treated [156]. Many private insurers are already warning

they may not be able or willing to absorb the additional spending should a greater number

of people become eligible for expensive gene therapy treatments once new ones reach the

market [159].

Many novel methods to finance gene therapy treatments through the existing healthcare

infrastructure have been proposed, such as outcome-based payments, whereby the manufac-

turers would be paid only if the patients achieve predefined outcomes after treatment [72].

We note that both Zolgensma and Luxturna have offered outcome-based payment meth-

ods to payers. There have also been proposals to allow mortgage-like payments, and even

performance-based annuity payments, as ways to finance gene therapy treatments [133]. In

September 2019, Cigna, one of the largest U.S. health insurance companies, announced a

program called Embarc Benefit Protection in which employers, health plans, and unions

pay a monthly per-member premium that provides members with access to the two FDA-

approved gene therapies, Luxturna and Zolgensma, at no out-of-pocket costs to them if their

physicians authorize treatment. At the time of writing, Luxturna is not provided under

Embarc Benefit Protection, and it is unclear if the program is in effect. Cigna hopes to keep

the monthly cost of the program to below $1 per member [164], but if our simulations are

accurate, this will be financially infeasible.

A more ambitious proposal involves creating a national and possibly international gene

therapy reinsurance company that performs a similar function to Embarc, but which serves

a large number of primary health insurance providers. By allowing multiple primary insurers

to cede the specific risk of gene therapy patients to the reinsurer, these risks can be diversified

over a much larger pool members, lowering the cost of capital. The capital required for such a

reinsurer can be raised through securitization techniques as described in [133], who simulated

such a structure, and concluded that the returns to investors would be quite attractive under

a broad range of assumptions. However, their simulations were not specifically calibrated

for gene therapy, hence our framework may provide a useful complement to their analysis.
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Also, it may be more cost-effective for the reinsurer to assume the responsibility of de-

livering the gene therapies it reinsures through nationally distributed Centers of Excellence

(CoEs). This may seem too far afield for a reinsurance company, but the ability to have

direct control over the quality of delivery, and to be able to collect data on the performance

of these therapies over time, are two compelling reasons for the reinsurer to take this on.

The data collected from these centers will be critical, not only for assessing the actuarial

risk of reinsurance, but also for implementing performance-related contractual agreements,

e.g., if a gene therapy ceases to be effective, then any remaining payments for the therapy

will be cancelled.

An additional benefit of a single reinsurer to manage the risk and responsibility of deliv-

ering gene therapy is the ability of that reinsurer to avoid the adverse selection problem that

often plagues individual insurers [71]. This problem arises when some insurers are willing

to pay for gene therapy treatments while others are not, leading patients who require gene

therapies to enroll en masse with those insurers providing coverage. Since these policies

will likely have higher premiums to cover the high cost of gene therapy, patients have an

incentive to leave the policy after receiving the treatment, leaving the insurers to pay the

remaining cost without being able to recover the expenses. If a single reinsurer can aggregate

this risk across a large pool of gene therapy patients and coordinate payouts across all the

insurers, this adverse selection problem can be greatly mitigated, or altogether avoided. The

viability of such a reinsurance vehicle would depend critically on the various parameters of

the modules in our simulation, as well as the ability to engage with the largest health insurer

of all, the U.S. government.

4.5 Conclusion

In this paper, we estimate the number of patients who will be treated by gene therapy

between January 2020 and December 2034 using various data sources. We also develop a

mathematical model to estimate the cost of these gene therapies, and calibrated the model

to yield realistic cost estimates. It is our hope that this study, and our estimates of the

potential financial impact of gene therapy in the U.S., will clarify some of the unknowns
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surrounding the impact of this new class of treatment, and allow policymakers, healthcare

providers, insurance companies and patients alike to make more informed financial decisions

about the future of this important therapeutic class.
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4.6 Supplementary Materials

4.6.1 Current Gene Therapy Clinical Trials

Here, we list the clinical trials that are used in this study in the following table.

Table 4.11: List of clinical trials used in this study. ‘TT’ and ‘CT’ indicates ‘TrialTrove’ and ‘clinicaltrials.gov’ respectively.

Trial Title Disease Sponsors Source
Randomized, double-blind, placebo-controlled study of
AMG0(HGF plasmid) for patients with arteriosclerosis
obliterans

Arteriosclerosis
Obliterans

AnGes TT

Tisagenlecleucel Versus Standard of Care in Adult Pa-
tients With Relapsed or Refractory Aggressive B-cell
Non-Hodgkin Lymphoma: A Randomized, Open Label,
Phase III Trial (BELINDA)

B-Cell Non-Hodgkin’s
Lymphoma

Novartis TT

A Global Randomized Multicenter Phase III Trial of
JCAR017 Compared to Standard of Care in Adult Sub-
jects With High-risk, Second-line, Transplant-eligible
Relapsed or Refractory Aggressive B-cell Non-Hodgkin
Lymphomas (TRANSFORM).

B-Cell Non-Hodgkin’s
Lymphoma

Celgene TT

A Phase III, Open Label Study to Evaluate the Safety
and Efficacy of INSTILADRIN (rAd-IFN)/Syn3) Ad-
ministered Intravesically to Patients With High Grade,
BCG Unresponsive Non-Muscle Invasive Bladder Can-
cer (NMIBC)

BCG Unresponsive
NMIBC

FKD Therapeutics TT

A Phase III Study of BC-819 in Patients with Bladder
Cancer who Failed Initial Treatment of BCG

BCG Unresponsive
NMIBC

Anchiano Therapeutics TT

Continued on next page
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Table 4.11 – continued from previous page
Trial Title Disease Sponsors Source

A Phase 3 Single Arm Study Evaluating the Effi-
cacy and Safety of Gene Therapy in Subjects With
Transfusion-dependent beta-Thalassemia, Who do Not
Have a beta0/beta0 Genotype, by Transplantation of
Autologous CD34+ Stem Cells Transduced Ex Vivo
With a Lentiviral betaA-T87Q-Globin Vector in Sub-
jects < or = 50 Years of Age

Beta-Thalassemia bluebird bio TT

A Phase 3 Single Arm Study Evaluating the Efficacy and
Safety of Gene Therapy in Subjects With Transfusion-
dependent beta-Thalassemia, Who Have a beta0/beta0
Genotype, by Transplantation of Autologous CD34+
Stem Cells Transduced Ex Vivo With a Lentiviral
betaA-T87Q-Globin Vector in Subjects < or = 50 Years
of Age

Beta-Thalassemia bluebird bio TT

An Integrated Phase II/III, Open Label, Randomized
and Controlled Study of the Safety and Efficacy of
CG0070 Adenovirus Vector Expressing GM-CSF in Pa-
tients With Non-Muscle Invasive Bladder Cancer With
Carcinoma In Situ Disease Who Have Failed BCG Blad-
der Oncolytic virus for Non-muscle invasive bladder can-
cer Disease (BOND)

Bladder Cancer, in situ
concurrent with
Papillary Tumors

Cold Genesys TT

A Phase 2/3 Study of the Efficacy and Safety of
Hematopoietic Stem Cells Transduced With Lenti-
D Lentiviral Vector for the Treatment of Cerebral
Adrenoleukodystrophy (CALD)

Cerebral
Adrenoleukodystrophy
(CALD)

bluebird bio CT

Efficacy and Safety of AAV2-REP1 for the Treatment
of Choroideremia

Choroideremia Nightstar Therapeutics CT

Continued on next page
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Table 4.11 – continued from previous page
Trial Title Disease Sponsors Source

A Phase 3 Double-Blind, Randomized, Placebo-
Controlled Study to Evaluate the Safety and Efficacy
of AMG0 in Subjects With Critical Limb Ischemia Ef-
ficacy and Safety of AMG0 in Subjects With Critical
Limb Ischemia (AGILITY)

Critical Limb Ischemia AnGes TT

Safety and Efficacy of Recombinant Adeno-Associated
Virus Containing the CFTR Gene in the Treatment of
Cystic Fibrosis

Cystic Fibrosis Targeted Genetics
Corporation/ Cystic
Fibrosis Foundation
Therapeutics

CT

A Placebo Controlled, Double-blind, Randomized,
Parallel-group, Multi-center Phase III study to deter-
mine the Efficacy and Safety of TisssueGene-C in Pa-
tients with Degenerative Arthritis

Degenerative Arthritis Kolon Life Science TT

Safety and Efficacy Study of Pl-VEGF165 to Treat Di-
abetic Foot Syndrome

Diabetic Foot
Syndrome

Human Stem Cells
Institute

TT

A Phase III, Double-blind, Randomized, Placebo-
controlled, Multicenter Study to Asses the Safety and
Efficacy of VM202 to Treat Chronic Nonhealing Foot
Ulcers in Diabetic Patients With Concomitant Periph-
eral Arterial Disease (PAD)

Diabetic Foot Ulcers Helixmith TT

A Phase III, Double-Blind, Randomized, Placebo-
Controlled, Multicenter Study to Assess the Safety and
Efficacy of VM202 in Subjects With Painful Diabetic
Peripheral Neuropathy

Diabetic Peripheral
Neuropathy

Helixmith TT

A Phase III, Randomized, Open-Label Study Evaluat-
ing Efficacy of Axicabtagene Ciloleucel Versus Standard
of Care Therapy in Subjects With Relapsed/Refractory
Diffuse Large B Cell Lymphoma

Diffuse Large B Cell
Lymphoma (DLBCL)

Gilead Sciences/Kite
Pharma

TT

Continued on next page

122



Table 4.11 – continued from previous page
Trial Title Disease Sponsors Source

A Multi-center Phase III, Randomized, Open-Label
Trial of Vigil (Bi-shRNAfurin and GMCSF Augmented
Autologous Tumor Cell Immunotherapy) in Combina-
tion With Irinotecan and Temozolomide as a Second-
Line Regimen for Ewing’s Sarcoma

Ewing’s Sarcoma Gradalis TT

A Phase III Study of INGN 241 in Combination with
Radiation Therapy in Patients with Advanced Solid Tu-
mors and Head and neck cancer.

Head and Neck Cancer Introgen Therapeutics TT

An Open-Label, Randomized, Multi-Center Phase III
Clinical Trial Comparing E10A Plus Chemotherapy And
Chemotherapy Alone For Treatment Of Head And Neck
Cancer

Head and Neck Cancer Marsala Biotech TT

A Randomized, Open-label, Multi-center Phase III
Study Designed to Evaluate the Safety and Efficacy of
E10A in Patients With Recurrent/Unresectable Squa-
mous Cell Carcinoma of the Head and Neck Region

Head and Neck Cancer Guangzhou Double
Bioproducts Co.

TT

A Phase III, Pivotal, Randomized, Placebo-controlled,
Double-Blind, Multicenter Study to Evaluate RT-100
AC6 Gene Transfer in Patients with Heart Failure and
Reduced Left Ventricular Ejection Fraction;Heart Fail-
ure with Reduced Left Ventricular Ejection Fraction:
One-time Gene Transfer Using RT-100 Intracoronary
Administration of Adenovirus 5 encoding Human AC6
(FLOURISH)

Heart Failure Renova Therapeutics TT

Continued on next page
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Table 4.11 – continued from previous page
Trial Title Disease Sponsors Source

A Phase 3 Open-Label, Single-Arm Study To Evalu-
ate The Efficacy and Safety of BMN 270, an Adeno-
Associated Virus Vector-Mediated Gene Transfer of Hu-
man Factor VIII in Hemophilia A Patients With Resid-
ual FVIII Levels = 1 IU/dL Receiving Prophylactic
FVIII Infusions

Hemophilia A BioMarin TT

Phase 3 Study To Evaluate Efficacy/Safety of Val-
octocogene Roxaparvovec an AAV Vector-Mediated
Gene Transfer of hFVIII at a Dose of 4E13vg/kg in
Hemophilia A Patients With Residual FVIII Levels <
or = 1IU/dL Receiving Prophylactic FVIII Infusions

Hemophilia A BioMarin TT

A Phase III Run In trial to Evaluate SPK-8011 in Pa-
tients with Hemophilia A

Hemophilia A Roche/Spark Therapeutics TT

An open-label, single-dose, multi-center, multi-national,
Phase III pivotal trial to investigate efficacy and safety
of AMT-061 in severe or moderately severe hemophilia
B; HOPE-B: Trial of AMT-061 in Severe or Moderately
Severe Hemophilia B Patients; Phase III, Open-label,
Single-dose, Multi-center, Multinational Trial Investi-
gating a Serotype 5 Adeno-associated Viral Vector Con-
taining the Padua Variant of a Codon-optimized Human
Factor IX Gene (AAV5-hFIXco-Padua, AMT-061) Ad-
ministered to Adult Subjects With Severe or Moderately
Severe Hemophilia B

Hemophilia B uniQure TT

Continued on next page
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Table 4.11 – continued from previous page
Trial Title Disease Sponsors Source

A Pivotal Phase III Study of PF-06838435 in Pa-
tients with Hemophilia B; Phase 3, Open Label, Sin-
gle Arm Study To Evaluate Efficacy And Safety Of Fix
Gene Transfer With Pf-06838435 (Raav-Spark100-Hfix-
Padua) In Adult Male Participants With Moderately
Severe To Severe Hemophilia B (Fix:C < or =2%)

Hemophilia B Pfizer TT

A Pivotal Phase III Study to Evalaute AMT-060 in Pa-
tients with Hemophilia B

Hemophilia B uniQure TT

Multicenter Randomized Controlled Trial of
Adenovirus-mediated Adjuvant Gene Therapy Im-
proving Outcome of Liver Transplantation in Patients
With Advanced Hepatocellular Carcinoma

Hepatocellular
Carcinoma

Wuhan Tiandakang
Bio-Tech Engineering Co./
Shenzhen Tiandakang
Gene Engineering Co.

TT

A Phase III Randomized, Open-Label Study Compar-
ing Pexa Vec (Vaccinia GM CSF / Thymidine Kinase-
Deactivated Virus) Followed by Sorafenib Versus So-
rafenib in Patients With Advanced Hepatocellular Car-
cinoma (HCC) Without Prior Systemic Therapy

Hepatocellular
Carcinoma

Transgene/ Sillajen
Biotherapeutics /Jennerex/
Lees Pharmaceutical

TT

Phase III Prospective, Open-Label, Parallel-Group,
Randomized, Multicenter Trial Comparing the Efficacy
of Surgery, Radiation, and Injection of Murine Cells Pro-
ducing Herpes Simplex Thymidine Kinase Vector Fol-
lowed by Intravenous Ganciclovir Against the Efficacy
of Surgery and Radiation in the Treatment of Newly
Diagnosed, Previously Untreated Glioblastoma Multi-
forme

High-Grade Glioma Novartis/Sandoz TT

Continued on next page
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Table 4.11 – continued from previous page
Trial Title Disease Sponsors Source

A Controlled, Randomised, Parallel Group Study Of
The Efficacy And Safety Of Herpes Simplex Virus
Thymidine Kinase Gene Therapy (Cerepro) with Subse-
quent Ganciclovir For The Treatment Of Patients With
Operable High-Grade Glioma.

High-Grade Glioma Trizell TT

A Randomized, Double-Blind, Placebo-Controlled,
Multi-Center, Phase 3 Study to Determine the Efficacy
of TG-C in Subjects With Kellgren and Lawrence Grade
(KLG) 2 or 3 Osteoarthritis of the Knee

Knee Osteoarthritis
with Kellgren &
Lawrence Grade 2 or 3

Kolon TissueGene TT

A Multicenter, Randomized, Placebo Controlled,
Double-blind, Parallel, Phase III Clinical Trial to Eval-
uate the Efficacy and Safety of Invossa K Injection in
Patients Diagnosed as Knee Osteoarthritis With Kell-
gren & Lawrence Grade 2

Knee Osteoarthritis
with Kellgren &
Lawrence Grade 2 or 3

Kolon Life Science TT

Safety and Efficacy Study in Subjects With Leber Con-
genital Amaurosis

Leber Congenital
Amaurosis due to
RPE65 Mutations

Spark Therapeutics CT

Efficacy Study of GS010 for Treatment of Vision Loss
From 7 Months to 1 Year From Onset in LHON Due to
the ND4 Mutation

Leber Hereditary
Optic Neuropathy

GenSight Biologics CT

Efficacy Study of GS010 for the Treatment of Vision
Loss up to 6 Months From Onset in LHON Due to the
ND4 Mutation

Leber Hereditary
Optic Neuropathy

GenSight Biologics CT

Efficacy and Safety Study of Bilateral Intravitreal Injec-
tion of GS010 for the Treatment of Vision Loss up to 1
Year From Onset in LHON Due to the ND4 Mutation

Leber Hereditary
Optic Neuropathy

GenSight Biologics CT

Continued on next page
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Table 4.11 – continued from previous page
Trial Title Disease Sponsors Source

Tisagenlecleucel Versus Blinatumomab or Inotuzumab
for Adult Patients With Relapsed/Refractory B-cell
Precursor Acute Lymphoblastic Leukemia: A Random-
ized Open Label, Multicenter, Phase III Trial

Leukemia (Acute
Lymphoblastic)

Novartis TT

Phase IIIb Study for Relapsed/Refractory Pedi-
atric/Young Adult Acute Lymphoblastic Leukemia Pa-
tients to be Treated With CTL019

Leukemia (Acute
Lymphoblastic)

Novartis TT

A Phase II/III Prospective, Open Label Study to Evalu-
ate Safety and Efficacy of Intravenous Autologous CD19
CAR-T Cells for Relapsed/ Refractory B-Acute Lym-
phoblastic Leukemia

Leukemia (Acute
Lymphoblastic)

Gaia Science TT

A Randomized Phase II/III Study of 𝛼𝛽 T Cell-
Depleted, Related, Haploidentical Hematopoietic Stem
Cell Transplant (Haplo-HSCT) Plus Rivogenlecleucel
vs. Haplo-HSCT Plus Post-Transplant Cyclophos-
phamide (PTCy) in Patients With AML or MDS

Leukemia (Acute
Myelogenous)

Bellicum Pharmaceuticals TT

Randomized, Registrational, Controlled Study of BPX-
501 with Allogeneic Hematopoietic Stem Cells (Allo-
HSCT) in Patients with Acute Myelogenous Leukemia

Leukemia (Acute
Myelogenous)

Bellicum Pharmaceuticals TT

TK008: Randomized Phase III Trial of Haploidentical
HCT With or Without an Add Back Strategy of HSV-Tk
Donor Lymphocytes in Patients With High Risk Acute
Leukemia

Leukemia (Acute
Myelogenous)

Molmed TT

A Phase IIb/III Study of AST-VAC1 in Patients with
Acute Myelogenous Leukemia (AML)

Leukemia (Acute
Myelogenous)

Asterias/Lineage Cell
Therapeutics

TT

A Study of Glybera for the Treatment of Lipoprotein
Lipase (LPL) Deficiency

Lipoprotein Lipase
Deficiency (LPLD)

uniQure TT

Continued on next page
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Trial Title Disease Sponsors Source

A Study to Determine the Safety and Efficacy
in Lipoprotein Lipase-Deficient Subjects After Intra-
muscular Administration of AMT-011, an Adeno-
Associated Viral Vector Expressing Human Lipoprotein
LipaseS447X.

Lipoprotein Lipase
Deficiency (LPLD)

uniQure TT

An Open-label Study to Assess the Efficacy and Safety
of Alipogene Tiparvovec (AMT-011), Human LPL
[S447X], Expressed by an Adeno-Associated Viral Vec-
tor After Intramuscular Administration in LPL-deficient
Adult Subjects

Lipoprotein Lipase
Deficiency (LPLD)

uniQure TT

A Study of AMT-011 in Patients With LPL Deficiency Lipoprotein Lipase
Deficiency (LPLD)

uniQure TT

A Phase III Trial of Glybera for Dyslipidemia Lipoprotein Lipase
Deficiency (LPLD)

uniQure TT

Phase II/III study of Ad-IFNg in Cutaneous T-cell lym-
phoma

Lymphoma Transgene TT

A Safety and Efficacy Study of Cryopreserved
GSK2696274 for Treatment of Metachromatic
Leukodystrophy (MLD)

Metachromatic
Leukodystrophy

GlaxoSmithKline CT

PV-10 Intralesional Injection vs Systemic Chemother-
apy or Oncolytic Viral Therapy for Treatment of Locally
Advanced Cutaneous Melanoma

Melanoma (Locally
Advanced Cutaneous)

Provectus
Biopharmaceuticals

TT

A Phase Ib/III, Multicenter, Trial of Talimogene
Laherparepvec in Combination With Pembrolizumab
(MK-3475) for Treatment of Unresectable Stage IIIB
to IVM1c Melanoma (MASTERKEY-265/KEYNOTE-
034)

Melanoma
(Metastatic)

Amgen/ Merck &
Co./Merck Sharp & Dohme
(MSD)

TT

Continued on next page
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Trial Title Disease Sponsors Source

A Phase III Clinical Trial to Evaluate the Safety
and Efficacy of Treatment With 2 mg Intralesional
Allovectin-7 Compared to Dacarbazine (DTIC) or
Temozolomide (TMZ) in Subjects With Recurrent
Metastatic Melanoma;Allovectin-7 Immunotherapeutic
for Metastatic Melanoma (AIMM).

Melanoma
(Metastatic)

Brickell Biotech, AnGes TT

A Randomized Phase III Clinical Trial to Evaluate the
Efficacy and Safety of Treatment With OncoVEXGM-
CSF Compared to Subcutaneously Administered GM-
CSF in Melanoma Patients With Unresectable Stage
IIIb, IIIc and IV Disease

Melanoma
(Metastatic)

Amgen TT

An Extension Protocol to Evaluate the Efficacy and
Safety of Extended Use Treatment With OncoVEXGM-
CSF for Eligible Melanoma Patients Participating in
Study 005/05

Melanoma
(Metastatic)

Amgen TT

A Controlled, Randomized Phase III Trial Compar-
ing the Response to Dacarbazine With and Without
Allovectin-7 in Patients With Metastatic Melanoma.

Melanoma
(Metastatic)

Brickell Biotech TT

Open-label, Single-arm, Multi-center Study of Intracere-
bral Administration of Adeno-associated Viral (AAV)
Serotype rh.10 Carrying Human N-sulfoglucosamine
Sulfohydrolase (SGSH) cDNA for Treatment of Mu-
copolysaccharidosis Type IIIA

Mucopolysaccharidosis
Type IIIa

LYSOGENE TT

Continued on next page
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Trial Title Disease Sponsors Source

A Phase III, Single Arm, Multi-Center Study to As-
sess the Efficacy and Safety of Clarithromycin(Biaxin)-
Lenalidomide-Low-Dose-Dexamethasone (BiRd) Com-
bined With B-cell Muturation Antigen (BCMA)-
Directed Chimeric Antigen Receptor (CAR) T-cell
Therapy in Patients With Newly Diagnosed Multiple
Myeloma

Multiple Myeloma
(Newly Diagnosed)

Shanghai Unicar-Therapy
Bio-medicine

TT

Clinical Trial of Recombinant Adenovirus-p53 (Gen-
dicine) Combined with Radiotherapy in Nasopharyngeal
Carcinoma Patients.;

Nasopharyngeal
Carcinoma

Shenzhen SiBiono
GeneTech Co.

TT

A Phase II/III, Multi-Center, Open-Label, Randomized
Study to Compare the Effectiveness and Safety of In-
tralesional Administration of RPR/INGN 201 in Com-
bination with Taxotere and Carboplatin and Radiother-
apy Versus Taxotere and Carboplatin and Radiotherapy
Alone in Patients with Locally Advanced Unresectable
Non-Small Cell Lung Cancer (NSCLC)

NSCLC Introgen Therapeutics TT

A Phase IIB/III Randomized, Double-blind, Placebo
Controlled Study Comparing First Line Therapy With
or Without TG4010 Immunotherapy Product in Pa-
tients With Stage IV Non-Small Cell Lung Cancer
(NSCLC)

NSCLC Transgene TT

Phase III multi-center, open, randomized clinical trial of
percutaneous intratumoral injection of genetically engi-
neered adenovirus (injection of H101), IL-2, TB hyper-
thermia and systemic chemotherapy in the treatment of
advanced non-small cell lung cancer

NSCLC Shanghai Sunway Biotech TT
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Trial Title Disease Sponsors Source

Phase III Study of Lucanix (Belagenpumatucel-L)
in Advanced Non-small Cell Lung Cancer: An In-
ternational Multicenter, Randomized, Double-blinded,
Placebo-controlled Study of Lucanix Maintenance Ther-
apy for Stages III/IV NSCLC Subjects Who Have
Responded to or Have Stable Disease Following One
Regimen of Front-line, Platinum-based Combination
Chemotherapy; Survival, Tumor-free, Overall and
Progression-free (STOP)

NSCLC Stage 3 Activate Immunotherapy TT

rAd-p53 Combined Chemotherapy Via Selective Arterial
Cannula in The Treatment of Advanced Oral Cancer, A
Randomized Controlled Trial

Oral Cancer
(Advanced)

Shenzhen SiBiono
GeneTech Co.

TT

A Randomized, Controlled, Double-Arm, Open-Label,
Multi-Center Study of Ofranergene Obadenovec (VB-
111) Combined With Paclitaxel vs. Paclitaxel
Monotherapy for the Treatment of Recurrent Platinum-
Resistant Ovarian Cancer

Ovarian Cancer
(Platinum-Resistant)

Gynecologic Oncology
Group (GOG)/ VBL
Therapeutics

TT

A Phase II/III Trial of Chemotherapy Alone Versus
Chemotherapy Plus SCH 58500 in Newly Diagnosed
Stage III Ovarian and Primary Peritoneal Cancer Pa-
tients With Greater Than or Equal to 0.5 cm and Less
Than or Equal to 2 cm Residual Disease Following
Surgery

Ovarian Cancer,
Primary Peritoneal
Cavity Cancer

Merck & Co./Merck Sharp
& Dohme (MSD)

TT

A Randomized, Phase II/III, Study of TNFerade Bio-
logic With 5-FU and Radiation Therapy for First-Line
Treatment of Unresectable Locally Advanced Pancreatic
Cancer

Pancreatic Cancer
(Locally Advanced)

Precigen TT

Continued on next page
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Trial Title Disease Sponsors Source

Phase II/III Study of ProSavin for the Treatment of
Parkinson’s Disease

Parkinson’s Disease Oxford BioMedica TT

Phase III Trial of CERE-120 for Parkinson’s Disease Parkinson’s Disease Sanofi/Sanofi Genzyme,
Sangamo Therapeutics

TT

A Randomized, Placebo-controlled Phase IIIa Pivotal
Confirmatory Study to Evaluate Safety and Efficacy of
VY-AADC in Patients with Parkinson’s Disease

Parkinson’s Disease Neurocrine Biosciences TT

A Randomized Double-Blind Placebo-Controlled Par-
allel Group Study of the Efficacy and Safety of
XRP0038/NV1FGF on Amputation or Any Death in
Critical Limb Ischemia Patients With Skin Lesions

Peripheral Artery
Disease

Sanofi TT

Efficiency, Safety and Portability of Neovasculgen Peripheral Artery
Disease

Human Stem Cell
Institute, Russia

CT

Gene Therapy using Intramuscular Administration of
AMG0001 in Patients with Peripheral Arterial Disease;

Peripheral Artery
Disease

AnGes TT

Hepatocyte Growth Factor to Improve Functioning in
Peripheral Artery Disease: The HI-PAD Study;

Peripheral Artery
Disease

Helixmith TT

A phase III study of HGF Plasmid in Peripheral Arterial
Disease (PAD) in the US

Peripheral Artery
Disease

AnGes TT

Phase 3 Study of Efficiency, Safety and Portability of
Gene Therapy Drug Neovasculgen (DNA Encoding the
165-amino-acid Isoform of Human Vascular Endothelial
Growth Factor (pCMV - VEGF165) for Peripheral Ar-
terial Disease Complex Treatment

Peripheral Artery
Disease

Human Stem Cells
Institute

TT

Provenge (Sipuleucel-T) Active Cellular Immunother-
apy Treatment of Metastatic Prostate Cancer After Fail-
ing Hormone Therapy

Prostate Cancer Dendreon CT

Continued on next page
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Trial Title Disease Sponsors Source

A Randomized, Controlled Trial of Replication-
Competent Adenovirus-Mediated Suicide Gene Therapy
in Combination With IMRT Versus IMRT Alone for the
Treatment of Newly-Diagnosed Prostate Cancer With
an Intermediate Risk Profile

Prostate Cancer
(Localized)

Henry Ford Health System TT

A Randomized Controlled Trial of ProstAtak as Ad-
juvant to Up-front Radiation Therapy For Localized
Prostate Cancer

Prostate Cancer
(Localized)

Candel Therapeutics TT

A Phase III Randomized, Open-Label Study of CG1940
and CG8711 Versus Docetaxel and Estramustine in
Patients with Metastatic Hormone-Refractory Prostate
Cancer Who are Chemotherapy-Naive.

Prostate Cancer
(Metastatic
Hormone-Refractory)

ANI Pharmaceuticals,
Takeda

TT

A Phase III Randomized, Open-Label Study of CG1940
and CG8711 Versus Docetaxel and Prednisone in Pa-
tients With Metastatic Hormone-Refractory Prostate
Cancer Who Are Chemotherapy-Naive.

Prostate Cancer
(Metastatic
Hormone-Refractory)

ANI Pharmaceuticals,
Takeda

TT

A Phase III Randomized, Open-Label Study of Doc-
etaxel in Combination With CG1940 and CG8711 Ver-
sus Docetaxel and Prednisone in Taxane-Nave Patients
With Metastatic Hormone-Refractory Prostate Cancer
With Pain.

Prostate Cancer
(Metastatic
Hormone-Refractory)

ANI Pharmaceuticals,
Takeda

TT

A Randomized Controlled Trial Of AdV-tk + Vala-
cyclovir Administered During Active Surveillance For
Newly Diagnosed Prostate Cancer

Prostate Cancer
(Newly Diagnosed)

Candel Therapeutics TT

An Open label,Randomized, Multi-Centered, Intra-
Patient Controlled Phase III Study of FCX-007 in Pa-
tients with Recessive Dystrophic Epidermolysis Bullosa
(RDEB)

Recessive Dystrophic
Epidermolysis Bullosa

Fibrocell Science TT
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Trial Title Disease Sponsors Source

VITAL: A Pivotal Phase 3 Study of EB-101 for the
Treatment of Recessive Dystrophic Epidermolysis Bul-
losa (RDEB) (GENE TRANSFER)

Recessive Dystrophic
Epidermolysis Bullosa

Stanford University
Medical Center/ Abeona
Therapeutics

TT

A Phase III, Randomized, Controlled, Double-Arm,
Open-Label, Multi-center Study of VB-111 Combined
With Bevacizumab vs. Bevacizumab Monotherapy in
Patients With Recurrent Glioblastoma

Recurrent
Glioblastoma

VBL Therapeutics TT

A Phase II/III Randomized, Open-Label Study of Toca
511, a Retroviral Replicating Vector, Combined With
Toca FC Versus Standard of Care in Subjects Under-
going Planned Resection for Recurrent Glioblastoma or
Anaplastic Astrocytoma

Recurrent
Glioblastoma

Tocagen TT

A Randomized, Double-Blind, Placebo-Controlled, Par-
allel Group, Multicenter, Phase 3 Study to Evaluate the
Safety and Efficacy of Ad5FGF-4 in Patients With Re-
fractory Angina Due to Myocardial Ischemia;Ad5FGF-4
In Patients With Refractory Angina Due to Myocardial
Ischemia (AFFIRM)

Refractory Angina due
to Myocardial
Ischemia (AFFIRM)

Gene Biotherapeu-
tics/Angionetics

TT

A Phase III, Multicenter, Randomized, Open-label
Study to Compare the Efficacy and Safety of bb2121
Versus Standard Triplet Regimens in Subjects With
Relapsed and Refractory Multiple Myeloma (RRMM)
(KarMMa-3)

Relapsed and
Refractory Multiple
Myeloma (RRMM)

Celgene TT

A Single Global Phase 3 trial of RST-001 in Patients
With Retinitis Pigmentosa (RP)

Retinitis Pigmentosa Abbvie/Allergan TT

A Phase II/III Expansion Study to Evaluate Safety and
Efficacy of NSR-RPGR in Patients with a Diagnosis of X
- Linked Retinitis Pigmentosa due to RPGR mutations

Retinitis Pigmentosa NightstaRx TT
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Trial Title Disease Sponsors Source

Phase 3 HGB-210 study of LentiGlobin in patients with
SCD

Sickle Cell Anemia bluebird bio TT

Open-label, historical controlled study of AVXS-101 for
treatment of spinal muscular atrophy

Spinal Muscular
Atrophy

Novartis/AveXis TT

A Multi-National Study of a One-Time Intrathecal Dose
of AVXS-101 in Patients with Spinal Muscular Atrophy
Types 1, 2, 3

Spinal Muscular
Atrophy

Novartis/AveXis TT

A Global Study of a Single, One-Time Dose of AVXS-
101 Delivered to Infants With Genetically Diagnosed
and Pre-symptomatic Spinal Muscular Atrophy With
Multiple Copies of SMN2

Spinal Muscular
Atrophy Type 1

Novartis/AveXis TT

European, Phase 3, Open-Label, Single-Arm, Single-
Dose Gene Replacement Therapy Clinical Trial for Pa-
tients With Spinal Muscular Atrophy Type 1 With One
or Two SMN2 Copies Delivering AVXS-101 by Intra-
venous Infusion

Spinal Muscular
Atrophy Type 1

Novartis/AveXis TT

Phase 3, Open-Label, Single-Arm, Single-Dose Gene
Replacement Therapy Clinical Trial for Patients With
Spinal Muscular Atrophy Type 1 With One or Two
SMN2 Copies Delivering AVXS-101 by Intravenous In-
fusion

Spinal Muscular
Atrophy Type 1

Novartis/AveXis TT

A Phase Ib/III Multicenter, Randomized, Trial of Tal-
imogene Laherparepvec in Combination With Pem-
brolizumab for the Treatment of Subjects With Re-
current or Metastatic Squamous Cell Carcinoma of the
Head and Neck

Squamous Cell Cancer
of Head and Neck or
Esophagus

Amgen/ Merck &
Co./Merck Sharp & Dohme
(MSD)

TT

Continued on next page
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Phase III randomized clinical trial of intratumoral in-
jection of E1B gene-deleted adenovirus (H101) combined
with cisplatin-based chemotherapy in treating squamous
cell cancer of head and neck or esophagus.

Squamous Cell Cancer
of Head and Neck or
Esophagus

Shanghai Sunway Biotech TT

Phase III Randomized Study of Ad5CMV-p53 Gene
Therapy (INGN 201) Versus Methotrexate in Patients
With Refractory Squamous Cell Carcinoma of the Head
and Neck (T301).

Squamous Cell Cancer
of Head and Neck or
Esophagus

Sanofi, Introgen
Therapeutics

TT

A Phase III, Multi-Center, Open-Label, Randomized
Study to Compare the Effectiveness and Safety of Intra-
tumoral Administration of INGN 201 in Combination
with Chemotherapy Versus Chemotherapy Alone in Pa-
tients with Squamous Cell Carcinoma of the Head and
Neck (SCCHN)

Squamous Cell Cancer
of Head and Neck or
Esophagus

Introgen Therapeutics TT

A Randomized, Controlled, Parallel Group, Multicenter
Phase 3 Study to Evaluate the Efficacy and Safety of
Ad5FGF-4 Using SPECT Myocardial Perfusion Imaging
in Patients With Stable Angina Pectoris

Stable Angina Gene Biotherapeutics/
Angionetics/ Gene
Biotherapeutics

TT

A Randomized, Double Blind, Placebo Controlled, Par-
allel Group, Multicenter Study to Evaluate the Efficacy
and Safety of Ad5FGF-4 in Female Patients With Stable
Angina Pectoris Who Are Not Candidates for Revascu-
larization;Angiogenesis in Women with Angina pectoris
who are not candidates for Revascularization [AWARE]

Stable Angina Gene Biotherapeutics/
Angionetics/ Gene
Biotherapeutics

TT
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A Multinational Multicenter, Randomized, Double
Blind, Placebo Controlled Study to Evaluate the Ef-
ficacy and Safety of Ad5FGF-4 in Patients With Sta-
ble Angina;(The Angiogenic Gene Therapy Trial - 4
[AGENT 4]).

Stable Angina Bayer AG/Bayer
HealthCare, Gene
Biotherapeutics

TT

A Multicenter, Randomized, Double-Blind, Placebo
Controlled Study to Evaluate the Efficacy and Safety
of Ad5FGF-4 in Patients With Stable Angina (The An-
giogeneic Gene Therapy Trial - 3 [AGENT 3])

Stable Angina Bayer AG/Bayer
HealthCare, Gene
Biotherapeutics

TT

Multicentre, Randomized,Double Blind, Placebo
Controlled Trial of Myocardial Angiogenesis Using
VEGF165, Intramyocardial Gene Delivery in Patients
With Severe Angina Pectoris

Stable Angina Johnson & Johnson TT

A Pivotal Study of NY-ESO-1 in Patients with Synovial
Sarcoma including Myxoid Round Cell Liposarcoma

Synovial Sarcoma GlaxoSmithKline/
AdaptImmune

TT
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4.6.2 Disease-to-Therapeutic Area Mapping

As mentioned in the main paper, we show how the diseases are related to the therapeutic

areas in the table below.

Table 4.12: Diseases with ongoing gene therapy trials and their associated therapeutic areas.

Disease Therapeutic Area
– General Conditions –
Arteriosclerosis Obliterans Cardiovascular
Critical Limb Ischemia Cardiovascular
Degenerative Arthritis Autoimmune/Inflammation
Diabetic Foot Symptoms Metabolic/Endocrinology
Diabetic Foot Ulcers Metabolic/Endocrinology
Diabetic Peripheral Neuropathy Metabolic/Endocrinology
Heart Failure Cardiovascular
Knee Osteoarthritis with Kellgren & Lawrence Grade 3 Autoimmune/Inflammation
Parkinson’s Disease CNS
Peripheral Artery Disease Cardiovascular
Refractory Angina due to Myocardial Ischemia (AFFIRM) Cardiovascular
Stable Angina Cardiovascular
– Rare Diseases –
Beta-Thalassemia Metabolic/Endocrinology
Cerebral Adrenoleukodystrophy (CALD) CNS
Choroideremia Ophthalmology
Cystic Fibrosis Cardiovascular
Ewing’s Sarcoma Oncology
Hemophilia A Metabolic/Endocrinology
Hemophilia B Metabolic/Endocrinology
Leber Congenital Amaurosis due to RPE65 Mutations Ophthalmology
Leber Hereditary Optic Neuropathy Ophthalmology
Lipoprotein Lipase Deficiency (LPLD) Metabolic/Endocrinology
Metachromatic Leukodystrophy Metabolic/Endocrinology
Mucopolysaccharidosis Type IIIa CNS
Recessive Dystrophic Epidermolysis Bullosa Autoimmune/Inflammation
Retinitis Pigmentosa Ophthalmology
Sickle Cell Anemia Metabolic/Endocrinology
Spinal Muscular Atrophy CNS
Spinal Muscular Atrophy Type 1 CNS
– Cancer –
B-Cell Non-Hodgkin’s Lymphoma Oncology
BCG Unresponsive NMIBC Oncology

Continued on next page
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Disease Therapeutic Area

Bladder Cancer, in situ concurrent with Papillary Tumors Oncology
Diffuse Large B Cell Lymphoma (DLBCL) Oncology
Head and Neck Cancer Oncology
Hepatocellular Carcinoma Oncology
High-Grade Glioma Oncology
Leukemia (Acute Lymphoblastic) Oncology
Leukemia (Acute Myelogenous) Oncology
Lymphoma Oncology
Melanoma (Locally Advanced Cutaneous) Oncology
Melanoma (Metastatic) Oncology
Multiple Myeloma (Newly Diagnosed) Oncology
Nasopharyngeal Carcinoma Oncology
NSCLC Oncology
NSCLC Stage 3 Oncology
Oral Cancer (Advanced) Oncology
Ovarian Cancer (Platinum-Resistant) Oncology
Ovarian Cancer, Primary Peritoneal Cavity Cancer Oncology
Pancreatic Cancer (Locally Advanced) Oncology
Prostate Cancer Oncology
Prostate Cancer (Localized) Oncology
Prostate Cancer (Metastatic Hormone-Refractory) Oncology
Prostate Cancer (Newly Diagnosed) Oncology
Recurrent Glioblastoma Oncology
Relapsed and Refractory Multiple Myeloma (RRMM) Oncology
Squamous Cell Cancer of Head and Neck or Esophagus Oncology
Synovial Sarcoma Oncology
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4.6.3 Patient Population Estimation

We source the patient prevalence and incidence of the diseases from different sources. When

necessary, we compute the prevalence from the incidence using Equation 4.1, or vice versa,

using Equation 4.2. Our results are shown in Table 4.13. These numbers do not reflect the

adjustments we make to NSC lung cancer, prostrate cancer and spinal muscular atrophy in

order to minimize overlapping patient groups.

Table 4.13: Number of current patients and annual new patients for each disease. An asterisk
(*) indicates that either the prevalence is computed from the incidence using Equation 4.1,
or vice versa, using Equation 4.2.

Disease Current
patients

New patients
per year

– General Conditions –
Arteriosclerosis Obliterans [94]8500000 *192100
Critical Limb Ischemia [85]975000 [85]300000
Degenerative Arthritis [161]27000000 *486000
Diabetic Foot Ulcers [130]2250000 [129]112500
Diabetic Peripheral Neuropathy [69,95,168]9441480 [69,95,168]467400
Heart Failure [106]5800000 [106]812000
Knee Osteoarthritis with Kellgren & Lawrence
Grade 2 or/and 3

*2929730 [161]542000

Parkinson’s Disease [20]500000 [20]50000
Peripheral Artery Disease [94]8500000 *564400
Refractory Angina due to Myocardial Ischemia (AF-
FIRM)

[5]8200000 [5,73]565000

Stable Angina [44]10000000 [44]500000
– Rare Diseases –
Beta-Thalassemia [11]1000 [137]3277
Cerebral Adrenoleukodystrophy (CALD) [66]411 [66]37
Choroideremia [127]6554 [127]77
Cystic Fibrosis [65]30000 [65]1000
Ewing’s Sarcoma [13,14,61]15003 [13,14,61]200
Hemophilia A [47]16000 [47]360
Hemophilia B [47]4000 [47]90
Leber Congenital Amaurosis due to RPE65 Muta-
tions

[79]187 [79]19

Leber Hereditary Optic Neuropathy [27]6540 [27]654
Lipoprotein Lipase Deficiency (LPLD) [75]328 *33

Continued on next page
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Disease Current

patients
New patients

per year

Metachromatic Leukodystrophy [48,139]9333 [48,139]771
Mucopolysaccharidosis Type IIIa [30]1638 [30]39
Recessive Dystrophic Epidermolysis Bullosa [113]100 *10
Retinitis Pigmentosa [144]87387 [144]8739
Sickle Cell Anemia [58]100000 [59]58745
Spinal Muscular Atrophy [123]8526 [123]290
Spinal Muscular Atrophy Type 1 [42]17500 [82]500
– Cancer –
B-Cell Non-Hodgkin’s Lymphoma [9,10]694704 [9,10]74200
BCG Unresponsive NMIBC [12,107,118,119]371933[12,107,118,119]42625
Bladder Cancer, in situ concurrent with Papillary
Tumors

[12]356720 [12]41040

Diffuse Large B Cell Lymphoma (DLBCL) [1]257 [1]18351
Head and Neck Cancer [50,53,54,55]134337 [50,53,54,55]75275
Hepatocellular Carcinoma [15,102,104]11287 [15,102,104]2032
High-Grade Glioma [3,8,49,51,147]87540 [3,8,49,51,147]16334
Leukemia (Acute Lymphoblastic) [6]95764 [6]5930
Leukemia (Acute Myelogenous) [7]61048 [7]21450
Lymphoma [16,34]905678 [16,34]82310
Melanoma (Locally Advanced Cutaneous) [17]107605 [17]8683
Melanoma (Metastatic) [17]47824 [17]3859
Multiple Myeloma (Newly Diagnosed) 0 [2]32270
Nasopharyngeal Carcinoma [56]5390 [56]327
NSC Lung Cancer [35,57]454469 [57] 191646
NSC Lung Cancer Stage 3 [35,57,141]151490 [57,141]63882
Oral Cancer (Advanced) [4]250000 [4]53000
Ovarian Cancer (Platinum-Resistant) [36,37,38]141150 [36,37,38]13956
Ovarian Cancer, Primary Peritoneal Cavity Cancer [40]2290 [40]240
Pancreatic Cancer (Locally Advanced) [39,148]22066 [39,148]17031
Prostate Cancer [18]3110403 [18]174650
Prostate Cancer (Localized) [18]2395010 [18]134481
Prostate Cancer (Metastatic Hormone-Refractory) [18]186624 [18]10479
Prostate Cancer (Newly Diagnosed) 0 [18]174650
Recurrent Glioblastoma [8,49,51,147]64127 [8,49,51,147]12120
Relapsed and Refractory Multiple Myeloma
(RRMM)

[41,81]48840 [41,81]16280

Squamous Cell Cancer of Head and Neck or Esoph-
agus

[50,53,54,55]120903 [50,53,54,55]67747
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Disease Current

patients
New patients

per year

Synovial Sarcoma [43,89]7282 [89]655
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4.6.4 Calibration of Survival Functions 𝐷𝑎𝑙𝑡(𝑥− 𝑎)

We source either the survival or mortality rate from literature and use them to compute 𝜆, the time parameter in the exponential

survival function. We show our result in the table below.

Table 4.14: List of survival rate or mortality rate and 𝜆, for each disease. An asterisk (*) under 𝜆 denotes that the disease does
not affect mortality directly.

Disease 𝑘 years survival rate 𝑘 years mortality rate 𝜆
𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 5 𝑘 = 10

Arteriosclerosis Obliterans [160]11.3 0.024
Critical Limb Ischemia [86]50 0.139
Degenerative Arthritis [163]82 0.020
Diabetic Foot Ulcers [146]49 0.135
Diabetic Peripheral Neuropathy [62]5 0.005
Heart Failure [52]42.3 0.110
Knee Osteoarthritis with Kellgren & Lawrence Grade 2 [155]7.5 0.518
Knee Osteoarthritis with Kellgren & Lawrence Grade 3 [155]7.5 0.518
Parkinson’s Disease [165]40 0.174
Peripheral Artery Disease [76]33.2 0.081
Refractory Angina due to Myocardial Ischemia (AF-
FIRM)

[109]3.9 0.040

Stable Angina [110]90 0.021
Beta-Thalassemia [169]98.3 0.002
Cerebral Adrenoleukodystrophy (CALD) [143]55 0.120
Choroideremia *
Cystic Fibrosis [120]28 0.033
Ewing’s Sarcoma [131]70 0.071
Hemophilia A [140]9.7 0.010
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Disease 𝑘 years survival rate 𝑘 years mortality rate 𝜆

𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 5 𝑘 = 10
Hemophilia B [140]9.7 0.010
Leber Congenital Amaurosis due to RPE65 Mutations *
Leber Hereditary Optic Neuropathy *
Lipoprotein Lipase Deficiency (LPLD) *
Metachromatic Leukodystrophy [128]52 0.131
Mucopolysaccharidosis Type III [125]60 0.051
Recessive Dystrophic Epidermolysis Bullosa *
Retinitis Pigmentosa *
Sickle Cell Anemia [100]96 0.004
Spinal Muscular Atrophy [83]40 0.183
Spinal Muscular Atrophy Type 1 [170]10.13 0.458
B-Cell Non-Hodgkin’s Lymphoma [31]72 0.066
BCG Unresponsive Non-Muscle Invasive Bladder Can-
cer

[119]78 0.050

Bladder Cancer, Transitional Cell Carcinoma [21]95.8 0.009
Diffuse Large B-Cell Lymphoma (DLBCL) [26]63.2 0.092
Head and Neck Cancer [22]64 0.089
Hepatocellular Carcinoma [104]10 0.461
High-Grade Glioma [112]9.87 0.463
Leukemia (Acute Lymphoblastic) [6]68.8 0.075
Leukemia (Acute Myelogenous) [7]28.7 0.250
Lymphoma [29]72 0.066
Melanoma (Locally Advanced Cutaneous) [28]64 0.089
Melanoma (Metastatic) [28]23 0.294
Multiple Myeloma (Newly Diagnosed) [60]52 0.131
Nasopharyngeal Carcinoma [32]72 0.066
NSCLC [45]23 0.294
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Disease 𝑘 years survival rate 𝑘 years mortality rate 𝜆

𝑘 = 5 𝑘 = 10 𝑘 = 1 𝑘 = 5 𝑘 = 10
NSCLC (Stage 3) [45]33 0.222
Oral Cancer (Advanced) [22]39.1 0.188
Ovarian Cancer (Platinum-Resistant) [162]1.9 0.793
Ovarian Cancer, Primary Peritoneal Cavity Cancer [23]47.6 0.148
Pancreatic Cancer (Locally Advanced) [24]12.4 0.417
Prostate Cancer [25]98 0.004
Prostate Cancer (Localized) [25]98 0.004
Prostate Cancer (Metastatic Hormone Refractory) [25]30.5 0.237
Prostate Cancer (Newly Diagnosed) [25]95.1 0.010
Recurrent Glioblastoma [122]10 0.461
Relapsed and Refractory Multiple Myeloma (RRMM) [46]9.92 0.462
Squamous Cell Cancer of Head and Neck or Esophagus [22]64 0.089
Synovial Sarcoma [33]55 0.120
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4.6.5 Calibration of Age Distribution 𝐴(𝑥)

As mentioned in the main paper, our optimization program produces triangular age distri-

butions that conforms to data, have wider support compared to fitting uniform distributions

and, avoids sharp changes in the probability density. We illustrate some examples that

compare triangle distributions with the uniform distributions with the same average age.
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(a) Comparative probability distribu-
tions when 𝜇𝑎𝑔𝑒 = 10
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(b) Comparative probability distribu-
tions when 𝜇𝑎𝑔𝑒 = 30
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(c) Comparative probability distribu-
tions when 𝜇𝑎𝑔𝑒 = 50
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(d) Comparative probability distribu-
tions when 𝜇𝑎𝑔𝑒 = 80

Figure 4-14: Age distributions given various mean ages, 𝜇𝑎𝑔𝑒. The red triangles represent
the solutions obtained by our optimization program, while the blue rectangles represent the
solutions given by an uniform distribution. The distributions from the optimization program
have a wider base of support and avoid sharp changes in density.
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4.6.6 Quality of Life Estimation

The results of our literature search and estimation for the change in QoL for each disease is

shown in the table below.

Table 4.15: Table of disease scores (𝜁), estimated quality of life values before treatment
𝑓ℎ(𝑠𝑎𝑙𝑡), after treatment 𝑓ℎ(𝑠𝑔𝑡), and the change in quality of life (ΔQoL). Asterisks (*)
indicate that the values are interpolated. Cancers are not included, as we assume that the
gains in survival dominate the gains in QoL.

Non-Cancer Disease 𝜁 f̂h(salt) ΔQoL f̂h(sgt)
Arteriosclerosis Obliterans 1 *0.775 *0.075 *0.850
Beta-Thalassemia 3 [151]0.870 *0.166 *1.000
Cerebral Adrenoleukodystrophy (CALD) 5 *0.654 *0.257 *0.911
Choroideremia 3 *0.715 *0.166 *0.881
Critical Limb Ischemia 4 *0.684 *0.212 *0.896
Cystic Fibrosis 3 [64]0.671 *0.166 *0.837
Degenerative Arthritis 3 *0.715 *0.166 *0.881
Diabetic Foot Ulcers 3 [154]0.703 [154]0.258 [154]0.961
Diabetic Peripheral Neuropathy 2 [153]0.630 [153]0.180 [153]0.810
Ewing’s Sarcoma 2 [145]0.690 *0.121 *0.811
Heart Failure 4 *0.684 *0.212 *0.896
Hemophilia A 5 [77]0.750 *0.257 *1.000
Hemophilia B 5 [77]0.700 *0.257 *0.957
Knee Osteoarthritis, Kellgren & Lawrence Grade 2 2 [134]0.900 [134]0.042 *0.942
Knee Osteoarthritis, Kellgren & Lawrence Grade 3 2 [134]0.900 [134]0.048 *0.948
Leber Congenital Amaurosis (RPE65 Mutations) 3 *0.715 *0.166 *0.881
Leber Hereditary Optic Neuropathy 3 *0.715 *0.166 *0.881
Lipoprotein Lipase Deficiency 4 *0.684 *0.212 *0.896
Lysosomal Storage Disease 5 [99]0.640 *0.257 *0.897
Mucopolysaccharidosis Type IIIa 2 [108]0.582 [108]0.264 [108]0.846
Osteoarthritis 2 [158]0.900 [158]0.040 *0.940
Parkinson’s Disease 4 [87,152]0.700 [87]0.150 [87]0.850
Peripheral Artery Disease 2 [111]0.660 [111]0.060 [111]0.720
Recessive Dystrophic Epidermolysis Bullosa 4 [117]0.590 *0.212 *0.802
Refractory Angina due to Myocardial Ischemia 2 [105]0.600 *0.121 *0.721
Retinitis Pigmentosa 3 [150]0.770 *0.166 *0.936
Sickle Cell Anemia 3 [93]0.732 [93]0.198 [93]0.930
Spinal Muscular Atrophy6 5 0.520 *0.257 *0.777
Spinal Muscular Atrophy Type 1 5 [172]0.520 *0.257 *0.777

Continued on next page

6We are unable to find QoL values for SMA only and assume that they are the same as SMA Type 1.
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Table 4.15 – continued from previous page
Non-cancer Disease 𝜁 𝑓ℎ(𝑠𝑎𝑙𝑡) ΔQoL 𝑓ℎ(𝑠𝑔𝑡)
Stable Angina 2 [121,167]0.750 [167]0.150 [167]0.900
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4.6.7 Simulation Convergence Criteria

Let 𝑋𝑘 be the results of the 𝑘-th simulation. 𝑋𝑘 has a true mean of 𝜇 and variance 𝜎2. Let

the mean of the Monte Carlo simulations over 𝑛 runs be 𝜇̂𝑛 = 1
𝑛

∑︀𝑛
𝑘 𝑋𝑘. Then, by Linde-

berg–Lévy’s Central Limit Theorem, 𝜇̂𝑛 converges in distribution to a normal distribution

with mean 𝜇 and variance of 𝑛𝜎2. The 95 percent confidence interval for 𝜇 is given by:

𝜇̂𝑛 ±
1.96𝑠𝑛√

𝑛
(4.27)

where 𝑠𝑛 is the sample variance of {𝑋1, · · · , 𝑋𝑛}.

Since we are using 1-by-T vectors, we investigated the error in our simulation by dividing

the half-range of the confidence interval in each time-step by 𝜇̂𝑛 before taking the maximum

across the time series. As can be seen from Figure 4-15, we should expect the simulated

mean to be within 1.89% of the true mean 95% of the time with 1,000,000 iterations.

Figure 4-15: Plot of 1.96𝑠𝑛

𝜇
√

𝑛
against the number of iterations of simulations of the cost.
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4.6.8 Pseudo-Code and Implementation Details

Pseudo-code

We perform a Monte Carlo simulation to determine the total number of patients undergoing

gene therapy and the cost of these gene therapies at specific points in time. The sequence

of computations for each iteration of the simulation is detailed in Algorithm 2.

Algorithm 2: Pseudocode for one iteration of the simulation.
Input : D: A list of diseases
Output: Arrays of [1× 𝑇 ], where 𝑇 is the number of time steps.

P: Number of patients over time
C: Total cost over time

P← 1 × T array of zeros
C← 1 × T array of zeros
for d in D do

p ← getPoS(d) // Get probability of success
if random.uniform(0,1) ≤ p then

// If the disease gets an approval...
existing ← getExistingPatients(d) ; // Get existing patients (1 ×
T)

new ← getNewPatients(d) // Get new patients (1 × T)
𝜌 ← getRampFunction(d) // Get penetration ramp (1 × T)
price ← getPrice(d) // Get price of GT (scalar)
P+ = (existing + new)⊗𝜌 // Store number of patients
C+ = P× price // Store cost of treatment

end
end
return P, C

Implementation

All the equations are discretized for computation from their continuous forms. When solving

the integrals using the trapezoidal rule to obtain ΔQALY, we use strip widths of 1 year across

a range from 0 to 110 years old, the resolution offered by the life tables. When simulating

the number of patients and the cost over time, we use steps of 1 month.

Our codes are implemented on Python 3.6 backed by Numpy. Our vectorized imple-

mentation averages 6.120ms per iteration over 1,000,000 runs on a single thread of an Intel
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Xeon Gold 5120, clocked at 2.20GHz with 20GB of RAM. We attempted to use PyTorch

to speed up the computations using a GPU, but it ran more slowly than a single-threaded

CPU. We determined this took place for two reasons. First, generating random numbers

must be sequential, since PyTorch delegates it solely to the CPU, which limits the amount

of parallelization that can be achieved, as dictated by Amdahl’s law. Second, because our

computations require a large amount of data from different sources, they must be batched

due to the GPU’s limited RAM. The constant movement of data through the PCIe bridge,

however, turns out to be a massive bottleneck to the overall speed.
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4.6.9 Visualization of the Cost over Time

In this section, we visualize how the monthly cost of treating patients with gene therapy will

be affected by changes to the variables. The results are summarized in the tornado chart

presented in the main paper.
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Figure 4-16: Impact on monthly cost of treating patients given a ±20% change in the time
from phase 3 to BLA.
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Figure 4-17: Impact on monthly cost of treating patients given a ±20% change in the time
from BLA to approval.
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Figure 4-18: Impact on monthly cost of treating patients given a ±20% change in the number
of existing patients.
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Figure 4-19: Impact on monthly cost of treating patients given a ±20% change in the number
of new patients.
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Figure 4-20: Impact on monthly cost of treating patients given a ±20% change in the PoS3𝐴.
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Figure 4-21: Impact on monthly cost of treating patients given a ±20% change in ΔQALY
gained.
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Figure 4-22: Impact on monthly cost of treating patients given a ±20% change in the cost
per ΔQALY.

Jan
202

0

Jan
202

1

Jan
202

2

Jan
202

3

Jan
202

4

Jan
202

5

Jan
202

6

Jan
202

7

Jan
202

8

Jan
202

9

Jan
203

0

Jan
203

1

Jan
203

2

Jan
203

3

Jan
203

4

Jan
203

5
0

1

2

3

4

5 ·109

C
os

t

-20% Θ𝑚𝑎𝑥 +20% Θ𝑚𝑎𝑥 Baseline

Figure 4-23: Impact on monthly cost of treating patients given a ±20% change in Θ𝑚𝑎𝑥.
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Figure 4-24: Impact on monthly cost of treating patients given a ±20% change in 𝑇𝑚𝑎𝑥.
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Chapter 5

Cost/Benefit Analysis of Clinical Trial

Designs for COVID-19 Vaccine

Candidates

5.1 Introduction

The COVID-19 pandemic has caused the deaths of hundreds of thousands, and led to an

economic fallout which has upended the lives of billions, and caused trillions of dollars in

financial losses. And life may not return to normalcy until a vaccine is found [12]. Despite

the many candidates undergoing testing, an approved vaccine is not expected until 2021,

even with substantially compressed development timelines [1], smooth proceeding of clinical

trials, and not accounting for possible failures [33]. It is possible—though considered highly

unlikely at the present time—that, like many non-influenza epidemics, the crisis may be over

before a successful vaccine is developed [34].

Unlike typical therapeutics that are administered to sick patients, vaccines are intended

for the healthy. Therefore, confirming the safety and effectiveness of a vaccine is of critical

importance [5]. The two primary methods for demonstrating vaccine safety and efficacy are

through either a vaccine efficacy randomized clinical trial (RCT) or a vaccine immunogenicity

RCT. In the former, large numbers of recruited healthy volunteers are randomly selected to
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receive either the vaccine or a placebo/active control and then monitored for a period of time.

At the end of the surveillance period, the difference in the proportion of infections between

the treatment and control arms is computed to demonstrate the ability of the vaccine to

prevent infection or disease. A phase 3 vaccine efficacy RCT typically takes five to ten years

to complete [23].

In a vaccine immunogenicity RCT, the primary endpoint is an immunity measurement or

surrogate marker which is known to correlate with protection against infection or a disease.

This type of trial involves a smaller number of volunteers and requires a shorter follow-

up period, and as a result, is quicker and less costly [41]. Given that SARS-CoV-2 is

a novel pathogen for which we do not yet know how to determine whether a subject is

protected, vaccine efficacy must be confirmed using the longer and more costly vaccine

efficacy RCT. While there exists the possibility of an expedited (conditional) licensure based

on immunogenicity results with post-approval commitments, we find it unlikely to occur given

the latest information. The U.S. Food and Drug Administration (FDA) has also issued a

guidance stating that “the goal of development programs should be to pursue traditional

approval via direct evidence of vaccine efficacy” [19].

A human challenge trial (HCT), in which volunteers are randomized into either the vac-

cine or placebo arm and then infected deliberately with live virus in a controlled setting, has

been proposed as an alternative to accelerate the vaccine development process. Upon chal-

lenge, HCTs can quickly demonstrate safety and efficacy of candidate vaccines in preventing

infection or disease. Depending on sample size, HCTs could also help to establish functional

immune correlates of protection to inform the design of future vaccines. Since an HCT al-

lows comparison of immune responses in vaccinated and unvaccinated individuals, precise

measurements of post-vaccination viral loads, characterization of immune responses (innate,

adaptive, cell-mediated) and antibody titers, and close monitoring and care of patients, it

can help establish the correlates of protection and prove vaccine efficacy concurrently. More-

over, a properly designed HCT can determine transmission risk of the infected in a controlled

setting with minimal exposure to investigators and the public. While concerns have been

raised regarding the ethics and morality of HCTs, it is generally accepted that HCTs are

ethically permissible when the benefits to society outweigh acknowledged risks [50], and they
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have been deemed acceptable for developing vaccines for multiple infectious diseases such

as influenza [51], malaria [53], typhoid [47], cholera [52], and dengue fever [59]. To the best

of our knowledge, there have been no published studies of a quantitative analysis of the

potential societal value of a COVID-19 HCT.

In this chapter, we compare the costs and benefits—as measured by the number of deaths

and infections avoided—of confirming the safety and efficacy of a COVID-19 vaccine using

four clinical trial designs: a traditional vaccine efficacy RCT, a vaccine efficacy RCT with an

optimized surveillance period that maximizes the benefits of the trial (ORCT), an adaptive

vaccine efficacy RCT (ARCT), and an HCT. Although our framework applies more broadly

to any vaccine candidate for any infectious disease, we calibrate our simulations using a set

of estimated epidemiological models for the SARS-CoV-2 virus (one for each of the 50 states

and Washington, D.C.) to determine attack rates and cumulative numbers of infections and

deaths in the U.S under various scenarios.

A summary of our simulation framework is displayed in Figure 5-1. We first estimate

baseline models from data and make assumptions for the evolution of the epidemic in order

to predict the attack rates over the course of the clinical trials. We then combine the attack

rates with the assumptions for the vaccine trial design to simulate the outcomes for the

clinical trials. Conditioned on the vaccine being approved, we make assumptions on the

vaccination schedule and simulate the path of the epidemic in order to compute the net

infections and deaths prevented.

We will review the designs and assumptions for the four vaccine trials considered in

Section 5.2 and explain our cost/benefit calculations in Section 5.4.1. We will then present

the epidemiological model used in our forecasts in Section 5.3 and report our simulation

results in Section 5.4. Finally, we discuss our findings and some broader issues of COVID-19

clinical trials in Section 5.5 and conclude in Section 5.6.

5.2 Vaccine Trial Design

We begin by describing the assumptions and calibrations used in each of the four vaccine

trial designs we considered in our simulations.
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Figure 5-1: Simulation framework. For each Monte Carlo simulation path, we simulate
patient-level infections data based on input trial design assumptions and attack rates from
the population epidemiological model (for an RCT, ORCT, and ARCT). At the end of the
trial (or, at each interim analysis for an ARCT), we determine if the vaccine candidate
is approved under superiority or superiority-by-margin testing. Finally, we compute the
expected net value of the trial design over 100,000 simulation paths using Equation 5.24.
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5.2.1 Traditional Vaccine Efficacy RCT

First, we consider a traditional double-blind vaccine efficacy trial design. We assume that a

closed cohort of 30,000 infection-free but at-risk healthy U.S. adults aged between 18 and

50 years will be enrolled for the study, similar to the phase 3 studies planned or underway

for the COVID-19 vaccines developed by Moderna [37], AstraZeneca [2], Pfizer/BioNTech

[6], and others. The participants will be randomized equally between the treatment and con-

trol arms, receiving either the vaccine candidate or an active control vaccine1 (e.g., vaccine

against meningococcal bacteria), respectively. Unlike clinical trials for cancer therapeutics

where patient accrual can be a challenge due to the small pool of afflicted patients and strict

inclusion/exclusion criteria, subject enrollment for vaccine efficacy studies are often acceler-

ated because there is a large pool of healthy adult volunteers to recruit from. Therefore, we

assume an accrual rate of 250 patients per day in our simulations.

Similar to the design of study protocols adopted for phase 3 clinical trials of current lead-

ing SARS-CoV-2 vaccine candidates, we assume a hypothetical COVID-19 vaccine candidate

that will be administered to subjects in two doses, 28 days apart, i.e., the prime-boost regi-

men [36, 54]. Furthermore, we assume that it takes approximately 28 days after the booster

dose for antibodies to develop (i.e., seroconversion) before surveillance can begin.

We consider efficacy in the prevention of infection by SARS-CoV-2 as the primary end-

point in our study.2 To draw meaningful conclusions from the trial results, volunteers must

be monitored long enough for a sufficient number of infections to occur. Here, we assume

a fixed post-vaccination surveillance period of 180 days for all subjects in the cohort, after

which a single safety and primary efficacy analysis will be performed to determine licensure

(see Section 5.7.1).

Finally, we assume an interval of 120 days after surveillance for the preparation of a

biologics license application (BLA) submission to the FDA, including an analysis and publi-

cation of safety, immunogenicity, and efficacy results; collection of chemistry, manufacturing,

1The use of an active vaccine (e.g., vaccine against meningococcal bacteria) as control provides some
benefit to the participants, making it more ethical. It also serves to ensure that the participants are unable
to tell whether they received the COVID-19 vaccine based on side effects such as soreness at the injection
site, reducing the possibility of behavioral changes that can bias the results of the study.

2We note that secondary endpoints include the prevention of COVID-19.
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and controls (CMC) data; the writing of a clinical study report; and subsequent review by

the FDA. Under these assumptions, we estimate the time to licensure of our hypothetical

candidate under a traditional RCT to be approximately 476 days. This is the baseline value

against which we will compare the other three trial designs.

5.2.2 Optimized Vaccine Efficacy RCT

Depending on the transmission rate of COVID-19 during the trial and the assumed efficacy

of the hypothetical candidate, a shorter surveillance period might be sufficient to observe

significant results.3 Therefore, we consider an optimized version of the traditional vaccine

efficacy RCT design (ORCT) in which the surveillance period is optimized between 30 to 180

days based on different epidemiological scenarios and vaccine efficacies to maximize the ex-

pected number of incremental infections and deaths prevented.4 Apart from the surveillance

period, we assume that the ORCT is identical to the RCT in all other aspects.

5.2.3 Adaptive Vaccine Efficacy RCT

An adaptive version of the traditional vaccine efficacy RCT design (ARCT) is based on group

sequential methods [27]. Instead of a fixed study duration with a single final analysis at the

end, we allow for early stopping for efficacy via periodic interim analyses of accumulating trial

data (see Section 5.7.2). While this reduces the expected duration of the trial, we note that

adaptive trials typically require more complex study protocols which can be operationally

challenging to implement for test sites unfamiliar with this framework. In our simulations,

we assume a maximum of six interim analyses spaced 30 days apart, with the first analysis

performed when the first 10,000 subjects have been monitored for at least 30 days. While

we have assumed interim analyses at periodic calendar time points here, we note that most
3In general, the higher the transmission rate, the shorter the surveillance period required to observe a

statistically significant difference in infection risk between the treatment arm and the control arm (or the
lack of thereof) at the same level of significance and power, assuming a constant sample size and vaccine
efficacy.

4There is a trade-off between time and power: A shorter surveillance period will, ceteris paribus, reduce
the power of the RCT. However, it will also reduce the time to licensure of the vaccine (if approved), which
can potentially prevent more infections and save more lives. Conversely, a longer surveillance period will
increase the power of the RCT and prolong the time it takes for the vaccine to be approved. See Figure 5-6
for an illustration.
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vaccine efficacy trials are event based, e.g., performing interim analyses when pre-specified

numbers of events occur. In addition, we have adopted the Pocock’s test for sequential testing

in our analysis (see Algorithm 3), but we note that some companies are using variants of the

O’Brien-Fleming test [35], which have stricter requirements for early stopping, and therefore

may lead to longer studies [27].

5.2.4 HCT

Unlike traditional vaccine efficacy field trials which require large sample sizes to observe

significant results, we assume that the HCT requires only 250 volunteers, randomized 4:1

between the treatment and control arms. Furthermore, to minimize the risk to participants,

we assume that this study will recruit only young and healthy adults aged between 18 and

25 years without any underlying chronic conditions because this group of individuals has the

lowest risk of mortality and complications after recovering from the infection [8, 43, 56].

It is clear that extensive preparations are required to set up an HCT: selecting, developing,

testing an appropriate challenge virus strain;5 manufacturing a batch of the selected challenge

strain under good manufacturing practices (GMP); and identifying the dose level required

to achieve satisfactory attack risk of non-severe clinical illness [56]. From discussions with

challenge trial experts, there seems to be a lack of consensus on the appropriate set-up time

for HCTs. We reflect this uncertainty in our simulations by incorporating a lag time for

HCTs (“set-up time”) that ranges between 30 to 120 days.

In the challenge study, volunteers are deliberately exposed to the SARS-CoV-2 virus,

reducing post-vaccination monitoring times because investigators do not need to wait for in-

fections to occur naturally as with non-challenge RCTs. Therefore, we assume a surveillance

period of only 14 days (the incubation period for COVID-19 [21, 30, 31]) for the challenge

study. Moreover, the attack rate in the control arm will be independent of the population

epidemiological model since the study will be conducted in isolated facilities. In our sim-

ulations, we assume that 90% of the subjects in the control arm will be infected after the

challenge.6
5There are multiple lineages of SARS-CoV-2 to choose from. In addition, a decision must be made

between using a fully virulent or an attenuated strain of the SARS-CoV-2 virus.
6We do not assume a 100% attack rate since the challenge strain used is likely weakened to reduce risk
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We note that the FDA is unlikely to approve an experimental vaccine tested in only 200

subjects (versus thousands in non-challenge RCTs), hence we assume that a large-scale safety

study will be performed immediately after the conclusion of the challenge study—conditional

on positive efficacy results—to evaluate the safety of the hypothetical vaccine candidate in a

broader population. Assuming a single-arm study with 5,000 subjects followed for 30 days,

we expect the process to be completed in 106 days. To accelerate licensure, we assume that

the collection of safety data will be performed in parallel with BLA submission and FDA

review. Since the latter is assumed to take 120 days, the additional safety study does not

actually add to the time to licensure of the vaccine candidate. It does, however, add to the

financial costs of the HCT (see Section 5.7.4).

Apart from the sample size, randomization ratio, set-up time, surveillance period, and

safety data requirement, we assume that the HCT is identical to the RCT in all other

respects. See Section 5.7.3 for a summary of our assumptions.

We anticipate similar post-marketing commitments for both the HCT and the RCTs, in

terms of the collection of additional safety and effectiveness data, and supplementary studies

to support the effectiveness of the vaccine in populations not included in the initial efficacy

study, e.g., infants. However, we do not model them here because they do not affect our

cost/benefit computations.

5.3 Epidemiological Model

To estimate the attack rate encountered by subjects in a given clinical trial—a key component

for our cost/benefit calculations—we require information about the spread of the COVID-19

epidemic in the U.S. We use the Susceptible-Infected-Resolving-Dead-ReCovered with social

distancing (SIRDC-SD) model proposed by Fernandez-Villaverde and Jones [16], chosen

because it is able to fit both the cumulative and daily number of deaths in all the states well

despite being a simple model, to establish a baseline for the epidemic.

to volunteers, and some individuals might have innately stronger immune systems that can counteract the
virus.
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SIRDC with Social Distancing (SIRDC-SD) Model

The model assumes that there is a constant population of 𝑁 people. The number of people

who are susceptible to infection, infected, resolving their infected status, dead, and recovered

are denoted as 𝑆𝑡, 𝐼𝑡, 𝑅𝑡, 𝐷𝑡, and 𝐶𝑡 respectively. By definition, the sum of all the people

must be equals to 𝑁 .

𝑁 = 𝑆𝑡 + 𝐼𝑡 + 𝑅𝑡 + 𝐷𝑡 + 𝐶𝑡 (5.1)

The dynamics of the epidemic are governed by the following differential equations:

𝑑𝑆𝑡

𝑑𝑡
= −𝛽(𝑡)𝑆𝑡𝐼𝑡

𝑁
(5.2)

𝑑𝐼𝑡

𝑑𝑡
= 𝛽(𝑡)𝑆𝑡𝐼𝑡

𝑁
− 𝛾𝐼𝑡 (5.3)

𝑑𝑅𝑡

𝑑𝑡
= 𝛾𝐼𝑡 − 𝜃𝑅𝑡 (5.4)

𝑑𝐷𝑡

𝑑𝑡
= 𝛿𝜃𝑅𝑡 (5.5)

𝑑𝐶𝑡

𝑑𝑡
= (1− 𝛿)𝜃𝑅𝑡 (5.6)

Unlike most epidemiological models, the SIRDC-SD model assumes a contact rate pa-

rameter, 𝛽(𝑡), that decreases exponentially over time at a rate of 𝜆 from an initial value of

𝛽0 to 𝛽* instead of a static one.

𝛽(𝑡) = 𝛽0𝑒
−𝜆𝑡 + 𝛽*(1− 𝑒𝜆𝑡) (5.7)

This dynamic 𝛽(𝑡) incorporates the belief that social distancing over time will lead to a lower

contact rate. This is particularly true in the U.S., where many cities have issued stay-at-

home orders. Many people are also voluntarily wearing masks and are avoiding crowded

places, which serve to reduce the contact rate.

The model also assumes that infections resolve at a Poisson rate 𝛾, which implies that a

person is infectious for a period of 1/𝛾 on average. Thereafter, he will stop being infectious

and transition into the ‘resolving’ state. Resolving cases will clear up at a Poisson rate of 𝜃.

There is an implicit assumption that people who recovered from the virus gain immunity to
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the virus and cannot be reinfected.

Parameter Estimation/Calibration for SIRDC-SD Model

We estimate the model for each of the 50 states in the U.S. and Washington, D.C., using the

time series of deaths in the U.S. obtained from the John Hopkins Center for Systems Science

and Engineering (CSSE) COVID-19 repository [7]. Our data was downloaded on June 16,

2020. We do not scale the number of deaths but continue to perform a centered moving

average smoothing on the daily number of deaths, as described in Fernandez-Villaverde and

Jones [16].

Let 𝐷𝑡 and 𝑑𝑡 be the cumulative and daily number of deaths from data at time 𝑡, respec-

tively. Let variables with hats denote the model’s estimated values. We use the following

optimization program to estimate the parameters of the model.

minimize
𝛽0,𝛽*,𝜆,𝐼0,𝜂

ln
(︃∑︁

𝑡

(𝐷𝑡 − 𝐷̂𝑡)2
)︃

+ ln
(︃∑︁

𝑡

(𝑑𝑡 − 𝑑𝑡)2
)︃

(5.8)

subject to:

𝐼0 < 𝑁 , (5.9)

𝑅0 = 𝜂𝐼0 , (5.10)

𝑆0 = 𝑁 −𝑅0 − 𝐼0 , (5.11)

𝛽0 > 𝛽* . (5.12)

Our loss function is given by Equation 5.8, which says that we minimize the sum of 1) the

natural logarithm of the sum of squared errors for the cumulative deaths, and 2) the natural

logarithm of the sum of squared errors for the daily deaths. The minimization program

is subjected to the four constraints. Equation 5.9 says that the initial number of infected

must be less than the entire population. Equation 5.10 imposes that the number of initial

resolving cases must be less than the number of initial infected cases. Equation 5.11 states

that the conservation of population must hold at time = 0 and Equation 5.12 constrains the

initial contact rate to be greater than the final contact rate.

We set 𝛾, 𝛿, and 𝜃 to 0.2, 0.008, and 0.1, respectively, as suggested by [16].
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The optimization program is solved using the constrained Trust-Region algorithm as

implemented in the SciPy Optimize package for each of the 50 U.S. states and Washington,

D.C. Our estimated parameters for each state are reported in Table 5.1.

Table 5.1: Estimated parameters of the SIRDC model.

State 𝑁 𝛽0 𝛽* 𝜂 𝜆

Alabama 4,903,185 0.211 0.211 0.000 21.159
Alaska 731,545 0.799 0.000 0.947 0.430
Arizona 7,278,717 2.841 0.218 0.999 0.410
Arkansas 3,017,804 0.255 0.001 1.000 0.008
California 39,512,223 1.546 0.188 0.002 0.100
Colorado 5,758,736 1.961 0.188 0.511 0.149
Connecticut 3,565,287 3.006 0.177 0.006 0.169
Delaware 973,764 0.228 0.222 0.000 53.755
District of Columbia 705,749 0.699 0.171 0.999 0.078
Florida 21,477,737 1.712 0.185 0.975 0.122
Georgia 10,617,423 3.491 0.191 0.824 0.223
Hawaii 1,415,872 3.621 0.110 0.006 0.404
Idaho 1,787,065 2.871 0.134 0.994 0.462
Illinois 12,671,821 3.895 0.208 0.275 0.238
Indiana 6,732,219 1.270 0.188 0.993 0.128
Iowa 3,155,070 3.813 0.223 0.507 0.332
Kansas 2,913,314 1.594 0.157 0.379 0.132
Kentucky 4,467,673 4.129 0.185 0.140 0.269
Louisiana 4,648,794 4.324 0.181 0.370 0.257
Maine 1,344,212 7.164 0.169 0.991 0.962
Maryland 6,045,680 1.976 0.183 0.369 0.138
Massachusetts 6,892,503 2.258 0.182 0.412 0.148
Michigan 9,986,857 4.154 0.163 0.547 0.246
Minnesota 5,639,632 0.829 0.184 0.999 0.089
Mississippi 2,976,149 3.150 0.217 0.988 0.343
Missouri 6,137,428 0.882 0.189 1.000 0.125
Montana 1,068,778 0.149 0.149 1.000 3.169
Nebraska 1,934,408 4.622 0.201 0.541 0.396
Nevada 3,080,156 3.501 0.189 0.810 0.292
New Hampshire 1,359,711 1.506 0.221 0.866 0.236
New Jersey 8,882,190 2.766 0.179 0.048 0.130
New Mexico 2,096,829 0.421 0.148 1.000 0.043
New York 26,161,672 6.095 0.148 0.461 0.229
North Carolina 10,488,084 3.224 0.194 0.997 0.324

Continued on next page
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Table 5.1 – continued from previous page
State 𝑁 𝛽0 𝛽* 𝜂 𝜆

North Dakota 762,062 1.789 0.213 0.984 0.391
Ohio 11,689,100 2.524 0.204 0.994 0.244
Oklahoma 3,956,971 3.219 0.168 0.867 0.316
Oregon 4,217,737 3.309 0.176 0.021 0.296
Pennsylvania 12,801,989 1.721 0.180 0.734 0.124
Rhode Island 1,059,361 3.872 0.214 1.000 0.499
South Carolina 5,148,714 2.219 0.192 0.488 0.180
South Dakota 884,659 0.587 0.000 0.999 0.021
Tennessee 6,829,174 0.198 0.196 0.000 84.504
Texas 28,995,881 5.141 0.200 0.279 0.311
Utah 3,205,958 1.390 0.212 0.999 0.447
Vermont 623,989 0.160 0.160 0.085 54.439
Virginia 8,535,519 6.097 0.216 0.000 0.315
Washington 7,614,893 1.490 0.175 0.968 0.138
West Virginia 1,792,147 0.194 0.193 0.000 26.549
Wisconsin 5,822,434 9.799 0.188 0.618 0.556
Wyoming 578,759 0.160 0.160 1.000 6.478

SIRDCV Model

The estimated models show how the epidemic has played out thus far but we will need to

predict how it will evolve in the future after the lockdowns are relaxed and/or vaccines are

developed. To do so, we extend the SIRDC-SD model to take into account semi-effective

vaccination. The new model, which we shall name Susceptible-Infected-Resolving-Dead-

ReCovered-Vaccinated with social distancing (SIRDCV).

We let 𝑉 and 𝜖 be the number of persons vaccinated at every time step and the effective-

ness of the vaccine, respectively. Effectiveness is defined as the performance of the vaccine

under real-world conditions in a general population whereas efficacy is defined as the ability

to protect against a virus under ideal conditions in a homogeneous population. The former

is usually is less than the latter due to several reasons, e.g., improper storage of vaccines

leading to loss of potency and non-compliance with the vaccine dosing schedule. For simplic-

ity, we assume that the effectiveness of the vaccine in the epidemiological model is identical

to the efficacy of the vaccine in the clinical trials. 𝑉 𝑟
𝑡 and 𝑉 𝑛𝑟

𝑡 represent the stock of people
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who are inoculated, and respond (𝑟) and do not respond (𝑛𝑟) to the vaccine, respectively.

𝑑𝑆𝑡

𝑑𝑡
= −𝛽(𝑡)𝑆𝑡𝐼𝑡

𝑁
− 𝑉 (5.13)

𝑑𝐼𝑡

𝑑𝑡
= 𝛽(𝑡)(𝑆𝑡 + 𝑉 𝑛𝑟

𝑡 )𝐼𝑡

𝑁
− 𝛾𝐼𝑡 (5.14)

𝑑𝑉 𝑛𝑟
𝑡

𝑑𝑡
= (1− 𝜖)𝑉 − 𝛽(𝑡)𝑉 𝑛𝑟

𝑡 𝐼𝑡

𝑁
(5.15)

𝑑𝑉 𝑟
𝑡

𝑑𝑡
= 𝜖𝑉 (5.16)

𝑑𝑅𝑡

𝑑𝑡
= 𝛾𝐼𝑡 − 𝜃𝑅𝑡 (5.17)

𝑑𝐷𝑡

𝑑𝑡
= 𝛿𝜃𝑅𝑡 (5.18)

𝑑𝐶𝑡

𝑑𝑡
= (1− 𝛿)𝜃𝑅𝑡 (5.19)

Equation 5.2 has been modified to remove vaccinated persons at every time step in

Equation 5.13. We also modify Equation 5.3 to allow people who are vaccinated but do not

respond to the inoculation to be infected in Equation 5.14. Equation 5.15 and Equation 5.16

keep track of the stock of people who are vaccinated. With this specification, the virus is

allowed to spread even when the entire population is vaccinated because not everyone will

respond to the mass inoculation.

Evolution of Epidemic with Reopening

We consider three different scenarios for the evolution of the epidemic over time. In the first,

we assume that the current situation will continue indefinitely until the end of the epidemic

(“status quo”). That is, stay-home orders and bans on social gatherings will be extended

until there are no new infections. We simply forecast ahead of time using the estimated

dynamic 𝛽(𝑡) in this scenario.

In the second, we consider that there will be a partial reopening with strict monitoring

across all states starting from June 15, 2020 (“ramp”). To model this, we assume a ramp

function for 𝛽(𝑡) that will increase to 0.22 over 90 days and maintain at that level until the

end of the epidemic. The parameters are chosen to imply a final 𝑅0 of 1.1, which reflects

close monitoring and contact tracing, and if needed, temporary quarantines to arrest clusters

of infections that may pop up. The contact rate parameter, 𝛽, in this scenario is described
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by Equation 5.20.

𝛽′(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝛽(𝑡) ∀𝑡 < 𝑇𝑣

𝛽(𝑇𝑣) + 𝛽𝑠𝑠 − 𝛽(𝑇𝑣)
90 𝑡 ∀𝑇𝑣 ≤ 𝑡 ≤ 𝑇𝑣 + 90

𝛽𝑠𝑠 otherwise

(5.20)

In the third, we consider the behavioral-based response proposed by John Cochrane

(“behavioral”), whereby people voluntarily reduce social contact when they perceive danger

(e.g., when they observe that there is an uptick in the daily number of deaths) and increase

social contact when they observe that there is a decrease in risk (e.g., when they observe

a reduction in the daily number of deaths) [10]. This scenario is modeled by making the

percentage change in contact rate parameter negatively proportionate to the change in the

observed death rate over an interval of 𝑡𝑜. That is,

1
𝛽

𝑑𝛽

𝑑(Δ𝐷
𝑁

)
= −𝑘 (5.21)

Integrating Equation 5.21 will yield Equation 5.22.

ln 𝛽 = 𝑐− 𝑘
Δ𝐷

𝑁
= 𝑐− 𝑘

𝐷𝑡 −𝐷𝑡−𝑡𝑜

𝑁
(5.22)

The exponent of 𝑐 is the long term steady-state value of 𝛽. 𝑘 can be interpreted as the

percentage increase/decrease in 𝛽 if there is a decrease/increase in the death rate. In our

simulations, 𝑡0, 𝑐, and 𝑘 are set to 7, ln 𝛽𝑠𝑠, and 50,000, respectively. The default scenario

of 𝑐 = ln 0.2 will correspond to a 𝑅0 of 1 when approximately 16,000 deaths per week are

observed in the U.S. This behavior will start immediately on June 15, 2020, to be consistent

with the second scenario.

The new contact rate parameter in this case is defined by Equation 5.23.

𝛽′(𝑡) =

⎧⎪⎨⎪⎩
𝛽(𝑡) ∀𝑡 < 𝑇𝑣

𝑒𝑐−𝑘
𝐷𝑡−𝐷𝑡−𝑡𝑜

𝑁 otherwise
(5.23)

We give an example of how the basic reproduction number, or 𝑅0, may look for each of

the scenarios in Figure 5-2.
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Figure 5-2: An illustration of how the 𝑅0 = 𝛽/𝛾 changes over time for each of the three
scenarios: status quo, a ramp increase, and behavioral-based response.

5.3.1 Population Vaccination Schedule

We assume that vaccines will be immediately available for distribution and inoculation upon

licensure. This reflects how the leading vaccine companies have been scaling up their manu-

facturing capabilities and started producing millions of doses at industrial scale in parallel to

the clinical trials [13, 38] and well before the demonstration of vaccine efficacy and safety. We

model three ways that the susceptible population will be vaccinated upon vaccine licensure:

1M, 10M, and infinite doses administered per day. In the last case, the entire U.S. popu-

lation is assumed to be vaccinated the day after licensure. While unrealistic, this gives an

upper bound on the potential benefit of vaccine development. We assume that the vaccines

are distributed proportionally to states according to their relative population at the start of

the epidemic.

5.3.2 Forecasting Infections and Deaths

We forecast the cumulative number of infections and deaths in each state between Febru-

ary 29, 2020, and December 31, 2022, using the SIRDCV described by Equation 5.13 to

Equation 5.19 before summing over all states in order to produce estimates for the entire
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U.S. The attack rate at time 𝑡 is the ratio of the number of new infections at time 𝑡 to the

number of susceptible persons at time 𝑡− 1. Illustrations of how the cumulative number of

infections and deaths change over time given the different evolution paths of the epidemic

and vaccination schedules are shown in Figure 5-3
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Figure 5-3: Illustration of how the cumulative number of infections and deaths change over
time given the different evolution paths of the epidemic and vaccination schedules. We
assume that the epidemic evolves based on our scenarios after June 15, 2020, and that the
vaccine is approved on March 13, 2021. The vaccine efficacy assumed is 50%.
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5.4 Results

Given the parameters for each trial design and an epidemiological model, we simulate the

outcome of hypothetical clinical trials for all four designs and measure their incremental dif-

ferences. Our cost/benefit methodology is described in Section 5.4.1, we report the numerical

results in Section 5.4.2, and discuss them in Section 5.5.

5.4.1 Cost/Benefit Analysis

We apply cost benefit analysis to quantify and compare the net value of each trial design.

We focus on public health outcomes—that is, the risks of mortality and morbidity—and

provide a qualitative discussion of the societal and financial impact in Section 5.5.

As shown by Montazerhodjat et al. [39], Isakov et al. [24], and Chaudhuri et al. [9], the

value associated with a pathway is computed as the difference between the post-trial benefit

and the in-trial cost (Equation 5.24). The former estimates the net benefit of the trial to

society at large while the latter measures the cost of conducting the study to volunteers in

the trial.

Net Value = Post-trial Benefit− In-trial Cost (5.24)

We quantify the cost of a trial design in terms of the number of COVID-19 infections

and deaths observed in the clinical study. For post-trial benefit, we first consider a baseline

scenario in which a vaccine is never developed and the epidemic is allowed to run its course.

Next, we simulate the case where a vaccine is approved at some point in time depending

on the duration of the trial design. The post-trial benefit is then the difference in the

cumulative number of infections and deaths in the population between the two scenarios,

i.e., the incremental number of infections and deaths prevented with a vaccine licensure. In

cases where the vaccine candidate is rejected,7 net value will be negative since post-trial

benefit is zero but cost has been incurred for conducting the clinical trial. Lastly, we assume
7In our simulations, we consider a vaccine candidate with some efficacy 𝜖 and assume that infections in

the clinical study follow a stochastic process (e.g., binomial distribution). Due to this randomness, false
rejections of the efficacious vaccine might occur. This is also known as type II error. The false negative rate
depends on the trial design (e.g., sample size, surveillance period, maximum type I error, superiority testing)
and the epidemiological model (e.g., attack rate in the clinical study).
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that the hypothetical vaccine candidate is generally well tolerated and any vaccine-related

adverse reactions are mild and negligible with respect to in-trial costs and post-trial benefits

[18, 25, 42].

5.4.2 Simulation Results

We compute the expected net value of different trial designs using Monte Carlo simulations

and asymptotic distributions of the efficacy test statistics (see Section 5.7.1). Figure 5-1 illus-

trates the inputs, computations, and outputs of our simulation framework. We assume that

all trials start on August 1, 2020, and simulate the epidemiological models until December

31, 2022. We perform sensitivity analysis over a wide range of trial design, epidemiological

model, and population vaccination schedule assumptions (see Table 5.2), covering 756 differ-

ent scenarios. We summarize our results in Table 5.3 and Section 5.7.6. In addition to our

results, we release an open-source version of our simulation software, and encourage readers

to rerun our simulations with their own preferred set of assumptions and inputs.

Assuming superiority testing and a vaccine efficacy of 50%, we estimate the date of

licensure of the hypothetical vaccine candidate to be some time in November 2021 under

an RCT (476 days), between June and August 2021 under an ORCT (326 to 380 days),

between April and June 2021 under an ARCT (246 to 306 days), and between March and

June 2021 under an HCT (221 to 311 days). Apart from an RCT which has a fixed trial

duration, the dates of licensure from the ORCT and ARCT depend largely on the status of

the epidemic during the clinical trial. If the transmission rate of the disease is low (e.g., due to

social distancing or other non-pharmaceutical interventions), an extended surveillance period

is required to accrue enough natural infections in order to observe a statistically significant

difference in infection risk between the treatment arm and the control arm. Conversely, when

the transmission rate is high, a short surveillance period is sufficient to observe significant

results. We note that an HCT, on the other hand, does not depend on the epidemic situation

but is instead limited by the time required to set up the challenge model. In general, we

find that the time to licensure under ORCT and ARCT decreases with increasing vaccine

efficacy: the greater the efficacy, the easier it is to observe a significant treatment effect.

We find that the ARCT provides the greatest expected net benefit among the three RCT
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Table 5.2: Sensitivity analysis with respect to trial design, epidemiological model, and pop-
ulation vaccination schedule assumptions.

Parameter Values

Trial design RCT, ORCT, ARCT, HCT
Vaccine efficacy of hypothetical candidate (%) 30, 50, 70, 90
Set-up time for HCT (days) 30, 60, 90, 120
Efficacy requirement Superiority, superiority by margin of 50% [5]
Epidemiological scenario Status quo, ramp, behavioral
Population vaccination schedule (doses/day) 1M, 10M, infinite

designs in almost all scenarios. The utility of an HCT versus the RCTs, however, depends

critically on the set-up time and the dynamics of the epidemic. For example, assuming

superiority testing, a vaccine efficacy of 50%, the behavioral epidemiological model, and a

population vaccination schedule of 10M doses per day, we estimate that the ARCT can help

accelerate licensure by almost 8 months versus the RCT, thus preventing approximately 2.9M

incremental infections and 23,000 incremental deaths from COVID-19 in the U.S. versus the

latter.

Under the same set of assumptions, an HCT that requires 30 days to set up can further

reduce the time to licensure by a month, thus preventing approximately 1.1M more infections

and 8,000 more deaths versus the ARCT. However, the advantage of the HCT vanishes when

its set-up time is long: an HCT that requires 90 days to set up takes about one month longer

to reach licensure as compared to the ARCT, leading to around 1.0M more infections and

8,000 more deaths versus the latter (see Figure 5-4a). Under such circumstances, the use of

an HCT is worthwhile only when the prevalent transmission rate is low. If we consider the

status quo scenario instead of the behavioral epidemiological model, the time to licensure is

about one month shorter under the HCT than under the ARCT even with a 90 day set-up

period (see Figure 5-4b). In this case, the HCT prevents approximately 60,000 incremental

infections and 500 incremental deaths versus the ARCT. We observe similar trends under

superiority-by-margin testing at a threshold of 50%.
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Table 5.3: Expected number of incremental infections and deaths avoided in the U.S. under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority testing, and 10M doses of a vaccine per day are available after
licensure, compared to the baseline case in which no vaccine is ever approved.

Vaccine Efficacy (%)

30 50 70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]
Status Quo

RCT 3,914 31 11,539 92 19,130 151 21,557 170
ORCT 5,589 45 16,802 134 33,757 269 50,288 401
ARCT 9,596 76 31,473 250 66,641 531 83,522 665
HCT (30-day set-up) 140,731 1,124 152,263 1,216 156,885 1,254 159,876 1,277
HCT (60-day set-up) 110,046 879 118,937 950 122,482 979 124,777 997
HCT (90-day set-up) 86,466 690 93,370 745 96,111 768 97,886 782
HCT (120-day set-up) 68,213 544 73,611 587 75,747 605 77,132 615

Behavioral
RCT 363,382 2,845 386,081 3,026 397,396 3,117 404,562 3,174
ORCT 1,139,585 9,061 1,377,157 10,955 1,426,014 11,345 1,457,500 11,598
ARCT 2,588,881 20,647 3,248,449 25,924 3,389,541 27,052 3,473,035 27,720
HCT (30-day set-up) 3,903,566 31,167 4,309,316 34,411 4,481,448 35,789 4,591,750 36,671
HCT (60-day set-up) 2,795,316 22,301 3,082,676 24,598 3,205,159 25,579 3,283,975 26,209
HCT (90-day set-up) 2,011,244 16,028 2,211,985 17,633 2,297,350 18,316 2,352,436 18,757
HCT (120-day set-up) 1,466,239 11,668 1,605,833 12,784 1,664,613 13,255 1,702,601 13,558

Ramp
RCT 1,075,634 8,316 1,131,531 8,764 1,160,564 8,996 1,179,234 9,145
ORCT 2,853,202 22,569 3,839,945 30,432 3,973,769 31,501 4,050,013 32,111
ARCT 5,711,310 45,401 7,442,922 59,253 7,924,650 63,107 8,071,866 64,285
HCT (30-day set-up) 8,744,377 69,672 9,452,413 75,330 9,725,022 77,511 9,897,591 78,892
HCT (60-day set-up) 6,814,762 54,235 7,381,425 58,762 7,602,878 60,534 7,743,514 61,659
HCT (90-day set-up) 5,266,925 41,851 5,711,663 45,404 5,887,421 46,811 5,999,381 47,706
HCT (120-day set-up) 4,053,134 32,141 4,396,033 34,879 4,532,400 35,970 4,619,521 36,667
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Figure 5-4: Dates of licensure under RCT, ORCT, ARCT, HCT (30-day set-up time), and
HCT (90-day set-up time), assuming superiority testing, a vaccine efficacy of 50%, and a
population vaccination schedule of 10M doses per day.

177



5.5 Discussion

There has been a plethora of papers highlighting various ethical considerations for conducting

HCTs [3, 20], some specifically for COVID-19 [11, 14, 26, 44, 50, 58]. Some of the main ethical

concerns are: (1) what is the explicit scientific rationale for, and societal value of, an HCT;

(2) whether the risks of harm to the subjects and the public at large are understood by

the scientists and have been minimized; (3) whether informed consents have been obtained

from subjects after they are given full disclosures of the risks involved; and (4) whether the

subjects have been selected fairly and given appropriate compensation for both the risk and

actual harm brought on by HCTs. Most bioethicists generally accept that these concerns

can be addressed within the existing ethical framework for human medical research.

Our paper addresses the first and second of these ethical concerns. We provide scientific

justifications for COVID-19 HCTs by considering how conducting them can allow companies

to learn about the protection curves and accelerate the development of vaccines against

SARS-CoV-2.

However, our analysis does not address the latter two ethical considerations as they con-

cern the execution of HCTs, which is beyond the scope of this paper. Nonetheless, companies

and scientists seeking to perform HCTs, and especially regulators, will have to address those

concerns to preserve public trust and avoid a public backlash that could jeopardize other

important medical research critical to addressing the current epidemic.

Some scientists argue that “a single death or severe illness in an otherwise healthy vol-

unteer would be unconscionable” [11]. However, it can be argued that allowing tens of

thousands of individuals to die by denying the consent of an informed individual to take a

calculated risk is equally unconscionable. In this paper, we adopt the Benthamite approach

[4], where every individual’s utility is weighted equally in the aggregate utility function, as

is the common convention in public economics analyses. Within this ethical perspective, our

calculations show that an HCT can potentially provide substantial public health benefits in

terms of accelerating vaccine development and reducing the burden of coronavirus-related

mortality and morbidity in the U.S. —in some cases, by more than 1.1M infections and

8,000 deaths compared to the best performing RCT—when conducted early in the pan-
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demic’s life cycle and in cases where the spread of COVID-19 in the population is muted

due to non-pharmaceutical interventions.

We also expect the financial costs of an HCT—which includes the cost of liability

protection—to be lower than those of a traditional vaccine efficacy RCT, adding further

support for a challenge design (see Section 5.7.4 for further discussion). While we have

focused on public health outcomes here, it is clear that accelerated vaccine development

provides tremendous societal and economic benefits as well—e.g., savings in insured medi-

cal costs, direct medical expenditures, and hospitalization costs, and accelerated economic

recovery from an earlier reopening.

We emphasize that the expected costs and benefits of a clinical trial depend critically

on many assumptions about existing conditions. For example, recruiting subjects in suffi-

cient numbers and diversity can sometimes present a challenge for clinical trials involving

experimental vaccines (although, in the case of HCTs for COVID-19, the organization 1Day

Sooner reports over 32,000 registered volunteers as of July 27, 2020). Also, we do not in-

clude set-up time for non-challenge RCTs because phase 3 vaccine efficacy trials are already

imminent as of now. Moreover, we assume a relatively short set-up time for HCTs because

a challenge study can be set up relatively quickly using a wild-type strain [56], and the

National Institute of Allergy and Infectious Diseases (NIAID) appears to have already made

some headway in manufacturing challenge doses [48]. If, instead, we assume comparable

set-up times (e.g., two months) and start dates for both an HCT and non-challenge RCTs,

we expect that an HCT can accelerate licensure by two months when compared to an adap-

tive RCT.8 Some have argued that at least one to two years is required to develop a robust

model from scratch [11]. In this case, our results indicate that an ARCT will almost always

be faster than an HCT. However, even if an HCT with a long set-up time does not lead to

faster vaccine licensures over an ARCT given current conditions, the creation of a standing

HCT agent and setting up an HCT now can provide a hedge against potential failures in the

current crop of vaccine candidates. By having an approved, ready-to-go challenge virus and

ready-to-go HCT sites that vaccine developers can access immediately, the approval process

for as-yet-untested SARS-CoV-2 vaccine candidates can be accelerated when required. For

8Assuming superiority testing, a vaccine efficacy of 50%, and the behavioral epidemiological model.
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a pandemic like COVID-19, such a hedge will almost always show substantial net benefits

relative to its costs.

HCTs have several other benefits that will be more obvious as the pandemic progresses.

They require many fewer eligible volunteers, whose numbers will dwindle as the pandemic

progresses. They do not depend on attack rates at clinical trial sites which are notori-

ously difficult to estimate and highly dependent on non-pharmaceutical interventions such

as lockdowns and other social-distancing policies. They also avoid logistical problems such as

identifying subjects, obtaining subjects’ consent, obtaining institutional review board’s ap-

proval or tracking subjects, particularly when attempting large-scale clinical trials in places

where contract research organizations (CROs) have little experience.

It is conceivable that multiple vaccines—instead of the single vaccine in our simulation

study—are tested concurrently in a single trial design [57]. For example, five vaccines, such as

those selected by Operation Warp Speed [28], could be tested concurrently in a six-arm trial

(five vaccine arms and a control arm), requiring 40% fewer test subjects, thereby reducing

in-trial expected morbidity and mortality costs by the same amount. The benefits can be

increased if an adaptive platform clinical trial—designed to eliminate ineffective vaccines at

the first signs of futility—is adopted. A clinical trial testing multiple vaccines can also reduce

competition for volunteers, a problem that continues to plague vaccine developers [22].

We choose to quantify the cost and benefits of the clinical trials by measuring the number

of infections and deaths avoided, and refrain from performing a traditional health technology

assessment, such as comparing the economic value of an HCT versus an RCT using quality-

adjusted life years measures or willingness to pay estimates such as the value of a statistical

life. Performing such computations is straightforward given the output of our simulations,

but we have refrained from doing so in deference to non-economist stakeholders who find it

offensive to use any pecuniary measures when discussing the loss of human life.

Finally, our analysis focuses mainly on the U.S. for practical reasons involving access

to data with which to calibrate our simulations and the broader goal of informing U.S.

public health officials and policymakers as the country enters the final stages of vaccine

development. However, a vaccine licensure may apply internationally. Given that the U.S.

currently comprises 25% of all confirmed COVID-19 cases (as of July 7, 2020) [7], if the
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assumptions made in our study also hold internationally, the net benefits for all the clinical

trials will scale by a factor of 4, in which case HCTs can save an additional 4.4M infections

and 32,000 deaths compared to the best performing RCT in certain situations.

We highlight that these figures depend heavily on the development of the epidemic in

the U.S. moving forward. We have considered three simple scenarios, status quo, ramp, and

behavioral, corresponding to low transmission, moderate transmission, and behavioral-based

response, respectively. There are clearly many other sources of uncertainty that are not re-

flected here. For example, non-adherence to social distancing advisories and/or resistance to

precaution recommendations such as wearing a mask in public will lead to an uncontrolled

outbreak, which will help to accelerate non-challenge RCTs, making them attractive even

when compared to an HCT with a short set-up time. We have found it difficult and imprac-

tical to incorporate these uncertainties in our assumptions due to the speed at which things

are evolving and the unpredictability of public reaction. In addition, studies that have at-

tempted to incorporate such uncertainties in their epidemic model report huge error bounds

in their projections [46]. The wide confidence intervals prevent us from drawing any useful

conclusions, which severely limit the usefulness of such models. Therefore, we recommend

readers not to take our results as final or definitive, but to re-run our simulations with their

own preferred set of assumptions, calibrated using the most current epidemiological data.

5.6 Conclusion

Our paper presents a systematic framework for quantitatively accessing the in-trial and

societal cost/benefit trade-offs of various clinical trial designs in terms of infections and

deaths averted. We hope that this framework will allow stakeholders to make more informed

practical and ethical decisions regarding accelerating COVID-19 vaccine development in the

ongoing pandemic.
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5.7 Supplementary Materials

In this subsection, we include detailed results about clinical trial design (Sections 5.7.1 –

5.7.4), and additional simulation results (Section 5.7.6).

5.7.1 Efficacy Analysis

The protective effect of a vaccine—that is, vaccine efficacy—is defined as [41]:

𝜀 = 1− 𝑝1

𝑝0
= 1− 𝑐1/𝑛1

𝑐0/𝑛0
(5.25)

where 𝜀 refers to the vaccine efficacy, 𝑝1 and 𝑝0 are the attack rates observed in the treatment

arm and the control arm, respectively, 𝑛1 and 𝑛0 refer to the sample sizes of the treatment

arm and the control arm, respectively, and 𝑐1 and 𝑐0 refer to the number of infections observed

in the treatment arm and the control arm, respectively. The attack rate is defined as the

fraction of a cohort at risk that becomes infected during the surveillance period. There are

conflicting views on the possibility of human reinfections [29, 49]; for simplicity, we rule out

recurrent infections in our simulations.

Superiority Testing

First, we consider superiority testing to determine the licensure of a vaccine candidate at

the end of a clinical study, e.g., RCT, ORCT, or HCT. The aim is to demonstrate that

the efficacy of the candidate in the prevention of infections is greater than zero. Such a

criteria might be appropriate for emergency use authorization during a pandemic where no

alternative treatments are available. For this, we consider the following null and alternative

hypotheses:

𝐻0 : 𝑝1 − 𝑝0 = 0 , 𝐻1 : 𝑝1 − 𝑝0 ̸= 0 (5.26)

The test statistic under the null hypothesis is given by:

𝑧 = |𝑝1 − 𝑝0| − 𝑎√
2𝑝𝑞𝑎

, 𝑎 = 𝑟 + 1
2𝑟𝑛0

, 𝑟 = 𝑛1

𝑛0
(5.27)

𝑝 = 𝑐1 + 𝑐0

𝑛0(𝑟 + 1) = 𝑟𝑝1 + 𝑝0

𝑟 + 1 , 𝑞 = 1− 𝑝 (5.28)
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where 𝑧 is the test statistic. For large samples, 𝑧 is approximately the standard Normal

distribution.

The power of a vaccine efficacy study under superiority testing is given by [15, 17]:

𝑧𝛽 =
|𝑃1 − 𝑃0|

√︁
𝑟𝑛0 − (𝑟 + 1)/|𝑃1 − 𝑃0| − 𝑧𝛼/2

√︁
(𝑟 + 1)𝑃𝑄̄

√
𝑃1𝑄1 + 𝑟𝑃0𝑄0

(5.29)

𝑃 = 𝑟𝑃1 + 𝑃0

𝑟 + 1 , 𝑄̄ = 1− 𝑃 (5.30)

𝑃1 = (1− 𝜖)𝑃0 , 𝑄𝑖 = 1− 𝑃𝑖, 𝑖 ∈ {0, 1} (5.31)

where 𝛼 is the level of significance, 𝛽 refers to the type II error under the alternative hy-

pothesis, 𝑧𝑎 is the 100(1 − 𝑎) percentage points of the standard Normal distribution, 𝑃1

and 𝑃0 refer to the underlying (true) attack rate in the treatment arm and the control arm,

respectively, and 𝜖 refers to the true vaccine efficacy.

Superiority-by-Margin Testing

Next, we consider the case where superiority by margin (also known as super-superiority)—

that is, a vaccine efficacy that is greater than some minimum threshold—must be demon-

strated for full licensure:

𝐻0 : 𝜗− 𝜃 = 0 , 𝐻1 : 𝜗− 𝜃 ̸= 0 (5.32)

where 𝜗 = 𝑝1/𝑝0, and 𝜃 is a specified minimum threshold larger than 0 and smaller than 1.

The test statistic under the null hypothesis is given by [15]:

𝜒2 = (𝑝1 − 𝜃𝑝0)2

(𝑝1𝑞1 + 𝑟𝜃2𝑝0𝑞0)/𝑟𝑛0
, 𝑞𝑖 = 1− 𝑝𝑖, 𝑖 ∈ {0, 1} (5.33)

where 𝜒2 is the test statistic, and 𝑝1 and 𝑝0 are the large sample approximations of the con-

strained maximum likelihood estimate of 𝑃1 and 𝑃0, respectively, under the null hypothesis

(see below for closed-form solutions). For large samples, 𝜒2 is approximately the chi-square

distribution on one degree of freedom.

The power of a vaccine efficacy study under superiority-by-margin testing is given by:

𝑧𝛽 = (𝜃𝑃0 − 𝑃1)
√

𝑟𝑛0 − 𝑧𝛼/2
√

𝑝1𝑞1 + 𝑟𝜃2𝑝0𝑞0√
𝑃1𝑄1 + 𝑟𝜃2𝑃0𝑄0

(5.34)
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Asymptotics for Superiority-by-Margin Testing

The constraint is:

𝑝1 = 𝜃𝑝0 (5.35)

where 𝑝1 and 𝑝0 are the constrained maximum likelihood estimates of 𝑃1 and 𝑃0, respectively,

under the null hypothesis.

The closed-form solution is given by:

𝑝0 = −𝐵 −
√

𝐵2 − 4𝐴𝐶

2𝐴
(5.36)

𝐴 = (𝑟 + 1)𝜃𝑛0 , 𝐵 = −(𝜃𝑟𝑛0 + 𝑐1 + 𝑛0 + 𝜃𝑐0) , 𝐶 = 𝑐1 + 𝑐0 (5.37)

The asymptotic approximation is:

𝑝0 = −𝐵 −
√

𝐵2 − 4𝐴𝐶

2𝐴
, 𝑝1 = 𝜃𝑝0 (5.38)

𝐴 = (𝑟 + 1)𝜃 , 𝐵 = −(𝜃𝑟 + 𝑟𝑃1 + 1 + 𝜃𝑃0) , 𝐶 = 𝑟𝑃1 + 𝑃0 (5.39)

5.7.2 Adaptive Vaccine Efficacy RCT

We propose an adaptive vaccine efficacy RCT design (ARCT) based on group sequential

methods. First, we consider an alternative definition of vaccine efficacy based on relative

force of infection, as opposed to relative risk of infection in Equation 5.25:

𝜀 ≈ 1− Λ1

Λ0
, Λ𝑖 =

∫︁ 𝑡𝑠

0
𝜆𝑖(𝑢) d𝑢, 𝑖 ∈ {0, 1} (5.40)

where 𝜆1 and 𝜆0 refer to the force of infection in the treatment arm and the control arm,

respectively, and 𝑡𝑠 refers to the duration of the surveillance period. The force of infection of

an infectious disease is defined as the expected number of new cases of the disease per unit

person-time at risk. When the risk of infection is small, e.g., smaller than 0.10, the risk of

infection is approximately equal to the cumulative force of infection [41].

Next, we note that the force of infection and the hazard function in survival analysis

actually take the same functional form [41]. This suggests that infections can also be treated
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as time-to-event data, in addition to binary variables as in Equation 5.25. By performing

Cox regression on the time-to-infections data of a clinical trial, we can estimate the efficacy

of the vaccine candidate from the hazard ratio of the treatment arm versus the control arm:

𝜀 ≈ 1− exp(𝛽) , 𝜆(𝑡|𝑧) = 𝜆baseline(𝑡) exp(𝛽𝑧) (5.41)

where 𝑧 refers to the treatment variable, i.e., whether the patient is vaccinated or not, 𝜆baseline

is the baseline hazard function, and 𝛽 is the log hazard ratio. We note that the proportional

hazards assumption is not unreasonable if we assume that the proportion of cases prevented

by the vaccine is independent of the possibly non-homogeneous force of infection [41].

We consider the following null and alternative hypotheses based on the coefficient of the

treatment variable in the Cox model:

𝐻0 : 𝛽 − 𝛽0 = 0 , 𝐻1 : 𝛽 − 𝛽0 ̸= 0 (5.42)

where 𝛽0 is 1 for superiority testing and smaller than 1 for superiority-by-margin testing.

The test statistic under the null hypothesis is given by:

𝑧 = 𝛽 − 𝛽0

se(𝛽)
(5.43)

where 𝛽 is the maximum partial likelihood estimate of 𝛽 and se(𝛽) is its standard error, and

𝑧 is asymptotically Normal. This is also known the Wald test. It turns out this statistic

satisfies the criteria for group sequential testing [27], allowing us to perform periodic interim

analyses of accumulating trial data, rather than just a single final analysis at the end of

a traditional vaccine efficacy RCT (see Figure 5-5). Under the group sequential testing

framework, we estimate a new Cox model at each interim calendar time point based on the

infections data that has accrued up to that point, over the course of the study surveillance

period. At the interim analyses, we decide whether to stop the study early by rejecting the

null hypothesis, i.e., approving the vaccine candidate, or to continue on to the next analysis

by monitoring the subjects for a longer period of time [27].

We adopt Pocock’s test for sequential testing [45]. It involves repeated testing at suc-

cessive interim analyses at some constant nominal significance level over the course of the
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study (see Algorithm 3). The critical value is chosen to satisfy the maximum type I error

requirement, e.g., 5%.

Algorithm 3: Pocock’s test. 𝑘 refers to the 𝑘th interim analysis, 𝐾 refers to the
maximum number of interim analyses planned, 𝑧𝑘 refers to the test statistic at the
𝑘th interim analysis, and 𝑐(𝐾, 𝛼) refers to the nominal significance level which is a
function of 𝐾 and 𝛼, the maximum type I error allowed.

for 𝑘 = 1, . . . , 𝐾 do
if |𝑧𝑘| ≥ 𝑐(𝐾, 𝛼) then

stop, reject 𝐻0
end
else

if 𝑘 == 𝐾 then
stop, accept 𝐻0

end
else

continue
end

end
end

In our simulations, we consider a maximum of six interim analyses spaced 30 days apart,

with the first analysis performed when the first 10,000 subjects enrolled have been monitored

for at least 30 days. To keep the type I error at 5%, we consider a nominal significance level

of 2.453 at each interim analyses [45].

For each of the epidemiological-model and population-vaccination schedule assumptions,

we compute the expected net value of ARCT over 100,000 Monte Carlo simulation paths.

For each path, we track the infections data of 30,000 patients for up to 180 days of surveil-

lance. In addition, we estimate up to six Cox proportional hazards models, one at each

interim analysis. The simulation process is computationally intensive despite parallelization,

requiring approximately 8 hours to complete on the MIT Sloan “Engaging” high-performance

computing cluster using over 400 processors.

While we have considered a simple adaptive design in this paper, we note that our

framework can be easily extended to other sequential boundaries such as the O’Brien &

Fleming’s Test, to two-sided tests that allow for early stopping under the null hypothesis,

i.e., early stopping for both futility and efficacy, and to flexible monitoring using the error
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Figure 5-5: Infections as time-to-event data, measured from the start of surveillance. The
horizontal lines represent the time to infection of ten subjects enrolled at different times. We
monitor the subjects until an infection occurs or the end of study, whichever comes earlier. A
solid circle at the right end denotes an infection, whereas a hollow circle indicates censoring.
In the figure, we consider up to six analyses. At an interim analysis, subjects are considered
censored if they are known to be uninfected and at risk at that point in time. Information
on these subjects will continue to accrue through the surveillance period.

spending approach, instead of using a constant nominal significance level for all interim

analyses [27].
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5.7.3 Trial Design Assumptions

Table 5.4: Trial design assumptions common across RCT, ORCT, ARCT, and HCT.

Parameter Value

Cohort Closed and fixed
Accrual rate (patients/day) 250
Control arm Vaccine for meningococcal bacteria
Treatment arm Vaccine candidate for COVID-19
Vaccination schedule Two doses administered 28 days apart
Vaccine efficacy (%) 30–90
Time for immune response (days) 28
Endpoint Infection by SARS-CoV-2
Time for safety data collection, data analysis, and FDA review (days) 120
Type I error (%) 5

Table 5.5: Trial design assumptions specific to RCT, ORCT, ARCT, and HCT.

Parameter RCT ORCT ARCT HCT

Set-up time (days) – – – 30–120
Sample size 30,000 30,000 30,000 250
Inclusion criteria Healthy adults aged 18–50 years Healthy adults aged 18–50 years Healthy adults aged 18–50 years Healthy adults aged 18–25 years
Randomization ratio (treatment:control) 1:1 1:1 1:1 4:1
Time for enrollment (days) 120 120 40–120 1
Surveillance period (days) Fixed and constant for all subjects; 180 Fixed and constant for all subjects; 30–180 Calendar time interval Fixed and constant for all subjects; 14
Attack rate (%) Depends on epidemiological model Depends on epidemiological model and surveillance period Depends on epidemiological model and surveillance period 90
Efficacy analysis Single analysis at end of study Single analysis at end of study Up to 6 interim analyses spaced 30 days apart Single analysis at end of study
Additional safety study – – – Single-arm with 5,000 subjects
Estimated time to licensure (days) 476 326–476 246–396 221–311
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5.7.4 Financial Cost of Vaccine Efficacy Studies

There are many sources of costs involved in a clinical trial, e.g., patient recruitment and

retention, medical and administrative staff, clinical procedures and central laboratory, site

management, and data collection and analysis. For a back-of-the-envelope calculation, we

assume that the cost per subject in a phase 3 vaccine efficacy trial is around US$5,000.

This suggests a cost of US$150M for a study with 30,000 subjects, close to that estimated

for rotavirus vaccines [32] in one of the very few studies that estimate the cost of vaccine

development [55]. The figure is very high as compared to the median expense of a phase

3 trial for novel therapeutic agents, estimated to be US$19M [40]. However, this is not

surprising because vaccine efficacy studies are notorious for being costly due to the large

sample sizes and lengthy follow-up durations. If we assume that challenge studies have a

cost per subject that is ten times higher, i.e., US$50,000 per volunteer, the estimated cost of

an HCT is approximately US$37.5M, where we have assumed a cost of US$5,000 per subject

for the follow-up single-arm safety study comprising of 5,000 subjects. This makes up just

25% of the cost of an RCT with 30,000 subjects.
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5.7.5 Trade-off Between Time and Power

As mentioned in the main text, there is a trade-off between time and power. A shorter

surveillance period will, ceteris paribus, reduce the power of the RCT. However, it will also

reduce the time to licensure of the vaccine (if approved), which would prevent more infections

and save more lives. Conversely, a longer surveillance period would increase the power of

the RCT but also prolong the time it takes for the vaccine to be approved. We illustrate the

interaction between power and infections avoided over time in Figure 5-6.
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Figure 5-6: An illustration of the interaction between power and infections avoided over time.
(Top left panel) The number of infections avoided decreases over time. (Top right panel)
The power under the superiority test expected from the clinical trial increases with the
surveillance time. (Bottom panel) The expected number of infections avoided—computed as
the product of the power and infections avoided—as a function of the surveillance period.
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5.7.6 Additional Simulation Results

Table 5.6: Expected number of incremental infections and deaths avoided in the U.S. under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority testing, and 1M doses of a vaccine per day are available after
licensure, compared to the baseline case where no vaccine is ever approved.

Vaccine Efficacy (%)

30 50 70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo
RCT 2,506 20 8,116 64 14,162 112 16,506 130
ORCT 3,654 29 11,947 95 25,167 200 38,663 308
ARCT 6,248 49 22,261 177 49,396 393 63,896 508
HCT (30-day set-up) 90,472 722 106,202 848 114,847 918 120,945 966
HCT (60-day set-up) 71,223 568 83,467 666 90,167 720 94,885 758
HCT (90-day set-up) 56,263 448 65,857 525 71,088 567 74,766 597
HCT (120-day set-up) 44,556 355 52,122 415 56,235 449 59,123 471

Behavioral
RCT 224,835 1,736 264,810 2,056 289,168 2,251 306,050 2,386
ORCT 705,881 5,591 925,920 7,344 1,007,301 7,995 1,065,183 8,459
ARCT 1,502,846 11,959 2,051,223 16,346 2,269,753 18,094 2,423,075 19,321
HCT (30-day set-up) 2,209,905 17,618 2,695,582 21,502 2,982,094 23,794 3,189,157 25,451
HCT (60-day set-up) 1,611,969 12,834 1,951,336 15,548 2,150,531 17,142 2,294,765 18,295
HCT (90-day set-up) 1,190,836 9,465 1,429,078 11,370 1,566,872 12,473 1,666,446 13,269
HCT (120-day set-up) 894,225 7,092 1,065,008 8,457 1,161,296 9,228 1,230,321 9,780

Ramp
RCT 756,692 5,764 845,731 6,477 899,765 6,909 937,666 7,212
ORCT 1,825,095 14,344 2,656,479 20,964 2,890,096 22,832 3,047,293 24,089
ARCT 3,594,521 28,466 5,131,954 40,766 5,768,903 45,861 6,091,608 48,443
HCT (30-day set-up) 5,526,735 43,930 6,565,535 52,235 7,130,975 56,759 7,523,068 59,896
HCT (60-day set-up) 4,282,314 33,975 5,086,688 40,404 5,528,656 43,941 5,837,268 46,409
HCT (90-day set-up) 3,311,292 26,206 3,926,171 31,120 4,265,392 33,834 4,503,392 35,738
HCT (120-day set-up) 2,564,645 20,233 3,031,075 23,959 3,288,349 26,018 3,469,234 27,465
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Table 5.7: Expected number of incremental infections and deaths avoided in the U.S. under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority testing, and infinite doses of a vaccine per day are available
after licensure, compared to the baseline case where no vaccine is ever approved.

Vaccine Efficacy (%)

30 50 70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo
RCT 4,343 35 12,691 101 20,900 165 23,426 185
ORCT 6,190 50 18,462 147 36,872 294 54,672 436
ARCT 10,655 84 34,672 276 72,976 581 90,989 725
HCT (30-day set-up) 157,044 1,255 168,612 1,347 172,598 1,380 174,917 1,398
HCT (60-day set-up) 122,531 978 131,429 1,049 134,478 1,075 136,254 1,088
HCT (90-day set-up) 96,093 767 102,986 822 105,338 841 106,709 852
HCT (120-day set-up) 75,691 604 81,068 647 82,896 662 83,965 670

Behavioral
RCT 401,196 3,147 422,644 3,318 432,235 3,396 437,725 3,439
ORCT 1,284,033 10,217 1,542,261 12,276 1,587,101 12,634 1,613,158 12,843
ARCT 2,957,024 23,592 3,683,384 29,403 3,813,885 30,447 3,881,898 30,991
HCT (30-day set-up) 4,466,352 35,669 4,884,898 39,016 5,039,465 40,253 5,128,348 40,964
HCT (60-day set-up) 3,196,408 25,510 3,494,817 27,895 3,605,985 28,786 3,670,305 29,300
HCT (90-day set-up) 2,291,219 18,268 2,500,498 19,941 2,578,527 20,566 2,623,871 20,928
HCT (120-day set-up) 1,659,356 13,214 1,805,003 14,377 1,858,914 14,809 1,890,330 15,060

Ramp
RCT 1,174,517 9,107 1,229,484 9,547 1,255,157 9,752 1,270,085 9,871
ORCT 3,172,803 25,126 4,242,057 33,649 4,362,661 34,612 4,422,914 35,094
ARCT 6,347,189 50,488 8,191,884 65,245 8,662,725 69,012 8,776,472 69,922
HCT (30-day set-up) 9,669,217 77,070 10,366,266 82,641 10,597,019 84,487 10,728,517 85,539
HCT (60-day set-up) 7,564,062 60,228 8,126,045 64,719 8,315,537 66,236 8,423,946 67,103
HCT (90-day set-up) 5,860,161 46,598 6,304,440 50,146 6,456,348 51,362 6,543,545 52,059
HCT (120-day set-up) 4,512,448 35,815 4,857,257 38,569 4,976,272 39,521 5,044,819 40,070
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Table 5.8: Expected number of incremental infections and deaths avoided in the U.S. under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority-by-margin testing at 50%, and 1M doses of a vaccine per day
are available after licensure, compared to the baseline case where no vaccine is ever approved.
We observe negative expected net values when vaccine efficacy is 30% because the candidate
is almost never approved under superiority-by-margin testing. While a cost from conducting
the trial is always incurred, the expected post-trial benefit is close to zero.

Vaccine Efficacy (%)

30 50 70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo
RCT −34 0 319 3 4,091 32 14,935 118
ORCT 239 2 1,149 9 6,123 49 26,189 208
ARCT −39 0 199 1 3,840 30 27,107 215
HCT (30-day set-up) −171 −1 2,523 20 113,800 910 120,945 966
HCT (60-day set-up) −171 −1 1,955 16 89,345 713 94,885 758
HCT (90-day set-up) −171 −1 1,515 12 70,439 562 74,766 597
HCT (120-day set-up) −171 −1 1,171 9 55,722 445 59,123 471

Behavioral
RCT −1,461 −11 2,242 17 289,168 2,251 306,050 2,386
ORCT −331 −2 21,526 171 955,088 7,581 1,065,183 8,459
ARCT −1,384 −11 29,583 235 2,043,288 16,282 2,423,068 19,321
HCT (30-day set-up) −171 −1 67,258 537 2,954,925 23,577 3,189,157 25,451
HCT (60-day set-up) −171 −1 48,652 388 2,130,938 16,986 2,294,765 18,295
HCT (90-day set-up) −171 −1 35,595 283 1,552,596 12,359 1,666,446 13,269
HCT (120-day set-up) −171 −1 26,494 210 1,150,715 9,144 1,230,321 9,780

Ramp
RCT −1,406 −11 10,693 82 899,765 6,909 937,666 7,212
ORCT −198 −1 64,285 508 2,467,656 19,477 3,047,293 24,089
ARCT −1,196 −9 82,127 649 4,714,327 37,425 6,088,218 48,416
HCT (30-day set-up) −171 −1 164,007 1,305 7,066,008 56,242 7,523,068 59,896
HCT (60-day set-up) −171 −1 127,036 1,009 5,478,287 43,541 5,837,268 46,409
HCT (90-day set-up) −171 −1 98,023 777 4,226,532 33,526 4,503,392 35,738
HCT (120-day set-up) −171 −1 75,645 598 3,258,390 25,781 3,469,234 27,465
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Table 5.9: Expected number of incremental infections and deaths avoided in the U.S. under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority-by-margin testing at 50%, and 10M doses of a vaccine per
day are available after licensure, compared to the baseline case where no vaccine is ever
approved. We observe negative expected net values when vaccine efficacy is 30% because
the candidate is almost never approved under superiority-by-margin testing. While a cost
from conducting the trial is always incurred, the expected post-trial benefit is close to zero.

Vaccine Efficacy (%)

30 50 70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo
RCT −25 0 471 4 5,536 44 19,507 154
ORCT 374 3 1,625 13 8,217 66 34,029 271
ARCT −33 0 298 2 5,170 41 35,268 280
HCT (30-day set-up) −171 −1 3,675 29 155,455 1,243 159,876 1,277
HCT (60-day set-up) −171 −1 2,842 23 121,365 970 124,777 997
HCT (90-day set-up) −171 −1 2,203 18 95,234 761 97,886 782
HCT (120-day set-up) −171 −1 1,709 14 75,056 599 77,132 615

Behavioral
RCT −1,461 −11 3,852 30 397,396 3,117 404,562 3,174
ORCT −331 −2 32,156 256 1,352,103 10,757 1,457,500 11,598
ARCT −1,384 −11 46,267 368 3,037,771 24,238 3,473,025 27,720
HCT (30-day set-up) −171 −1 107,601 859 4,440,619 35,463 4,591,750 36,671
HCT (60-day set-up) −171 −1 76,935 614 3,175,958 25,346 3,283,975 26,209
HCT (90-day set-up) −171 −1 55,168 440 2,276,419 18,149 2,352,436 18,757
HCT (120-day set-up) −171 −1 40,014 319 1,649,447 13,134 1,702,601 13,558

Ramp
RCT −1,406 −11 14,720 115 1,160,564 8,996 1,179,234 9,145
ORCT −183 −1 93,009 738 3,387,704 26,840 4,050,013 32,111
ARCT −1,142 −9 119,304 947 6,492,110 51,647 8,067,450 64,250
HCT (30-day set-up) −171 −1 236,179 1,882 9,636,422 76,805 9,897,591 78,892
HCT (60-day set-up) −171 −1 184,404 1,468 7,533,612 59,983 7,743,514 61,659
HCT (90-day set-up) −171 −1 142,660 1,134 5,833,783 46,385 5,999,381 47,706
HCT (120-day set-up) −171 −1 109,769 871 4,491,107 35,642 4,619,521 36,667
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Table 5.10: Expected number of incremental infections and deaths avoided in the U.S. under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority-by-margin testing at 50%, and infinite doses of a vaccine per
day are available after licensure, compared to the baseline case where no vaccine is ever
approved. We observe negative expected net values when vaccine efficacy is 30% because
the candidate is almost never approved under superiority-by-margin testing. While a cost
from conducting the trial is always incurred, the expected post-trial benefit is close to zero.

Vaccine Efficacy (%)

30 50 70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo
RCT −22 0 523 4 6,050 48 21,198 168
ORCT 416 3 1,789 14 8,976 72 36,974 295
ARCT −31 0 332 2 5,655 45 38,342 305
HCT (30-day set-up) −171 −1 4,084 33 171,025 1,367 174,917 1,398
HCT (60-day set-up) −171 −1 3,154 25 133,252 1,065 136,254 1,088
HCT (90-day set-up) −171 −1 2,443 20 104,377 833 106,709 852
HCT (120-day set-up) −171 −1 1,895 15 82,140 656 83,965 670

Behavioral
RCT −1,461 −11 4,337 34 432,235 3,396 437,725 3,439
ORCT −331 −2 36,046 287 1,504,842 11,979 1,613,158 12,843
ARCT −1,384 −11 52,340 417 3,416,029 27,264 3,881,886 30,991
HCT (30-day set-up) −171 −1 121,991 974 4,993,552 39,886 5,128,348 40,964
HCT (60-day set-up) −171 −1 87,239 696 3,573,132 28,524 3,670,305 29,300
HCT (90-day set-up) −171 −1 62,381 498 2,555,035 20,379 2,623,871 20,928
HCT (120-day set-up) −171 −1 44,993 358 1,841,978 14,674 1,890,330 15,060

Ramp
RCT −1,406 −11 16,101 126 1,255,157 9,752 1,270,085 9,871
ORCT −178 −1 102,769 816 3,718,588 29,487 4,422,914 35,094
ARCT −1,126 −9 131,636 1,045 7,109,717 56,588 8,771,717 69,884
HCT (30-day set-up) −171 −1 259,025 2,065 10,500,475 83,717 10,728,517 85,539
HCT (60-day set-up) −171 −1 203,020 1,617 8,239,778 65,633 8,423,946 67,103
HCT (90-day set-up) −171 −1 157,479 1,253 6,397,527 50,894 6,543,545 52,059
HCT (120-day set-up) −171 −1 121,300 963 4,930,935 39,161 5,044,819 40,070
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Table 5.11: Estimated date of licensure and probability of approval under different trial
designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on August 1,
2020, superiority testing, and 1M doses of a vaccine per day are available after licensure. For
ARCT, we report the median date of licensure over all Monte Carlo simulations. DoL: date
of licensure (month/day/year); PoA: probability of approval.

Vaccine Efficacy (%)

30 50 70 90

DoL PoA (%) DoL PoA (%) DoL PoA (%) DoL PoA (%)

Status Quo
RCT 11/19/2021 20.2 11/19/2021 55.9 11/19/2021 89.9 11/19/2021 99.6
ORCT 08/14/2021 13.6 08/15/2021 38.9 07/30/2021 67.2 07/10/2021 84.3
ARCT 07/02/2021 14.5 06/02/2021 44.2 06/02/2021 83.8 06/02/2021 99.6
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0

Behavioral
RCT 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0
ORCT 06/24/2021 90.5 06/22/2021 100.0 06/22/2021 100.0 06/22/2021 100.0
ARCT 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0

Ramp
RCT 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0
ORCT 07/06/2021 88.9 06/22/2021 99.6 06/22/2021 100.0 06/22/2021 100.0
ARCT 05/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0
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Table 5.12: Estimated date of licensure and probability of approval under different trial
designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on August 1,
2020, superiority testing, and 10M doses of a vaccine per day are available after licensure.
For ARCT, we report the median date of licensure over all Monte Carlo simulations. DoL:
date of licensure (month/day/year); PoA: probability of approval.

Vaccine Efficacy (%)

30 50 70 90

DoL PoA (%) DoL PoA (%) DoL PoA (%) DoL PoA (%)

Status Quo
RCT 11/19/2021 20.2 11/19/2021 55.9 11/19/2021 89.9 11/19/2021 99.6
ORCT 08/15/2021 13.8 08/15/2021 38.9 07/30/2021 67.2 07/10/2021 84.3
ARCT 07/02/2021 14.5 06/02/2021 44.2 06/02/2021 83.8 06/02/2021 99.6
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0

Behavioral
RCT 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0
ORCT 06/23/2021 89.6 06/22/2021 100.0 06/22/2021 100.0 06/22/2021 100.0
ARCT 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0

Ramp
RCT 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0
ORCT 07/06/2021 88.9 06/22/2021 99.6 06/22/2021 100.0 06/22/2021 100.0
ARCT 05/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0
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Table 5.13: Estimated date of licensure and probability of approval under different trial
designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on August 1,
2020, superiority testing, and infinite doses of a vaccine per day are available after licensure.
For ARCT, we report the median date of licensure over all Monte Carlo simulations. DoL:
date of licensure (month/day/year); PoA: probability of approval.

Vaccine Efficacy (%)

30 50 70 90

DoL PoA (%) DoL PoA (%) DoL PoA (%) DoL PoA (%)

Status Quo
RCT 11/19/2021 20.2 11/19/2021 55.9 11/19/2021 89.9 11/19/2021 99.6
ORCT 08/14/2021 13.6 08/14/2021 38.6 07/30/2021 67.2 07/10/2021 84.3
ARCT 07/02/2021 14.5 06/02/2021 44.2 06/02/2021 83.8 06/02/2021 99.6
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0

Behavioral
RCT 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0
ORCT 06/23/2021 89.6 06/22/2021 100.0 06/22/2021 100.0 06/22/2021 100.0
ARCT 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0

Ramp
RCT 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0
ORCT 07/06/2021 88.9 06/22/2021 99.6 06/22/2021 100.0 06/22/2021 100.0
ARCT 05/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0
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Table 5.14: Estimated date of licensure and probability of approval under different trial
designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on August 1,
2020, superiority-by-margin testing at 50%, and 1M doses of a vaccine per day are available
after licensure. For ARCT, we report the median date of licensure over all Monte Carlo
simulations. A blank entry indicates that the vaccine candidate is never approved. DoL:
date of licensure (month/day/year); PoA: probability of approval.

Vaccine Efficacy (%)

30 50 70 90

DoL PoA (%) DoL PoA (%) DoL PoA (%) DoL PoA (%)

Status Quo
RCT 11/19/2021 0.1 11/19/2021 2.5 11/19/2021 26.2 11/19/2021 90.1
ORCT 06/22/2021 0.3 06/22/2021 2.5 08/06/2021 16.3 07/31/2021 53.5
ARCT 0.0 07/02/2021 0.6 08/01/2021 9.3 08/01/2021 64.3
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0

Behavioral
RCT 0.0 11/19/2021 1.3 11/19/2021 100.0 11/19/2021 100.0
ORCT 0.0 06/22/2021 2.4 06/22/2021 94.8 06/22/2021 100.0
ARCT 0.0 06/02/2021 2.4 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0

Ramp
RCT 0.0 11/19/2021 1.4 11/19/2021 100.0 11/19/2021 100.0
ORCT 0.0 06/22/2021 2.4 06/30/2021 83.2 06/22/2021 100.0
ARCT 0.0 06/02/2021 2.5 05/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0
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Table 5.15: Estimated date of licensure and probability of approval under different trial
designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on August 1,
2020, superiority-by-margin testing at 50%, and 10M doses of a vaccine per day are available
after licensure. For ARCT, we report the median date of licensure over all Monte Carlo
simulations. A blank entry indicates that the vaccine candidate is never approved. DoL:
date of licensure (month/day/year); PoA: probability of approval.

Vaccine Efficacy (%)

30 50 70 90

DoL PoA (%) DoL PoA (%) DoL PoA (%) DoL PoA (%)

Status Quo
RCT 11/19/2021 0.1 11/19/2021 2.5 11/19/2021 26.2 11/19/2021 90.1
ORCT 06/22/2021 0.3 06/22/2021 2.5 08/06/2021 16.3 07/31/2021 53.5
ARCT 0.0 07/02/2021 0.6 08/01/2021 9.3 08/01/2021 64.3
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0

Behavioral
RCT 0.0 11/19/2021 1.3 11/19/2021 100.0 11/19/2021 100.0
ORCT 0.0 06/22/2021 2.4 06/22/2021 94.8 06/22/2021 100.0
ARCT 0.0 06/02/2021 2.4 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0

Ramp
RCT 0.0 11/19/2021 1.4 11/19/2021 100.0 11/19/2021 100.0
ORCT 0.0 06/22/2021 2.4 06/29/2021 83.2 06/22/2021 100.0
ARCT 0.0 06/02/2021 2.5 05/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0
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Table 5.16: Estimated date of licensure and probability of approval under different trial
designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on August
1, 2020, superiority-by-margin testing at 50%, and infinite doses of a vaccine per day are
available after licensure. For ARCT, we report the median date of licensure over all Monte
Carlo simulations. A blank entry indicates that the vaccine candidate is never approved.
DoL: date of licensure (month/day/year); PoA: probability of approval.

Vaccine Efficacy (%)

30 50 70 90

DoL PoA (%) DoL PoA (%) DoL PoA (%) DoL PoA (%)

Status Quo
RCT 11/19/2021 0.1 11/19/2021 2.5 11/19/2021 26.2 11/19/2021 90.1
ORCT 06/22/2021 0.3 06/22/2021 2.5 08/06/2021 16.3 07/31/2021 53.5
ARCT 0.0 07/02/2021 0.6 08/01/2021 9.3 08/01/2021 64.3
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0

Behavioral
RCT 0.0 11/19/2021 1.3 11/19/2021 100.0 11/19/2021 100.0
ORCT 0.0 06/22/2021 2.4 06/22/2021 94.8 06/22/2021 100.0
ARCT 0.0 06/02/2021 2.4 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0

Ramp
RCT 0.0 11/19/2021 1.4 11/19/2021 100.0 11/19/2021 100.0
ORCT 0.0 06/22/2021 2.4 06/29/2021 83.2 06/22/2021 100.0
ARCT 0.0 06/02/2021 2.5 05/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0
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Chapter 6

When Do Investors Freak Out?:

Machine Learning Predictions of

Panic Selling

6.1 Introduction

Financial advisors have long advised their clients to stay calm and weather any passing

financial storm in their portfolios. Despite this, a percentage of investors tend to ‘freak

out’ and sell off a large portion of their risky assets in certain adverse market environments.

This situation is often discussed in the financial press and media1, but is rarely defined or

quantified. In this chapter, we develop a method to identify panic selling and apply it to

a novel large dataset of brokerage account information from 2003 to 2015 to examine panic

selling and ‘freakout’ behavior.

We begin by characterizing the aggregate behavior of investors who make panic sales.

First, we document the frequency and timing of panic selling. We see that, while panic sales

are infrequent, with only 0.1% of the investors panic selling at any point in time, they occur

at up to 3 times the baseline frequency when there are large market movements.

1Consider the typical CNBC headline, “The market may be swinging, but the last thing you should do
is freak out: Wall Street trading coach”. Source: https://www.cnbc.com/2018/02/09/the-market-may-be-
swinging-but-dont-freak-out-says-trading-coach.html

213



Second, we find that 30.9% of the investors who panic sell never return to reinvest in

risky assets. However, of those that do, more than 58.5% reenter the market within half a

year.

Third, we analyze the investors by demographic group who tend to ‘freak out’ under our

definition (that is, they make panic sales during periods of sharp market downturns), and find

that investors who are males, or above the age of 45, or married, or with a greater number

of dependents, or who have declared themselves having excellent investment experience or

knowledge tend to freak out in higher proportions.

Fourth, we find that the median investor earns a zero to negative return after he panic

sells. Calculating the opportunity cost of panic selling over time finds that panic selling is

suboptimal if executed in an improving market, but it is beneficial as a stop-loss mechanism

in rapidly deteriorating markets.

Finally, we develop machine learning models to predict when investors might panic sell in

the near future. Our set of predictive features includes the demographic characteristics of the

investor, their portfolio histories, and current and past market conditions. This task is made

difficult by the extreme rarity of panic sales. Nonetheless, our best-performing deep neural

network achieves a 69.5% true positive accuracy rate and a 81.2% true negative accuracy

rate, demonstrating that artificial intelligence techniques can assist in identifying individuals

at risk of panic selling in the near future.

6.2 Literature Review

Behavioral finance has documented a wide range of stylized actions of investors, including

loss aversion, regret aversion, the snake-bite effect, overtrading, and the disposition effect

[25, 35]. There has been renewed interest in these behavioral patterns since the financial

crisis of 2007-2008, both within the academic community and among the general public. We

summarize several documented investor behaviors, some which are related to panic selling,

and others which are inconsistent with the phenomenon.
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6.2.1 Panic Selling

Although widely discussed in the financial industry (for example, see Rotblot [29]), little

of the available literature discusses the concept of panic selling during a period of lowered

market performance. This is most likely due to the limited availability of datasets that cover

a wide range of selling events and market environments. Using price and volume information

as well as data from Chinese stock markets, Shi et al. [32] provide a theoretical model based

on conditioning to explain investor behavior. Their model shows that investors can be either

overconfident or panicked based on price momentum. The strongest positive correlation in

behavior occurs during price reversals, when many investors are more likely to sell their risky

assets in a panic.

In contrast to panic selling, however, Statman et al. [33] found that share turnover is

positively correlated to lagged returns, which suggests overconfidence is a dominant fac-

tor. Barber et al. [6] demonstrated that investors tend to buy stocks with strong recent

performance, and they tend to buy stocks with higher trading volume.

Our study presents evidence that investors occasionally panic and sell off a large portion

of their portfolio. It attempts to address the above issues by using a larger and more fine-

grained dataset over a longer time horizon than earlier studies. In this way, we hope to

capture a broader range of circumstances under which investors may make panic sales.

6.2.2 Overtrading and the Disposition Effect

Overtrading is in some ways the opposite of panic selling, which causes the investor to

leave the market, either temporarily or permanently. Several authors have documented that

some investors tend to overtrade. For example, Benos [10] and Odean [25] suggest that

overconfidence causes investors to trade too frequently. Using trading account data, Barber

and Odean [4] document overtrading, and demonstrate that it is detrimental to the wealth

of those investors who trade too frequently.

In addition, much of the behavioral finance literature has focused on the disposition

effect [31], the tendency for investors to buy stocks with strong recent performance and hold

onto their losing investments. This can also be considered as another near-opposite to panic
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selling.

6.2.3 Stop-loss

A parallel to panic selling can be found in the use of stop-loss strategies by investors. Stop-

loss strategies are rules used by investors to reduce their holdings in risky assets should the

value of their holdings reach a certain predetermined threshold. Kaminski and Lo [19] and

Lo and Remorov [24] examine the value of these rules under different market conditions.

In some situations (for example, if market prices exhibit momentum), stop-loss strategies

may outperform buy-and-hold strategies over certain time horizons. This, however, depends

on the condition that investors return to the market at some point (see [23]). Since the

performance of a stop-loss rule is dependent on investor reentry, in our empirical analysis,

we also examine investor reentry after a ‘freakout’.

6.2.4 Stock Market Crashes and Investor Overreaction

Many authors have studied stock market crashes. From an asset pricing perspective, several

authors demonstrate that rare disaster risk can explain the equity risk premium and other

puzzles in macro-finance [7][8, 11, 18][27]. Many other authors examine the impact of tail

risk on total market returns [3][21].

The more relevant question for panic selling, however, is how investors behave during a

stock market crash. Bondt and Thaler [13] and Bondt et al. [12] argue that investors tend to

overreact to large economic events. Chopra et al. [16], Rozeff and Zaman [30], Bauman et al.

[9], Wang et al. [34] and others provide empirical evidence for investor overreaction. There

are many different explanations for overreaction during a market crash (for a summary, see

Amini et al. [1]). These include changes in investor sentiment [2], herding behavior [28],

market constraints [26][20], and changing risk preferences [14]).

Similarly, many studies of investor overreaction focus on price changes, but only in some

cases do they use survey information to document these possible behavioral factors, while

few studies have access to the entire portfolio of investors to consider their actual portfolio

decisions.
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6.3 Data Summary

We analyze the financial activity of 653455 anonymous accounts corresponding to 298556

households from one of the largest brokerage firms in the United States. These accounts

are drawn at random from the population of U.S. brokerage accounts active as of December

31st, 2015, and have had their account identification numbers fully anonymized.

Our dataset consists of (i) monthly snapshots of positions and balances held in every

sampled portfolio, (ii) every trade made through these accounts, and (iii) the demographic

information of the account holder as reported on the initial application form, including age,

income, and self-declared levels of experience and knowledge. The kinds of assets contained

in the accounts include stocks, mutual funds, options, fixed income, and cash securities.

Details of the composition of our dataset are included in the Supplementary Materials for

the sake of brevity in the main text of this article. We have also been given a map from

accounts to households that allows us to aggregate activities of related accounts. In this

study, we analyze panic selling at the household level.

A household will consist of one or more individual accounts opening and closing at dif-

ferent points in time. We consider the time when the first individual account is opened as

the account opening date of the household. Since the data given to us only records activ-

ities starting from January 2003, all households that were active prior to this date will be

reported as though they were started on January 2003. While all the household accounts

in our sample have at least one account that is open at the time of the study, there are

some households who sold their assets and decided not to return to the market. We call

these ‘inactive’ households. The number of active household accounts at time 𝑡, 𝑁𝑡, can be

computed recursively with the following formula:

𝑁𝑡 = 𝑁𝑡−1 + 𝑛𝑜
𝑡 − 𝑛𝑝

𝑡 (6.1)

where 𝑛𝑝
𝑡 and 𝑛𝑜

𝑡 denote the number of households that panic sold and opened at time 𝑡,

respectively. Figure 6-1 shows the cumulative number of household accounts that opened,

exited the market and were active over time.
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Figure 6-1: Number of household accounts versus time (YYYYMM format).

6.4 Methodology

6.4.1 Identifying panic sells

It is typically understood that an investor ‘panic sells’ when he intentionally sells off a sub-

stantial proportion of his risky assets abruptly. We develop rules in order to systematically

capture such a behavior.

Consider a situation in which we are given monthly snapshots of portfolios and a view

of every trade. Let 𝑉𝑡 be the value of an investor portfolio at month 𝑡 and 𝑥𝑡 = 𝑉𝑡−𝑉𝑡−1
𝑉𝑡−1

be

the percentage change in value of the portfolio between month 𝑡 and 𝑡 + 1. Let 𝑇𝑡 be the

sum of value of all the trades in month 𝑡. Then 𝑡𝑡 = 𝑇𝑡

𝑉𝑡−1
is the proportion of the portfolio

traded in this month. A positive 𝑡𝑡 denotes a net buy and a negative 𝑡𝑡 denotes a net sell.

An investor is said to have made a panic sell in month 𝑡 when

• Condition (1) The value of his portfolio declines by at least 𝑝1 over one month (i.e.

𝑥𝑡 ≤ −𝑝1 for some 𝑝1 > 0) and

• Condition (2) The investor makes a net sell of 𝑝2 of his portfolio within the same period

(i.e. 𝑡𝑡 ≤ −𝑝2 for some 𝑝2 > 0).
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Condition (1) states that the value of the portfolio falls substantially between two monthly

snapshots of the portfolio. This is a necessary condition for any liquidation. However, it

is not a sufficient condition, as large changes in a portfolio may be induced by natural

market movements without any action by the investor. In order to identify that the investor

intentionally reduced his holding of risky assets, we impose Condition (2). At first glance,

it may seem that Condition (2) alone would be effective in detecting panic selling. This is

untrue, however, as a portfolio may have depreciated substantially before an investor sells.

For example, suppose that we let 𝑝2 take a value of 0.8 in order to capture a large change

in the portfolio. However, if the value of the investor’s portfolio falls 25% from $100,000

to $75,000 due to market conditions before he liquidates the rest of it, it is impossible to

fulfil the condition of 𝑝2 of 0.80. Hence, just using Condition (2) by itself will cause us to

miss this liquidation event. On the other hand, a lower value of 𝑝2 can be used if we impose

Condition (1).

In addition to identifying panic selling, we identify cases where investors who exited from

their risky positions decide intentionally to take on risk again. We call such an event a

‘return to market’. The following rules identify such events:

• Condition (3) The value of the portfolio must reach at least 𝑝3 of the pre-liquidation

value and

• Condition (4) The investor must have a cumulative net buy of 𝑝4 of the amount that

he sold during liquidation.

We set 𝑝1 (the monthly portfolio decline), 𝑝2 (the monthly portfolio net sell), 𝑝3 (the

portfolio rebound), and 𝑝4 (the cumulative net buy) as 0.9, 0.5, 0.5, and 0.5, respectively,

in this study. While setting both 𝑝1 and 𝑝2 to lower values will increase the number of

panic sales identified, this does not change our analysis or the general pattern exhibited by

household investors (see Section 6.8.6 of the Supplementary Materials).

6.4.2 Identifying risk factors for liquidations

In order to understand which groups of investors (𝐺) are more susceptible to panic selling

or freakout events (𝐸), we compute the relative prevalence of the group given an event:
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𝑃 (𝐺|𝐸)/𝑃 (𝐺). A number greater than 1 indicates that the group is more likely to have the

event compared to other groups, while a value less than 1 signals the opposite.

We can test our null hypothesis of 𝑃 (𝐺|𝐸) = 𝑃 (𝐺) against the alternative hypothesis of

𝑃 (𝐺|𝐸) ̸= 𝑃 (𝐺) using the two-proportion Z-test. Let 𝑝1 = 𝑃 (𝐺|𝐸), 𝑃 (𝐺) = 𝑝2, and the

number of investors in each group be 𝑛1 and 𝑛2, respectively. The test statistic is given by

𝑧 = 𝑝1−𝑝2
𝑆𝐸

, where 𝑆𝐸2 = 𝑝(1− 𝑝)( 1
𝑛1

+ 1
𝑛2

) and 𝑝 = 𝑛1𝑝1+𝑛2𝑝2
𝑛1+𝑛2 .

6.5 Results

We counted 36374 panic sells by 26852 household investors (9.0% of all households) across

a period of 13 years between January 2003 and December 2015, endpoints inclusive. A heat

map for panic sales and returns to the market is given in Figure 6-2, while Figure 6-3 shows

the distribution of panic sales per household. Of households with at least one panic-selling

event, 21706 of them (80.8%) did so once within our sample period, while 3081 (11.4%) did

so twice. The mean and standard deviation of the number of panic sells per investor are 1.35

and 0.98 respectively. These numbers suggest that we are seeing a behavioral pattern that

is different from overtrading.

6.5.1 When do the investors panic sell?

As can be seen from Figure 6-4, panic sales occur regularly, with a base level around 0.10%.

By overlaying the change in S&P 500 value against the plot, however, we noticed that the

spikes in the proportion of households panic selling coincide with sharp falls in the stock

market. Looking at the top ten months with the highest proportion of active investors

panic selling, we see they include significant stock market events (Table 6.1), confirming the

common idea that investors freak out in times of market uncertainty. In the rest of the

chapter, we collectively refer to these months as ‘crisis’ periods, and panic selling specifically

in these months as ‘freakouts’.
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Figure 6-2: Heat map of panic-selling events and returns to market. Row entries are unique
to households, while the horizontal axis denotes time in the YYYYMM format. Red denotes
a panic sale, while green denotes a return to market for the household.

6.5.2 Returning to the market

We ask the question,“What happens to an investor after he panic sells?” As shown in Figure

6-8, as of December 31, 2015, 30.9% of these investors have not taken on risky assets since

they freaked out. Of the freakouts that concluded with the investor reentering the market,

58.5% and 13.1% lasted 1 to 5 months and 6 to 10 months, respectively.
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Figure 6-4: The proportion of active households who panic sold in each month (YYYYMM).
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YYYYMM Counts Active Accts Pct Of Active Accts (%) Known Event
200605 290 203534 0.142 Stock and commodity sell-off
200708 338 215628 0.157 Credit crunch (BNP Paribas incident)
200801 476 220646 0.216
200807 324 226614 0.143 Fannie Mae and Freddie Mac
200809 513 228220 0.225 Lehman Brothers
200810 710 229703 0.309 TARP
200903 475 234268 0.203 Bottom of Financial Crisis
201005 512 245319 0.209 Flash Crash
201108 440 256098 0.172 European sovereign debt crisis
201508 377 283900 0.133 China stock market crash

Table 6.1: Months with the highest relative percentage of liquidations and the corresponding
events.

6.5.3 Portfolio characteristics of investors who panic sold

Table 6.2 tabulates the distribution of the value of portfolios just prior to panic sales. 43.2%

of the portfolios are less than $20000 in value. The 25th, 50th, 75th and 90th percentile

portfolio values are $7688.78, $27605.35, $96387.94, and $277986.65, respectively.

Portfolio Value Count Percentage
0–20000 15714 43.20
20000–40000 5284 14.53
40000–60000 3049 8.38
60000–80000 1945 5.35
80000–100000 1549 4.26
100000–200000 3796 10.44
200000–400000 2625 7.22
400000–600000 976 2.68
600000–800000 479 1.32
800000–1000000 261 0.72
1000000–∞ 696 1.91
Total 36374 100.01%

Table 6.2: Distribution of portfolio value immediately prior to panic sales. Percentages do
not sum to exactly 100.00 due to rounding errors.

6.5.4 Is panic selling optimal?

Are investors wise to liquidate most of their risky assets over a short period of time? On the

one hand, one may subscribe to the view that investors are rational actors who are optimally

changing the composition of their portfolio. This behavior can be observed in ‘stop-loss’ or
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‘trailing-stop’ trades, in which trades are executed to limit further losses when the market

is plunging, or to lock in profits when the market is on the rise. On the other hand, it is

possible that investors are panicked by changing market conditions and therefore sell, despite

knowing that it is not in their best interest to do so.

Opportunity cost of panic selling

We examine if panic selling is an optimizing behavior by first calculating hypothetical returns

over various time horizons in which the investor did not panic sell. That is, we assume that

the panicked investor did not sell off his risky assets, and track the hypothetical returns of

this portfolio until the investor actually returned to the market. We then average the returns

to get an aggregate estimate of the potential returns that were forgone. If these hypothetical

returns are negative, we conclude that panic selling is an optimizing behavior, as it prevented

further losses. On the other hand, if the hypothetical returns are positive, this implies that

investors could have profited if they simply left the money in their accounts.

Figures 6-5 shows the average hypothetical returns over 20-, 100-, 200-, 600- and 1000-day

periods of investors who liquidated in the tabulated month. Negative values indicate that

the average investor would have lost money, while positive values indicate that the average

investor would have been better off had he not liquidated.

We found that the average hypothetical returns are highly correlated with the returns of

the S&P 500 over the same time horizons. Our results also suggest that the experience of

the individual investor depend on market conditions when he exited, and the duration of his

exit.

This point is more obvious in Figure 6-6, where we compute the median of the hypothet-

ical returns conditioned on the time of their liquidation and the duration of their exit. We

plot the kernel regressions to smooth out variations over the time horizons. As can be seen,

during the financial crisis, it was typically wise to liquidate one’s entire portfolio of risky

assets over the short to medium term (less than 35 months). A person who liquidated at the

start of the crisis and then left the market for 15 months at that time saved himself from

losing another 17%. Holding out for more than 34 months after liquidation, however, would

have caused the investor to miss the post-2009 market rally and forgo potential profits.
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Figure 6-5: Median hypothetical returns of investors who liquidated in a particular month
(YYYYMM) over 𝑑 days. This is constructed by assuming that the investor did not panic
sell and held his portfolio for 𝑑 days.

The reverse is true after the financial crisis. Notably, the persistent rally of the financial

markets after the financial crisis ensured that investors who liquidated then would pay a

high price in terms of opportunity cost.
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Figure 6-6: Median return of investors under the assumption that they held their portfolio
over the duration of their exit. We define the pre-crisis, crisis and post-crisis periods to
be Jan 2003–Apr 2007, May 2007–Feb 2009, and Mar 2009–Dec 2015 respectively. The
smoothed lines are kernel regressions of the individual series. The number of data points
drops exponentially with the duration of staying out (see Figure 6-8). Thus, values for a
duration > 60 months are based only on a few data points.

Performance during liquidation

It might be argued that investors who made panic sales did so strategically, which in turn gave

them better returns than the market. For example, they could have kept their outperforming

stocks while selling the bulk of the underperforming ones, or invested the proceeds of the

sales in assets with higher returns. Figure 6-7 shows that this is typically not the case. The

median investor trades infrequently, and makes zero to negative returns when out of the

market for periods between 1 month and 5 years.

6.5.5 Demographic profile of investors

In this section, we profile the demographic characteristics of investors who liquidated signif-

icant parts of their portfolio.

All demographic information in our dataset, with the exception of age, reflects the cus-
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Figure 6-7: Median returns of investors based on their investment actions over the duration
of their exit. We define the pre-crisis, crisis and post-crisis periods to be Jan 2003–Apr 2007,
May 2007–Feb 2009, and Mar 2009–Dec 2015, respectively. The smoothed lines are kernel
regressions of the individual series. The number of data points drops exponentially with the
duration of exit (see Figure 6-8). Values for a duration > 60 months are thus based only on
a few data points.

tomer profile at the time the brokerage accounts were opened, and is not updated over time.

While this may produce inaccuracies in our analysis, we believe that it can still generate

insights as to which kind of investors are more likely to panic sell. Certain fields are missing

for some investors, as demographic information is collected on a voluntary basis.

Due to the structure of the data, in which a household can contain multiple investing

accounts and multiple investing accounts can share a set of customers (please refer to Section

6.8.3 in the Supplementary Materials for more detail), care has to be taken to analyze

customer demographics. For each customer in a household, we compute fractional weights

based on the size of the portfolios to which they are linked. The computational method is

elaborated in Section 6.8.5 in the Supplementary Materials.

Some floating point values may be imprecise in the tables, as we only give the results to

two decimal places.
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Figure 6-8: Frequency of duration of exit between panic selling and returning to the market.

Age As can be seen in Table 6.3, people between the ages of 45 and 100 have a height-

ened tendency to make panic sales, both across the entire sample and during crisis periods.

Younger investors are less likely to make panic sales by a wide margin.

Marital status Table 6.4 shows that investors who are married or divorced are more likely

to freak out across the entire sample period than other groups.

Gender We note that many investors in our dataset do not provide gender information.

Among those who volunteered this information, males compose 56.2% of the sample. Previ-

ous behavioral finance studies have typically recorded a disproportionate proportion of males

[5]. Our analysis shows that males are slightly more likely than females to freak out (i.e.

panic sell during periods of high financial stress) but are less likely to panic sell in general

(Table 6.5).

Number of dependents Among those with known information about having dependents,

investors with no dependents are least likely to panic sell (Table 6.6). There seems to be a
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Age group (A) Liquidation (Full sample) (B) Liquidation (Crisis periods) All investors Rel. prop for (A) Rel. prop for (B)
Missing 3557.12 759.15 71174.87 0.56+ 0.55+

age <21 136.99 18.14 2110.69 0.72+ 0.44+

21≤ age <25 170.99 25.70 2819.12 0.68+ 0.47+

25≤ age <30 466.03 56.38 6732.05 0.77+ 0.43+

30≤ age <35 796.74 103.96 10414.13 0.85+ 0.52+

35≤ age <40 869.40 134.75 11447.19 0.85+ 0.61+

40≤ age <45 1269.09 241.84 14257.73 0.99 0.88
45≤ age <50 2226.95 454.52 20873.71 1.19+ 1.12+

50≤ age <55 3051.63 663.69 27346.63 1.25+ 1.25+

55≤ age <60 3475.76 756.39 30437.99 1.27+ 1.28+

60≤ age <65 3381.66 736.02 29437.30 1.28+ 1.29+

65≤ age <70 3013.68 730.55 26510.99 1.27+ 1.42+

70≤ age <75 2042.53 483.52 18938.85 1.20+ 1.32+

75≤ age <80 1164.50 298.71 11811.12 1.10+ 1.31+

80≤ age <85 638.12 177.44 7442.69 0.96 1.23+

85≤ age <90 359.30 95.05 4728.17 0.85+ 1.04
90≤ age <95 164.56 46.08 2238.36 0.82 1.06
95≤ age <100 45.86 15.08 653.64 0.78 1.19
100≤ age <infty 21.08 4.03 234.76 1.00 0.89
Total 26852 5801 299610

Table 6.3: Distribution of investors by age groups. (A) shows the weights of investors that
made panic sales across the entire sample period. (B) shows the weights of investors that
freaked out. A proportion less than/greater than 1 indicates that members of the group
are less likely/more likely to liquidate compared to members of other groups. + indicates
significant at the 1% rejection level.

Category (A) Liquidation (Full sample) (B) Liquidation (Crisis periods) All investors Rel. prop for (A) Rel. prop for (B)
Separated 14.88 1.00 191.57 0.87 0.27
Minor 96.80 15.02 1475.72 0.73+ 0.53
Widowed 333.90 72.97 4821.70 0.77+ 0.78
Missing 7868.55 1734.12 113814.44 0.77+ 0.79+

Single 4496.66 901.05 47592.89 1.05+ 0.98
Divorced 1187.70 249.79 11464.65 1.16+ 1.13
Married 12853.50 2827.05 120249.03 1.19+ 1.21+

Total 26852 5801 299610

Table 6.4: Distribution of investors by marital status. (A) shows the weights of investors
that made panic sales across the entire sample period. (B) shows the weights of investors
that freaked out. A proportion less than/greater than 1 indicates that members of the group
are less likely/more likely to liquidate compared to members of other groups. + indicates
significant at the 1% rejection level.

Gender (A) Liquidation (Full sample) (B) Liquidation (Crisis periods) All investors Rel. prop for (A) Rel. prop for (B)
Female 378.92 104.19 5943.39 0.71+ 0.91
Missing 25822.43 5525.99 286025.14 1.01+ 1.00
Male 650.66 170.82 7641.47 0.95 1.15
Total 26852 5801 299610

Table 6.5: Distribution of investors by gender. (A) shows the weights of investors that made
panic sales across the entire sample period. (B) shows the weights of investors that freaked
out. A proportion less than/greater than 1 indicates that members of the group are less likely
/more likely to liquidate compared to members of the other groups. + indicates significant
at the 1% rejection level.
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positive correlation between the likelihood of panic selling and the number of dependents.
Number of Dep. (A) Liquidation (Full sample) (B) Liquidation (Crisis periods) All investors Rel. prop for (A) Rel. prop for (B)
Missing 3532.45 754.99 70801.04 0.56+ 0.55+

0 14808.74 3186.52 156436.02 1.06+ 1.05+

1 3090.31 670.57 26994.69 1.28+ 1.28+

2 3055.74 710.32 27584.11 1.24+ 1.33+

3 1514.31 319.54 11957.38 1.41+ 1.38+

4 587.07 110.88 4117.34 1.59+ 1.39+

≥5 263.39 48.19 1719.41 1.71+ 1.45
Total 26852 5801 299610

Table 6.6: Distribution of investors by number of dependents. (A) shows the weights of
investors that made panic sales across the entire sample period. (B) shows the weights of
investors that freaked out. A proportion less than/greater than 1 indicates that members of
the group are less likely/more likely to liquidate compared to members of the other groups.
+ indicates significant at the 1% rejection level.

Self-declared investing experience Table 6.7 shows that the likelihood of panic sales

and freakouts is most pronounced when the investor has self-declared good or excellent

investing experience. Interestingly, those for whom we lack this information, and those who

declared themselves to have no investment experience, are less likely to panic sell or freakout.
Category (A) Liquidation (Full sample) (B) Liquidation (Crisis periods) All investors Rel. prop for (A) Rel. prop for (B)
Missing 5281.71 1124.01 89774.51 0.66+ 0.65+

None 2044.11 395.43 24317.28 0.94+ 0.84+

Decline to report 853.97 163.33 9531.72 1.00 0.89
Limited 8972.14 1869.94 98277.98 1.02 0.98
Good 7216.77 1631.21 61775.62 1.30+ 1.36+

Excellent 2483.30 617.08 15932.89 1.74+ 2.00+

Total 26852 5801 299610

Table 6.7: Distribution of investors by investment experience. (A) shows the weights of
investors that made panic sales across the entire sample period. (B) shows the weights of
investors that freaked out. A proportion less than/greater than 1 indicates that members of
the group are less likely/more likely to liquidate compared to members of the other groups.
+ indicates significant at the 1% rejection level.

Self-declared investing knowledge Similar to investing experience, we find that in-

vestors who describe their investment knowledge as good or excellent panic sell or freak out

in higher proportions compared to their baselines (Table 6.8).

Occupational Group The occupational groups with the three highest risks of panic selling

are ‘self-employed’, ‘owners’ and ‘real estate’, while the three occupational groups with the

least risk of panic selling are ‘paralegal’, ‘minor’ and ‘social worker’.
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Category (A) Liquidation (Full sample) (B) Liquidation (Crisis periods) All investors Rel. prop for (A) Rel. prop for (B)
Missing 8757.51 1581.76 131408.17 0.74+ 0.62+

Decline to report 1083.23 220.11 11902.07 1.02 0.96
Limited 7282.50 1650.57 77048.98 1.05+ 1.11+

None 1750.25 401.47 16543.69 1.18+ 1.25+

Good 6144.44 1480.24 51353.35 1.34+ 1.49+

Excellent 1834.07 466.85 11353.75 1.80+ 2.12+

Total 26852 5801 299610

Table 6.8: Distribution of investors by investment knowledge. (A) shows the weights of
investors that made panic sales across the entire sample period. (B) shows the weights of
investors that freaked out. A proportion less than/greater than 1 indicates that members of
the group are less likely/more likely to liquidate compared to members of the other groups.
+ indicates significant at the 1% rejection level.

Category (A) Liquidation (Full sample) (B) Liquidation (Crisis periods) All investors Rel. prop for (A) Rel. prop for (B)
Paralegal 36.35 5.45 576.67 0.70 0.49
Minor 96.81 15.02 1476.89 0.73+ 0.53
Social worker 16.95 2.99 285.85 0.66 0.54
Missing 5934.96 1259.68 96257.00 0.69+ 0.68+

Government 30.57 4.06 275.68 1.24 0.76
Police-military 133.37 18.39 1244.83 1.20 0.76
Artist 173.55 33.68 2222.40 0.87 0.78
Student 71.22 11.28 741.06 1.07 0.79
Medical 394.31 80.73 5279.71 0.83+ 0.79
Education 554.67 117.43 6544.05 0.95 0.93
Skilled labor 1020.02 171.87 9574.47 1.19+ 0.93
Scientist 114.69 29.41 1595.88 0.80 0.95
Secretary 232.82 54.37 2926.68 0.89 0.96
Unemployed 981.34 197.95 10505.23 1.04 0.97
Homemaker 765.36 158.54 8095.60 1.05 1.01
S-skilled office 350.59 77.65 3898.63 1.00 1.03
Computer 645.39 130.43 6481.64 1.11+ 1.04
Attorney 426.05 89.00 4417.51 1.08 1.04
Engineer 288.28 59.57 2951.42 1.09 1.04
Clergy 32.76 6.06 294.84 1.24 1.06
Cpa 301.43 63.07 3065.35 1.10 1.06
White-collar 1162.82 245.28 11625.54 1.12+ 1.09
Physician 496.35 109.52 5109.17 1.08 1.11
Retired 3817.83 908.75 42210.01 1.01 1.11+

Pilot 73.48 13.73 624.20 1.31 1.14
Manager 1449.41 307.67 13569.83 1.19+ 1.17+

Marketing 1142.77 219.33 9365.87 1.36+ 1.21+

Executive 1412.26 293.41 10756.85 1.46+ 1.41+

Financial 733.94 163.30 5903.92 1.39+ 1.43+

Professional 1679.33 405.09 14271.18 1.31+ 1.47+

Consultant 471.01 126.73 4427.47 1.19+ 1.48+

Owner 534.88 118.20 3963.37 1.51+ 1.54+

Self employed 967.02 225.22 6914.92 1.56+ 1.68+

Real estate 309.39 78.13 2149.44 1.61+ 1.88+

Disabled 6.85
Total 26852 5801 299610

Table 6.9: Distribution of investors by occupation groups, as classified by the broker. (A)
shows the weights of investors that made panic sales across the entire sample period. (B)
shows the weights of investors that freaked out. A proportion less than/greater than 1
indicates that members of the group are less likely/more likely to liquidate compared to
members of the other groups. + indicates significant at the 1% rejection level.
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6.6 Prediction of individual panic sells

Using logistic regression and deep neural network techniques, we attempt to predict panic

sales for every individual in the next month in advance, given one’s demographic attributes,

past trading patterns, portfolio history and recent market conditions. In our logistic regres-

sion model, we seek a generalized linear model where the separating hyperplane is linear

with respect to the input feature space. This allows an easy interpretation of the coefficients

in terms of odd ratios, but the class of functions that it can model accurately is restricted.

In our machine learning model, we push the limits of prediction by training neural network

models of 5 hidden layers and 15 hidden layers of 60 neurons to find similarities between

panic-selling events. However, doing so necessarily sacrifices easy interpretation2. Despite

the drawbacks of each method, we hope to show that there exists significant information in

the dataset that would allow us to predict panic selling.

In the rest of this section, we will refer to the occurrence of panic selling in the next

month as a positive data point, and its absence as a negative data point.

6.6.1 Construction of training and testing datasets

We created a dataset for machine learning using demographic attributes, portfolio states,

and market states. Among the demographic attributes used are age, marital status, number

of dependents, self-declared investment experience, self-declared investment knowledge and

occupational group. We assume equal weights for all the customers in a household when

assigning scores to the one-hot categories. For example, if a household has three customers

with ages 50, 50 and 70, the category ‘Age:50’ will have a score of 2/3, while the category

‘Age:70’ will have a score of 1/3.

For portfolio states, we consider the changes in portfolio balance, the distribution of the

portfolio (in cash, equities, options and penny stocks), the nominal and net values of trades,

and, the number of trades as functions of time. We incorporated lags of 6 months in order to

allow the models to easily pick up time-series signals. We use the month-to-month change,

the volatility of prices, and the trading volume of the S&P 500 as indicators of market
2Of course, the notion of ‘interpretability’ is itself up for debate [17]
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conditions. Market information was downloaded from Yahoo! Finance. We considered lags

of 12 months for these market variables.

A summary of the variables is shown in Table 6.10. For variables that are unbounded

from either side (e.g. ∈ Z+), we shifted the midpoint value to zero, then scaled them to be

within [−1, 1]. In total, the inputs into our models are vectors of length 507.

For the purpose of benchmarking the predictive power of the models, we perform a ran-

dom 60-40 training testing split. This ratio is maintained for each of the two classes, so that

the test set is representative of the entire sample. In order to prevent cross-contamination

between the training and testing sets, which would falsely inflate the performance of the

models, we ensure that all of a household’s data points are either in the testing set or the

training set. We use the training set of investors for both rounds of training, but evaluate

the performance of the models only on the test set in order to detect over-fitting of data

points. We do not require a validation set, as we do not perform any parameter optimization

or model selection.

6.6.2 Evaluation

Panic sales are rare events. In all, we obtain 25,418,786 data points, of which only 33,226,

or 0.131%, are panic sales (The number of panic sales is less than the number reported in

the previous section because we wish to create a lagged series, which forces us to drop some

data points). This extremely unbalanced dataset poses a significant problem for any binary

classification algorithm. For example, if an algorithm made the prediction of ‘not a panic

sell’ for any input, it would achieve an accuracy of 99.869%, an eye-popping but practically

irrelevant number. To get a better sense of the performance of the models, we compute

accuracy rates separately for both the negative and the positive examples. In addition, we

display the receiver operating characteristic (ROC) and precision-recall (PR) curves and

report the areas under them. An explanation of these metrics is given in Section 6.8.7 in the

Supplementary Materials. Since the ROC and PR curves serve to answer different questions,

we have included the results for both in order to allow our readers to decide if the models

are useful for their applications.
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Description Variable type
Demographics
Age Discrete, 83 groups
Marital status Discrete, 7 groups
Number of dependents 8 groups
Investment experience Discrete, 6 groups
Investment knowledge Discrete, 6 groups
Occupation group Discrete, 35 groups
Portfolio Factors
Risky assets balance R+
Penny stocks balance R+
Options balance R+
Cash balance R+
Portfolio balance R+
Number of risky assets Z+
Number of penny stocks Z+
Pct of cash in portfolio [0,1]
Pct of risky asset (value) in portfolio [0,1]
Pct of penny stocks in risky asset (value) [0,1]
Pct of options in risky asset (value) [0,1]
Pct of penny stocks in risky asset (count) [0,1]
Net value of trades R
Nominal value of trades R+
Nominal value of intraday trades R+
Pct of trades involved in intraday trades (value) [0,1]
Number of trades Z+
Number of intraday trades Z+
Pct of trades involved in intraday trades (abs num) [0,1]
Net value of trades as percentage of portfolio balance [0,1]
Nominal value of trades as percentage of portfolio balance [0,1]
Is the investor in or out of the market {0, 1}
We consider 6 months running lags for all the portfolio factors except the last
Market State
Month-to-month change in the S&P 500 R
Month-to-month change in the volume traded of GSPC R
Volatility of the volume traded of GSPC within the month R+
Volatility of the price over the past 20 days R+
Volatility of the price over the past 60 days R+
Volatility of the price over the past 180 days R+
We consider 12 months running lags for market factors

Table 6.10: List of raw variables used to construct the machine learning data set
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6.6.3 Computation

For all the models, we use the cross-entropy loss and train the models to optimality using

batch gradient descent (GD) with Adaptive Momentum [22]. It can be shown that minimizing

the cross-entropy loss yields the maximum likelihood estimate of the parameters. For each

batch of 150000, we randomly draw half of the samples from each of the two classes (with

replacement for the positive class and without replacement for the negative class) in order

to prevent the classifiers from over-emphasizing either class, which would be the natural

tendency of the classifier had we selected the training batch at random. We terminate the

training when we determine that the accuracy and/or loss has been saturated. We note in

passing that, given the appropriate training schedule, the solution converged on by GD for

the logistic regression will be the global minimum solution with respect to the loss of the

training set.

All the models were implemented on Tensorflow 1.6 with CUDA 9.0/ CuDNN 7.0, and

training was executed on a single Microsoft Azure NC12 instance, which contains 2 Nvidia

Tesla K80 GPUs.

6.6.4 Results

The accuracy curves, receiver operating characteristic curves and precision-recall curves on

the testing set are shown in Figure 6-9, 6-10 and 6-11 respectively. As can be seen from

Figure 6-9, all the models have been trained to convergence. The neural networks converge

after approximately 2000 steps, while the logistic classifier converged after approximately

8000 steps. There is no evidence that there is any form of overfitting on the train set,

despite the 15-layer neural network containing over 56000 parameters.

The final accuracy rates, areas under the ROC curves (AUROCs) and areas under the

PR curves (AUPRCs) on the test set for all the models are reported in Table 6.11. We can

see that the neural networks outperform the logistic classifier on all metrics. Between the

neural networks, the 15-layer network showed an improvement of 1.3 percentage points over

the 5-layer network on the positive data, but a deterioration of 1.5 percentage points on

the negative data. We can see that the 5-layer neural network marginally outperforms the
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15-layer neural network on the AUROC and AUPRC metrics, but the differences may be

simply due to randomness in training. The comparable performance of the neural networks

shows that a 5-layer neural network has enough capacity to approximate the function and a

larger network is unnecessary.

Accuracy AUROC AUPRC
Model Positive samples Negative samples (×10−3)
Random Predictor − − 0.500 1.307
Logistic Regression 57.9% 78.8% 0.739 5.521
Neural Net (5 hidden layers) 69.5% 81.5% 0.821 15.184
Neural Net (15 hidden layers) 70.8% 79.0% 0.813 13.819

Table 6.11: Performance of the models on the test set

Interpreting the logistic classifier

We attempt to interpret the coefficients of the logistic classifier. We group the variables

according to their classification type (demographic factor vs. market factor vs. portfolio

factor) and report the top 10 most important variables according to the absolute value

of the weights of the coefficients. This works in our analysis, as we have monotonically

transformed values to between -1 and 1. Our results are shown in Table 6.12.

Age dominates the list of the most important demographic variables. In general, being

young or elderly decreases the risk of panic selling. Being disabled or a minor also lowers

the likelihood of panic selling. While not shown, declaring oneself a member of the ‘clergy’,

an ‘owner’ or an ‘executive’ increases the likelihood of panic selling. In addition, having self-

declared ‘excellent’ investment experience increases the odds of panic selling. These results

substantially agree with the analysis by demographic slices in Section 6.5.5.

Among all the market factors, lagged series of the 20-day S&P 500 volatility, the 60-day

S&P 500 volatility and the volatility of the S&P 500 trading volume are the most important

factors in predicting panic sales. The signs of the coefficients are mixed.

Our analysis of the coefficients for the portfolio factor shows that the likelihood of a

panic sale increases with the percentage of daily trades made by the investor. Furthermore,

an investor will be more likely to panic sell if options compose a larger proportion of the

entire portfolio. The liquidation of the portfolio has been added as a variable to help the
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Figure 6-9: Accuracy curves over training steps. The training of the 15-layer and 5-layer
neural networks were terminated at around the 2650th and 3150th step respectively as we
deemed that they have converged. The logistic classifier was terminated at around the 8000th
step.

convergence of the model, and the model accurately deciphered that the chance of a panic

sale is high when the portfolio has not been liquidated. This serves as a sanity check that

our model is picking up the correct signals.
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Figure 6-10: Receiver operating characteristic (ROC) curves of the trained models.
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Figure 6-11: Precision-recall (PR) curves of the trained models.

6.7 Conclusion

The analyses in this chapter hinge on the heuristic we developed to identify panic sales. To

test the robustness of our results, we performed additional runs with different parameters. We

find that, although decreasing the thresholds will increase the number of panic sales identified
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Variable Name Description Coefficient
Demographic factors
Age:97 Age of 97 -0.885
dmsa_curr_occup_tx SOCIALWORKER Occupation: Social Worker -0.759
Age:<21 Age less than 21 -0.642
Age:23 Age of 23 -0.620
Age:26 Age of 26 0.588
Age:94 Age of 94 -0.587
Age:99 Age of 99 -0.586
dmsa_curr_occup_tx DISABLED Occupation: Disabled -0.546
dmsa_curr_occup_tx MINOR Occupation: Minor -0.531
invst_exprc_cd E Investment experience: excellent 0.501
Market factors
60d_price_vol_lag_8 60 days volatility of S&P500 (8 months ago) 0.758
20d_price_vol_lag_4 20 days volatility of S&P500 (4 months ago) -0.748
20d_price_vol 20 days volatility of S&P500 0.730
volume_vol Volatility of volume traded in S&P500 across one month 0.723
60d_price_vol_lag_5 60 days volatility of S&P500 (5 months ago) -0.701
20d_price_vol_lag_6 20 days volatility of S&P500 (6 months ago) -0.690
20d_price_vol_lag_9 20 days volatility of S&P500 (9 months ago) 0.687
20d_price_vol_lag_11 20 days volatility of S&P500 (11 months ago) 0.680
volume_vol_lag_7 Volatility of volume traded in S&P500 across one month (7 months ago) 0.671
volume_vol_lag_5 Volatility of volume traded in S&P500 across one month (5 months ago) 0.620
Portfolio factors
pct_intra_day_trades_lag_5 Percentage of intra-day trades in a month (5 months ago), by counts 0.786
pct_val_options_lag_1 Percentage of portfolio that is options (1 month ago), by value 0.765
pct_val_options_lag_6 Percentage of portfolio that is options (6 months ago), by value 0.736
pct_intraday_val_lag_2 Percentage of intra-day trades in a month (2 months ago), by value 0.716
inMarket ‘1’ if the portfolio has not been liquidated 0.708
pct_intraday_val_lag_1 Percentage of intra-day trades in a month (1 month ago), by counts 0.699
pct_val_options_lag_3 Percentage of portfolio that is options (3 months ago), by value 0.687
pct_intraday_val Percentage of intra-day trades in this month, by value 0.664
pct_intra_day_trades Percentage of intra-day trades in this month, by counts 0.661
pct_val_options_lag_4 Percentage of portfolio that is options (4 months ago), by value 0.648

Table 6.12: Most important variables in the logistic classifier.

across all time periods, there is still a disproportionate number of accounts which panic sell

in periods of high financial stress (see Section 6.8.6 of the Supplementary Materials).

Panic selling and freaking out are distinct behavioral patterns in finance that differ from

other previously studied patterns. While the disposition effect claims that investors tend to

hold on to their losers and keep their winners, we see that investors who made panic sales

achieve only a slightly negative return after they liquidate. Also, in contrast to overtrading,

investors who made panic sales did so infrequently. We see that panic selling spikes in periods

of crisis, suggesting a relationship between panic selling and market conditions. Our logistic

model suggests that recent market volatility influences panic selling behavior.

Panic selling and freakouts often have negative connotations. We show that this negativ-

ity may not always be warranted. While panic selling in normal market conditions is indeed

harmful to the median retail investor, freaking out in environments of sustained market
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decline prevents further losses and protects one’s capital.

Panic sales are not random events. Specific types of investor, such as those with less than

$20000 in portfolio value, tend to liquidate more frequently than others. Subtle patterns in

portfolio history, past market movements, and demographic profile can be exploited by deep

neural networks to accurately predict if an investor will panic sell in the near future.

Unfortunately, the problem of causation cannot be addressed with the data we have.

Therefore, our study does not address why investors panic sell. This topic, however, would

doubtless be an interesting direction for future research.
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6.8 Supplementary Materials

6.8.1 Account security holding and portfolio allocations data

The raw position files consist of monthly snapshots that record the quantities and month-

end prices of each security held in the portfolio of all accounts within the sample that were

open on the last day of the month. Securities are uniquely identified either by CUSIP ID

or ticker symbol, and accounts are uniquely identified by an anonymized numeric key (‘acid

key’ or ‘acid’). An internal asset class assignment for each security is also provided within

the brokerage account files, which classifies each CUSIP/ticker as one of: ‘equities’, ‘mutual

funds’, ‘fixed income securities’, ‘cash or cash equivalents’, or ‘options’. Additionally, a

separate identifier is provided distinguishing ‘cash equities’ from ‘ETFs’ within the equities

category.

Key Description Format
month Month of snapshot (all positions are those held at month-end) YYYYMM (e.g. 201512)
settle_qty Quantity of shares held in security double
ticker_symbol Ticker symbol string (e.g. AAPL)
cusip_num Security identification number registered with the US SEC 9-digit alpha-numeric (e.g. 17275R102)
issue_price Exchange-listed close price on the last market day of the assigned month double
product_grplvl1 Top level security type identifier string (e.g. ‘EQUITY’)
product_grplvl2 Mid level security type identifier string (e.g. ‘EQUITY’)
product_grplvl3 Bottom level security type identifier string (e.g. ‘EQUITY’)
acid_key Unique account identification number integer (e.g. 9374629673)

Table 6.13: Summary of the data fields in the positions datafile.

6.8.2 Trading data

The raw trade files consist of annual records of all trades executed by the sampled ac-

counts during the year. Each trade is timestamped by date, uniquely identified by acid and

CUSIP/ticker, and includes the dollar principal (either positive or negative) expended on

the trade (a buy or sell, respectively). The commission in dollar paid by the account for the

trade is also recorded. The daily timestamped nature of the trading data is critical to our

analysis because it enables computation of metrics based on intra-month trading decisions

and returns, and therefore exposes granular patterns of behavior that would not be visible

at fixed-interval monthly or quarterly frequencies. Furthermore, while portfolio holdings

data reflect both individual allocation decisions as well as changes in asset values, making it
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difficult to disentangle the effects of investor decision from the effects of changing prices, the

trade data reflects the decision to allocate in a much more direct manner. For these reason,

the availability of trade data differentiates this study from similar studies focusing on retail

brokerage account or government stock holdings data.

Key Description Format
trade_date Date of trade YYYYMMDD (e.g. 20080317)
buy_sell Indicator of buy or sell string (e.g. ‘B’, ‘S’)
principal Principal amount traded double
quantity Units of asset traded integer
tcommission Trade commission double
cusip_nr Security identification number registered with the US SEC 9-digit alpha-numeric (e.g. 17275R102)
ticker_symbol Ticker symbol string (e.g. AAPL)
product_grplvl1 Top level security type identifier string (e.g. ‘EQUITY’)
product_grplvl2 Mid level security type identifier string (e.g. ‘EQUITY’)
product_grplvl3 Bottom level security type identifier string (e.g. ‘EQUITY’)
acid_key Unique account identification number integer (e.g. 9374629673)

Table 6.14: Summary of the data fields in the trades datafile.

6.8.3 Relationship between household, accounts and customers

An investing account can be co-owned by multiple customers. The brokerage firm has associ-

ated a group of accounts into a household based on the relationships between the customers.

An investing account can only belong to one household whereas the map between invest-

ing accounts and customers can be many-to-many. Figure 6-12 illustrates the relationship

between the accounts and customers for one of the households.

6.8.4 Demographic data

The demographic files record the personal information on the account application forms

of the accounts selected by the random sampling procedure, and can be merged with the

historical account data contained in the position and trade files using the anonymized key.

Demographic fields include age, income, profession, investment knowledge (‘knowledge’),

investment experience (‘experience’), and marital status. Knowledge and experience are

survey questions included with the other components of the application questionnaire, and

can receive values of ‘Excellent’, ‘Good’, ‘Limited’, ‘None’ or ‘Decline to report’. These fields

reflect the account holder’s self-reported view of his or her familiarity with personal finance
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Figure 6-12: A graphical representation of how the households, accounts and customers are
related.

and financial decision-making, and therefore they offer a novel way to measure the behavior

and performance of investors as a function of their financial sophistication.

Key Description Format
month_last_record Month of last record integer (YYYYMM)
cust_age Age integer
dmsa_martl_stat_cd Marital status string
cust_depndt_qy Number of dependents integer
ps_gndr_cd Gender char
dmsa_curr_occup_tx Occupation group string
invst_knldg_cd Investment knowledge string
invst_exprc_cd Investment experience string
acctid_key Account ID integer

Table 6.15: Summary of the data fields in the demographic attributes datafile.

6.8.5 Computing the demographic distribution

The computation of the distribution of demographic features in our dataset is complicated

by the fact that a household can consist of multiple customers. Furthermore, some customers

in a household can be associated with more accounts than others. In Figure 10, customer

9932251884 is associated with four accounts, while customer 9378251337 is only associated

with one account. One can conceptualize that the former customer is more ‘influential,’ and

should be assigned a higher weight.
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There are many ways to aggregate this information. The typical method used by the

brokerage firm is to consider either the minimum or the maximum of all the customers for a

single variable. For example, it will use the maximum age of all the customers in a household

when analyzing the age of a household, or consider the highest level of investing experience

declared by all the customers in a household to be the household’s investing experience.

While this is useful for marketing purposes, where one is only interested in finding a target

audience (e.g. if the household has someone who needs retirement products), it does not

suffice for our study. Furthermore, this method will fail when one attempts to apply it to

unordered information, such as occupational groups.

We choose to take into account the portfolio weights of each customer to analyze the

demographic distribution of our dataset. To do so, we will first compute the weight of every

account based on their average portfolio value over its lifetime. Let the portfolio weight of

account 𝑖 be 𝑝𝑖. For every account, we assume an equal weight between all its registered

customers. Denote the set of customers in account 𝑖 by 𝑐𝑖. Thus, the effective weight of

customer 𝑗 will then be ∑︀∀𝑖,𝑗∈𝑐𝑖

𝑝𝑖

|𝑐𝑖| .

We demonstrate an example of the computational process using Figure 6-13. There, we

have 3 investing accounts (in rectangles) and 3 customers (in ovals). First, we compute the

average portfolio values across the entire time horizon to find that the portfolio weights of

the accounts are 1
3 , 1

2 , 1
6 , respectively. For each account, we then assign a weight from the

account to the customers on an equal basis. The results of this step are in green. Finally,

for each customer, we can compute the total weight. For customer 9932251884, the overall

weight is then 1
2 ×

1
2 + 1

6 × 1 = 0.417.

Figure 6-13: An example of how the demographic weights are computed. The rectangles
represent investing accounts while the ovals represent customers. The numbers in red are
the portfolio weights for each investing account, while the green numbers are the weights to
a customer from an investing account.
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We also attempted a method in which all the customers in a household were assigned

equal weights. While the resulting numbers differed slightly, the conclusions drawn were

similar.

6.8.6 Changing the parameters for the identification of panic sales

Our method of determining a panic sale requires us to define two parameters, 𝑝1 and 𝑝2,

the monthly portfolio decline and the monthly portfolio net sell, which we set to 0.9 and

0.5, respectively. We conduct additional runs with different parameter pairs to determine

how they affect the identification of panic selling. As the amount of computation required

is immense, however, costing more than 5,000 CPU-hours per run, we performed only 2

additional runs with the parameter settings shown in Table 6.16. We did not vary 𝑝3 and 𝑝4,

the portfolio rebound and the cumulative net buy, as they do not affect the identification of

panic sales.

Run 𝑝1 𝑝2 𝑝3 𝑝4
1 0.9 0.5 0.5 0.5
2 0.5 0.25 0.5 0.5
3 0.25 0.1 0.5 0.5

Table 6.16: Summary of the parameters used in the various run

Figure 6-14 shows the results of our additional runs versus our baseline. As expected,

decreasing the thresholds will increase the number of panic sales being captured. While we

still observe the major spikes in reaction to major events remain across all runs, lowering the

thresholds also amplifies ‘noise’ in our data.

6.8.7 Explanation of machine learning models

Issue of imbalanced data

One of the biggest issues encountered in training our machine learning models is the ex-

tremely imbalanced dataset. Given that the negative class comprises of 99.87% of all data

points, a naive classifier that always predicts ‘0’ will easily achieve an accuracy of 99.87%.
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Figure 6-14: The number of panic sales over time for different parameter sweeps. The
red, blue and gold bars represent the results for the parameter sets {0.9, 0.5, 0.5, 0.5},
{0.5, 0.25, 0.5, 0.5} and {0.25, 0.1, 0.5, 0.5} respectively.

Naively training the models based on the usual cross-entropy minimization will lead to this

outcome.

To mitigate this problem, we oversampled the underrepresented class, which we achieved

by creating training batches with equal weights. We also considered using SMOTE [15],

but we found that interpolating variables generated nonsensical data points; our data was

constructed in such a way that there are too many constraints that have to be fulfilled for

this method to be applicable.

Metrics for evaluating models

As discussed, accuracy over the entire test set is not a valid measure for imbalanced data.

Instead, we evaluated our models on the accuracy of both positive-labelled and negative-

labelled data points to get a more useful idea of their real world performances.

In addition, we reported two other metrics that characterize the performance of machine

learning models: the area under the receiver operating characteristic curve (AUROC) and

the area under the precision-recall curve (AUPR).
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We define the following measures:

Sensitivity = Recall = #True Positives
#True Positives + #False Negatives (6.2)

Specificity = #True Negatives
#True Negatives + #False Positives (6.3)

Precision = #True Positives
#True Positives + #False Positives (6.4)

The receiver operating characteristic (ROC) curve is the created by plotting the true

positive rate of a classifier, also known as its ‘sensitivity’ or ‘recall’, against its false positive

rate, or 1−specificity, at different thresholds. A naive classifier will have a ROC profile that

is a diagonal from (0,0) to (1,1). In this case, the AUROC of the naive classifier will be

0.5. On the other hand, a perfect classifier will have an AUROC of 1. Mathematically, the

AUROC is the probability that the score of a randomly selected positive example is higher

than the score of a randomly selected negative example.

The ROC is not useful if one is interested in the rate that the models produce false

alarms. In such cases, the precision-recall (PR) curve is more useful. A naive classifier will

have a precision that is equal to the proportion of positive data points in the entire sample

for all thresholds.
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Part IV

Conclusion
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6.9 Final Words

As the old adage goes: you can’t manage what you don’t measure. This thesis focuses on the

using computational methods to collect and process data, investigate highly non-linear re-

lationships and simulate complex scenarios in order to forecast possible outcomes. Through

the chapters, we present computational methods to quantify risk in drug development pro-

grams, address current challenges in health economics and investigate and predict rare events

in finance. We hope that the methods introduced will allow the respective stakeholders to

make timely and informed decisions.
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