
Data Efficient Reinforcement Learning
by

Zhi Xu
B.S. in Electrical Engineering, University of Illinois at Urbana-Champaign, May 2015

S.M. in Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, June 2017

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Signature of Author:
Zhi Xu

Department of Electrical Engineering and Computer Science
May 18, 2021

Certified by:
Devavrat Shah

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by:
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Data Efficient Reinforcement Learning
by

Zhi Xu

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract
Reinforcement learning (RL) has recently emerged as a generic yet powerful solution for
learning complex decision-making policies, providing the key foundational underpinnings of
recent successes in various domains, such as game playing and robotics. However, many
state-of-the-art algorithms are data-hungry and computationally expensive, requiring large
amounts of data to succeed. While this is possible for certain scenarios, in applications
arising in social sciences and healthcare for example, where available data is sparse, this
naturally can be costly or infeasible. With the surging interest in applying RL to broader
domains, it is imperative to develop an informed view about the usage of data involved in
its algorithmic design.

This thesis hence focuses on studying the data efficiency of RL, through a structural
perspective. Advancement along this direction naturally requires us to understand when
and why algorithms are successful to begin with; and building upon such understanding,
further improve the data efficiency of RL. To this end, this thesis begins by taking inspiration
from the empirical successes. We consider the popular use of simulation-based Monte Carlo
Tree Search (MCTS) in RL, as exemplified by the remarkable achievement of AlphaGo
Zero, and probe the data efficiency of incorporating such a key ingredient. Specifically,
we investigate the correct form to utilize such a tree structure for estimating values and
characterize the corresponding data complexity. These results further enable us to analyze
the data complexity of a RL algorithm that combines MCTS with supervised learning as
done in AlphaGo Zero.

Having developed a better understanding, as a next step, we improve the algorithmic
designs of simulation-based data-efficient RL algorithms that have access to a generative
model. We provide such improvements for both bounded and unbounded spaces. Our first
contribution is a structural framework through a novel lens of low-rank representation of
the Q-function. The proposed data-efficient RL algorithm exploits the low-rank structure
to perform pseudo-exploration by querying/simulating only a selected subset of state-action
pairs, via a new matrix estimation technique. Remarkably, this leads to a significant (expo-
nential) improvement in data complexity. Moving to our endeavor with unbounded spaces,
one must first address the unique conceptual challenges incurred by the unbounded do-
mains. Inspired by classical queueing systems, we propose an appropriate notion of stability
for quantifying “goodness” of policies. Subsequently, by leveraging the stability structure of
the underlying systems, we design efficient, adaptive algorithms with a modified, efficient

3

4

Monte Carlo oracle that guarantee the desired stability with a favorable data complexity
that is polynomial with respect to the parameters of interest.

Altogether, through new analytical tools and structural frameworks, this thesis con-
tributes to the design and analysis of data-efficient RL algorithms.

Thesis Supervisor: Devavrat Shah
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

Six years ago, I was very fortunate to have the opportunity of choosing among several
graduate schools. Deep in my heart, I knew that I could never say no to this three-letter
university. Six years later, I am extremely glad that I made the right decision. Indeed, my
MIT journey is wonderful, and I would like to take this opportunity to thank many people
who have made it such an enjoyable and memorable experience.

First and foremost, I am extremely grateful to have Devavrat as my advisor. He is an
amazing advisor who truly cares about his students and always put his students on top of
the priority queue. Devavrat once mentioned that after graduation, my status would change
from a student to a friend. But even before that, I have always felt that he is more like
a friend to me. Of course, a wise and insightful friend. I absolutely enjoy drinking coffee
together and just talking about random things. Whenever I have questions, I would simply
text or call him, and he is always available for discussions. Needless to say, academically,
he has spent countless time in shaping me into a better researcher. A PhD journey consists
of many ups and downs. However, since I met him, I have been always running “gradient
ascent” with the right step size. It is simply impossible to fully describe how great Devavrat
is. I really cannot thank him enough given the influence he had on me both as an academic
advisor and as a friend. I certainly would not have been who I am today without his generous
guidance. It is such an honor and blessing to have met him in my life, and I very much look
forward to the new chapter of our friendship after graduation.

I am also grateful to my committee members, John Tsitsiklis and Leslie Kaelbling. John
was also my advisor for the Master’s thesis. He is not only knowledgeable in various fields,
but could also always see the very essence of the seemingly messy problems. Our meetings
have always been a valuable source of inspiration for me. The first machine learning course
I took at MIT is 6.867 in Fall 2016 when Leslie was one of the instructors. Undoubtedly, it
was enlightening and triggered my interest for future research in this area.

Further, I would like to thank my wonderful collaborators over the years. This thesis
would not have been possible without them, especially Qiaomin Xie, Dogyoon Song, and
Yuzhe Yang. I have known Qiaomin since my undergraduate studies, and it is absolutely

5

6

amazing to formally collaborate with her on a variety of problems after she joined Devavrat’s
group as a post-doc. In that sense, I am also her first graduate student. I am glad that
through our collaborations, I finally made Dogyoon a bit more interested in reinforcement
learning. Yuzhe and I met each other initially on a deep learning project. Since then, I have
very much enjoyed our discussions on many innovative ideas, some of which indeed led to
great publications. I have learned much from him and hopefully, I have been helpful for his
early career at MIT as well. Our collaborations on several applied machine learning problems
nicely complemented my theoretical research and have made me a more comprehensive
researcher. I will always remember those nights we spent together right before the deadlines
and I am certain that he will have a bright future at MIT.

In addition, there are many friends at MIT to thank. I have been living with Guo Zhang
for five years, almost my entire MIT journey. In fact, I met my wife during a Thanksgiving
event he organized. I am glad that I finally collaborated with Anish Agarwal and Dennis
Shen before my graduation. I will miss the time we spent together in our office, 32D-666.
I enjoyed many fruitful conversations with Chengtao Li, Ruihao Zhu, and Sarah Cen. I
would also like to thank Quan Li, Kevin Li, Jianan Zhang, Xinzhe Fu, and Hao He for
discussions and help during different stages of my internship and full-time job search. More
broadly, I thank the friends at 32D-666, SPPIN, and LIDS/EECS for making my stay at
MIT, particularly at Stata Center, memorable. I cherish the conversations with all of you
and sincerely wish that our friendship will continue beyond MIT.

For my graduate studies, I was supported by MIT Jacobs Presidential Fellowship, Siemens
Futuremakers Fellowship, as well as grants from KACST (grant agreement dated 07/01/2011)
and NSF (CMMI-1634259). My research would not have been smooth without their financial
support.

Last but not least, I am indebted to my family for their unconditional support and love.
This thesis is dedicated to them. My parents, Meiqin Su and Bifeng Xu, basically have no
idea of my research. Yet, they try to understand and support me in their own way, which
is indeed important to me. Thank you for believing in me and providing me with the best
educational resources you could since I was young. I met my wife, Chengcheng Qin, while
she was a student at Harvard. I very much cherish the classes we took together at Harvard
as well as the time we spent in Cambridge. Since our marriage in 2017, she has been working
alone in New York City to support my PhD dream. I cannot imagine how much she has
sacrificed for the family over the years. Thank you for loving me, encouraging me, and
taking care of me. Undoubtedly, I would not have gone so far without her love, support,
and sacrifice. I owe my deepest gratitude to her.

Contents

Abstract 3

Acknowledgments 5

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 Reinforcement Learning . 16
1.2 Theme of The Thesis . 19

1.2.1 Monte Carlo Tree Search . 19
1.2.2 Data-efficient “Low-rank” RL . 22
1.2.3 Stability in Unbounded State Space 24

1.3 Contributions . 27
1.3.1 Methodological Contributions . 27
1.3.2 Algorithmic & Technical Contributions 28

1.4 Organization of the Thesis . 31
1.5 Bibliographic Note . 31

2 Non-asymptotic Analysis of Monte Carlo Tree Search 33
2.1 Related Work . 35
2.2 Setup and Problem Statement . 37

2.2.1 MDP Regularity . 37
2.2.2 Value Function Iteration . 38

2.3 Monte Carlo Tree Search . 39
2.3.1 Algorithm . 39
2.3.2 Analysis . 42

2.4 Reinforcement Learning through MCTS with Supervised Learning 43

7

8 CONTENTS

2.4.1 Reinforcement Learning Procedure . 44
2.4.2 Supervised Learning . 45
2.4.3 Finite-sample Analysis . 45
2.4.4 Minimax Lower Bound . 46

2.5 Non-stationary Multi-arm Bandit . 47
2.5.1 Algorithm . 47
2.5.2 Analysis . 48

2.6 Proof of Theorem 3 . 48
2.6.1 Establishing the Convergence Property 49
2.6.2 Establishing the Concentration Property 50
2.6.3 Proofs of Lemmas 1, 2 & 3 . 53

2.7 Analysis of MCTS and Proof of Theorem 1 58
2.7.1 Preliminary . 58
2.7.2 Analyzing Leaf Level H . 59
2.7.3 Recursion: Going From Level h to h− 1 61
2.7.4 Error Analysis for Value Function Iteration 64
2.7.5 Completing Proof of Theorem 1 . 64
2.7.6 Proof of Lemma 4 . 65

2.8 Proof of Theorem 2 . 65
2.8.1 Guarantees for Supervised Learning 65
2.8.2 Establishing Theorem 2 . 66
2.8.3 Proof of Lemma 8 . 68

2.9 Extension of Theorem 1 for Stochastic Environment 70
2.9.1 Proof of Lemma 9 . 75

2.10 Chapter Summary . 77

3 Data-efficient “Low-rank” RL 79
3.1 Related Work . 80
3.2 Markov Decision Process and Representation of Q-function 83

3.2.1 MDP Regularity . 83
3.2.2 Spectral Representation of Q-function 83

3.3 Reinforcement Learning via Matrix Estimation 85
3.3.1 A Narrative Description of the Algorithm 85
3.3.2 Pseudo-code for the Proposed Algorithm 86

3.4 Correctness, Convergence & Sample Complexity 86
3.4.1 Matrix Estimation: a Key Premise . 86
3.4.2 Correctness, Rate of Convergence & Sample Complexity of Algorithm 3 88

CONTENTS 9

3.4.3 Proof of Theorem 5 . 88
3.5 Matrix Estimation Satisfying Assumption 2 92

3.5.1 Matrix Estimation for Q∗ with Rank 1: a Warm-up 92
3.5.2 Matrix Estimation for Q∗ with Rank r 93
3.5.3 Matrix Estimation for Q∗ with Approximate Rank r 95

3.6 Technical Results of the Proposed ME Method 97
3.6.1 Rank(Q∗) = 1 . 97
3.6.2 Rank(Q∗) = r . 99
3.6.3 Rank(Q∗) ≈ r . 103

3.7 Empirical Evaluation . 106
3.8 Discussion on Matrix Estimation . 108
3.9 Chapter Summary . 110

4 Stability in Unbounded State Space 111
4.1 Related Work . 112
4.2 Setup and Notion of Stability . 114

4.2.1 Markov Decision Process and Online Policy 114
4.2.2 Stability . 115

4.3 Online Stable Policy . 117
4.3.1 Sample Inefficient Stable Policy . 118
4.3.2 Sample Efficient Stable Policy . 120
4.3.3 Discovering Appropriate Policy Parameter 122
4.3.4 Discussion . 125

4.4 Proof of Theorem 9 . 126
4.4.1 Proof of Lemma 14 . 129
4.4.2 Proof of Lemma 15 . 131
4.4.3 Proof of Lemma 16 . 132

4.5 Proof of Theorem 10 . 134
4.5.1 Proof of Lemma 13 . 134

4.6 Proof of Results on Adaptive Methods . 136
4.6.1 Proof of Theorem 11 . 136
4.6.2 Proof of Corollary 1 . 137

4.7 Chapter Summary . 138

5 Conclusions and Future Work 139
5.1 Future Work . 140

A Supplementary Materials for Chapter 2 143

10 CONTENTS

A.1 Proof of Proposition 1 . 143
A.2 Numerical Experiments . 145

B Supplementary Materials for Chapter 3 149
B.1 Proof of Theorem 4 . 149
B.2 Corollaries of Theorem 7 . 154
B.3 Experimental Setup for Stochastic Control Tasks 155
B.4 Additional Results on Stochastic Control Tasks 159

B.4.1 Empirical Evaluation on All Control Tasks 159
B.4.2 Comparison on Runtime of Different ME Methods 162
B.4.3 Additional Study on the Discounting Factor γ 162

Bibliography 163

List of Figures

1.1 A two queue network: arrival, service rates for queue i ∈ {1, 2} are λi, µi,
respectively. 25

2.1 Notation and a sample simulation path of MCTS (thick lines). 41
2.2 MCTS with stochastic transitions. 72
2.3 Reduce the stochastic transitions to a single “meta-node" for each action. . . 73

3.1 Iterative RL using ME: the exploration step uses estimation Q(t−1) from the
previous iteration. 85

3.2 Empirical results on the Inverted Pendulum control task. In (a) and (b), we
show the improved sample complexity for achieving different levels of `∞ error
and mean error, respectively. In (c) and (d), we compare the `∞ error and
the mean error for various ME methods. Results are averaged across 5 runs
for each method. 107

3.3 Policy visualization of different methods on the Inverted Pendulum control task.

The policy is obtained from the output Q(T) by taking arg maxa∈AQ(T)(s, a) at

each state s. 108

4.1 Illustration of the Monte Carlo oracle with Sparse Sampling. The figure is
adapted from [88]. 119

A.1 Simulation for a deterministic MDP with tree depth H = 7 on the left and
H = 10 on the right. Each plot is a summary of 25 MCTS experiments
showing the mean and standard deviation. 146

A.2 Simulation for a stochastic MDP with tree depth H = 5 on the left and H = 8

on the right. Each plot is a summary of 25 MCTS experiments showing the
mean and standard deviation. 147

11

12 LIST OF FIGURES

B.1 Sample complexity and error guarantees for 5 stochastic control tasks. From
top to bottom, the rows show empirical results on Inverted Pendulum, Moun-
tain Car, Double Integrator, Cart-Pole and Acrobot, respectively. In columns
(a) and (b), we show the improved sample complexity for achieving different
levels of `∞ error and mean error, respectively. In columns (c) and (d), we
compare the `∞ error and the mean error for various ME methods. Results
are averaged across 5 runs for each method. 160

B.2 Policy visualizations of different methods for 5 stochastic control tasks. From
top to bottom, the rows show empirical results on Inverted Pendulum, Moun-
tain Car, Double Integrator, Cart-Pole and Acrobot, respectively. The poli-
cies are obtained from the corresponding outputQ(T) by taking arg maxa∈AQ

(T)(s, a)

at each state s. Recall the for both Cart-Pole and Acrobot, the state space
is 4-dimensional. We hence visualize a 2-dimensional slice in the figures above.161

B.3 Empirical results on the Inverted Pendulum control task with γ = 0.5. We
show the improved sample complexity in (a) and compare the `∞ error for
various ME methods in (b). 162

List of Tables

3.1 Informal summary of sample complexity results for three different state/action
space configurations: our results, a few selected from literature, and the lower
bounds. 79

3.2 Comparison of different ME methods with different guarantees. Ours is the
only method that provides entry-wise guarantee while allowing for arbitrary,
bounded error in each entry. 80

3.3 Performance metric for different stochastic control tasks using different ME
methods. A.D. stands for angular deviation, T.G. stands for time-to-goal; for
both metrics, the smaller the better. 108

4.1 Comparison with selected prior work on RL safety and stability. 113

B.1 The runtime comparison of different ME methods for one iteration on the
Inverted Pendulum task. Results are averaged across 5 runs for each method. 162

13

14 LIST OF TABLES

Chapter 1

Introduction

Sequential decision-making is ubiquitous in a variety of domains in the real-world. In
healthcare, treatment plans are applied sequentially and revised adaptively according to
the progress and the observed health state of the patients. In robotic tasks such as locomo-
tion and grasping, a sequence of appropriate actions that manipulates the robot must be
executed sequentially in order to achieve the desired behavior. In personal investment, we
make decisions to allocate the wealth to different assets from time to time, adjusting them
so as to maximize the long-term wealth. A prominent feature of all the aforementioned
examples is the long-term dependence: instead of just an immediate reward following an
action, the decision maker seeks a sequence of actions that would maximize the cumulative
long-term outcomes such as the eventual health of the patients or the eventual wealth after
retirement.

Reinforcement Learning (RL) has recently emerged as a generic yet promising tech-
nique for sequential decision-making tasks. Typical settings of those tasks, such as the ones
above, involve a decision maker interacting with the environment. Decisions (potentially
sub-optimal) are attempted, with corresponding feedback from the environment received
back by the decision maker. RL is precisely about learning from those interactions to seek
an optimal policy, through the formal framework of Markov Decision Processes (MDP).
In general, it has a rich history [158, 22, 82], but recent advancements in machine learn-
ing, optimization, statistics and importantly computational resources have truly pushed the
boundary of modern RL techniques. RL, coupled with expressive function approximators
such as neural networks, has been the main technique underpinning remarkable successes in a
variety of domains, such as game playing [122, 150, 149], robotics [108, 86], recommendation
system [35, 159], autonomous driving [136, 91] and healthcare [171, 127].

This thesis aims to further our understanding about modern RL algorithms. In particu-
lar, we will focus our investigation on the data efficiency through a “structural” lens, which
will be made clearer throughout this thesis.

15

16 Chapter 1. Introduction

� 1.1 Reinforcement Learning

We begin with a short introduction to Reinforcement Learning, including its generic setting
and common notation used in this thesis, to setup the necessary background.

RL considers the problem of learning through agent-environment interaction. At each
discrete time step t, an agent (or decision maker) begins at a state s and then decides an
action a to take. Upon receiving the action, the environment transits to a next state s′

via certain rules associated with the current state-action pair, (s, a). The environment also
returns a corresponding immediate reward for the state-action pair. The process is then
repeated at the next time step t + 1, and the agent’s goal is to maximize the cumulative
reward s/he could possibly get. In the previous example of personal investment, the state
s could be the distribution of wealth on different assets at the current time; the action a

could be to buy or sell some portions of the assets; the immediate reward could be the
corresponding cash outflow or inflow; the distribution of wealth then changes as a result of
the previous distribution and the buy/sell action.

Formally, the above setup can be described as an infinite-horizon discounted Markov
Decision Process (MDP), which includes five components, (S,A,P,R, γ). S and A are the
state space and the action space, respectively. In this thesis, we generally consider continuous
state space. P(s′|s, a) is the unknown transition kernel which determines the probability of
transitioning to state s′ ∈ S given the current state s ∈ S and action a ∈ A. R : S ×A → R
is the reward function which determines the immediate reward (possibly random) received
for taking action a ∈ A at state s ∈ S. Finally, γ ∈ (0, 1) is the discounting factor. A policy
π(a|s) specifies the probability of selecting action a ∈ A at state s ∈ S. The standard value
function associated with a policy π is defined as

V π(s) = E
[∞∑
t=0

γtR(st, at) | s0 = s
]
,

where at ∼ π(·|st) and the expectation is taken with respect to the randomness of the state
transition, the policy and the reward function (if random). That is, V π(s) is the discounted
cumulative reward obtained by starting at state s and following the policy π to choose
actions at each time step. The optimal value function, denoted by V ∗, is the value function
of the reward-maximizing policy, i.e.,

V ∗(s) = sup
π
V π(s), ∀ s ∈ S,

and the corresponding reward-maximizing policy is commonly referred as the optimal pol-
icy, denoted by π∗. It is well understood that such an optimal policy exits in reasonable
generality [23]. Another “value function” that is critical in designing several RL algorithms

Sec. 1.1. Reinforcement Learning 17

is the state-action value function, or Q-function:

Qπ(s, a) = E[R(s, a)] + γEs′∼P(·|s,a)[V
π(s′)].

In other words, Qπ(s, a) is the discounted cumulative reward by starting at state s, taking
action a immediately and then following the policy π afterwards. Similarly, we define the
optimal Q-function, denoted by Q∗, as

Q∗(s, a) = E[R(s, a)] + γEs′∼P(·|s,a)[V
∗(s′)].

Generically speaking, RL concerns about either learning the optimal values, V ∗ or Q∗, or
learning the optimal policy, π∗. Throughout, to measure the data efficiency of an algorithm,
we use the standard asymptotic notation, O(·) and Ω(·), to quantify the number of samples
involved. We also use Õ(·) and Ω̃(·) to hide logarithmic factors for simplicity.

Terminology. Literature on RL is rich and is growing rapidly. In what follows, we provide
a concise summary of the various classes of RL algorithms and the related terminologies,
with the aim to provide better context for this thesis.

Model-free versus Model-based: as the name suggests, model-free methods learn the
quantity of interest directly without learning a model of the environment (i.e., the transition
kernel). A classical example is the Q-learning algorithm which iteratively updates the Q-
value through temporal difference estimates [175, 122]. In contrast, for model-based RL
methods, the transition dynamics is learnt and subsequently utilized for policy learning (e.g.,
direct planning through Model Predictive Control [61, 29] or data augmentation for model-
free methods) [173, 139, 78, 172, 83, 113, 51, 107, 126, 68]. Thus far, model-free methods
are generally more prevalent and more thoroughly developed due to their flexibility and ease
of application [122, 121, 180, 140, 141, 110, 69, 59, 174, 75]. Learning a model accurately is
fundamentally hard, and the bias can lead to poor policy learning. However, recent work has
demonstrated that, when designed appropriately, model-based approaches can be far more
data-efficient in terms of the number of samples required to learn a good policy and can also
generalize as well as the state-of-the-art model-free methods [41, 42, 102, 83, 70]. Designing
efficient RL methods, possibly through learning models, is an active research area.

Value-based versus Policy Optimization: recall that the agent’s goal is to maximize the
cumulative reward. Policy optimization achieves so by directly parameterizing the policy
(i.e., πθ(a|s) with parameter θ) and then optimizing it through gradient steps with respect
to objectives that are either the cumulative reward or some forms of approximations [176,
140, 141, 85]. In comparison, value-based methods do so indirectly by learning the value
functions, in particular, the optimal Q-value. Methods in this class often parameterizes the
Q-value (i.e., Qθ(s, a)) and typically optimizes it with respect to objective functions based

18 Chapter 1. Introduction

on the Bellman equation [122, 75, 174, 167, 180, 8]. In addition, policy optimization methods
are almost always updated in an on-policy manner, meaning that at each update step k,
the data used must be generated according to the current policy πθk . Value-based methods,
on the other hand, are mostly off-policy methods: they can utilize all the historical data,
regardless of the underlying policies that generate them. Indeed, modern methods often
include an experience reply buffer [122, 8] to effectively leverage such off-policy property.
It is worth mentioning that the distinction of value-based or policy optimization methods
is not strict. In fact, there is a variety of algorithms in between, often under the name of
actor-critic methods [98, 110, 69, 59]. They parameterize both the policy (i.e., the actor) and
the value function (i.e., the critic) with the aim of improving the learning process from the
help of each other. Further, modern implementation of some policy optimization methods
also involves a parameterized value function, serving as a baseline to reduce the variance in
the associated gradient estimates.

Online versus Offline: thus far, the vast majority of RL literature has focused on the
“online” setting, where the agent is able to continuously and adaptively sample transition
data during the learning process. Such online sampling is instructive in guiding the overall
learning process, helping these methods effectively quantify and reduce uncertainty for un-
seen state-action pairs. However, this type of interaction with the environment can be costly
or simply infeasible for numerous real-world applications such as healthcare, autonomous
driving, and socio-economic systems. As a result, there has been a rapidly growing literature
on “offline RL” (or batch RL) [109, 100, 112, 60, 105, 177, 5, 101, 183, 93], which focuses on
leveraging pre-collected, fixed data to learn the RL quantity of interest. Naively, many (on-
line) off-policy methods [69, 59, 110, 66, 122] can be directly applied in this offline setting, as
they are in principle designed to leverage historical data and to be independent of the data
generating policies. Their performance, however, degrades significantly [60, 100]. Without
the ability to perform online correction, these methods suffer severely from distributional
shift [109] and simply fail most of the time. To tackle this challenge, the current literature
often designs policies that are “close”, in an appropriate sense, to the observed behavioural
policy in the offline dataset, via directly quantifying and regularizing the uncertainty for a
given state-action pair [100, 177, 60].

This Thesis. This thesis will explore both value and policy learning, in a model-free
manner. Following literature on theoretical reinforcement learning, we consider the setup
with the access of a generative model (i.e., a simulator) [84]. This means that the transition
kernel P and the reward function R(s, a) are unknown, but the agent could access the
transition data through querying the generative model at any state-action pair (s, a). The
complexity (or data efficiency) of an algorithm is then measured through the number of
transition data required to achieve a certain guarantee. Naturally, we consider the online

Sec. 1.2. Theme of The Thesis 19

setup where we are able to query the generative model at will throughout the process. After
we develop a better understanding of the results, potential extensions and connections to
other types of settings shall be discussed at the end of the thesis.

� 1.2 Theme of The Thesis

With remarkable advancements in computational resources, the successes of many modern
RL algorithms are often centered around the usage of huge amount of data and the cleverness
in how they are leveraged. For instance, on Atari games, Deep Q-learning requires 50 millions
training frames (around 38 days of game experience in total) and meanwhile, utilizes a reply
buffer of 1 million frames to cleverly leverage past transition data to update and regularize
the neural network [122]. In practice, different applications naturally admit different data
patterns: some, such as video games and robotics, may be easy to request more data while
others like healthcare may be costly or infeasible to do so. As RL is becoming increasingly
popular and widely used across various domains, it is vital to develop a better understanding
about the usage of data involved in its algorithmic design. Therefore, this thesis focuses on
investigating the data efficiency of RL. This naturally leads to two quests: understanding
and improvement. More precisely,

1. Can we characterize the data complexity for existing, empirically successful algorithms?

2. Further, can we design provably data-efficient RL algorithms?

This thesis will take a “structural” perspective to explore the above questions. To be
successful or efficient, RL algorithms often utilize certain kinds of structures within the
decision-making tasks. At a high level, this structure can be: (1) a different representa-
tion/viewpoint of the underlying problem, such as representing the next-steps transitions
into trees and subsequently producing value estimates in the Monte Carlo Tree Search; (2)
certain mathematical properties of the task, such as having Lipschitz or “low-rank” value
functions or admitting a “stable” policy. While the term “structure” may be vague at this
moment, we will unpack this perspective and its usefulness throughout the thesis. To achieve
this, the thesis is divided into three parts. In the following, we give a preview of each part.

� 1.2.1 Monte Carlo Tree Search
Arguably, one of the breakthroughs of RL in recent years is AlphaGo [148]. Go is tradition-
ally considered as the most challenging classical games in artificial intelligence. Remarkably,
AlphaGo defeated even world champions, setting new standards of superhuman perfor-
mance. Such phenomenal success naturally motivates the investigation on its algorithm.

20 Chapter 1. Introduction

In particular, what is the data efficiency involved that leads to the superior performance
empirically?

At a high level, the overall learning algorithm of AlphaGo Zero (AGZ) [150], a successive,
improved version of AlphaGo, can be summarized as an effective combination of Monte
Carlo Tree Search (MCTS) and supervised learning. The algorithm performs a kind of
approximate dynamic programming with a simulator. It employs supervised learning to
learn a policy/value function (represented by a neural network) based on samples generated
via MCTS; the neural network is recursively used to estimate the value of leaf nodes in the
next iteration of MCTS for simulation guidance, and the eventual sample data generated by
the MCTS-based policy is applied for gradient update of the network parameters. In the first
part of this thesis, we focus our investigation on the non-asymptotic behavior of MCTS, as it
is the key component behind AGZ’s success. This will also enable us to subsequently analyze
the overall data complexity when it is combined with supervised learning for iteratively
improving the estimation of value function.

As the name suggests, the key structure behind the power of MCTS is the tree repre-
sentation. By viewing the multi-step transitions as trees, one can utilize the representation
to design effective algorithms to evaluate the value of the current state by drawing insights
from the bandit literature. Let us now elaborate this aspect. Consider for a moment that
we only attempt to maximize a one-step reward, i.e., we start with the initial state s0 and
the process terminates after we take the first action a1. This is commonly referred as the
Multi-armed Bandit (MAB) problem [6, 13, 104, 27], where the goal is to discover amongst
finitely many actions (or arms), the one with the best average reward while choosing as
few non-optimal actions as possible during the learning process. The rewards for any given
arm are assumed to be independent and identically distributed (i.i.d.). A common challenge
in such setting is the exploration-exploitation tradeoff: should we choose the action that
has the highest empirical reward so far or should we explore more options (potentially sub-
optimal) so as to discover the reward distribution better. The classical Upper Confidence
Bound (UCB) algorithm resolves the tradeoff by utilizing the exponential concentration for
such i.i.d. and hence stationary reward processes at each arm: at each time of the learning
process, choose action with the maximal index (ties broken arbitrarily), where the index of
an arm is defined as the empirical mean reward plus a bonus term which is a constant times√

log t/s. Here, t is the total number of trials so far and s ≤ t is the number of times the
particular action is chosen in these t trials. Note that the bonus depends logarithmically on
t.

The goal of MCTS is very similar to the MAB setup described above – choose an action
at a given query state that gives the best average reward. However, instead of only a
one-step immediate reward, the overall reward in general depends on the future actions.

Sec. 1.2. Theme of The Thesis 21

Therefore, to determine the best action for the given state, one has to take future actions
into account, and MCTS does this by simulating future via effectively expanding all possible
future actions recursively in the form of trees. In essence, the optimal action at the root of
such a tree is determined by finding optimal path in the tree. And determining this optimal
path requires solving multiple MABs, one per each intermediate node within the tree. Apart
from the MABs associated with the lowest layer of the tree, all the MABs associated with
the intermediate nodes turn out to have rewards that are the rewards generated by MAB
algorithms for nodes downstream. This creates complicated, hierarchically inter-dependent
MABs. Even though, because of the similarity, it is still natural and tempting to directly
apply the UCB algorithm for MAB to this hierarchical MAB on trees. That is, at each
node of the tree, one applies the UCB algorithm with a logarithmic bonus to choose an
action during the simulation. This in fact leads to one of the earliest and most popular form
of MCTS, the UCT (Upper Confidence Bounds for Trees) algorithm [94, 95]. In [94, 95],
certain asymptotic optimality property of UCT is claimed. The proof therein is, however,
incomplete, as we discuss in greater details in Chapter 2.

Indeed, to determine the appropriate, UCB-like index algorithm for each node of the
MCTS tree, it is essential to understand the concentration property of the rewards, i.e.,
concentration of regret for MABs associated with nodes downstream. In standard MAB, the
logarithmic bonus term originates from the exponential concentration given the i.i.d rewards.
In the MCTS tree, while the rewards at leaf level may enjoy exponential concentration due
to independence, the regret of any algorithm even for such a MAB is unlikely to have
exponential concentration in general [12, 137]. Further, the MAB of our interest has non-
stationary rewards due to strong dependence across hierarchy. Indeed, an oversight of this
complication led [94, 95] to suggest UCT inspired by the standard UCB algorithm for MABs
with stationary, independent rewards.

The goal of the first part of this thesis is hence to provide a rigorous theoretical foun-
dation for MCTS with the correct concentration properties. We will show that the correct
concentration should be polynomial instead of exponential. The analysis and the result
can serve as an example for how one could extend and analyze a traditional MAB algo-
rithm to the multi-step tree setup. This opens new directions such as adapting continuous
armed bandit algorithm to MCTS with continuous domains [117]. Once this non-asymptotic
guarantee of MCTS is established, we can then readily understand the data complexity of
AlphaGo-style algorithm that combines MCTS with supervised learning. To summarize, we
are interested in the following questions:

• What is the appropriate form of MCTS for which the asymptotic convergence property
claimed in the literature [94, 95] holds?

22 Chapter 1. Introduction

• Can we rigorously establish the “strong policy improvement” property of MCTS when
combined with supervised learning as observed in the literature (e.g., in [150])? If yes,
what is the quantitative form of it?

• Does supervised learning combined with MCTS lead to the optimal policy, asymptoti-
cally? If so, what is its finite-sample (non-asymptotic) performance?

� 1.2.2 Data-efficient “Low-rank” RL
Having analyzed the data efficiency of empirically successful algorithms, the natural next
step is to consider how we could further improve the algorithmic designs of simulation-based
RL methods. We start with compact domains in the second part of the thesis and focus on
learning the optimal Q-value, Q∗.

Generic learning methods often suffer from “curse-of-dimensionality”: the sample com-
plexity for learning any quantity of interest often scales exponentially in the dimension.
Specifically, in RL, by viewing the problem of learning Q∗ as a non-parametric regres-
sion problem, the classical minimax theory [154, 164] suggests that for ε > 0, we need
Ω(ε−(d1+d2+2)) samples to learn an ε-optimal Q-function, when the (continuous) state and
action spaces have dimensions d1 and d2 respectively and the Q-function is Lipschitz con-
tinuous over them. Here, an ε-optimal Q-function means an estimate Q̂ that is uniformly
close to Q∗ over the state-action domain, i.e.,

sup
s∈S,a∈A

|Q̂(s, a)−Q∗(s, a)| ≤ ε.

While this worst-case result is discouraging, practical RL tasks, as exemplified by empirical
successes, seem to possess low-dimensional latent structures that make learning with limited
data possible in the real world. Indeed, feature-based literature precisely aims to explain such
phenomenon by positing that either the transition kernel [178, 179] or the value function [163,
119, 129, 114, 184] is “structured”, often linear in low-dimensional features associated with
states and actions. For example, [178] considers feature-based linear transition model where
the transition kernel P(s′|s, a) =

∑
k∈[K] φk(s, a)ψk(s

′) for a known feature map φ : S×A →
RK and some unknown functions ψ1, ψ2, . . . , ψK : S → R. Such structural knowledge then
enables the design of an efficient Q-learning algorithm whose sample complexity scales with
the feature dimension K instead of the dimension of the state space and/or the action
space. In general, while feature-based structures may be true, the algorithm may not have
the knowledge of such feature map beforehand in practice; and relying on the hope of a
neural network to find it might be too much to ask.

Motivated by this, the primary goal in this part of the thesis is to learn the optimal

Sec. 1.2. Theme of The Thesis 23

Q-function in a data-efficient manner if it has a lower-dimensional representation, without
the need of any additional information such as knowledge of features. Therefore, we ask the
following key questions:

• Is there a universal representation of Q-function that allows for designing a data-
efficient learning algorithm if the Q-function has a low-dimensional structure?

• If so, how to leverage the structure in a principled manner?

We will answer these in the affirmative by first developing a spectral representation of
the Q-function for a generic RL task. Under mild technical conditions, we show that Q∗

admits a general representation:

Q∗(s, a) =

∞∑
i=1

σifi(s)gi(a), ∀ s ∈ S, a ∈ A, (1.1)

with
∑∞

i=1 σ
2
i < ∞, and {fi : i ∈ N} and {gi : i ∈ N} being orthonormal sets of functions.

That is, for any δ > 0, there exists r(δ) such that the r(δ) components in (1.1) provide
δ-approximation of Q∗. This inspires a parametric family of Q∗ parameterized by r ≥ 1,
i.e., Q∗(s, a) =

∑r
i=1 σifi(s)gi(a), with all Lipschitz Q∗ captured as r → ∞. When r is

small, it suggests a form of lower-dimensional structure within Q∗: we call such a Q∗ to
have (low) rank r.

Given the above universal representation with the notion of dimensionality forQ∗ through
its rank, we focus on leveraging the structure to learn Q∗ efficiently when Q∗ is of low rank
r. To achieve this, let us take a matrix viewpoint of the Q-function to develop the intu-
ition. Notice that for any set of m states {sk}mk=1 and n actions {a`}n`=1, the induced matrix
[Q∗(sk, a`) : k ∈ [m], ` ∈ [n]] has rank (at most) r. Naively, when the m chosen states
“cover” S finely (n actions cover A, respectively) and suppose we also have a good estimate
for the entire matrix, we can estimate Q∗ for the entire domain S × A by interpolating
the estimates for the mn entries. This leads to the sample complexity of Õ

(
ε−(d1+d2+2)

)
,

matching the mini-max lower bound. On the other hand, this also suggests that in order
to further improve the sample complexity, we should aim to produce good estimate without
estimating the whole matrix. In other words, if we are able to get a good estimate of the
entire matrix by only estimating a selective portion of the entries instead of all the mn
entries, then such improvement will be directly translated to a reduced sample complexity.

The above intuition motivates the design of an appropriate, efficient matrix estimation
technique, and this is precisely where the low-rank structure of Q∗ becomes crucial. In liter-
ature, matrix estimation concerns completing a m×n matrix from partial, noisy observation
of it. This problem has been extremely well studied [132, 31, 32, 97, 34, 38, 49, 37] with
provable recovery guarantees for low-rank matrices. However, most recovery guarantees are

24 Chapter 1. Introduction

given in terms of Frobenius norm of the error, or mean squared error. In our case, note
that the completed matrix in fact contains operational meaning: each entry is an estimate
of Q∗(sk, al), k ∈ [m] and l ∈ [n]. Therefore, in order to obtain an ε-optimal Q-function
(in the `∞ sense) from the completed matrix, we need the matrix estimation technique to
reliably estimate each entry, i.e., with `∞ error guarantee. This is technically hard and there
are only limited results [52, 39]. To make matters worse, because an accurate estimate of
Q∗(s, a) necessarily depends on the infinite future, the measurement noise for estimating
entries of the matrix in our setting can be unavoidably arbitrary (not necessarily zero mean)
though bounded. Therefore, a new method is required and that is precisely what we will
achieve.

To summarize, using the matrix estimation technique introduced and starting with 0 as
initial estimate of Q∗, our estimate is improved iteratively by inter-leaving one-step looka-
head (for estimating a portion of the entries) and matrix estimation (for completing the rest
of the matrix). Such approach of leveraging the low-rank structure of Q∗ eventually leads to
a data-efficient RL algorithm whose sample complexity only scales as Õ

(
ε−(max{d1,d2}+2)

)
.

� 1.2.3 Stability in Unbounded State Space
In the last part of this thesis, we continue our investigation on data-efficient RL, but focusing
on unknown dynamical systems with an unbounded state space. Such problems are ubiq-
uitous in various application domains, as exemplified by scheduling for networked systems.
While algorithms for the setting with finite, bounded or compact state spaces have been
well studied, with both classical asymptotic results and recent non-asymptotic performance
guarantees, literature on problems with unbounded state space is scarce, with few excep-
tions such as linear quadratic regulator [1, 50], where the structure of the dynamics is known.
Indeed, the unboundedness of the state space presents with new challenges for algorithm or
policy design, as well as analysis of policy in terms of quantifying the “goodness”. As we
will develop, the structure that helps to systematically explore and resolve those challenges
is the stability of the system.

First, to exemplify the challenges involved, let us consider a simple example of discrete-
time queueing system with two queues as shown in Figure 1.1. Jobs arrive to queue i ∈ {1, 2}
per Bernoulli process with rate λi ∈ (0, 1). A central server can choose to serve job from
one of the queues at each time, and if a job from queue i is chosen to serve, it departs the
system with probability µi ∈ (0, 1). That is, in effect ρi = λi/µi amount of “work” arrives
to queue i while total amount of work the system can do is 1. The state of the system
is q = (q1, q2) with qi representing number of jobs in the ith queue. The evolution of the
system is controlled by a scheduling decision that specifies which queue i ∈ {1, 2} to serve
at each time. Viewed as a MDP, the state space is S = {0, 1, . . .}×{0, 1, . . .} and the action

Sec. 1.2. Theme of The Thesis 25

Figure 1.1. A two queue network: arrival, service rates for queue i ∈ {1, 2} are λi, µi, respectively.

space is A = {1, 2}. Operated under policy π, the server will serve queue π(q) at state q.
The problem of stochastic control of the network is to identify a policy that optimizes a
given criterion (e.g., average or discounted total queue lengths).

In traditional RL approaches, the policy is trained offline using finitely many samples
for finite, bounded or compact state spaces and then it is deployed in wild without further
changes. Here, the term “offline” should not be confused with the offline RL setting intro-
duced in Section 1.1. We use offline here to distinguish the stages between learning and
deployment: for a real system, one can train a policy in the hindsight with finite samples
and then deploy without changes when running the system (i.e., offline) or continuously
train/update the policy while it is running (i.e., online). A natural adaption of the tradi-
tional RL approaches is by restricting the RL policy to a finite subset of the state space
chosen appropriately or arbitrarily for training. However, even in our simple, motivating ex-
ample, the system will reach a state q not contained in the finite training data with non-zero
probability. Due to unboundedness, such a state q can be arbitrarily far from any training
data, and hence the estimate for q’s transition probabilities and value function will remain at
their initial/default values (say 0) or will be highly inaccurate. With such an uninformative
estimate, the corresponding policy will be independent of the state q or simply erroneous.
And it is likely that the policy may end up serving empty queue with a nonzero probability.
This might cause the queues to grow unboundedly with strictly positive probability. Clearly,
more sophisticated approaches to truncate systems are not going to help as they will suffer
from a similar issue.

An alternative to truncation is to “compactify” the state space by mapping the un-
bounded space to a bounded set. The problem is then reduced to one with a bounded
domain. However, traditional RL approaches may also fall short for the reduced problem:
properties of the original problem that allow for efficient learning can be easily destroyed
under the mapping. Consider a simple example where the state space is S = (−∞,∞). For
continuous problems, certain smoothness property is necessary for efficient learning. Suppose
that for the original MDP, the optimal value function V ∗ that we wish to learn is ζ-Lipschitz
for a constant ζ > 0. Consider a natural mapping z = tanh s, which “compactifies” the un-
bounded space S to [−1, 1]. Using chain rule, we have |∂V ∗∂z | = |∂V

∗

∂s · ∂s∂z | ≤ ζ · | 1
1−z2 |. As the

26 Chapter 1. Introduction

original state s approaches infinity, z approaches either 1 or −1, in which case the derivative
becomes infinity, implying that the smoothness property is completely lost. Therefore, it is
impossible to learn the function over the bounded set well with finite samples. Such issues
will be exaggerated in higher dimensions. In general, this kind of state space compactifica-
tion suffers similar issues as truncation: it necessarily discounts/skews large states, which
are exactly the states we care about when studying stability. It seems extremely challenging
to find a proper mapping that preserves all the nice properties; thus efficient learning in
the “compactified” space is far from obvious if not impossible. Finally, another potential
approach is to find “lower-dimensional structure” through functional approximation, e.g., by
parametrizing the policy π within some function classes (such as linear functions or neu-
ral networks). For this approach to work, the function class must be expressive enough to
contain a stable policy. However, it is not at all clear, a priori, which parametric function
class has this property, even for the simple example in Figure 1.1. This challenge is only
exacerbated in more complicated systems. Although some approximation architectures work
well empirically [116, 115, 47], there is no rigorous performance guarantee in general.

To sum up, the traditional RL approaches for finite, bounded or compact state space
are not well suited for systems with unbounded state space. Approaches that rely on offline
training only are bound to fail as system will reach a state that is not observed in finitely
many samples during offline training and hence, there is no meaningful guidance from the
policy. Therefore, to learn a reasonable policy with an unbounded state space, the policy
ought to be updated whenever a new scenario is encountered. That is, we need to consider
online policies, i.e., one that is continuously updated upon incurring new scenarios. Another
challenge is in analyzing or quantifying “goodness” of such a policy. Traditionally, the
“goodness” of an RL policy is measured in terms of the error induced in approximating, for
example, the optimal value function over the entire state space; usually measured through
‖ · ‖∞ norm error bound [90, 23]. Since the state space is unbounded, expecting a good
approximation of the optimal value function over the entire state space is not a meaningful
measure. Therefore, we need an alternative to quantify the “goodness” of a policy. Overall,
these motivate the investigation of the following questions:

1. What is the appropriate “goodness” of performance for a RL policy for unbounded state
space?

2. Is there an online, data-driven RL policy that achieves such “goodness”? And if so, how
does the number of samples required per time-step scale?

Inspired by queueing network and control theory, we introduce a notion of stochastic
stability to quantify the “goodness” of a policy. Indeed, when facing systems with unbounded
domains, it is often desired to operate the system under a small, bounded regime and to

Sec. 1.3. Contributions 27

be able to guide the system back to the regime when it occasionally leaves it. Back to
our queueing example, this means a queueing network with small queue lengths and hence,
smaller system delay. We introduce a formal definition of stability to quantify the above
requirements. With the framework at hand, we then investigate how to obtain an online,
efficient stable policy. The structure that enables this is the stability of the unknown optimal
policy. Arguably, real system of interest ought to be stable under the policy with maximum
reward. Indeed, operating under a small, bounded regime (and hence stable) is often highly
correlated with the system performance, as exemplified in our queueing example. We hence
consider systems with such a structure and will demonstrate an efficient, stable policy that
also automatically adjusts its hyper-parameters based on formal statistical tests.

� 1.3 Contributions

Through the studies of MCTS, low-rank Q∗ and stability, this thesis makes a step forward in
understanding the data efficiency of RL by investigating the two quests posted in Section 1.2.
The structures within each problem enable such analysis and improvement. Below, we
summarize the methodological, algorithmic and technical contributions of this thesis.

� 1.3.1 Methodological Contributions
Non-stationary MAB and Recursive Polynomial Concentration (Chapter 2). To
overcome the challenges in analyzing the hierarchical dependence of the MCTS tree, we
formulate an appropriate form of non-stationary MAB which correctly models the MAB at
each of the node in the tree. For such a non-stationary MAB, we define UCB algorithm with
appropriate index and under which we establish appropriate concentration of the induced
regret. This, in turn, allows us to recursively define the UCT algorithm for MCTS, from
the leaf level to the root level, by appropriately defining index for each of the node-action
within the MCTS tree. By analyzing the concentration of each level, we conclude the desired
concentration property at the root node, i.e., the output of MCTS.

Low-rank Representation (Chapter 3). Given state space S = [0, 1]d1 and action
space A = [0, 1]d2 , let Q∗ : S × A → R be the optimal Q-function for the RL task of
interest. We consider the integral operator K = KQ∗ induced by Q∗ that maps an integrable
function h : S → R to Kh : A → R such that Kh(a) =

∫
s∈S Q

∗(s, a)h(s)ds, ∀a ∈ A.
For Lipschitz Q∗, we show that K is a Hilbert-Schmidt operator admitting generalized
singular value decomposition. This leads to the spectral representation of Q∗: Q∗(s, a) =∑∞

i=1 σifi(s)gi(a), ∀ s ∈ S, a ∈ A. As mentioned, this inspires a parametric family of Q∗

parameterized by r ≥ 1, i.e., Q∗(s, a) =
∑r

i=1 σifi(s)gi(a), with all Lipschitz Q∗ captured
as r → ∞. Importantly, when r is small (i.e., Q∗ is low-rank), we introduce in Matrix

28 Chapter 1. Introduction

Estimation (ME) technique to “complete” estimation of Q∗ based on estimates for only a
small, selective portion of the state-action space. Such usage of ME leads to a significant
improvement on data efficiency, but has not been explored in RL before. To the best of our
knowledge, this is the first work to show a provable, quantitative utility of exploiting the low-
rank structure to reduce sample complexity in Q-learning. Moreover, the main methodology
we develop remains valid and applicable to various problems in machine learning beyond
RL, which involve a bi-variate function possessing a low-rank structure.

Notion of Stability (Chapter 4). For systems with unbounded state space, we introduce
a notion of stability to quantify “goodness” of RL policies for unbounded state space inspired
by the literature in queueing systems and control theory. Informally, a RL policy is stable if
the system dynamics under the policy returns to a finite, bounded or compact subset of the
system infinitely often — in the context of our queueing example, it would imply that queue
sizes remain finite with probability 1. For applications where instability implies unbounded
cost, the notion of stability provides a meaningful notion of first-order optimality; Indeed,
further refined notions of performance beyond stability, such as diffusion-approximation or
heavy traffic analysis as typically considered in queueing systems would be natural next
steps to consider.

� 1.3.2 Algorithmic & Technical Contributions
Corrected UCT for MCTS and Non-asymptotic Analysis (Chapter 2). We con-
sider the following non-stationary MAB with a polynomial concentration, which serves as
the key building block in analyzing MCTS. Given [K] = {1, . . . ,K} actions or arms, let Xi,t

denote the reward generated by playing arm i ∈ [K] for the t-th time. Let empirical mean
over n trials for arm i be X̄i,n = 1

n

∑n
t=1Xi,t, and let µi,n = E[X̄i,n] be its expectation.

Suppose µi,n → µi as n→∞ for all i ∈ [K] and let there exist constants, β > 1, ξ > 0, and
1/2 ≤ η < 1 such that for every z ≥ 1 and every integer n ≥ 1,

P
(
|nX̄i,n − nµi| ≥ nηz

)
≤ β

zξ
.

Note that for i.i.d. bounded rewards, above holds for η = 1/2 for any finite ξ due to
exponential concentration. We propose to utilize the UCB algorithm where at time t, the
arm It is chosen according to

It ∈ arg max
i∈[K]

{
X̄i,Ti(t−1) +Bt−1,Ti(t−1)

}
, (1.2)

where Ti(t) =
∑t

l=1 I{Il = i} is the number of times arm i has been played, up to (including)
time t, and the bias or bonus term Bt,s is defined as Bt,s = β1/ξ·tη(1−η)

s1−η . Let µ∗ = maxi∈[K] µi

Sec. 1.3. Contributions 29

and let X̄n denote the empirical average of the rewards collected. Then, we establish that
E[X̄n] converges to µ∗, and that for every n ≥ 1 and every z ≥ 1, a similar polynomial
concentration holds:

P
(
|nX̄n − nµ∗| ≥ nηz

)
≤ β′

zξ′
,

where ξ′ = ξη(1− η)− 1, and β′ > 1 is a large enough constant.
For MCTS, as discussed, the leaf nodes have rewards that can be viewed as generated per

standard stationary MAB. Therefore, the rewards for each arm (or action) at the leaf level
in MCTS satisfy the required concentration property with η = 1/2 due to independence.
Hence, from our result for non-stationary MAB above, we immediately obtain that we can
recursively apply the UCB algorithm per (1.2) at each level in the MCTS with η = 1/2 and
appropriately adjusted constants β and ξ. In effect, we obtain modified UCT where the bias
or bonus term Bt,s scales as t1/4/s1/2. This is in contrast to Bt,s scaling as

√
log t/s in the

standard UCB as well as UCT suggested in the literature [94, 95]. Interestingly enough, the
empirical results of AGZ are obtained by utilizing a bonus term that scales as t1/2/s. This
is qualitatively similar to what our results suggest.

By recursively applying the convergence and concentration property of the non-stationary
MAB for the resulting algorithm for MCTS, we establish that for any query state s of the
MDP, using n simulations of the MCTS, we can obtain a value function estimation within
error δε0+O

(
n−1/2

)
, if we start with a value function estimation for all the leaf nodes within

error ε0 for some δ < 1 (independent of n, dependent on depth of MCTS tree). That is,
MCTS is indeed asymptotically correct as was conjectured in the prior literature.

MCTS with Supervised Learning (Chapter 2). The result stated above for MCTS
implies its “bootstrapping” property – if we start with a value function estimation for all
states within error ε, then MCTS can produce estimation of value function for a given
query state within error less than ε with enough simulations. By coupling such improved
estimations of value function for a number of query states, combined with expressive enough
supervised learning, one can hope to generalize such improved estimations of value function
for all states. That is, MCTS coupled with supervised learning can be a “strong policy
improvement operator”. Indeed, this is precisely what we establish by utilizing nearest
neighbor supervised learning. Specifically, we establish that with Õ

(
ε−(4+d)

)
number of

samples, MCTS with nearest neighbor finds an ε approximation of the optimal value function
with respect to `∞-norm; here d is the dimension of the state space. This is nearly optimal
in view of a minimax lower bound of Ω̃

(
ε−(2+d)

)
[143].

Sample-efficient Low-rank RL (Chapter 3). Given the universal representation with
the notion of dimensionality for Q∗ through its rank, we develop a data-efficient RL method.

30 Chapter 1. Introduction

Specifically, for any ε > 0, our method finds Q̂ such that ‖Q̂−Q∗‖∞ < ε using Õ
(
ε−(max{d1,d2}+2)

)
samples, with the hidden constant in Õ(·) dependent on r,max{d1, d2}. In contrast, the min-
imax lower bound for learning a generic Lipschitz Q∗ in the L∞ sense (also in the L2-sense)
is of Ω

(
ε−(d1+d2+2)

)
[164]. That is, our method removes the dependence on the smaller of

the two dimensions by exploiting the low-rank structure in Q∗. Note that this provides an
exponential improvement in sample complexity, e.g., with d1 = d2 = d, our method requires
the number of samples scaling as ε−d−2 in contrast to ε−2d−2 required for generic Lipschitz
Q∗. While low-rank representation of Q∗ enables theoretical guarantees, the proof is in
the puddling: we find that for well-known control tasks, the underlying Q∗ has a low-rank
structure. In particular, empirically, using our method that exploits the low-rank structure
leads to a significant improvement in sample complexity over the method that does not.

Matrix Estimation (ME), A Novel Method (Chapter 3). Our data-efficient RL
method relies on a novel low-rank Matrix Estimation method we introduce. Notice that
for any set of m states {sk}mk=1 and n actions {a`}n`=1, the induced matrix [Q∗(sk, a`) : k ∈
[m], ` ∈ [n]] has rank (at most) r. At a high level, to obtain the improved sample complexity
as claimed, we wish to faithfully recover them×n rank-r matrix in the `∞ sense, by observing
only Õ

(
max(m,n)r

)
entries with each entry having bounded, but arbitrary noise δ. In the

literature [31, 32, 37, 49], such a harsh setting has not been considered. In this work, we
introduce a ME method that manages to recover the entire matrix with entry-wise error
within O(δ) through adaptively sampling certain rows and columns. This advance in ME
should be of independent interest. With this novel method, we improve our estimates of Q∗

iteratively by interleaving one-step lookahead and ME. This, ultimately leads to an ε-optimal
Q∗ with desired data efficiency.

Sample Efficient Stable RL Policy (Chapter 4). As a proof of concept, we present
a simple RL policy using a Sparse Sampling Monte Carlo oracle [88] that is stable for any
MDP, as long as the optimal policy respects a Lyapunov function with drift condition. Our
policy does not require knowledge of or access to such a Lyapunov function. It recommends
an action at each time using finitely many simulations of the MDP through the oracle. That
is, the policy is online and guarantees stability for each trajectory starting without any prior
training. The number of samples required at each time step scales as O

((
1
α4 log2 1

α

)O(log 1
α

)
)
,

where −α < 0 is the drift in Lyapunov function.
To further improve the data efficiency, for MDPs with Lipschitz optimal value function,

we propose a modified Sparse Sampling Monte Carlo oracle for which the number of samples
required at each time step scales as O

(
1

α2d+4 logd+1 1
α

)
, where d is the dimension of the

state space. That is, the sample complexity becomes polynomial in 1/α from being super-
polynomial with the vanilla oracle. The efficient oracle utilizes the minimal structure of
smoothness in the optimal value function and should be of interest in its own right, as it

Sec. 1.4. Organization of the Thesis 31

provides sample complexity improvement for all policies in the literature where such an
oracle plays a key role, e.g., [89, 128].

Adaptive Algorithm Based on a Statistical Test (Chapter 4). While the algorithm
does not require knowing the Lyapunov function itself, it does have a parameter whose
optimal value depends on the drift parameter of the Lyapunov function. Therefore, we
further develop an adaptive, agnostic version of our algorithm that automatically searches
for an appropriate tuning parameter. We establish that either this algorithm discovers
the right value and hence ensures stability, or the system is near-stable in the sense that
||st||/ log2 t = O(1) as t→∞. The near-stability is a form of sub-linear regret. For example,
in the context of a queueing system, this would correspond to queues growing as O(log2 t)

with time in contrast to O(1) queues for stable (or optimal) policy. Further, in the context
of queueing systems, it would imply the so-called “rate” stability [46] — to the best of our
knowledge, this is first such general RL policy for generic queueing systems with such a
property.

� 1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we focus on analyzing the data
complexity of MCTS and the resulting learning algorithm when combined with supervised
learning. Chapter 3 investigates data-efficient RL algorithms for low-rank Q∗ via matrix
estimation techniques. In Chapter 4, we study efficient, stable policy for problems with un-
bounded state space. Each of the chapters is structured to be self-contained with additional
necessary background introduced. Finally, we conclude in Chapter 5 with additional re-
marks and future directions. Appendices A and B provide additional results and discussions
for Chapters 2 and 3, respectively.

� 1.5 Bibliographic Note

Preliminary versions of the results in Chapter 2 appeared in [144]. Chapter 3 is based on
the work [142]. Finally, earlier versions of the results in Chapter 4 can be found in [145].

32 Chapter 1. Introduction

Chapter 2

Non-asymptotic Analysis of Monte Carlo
Tree Search

We formally start our investigation on data efficiency of reinforcement learning in this chap-
ter. Motivated by the impressive achievements of AlphaGo Zero (AGZ) [150], we are curious
to develop some theoretical understanding about the data efficiency involved in its algorith-
mic design. To this end, this chapter studies the popular tree-based search strategy within
the framework of RL, the Monte Carlo Tree Search (MCTS).

MCTS is a search framework for finding optimal decisions, based on the search tree built
by random sampling of the decision space [26]. Since MCTS was first introduced, many
variations and enhancements have been proposed, and it has been widely used in sequential
decision makings that have a tree structure, exemplified by games and planning problems.
In particular, as mentioned in Section 1.2.1, MCTS is arguably one of the key components
accounting for the success of AGZ: it is recursively applied to generate training samples,
upon which supervised learning methods are employed to learn a policy/value function
(represented by deep neural networks).

Despite the wide application and empirical success of MCTS, there is only limited work
on theoretical guarantees of MCTS and its variants. Arguably, one of the most important
and popular work in this area is [94, 95], which propose running tree search by applying the
Upper Confidence Bound (UCB) algorithm — originally designed for stochastic multi-arm
bandit (MAB) problems [6, 13] — to each node of the tree for balancing exploration and
exploitation within the tree search. This leads to the so-called UCT (Upper Confidence
Bounds for Trees) algorithm, which is one of the popular forms of MCTS in practice. While
UCT is believed to provide an approximately optimal value function for a given state with
enough simulations [94, 95], the claimed proof of this property is incomplete, as we discuss
in greater details in Section 2.1. More importantly, naively following the insights from the
stochastic MAB literature is problematic. With logarithmic bonus in [94], UCT as suggested
in effect requires exponential concentration of regret for the underlying non-stationary MAB
associated with each node in the tree, which is unlikely to hold in general even for stationary

33

34 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

MAB as pointed out in [12]. .
Indeed, rigorous analysis of MCTS is subtle, even though its asymptotic convergence

may seem natural. A key challenge is that the tree policy (e.g., UCT) for selecting actions
typically needs to balance exploration and exploitation, so the random sampling process
at each node is non-stationary (non-uniform) across multiple simulations. A more severe
difficulty arises due to the hierarchical/iterative structure of tree search, which induces
complicated probabilistic dependency between a node and the nodes within its sub-tree.
Specifically, as part of simulation within MCTS, at each intermediate node (or state), the
action is chosen based on the outcomes of the past simulation steps within the sub-tree of
the node in consideration. Such strong dependencies across time (i.e., depending on the
history) and space (i.e., depending on the sub-trees downstream) amongst nodes make the
analysis non-trivial.

As the key contribution of this chapter, we establish polynomial concentration property
of regret for a class of non-stationary MAB. We show that the non-stationary reward process
at each node of the simulation tree indeed respects such a polynomial concentration. This in
turn establishes that the MCTS with appropriate polynomial rather than logarithmic bonus
term in UCB has the claimed property of [94, 95]. Interestingly enough, empirically success-
ful approaches [150] utilize a similar polynomial form of MCTS as suggested by our result
(cf. Section 2.3.2). Using this as a building block, we analyze a stylized, abstract version
of AGZ’s algorithm by combining MCTS with supervised learning iteratively. In particular,
we argue that MCTS, combined with nearest neighbor supervised learning, acts as a “pol-
icy improvement” operator, i.e., it iteratively improves value function approximation for all
states, due to combining with supervised learning, despite evaluating at only finitely many
states. In effect, we establish that to learn an ε-optimal value function with respect to `∞
norm, MCTS combined with nearest neighbor requires a sample size scaling as Õ

(
ε−(d+4)

)
,

where d is the dimension of the state space. This is nearly optimal due to a minimax lower
bound of Ω̃

(
ε−(d+2)

)
, suggesting the strength of the variant of MCTS we propose here and

our resulting analysis.

Organization of Chapter 2. We structure Chapter 2 as follows. To begin with, a literature
survey on MCTS is provided in Section 2.1. Then, Section 2.2 states the formal setting
considered and the conditions required in this chapter. With this background, Section 2.3
describes the Monte Carlo Tree Search algorithm and our main result on its non-asymptotic
analysis. Section 2.4 then focuses on a reinforcement learning method that combines MCTS
with nearest neighbor supervised learning. It describes the finite-sample guarantees of the
method for finding ε-optimal value function with respect to `∞ norm. The remaining sections
of this chapter provide all the technical details. In order to prove our claims, Section 2.5
introduces a form of non-stationary multi-arm bandit and an upper confidence bound policy

Sec. 2.1. Related Work 35

for it. For this setting, we present the concentration of induced regret and prove it in
Section 2.6. This is a key result and serves as the building block, with which we establish
the desired property of MCTS in Section 2.7. Section 2.8 finishes the proof for the guarantees
of the RL method using MCTS. Further, with the main insights developed, we extend our
results to the general stochastic setting in Section 2.9. Finally, we conclude this chapter in
Section 2.10. Supplementary results on the proof of a related lower bound as well as toy
numerical experiments are provided in Appendices A.1 and A.2, respectively.

� 2.1 Related Work

We discuss some of the existing work on MCTS and its various modifications used for RL.
As previewed, MCTS is an approach for estimating the (optimal) value of states by building
a search tree from Monte-Carlo simulations [94, 33, 45, 26]. In [94, 95], authors argue for
the asymptotic convergence of MCTS with standard UCT. However, the proof is incom-
plete [160]. A key step towards proving the claimed result is to show the convergence and
concentration properties of the regret for UCB under non-stationary reward distributions.
In particular, to establish an exponential concentration of regret (Theorem 5, [95]), Lemma
14 is applied. However, it requires conditional independence of {Zi} sequence, which does
not hold, hence making the conclusion of exponential concentration questionable. Therefore,
the proof of the main result (Theorem 7, [95]), which applies Theorem 5 with an inductive
argument, is a conjecture at best.

In fact, it may be infeasible to prove Theorem 5 in [95] as it was stated. For example, the
work of [12] shows that for bandit problems, the regret under UCB concentrates around its
expectation polynomially, rather than exponentially as desired in [95] (e.g., if the essential
infimum of the optimal arm’s reward is below the mean reward of the second-best arm; see
Theorem 10 of [12]). Further, authors in [137] prove that for any strategy that does not use
the knowledge of time horizon, it is infeasible to improve this polynomial concentration and
establish exponential concentration. Our result is consistent with these fundamental bounds
of stationary MAB — we establish polynomial concentration of regret for non-stationary
MAB, which plays a crucial role in our analysis of MCTS. Also see the work [124] for a
discussion of the issues with logarithmic bonus terms for tree search.

While we focus on UCT in this chapter, we note that there are other variants of MCTS
developed for a diverse range of applications. The work of [44] introduces flat UCB in order
to improve the worst case regret bounds of UCT. In [138], MCTS is modified for single-player
games by adding to the standard UCB formula a term that captures the possible deviation
of the node. In the work by [156], a variant of MCTS is introduced for multi-player games by
adopting the maxn idea. In addition to turn-based games like Go and Chess, MCTS has also

36 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

been applied to real-time games (e.g., Ms. PacMan, Tron and Starcraft) and nondeterministic
games with imperfect information. The applications of MCTS go beyond games, and appear
in areas such as optimization, scheduling and other decision-making problems. We refer to
the survey on MCTS by [26] for other variations and applications.

It has become popular recently to combine MCTS with deep neural networks, which serve
to approximate the value function and/or policy [148, 150, 149]. For instance, in AlphaGo
Zero, MCTS uses the neural network to query the value of leaf nodes for simulation guidance;
the neural network is then updated with sample data generated by MCTS-based policy and
used in tree search in the next iteration. The work of [16] develops generative adversarial
tree search that generates roll-outs with a learned GAN-based dynamic model and reward
predictor, while using MCTS for planning over the simulated samples and a deep Q-network
to query the Q-value of leaf nodes.

In terms of theoretical results, the closest work to this chapter is [79], where they also con-
sider a batch, MCTS-based reinforcement learning algorithm, which is a variant of AlphaGo
Zero’s algorithm. The key algorithmic difference from ours lies in the leaf-node evaluator
of the search tree: they use a combination of an estimated value function and an estimated
policy. The latest observations at the root node are then used to update the value and policy
functions (leaf-node evaluator) for the next iteration. They also give a finite-sample analysis.
However, their result and ours are quite different: in their analysis, the sample complexity of
MCTS, as well as the approximation power of value/policy architectures, are imposed as an
assumption; here we prove an explicit finite-sample bound for MCTS and characterize the
non-asymptotic error prorogation under MCTS with non-parametric regression for leaf-node
evaluation. Therefore, they do not establish “strong policy improvement” property of the
MCTS.

Two other closely related papers are [162] and [87], which study a simplified MCTS for
two-player zero-sum games. There, the goal is to identify the best action of the root in a
given game tree. For each leaf node, a stochastic oracle is provided to generate i.i.d. samples
for the true reward. In [162], authors give a high probability bound on the number of oracle
calls needed for obtaining ε-accurate score at the root. The more recent paper [87] develops
refined, instance-dependent sample complexity bounds. Compared to classical MCTS (e.g.,
UCT), both the setting and the algorithms in the above papers are simpler: the game tree is
given in advance, rather than being built gradually through samples; the algorithm proposed
in [162] operates on the tree in a bottom-up fashion with uniform sampling at the leaf nodes.
As a result, the analysis is significantly simpler and it is unclear whether the techniques can
be extended to analyze other variants of MCTS.

It is important to mention the work of [33] that explores the idea of using UCB for
adaptive sampling in MDPs. The approximate value computed by the algorithm is shown

Sec. 2.2. Setup and Problem Statement 37

to converge to the optimal value. We remark that their algorithm is different from the
algorithm we analyze in this chapter. In particular, their algorithm proceeds in a depth-
first, recursive manner, and hence involves using UCB for a stationary MAB at each node.
In contrast, the UCT algorithm we study involves non-stationary MABs, hence our analysis
is significantly different from theirs. We refer the readers to the work by [94] and [45] for
further discussion of the difference. Another related work by [88] studies a sparse sampling
algorithm for large MDPs. This algorithm is also different from the MCTS family we analyze
in this chapter. Relatedly, [14] considers a setting with finite horizon and continuous action
space. During the tree simulation, a progressive widening technique is used to decide when
to sample (add) a new action at each step; if no new action is needed for the current step,
UCT is then extended with a specific choice and parameter of polynomial bonus for action
selection. In contrast, we consider an infinite horizon setting. More importantly, we establish
guarantees for a class of polynomial bonus forms determined by the set of inter-dependent
algorithmic parameters. Again, this is made possible by introducing an appropriate form of
non-stationary MAB, which could be of independent interest. Recently, this idea is further
extended by [117] to establish results for MCTS with a continuous armed bandit strategy,
which shows more favorable performance than the algorithm proposed by [14]. Finally, we
remark that the work by [56] studies multiple-step lookahead policies in RL, which can be
implemented via MCTS.

� 2.2 Setup and Problem Statement

� 2.2.1 MDP Regularity
We consider the setup of infinite-horizon discounted Markov Decision Process (MDP) as
reviewed in Section 1.1. To recap, this is described by a five-tuple (S,A,P,R, γ), where S
is the set of states, A is the set of actions, P ≡ P(s′|s, a) is the Markovian transition kernel,
R : S × A → R is a random reward function, and γ ∈ (0, 1) is a discount factor. At each
time step, the system is in some state s ∈ S. When an action a ∈ A is taken, the state
transits to a next state s′ ∈ S according to the transition kernel P and an immediate reward
is generated as an independent sample according to the distribution of R(s, a). Again, We
consider the setup with access to the generative model (i.e., a simulator) [84], which is a
common setting in the theoretical reinforcement learning literature. Precisely, we assume
that the agent has knowledge of S, A and γ. The transition kernel P and the rewards R
are unknown, but the agent could query the generative model at any given state-action pair
(s, a) to obtain a sample of next state and the associated immediate reward.

In this chapter, we focus on estimating the optimal value function V ∗. Recall that the
value function V π(s) associated with a policy π is defined as the expected discounted sum

38 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

of rewards received by following the policy π from the initial state s, and V ∗ is the value
function of the reward-maximizing policy, i.e., V ∗(s) = V π∗(s) = supπ V

π(s), ∀s ∈ S. It is
well understood that such an optimal policy/value exists in reasonable generality [23]. In
this chapter, we restrict our attention to the MDPs with the following regularity conditions.

1. (Compact domain) The action space A is a finite set and the state space S is a compact
subset of d dimensional set; without loss of generality, let S = [0, 1]d;

2. (Bounded reward) The immediate rewards are random variables, uniformly bounded
such that R(s, a) ∈ [−Rmax, Rmax], ∀s ∈ S, a ∈ A for some Rmax > 0;

3. (Deterministic transition) The state transitions are deterministic, i.e. P ≡ P(s′|s, a) ∈
{0, 1} for all s, s′ ∈ S, a ∈ A.

Define β , 1/(1 − γ) and Vmax , βRmax. Since all the rewards are bounded by Rmax, it is
easy to see that the absolute value of the value function for any state under any policy is
bounded by Vmax [58, 155].

On Deterministic Transition. Traditional AI game research has been focused on de-
terministic games with a tree representation. MCTS has been extensively utilized in such
deterministic transition problems [26], as demonstrated by the recent successes of MCTS in
Go [150], Chess [149] and Atari games [67]. There has been an extensive theoretical literature
on the analysis of MCTS and related methods for deterministic transitions [26, 77, 124, 17],
which provide crucial insights for more general scenarios in RL.

Having noted that, our analysis and results for deterministic transitions indeed naturally
extend to the stochastic setting with minor modifications. Considering the importance of
deterministic transition setting, as well as the clarity of our proof framework, we first develop
the results and the associated analysis for the setting of deterministic transitions. After
developing a good understanding of the main ideas, we shall extend them for the stochastic
setting as described in Section 2.9.

� 2.2.2 Value Function Iteration
We review the classical value function iteration which will be useful for our technical devel-
opment. It is an iterative approach for finding optimal value function, V ∗. To begin, the
so-called Bellman equation characterizes the optimal value function as

V ∗(s) = max
a∈A

(
E[R(s, a)] + γV ∗(s ◦ a)

)
, (2.1)

where s ◦ a ∈ S is the notation to denote the state reached by applying action a on state s.
Under our considered setup, the transitions are deterministic and hence s ◦ a represents a

Sec. 2.3. Monte Carlo Tree Search 39

single, deterministic state rather than a random state.
The value function iteration effectively views (2.1) as a fixed point equation and tries to

find a solution to it through a natural iteration. Precisely, let V (t)(·) be the value function
estimation in iteration t with V (0) being arbitrarily initialized. Then, for t ≥ 0, for all s ∈ S,

V (t+1)(s) = max
a∈A

(
E[R(s, a)] + γV (t)(s ◦ a)

)
. (2.2)

It is well known [23] that value iteration is contractive with respect to ‖ · ‖∞ norm for all
γ < 1. Specifically, for t ≥ 0, we have

‖V (t+1) − V ∗‖∞ ≤ γ‖V (t) − V ∗‖∞. (2.3)

� 2.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) has been quite popular recently in many of the reinforce-
ment learning tasks. In effect, given a state s ∈ S and a value function estimate V̂ , it
attempts to run the value function iteration for a fixed number of steps, say H, to evaluate
V (H)(s) starting with V (0) = V̂ per (2.2). This, according to (2.3), would provide an esti-
mate within error γH‖V̂ −V ∗‖∞ – an excellent estimate of V ∗(s) if H is large enough. The
goal is to perform computation for value function iteration necessary to evaluate V (H) for
state s only and not necessarily for all states as required by traditional value function itera-
tion. MCTS achieves this by simply “unrolling” the associated “computation tree”. Another
challenge that MCTS overcomes is the fact that value function iteration as in (2.2) assumes
knowledge of model so that it can compute E[R(·, ·)] for any state-action pair. But in real-
ity, rewards are observed through samples, not a direct access to E[R(·, ·)]. MCTS tries to
utilize the samples in a careful manner to obtain accurate estimation for V (H)(s) over the
computation tree suggested by the value function iteration as discussed above. The concern
of careful use of samples naturally connects it to multi-arm bandit like setting. We remark
that in this chapter, our goal is to understand the theoretical (finite-sample) property of
MCTS in estimating the value of the query state. Practical usage of MCTS may also involve
constructing and executing a policy for the query state based on the simulation data.

Next, we present a detailed description of the MCTS algorithm in Section 2.3.1. This
can be viewed as a correction of the algorithm presented in [94, 95]. We state its theoretical
property in Section 2.3.2.

� 2.3.1 Algorithm
We provide details of a specific form of MCTS, which replaces the logarithmic bonus

40 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

Algorithm 1 Fixed-Depth Monte Carlo Tree Search
1: Input: (1) current value oracle V̂ , root node s(0) and search depth H;

(2) number of MCTS simulations n;
(3) algorithmic constants, {α(i)}Hi=1, {β(i)}Hi=1, {ξ(i)}Hi=1 and {η(i)}Hi=1.

2: Initialization: for each depth h, initialize the cumulative node value ṽ(h)(s) = 0
and visit count N (h)(s) = 0 for every node s and initialize the cumulative edge value
q(h)(s, a) = 0.

3: for each MCTS simulation t = 1, 2, . . . , n do
4: /* Simulation: select actions until reaching depth H*/
5: for depth h = 0, 1, 2, . . . ,H − 1 do
6: at state s(h) of depth h, select an action (edge) according to

a(h+1) = arg max
a∈A

q(h+1)(s(h), a) + γṽ(h+1)(s(h) ◦ a)

N (h+1)(s(h) ◦ a)
+

(
β(h+1)

)1/ξ(h+1)

·
(
N (h)(s(h))

)α(h+1)/ξ(h+1)(
N (h+1)(s(h) ◦ a)

)1−η(h+1)
,

(2.4)
where dividing by zero is assumed to be +∞.

7: upon taking the action a(h+1), receive a random reward r(h+1) , R(s(h), a(h+1))
and transit to a new state s(h+1) at depth h+ 1.

8: end for
9: /* Evaluation: call value oracle for leaf nodes*/

10: reach s(H) at depth H, call the current value oracle and let ṽ(H)(s(H)) = V̂ (s(H)).
11: /* Update Statistics: quantities on the search path*/
12: for depth h = 0, 1, 2, . . . ,H − 1 do
13: update statistics of nodes and edges that are on the search path of current simula-

tion:

visit count: N (h+1)(s(h+1)) = N (h+1)(s(h+1)) + 1

edge value: q(h+1)(s(h), a(h+1)) = q(h+1)(s(h), a(h+1)) + r(h+1)

node value: ṽ(h)(s(h)) = ṽ(h)(s(h)) + r(h+1) + γr(h+2) + · · ·+ γH−1−hr(H) + γH−hṽ(H)(s(H))

14: end for
15: end for
16: Output: average of the value for the root node ṽ(0)(s(0))/n.

term of UCT with a polynomial one. Overall, we fix the search tree to be of depth H.
Similar to most literature on this topic, it uses a variant of the Upper Confidence Bound
(UCB) algorithm to select an action at each stage (depth) in order to balance exploration
and exploitation. That is, at a node, the action that corresponds to the highest mean
reward plus an appropriate bonus term thus far is selected. A state at the next depth is
then reached and the action selection process is repeated. At a leaf node (i.e., a state at
depth H), we use the current value oracle V̂ to evaluate its value, and this finishes one
iteration of MCTS. Hence, one iteration of MCTS corresponds to one length H path from

Sec. 2.3. Monte Carlo Tree Search 41

the root to the leaf. The rewards collected along the simulated path are then utilized to
update values corresponding to the nodes/edges for simulation guidance at the subsequent
iteration. Note that since we consider deterministic transitions, consequently, the tree is
fixed once the root node (state) is chosen, and we use the notation s ◦ a to denote the next
state after taking action a at state s. Each edge represents a state-action pair, while each
node represents a state. For clarity, we use superscript to distinguish quantities related to
different depth. The pseudo-code for the MCTS procedure is given in Algorithm 1, and
Figure 2.1 shows the structure of the search tree and related notation.

…

…

…

… ….
.

.

.
.
.

…

…

…

…

…

……

Depth 0

Depth 1

Depth 2

Depth H-1

Depth H

Root

|A |

s(0)node
ṽ(0)(s(0))value

s(1) = s(0) ∘ a(1)node
ṽ(1)(s(1))value

(s(0), a(1))edge
q (1)(s(0), a(1))value

r(1)reward

(s(1), a(2))edge
q (2)(s(1), a(2))value

r(2)reward

s(2) = s(1) ∘ a(2)node
ṽ(2)(s(2))value

s(H−1) = s(H−2) ∘ a(H−1)node
ṽ(H−1)(s(H−1))value

(s(H−1), a(H))edge
q (H)(s(H−1), a(H))value

r(H)reward

s(H) = s(H−1) ∘ a(H)node
V (l)(s(H))value

Figure 2.1. Notation and a sample simulation path of MCTS (thick lines).

In Algorithm 1, there are certain sequences of algorithmic parameters required, namely,
α, β, ξ and η. The choices for these constants will become clear in our non-asymptotic
analysis. At a higher level, the constants for the last layer (i.e., depth H), α(H), β(H), ξ(H)

and η(H) depend on the properties of the leaf nodes, while the rest are recursively determined
by the constants one layer below. We note that in selecting action a(h+1) at each depth h (i.e.,
Line 6 of Algorithm 1), the upper confidence term is polynomial in n while a typical UCB
algorithm would be logarithmic in n, where n is the number of visits to the corresponding
state thus far. The logarithmic factor in the original UCB algorithm was motivated by the
exponential tail probability bounds. In our case, it turns out that exponential tail bounds
for each layer seems to be infeasible without further structural assumptions. As mentioned

42 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

in Section 2.1, prior work [12, 137] has justified the polynomial concentration of the regret
for the classical UCB in stochastic (independent rewards) multi-arm bandit setting. This
implies that the concentration at intermediate depth (i.e., depth less than H) is at most
polynomial. Indeed, we will prove these polynomial concentration bounds even for non-
stationary (dependent, non-stationary rewards) multi-arm bandit that shows up in MCTS
and discuss separately in Section 2.5.

� 2.3.2 Analysis
Now, we state the following result on the non-asymptotic performance of the MCTS as
described above.

Theorem 1. Consider an MDP satisfying the regularity conditions in Section 2.2.1. Let
H ≥ 1, and for 1/2 ≤ η < 1, let

η(h) = η(H) ≡ η, ∀ h ∈ [H], (2.5)

α(h) = η(1− η)
(
α(h+1) − 1

)
, ∀ h ∈ [H − 1], (2.6)

ξ(h) = α(h+1) − 1, ∀ h ∈ [H − 1]. (2.7)

Suppose that a large enough ξ(H) is chosen such that α(1) > 2. Then, there exist correspond-
ing constants {β(i)}Hi=1 such that for each query state s ∈ S, the following claim holds for
the output V̂n(s) of MCTS with n simulations:∣∣∣E[V̂n(s)

]
− V ∗(s)

∣∣∣ ≤ γHε0 +O
(
nη−1

)
, (2.8)

where ε0 = ‖V̂ − V ∗‖∞ with V̂ being the estimate of V ∗ utilized by the MCTS algorithm for
leaf nodes.

Since η ∈ [1/2, 1), Theorem 1 implies a best case convergence rate of O(n−1/2) by
setting η = 1/2. We note that the constant in the O(·)-notation also depends on η ∈ [1

2 , 1).

However, the leading impact of η on n is entirely captured through nη−1. Therefore, the
order-wise optimal convergence is achieved by the choice of η = 1/2. With these parameter
choices, the bonus term in the upper confidence bound (line 6 of Algorithm 1) scales as(
N (h)(s(h))

)1/4
/
√
N (h+1)(s(h) ◦ a), that is, in the form of t1/4/

√
S, where t ≡ N (h)(s(h)) is

the number of times that state s(h) at depth h has been visited, and S ≡ N (h+1)(s(h) ◦ a)

is the number of times action a has been selected at state s(h). Interestingly enough, the
empirical results of AGZ are obtained by utilizing a bonus that scales as t1/2/S. This is
qualitatively similar to what our results suggest.

High Probability Bound. Theorem 1 states bounds on expected estimation error in value

Sec. 2.4. Reinforcement Learning through MCTS with Supervised Learning 43

function, cf. (2.8). We remark that the proof is established via recursively arguing a certain
form of convergence and polynomial concentration properties for the non-stationary value
function estimate sequence for nodes at each depth. That is, starting with the convergence
and polynomial concentration properties for nodes at depth h+1, we establish a similar form
of convergence and polynomial concentration properties for nodes at depth h. We recursively
apply this argument, starting from the leaf nodes, until reaching the root node. Therefore,
the output V̂n(s) of MCTS at root node also satisfies a form of polynomial concentration.
Specifically, under the setup of Theorem 1, it follows that for every n ≥ 1 and every z ≥ 1

P
(
nV̂n(s)− nµ∗(s) ≥ nηz

)
≤ β(1)

zξ
(0)
, P

(
nV̂n(s)− nµ∗(s) ≤ −nηz

)
≤ β(1)

zξ
(0)
,

where η, ξ(0) and β(1) are some constants (see Theorem 1 and the proof in Section 2.7 for
details). Here, µ∗(s) is the value function estimation for s afterH iterations of value function
iteration starting with V̂ . With the classical contraction result for value function iteration,
i.e., |µ∗(s)− V ∗(s)| ≤ γHε0, we obtain

P
(
nV̂n(s)− nV ∗(s) ≥ nηz + γHε0

)
≤ β(1)

zξ
(0)
, P

(
nV̂n(s)− nV ∗(s) ≤ −nηz − γHε0

)
≤ β(1)

zξ
(0)
.

� 2.4 Reinforcement Learning through MCTS with Supervised
Learning

Recently, MCTS has been utilized prominently in various empirical successes of reinforce-
ment learning including AlphaGo Zero (AGZ). Here, MCTS is combined with expressive
supervised learning methods to iteratively improve the policy as well as the value function
estimation. In effect, MCTS combined with supervised learning acts as a “policy improve-
ment” operator.

Intuitively, MCTS produces an improved estimation of value function for a given state of
interest, starting with a given estimation of value function by “unrolling” the “computation
tree” associated with value function iteration. And MCTS achieves this using observations
obtained through simulations. Establishing this improvement property rigorously was the
primary goal of Section 2.3. Now, given such improved estimation of value function for
finitely many states, a good supervised learning method can learn to generalize such an
improvement to all states. If so, this is like performing value function iteration, but using
simulations. Presenting such a policy and establishing such guarantees is the crux of this
section.

To that end, we present a reinforcement learning method that combines MCTS with
nearest neighbor supervised learning. For this method, we establish that indeed, with suf-

44 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

ficient number of samples, the resulting policy improves the value function estimation just
like value function iteration. Using this, we provide a finite-sample analysis for learning the
optimal value function within a given tolerance. We find it nearly matching a minimax lower
bound in [143] which we recall in Section 2.4.4, and thus establish near minimax optimality
of such a reinforcement learning method.

� 2.4.1 Reinforcement Learning Procedure
Here we describe the method to produce estimation of optimal value function V ∗. Similar
approach can be applied to obtain estimation of policy as well. Let V (0) be the initial
estimation of V ∗, and for simplicity, let V (0)(·) = 0. We describe a procedure that iterates
between use of MCTS and supervised learning to iteratively obtain estimation V (`) for ` ≥ 1,
so that iteratively better estimation of V ∗ is produced as ` increases. To that end, for ` ≥ 1,

◦ For appropriately sampled states S` = {si}m`i=1, apply MCTS to obtain improved es-
timations of value function {V̂ (`)(si)}m`i=1 using V (`−1) to evaluate leaf nodes during
simulations.

◦ Using {(si, V̂ (`)(si)}m`i=1 with a variant of nearest neighbor supervised learning with
parameter δ` ∈ (0, 1), produce estimation V (`) of the optimal value function.

For completeness, the pseudo-code is provided in Algorithm 2.

Algorithm 2 Reinforcement Learning Procedure
1: Input: initial value function oracle V (0)(s) = 0, ∀ s ∈ S
2: for l = 1, 2, . . . , L do
3: /* improvement via MCTS */
4: uniformly and independently sample states S` = {si}m`i=1.
5: for each sampled state si do
6: apply the MCTS algorithm, which takes as inputs the current value oracle V (l−1),

the depth H(l), the number of simulation nl, and the root node si, and outputs an
improved estimate for V ∗(si):

V̂ (l)(si) = MCTS
(
V (l−1), H(l), nl, si

)
(2.9)

7: end for
8: /* supervised learning */
9: with the collected data D(l) = {(si, V̂ (l)(si))}mli=1, build a new value oracle V (l) via a

nearest neighbor regression with parameter δl :

V (l)(s) = Nearest Neigbhor
(
D(l), δl, s

)
, ∀ s ∈ S. (2.10)

10: end for
11: Output: final value oracle V (L).

Sec. 2.4. Reinforcement Learning through MCTS with Supervised Learning 45

� 2.4.2 Supervised Learning
For simplicity, we shall utilize the following variant of the nearest neighbor supervised learn-
ing parametrized by δ ∈ (0, 1). Given state space S = [0, 1]d, we wish to cover it with
minimal (up to scaling) number of balls of radius δ (with respect to `2-norm). To that end,
since S = [0, 1]d, one such construction is where we have balls of radius δ with centers being
{(θ1, θ2, . . . , θd) : θ1, . . . , θd ∈ Q(δ)} where

Q(δ) =
{1

2
δi : i ∈ Z, 0 ≤ i ≤

⌊2

δ

⌋}
∪
{

1− 1

2
δi : i ∈ Z, 0 ≤ i ≤

⌊2

δ

⌋}
.

Let the collection of these balls be denoted by c1, . . . , cK(δ,d) with K(δ, d) = |Q(δ)|. It is
easy to verify that S ⊂ ∪i∈[K(δ,d)]ci, K(δ, d) = Θ(δ−d) and Cdδd ≤ volume(ci ∩ S) ≤ C ′dδ

d

for strictly positive constants Cd, C ′d that depends on d but not δ. For any s ∈ S, let
j(s) = min{j : s ∈ cj}. Given observations {(si, V̂ (`)(si)}m`i=1, we produce an estimate
V (`)(s) for all s ∈ S as follows:

V (`)(s) =


∑
i:si∈cj(s)

V̂ (`)(si)

|{i:si∈cj(s)}|
, if |{i : si ∈ cj(s)}| 6= 0,

0 otherwise.
(2.11)

It is worth noting that other supervised learning algorithms could be used to achieve
similar performance guarantees under appropriate conditions. In this work, as a concrete
example, we instantiate the supervised learning algorithm with nearest neighbors for its
simplicity as well as its generalization guarantee for smooth functions. As only the basic
Lipschitz smoothness will be assumed (Assumption 1 in Section 2.4.3), we do not expect
order-wise gain in terms of improving sample complexity from other learning methods. How-
ever, it could be beneficial to use a more refined method, e.g., local polynomial interpolation,
if the underlying function posses higher-order smoothness or a parametric form.

� 2.4.3 Finite-sample Analysis
For finite-sample analysis of the proposed reinforcement learning method, we make the fol-
lowing structural assumption about the MDP. Specifically, we assume that the optimal value
function (i.e., true regression function) is smooth in some sense. We note that some form
of smoothness assumption for MDPs with continuous state/action space is typical for `∞
guarantee. The Lipschitz continuous assumption stated below is natural and representative
in the literature on MDPs with continuous state spaces [124, 55, 54, 21].

Assumption 1 (Smoothness). The optimal value function V ∗ : S → R satisfies Lipschitz
continuity with parameter ζ, i.e., ∀s, s′ ∈ S = [0, 1]d, |V ∗(s)− V ∗(s′)| ≤ ζ‖s− s′‖2.

46 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

Now we state the result characterizing the performance of the reinforcement learning policy
described above. Details of the statement and the proof can be found in Section 2.8.

Theorem 2. Consider a MDP satisfying the regularity conditions in Section 2.2.1 and
Assumption 1. Let ε > 0 be a given error tolerance. Then, for L = Θ

(
log ε

Vmax

)
, with

appropriately chosen m`, δ` for ` ∈ [L] as well as parameters in MCTS, the reinforcement
learning algorithm produces estimation of value function V (L) such that

E
[

sup
s∈S
|V (L)(s)− V ∗(s)|

]
≤ ε,

by selecting m` states uniformly at random in S within iteration `. This, in total, requires
T number of state transitions (or samples), where

T = O
(
ε−
(

4+d
)
·
(

log
1

ε

)5)
.

We note that in Theorem 2, the expectation is taken with respect to all the randomness
in the algorithm, i.e., the randomness in sampling the states at each iteration (Line 4 of
Algorithm 2) and the randomness in each query of the MCTS algorithm (Line 6 of Algorithm
2).

� 2.4.4 Minimax Lower Bound
Leveraging the minimax lower bound for the problem of non-parametric regression [164, 154],
recent work [143] establishes a lower bound on the sample complexity for reinforcement
learning algorithms for general MDPs without additional structural assumptions. Indeed,
the lower bound also holds for MDPs with deterministic transitions (the proof is provided
in Appendix A.1), which is stated in the following proposition.

Proposition 1. Given an algorithm, let VT be the estimation of V ∗ after T samples of
state transitions for the given MDP. Then, for each ε ∈ (0, 1), there exists an instance of
deterministic MDP such that in order to achieve

P
(∥∥V̂T − V ∗∥∥∞ < ε

)
≥ 1− ε,

it must be that
T ≥ C ′d · ε−(d+2) · log(

1

ε
),

where C ′ > 0 is a constant independent of the algorithm.

Proposition 1 states that for any procedure to learn the optimal value function within ε
approximation error, the number of samples required must scale as Ω̃

(
ε−(2+d)

)
. Theorem 2

Sec. 2.5. Non-stationary Multi-arm Bandit 47

implies that the sample complexity of the proposed algorithm scales as Õ
(
ε−(4+d)

)
(omitting

the logarithmic factor). Hence, in terms of the dependence on the dimension, the proposed
algorithm is nearly optimal. Optimizing the dependence of the sample complexity on other
parameters is an important direction for future work.

� 2.5 Non-stationary Multi-arm Bandit

In the next sections, we provide the proofs of the results stated before. We begin by in-
troducing a class of non-stationary multi-arm bandit (MAB) problems, which will play a
crucial role in analyzing the MCTS algorithm. To that end, let there be K ≥ 1 arms or
actions of interest. Let Xi,t denote the random reward obtained by playing the arm i ∈ [K]

for the tth time with t ≥ 1. Let X̄i,n = 1
n

∑n
t=1Xi,t denote the empirical average of play-

ing arm i for n times, and let µi,n = E[X̄i,n] be its expectation. For each arm i ∈ [K],
the reward Xi,t is bounded in [−R,R] for some R > 0, and we assume that the reward
sequence, {Xi,t : t ≥ 1}, is a non-stationary process satisfying the following convergence and
concentration properties:

A. (Convergence) the expectation µi,n converges to a value µi, i.e.,

µi = lim
n→∞

E[X̄i,n]. (2.12)

B. (Concentration) there exist three constants, β > 1, ξ > 0, and 1/2 ≤ η < 1 such that
for every z ≥ 1 and every integer n ≥ 1,

P
(
nX̄i,n − nµi ≥ nηz

)
≤ β

zξ
, P

(
nX̄i,n − nµi ≤ −nηz

)
≤ β

zξ
. (2.13)

� 2.5.1 Algorithm
Consider applying the following variant of Upper Confidence Bound (UCB) algorithm to
the above non-stationary MAB. Define upper confidence bound for arm or action i when it
is played s times in total of t ≥ s time steps as

Ui,s,t = X̄i,s +Bt,s, (2.14)

where Bt,s is the bonus term. Denote by It the arm played at time t ≥ 1. Then,

It ∈ arg max
i∈[K]

{
X̄i,Ti(t−1) +Bt−1,Ti(t−1)

}
, (2.15)

48 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

where Ti(t) =
∑t

l=1 I{Il = i} is the number of times arm i has been played, up to (including)
time t. We shall make specific selection of the bonus term Bt,s as

Bt,s =
β1/ξ · tα/ξ
s1−η . (2.16)

A tie is broken arbitrarily when selecting an arm. In the above, α > 0 is a tuning param-
eter that controls the exploration and exploitation trade-off. Let µ∗ = maxi∈[K] µi be the
optimal value with respect to the converged expectation, and i∗ ∈ arg maxi∈[K] µi be the cor-
responding optimal arm. We assume that the optimal arm is unique. Let δi∗,n = µi∗,n−µi∗ ,
which measures how fast the mean of the optimal non-stationary arm converges. For sim-
plicity, quantities related to the optimal arm i∗ will be simply denoted with subscript ∗, e.g.,
δ∗,n = δi∗,n. Finally, denote by ∆min = mini∈[K],i 6=i∗ ∆i the gap between the optimal arm
and the second optimal arm with notation ∆i = µ∗ − µi.

� 2.5.2 Analysis
Let X̄n , 1

n

∑K
i=1 Ti(n)X̄i,Ti(n) denote the empirical average under the UCB algorithm

(2.15). Then, X̄n satisfies the following convergence and concentration properties.

Theorem 3. Consider a non-stationary MAB satisfying (2.12) and (2.13). Suppose that
algorithm (2.15) is applied with parameter α such that ξη(1− η) ≤ α < ξ(1− η) and α > 2.
Then, the following holds:

A. Convergence:

∣∣E[X̄n]− µ∗
∣∣ ≤ |δ∗,n|+ 2R(K − 1) ·

((
2

∆min
· β1/ξ

) 1
1−η · n

α
ξ(1−η) + 2

α−2 + 1
)

n
.

B. Concentration: there exist constants, β′ > 1 and ξ′ > 0 and 1/2 ≤ η′ < 1 such that for
every n ≥ 1 and every z ≥ 1,

P
(
nX̄n − nµ∗ ≥ nη

′
z
)
≤ β′

zξ′
, P

(
nX̄n − nµ∗ ≤ −nη

′
z
)
≤ β′

zξ′
,

where η′ = α
ξ(1−η) , ξ

′ = α− 1, β′ depends on R,K,∆min, β, ξ, α, η.

� 2.6 Proof of Theorem 3

We establish the convergence and concentration properties of the variant of the Upper
Confidence Bound algorithm described in Section 2.5 and specified through (2.14), (2.15)
and (2.16).

Sec. 2.6. Proof of Theorem 3 49

� 2.6.1 Establishing the Convergence Property
We define a useful notation

Φ(n, δ) = nη
(
β

δ

)1/ξ

. (2.17)

We begin with a helpful lemma, which shows that the probability that a non-optimal arm or
action has a large upper confidence is polynomially small. Proof is provided in Section 2.6.3.

Lemma 1. Let i ∈ [K], i 6= i∗ be a sub-optimal arm and define

Ai(t) , min
u∈N

{Φ(u, t−α)

u
≤ ∆i

2

}
=

⌈(2

∆i
· β1/ξ · tα/ξ

) 1
1−η
⌉
. (2.18)

For each s and t such that, Ai(t) ≤ s ≤ t, we have

P(Ui,s,t > µ∗) ≤ t−α.

Lemma 1 implies that as long as each arm is played enough, the sub-optimal ones become
less likely to be selected. This allows us to upper bound the expected number of sub-optimal
plays as follows.

Lemma 2. Let i ∈ [K], i 6= i∗, then

E[Ti(n)] ≤
(2

∆i
· β1/ξ

) 1
1−η · n

α
ξ(1−η) +

2

α− 2
+ 1.

Proof of Lemma 2 is deferred to Section 2.6.3.

Completing Proof of Convergence. By the triangle inequality,

∣∣µ∗ − E[X̄n]
∣∣ = |µ∗ − µ∗,n|+

∣∣µ∗,n − E[X̄n]
∣∣ = |δ∗,n|+

∣∣µ∗,n − E[X̄n]
∣∣ .

The second term can be bounded as follows:

n
∣∣µ∗,n − E[X̄n]

∣∣
=

∣∣∣∣∣E
[n∑
t=1

Xi∗,t

]
− E

[K∑
i=1

Ti(n)X̄i,Ti(n)

]∣∣∣∣∣
≤
∣∣∣∣∣E
[n∑
t=1

Xi∗,t

]
− E

[
T∗(n)X̄i∗,T∗(n)

]∣∣∣∣∣+

∣∣∣∣∣E
[K∑
i=1,i 6=i∗

Ti(n)X̄i,Ti(n)

]∣∣∣∣∣
=

∣∣∣∣∣E
[n∑
t=T∗(n)+1

Xi∗,t

]∣∣∣∣∣+

∣∣∣∣∣E
[K∑
i=1,i 6=i∗

Ti(n)X̄i,Ti(n)

]∣∣∣∣∣. (2.19)

50 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

Recall that the reward sequences are assumed to be bounded in [−R,R]. Therefore, the first
term of (2.19) can be bounded as follows:∣∣∣∣∣E

[n∑
t=T∗(n)+1

Xi∗,t

]∣∣∣∣∣ ≤ E
[n∑
t=T∗(n)+1

|Xi∗,t|
]
≤ R · E

[K∑
i=1,i 6=i∗

Ti(n)

]
.

The second term can also be bounded as:∣∣∣∣∣E
[K∑
i=1,i 6=i∗

Ti(n)X̄i,Ti(n)

]∣∣∣∣∣ ≤ R · E
[K∑
i=1,i 6=i∗

Ti(n)

]
.

Hence, we obtain that

∣∣µ∗ − E[X̄n]
∣∣ = |δ∗,n|+

∣∣µ∗,n − E[X̄n]
∣∣ ≤ |δ∗,n|+ 2R · E

[∑K
i=1,i 6=i∗ Ti(n)

]
n

.

Combining the above bounds and Lemma 2 yields the desired convergence result in Theorem
3. �

� 2.6.2 Establishing the Concentration Property
Having proved the convergence property, the next step is to show that a similar concentration
property (cf. (2.13)) also holds for X̄n. We aim to precisely capture the relationship between
the original constants assumed in the assumption and the new constants obtained for X̄n.
To begin with, recall the definition of Ai(t) in Lemma 1 and define

A(t) = max
i∈[K]

Ai(t) =

⌈(2

∆min
· β1/ξ

) 1
1−η · t

α
ξ(1−η)

⌉
. (2.20)

It can be checked that replacing β with any larger number still makes the concentration
inequalities (2.13) hold. Without loss of generality, we hence let β be large enough so that

2
∆min

· β1/ξ > 1. We further denote by Np the first time such that t ≥ A(t), i.e.,

Np = min{t ≥ 1 : t ≥ A(t)} = Θ
((2ξβ

∆ξ
min

) 1
ξ(1−η)−α

)
. (2.21)

We first state the following concentration property, which will be further refined to match
the desired form in Theorem 3. We defer the proof to Section 2.6.3.

Lemma 3. For any n ≥ Np and x ≥ 1, let r0 = nη + 2R(K − 1)
(
3 +A(n)

)
. Then,

P
(
nX̄n − nµ∗ ≥ r0x

)
≤ β

xξ
+

2(K − 1)

(α− 1)
(
(1 +A(n))x

)α−1 ,

Sec. 2.6. Proof of Theorem 3 51

P
(
nX̄n − nµ∗ ≤ −r0x

)
≤ β

xξ
+

2(K − 1)

(α− 1)
(
(1 +A(n))x

)α−1 .

Lemma 3 confirms that indeed, as n becomes large, the average X̄n also satisfies certain
concentration inequalities. However, the particular form of concentration in Theorem 3
does not quite match the form of concentration in Theorem 3 which we conclude next.

Completing Proof of Concentration Property. Let N ′p be a constant defined as follows:

N ′p = min{t ≥ 1 : t ≥ A(t) and 2RA(t) ≥ tη + 2R(4K − 3)}.

Recall the definition of A(t) and that α ≥ ξη(1 − η) and α < ξ(1 − η). Hence, N ′p is
guaranteed to exist. In addition, note that by definition, N ′p ≥ Np. For each n ≥ N ′p,

2RK
(2

∆min
· β1/ξ

) 1
1−η · n

α
ξ(1−η) = 2RK

[(2

∆min
· β1/ξ

) 1
1−η · n

α
ξ(1−η) + 1− 1

]
≥ 2RKA(n)− 2RK

= 2R(K − 1)A(n) + 2RA(n)− 2RK

≥ 2R(K − 1)A(n) + nη + 2R(4K − 3)− 2RK

= 2R(K − 1)(A(n) + 3) + nη = r0

Now, let us apply Lemma 3: for every n ≥ N ′p and x ≥ 1, we have

P
(
nX̄n − nµ∗ ≥ n

α
ξ(1−η)

[
2RK

(2

∆min
· β1/ξ

) 1
1−η
]
x
)
≤ P

(
nX̄n − nµ∗ ≥ r0x

)
≤ β

xξ
+

2(K − 1)

(α− 1)
(
(1 +A(n))x

)α−1

≤
2 max(β, 2(K−1)

(α−1)(1+A(N ′p))α−1)

xα−1
, (2.22)

where the last inequality follows because n ≥ N ′p and A(n) is a non-decreasing function. In
addition, since α < ξ(1− η) < ξ, we have α− 1 < ξ. For convenience, we define a constant

c1 , 2RK
(2

∆min
· β1/ξ

) 1
1−η

. (2.23)

Equivalently, by a change of variable, i.e., letting z = c1x, then for every n ≥ N ′p and z ≥ 1,
we obtain that

P
(
nX̄n − nµ∗ ≥ n

α
ξ(1−η) z

)
≤

2cα−1
1 ·max

(
β, 2(K−1)

(α−1)(1+A(N ′p))α−1

)
zα−1

. (2.24)

52 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

The above inequality holds because: (1) if z ≥ c1, then (2.24) directly follows from (2.22);
(2) if 1 ≤ z ≤ c1, then the R.H.S. of (2.24) is at least 1 (by assumption, β > 1) and the
inequality trivially holds. The concentration inequality, i.e., (2.24), is now almost the same
as the desired form in Theorem 3. The only difference is that it only holds for n ≥ N ′p. This
is not hard to resolve. The easiest approach, which we show in the following, is to refine
the constants to ensure that when 1 ≤ n < N ′p, (2.24) is trivially true. To this end, we note
that |nX̄n − nµ∗| ≤ 2Rn. For each 1 ≤ n < N ′p, there is a corresponding z̄(n) such that
n

α
ξ(1−η) z̄(n) = 2Rn. That is,

z̄(n) , 2Rn
1− α

ξ(1−η) , 1 ≤ n < N ′p.

This then implies that for each 1 ≤ n < N ′p, the following inequality trivially holds:

P
(
nX̄n − nµ∗ ≥ n

α
ξ(1−η) z

)
≤ z̄(n)α−1

zα−1
, ∀ z ≥ 1.

To see why, note that for each 1 ≤ n < N ′p: (1) if z ≥ z̄(n), then n
α

ξ(1−η) z ≥ 2Rn and
the above probability should be 0. Hence, any positive number on the R.H.S. makes the
inequality trivially true; (2) if 1 ≤ z < z̄(n), the R.H.S. is at least 1, which again makes the
inequality hold. For convenience, define

c2 , max
1≤n<N ′p

z̄(n) = 2R(N ′p − 1)
1− α

ξ(1−η) . (2.25)

Then, it is easy to see that for every n ≥ 1 and every z ≥ 1, we have

P
(
nX̄n − nµ∗ ≥ nη

′
z
)
≤ β′

zξ′
,

where the constants are given by

η′ =
α

ξ(1− η)
, (2.26)

ξ′ = α− 1, (2.27)

β′ = max
{
c2, 2cα−1

1 ·max
(
β,

2(K − 1)

(α− 1)(1 +A(N ′p))
α−1

)}
. (2.28)

Finally, notice that since α ≥ ξη(1 − η) and α < ξ(1 − η), we have 1/2 ≤ η ≤ η′ < 1.
Note that per (2.23), c1 depends on R,K,∆min, β, ξ and η. In addition, c2 depends on
R,K,∆min, β, ξ, α, η and N ′p depends on R,K,∆min, β, ξ, α, η. Therefore, β′ depends on
R,K,∆min, β, ξ, α, η. The other direction follows exactly the same reasoning, and this
completes the proof of Theorem 3. �

Sec. 2.6. Proof of Theorem 3 53

� 2.6.3 Proofs of Lemmas 1, 2 & 3
Proof of Lemma 1. By the choice of Ai(t), s and t, we have Bt,s = Φ(s,t−α)

s ≤ Φ(Ai(t),t
−α)

Ai(t)
≤

∆i
2 . Therefore,

P(Ui,s,t > µ∗) = P(X̄i,s +Bt,s > µ∗)

= P
(
X̄i,s − µi > ∆i −Bt,s

)
≤ P

(
X̄i,s − µi > Bt,s

)
∆i ≥ 2Bt,s

≤ t−α. by concentration (2.13).

�

Proof of Lemma 2. If a sub-optimal arm i is chosen at time t+ 1, i.e., It+1 = i, then at
least one of the following two equations must be true: with notation T∗(·) = Ti∗(·),

Ui∗,T∗(t),t ≤ µ∗ , (2.29)

Ui,Ti(t),t > µ∗ . (2.30)

Indeed, if both inequalities are false, we have Ui∗,T∗(t),t > µ∗ ≥ Ui,Ti(t),t, which is a contra-
diction to It+1 = i. We now use this fact to prove Lemma 2.

Case 1: n > Ai(n). Note that such n exists because Ai(n) grows with a polynomial order
O
(
n

α
ξ(1−η)

)
and α < ξ(1− η), i.e., Ai(n) = o(n). Then,

Ti(n) =

n−1∑
t=0

I{It+1 = i} (a)
= 1 +

n−1∑
t=K

I{It+1 = i}

=1 +

n−1∑
t=K

(
I{It+1 = i, Ti(t) < Ai(n)}+ I{It+1 = i, Ti(t) ≥ Ai(n)}

)
≤ Ai(n) +

n−1∑
t=K

I{It+1 = i, Ti(t) ≥ Ai(n)},

where equality (a) follows from the fact that Bt,s =∞ if s = 0.
To analyze the above summation, we note that from (2.29) and (2.30),

I{It+1 = i, Ti(t) ≥ Ai(n)}
≤ I{Ui∗,T∗(t),t ≤ µ∗ or Ui,Ti(t),t > µ∗, Ti(t) ≥ Ai(n)}
≤ I{Ui,Ti(t),t > µ∗, Ti(t) ≥ Ai(n)}+ I{Ui∗,T∗(t),t ≤ µ∗, Ti(t) ≥ Ai(n)}

54 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

≤ I{Ui,Ti(t),t > µ∗, Ti(t) ≥ Ai(n)}+ I{Ui∗,T∗(t),t ≤ µ∗}
= I{∃ s : Ai(n) ≤ s ≤ t, s.t. Ui,s,t > µ∗}+ I{∃ s∗ : 1 ≤ s∗ ≤ t, s.t. Ui∗,s∗,t ≤ µ∗}.

To summarize, we have proved that

E[Ti(n)]

≤ Ai(n) +
n−1∑

t=Ai(n)

P
(

(2.29) or (2.30) is true, and Ti(t) ≥ Ai(n)
)

≤ Ai(n) +
n−1∑

t=Ai(n)

[
P
(
∃ s : Ai(n) ≤ s ≤ t, s.t. Ui,s,t > µ∗︸ ︷︷ ︸

E1

)
+ P

(
∃ s∗ : 1 ≤ s∗ ≤ t, s.t. Ui∗,s∗,t ≤ µ∗︸ ︷︷ ︸

E2

)]
.

(2.31)

To complete the proof of Lemma 2, it suffices to bound the probabilities of the two events
E1 and E2. To this end, we use a union bound:

P
(
E1

)
≤

t∑
s=Ai(n)

P
(
Ui,s,t > µ∗

) (a)

≤
t∑

s=Ai(n)

t−α ≤ t · t−α = t1−α,

where step (a) follows from Ai(n) ≥ Ai(t) and Lemma 1. We bound P(E2) in a similar way:

P(E2) ≤
t∑

s∗=1

P(Ui∗,s∗,t ≤ µ∗) =
t∑

s∗=1

P
(
X̄i∗,s∗ +Bt,s∗ ≤ µ∗

)
(a)

≤
t∑

s∗=1

t−α ≤ t1−α,

where step (a) follows from concentration (cf. (2.13)). By substituting the bounds of P(E1)

and P(E2) into (2.31), we have:

E[Ti(n)] ≤ Ai(n) +

n−1∑
t=Ai(n)

2t1−α

≤ Ai(n) +

∫ ∞
Ai(n)−1

2t1−αdt α > 2

= Ai(n) +
2
(
Ai(n)− 1

)2−α
α− 2

≤ Ai(n) +
2

α− 2

≤
(2

∆i
· β1/ξ

) 1
1−η · n

α
ξ(1−η) +

2

α− 2
+ 1.

Case 2: n ≤ Ai(n). Note that if n is such that n ≤ Ai(n), then the above bound trivially

Sec. 2.6. Proof of Theorem 3 55

holds because Ti(n) ≤ n ≤ Ai(n). This completes the proof of Lemma 2. �

Proof of Lemma 3. We first prove one direction, namely, P(nµ∗−nX̄n ≥ r0x). The other
direction follows the similar steps, and we will comment on that at the end of this proof.
The general idea underlying the proof is to rewrite the quantity nµ∗−nX̄n as sums of terms
that can be bounded using previous lemmas or assumptions. To begin with, note that

nµ∗ − nX̄n = nµ∗ −
K∑
i=1

Ti(n)X̄i,Ti(n)

= nµ∗ −
T∗(n)∑
t=1

Xi∗,t −
∑
i 6=i∗

Ti(n)X̄i,Ti(n)

= nµ∗ −
n∑
t=1

Xi∗,t +

n∑
t=T∗(n)+1

Xi∗,t −
∑
i 6=i∗

Ti(n)∑
t=1

Xi,t

≤ nµ∗ −
n∑
t=1

Xi∗,t + 2R
∑
i 6=i∗

Ti(n),

because Xi,t ∈ [−R,R] for all i, t. Therefore, we have

P
(
nµ∗ − nX̄n ≥ r0x

)
≤ P

(
nµ∗ −

n∑
t=1

Xi∗,t + 2R
∑
i 6=i∗

Ti(n) ≥ r0x
)

≤ P
(
nµ∗ −

n∑
t=1

Xi∗,t ≥ nηx
)

+
∑
i 6=i∗

P
(
Ti(n) ≥ (3 +A(n))x

)
, (2.32)

where the last inequality follows from the union bound.
To prove the theorem, we now bound the two terms in (2.32). By our concentration

assumption, we can upper bound the first term as follows:

P
(
nµ∗ −

n∑
t=1

Xi∗,t ≥ nηx
)
≤ β

xξ
. (2.33)

Next, we bound each term in the summation of (2.32). Fix n and a sub-optimal arm i.
Let u be an integer satisfying u ≥ A(n). For any τ ∈ R, consider the following two events:

E1 =
{
For each integer t ∈ [u, n], we have Ui,u,t ≤ τ

}
,

E2 =
{
For each integer s ∈ [1, n− u], we have Ui∗,s,u+s > τ

}
.

As a first step, we want to show that

56 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

E1 ∩ E2 ⇒ Ti(n) ≤ u. (2.34)

To this end, let us condition on both events E1 and E2. Recall that Bt,s is non-decreasing
with respect to t. Then, for each s such that 1 ≤ s ≤ n−u, and each t such that u+s ≤ t ≤ n,
it holds that

Ui∗,s,t = X̄i∗,s +Bt,s ≥ X̄i∗,s +Bu+s,s = Ui∗,s,u+s > τ ≥ Ui,u,t.

This implies that Ti(n) ≤ u. To see why, suppose that Ti(n) > u and denote by t′ the
first time that arm i has been played u times, i.e., t′ = min{t : t ≤ n, Ti(t) = u}. Note that
by definition t′ ≥ u+T∗(t

′). Hence, for any time t such that t′ < t ≤ n, the above inequality
implies that Ui∗,T∗(t),t > Ui,u,t. That is, i∗ always has a higher upper confidence bound than
i, and arm i will not be selected, i.e., arm i will not be played the (u + 1)-th time. This
contradicts our assumption that Ti(n) > u, and hence we have the inequality Ti(n) ≤ u.

To summarize, we have established the fact that E1 ∩ E2 ⇒ Ti(n) ≤ u. As a result, we
have:

{Ti(n) > u} ⊂
(
Ec1 ∪ Ec2

)
=
({
∃ t : u ≤ t ≤ n s.t. Ui,u,t > τ

}
∪
{
∃ s : 1 ≤ s ≤ n− u, s.t. Ui∗,s,u+s ≤ τ

})
.

Using union bound, we obtain that

P
(
Ti(n) > u

)
≤

n∑
t=u

P(Ui,u,t > τ) +

n−u∑
s=1

P
(
Ui∗,s,u+s ≤ τ

)
. (2.35)

Note that for the above bound, we are free to choose u and τ as long as u ≥ A(n). To
connect with our goal (cf. (2.32)), in the following, we set u = b(1 +A(n))xc+ 1 (recall that
x ≥ 1) and τ = µ∗ to bound P(Ti(n) > u). Since u ≥ A(n) ≥ Ai(n), by Lemma 1, we have

n∑
t=u

P(Ui,u,t > µ∗) ≤
n∑
t=u

t−α ≤
∫ ∞
u−1

t−αdt =
(u− 1)1−α

α− 1

=
(b(1 +A(n))xc)1−α

α− 1
≤

(
(1 +A(n))x

)1−α

α− 1
.

As for the second summation in the R.H.S. of (2.35), we have that

n−u∑
s=1

P
(
Ui∗,s,u+s ≤ τ

)
=

n−u∑
s=1

P(Ui∗,s,u+s ≤ µ∗)

Sec. 2.6. Proof of Theorem 3 57

=

n−u∑
s=1

P
(
X̄i∗,s +Bu+s,s ≤ µ∗

)

≤
n−u∑
s=1

(s+ u)−α =

n∑
t=1+u

t−α

≤
∫ ∞
u−1

t−αdt =
(u− 1)1−α

α− 1
≤

(
(1 +A(n))x

)1−α

α− 1
,

where the first inequality follows from the concentration property, cf. (2.13). Combining
the above inequalities and note that (3 +A(n))x > b(1 +A(n))xc+ 1:

P
(
Ti(n) ≥ (3 +A(n))x

)
≤ P

(
Ti(n) > u

)
≤

2
((

1 +A(n)
)
x
)1−α

α− 1
. (2.36)

Substituting (2.33) and (2.36) into (2.32), we obtain

P
(
nµ∗ − nX̄n ≥ r0x

)
≤ β

xξ
+
∑
i 6=i∗

2
((

1 +A(n)
)
x
)1−α

α− 1
,

which is the desired inequality in Lemma 3.
To complete the proof, we need to consider the other direction, i.e., P(nX̄n−nµ∗ ≥ r0x).

The proof is almost identical. Note that

nX̄n − nµ∗ =
K∑
i=1

Ti(n)X̄i,Ti(n) − nµ∗

=
n∑
t=1

Xi∗,t − nµ∗ −
n∑

t=T∗(n)+1

Xi∗,t +
∑
i 6=i∗

Ti(n)∑
t=1

Xi,t

≤
n∑
t=1

Xi∗,t − nµ∗ + 2R
∑
i 6=i∗

Ti(n),

because Xi,t ∈ [−R,R] for all i, t. Therefore,

P
(
nX̄n − nµ∗ ≥ r0x

)
≤ P

(n∑
t=1

Xi∗,t − nµ∗ + 2R
∑
i 6=i∗

Ti(n) ≥ r0x
)

≤ P
(n∑
t=1

Xi∗,t − nµ∗ ≥ nηx
)

+
∑
i 6=i∗

P
(
Ti(n) ≥ (3 +Ai(n))x

)
.

The desired inequality then follows exactly from the same reasoning as before. �

58 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

� 2.7 Analysis of MCTS and Proof of Theorem 1

With the previous results for the non-stationary MAB, in this section, we give a complete
analysis for the fixed-depth Monte Carlo Tree Search (MCTS) algorithm illustrated in Algo-
rithm 1 and prove Theorem 1. In effect, as discussed in Section 2.3, one can view a depth-H
MCTS as a simulated version of H steps value function iteration. Given the current value
function proxy V̂ , let V (H)(·) be the value function estimation afterH steps of value function
iteration starting with the proxy V̂ . Then, we prove the result in two parts. First, we argue
that due to the MCTS sampling process, the mean of the empirical estimation of value func-
tion at the query node s, or the root node of MCTS tree, is within O(nη−1) of V (H)(s) after
n simulations, with the given proxy V̂ being the input to the MCTS algorithm. Second, we
argue that V (H)(s) is within γH‖V̂ − V ∗‖∞ ≤ γHε0 of the optimal value function. Putting
this together leads to Theorem 1.

We start by a preliminary probabilistic lemma in Section 2.7.1 that will be useful through-
out. Sections 2.7.2 and 2.7.3 argue the first part of the proof as explained above. Section
2.7.4 provides proof of the second part. And Section 2.7.5 concludes the proof of Theorem
1.

� 2.7.1 Preliminary
We state the following probabilistic lemma that is useful throughout. Proof can be found
in Section 2.7.6.

Lemma 4. Consider real-valued random variables Xi, Yi for i ≥ 1 such that Xs are indepen-
dent and identically distributed taking values in [−B,B] for some B > 0, Xs are independent
of Y s, and Y s satisfy

A. Convergence: for n ≥ 1, with notation Ȳn = 1
n

(∑n
i=1 Yi

)
,

lim
n→∞

E[Ȳn] = µY .

B. Concentration: there exist constants, β > 1, ξ > 0, 1/2 ≤ η < 1 such that for n ≥ 1

and z ≥ 1,

P
(
nȲn − nµY ≥ nηz

)
≤ β

zξ
, P

(
nȲn − nµY ≤ −nηz

)
≤ β

zξ
.

Let Zi = Xi + ρYi for some ρ > 0. Then, Zs satisfy

A. Convergence: for n ≥ 1, with notation Z̄n = 1
n

(∑n
i=1 Zi

)
, and µX = E[X1],

lim
n→∞

E[Z̄n] = µX + ρµY .

Sec. 2.7. Analysis of MCTS and Proof of Theorem 1 59

B. Concentration: there exist constant β′ > 1 depending upon ρ, ξ, β and B, such that for
n ≥ 1 and z ≥ 1,

P
(
nZ̄n − n(µX + ρµY) ≥ nηz

)
≤ β′

zξ
, P

(
nZ̄n − n(µX + ρµY) ≤ −nηz

)
≤ β′

zξ
.

� 2.7.2 Analyzing Leaf Level H
The goal is to understand the empirical reward observed at the query node for MCTS or the
root node of the MCTS tree. In particular, we argue that the mean of the empirical reward
at the root node of the MCTS tree is within O(nη−1) of the mean reward obtained at it
assuming access to infinitely many samples. We start by analyzing the reward collected at
the nodes that are at leaf level H and level H − 1.

The nodes at leaf level, i.e., levelH, are children of nodes at levelH−1 in the MCTS tree.
Let there be nH−1 nodes at level H − 1 corresponding to states s1,H−1, . . . , snH−1,H−1 ∈ S.
Consider node i ∈ [nH−1] at level H − 1, corresponding to state si,H−1. As part of the
algorithm, whenever this node is visited, one of the K feasible actions is taken. When an
action a ∈ [K] is taken, the node s′H = si,H−1 ◦ a, at the leaf level H is reached. This
results in reward at node si,H−1 (at level H − 1) being equal to R(si,H−1, a) + γṽ(H)(s′H).
Here, for each s ∈ S and a ∈ [K], the reward R(s, a) is an independent, bounded random
variable taking value in [−Rmax, Rmax] with distribution dependent on s, a; ṽ(H)(·) is the
input of value function proxy to the MCTS algorithm denoted as V̂ (·), and γ ∈ [0, 1) is
the discounting factor. Recall that ε0 = ‖V̂ − V ∗‖∞ and ‖V ∗‖∞ ≤ Vmax. Therefore,
‖ṽ(H)‖∞ = ‖V̂ ‖∞ ≤ Vmax + ε0, and the reward collected at node si,H−1 by following any
action is bounded, in absolute value, by R̃(H−1)

max = Rmax + γ(Vmax + ε0).
As part of the MCTS algorithm as described in (2.4), when node si,H−1 is visited for

the t+ 1 time with t ≥ 0, the action taken is

arg max
a∈A

{
1

ua

ua∑
j=1

(
r(si,H−1, a)(j) + γṽ(H)(si,H−1 ◦ a)(j)

)
+

(
β(H)

)1/ξ(H)

·
(
t
)α(H)/ξ(H)(

ua
)1−η(H)

}
,

where ua ≤ t is the number of times action a has been chosen thus far at state si,H−1

in the t visits so far, r(si,H−1, a)(j) is the jth sample of random variable per distribution
R(si,H−1, a), and ṽ(H)(si,H−1 ◦ a)(j) is the reward evaluated at leaf node si,H−1 ◦ a for the
jth time. Note that for all j, the reward evaluated at leaf node si,H−1 ◦ a is the same and
equals to ṽ(H)(·), the input value function proxy for the algorithm. When ua = 0, we use
notation ∞ to represent quantity inside the arg max. The net discounted reward collected
by node si,H−1 during its total of t ≥ 1 visits is simply the sum of rewards obtained by
selecting the actions per the policy – which includes the reward associated with taking an

60 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

action and the evaluation of ṽ(H)(·) for appropriate leaf node, discounted by γ. In effect,
at each node si,H−1, we are using the UCB policy described in Section 2.5 with parameters
α(H), β(H), ξ(H), η(H) with K possible actions, where the rewards collected by playing any of
these K actions each time is simply the summation of bounded independent and identical
(for a given action) random variable and a deterministic evaluation. By applying Lemma 4,
where Xs correspond to independent rewards, ρ = γ, and Y s correspond to deterministic
evaluations of ṽ(H)(·), we obtain that for given ξ(H) > 0 and η(H) ∈ [1

2 , 1), there exists
β(H) such that the collected rewards at si,H−1 (i.e., sum of i.i.d. reward and deterministic
evaluations) satisfy the convergence property (cf. (2.12)) and concentration property (cf.
(2.13)) stated in Section 2.5. Therefore, by an application of Theorem 3, we conclude Lemma
5 stated below. We define some notations first:

µ(H−1)
a (si,H−1) = E[R(si,H−1, a)] + γṽ(H)(si,H−1 ◦ a),

µ
(H−1)
∗ (si,H−1) = max

a∈[K]
µ(H−1)
a (si,H−1)

a
(H−1)
∗ (si,H−1) ∈ arg max

a∈[K]
µ(H−1)
a (si,H−1) (2.37)

∆
(H−1)
min (si,H−1) = µ

(H−1)
∗ (si,H−1)− max

a6=a(H−1)
∗ (si,H−1)

µ(H−1)
a (si,H−1).

We shall assume that the maximizer in the set arg maxa∈[K] µ
(H−1)
a (si,H−1) is unique, i.e.

∆
(H−1)
min (si,H−1) > 0. And further note that all rewards belong to [−R̃(H−1)

max , R̃
(H−1)
max].

Lemma 5. Consider a node corresponding to state si,H−1 at level H − 1 within the MCTS
for i ∈ [nH−1]. Let ṽ(H−1)(si,H−1)n be the total discounted reward collected at si,H−1 during
n ≥ 1 visits of it, to one of its K leaf nodes under the UCB policy. Then, for the choice of
appropriately large β(H) > 0, for a given ξ(H) > 0, η(H) ∈ [1

2 , 1) and α(H) > 2, we have

A. Convergence:∣∣∣∣E[1

n
ṽ(H−1)(si,H−1)n

]
− µ(H−1)

∗ (si,H−1)

∣∣∣∣
≤

2R̃
(H−1)
max (K − 1) ·

((2(β(H))
1

ξ(H)

∆
(H−1)
min (si,H−1)

) 1

1−η(H) · n
α(H)

ξ(H)(1−η(H)) + 2
α(H)−2

+ 1
)

n
.

B. Concentration: there exist constants, β′ > 1 and ξ′ > 0 and 1/2 ≤ η′ < 1 such that for
every n ≥ 1 and every z ≥ 1,

P
(
ṽ(H−1)(si,H−1)n − nµ(H−1)

∗ (si,H−1) ≥ nη′z
)
≤ β′

zξ′
,

Sec. 2.7. Analysis of MCTS and Proof of Theorem 1 61

P
(
ṽ(H−1)(si,H−1)n − nµ(H−1)

∗ (si,H−1) ≤ −nη′z
)
≤ β′

zξ′
,

where η′ = α(H)

ξ(H)(1−η(H))
, ξ′ = α(H)−1, and β′ is a large enough constant that is function

of parameters α(H), β(H), ξ(H), η(H), R̃
(H−1)
max ,K,∆

(H−1)
min (si,H−1).

Let ∆
(H−1)
min = mini∈[nH−1] ∆

(H−1)
min (si,H−1). Then, the rate of convergence for each node

si,H−1, i ∈ [nH−1] can be uniformly simplified as

δ(H−1)
n =

2R̃
(H−1)
max (K − 1) ·

((2(β(H))
1

ξ(H)

∆
(H−1)
min

) 1

1−η(H) · n
α(H)

ξ(H)(1−η(H)) + 2
α(H)−2

+ 1
)

n

= Θ
(
n

α(H)

ξ(H)(1−η(H))
−1
)

(a)
= O

(
nη−1

)
,

where (a) holds since α(H) = ξ(H)(1 − η(H))η(H), η(H) = η. It is worth remarking that
µ

(H−1)
∗ (si,H−1), as defined in (2.37), is precisely the value function estimation for si,H−1 at

the end of one step of value iteration starting with V̂ .

� 2.7.3 Recursion: Going From Level h to h− 1

Lemma 5 suggests that the necessary assumption of Theorem 3, i.e. (2.12) and (2.13), is
satisfied by ṽ(H−1)

n for each node or state at levelH−1, with α(H−1), ξ(H−1), η(H−1) as defined
per relationship (2.5) - (2.7) and with appropriately defined large enough constant β(H−1).
We shall argue that result similar to Lemma 5, but for node at level H−2, continues to hold
with parameters α(H−2), ξ(H−2), η(H−2) as defined per relationship (2.5) - (2.7) and with
appropriately defined large enough constant β(H−2). And similar argument will continue to
apply going from level h to h − 1 for all h ≤ H − 1. That is, we shall assume that the
necessary assumption of Theorem 3, i.e. (2.12) and (2.13), holds for ṽ(h)(·), for all nodes at
level h with α(h), ξ(h), η(h) as defined per relationship (2.5) - (2.7) and with appropriately
defined large enough constant β(h), and then argue that such holds for nodes at level h− 1

as well. This will, using mathematical induction, allow us to prove the results for all h ≥ 1.
To that end, consider any node at level h − 1. Let there be nh−1 nodes at level h − 1

corresponding to states s1,h−1, . . . , snh−1,h−1 ∈ S. Consider a node corresponding to state
si,h−1 at level h − 1 within the MCTS for i ∈ [nh−1]. As part of the algorithm, whenever
this node is visited, one of the K feasible action is taken. When an action a ∈ [K] is
taken, the node s′h = si,h−1 ◦ a, at the level h is reached. This results in reward at node
si,h−1 at level h − 1 being equal to R(si,h−1, a) + γṽ(h)(s′h). As noted before, R(s, a) is an
independent, bounded random variable while ṽ(h)(·) is effectively collected by following a

62 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

path all the way to the leaf level. Inductively, we assume that ṽ(h)(·) satisfies the convergence
and concentration property for each node or state at level h, with α(h), ξ(h), η(h) as defined
per relationship (2.5) - (2.7) and with appropriately defined large enough constant β(h).
Therefore, by an application of Lemma 4, it follows that this combined reward continues
to satisfy (2.12) and (2.13), with α(h), ξ(h), η(h) as defined per relationship (2.5) - (2.7) and
with a large enough constant which we shall denote as β(h). These constants are used by
the MCTS policy. By an application of Theorem 3, we can obtain the following Lemma 6
regarding the convergence and concentration properties for the reward sequence collected at
node si,h−1 at level h− 1. Similar to the notation in (2.37), let

µ(h−1)
a (si,h−1) = E[R(si,h−1, a)] + γµ

(h)
∗ (si,h−1 ◦ a)

µ
(h−1)
∗ (si,h−1) = max

a∈[K]
µ(h−1)
a (si,h−1)

a
(h−1)
∗ (si,h−1) ∈ arg max

a∈[K]
µ(h−1)
a (si,h−1) (2.38)

∆
(h−1)
min (si,h−1) = µ

(h−1)
∗ (si,h−1)− max

a6=a(h−1)
∗ (si,h−1)

µ(h−1)
a (si,h−1).

Again, we shall assume that the maximizer in the set arg maxa∈[K] µ
(h−1)
a (si,h−1) is unique,

i.e. ∆
(h−1)
min (si,h−1) > 0. Define R̃(h−1)

max = Rmax + γR̃
(h)
max, where R̃(H) = Vmax + ε0. Note that

all rewards collected at level h− 1 belong to [−R̃(h−1)
max , R̃

(h−1)
max].

Lemma 6. Consider a node corresponding to state si,h−1 at level h − 1 within the MCTS
for i ∈ [nh−1]. Let ṽ(h−1)(si,h−1)n be the total discounted reward collected at si,h−1 during
n ≥ 1 visits. Then, for the choice of appropriately large β(h) > 0, for a given ξ(h) > 0,
η(h) ∈ [1

2 , 1) and α(h) > 2, we have

A. Convergence:∣∣∣∣E[1

n
ṽ(h−1)(si,h−1)n

]
− µ(h−1)

∗ (si,h−1)

∣∣∣∣
≤

2R̃
(h−1)
max (K − 1) ·

((2(β(h))
1

ξ(h)

∆
(h−1)
min (si,h−1)

) 1

1−η(h) · n
α(h)

ξ(h)(1−η(h)) + 2
α(h)−2

+ 1
)

n
.

B. Concentration: there exist constants, β′ > 1 and ξ′ > 0 and 1/2 ≤ η′ < 1 such that for
n ≥ 1, z ≥ 1,

P
(
ṽ(h−1)(si,h−1)n − nµ(h−1)

∗ (si,h−1) ≥ nη′z
)
≤ β′

zξ′
,

P
(
ṽ(h−1)(si,h−1)n − nµ(h−1)

∗ (si,h−1) ≤ −nη′z
)
≤ β′

zξ′
,

Sec. 2.7. Analysis of MCTS and Proof of Theorem 1 63

where η′ = α(h)

ξ(h)(1−η(h))
, ξ′ = α(h)− 1, and β′ is a large enough constant that is function

of parameters α(h), β(h), ξ(h), η(h), R̃
(h−1)
max ,K,∆

(h−1)
min (si,h−1).

As before, let us define ∆
(h−1)
min = mini∈[nh−1] ∆

(h−1)
min (si,h−1). Similarly, we can show that

for every node si,h−1, i ∈ [nh−1], the rate of convergence in Lemma 6 can be uniformly
simplified as

δ(h−1)
n =

2R̃
(h−1)
max (K − 1) ·

((2(β(h))
1

ξ(h)

∆
(h−1)
min

) 1

1−η(h) · n
α(h)

ξ(h)(1−η(h)) + 2
α(h)−2

+ 1
)

n

= Θ
(
n

α(h)

ξ(h)(1−η(h))
−1
)

= O
(
nη−1

)
,

where the last equality holds as α(h) = ξ(h)(1 − η(h))η(h) and η(h) = η. Again, it is
worth remarking, inductively, that µ(h−1)

∗ (si,h−1) is precisely the value function estimation
for si,h−1 at the end of H − h+ 1 steps of value iteration starting with V̂ .

Remark. (Recursive Relation among Parameters) With the above development, we are
ready to elaborate our choice of parameters in Theorem 1, defined recursively via (2.5)-(2.7).
In essence, those parameter requirements originate from our analysis of the non-stationary
MAB, i.e., Theorem 3. Recall that from our previous analysis, the key to establish the
MCTS guarantee is to recursively argue the convergence and the polynomial concentration
properties at each level; that is, we recursively solve the non-stationary MAB problem at
each level. In order to do so, we apply our result on the non-stationary MAB (Theorem 3)
recursively at each level. Importantly, recall that Theorem 3 only holds when ξη(1 − η) ≤
α < ξ(1 − η) and α > 2, under which it leads to the recursive conclusions η′ = α

ξ(1−η) and
ξ′ = α− 1. Using our notation with superscript indicating the levels, this means that apart
from the parameters at the leaf level (level H) which could be freely chosen, we must choose
parameters of other levels recursively so that the following conditions hold:

α(h) > 2, ξ(h)η(h)(1− η(h)) ≤ α(h) < ξ(h)(1− η(h)),

ξ(h) = α(h+1) − 1 and η(h) =
α(h+1)

ξ(h+1)(1− η(h+1))
.

It is not hard to see that the conditions in Theorem 1 guarantee the above. There might be
other sequences of parameters satisfying the requirements, but our particular choice gives
cleaner analysis as presented in this chapter.

64 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

� 2.7.4 Error Analysis for Value Function Iteration
We now move to the second part of the proof. The value function iteration improves the
estimation of optimal value function by iterating the Bellman equation. In effect, the MCTS
tree is “unrolling"H steps of such an iteration. Precisely, let V (h)(·) denote the value function
after h iterations starting with V (0) = V̂ . By definition, for any h ≥ 0 and s ∈ S,

V (h+1)(s) = max
a∈[K]

(
E[R(s, a)] + γV (h)(s ◦ a)

)
. (2.39)

Recall that value iteration is contractive with respect to ‖ · ‖∞ norm ([23]). That is, for any
h ≥ 0,

‖V (h+1) − V ∗‖∞ ≤ γ‖V (h) − V ∗‖∞. (2.40)

As remarked earlier, µ(h−1)
∗ (si,h−1), the mean reward collected at node si,h−1 for i ∈ [nh−1]

for any h ≥ 1, is precisely V (H−h+1)(si,h−1) starting with V (0) = V̂ , the input to MCTS
oracle. Therefore, the mean reward collected at root node s(0) of the MCTS tree satisfies
µ

(0)
∗ (s(0)) = V (H)(s(0)). Using (2.40), we obtain the following Lemma.

Lemma 7. The mean reward collected under the MCTS policy at root note s(0), µ(0)
∗ (s(0)),

starting with input value function proxy V̂ is such that

|µ(0)
∗ (s(0))− V ∗(s(0))| ≤ γH‖V̂ − V ∗‖∞.

� 2.7.5 Completing Proof of Theorem 1
In summary, using Lemma 6, we conclude that the recursive relationship going from level
h to h − 1 holds for all h ≥ 1 with level 0 being the root. At root s(0), the query state
that is the input to the MCTS oracle, we have that after n total simulations of MCTS, the
empirical average of the rewards over these n trial, 1

n ṽ
(0)(s0)n is such that (using the fact

that α(0) = ξ(0)(1− η(0))η(0))∣∣∣∣E[1

n
ṽ(0)(s0)n

]
− µ(0)

∗

∣∣∣∣ = O
(
n

α(0)

ξ(0)(1−η(0))
−1
)

= O
(
nη−1

)
, (2.41)

where µ(0)
∗ is the value function estimation for s(0) after H iterations of value function

iteration starting with V̂ . By Lemma 7, we have

|µ(0)
∗ − V ∗(s(0))| ≤ γHε0, (2.42)

Sec. 2.8. Proof of Theorem 2 65

since ε0 = ‖V̂ − V ∗‖∞. Combining (2.41) and (2.42),∣∣∣∣E[1

n
ṽ(0)(s0)n

]
− V ∗(s(0))

∣∣∣∣ ≤ γHε0 +O
(
nη−1

)
. (2.43)

This concludes the proof of Theorem 1. �

� 2.7.6 Proof of Lemma 4
The convergence property, limn→∞ E[Z̄n] = µX + ρµY , follows simply by linearity of ex-
pectation. For concentration, consider the following: since Xs are i.i.d., bounded random
variables taking value in [−B,B], by Hoeffding’s inequality [76], we have that for t ≥ 0,

P
(
nX̄n − nµX ≥ nt

)
≤ exp

(
− t2n

2B2

)
, (2.44)

P
(
nX̄n − nµX ≤ −nt

)
≤ exp

(
− t2n

2B2

)
.

Therefore,

P
(
nZ̄n − n(µX + ρµY) ≥ nηz

)
≤ P

(
nX̄n − nµX ≥

nηz

2

)
+ P

(
nȲn − nµY ≥

nηz

2ρ

)
≤ exp

(
− z2n2η−1

8B2

)
+
β2ξρξ

zξ

≤ β′

zξ
, (2.45)

where β′ is a large enough constant depending upon ρ, ξ, β and B. The other-side of the
inequality follows similarly. This completes the proof. �

� 2.8 Proof of Theorem 2

First, we establish a useful property of nearest neighbor supervised learning presented in
Section 2.4.2. This is stated in Section 2.8.1. We will use it, along with the guarantees
obtained for MCTS in Theorem 1 to establish Theorem 2 in Section 2.8.2. Throughout, we
shall assume the setup of Theorem 2.

� 2.8.1 Guarantees for Supervised Learning
Let δ ∈ (0, 1) be given. As stated in Section 2.4.2, let K(δ, d) = Θ(δ−d) be the collection
of balls of radius δ, say ci, i ∈ [K(δ, d)], so that they cover S, i.e. S ⊂ ∪i∈[K(ε,d)]ci.
Also, by construction, each of these balls have intersection with S whose volume is at least
Cdδ

d. Let S = {si : i ∈ [N]} denote N state samples from S uniformly at random and

66 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

independent of each other. For each state s ∈ S, let V : S → [−Vmax, Vmax] be such that
|E[V (s)] − V ∗(s)| ≤ ∆. Let the nearest neighbor supervised learning described in Section
2.4.2 produce estimate V̂ : S → R using labeled data points (si, V (si))i∈[N]. Then, we claim
the following guarantee. Proof can be found in Section 2.8.3.

Lemma 8. Under the above described setup, as long as

N ≥ 32 max(1, δ−2V 2
max)C−1

d δ−d log
K(δ, d)

δ
,

i.e., N = Ω(dδ−d−2 log δ−1),

E
[

sup
s∈S
|V̂ (s)− V ∗(s)|

]
≤ ∆ + (ζ + 1)δ +

4Vmaxδ
2

K(δ, d)
. (2.46)

� 2.8.2 Establishing Theorem 2
Using Theorem 1 and Lemma 8, we complete the proof of Theorem 2 under appropriate
choice of algorithmic parameters. We start by setting some notation.

To that end, the algorithm as described in Section 2.4.1 iterates between MCTS and
supervised learning. In particular, let ` ≥ 1 denote the iteration index. Let m` be the num-
ber of states that are sampled uniformly at random, independently, over S in this iteration,
denoted as S(`) = {s(`)

i : i ∈ [m`]}. Let V (`−1) be the input of value function from prior iter-
ation, using which the MCTS algorithm with n` simulations obtains improved estimates of
value function for states in S(`) denoted as V̂ (`)(s

(`)
i), i ∈ [m`]. Using (s

(`)
i , V̂ (`)(s

(`)
i))i∈[m`],

the nearest neighbor supervised learning as described above with balls of appropriate radius
δ` ∈ (0, 1) produces estimate V (`) for all states in S. Let F (`) denote the smallest σ-algebra
containing all information pertaining to the algorithm (both MCTS and supervised learn-
ing). Define the error under MCTS in iteration ` as

ε
(`)
mcts = E

[
sup
s∈S

∣∣E[V̂ (`)(s)
∣∣F (`−1)

]
− V ∗(s)

∣∣], (2.47)

and the error for supervised learning in iteration ` as

θ
(`)
sl = sup

s∈S

∣∣V (`)(s)− V ∗(s)
∣∣, and ε(`)

sl = E
[
θ

(`)
sl
]
. (2.48)

Recall that in the beginning, we set V (0)(s) = 0 for all s ∈ S. Since V ∗(·) ∈ [−Vmax, Vmax],
we have that ε(0)

sl ≤ Vmax. Further, it is easy to see that if the leaf estimates (i.e., the
output of the supervised learning from the previous iteration) is bounded in [−Vmax, Vmax],
then the output of the MCTS algorithm is always bounded in [−Vmax, Vmax]. That is,
since V (0)(s) = 0 and the nearest neighbor supervised learning produces estimate V (`) via

Sec. 2.8. Proof of Theorem 2 67

simple averaging, inductively, the output of the MCTS algorithm is always bounded in
[−Vmax, Vmax] throughout every iteration.

With the notation as set up above, it follows that for a given δ` ∈ (0, 1) with m`

satisfying condition of Lemma 8, i.e. m` = Ω(dδ−d−2
` log δ−1

`), and with the nearest neighbor
supervised learning using balls of δ` radius for estimation, we have the following recursion:

ε
(`)
sl ≤ ε

(`)
mcts + (ζ + 1)δ` +

4Vmaxδ
2
`

K(δ`, d)
≤ ε

(`)
mcts + C ′δ`, (2.49)

where C ′ is a large enough constant, since δ2
`

K(δ`,d) = Θ(dδd+2
`) which isO(δ`) for all δ` ∈ (0, 1).

By Theorem 1, for iteration `+ 1 that uses the output of supervised learning estimate, V (`),
as the input to the MCTS algorithm, we obtain

∣∣E[V̂ (`+1)(s)
∣∣F (`)

]
− V ∗(s)

∣∣ ≤ γH(`+1)
E
[
θ

(`)
sl

∣∣F (`)
]

+O
(
nη−1
`+1

)
,∀s ∈ S, (2.50)

where η ∈ [1/2, 1) is the constant utilized by MCTS with fixed depth of tree being H(`+1).
This then implies that

ε
(`+1)
mcts = E

[
sup
s∈S

∣∣E[V̂ (`+1)(s)
∣∣F (`)

]
− V ∗(s)

∣∣]
≤ γH(`+1)

E
[
E
[
θ

(`)
sl

∣∣F (`)
]]

+O
(
nη−1
`+1

)
≤ γH(`+1)

(
ε

(`)
mcts + C ′δ`

)
+O

(
nη−1
`+1

)
. (2.51)

Denote by λ , (ε
Vmax

)1/L. Note that since the final desired error ε should be less than
Vmax (otherwise, the problem is trivial by just outputing 0 as the final estimates for all
the states), we have λ < 1. Let us set the algorithmic parameters for MCTS and nearest
neighbor supervised learning as follows: for each ` ≥ 1,

H(`) =
⌈

logγ
λ

8

⌉
, δ` =

3Vmax

4C ′
λ`, n` = κl

(8

Vmaxλ`

) 1
1−η

, (2.52)

where κl > 0 is a sufficiently large constant such that O
(
nη−1
`

)
= Vmax

8 λ`. Substituting these
values into (2.51) yields

ε
(`+1)
mcts = E

[
sup
s∈S

∣∣E[V̂ (`+1)(s)|F (`)
]
− V ∗(s)

∣∣] ≤ λ

8
ε

(`)
mcts +

7Vmax

32
λ`+1.

Note that by (2.50) and (2.52), and the fact that ε(0)
sl ≤ Vmax, we have

ε
(1)
mcts ≤

λ

8
ε

(0)
sl +

λ

8
Vmax ≤

λ

4
Vmax.

68 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

It then follows inductively that

ε
(`)
mcts ≤ λ`−1ε

(1)
mcts =

Vmax

4
λ`.

As for the supervised learning oracle, ∀s ∈ S, (2.49) implies

E
[

sup
s∈S

∣∣V (`)(s)− V ∗(s)
∣∣] ≤ ε(`)

mcts +
3Vmax

4
λ` ≤ Vmaxλ

`.

This implies that

E
[

sup
s∈S

∣∣V (L)(s)− V ∗(s)
∣∣] ≤ Vmaxλ

L = ε.

We now calculate the sample complexity, i.e., the total number of state transitions required
for the algorithm. During the `-th iteration, each query of MCTS oracle requires n` simu-
lations. Recall that the number of querying MCTS oracle, i.e., the size of training set S(`)

for the nearest neighbor supervised learning step, should satisfy m` = Ω(dδ−d−2
` log δ−1

`) (cf.
Lemma 8). From (2.52), we have

H(`) = c′0 log λ−1, δ(`) = c1λ
`, and n` = c′2λ

−`/(1−η),

where c′0, c1, c
′
2, are constants independent of λ and `. Note that each simulation of MCTS

samples H(`) state transitions. Hence, the number of state transitions at the `-th iteration
is given by

M (`) = m`n`H
(`).

Therefore, the total number of state transitions after L iterations is

L∑
l=1

M (`) =

L∑
`=1

m` · n` ·H(`) = O
(
ε−
(

2+1/(1−η)+d
)
·
(

log
1

ε

)5)
.

That is, for optimal choice of η = 1/2, the total number of state transitions is O
(
ε−(4+d) ·(

log 1
ε

)5)
. �

� 2.8.3 Proof of Lemma 8
Given N samples si, i ∈ [N] that are sampled independently and uniformly at random
over S, and given the fact that each ball ci, i ∈ [K(δ, d)] has at least Cdδd volume shared
with S, each of the sample falls within a given ball with probability at least Cdδd. Let

Sec. 2.8. Proof of Theorem 2 69

Ni, i ∈ [K(δ, d)] denote the number of samples amongst N samples in ball ci.
Now the number of samples falling in any given ball is lower bounded by a Binomial

random variable with parameter N,Cdδd. By Chernoff bound for Binomial variable with
parameter n, p, we have that

P(B(n, p) ≤ np/2) ≤ exp
(
− np

8

)
.

Therefore, with an application of union bound, each ball has at least 0.5Cdδ
dN samples

with probability at least 1−K(δ, d) exp
(
− CdδdN/8

)
. That is, for

N = 32 max(1, δ−2V 2
max)C−1

d δ−d[log(K(δ, d) + log δ−1],

each ball has at least Γ = 16 max(1, δ−2V 2
max)(logK(δ, d)+log δ−1) samples with probability

at least 1− δ2

K(δ,d) . Define event

E1 = {Ni ≥ 16 max(1, δ−2V 2
max)(logK(δ, d) + log δ−1), ∀ i ∈ [K(δ, d)]}.

Then

P(Ec1) ≤ δ2

K(δ, d)
.

Now, for any s ∈ S, the nearest neighbor supervised learning described in Section 2.4.2
produces estimate V̂ (s) equal to the average value of observations for samples falling in ball
cj(s). Let Nj(s) denote the number of samples in ball cj(s). To that end,

∣∣∣V̂ (s)− V ∗(s)
∣∣∣ =

∣∣∣∣∣∣ 1

Nj(s)

(∑
i:si∈cj(s)

V (si)− V ∗(s)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣ 1

Nj(s)

(∑
i:si∈cj(s)

V (si)− E[V (si)]
)∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

Nj(s)

(∑
i:si∈cj(s)

E[V (si)]− V ∗(si)
)∣∣∣∣∣∣

+

∣∣∣∣∣∣ 1

Nj(s)

(∑
i:si∈cj(s)

V ∗(si)− V ∗(s)
)∣∣∣∣∣∣ .

For the first term, since for each si ∈ cj(s), V (si) is produced using independent randomness
via MCTS, and since the output V (si) is a bounded random variable, using Hoeffding’s

70 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

inequality, it follows that

P
(∣∣∣ 1

Nj(s)

(∑
i:si∈cj(s)

V (si)− E[V (si)]
)∣∣∣ ≥ ∆1

)
≤ 2 exp

(
−
Nj(s)∆

2
1

8V 2
max

)
.

The second term is no more than ∆ due to the guarantee given by MCTS as assumed in
the setup. And finally, the third term is no more than ζδ due to Lipschitzness of V ∗. To
summarize, with probability at least 1− 2 exp

(
− Nj(s)∆

2
1

8V 2
max

)
, we have that

∣∣∣V̂ (s)− V ∗(s)
∣∣∣ ≤ ∆1 + ∆ + ζδ.

As can be noticed, the algorithm produces the same estimate for all s ∈ S such that they
map to the same ball. And there are K(δ, d) such balls. Therefore, using union bound, it
follows that with probability at least 1− 2K(δ, d) exp

(
− (mini∈[K(δ,d)]Ni)∆

2
1

8V 2
max

)
,

sup
s∈S

∣∣∣V̂ (s)− V ∗(s)
∣∣∣ ≤ ∆1 + ∆ + ζδ.

Under event E1, mini∈[K(δ,d)]Ni ≥ 16 max(1, δ−2V 2
max)(logK(δ, d) + log δ−1). Therefore,

under event E1, by choosing ∆1 = δ, we have

sup
s∈S

∣∣∣V̂ (s)− V ∗(s)
∣∣∣ ≤ ∆ + (ζ + 1)δ,

with probability at least 1 − 2δ2

K(δ,d) . When event E1 does not hold or the above does not
hold, we have trivial error bound of 2Vmax on the error. Therefore, we conclude that

E
[

sup
s∈S

∣∣∣V̂ (s)− V ∗(s)
∣∣∣] ≤ ∆ + (ζ + 1)δ +

4Vmaxδ
2

K(δ, d)
.

�

� 2.9 Extension of Theorem 1 for Stochastic Environment

In the previous sections, we have successfully analyzed the non-asymptotic behavior of
MCTS under deterministic transitions and studied the complexity of the resulted reinforce-
ment learning algorithm when combined with nearest neighbor supervised learning. In the
last part of this chapter, we show that our analysis can be naturally extended to handle the
stochastic environment in essentially the same manner.

We have established Theorem 1 when the transition kernel is deterministic. We now
explain how to extend the results to the setting with stochastic transition kernel. We do so

Sec. 2.9. Extension of Theorem 1 for Stochastic Environment 71

by effectively mapping the stochastic setting to a deterministic setting as discussed next.
We start by defining the stochastic environment. Recall that when an action a is taken

at state s, the next state is s′ with probability P(s′|s, a). In the deterministic setting, we
have P(s′|s, a) ∈ {0, 1}, while in the stochastic setting, we allow for P(s′|s, a) ∈ [0, 1]. We
further consider the following setup. Let there be a fixed φ > 0 so that

inf{P(s′|s, a) : P(s′|s, a) 6= 0, s, s′ ∈ S, a ∈ A} ≥ φ. (2.53)

Let supp(s, a) be the support of the distribution P(·|s, a). Due to (2.53), |supp(s, a)| ≤
b 1
φc ≡M . That is, the number of next state reachable for a given state s under an action a

is bounded by a constant M for all s, a.
Let us consider the MCTS algorithm for such a stochastic setting. At a node (i.e., state)

at depth h, the action with the highest sum of average reward and a polynomial bonus is
selected. A next state at depth h+1 is reached, and the process is repeated until a fix depth
H. We then update the corresponding statistics of the nodes and the selected actions at each
depth, and this finishes one iteration of the simulation. Since the transitions are stochastic,
for state (node) s at each depth, each action a ∈ A would have up to |supp(s, a)| ≤ M

children nodes. In contrast, for the deterministic case, each action leads to a unique state at
the next depth (as shown in Figure 2.1, where each edge represents an action and connects
a node s at depth h to a unique next state s′ at depth h + 1). However, despite of the
distinct difference, we can map the stochastic scenario back to the deterministic setting via
a simple transformation. Specifically, given the state s at depth h and action a, though
there are multiple next states, for the purpose of MCTS decision, we assign a “meta-edge”
corresponding to each action a ∈ A for a given state s ∈ S. This edge connects s via action
a to all of its next states in supp(s, a). This is illustrated in Figure 2.2, where each thick
edge is a “meta-edge” representing an action in A.

In the deterministic setting, at the end of each simulation step, the rewards of nodes
and edges were updated along the entire path visited in the simulation step as described
in Algorithm 1. In the stochastic setting, we perform the same operation, i.e., updating
the rewards for each node (state) and each action (i.e., the meta edge) in the same manner.
Note that now we might have a larger tree due to multiple children associated with the same
action for a given state. Finally, while similar in spirit, the key difference lies in how we
selection an action a ∈ A at a given state s ∈ S at depth h of the tree in a simulation step.
In the deterministic setting, we simply utilize the sum of the empirical average return and
the polynomial bonus term associated with the action (or the edge), as described in (2.4).
In stochastic setting, for each action a at a state s, instead, we use a weighted sum of the
empirical average returns associated with all possible next states, with weights simply being

72 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

.

.
.
.

.

.

Depth 0

Root
s(0)node
ṽ(0)(s(0))value

…

| (sh, ah+1) |supp

s(h) ∼ P(⋅ |s(h−1), a(h))node
ṽ(1)(s(1))value

(s(h), a(h+1))edge
q(h+1)(s(h), a(h+1))value

…

…

…

…

…

Depth H-1

Depth H

s(H−1) ∼ P(⋅ |s(H−2), a(H−1))node
ṽ(H−1)(s(H−1))value

(s(H−1), a(H))edge
q(H)(s(H−1), a(H))value

s(H) ∼ P(⋅ |s(H−1), a(H))node
V (H)(s(H))value

.

.
.
.

.

.

Depth h

Depth h+1… …

…|A |

… …

…

… …

…

Figure 2.2. MCTS with stochastic transitions.

the empirical frequency of visiting each next state in supp(s, a) so far. We use a similar
polynomial bonus term for each action.

With the modifications elaborated above, we can now reuse the majority of our previous
analysis. Recall that to establish the desired theorem for MCTS with deterministic tran-
sitions, we recursively argue the convergence and polynomial concentration properties at
each depth. That is, starting with the convergence and concentration properties for nodes
at depth h + 1, we show the convergence and concentration properties for nodes at depth
h; and then recursively apply this process until we reach the root node. More precisely,
the induction step is completed by analyzing a non-stationary MAB problem where the
(non-stationary) outcomes of each arm converge and polynomially concentrate. In stochas-
tic setting, the algorithm dynamics are almost the same as that for deterministic setting,
except that upon taking an arm (action), there is additional randomness determining which
children in supp(s, a) we transition to. Suppose that we can argue that the non-stationary
outcomes of each arm, after accounting for the stochastic transition through weighted av-
erage with empirical frequency, have the same convergence and polynomially concentration
properties as the children nodes. Consequently, we can apply the analysis we developed for
the deterministic case, by following the same line of induction argument.

Sec. 2.9. Extension of Theorem 1 for Stochastic Environment 73

Specifically, we can reduce the analysis of MCTS for stochastic settings to that of the
deterministic settings as shown in Figure 2.3. We view the children nodes associated with
one action collectively as one “meta-node” corresponding to the action, i.e., the “meta-node”
encapsulates the randomness of the transitions and the non-stationary reward processes
at the children nodes. At depth h + 1, starting with the convergence and concentration
properties for the non-stationary reward processes at each child node, we show that the
reward process at the “meta-node” has the same convergence and concentration properties.
The action selection problem at each node/state for the stochastic setting then is reduced
to the MAB problem we have analyzed in the deterministic setting, for which we have
established the convergence and concentration properties for the parent nodes at depth
h. By following the proof for the deterministic settings, we shall obtain the guarantees
for MCTS with stochastic environments. To summarize, it is clear that to establish the
desired results for MCTS, we only need to fill in the missing step of arguing the convergence
and concentration properties of the “meta-node”; the rest of the proof then exactly follows
without modifications.

… …

… …

“Meta-node”

Reduction

Figure 2.3. Reduce the stochastic transitions to a single “meta-node" for each action.

To this end, we consider a mathematical formulation that precisely describes the action
selection problem at a node with stochastic transition. Consider a multinomial distribution
over [M] = {1, . . . ,M} with pm ≥ φ being probability of observing outcome m ∈ [M]. We
denote the distribution by Dist(p). Let us consider a sequence of i.i.d. random variables
{Yi, i ∈ N+}, where Yi ∼ Dist(p). Consider M random processes (possibly dependent)
{Xm,t, t ∈ N+} for 1 ≤ m ≤ M . Define a random process {Zi, i ∈ N+} as follows: Zi =∑M

m=1 I{Yi = m}Xm,N(m,i−1)+1, where N(m, i− 1) =
∑i−1

j=1 I{Yj = m} is the total number
of times that the mth outcome has been generated up to (and including) time i− 1. In the
context of MAB with stochastic transition, the introduced random processes are associated
with one arm a as follows: playing action a leads to a random next state in [M] according to
Dist(p); state m ∈ [M] is associated with a reward sequence {Xm,t, t ∈ N+}; Zi represents
the reward obtained by playing the action a for the ith time. We establish that if for each
m ∈ [M], the random process {Xm,t, t ∈ N+} satisfies the convergence and the polynomial

74 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

concentration properties, then so does the random process {Zi}, as stated in the following
lemma.

Lemma 9. Suppose that the M random processes {Xm,t, t ∈ N+}, 1 ≤ m ≤M , satisfy

A. Convergence: for n ≥ 1, with notation X̄m,n = 1
n

(∑n
t=1Xm,t

)
,

lim
n→∞

E[X̄m,n] = µm, ∀ 1 ≤ m ≤M.

B. Concentration: there exist constants, β > 1, ξ > 1, 1/2 ≤ η < 1 such that for n ≥ 1

and z ≥ 1,

P
(
nX̄m,n − nµm ≥ nηz

)
≤ β

zξ
, P

(
nX̄m,n − nµm ≤ −nηz

)
≤ β

zξ
, ∀ 1 ≤ m ≤M.

Then, the random process {Zi, i ∈ N+} satisfies

A. Convergence: for n ≥ 1, with notation Z̄n = 1
n

(∑n
i=1 Zi

)
,

lim
n→∞

E[Z̄n] =
M∑
m=1

pmµm.

B. Concentration: there exist constant β′ > 1 depending upon M, ξ, β such that for n ≥ 1

and z ≥ 1,

P
(
nZ̄n − n

(M∑
m=1

pmµm
)
≥ nηz

)
≤ β′

zξ
, P

(
nZ̄n − n

(M∑
m=1

pmµm
)
≤ −nηz

)
≤ β′

zξ
.

As discussed, with Lemma 9, the proof in the previous sections is then readily extended to
the stochastic setting. One important aspect that is worth mentioning is that the constants
related to the polynomial rate, η and ξ, are preserved and remain unchanged from the
processes {Xm,·} to the process Z, i.e., the “meta-nodes” has the same polynomial rate as
the children nodes. Only the constant β is different. This means that the proof of Theorem 1
can be applied with a simple change of a different constant β′. Particularly, Theorem 1 holds
with the same rate of convergence, i.e., O(nη−1). Finally, one may notice that in Lemma
9, for the concentration of {Xm,t, t ∈ N+}, we assume ξ > 1 instead of a more general
choice ξ > 0 (cf., Section 2.5). This is indeed not an issue, as one can easily verify that the
conditions in Theorem 1, i.e., choosing a large ξ(H) at depth H and using the algorithmic
choices (2.5) - (2.7), implicitly guarantees ξ > 1 for every depth recursively.

Sec. 2.9. Extension of Theorem 1 for Stochastic Environment 75

� 2.9.1 Proof of Lemma 9
Fix n. Note that according to the generating process, we can re-write Z̄n as

Z̄n =
1

n

(M∑
m=1

Nm∑
i=1

Xm,i

)
,

where Nm, 1 ≤ m ≤ M are random variables such that
∑M

m=1Nm = n and the marginal
distribution of Nm ∼ Binomial(n, pm), i.e., Nm is the number of times the mth outcome is
generated according to the distribution Dist(p) after n trials. By Hoeffding’s inequality, we
have that for 1 ≤ m ≤M and δ ≥ 0,

P(Nmµm − npmµm ≥ δ) ≤ exp
(
− 2δ2

nµ2
m

)
.

Therefore,

P(Nmµm − npmµm ≥ pmnηz) ≤ exp
(
− 2p2

mz
2n2η−1

µ2
m

)
≤ βm

zξ
,

where βm is a large enough constant depending upon ξ, pm and µm and importantly, in-
dependent of n. Note that the last step follows because η ≥ 1/2 and the exponential tail
resulted from the Hoeffding’s inequality decays faster than a polynomial one. We have that

P
(
nZ̄n −

M∑
m=1

npmµm ≥ nηz
)

≤ P
(
nZ̄n −

M∑
m=1

npmµm ≥
M∑
m=1

N η
mz

2M
+

M∑
m=1

pmn
ηz

2

)
(2.54)

= P
(M∑
m=1

NmX̄m,Nm −
M∑
m=1

npmµm ≥
M∑
m=1

N η
mz

2M
+

M∑
m=1

pmn
ηz

2

)
≤

M∑
m=1

P
(
NmX̄m,Nm − npmµm ≥

N η
mz

2M
+
pmn

ηz

2

)
. (2.55)

Note that (2.54) follows because the following holds almost surely:

M∑
m=1

N η
mz

2M
+

M∑
m=1

pmn
ηz

2
≤

M∑
m=1

nηz

2M
+

M∑
m=1

pmn
ηz

2
= nηz.

Further, (2.55) holds due to the fact that

P(A+B ≥ C +D) ≤ P(A ≥ C or B ≥ D) ≤ P(A ≥ C) + P(B ≥ D).

76 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

To continue, we have that

P
(
NmX̄m,Nm − npmµm ≥

N η
mz

2M
+
pmn

ηz

2

)
= P

(
NmX̄m,Nm −Nmµm +Nmµm − npmµm ≥

N η
mz

2M
+
pmn

ηz

2

)
≤ P

(
NmX̄m,Nm −Nmµm ≥

N η
mz

2M

)
+ P

(
Nmµm − npmµm ≥

pmn
ηz

2

)
= E

[
P
(
NmX̄m,Nm −Nmµm ≥

N η
mz

2M
| Nm

)]
+ P

(
Nmµm − npmµm ≥

pmn
ηz

2

)
≤ E

[β(2M)ξ

zξ

]
+

2ξβm
zξ

≤ β′m
zξ
, (2.56)

where β′m = β(2M)ξ + 2ξβm. Note that P
(
NmX̄m,Nm − Nmµm ≥ N ηmz

2M | Nm
)
≤ β(2M)ξ

zξ

holds, because if z ≥ 2M , the concentration inequality for {X̄m,·} assumed in the lemma
applies; and if 1 ≤ z < 2M , the R.H.S. of the above inequality is larger than 1 since β > 1

and the inequality trivially holds. Combining (2.55) and (2.56), we have that

P
(
nZ̄n −

M∑
m=1

npmµm ≥ nηz
)
≤

M∑
m=1

β′m
zξ
≤ β′

zξ
,

where β′ = M max1≤m≤M β′m. The other side of the inequality follows similarly, and this
completes the proof of the desired concentration property of Z̄n.

For convergence, note that we have established the concentration property that for z ≥ 1:

P
(
|Z̄n −

M∑
m=1

pmµm| ≥ nη−1z
)
≤ 2β′

zξ
.

Therefore,

E
[
|Z̄n −

M∑
m=1

pmµm|
]

=

∫ ∞
0

P
(
|Z̄n −

M∑
m=1

pmµm| ≥ s
)
ds

=

∫ nη−1

0
P
(
|Z̄n −

M∑
m=1

pmµm| ≥ s
)
ds+

∫ ∞
nη−1

P
(
|Z̄n −

M∑
m=1

pmµm| ≥ s
)
ds

≤ nη−1 +

∫ ∞
nη−1

2β′nξ(η−1)

sξ
ds

= nη−1 +
2β′nη−1

ξ − 1
,

Sec. 2.10. Chapter Summary 77

where the integral is finite because ξ > 1 by assumption in the lemma. Therefore,

lim
n→∞

∣∣∣E[Z̄n − M∑
m=1

pmµm

]∣∣∣ ≤ lim
n→∞

E
[∣∣∣Z̄n − M∑

m=1

pmµm

∣∣∣] ≤ lim
n→∞

(
nη−1 +

2β′nη−1

ξ − 1

)
= 0.

The limit is 0 because 1/2 ≤ η < 1. The above implies that limn→∞ E[Z̄n] =
∑M

m=1 pmµm,
which establishes the desired convergencd property of Z̄n. This completes the proof of
Lemma 9. �

� 2.10 Chapter Summary

This chapter marks the beginning of our investigation on data efficiency of reinforcement
learning. In particular, by taking inspiration from the empirical successes, we are interested
in understanding the complexity of Monte Carlo Tree Search (MCTS) and its usage in
recent RL algorithms. To this end, this chapter introduces a correction of the popular
MCTS approach for improved value function estimation for a given state, using an existing
value function estimate for the entire state space. This correction was obtained through
careful, rigorous analysis of a non-stationary Multi-arm Bandit (MAB) where rewards are
dependent and non-stationary. In particular, we analyzed a variant of the classical Upper
Confidence Bound policy for such a MAB. Using this as a building block, we establish
rigorous performance guarantees for the corrected version of MCTS proposed in this chapter.
This, to the best of our knowledge, is the first mathematically correct analysis of the UCT
policy despite its popularity since it has been proposed in literature [94, 95]. We further
establish that the proposed MCTS method, when combined with nearest neighbor supervised
learning, leads to near optimal sample complexity for obtaining estimation of value function
within a given tolerance, where the optimality is in the minimax sense. This suggests the
tightness of our analysis as well as the utility of the MCTS approach.

We take a note that much of this work was inspired by the success of AlphaGo Zero
(AGZ) which utilizes MCTS combined with supervised learning. Interestingly enough, the
correction of MCTS suggested by our analysis is qualitatively similar to the version of
MCTS utilized by AGZ as reported in practice. This seeming coincidence may suggest
further avenue for practical utility of versions of the MCTS proposed in this chapter and is
an interesting direction for future work.

Finally, we remark that the focus of this chapter is on the theoretical understanding of
MCTS which we believe is important but currently lacking. One important question that
is not fully addressed, however, is why MCTS, when combined with supervised learning,
performs so well in practice, as evident by AGZ. We provide an analysis on the data efficiency
of such a simplified algorithm with nearest neighbor regression, which leads to a sample

78 Chapter 2. Non-asymptotic Analysis of Monte Carlo Tree Search

complexity of Õ(ε−(4+d)). One may wonder if this can be improved or in general, how
MCTS can be better utilized in practice. We note that ignoring many ad-hoc modifications,
there is one important “trick” in practice: re-using simulation data. If only used in its
vanilla format, we tend to not expect MCTS to perform significantly better in terms of
theoretical (worst-case) sample complexity. To obtain a good estimate, each query of the
MCTS oracle necessarily incurs a large number of samples, which are then discarded after
that query. This leads to a significant waste of samples. However, it is not what practitioners
might do. For example, in AGZ, “the search tree is reused at subsequent time steps: the
child node corresponding to the played action becomes the new root node; the subtree
below this child is retained along with all its statistics, while the remainder of the tree
is discarded.” Practical schemes that re-use samples could greatly improve the sample
complexity and real performance. However, they necessarily create complicated, dependent
random variables that are harder to analyze theoretically and are beyond the scope of this
chapter. Nevertheless, in Chapter 4 where we design efficient stable policy, we will give
an example of a naive data re-use scheme and show how re-use data can provably improve
the data efficiency per query for a simpler Monte Carlo oracle. While the treatment in
Chapter 4 is certainly simplified, it offers preliminary evidence on the importance of such
a trick. Analyzing data reuse in its full generality and provably demonstrate its value is
undoubtedly an important open question in explaining the success of recent MCTS-related
RL algorithms. We hope that this chapter could serve as an attempt to provide some
foundational understanding on MCTS as well as the combination of MCTS and supervised
learning, and motivate further studies on the related open problems.

Chapter 3

Data-efficient “Low-rank” RL

In this chapter, we start our journey on designing data-efficient reinforcement learning al-
gorithms, focusing on compact domains first. In particular, we consider the question of
learning an ε-optimal Q-function under continuous state and action spaces. As previewed in
Chapter 1, if Q-function is Lipschitz continuous, then the minimal sample complexity for es-
timating ε-optimal Q-function is known to scale as Ω(1

εd1+d2+2) per classical non-parametric
learning theory, where d1 and d2 denote the dimensions of the state and action spaces re-
spectively. To overcome the barrier in sample complexity, our methodology is to first take a
spectrum viewpoint of the the Q-function: when viewed as a kernel, the Q-function induces
a Hilbert-Schmidt operator and hence possesses square-summable spectrum. This spectral
property motivates us to consider a parametric class of Q-functions parameterized by its
“rank” r, which contains all Lipschitz Q-functions as r →∞. As the key contribution of this
chapter, we develop a simple, iterative learning algorithm that finds ε-optimal Q-function
with sample complexity of Õ(1

εmax(d1,d2)+2) when the optimal Q-function has low rank r and
the discounting factor γ is below a certain threshold. Thus, this provides an exponential
improvement in sample complexity. While our initial motivation is for RL problems with
continuous domains, which are less studied in literature, our methodology turns out to be
generic and equally effective for problems with finite/discrete domains. The following table
summarizes the improvement of sample complexity for various settings.

Table 3.1. Informal summary of sample complexity results for three different state/action space configu-
rations: our results, a few selected from literature, and the lower bounds.

Setting Our Results Selected from Literature Lower Bound

Cont. S & Cont. A Õ
(

1
εmax{d1,d2}+2

)
N/A Ω

(
1

εd1+d2+2

)
[164]

Cont. S & Finite A Õ
(

1
εd1+2

)
Õ
(

1
εd1+3

)
[143] Õ

(
1

εd1+2

)
[181] Ω̃

(
1

εd1+2

)
[143]

Finite S & Finite A Õ
(max(|S|,|A|)

ε2

)
Õ
(|S||A|

(1−γ)3ε2

)
[146] Õ

(|S||A|
(1−γ)4ε2

)
[147] Ω̃

(|S||A|
(1−γ)3ε2

)
[15]

To enable our result, we develop a novel Matrix Estimation (ME) algorithm that faith-
fully estimates an unknown low-rank matrix in the `∞ sense even in the presence of arbitrary,

79

80 Chapter 3. Data-efficient “Low-rank” RL

bounded noise, which might be of interest in its own right. Such an ME algorithm is absent
in the literature but is crucial for the success of our efficient algorithm: Q-value estimates
for only a limited number of state-action pairs will be generalized to a much larger state-
action set via the ME algorithm. This is as if we had explored the full space, but indeed
achieved with significantly fewer samples. As a preview, Table 3.2 compares our method
with some existing ME literature to highlight the difficulties of the setting considered and
our contributions.

Table 3.2. Comparison of different ME methods with different guarantees. Ours is the only method that
provides entry-wise guarantee while allowing for arbitrary, bounded error in each entry.

Method Noise Model Error Guarantees Sampling Model # of Samples

Our Method bounded arbitrary entrywise adaptive O(n)

Convex Relaxation noiseless exact independent w.p. p O(n log2 n)
[32, 30, 97] bounded arbitrary Frobenius independent w.p. p O(n log2 n)

Spectral Thresholding [34] zero-mean Frobenius independent w.p. p O(n1+c)

Factorization (noncvx) [39] zero-mean entrywise independent w.p. p O(n log3 n)

Overall, to the best of our knowledge, this is the first work to show a provable, quantita-
tive utility of exploiting the low-rank structure to reduce sample complexity in Q-learning
for problems with continuous state space and continuous action space.

Organization of Chapter 3. Chapter 3 is organized as follows. We begin with reviewing
the related literature in Section 3.1 to provide an informed background. In Section 3.2, we
introduce a formal representation theorem of Q∗ which motivates the study of the low-rank
structure. We then propose our efficient RL algorithm using low-rank ME in Section 3.3.
The generic convergence and sample complexity results are established in Section 3.4, under
a suitable assumption on the ME method. Section 3.5 is dedicated to the development of our
new ME method that fulfills the requirement, with Section 3.6 containing the corresponding
proofs. To probe the efficacy of our framework, we provide empirical evidence in Section 3.7.
In Section 3.8, we offer a further discussion on aspects of our ME method, and then we
summarize and conclude this chapter in Section 3.9. For a better readability, a few technical
proofs as well as the detailed experimental setup are deferred to Appendix B.

� 3.1 Related Work

We discuss related work on the sample complexity of reinforcement learning and matrix
estimation to better contextualize our study.

Reinforcement Learning. RL problems with both continuous state and action spaces
received significantly less attention in literature. While there are practical RL algorithms

Sec. 3.1. Related Work 81

to deal with continuous domains [166, 106, 69, 110], theoretical understanding on this class
of problems, especially on sample complexity, is very limited [9]. This motivates the inves-
tigation of this chapter on improving efficiency for such scenarios. Since we interpolate our
estimates to the entire space via non-parametric regression without making any additional
model assumptions, a comparison with the non-parametric minimax rate Ω(1

εd1+d2+2) for
learning Lipschitz function [154, 164] is meaningful.

Our “low-rank” algorithm and proofs are general, which can be reduced to low-rank set-
tings with a finite (discrete) space in a similar manner. We offer a high-level comparison in
Table 3.1 with a few selected work to help readers see how our approach fares with others
from literature. This is by no means a complete illustration or a strict comparison on sample
complexity, given the vast literature on the finite settings and the various problem settings
considered. Rather, we intend to convey a rough sense of how our efficient algorithm per-
forms, and especially what we gain in sample complexity with exploiting low-rank structure.
In continuous state and action spaces, our algorithm effectively removes the dependence on
the smaller dimension by leveraging the low-rank factorization, i.e., sample complexity is
improved from Ω(1

εd1+d2+2) to Õ(1
εmax(d1,d2)+2). The same heuristic in fact carries over to the

finite cases, where the dependence on the size of the smaller space is “removed,” i.e., the
sample complexity depends on |S| instead of |S||A|, assuming |S| ≥ |A|. For problems with
continuous state space and finite action space, the lower bound scales as Ω̃(1

εd+2) [143]. In
[143], authors consider learning the Q-function in a single sample path with non-parametric
regression methods, whereas [181] considers learning the Q-function with sparse neural net-
works when re-sampling i.i.d. transitions is possible. For problems with finite state space
and finite action space, there has been a great effort in learning an ε-optimal policy instead of
just learning an ε-optimal value function. In this context, a line of work [146, 147] attempted
to improve the dependence on the term 1/(1− γ) in sample complexity and recently, this
question is addressed in [146] by achieving an Õ(|S||A|

(1−γ)3ε2) upper bound that matches the
lower bound from [15]. Regardless, traditional results on learning ε-optimal policy/value
commonly scale as the product |S||A|, while our method, when reduced to this case, scales
as max{|S|, |A|}. In summary, Table 3.1 demonstrates that exploitation of low-rank struc-
ture consistently benefits the sample complexity of our method in the same manner for all
three settings. As a caveat, we remark that our analysis does require the discounting factor
γ to be small, and we leave it as an important future direction to extend to all γ.

It is worth mentioning that designing provably efficient RL algorithms when the un-
derlying MDP is structured has been an active research area recently. Linear structure in
low-dimensional features associated with states and actions is a commonly assumed set-
ting [178, 179, 81, 80, 3], under which the resulting sample complexity can be improved to
be dependent on the (lower) dimension of the feature space instead of the original size of S

82 Chapter 3. Data-efficient “Low-rank” RL

or A. For example, low-rank MDP studies MDP with a transition kernel P that is linear in
the underlying feature φ(s, a) ∈ RK . In contrast, we directly consider a low-rank structure
on our learning target, the optimal Q-function Q∗, without assuming the knowledge of any
feature mappings.

Lastly, we mention the recent empirical work [180] that investigates low-rank Q∗ with
matrix estimation for finite state and action spaces. The results in [180] are solely empirical
and it uses off-the-shelf ME methods. In that sense, we provide a formal framework to
understand why [180] works so well, resolving the theoretical open problem raised in their
work, and we provide natural generalization for continuous state and action spaces that was
missing, along with a novel ME method.

Matrix Estimation. ME concerns recovering a low-rank m×n matrix from partial, noisy
observation of it [132, 31, 32, 97, 34, 38, 49, 37]. This has been a popular topic of active
research for the last few decades, which culminated in the low-rank matrix completion via
convex relaxation of rank minimization [132, 31, 32]. Also, various algorithms for matrix
completion/estimation – including singular value thresholding [92, 34] and nuclear-norm
regularization [31, 32, 97] – have been proposed and analyzed with provable guarantees.
Despite the huge success in both theory and practice, the available analysis for those existing
methods only provides a handle on the error measured in Frobenius norm and a few other
limited class of norms (Schatten norms, regularizing norm and its dual, etc.) under certain
circumstances (Chapters 9-10, [170]). In particular, there are no satisfactory results so far
that provide a control on the `∞ error of matrix estimation, to the best of our knowledge.

Recently, the convergence guarantees for the so-called Burer-Monteiro approach, which
takes low-rank factor matrices as decision variables (also commonly referred to as “non-
convex optimization” in literature), have been actively studied in pursuit of developing a
computationally more efficient alternative of convex program-based approaches [64, 39]. For
example, [39] provides an `∞ guarantee under certain setup. However, it assumes i.i.d.
zero-mean noise and requires a proper initialization at the ground truth (for analysis). As
a result, we were not able to use existing ME methods and their analysis in this work.

To facilitate a better understanding, Table 3.2 summarizes the setting we consider and
compare it with several existing work. Clearly, in the context of applying ME to RL, a new
method that provides entry-wise guarantee and handles arbitrary noise is required, and that
is precisely what we provide in this work. After we elaborate our algorithmic design, in
Section 3.8, we shall provide a more detailed discussions on why existing matrix estimation
methods do not work and ours does, along with directions for future research.

Sec. 3.2. Markov Decision Process and Representation of Q-function 83

� 3.2 Markov Decision Process and Representation of Q-function

We consider the standard setup of infinite-horizon discounted MDP, as described by (S,A,P,R, γ)

in Section 1.1. We are primarily interested in continuous state space S and continuous action
space A, but generalization to finite spaces is readily and will be discussed. In this chapter,
we consider a deterministic reward function R(s, a), and to distinguish with the random
case studied in Chapter 2, we use the notation R(s, a) instead of R(s, a) throughout.

� 3.2.1 MDP Regularity
We assume the existence of a generative model (i.e., a simulator) [84] and consider MDPs
with the following properties:

1. (Compact domain) The state space S and the action space A are compact subsets of
a Euclidean space; without loss of generality, let S = [0, 1]d1 and A = [0, 1]d2 .

2. (Bounded reward) For every (s, a) ∈ S × A, the reward R(s, a) is bounded, i.e.,
|R(s, a)| ≤ Rmax.

3. (Smoothness) The optimal Q-function, Q∗, is ζ-Lipschitz with respect to the 1-product
metric in S×A, i.e., |Q∗(s1, a1)−Q∗(s2, a2)| ≤ ζdS×A

(
(s1, a1), (s2, a2)

)
where dS×A

(
(s1,

a1), (s2, a2)
)

= ||s1 − s2||2 + ‖a1 − a2‖2.

Similar to Chapter 2, we note that the bounded reward implies that for any policy
π, |V π(s)| ≤ Vmax , Rmax/(1 − γ) for all s. This yields |Q∗(s, a)| ≤ Vmax, too. Again,
we remark that some form of smoothness assumption is typical for learning MDPs with
continuous spaces under `∞ guarantee. With both continuous S and A, the joint Lipschitz
continuity above is natural.

� 3.2.2 Spectral Representation of Q-function
With the discussion above, Q∗ : [0, 1]d1 × [0, 1]d2 → R is ζ-Lipschitz and also bounded.
This induces an integral kernel operator K = KQ∗ : L2([0, 1]d1) → L2([0, 1]d2) between
the spaces of square integrable functions L2([0, 1]d) (for d ∈ {d1, d2}) endowed with the
standard inner product 〈f, g〉 =

∫
x∈[0,1]d f(x)g(x)dx, i.e., we consider the integral operator

K = KQ∗ induced by Q∗ that maps an integrable function h : S → R to Kh : A → R
such that Kh(a) =

∫
s∈S Q

∗(s, a)h(s)ds, ∀a ∈ A. Through this lens, we obtain the following
representation for Q∗, which follows from noticing that K is a Hilbert-Schmidt operator and
then applying classical results in functional analysis. The proof of Theorem 4 can be found
in Appendix B.1.

84 Chapter 3. Data-efficient “Low-rank” RL

Theorem 4. Suppose the MDP regularity conditions (1) - (3). Then there exist a non-
increasing sequence (σi ≥ R+ : i ∈ N) with

∑∞
i=1 σ

2
i < ∞ and orthonormal sets {fi ∈

L2([0, 1]d1) : i ∈ N} and {gi ∈ L2([0, 1]d2) : i ∈ N} such that

Q∗(s, a) =

∞∑
i=1

σifi(s)gi(a), ∀(s, a) ∈ [0, 1]d1 × [0, 1]d2 . (3.1)

As a result, for any δ > 0, there exists r∗ = r∗(δ) ∈ N such that for all r ≥ r∗, the rank-r
approximation error satisfies

∫
S×A

(∑r
i=1 σifi(s)gi(a)−Q∗(s, a)

)2
ds da =

∑∞
i=r+1 σ

2
i ≤ δ.

Low Rank Q∗. Theorem 4 motivates us to consider low-rank Q∗. For any integer r ≥ 1,
we call Q∗ to have rank r if σi = 0 for all i > r in (3.1). More generally, we say Q∗ has
δ-approximate rank r if r∗(δ) = r in Theorem 4. We focus on efficient RL for Q∗ with exact
or approximate low rank r. To motivate the readers, we present an example of classical
MDPs that exhibits low-rank structure in Q∗.

Example 1. The linear quadratic regulator (LQR) problem considers designing a linear
controller π for a linear dynamical system given by st+1 = Ast + Bat, at = πst, via min-
imizing a quadratic cost (negative reward) function R(st, at) = sTt Est + aTt Fat. Here,
st ∈ Rd1 is the state of the system at time t, at ∈ Rd2 is the control input to the sys-
tem at t, A ∈ Rd1×d1 , B ∈ Rd1×d2 , π ∈ Rd2×d1 are matrices describing the system, and
E ∈ Rd1×d1 , F ∈ Rd2×d2 are symmetric positive definite matrices. According to linear-
quadratic control theory [23], the value function can be expressed as V π(st) = sTt Kπst

where Kπ is a cost matrix for policy π; thus, the Q-function for π is written as

Qπ(s, a) = R(s, a) + γV π
(
(As+Ba)

)
= sT (E + γATKπA)s+ 2γsTATKπBa+ aT (F + γBTKπB)a.

Letting ATKπB =
∑r

i=1 τiuiv
T
i be the Singular Value Decomposition (SVD) of ATKπB, we

can see that

Qπ(s, a) = 2γ
r∑
i=1

τi(u
T
i s) · (vTi a) + (sTMSs) · 1A(a) + 1S(s) · (aTMAa),

where MS = E+γATKπA, MA = F +γBTKπB and 1S (1A) denotes a constant-1 function
on S (A). It is easy to observe that 1S , sTMSs, and {uTi s}ri=1 form an orthogonal set
in L2(S) as long as S is symmetric (i.e., S = −S). Similarly, 1A, aTMAa, and {vTi a}ri=1

form an orthogonal set in L2(A) when A is symmetric. Thus, the rank of Qπ is at most
min{d1, d2} + 2, and so is the rank of Q∗, which is significantly smaller than |S| ∼ 2d1 or
|A| ∼ 2d2 (after quantization).

Sec. 3.3. Reinforcement Learning via Matrix Estimation 85

� 3.3 Reinforcement Learning via Matrix Estimation

We introduce an RL algorithm using generic ME procedures as a subroutine. We require
the ME method in use to satisfy Assumption 2 (see Section 3.4) to provide meaningful
performance guarantees. However, there is no known ME procedure satisfying Assumption
2 in literature. In Section 3.5, we introduce a simple ME procedure that satisfies it when
Q∗ is exactly or approximately low-rank.

� 3.3.1 A Narrative Description of the Algorithm
The RL algorithm iteratively improves estimation ofQ∗. Each iteration consists of four steps:
discretization, exploration, matrix estimation and generalization. We provide a narrative
overview of the algorithm first; Algorithm 3 in Section 3.3.2 then describes the full algorithm
in a pseudo-code format.

…

…Discretization

!(#)

%(#)
Exploration Matrix Est. Generalization

Continuous Space &×! &(#)×!(#) Matrix

Ω(#)

Partial Observations)*(#) on Ω(#) Completed Est. +*(#) on &(#)×!(#)

*(#)

Interpolated *(#) on &×!

Next Iteration

with *(#,-)

Figure 3.1. Iterative RL using ME: the exploration step uses estimation Q(t−1) from the previous iteration.

Step 1. Discretization. At iteration t, we produce β(t)-nets, S(t) ⊂ S and A(t) ⊂ A,
for properly chosen resolution β(t) ∈ (0, 1) that decreases with iteration t. In our setup,
|S(t)| = O

(
(1/β(t))d1

)
, |A(t)| = O

(
(1/β(t))d2

)
. In total, this produces |S(t)||A(t)| many (s, a)

pairs in the discretized set S(t) ×A(t).

Step 2. Exploration. Using estimate Q(t−1) over the entire S × A from the previous
iteration, we wish to produce an improved estimate of Q∗ over S(t) × A(t) through this
and the next step, and then generalize it to S × A in Step 4. To produce an improved
estimate over S(t) ×A(t) in a sample-efficient manner, we first “explore” a carefully selected
subset Ω(t) ⊂ S(t) × A(t). Specifically, for each (s, a) ∈ Ω(t), we obtain N (t) samples of
independent transitions using the generative model, which results in a set of sampled next
states {s′i}i=1,...,N(t) . We obtain an estimate Q̂(t)(s, a) as

Q̂(t)(s, a)← R(s, a) + γ · 1

N (t)

N(t)∑
i=1

V (t−1)(s′i), with V (t−1)(s) = max
a

Q(t−1)(s, a). (3.2)

Step 3. Matrix Estimation. Given estimates Q̂(t)(s, a), ∀(s, a) ∈ Ω(t) updated in Step

86 Chapter 3. Data-efficient “Low-rank” RL

2, we wish to obtain an improved estimate of Q∗ for the entire discretized set S(t) × A(t).
This can be viewed as a matrix estimation problem. When Q∗ has rank r as discussed in
Section 3.2, the sampled matrix [Q∗(s, a) : s ∈ S(t), a ∈ A(t)], induced by discretization,
has rank at most r. Thus, we want to estimate the low-rank matrix by having access to
noisy measurements for a subset of entries in Ω(t) ⊂ S(t)×A(t). Specifically, the noise in the
measurements are not necessarily i.i.d. as they are coupled through V (t−1); thus, they are
bounded but can be arbitrary. Ideally, we wish to estimate the matrix with the maximum
entrywise error at a similar level as that in Q̂(t)(s, a). This demands that the ME method in
use is well-behaved in the `∞ sense, satisfying Assumption 2 to be stated later. While this
is absent in literature, we shall describe ME methods fulfilling the desideratum in Section
3.5. As a result, we obtain improved estimates Q̄(t)(s, a) for all (s, a) ∈ S(t) ×A(t) after the
ME step.

Step 4. Generalization. With estimates Q̄(t)(s, a), (s, a) ∈ S(t) ×A(t), we generalize to
S × A via interpolating them. This can be achieved by any supervised learning algorithm.
We simply utilize the 1-nearest neighbor: for any (s, a) ∈ S × A, at the end of iteration t,
we output Q(t)(s, a) ← Q̄(t)(s′, a′) where (s′, a′) is closest to (s, a) in S(t) × A(t), with ties
broken arbitrarily.

� 3.3.2 Pseudo-code for the Proposed Algorithm
Below (next page) is the pseudo-code of the generic RL method described above.

� 3.4 Correctness, Convergence & Sample Complexity

In this section, we state the result establishing correctness, convergence and finite sample
analysis of our RL algorithm. We require a specific property, stated as Assumption 2, for
the Matrix Estimation (ME) method utilized in Step 3 of the algorithm. While there is no
known ME method in the literature that satisfies it, we provide a novel ME method with
the desired property in Section 3.5.

� 3.4.1 Matrix Estimation: a Key Premise
Recall that we describe Algorithm 3 with a generic matrix estimation subroutine used in
Step 3, without specifying what ME method is used. In fact, the success of Algorithm 3
hinges on the performance of the ME method in use. For the convenience of exposition,
we define (Cme, cme)-property of an ME method for given constants Cme, cme ≥ 0, which
abstracts the “success” of the ME method and serves as a pivotal premise for the success of
the entire RL algorithm.

Sec. 3.4. Correctness, Convergence & Sample Complexity 87

Algorithm 3 Main Algorithm: Low-rank Reinforcement Learning
Input: S, A, γ, Q(0), T , {β(t)}t=1,...,T , {N (t)}t=1,...,T

Output: Q(T), the Q-value oracle after T iterations
1: Initialization: For all s ∈ S, initialize the value oracle Q(0)(s).
2: for t = 1, 2, . . . , T do
3: /* Step 1: Discretization of S and A */
4: Discretize S and A so that S(t) is a β(t)-net of S and A(t) is a β(t)-net of A.
5: /* Step 2: Exploration of a few (s, a) pairs */
6: Select a subset of (s, a) pairs, Ω(t) ⊆ S(t) ×A(t).
7: for (s, a) ∈ Ω(t) do
8: Estimate Q∗(s, a) via simple lookahead based on the current value oracle V (t−1),

i.e., query the generative model to sample N (t) independent transitions from (s, a)
and obtain an estimate Q̂(t)(s, a) with the sampled next states {s′i}i=1,...,N(t) :

Q̂(t)(s, a)← R(s, a) + γ · 1

N (t)

N(t)∑
i=1

V (t−1)(s′i). (3.3)

9: end for
10: /* Step 3: Matrix completion to obtain Q̄ from Q̂ */
11: Estimate Q̄(s, a) for (s, a) ∈ S(t) × A(t) from the data {Q̂(t)(s, a)}(s,a)∈Ω(t) , utilizing

the low-rank structure of Q̄(s, a), viz.,

Q̄(t) ← Matrix Estimation
(
Q̂(t); Ω(t)

)
.

12: /* Step 4: Generalization via interpolating Q̄ */
13: Update the oracles Q(t) and V (t) by calling a subroutine that interpolates Q̄(t) through

non-parametric regression methods:

Q(t) ← Interpolation
(
Q̄(t); S(t),A(t)

)
,

and subsequently, V (t)(s)← maxa∈AQ
(t)(s, a), for all s ∈ S.

14: end for

Assumption 2 ((Cme, cme)-property). Given finite S(t) ⊂ S, A(t) ⊂ A, it is possible to
construct Ω(t) ⊆ S(t)×A(t) with |Ω(t)| ≤ Cme

(
|S(t)|+ |A(t)|

)
for a given constant Cme ≥ 1 so

that whenever the ME method in use takes {Q̂(t)(s, a)}(s,a)∈Ω(t) with max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−
Q∗(s, a)

∣∣ ≤ ε as an input and outputs {Q̄(t)(s, a)}(s,a)∈S(t)×A(t), the following inequality
holds:

max
(s,a)∈S(t)×A(t)

∣∣Q̄(t)(s, a)−Q∗(s, a)
∣∣ ≤ cmeε.

We assume access to an ME method that satisfies (Cme, cme)-property. In essence, As-
sumption 2 ensures the `∞ error remains under control (to be precise, cme-Lipschitz with
respect to `∞/`∞) during the ME step, while it is stated in the language of RL for later
uses. Note that Assumption 2 does not explicitly require any structure on Q∗, but we will

88 Chapter 3. Data-efficient “Low-rank” RL

require Q∗ to be low-rank or approximately low-rank in order to produce an ME method
satisfying the assumption, as will be discussed in Section 3.5.

� 3.4.2 Correctness, Rate of Convergence & Sample Complex-
ity of Algorithm 3

Now, we state the desired properties of the RL algorithm introduced in Section 3.3. To that
end, let the algorithm start with initialization Q(0)(s, a) = 0, ∀(s, a) ∈ S × A and hence
V (0)(s) = 0, ∀s ∈ S. That is, |Q(0)(s, a)−Q∗(s, a)| ≤ Vmax, ∀(s, a) ∈ S × A. For the sake
of notational brevity, we let d1 = d2 = d in the sequel. We remark that our theorems apply
equally by simply replacing d with max{d1, d2}.

Theorem 5. Consider the RL algorithm described in Section 3.3 with ME satisfying As-
sumption 2. Given δ ∈ (0, 1), there exists algorithmic choice of β(t),Ω(t), N (t) for 1 ≤ t ≤ T ,
so that

P
(

sup
(s,a)∈S×A

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ (2γcme)

tVmax, ∀1 ≤ t ≤ T
)
≥ 1− δ.

Further, let γ < 1
2cme

. Then, with T = Θ
(

log 1
ε

)
and Õ

(
1

εd+2 · log 1
δ

)
number of samples, we

have

P
(

sup
(s,a)∈S×A

∣∣∣Q(T)(s, a)−Q∗(s, a)
∣∣∣ ≤ ε) ≥ 1− δ. (3.4)

In the proof of Theorem 5 presented next, we choose parameters β(t) = Vmax
8ζ (2γcme)

t,

|Ω(t)| = Cme(|S(t)| + |A(t)|) and N (t) = 8
(2γcme)2(t−1) log

(2|Ω(t)|T
δ

)
for 1 ≤ t ≤ T . While this

choice establishes the claims in Theorem 5, it is possible to achieve sup(s,a)∈S×A
∣∣Q(t)(s, a)−

Q∗(s, a)
∣∣ ≤ αtVmax for any α > γcme by making a more sophisticated choice. Subsequently,

the conclusion for sample complexity in (3.4), can be extended for any γ < 1
cme

. Thus, the
constant cme in Assumption 2 determines the range of MDPs for which such gains can be
achieved. In our analysis of the proposed ME method, cme ≥ 1 and indeed, we can achieve
cme = 1 by trivially selecting Ω(t) = S(t)×A(t), which however, does not lead to any gain in
efficiency. The key challenge is to find the right balance between small cme with small |Ω(t)|
or Cme. We address this in the next sections.

� 3.4.3 Proof of Theorem 5
Helper Lemma: Error Bound for Lookahead Subroutine. This section is devoted
to the proof of Theorem 5. To this end, we first need to understand the error guarantees

Sec. 3.4. Correctness, Convergence & Sample Complexity 89

for the lookahead (exploration) subroutine based on the current oracle V (t−1), cf. (3.2) and
Line 8 of Algorithm 3. This is summarized in the following lemma.

Lemma 10. Suppose that we have access to a value oracle V : S → R such that

sup
s∈S

∣∣V (s)− V ∗(s)
∣∣ ≤ B.

Given (s, a) ∈ S ×A, let s′1, . . . , s′N be the next states of (s, a) independently drawn from the
generative model and let Q̂(s, a) = R(s, a) + γ · 1

N

∑N
i=1 V (s′i). Then for any δ > 0,

|Q̂(s, a)−Q∗(s, a)| ≤ γ
(
B +

√
2V 2

max

N
log

(
2

δ

))

with probability at least 1− δ.

Proof. Note that Q∗(s, a) = R(s, a) + γEs′∼P(·|s,a)[V
∗(s′)] by definition of Q∗ and V ∗

(cf. Bellman equation). It follows that

|Q̂(s, a)−Q∗(s, a)| = γ

∣∣∣∣ 1

N

N∑
i=1

V (s′i)− Es′∼P(·|s,a)[V
∗(s′)]

∣∣∣∣
≤ γ

∣∣∣∣∣ 1

N

N∑
i=1

V (s′i)−
1

N

N∑
i=1

V ∗(s′i)

∣∣∣∣∣+ γ

∣∣∣∣∣ 1

N

N∑
i=1

V ∗(s′i)− Es′∼P(·|s,a)

[
V ∗(s′)

]∣∣∣∣∣
=

γ

N

N∑
i=1

∣∣V (s′i)− V ∗(s′i)
∣∣+ γ

∣∣∣∣∣ 1

N

N∑
i=1

V ∗(s′i)− Es′∼P(·|s,a)

[
V ∗(s′)

]∣∣∣∣∣ .
(3.5)

By assumption, the first term in (3.5) is bounded by γB. Meanwhile, since |V ∗(s′)| ≤ Vmax,
we can apply Hoeffding’s inequality to control the second term. Specifically, for any t > 0,

P

(
1

N

N∑
i=1

V ∗(s′i)− Es′∼P(·|s,a)

[
V ∗(s′)

]
> t

)
≤ exp

(
− Nt2

2V 2
max

)
.

Solving δ = 2 exp
(
− Nt2

2V 2
max

)
for t yields the result t =

√
2V 2

max
N log

(
2
δ

)
, and this completes

the proof. �

Proof of Theorem 5: Convergence. We prove the first statement of Theorem 5 by
mathematical induction. For t = 0, Q(0)(s, a) ≡ 0 and thus |Q(0)(s, a) − Q∗(s, a)| ≤ Vmax

for all (s, a). Next, we want to show that for t = 1, . . . , T ,

sup
(s,a)∈S×A

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ ρ sup

(s,a)∈S×A

∣∣Q(t−1)(s, a)−Q∗(s, a)
∣∣. (3.6)

90 Chapter 3. Data-efficient “Low-rank” RL

Fix t and suppose that sup(s,a)∈S×A
∣∣Q(t−1)(s, a)−Q∗(s, a)

∣∣ ≤ B(t−1). Note that this implies
sups∈S

∣∣V (t−1)(s) − V ∗(s)
∣∣ ≤ B(t−1) because Q(t−1), Q∗ are continuous and A is compact1.

To prove the inequality in (3.6), we backtrack the updating steps in Algorithm 3.
For each s ∈ S and a ∈ A, let ŝ(t) ∈ arg mins′∈S(t) ‖s′−s‖2 and â(t) ∈ arg mina′∈A(t) ‖a′−

a‖2. Since S(t) is a β(t)-net of S, ‖ŝ(t) − s‖ ≤ β(t). Likewise, ‖â(t) − a‖ ≤ β(t). As
Q(t)(s, a) = Q̄(t)(ŝ(t), â(t)) and Q∗ is ζ-Lipschitz,

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ =

∣∣Q̄(t)(ŝ(t), â(t))−Q∗(s, a)
∣∣

=
∣∣Q̄(t)(ŝ(t), â(t))−Q∗(ŝ(t), â(t))

∣∣+
∣∣Q∗(ŝ(t), â(t))−Q∗(s, a)

∣∣
≤
∣∣Q̄(t)(ŝ(t), â(t))−Q∗(ŝ(t), â(t))

∣∣+ 2ζβ(t).

Therefore, we obtain the following upper bound for Step 4 (interpolation):

sup
(s,a)∈S×A

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ max

(s,a)∈S(t)×A(t)

∣∣Q̄(t)(s, a)−Q∗(s, a)
∣∣+ 2ζβ(t). (3.7)

By Assumption 2, we have the following upper bound for Step 3 (matrix estimation):

max
(s,a)∈S(t)×A(t)

∣∣Q̄(t)(s, a)−Q∗(s, a)
∣∣ ≤ cme max

(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣. (3.8)

Lastly, applying Lemma 10 and taking union bound over (s, a) ∈ Ω(t), we can show that

max
(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣ ≤ γ

B(t−1) +

√
2V 2

max

N (t)
log

(
2|Ω(t)|T

δ

) (3.9)

with probability at least 1− δ
T .

Combining (3.7), (3.8) and (3.9) yields

sup
(s,a)∈S×A

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ B(t)

with probability at least 1− δ
T where

B(t) = γcme

B(t−1) +

√
2V 2

max

N (t)
log

(
2|Ω(t)|T

δ

)+ 2ζβ(t).

1For each s ∈ S, there exist a(t−1)(s), a∗(s) ∈ A such that V (t−1)(s) = Q(t−1)(s, a(t−1)(s))
and V ∗(s) = Q∗(s, a∗(s)). If V (t−1)(s) ≥ V ∗(s), then V (t−1)(s) − V ∗(s) = Q(t−1)(s, a(t−1)(s)) −
Q∗(s, a∗(s)) ≤ Q(t−1)(s, a(t−1)(s)) − Q∗(s, a(t−1)(s)). If V (t−1)(s) < V ∗(s), then V ∗(s) − V (t−1)(s) =
Q∗(s, a∗(s)) − Q(t−1)(s, a(t−1)(s)) ≤ Q∗(s, a∗(s)) − Q(t−1)(s, a∗(s)). Therefore, |V (t−1)(s) − V ∗(s)| ≤
maxa∈{a(t−1)(s),a∗(s)}

{
Q(t−1)(s, a)−Q∗(s, a)

}
.

Sec. 3.4. Correctness, Convergence & Sample Complexity 91

By Assumption 2, this requires at most |Ω(t)| = Cme

(
|S(t)| + |A(t)|

)
. Moreover, for each

1 ≤ t ≤ T , if we choose β(t) = Vmax
8ζ (2γcme)

t and

N (t) =
8

(2γcme)2(t−1)
log

(
2|Ω(t)|T

δ

)
, (3.10)

then B(t−1) ≤ (2γcme)
t−1Vmax implies that B(t) ≤ (2γcme)

tVmax with probability at least
1− δ

T .
At the beginning, we observed |Q(0)(s, a) − Q∗(s, a)| ≤ Vmax for all (s, a), i.e., B(0) ≤

Vmax. By taking the union bound over t = 1, . . . , T ,

sup
(s,a)∈S×A

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ (2γcme)

tVmax, ∀t = 1, . . . , T

with probability at least 1− δ. �

Proof of Theorem 5: Sample Complexity. If γ < 1
2cme

, then 2γcme < 1. Let Tε =⌈
log
(
Vmax
ε

)
log
(

1
2γcme

)⌉ and observe that (2γcme)ε ≤ (2γcme)
TεVmax ≤ ε. For each t, 1 ≤ t ≤ T , we

query Q̂(t)(s, a) for (s, a) ∈ Ω(t), each of which requires exploring N (t) samples. Therefore,
the total sample complexity of Algorithm 3 with T = Tε is

∑Tε
t=1

∣∣Ω(t)
∣∣N (t).

By standard argument on covering number, we can see that |S(t)|, |A(t)| ≤ C ′
(

1
β(t)

)d
=

C ′
(8ζ
Vmax

)d(
2γcme

)−dt for some absolute constant C ′ > 0. This is an increasing function of
t and hence, |Ω(t)| = Cme

(
|S(t)|+ |A(t)|

)
and N (t) as described in (3.10) are also increasing

with respect to t.
Observe that β(Tε) = Vmax

8ζ (2γcme)
Tε ≥ 2γcme

8ζ ε. Hence, |S(Tε)|, |A(Tε)| ≤ C ′
(8ζ

2γcme

)d 1
εd
.

Therefore, the overall number of samples utilized by the algorithm is

Tε∑
t=1

∣∣Ω(t)
∣∣N (t) ≤ Tε

∣∣Ω(Tε)
∣∣N (Tε)

≤ Tε · Cme

(
|S(Tε)|+ |A(Tε)|

)
· 8

(2γcme)2(Tε−1)
log

(
2Cme

(
|S(Tε)|+ |A(Tε)|

)
Tε

δ

)
≤ Tε · 2CmeC

′
(

8ζ

2γcme

)d 1

εd
· 8
(
Vmax

ε

)2

log

(
4CmeC

′Tε
δ

(8ζ

2γcme

)d 1

εd

)
= 16CmeC

′V 2
max

(
8ζ

2γcme

)d
· Tε
εd+2

· log

(
4CmeC

′
(8ζ

2γcme

)d
· Tε
εd
· 1

δ

)
. (3.11)

Since Tε =
⌈

log
(
Vmax
ε

)
log
(

1
2γcme

)⌉ = O
(

log 1
ε

)
, it follows from (3.11) that the overall sample complexity

scales as O
(

1
εd+2 log 1

ε ·
(

log 1
ε + log 1

δ

))
. This completes the proof of Theorem 5. �

92 Chapter 3. Data-efficient “Low-rank” RL

� 3.5 Matrix Estimation Satisfying Assumption 2

We introduce a matrix estimation method satisfying Assumption 2 which is required for
the success of our RL algorithm as in Theorem 5. For the ease of illustration, we start
with describing it for the rank-1 setting (Section 3.5.1), then generalize it for Q∗ with
generic rank r ≥ 1 (Section 3.5.2) and finally for the approximate rank-r setting with full
generality (Section 3.5.3). Technical proofs for all the settings are deferred to Section 3.6
for a streamlined presentation.

� 3.5.1 Matrix Estimation for Q∗ with Rank 1: a Warm-up
Consider Q∗ with rank 1. That is, there exist f : S → R and g : A → R so that Q∗(s, a) =

f(s)g(a) for all (s, a) ∈ S ×A. For the ease of exposition, we assume R(s, a) ∈ [Rmin, Rmax]

with Rmin > 0 for all (s, a) ∈ S ×A in this warm-up only. Subsequently, Q∗(s, a) ≥ Vmin ,
Rmin
1−γ , ∀(s, a).

Matrix Estimation Algorithm. For t ≥ 1, consider a discretization of state, action
spaces, S(t) ⊂ S, A(t) ⊂ A. Let Q∗(S(t),A(t)) be the |S(t)| × |A(t)| matrix induced by
restricting Q∗ to S(t)×A(t). Since Q∗ is rank 1, it follows that Q∗(S(t),A(t)) = FGT where
F = [f(s) : s ∈ S(t)] ∈ R|S(t)|×1 and G = [g(a) : a ∈ A(t)] ∈ R|A(t)|×1. Therefore, we can
estimate Q∗(S(t),A(t)) by estimating F,G.

Now we describe the selection of Ω(t) such that |Ω(t)| = |S(t)|+ |A(t)|−1. To that end, we
first choose an anchor element s] ∈ S(t) and a] ∈ A(t). Then, let Ω(t) = {(s, a) ∈ S(t)×A(t) :

s = s] or a = a]}. With access to {Q̂(t)(s, a) : (s, a) ∈ Ω(t)}, our ME method produces
estimates for all (s, a) ∈ S(t) ×A(t) as

Q̄(t)(s, a) =
Q̂(t)(s, a])Q̂(t)(s], a)

Q̂(t)(s], a])
.

Satisfaction of Assumption 2. For the algorithm described above, we state the following
proposition which verifies that Assumption 2 is satisfied with Cme = 1 and cme = 7Rmax

Rmin
.

Proposition 2. For ε ≤ 1
2Vmin, suppose that max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣ ≤ ε. Then

the estimate produced by the above ME algorithm satisfies

max
(s,a)∈S(t)×A(t)

∣∣Q̄(t)(s, a)−Q∗(s, a)
∣∣ ≤ 7

Rmax

Rmin
ε.

Proposition 2 implies that when Q∗ has rank 1, our simple ME method described above
satisfies

(
1, 7Rmax

Rmin

)
-property for ε ≤ 1

2Vmin. We remark that for any c ∈ (0, 1), one can
show that the method fulfills

(
1, cme

)
-property with cme = 3+c

1−c
Rmax
Rmin

for all ε ≤ cVmin. By

Sec. 3.5. Matrix Estimation Satisfying Assumption 2 93

replacing Assumption 2 in Theorem 5 with Proposition 2, we obtain convergence and sample
complexity guarantees for the rank-1 setup as stated in Theorem 6 below. We refer readers
to Section 3.6.1 for proofs of Proposition 2 and Theorem 6.

Theorem 6. Let Q∗ be rank 1. Consider the RL algorithm (cf. Section 3.3) with the
Matrix Estimation method as described in Section 3.5.1. If γ < Rmin

14Rmax
, then the following

statements hold.

1. For any δ > 0, we have

sup
(s,a)∈S×A

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ (14Rmax

Rmin
γ

)t
Vmax, ∀ 1 ≤ t ≤ T,

with probability at least 1−δ by choosing algorithmic parameters β(t), N (t) appropriately.

2. Further, given ε > 0, it suffices to set T = Θ(log 1
ε) and use Õ(1

εd+2 · log 1
δ) number of

samples to achieve

P
(

sup
(s,a)∈S×A

∣∣Q(T)(s, a)−Q∗(s, a)
∣∣ ≤ ε) ≥ 1− δ.

� 3.5.2 Matrix Estimation for Q∗ with Rank r

Based on the intuition developed in Section 3.5.1, we consider a more general rank-r setup.
For notational convenience, given Q : S × A → R and S ′ ⊂ S,A′ ⊂ A, we let Q(S ′,A′)
denote the |S ′| × |A′| matrix

[
Q(s, a) : (s, a) ∈ S ′ × A′

]
, whose entries are indexed by

(s, a) ∈ S ′ ×A′.
The central idea is the same as before: although Q∗(S(t),A(t)) ∈ Rm×n is an array of

mn real numbers, it has only r(m+ n− r) degrees of freedom with r-dimensional row and
column spaces, when rank(Q∗(S(t),A(t))) = r ≤ min{m,n}; as a result, one can successfully
restore Q∗(S(t),A(t)) by exploring only r entire rows and columns. There is, however, a
small caveat that the r rows and r columns should be carefully chosen so that they are not
degenerate, i.e., the r rows span the entire row space of Q∗(S(t),A(t)) (the r columns span
the entire column space of Q∗(S(t),A(t)), respectively). Towards this end, we first define the
notion of anchor states and actions.

Definition 1. (Anchor states and actions) A set of states S] = {s]i}Rsi=1 ⊂ S and actions
A] = {a]i}Rai=1 ⊂ A for some Rs, Ra are called anchor states and anchor actions for Q∗ if
rank Q∗(S],A]) = r.

That is, there are r states in the set S] such that Q∗(s,A]), s ∈ S] are linearly indepen-
dent. In other words, S] contains states with sufficiently diverse performance on actions A].

94 Chapter 3. Data-efficient “Low-rank” RL

Likewise, a similar interpretation holds for A] if we look at the columns of Q∗(S],A]).
Indeed, S] and A] will be applied to construct our exploration sets and we want them to

have small size. Finding only a few diverse states and actions is arguably easy in practice —
in fact, for several stochastic control tasks experimented in Section 3.7, we simply pick a few
states and actions that are far from each other in their respective metric spaces. We remark
that assuming some “anchor” elements (i.e., elements having some special, relevant prop-
erties) is common in feature-based reinforcement learning [178, 53] or matrix factorization
such as topic modeling [10].

Matrix Estimation Algorithm. We select anchor states S] ⊂ S, anchor actions A] ⊂ A
and fix them throughout all iterations 1 ≤ t ≤ T . As before, we select appropriate β(t)-nets
S(t) and A(t) and augment them with the anchor states and actions: S̄(t) ← S(t) ∪ S] and
Ā(t) ← A(t) ∪ A]. For iteration 1 ≤ t ≤ T , we let

Ω(t) = {(s, a) ∈ S̄(t) × Ā(t) : s ∈ S] or a ∈ A]}

be the exploration set.
Given Q̂(t)(s, a) for (s, a) ∈ Ω(t), our ME method produces estimates for all (s, a) ∈

S(t) ×A(t) as
Q̄(t)(s, a) = Q̂(t)(s,A])

[
Q̂(t)(S],A])

]†
Q̂(t)(S], a), (3.12)

where
[
Q̂(t)(S],A])

]† denotes the Moore-Penrose pseudoinverse of Q̂(t)(S],A]). With the
choice of Rs = Ra = r (or a constant multiple of r, e.g. O(r)), the size of Ω(t) is at most
r
(
|S̄(t)|+ |Ā(t)| − r

)
� |S̄(t)||Ā(t)|.

Satisfaction of Assumption 2. For given matrix X ∈ Rm×n, we denote by σi(X) its
i-th largest singular value, i.e., σ1(X) ≥ σ2(X) ≥ · · · ≥ σmin(m,n)(X) ≥ 0. We state the
following guarantee, which verifies that the matrix estimation algorithm described above
satisfies Assumption 2.

Proposition 3. Let Ω(t) and Q̄(t) as described above. For any ε ≤ 1

2
√
|S]||A]|

σr
(
Q∗(S],A])

)
,

if max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣ ≤ ε, then

max
(s,a)∈S(t)×A(t)

∣∣Q̄(t)(s, a)−Q∗(s, a)
∣∣ ≤ c(r;S],A])ε,

where

c(r;S],A]) =

(
6
√

2

(√
|S]||A]|

σr
(
Q∗(S],A])

))+ 2(1 +
√

5)

(√
|S]||A]|

σr
(
Q∗(S],A])

))2
)
Vmax

Proposition 3 implies whenQ∗ has rank r, our MEmethod satisfies
(

max{|S]|, |A]|}, c(r;S],A])
)
-

Sec. 3.5. Matrix Estimation Satisfying Assumption 2 95

property for ε ≤ 1

2
√
|S]||A]|

σr
(
Q∗(S],A])

)
. Hence, we obtain Theorem 7 below as a corollary

of Theorem 5. That is, we obtain the desired convergence result and sample complexity
Õ(1

εd+2 · log 1
δ) to achieve ε error with the output Q(T). We remark that here, the hidden

constant in Õ(·) depends on |S]| and |A]|. Based on the definition, the minimal values of
|S]| and |A]| are both r. As common in the ME literature, we generally considers low-rank
problems with a small value r and treats related quantities as constants. The proofs of
Proposition 3 and Theorem 7 are provided in Section 3.6.2.

Theorem 7. Let Q∗ have rank r. Consider the RL algorithm (cf. Section 3.3) with the
Matrix Estimation method as described in Section 3.5.2. If γ ≤ 1

2c(r;S],A]) , then the following
statements hold.

1. For any δ > 0, we have

sup
(s,a)∈S×A

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ (2c(r;S],A])γ)tVmax, for all t = 1, . . . , T

with probability at least 1−δ by choosing algorithmic parameters β(t), N (t) appropriately.

2. Further, given ε > 0, it suffices to set T = Θ(log 1
ε) and use Õ(1

εd+2 · log 1
δ) number of

samples to achieve

P
(

sup
(s,a)∈S×A

∣∣Q(T)(s, a)−Q∗(s, a)
∣∣ ≤ ε) ≥ 1− δ.

Remark. (Discrete spaces) It is clear that our algorithm and analysis also apply to low-
rank Q∗ defined over discrete spaces (as also mentioned in Table 3.1 at the beginning of this
chapter). We summarize results for (1) continuous S and finite A; (2) finite S and finite A
as direct corollaries of Theorem 7 in Appendix B.2.

� 3.5.3 Matrix Estimation for Q∗ with Approximate Rank r

In Section 3.5.2, we considered the setup where the underlying Q∗ has an exact rank r.
However, it may not be feasible to hope for exact low-rank structure in practice. Hence, it
is desirable to seek methods that are reasonably robust to approximation error when Q∗ can
be well approximated by the first few spectral components. We show that our ME method
has such an appealing property.

Given r > 0 as a parameter, let Q∗r denote the best rank-r approximation of Q∗ in
the L2-sense so that Q∗r(s, a) =

∑r
i=1 σifi(s)gi(a) (cf. Theorem 4). Denote by ξr ,

sup(s,a)∈S×A |Q∗r(s, a) − Q∗(s, a)| the model bias due to approximation. We introduce the

96 Chapter 3. Data-efficient “Low-rank” RL

notion of r-anchor states/actions that generalizes the notion of anchor states and actions in
Definition 1.

Definition 2. (r-Anchor states and actions) A set of states S] = {s]i}Rsi=1 ⊂ S and actions
A] = {a]i}Rai=1 ⊂ A for some Rs, Ra are called r-anchor states and r-anchor actions for Q∗

if rank Q∗r(S],A]) = r for a positive integer r.

It is easy to see that if S] and A] are r-anchor states/actions for Q∗, then they are r′-anchor
states/actions for Q∗ for all r′ ≤ r.

Matrix Estimation Algorithm. The algorithm remains the same as the exact rank-r
case in Section 3.5.2, except that we select S] ⊂ S and A] ⊂ A to be r-anchor states and
actions.

Theoretical Guarantee for Approximate Rank-r Setup. Previously, we imposed some
regularity assumptions on Q∗, but the truncated function Q∗r is not guaranteed to inherit
the regularity properties. Here, we additionally assume that (i) ‖Q∗r‖∞ ≤ Vmax and (ii) Q∗r
is ζ-Lipschitz, for the convenience of exposition.

At a high level, our analysis is simple: for a given parameter r > 0, we treat Q∗r as
the true function and repeat our analysis for the rank-r setup. Of course, there will be
an additional bias, Q∗r(s, a) −Q∗(s, a), incurred by this substitution which requires careful
tracking at each iteration. We formalize this argument in Proposition 4 and Theorem 8.

Proposition 4. Let Ω(t) and Q̄(t) be as described above. Given a positive integer r > 0, let
S] and A] be some r-anchor states and actions for Q∗.

For any ε ≤ 1

2
√
|S]||A]|

σr
(
Q∗r(S],A])

)
, if max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗r(s, a)
∣∣ ≤ ε, then

max
(s,a)∈S(t)×A(t)

∣∣Q̄(t)(s, a)−Q∗r(s, a)
∣∣ ≤ φc(r;S],A])ε,

where

φc(r;S],A]) :=

(
6
√

2

(√
|S]||A]|

σr
(
Q∗r(S],A])

))+ 2(1 +
√

5)

(√
|S]||A]|

σr
(
Q∗r(S],A])

))2
)
Vmax. (3.13)

With Proposition 4 at hand, we can obtain the following theorem as a corollary of
Theorem 5 for the approximate rank-r setup. The theorem guarantees that when the model
bias ‖Q∗r −Q∗‖∞ is sufficiently small, we obtain convergence and sample complexity results
similar to the rank-r setting with an additive error induced by the model bias.

Theorem 8. Consider the approximate rank-r setting in this section and the RL algorithm
(cf. Section 3.3) with the Matrix Estimation method as described above. Given a positive

Sec. 3.6. Technical Results of the Proposed ME Method 97

integer r, if γ ≤ 1
2φc(r;S],A]) and ξr ≤ min

{
σr
(
Q∗r(S],A])

)
2
√
|S]||A]|+(1+ 1

Vmax
)σr
(
Q∗r(S],A])

) , 3
2Vmax

}
, then

the following statements hold.

1. For any δ > 0, with probability at least 1 − δ, the following inequality holds for all
t = 1, . . . , T

sup
(s,a)∈S×A

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ (2φc(r;S],A])γ)tVmax

+ (1 + φc(r;S],A])γ)ξr

t∑
i=1

(
φc(r;S],A])γ

)i−1

by choosing algorithmic parameters β(t), N (t) appropriately.

2. Further, given ε > 0, it suffices to set T = Θ(log 1
ε) and use Õ(1

εd+2 · log 1
δ) number of

samples to achieve

P
(

sup
(s,a)∈S×A

∣∣Q(T)(s, a)−Q∗(s, a)
∣∣ ≤ ε+

1 + γφc(r;S],A])
1− γφc(r;S],A])

ξr

)
≥ 1− δ.

The proof of Theorem 8 is provided in Section 3.6.3. Theorem 8 establishes the robustness
of our method. When the approximation error ξr is not too large, with high probability, we
obtain estimate of Q∗ that is within `∞ error ε+ 1+γφc(r;S],A])

1−γφc(r;S],A])ξr. Again, the algorithm only
efficiently utilizes Õ(1

εd+2 · log 1
δ) number of samples. Overall, the results on the approximate

rank-r setting justifies the soundness of our approach, from both theoretical and practical
perspectives.

Reduction to Exact Rank-r Case. Note that the exact rank-r setting is a special case
of the approximate rank-r setup with ξs = 0 for all s ≥ r. Therefore, Theorem 8 applies to
rank-r setup discussed in Section 3.5.2. φc(r;S],A]) in (3.13) reduces to c(r;S],A]) defined
in Proposition 3. As a result, we can apply Theorem 8 to arrive at the same conclusion with
Theorem 7.

� 3.6 Technical Results of the Proposed ME Method

In this section, we provide the details related to the technical results presented in Section 3.5.

� 3.6.1 Rank(Q∗) = 1

We prove Proposition 2 and Theorem 6 for the case of a rank-1 Q∗ here.

98 Chapter 3. Data-efficient “Low-rank” RL

Proof of Proposition 2. First, we note that for any (s, a) ∈ S ×A,

Q∗(s, a) = f(s)g(a) =
f(s)g(a])f(s])g(a)

f(s])g(a])
=
Q∗(s, a])Q∗(s], a)

Q∗(s], a])
.

We assumed that
∣∣Q̂(t)(s, a) − Q∗(s, a)

∣∣ ≤ ε for all (s, a) ∈ Ω(t). Since (s, a]), (s], a),
(s], a]) ∈ Ω(t),

Q̄(t)(s, a) ≤
(
1 + ε

Q∗(s,a])

)(
1 + ε

Q∗(s],a)

)
1− ε

Q∗(s],a])

Q∗(s, a) ≤
(

1 +
ε

Vmin

)2(
1 +

2ε

Vmin

)
Q∗(s, a).

The last inequality follows from that 1
1−x ≤ 1 + 2x for 0 ≤ x ≤ 1

2 and that ε ≤ 1
2Vmin ≤

min{Q∗(s, a]), Q∗(s], a), Q∗(s], a])}. Therefore,

Q̄(t)(s, a)−Q∗(s, a) ≤
[
4
(ε

Vmin

)
+ 5
(ε

Vmin

)2
+ 2
(ε

Vmin

)3
]
Q∗(s, a)

≤ 7Q∗(s, a)
ε

Vmin
≤ 7

Vmax

Vmin
ε.

In a similar manner,

Q̄(t)(s, a) ≥
(
1− ε

Q∗(s,a])

)(
1− ε

Q∗(s],a)

)
1 + ε

Q∗(s],a])

Q∗(s, a) ≥
(

1− ε

Vmin

)2(
1− ε

Q∗(s], a])

)
Q∗(s, a)

because 1
1+x ≥ 1− x for 0 ≤ x ≤ 1

2 , and thus,

Q̄(t)(s, a)−Q∗(s, a) ≥
[
− 3
(ε

Vmin

)
+ 3
(ε

Vmin

)2
−
(ε

Vmin

)3
]
Q∗(s, a) ≥ −7

4

Vmax

Vmin
ε.

Therefore, for all (s, a) ∈ S(t) × A(t),
∣∣Q̄(t)(s, a) − Q∗(s, a)

∣∣ ≤ 7Vmax
Vmin

ε = 7Rmax
Rmin

ε. This
completes the proof of Proposition 2. �

Proof of Theorem 6. The proof is basically the same as the proof of Theorem 5, with the
assumption on the matrix estimation oracle (i.e., Assumption 2) replaced with the explicit
guarantee provided in Proposition 2. The only subtlety comes from that Proposition 2 is a
“local” guarantee that holds only for ε ≤ 1

2Vmin whereas Assumption 2 is a global condition
that holds for any ε. This requires us to ensure max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣ ≤ 1

2Vmin

for all t = 1, . . . , T , but the argument in the proof of Theorem 5 itself remains valid.
To that end, we make exactly the same choice of algorithmic parameters β(t), N (t) as

β(t) =
Vmax

8ζ
(2γcme)

t and N (t) =
8

(2γcme)2(t−1)
log

(
2|Ω(t)|T

δ

)
(3.14)

Sec. 3.6. Technical Results of the Proposed ME Method 99

with cme = 7Rmax
Rmin

as suggested in Proposition 2 and |Ω(t)| = Cme(|S(t)|+|A(t)|) with Cme = 1.
To complete the proof, it suffices to show that max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a) − Q∗(s, a)
∣∣ ≤ 1

2Vmin

for all t.
We establish this via mathematical induction. For 0 ≤ t ≤ T , letB(t) := sup(s,a)∈S×A

∣∣Q(t)(s, a)−
Q∗(s, a)

∣∣. We can see that if B(t−1) ≤
(

14Rmax
Rmin

γ
)t−1

Vmax, then with probability at least 1− δ
T ,

the following two inequalities hold:

1. max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣ ≤ 1

2Vmin, and

2. B(t) ≤ 14Rmax
Rmin

γB(t−1).

The first inequality follows from Lemma 10 (see also (3.9)): with probability at least 1− δ
T ,

max
(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣ ≤ γ

B(t−1) +

√
2V 2

max

N (t)
log

(
2|Ω(t)|T

δ

) ≤ 3

2
γB(t−1)

≤ 3

2
γVmax ≤

3

2

Rmin

14Rmax
Vmax =

3

28
Vmin

≤ 1

2
Vmin.

Also, the second inequality follows from the same argument as in the proof of Theorem 5,
cf. (3.7), (3.8) and (3.9).

It remains to certify that B(t) ≤
(

14Rmax
Rmin

γ
)t
Vmax for t = 0, . . . , T − 1. First of all,

Q(0)(s, a) ≡ 0 by assumption, and hence, B(0) ≤ Vmax. Thus, by the second inequality and
the condition on γ, B(t) ≤

(
14Rmax
Rmin

γ
)
B(t−1) ≤ · · · ≤

(
14Rmax
Rmin

γ
)t
B(0) ≤

(
14Rmax
Rmin

γ
)t
Vmax for

all t = 0, . . . , T − 1 and the proof is complete. �

� 3.6.2 Rank(Q∗) = r

In this section, we prove results related to the exact rank-r case. We begin with the proof
of Proposition 3 and then the proof of Theorem 7.

Proof of Proposition 3. We start with a helper lemma below.

Lemma 11. Let M =

[
A B

C D

]
. If rank A = rank M , then D = CA†B.

Proof. Since rankrow

[
A B

]
≥ rankrow A = rank A = rank M = rankrow M , there exists a

matrix P such that
[
C D

]
= P

[
A B

]
. Also, observe that rankcol

[
A B

]
≤ rankcol M =

rank M = rank A = rankcol A. That is, the column space of B is a subspace of the column
space of A. It follows that AA†A = A and AA†B = B because the left multiplication of

100 Chapter 3. Data-efficient “Low-rank” RL

AA† is the projection on the column space of A. We obtain[
C D

]
= P

[
A B

]
= P

[
AA†A AA†B

]
=
[
PA PAA†B

]
.

Therefore, PA = C and D = PAA†B = CA†B. �

Now, we are ready to prove Proposition 3. First, we observe that for any (s, a) ∈
S(t) ×A(t)

Q∗(s, a) = Q∗(s,A])
[
Q∗(S],A])

]†
Q∗(S], a). (3.15)

This can be verified by applying Lemma 11 to M =

[
A B

C D

]
∈ R|S̄(t)|×|Ā(t)| where

A = Q∗(S],A]), B = Q∗(S],A(t)),

C = Q∗(S(t),A]), D = Q∗(S(t),A(t)).

Here, rank A = r = rank M by definition of anchor states/actions and the fact that Q∗ has
rank r. Hence,

Q∗(S(t),A(t)) = D = CA†B = Q∗(S(t),A])
[
Q∗(S],A])

]†
Q∗(S],A(t)).

Next, we fix (s, a) ∈ S(t) × A(t) and consider the error Q̄(t)(s, a) − Q∗(s, a). According
to the definition of Q̄(t)(s, a) (cf. (3.12)) and (3.15),

Q̄(t)(s, a)−Q∗(s, a) = Q̂(t)(s,A])
[
Q̂(t)(S],A])

]†
Q̂(t)(S], a)−Q∗(s,A])

[
Q∗(S],A])

]†
Q∗(S], a)

≤ Q̂(t)(s,A])
[
Q̂(t)(S],A])

]†
Q̂(t)(S], a)−Q∗(s,A])

[
Q̂(t)(S],A])

]†
Q∗(S], a)

+Q∗(s,A])
[
Q̂(t)(S],A])

]†
Q∗(S], a)−Q∗(s,A])

[
Q∗(S],A])

]†
Q∗(S], a)

= Tr
([
Q̂(t)(S],A])

]† · [Q̂(t)(S], a)Q̂(t)(s,A])−Q∗(S], a)Q∗(s,A])
])

+ Tr
({[

Q̂(t)(S],A])
]† − [Q∗(S],A])]†} ·Q∗(S], a)Q∗(s,A])

)
.

Since
∣∣Tr(AB)

∣∣ ≤ √rank B‖A‖op‖B‖F , we obtain

∣∣Q̄(t)(s, a)−Q∗(s, a)
∣∣ ≤ √2

∥∥∥[Q̂(t)(S],A])
]†∥∥∥

op

∥∥∥Q̂(t)(S], a)Q̂(t)(s,A])−Q∗(S], a)Q∗(s,A])
∥∥∥
F

(3.16)

+
∥∥∥[Q̂(t)(S],A])

]† − [Q∗(S],A])]†∥∥∥
op

∥∥∥Q∗(S], a)Q∗(s,A])
∥∥∥
F
.

(3.17)

In the remainder of the proof, we establish upper bounds for (3.16) and (3.17) separately.

Sec. 3.6. Technical Results of the Proposed ME Method 101

• Upper bound for (3.16). Note that Q̂(t)(S],A]) = Q∗(S],A]) + E for some E ∈
R|S]|×|A]| such that ‖E‖max ≤ ε by assumption. Therefore, ‖E‖op ≤

√
|S]||A]|‖E‖max ≤

ε
√
|S]||A]|. Since σr

(
Q̂(t)(S],A])

)
≥ σr

(
Q∗(S],A])

)
−‖E‖op due to Weyl’s inequality,

we have∥∥∥[Q̂(t)(S],A])
]†∥∥∥

op
=

1

σr
(
Q̂(t)(S],A])

) ≤ 1

σr
(
Q∗(S],A])

)
− ε
√
|S]||A]|

≤ 2

σr
(
Q∗(S],A])

)
provided that ε ≤ 1

2
√
|S]||A]|

σr
(
Q∗(S],A])

)
.

It is easy to see
∥∥∥Q̂(t)(S], a)Q̂(t)(s,A])−Q∗(S], a)Q∗(s,A])

∥∥∥
F
≤
(
2Vmaxε+ε

2
)√
|S]||A]|

because
∣∣Q̂(t)(s, a)Q̂(t)(s, a)−Q∗(s, a)Q∗(s, a)

∣∣ ≤ 2Vmaxε+ε2 for all (s, a) ∈ S(t)×A(t).

• Upper bound for (3.17). We derive an upper bound on
∥∥[Q̂(t)(S],A])

]†−[Q∗(S],A])]†∥∥
op

using a classical result on the perturbation of pseudoinverses. By Theorem 3.3 of [153],
for any A and B with B = A+ ∆,

‖B† −A†‖op ≤
1 +
√

5

2
max{‖A†‖2op, ‖B†‖2op}‖∆‖op

Therefore,

∥∥[Q̂(t)(S],A])
]† − [Q∗(S],A])]†∥∥

op
≤ 1 +

√
5

2
· 4

σr
(
Q∗(S],A])

)2 · ε√|S]||A]|.
Also, it is easy to see that

∥∥Q∗(S], a)Q∗(s,A])
∥∥
F
≤ Vmax

√
|S]||A]|.

All in all, inserting the upper bounds back into (3.16) and (3.17), we have

∣∣Q̄(t)(s, a)−Q∗(s, a)
∣∣ ≤ 2

√
2

σr
(
Q∗(S],A])

)(2Vmaxε+ ε2)
√
|S]||A]|

+
2(1 +

√
5)

σr
(
Q∗(S],A])

)2Vmax|S]||A]|ε

≤
(

6
√

2

(√
|S]||A]|

σr
(
Q∗(S],A])

))+ 2(1 +
√

5)

(√
|S]||A]|

σr
(
Q∗(S],A])

))2
)
Vmaxε.

�

Proof of Theorem 7. We take the same approach as in the proof of Theorem 6;
the proof is essentially the same as the proof of Theorem 5, with the assumption on the
matrix estimation oracle (i.e., Assumption 2) replaced with the explicit guarantee provided
in Proposition 3.

102 Chapter 3. Data-efficient “Low-rank” RL

As before, the only subtlety comes from that Proposition 3 is a “local” guarantee that
holds only for ε ≤ 1

2
√
|S]||A]|

σr
(
Q∗(S],A])

)
whereas Assumption 2 is a global condition

that holds for any ε. This requires us to ensure max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a) − Q∗(s, a)
∣∣ ≤

1

2
√
|S]||A]|

σr
(
Q∗(S],A])

)
for all t = 1, . . . , T , but the argument in the proof of Theorem

5 itself remains valid.
We make exactly the same choice of algorithmic parameters β(t), N (t) as in the proof of

Theorem 5:

β(t) =
Vmax

8ζ
(2γcme)

t and N (t) =
8

(2γcme)2(t−1)
log

(
2|Ω(t)|T

δ

)
with an adaptation cme = c(r;S],A]) as suggested in Proposition 3. To complete the proof,
it suffices to show that max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣ ≤ 1

2
√
|S]||A]|

σr
(
Q∗(S],A])

)
for all

t = 1, . . . , T .
In the rest of the proof, we prove the above claim by mathematical induction. For

t = 0, . . . , T , we let B(t) := sup(s,a)∈S×A
∣∣Q(t)(s, a)−Q∗(s, a)

∣∣. We can see that if B(t−1) ≤(
2c(r;S],A])γ

)t−1
Vmax, then with probability at least 1− δ

T , the following two inequalities
hold:

1. max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣ ≤ 1

2
√
|S]||A]|

σr
(
Q∗(S],A])

)
, and

2. B(t) ≤ 2c(r;S],A])γB(t−1).

• To prove the first claim, we apply Lemma 10 (see also (3.9)) and observe that with
probability at least 1− δ

T ,

max
(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣ ≤ γ

B(t−1) +

√
2V 2

max

N (t)
log

(
2|Ω(t)|T

δ

)
≤ 3

2
γB(t−1) ≤ 3

2
γVmax

≤ 3

4c(r;S],A])Vmax.

Here, the last two inequalities follow from the assumptions that γ ≤ 1
2c(r;S],A]) and

that B(t−1) ≤
(
2c(r;S],A])γ

)t−1
Vmax ≤ Vmax. Then it suffices to show that

3

4c(r;S],A])Vmax ≤
1

2
√
|S]||A]|

σr
(
Q∗(S],A])

)
. (3.18)

Recall that c(r;S],A]) =
(

6
√

2
(√|S]||A]|
σr(Q∗(S],A]))

)
+ 2(1 +

√
5)
(√|S]||A]|
σr(Q∗(S],A]))

)2)
Vmax. Also,

Sec. 3.6. Technical Results of the Proposed ME Method 103

we observe that σr(Q∗(S],A])) > 0 by definition of the anchor states/actions. Thus,
(3.18) is satisfied if the following inequality is true:

(√
|S]||A]|

σr
(
Q∗(S],A])

)){2(1 +
√

5)

(√
|S]||A]|

σr
(
Q∗(S],A])

))+ 6
√

2− 3

2

}
≥ 0.

This quadratic inequality is satisfied if and only if
√
|S]||A]|

σr(Q∗(S],A])) ≥ 0 or
√
|S]||A]|

σr(Q∗(S],A])) ≤
3−12

√
2

4(1+
√

5)
. Since r ≥ 1 and σr(Q

∗(S],A])) > 0, we always have
√
|S]||A]|

σr(Q∗(S],A])) ≥ 0 and
therefore, the inequality in (3.18) is always true.

• The inequality in the second claim follows from the same argument as in the proof of
Theorem 5, cf. (3.7), (3.8) and (3.9).

It remains to certify that B(t) ≤
(
2c(r;S],A])γ

)t
Vmax for t = 0, . . . , T − 1. First of

all, Q(0)(s, a) ≡ 0 by assumption, and hence, B(0) ≤ Vmax. Thus, by the second inequal-
ity and the condition on γ, B(t) ≤ 2c(r;S],A])γB(t−1) ≤ . . . ≤

(
2c(r;S],A])γ

)t
B(0) ≤(

2c(r;S],A])γ
)t
Vmax for all t = 1, . . . , T − 1 and the proof is complete. �

� 3.6.3 Rank(Q∗) ≈ r

Here, we prove results for the approximate rank-r setup in Section 3.6.3. The proof of
Proposition 4 is omitted due to its similarity to the proof of Proposition 3 with minor
modifications.

Proof of Theorem 8. In this proof, we repeat the proof of Theorem 7 with necessary modi-
fications. As before, we must ensure max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗r(s, a)
∣∣ ≤ 1

2
√
|S]||A]|

σr
(
Q∗r(S],A])

)
for all t = 1, . . . , T to use Proposition 4. For that purpose, we make exactly the same choice
of algorithmic parameters β(t), N (t) as in the proof of Theorem 5, i.e., we let

β(t) =
Vmax

8ζ
(2γcme)

t and N (t) =
8

(2γcme)2(t−1)
log

(
2|Ω(t)|T

δ

)
with an adaptation cme = φc(r;S],A]) as suggested in Proposition 4, cf. (3.13). To complete
the proof, it suffices to show that max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗r(s, a)
∣∣ ≤ 1

2
√
|S]||A]|

σr
(
Q∗r(S],A])

)
for all t = 1, . . . , T .

In the rest of the proof, we prove the above claim by mathematical induction. For nota-
tional brevity, we use the shorthand notation σr := σr

(
Q∗r(S],A])

)
and cr := φc(r;S],A]).

104 Chapter 3. Data-efficient “Low-rank” RL

For t = 0, . . . , T , we let B(t) := sup(s,a)∈S×A
∣∣Q(t)(s, a)−Q∗r(s, a)

∣∣. We can see that if

B(t−1) ≤
(
2crγ

)t−1
Vmax + (1 + crγ)ξr

t−1∑
i=1

(
crγ
)i−1

,

then with probability at least 1− δ
T , the following two inequalities hold:

1. max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗r(s, a)
∣∣ ≤ 1

2
√
|S]||A]|

σr, and

2. B(t) ≤
(
2crγ

)t
Vmax + (1 + crγ)ξr

∑t
i=1

(
crγ
)i−1.

• To prove the first claim, we apply Lemma 10 (see also (3.9)) and observe that with
probability at least 1− δ

T ,

max
(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣ ≤ γ

B(t−1) +

√
2V 2

max

N (t)
log

(
2|Ω(t)|T

δ

)
≤ 3γ

2
(2crγ)t−1Vmax + γ(1 + crγ)ξr

t−1∑
i=1

(crγ)i−1

≤ 3γ

2
Vmax +

(1 + crγ)γ

1− crγ
ξr.

Since max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a) − Q∗r(s, a)
∣∣ ≤ max(s,a)∈Ω(t)

∣∣Q̂(t)(s, a) − Q∗(s, a)
∣∣ + ξr, it

suffices to show that

3γ

2
Vmax +

((1 + crγ)

1− crγ
γ + 1

)
ξr ≤

1

2
√
|S]||A]|

σr.

Since γ ≤ 1
2cr
≤ 1, the above inequality is satisfied if the following inequality is true:

3

4cr

(
Vmax + 2ξr

)
+ ξr ≤

σr

2
√
|S]||A]|

(3.19)

We observe that σr > 0 by definition of r-anchor states/actions, cf. Definition 2. Also,
recall from (3.13) that

cr =

(
6
√

2

√
|S]||A]|
σr

+ 2(1 +
√

5)
(√|S]||A]|

σr

)2
)
Vmax

≥ 6

√
|S]||A]|
σr

(
1 +

√
|S]||A]|
σr

)
Vmax

> 0.

Sec. 3.6. Technical Results of the Proposed ME Method 105

Therefore, (3.19) is satisfied if

1 + 2
ξr
Vmax

≤
(

1

2

σr√
|S]||A]|

− ξr
)

8

√
|S]||A]|
σr

(
1 +

√
|S]||A]|
σr

)
.

We introduce a variable X =

√
|S]||A]|
σr

(which is always positive) to rewrite this in-
equality as

8ξrX
2 + (8ξr − 4)X − 3 + 2

ξr
Vmax

≤ 0.

It is easy to see that the above inequality is satisfied if

X− ≤ X ≤ X+

where X± =
−(4ξr−2)±

√
(4ξr−2)2+8ξr(3−2 ξr

Vmax
)

8ξr
. As X− < 0 and X > 0, we can conclude

that (3.19) is satisfied if X ≤ X+, which is equivalent to the condition 0 ≤ ξr ≤
4X+3

8X2+8X+ 2
Vmax

. By assumption, ξr ≤ 1
2X+1+ 1

Vmax

and therefore, 4X+3
ξr
≥ (4X + 3)(2X +

1 + 1
Vmax

) = 8X2 + (10 + 4
Vmax

)X + 3
Vmax

+ 3 ≥ 8X2 + 8X + 2
Vmax

. Thus, 0 ≤ ξr ≤
4X+3

8X2+8X+ 2
Vmax

is satisfied. Consequently, (3.19) is also satisfied, and the first inequality

is proved.

• To prove the second claim, We revisit (3.7), (3.8) and (3.9) in the proof of Theorem
5. Note that nothing has changed for Step 4 (interpolation) and we obtain the same
upper bound as in (3.7):

sup
(s,a)∈S×A

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ max

(s,a)∈S(t)×A(t)

∣∣Q̄(t)(s, a)−Q∗(s, a)
∣∣+ 2ζβ(t). (3.20)

For Step 3 (matrix completion), it follows from Proposition 4:

max
(s,a)∈S(t)×A(t)

∣∣Q̄(t)(s, a)−Q∗(s, a)
∣∣ ≤ cr(max

(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣+ ξr

)
+ ξr.

(3.21)
The above inequality follows from the observation that

max
(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗r(s, a)
∣∣ ≤ max

(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣+ ξr,

max
(s,a)∈S(t)×A(t)

∣∣Q̄(t)(s, a)−Q∗(s, a)
∣∣ ≤ max

(s,a)∈S(t)×A(t)

∣∣Q̄(t)(s, a)−Q∗r(s, a)
∣∣+ ξr.

Lastly, applying Lemma 10 and taking union bound over (s, a) ∈ Ω(t), we can show

106 Chapter 3. Data-efficient “Low-rank” RL

that

max
(s,a)∈Ω(t)

∣∣Q̂(t)(s, a)−Q∗(s, a)
∣∣ ≤ γ

B(t−1) +

√
2V 2

max

N (t)
log

(
2|Ω(t)|T

δ

) (3.22)

with probability at least 1− δ
T .

Combining (3.20), (3.21) and (3.22) yields that the following holds with probability at
least 1− δ

T

B(t) ≤ cr
{
γ

B(t−1) +

√
2V 2

max

N (t)
log

(
2|Ω(t)|T

δ

)+ ξr

}
+ ξr + 2ζβ(t)

= crγB
(t−1) + crγ(2crγ)t−1Vmax + (crγ + 1)ξr

≤ crγ
{(

2crγ
)t−1

Vmax + (1 + crγ)ξr

t−1∑
i=1

(
crγ
)i−1

}
+ crγ(2crγ)t−1Vmax + (crγ + 1)ξr

=
(
2crγ

)t
Vmax + (crγ + 1)ξr

t∑
i=1

(
crγ
)i−1

.

It remains to certify that for t = 0, . . . , T − 1,

B(t) ≤
(
2crγ

)t
Vmax + (1 + crγ)ξr

t∑
i=1

(
crγ
)i−1

,

First of all, Q(0)(s, a) ≡ 0 by assumption, and hence, B(0) ≤ Vmax. Thus, by the second
inequality, this condition is satisfied for all t = 1, . . . , T − 1 and the proof is complete. �

� 3.7 Empirical Evaluation

Besides theory, we empirically validate the effectiveness of our method on 5 continuous
control tasks. The detailed setup can be found in Appendix B.3. In short, we first discretize
the spaces into very fine grid and run standard value iteration to obtain a proxy of Q∗.
The proxy has a very small approximate rank in all tasks; we hence use r = 10 for our
experiments. As mentioned, we simply select r states and r actions that are far from each
other in their respective spaces as our anchor states and actions. For example, if the space
is 2-dimensional, we uniformly divide it into r squares and sample one from each square.
Because of unavoidable discretization error, we also provide results on mean error, which
might be a more reasonable measure in practice. While our proof requires small γ, we
find the method to be generally applicable with large γ in real tasks. Therefore, we use

Sec. 3.7. Empirical Evaluation 107

γ = 0.9 in all the tasks. Additional results on this aspect as well as results on all 5 tasks are
provided in Appendix B.4. Below we use the Inverted Pendulum control task to illustrate
our performance, but we note that the conclusion remains the same across tasks.

Improved Sample Complexity with ME. First, we confirm that the sample complexity
of our algorithm improves with the use of ME. Our baseline is the same algorithm described
in Section 3.3, but without the ME step (Step 3), i.e., we explore and update all (s, a) ∈
S(t) ×A(t), which is equivalent to performing a simulated value iteration on the discretized
set (a.k.a. the synchronous model for Q learning). We illustrate the sample complexity for
achieving different levels of `∞ error (Figure 3.2(a)) and mean error (Figure 3.2(b)). It is
clear from the plots that our algorithm uses significantly less samples to achieve error at
a similar level to the baseline. This evidences that exploiting structure leads to improved
efficiency. The same conclusion holds for the other tasks.

1 2 3 4 5 6 7 8 9
of Samples 1e7

2

3

4

5

6

7

Lo
ss

 (
)

Ours
Baseline VI

(a) Sample Complexity

1 2 3 4 5 6 7 8 9
of Samples 1e7

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

 (m
ea

n)

Ours
Baseline VI

(b) Sample Complexity

0 10 20 30 40
Iteration

2

3

4

5

6

7
Lo

ss
 (

) Ours
USVT
Soft-Impute
Nuclear Norm

(c) `∞ Errors

0 10 20 30 40
Iteration

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

 (m
ea

n) Ours
USVT
Soft-Impute
Nuclear Norm

(d) Mean Errors

Figure 3.2. Empirical results on the Inverted Pendulum control task. In (a) and (b), we show the improved
sample complexity for achieving different levels of `∞ error and mean error, respectively. In (c) and (d), we
compare the `∞ error and the mean error for various ME methods. Results are averaged across 5 runs for
each method.

Error Guarantees. Next, we compare our ME method with other popular ME methods
to validate its performance. While theoretically insufficient for RL applications, some estab-
lished ME methods [31, 34, 118] work well in practice. We compare the methods by feeding
the same number of samples of size O(max{S(t),A(t)}). As in Figures 3.2(c) and 3.2(d), our
method displays a competitive performance, both in `∞ and mean errors. Also, we note that
our simple, but powerful method is computationally much more efficient, compared to other
methods based on optimization, etc. It can be 40× faster than nuclear norm minimization,
cf. Table B.1 in Appendix B.4.2. Overall, these results emphasize the practical value of our
method beyond its theoretical soundness. Lastly, we remark that other ME methods also
show promise in our experiments; it is certainly a valuable open question to harmonize the
established ME methods with low-rank RL.

Resulting Policy. As a final proof of concept, in Figure 3.3, we observe that the even-
tual performance of the policy obtained from the output Q(T) is very close to the policy
obtained from Q∗. We further summarize the results for standard performance metrics used

108 Chapter 3. Data-efficient “Low-rank” RL

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Optimal Policy

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Soft-Impute

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) Nuclear Norm

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) Ours

Figure 3.3. Policy visualization of different methods on the Inverted Pendulum control task. The
policy is obtained from the output Q(T) by taking arg maxa∈AQ(T)(s, a) at each state s.

in Table 3.3. For example, the performance metric for Inverted Pendulum is the angular
deviation from the target position. Obviously, our efficient method exhibits very competitive
performance.

Table 3.3. Performance metric for different stochastic control tasks using different ME methods. A.D.
stands for angular deviation, T.G. stands for time-to-goal; for both metrics, the smaller the better.

Method Optimal USVT [34] Soft-Impute [118] Nuclear Norm [31] Ours

Inverted Pendulum (A.D.) 1.6 ± .0 22.5 ± 2.5 5.3 ± .6 3.1 ± .3 3.4 ± .7

Mountain Car (T.G.) 75.0 ± .3 358.8 ± 5.0 168.4 ± 8.1 92.4 ± 2.8 91.8 ± 7.2

Double Integrator (T.G.) 199.5 ± .1 200.0 ± .4 199.9 ± .3 199.6 ± .2 199.7 ± .4

Cart-Pole (A.D.) 10.1 ± .0 19.2 ± 1.0 10.4 ± .1 10.2 ± .1 10.2 ± .2

Acrobot (A.D.) 2.4 ± .0 28.8 ± 4.3 9.1 ± 1.2 5.1 ± .8 6.2 ± 1.0

� 3.8 Discussion on Matrix Estimation

Before closing this chapter, we provide discussions on aspects of our ME method to facilitate
a more comprehensive understanding. Recall that for the success of our analysis, it is
imperative for the matrix estimation subroutine to satisfy Assumption 2. The assumption
ensures that the matrix estimation method in use does not amplify the `∞ error too wildly.

Why Existing Methods Fail. As reviewed in Related Work, despite the huge success
of low-rank matrix estimation, currently available analysis for the existing methods only
provides a handle on the estimation error in a few limited class of norms, with no satisfactory
recovery guarantees so far on the `∞ error. As a result, we were not able to directly “plug
in” existing ME methods and their analysis. We do not believe this is an algorithmic failure
of the ME methods, but it is rather a limitation stemming from the disparity between the
traditional analysis in ME and the needs in RL application. For example, considering the
error in Frobenius norm is natural in the ME tradition for several reasons, but that analysis
is not sufficient for applications where entrywise error is more important. Moreover, it

Sec. 3.8. Discussion on Matrix Estimation 109

seems manageable, but is not straightforward at once how the mathematical conditions for
matrix recovery in ME literature will translate in the context of RL. For example, the finite-
dimensional incoherence condition between the principal subspaces and the measurements
in ME could translate to a similar infinite-dimensional version of incoherence condition,
but some efforts would be needed to reforge existing ME analysis to fit in RL applications
seamlessly.

Why Our ME Method Works. Instead, we develop an alternative ME subroutine,
which is simple, yet sufficiently powerful for our RL task, thereby enabling us to achieve the
ultimate conclusion of improved sample complexity. The proposed method is amenable to
`∞-error analysis facilitated by matrix algebra. At first glance, our proposal seems extremely
simple, and one might doubt its efficacy, e.g., worrying about its numerical stability because
it involves the pseudoinverse of a matrix. That concern is partly true, but indeed, there are
two key factors that make our method work for the problem of our interest.

First, we assume the existence of “anchor” states and actions, which contain all necessary
information for the global recovery of Q∗. From a theoretical point of view, this assumption
is related to the eigen-gap condition and the incoherence condition between eigenspace and
the sampling operator, which are commonly assumed in existing ME literature. From a
practical perspective, this means the existence of faithful representatives that reflect the
“diversity” of states and actions, which is the case in many real-world applications. Second,
crucially, we are not only passively fed with data, but can actively decide which data to
collect. Note that our algorithm requires full measurement for the two cylinders (rectangles
when represented as a matrix) corresponding to the anchor states and anchor actions without
any missing values in them. This is feasible by adaptive sampling, which is not achievable
by random sampling. As a byproduct, active sampling allows us to get rid of the spurious
log term that appears in sample complexity of existing ME methods as a result of random
sampling.

All in all, our ME method is expected to perform reasonably well in the setup considered
in this work. We have confirmed this is the case with extensive experiments in Section 3.7.

Open Questions for Future Work. Our empirical results evidence that the proposed ME
method is successful in the extremely sample deficient-setting where |Ω(t)| � max{|S(t)|, |A(t)|}.
However, it seems that other existing ME methods based on convex programs also work sim-
ilarly well, which cannot be explained with the current analysis. As a matter of fact, when
the computation cost is ignored, convex-relaxation-based approach is widely accepted as the
best one in terms of robustness. This is glimpsed by the evolution of `∞ error in our exper-
iments; unlike the fluctuations observed in our method and soft-impute, the error steadily
decreases for the nuclear norm minimization. Also, the existing ME methods might perform
better as |Ω(t)| becomes larger, which is often what traditional ME analysis considers.

110 Chapter 3. Data-efficient “Low-rank” RL

Therefore, how to harmonize existing ME methods and the low-rank RL task we consider
in this chapter would be an exciting open question. This question might be tackled either by
devising new proof techniques to obtain stronger error guarantees for existing ME methods
or by improving our decoupled error analysis for RL developed in this chapter. We believe
both directions are promising and it would be a valuable contribution to make progress in
either one.

� 3.9 Chapter Summary

This chapter is motivated by the soaring demand for data-efficient learning algorithms as
reinforcement learning becomes increasingly popular in practice. Through the novel lens
of low-rank representation of Q-function, this work proposes a theoretical framework to
devise efficient RL algorithms. The resulting “low-rank” algorithm, which utilizes a novel
matrix estimation method, offers both strong theoretical guarantees and appealing empirical
performance.

We remark that there remain several interesting open questions. First of all, we believe it
is possible to refine the error analysis in this work to achieve a stronger theoretical guarantee.
For example, the condition γ < 1

2cme
for convergence in Theorem 5 is probably an artifact

of our decoupled analysis and is possibly removable. Perhaps, devising better ME methods
for the purpose of RL can be a solution to lift the restriction on the range of γ, which
is an interesting problem on its own. Another open question is on identifying sufficient
conditions for MDPs that indeed lead to a low-rank Q∗. For example, what properties on
the transition kernel and reward function might result in the low-rank structure. Also, we
conjecture that our “sample and pseudo-explore (via ME)” scheme is more broadly applicable
beyond the generative setup considered in this work, e.g., to the setup where one has to follow
some policies to explore sequentially and collect trajectories. The most prominent challenge
anticipated is that we are no longer able to sample “any” state-action pair completely freely
and adaptively; the sampling needs to respect the exploration policy. This difficulty may
be overcome with a more refined ME method, with ad-hoc techniques. More broadly, the
main insight we develop in this chapter remains valid and applicable to various problems
in machine learning beyond RL, which involves learning a bivariate function possessing a
low-rank structure. Overall, we believe this chapter can serve as a starting point for fruitful
future research along those promising directions.

Chapter 4

Stability in Unbounded State Space

We continue our journey on designing data-efficient reinforcement learning algorithms, but
focusing on unbounded domains in this chapter. In particular, we consider the problem of RL
with unbounded state space motivated by the classical problem of scheduling in a queueing
network. As previewed in the Introduction (Section 1.2.3), unlike the bounded domains
studied in Chapters 2 and 3, there are unique conceptual challenges in this case which must
be addressed first in order to design any meaningful learning methods. Recall that traditional
policies as well as error metric that are designed for finite, bounded or compact state space,
would require infinite samples for providing any meaningful performance guarantee (e.g. `∞
error) for unbounded state space. Approaches that rely on offline training only are bound
to fail as system will reach a state that is not observed in and possibly far from the finitely
many samples during offline training and hence, there is no meaningful guidance from the
policy. As such, to learn a reasonable policy with an unbounded state space, we ought
to consider online policy. Furthermore, in analyzing or quantifying “goodness” of such a
policy, since the state space is unbounded, expecting a uniformly good approximation of the
optimal value function over the entire state space is not a meaningful measure. That is, we
need a new notion of performance metric.

As the main contribution of this chapter, inspired by the literature in queueing systems
and control theory, we propose stability as the notion of “goodness”: the state dynamics
under the policy should remain in a bounded region with high probability. We consider
systems that have such a stability structure: the system dynamics under the optimal policy
is stable and hence respects a Lyapunov function. As a proof of concept, we propose a simple
online RL policy using Sparse-Sampling-based Monte Carlo oracle and argue that it satisfies
the stability property. We note that the structural assumption of existence of a Lyapunov
function is not restrictive as it is equivalent to the positive recurrence or stability property
of any Markov chain, i.e., if there is any policy that can stabilize the system then it must
possess a Lyapunov function. And importantly, our policy does not utilize the knowledge of
the specific Lyapunov function.

While stable, the naive policy is sample-inefficient in regimes of interest. Recall that

111

112 Chapter 4. Stability in Unbounded State Space

earlier in the chapter summary of Chapter 2 (Section 2.10), we mentioned data reuse as
an important practical “trick” for achieving better performance. To make our method sam-
ple efficient, we provide an improved, sample efficient Sparse-Sampling-based Monte Carlo
oracle with Lipschitz value function that may be of interest in its own right. The oracle
utilizes a minimal structure in the value function, the Lipschitz smoothness, to replace newly
encountered state during Monte Carlo simulation by its closest state in a pre-fixed subset
of states. As such, the transition data for the fixed subset of states may be used multiple
times during the simulations.

Furthermore, while the above RL policy does not require knowing the Lyapunov function
itself, it does have a parameter whose optimal value depends on the unknown drift parameter
of the Lyapunov function. To address this issue, we design an adaptive version of the
algorithm, based on carefully constructed statistical tests, which discovers the correct tuning
parameter automatically. Finally, since this chapter is primarily motivated by the classical
problem of queueing networks, we remark that in the context of a queueing network, the
performance guarantee of stability for general RL algorithm would imply the so-called “rate
stability” of the queueing network. We will elaborate with examples in the coming sections.

Organization of Chapter 4. Chapter 4 is structured as follows. Section 4.1 starts with a
short literature review comparing RL safety and stability. Section 4.2 then introduces the
framework and formally defines the notion of stability considered in this chapter. We will
also provide queueing examples to understand the conditions involved. In Section 4.3, we de-
scribe three online algorithms and state their stability guarantees: (1) Section 4.3.1 presents
a simple stable policy utilizing a Sparse Sampling Monte Carlo oracle; (2) Section 4.3.2
improves its data efficiency by exploiting the Lipschitz structure; (3) Section 4.3.3 further
proposes an adaptive algorithm for tuning the parameter, and this completes our study on
stability. We also discuss the implication of our results in the context of the queueing ex-
amples. The proofs of our main theorems are provided in Sections 4.4–4.6. We conclude in
Section 4.7 with discussions of future directions.

� 4.1 Related Work

The concept of stability introduced in this chapter is related to the notion of safety in RL,
but with crucial differences. Various definitions of safety exist in the literature [130, 63].
One line of work defines safety as hard constraints on individual states and/or actions [62,
73, 48, 50, 96]. Some other work considers safety guarantee in terms of keeping the expected
sum of certain costs over a trajectory below a given threshold [2, 40, 182]. In our work,
stability is defined in a way akin to the positive recurrence of Markov chains, which cannot
be immediately written as constraints/costs over the states and actions. In particular, our

Sec. 4.1. Related Work 113

Table 4.1. Comparison with selected prior work on RL safety and stability.

Settings/Conditions Guarantees

Ours Unbounded space; Unknown dynamics; Existence of unknown Lyapunov function Stochastic stability
[50] Linear dynamics; Unknown parameters; Quadratic cost (LQR) Constraints on state & action
[165] Finite space; Deterministic, known dynamics; Gaussian safety function Constraints on state & action
[182] Unknown dynamics; Compact parametrized policy class Expected constraint costs (CMDP)
[168] Gaussian process dynamics; Unknown parameters Control-theoretic stability
[20] Compact space; Deterministic, partially known dynamics; Access to Lyapunov func. Control-theoretic stability

stability notion captures long-term behavior of the system — it should eventually stay in
a desirable region of the state space with high probability. In general, there does not exist
an action that immediately drives the system back to that region; learning a policy that
achieves so in the long run is non-trivial and is precisely our goal. Overall, we believe this
notion of stability provides a generic, formal framework for studying RL with unbounded
state space.

Many work on RL safety is model-based, either requiring a prior known safe backup
policy [62, 73], or using model predictive control approaches [169, 135, 11, 96]. One line of
work focuses specifically on systems with a linear model with constraints (e.g., LQR) [36,
50]. Some other work considers model-free policy search algorithms [2, 40, 182], under the
framework of constrained Markov Decision Process (CMDP) [7], which models safety as
expected cumulative constraint costs.

Another line of work considers control-theoretic notions of stability [19, 168, 20], which
bear similarity to our framework. We remark that these results mostly focus on systems
with deterministic and partially unknown dynamics, different from our setting where the
dynamics are stochastic and unknown. Their approaches are limited to compact state spaces
where discretization is feasible.

Our analysis makes use of Lyapunov function, which is a classical tool in control and
Markov chain theory for studying stability and steady-state behaviors [152, 65, 57]. The
work by [131] is among the first to use Lyapunov functions in RL and studies closed-loop
stability of an agent. More recent work uses Lyapunov functions to establish the finite-time
error bounds of TD-learning [151], to solve constrained MDPs [40] and to find region of
attraction for deterministic systems [20, 19].

Our RL algorithm fits broadly into value-based methods [175, 157, 122, 167, 180, 143].
In terms of queueing networks, approximate dynamic programming techniques and RL have
been applied in prior work [99, 134, 123], though their settings and goals are quite differ-
ent from us, and their approaches exploit prior knowledge of queueing theory and specific
structures of the problems. Most related to us is the recent work [111], which also considers
problems with unbounded state space. Their algorithm, however, makes use of a known

114 Chapter 4. Stability in Unbounded State Space

stabilizing policy. We do not assume knowledge of such a policy; rather, our goal is to learn
one from data.

� 4.2 Setup and Notion of Stability

In this section, we formally describe the setup and problem statement. We first state the
class of MDPs studied in this chapter in Section 4.2.1. Then, we introduce our notion of
stability in Section 4.2.2 and provide some related discussions.

� 4.2.1 Markov Decision Process and Online Policy
Markov Decision Process (MDP). As in Chapters 2 and 3, we consider the usual setup
of discounted Markov Decision Process (MDP) defined by the tuple (S,A,P,R, γ). For
simplicity, we consider a deterministic reward function and use the notation R(s, a) as in
Chapter 3. At time t, the action at is chosen as per some policy πt ≡ [πt(a|s), a ∈ A, s ∈ S],

where πt(a|s) represents the probability of taking action at = a given state st = s. If πt = π

for all t, then it is called a stationary policy. Recall the definitions of value function and
Q-function in Section 1.1. As we consider unbounded state space in this chapter, in addition
to the generic setup, we focus on MDPs satisfying the following condition.

Condition 1. Action space A is finite, and state space S ⊆ Rd is unbounded with some
d ≥ 1.

We assume that the reward functionR is bounded and takes value in [0, Rmax]. Consequently,
for any policy, V and Q functions are bounded and take value in [0, Vmax], where Vmax ,

Rmax/(1−γ). Breaking ties randomly, we shall restrict to optimal policy π∗ of the following
form: for each s ∈ S,

π∗(a|s) =

 1
|A∗(s)| if a ∈ A∗(s),
0 otherwise,

where A∗(s) = arg maxa∈AQ
∗(s, a). Define ∆min(s) = maxa∈AQ

∗(s, a) − maxa∈A\A∗(s)

Q∗(s, a), i.e., it is the gap between Q∗ and the value of the second optimal action for state
s. For a given state s ∈ S, if not all actions are optimal, then ∆min(s) > 0. Denote
the minimum gap by ∆min , infs∈S ∆min(s). Throughout the chapter, we assume that
∆min > 0. Finally, like Chapters 2 and 3, we assume the access to a generative model so
that simulation of the underlying system is possible at each step.

System Dynamics and Online Policy. As discussed, our interest in this chapter is
in designing an online policy starting with no prior information. Precisely, the system

Sec. 4.2. Setup and Notion of Stability 115

starts with arbitrary initial state s0 ∈ S and initial policy π0. At time t ≥ 0, given state
st ∈ S, action at ∈ A is chosen with probability πt(at|st) which leads to state st+1 ∈ S
with probability P(st+1|st, at). At each time t, policy πt is decided using potentially a
finite number of simulation steps from the underlying MDP, in addition to the historical
information observed till time t. In this sense, the policy is online.

� 4.2.2 Stability
We desire our online policy to have a stability property, formally defined as follows.

Definition 3 (Stability). We call policy {πt, t ≥ 0} stable if for any θ ∈ (0, 1), there exists
a bounded set S(θ) ⊂ S such that the following are satisfied:

1. Boundedness:
lim sup
t→∞

P
(
st /∈ S(θ) | s0 = s

)
≤ θ, ∀ s ∈ S. (4.1)

2. Recurrence: Let T (s, t, θ) = inf{k ≥ 0 : st+k ∈ S(θ) | st = s}.1 Then,

sup
t≥0

E
[
T (s, t, θ)|st = s

]
<∞, ∀ s ∈ S. (4.2)

In words, we desire that starting with no prior information, the policy learns as it goes
and manages to retain the state in a finite, bounded set with high probability. It is worth
remarking that the above stability property is similar to the recurrence property for Markov
chains.

Problem Statement. With the definition of stability, our formal goal is hence to design
an online stable policy for a given, discounted MDP.

MDPs Respecting Lyapunov Function. As we search for a stable policy for MDP, if
the optimal stationary policy for MDP is stable, then the resulting system dynamics under
the optimal policy is a time homogeneous Markov chain that is positive recurrent. The
property of positive recurrence is known to be equivalent to the existence of the so-called
Lyapunov function; see [120]. In particular, if there exists a policy for the MDP under which
the resulting Markov chain is positive recurrent, then this policy has a Lyapunov function.
These observations motivate us to restrict attention to MDPs with the following property.

Condition 2. The Markov chain over S induced by MDP operating under the optimal
policy π∗ respects a Lyapunov function L : S → R+ such that lim inf‖s‖→∞ L(s) = ∞,
sup

{
‖s‖ : L(s) ≤ `

}
< ∞ for all finite `, and such that for some ν, ν ′, B, α > 0, for any

t ≥ 0:
1inf of empty set is defined as ∞.

116 Chapter 4. Stability in Unbounded State Space

1. (Bounded Increment) For every st ∈ S and every a ∈ A,

|L(st+1)− L(st)| ≤ ν, ‖st+1 − st‖ ≤ ν ′, (4.3)

for all possible next states st+1 with P(st+1|st, a) > 0.2

2. (Drift Condition) For every s ∈ S such that L(s) > B,

E
[
L(st+1)− L(st)|st = s

]
≤ −α. (4.4)

As explained above, the requirement of MDP respecting Lyapunov function under the
optimal policy is not restrictive. Recent work by [47] also considers a similar Lyapunov
condition for analyzing the proximal policy optimization algorithm [141]. We further note
that our policy does not require precise knowledge of such a Lyapunov function.

Queueing Examples. Since we have been using queueing systems to motivate our inves-
tigation on unbounded state space, it would be informative to discuss examples that indeed
satisfy the conditions from a queueing perspective instead of abstract properties of MDPs.
We provide two simple examples below:

1. The first example is a discrete-time single-queue single-server system. Jobs arrive
according to a stationary process with rate λ. At each time t, the server can decide
to serve or not serve. If it is serving a job, the probability that this job is completed
at the end of the time step is µ. The system state can be represented by the queue
length, which can be unbounded. Let the reward at each time be the negative change
of the queue length. With bounded arrivals at each time step, the reward is bounded.
It is clear that regardless of the discount factor γ, the optimal policy is to always
serve a job when the queue is non-empty (it is optimal for average reward as well).
When λ/µ < 1, it is well known that the policy is stable from a queueing system
perspective (also known as throughput optimal), i.e., the MDP under the policy is
positive recurrent, which implies that the system satisfies Condition 2.

2. The above toy example extends to the multi-queue single-server setting, with arrival
rate λk for queue k ∈ [K], and service distribution Bernoulli(µk) for jobs from queue
k. At each time step, the scheduling decision for the server is which queue to serve.
Let the reward at each time be the weighted sum of the negative change of each queue,
with weight ck for queue k. The classical cµ rule that assigns the server to queue i if
ciµi = maxk∈[K]{ckµk|qk(t) > 0} is optimal, for both discounted reward and average

2P(·|st, a) should be understood as the density of the conditional distribution of the next state with
respect to the Lebesgue measure (for continuous state space) or the counting measure (for discrete state
space).

Sec. 4.3. Online Stable Policy 117

reward settings, when the service discipline is preemptive [28]. It is well known that
cµ rule is stable, whenever the arrival rates {λk}k∈[K] satisfy

∑
k∈[K] λk/µk < 1. In

particular, it can be verified that for the cµ rule, L(q) =
∑

k∈[K]
qk
µk

serves as a Lyapunov
function satisfying Condition 2.

While simple, these examples demonstrate how queueing systems can be naturally con-
nected to our MDP framework. For more sophisticated queueing systems, we note that the
optimal queueing policy is often unknown and there has been decades of research in the
queueing community focusing on designing policies that stabilize the system. Since these
potentially sub-optimal policies are stable, it is reasonable to expect that the optimal policy
ought to be stable and hence satisfies Condition 2. After we present the main technical
results for our framework, in Sections 4.3.3 and 4.3.4 , we shall re-visit the queueing setting
to understand the implication of our framework when specialized to the context of queueing
systems.

Why Stability Matters. It should be clear now that stability is a much desired prop-
erty. In many applications, it is convenient to think of maximizing reward equivalently as
minimizing cost. For settings with unbounded state space, states in a small bounded region
are usually associated with low cost. Intuitively, stability implies achieving a bounded cost;
the classical queueing systems above provide such example applications. An unstable policy
leads to unbounded queue lengths: jobs accumulate and experience extremely long or even
unbounded delay. For such applications, stability provides a reasonable notion of first-order
optimality for cost minimization and hence, achieving stability is a highly desirable first goal
— just like rate stability in queueing systems. Indeed, the next set of goals would be further
refined notions of optimality just as the way diffusion or heavy traffic approximations in the
queueing systems have played a role.

� 4.3 Online Stable Policy

We present our main results in this section. First, we describe a stationary, online policy
that is stable under Conditions 1 and 2. This policy is simple and provides key intuition
behind our approach, though being sample inefficient. Next, we present an efficient version
thereof that utilizes the minimal structure of Lipschitz optimal value function (cf. Condi-
tion 3). Finally, we design an adaptive version of our algorithm that automatically discovers
the appropriate tuning parameter without knowing the value of the drift parameter of the
Lyapunov function.

118 Chapter 4. Stability in Unbounded State Space

� 4.3.1 Sample Inefficient Stable Policy
Overview of Policy. At each time t ≥ 0, given the state st ∈ S, an action at ∈ A is
chosen by sampling from a distribution over A. The distribution is determined by an online
planning algorithm that uses finitely many simulations of MDP performed at time t and
depends only on the input state st. Therefore, the policy is stationary. Precisely, using
Monte Carlo oracle with Sparse Sampling for parameters C,H > 0 (details below, adapted
from [88]), we produce Q̂(st, a) as an estimate of Q∗(st, a), for each action a ∈ A. We use
Boltzman distribution with parameter τ > 0 for sampling action at:

π̂(a|st) =
eQ̂(st,a)/τ∑
a′ e

Q̂(st,a′)/τ
, ∀ a ∈ A.

Sparse Sampling Monte Carlo Oracle. We describe the Monte Carlo oracle based
on sparse sampling [88]. Given an input state s ∈ S with two integer valued parameters,
C,H > 0, and an estimate of value function V̂ , it produces an estimate of Q∗(s, a) for all
a ∈ A. The error in the estimate depends on C,H and error in value function V̂ . With
larger values of C and H, the estimation error decreases but the number of simulations of
MDP required increases. Next we provide details of the algorithm.

Sparse sampling oracle constructs a tree of depth H representing a partial H-step look-
ahead of MDP, starting with the input state s0 = s as its root. The tree is constructed
iteratively as follows: at any state (node) s′ in the tree (initially, root node s0), for each
action a ∈ A, sample C times the next state of MDP for the state-action pair (s′, a). Each
of the resulting next states, C for each a ∈ A, are placed as children nodes, with the edge
between s′ and the child node labeled by the generated reward. The process is repeated for
all nodes of each level until reaching a depth of H. That is, it builds an |A|C-array tree of
depth H representing a partial H-step look-ahead tree starting from the queried state s0,
and hence the term sparse sampling oracle. Figure 4.1 provides a graphical illustration of
the above process.

To obtain an estimate for the Q-values associated with (s0, a), a ∈ A, we start by
assigning value 0 to each leaf node sleaf at depth H, i.e., V̂ (H)(sleaf) = 0. These values,
together with the associated rewards on the edges, are then backed-up to find estimates of
Q-values for their parents, i.e., nodes at depth H − 1. The estimate for the Q-value of a
parent node s and an action a is just a simple average over a’s children, i.e., Q̂(H−1)(s, a) =

R(s, a) + γ 1
C

∑
s′∈Snext(s,a,C) V̂

(H)(s′), where R(s, a) is the reward on the edge of action a,
and Snext(s, a, C) is the set of a’s children nodes. The estimate for the value of state s is
given by V̂ (H−1)(s) = maxa Q̂

(H−1)(s, a). The process is recursively applied from the leaves
up to the root level to find estimates of Q̂(0)(s0, a) for the root node s0.

Sec. 4.3. Online Stable Policy 119

…

Depth

Root State

r(H)

s(H) = s(H−1) ∘ a(H)
V (l)(s(H))

…
a1action

C children
a2action

C children

… …
… …

a1action
C children

a2 a2 a2 a2a1 a1 a1

… …

a1 a2

… …

…

H

Figure 4.1. Illustration of the Monte Carlo oracle with Sparse Sampling. The figure is adapted from [88].

Lemma 12 (Oracle Guarantee). Given input state s ∈ S and δ > 0, under the Sparse
Sampling Monte Carlo Oracle, we have

max
a∈A
|Q∗(s, a)− Q̂(0)(s, a)| ≤ 2Vmaxδ, (4.5)

with probability at least 1− δ, with choice of parameters

H = dlogγ(δ)e, C =
2γ2

δ2(1− γ)2

(
2H log

2γ2|A|H
δ2(1− γ)2

+ log
2

δ

)
. (4.6)

The number of simulation steps of MDP utilized is O
(
(|A|C)H

)
, which as a function of δ

scales as O
((

1
δ2 log2 1

δ

)O(log 1
δ

)
)
.

We shall omit the proof of Lemma 12 as it follows directly from results in [88]. Further,
we provide proof of Lemma 13 which establishes similar guarantees for a modified sample-
efficient Sparse Sampling Monte Carlo oracle. Finally, we remark that in principle, other
Monte Carlo oracle, such as MCTS as introduced in Chapter 2 can be similarly applied here.
Indeed, the sparse sampling oracle can be viewed as a simplified MCTS where each action
is just uniformly tried C times to build the simulation tree. We choose sparse sampling
to convey the intuition because of its algorithmic simplicity and its cleaner dependence on
parameters.

Stability Guarantees. We state the result establishing stability of the stationary policy
described above under appropriate choice of parameters δ, τ, C and H > 0. The proof is
provided in Section 4.4.

Theorem 9. Suppose that the MDP of interest satisfies Conditions 1 and 2. Then, with

120 Chapter 4. Stability in Unbounded State Space

δ = τ2, τ as

τ ≤ τ(α) , min

{√
α

24ν
,

1− γ
8Rmax

,
(1− γ)α

48Rmax|A|2ν
,

∆min

ln
(

24ν|A|
α

)}, (4.7)

and C,H > 0 chosen as per Lemma 12 for a given δ, the resulting stationary policy is stable.

� 4.3.2 Sample Efficient Stable Policy
Theorem 9 suggests that, as a function of α, δ(= τ2) scales as min(α, α2). Indeed, as α
becomes larger, i.e., the negative drift for Lyapunov function under optimal policy increases,
system starts living in a smaller region with a higher likelihood. The challenging regime is
when α is small, formally α→ 0. Back to our queueing examples, this corresponds to what
is known as Heavy Traffic regime in queueing systems. Analyzing complex queueing systems
in this regime allows understanding of fundamental “performance bottlenecks” within the
system and subsequently understanding the properties of desired optimal policy. Indeed,
a great deal of progress has been made over more than past four decades now; see for
example [74, 72, 103]. Back to the setting of MDP with α → 0: based on Theorem 9, the
number of samples required per time step for the policy described in Section 4.3.1 scales as
O
((

1
α4 log2 1

α

)O(log 1
α

)
)
. That is, the sample complexity of the policy is super-polynomial in

1/α.

Minimal Structural Assumption. In what follows, we describe a stable policy with the
number of samples required scaling polynomially in 1/α, precisely Õ(1/α2d+4) where d is
the dimension of the state space S. This efficiency is achieved due to minimal structure
in the optimal value function in terms of Condition 3, which effectively states that the
value function is Lipschitz. Specifically, we provide an efficient Sparse Sampling Monte
Carlo oracle exploiting the Bounded Increment property (4.3) in Condition 2 along with
Lipschitzness of optimal value function as described in Condition 3. We remark that as in
Chapters 2 and 3, for learning with continuous state/action space, smoothness assumption
such as the Lipschitz continuity is natural and standard [9, 143, 55, 125].

Condition 3. Let S = Rd. The optimal value function V ∗ : S → R is a Lipschitz continuous
function. Precisely, there exists constant ζ > 0 such that for any s, s′ ∈ S,

∣∣V ∗(s)− V ∗(s′)∣∣ ≤ ζ‖s− s′‖.
Overview of Policy. The policy is exactly the same as that described in Section 4.3.1, but
with a single difference: instead of using the vanilla Sparse Sampling Monte Carlo oracle,
we replace it with an efficient version that exploits Condition 3 as described next.

Sec. 4.3. Online Stable Policy 121

Efficient Sparse Sampling Monte Carlo Oracle. We describe a modification of the
Monte Carlo oracle based on sparse sampling described earlier. As before, our interest is
in obtaining an approximate estimate of Q∗(s, a) for a given s ∈ S and any a ∈ A with
minimal number of samples of the underlying MDP. To that end, we shall utilize property
(4.3) of Condition 2 and Condition 3 to propose a modification of the method described in
Section 4.3.1. For a given parameter ε > 0, define

Sε ,
{

(k1ε, . . . , kdε) : k1, . . . , kd ∈ Z
}
.

For any s ∈ S = Rd, there ∃ s̃ ∈ Sε so that ‖s− s̃‖∞ ≤ ε or ‖s− s̃‖ ≤
√
d‖s− s̃‖∞ ≤ ε

√
d.

Define Sε : S → Sε that maps s ∈ S to its closest element in Sε: i.e. Sε(s) ∈ arg min
{
‖s−s̃‖ :

s̃ ∈ Sε
}
.

For a given s ∈ S, we shall obtain a good estimate of Q∗(s, a) effectively using method
described in Section 4.3.1. We start with s as the root node. For each state-action pair
(s, a), a ∈ A, we sample next state of MDP C times leading to states Snext(s, a, C) ⊂ S. In
contrast to the method described in Section 4.3.1, we use states {Sε(s′) : s′ ∈ Snext(s, a, C)}
in place of Snext(s, a, C). These form states (or nodes) as part of the sampling tree at level
1. For each state, say s̃ at level 1, for each a ∈ A, we sample C next states of MDP, and
replace them by their closest elements in Sε to obtain states or nodes at level 2; we repeat
till H levels. Note that all states on level 1 to H are from Sε. To improve sample efficiency,
during the construction, if a state s̃ has been visited before, we use previously sampled next
states Snext(s̃, a, C) for each action a ∈ A, instead of obtaining new samples.

To obtain an estimate Q̂(0)(s, a) for the Q-value associated with the root state s and
any action a ∈ A, we start by assigning the value 0 to each leaf node sleaf at depth H, i.e.,
V̂ (H)(sleaf) = 0. These values, together with the associated rewards on the edges, are then
backed-up to find estimates for Q-values of their parents at depth H−1, and this is repeated
till we reach the root node, s. Precisely, for 1 ≤ h ≤ H and node s̃ at level h− 1,

Q̂(h−1)(s̃, a) = R(s̃, a) + γ
1

C

∑
s′∈Snext(s̃,a,C)

V̂ (h)
(
Sε(s

′)
)
, V̂ (h−1)(s̃) = max

a
Q̂(h−1)(s̃, a).

(4.8)

The method outputs Q̂(0)(s, a) as an estimate of Q∗(s, a) for all a ∈ A.

Stability Guarantees with Improved Sample Complexity. In Lemma 13, we summa-
rize the estimation error as well as the number of samples utilized by this modified Sparse
Sampling Monte Carlo oracle. The proof is provided in Section 4.5.

Lemma 13 (Modified Oracle Guarantee). Given input state s ∈ S, δ > 0, under the

122 Chapter 4. Stability in Unbounded State Space

modified Sparse Sampling Monte Carlo oracle, we have

max
a∈A

∣∣Q∗(s, a)− Q̂(0)(s, a)
∣∣ ≤ 2Vmaxδ,

with probability at least 1− δ, with choice of parameters H = dlogγ(δ)e, ε = δVmax(1−γ)

2ζγ
√
d

, and

C = Ω

(
γ2

(1− γ)2δ2

(
log

2|A|
δ

+ d logH + d log
1

ε

))
= Ω

(
1

δ2
log

1

δ

)
.

The number of simulation steps of MDP utilized, as a function of δ scales as O
(

1
δ2+d log1+d 1

δ

)
.

Next, we state the result establishing stability of the stationary policy described above
under appropriate choice of parameters δ, τ, C and H > 0.

Theorem 10. Let the MDP of interest satisfy Conditions 1, 2 and 3. Then, with δ = τ2, τ
as

τ ≤ τ(α) , min

{√
α

24ν
,

1− γ
8Rmax

,
(1− γ)α

48Rmax|A|2ν
,

∆min

ln
(

24ν|A|
α

)}, (4.9)

and C,H > 0 chosen as per Lemma 13 for given δ > 0, the resulting stationary policy is
stable.

As discussed earlier, as α→ 0, with above choice δ = Θ(α2), the number of samples required
per time step scales as O

(
1

α2d+4 logd+1 1
α

)
. That is, the sample complexity per time step is

improved to be polynomial in the Lyapunov drift parameter α, rather than super-polynomial
as required in Theorem 9. We remark that as the modification replaces states by their closet
elements in Sε (and hence, all states in the simulation tree are in Sε), the above result on
sample complexity provably demonstrates that appropriate data reuse can be beneficial in
the algorithmic designs of data efficient learning methods.

� 4.3.3 Discovering Appropriate Policy Parameter
The sample inefficient policy described in Section 4.3.1 or the sample efficient policy de-
scribed in Section 4.3.2 are stable only if the parameter δ (or equivalently τ , since δ = τ2 in
Theorem 9 or 10) is chosen to be small enough. However, what is small enough value for δ
is not clear a priori without knowledge of the system parameters as stated in (4.7) or (4.9).
In principle, we can continue reducing δ; however, the sample complexity required per unit
time increases with reduction in δ. Therefore, it is essential to ensure that the reduction is
eventually terminated. Below we describe such a method, based on a hypothesis test using
the boundedness property of stability established in the proofs of Theorems 9 and 10.

Sec. 4.3. Online Stable Policy 123

A Statistical Hypothesis Test. Towards the goal of finding an appropriate value of
δ, i.e., small enough but not too small, we describe a statistical hypothesis test — if δ is
small enough, then test passes with high probability. We shall utilize this test to devise an
adaptive method that finds the right value of δ as described below. We state the following
structural assumption.

Condition 4. Consider the setting of Condition 2. Let the Lyapunov function L : S → R+,
in addition, satisfy

L(s) ≥ c1‖s‖+ c2, (4.10)

for all s ∈ S with constants c1, c2 ∈ R and c1 > 0.

Let τ(α) be as defined in (4.7) and δ(α) = τ(α)2. Under the above condition, arguments used
in the proofs of Theorem 9 and 10 establish that if δ ≤ δ(α), then the following exponential
tail bound holds:

P (‖st‖ ≥ b) ≤ Ce−ηc1b, ∀ b > 0, t ≥ 1.

Note that the probability bound on the right hand side is summable over t when choosing,
say, b = log2 t. This property enables a hypothesis test, via checking ‖st‖, which is used
below to devise an adaptive method. We remark that the norm in use is not necessarily
`2 norm; it can be an arbitrary norm since all norms are equivalent in a finite-dimensional
vector space.

An Adaptive Method for Tuning δ. Using the statistical hypothesis test, we now de-
scribe an algorithm that finds δ under which the hypothesis test is satisfied with probability
exponentially close to 1, and δ is strictly positive. Initially, set δ0 = 1. At each time t, we
decide to whether adjust value of δ or not by checking whether ‖st‖ ≥ log2 t. If yes, then
we set δt+1 = δt/2; else we keep δt+1 = δt.

Stability Guarantees. The following theorem provides guarantees for the above adaptive
algorithm. The proof is provided in Section 4.6.

Theorem 11. Consider the setup of Theorem 9 (respectively Theorem 10). Let, in addition,
Condition 4 hold. Consider the system operating with choice of parameter δ = τ2 at any
time as per the above described method with policy described in Section 4.3.1 (respectively
Section 4.3.2). Then with probability 1, the system operating under such changing choice of
δ is either eventually operating with value δ ≤ δ(α) and hence stable, or

lim sup
t→∞

‖st‖
log2 t

= O(1); (4.11)

124 Chapter 4. Stability in Unbounded State Space

moreover, we have
lim inf

t→∞
δt > 0. (4.12)

The theorem guarantees that the system is either stable as the algorithm finds the
appropriate policy parameter, or near-stable in the sense that the state grows at most as
log2 t. That is, this adaptive algorithm induces at worst O(log2 t) regret since the optimal
policy will retain ‖st‖ = O(1), i.e., the algorithm is indeed a low-regret algorithm in that
respect.

More precisely, as a corollary of Theorem 11, we have the following result on the sublinear
growth rate of ‖st‖. We prove this corollary in Section 4.6.2.

Corollary 1. Consider the setup of Theorem 11. Then with probability 1, we have

lim
t→∞

‖st‖
t

= 0. (4.13)

Connecting to Rate Stability. With the proposed algorithms achieving stability for
generic MDPs, let us now re-visit queueing systems to understand the implication of our
framework and results. In the context of queueing systems, st is often the vector of queue
lengths. Corollary 1 suggests that the queue lengths grow “sub-linearly” in t, which guaran-
tees rate stability for the queueing system.

As a concrete example, consider the multi-queue single-server system introduced in Sec-
tion 4.2.2. Let Ik,t denote the cumulative number of jobs that have arrived at queue k up
to time step t. We adopt the convention that Ik,0 = 0. The stationary arrival processes
{Ik,·, k ∈ [K]} satisfy a strong law of large numbers: with probability one,

lim
t→∞

Ik,t
t

= λk, k ∈ [K]. (4.14)

Let Dk,t denote the cumulative number of departures from queue k up to time t. We also
assume that Dk,0 = 0. Note that the system state st, i.e., the queue-length vector st =

(s1,t, s2,t, . . . , sK,t), satisfies the following equations of evolution in terms of the total number
of arrivals at and departures from each queue:

sk,t = sk,0 + Ik,t −Dk,t, t ≥ 0,∀ k ∈ [K]. (4.15)

As discussed in Section 4.2.2, the system satisfies Condition 1 and Condition 2 with Lya-
punov function L(s) =

∑
k∈[K]

sk
µk

. We further remark that the Lyapunov function L also
satisfies Condition 4 with ‖ · ‖ being `1 norm. Therefore, Theorem 11 and Corollary 1 apply
to the example. By Corollary 1, we can further show that the queueing system operating
under the adaptive algorithm is rate stable, i.e., the “departure rate” of jobs is the same as

Sec. 4.3. Online Stable Policy 125

the “arrival rate” of jobs [46], as shown below.
Consider the above described queueing system operating under the adaptive method

with policy described in Section 4.3.3. Suppose that the initial state s0 is bounded almost
surely. As Corollary 1 applies, with probability 1, we have limt→∞

‖st‖
t = 0. Therefore, with

probability 1,

lim
t→∞

sk,t
t

= 0, ∀ k ∈ [K]. (4.16)

By the system state evolution equation (4.15), for each k ∈ [K], we have

lim
t→∞

Dk,t

t
= lim

t→∞

sk,0 + Ik,t − sk,t
t

= λk, a.s., (4.17)

where the second equality follows from the assumptions on the initial state s0 and the arrival
process (4.14), and (4.16).

The above result (4.17) states that the system is rate stable, which is a highly desirable
guarantee for queueing systems and can be achieved by our online and adaptive RL policy.
We remark that the rate stable result also holds for the single-queue example. Through
concrete queueing examples, we demonstrate the merit of our framework of developing stable
policies for abstract MDPs, and how it can be naturally adapted to obtain desired properties
in specific applications.

� 4.3.4 Discussion
The development of our theory has been devoted to the infinite-horizon discounted reward
setting, which is the focus of majority of the RL theory literature. This chapter hence
provides a generic framework with a broader application. When specialized to queueing
systems, however, there is a small discrepancy: performance criteria for queueing systems
such as average delay may be more suitable to be formulated as an average reward problem.
In particular, for some queueing systems, the queue lengths may grow unboundedly under
the policy that is optimal with respect to the discounted reward [25]. That is, the system
is not stable under the discounted optimal policy. This means that while being intuitive,
Condition 2 on the discounted optimal policy can be violated. The queueing examples we
have discussed in this chapter do not have this issue, as for these systems, the discounted
optimal policy is also optimal for the average reward. Addressing this discrepancy in the
context of queueing systems would require joint efforts from the RL and queueing communi-
ties: (1) from a queueing perspective, it would be desirable to characterize cases/conditions
where the discounted optimal policy coincides with the “average” optimal policy; or more

126 Chapter 4. Stability in Unbounded State Space

generally, when and how an appropriate reward design would capture the desired properties
of queueing systems while the MDP under the optimal policy is positive recurrent— the cur-
rent framework would apply seamlessly for such scenarios; (2) from a RL viewpoint, we note
that the methodology developed in this work would apply for the case of average reward,
provided that we have access to a Monte Carlo oracle that produces accurate estimation
of Q-values under the average reward setting. In other words, the current framework can
be extended to develop an online stable policy, by replacing the Monte Carlo oracle with
one that targets average reward. Advancement in such an oracle from the RL community
would naturally improve the design of stable policy for queueing systems. We believe this
work can serve as a starting point for developing principled improvement of reinforcement
learning techniques for queueing networks.

� 4.4 Proof of Theorem 9

The remaining sections are devoted to the proofs of our technical results. We start with
Theorem 9 in this section. The proof of Theorem 9 is based on three lemmas (Lemmas
14–16). We defer the proofs of these lemmas to subsections 4.4.1–4.4.3.

For any given δ > 0, we know that at each step, with probability 1− δ,

∣∣Q∗(st, a)− Q̂(st, a)
∣∣ ≤ ε , 2Rmax

1− γ δ, ∀a ∈ A, (4.18)

with appropriate choice of parameters C,H as stated in Lemma 12. The stationary policy
utilizes Boltzman transformation of Q̂. The following lemma establishes the approximation
error between the Boltzman policy and the optimal policy.

Lemma 14. Given state s ∈ S, let Q̂(s, a) be such that with probability at least 1− δ,
∣∣Q̂(s, a)−Q∗(s, a)

∣∣ ≤ ε, ∀ a ∈ A.

Consider two Boltzmann policies with temperature τ :

P̂ (s, a) =
eQ̂(s,a)/τ∑
a′ e

Q̂(s,a′)/τ
and P ∗(s, a) =

eQ
∗(s,a)/τ∑

a′ e
Q∗(s,a′)/τ

, ∀ a ∈ A.

Then, we have that

1. With probability at least 1− δ,

∥∥∥P̂ (s)− P ∗(s)
∥∥∥

TV
≤ |A|

2

2
· e

2ε/τ − 1

e2ε/τ + 1
.

Sec. 4.4. Proof of Theorem 9 127

2. With probability at least 1− δ,

∥∥∥P̂ (s)− π∗(s)
∥∥∥

TV
≤ |A|

2

2
· e

2ε/τ − 1

e2ε/τ + 1
+
(
|A| − 1

)
e−

∆min(s)

τ .

From Lemma 14, with notation ∆min ≤ ∆min(s) for any s ∈ S, we obtain that for our
stochastic policy P̂ at time t, with probability 1− δ,

∥∥∥P̂ (st)− π∗(st)
∥∥∥

TV
≤ κ , |A|

2

2
· e

2ε/τ − 1

e2ε/τ + 1
+
(
|A| − 1

)
e−

∆min
τ . (4.19)

By Condition 2, we know that the MDP dynamics under the optimal policy respects a
Lyapunov function that has bounded increment and drift properties. As per (4.19), the
Boltzman policy is a good approximation of the optimal policy at each time step with high
probability. The following lemma argues that under such an approximate policy, MDP
respects the same Lyapunov function but with a slightly modified drift condition.

Lemma 15. Consider the set up of Theorem 9. Suppose that at each time step t, a stochastic
policy π(st) (i.e., π(st) is a distribution over A) is executed such that for each t, with
probability at least 1− δ,

‖π(st)− π∗(st)‖TV ≤ κ.

Then, for every s ∈ S such that L(s) > B, we have

E[L(st+1)− L(st)|st = s] ≤ 4ν
(
(1− δ)κ+ δ

)
− α.

Now, based on Lemma 15, we note that for every s ∈ S such that L(s) > B, the following
drift inequality holds for our stochastic policy P̂ :

E[L(st+1)− L(st)|st = s] ≤ 4ν
(
(1− δ)κ+ δ

)
− α. (4.20)

We shall argue that under choice of δ = τ2 and τ as per (4.7), the right hand side of (4.20)
is less than −1

2α. To do so, it is sufficient to argue that 4ν(κ+ δ) ≤ α/2. That is, we want
to argue

4ν
(|A|2

2
·
(
1− 2

e4Rmaxδ/(τ(1−γ)) + 1

)
︸ ︷︷ ︸

(I)

+
(
|A| − 1

)
e−

∆min
τ︸ ︷︷ ︸

(II)

+ δ︸︷︷︸
(III)

)
≤ 1

2
α. (4.21)

To establish the above claim, it is sufficient to argue that each of (I), (II) and (III) is no more
than α/24ν, under the choice of τ as per (4.7) and δ = τ2. To that end, (III) is less than
α/24ν immediately since τ ≤

√
α

24ν . For (II), similar claim follows due to τ ≤ ∆min

ln
(

24ν|A|
α

) .

128 Chapter 4. Stability in Unbounded State Space

For (I), using facts that ex ≤ 1 + 2x, x ∈ (0, 1) and 1/(1 + x) > 1 − x for x ∈ (0, 1) and
4Rmaxδ/(τ(1− γ)) = 4Rmaxτ/(1− γ) ≤ 1

2 , we have that (with δ = τ2)

|A|2
2
·
(

1− 2

e4Rmaxδ/(τ(1−γ)) + 1

)
≤ |A|

2

2
·
(

1− 2

8Rmaxτ/(1− γ) + 2

)
≤ |A|

2

2
·
(
4Rmaxτ/(1− γ)

)
≤ α

24ν
.

Thus, we conclude that if L(s) > B, then

E[L(st+1)− L(st)|st = s] ≤ −1

2
α. (4.22)

We recall the following result of [71] that implies positive recurrence property for stochastic
system satisfying drift condition as in (4.22).

Lemma 16. Consider a policy π. Suppose that there exists a Lyapunov function L such
that the policy π satisfies the bounded increment condition with parameter ν > 0 and the
drift condition with parameters α > 0 and B > 0. Let Ta , min{t ≥ 0 : L(st) ≤ a}. Let
c(ν) = eν − ν − 1, η = min(1, α/2c(ν)) and ρ = 1− ηα/2c(ν) < 1. Then it follows that for
all b ≥ 0,

P(L(st) ≥ b|s0 = s) ≤ ρteη(L(s)−b) +
1− ρt
1− ρ e

ν+η(B−b), (4.23)

P(Ta > k|s0 = s) ≤ eη(L(s)−a)ρk, ∀ a ≥ B. (4.24)

By an immediate application of Lemma 16, with c = c(ν) = eν − ν− 1, η = min(1, α/4c(ν))

and ρ = 1− ηα/4c(ν) < 1, it follows that

P
(
L(st) ≥ b|s0 = s

)
≤ ρteη(L(s)−b) +

1− ρt
1− ρ e

η(B−b)+ν , ∀ s ∈ S, (4.25)

and ∀ b ≥ B,

P
(
Tb(t) > k | st = s

)
≤ eη(L(s)−b)ρk, ∀ s ∈ S, (4.26)

where Tb(t) , min{k ≥ 0 : L(st+k) ≤ b} is the return time to a set that the Lyapunov
function is bounded by b starting from time t.

Define level set C(`) , {s ∈ S : L(s) ≤ `}. By Condition 2, sups∈C(`) ‖s‖ < ∞ for any
finite `. Now (4.25) implies that for any small φ > 0, we have

lim sup
t→∞

P
(
st /∈ C(b+ φ)|s0 = s

)
≤ lim sup

t→∞
P
(
L(st) ≥ b|s0 = s

)
≤ 1

1− ρe
η(B−b)+ν .

Sec. 4.4. Proof of Theorem 9 129

By letting b ≥ B and b be large enough, we can always make the above probability bound
as small as possible. That is, for any given θ > 0, there exist a large b ≥ B and a small
φ > 0, such that

lim
t→∞

P
(
st /∈ C(b+ φ)|s0 = s

)
≤ θ, ∀ s ∈ S.

In addition, (4.26) implies that

P
(
Tb+φ(t) > k | st = s

)
≤ eη

(
L(s)−b−φ

)
ρk, ∀ s ∈ S and ∀ t ≥ 0.

Therefore,

E
[
Tb+φ(t)|st = s

]
=
∞∑
k=0

P
(
Tb+φ(t) > k|st = s

)
≤ eη(L(s)−b−φ) · 1

1− ρ <∞.

That is, given the current state s ∈ S, the return time to the bounded set C(b + φ) is
uniformly bounded, across all t. This establishes the stability of the policy as desired in
Theorem 9. �

� 4.4.1 Proof of Lemma 14
We first bound the total variation distance between P̂ and P ∗. For each a, we have

∣∣∣P̂ (s, a)− P ∗(s, a)
∣∣∣ =

∣∣∣∣∣ eQ̂(s,a)/τ∑
a′ e

Q̂(s,a′)/τ
− eQ

∗(s,a)/τ∑
a′′ e

Q∗(s,a′′)/τ

∣∣∣∣∣
=

∣∣∣eQ̂(s,a)/τ
∑

b e
Q∗(s,b)/τ − eQ∗(s,a)/τ

∑
b e
Q̂(s,b)/τ

∣∣∣(∑
a′ e

Q̂(s,a′)/τ
)(∑

a′′ e
Q∗(s,a′′)/τ

)
=
∑
b

∣∣∣eQ̂(s,a)/τ+Q∗(s,b)/τ − eQ∗(s,a)/τ+Q̂(s,b)/τ
∣∣∣(∑

a′ e
Q̂(s,a′)/τ

)(∑
a′′ e

Q∗(s,a′′)/τ
) .

Consider b-th term in the above summation:∣∣∣eQ̂(s,a)/τ+Q∗(s,b)/τ − eQ∗(s,a)/τ+Q̂(s,b)/τ
∣∣∣(∑

a′ e
Q̂(s,a′)/τ

)(∑
a′′ e

Q∗(s,a′′)/τ
) ≤

∣∣∣eQ̂(s,a)/τ+Q∗(s,b)/τ − eQ∗(s,a)/τ+Q̂(s,b)/τ
∣∣∣

eQ̂(s,a)/τ+Q∗(s,b)/τ + eQ∗(s,a)/τ+Q̂(s,b)/τ

≤
eQ
∗(s,a)/τ+Q̂(s,b)/τ ·

∣∣∣e[Q̂(s,a)+Q∗(s,b)−Q∗(s,a)−Q̂(s,b)]/τ − 1
∣∣∣

eQ∗(s,a)/τ+Q̂(s,b)/τ ·
(
e[Q̂(s,a)+Q∗(s,b)−Q∗(s,a)−Q̂(s,b)]/τ + 1

)
=

∣∣∣e[Q̂(s,a)+Q∗(s,b)−Q∗(s,a)−Q̂(s,b)]/τ − 1
∣∣∣

e[Q̂(s,a)+Q∗(s,b)−Q∗(s,a)−Q̂(s,b)]/τ + 1
=

∣∣et − 1
∣∣

et + 1
,

130 Chapter 4. Stability in Unbounded State Space

where
t :=

[
Q̂(s, a) +Q∗(s, b)−Q∗(s, a)− Q̂(s, b)

]
/τ.

By assumption, we have |t| ≤ 2ε/τ . Now, if t > 0, then∣∣et − 1
∣∣

et + 1
=
et − 1

et + 1
= 1− 2

et + 1
≤ 1− 2

e2ε/τ + 1
=
e2ε/τ − 1

e2ε/τ + 1
.

Similarly, if t < 0, then∣∣et − 1
∣∣

et + 1
=
−et + 1

et + 1
= −1 +

2

et + 1
≤ −1 +

2

e−2ε/τ + 1
=
−e−2ε/τ + 1

e−2ε/τ + 1
=
−1 + e2ε/τ

e2ε/τ + 1
.

That is, for any |t| ≤ 2ε/τ , we have∣∣et − 1
∣∣

et + 1
≤ e2ε/τ − 1

e2ε/τ + 1
.

Combining the above results, we obtain that

∣∣∣P̂ (s, a)− P ∗(s, a)
∣∣∣ ≤∑

b

e2ε/τ − 1

e2ε/τ + 1
≤|A| · e

2ε/τ − 1

e2ε/τ + 1
.

Therefore, we have

∥∥∥P̂ (s)− P ∗(s)
∥∥∥

TV
=

1

2

∑
a∈A

∣∣∣P̂ (s, a)− P ∗(s, a)
∣∣∣ ≤ |A|2

2
· e

2ε/τ − 1

e2ε/τ + 1
.

Next, we bound ‖P ∗(s)− π∗(s)‖TV. Let a∗ ∈ A∗(s). Notice that for each a ∈ A∗(s),
P ∗(s, a) = P ∗(s, a∗) ≤ 1

|A∗(s)| . For each a /∈ A∗(s), we have

P ∗(s, a) =
eQ
∗(s,a)/τ∑

a′ e
Q∗(s,a′)/τ

≤ eQ
∗(s,a)/τ

eQ∗(s,a∗)/τ
= e−

Q∗(s,a∗)−Q∗(s,a)
τ ≤ e−∆min(s)/τ .

Note that for each a ∈ A∗(s), π∗(a|s) = 1
|A∗(s)| , and for each a /∈ A∗(s), π∗(a|s) = 0. It

hence follows that

‖P ∗(s)− π∗(s)‖TV =
1

2

∑
a∈A
|P ∗(s, a)− π∗(a|s)|

=
1

2

∑
a∈A∗(s)

(
π∗(a|s)− P ∗(s, a)

)
+

1

2

∑
a/∈A∗(s)

P ∗(s, a)

=
∑

a/∈A∗(s)

P ∗(s, a) ≤
∑

a/∈A∗(s)

e−∆min(s)/τ

Sec. 4.4. Proof of Theorem 9 131

≤ (|A| − 1)e−∆min(s)/τ .

By triangle inequality, we have∥∥∥P̂ (s)− π∗(s)
∥∥∥

TV
≤
∥∥∥P̂ (s)− P ∗(s)

∥∥∥
TV

+ ‖P ∗(s)− π∗(s)‖TV

≤ |A|
2

2
· e

2ε/τ − 1

e2ε/τ + 1
+ (|A| − 1)e−∆min(s)/τ .

This concludes the proof of Lemma 14. �

� 4.4.2 Proof of Lemma 15
By Condition 2, for each st ∈ S we have

|L(st+1)− L(st)| ≤ ν,

where st+1 ∼ P(·|s, π(st)). Let us analyze the drift of L under the stochastic policy π(st).
Fix a state s ∈ S such that L(s) > B. Then,

E[L(st+1)− L(st)|st = s]

=
(∑
s′∈S

L(s′)
∑
a∈A

π(a|s)P(s′|s, a)
)
− L(s)

=
(∑
s′∈S

L(s′)
∑
a∈A

(
π(a|s)− π∗(a|s)

)
P(s′|s, a) +

∑
s′∈S

L(s′)
∑
a∈A

π∗(a|s)P(s′|s, a)
)
− L(s)

=
∑
a∈A

(
π(a|s)− π∗(a|s)

)∑
s′∈S

L(s′)P(s′|s, a) + Eπ∗ [L(st+1)− L(st)|st = s]. (4.27)

To analyze the first term of (4.27), we define the sets

A+
π = {a ∈ A | π(a|s) ≥ π∗(a|s)} and A−π = A\A+

π .

Note that
∑

a∈A π(a|s) =
∑

a∈A π
∗(a|s) = 1. Therefore, we have∑

a∈A

(
π(a|s)− π∗(a|s)

)∑
s′∈S

L(s′)P(s′|s, a)

=
∑
a∈A

(
π(a|s)− π∗(a|s)

)∑
s′∈S

L(s′)P(s′|s, a) +
∑
a∈A

(
π(a|s)− π∗(a|s)

)
L(s)

=
∑
a∈A+

π

(
π(a|s)− π∗(a|s)

)[∑
s′∈S

L(s′)P(s′|s, a)− L(s)
]

(4.28)

+
∑
a∈A−π

(
π(a|s)− π∗(a|s)

)[∑
s′∈S

L(s′)P(s′|s, a)− L(s)
]
. (4.29)

132 Chapter 4. Stability in Unbounded State Space

For the term (4.28), note that for each a and s′ such that P(s′|s, a) > 0, Condition 2 ensures
that

|L(s′)− L(s)| ≤ ν.

Consequently, we have

(4.28) ≤
∑
a∈A+

π

(
π(a|s)− π∗(a|s)

)[∑
s′∈S

(
L(s) + ν

)
P(s′|s, a)− L(s)

]
=
∑
a∈A+

π

(
π(a|s)− π∗(a|s)

)
ν ≤ 2ν‖π(s)− π∗(s)‖TV.

Following similar arguments,

(4.29) ≤ 2ν‖π(s)− π∗(s)‖TV.

Combining the above two inequalities, we have∑
a∈A

(
π(a|s)− π∗(a|s)

)∑
s′∈S

L(s′)P(s′|s, a) ≤ 4ν‖π(s)− π∗(s)‖TV. (4.30)

Recall that the total variation distance is bounded by 1 and that the stochastic policy π(s)

satisfies that with probability at least 1− δ, ‖π(s)− π∗(s)‖TV ≤ κ. Taking expectation on
both sides of (4.30) with respect to the randomness in the stochastic policy π(s), we have

E

[∑
a∈A

(
π(a|s)− π∗(a|s)

)∑
s′∈S

L(s′)P(s′|s, a)

]
≤ 4ν

(
(1− δ)κ+ δ

)
. (4.31)

Substituting the upper bound (4.31) into (4.27) yields

E
[
L(st+1)− L(st)|st = s

]
≤ 4ν

(
(1− δ)κ+ δ

)
+ Eπ∗

[
L(st+1)− L(st)|st = sb

]
.

Note that by Condition 2, for each s ∈ S such that L(s) > B, Eπ∗ [L(st+1)−L(st)|st = s] ≤
−α. Finally, we conclude that

E
[
L(st+1)− L(st)|st = s

]
≤ 4ν

(
(1− δ)κ+ δ

)
− α,

thereby completing the proof. �

� 4.4.3 Proof of Lemma 16
Throughout the proof, we fix an η ∈ (0,min{1, α/(2c)}) and let ρ = 1− ηα/2. To simplify
the notation, we fix the initial state s0, and the probabilities and expectations should be

Sec. 4.4. Proof of Theorem 9 133

understood as conditioned on s0 = s when appropriate. Let Ft denote the smallest σ-algebra
containing all information pertaining to the MDP up to time t, i.e., {st}t≥0 is adapted to
{Ft}t≥0.

We start by establishing (4.23). To do so, we will instead prove the following inequality,
from which (4.23) can be readily obtained via Markov’s inequality:

E[eηL(st)] ≤ ρteηL(s0) +
1− ρt
1− ρ e

ν+ηB. (4.32)

Note that E[eηL(st+1)] = E[E[eηL(st+1)|Ft]]. Further,

E[eηL(st+1)|Ft] = E[eηL(st+1)I{L(st) ≤ B}|Ft] + E[eηL(st+1)I{L(st) > B}|Ft]. (4.33)

We now analyze the two terms on the R.H.S. of (4.33) separately. For the first term,

E[eηL(st+1)I{L(st) ≤ B}|Ft] = E[eη(L(st+1)−L(st))eηL(st)I{L(st) ≤ B}|Ft] ≤ eν+ηB,

where the last inequality follows from the bounded increment condition and the fact that
η < 1. For the second term of (4.33), observe

E[eηL(st+1)I{L(st) > B}|Ft] = E[eη(L(st+1)−L(st))eηL(st)I{L(st) > B}|Ft]
≤ E[eη(L(st+1)−L(st))I{L(st)>B}|Ft] · eηL(st).

We now show that E[eη(L(st+1)−L(st))I{L(st)>B}|Ft] ≤ ρ. Since |L(st+1) − L(st)| ≤ ν with
probability 1, E[eη(L(st+1)−L(st))I{L(st)>B}|Ft] has an absolutely convergent series expansion.
That is,

E[eη(L(st+1)−L(st))I{L(st)>B}|Ft] = 1 + ηE[(L(st+1)− L(st))I{L(st) > B}|Ft]

+ η2
∞∑
k=2

ηk−2

k!
E[
(
(L(st+1)− L(st))I{L(st) > B}

)k|Ft]
≤ 1− ηα+ η2c,

where we have used the fact that

∣∣E[
(
(L(st+1)− L(st))I{L(st) > B}

)k|Ft]∣∣ ≤ νk
for all k ≥ 1, and notation c = c(ν) = eν − ν − 1. Note that since η ∈ (0,min{1, α/(2c)}),

134 Chapter 4. Stability in Unbounded State Space

we have 1− ηα+ η2c ≤ 1− ηα/2 = ρ. To summarize, we obtain that for (4.33),

E[eηL(st+1)|Ft] ≤ eν+ηB + ρeηL(st). (4.34)

By taking expectation on both sides of (4.34), we establish the following recursive equation:

E[eηL(st+1)] ≤ eν+ηB + ρE[eηL(st)].

Since (4.32) holds trivially for t = 0, the above recursive equation implies that the desired
inequality (4.32) is valid for all t ≥ 0.

Next, we establish (4.24) of Lemma 16. Fix an a ≥ B and define M(t) = eηL(st)

ρt . Recall
that in the above proof, we showed that

E[eη(L(st+1)−L(st))I{L(st)>B}|Ft] ≤ ρ.

Therefore,
{
M(min(t, Ta))

}
is a non-negative supermartingale. This implies that M(0) ≥

E[M(min(t, Ta))], i.e.,

eηL(s0) ≥ E[eηL(smin(t,Ta))/ρmin(t,Ta)]

≥ E[eηL(smin(t,Ta))/ρmin(t,Ta)I{Ta > t}]

≥ eηa

ρt
· P(Ta > t),

where the last inequality follows from the definition of Ta. This completes the proof of (4.24)
and Lemma 16. �

� 4.5 Proof of Theorem 10

The proof of Theorem 10 follows identically as that of Theorem 9 by replacing the perfor-
mance guarantees of Lemma 12 by that of Lemma 13.

� 4.5.1 Proof of Lemma 13
We establish the statement of Lemma 13 inductively. To begin with, we shall count the total
number of samples of the MDP utilized in the algorithm. To that end, note that for the H
steps of the procedure starting with root note s, any state sampled within H steps from it
can not be farther than Hν ′ in ‖ · ‖ distance per Condition 2. By construction, the number
of such states contained in Sε for a given s, is at most N(H, ε) := O((Hν ′/ε)d). For each
of these N(H, ε) states, for each action a ∈ A, we need to sample at most C next states.
That is, number of samples are at most C|A|N(H, ε). Indeed, as part of our procedure, it

Sec. 4.5. Proof of Theorem 10 135

is likely that some of these N(H, ε) states are visited multiple times.
Now, for any s̃ ∈ Sε amongst these N(H, ε) states and for any a ∈ A, by definition,

Q∗(s̃, a) = R(s̃, a) + γEŝ∼P(·|s̃,a)

[
V ∗(ŝ)

]
. (4.35)

Let {s̃i}i≤C be C sampled next states per MDP at state s̃ under action a. Due to the
standard application of Chernoff’s bound for bounded valued variables, for any λ > 0,

P
(∣∣∣ 1

C

C∑
i=1

V ∗(s̃i)− Eŝ∼P(·|s̃,a)

[
V ∗(ŝ)

]∣∣∣ > λ

)
≤ 2 exp

(
− λ2C

2V 2
max

)
. (4.36)

Here we have used the fact that ‖V ∗‖∞ ≤ Vmax. By choosing λ2 = 2V 2
max
C log

(2|A|N(H,ε)
δ

)
,

the event within the left-hand side holds with probability at least 1− δ
|A|N(H,ε) . Therefore,

by union bound, the event of (4.36) holds for all the N(H, ε) states and all action a ∈ A
pairs. Henceforth in the remainder of the proof, we shall assume that this event holds.

Now, for the given query state s ∈ S, it is at the root of the sampling tree to produce
estimate of Q∗(s, a) for all a ∈ A. As part of the procedure, we sample C next states for
(s, a), which were denoted as Snext(s, a, C) = {s1, . . . , sC}. We map these states to their
closest elements in Sε, denoted as Sε(s1), . . . , Sε(sC). Due to Condition 3, we have that

∣∣∣ 1

C

C∑
i=1

(V ∗(si)− V ∗(Sε(si))
∣∣∣ ≤ ζε√d. (4.37)

As per the method, we produce estimate

Q̂(0)(s, a) = R(s, a) + γ
1

C

C∑
i=1

V̂ (1)(Sε(si)). (4.38)

Therefore, we have∣∣∣Q̂(0)(s, a)−Q∗(s, a)
∣∣∣

≤ γ
∣∣∣ 1

C

C∑
i=1

V̂ (1)(Sε(si))− Es̃∼P(·|s,a)

[
V ∗(s̃)

]∣∣∣
≤ γ

∣∣∣ 1

C

C∑
i=1

(
V̂ (1)(Sε(si))− V ∗(Sε(si)) + V ∗(Sε(si))− V ∗(si) + V ∗(si)

)
− Es̃∼P(·|s,a)

[
V ∗(s̃)

]∣∣∣
≤ γ(err(1) + ζε

√
d+ λ). (4.39)

Here, err(1) is the maximum of error in value function estimates for states in level 1 in the

136 Chapter 4. Stability in Unbounded State Space

sampling tree, and hence |V̂ (1)(Sε(si)) − V ∗(Sε(si))| ≤ err(1) for all i ≤ C; we have used
that event of (4.36) holds and also (4.37). Using this argument recursively and the fact that
V̂ (h)(s̃) = maxa∈A Q̂

(h)(s̃, a), we have that for all 1 ≤ h ≤ H,

err(h−1) ≤ γ(err(h) + ζε
√
d+ λ). (4.40)

And at the leaf nodes, by definition we have that err(H) ≤ Vmax. Therefore, we conclude
that for all a ∈ A,

∣∣∣Q̂(0)(s, a)−Q∗(s, a)
∣∣∣ ≤ γHVmax +

γ(ζε
√
d+ λ)

1− γ . (4.41)

We choose γH ≤ δ or H = dlogγ(δ)e, ε = δVmax(1−γ)

2ζγ
√
d

, and λ ≤ δVmax(1−γ)
2γ , i.e.

2V 2
max

C
log
(2|A|N(H, ε)

δ

)
≤ δ2V 2

max(1− γ)2

4γ2
,

or

C = Ω

(
γ2

(1− γ)2δ2

(
log

2|A|
δ

+ d logH + d log
1

ε

))
= Ω

(1

δ2
log

1

δ

)
,

where Ω(·) hides constant dependent on γ, |A|, d, Vmax. Thus, the number of samples utilized
is O

(
C(Hν ′/ε)d

)
= O

(
1

δ2+d logd+1 1
δ

)
. �

� 4.6 Proof of Results on Adaptive Methods

We devote this section to the proof of results on the adaptive methods, as stated in Sec-
tion 4.3.3.

� 4.6.1 Proof of Theorem 11
Let G be the stopping time defined as G , inf {t ≥ 0 : δt ≤ δ(α)} . As per the method, we
start with δ0 = 1. If δ(α) > 1, then G = 0. If δ(α) < 1, then either G <∞ or G =∞. We
consider these two cases separately.

Case 1: G <∞. For each t ≥ G, we have δt ≤ δ(α). In this case, the proof of Theorem 9
suggests that the inequality (4.25) holds; that is, for all b ≥ 0, and all t ≥ G,

P(L(st) ≥ b | sG) ≤ ρt−Geη(L(sG)−b) +
1− ρt−G

1− ρ eν+η(B−b),

Sec. 4.6. Proof of Results on Adaptive Methods 137

where η = min (1, α/4c(ν)) with c(ν) = eν−ν−1, and ρ = 1−ηα/4c(ν) < 1. By Condition 4,
L(s) ≥ c1 ‖s‖+ c2, and hence,

P (L(st) ≥ b | sG) ≥ P (c1 ‖st‖+ c2 ≥ b | sG) = P
(
‖st‖ ≥

b− c2

c1
| sG

)
.

Combining the last two displayed equations and taking b = c1 log2 t+ c2, we obtain that

P
(
‖st‖ ≥ log2 t | sG

)
≤ ρt−Geη(L(sG)−c1 log2 t−c2) +

1− ρt−G
1− ρ eν+η(B−c1 log2 t−c2)

≤
[
eη(L(sG)−c2) +

1

1− ρe
ν+η(B−c2)

]
︸ ︷︷ ︸

C≡C(ν,α,B,L(sG))

e−ηc1 log2 t.

That is, for each t ≥ G, the likelihood of test failing at time t is Ce−ηc1 log2 t. Since
C
∑∞

t=G e
−ηc1 log2 t < ∞, the Borel-Cantelli lemma ensures that with probability 1, the

test fails for finitely many times. Hence, lim inft δt > 0 as claimed in (4.12). By definition,
when G < ∞, the choice of δ is such that δ ≤ δ(α). Therefore, by Theorem 9 or 10, the
system is stable.

Case 2: G = ∞. In this case, the system never reaches δ ≤ δ(α) and hence equation
(4.12) holds. In this case, we may not be able to guarantee stability; nevertheless, we can
ensure near-stability. Now, since we start with δ0 = 1 and G =∞, we have δ(α) < 1. Since
G = ∞, the test fails no more than dlog2 1/δ(α)e = O(1) times. Therefore, in the limit of
T →∞, the test does not fail. That is, lim supt→∞

‖st‖
log2 t

= O(1) as claimed in (4.11). �

� 4.6.2 Proof of Corollary 1
Corollary 1 is an immediate result from the proof of Theorem 11. Using the same notation
as in the proof of Theorem 11, we consider two cases:

Case 1: G <∞. In this case, using Borel-Cantelli, we have argued that with probability
1, the test fails for finitely many times. By contradiction, this means that with probability 1,
lim supt→∞

‖st‖
log2 t

< 1; otherwise, if lim supt→∞
‖st‖
log2 t

≥ 1, the test must have failed infinitely
many times. Therefore,

lim sup
t→∞

‖st‖
t
≤ lim sup

t→∞

‖st‖
log2 t

· lim sup
t→∞

log2 t

t
= 0. (4.42)

138 Chapter 4. Stability in Unbounded State Space

Since lim supt→∞
‖st‖
t ≥ 0, (4.42) implies lim supt→∞

‖st‖
t = 0. Moreover, as lim inft→∞

‖st‖
t ≥

0, and lim inft→∞
‖st‖
t ≤ lim supt→∞

‖st‖
t = 0, we have

lim
t→∞

‖st‖
t

= 0.

Case 2: G =∞. In this case, we have argued in Theorem 11 that lim supt→∞
‖st‖
log2 t

= O(1).
Apply the same reasoning as in (4.42) and the following argument completes the proof. �

� 4.7 Chapter Summary

In this chapter, we expand the scope of our investigation in this thesis from bounded domains
to unbounded cases. In particular, we consider reinforcement learning for systems with
unbounded state space, as motivated by classical queueing systems. To tackle the challenges
due to unboundedness of the state space, we propose a natural notion of stability to quantify
the “goodness” of policy: the system dynamics under the policy should retain the state in a
finite, bounded set with high probability.

Our main technical endeavor in this chapter consists of a series of improvements in
designing online policies that achieve the desired stability property. After presenting a simple
stable policy, we devise a sample efficient algorithm that improves upon it by exploiting the
Lipschitz structure during Monte Carlo simulations. The resulting Modified Sparse Sampling
Monte Carlo oracle demonstrates a much more favorable data complexity (i.e., polynomial in
the parameter of interest). Since the improved oracle can be viewed as a kind of data reuse
method, this confirms the efficacy of such a practical technique in Monte Carlo simulations
as we conjectured in the chapter summary of Chapter 2, where we studied Monte Carlo Tree
Search. To complete our investigation, we further enhance our algorithms with a hypothesis
testing procedure that automatically adjusts the unknown parameter to the desired range.

We note that in general, stability in problems with unbounded state space is of significant
importance in classical queueing and control theory, yet this aspect has received relatively
less attention in existing reinforcement learning literature. In this chapter, we demonstrate
the merits of studying stability through more general, abstract properties of MDPs: when
specialized to the context of queueing networks, our framework indeed implies the desired
rate stability studied in the queueing systems literature. As reinforcement learning becomes
increasingly popular in various application domains, we believe that modeling and achieving
stability is critical. The framework introduced in this chapter provides some first steps
towards this direction.

Chapter 5

Conclusions and Future Work

In this thesis, we study the data efficiency of reinforcement learning. Our efforts are fo-
cused on two directions. First, with recent achievements of applying RL in practice, we
are motivated to develop an in-depth understanding on the usage of data for empirically
successful algorithms, where theory is currently lacking. Popular MCTS-based algorithm
that employs MCTS to generate samples for supervised learning, exemplified by AlphaGo
Zero, is an ideal candidate. Chapter 2 hence concentrates on analyzing the data complex-
ity of MCTS. We identify the correct polynomial bonus term in order to utilize the tree
structure for estimating the values and characterize the finite-sample guarantees of such a
procedure. This subsequently allows us to capture the data complexity of a RL algorithm
that combines MCTS with nearest neighbor regression. After developing a better under-
standing, naturally, the second direction of our effort is centered around designing efficient
simulation-based RL algorithms. We begin with problems with bounded domains in Chap-
ter 3. Through introducing the perspective of low-rankQ-function, we demonstrate how such
a structure can be naturally exploited with matrix estimation techniques to devise a new
data-efficient RL algorithm. The resulting algorithm, which essentially performs sampling
and pseudo-exploration via ME, provides an exponential improvement in data complexity.
As a byproduct, we also propose a new ME method with `∞ recovery guarantee, which
might be of independent interest. Having completed our journey with bounded domains, in
Chapter 4, we consider RL with unbounded state space. To this end, we first address the
unique conceptual challenges imposed by the unboundedness of the state space, via propos-
ing an appropriate notion of stability. In essence, we desire the system operating under a
stable policy to stay in a bounded region with high probability. By exploiting the Lipschitz
structure of the value function, we design an efficient stable policy whose data complexity
scales polynomially in the parameter of interest. By incorporating a statistical test on the
magnitude of the state, the algorithm is further improved to automatically discover the right
tuning parameter. Overall, with new technical tools and frameworks, this thesis contributes
to the advancement of the analysis and design of data-efficient RL algorithms.

139

140 Chapter 5. Conclusions and Future Work

� 5.1 Future Work

In the summary of each chapter, we outline several open questions related to the correspond-
ing results. Collectively, at a higher level, this thesis also brings us to a point with a variety
of fruitful directions.

Settings Beyond a Generative Model. This thesis assumes the access to a generative
model which one can use to freely sample any state-action transition. This has been an im-
portant setting in the theoretical reinforcement learning community for developing insights
and characterizing data complexities. Yet, having a precise simulator is not always com-
mon in practice, except in applications such as video games where we have full information.
Therefore, this naturally connects us to the world of model-based RL where learning the
transition model is often of interest. From an applied perspective, we observe that once a
high-fidelity model is learned, our algorithmic frameworks can then be applied seamlessly.
Model-based RL has gained much more attention in the recent years, and advancements
in model learning would naturally benefit our methods. In terms of theory, we would be
interested in how the error in the learned transition model is translated to our eventual
estimation of the RL quantities, i.e., how robust our frameworks are with respect to the
model error. Precisely establishing the relationship and capturing the data complexity is of
great theoretical value. Further, the discussion above also implies an approach to extend
the current results to the offline RL (or batch RL) setting, by first learning a model with
the pre-collected data and then applying our existing frameworks. Finally, one may also be
interested in extending part of the results to settings where we cannot freely sample any
state-action at will; for example, devising new matrix estimation methods to extend the
“low-rank” RL algorithm to the online setup. To summarize, extension beyond the ideal
generative world is undoubtedly an important future avenue of research.

Structures Beyond Value Functions. Designing data-efficient RL algorithm is important
for the wider application of RL in practice. Throughout this thesis, we primarily focus on
structures within the value functions such as being Lipschitz and low-rank. There are
certainly similar lower-dimensional (or low-rank) structures within other RL quantities that
could lead to efficient learning with limited data. For example, the preliminary work [4]
considers model-based offline RL with heterogeneous agents under severe data scarcity, i.e.,
only a single historical trajectory per agent is observed. It is posited that the transition
dynamics across agents possesses a structural form: it can be represented as a latent function
of latent factors associated with agents, states, and actions. That is, the transition dynamics
can be well-approximated by a “low-rank” decomposition of separable agent, state, and action
latent functions. This low-rank representation suggests a simple, regularized neural network
architecture that empirically allows efficient model learning with the limited data considered.

Sec. 5.1. Future Work 141

In general, identifying proper structures and establishing their provable efficiency have been
an active research area in theoretical RL. This thesis makes contributions to this trend with
new insights that could be valuable for investigating other RL quantities of interest.

142 Chapter 5. Conclusions and Future Work

Appendix A

Supplementary Materials for Chapter 2

� A.1 Proof of Proposition 1

The recent work [143] establishes a lower bound on the sample complexity for reinforcement
learning algorithms on MDPs. We follow a similar argument to establish a lower bound on
the sample complexity for MDPs with deterministic transitions. We provide the proof for
completeness. The key idea is to connect the problem of estimating the value function to
the problem of non-parametric regression, and then leveraging known minimax lower bound
for the latter. In particular, we show that a class of non-parametric regression problem can
be embedded in a MDP with deterministic transitions, so any algorithm for the latter can
be used to solve the former. Prior work on non-parametric regression [164, 154] establishes
that a certain number of observations is necessary to achieve a given accuracy using any
algorithms, hence leading to a corresponding necessary condition for the sample size of
estimating the value function in a MDP. We now provide the details.

Step 1. Non-parametric Regression. Consider the following non-parametric regression
problem: Let S := [0, 1]d and assume that we have T data pairs (x1, y1), . . . , (xT , yT) such
that conditioned on x1, . . . , xn, the random variables y1, . . . , yn are independent and satisfy

E [yt|xt] = f(xt), xt ∈ S (A.1)

where f : S → R is the unknown regression function. Suppose that the conditional distri-
bution of yt given xt = x is a Bernoulli distribution with mean f(x). We also assume that
f is 1-Lipschitz continuous with respect to the Euclidean norm, i.e.,

|f(x)− f(x0)| ≤ ||x− x0||, ∀x, x0 ∈ S.

Let F be the collection of all 1-Lipschitz continuous function on S, i.e.,

F = {h|h is a 1-Lipschitz function on S} .

143

144 Appendix A. Supplementary Materials for Chapter 2

The goal is to estimate f given the observations (x1, y1), . . . , (xT , yT) and the prior knowledge
that f ∈ F .

It is easy to verify that the above problem is a special case of the non-parametric
regression problem considered in the work by [154] (in particular, Example 2 therein).
Let f̂T denote an arbitrary (measurable) estimator of f based on the training samples
(x1, y1), . . . , (xT , yT). By Theorem 1 in [154], we have the following result: there exists a
c > 0 such that

lim
T→∞

inf
f̂T

sup
f∈F

P
(∥∥f̂T − f∥∥∞ ≥ c(log T

T

) 1
2+d

)
= 1, (A.2)

where infimum is over all possible estimators f̂T . Translating this result to the non-
asymptotic regime, we obtain the following theorem.

Theorem 12. Under the above stated assumptions, for any number δ ∈ (0, 1), there exist
c > 0 and Tδ such that

inf
f̂T

sup
f∈F

P
(∥∥f̂T − f∥∥∞ ≥ c(log T

T

) 1
2+d

)
≥ δ, for all T ≥ Tδ.

Step 2. MDP with Deterministic Transitions. Consider a class of discrete-time
discounted MDPs (S,A,P, r, γ), where

S = [0, 1]d,

A is finite,

for each (x, a), there exists a unique x′ ∈ S such that P(x′|x, a) = 1,

r(x, a) = r(x) for all a,

γ = 0.

In words, the transition is deterministic, the expected reward is independent of the action
taken, and only immediate reward matters.

Let Rt be the observed reward at step t. We assume that given xt, the random variable
Rt is independent of (x1, . . . , xt−1), and follows a Bernoulli distribution Bernoulli

(
r(xt)

)
.

The expected reward function r(·) is assumed to be 1-Lipschitz and bounded. It is easy to
see that for all x ∈ S, a ∈ A,

V ∗(x) = r(x). (A.3)

Step 3. Reduction from Regression to MDP. Given a non-parametric regression

Sec. A.2. Numerical Experiments 145

problem as described in Step 1, we may reduce it to the problem of estimating the value
function V ∗ of the MDP described in Step 2. To do this, we set

r(x) = f(x), ∀x ∈ S

and

Rt = yt, t = 1, 2, . . . , T.

In this case, it follows from equations (A.3) that the value function is given by V ∗ = f .
Moreover, the expected reward function r(·) is 1-Lipschitz, so the assumptions of the MDP
in Step 2 are satisfied. This reduction shows that the MDP problem is at least as hard as
the nonparametric regression problem, so a lower bound for the latter is also a lower bound
for the former.

Applying Theorem 12 yields the following result: for any number δ ∈ (0, 1), there exist
some numbers c > 0 and Tδ > 0, such that

inf
V̂T

sup
V ∗∈F

P
(∥∥V̂T − V ∗∥∥∞ ≥ c(log T

T

) 1
2+d
)
≥ δ, for all T ≥ Tδ.

Consequently, for any reinforcement learning algorithm and any sufficiently small ε > 0,
there exists a MDP problem with deterministic transitions such that in order to achieve

P
(∥∥V̂T − V ∗∥∥∞ < ε

)
≥ 1− ε,

one must have

T ≥ C ′d
(

1

ε

)2+d

log

(
1

ε

)
,

where C ′ > 0 is a constant. �

� A.2 Numerical Experiments

While the focus of Chapter 2 is to develop a theoretical understanding of MCTS, we provide
simple toy examples as supplements to corroborate our results.

To this end, we design a simple class of deterministic MDPs as follows. For each state
s ∈ S and each action a ∈ A, we sample uniformly from S a state and fix it to be the
corresponding next state s′. The reward R(s, a) is a uniformly distributed random variable
taking values in [0, Rmax(s, a)], where the bound Rmax(s, a) is uniformly sampled from the
interval [−3, 3] beforehand and is then fixed. We let |S| = 20, |A| = 5 and γ = 0.8. We then

146 Appendix A. Supplementary Materials for Chapter 2

sample a deterministic MDP from the above class and query a state via the MCTS algorithm
with different depth H. For selecting an action at each depth, we use the polynomial bonus
term (2.4) as emphasized throughout Chapter 2 with η = 1/2. That is, we choose the
action with the highest upper confidence bound in the form of “mean reward + C · t1/4s /t

1/2
a ”.

Here, ts is the number of times that particular node at depth h has been visited; ta is
the number of times the action a is chosen for that node; C is a constant for controlling
exploration and exploitation. For simplicity, we choose the same C for each depth as this is
common in practice. The value of the leaf nodes is set to 0. Note that per our theoretical
results (Theorem 1 and Section 2.7.5), the output of the MCTS algorithm, in expectation,
converges to the value estimate after runningH steps of value function iteration starting with
V̂ ≡ 0 for all states. To validate this consistency result, we perform 25 independent queries
of MCTS with a selected root state and plot the resulting mean and standard deviation.
The value estimate after H steps of value function iteration is used as the “true value” to
benchmark the experiments. Figure A.1 shows the results for two tree depth: H = 7 (left)
and H = 10 (right). As expected, the output of MCTS converges to the desired true value.
The constant C captures the extent of the exploration-exploitation tradeoff. With smaller
C, the simulation could be under-explored and the error bars are wider due to occasionally
inaccurate estimates for some runs. A larger C implies more exploration; consequently it
requires more simulation steps to converge. We note that C = 1 seems to be a good choice
in this example.

0 2500 5000 7500 10000 12500 15000 17500 20000
of simulation

0.0

0.5

1.0

1.5

2.0

2.5

va
lu

e
es

t.

C = 0.5
C = 1
C = 2
C = 3
true value

0 2500 5000 7500 10000 12500 15000 17500 20000
of simulation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

va
lu

e
es

t.

C = 0.5
C = 1
C = 2
C = 3
true value

Figure A.1. Simulation for a deterministic MDP with tree depth H = 7 on the left and H = 10 on the
right. Each plot is a summary of 25 MCTS experiments showing the mean and standard deviation.

Since our results can be extended to the stochastic environments, we also experiment
with stochastic MDPs. The class of stochastic MDPs is constructed in the same manner
as before except that for each state s ∈ S and each action a ∈ A: (1) we sample L
states uniformly from S and fix them to be the potential next states; (2) the transition
kernel P(·|s, a) is then sampled from a Dirichlet distribution with L categories. We let
|S| = 100, |A| = 3, L = 3 and γ = 0.8. A stochastic MDP is then sampled from the class

Sec. A.2. Numerical Experiments 147

and we again perform 25 independent MCTS queries with different depth H. Figure A.2
summarizes the corresponding results. A large number of simulation steps is used to account
for the additional stochasticity from the transition. Again, these experiments corroborate
our theoretical findings, with the mean of the outputs converging to the true value.

0 20000 40000 60000 80000 100000
of simulation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

va
lu

e
es

t.

C = 0.5
C = 1
C = 2
C = 3
true value

0 20000 40000 60000 80000 100000
of simulation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

va
lu

e
es

t.

C = 0.5
C = 1
C = 2
C = 3
true value

Figure A.2. Simulation for a stochastic MDP with tree depth H = 5 on the left and H = 8 on the right.
Each plot is a summary of 25 MCTS experiments showing the mean and standard deviation.

148 Appendix A. Supplementary Materials for Chapter 2

Appendix B

Supplementary Materials for Chapter 3

� B.1 Proof of Theorem 4

The proof of Theorem 4 follows from the classical results in functional analysis. We present
it for completeness. Interested reader may find lecture notes [24] and a classical textbook on
the topic [43] as excellent references. In this section, we present and prove a more general
version of Theorem 4 that is applicable to any compact metric spaces equipped with finite
measures.

Let S and A be compact metric spaces, equipped with finite measures µ, ν, respectively.
We consider the space of square integrable functions

L2(S, µ) =

{
f : S → R such that ‖f‖L2(S,µ) ≡

(∫
S
|f(s)|2dµ(s)

) 1
2
<∞

}
,

and L2(A, ν) defined similarly. L2(S, µ) and L2(A, ν) are known to be Hilbert spaces and
in particular, they are separable because S and A are compact metric spaces. Therefore,
they have countable bases.

Recall that given any vector space V over R, its dual space V ∗ is defined as the set of
all linear maps φ : V → R. It is known that the dual of L2(S, µ) is isometrically isomorphic
to L2(S, µ), e.g., by the isomorphism f 7→ f∗ where f∗(f ′) = 〈f ′, f〉 =

∫
S f(s)f ′(s)dµ(s)

(Appendix B, [43]).
Given two Hilbert spaces, H1,H2, we let H1 ⊗ H2 denote the tensor product of the

two Hilbert spaces. The inner product in H1 ⊗H2 is defined on the basis elements so that
〈φ1 ⊗ φ2, ψ1 ⊗ ψ2〉H1⊗H2 = 〈φ1, ψ1〉H1〈φ2, ψ2〉H2 for all φ1, ψ1 ∈ H1 and φ2, ψ2 ∈ H2. Also,
for every element φ1 ⊗ φ2 ∈ H1 ⊗H2, one can associate the rank-1 operator from H∗1 → H2

that maps a given x∗ ∈ H∗1 to x∗(φ1)φ2.
Our main theorem in this section is the following spectral theorem (singular value theo-

rem) for Q∗. It is indeed a classical result from operator theory on Hilbert spaces. However,
most results in existing literature cover the theory for self-adjoint operators and symmetric
kernels. Although it is already implied by the classical results in a similar manner as eigen-

149

150 Appendix B. Supplementary Materials for Chapter 3

value decomposition extends to singular value decomposition, here we state our theorem
and its proof for readers’ convenience and future references.

Theorem 13. Let (S, dS , µ) and (A, dA, ν) be compact metric spaces equipped with finite
measures. Let Q∗ ∈ L2(S × A, µ × ν). If Q∗ is ζ-Lipschitz with respect to the product
metric, then there exist a nonincreasing sequence (σi ≥ R+ : i ∈ N) with

∑∞
i=1 σ

2
i <∞ and

orthonormal bases {fi ∈ L2(S, µ) : i ∈ N} and {gi ∈ L2(A, ν) : i ∈ N} such that

Q∗ =

∞∑
i=1

σifi ⊗ gi. (B.1)

Subsequently, for any δ > 0, there exists r∗(δ) ∈ N such that
∥∥∑r

i=1 σifi⊗gi−Q∗
∥∥2

L2(S×A,µ×ν)
≤

δ) for all r ≥ r∗(δ).

Note that we obtain the equality (B.1) in the L2 sense. However, since Q∗ is assumed
Lipschitz continuous on a compact domain, this actually gives us a pointwise equality, i.e.,
Q∗(s, a) =

∑∞
i=1 σifi(s)gi(a) for all (s, a) ∈ S ×A.

Proof. We define an integral kernel operator K = KQ∗ : L2(S, µ) → L2(A, ν) induced
by the kernel Q∗ ∈ L2(S ×A, µ× ν) so that

Kf(·) =

∫
S
Q∗(s, ·)f(s)dµ(s).

Observe that Q∗ is a continuous function defined on a compact domain and hence bounded,
viz., there exists Vmax <∞ such that |Q∗(s, a)| ≤ Vmax for all (s, a) ∈ S ×A.

We present our proof in four parts. First, we verify that K is a compact operator from
L2(S, µ) to L2(A, ν). Next, we argue K admits a generalized singular value decomposition
with square summable singular values, based on the spectral theory of compact operators.
Then we transfer the results for K ∈ L2(S, µ)∗ ⊗ L2(A, ν) to argue the spectral decom-
position of Q∗ ∈ L2(S, µ) ⊗ L2(A, ν). Lastly, we conclude the proof by discussing rank-r
approximation of Q∗.

1. K is a compact operator from L2(S, µ) to L2(A, ν).

First, we argue that K is a bounded linear operator with ‖K‖ ≤ V 2
maxµ(S)ν(A). Recall

that Q∗ : S × A → R is Lipschitz continuous on a compact domain, hence, bounded,
i.e., there exists Vmax <∞ such that |Q∗(s, a)| ≤ Vmax for all (s, a) ∈ S × A. For any
f ∈ L2(S, µ),

‖Kf‖2L2(A,ν) =

∫
A
Kf(a)2dν(a)

Sec. B.1. Proof of Theorem 4 151

=

∫
A

(∫
S
Q∗(s, a)f(s)dµ(s)

)2

dν(a)

≤
∫
A
‖Q∗(·, a)‖2L2(S,µ)‖f‖2L2(S,µ)dν(a) ∵ Cauchy-Schwarz

≤ V 2
maxµ(S)ν(A)‖f‖2L2(S,µ). ∵ ‖Q∗(·, a)‖2L2(S) ≤ V 2

maxµ(S)

Next, we show thatK : L2(S, µ)→ L2(A, ν) is indeed a compact operator. It suffices to
show that for any bounded sequence (fn)n≥1 in L2(S, µ), the sequence (Kfn)n≥1 con-
tains a convergent subsequence. For this, we use (generalized) Arzelà-Ascoli theorem,
which states that if (Kfn)n≥1 is uniformly bounded and uniformly equicontinuous, then
it contains a convergent subsequence. To that end, first note that ‖Kfn‖ ≤ ‖K‖‖fn‖
and therefore, if ‖fn‖ ≤ B for all n ≥ 1, then ‖Kfn‖ ≤ ‖K‖B for all n ≥ 1. That is,
the sequence (Kfn)n≥1 is uniformly bounded. Next, we can also verify that (Kfn)n≥1

is equicontinuous because for all n ≥ 1,

∣∣Kfn(a1)−Kfn(a2)
∣∣ ≤ ∣∣∣∣ ∫

S

{
Q∗(s, a1)−Q∗(s, a2)

}
fn(s)dµ(s)

∣∣∣∣
≤ ‖Q∗(s, a1)−Q∗(s, a2)‖L2(S)‖fn‖L2(S,µ)

≤ ζµ(S)
1
2dA(a1, a2)‖fn‖L2(S,µ)

≤ Bζµ(S)
1
2dA(a1, a2).

In the second to last inequality, we used the fact that Q∗ is ζ-Lipschitz to show

‖Q∗(s, a1)−Q∗(s, a2)‖L2(S,µ)‖fn‖L2(S,µ) =

(∫
S

(
Q∗(s, a1)−Q∗(s, a2)

)2
dµ(S)

) 1
2

≤
(∫
S
ζ2dA(a1, a2)2dµ(S)

) 1
2

= ζµ(S)
1
2dA(a1, a2).

2. Spectral decomposition of K.

• First of all, we show that there exist orthonormal bases {fi ∈ L2(S, µ) : i ∈ N},
{gi ∈ L2(A, ν) : i ∈ N} and singular values {σi ≥ 0 : i ∈ N} such that

K =
∞∑
i=1

σif
∗
i ⊗ gi. (B.2)

To see this, we consider the adjoint operator of K, namely, K∗ : L2(A, ν) →
L2(S, µ). Since K : L2(S, µ) → L2(A, ν) is compact, K∗ is also compact. Note

152 Appendix B. Supplementary Materials for Chapter 3

that K∗K is compact and self-adjoint. By the spectral theorem for compact self-
adjoint operators, there exist {τi ∈ R : i ∈ N} and an orthonormal basis {fi ∈
L2(S, µ) : i ∈ N} such that K∗Kfi = τifi for all i ∈ N. We can observe that
τi ≥ 0 for all i because τi = τi〈fi, fi〉 = 〈K∗Kfi, fi〉 = ‖Kfi‖2L2(S,µ) ≥ 0. We let
I := {i ∈ N : τi > 0}.
Next, we observe that ker(K∗K) = ker(K). Showing ker(K∗K) ⊇ ker(K) is trivial.
To show the other direction, let’s suppose that f ∈ ker(K∗K). Then ‖Kf‖2L2(A,ν) =

〈Kf,Kf, 〉 = 〈K∗Kf, f〉 = 0, which requires Kf = 0 and thus f ∈ ker(K).

For i ∈ I, we let gi = 1√
τi
Kfi. Then 〈gi, gj〉 = 1√

τiτj
〈Kfi,Kfj〉 = 1√

τiτj
〈K∗Kfi, fj〉 =

δij , and hence, {gi : i ∈ I} consists of orthonormal vectors. We can augment
{gi : i ∈ I} by adding appropriate vectors to make {gi : i ∈ N} an orthonormal
basis of L2(A, ν).

Every vector φ ∈ L2(S, µ) can be expanded as φ =
∑∞

i=1〈φ, fi〉fi. Then we see that
Kφ =

∑∞
i=1〈φ, fi〉Kfi =

∑∞
i=1

√
τi〈φ, fi〉gi. By letting σi =

√
τi, we obtain (B.2).

• In addition, we show that
∑∞

i=1 σ
2
i = ‖Q∗‖2L2(S×A,µ×ν) <∞. The Hilbert-Schmidt

norm of operator K is defined as ‖K‖HS = Tr(K∗K) =
∑∞

i=1 ‖Kfi‖2L2(A,ν) < ∞.
Note that ‖K‖HS =

∑∞
i=1 σ

2
i .

First, we observe that for each i ∈ N,

〈Kfi,Kfi〉L2(A,ν) =

∫
A

(∫
S
Q∗(s, a)fi(s)dµ(s)

)2

dν(a)

=

∫
A

〈
Q∗(·, a), fi

〉2

L2(S,µ)
dν(a).

We define a function G(a) :=
〈
Q∗(·, a), fi

〉2

L2(S,µ)
. Recall that Q∗ ∈ L2(S×A, µ×ν)

and observe that G is a nonnegative measurable function. Then we can use Tonelli’s
theorem to see that

Tr(K∗K) =

∞∑
i=1

〈Kfi,Kfi〉L2(A,ν) =

∞∑
i=1

∫
A

〈
Q∗(·, a), fi

〉2

L2(S,µ)
dν(a)

=

∫
A

∞∑
i=1

〈
Q∗(·, a), fi

〉2

L2(S,µ)
dν(a) ∵ Tonelli’s theorem

=

∫
A
‖Q∗(·, a)‖2L2(S,µ)dν(a). ∵ the orthonormality of {fi}

We have
∫
A ‖Q∗(·, a)‖2L2(S,µ)dν(a) =

∫
A
(∫
S |Q∗(s, a)|2dµ(s)

)
dν(a) = ‖Q∗‖2L2(S×A,µ×ν)

by Fubini’s theorem and therefore,
∑∞

i=1 σ
2
i = ‖Q∗‖2L2(S×A,µ×ν).

3. Spectral decomposition of Q∗.

Sec. B.1. Proof of Theorem 4 153

Now we show that Q∗ =
∑∞

i=1 σifi ⊗ gi for the same singular values {σi ≥ 0 : i ∈ N}
and orthonormal bases {fi ∈ L2(S, µ) : i ∈ N}, {gi ∈ L2(A, ν) : i ∈ N} as in (B.2).

For that purpose, we assume that

Q∗ =
∞∑
i=1

σifi ⊗ gi + ε (B.3)

for some ε ∈ L2(S ×A, µ× ν). For all φ ∈ L2(S, µ) and ψ ∈ L2(A, ν), we have

〈ψ,Kφ〉L2(A,ν) =

∫
A
ψ(a)

(∫
S
Q∗(s, a)φ(s)dµ(s)

)
dν(a)

=

∫
A
ψ(a)

(∫
S

(∞∑
i=1

σifi(s)gi(a) + ε(s, a)
)
φ(s)dµ(s)

)
dν(a)

=

∫
A
ψ(a)

〈 ∞∑
i=1

σifi, φ

〉
L2(S,µ)

gi(a)dν(a) +

∫
A
ψ(a)

(∫
S
ε(s, a)φ(s)dµ(s)

)
dν(a).

When φ = fi and ψ = gj , we have 〈gj ,Kfi〉L2(A,ν) = σiδij . By Fubini’s theorem,

σiδij = σi〈gj , gi〉+

∫
S×A

ε(s, a)fi(s)gj(a)d(µ× ν)(s× a)

= σiδij + 〈ε, fi ⊗ gj〉L2(S×A,µ×ν). (B.4)

In order to satisfy (B.4), we must have 〈ε, fi ⊗ gj〉L2(S×A,µ×ν) = 0 for all (i, j) ∈ N2.

It is known that L2(S × A, µ× ν) is isomorphic to L2(S, µ)⊗ L2(A, ν) and {fi ⊗ gj :

(i, j) ∈ N2} constitutes an orthonormal basis of L2(S, µ)⊗ L2(A, ν). Therefore, ε = 0

and Q∗ =
∑∞

i=1 σifi ⊗ gi.

4. Best rank-r approximation of Q∗.

Without loss of generality, we may assume σ1 ≥ σ2 ≥ · · · ≥ 0, i.e., the singular values
are sorted in descending order. For any finite r ∈ N, let Q∗r =

∑r
i=1 σifi ⊗ gi.

Then,

∥∥Q∗ −Q∗r∥∥2

L2(S×A,µ×ν)
=

∥∥∥∥ ∞∑
i=r+1

σifi ⊗ gi
∥∥∥∥2

L2(S×A,µ×ν)

=

∞∑
i,j=r+1

σiσj
〈
fi ⊗ gi, fj ⊗ gj

〉
L2(S×A,µ×ν)

=
∞∑

i=r+1

σ2
i

154 Appendix B. Supplementary Materials for Chapter 3

where we have used the orthonormality of {fi} and {gi}.
We conclude the proof with two final remarks:

• Among all rank-r functions of the form
∑r

i=1 λiφi ⊗ ψi for some φi ∈ L2(S, µ),
ψi ∈ L2(A, ν), Q∗r is the “best” rank-r approximation of Q∗ in the L2(S ×A, µ× ν)

sense.

• Since
∑∞

i=1 σ
2
i < ∞, for any δ > 0, there exists r = r(δ) so that

∑∞
i=r+1 σ

2
i < δ.

That is, we can approximate Q∗r arbitrarily well with a sufficiently large, yet still
finite, rank r.

This completes the proof of Theorem 13. �

� B.2 Corollaries of Theorem 7

Recall that our algorithm do not demand any special properties of S,A except the existence
of β(t)-net, which is the case whenever S,A are compact. Also, our analysis is general in the
sense that it only requires S,A to be compact with finite measures, and Q∗ to be ζ-Lipschitz.
Therefore, it is not hard to see that our algorithm and analysis are applicable to the case
where state or action space is finite, or both. We summarize results below as corollaries of
Theorem 7 without proofs.

Before presenting the results, we recall the following quantity defined in Proposition 3:

c(r;S],A]) =

(
6
√

2
(√

|S]||A]|
σr(Q∗(S],A]))

)
+ 2(1 +

√
5)
(√

|S]||A]|
σr(Q∗(S],A]))

)2
)
Vmax,

that appears in Proposition 3 as the multiplier on the right-hand side of the inequality. This
quantity determines the range of γ and the convergence rate.

Continuous S ⊂ Rd and Finite A. In this case, the algorithm only needs to discretize
the state space at each iteration. In other words, A(t) = A, for all t = 1, . . . , T and
Ω(t) = {(s, a) ∈ S̄(t) × A : s ∈ S] or a ∈ A]}. Finally, the generalization step only needs
to interpolate over the state space S. We have the following guarantees as an immediate
corollary of Theorem 7:

Corollary 2. Consider the rank-r setting with continuous S and finite A. Suppose that
we run the RL algorithm (cf. Section 3.3) with the Matrix Estimation method described in
Section 3.5.2. If γ ≤ 1

2c(r;S],A]) , then the following statements hold.

1. For any δ > 0, we have

sup
(s,a)∈S×A

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ (2c(r;S],A])γ)tVmax, for all t = 1, . . . , T

Sec. B.3. Experimental Setup for Stochastic Control Tasks 155

with probability at least 1−δ by choosing algorithmic parameters β(t), N (t) appropriately.

2. Further, given ε > 0, it suffices to set T = Θ(log 1
ε) and use Õ(1

εd+2 · log 1
δ) number of

samples to achieve

P
(

sup
(s,a)∈S×A

∣∣Q(T)(s, a)−Q∗(s, a)
∣∣ ≤ ε) ≥ 1− δ.

Finite S and Finite A. Since the spaces are discrete, we have an optimal Q∗ being a
|S| × |A| matrix. For this special case, the algorithm simply skips the discretization (i.e.,
β(t) = 0) and generalization steps at each iteration. In other words, S(t) = S and A(t) = A,
for all t = 1, . . . , T , and Ω(t) = {(s, a) ∈ S × A : s ∈ S] or a ∈ A]}. Suppose that the
optimal matrix Q∗(S,A) is rank-r. We then have the following guarantees:

Corollary 3. Consider the rank-r setting with finite S and finite A. Suppose that we run
the RL algorithm (cf. Section 3.3) with the Matrix Estimation method described in Section
3.5.2. If γ ≤ 1

2c(r;S],A]) , then the following statements hold.

1. For any δ > 0, we have

sup
(s,a)∈S×A

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ (2c(r;S],A])γ)tVmax, for all t = 1, . . . , T

with probability at least 1−δ by choosing algorithmic parameters β(t), N (t) appropriately.

2. Further, given ε > 0, it suffices to set T = Θ(log 1
ε) and use Õ(max(|S|,|A|)

ε2
· log 1

δ)

number of samples to achieve

P
(

sup
(s,a)∈S×A

∣∣Q(T)(s, a)−Q∗(s, a)
∣∣ ≤ ε) ≥ 1− δ.

� B.3 Experimental Setup for Stochastic Control Tasks

In this section, we formalize the detailed settings for the stochastic control tasks we experi-
ment. Following previous work [161, 180], we briefly introduce the background for each task,
and then present the system dynamics as well as our simulation setting. For consistency,
we follow the dynamics setup in [161, 180], while adding additionally a noise term N to one
dimension of the state dynamics.

General Setup. For each task, we first discretize the state space and the the action space
into a fine grid and run standard value iteration to obtain a proxy of Q∗. Subsequently,
when measuring the `∞ error, we take the max (absolute) difference between our estimate

156 Appendix B. Supplementary Materials for Chapter 3

Q(t) and the proxy of Q∗ over this fine grid. For the mean error, we use the average of the
(absolute) difference over this grid. For anchor states and actions, we simply select r states
and r actions that are well separated in their respective space. To do so, we divide the space
uniformly into r parts and then select a state/action from each part randomly. We use r = 10

in all experiments. In terms of the comparison with different Matrix Estimation methods,
we note that as mentioned, the sampling procedure is different: traditional methods often
work by independently sampling each entry with some fixed probability p, while our method
explores a few entire rows and columns. We hence control all the ME methods to have the
same number of observations (i.e., same size of the exploration set Ω(t) as ours) at each
iteration, but switch to independent sampling for the traditional methods.

Inverted Pendulum. In this control task, we aim to balance an inverted pendulum on
the equilibrium position, i.e., the upright position [161]. The angle and the angular speed
tuple, (θ, θ̇), describes the system dynamics, which is formulated as follows [158]:

θ := θ + θ̇ τ,

θ̇ := θ̇ +
(

sin θ − θ̇ + u
)
τ +N (µ, σ2),

where τ is the time interval between decisions, u denotes the input torque on the pendulum,
and N refers to the noise term we add with mean µ and variance σ2. We formulate the
reward function to stabilize the pendulum on an upright pendulum as follows:

r(θ, u) = −0.1u2 + exp (cos θ − 1).

In the simulation, we limit the input torque to [−1, 1] and set τ = 0.3, µ = 0, and σ = 0.1.
We discretize each dimension of the state space into 50 values and action space into 1000
values, which form a discretized matrix of the optimal Q-value with dimension 2500× 1000.

Mountain Car. The Mountain Car problem aims to drive an under-powered car up to a
hill [158]. We use the position and the velocity of the car, (x, ẋ), to describe the physical
dynamics of the system. Denote by N the noise term added and u the acceleration input
on the car, we can express the system dynamics as

x := x+ ẋ+N (µ, σ2),

ẋ := ẋ− 0.0025 cos (3x) + 0.001u.

We define a reward function that encourages the car to drive up to the top of the hill at

Sec. B.3. Experimental Setup for Stochastic Control Tasks 157

x0 = 0.5:

r(x) =

{
10, x ≥ x0,

−1, else.

We follow the standard setting [180] to limit the input to u ∈ [−1, 1]. We choose µ = 0 and
σ = 1e−3. Similarly, the whole state space is discretized into 2500 values and the action
space is discretized into 1000 values, which translate to a 2500× 1000 discretized matrix of
the optimal Q-value.

Double Integrator. We consider the Double Integrator system [133], where a unit mass
brick moves along the x-axis on a frictionless surface. The brick is controlled with a hori-
zontal input force u, which aims to regulate the brick to x = [0, 0]T [161]. Similarly, we use
the position and the velocity (x, ẋ) of the brick to describe the physical dynamics:

x := x+ ẋ τ +N (µ, σ2),

ẋ := ẋ+ u τ,

where N is the noise term added. Following [161], we define the reward function using the
quadratic cost formulation:

r(x, ẋ) = −1

2

(
x2 + ẋ2

)
.

The input torque is limited to u ∈ [−1, 1]. We again set τ = 0.1, µ = 0, and σ = 0.1. Similar
to the previous tasks, we obtain a discretization of size 2500×1000 for the optimal Q-value,
with state space discretized into 2500 values and action space discretized into 1000 values.

Cart-Pole. Besides simple tasks with small state dimensions, we consider the harder Cart-
Pole problem with a 4-dimensional state space [18]. The problem consists of a pole attached
to a cart moving on a frictionless track, aiming to stabilize the pole at the upright stable
position. The cart is controlled by a limited force that can be applied to both sides of the
cart. To describe the physical dynamics of the Cart-Pole system, we use a 4-element tuple
(θ, θ̇, x, ẋ), corresponding to the angle of the pole, the angular speed of the pole, the position
of the cart, and the speed of the cart. The dynamics can be expressed as follows:

θ̈ :=
g sin θ − u+mlθ̇2 sin θ

mc+m
cos θ

l
(

4
3 − m cos2 θ

mc+m

) ,

ẍ :=
u+ml

(
θ̇2 sin θ − θ̈ cos θ

)
mc +m

,

θ := θ + θ̇ τ,

θ̇ := θ̇ + θ̈ τ +N (µ, σ2),

158 Appendix B. Supplementary Materials for Chapter 3

x := x+ ẋ τ,

ẋ := ẋ+ ẍ τ,

where u ∈ [−10, 10] denotes the input applied to the cart, N with µ = 0 and σ = 0.1 denotes
the noise term, mc = 1kg denotes the mass of the cart, m = 0.1kg denotes the mass of the
pole, and g = 9.8m/s2 corresponds to the gravitational acceleration.

We define the reward function similar to Inverted Pendulum that tries to stabilize the
pole in the upright position:

r(θ) = cos4 (15θ).

In the simulation, we discretize each dimension of the state space into 10 values and action
space into 1000 values, which form a descritized optimalQ-value matrix of dimension 10000×
1000.

Acrobot. Finally, we present the Acrobot swinging up task [161]. The Acrobot is an
underactuated two-link robotic arm in the vertical plane (i.e., a two-link pendulum), with
only an actuator on the second joint. The goal is to stabilize the Acrobot at the upright
position. The equations of motion for the Acrobot can be derived using the method of
Lagrange [161]. The physical dynamics of the system is described by the angle and the
angular speed of both links, i.e., (θ1, θ̇1, θ2, θ̇2). Denote by τ the time interval, u the input
force on the second joint, and N the noise term added, the dynamics of Acrobot can be
derived as:

D1 := m1

(
l21 + l2c1

)
+m2

(
l21 + l22 + l2c2 + 2l1lc2 cos θ2

)
,

D2 := m2

(
l22 + l2c2 + l1lc2 cos θ2

)
,

φ2 := m2lc2g sin (θ1 + θ2),

φ1 := −m2l1lc2θ̇2

(
θ̇2 + 2θ̇1

)
sin θ2 + (m1lc1 +m2l1) g sin θ1 + φ2,

θ̈2 :=
u+ D2

D1
φ1 −m2l1lc2θ̇1

2
sin θ2 − φ2

m2(l22 + l2c2)− D2
2

D1

,

θ̈1 := −D2θ̈2 + φ1

D1
,

θ1 := θ1 + θ̇1 τ,

θ̇1 := θ̇1 + θ̈1 τ +N (µ, σ2),

θ2 := θ2 + θ̇2 τ,

θ̇2 := θ̇2 + θ̈2 τ,

where l1 = l2 = 1m are the length of the two links, lc1 = lc2 = 0.5m denote position of the

Sec. B.4. Additional Results on Stochastic Control Tasks 159

center of mass of both links, m1 = m2 = 1kg denote the mass of two links, and g = 9.8m/s2

denotes the gravitational acceleration. u corresponds to the input force applied, which is
limited to u ∈ [−10, 10].

Similar to the Inverted Pendulum, we define the reward function that favors the Acrobot
to stabilize at the upright point x = [π, 0, 0, 0]T :

r(θ, u) = exp (− cos θ1 − 1) + exp (− cos (θ1 + θ2)− 1).

Since the state space of Acrobot is also 4-dimensional, we again discretize each dimension of
the state space into 10 values and action space into 1000 values. This leads to a discretized
optimal Q-value matrix with dimension 10000× 1000.

� B.4 Additional Results on Stochastic Control Tasks

In this section, we provide additional empirical results supporting our theories. These include
(1) plots for sample complexity and error guarantees, and visualizations of the learned
policies on all of the 5 tasks; (2) runtime comparisons for the various ME methods used in
our experiments; (3) results on Inverted Pendulum for a smaller discounting factor.

� B.4.1 Empirical Evaluation on All Control Tasks

Summary of Empirical Results. We first remark that the conclusion remains the same
as in the main chapter (cf. Section 3.7). Using our low-rank algorithm with the proposed
ME method, the sample complexity is significantly improved as compared with the baseline.
For the error guarantees, our ME method is very competitive, both in `∞ error and mean
error. We again note that our simple method is much more efficient in terms of computational
complexity, compared to other MEmethods based on solving optimization problems. Finally,
the visualization of policies demonstrates that the learned policy, obtained from the output
Q(T), is often very close to the policy obtained from Q∗. As a result, this leads to the desired
behavior in terms of performance metrics as summarized in Table 3.3 of Chapter 3. Overall,
these consistent results across various stochastic control tasks confirm the efficacy of our
generic low-rank algorithm.

Sample Complexity and Error Guarantees. Figure B.1 presents the results with the
first two columns showing the sample complexity improvements and the last two columns
demonstrating the error guarantees.

Policy Visualizations. We visualize the learned policies in Figure B.2 with the first column
showing the optimal policy and the other columns displaying policies learned based on our
low-rank RL algorithm but with different ME methods.

160 Appendix B. Supplementary Materials for Chapter 3

In
ve

rt
ed

P
en

d
u
lu

m

1 2 3 4 5 6 7 8 9
of Samples 1e7

2

3

4

5

6

7

Lo
ss

 (
)

Ours
Baseline VI

1 2 3 4 5 6 7 8 9
of Samples 1e7

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

 (m
ea

n)

Ours
Baseline VI

0 10 20 30 40
Iteration

2

3

4

5

6

7

Lo
ss

 (
) Ours

USVT
Soft-Impute
Nuclear Norm

0 10 20 30 40
Iteration

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

 (m
ea

n) Ours
USVT
Soft-Impute
Nuclear Norm

M
ou

n
ta

in
C

ar

1 2 3 4 5 6 7 8 9
of Samples 1e7

20

40

60

80

Lo
ss

 (
)

Ours
Baseline VI

1 2 3 4 5 6 7 8 9
of Samples 1e7

0

2

4

6

8

10

12

14

Lo
ss

 (m
ea

n)

Ours
Baseline VI

0 10 20 30 40
Iteration

20

40

60

80

100

Lo
ss

 (
)

Ours
USVT
Soft-Impute
Nuclear Norm

0 10 20 30 40
Iteration

0

2

4

6

8

10

12

14

Lo
ss

 (m
ea

n) Ours
USVT
Soft-Impute
Nuclear Norm

D
ou

b
le

In
te

gr
at

or

1 2 3 4 5 6 7 8 9
of Samples 1e7

20

30

40

50

60

Lo
ss

 (
)

Ours
Baseline VI

1 2 3 4 5 6 7 8 9
of Samples 1e7

0

5

10

15

20

Lo
ss

 (m
ea

n)

Ours
Baseline VI

0 10 20 30 40
Iteration

20

30

40

50

60

70

Lo
ss

 (
) Ours

USVT
Soft-Impute
Nuclear Norm

0 10 20 30 40
Iteration

0

5

10

15

20

Lo
ss

 (m
ea

n) Ours
USVT
Soft-Impute
Nuclear Norm

C
ar

t-
P
ol

e

0.5 1.0 1.5 2.0 2.5 3.0 3.5
of Samples 1e8

0

1

2

3

4

5

Lo
ss

 (
)

Ours
Baseline VI

0.5 1.0 1.5 2.0 2.5 3.0 3.5
of Samples 1e8

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

 (m
ea

n)

Ours
Baseline VI

0 10 20 30 40
Iteration

0

1

2

3

4

5

Lo
ss

 (
)

Ours
USVT
Soft-Impute
Nuclear Norm

0 10 20 30 40
Iteration

0.0

0.5

1.0

1.5

2.0
Lo

ss
 (m

ea
n)

Ours
USVT
Soft-Impute
Nuclear Norm

A
cr

ob
ot

0.5 1.0 1.5 2.0 2.5 3.0 3.5
of Samples 1e8

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Lo
ss

 (
)

Ours
Baseline VI

(a) Sample Complexity

0.5 1.0 1.5 2.0 2.5 3.0 3.5
of Samples 1e8

0

2

4

6

8

10

Lo
ss

 (m
ea

n)

Ours
Baseline VI

(b) Sample Complexity

0 10 20 30 40
Iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Lo
ss

 (
)

Ours
USVT
Soft-Impute
Nuclear Norm

(c) `∞ Errors

0 10 20 30 40
Iteration

0

2

4

6

8

10

Lo
ss

 (m
ea

n)

Ours
USVT
Soft-Impute
Nuclear Norm

(d) Mean Errors

Figure B.1. Sample complexity and error guarantees for 5 stochastic control tasks. From top to bottom,
the rows show empirical results on Inverted Pendulum, Mountain Car, Double Integrator, Cart-Pole and
Acrobot, respectively. In columns (a) and (b), we show the improved sample complexity for achieving
different levels of `∞ error and mean error, respectively. In columns (c) and (d), we compare the `∞ error
and the mean error for various ME methods. Results are averaged across 5 runs for each method.

Sec. B.4. Additional Results on Stochastic Control Tasks 161

In
ve

rt
ed

P
en

d
u
lu

m

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

M
ou

n
ta

in
C

ar

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

·10−2

position

sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

·10−2

position

sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

·10−2

position

sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

·10−2

position

sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

D
ou

b
le

In
te

gr
at

or

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

position

sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

position

sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

position

sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

position

sp
ee
d

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
ar

t-
P
ol

e

−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

angle

an
gu
la
r
sp
ee
d

−10

−8

−6

−4

−2

0

2

4

6

8

10

−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

angle

an
gu
la
r
sp
ee
d

−10

−8

−6

−4

−2

0

2

4

6

8

10

−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

angle

an
gu
la
r
sp
ee
d

−10

−8

−6

−4

−2

0

2

4

6

8

10

−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

angle

an
gu
la
r
sp
ee
d

−10

−8

−6

−4

−2

0

2

4

6

8

10

A
cr

ob
ot

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) Optimal Policy

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) Soft-Impute

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

−10

−8

−6

−4

−2

0

2

4

6

8

10

(c) Nuclear Norm

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

angle

an
gu
la
r
sp
ee
d

−10

−8

−6

−4

−2

0

2

4

6

8

10

(d) Ours

Figure B.2. Policy visualizations of different methods for 5 stochastic control tasks. From top to bot-
tom, the rows show empirical results on Inverted Pendulum, Mountain Car, Double Integrator, Cart-
Pole and Acrobot, respectively. The policies are obtained from the corresponding output Q(T) by tak-
ing argmaxa∈AQ

(T)(s, a) at each state s. Recall the for both Cart-Pole and Acrobot, the state space is
4-dimensional. We hence visualize a 2-dimensional slice in the figures above.

162 Appendix B. Supplementary Materials for Chapter 3

� B.4.2 Comparison on Runtime of Different ME Methods
Nuclear norm minimization is known to be computationally expensive for large matrices.
Here, we provide a preliminary result on the runtime of different ME methods in our ex-
periments, demonstrating the computational gain of our approach beyond its theoretical
guarantees. Specifically, we calculate the average runtime for one iteration using different
ME methods on the Inverted Pendulum task with a 2500×1000 matrix. We leave other
hyper-parameters unchanged, and perform 5 runs for each method. As Table B.1 reports,
the nuclear norm minimization is, as expected, computationally most expensive; in contrast,
our method is about 40x faster, confirming the computational efficiency of our approach.

Table B.1. The runtime comparison of different ME methods for one iteration on the Inverted Pendulum
task. Results are averaged across 5 runs for each method.

ME Method Soft-Impute Nuclear norm Ours

Runtime (s) 41.5 ± 1.7 76.3 ± 8.2 1.9 ± .6

� B.4.3 Additional Study on the Discounting Factor γ
Throughout the empirical study, we follow the literature [161, 180] to use a large discounting
factor γ (i.e., 0.9) on several real control tasks. We have demonstrated that the proposed
low-rank algorithm can perform well on those settings, confirming the efficacy of our method.
Just as a final proof of concept for our theoretical guarantees, we provide in this section an
ablation study on the `∞ error with smaller value of γ. We choose γ = 0.5 on the Inverted
Pendulum control task (note that this would affect the reward design and change the original
task). The experiment is only meant to further validate our guarantees.

We show the sample complexity as well as the `∞ errors in Figure B.3. As expected, with
a smaller γ, the convergence is faster. Again, the overall conclusion is consistent with the
previous experiments: significant gains on sample complexity are achieved by our efficient
algorithm, and the performance of our simple ME method is competitive.

1 2 3 4 5 6 7 8 9
of Samples 1e7

0.2

0.4

0.6

0.8

1.0

Lo
ss

 (
)

Ours
Baseline VI

(a) Sample Complexity, γ = 0.5

0 10 20 30 40
Iteration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

 (
) Ours

USVT
Soft-Impute
Nuclear Norm

(b) `∞ Errors, γ = 0.5

Figure B.3. Empirical results on the Inverted Pendulum control task with γ = 0.5. We show the improved
sample complexity in (a) and compare the `∞ error for various ME methods in (b).

Bibliography

[1] Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control
of linear quadratic systems. In Proceedings of the 24th Annual Conference on Learning
Theory, pages 1–26, 2011.

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy op-
timization. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 22–31. JMLR. org, 2017.

[3] Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe:
Structural complexity and representation learning of low rank mdps. arXiv preprint
arXiv:2006.10814, 2020.

[4] Anish Agarwal, Abdullah Alomar, Varkey Alumootil, Devavrat Shah, Dennis Shen,
Zhi Xu, and Cindy Yang. Persim: Data-efficient offline reinforcement learning with
heterogeneous agents via personalized simulators. arXiv preprint arXiv:2102.06961,
2021.

[5] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic per-
spective on offline reinforcement learning. In International Conference on Machine
Learning, pages 104–114. PMLR, 2020.

[6] Rajeev Agrawal. Sample mean based index policies by o (log n) regret for the multi-
armed bandit problem. Advances in Applied Probability, 27(4):1054–1078, 1995.

[7] Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

[8] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight
experience replay. arXiv preprint arXiv:1707.01495, 2017.

[9] András Antos, Csaba Szepesvári, and Rémi Munos. Fitted q-iteration in continuous
action-space mdps. In Advances in neural information processing systems, pages 9–16,
2008.

[10] Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models–going beyond
svd. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science,
pages 1–10. IEEE, 2012.

163

164 BIBLIOGRAPHY

[11] Anil Aswani, Humberto Gonzalez, S Shankar Sastry, and Claire Tomlin. Provably safe
and robust learning-based model predictive control. Automatica, 49(5):1216–1226,
2013.

[12] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Exploration–exploitation
tradeoff using variance estimates in multi-armed bandits. Theoretical Computer Sci-
ence, 410(19):1876–1902, 2009.

[13] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[14] David Auger, Adrien Couetoux, and Olivier Teytaud. Continuous upper confidence
trees with polynomial exploration–consistency. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pages 194–209. Springer, 2013.

[15] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax pac
bounds on the sample complexity of reinforcement learning with a generative model.
Machine learning, 91(3):325–349, 2013.

[16] Kamyar Azizzadenesheli, Brandon Yang, Weitang Liu, Emma Brunskill, Zachary C.
Lipton, and Animashree Anandkumar. Sample-efficient deep RL with generative ad-
versarial tree search. CoRR, abs/1806.05780, 2018.

[17] Peter Bartlett, Victor Gabillon, Jennifer Healey, and Michal Valko. Scale-free adaptive
planning for deterministic dynamics & discounted rewards. In International Confer-
ence on Machine Learning, pages 495–504, 2019.

[18] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE transactions on
systems, man, and cybernetics, pages 834–846, 1983.

[19] Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. Safe controller optimiza-
tion for quadrotors with gaussian processes. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 491–496. IEEE, 2016.

[20] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe
model-based reinforcement learning with stability guarantees. In Advances in neural
information processing systems, pages 908–918, 2017.

[21] D. Bertsekas. Convergence of discretization procedures in dynamic programming.
IEEE Transactions on Automatic Control, 20(3):415–419, 1975.

[22] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena
Scientific, 1996.

[23] D.P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 2017.

[24] Rajendra Bhatia. Notes on functional analysis, volume 50. Springer, 2009.

BIBLIOGRAPHY 165

[25] Carlos F Bispo. Single server scheduling problem: Optimal policy for convex costs
depends on arrival rates. In Proc. Multidisciplinary Int. Conf. on Scheduling: Theory
and Applications (MISTA 2011), pages 275–296, 2011.

[26] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of monte carlo tree search methods. IEEE Transactions
on Computational Intelligence and AI in games, 4(1):1–43, 2012.

[27] Sébastien Bubeck, Nicolò Cesa-Bianchi, et al. Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. Foundations and Trends® in Machine Learn-
ing, 5(1):1–122, 2012.

[28] C Buyukkoc, P Varaiya, and Jean Walrand. The cµ rule revisited. Advances in applied
probability, 17(1):237–238, 1985.

[29] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer
science & business media, 2013.

[30] Emmanuel J Candes and Yaniv Plan. Matrix completion with noise. Proceedings of
the IEEE, 98(6):925–936, 2010.

[31] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex opti-
mization. Foundations of Computational mathematics, 9(6):717, 2009.

[32] Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal
matrix completion. IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

[33] Hyeong Soo Chang, Michael C. Fu, Jiaqiao Hu, and Steven I Marcus. An adap-
tive sampling algorithm for solving markov decision processes. Operations Research,
53(1):126–139, 2005.

[34] Sourav Chatterjee et al. Matrix estimation by universal singular value thresholding.
The Annals of Statistics, 43(1):177–214, 2015.

[35] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H
Chi. Top-k off-policy correction for a reinforce recommender system. In Proceedings
of the Twelfth ACM International Conference on Web Search and Data Mining, pages
456–464, 2019.

[36] Steven Chen, Kelsey Saulnier, Nikolay Atanasov, Daniel D Lee, Vijay Kumar, George J
Pappas, and Manfred Morari. Approximating explicit model predictive control using
constrained neural networks. In 2018 Annual American Control Conference (ACC),
pages 1520–1527. IEEE, 2018.

[37] Yudong Chen and Yuejie Chi. Harnessing structures in big data via guaranteed low-
rank matrix estimation. arXiv preprint arXiv:1802.08397, 2018.

[38] Yudong Chen and Martin J Wainwright. Fast low-rank estimation by projected
gradient descent: General statistical and algorithmic guarantees. arXiv preprint
arXiv:1509.03025, 2015.

166 BIBLIOGRAPHY

[39] Yuxin Chen, Yuejie Chi, Jianqing Fan, Cong Ma, and Yuling Yan. Noisy matrix
completion: Understanding statistical guarantees for convex relaxation via nonconvex
optimization. arXiv preprint arXiv:1902.07698, 2019.

[40] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh.
A lyapunov-based approach to safe reinforcement learning. In Advances in Neural
Information Processing Systems, pages 8092–8101, 2018.

[41] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep rein-
forcement learning in a handful of trials using probabilistic dynamics models. arXiv
preprint arXiv:1805.12114, 2018.

[42] Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and
Pieter Abbeel. Model-based reinforcement learning via meta-policy optimization. In
Conference on Robot Learning, pages 617–629. PMLR, 2018.

[43] John B Conway. A course in functional analysis, volume 96. Springer, 2019.

[44] Pierre-Arnaud Coquelin and Rémi Munos. Bandit algorithms for tree search. arXiv
preprint cs/0703062, 2007.

[45] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search.
In International conference on computers and games, pages 72–83. Springer, 2006.

[46] J. G. Dai and B. Prabhakar. The throughput of data switches with and without
speedup. In Proceedings IEEE INFOCOM 2000. Conference on Computer Communi-
cations. Nineteenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies (Cat. No.00CH37064), volume 2, pages 556–564 vol.2, 2000.

[47] JG Dai and Mark Gluzman. Queueing network controls via deep reinforcement learn-
ing. arXiv preprint arXiv:2008.01644, 2020.

[48] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Padu-
raru, and Yuval Tassa. Safe exploration in continuous action spaces. arXiv preprint
arXiv:1801.08757, 2018.

[49] Mark A Davenport and Justin Romberg. An overview of low-rank matrix recovery
from incomplete observations. arXiv preprint arXiv:1601.06422, 2016.

[50] Sarah Dean, Stephen Tu, Nikolai Matni, and Benjamin Recht. Safely learning to con-
trol the constrained linear quadratic regulator. In 2019 American Control Conference
(ACC), pages 5582–5588. IEEE, 2019.

[51] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on
machine learning (ICML-11), pages 465–472. Citeseer, 2011.

[52] Lijun Ding and Yudong Chen. Leave-one-out approach for matrix completion: Primal
and dual analysis. IEEE Transactions on Information Theory, 2020.

BIBLIOGRAPHY 167

[53] Yaqi Duan, Tracy Ke, and Mengdi Wang. State aggregation learning from markov
transition data. In Advances in Neural Information Processing Systems, pages 4488–
4497, 2019.

[54] F. Dufour and T. Prieto-Rumeau. Finite linear programming approximations of con-
strained discounted Markov decision processes. SIAM Journal on Control and Opti-
mization, 51(2):1298–1324, 2013.

[55] François Dufour and Tomás Prieto-Rumeau. Approximation of markov decision pro-
cesses with general state space. Journal of Mathematical Analysis and applications,
388(2):1254–1267, 2012.

[56] Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor. Multiple-step greedy
policies in approximate and online reinforcement learning. In Advances in Neural
Information Processing Systems, pages 5244–5253, 2018.

[57] Atilla Eryilmaz and Rayadurgam Srikant. Asymptotically tight steady-state queue
length bounds implied by drift conditions. Queueing Systems, 72(3-4):311–359, 2012.

[58] E. Even-Dar and Y. Mansour. Learning rates for Q-learning. JMLR, 5, December
2004.

[59] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation
error in actor-critic methods. In International Conference on Machine Learning, pages
1587–1596. PMLR, 2018.

[60] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learn-
ing without exploration. In International Conference on Machine Learning, pages
2052–2062. PMLR, 2019.

[61] Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control:
Theory and practice—a survey. Automatica, 25(3):335–348, 1989.

[62] Javier Garcia and Fernando Fernández. Safe exploration of state and action spaces in
reinforcement learning. Journal of Artificial Intelligence Research, 45:515–564, 2012.

[63] Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, 16(1):1437–1480, 2015.

[64] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local
minimum. In Advances in Neural Information Processing Systems, pages 2973–2981,
2016.

[65] Peter W Glynn, Assaf Zeevi, et al. Bounding stationary expectations of markov
processes. In Markov processes and related topics: a Festschrift for Thomas G. Kurtz,
pages 195–214. Institute of Mathematical Statistics, 2008.

[66] Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, Bernhard
Schölkopf, and Sergey Levine. Interpolated policy gradient: Merging on-policy
and off-policy gradient estimation for deep reinforcement learning. arXiv preprint
arXiv:1706.00387, 2017.

168 BIBLIOGRAPHY

[67] Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang. Deep
learning for real-time atari game play using offline monte-carlo tree search planning.
In Advances in neural information processing systems, pages 3338–3346, 2014.

[68] David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122,
2018.

[69] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International Conference on Machine Learning, pages 1861–1870. PMLR, 2018.

[70] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak
Lee, and James Davidson. Learning latent dynamics for planning from pixels. In
International Conference on Machine Learning, pages 2555–2565. PMLR, 2019.

[71] Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with
applications. Advances in Applied probability, 14(3):502–525, 1982.

[72] Shlomo Halfin and Ward Whitt. Heavy-traffic limits for queues with many exponential
servers. Operations research, 29(3):567–588, 1981.

[73] Alexander Hans, Daniel Schneegaß, Anton Maximilian Schäfer, and Steffen Udluft.
Safe exploration for reinforcement learning. In ESANN, pages 143–148, 2008.

[74] J Michael Harrison. The diffusion approximation for tandem queues in heavy traffic.
Advances in Applied Probability, 10(4):886–905, 1978.

[75] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow:
Combining improvements in deep reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[76] W Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of Americal Statistics Association, 58, 1963.

[77] Jean-Francois Hren and Rémi Munos. Optimistic planning of deterministic systems.
In European Workshop on Reinforcement Learning, pages 151–164. Springer, 2008.

[78] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your
model: Model-based policy optimization. arXiv preprint arXiv:1906.08253, 2019.

[79] Daniel R. Jiang, Emmanuel Ekwedike, and Han Liu. Feedback-based tree search for
reinforcement learning. In International conference on machine learning, 2018.

[80] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E
Schapire. Contextual decision processes with low bellman rank are pac-learnable. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1704–1713, 2017.

BIBLIOGRAPHY 169

[81] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient
reinforcement learning with linear function approximation. In Conference on Learning
Theory, pages 2137–2143. PMLR, 2020.

[82] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[83] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Camp-
bell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey
Levine, et al. Model-based reinforcement learning for atari. arXiv preprint
arXiv:1903.00374, 2019.

[84] Sham Kakade. On the sample complexity of reinforcement learning. PhD thesis, 2003.

[85] Sham M Kakade. A natural policy gradient. Advances in neural information processing
systems, 14, 2001.

[86] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric
Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al.
Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation.
arXiv preprint arXiv:1806.10293, 2018.

[87] Emilie Kaufmann and Wouter M Koolen. Monte-carlo tree search by best arm iden-
tification. In Advances in Neural Information Processing Systems, pages 4897–4906,
2017.

[88] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm
for near-optimal planning in large markov decision processes. Machine learning, 49(2-
3):193–208, 2002.

[89] Michael Kearns, Yishay Mansour, and Satinder Singh. Fast planning in stochastic
games. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intel-
ligence, pages 309–316, 2000.

[90] Michael Kearns and Satinder Singh. Finite-sample convergence rates for q-learning
and indirect algorithms. In Proceedings of the 1998 Conference on Advances in Neural
Information Processing Systems II, pages 996–1002, Cambridge, MA, USA, 1999. MIT
Press.

[91] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-
Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a
day. In 2019 International Conference on Robotics and Automation (ICRA), pages
8248–8254. IEEE, 2019.

[92] Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion
from a few entries. IEEE transactions on information theory, 56(6):2980–2998, 2010.

[93] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims.
Morel: Model-based offline reinforcement learning. arXiv preprint arXiv:2005.05951,
2020.

170 BIBLIOGRAPHY

[94] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European
conference on machine learning, pages 282–293. Springer, 2006.

[95] Levente Kocsis, Csaba Szepesvári, and Jan Willemson. Improved monte-carlo search.
Univ. Tartu, Estonia, Tech. Rep, 2006.

[96] Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause. Learning-
based model predictive control for safe exploration. In 2018 IEEE Conference on
Decision and Control (CDC), pages 6059–6066. IEEE, 2018.

[97] Vladimir Koltchinskii, Karim Lounici, Alexandre B Tsybakov, et al. Nuclear-norm
penalization and optimal rates for noisy low-rank matrix completion. The Annals of
Statistics, 39(5):2302–2329, 2011.

[98] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural
information processing systems, pages 1008–1014. Citeseer, 2000.

[99] Subhashini Krishnasamy, Ari Arapostathis, Ramesh Johari, and Sanjay Shakkottai.
On learning the cµ rule in single and parallel server networks. In 2018 56th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), pages
153–154. IEEE, 2018.

[100] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabi-
lizing off-policy q-learning via bootstrapping error reduction. In Advances in Neural
Information Processing Systems, pages 11784–11794, 2019.

[101] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-
learning for offline reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

[102] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-
ensemble trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

[103] Harold Kushner. Heavy traffic analysis of controlled queueing and communication
networks, volume 47. Springer Science & Business Media, 2013.

[104] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules.
Advances in applied mathematics, 6(1):4–22, 1985.

[105] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning.
In Reinforcement learning, pages 45–73. Springer, 2012.

[106] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Reinforcement learning
in continuous action spaces through sequential monte carlo methods. In Advances in
neural information processing systems, pages 833–840, 2008.

[107] Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. Context-
aware dynamics model for generalization in model-based reinforcement learning. In
International Conference on Machine Learning, pages 5757–5766. PMLR, 2020.

BIBLIOGRAPHY 171

[108] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training
of deep visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–
1373, 2016.

[109] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforce-
ment learning: Tutorial, review, and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

[110] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. 2016.

[111] Bai Liu, Qiaomin Xie, and Eytan Modiano. Reinforcement learning for optimal control
of queueing systems. In 2019 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 663–670. IEEE, 2019.

[112] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Prov-
ably good batch reinforcement learning without great exploration. arXiv preprint
arXiv:2007.08202, 2020.

[113] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma.
Algorithmic framework for model-based deep reinforcement learning with theoretical
guarantees. arXiv preprint arXiv:1807.03858, 2018.

[114] Hamid Reza Maei, Csaba Szepesvári, Shalabh Bhatnagar, and Richard S Sutton.
Toward off-policy learning control with function approximation. In ICML, 2010.

[115] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and
Mohammad Alizadeh. Learning scheduling algorithms for data processing clusters.
In Proceedings of the ACM Special Interest Group on Data Communication, pages
270–288. ACM, 2019.

[116] Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf, and Mohammad
Alizadeh. Variance reduction for reinforcement learning in input-driven environments.
arXiv preprint arXiv:1807.02264, 2018.

[117] Weichao Mao, Kaiqing Zhang, Qiaomin Xie, and Tamer Başar. Poly-hoot: Monte-
carlo planning in continuous space mdps with non-asymptotic analysis. arXiv preprint
arXiv:2006.04672, 2020.

[118] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algo-
rithms for learning large incomplete matrices. Journal of machine learning research,
11(Aug):2287–2322, 2010.

[119] Francisco S Melo, Sean P Meyn, and M Isabel Ribeiro. An analysis of reinforce-
ment learning with function approximation. In Proceedings of the 25th international
conference on Machine learning, pages 664–671, 2008.

172 BIBLIOGRAPHY

[120] Jean-François Mertens, Ester Samuel-Cahn, and Shmuel Zamir. Necessary and suffi-
cient conditions for recurrence and transience of markov chains, in terms of inequalities.
Journal of Applied Probability, 15(4):848–851, 1978.

[121] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International conference on machine learning,
pages 1928–1937, 2016.

[122] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[123] Ciamac C Moallemi, Sunil Kumar, and Benjamin Van Roy. Approximate and data-
driven dynamic programming for queueing networks. Submitted for publication, 2008.

[124] Rémi Munos et al. From bandits to monte-carlo tree search: The optimistic principle
applied to optimization and planning. Foundations and Trends® in Machine Learning,
7(1):1–129, 2014.

[125] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration.
Journal of Machine Learning Research, 9(May):815–857, 2008.

[126] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural
network dynamics for model-based deep reinforcement learning with model-free fine-
tuning. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 7559–7566. IEEE, 2018.

[127] Xinkun Nie, Emma Brunskill, and Stefan Wager. Learning when-to-treat policies.
Journal of the American Statistical Association, pages 1–18, 2020.

[128] David C Parkes, Dimah Yanovsky, and Satinder P Singh. Approximately efficient
online mechanism design. In Advances in Neural Information Processing Systems,
pages 1049–1056, 2005.

[129] Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L
Littman. An analysis of linear models, linear value-function approximation, and fea-
ture selection for reinforcement learning. In Proceedings of the 25th international
conference on Machine learning, pages 752–759, 2008.

[130] Martin Pecka and Tomas Svoboda. Safe exploration techniques for reinforcement
learning–an overview. In International Workshop on Modelling and Simulation for
Autonomous Systems, pages 357–375. Springer, 2014.

[131] Theodore J Perkins and Andrew G Barto. Lyapunov design for safe reinforcement
learning. Journal of Machine Learning Research, 3(Dec):803–832, 2002.

BIBLIOGRAPHY 173

[132] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization. SIAM review,
52(3):471–501, 2010.

[133] Wei Ren and Randal W Beard. Consensus algorithms for double-integrator dynamics.
Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications,
pages 77–104, 2008.

[134] Benjamin V Roy and Daniela D Farias. Approximate linear programming for average-
cost dynamic programming. In Advances in neural information processing systems,
pages 1619–1626, 2003.

[135] Dorsa Sadigh and Ashish Kapoor. Safe control under uncertainty with probabilistic
signal temporal logic. In Proceedings of Robotics: Science and Systems, 2016.

[136] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep
reinforcement learning framework for autonomous driving. Electronic Imaging,
2017(19):70–76, 2017.

[137] Antoine Salomon and Jean-Yves Audibert. Deviations of stochastic bandit regret. In
International Conference on Algorithmic Learning Theory, pages 159–173. Springer,
2011.

[138] Maarten P. D. Schadd, Mark H. M. Winands, H. Jaap van den Herik, Guillaume M.
J. B. Chaslot, and Jos W. H. M. Uiterwijk. Single-player monte-carlo tree search.
In H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, and Mark H. M. Winands, ed-
itors, Computers and Games, pages 1–12, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[139] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
et al. Mastering atari, go, chess and shogi by planning with a learned model. Nature,
588(7839):604–609, 2020.

[140] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International Conference on Machine Learning,
pages 1889–1897, 2015.

[141] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[142] Devavrat Shah, Dogyoon Song, Zhi Xu, and Yuzhe Yang. Sample efficient reinforce-
ment learning via low-rank matrix estimation. arXiv preprint arXiv:2006.06135, 2020.

[143] Devavrat Shah and Qiaomin Xie. Q-learning with nearest neighbors. In Advances in
Neural Information Processing Systems, pages 3111–3121, 2018.

[144] Devavrat Shah, Qiaomin Xie, and Zhi Xu. Non-asymptotic analysis of monte carlo
tree search. In Abstracts of the 2020 SIGMETRICS/Performance Joint International
Conference on Measurement and Modeling of Computer Systems, pages 31–32, 2020.

174 BIBLIOGRAPHY

[145] Devavrat Shah, Qiaomin Xie, and Zhi Xu. Stable reinforcement learning with un-
bounded state space. arXiv preprint arXiv:2006.04353, 2020.

[146] Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal time
and sample complexities for solving markov decision processes with a generative model.
In Advances in Neural Information Processing Systems, pages 5186–5196, 2018.

[147] Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value it-
eration and faster algorithms for solving markov decision processes. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
770–787. SIAM, 2018.

[148] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

[149] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al.
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.
arXiv preprint arXiv:1712.01815, 2017.

[150] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-
tering the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

[151] R Srikant and Lei Ying. Finite-time error bounds for linear stochastic approximation
and td learning. arXiv preprint arXiv:1902.00923, 2019.

[152] Rayadurgam Srikant and Lei Ying. Communication networks: an optimization, con-
trol, and stochastic networks perspective. Cambridge University Press, 2013.

[153] Gilbert W Stewart. On the perturbation of pseudo-inverses, projections and linear
least squares problems. SIAM review, 19(4):634–662, 1977.

[154] Charles J. Stone. Optimal global rates of convergence for nonparametric regression.
The Annals of Statistics, pages 1040–1053, 1982.

[155] Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman.
Pac model-free reinforcement learning. In Proceedings of the 23rd international con-
ference on Machine learning, pages 881–888. ACM, 2006.

[156] Nathan R. Sturtevant. An analysis of uct in multi-player games. In H. Jaap van den
Herik, Xinhe Xu, Zongmin Ma, and Mark H. M. Winands, editors, Computers and
Games, pages 37–49, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[157] Richard S. Sutton. Learning to predict by the methods of temporal differences. Ma-
chine learning, 3(1):9–44, 1988.

BIBLIOGRAPHY 175

[158] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[159] Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík, John
Langford, Damien Jose, and Imed Zitouni. Off-policy evaluation for slate recommen-
dation. arXiv preprint arXiv:1605.04812, 2016.

[160] Csaba Szepesvári. Personal communication. January 2019.

[161] Russ Tedrake. Underactuated robotics: Algorithms for walking, running, swimming,
flying, and manipulation. Course Notes for MIT 6.832, 2020.

[162] Kazuki Teraoka, Kohei Hatano, and Eiji Takimoto. Efficient sampling method for
monte carlo tree search problem. IEICE TRANSACTIONS on Information and Sys-
tems, 97(3):392–398, 2014.

[163] John N Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning
with function approximation. In Advances in neural information processing systems,
pages 1075–1081, 1997.

[164] Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer Series
in Statistics. Springer, 2009.

[165] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration in finite
markov decision processes with gaussian processes. In Advances in Neural Information
Processing Systems, pages 4312–4320, 2016.

[166] Hado Van Hasselt. Reinforcement learning in continuous state and action spaces. In
Reinforcement learning, pages 207–251. Springer, 2012.

[167] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In AAAI, volume 2, page 5. Phoenix, AZ, 2016.

[168] Julia Vinogradska, Bastian Bischoff, Duy Nguyen-Tuong, Anne Romer, Henner
Schmidt, and Jan Peters. Stability of controllers for gaussian process forward models.
In International Conference on Machine Learning, pages 545–554, 2016.

[169] Kim P Wabersich and Melanie N Zeilinger. Safe exploration of nonlinear dynam-
ical systems: A predictive safety filter for reinforcement learning. arXiv preprint
arXiv:1812.05506, 2018.

[170] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, vol-
ume 48. Cambridge University Press, 2019.

[171] Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan Zha. Supervised reinforcement
learning with recurrent neural network for dynamic treatment recommendation. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pages 2447–2456, 2018.

[172] Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks.
arXiv preprint arXiv:1906.08649, 2019.

176 BIBLIOGRAPHY

[173] Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Lan-
glois, Shunshi Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking
model-based reinforcement learning. arXiv preprint arXiv:1907.02057, 2019.

[174] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Fre-
itas. Dueling network architectures for deep reinforcement learning. In International
conference on machine learning, pages 1995–2003. PMLR, 2016.

[175] Christopher JCHWatkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

[176] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. In Reinforcement Learning, pages 5–32. Springer, 1992.

[177] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[178] Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly
additive features. In International Conference on Machine Learning, pages 6995–7004.
PMLR, 2019.

[179] Lin F Yang and Mengdi Wang. Reinforcement leaning in feature space: Matrix bandit,
kernels, and regret bound. arXiv preprint arXiv:1905.10389, 2019.

[180] Yuzhe Yang, Guo Zhang, Zhi Xu, and Dina Katabi. Harnessing structures for value-
based planning and reinforcement learning. In International Conference on Learning
Representations (ICLR), 2020.

[181] Zhuora Yang, Yuchen Xie, and Zhaoran Wang. A theoretical analysis of deep q-
learning. arXiv preprint arXiv:1901.00137, 2019.

[182] Ming Yu, Zhuoran Yang, Mladen Kolar, and Zhaoran Wang. Convergent policy opti-
mization for safe reinforcement learning. In Advances in Neural Information Processing
Systems, pages 3121–3133, 2019.

[183] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine,
Chelsea Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv
preprint arXiv:2005.13239, 2020.

[184] Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for sarsa with
linear function approximation. In Advances in Neural Information Processing Systems,
pages 8665–8675, 2019.

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Reinforcement Learning
	Theme of The Thesis
	Monte Carlo Tree Search
	Data-efficient ``Low-rank'' RL
	Stability in Unbounded State Space

	Contributions
	Methodological Contributions
	Algorithmic & Technical Contributions

	Organization of the Thesis
	Bibliographic Note

	Non-asymptotic Analysis of Monte Carlo Tree Search
	Related Work
	Setup and Problem Statement
	MDP Regularity
	Value Function Iteration

	Monte Carlo Tree Search
	Algorithm
	Analysis

	Reinforcement Learning through MCTS with Supervised Learning
	Reinforcement Learning Procedure
	Supervised Learning
	Finite-sample Analysis
	Minimax Lower Bound

	Non-stationary Multi-arm Bandit
	Algorithm
	Analysis

	Proof of Theorem 3
	Establishing the Convergence Property
	Establishing the Concentration Property
	Proofs of Lemmas 1, 2 & 3

	Analysis of MCTS and Proof of Theorem 1
	Preliminary
	Analyzing Leaf Level H
	Recursion: Going From Level h to h-1
	Error Analysis for Value Function Iteration
	Completing Proof of Theorem 1
	Proof of Lemma 4

	Proof of Theorem 2
	Guarantees for Supervised Learning
	Establishing Theorem 2
	Proof of Lemma 8

	Extension of Theorem 1 for Stochastic Environment
	Proof of Lemma 9

	Chapter Summary

	Data-efficient ``Low-rank'' RL
	Related Work
	Markov Decision Process and Representation of Q-function
	MDP Regularity
	Spectral Representation of Q-function

	Reinforcement Learning via Matrix Estimation
	A Narrative Description of the Algorithm
	Pseudo-code for the Proposed Algorithm

	Correctness, Convergence & Sample Complexity
	Matrix Estimation: a Key Premise
	Correctness, Rate of Convergence & Sample Complexity of Algorithm 3
	Proof of Theorem 5

	Matrix Estimation Satisfying Assumption 2
	Matrix Estimation for Q* with Rank 1: a Warm-up
	Matrix Estimation for Q* with Rank r
	Matrix Estimation for Q* with Approximate Rank r

	Technical Results of the Proposed ME Method
	Rank(Q*) = 1
	Rank(Q*) = r
	Rank(Q*) r

	Empirical Evaluation
	Discussion on Matrix Estimation
	Chapter Summary

	Stability in Unbounded State Space
	Related Work
	Setup and Notion of Stability
	Markov Decision Process and Online Policy
	Stability

	Online Stable Policy
	Sample Inefficient Stable Policy
	Sample Efficient Stable Policy
	Discovering Appropriate Policy Parameter
	Discussion

	Proof of Theorem 9
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Lemma 16

	Proof of Theorem 10
	Proof of Lemma 13

	Proof of Results on Adaptive Methods
	Proof of Theorem 11
	Proof of Corollary 1

	Chapter Summary

	Conclusions and Future Work
	Future Work

	Supplementary Materials for Chapter 2
	Proof of Proposition 1
	Numerical Experiments

	Supplementary Materials for Chapter 3
	Proof of Theorem 4
	Corollaries of Theorem 7
	Experimental Setup for Stochastic Control Tasks
	Additional Results on Stochastic Control Tasks
	Empirical Evaluation on All Control Tasks
	Comparison on Runtime of Different ME Methods
	Additional Study on the Discounting Factor

	Bibliography

