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Abstract

The significant growth in air traffic over the past few decades has led to increased congestion
at major airports worldwide. Airport congestion results in increased flight delays, fuel burn
and emissions. There is consequently a need to accurately model airport traffic operations
and to design control algorithms that mitigate airport congestion.

In this thesis, we propose a new class of queuing network models of airport surface oper-
ations that are capable of capturing congestion at multiple locations, and that can account
for the time-varying nature of demand and capacity. The proposed queuing models are
based on point-wise steady state approximation that result in a simple ordinary differential
equation representation for the dynamics of the ensemble queue length. Further, the mod-
els can account for propagation delays between servers in the network, and handle general
service time distributions, overcoming some of the limitations of the traditional probabilistic
queuing models. The queuing models are developed, adapted, and validated using actual
operational data from several major airports. These models also allow us to apply techniques
from reachability analysis to better understand the performance of queuing networks.

The second part of this thesis focuses on the development of airport congestion control
algorithms using the proposed queuing network models. The dynamical systems representa-
tion of the queuing process allows us to use optimal and robust control techniques to regulate
the queue length, and to obtain theoretical guarantees for certain special cases. We compare
our algorithms with NASA’s logic that was recently field-tested, using stochastic simulations.
We also investigate the impact of uncertainty in airline-supplied estimates of traffic demand
on the efficacy of congestion control algorithms, and quantify the benefits of reducing this
uncertainty. Finally, we note that the modeling and control techniques for queuing networks
developed in this thesis have broad applicability in other contexts beyond airport surface
operations.

Thesis Supervisor: Hamsa Balakrishnan
Title: William E. Leonhard (1940) Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Airports are the critical nodes of the air transportation network. With the globalization of

industries and growth in leisure travel, airports play an important role in connecting people

and businesses, thereby transforming economies. The deregulation of the airline industry,

new business models such as low cost carriers, and more recently, increasing incomes in

emerging economies such as China and India, have all led to an increase in air traffic over

the years. In 2019, there were about 38 million commercial flights that carried 4.5 billion

passengers and 58 million tons of freight (35% of the total freight by value), illustrating the

massive scale of operations [89]. Despite a large downturn in traffic during 2020-21 due to

the COVID-19 pandemic, it is expected that the traffic will return to pre-COVID levels in a

few years and then continue to grow significantly into the future [78]. Furthermore, forecasts

indicate that the conventional air traffic will more than double over the next 20 years, and

expect the emergence of new concepts such as advanced air mobility [4, 114]. These increases

in air traffic demand have not been matched by increases in the capacities of major airports,

which are largely determined by their physical infrastructures. The imbalance between

capacity and demand, particularly during periods of peak traffic, has led to congestion at

major airports worldwide. Moreover, delays arising at an airport can cascade to other

airports because of the networked nature of air transportation system [147]. The resulting
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delays from airport congestion have an economic impact on airlines and passengers, as well

as an environmental impact due to excessive fuel consumption and emissions. In 2018, the

estimated annual cost of flight delays was $28 billion in the US alone, and aviation emissions

increased by 3% compared to the previous year [6].

A straightforward approach to reduce congestion is to improve airport capacity by adding

new infrastructure. However, such airport expansion can be very expensive, has long lead

times, and may not be feasible in major metropolitan areas [36, 12]. Additionally, the regu-

latory clearance for airport expansion is often delayed because of political and environmental

reasons, a recent example being the third runway at London Heathrow [15]. The long lead

times of airport expansion projects can also result in the realized demand exceeding the

planned capacity. On the other hand, the development of new greenfield airports can face

challenges due to a lack of connectivity and high investment costs [11]. Strategic and tactical

traffic management approaches are therefore needed to mitigate congestion under currently

available airport capacity.

1.2 Background and Related Literature

Airport surface traffic management is important because aircraft spend around 10–30% of

their flight time just taxiing at the airport, and this could contribute to 5-10% of the to-

tal fuel burn for short-to-medium range flights [54]. Different approaches to airport traffic

management have been previously proposed. These approaches can be broadly classified as

regulatory improvements, administrative changes, and operational improvements. Regula-

tory improvements correspond to changing the current air traffic rules to improve operations.

One such example is wake turbulence recategorization, which involves revising the runway

separation requirements between aircraft to improve airport capacity [57]. Administrative

changes include efficient strategies for demand management, such as slot allocation and

congestion pricing to regulate traffic [81].

Operational changes to mitigate congestion include departure metering [158], taxiway

routing [61, 189], runway scheduling [25, 84], optimal runway configuration selection [29]
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and reducing runway occupancy time by efficient braking [161]. Taxiway routing refers to

efficiently routing the aircraft on the airport surface to reduce taxi times while considering

other constraints such as meeting a desired target take-off time. Complimentary to taxi-

way routing is runway scheduling, that refers to optimizing the sequence of aircraft using

the runway to improve airport throughput. Additionally, optimizing braking profile during

landing roll can significantly reduce the runway occupancy time (by ≈ 50%), resulting in

improved airport capacity [161]. Another promising operational approach to reduce airport

surface congestion is departure metering that refers to tactically holding departures at the

gate during periods of congestion [158, 69, 59].

All these approaches for reducing airport congestion often require a model for the traffic

movements [35, 160, 101, 52]. In addition to their use in the development of congestion control

algorithms, models of the airport surface can be used to characterize airport operations,

analyze new and existing procedures, and evaluate the environmental impacts of aviation.

Next, we present a discussion on various airport surface traffic models.

1.2.1 Modeling airport surface traffic

Models of the airport surface can been broadly described as microscopic, mesoscopic, or

macroscopic, based on their level of fidelity [146, 157]. Microscopic models (for example,

NASA’s Surface Operations Simulator and Scheduler (SOSS), or commercial tools such as

SIMMOD), specify the dynamics for each aircraft as well as the detailed airport layout [185].

Model predictions require the simulation of individual aircraft trajectories, yielding high-

fidelity results. The main disadvantage of microscopic models is that the predictions can

be computationally intensive (especially in the presence of uncertainty), simulations can

‘gridlock’1 requiring manual intervention and resolution, and the adaptation of models to

new airports and operating conditions can be challenging. In mesoscopic models, the taxi-

ways and runways are represented by links with associated travel-time and service time

distributions, leading to lower fidelity compared to the microscopic model [101]. Another

1‘gridlock’ refers to the situation in which aircraft comes to completle stand-still during taxi operation
because of traffic congestion in all directions
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Parameter Airport surface models
Macroscopic Mesoscopic Microscopic

Level of detail (fidelity)
Computational tractability

Ease of adaptation across airports
Amount of data required

Ability to build robust decision-support tools

Table 1.1: Trade-off between airport surface models of various fidelity.

variant of mesoscopic model that has been proposed is to split the taxiway segments into

smaller cells and model the movement of traffic using cell transmission model or other sim-

ilar approaches [35, 187]. The identification of these models requires the availability of

large amounts of surface trajectory data in order to estimate transit time distributions of

individual links under different conditions, which could be a limitation. Finally, we refer

to queuing models, and other aggregate statistical models, as being macroscopic in na-

ture [159, 157, 110]. These models are based on aggregate variables such as queue lengths

and travel times over relatively large parts of the airport (as opposed to individual aircraft

or taxiway links). Despite their lower fidelity, their simplicity makes these models amenable

to fast-time simulations and easy to integrate into decision support tools. Table 1.1 gives a

summary of the trade-offs between models of different fidelity. Macroscopic models (such as

queuing models) are promising given that they can be easily adapted to different airports,

require relatively smaller amounts of data for training, and one can use such models for

robust decision-support tools.

A variety of macroscopic queuing models, ranging from deterministic to stochastic models,

have been proposed for representing airport traffic movements [81, 157]. In these models,

congestion hot-spots on the airport surface are represented using queues, and the taxi times

are estimated to be the unimpeded times2 plus the wait times in the queues. For the queuing

process, the arrivals are typically considered to be Poisson, and the service time distributions

are assumed to belong to an exponential family (such as exponential or Erlang). Such

assumptions are often made to obtain analytical expressions for the evolution of the queuing

2travel times during periods of low traffic
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process, although these assumptions might be invalid for certain applications. We discuss

abstract queuing models in more detail in Section 1.2.3.

Queuing models for the airport surface have been used to: analyze airport operations,

investigate the impact of infrastructure changes (such as additional runways), and develop

decision support tools for traffic management [93, 160, 92]. They have also been used in envi-

ronmental assessment tools such as FAA’s Aviation Environmental Design Tool (AEDT) [66].

However, airport surface queuing models have traditionally assumed that congestion occurs

exclusively near the departure runway [160, 157, 159, 17]. While this is true at some airports,

at others with complex layouts such as Charlotte Douglas International airport (CLT), con-

gestion can occur at multiple locations. Figure 1-1 shows a snapshot of traffic movements

at CLT on a typical day, where we can notice queues being formed in the ramp area, near

the departure runway, and the runway crossing area. This requires one to model the traffic

congestion on the airport surface as a network of queues. Although queuing networks have

been proposed to represent the airport surface traffic [90], a tractable queuing network model

that explicitly considers the non-stationary behavior of the airport operations has not been

proposed in the prior literature. We address this technical gap in this thesis.

1.2.2 Departure metering

In this section, we discuss departure metering, a promising approach to reduce airport surface

congestion. In the absence of departure metering, pilots push back from the gate and start

taxiing whenever ready, which often results in long queues of aircraft during periods of high

departure demand. A departure metering procedure tactically holds aircraft at their gates

during periods of congestion, and releases them in an appropriate manner such that the

aircraft pass through smaller queues, while still maintaining runway throughput. The result

is a reduction in the taxi-out time of flights (travel time from the departure gate to take-off),

and fuel savings. Departure metering has the estimated potential to provide $5.5-9.5 billion

in monetary benefits at the top 35 airports in the US over a 20-year period [134], and is

an integral part of airport surface management programs internationally [69, 79, 39]. In the
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Figure 1-1: Snapshot of traffic movements at CLT indicating queuing at different regions.
Departures and arrivals are represented using black and white triangles, respectively.

US, departure metering is a part of the FAA’s Terminal Flight Data Manager (TFDM), a

NextGen initiative [69, 62]. Although the departure metering concept originated in the late

1990s [71], there has been increased recent interest, fueled by access to more granular data

(such as flight tracks), theoretical developments, technological improvements (e.g. electronic

flight strips, push towards higher automation), and plans for operational deployment of

departure metering at major airports.

The main goal of departure metering is to assign appropriate hold-times to maximize

benefits in terms of taxi-out time reduction, while maintaining runway utilization. Several

approaches to departure metering, based both on heuristics and optimization algorithms,

have been previously investigated [146, 179, 160, 101, 187]. One of the earliest strategies for

departure metering is a simple threshold policy, know as the N-control, that was proposed

under the Departure Planner concept [71]. In the most common variant of the N-control pol-

icy, departures are held at their gates if the total number of departures taxiing to the runway

is greater than a threshold value. To improve the benefits of departure metering, researchers

have proposed a variety of control and optimization techniques to make the gate hold de-
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cisions. The techniques include proportional-integral feedback control [187], dynamic pro-

gramming [160, 101], partially observable Markov decision processes (POMDPs) [35], robust

optimization [133], and stochastic optimization [31]. The effectiveness of these approaches

vary depending on the accuracy of the underlying model, robustness of the algorithm to deal

with various uncertainties [121], and more importantly, whether the resulting recommended

decisions are practical for real-world implementation. The taxi-out process is subject to sig-

nificant uncertainties, including the time that an aircraft is ready to pushback (its pushback

time), taxi routes, taxi speeds, and the separation between successive take-offs [148, 109].

Prior work on departure metering under uncertainty has generally focused on the uncertainty

in taxi times and runway capacity [35, 160, 31, 133]. By contrast, demand-side uncertainty,

namely, the uncertainty associated with the time at which an aircraft will be ready to push-

back, has received little attention. In this thesis, we develop departure metering algorithms

that are robust to these uncertainties, and evaluate their impacts.

Field demonstrations have been valuable in understanding the real-world benefits and

scope for improvement of different departure metering approaches. In the US, there have been

several field demonstration campaigns at major airports, such as in Boston-BOS [160], New

York-JFK [169], Dallas-DFW [127], and more recently, in Charlotte-CLT [149]. Additionally,

several studies have estimated the theoretical benefits of departure metering at different

airports [155, 168]. As one would expect, the results indicate varying benefits in terms of

taxi-out time reduction, depending on the level of congestion at the airport.

In addition to developing techniques to optimally hold departures at the gate, researchers

have also investigated other closely-related techniques to improve the overall efficiency of

departure metering. For example, researchers have proposed algorithms for robust gate

assignment of flights to reduce gate-conflicts3 [103]. Additionally, there have been studies

to tactically control departure pushbacks considering surface as well as terminal airspace

congestion [49]. However, the benefits from considering airspace congestion are likely to be

minimal, given the uncertainties associated with airport surface operations. There have also

3A gate conflict occurs when an arriving flight needs to wait for the gate occupied by another aircraft.
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Figure 1-2: Airport surface traffic models and congestion management techniques.

been variants of departure metering in which departures are held near the spot4 instead of

the departure gates [124]. Spot metering has been considered keeping in mind that the FAA

only has jurisdictional control over the active movement area in the US, and the ramp areas

(including the gate pushbacks) are controlled by the ramp controllers (usually, the airline).

However, gate metering is more practical in terms of the overall benefits, and there is push

to accommodate gate metering by coordinating with the ramp controllers.

Figure 1-2 illustrates a broad classification of the different airport traffic models and

congestion management approaches that we have discussed so far. Queuing models have been

widely-used to represent the traffic movements at airports and develop departure metering

algorithms. However, as we had mentioned earlier, the key limitations are that prior airport

queuing models do not account for multi-region congestion that might be important at

certain complex airports, and that prior departure metering algorithms have not addressed

demand-side uncertainty. These limitations are addressed in this thesis. Next, we discuss

queuing network abstractions in a more general context.

1.2.3 Queuing network models

Queuing networks have been used to model congestion in a wide range of infrastructures,

including communication systems, production systems, industrial supply chains, and trans-
4Spot is the exit of the ramp area into the active movement area
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portation systems [178, 181, 147, 131, 130]. A queuing network is a collection of intercon-

nected servers that represent the system’s capacitated resources, and customers who wish

to utilize these resources. For example, in an urban traffic network, road intersections can

be viewed as the servers, and vehicles as the customers. The demand for a resource can be

close to – or even exceed – its capacity, leading to congestion and the formation of large

queues; this impact could cascade further into other resources. Congestion results in higher

operating costs and increased wait times.

Different mathematical models for the queuing process have been proposed for well over

a century, following the seminal paper by Erlang in 1909 [58]. However, most of these are

discrete probabilistic models that make restrictive assumptions (such as exponential service

time distributions, stationarity, etc.), and may not be valid in practice [167]. Moreover,

such discrete probabilistic models result in a large state space for queuing networks, that

can impede the analysis and development of control strategies using standard techniques

such as dynamic programming. This sentiment is echoed by some leading researchers, for

example, John Kingmann, one of the pioneers of queuing theory, has expressed very strong

views about re-thinking the probabilistic modeling framework given the problems associated

with analyzing queuing network models with probabilistic primitives [105]. To overcome the

limitations of discrete probabilistic models, various queuing models based on a continuous

approximation of the queue length have been proposed [175]. However, these models may not

be amenable to standard control approaches (e.g., diffusion approximation models [104]), or

may not generalize beyond a particular application [96]. Recently, an alternative approach

has been proposed to model queuing systems using robust optimization techniques, that re-

places the probability distributions associated with arrival and service times with uncertainty

sets as primitives [28]. Some of the challenges with the robust optimization approach in-

clude computational tractability for large queuing networks and incorporating non-stationary

distributions. Another recent technique involves using machine learning models such as re-

current neural networks to represent the queuing behavior [74].

In addition to modeling the queuing process, a key challenge in these systems is the

development of control strategies that can reduce congestion, while still satisfying operational

29



constraints. The control inputs can vary depending on the specific application: examples

include the rate at which customers are sent into the system, or the capacity of servers. In

the case of departure metering, one is interested in controlling the input rate (departure

pushback rate) into the queuing network (representing airport traffic).

1.2.4 Control algorithms for queuing networks

A variety of control frameworks, based on models of varying complexity, have been proposed

to reduce congestion in queuing networks. A significant amount of early research focused

on the optimal control of arrival and service rates using Markov Decision Processes (MDPs)

[166, 167]. However, the Markov chain representation for queuing dynamics that was used in

this MDP framework relied on restrictive assumptions (such as Poisson arrivals, exponential

service time distributions, stationarity, and no propagation delays), which may not be valid

in practice. In order to better understand the problem of congestion control in queuing

networks, we describe the two main contexts in which it has typically been studied: Internet

congestion control and urban traffic networks.

Internet congestion control

With the growth of the Internet, there was much interest in the analysis of congestion control

protocols for communication networks [145]. The objective of these protocols is to maintain

a desired quality of service, as measured in terms of delay, throughput, packet loss, or jitter.

The primary congestion control mechanism in these networks was the regulation of the

sending rate at the source (e.g., the transmission control protocol), and the queue length at

the routers by dropping packets (e.g., active queue management techniques) [72, 70]. Control-

theoretic techniques have been used to analyze the stability of such protocols and tune

parameters [118]. Internet congestion control also presents some domain-specific challenges;

for example, feedback to a source can only be based on delayed packet-loss information rather

than actual queue length information.

Control-theory has been used to a limited extent in the design of congestion control
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protocols. Prior work has considered fluid-flow models, typically non-linear delay differential

equations with time-delays to account for the round-trip travel time from the source to

the receiver [131]. The resulting models have allowed researchers to use standard control

techniques such as PID, ℋ∞, and variable structure controllers [86, 96]. To apply these

techniques, the models were often linearized around an equilibrium point, and in a few

cases, time-delays were even ignored [86, 118, 41]. Most models assumed that the queue

length of the bottleneck server is always positive, and that the queue lengths elsewhere were

zero. Consequently, the resulting approaches tend to perform poorly in practice, due to a lack

of robustness to time-varying traffic, delays, and capacity [96]. Recent developments have

included the application of reinforcement learning algorithms for Markov Decision Processes

to queuing networks [55]. However, one of the drawbacks of the reinforcement learning

approach is that it does not provide any theoretical guarantees; doing so remains an active

area of research.

Urban traffic networks

Traffic congestion on urban roads is often represented as a queuing network [142]. The

problem of congestion control through regulating traffic signals corresponds to controlling

the service rates for each of the flows in the queuing network. Timed traffic lights have been

shown to be inefficient under time-varying arrival rates [142]. Furthermore, the control policy

needs to account for the downstream impacts of throttling upstream flows. To overcome these

challenges, adaptive traffic signaling approaches, such as optimization-based techniques, have

been proposed to reduce congestion [76, 45, 151]. However, online optimization techniques

for large queuing networks are computationally intensive, while decentralized approaches and

heuristics are often sub-optimal. Another set of techniques used to control queuing networks

are variants of backpressure algorithms [172]. Although backpressure control originated in

communication networks for packet routing, there have been modifications to the algorithm

to cater to urban traffic flows [111, 75].

An overview of the broad classification of non-stationary queuing models and control

techniques is shown in Fig. 1-3, along with representative research papers associated with
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each category.

Figure 1-3: Queuing models and control algorithms

1.3 Contributions of this thesis

This thesis focuses on the design and evaluation of control algorithms for efficiently man-

aging airport surface traffic through departure metering. Although this thesis focuses on

airport operations, the models and control algorithms introduced here can be applied to

other physical systems (e.g. communication networks, urban traffic networks). The primary

research contributions of this thesis are as follows:

1. We propose new mathematical models of airport surface traffic movements that are

capable of capturing congestion at multiple locations, and that can also account for

the time-varying nature of demand and capacity.

2. We design and evaluate airport congestion control algorithms that are robust to un-

certainties.
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3. We develop techniques to control queuing networks with propagation delays between

the servers, and with general service time distributions.

4. We introduce a new method to analyze the performance of queuing networks using

reachability analysis.

5. We present opportunities for leveraging other emerging sources of aviation data for

analyzing airport operations.

1.3.1 Mathematical models of airport surface traffic movements

Control algorithms to reduce airport congestion require models of aircraft movements on the

airport surface. Queuing models are a natural choice since queues can reflect the conges-

tion that occurs at an airport. Most often, only a single departure runway queue is used

to represent airport congestion. However, a single queue might be insufficient at some air-

ports where arrivals and departures interact, and even compete for airport resources such as

taxiways (for example, traffic movements at CLT as seen in Fig. 1-2). Therefore, more com-

plex queuing network models are needed for airports that have several points of congestion

or multiple departure runways. Further, the airport queuing models need to accommodate

time-varying traffic demand and airport capacity. An additional layer of complexity is that

the queuing models also need to account for propagation time between servers to represent

unimpeded travel time for aircraft to move between any two locations. The exact analysis of

such non-stationary queuing networks with general service time distribution and time-delays

(to represent propagation time between servers) is analytically challenging, motivating the

need to develop efficient approximations.

In Chapter 2, we present the development of a new fluid model for time-varying queuing

networks [18]. The model is a continuous approximation to the discrete queuing problem,

derived by combining results from steady-state queuing theory with the flow conservation

principle, to obtain a point-wise stationary approximation. The fluid flow model results in a

computationally tractable nonlinear ordinary differential equation (ODE) representation of

the queuing dynamics. The model can account for general service time distributions, multi-
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class queues and propagation time between servers in the queuing network. The proposed

queuing model is one of the important methodological contributions of our work.

The queuing network model is adapted to represent airport traffic by leveraging multiple

data sources that include historical flight schedules and flight tracks. The model enables the

prediction of queue lengths at various congested regions on the airport surface such as those

near the departure runways, runway crossing area and the ramp area close to the terminals.

Further, using the estimated queue length information, the model can predict the taxi-out

times for departures and taxi-in times for arrivals. To demonstrate the general applicability

of our methodology, we validate our model for several major airports (in the US, Europe,

and Asia), and the models were found to be reasonably accurate. For example, the mean

absolute error in the taxi-out time prediction using our proposed queuing model is around

4 to 5 min, depending on the airport and runway configuration. Note that the accuracy

of our proposed model is similar to more complex discrete probabilistic queuing models for

the airport surface [157]. However, in contrast to prior probabilistic queuing models, our

proposed model has several benefits: (a) the model can predict queue length at multiple

congested regions on the airport surface, (b) the model can predict taxi-out time as well as

taxi-in time, (c) the ODE representation for the queuing dynamics is amenable to the design

of efficient congestion control strategies even for complex airports that need to be represented

as a large queuing network. In addition to supporting the development of airport congestion

control strategies, the proposed model for traffic movements can potentially provide better

situational awareness for air traffic controllers, and aid in environmental impact assessments.

We also develop and validate an in-house microscopic airport simulator for testing dif-

ferent surface traffic management strategies. Further, we present an extension of the airport

surface queuing network model to include operations in the terminal airspace for departures.

Such an integrated surface-airspace model can support tactical scheduling to efficiently insert

departures into overhead stream.
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1.3.2 Airport congestion control in the presence of uncertainty

An effective traffic management approach to reduce congestion is departure metering, in

which departures are appropriately held at their gates in order to reduce taxi-out delays,

while ensuring no adverse impact on airport throughput. An aircraft saves fuel by waiting

at the gate with its engines off, rather than idling in a departure queue with its engines on.

Departure metering is estimated to potentially yield $5.5-9.5 billion in monetary benefits at

the top 35 airports in the US over a 20-year period [134], and is an integral part of airport

surface management programs internationally [69, 60]. Departure metering algorithms re-

quire models of airport surface traffic, and knowledge of when a flight would be to be ready

for pushback, called the Earliest Off-Block Time (EOBT). The key challenge is to develop

departure metering algorithms that can yield higher delay reduction, without impacting the

airport throughput under various operational uncertainties. While EOBTs are known to

be inaccurate due to several reasons, there has been little prior research on characterizing

EOBT uncertainty and its impact on departure metering.

In Chapters 3-4, we propose new departure metering algorithms using optimal control

and robust control techniques [22, 21]. The control algorithms are based on our airport

queuing network models, that account for congestion in multiple areas. We compare our

departure metering algorithms to other approaches, including NASA’s Airspace Technology

Demonstration-2 (ATD-2) logic, which recently completed field trials at CLT in 2019 [179].

Our robust control approach for departure metering, that explicitly accounts for model

uncertainties, performs better than the other approaches in stochastic simulations. The

departure metering benefits are evaluated for three major US airports: Newark Liberty

International airport (EWR), Dallas Fort Worth International airport (DFW), and Charlotte

Douglas International airport (CLT). The departure metering benefits depends on the current

level of congestion at the airport as expected. For example, the robust control approach yields

an average taxi-out time reduction of about 2.2 min per flight at CLT, without resulting in

any significant loss in airport throughput.

Further, we analyze the current levels of uncertainty in the EOBT information published
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by the airlines. The EOBT uncertainty represents uncertainty associated with the time

at which an aircraft will be ready to pushback, that has received little attention. Airlines

update the EOBT information at irregular intervals till the flight pushes back from the

gate. As one might expect, the magnitude of the EOBT uncertainty is larger for longer

look-ahead horizons. However, even for look-ahead horizons of 10-20 min (when tactical

departure metering decisions are made), the standard deviation of the EOBT errors is about

4 to 6 min, which is of the same magnitude as the errors in the taxi-out time prediction

from the airport queuing models. This highlights the need to consider EOBT uncertainty to

evaluate the benefits of departure metering algorithms. Moreover, we found that the current

levels of EOBT uncertainty lead to a 50% reduction in benefits at some airports when

compared to an ideal case with no EOBT uncertainty [20, 21]. Further, our analysis was

able to quantify the marginal improvement in departure metering benefits due to reduction

in EOBT uncertainty. The airlines can use such estimates to decide on investment decisions

to develop better models to reduce the EOBT uncertainty.

1.3.3 Robust control of queuing networks

In addition to providing an efficient solution to departure metering, we also make some

fundamental contribution to the control of queuing networks. Queuing networks have been

widely-used to model congestion in various infrastructure systems. In these systems, one is

interested in developing control strategies to reduce congestion or queue length. In many

practical systems, the service-time distribution can take any form (not just exponential)

and can be non-stationary (time-varying), and there can be propagation delays between the

nodes in the network, making the traditional MDP approaches unfeasible. Other control-

theoretic approaches often make restrictive assumptions on the queuing dynamics (such as

linearization or ignoring the time delay in the system) to simplify the model for the analysis,

which might not be applicable.

To solve this challenging control problem, in Chapter 4 we propose a new robust control

approach for queuing networks. In particular, we consider the regulation of arrivals into a
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queuing network in order to maintain a desired level of occupancy (queue length) in the

system. The dynamics of the queuing network is represented by a fluid-flow model, which is

then used to develop a robust controller for tracking the desired queue length. We would like

to highlight that designing a control policy for the resulting system is a challenging problem

in itself because the system is nonlinear, with model uncertainties, time-delays and input

saturation (to represent non-negativity of sending rates). To address these challenges, we

develop a controller based on a sliding mode control approach, with predictor-based feedback

to account for propagation delays. For a single queue, we determine sufficient conditions for

tracking the queue length, and bounds on the tracking error using Lyapunov analysis. We

also investigate the tracking performance for queues in tandem. The proposed framework

can be extended to any queuing network topology. Finally, we demonstrate the practical

applicability of our approach to tactically manage aircraft departures in order to reduce

congestion on the airport surface.

1.3.4 Reachability analysis for analyzing the performance of queu-

ing networks

In addition to developing control algorithms for queuing networks, a closely related problem

that is of significant interest is to analyse the performance of queuing networks. One is often

interested in computing performance metrics such as queue length and wait time. Tradition-

ally, stochastic simulations are used to compute the performance metrics. The simulations

involve tracking individual customers in the system by sampling the arrival and service time

distributions, and such simulations need to be performed multiple times to compute statis-

tical quantities of interest. However, simulations might not be computationally tractable for

large queuing networks as it involves sampling from a large joint distribution, particularly, if

one wants to investigate the impact of uncertainty in network parameters such as the service

time of the servers.

In Chapter 5, we propose an alternative tool to analyze the performance of large-scale

uncertain queuing networks. In particular, we present an approach to compute the range
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of expected queue length in a network given the range of uncertainty in the queue parame-

ters using reachability analysis. Reachability analysis is a technique that has been used for

controller verification and model checking. It involves computing the sets of future states

achievable by a system given an uncertain set of initial states and input parameters. We

utilize the queuing network model developed in Chapter 2, and some recent results in reacha-

bility analysis to compute the range of expected queue length given uncertainty in the server

service rate, arrival rates and initial queue length.

The approach bears some philosophical similarity to the recent robust optimization ap-

proach to analyze the performance of queuing networks [28] in a sense that both the methods

take a non-probabilistic approach by specifying the underlying randomness as uncertainty

sets. However, in contrast to the the robust optimization approach, our approach relies on

control-theoretic techniques for continuous dynamical systems, and the underlying queuing

model is different. This gives the reachability analysis approach a significant computational

advantage. To the best of our knowledge, this is the first attempt in employing reachability

analysis for queuing networks.

1.3.5 Characterizing airport operations using emerging aviation data

sources

To develop practical decision support tools for air traffic management (such as departure

metering), one needs to have accurate models of airport operations that are developed using

actual operational data. In recent years, a variety of data sources of different granularity are

available to characterize airport operations. Our proposed queuing models to represent air-

port traffic movements were developed using flight trajectories, flight schedules and weather

information. However, there are other emerging data sources of airport operations that are

largely unexplored which can aid in the development of air traffic models and decision sup-

port tools. In Chapter 6, we present models to analyze airport operations using other sources

of aviation data using two illustrative examples.

First, we present a statistical model to accurately estimate aircraft fuel consumption
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during taxi operations using flight trajectories. The fuel burn model is intended to aid

environmental monitoring of current operations and for the development of new procedures.

The recent availability of Flight Data Recorder (FDR) data provides direct measurements

of engine fuel flow rates and flight trajectories. Our analysis shows that periods during

which a taxiing aircraft accelerates are correlated with an increase in its fuel flow rate. We

therefore develop a multi-model smoother to extract acceleration events from the trajectory

data, and use these events to develop statistical models to estimate aircraft fuel burn. The

proposed trajectory-based fuel burn models have a lower mean absolute percentage error

of up to 37% relative to the traditional fuel burn models used in the industry tools that

consider only taxi times as inputs. In addition to FDR data (which has restricted access

due to privacy concerns), we show that our proposed models work well even with noisy

trajectories from airport surveillance systems (such as ASDE-X) that are readily available

to regulatory agencies such as the FAA. Our fuel burn models could potentially be used to

obtain more accurate estimates of noise and emissions on the airport surface, quantities of

significant interest to the regulatory agencies such as the FAA to monitor current operations

and perform what-if analysis to design new procedures.

Next, we present an approach to extract operational information from air traffic controller

voice communications that has largely been overlooked. Air traffic controller (ATC) voice

communications contain enormous amounts of operational data such as runway assignment,

taxi routes, aircraft intent, heading, altitude, etc. Furthermore, ATC voice data contains

certain information that are not available from other data sources. A good example in the

context of modeling departure operations is the aircraft push-ready time. To make use of

such operational information, one needs to have the ability to extract the information from

the voice data in an efficient way. A natural approach is to use Automatic Speech Recogni-

tion (ASR) systems. However, ASR systems proposed to date for the ATC applications have

not yet demonstrated the levels of accuracy needed for practical deployment [137]. Factors

such as noisy radio channels, high speech rates, and diverse accents pose challenges to the de-

velopment of ASR systems for the ATC domain. We present an automatic speech recognition

model tailored to the ATC domain that can transcribe ATC voice to text. The transcribed
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text is used to extract operational information such as call-sign and runway number. The

models are based on recent improvements in machine learning techniques for speech recogni-

tion and natural language processing. In addition to aiding model development, automatic

transcription of ATC communications has the potential to improve system safety, operational

performance, conformance monitoring, and to enhance air traffic controller training.

1.4 Organization of this thesis

The reminder of this thesis is organized as follows:

∙ In Chapter 2, we present a new queuing network model for the aircraft movements on

the airport surface. The model is developed and validated for major airports. Addi-

tionally, we discuss extending the surface queuing model into the terminal airspace, to

predict the transit time from the departure gate to the final departure fix. We also

present a comparison of the queuing model performance with an in-house microscopic

simulator.

∙ Chapter 3 focuses on the departure metering algorithms. We first present the poten-

tial benefits of departure metering with the ATD-2 logic, along with a methodology

to pick the optimal buffer required for the logic. We also investigate the impact of

uncertainty in the airline-supplied demand information on the benefits of departure

metering. Finally, we present a new optimal control approach to departure metering.

∙ In Chapter 4, we present a robust control framework for controlling arrivals into a

queuing network with propagation delays between servers. We determine sufficient

conditions for tracking the queue length at a desired value, and bounds on the tracking

error for certain special cases. Furthermore, we apply the robust control framework

for departure metering and evaluate its benefits using simulations.

∙ In Chapter 5, we introduce reachability analysis as a means to analyse the performance

of queuing networks.
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∙ In Chapter 6, we discuss opportunities for leveraging other emerging sources of aviation

data in airport operations analysis, through two illustrative examples: (a) estimating

aircraft taxi fuel consumption from flight trajectories, and (b) extracting operational

information such as runway number and flight ID from air traffic controller voice com-

munications.

∙ In Chapter 7, we present a summary of the thesis, opportunities for practical imple-

mentation, and discuss some promising directions for future research.
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Chapter 2

Queuing network model of the airport

surface

2.1 Introduction

In this chapter, we present a new queuing network model to represent the traffic movements

on the airport surface. Airport surface queuing models have traditionally assumed that con-

gestion occurs exclusively near the departure runway [160, 157, 159, 17]. While this is true

at some airports, at others with complex layouts such as Charlotte Douglas International

airport (CLT), congestion can occur at multiple locations. Moreover, arrivals and depar-

tures interact and even compete for airport resources such as taxiways. In this chapter, we

illustrate that at such airports, multistage congestion can be best represented by a queuing

network. We first present a queuing network representation for the traffic movements on the

airport surface, followed by a fluid-flow model for the queuing network that can account for

the time-varying nature of the queues. The models are validated using actual operational

data from several major airports. Finally, we also show a comparison of the predictions ob-

tained from the queuing model with those obtained from an in-house microscopic simulator

of the airport surface.
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2.2 Queuing models of airport surface operations

Queuing models can be used to determine the lengths of various queues on the airport surface

in order to predict the taxi times of departures and arrivals. The taxi-out time of a flight is

determined as the sum of the unimpeded travel time (the time it would take for the aircraft

to move from the gate to the runway with no congestion) and the wait time in the queues.

In general, queues are formed when the demand for resources exceeds the available capacity.

In the case of the airport surface, runways and certain taxiways become bottlenecks during

periods of heavy traffic, leading to the formation of queues. Since the level of congestion

depends on demand, aircraft fleet mix, airport procedures, taxi routes, runway configuration

(set of runways used for arrivals and/or departures) and weather, queuing models need to

be adapted to different operating conditions.

In this section, we present the queuing network model for the following three airports to

illustrate the general applicability: Dallas Fort-Worth International Airport (DFW), Char-

lotte Douglas International Airport (CLT) and Newark Liberty International Airport (EWR).

These airports are chosen in part because of the differences in layout and traffic. DFW

(621,684 aircraft movements in 2017, the 4th busiest airport in the world by number of

movements) and CLT (546,845 aircraft movements, the 7th busiest airport in the world by

number of movements) are major hubs for American Airlines [68]. There have been demon-

strations of departure metering at CLT under Phase 2 of the ATD-2 program since November

2017, and DFW has been selected as the site for Phase 3 of the program. EWR handled

432,941 operations in 2017, is a hub for United airlines in the highly-constrained New York

metroplex, and is prone to frequent congestion.

2.2.1 Queuing network models of EWR, DFW, and CLT

Figure 2-1 shows the airport layouts of EWR, DFW, and CLT, along with a snapshot of

the traffic movements on the surface to illustrate surface queues. Departures and arrivals

are represented as black and white triangles, respectively. Each of these airports operates

primarily in one of two runway configurations: North Flow (NF) and South Flow (SF).

44



Runway configuration refers to the set of active runways that are used for an extended time

period. Figure 2-1 illustrates the most prevalent runway configuration: SF for EWR (58%

of the time in 2017), SF for DFW (70% of the time), and NF for CLT (53% of the time).

The layout for DFW is cropped to show only the primary runways used in South Flow.

(a) EWR-SF (b) DFW-SF (c) CLT-NF

Figure 2-1: Snapshots of traffic movements at EWR, DFW and CLT, and the corresponding
queuing representations under the most frequently-used configurations. The primary depar-
ture and arrival runways are indicated in the figure using blue and red arrows, respectively.
Departures and arrivals are represented as black and white triangles, respectively.

All three airports experience large queues of aircraft waiting for take-off near the de-

parture runways. The number of departure runway queues varies by airport and runway

configuration: the scenarios considered in this thesis result in one departure runway queue

at EWR (22R), and two each at DFW (18L, 17R) and CLT (36C, 36R). Runway separation

requirements are the primary driver of their capacity, and depend on weather (instrument vs.

visual meteorological conditions, IMC or VMC), the fleet mix of aircraft using the runway,

and the relative proportion of arrivals and departures [156].

Some airports (for example, CLT) experience queuing in the ramp area (region close

to the airport terminal building) in addition to near the departure runways. Consequently,
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flights at CLT spend nearly half of their taxi-out time in the ramp area (Table 2.1). Queuing

network models can be used to represent multiple points of congestion on the airport surface.

Figure 2-1 shows examples of queuing network models for EWR, DFW, and CLT. Since EWR

and DFW do not exhibit significant ramp congestion, queuing is assumed to occur primarily

at the departure runway(s). By contrast, the queuing network model for CLT includes a

ramp queue in addition to two departure runway queues. Arrivals and departures interact

in the ramp area, motivating the need to model the taxi-in process. The taxi-in process in

CLT-NF is represented as follows: flights landing on the leftmost runway (36L) pass through

a runway crossing queue and a taxi-in ramp queue, whereas flights landing on one of the other

runways just pass through the taxi-in ramp queue. The service rate of the taxi-out ramp

server is modeled as a function of the taxi-in ramp queue length, and vice versa. The three

queuing network models (EWR-SF, DFW-SF, and CLT-NF) correspond to a progression of

complexity, going from a single runway queue to two runway queues, and finally multiple

runway and ramp queues.

Airport Config. Avg. gate-to-spot (min) Avg. spot-to-runway (min) Avg. taxi-out
Unimpeded Delay Total Unimpeded Delay Total (min)

EWR NF 5.7 3.1 8.8 6.0 6.4 12.4 21.2
SF 5.9 3.2 9.1 5.4 6.1 11.4 20.6

DFW NF 5.1 2.4 7.4 6.5 4.4 10.9 18.4
SF 5.1 2.4 7.5 5.4 3.9 9.4 16.8

CLT NF 6.3 3.5 9.8 5.1 5.3 10.4 20.2
SF 7.4 4.2 11.6 3.2 4.4 7.6 19.2

Table 2.1: Taxi-out times, including the unimpeded and delay components, at EWR, DFW,
and CLT, separated by ramp area (gate-to-spot) and active movement area (spot-to-runway).
The statistics are computed using multiple data sources [138, 67, 68] for a three month
period (May-July 2016) for DFW and EWR, and a five month period for CLT (May-July
2015; May-Jun 2016).

The taxi-out processes under each of the secondary runway configurations (EWR-NF,

DFW-NF, CLT-SF) is represented using a single queue for each active departure runway.

Although the average gate-to-spot delays are not negligible for EWR (NF and SF) and

CLT (SF) (as seen Table 2.1), a separate ramp queue for these runway configurations is

not considered because the gate-to-spot delays are caused by the build up of the departure

46



runway queue and its subsequent overflow into the ramp area. This is unlike in the case of

CLT (NF), where the gate-to-spot delays are caused because of the bottlenecks in the ramp

area.

2.2.2 Models of queue dynamics
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Figure 2-2: Number of pushbacks (per 15 min), declared departure capacity (per 15 min)
and sum of the queue lengths near the two departure runways for a typical day at CLT
(05/22/2016).

A distinguishing feature of queues on the airport surface is their non-stationarity, which

is driven by the time-varying nature of demand and capacity. Figure 2-2 shows the number

of pushbacks, declared departure capacity [68], and the sum of the queue lengths near the

two departure runways at CLT on a representative good weather day (5/22/2016). The

variations in departure demand (pushbacks) are as expected at a hub airport with banked

operations. Demand exceeds departure capacity during each departure bank, leading to the

formation of large queues that fluctuate over the course of the day. Capacity also varies

because of changes in weather and arrival rate, resulting in time-varying queues.

Fluid model of non-stationary queues.

The exact analysis of non-stationary queuing networks is analytically challenging, motivating

the use of numerical simulations or approximations [106, 82, 117]. Probabilistic models

using Markov chains can be restrictive in terms of the service time distributions they can

accommodate, and lead to high-dimensional state spaces for large queuing networks. The
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size of the state space also poses a challenge to the development of control strategies. A

key innovation of this work is the development of a fluid model of the time-varying taxi-out

queuing network. The model is a continuous approximation to the discrete queuing problem,

derived by combining results from steady-state queuing theory with the flow conservation

principle, to obtain a point-wise stationary approximation [175, 183, 18].

Single queue and server.

We first consider the simple case of a single queue and a single server, with time-varying

arrival and service rates. Let 𝑥(𝑡) represent the average number of customers in the queue

at time 𝑡. Let 𝜆(𝑡) and 𝜇(𝑡) denote the average arrival rate and service rate at time 𝑡,

respectively. The word "average" here denotes the ensemble average at a particular time-

instant. Let 𝑓in(𝑡) and 𝑓out(𝑡) represent the in-flow and out-flow rate from the queue at time

𝑡. From the flow conservation principle, we have:

𝑥̇(𝑡) = −𝑓out(𝑡) + 𝑓in(𝑡). (2.1)

Assuming that there are no constraints on the queue length, 𝑓in(𝑡) = 𝜆(𝑡). For the out-flow,

𝑓out(𝑡) = 𝜇(𝑡)𝜌(𝑡), where 𝜌(𝑡) is the average utilization of the server. The queue dynamics is

given by:

𝑥̇(𝑡) = −𝜇(𝑡)𝜌(𝑡) + 𝜆(𝑡). (2.2)

The average utilization, 𝜌(𝑡), is approximated by a function, 𝐺(𝑥(𝑡)), which satisfies the

following properties: (a) 𝐺(0) = 0 and 𝐺(∞) = 1; and (b) 𝐺(𝑥) is strictly concave and

nonnegative ∀𝑥 ∈ [0,∞), in order to represent congestion. The dynamics for 𝑥(𝑡) can then

be rewritten in terms of 𝐺(𝑥) as:

𝑥̇(𝑡) = −𝜇(𝑡)𝐺(𝑥(𝑡)) + 𝜆(𝑡), 𝑥(0) = 𝑥0. (2.3)

The expression for 𝐺(𝑥) is obtained by matching the steady-state number of customers in the

system. Assuming a Poisson arrival process, the Pollaczek-Khinchine formula (2.4) provides

48



an expression for the mean number of customers (𝑥𝑠) at steady state [183], namely,

𝑥𝑠 = 𝜌 +
𝜌2(1 + 𝐶2

𝑣 )

2(1 − 𝜌)
. (2.4)

Here, 𝐶𝑣 is the coefficient of variation of the service time distribution. Expressing 𝜌 in terms

of 𝑥𝑠, we get:

𝜌 =
𝑥𝑠 + 1 −

√︀
𝑥2
𝑠 + 2𝐶2

𝑣𝑥𝑠 + 1

1 − 𝐶2
𝑣

. (2.5)

Rewriting 𝑥𝑠 in terms of 𝜌 and using the fact that 𝐺(𝑥) is an approximation of 𝜌:

𝜌(𝑡) ≈ 𝐺(𝑥) =
𝑥 + 1 −

√︀
𝑥2 + 2𝐶2

𝑣𝑥 + 1

1 − 𝐶2
𝑣

. (2.6)

For a server with exponential service time distribution, 𝐶𝑣 = 1, and the above expression

for 𝐺(𝑥) simplifies to 𝑥/(1 + 𝑥). Motivated by this expression, the function 𝐺(𝑥) is approx-

imated by 𝐶𝑥/(1 + 𝐶𝑥) for a generic service time distribution, where the parameter 𝐶 is

given by:

arg min
𝐶

∫︁ 𝑥𝑚

0

(︁
𝐺(𝑥) − 𝐶𝑥

(1 + 𝐶𝑥)

)︁2
𝑑𝑥, (2.7)

where 𝑥𝑚 denotes the maximum queue size expected in the system. The parameter 𝐶

is essentially an empirical value that depends on 𝐶𝑣 and 𝑥𝑚. The dependence of the 𝐶

parameter on 𝐶𝑣 for 𝑥𝑚 = 10 is shown in Figure 2-3(a). The maximum queue size expected

in a system can be obtained empirically from operational data. Additionally, the value of

𝐶 does not change significantly with 𝑥𝑚 if 𝑥𝑚 is considered to be sufficiently large (see

Figure 2-3(b)). This is primarily because 𝐺(𝑥) saturates close to one for large values of 𝑥.

Moreover, 𝐶 is less sensitive to 𝑥𝑚 for larger values of 𝐶𝑣 and it is completely independent

of 𝑥𝑚 for 𝐶𝑣 = 1 (case with exponential service time distribution).

Figure 2-4 compares the approximation for 𝐺(𝑥) and the actual value for the case of an

Erlang distribution with shape parameter of 10 and rate of 5, resulting in a coefficient of

variation (𝐶𝑣) of 0.2. In this example, if 𝑥𝑚 = 10, then 𝐶 = 1.5. There is a good match

between the approximation and the actual value. Finally, the above approximation for 𝐺(𝑥)
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Figure 2-4: Comparison between the approximation for 𝐺(𝑥) and the actual value (𝐶𝑣 =
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results in the following ODE for the evolution of the mean queue length:

𝑥̇(𝑡) = −𝜇(𝑡)
𝐶(𝑡)𝑥(𝑡)

1 + 𝐶(𝑡)𝑥(𝑡)
+ 𝜆(𝑡). (2.8)

We note that the above expression for the evolution of the ensemble mean queue length

is one of the important methodological contributions of this thesis. We illustrate the per-

formance of the analytical queuing model for some standard queues. Figure 2-5 compares

the mean queue length for a 𝑀𝑡/𝑀/1 queuing system obtained from the analytical queuing

model, against the corresponding output of a discrete stochastic simulation (obtained from

3,000 independent samples). The results from the analytical queuing model are found to
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closely match the simulation. As the load on the server (𝜆(𝑡)
𝜇

) increases, the model begins to

deviate from the discrete simulation (Figure 2-5(b)). The model also shows deviations if the

queue length fluctuates rapidly, as seen in Figure 2-5(c), which was obtained by increasing

the sinusoidal frequency of the arrival rate into the queue. Such a deviation is expected

since the assumption of a point-wise stationary approximation breaks down. Finally, al-

though prior work has considered finite queue buffers for point-wise stationary fluid flow

models [183], the results are too complex for practical implementation. However, the limi-

tation of unconstrained queue sizes does not preclude these analytical queuing models from

being used at most major airports (that will be shown by validating the model predictions

with actual operational data later in Section 2.2.5).
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Figure 2-5: Comparison of the mean queue lengths obtained from simulations and the pro-
posed analytical queuing model for an 𝑀𝑡/𝑀/1 queue. Note the different x-axis limits.

We consider the case of an Erlang service time distribution (Figure 2-6), which is en-

countered frequently in communication networks and transportation systems. Once again,

the analytical model is a close match to the exact simulations, while offering a considerable

computational advantage. For example, the computational time for the queuing simulations

(with 3000 independent samples) for this particular case was 65 s, whereas, the analytical

model took 2 ms, several orders of magnitude smaller.
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Figure 2-6: Comparison of the mean queue lengths obtained from simulations and the pro-
posed analytical queuing model for an 𝑀𝑡/𝐸10/1 queue. Note the different x-axis limits.

Multiclass queues.

The model for a single queue can be extended to handle multiple classes of customers under

the assumption that all classes have equal priority and same service time distribution. For

example, in the context of airport surface operations, one can consider aircraft with different

runway assignments as multiple classes of customers (which will be presented in detail later

in Section 2.2.3). Let 𝑖 = 1, 2, · · · , 𝑙 denote different classes of customers in the system, and

𝑥𝑖 be the number of customers of class 𝑖 in the queue buffer. The evolution of total number

of customers in the queue (𝑥𝑇 =
∑︀𝑙

𝑖=1 𝑥𝑖) can be obtained using Eq. (2.8):

𝑥̇𝑇 = −𝜇
𝐶𝑥𝑇

1 + 𝐶𝑥𝑇

+ 𝜆. (2.9)

The effective mean service rate for each class in the queuing dynamics is assumed to be

proportional to the fraction of customers of that particular class in the queue buffer, consid-

ering service time distributions are same for all the customers . Using this assumption, the

evolution of mean queue length of a particular class 𝑖 is given by:

𝑥̇𝑖 = −𝜇
𝐶𝑥𝑇

1 + 𝐶𝑥𝑇

𝑥𝑖

𝑥𝑇

+ 𝜆𝑖 = − 𝜇
𝐶𝑥𝑖

1 + 𝐶𝑥𝑇

+ 𝜆𝑖. (2.10)
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Queuing networks.

The single queue model can be extended to a network of multiple queues using the flow

conservation principle: The output of one queue becomes the input to the second queue if

they are connected. Let 𝑅 be the routing matrix, with elements 𝑟𝑖𝑗 representing the fraction

of customers joining queue 𝑗 after being served by server 𝑖. Let 𝜆𝑖 be the exogenous input

into queue 𝑖 with mean service rate 𝜇𝑖. The dynamics of the mean queue length for each

queue in the network is given by:

𝑥̇𝑖 = −𝜇𝑖
𝐶𝑖𝑥𝑖

1 + 𝐶𝑖𝑥𝑖

+ 𝜆𝑖(𝑡) +
∑︁
𝑗

𝜇𝑗
𝐶𝑗𝑥𝑗

1 + 𝐶𝑗𝑥𝑗

𝑟𝑗𝑖. (2.11)

While deriving the analytical model for a single queue, we assumed that the arrival

process into the queue is Poisson. However, the output of one queue that becomes the input

to the second queue need not follow a Poisson process for a general service time distribution.

We make an approximation that the arrivals into the queue follow a Poisson process even

in the case of a queuing network to obtain Eq. (2.11). However, one needs to note that

this particular assumption might not work well for small queue buffers or when there is

low variability in the service time distribution (a detailed discussion on the consequences of

Poisson assumption is presented in Section 2.4.3).

Queuing networks with time-delays.

Another aspect that arises in many realistic queuing networks are time-delays due to prop-

agation. Note that the propagation delay does not include the wait time in the queue. Let

𝜏𝑖𝑗 be the propagation time (travel time) from server 𝑖 to 𝑗. Then, the mean queue length is

given by the following delay differential equation:

𝑥̇𝑖 = −𝜇𝑖
𝐶𝑖𝑥𝑖

1 + 𝐶𝑖𝑥𝑖

+ 𝜆𝑖 +
∑︁
𝑗

𝜇𝑗(𝑡− 𝜏𝑗𝑖)
𝐶𝑗(𝑡− 𝜏𝑗𝑖)𝑥𝑗(𝑡− 𝜏𝑗𝑖)

1 + 𝐶𝑗(𝑡− 𝜏𝑗𝑖)𝑥𝑗(𝑡− 𝜏𝑗𝑖)
𝑟𝑗𝑖(𝑡− 𝜏𝑗𝑖). (2.12)

Since the arrival times and service times are stochastic in nature, the queue length is a

random variable. The proposed analytical queuing model governs the evolution of the en-
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semble mean queue length. By contrast, probabilistic queuing models such as Markov chains

provide the probabilities of queue length at any time instant. However, such probabilistic

models are often complex, making it difficult to model large queuing networks and to develop

feedback controllers. As an alternative, one can develop congestion control strategies using

just the ensemble mean queue length (that is provided by our proposed model).

2.2.3 Application of analytical queuing models to the airport sur-

face

Suppose the airport surface is represented using a queuing network with 𝑝 queues. Let

x(𝑡) ∈ R𝑝 be a vector of queue lengths on the airport surface at any time instant 𝑡. Let

u𝑑(𝑡) ∈ R𝑞 be a vector of the pushback rates at time 𝑡, where each component, u𝑑𝑖(𝑡)

represents the pushback rate to the 𝑖𝑡ℎ runway. The pushback rate refers to the number of

departures pushing back from the gate per unit time (say, 5-min). Similarly, let u𝑎(𝑡) ∈ R𝑞

be a vector of landing rates of arrivals on the runway. Let 𝜇(𝑡) ∈ R𝑝 be a vector of the

time-varying mean service rates for each of the servers, and let C(𝑡) ∈ R𝑝 be the vector of

parameters associated with the approximation of the utilization factor for each of the servers

(from Eq. (2.7)). The input to each queue in the network is assumed to be Poisson. The

evolution of the queues can then be expressed as:

ẋ = f
(︁
x(𝑡),x(𝑡−𝜏1), · · · ,x(𝑡−𝜏𝑚), 𝜇(𝑡), 𝜇(𝑡−𝜏1), · · · , 𝜇(𝑡−𝜏𝑚),C(𝑡),C(𝑡−𝜏1), · · · ,C(𝑡−𝜏𝑚),

u𝑑(𝑡− 𝜏𝑚+1), · · ·u𝑑(𝑡− 𝜏𝑤),u𝑎(𝑡− 𝜏𝑚+1), · · ·u𝑎(𝑡− 𝜏𝑤)
)︁
, (2.13)

where 𝜏𝑘 is the time to move unimpeded between two points in the queuing network, for

𝑘 = 1, 2, · · · , 𝑤. The function 𝑓(.) is obtained from the fluid model and depends on the

connectivity of the queuing network. We consider the taxi-out process for the following

cases:
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∙ [Case 1] An airport represented using 𝑞 departure runway queues:

𝑥̇𝑟𝑖 = −𝜇𝑟𝑖(𝑡)
𝐶𝑟𝑖(𝑡)𝑥𝑟𝑖(𝑡)

𝐶𝑟𝑖(𝑡)𝑥𝑟𝑖(𝑡) + 1
+ 𝑢𝑑𝑖(𝑡− 𝜏𝑖), 𝑖 = 1, 2, · · · , 𝑞 (2.14)

where 𝑥𝑟𝑖 represents the queue length of the 𝑖th departure runway, and 𝜏𝑖 is the average

unimpeded travel time from a gate to the 𝑖𝑡ℎ departure runway. The unimpeded time

is computed as the 10th percentile of the taxi-time distribution. This model with only

runway departure queues is used for EWR (𝑞 = 1), DFW (𝑞 = 2), and CLT-SF (𝑞 = 2).

∙ [Case 2] An airport modeled by a single ramp queue and 𝑞 departure runway queues:

We model the ramp queue as a multi-class queue, the class of customers representing

the runway assignment of the aircraft in the queue. The service rate for a particular

class is proportional to the number of customers of that class in the queue. The queuing

dynamics are then given by

𝑥𝑠 =

𝑞∑︁
𝑖=1

𝑥𝑠𝑖 (2.15)

𝑥̇𝑠𝑖 = −𝜇𝑠(𝑡)
𝐶𝑠(𝑡)𝑥𝑠𝑖(𝑡)

𝐶𝑠(𝑡)𝑥𝑠(𝑡) + 1
+ 𝑢𝑑𝑖(𝑡− 𝜏𝑔𝑠) (2.16)

𝑥̇𝑟𝑖 = −𝜇𝑟𝑖(𝑡)
𝐶𝑟𝑖(𝑡)𝑥𝑟𝑖(𝑡)

𝐶𝑟𝑖(𝑡)𝑥𝑟𝑖(𝑡) + 1
+ 𝜇𝑠(𝑡− 𝜏𝑠𝑖)

𝐶𝑠(𝑡− 𝜏𝑠𝑖)𝑥𝑠𝑖(𝑡− 𝜏𝑠𝑖)

𝐶𝑠(𝑡− 𝜏𝑠𝑖)𝑥𝑠(𝑡− 𝜏𝑠𝑖) + 1
, (2.17)

where 𝑥𝑠𝑖 represents the number of aircraft in the ramp queue that are bound for the

𝑖th departure runway, 𝜏𝑔𝑠 is the average unimpeded travel time from the gate to the

spot, and 𝜏𝑠𝑖 represents the unimpeded travel time from the spot to the 𝑖th runway.

All departures are assumed to traverse through a single congested spot to reach the

runway. While this assumption is found to be reasonable for CLT-NF, the approach

can be easily extended to scenarios with multiple ramp queues.

For CLT, in addition to the taxi-out queues, we model the taxi-in queues to capture the

ramp congestion. The taxi-in queuing dynamics consists of a runway crossing queue and

ramp queue. The taxi-in queuing model for CLT is as follows: Flights landing on 36L have

to pass through a runway crossing queue before entering the ramp area. Let 𝑢𝑎,𝑟𝑖 be the
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landing rate (of arrivals) on the 𝑖𝑡ℎ runway. The input to the runway crossing queue is the

landing rate on runway 36L, with an associated delay (𝜏𝑎1) accounting for the travel time to

reach the runway crossing queue from the point of touchdown. The dynamics of the runway

crossing queue length (𝑥𝑎,𝑟1) are given by

𝑥̇𝑎,𝑟1(𝑡) = −𝜇𝑎,𝑟1(𝑡)
𝐶𝑎,𝑟1𝑥𝑎,𝑟1(𝑡)

1 + 𝐶𝑎,𝑟1𝑥𝑎,𝑟1(𝑡)
+ 𝑢𝑎,1(𝑡− 𝜏𝑎1). (2.18)

An aircraft is defined to be in the taxi-in ramp queue if it has entered the ramp area but

is yet to reach the gate, and has exceeded the unimpeded spot to gate time. The inflow to

the taxi-in ramp queue is the sum of landing rates on two runways (36C and 36R) and the

output from the runway crossing queue, delayed by the average unimpeded spot to gate time

(𝜏𝑎𝑠). We could also account for the travel time from the runway (36C and 36R) to the spot

in the delay term. However, we ignore it here since it is a small value, but consider it later

while computing the taxi time. The equation for the taxi-in or arrival ramp queue length

(𝑥𝑎,𝑠) is given by

𝑥̇𝑎,𝑠(𝑡) = −𝜇𝑎,𝑠(𝑡)
𝐶𝑎,𝑠𝑥𝑎,𝑠(𝑡)

1 + 𝐶𝑎,𝑠𝑥𝑎,𝑠(𝑡)
+𝜇𝑎,𝑟1(𝑡−𝜏𝑎𝑠)

𝐶𝑎,𝑟1(𝑡− 𝜏𝑎𝑠)𝑥𝑎,𝑟1(𝑡− 𝜏𝑎𝑠)

1 + 𝐶𝑎,𝑟1(𝑡− 𝜏𝑎𝑠)𝑥𝑎,𝑟1(𝑡− 𝜏𝑎𝑠)
+𝑢𝑎,2(𝑡−𝜏𝑎𝑠)+𝑢𝑎,3(𝑡−𝜏𝑎𝑠)

(2.19)

2.2.4 Service rates of the servers

The model parameters such as the service rates of the servers were determined from airport

operational data that include flight tracks [67], the actual pushback, in-air (wheels-off), land-

ing (wheels-on) and in-gate times, and gate assignments [138], and meteorological conditions

at the airport [68]. The data was obtained for a three month period (May-July 2016) for

DFW and EWR, and a five month period for CLT (May-July 2015; May-Jun 2016). The

dataset includes the periods of peak demand experienced in summer. Approximately 70%

of the data was used to train the model parameters, and the rest was used for testing. The

service time distribution of each server is obtained by computing the difference between suc-

cessive out-times from the queue when there is pressure on the server1. A brief description
1In our analysis, we consider the server is under pressure if the queue length is greater than two
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about determining the service rates for the different types of servers is discussed below:

Ramp queues

Congestion develops in the ramp area primarily because some taxi paths are shared by both

arriving and departing flights, while they head in different directions. The service rate of

the taxi-in ramp server is modeled as a function of the queue length of the taxi-out ramp

queue, and vice versa. Fig. 2-7(a) shows that the mean service rate of the taxi-in ramp server

decreases linearly as the number of aircraft taxiing out increases, illustrated using data from

CLT-NF. A linear fit to the data yields the following relationship for the service rates as a

function of the traffic on the ramp

𝜇𝑑,𝑠(𝑡) = −0.033𝑥𝑎,𝑠(𝑡) + 1.7 (2.20)

𝜇𝑎,𝑠(𝑡) = −0.066𝑥𝑑,𝑠(𝑡) + 1.6, (2.21)

where the service rates are expressed in aircraft/min. Note that the slopes are quite different

for taxi-in and taxi-out ramp servers, even though they both represent queuing at the ramp.

The mean service rate drops faster for the taxi-in ramp server with increase in departures

on the ramp, than for the taxi-out server with increase in arrivals on the ramp. A possible

reason is that departures are prioritized relative to arrivals, since the parking gates would

need to be released before the arrivals can use them.

Departure runway queues

The separation requirements between consecutive operations on a runway drive its capacity.

The separation times depend on various factors such as the relative sizes and types of op-

eration (landing or takeoff) of the aircraft using the runway, and weather conditions at the

airport. The variability due to aircraft size is very small at these airports since most of the

flights belong to the ‘large’ category of aircraft weight class (97% at CLT, 91% at DFW and

85% at EWR2). We assume that the departure throughput of the runway server within a

2Based on on ASPM from May-Aug 2016 for DFW, EWR and May-Jun 2016 for CLT.
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Figure 2-7: Mean service rate of ramp and runway servers for CLT-NF.

small time window (5 min) depends only on: (a) the number of landings on that runway in

that time window; and (b) the prevailing weather conditions (VMC/IMC) at the airport.

Fig. 2-7(b) shows the dependence of the mean service rate of the departure runway (36R)

server for CLT-NF as a function of the number of landings on it, under VMC. The mean

service rate is seen to decrease as the number of landings increases. An empirical model of

the mean service rate for the two runway servers for CLT-NF in different weather conditions

is as follows:

𝜇𝑑,𝑟2(𝑡)|𝑉𝑀𝐶 = −0.14𝑛𝑎,𝑟2(𝑡) + 0.82; 𝜇𝑑,𝑟3(𝑡)|𝑉𝑀𝐶 = − 0.11𝑛𝑎,𝑟3(𝑡) + 0.79 (2.22)

𝜇𝑑,𝑟2(𝑡)|𝐼𝑀𝐶 = −0.14𝑛𝑎,𝑟2(𝑡) + 0.74; 𝜇𝑑,𝑟3(𝑡)|𝐼𝑀𝐶 = − 0.11𝑛𝑎,𝑟3(𝑡) + 0.77 (2.23)

Here, 𝑛𝑎,𝑟𝑖(𝑡) denotes the number of landings on runway 𝑖 in a 5-min time window containing

𝑡. The intercept of the mean service rate is lower during IMC when compared to VMC, as is

to be expected. One can obtain similar models for other airports and runways configurations.

One needs to note that the runway service time distributions can also vary across airports

because of different procedures and fleet mix as seen in Fig. 2-8.
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Figure 2-8: Service time distribution for departure runway server conditioned on no landings
in the 5 min window for runways at three different airports.

Runway crossing queue

For CLT, flights that land on the leftmost runway (18R/36L) need to cross the active runway

(18C/36C) before they can reach their gates. Air traffic controllers need to accommodate

the crossing aircraft in between takeoff and landing operations, leading to the formation of a

runway crossing queue (Fig. 2-1). The runway crossing queue is modeled for CLT since one

is interested in the arrival ramp queue. A similar analysis can be performed for the other

airports.

The distribution of the time between two successive crossings, obtained over intervals with

a non-empty runway crossing queue is shown in Fig. 2-9. It indicates a bimodal service time

distribution. The initial part of the distribution (< 50s) corresponds to successive crossing

in one platoon, i.e. multiple crossings without a take-off/landing between them. The latter

part of the distribution (> 90 s) corresponds to successive crossings that had at least one

take-off/landing in-between them. As the number of runway crossings in an interval was

not well-correlated with either the departure runway or the runway crossing queue lengths,

we assume a constant mean service rate for the runway crossing server. The mean service

rate is estimated to be 0.48 aircraft/min. Since runway crossings can occur at two points

at CLT, the effective service rate is approximated to be 𝜇𝑎,𝑟2 = 2 × 0.48 = 0.96 ac/min.

Although runway crossing can sometimes occur at just one point, we make an assumption

that the runway crossing always utilize two points because it is challenging to predict the
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runway crossing procedure. Moreover, the initial part of the service time distribution (< 50s)

can be used under low demand for takeoffs/landings, and the complete distribution can be

used during periods of high demand. However, this distinction does not yield significant

performance gains in practice, since runway 36C is almost always busy at CLT.
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Figure 2-9: Distribution of the time between successive crossings, when there is pressure on
the runway crossing server for CLT-NF.

Variability of service times

Even if the mean service rates of servers are conditioned on different parameters to capture

dependencies, the service process is inherently stochastic and shows some variability. This

variability affects the utilization function of the server, and is captured by the parameter 𝐶

in the queue model (Eq. (2.8)). Fig. 2-10(a) shows the empirical service time distribution

obtained from data for an illustrative departure runway . The mean service time is around

73 s, and the standard deviation is around 32 s, resulting in a coefficient of variation (𝐶𝑣) of

0.44. Fig. 2-10(b) shows that 𝐶𝑣 as a function of number of landings on the runway in a 5-

min window is almost a constant. The value of 𝐶 that is used to approximate the utilization

function 𝐺(𝑥) therefore also does not vary significantly with the number of landings (Fig. 2-

10(c)), and can be approximated by a constant 𝐶. Similarly, it was found that treating 𝐶𝑖(𝑡)

as a constant for all the other queues was a reasonable approximation.
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Figure 2-10: Service time of the departure runway server 36R at CLT in VMC conditions.

Computing the taxi-time

The wait times of aircraft entering the queue are determined using the predictions of queue

length and time-varying mean service rates. Let 𝑥(𝑡𝑖𝑛) be the predicted queue length at the

time when the aircraft enters the queue (𝑡 = 𝑡𝑖𝑛), 𝜇(𝑡) the mean service rate of the server,

and ∆𝑡 an appropriately small time-step. Then, the wait time (𝑊 ) for an aircraft that enters

the queue at 𝑡𝑖𝑛 is estimated as follows:

𝑄 = 𝑥(𝑡𝑖𝑛);

𝑞 = 𝑄; 𝑡 = 𝑡𝑖𝑛; 𝑊 = 0;

while 𝑞 > 0 do
𝑞 = 𝑞 − 𝜇(𝑡)∆𝑡;

𝑊 = 𝑊 + ∆𝑡;

𝑡 = 𝑡 + ∆𝑡;
end

𝑊 = 𝑊 + 𝑞/𝜇(𝑡);
Algorithm 1: Calculation of wait time in a queue.

The predicted taxi time is the sum of unimpeded travel time and wait times in the

different queues. To summarize, the proposed queuing model can predict surface queue

lengths and taxi-out times, given the pushback times, landing times and weather conditions,

as well as the appropriate initial conditions on the queue lengths.
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2.2.5 Predictive performance of the queuing model

The actual pushback times, landing times, and weather conditions that are required as

model inputs were obtained from historical data. The pushback times and landing times

were converted into the pushback rate (𝑢𝑑𝑟𝑖
(𝑡)) and the landing rate (𝑢𝑎𝑟𝑖

(𝑡)), respectively.

The pushback times conditioned on runway assignments were binned into 5-min windows for

the entire day, and an average pushback rate was determined for each time-window. The

landing rate is computed in a similar way. The unimpeded times were obtained by considering

the 10𝑡ℎ percentile of the taxi-time distributions. The queuing dynamics are numerically

integrated forward in time from the beginning of the day with a time discretization of 1-min.

Finally, the taxi times are determined after computing the queue lengths.

Prediction performance on an illustrative individual day

For illustrative purposes, we consider queue length and taxi time predictions for a typical

day in the test dataset at CLT (Jun 25, 2016; VMC conditions). Figure 2-11 shows the

queue length predictions for the taxi-out ramp queue and departure runway queues. The

queue lengths shown are averaged over a 5-min time-window. The data corresponds to a

time-based definition of queue length, in which an aircraft is said to be in the runway queue

if it has spent unimpeded spot-to-runway time after exiting the spot but is yet to take-off (a

similar definition for the ramp queue). Our analysis has found that this time-based definition

is consistent with the observed physical queue. We see a good qualitative match between

the model predictions and observed data. The prediction errors are comparatively higher for

the ramp queue when compared to the runway queues, which is expected since there is more

uncertainty in the ramp area (because of the variability in the taxi-routes and complex traffic

movement). The model assumed a single server for the departure ramp queue (since that

is generally observed); the prediction errors could therefore be higher during the occasional

periods when more than one spot is simultaneously used by departing flights.

A comparison of the predicted (model) and actual queue lengths for flights taxiing in is

shown in Fig. 2-12. Once again, we see a reasonable agreement between the model and data,
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(a) Taxi-out ramp queue
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(b) Taxi-out runway queue for 36C
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(c) Taxi-out runway queue for 36R

Figure 2-11: Queue length predictions for taxi-out ramp and runway queue for a typical day
(Jun 25, 2016) at CLT.

especially considering the fact that there is considerable operational variability in runway

crossing procedures. The reasons for the prediction errors for taxi-in ramp queue are similar

to those mentioned for the taxi-out ramp queue.
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(a) Runway crossing queue
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(b) Ramp queue

Figure 2-12: Queue length predictions for taxi-in ramp and runway crossing queue for a
typical day (Jun 25, 2016) at CLT.

Fig. 2-13(a) shows the predicted and actual average taxi-out times. Each data point

corresponds to an average over a 15-min window and the flights are binned based on the

actual out-gate time. While the predictions generally match the observed values, we note

that large errors in the taxi-out time prediction correspond to errors in the queue length

prediction. A similar trend is seen in the taxi-in time predictions shown in Fig. 2-13(b). The

taxi-in flights are binned into 15-min windows based on the actual landing times.

A comparison of the predicted and observed departure runway queue lengths at DFW
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(a) Taxi-out time
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(b) Taxi-in time

Figure 2-13: Taxi times averaged over 15 min interval for a typical day at CLT in North-Flow
configuration (Jun 25, 2016).

for a typical day is shown in Fig. 2-14. The taxi-out times for this particular day, averaged

over 15-min windows, are shown in Fig. 2-15. These figures also show a good match between

the predictions and observed values.

Aggregate Prediction Performance over Test Data Set

Here we present the aggregate error statistics for all the three airports (EWR, DFW and

CLT), computed for an independent test set. Table 2.2 shows the aggregate error statistics

of taxi-out time prediction for individual flights. Flights with taxi-out times greater than

50 min were not included while computing the statistics. The mean errors (ME) are found

to be small relative to the mean taxi-out times and negative at all three airports. The

mean absolute error (MAE) of the taxi-out time predictions is similar to the results obtained

from other probabilistic queuing models [157]. For example, the MAE of the taxi-out time
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(b) 17R

Figure 2-14: Comparison of model predictions and observed queue lengths on a typical good
weather day at DFW (07/20/2016).
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Figure 2-15: Taxi-out times averaged over 15-min intervals on 07/20/2016 at DFW.

at EWR using a probabilistic queuing model was reported to be around 5.5 min in [157],

which is similar to the result using our proposed model. A high value of MAE indicates that

the takeoff sequence does not necessarily follow the first-come-first-served assumed by the

queuing model. Figure 2-16 compares the predicted and actual taxi-out time distributions.

We note that the right tail of the taxi-out time distribution is not captured by the queuing

model, resulting in a negative value of the mean error. This right-tail is more pronounced

for EWR and CLT, where in addition to queuing delays, surface gridlock can cause further

delays that are not accounted for by the queuing model. Table 2.3 shows the prediction

error statistics for individual flights grouped by different quartiles of the actual taxi-out

time. For flights in the first quartile (0-25th percentile), the MAE is small and ME is
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positive. The model slightly over-predicts taxi-out time in this range because it assumes

that the unimpeded time is the 10th percentile of the taxi-out time distribution. For the

flights belonging to the upper quartile (75th-100th percentile), the magnitude of the ME is

negative and large. From the point of view of departure metering, positive errors correspond

to over-prediction of the taxi-out time, leading to overly aggressive hold decisions, loss in

runway utilization, and delays in wheels-off time. By contrast, negative taxi-out time errors

will yield lower metering benefits, but there would be no loss in throughput and no additional

delays.

Airport Configuration Number of Taxi-out time (min) Percentage of flights
departures Mean ME MAE with |error| < 5 min

EWR NF 2,596 21.3 -1.4 4.9 61.9
SF 6,877 21.5 -1.9 5.3 61.1

DFW NF 2,769 18.5 -1.2 3.9 72.3
SF 19,207 17.4 -1.1 4.2 71.5

CLT NF 7,464 20.1 -1.4 4.4 69.0
SF 6,120 20.1 -1.9 5.2 61.0

Table 2.2: Error statistics of the taxi-out time predictions from the analytical queuing model
on a test set.

Airport Configuration 0-25th %ile 25th-50th %ile 50th-75th %ile 75th-100th %ile
ME MAE ME MAE ME MAE ME MAE

EWR NF 2.9 3.6 0.8 3.5 -1.7 4.6 -7.2 8
SF 2.5 3.2 0.7 3.4 -1.5 4.4 -9.2 10.1

DFW NF 1.4 2.5 0.3 2.9 -0.7 3.5 -5.1 6.4
SF 1.7 2.5 0.8 2.9 -0.4 3.5 -5.8 7.4

CLT NF 1.8 2.9 0.3 3.2 -1.3 3.9 -6.3 7.5
SF 2.5 3.3 0.5 3.5 -2.3 4.6 -7.7 9.1

Table 2.3: Error statistics for the taxi-out time predictions for individual flights from the
queuing model based on the test set for different quartiles of the actual data.

Table 2.4 shows the breakup of the taxi-out time prediction errors as well as taxi-in time

errors for CLT-NF, computed using the test set. We can see that the prediction errors are

higher in the ramp area compared to the active movement area for both taxi-out as well

as taxi-in. The higher errors in the ramp area is expected because of more uncertainty in

operations in that region.
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(a) EWR-SF (b) DFW-SF (c) CLT-NF

Figure 2-16: Comparison of the predicted and actual taxi-out time distributions.

Taxi-time Segment Mean (min) ME (min) MAE (min) Percentage of flights
with |error| < 5 min

Taxi-out Gate → spot 9.68 -0.87 3.08 82
Spot → rwy 10.40 -0.58 2.70 86

Taxi-in Rwy → spot 4.49 -0.09 1.38 96
Spot → gate 6.06 -0.99 3.34 83

Table 2.4: Error statistics for the taxi-out and taxi-in time predictions for CLT-NF, based
on 7,484 departures and 8,477 arrivals in the test dataset.

2.2.6 Applicability to other airports

The queuing models are applicable to other airports as well. For each airport, one needs to

determine the congestion hotspots and represent it using an appropriate queuing network.

To demonstrate the applicability, we have developed and validated similar queuing network

models for Charles de Gaulle Airport (CDG) in Paris and Changi (SIN) in Singapore [22, 135].

Table 2.5 shows a summary of the error statistics for taxi-out time predictions of individual

flights using the queuing model for CDG and SIN. The results shown in the table correspond

to the more frequently used runway configuration at these airports (West-flow at CDG and

North-flow at SIN). A more detailed description of the queuing representation and validation

results for CDG is presented in Appendix A and details for SIN can be found in [135].

Table 2.5: Error statistics of the taxi-out time predictions on a test set using the queuing
model.

Airport Number of Taxi-out time (min) % of flights
departures Mean ME MAE |error| < 5 min

CDG 14,100 13.3 -0.3 3.0 82.4
SIN 20,171 17.1 -0.1 3.3 75.3
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2.3 Integration of surface and airspace models for CLT

We can extend the airport surface queuing network model to include operations in the ter-

minal airspace. Immediately after takeoff, a flight is vectored to begin following a particular

Standard Instrument Departure (SID) route, a standardized set of navigational aids (way-

points and fixes) designed to ease the transition into the en route stream. Due to the lack of

predictability in departure airspace, controllers are forced to maintain conservative spacing

between aircraft, reducing the airspace efficiency. We develop a model for the departure

airspace, and combine it with the surface model in order to obtain an integrated surface-

airspace model. We would like to highlight that many aircraft do not exactly follow the

SID profiles but the likely operationally used paths can be determined from empirical flight

track analysis. The goal of the integrated model is to predict the transit time from pushback

at the gate to the final departure fix (FDF). The resulting models can potentially improve

predictability, and support the objective of inserting departures more efficiently into the

overhead stream [13]. There has also been recent research efforts into integrating surface

and terminal-area operations to reduce congestion [122, 107, 95]. A detailed analysis on this

topic has been published in our paper [24], here we present an overview of the key results.

Fig. 2-17 shows a schematic of the six major Standard Instrument Departure routes

(SIDs) that handle around 62% of the departures from CLT. Flights generally choose one of

the SIDs depending on their destination airport when filing their flight plan. For example,

flights going to airports in the North-East US (such as BOS, JFK, PHL) would file the

BARMY1 SID. We develop a transit time prediction model for each one of the six SIDs,

and integrate it with the queuing network model of the surface, to obtain a surface-airspace

transit time prediction model. The transit time to the final departure fix can potentially

depend on various factors, such as the en route traffic, distance to the fix, weather, and

runway configuration.

Our analysis indicated that traffic density is presently not a major factor impacting

departure airspace transit times at CLT [24]. The integrated surface-airspace model takes

the prevailing runway configuration and CLT airport weather into consideration, and predicts

68



Figure 2-17: High-level system diagram of the integrated surface-airspace model for predict-
ing gate to final departure fix transit times (Image courtesy of Max Z. Li [24]).

the pushback to Final Departure Fix (FDF) transit time for a CLT departure, if the flight

uses one of the SIDs currently considered in the model. We would like to highlight that

weather plays an important role in the accuracy of these predictions. The pushback to FDF

transit time is computed as the sum of the predicted pushback to takeoff time (via the surface

queue model), and the mean transit time from takeoff to the FDF (via the airspace model).

A high-level schematic of the integrated surface-airspace transit time prediction model is

shown in Fig. 2-17.

Table 2.6 contains the error statistics and other metrics related to the integrated surface-

airspace transit time model. The normalized root-mean-square error (NRMSE) is the RMSE

normalized with respect to the corresponding mean transit time from pushback to the final

departure fix. The intuition behind the normalization is that the farther away a final depar-

ture fix is, the more variation that naturally occurs in the transit time. We also provide the
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percentages of predicted transit times that fall within ±5 min and ±10 min of the actual

transit times. We see that for all scenarios except for the JOJJO1.NOONN transition, typi-

cally 50%–60% of predicted transit times are within five minutes of the actual transit times.

We note that JOJJO1.NOONN is an anomaly due to the very small number of departures

that flew the transition.

SID Procedure Distance MTT RMSE NRMSE |error| |error| Mean error Mean |error| Counts(nm) (min) (min) <5 min, % <10 min, % (min)
MERIL7.MERIL 78.1 34.4 7.0 0.2 56.0% 86.3% -0.1 5.4 2,008
BUCKL8.BUCKL 41.4 29.6 6.7 0.2 56.8% 86.3% 1.7 5.2 2,913
ESTRR1.IPTAY 106.8 40.3 6.9 0.2 57.1% 87.1% 0.1 5.3 2,013
BARMY1 (combined) N/A 42.5 7.5 0.2 56.9% 83.9% -0.8 5.6 1,326
BARMY1.RDU 113.1 41.5 7.8 0.2 54.2% 82.0% -1.3 5.9 818
BARMY1.TYI 165.2 45.9 6.8 0.2 59.6% 87.1% -0.9 5.1 255
BARMY1.NUTZE 164.4 42.6 7.1 0.2 62.9% 87.0% 1.1 5.1 253
BOBZY1 (combined) N/A 60.2 7.7 0.1 51.2% 82.1% -0.2 5.9 3,503
BOBZY1.BNA 285.7 66.2 7.6 0.1 51.6% 82.9% 0.4 5.9 2,860
BOBZY1.TNSLY 52.2 34.1 8.1 0.2 49.5% 78.5% -2.9 6.3 643
JOJJO1 (combined) N/A 43.5 6.9 0.2 59.9% 87.2% -0.2 5.2 2,084
JOJJO1.DOOGE 124.6 41.7 6.7 0.2 60.2% 87.6% -0.1 5.0 1,305
JOJJO1.CUBIM 141.2 46.0 6.8 0.2 60.3% 87.7% -0.5 5.2 766
JOJJO1.NOONN 208.4 46.5 22.0 0.5 15.4% 15.4% -1.2 19.00 13
CLT Dep. Airspace N/A 43.0 7.1 0.2 55.8% 85.3% 0.20 5.46 13,847

Table 2.6: Surface-airspace integrated queue model departure transit time prediction statis-
tics.

It is worth noting that the mean absolute error for the integrated surface-airspace model

is only slightly higher when compared to the surface model for predicting the taxi-out times,

even though the mean transit time from pushback to the final departure fix is at least twice

as long as the mean taxi-out time. This indicates that airport surface operations, at least

in the case of CLT, are more unpredictable compared to terminal airspace operations, and

highlights the need to accurately model the airport surface. It would be interesting to see if

the same behavior holds true for airports with more constrained and competitive departure

airspace capacity, such as airports in the New York metroplex.

One could extend this model to accommodate additional departure fixes that are generally

used in non-normal operations in adverse weather conditions. Such models would be helpful

in determining the optimal departure fix for every flight during non-normal operations. For

example, if there are high delays because of bad weather over a particular departure fix,

the question is whether to wait on the ground and use the standard departure fix or use an

alternate departure fix that might take a longer airborne time but might avoid long ground
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holds. We could answer such questions using extensions of this model as a basis.

2.4 Comparison to microscopic simulation

We present a comparison of the estimates obtained from the "macroscopic" queuing network

model with "microscopic" simulations. We first briefly describe our in-house microscopic

simulator that was developed in MATLAB.

2.4.1 Microscopic simulator

Microscopic simulation refers to modeling individual flight trajectories on the airport sur-

face. The runways and taxi-paths on the airport surface are represented using a node-link

network. Figure 2-18 shows a node-link network for CLT in North-Flow runway configura-

tion. The network consists of 581 nodes and 506 links, with 102 gates. The links in the

active-movement-area (AMA), ramp area and pushback area, are indicated by blue, red and

green, respectively. The departures enter the simulation environment at the time of push-

back and a unique taxi-path is determined based on their spot and runway assignment, that

is obtained from the historical flight data. The gate-to-spot and spot-to-runway taxi path

is based on the shortest distance path in the node-link network. We found that the shortest

taxi-path matches well with the historical track data for the active movement area using

ASDE-X data. For the arrivals, we consider multiple taxi-paths for each runway-spot pair to

account for multiple runway exits and runway crossing points. The taxi-path for the arrivals

was randomly picked from a possible set of paths, with weights assigned to each path based

on the historical frequency of occurrence. The runway separation times are sampled from

the empirical distribution obtained from data. The runway separation times are conditioned

on the aircraft weight class and aircraft type (sequence of arrivals or departures).

The following model is considered for the aircraft dynamics: aircraft accelerates at a

constant value until it reaches its nominal taxi-speed and it can come to a sudden stop if

needed for safe separation. Aircraft taxi-speed and pushback time were determined from

historical flight data. Figure 2-19(a) shows a plot of the gate-to-spot distance against the
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(a) Airport layout

36L
36C 36R

Arrivals Mixed Mixed

(b) Node-link network

Figure 2-18: Airport layout and corresponding node-link representation for CLT-NF.

unimpeded gate-to-spot time for different gate-spot combinations. The unimpeded time

is obtained as the 10th percentile of the empirical gate-to-spot time distribution for each

gate-spot pair. The slope of the linear fit determines the nominal ramp taxi-speed and the

x-intercept represents the average pushback time. Similarly, Fig. 2-19(b) shows a plot of

spot-to-runway distance against unimpeded spot-to-runway time for different spot-runway

combinations. The slope of this linear fit yields the AMA taxi speed. The nominal taxi-speed

in the ramp area and AMA was determined to be 7m/s and 9 m/s, respectively. The average

pushback time was determined to be 4.7 min. The pushback speed is then estimated from

the pushback time using the average pushback distance at the gate and is found to be 0.13

m/s. Acceleration value for the aircraft during the taxi phase is considered to be 0.2 m/s2.

The acceleration during takeoff is assumed to be 1.6m/s and deceleration after landing is

assumed to be 1.5 m/s. The landing speed just after touchdown is assumed to be 66 m/s.

The other key aspect of the simulator is to ensure safe separation during taxiing. Three

basic rules are used to avoid loss in separation during taxiing as shown in Fig. 2-20. If two

aircraft, that are approaching the same node, have their separation distance smaller than a

threshold value, then the aircraft that is farther away from the node is stopped and the other

aircraft is allowed to proceed (Figs. 2-20(a)-2-20(b)). If a set of common links is shared by
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(a) Ramp area: gate-to-spot (b) AMA: spot-to-runway

Figure 2-19: Plot of distance vs unimpeded time for departures.

(a) Node conflict-Type 1 (b) Node conflict-Type 2 (c) Link conflict

Figure 2-20: Safe separation rules applied in the simulator.

two aircraft and if they are supposed to move in the opposite direction on those common

links, then the aircraft that is farther away from the closest node in the common link is

stopped from entering the common link till the other aircraft passes through the common

links (Fig. 2-20(c)). The threshold distance for safe separation is considered to be 30m for

the ramp area and 80 m for the AMA. The simulator steps forward in discrete time steps (1

s) by updating positions of aircraft and their taxi-speeds, and ensuring safe separation rules

are followed. Departing (Arriving) flights are introduced into the simulator at the pushback

(landing) time and they are removed from the simulator after take-off (reaching gate).

2.4.2 Performace of the microscopic simulations

We compare the performance of the microscopic simulations with the analytical queuing

model. Figure 2-21 shows the comparison of the average taxi-out and taxi-in time for a
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(a) Taxi-out time (min)

6 8 10 12 14 16 18 20 22
Local time (hr)

0

5

10

15

20

25

30

A
v
e

ra
g

e
 t

a
x
i-
in

 t
im

e
 (

m
in

)

Analytical queue model
Data
Microscopic simulations

(b) Taxi-in time (min)

Figure 2-21: Taxi-times averaged over 15-min windows for a typical day at CLT-NF
(07/12/2015)

typical day of operation at CLT-NF. We see that the simulations are close to the actual data,

however, the analytical model performs slightly better. The error statistics for the taxi time

predictions considering individual flights (Table. 2.7) also indicate that the analytical model

performs better than the microscopic simulations. Moreover, the computational time for the

microscopic simulations is orders of magnitude more than the queuing model. The queuing

model takes about 1 s for predicting the taxi-time of all flights for one day of operations (5:00-

23:00 hrs), whereas, the microscopic simulation takes about 1260 s. A detailed comparison of

the performance considering multiple days of operation will be done in the future. However,

one needs to note that the microscopic simulation has numerous internal parameters (such

as speed, acceleration, stopping criteria etc.), making it challenging to tune the parameters

for improved performance.
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Table 2.7: Error statistics for a typical day at CLT-NF (07/12/2015) containing 672 depar-
tures and 664 arrivals.

Parameter
Microscopic simulation Analytical queue model

ME MAE Percentage of flights ME MAE Percentage of flights
with |error| < 5 min with |error| < 5 min

Taxi-out time (min) -2.0 5.0 61.4 -1.1 4.0 68.2
Taxi-in time (min) -1.1 3.6 78.6 -1.4 3.13 83.7

2.4.3 Discussion on the modeling philosophy

The queuing model can estimate macroscopic parameters such as queue length and taxi-

time, whereas, the microscopic simulator can estimate individual flight trajectories, that are

of higher fidelity. The microscopic simulator also gives the probability distribution of the

quantities of interest, unlike the queuing model. However, the microscopic simulator has

several drawbacks such as: (a) they are challenging to adapt to a new airport or runway

configuration, (b) simulations are computationally intensive, (c) ‘grid lock’ that requires

manual intervention and resolution3, (d) non-analytical nature of the model makes it difficult

to develop congestion control strategies using traditional approaches. The queuing model has

advantages on all these fronts and is best suited to analyse current operations or interventions

in terms of demand/capacity management. However, one needs to note that interventions

should not largely affect the nature of flows or create new hot-spots that are not assumed

in the queuing model. Some of the operational procedures that could impact the nature of

flows are different sequencing for runway crossings, use of different taxi-paths and transitions

during runway configuration changes.

2.4.4 Discussion on the Poisson assumption for queuing networks

In our proposed queuing network model (Eq. 2.11), we made a strong assumption that the

customer arrivals into the queues follows a Poisson process. In this discussion, we present

a few numerical examples to illustrate the validity of the Poisson arrivals assumption for

general queuing networks. For the analysis, we consider the simplest queuing network with

3‘grid lock’ refers to the situation in which aircraft comes to completle stand-still during taxi operation
because of traffic congestion in all directions
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Figure 2-22: Illustration of queues in series and service time distribution.

two queues in series (as shown in Fig. 2-22(a)). We consider the arrivals into the first queue

to be Poisson at the rate 𝜆(𝑡). For the sake of illustration, we consider Erlang service time

distribution for the two servers with a constant mean service rate (𝜇1 = 𝜇2 = 2). To study

the influence of variability in service time and its impact on the Poisson assumption, we

consider three cases by changing the coefficient of variation (𝐶𝑣 = 𝜎
𝜇
) of the service time

distribution: (a) 𝐶𝑣 = 1; (b) 𝐶𝑣 = 0.5; (c) 𝐶𝑣 = 0.1. The three cases span highly variable

service time (𝐶𝑣 = 1) to nearly constant service time (𝐶𝑣 = 0.1) as shown in Fig. 2-22(b).

Figure 2-23 shows a comparison of the mean queue lengths obtained from discrete stochas-

tic simulations and the proposed analytical queuing network model for the three different

cases considered in our analysis. We notice that for the case with a high variability in service

time (𝐶𝑣 = 1), the model-predicted queue lengths match closely with the simulation results.

We note that 𝐶𝑣 = 1 corresponds to an exponential service, and the output of a queue with

exponential service time distribution is known to be Poison under steady state condition.

However, as the variability in service time is reduced (𝐶𝑣 = 0.5, 0.1), we notice that the

simulation results deviate significantly from the proposed model. The absolute value of the

deviations increases with reduction in 𝐶𝑣 and increase in instantaneous utilization factor

( (𝑡)
𝜇

) as seen in Fig. 2-24. These observations illustrate that one needs to exercise caution,

and check the validity of the Poisson arrivals assumption when applying the queuing network

model to a physical system. In the case of airport operations, the queuing network model
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was able to yield good accuracy in predicting the queue lengths and taxi-times as shown

earlier in this chapter.
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Figure 2-23: Comparison of the mean queue lengths obtained from simulations and the
proposed analytical queuing network model for different service time distributions. 𝜆(𝑡) =
1 + 0.5 sin(0.1𝑡), 𝜇1 = 𝜇2 = 2.
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Figure 2-24: Comparison of the mean queue lengths obtained from simulations and the
proposed analytical queuing network model for different service time distributions. 𝜆(𝑡) =
1.9 + 0.5 sin(0.1𝑡), 𝜇1 = 𝜇2 = 2.
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Chapter 3

Congestion control for airport surface

operations

3.1 Introduction

Departure metering, in which departures are appropriately held at the gate in order to reduce

taxi-out time, while ensuring no adverse impact on the airport throughput, has been shown

to be an effective congestion management technique [179, 158, 154]. An aircraft saves fuel

while waiting at the gate with its engines off compared to idling in a taxi queue with its

engines on. In this chapter, we present two approaches to departure metering based on the

queuing model for the airport traffic that was presented in the previous chapter: NASA’s

Airspace Technology Demonstration-2 (ATD-2) logic [179], and a new approach based on

optimal control

Additionally, we also investigate the impact of demand uncertainty on the benefits of

departure metering using empirical data from three major US airports (EWR, DFW, CLT).

The predicted departure demand a few hours prior to operations is based on the Scheduled

Off-Block Times (SOBTs) published by the airlines. Closer to the time of operation, de-

parture demand can be based on the Earliest Off-Block Times (EOBTs)1, which represent

1Note: We adopt the nomenclature used by the US Surface Collaborative Decision Making (S-CDM)
community for different data elements. The nomenclature used by EUROCONTROL’s Airport-CDM is
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the times at which flights are expected to be ready for pushback. In the US, airlines are

now encouraged to publish EOBT information for their flights, and they are expected to

dynamically update each of them until the flight pushes back from the gate [63]. The dy-

namic updates are intended to make the EOBT more representative of the actual demand

compared to the static SOBT. Most departure metering concepts assume the availability of

EOBT information while making tactical gate-hold decisions [63, 60]. While prior efforts

have focused on near real-time departure metering (for example, over the next 15 minutes),

departure metering concepts call for assigning the gate-hold times over longer time-horizons,

in order to improve the predictability of operations [115]. The EOBT is also a key input to

the calculation of downstream events within the S-CDM concept [139]. The actual pushback

time (also referred to as the call-ready or push-ready time) of a flight often differs from the

published EOBT due to several reasons. The accuracy of the published EOBT depends on

an airline’s operating policies with respect to connecting passengers, and aircraft and crew

schedules, as well as CDM procedures [63, 26]. Despite the significant influence of EOBT

accuracy on surface operations, there has, to the best of our knowledge, been limited research

on characterizing its magnitude and impact of the resulting uncertainty on the efficacy of

departure metering [27, 126].

The analyses presented in this chapter are of potential benefit to multiple stakeholders

such as airlines, airport operators, and air navigation service providers (such as the FAA

or EUROCONTROL). For example, emerging terminal automation systems such as the

FAA Terminal Flight Data Manager (TFDM) rely on accurate EOBTs to be published for

input to their departure metering functions. Improvements in EOBT accuracy will require

investments on the part of the airlines in terms of new technologies and procedures. Our

analyses help estimate the returns of these investments in terms of taxi-out time and fuel

burn savings.

significantly different; for example, EOBT is referred to as Estimated Off-Block Time [63, 60].
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3.2 Control algorithms for departure metering

During periods in which demand exceeds capacity, queues build up on the airport surface,

leading to an increase in taxi-out times. The idea behind departure metering is to tactically

assign hold-time for departures at the gate during periods of peak traffic, so that smaller

queues are formed on the airport surface, leading to a reduction in taxi-out time. The

challenge is to assign appropriate hold-times to maximize benefits in terms of taxi-out time

reduction, while maintaining runway utilization. Departure metering is an integral part

of the FAA’s Terminal Flight Data Manager (TFDM), a NextGen initiative [69]. Several

algorithms have been previously proposed to determine the appropriate hold times at the

gate [158, 146, 18, 102]. In this chapter, we consider two approaches to departure metering:

The first one based on NASA’s ATD-2 logic, and the second based on an optimal control

formulation.

3.2.1 Airspace Technology Demonstration-2 (ATD-2) logic

The ATD-2 logic for departure metering computes a gate-hold time for each flight based on

its predicted taxi-out time as follows [179]:

𝑇𝑂𝐵𝑇 = max(𝐸𝑂𝐵𝑇, 𝑇𝑇𝑂𝑇 − 𝑈𝑇𝑇 − 𝑌 ), (3.1)

where 𝑇𝑂𝐵𝑇 is the Target-Off-Block-Time or the new gate release time decided by the

controllers, 𝑇𝑇𝑂𝑇 is the Target Take-Off-Time, 𝑈𝑇𝑇 is the unimpeded time to take-off

that depends on the gate-runway pair, and 𝑌 is the excess queue time buffer [179]. The

target take-off time is computed by adding the predicted taxi-out time to the flight’s EOBT.

In our work, we use the queuing model presented earlier to obtain the taxi-out time prediction

for each flight. In other words, the hold time assigned to each flight is the predicted wait

time in queue for that flight minus the excess queue time buffer. The idea is to transfer the

predicted wait time in the queues to a gate-hold time, saving fuel. The excess queue time

buffer (𝑌 ) is subtracted to account for errors in the taxi-out time prediction. The buffer
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value (𝑌 ) is a constant design parameter that is chosen for each runway configuration. It

is important to choose the optimal buffer parameter. If the buffer parameter is too high, it

will lead to decreased benefits; if the buffer parameter is too low, it could lead to reduced

runway utilization. An illustration of the ATD-2 logic comparing it with the default scenario

with no metering is shown in Fig. 3-1.

(a) Default scenario (no metering)

Push ready time Take-off time (TTOT)

Taxi-out time

Unimpeded time (UTT) Wait time

(b) Departure metering (ATD-2)

Gate hold time = 
predicted wait time –

buffer (Y) Unimpeded time (UTT)

Target Off-Block Time, TOBT (new gate release time)

buffer 
Taxi-out time

Earliest Off-Block Time, EOBT

Figure 3-1: Illustration of the ATD-2 logic for departure metering.

Given the weather condition (IMC/VMC), landing times for arrivals, runway assignments

and EOBT time for departures, the queuing model can predict the taxi-out time for each

flight based on the current queue length at an airport. The hold time is then assigned to

each flight based on its predicted taxi-out time. To have higher predictability in the system,

the hold decisions are made 𝑇𝑝 minutes prior to a flight’s EOBT (where 𝑇𝑝 is the planning

horizon).

3.2.2 Simulation environment for evaluation

The departure metering approaches are evaluated using a simulation of airport surface op-

erations. The simulators are based on discrete queuing network models (as described in

Section 2.2), with the service time for each server being sampled from an empirical distri-
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bution. The empirical service time distributions are a function of the airport weather and

traffic (such as number of landings on the runway and traffic on the ramp) as we had dis-

cussed earlier. The simulations are repeated multiple times to obtain consistent statistics (a

Monte Carlo simulation with 20 runs). We consider a 15 day period for each airport-runway

configuration pair to evaluate the benefits of departure metering. Table 3.1 shows the error

statistics for the taxi-out time predictions from the simulator in the baseline case without

any metering by comparing it with the actual data. Although we consider a 15-day period

for each airport-runway-configuration pair, the total number of departures vary between NF

and SF, because the total time duration operating in a particular configuration is different.

The results indicate that the errors are small relative to the mean taxi-out times, but their

magnitudes are slightly larger than the analytical queuing model.

Airport Configuration Number of Taxi-out time (min) Percentage of flights
departures Mean ME MAE with |error| < 5 min

EWR NF 4,117 21.6 0.4 5.4 60.4
SF 4,493 21.0 0.5 5.4 59.0

DFW NF 6,377 18.7 -0.4 4.2 70.6
SF 9,212 17.3 0.6 4.9 64.4

CLT NF 6,447 20.1 1.1 4.6 64.2
SF 4,493 19.7 -1.0 5.0 63.8

Table 3.1: Error statistics for the baseline taxi-out time predictions from the queuing simu-
lation over a 15 day period.

3.2.3 Departure metering benefits with accurate EOBTs

In this section, we assume that we have accurate EOBT information, that is, the estimate of

the push-ready time published by the airlines is accurate. This is a reasonable assumption

for scenarios in which the hold time is assigned to flights when the pilot calls ready [158, 179],

including the current phase of the ATD-2 demonstration. However, in the long-term, the

plan is to assign gate holds several minutes (say 10-30 min) prior to the flight’s EOBT. At

time 𝑇𝑝 prior to a flight’s EOBT, the taxi-out time for a flight is predicted from the analytical

queuing model using the EOBT information for all the departures, landing times for future
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arrivals, weather condition and current traffic at the airport. For the purpose of evaluating

the departure metering benefits with accurate EOBTs, we consider the flight’s EOBT to be

equal to its Actual Off-Block Time (AOBT) obtained from historical data. The gate release

time (TOBT) for the flight is then determined using Eq. (3.1). The flights are released at

TOBT in the discrete queuing simulation of the airport. In the field demonstrations at CLT,

NASA uses a different model for taxi-out time prediction, a microscopic node-link model of

the airport, instead of a queuing model [179].
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(c) Average wheels-off delay

Figure 3-2: Metering simulation results for different excess queue time buffer values. The
plots show averaged values over a 15 min time window for a typical day at DFW in North-
Flow configuration (07/20/2016).

(a) Average taxi-out reduction and hold
time for different buffers (min).
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(b) Hold time distribution for the flights
that were held.

Figure 3-3: Departure metering statistics for DFW-SF. The statistics were calculated over
9,212 flights in a 15 day period.

Figure 3-2 shows the simulation results of departure metering with a planning horizon

of 20 min for different values of the excess queue time buffer (𝑌 ) and the baseline case
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that corresponds to no metering, on a typical day at DFW. The reduction in taxi-out time

is correlated with the hold-time, which in turn is larger during periods when the baseline

taxi-out time is high. As the excess queue time buffer increases, the average hold-time

decreases, leading to lower taxi-out time reduction benefits. On the other hand, a lower

excess queue time buffer might lead to aircraft being held longer than necessary, leading

to a delayed wheels-off time (Fig. 3-2(c)). The excess queue time buffer is therefore an

important parameter that influences the taxi-out time reduction and airport throughput. In

the field demonstrations at CLT conducted by NASA, ramp managers are allowed to pick

the excess queue time buffer based on their experience [179]. We present a methodology for

systematically selecting the excess queue time buffer parameter.

The wheels-off delay for a flight because of departure metering is given by,

wheels-off delay = (wheels-off time)metering − (wheels-off time)baseline (3.2)

=
(︁
(taxi-out time)metering + hold-time + AOBTbaseline

)︁
−
(︁
(taxi-out time)baseline + AOBTbaseline

)︁ (3.3)

= hold-time −
(︁
(taxi-out time)baseline − (taxi-out time)metering

)︁
(3.4)

= hold-time − (taxi-out time reduction) (3.5)

The difference between the hold-time and taxi-out time reduction is equal to the wheels-off

delay. A positive value of this change indicates that the runway is underutilized. Figure 3-

3(a) shows the average hold time and taxi-out time reduction for different excess queue time

buffers in DFW-SF. The figure indicates the sensitivity of the average hold-time and taxi-

out time to the buffer parameter. As the buffer value increases, the hold-time as well as

reduction in the taxi-out time decreases. We can see that at small values of the excess queue

time buffer, the wheels-off delay is positive, indicating that the runway is underutilized. The

optimal excess queue time buffer is chosen to achieve as large a taxi-out time reduction

as possible while not losing runway utilization. For the 20 min horizon considered here,

the optimal excess queue time buffer is 5 min for DFW-SF, with an average taxi-out time

reduction of 2.1 min.
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Parameter EWR DFW CLT
NF SF NF SF NF SF

Optimal buffer (min) 7 8 5 5 7 5
Mean taxi-out time reduction(min) 2.0 1.7 2.0 2.0 2.7 1.9

Mean hold-time (min) 2.1 1.7 2.0 2.1 2.8 1.9
Mean wheels-off delay (min) 0.07 0.02 0.05 0.02 0.10 0.06

Percentage of flights held 61% 56% 58% 59% 64% 53%
Mean hold time of the flights held (min) 3.4 3.1 3.5 3.5 4.3 3.6

Table 3.2: Effects of departure metering with 20-min planning horizon without EOBT un-
certainty.

The optimal buffer size and taxi-out time reduction vary by airport and runway con-

figuration. Table 3.2 shows the optimal buffer size and taxi-out time reduction from the

simulations of departure metering, assuming perfect EOBT information. As one would ex-

pect, the optimal buffer size is higher for airports with higher taxi-out time prediction errors.

Although the taxi-out delays at EWR and CLT are larger than those at DFW, the reduction

in taxi-out time is about the same due to differences in prediction errors. At all the airports,

about 60% of flights are held at their gates, and the mean hold time of these flights is about

3 min. The distribution of the hold time for the flights that were held is shown in Fig. 3-3(b)

for DFW-SF.

Gate conflicts

A gate conflict occurs when an arriving flight needs to wait for the gate occupied by another

aircraft that is supposed to depart but which is currently being held. Gate conflicts could

potentially decrease the benefits of departure metering, since an arrival may need to use a

gate at which a departure is being held. Fig. 3-4 shows the cumulative distribution of the

time between pushback and the next arrival time at the gate for operations at DFW. It

shows that only 20% of the departing flights have an arriving aircraft that uses the same

gate within 20 min of the departing flight’s pushback time. Since the simulations indicate

that the average hold time for the flights held at the gate is 3.5 min and maximum hold time

is 14 min (corresponding to optimal buffer size), we do not expect a significant reduction in

the taxi-out time savings due to gate conflicts. However, one needs to note that the impacts
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of gate conflicts could be different at other airports depending on various factors such as the

level of congestion (that decides the hold time for departures) and the current level of gate

utilization.
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Figure 3-4: Cumulative distribution of the time between the actual pushback time and the
next arrival at a gate.

3.3 Impact of EOBT uncertainty

The results for the taxi-out time prediction and departure metering presented so far assumed

that the EOBT information provided by the airlines was accurate. However, the EOBTs

published by airlines often deviate from the actual push-ready times, motivating the study

of the impact of EOBT errors on departure metering.

3.3.1 Evaluating EOBT uncertainty

EOBT information was obtained from the FAA’s Traffic Flow Management System (TFMS)

for EWR, DFW, and CLT. Based on the data availability, we considered the following periods

for our analysis: Jan 01 - Nov 11, 2018 (EWR), May 01 - July 31, 2018 (DFW) and Dec

13, 2017 - Feb 12, 2018 (CLT). Flights departing between 9AM and 12PM (local time)

were removed from CLT’s dataset to eliminate any effects of the ATD-2 departure metering

demonstration.

Figure 3-5 shows the distribution of the time when the EOBT information was published

for a flight relative to its EOBT for a major airline (Airline A) at the three airports. Most
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Figure 3-5: Message time of the EOBT information relative to the EOBT time (Airline A).

of the EOBT messages appear to be published within 40 min prior to the flight’s EOBT

(median: 20-23 min), with an additional spike at around 73 min. Further analysis indicates

that airlines publish the Initial Gate Time of Departure (IGTD) or the original scheduled

gate pushback time prior to the 40 min mark (including the spike at 73 min mark seen in

Fig. 3-5) [20]. Table 3.3 shows the EOBT update statistics for the three airports.

Parameter Mean Median 𝜎
EWR DFW CLT EWR DFW CLT EWR DFW CLT

Message time −
EOBT (min)

-22.7 -22.2 -18.6 -23.0 -23 -20.1 5.5 5.5 8.3

Time between up-
dates (min)

2.7 4.4 2.8 1.6 1.8 2.0 3.3 5.3 2.6

No. of EOBT mes-
sages per flight

10.3 9.8 13.3 9 8 10 5.3 5.8 10.2

Table 3.3: EOBT update statistics computed for lookahead horizons ≤ 40 min (Airline A).

The EOBT information is also dynamically updated by airlines at irregular intervals

until the flight pushes back from the gate [63]. The EOBT updates are a concern for the

decision makers who need a ‘stable’ information for making decisions. Figure 3-6 shows the

distribution of the time between EOBT updates for a flight, considering messages within 40

min of the flight’s EOBT. Only 28% of the flights operating out of EWR had their EOBT

published (during the period considered in our analysis, Jan 01 - Nov 11, 2018). However,

all flights with a planned departure are expected to publish EOBT information in the near

future [63]. Figure 3-7 shows the distribution of the number of EOBT updates for a flight,
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Figure 3-6: Time between EOBT updates for lookahead time less than 40 min (Airline A).
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Figure 3-7: Distribution of number of EOBT updates recieved by a flight which had its
EOBT published (Airline A).

given that EOBT information for it was published at least once. The median number of

updates is between 8 and 10 depending on the airport.

The EOBT error was calculated by subtracting the ASPM-derived Actual Off Block Time

(AOBT) for that flight from the published EOBT [68]. Note that AOBT is only available

post-event, after the flight has pushed back from the gate. The EOBT errors errors were

compared over different lookahead time horizons (the difference between the EOBT message

transmission time and the EOBT value published at that time). Figure 3-8 shows the results

of fitting a Probability Density Function (PDF) to the EOBT error distributions for different

lookahead times, obtained for Airline A at EWR, DFW and CLT. The key error statistics

are presented in Table 3.4. As expected, the standard deviations of the distributions increase

with increasing lookahead time. The EOBT error distributions also vary by airport. It is

worth noting that the standard deviation of the EOBT error, even for lookahead times of
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Figure 3-8: EOBT error distribution for different lookahead horizons (Airline A).

10-20 min, is of the same order of magnitude as the taxi-out time prediction errors from the

queuing model. It is therefore important to consider the uncertainty in EOBT information

while evaluating the benefits of departure metering. The EOBT error distributions for all

lookahead horizons are negatively skewed. The distributions for a 20-min horizon show that

flights generally do not pushback more than 10 min prior to their EOBT; however, there are

flights that get delayed beyond 20 mins of the published EOBT.

The EOBT error distributions vary by airline, since each airline does its EOBT compu-

tation internally using different data sources and algorithms. Table 3.5 shows the EOBT

error statistics for two other airlines at EWR (Airline B and Airline C ). The errors are

significantly higher for these two airlines compared to Airline A. Fig. 3-9 presents the EOBT

update distributions for Airline B at EWR, and shows that Airline B tends to update its

EOBT information less frequently than Airline A.

Lookahead Mean error (min) Median error (min) 𝜎 error (min)
time (min) EWR DFW CLT EWR DFW CLT EWR DFW CLT

10 1.0 -1.8 1.5 1.1 -0.4 1.8 3.1 5.9 3.9
20 1.5 -1.8 1.4 1.8 -0.2 1.7 3.5 6.1 3.9
30 0.0 -6.2 -0.1 2.0 -2.0 2.2 8.2 13.7 8.9
40 -1.5 -12.9 -4.5 0.0 -7.0 0.0 8.9 18.4 14.7

Table 3.4: EOBT error statistics for different lookahead times (Airline A).

90



Lookahead Mean error (min) Median error (min) 𝜎 error (min)
time (min) Airline B Airline C Airline B Airline C Airline B Airline C

10 -3.9 -3.9 -1.0 0.2 11.4 9.8
20 -7.7 -5.1 -5.0 0.3 14.3 10.9
30 -7.9 -7.2 -5.0 0.5 14.8 9.8
40 -9.1 -7.5 -4.0 0.7 17.0 13.2

Table 3.5: EOBT error statistics for Airline B and Airline C at EWR computed for different
lookahead horizons.
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Figure 3-9: EOBT information update statistics for Airline B at EWR.

3.3.2 Parametric analysis of the impacts of EOBT uncertainty

The uncertainty in EOBT information impacts departure metering for two reasons:

∙ Reduced accuracy of taxi-out time predictions : Departure metering algorithms require

an estimate of taxi-out times to determine gate-hold times. The taxi-out time predic-

tions need the EOBTs as inputs (for example, to a queuing model). Errors in EOBT

result in taxi-out time prediction errors, leading to inefficient gate-hold times.

∙ Noncompliance with assigned gate release times : The pushback time recommendation

(TOBT) is given by the EOBT time plus the gate-hold time. However, a flight may

not be ready to push at its TOBT due to errors in its EOBT, resulting in a loss in

runway throughput.

We conduct a parametric study of the impacts of inaccurate EOBTs on departure me-

tering using the ATD-2 logic. We assume that the EOBT error distributions are Gaussian

with a zero mean, and we vary the standard deviations. This methodology allows us to
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investigate the impact of different error distributions in a systematic way. The range of

the parametric space for the standard deviation of the error distribution follows from the

operational data. The EOBT time is synthetically computed for every flight in the data-set

by adding a random variable sampled from the EOBT error distribution to the AOBT (in

other words, EOBT = error + AOBT).

For a flight with an uncertain EOBT, we can have one of the following three cases:

1. Push-ready time < EOBT : In this case, the metering logic would recommend a gate-

hold until the EOBT time (i.e. TOBT = EOBT) even if the predicted excess queue time

(predicted wait time) is equal to zero. While this strategy may improve predictability,

flights would have to hold unnecessarily at the gate, resulting in a loss in runway

throughput. To prevent unnecessary holds, the metering logic is modified to let flights

pushback at the push-ready time if the predicted excess queue time (along with the

buffer) is equal to zero.

2. EOBT ≤ push-ready time ≤ TOBT : In this case, the flight waits and then pushback

occurs at its TOBT. The gate-hold time would be expected to translate into a reduction

in taxi-out time.

3. TOBT < push-ready time: In this case, the flight is not ready to pushback at its

TOBT and the pushback occurs later. Once again, there is a loss of predictability

and a potential loss in runway throughput because the flight did not pushback when

expected.

The optimal buffer size in the ATD-2 logic can be adjusted to account for the EOBT

uncertainties, in addition to the taxi-out time prediction errors. The optimal excess queue

time buffer is the smallest value of the queue buffer for which there is no increase in the

wheels-off time. Figure 3-10(a) shows the optimal excess queue time buffer for different

EOBT distributions and two different planning horizons (10-min and 20-min) for DFW-SF.

For a particular planning horizon, the optimal excess queue time buffer increases with an

increase in EOBT error and then saturates beyond a particular point. This behavior is
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Figure 3-10: Optimal excess queue time buffer and taxi-out time reduction for DFW-SF.

as expected, since the taxi-out time prediction error increases with EOBT uncertainty and

needs to be compensated with a larger excess queue time buffer. For higher EOBT errors,

a larger buffer size is required at the 20-min planning horizon than the 10-min horizon, due

to the expected decrease in prediction performance.

There is an inherent trade-off in choosing the planning horizon: A longer planning horizon

is preferable since it leads to more predictability, but it yields lower departure metering

benefits. One would ideally identify the optimal value of the planning horizon by evaluating

the tradeoff between predictability and fuel savings; however, it is difficult to do so since the

value of predictability is not known.

We can also evaluate the departure metering benefits for different EOBT error distribu-

tions using the optimal excess queue time buffer. The taxi-out time savings decreases as

the standard deviation of the EOBT error increases (Figure 3-10(b)). At a 20-min planning

horizon, with the current level of EOBT uncertainty at DFW (standard deviation of 6 min),

there is a 50% decrease in taxi-out time reduction benefits compared to the case with perfect

EOBT information.

Table 3.6 shows the average taxi-out time reduction and optimal buffer for different levels

of EOBT uncertainty at different airports and a 20-min planning horizon. The trends in the

reduction of metering benefits with EOBT uncertainty are consistent across all the airports.
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EOBT error EWR DFW CLT
𝜎 (min) NF SF NF SF NF SF

0 2.0 (5) 1.7 (8) 2.0 (5) 2.1 (5) 2.7 (7) 1.9 (5)
2 1.6 (6) 1.3 (8) 1.7 (6) 1.8 (6) 2.3 (8) 1.6 (5)
4 1.2 (8) 1.2 (9) 1.2 (8) 1.3 (8) 1.8 (10) 1.4 (6)
6 0.9 (10) 1.2 (10) 0.9 (10) 1.0 (10) 1.3 (12) 1.3 (7)
8 0.7 (11) 0.9 (12) 0.7 (11) 0.8 (11) 1.1 (13) 1.1 (8)
10 0.5 (12) 0.9 (13) 0.5 (12) 0.6 (12) 1.0 (13) 1.1 (9)
12 0.5 (12) 0.9 (13) 0.5 (12) 0.5 (12) 0.9 (13) 0.9 (10)

Table 3.6: Average taxi-out time reduction in minutes for different EOBT error distributions
with a planning horizon of 20-min. The optimal buffer for the ATD-2 logic is indicated in
brackets.
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Figure 3-11: Annualized taxi-out time reduction and fuel burn reduction per flight using the
ATD-2 logic for different levels of EOBT uncertainty.

Figure 3-11 shows the annualized average taxi-out time and fuel burn reductions as a function

of the EOBT error. These calculations account for the relative frequency of different runway

configurations and the average fleet mixes at the different airports. The values of the average

taxi fuel flow rate per flight were found to be 0.20 kg/s for EWR and DFW, and 0.17 kg/s

at CLT (due to the higher fraction of regional jets) [88]. Table 3.7 shows the estimated

annualized total fuel burn saving at the three airports obtained by multiplying the average

fuel burn savings per flight with the total number of operations in 2017.
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Airport EOBT error 𝜎 (min)
0 2 4 6 8 10 12

EWR 4.9 4 3.4 3.2 2.7 2.6 2.5
DFW 8.4 7.2 5.3 4 3.3 2.4 2
CLT 6.6 5.5 4.6 3.8 3.2 3.1 2.7

Table 3.7: Annualized fuel burn savings (×106 kg) using the ATD-2 departure metering
logic.

3.3.3 An optimal control approach for departure metering

We propose an approach based on optimal control technique to departure metering in the

presence of EOBT uncertainty, by leveraging the analytical queuing models developed in

Section 2.2. The objective of the formulation is to regulate the rate of aircraft pushbacks

so as to achieve smaller queue lengths on the airport surface, while maintaining runway

throughput.

Let x(𝑡) ∈ R𝑝 be a vector of taxi-out queue lengths on the airport surface at any time

instant 𝑡. Let d(𝑡) ∈ R𝑞 be the departure demand rate, with the elements representing the

demand rate to each runway. The departure demand corresponds to the push-ready time

for departures, and is obtained from the EOBT information provided by the airlines. These

rates are obtained over 5-min windows. Let ud(𝑡) be the pushback rate at the gate that

is assigned by the controllers, and h(𝑡) be the number of aircraft held at the gate due to

departure metering. The number of holds at any instant, h(𝑡), is the difference between the

total demand and total pushbacks until time 𝑡. The dynamics for the number of holds is

then given by:

h(𝑡) =

∫︁ 𝑡

0

d(𝑥)𝑑𝑥−
∫︁ 𝑡

0

ud(𝑥)𝑑𝑥 (3.6)

ḣ(𝑡) = d(𝑡) − ud(𝑡) (3.7)

The control objective is to minimize the length of taxi-out queues while maintaining

throughput, the state variables are the taxi-out queue lengths on the airport surface and

the number of holds, and the control variable is the departure pushback rate (ud(𝑡)). The
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problem formulation for an airport queuing network is then as follows:

min
ud(𝑡)

∫︁ 𝑇

0

(︁
xT𝑄x + hT𝑅h

)︁
𝑑𝑡 (3.8)

Subject to: (3.9)

ẋ = f(x(𝑡),x(𝑡− 𝜏1), ....x(𝑡− 𝜏𝑚),u𝑑(𝑡− 𝜏𝑚+1), ...u𝑑(𝑡− 𝜏𝑤), 𝑡) (3.10)

ḣ = d(𝑡) − ud(𝑡) (3.11)

0 ≤ 𝑥𝑖, ℎ𝑖; 0 ≤ 𝑢𝑑𝑖 ≤ 𝑢𝑚; 𝑖 = 1, 2, 3, ...𝑤 (3.12)

𝑢𝑑𝑖(𝑡) = 𝑔𝑖(𝑡), 𝑡 ∈ [−𝜏𝑑𝑖, 0); 𝑖 = 1, 2, 3, ...𝑤 (3.13)

𝑥𝑖(𝑡) = 𝜑𝑖(𝑡), 𝑡 ∈ [−𝜏𝑘𝑖, 0], h(0) = h0; 𝑖 = 1, 2, 3, ...𝑤 (3.14)

Here, 𝑇 is the optimization window over which the cost needs to minimized, and 𝑄 ∈ R𝑝×𝑝

and 𝑅 ∈ R𝑞×𝑞 are constant weighting matrices. Equations (3.10) and (3.11) specify the

dynamics for the length of the queues and number of holds. The inequalities in (3.12) impose

nonnegativity constraints on the number of holds, queue lengths and pushback rate. The

delay differential equations also require an initial history, specified by Eqs. (3.13)-(3.14).

The cost function (3.8) penalizes a weighted sum of the square of the queue lengths and

number of holds. The queue length is penalized to reduce taxi-out times, while the holds are

penalized to avoid having large holds and to maintain runway throughput.

In Section 2.2, we saw that the dynamics of surface queues depend on the service time

of several servers. The service time distributions for the departure runway queues depend

on the landing rates and meteorological conditions, which are assumed to be known. The

service time distribution of the taxi-out ramp queue requires the number of taxi-in flights on

the ramp (in the case of CLT-NF). The taxi-in ramp queue length is pre-computed using the

queuing model with the EOBTs and arrival times, and is used to determine the service rate

for the taxi-out ramp queue. This service rate is used for the taxi-out ramp queue dynamics

in the optimal control problem. In this manner, the interdependencies between departures

and arrivals in the ramp are simplified so that only the arrivals impact the departures. This

methodology reduces the number of constraints in the optimal control problem. To speed
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up the computation further, the optimal pushback rate is computed only when the runway

queue length at 𝑇𝑝 min in the future is predicted to be greater than 2.

The optimal control problem is solved in a receding horizon framework, accounting for

the current state of the airport surface. The entire day is divided into 5-min intervals. At

the beginning of each interval, pushback rate decisions are made for [𝑇𝑝, 𝑇𝑝 + 5] min, where

𝑇𝑝 is the planning horizon. The optimal control problem is solved for [𝑇𝑝, 𝑇𝑝 + 𝑇 ] where

𝑇 is the optimization window over which the cost is minimized, and the pushback rate is

implemented for the first 5 min. The initial conditions for the optimal control problem at

𝑇𝑝 min into the future are obtained using the queuing network model with the current state

as the input. The number of aircraft that can be released during each 5 min window (𝑛) is

determined from the pushback rate. The first 𝑛 aircraft in the 5 min window are released as

per the optimal control decision and rest of the aircraft are pushed to the beginning of the

next time window, awaiting decision for release. In contrast to the ATD-2 logic which assigns

and freezes the hold time for flights that have an EOBT 𝑇𝑝 min ahead, the optimal control

approach only specifies the flights that need to be released in [𝑇𝑝, 𝑇𝑝 + 5] time window, and

pushes the remaining flights to the next time window. Consequently, aircraft can be pushed

multiple times to the next time window but the release decision is made 𝑇𝑝 minutes ahead.

The optimal control problem is solved numerically rather than analytically due to the

challenges posed by time delays and nonlinear dynamics. The optimal control problem is

solved by discretizing the state and control variables. The equations governing the dynamics

are discretized using a first-order Euler method. The discretized control problem is then

transformed into a non-linear programming problem (NLP) that can be solved using a stan-

dard solver in MATLAB.

We demonstrate the benefits of the optimal control approach by simulating 3 days of

operations in DFW-SF and CLT-NF. The queuing models of these two airport-configuration

pairs differ significantly in complexity. The DFW dataset consisted of 2,708 departures and

CLT dataset consisted of 1,817 departures. We penalize the departure runway queue in the

cost function with a weight equal to one, and impose a weight of 0.4 for the holding term

(𝑄 = I𝑝, 𝑅 = 0.4I𝑞). The weight of the holding term was determined in a similar way as we
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had determined the optimal queue buffer for ATD-2 logic, to ensure that the mean wheels

off delay is close to zero. We consider 𝑇 , the optimization window over which the cost is

minimized to be 30-min for CLT and 60-min for DFW. The longer horizon yielded better

departure metering benefits at DFW, because of the longer departure banks.

Table 3.8 compares the benefits of the optimal control approach and the ATD-2 logic.

While the ATD-2 logic yields more benefit with perfect EOBT information, the optimal

control approach performs better in the presence of uncertainty. The benefits in terms

of taxi-out time reduction with the optimal control approach in the presence of EOBT

uncertainty are about 66% higher for DFW-SF and 33% higher for CLT-NF. Figure 3-12

shows the relative counts of the number of times a flight is pushed to the next 5 min interval,

given that it was asked to hold at least once. Most of the flights that are held at the gate

receive at most two updates.

Parameter
DFW-SF CLT-NF

Perfect EOBT Uncert. EOBT Perfect EOBT Uncert. EOBT
Opt. ATD-2 Opt. ATD-2 Opt. ATD-2 Opt. ATD-2

Mean taxi-out time reduction(min) 1.4 1.9 1.0 0.6 1.3 2.6 1.2 0.9
Mean hold-time (min) 1.5 1.9 1.1 0.7 1.5 2.8 1.3 1.0

Mean wheels-off delay (min) 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.0
Fraction of flights held 0.3 0.6 0.2 0.1 0.3 0.6 0.2 0.1

Mean hold time of flights held (min) 4.9 3.5 5.3 6.3 4.5 4.3 6.2 6.8

Table 3.8: Comparison of the departure metering benefits with and without EOBT uncer-
tainty (assuming 𝜎 = 6 min). Opt. refers to results from the optimal controller.

Table 3.9 compares the computational times of the optimal control approach and the

ATD-2 logic, based on the simulation of a single day of airport operations. The computations

were done on a computer with 2.8 GHz Intel Core i7 processor with 16 GB memory, and the

scripts were run on MATLAB. The computational time of the ATD-2 logic corresponds to

deciding the gate-holds for one or more flights that have the same EOBT. The computational

time can vary slightly depending on the number of flights that share a particular EOBT. The

computational time indicated for the optimal control approach is the time required to make

a decision for every 5-min window in the receding horizon framework. The time duration

to solve the optimal control problem can vary based on the instance of the optimization

problem. In general, the ATD-2 logic is orders of magnitude faster than the optimal control
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Figure 3-12: Relative frequency of the number of updates for the release time for the flights
that were held at the gate using the optimal control policy.

approach in terms of computational time. However, the optimal control approach is still

practical: The mean time for planning a 5-min window is around 2 sec, and maximum

computation time is around 40 sec. Finally, the computational time for CLT is higher than

that for DFW, because of the more complex queuing network.

Airport Mean comp. time (sec) Max. comp. time (sec)
ATD-2 Opt. Ctrl. ATD-2 Opt. Ctrl.

DFW-SF 0.5 ×10−3 1 17 ×10−3 31
CLT-NF 0.9 ×10−3 3 24 ×10−3 39

Table 3.9: Computational times for the ATD-2 logic and the optimal control approach.

3.4 Discussions

3.4.1 Fairness of departure metering

The parameters of the departure metering algorithms were tuned to ensure that there was

no loss in throughput, that is, no net delay for the departures from the airport. However,

depending on the hold-time assigned to the flights, the take-off order in the presence of meter-

ing might be different compared to the baseline. This could result in one flight experiencing

less delay at the expense of more delay for another flight.
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Table 3.10 shows the mean absolute displacement in the takeoff order with metering,

which is an indicator of unfairness. Here, “displacement” refers to the rank difference of the

takeoff order at each runway with departure metering, compared to the baseline case with-

out departure metering. The buffer parameter ensures that there is no loss in throughput,

and that the average takeoff delay is zero. Ideally, in a fair allocation, the mean absolute

displacement in the takeoff order should be equal to zero. However, a higher value of mean

absolute displacement indicates that some flights take off earlier in the metering case com-

pared to the baseline, while some others take off later. Ideally, fairness suggests that the

takeoff order should be the same in the metering case as in the baseline. Table 3.10 shows

that the mean absolute displacement is higher in the presence of EOBT uncertainty.

Category
DFW-SF CLT-NF

Perf. EOBT Uncert. EOBT Perf. EOBT Uncert. EOBT
Opt. ATD-2 Opt. ATD-2 Opt. ATD-2 Opt. ATD-2

Mean absolute displacement of
flights that are not held 0.2 0.0 0.5 0.6 0.4 0.2 0.6 0.8

Mean absolute displacement of
flights that are held 1.5 1.2 1.9 4.0 1.6 1.7 2.0 3.9

Mean absolute displacement of
all flights 0.6 0.7 0.8 1.0 0.8 1.2 0.9 1.3

Table 3.10: Mean absolute displacement of the takeoff order with and without EOBT un-
certainty (assuming 𝜎 = 6 min). Opt. refers to results from the optimal control approach.

3.4.2 Incentives to improve EOBT accuracy

The analysis presented in this chapter quantifies the benefits of more accurate EOBTs in

terms of taxi-out time savings. The standard deviation of the EOBT error distribution is

around 4 min at a 20-min time horizon for EWR and CLT, while it is 6 min at DFW (Table

3.4). If the airlines were to improve the EOBT accuracy by reducing the standard deviation

of the EOBT error to about 2 min, the benefits in terms of taxi-out time savings increases

by 15% at EWR, 75% at DFW, and 22% at CLT. This improvement in EOBT accuracy

yields an additional fuel burn savings of 600K kg/yr at EWR, 3.4M kg/yr at DFW, and

1.1M kg/yr at CLT. Assuming the jet fuel price to be $0.68/kg [87], the additional annual

fuel savings will correspond to $400K at EWR, $2.3M at DFW, and $740K at CLT. Further,
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one can also expect benefits in terms of cost of time to airlines and passengers. The airlines

can use these estimates to decide on investment decisions that could improve their EOBT

accuracy.

3.4.3 Other considerations for departure metering

Ramp operations (including clearance for gate pushbacks) in the US are primarily managed

by the airlines and not by the FAA. While spot metering has been proposed as a solution to

this ‘jurisdictional’ challenge, its practicality remains to be demonstrated. In the departure

metering field tests at CLT under the ATD-2 program, gate-hold decisions were made by

the ramp controllers (airline personnel) by coordinating with the single airline that handles

more that 90% of the operations. The methodology presented in this thesis can be adapted

to consider spot metering, assuming that the implementation challenges can be addressed.

Our work focused on uncertainties pertaining to EOBTs and taxi times. However, there

are multiple sources of uncertainty on the airport surface; for example, departures being

subject to Traffic Management Initiatives (TMIs) such as Approval Requests (APREQs) or

Miles-In-Trail (MIT) restrictions. However, only a small fraction of flights (fewer than 9% of

CLT departures) are affected by such TMIs. We therefore believe that we have considered

the uncertainties that have the most significant impact on departure metering.

Finally, an important aspect that needs to be considered for real-world deployment of the

departure metering algorithms is operational validation. The airport traffic models and the

parameters associated with the control algorithms were obtained using historical operational

data. However, the model parameters might need refinement during operational use because

of changes in airport operations (such as changes in fleet mix, infrastructure, etc.). Therefore,

one needs to actively monitor the performance of these models, and make refinements when

needed.
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Chapter 4

Robust control for queuing networks:

Applications to airport operations

4.1 Introduction

In the previous chapter, we presented a heuristic (ATD-2 logic) and an optimal control

strategy to control the arrival rate (or flight pushbacks in the case discussed) into a queuing

network to reduce congestion. The heuristic and the optimal control approach relied on

the predictions of the queuing model to determine the pushback rate. However, the model

predictions can be inaccurate, leading to inefficiencies. In this chapter, we present a robust

control strategy that explicitly accounts for the model uncertainties to determine a policy to

reduce congestion in a queuing network with time delays that account for the travel times

between the servers in the network.

More generally, we propose a feedback controller to track the desired queue lengths by

controlling the sending rate at the source. The proposed approach accommodates queuing

networks with propagation time-delays between nodes, and arbitrary service time distribu-

tions. This is achieved through a sliding mode control approach, with a predictor-based

feedback to compensate for the time-delays. Prior work on controlling queues using fluid

models with techniques from nonlinear control theory have not accounted for a combination
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of time-delays, and multiple servers [32, 144]. Time-delays can be destabilizing; traditional

techniques for analyzing the stability of time-delay systems (e.g., Lyapunov-Krasovskii or

Lyapunov-Razumikhin methods) are challenging and often result in very conservative results

for nonlinear systems [77, 73]. Using Lyapunov analysis, we determine sufficient conditions

for tracking the queue length and bounds on the tracking error for the case of a single queue.

We also illustrate the performance of the controller for tandem queues using simulations.

In the context of departure metering, this corresponds to determining the release times of

aircraft from their gates in order to maintain a limited queue at the runway, resulting in

reduced taxi-out delays, without under-utilizing the runway.
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(a) Comparison between simulation and pro-
posed model.
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(b) Simulation results.

Figure 4-1: Mean queue length for 𝑀𝑡/𝑀/1 queue (𝜆/𝜇 = 0.9 + 0.45 sin(0.1𝑡); 𝜇 = 2).

It is worth noting that our queuing model governs the evolution of the ensemble mean

queue length and not the actual queue length. Since the arrival times and service times are

stochastic in nature, the actual queue length is a random variable. Probabilistic queuing

models, such as a Markov chain representation of the queuing process, provide the queue

length probabilities at any time using the Chapman-Kolmogrov equation. However, such

models are often complex and restrictive, and are difficult to scale to controlling queue

lengths in large queuing networks. Fig. 4-1(b) shows the ensemble mean queue length for

a 𝑀𝑡/𝑀/1 system obtained from the simulations, along with the 75th percentile and 25th

percentile of the queue length at any time instant. The figure shows that the actual queue
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length at any time can be considered to be a small deviation from the mean queue length.

Consequently, we can use a model of the mean queue length to control the actual queue

length, by considering uncertainties in the model prediction. Our proposed model for the

mean queue length, Eq. (2.8), allows us to develop robust controllers to account for model

uncertainties. We first present the methodology for simple queuing networks and later apply

the approach for departure metering at airports.

4.2 Control for a single queue

In this section, we consider the case of a single queue served by a single server, and then

present the analysis for more complex queuing networks in Sections 4.3 and 4.4, which will be

used to develop an algorithm for departure metering. The objective is to maintain a desired

queue length by controlling the release times into the queue. We first consider the case in

which there is no travel time from the source (where the customers are released) to the point

of entry into the queue. We will later consider the scenario with propagation delays.

4.2.1 Case without propagation delays

The fluid-flow model for a single queue served by a single server is given by the following

equation:

𝑥̇ = 𝛼̄(𝑥, 𝑡) + 𝑢(𝑡), (4.1)

where 𝛼̄(𝑥, 𝑡) = −𝜇(𝑡)𝐶(𝑡)𝑥/(𝐶(𝑡)𝑥+ 1), 𝜇 is the mean service rate of the server, 𝑢(𝑡) is the

mean arrival rate into the queue and the parameter 𝐶 primarily depends on the coefficient

of variation of the service time distribution. We assume that the actual dynamics deviates

from the model, but has a similar structure of the form:

𝑥̇ = 𝛼(𝑥, 𝑡) + 𝑢(𝑡), (4.2)
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where 𝛼(𝑥, 𝑡) is an unknown function that is bounded as follows:

|𝛼(𝑥, 𝑡) − 𝛼̄(𝑥, 𝑡)| ≤ 𝐹 (𝑥, 𝑡). (4.3)

Motivated by the fact that the errors arise primarily due to uncertainties in the individual

service times, we consider,

𝐹 (𝑥, 𝑡) = 𝑎(𝐶(𝑡)𝑥)/(𝐶(𝑡)𝑥 + 1). (4.4)

Here, 𝑎 is a design parameter that needs to be chosen depending on the level of uncertainty.

The objective of the control problem is to determine a sending rate (𝑢(𝑡)) in order to maintain

the queue length at a desired value, 𝑥𝑑(𝑡) ≥ 0. Next, we present a few standard definitions

and theorems on stability properties that are used to develop the feedback controller [162,

152].

Definition 1 (Equilibrium point) The state 𝑥* is said to be an equilibrium point of the

system 𝑥̇ = 𝑓(𝑥, 𝑡) if: 𝑥(𝑡0) = 𝑥* =⇒ 𝑓(𝑥*, 𝑡) = 0 for all 𝑡 ≥ 𝑡0. Without loss of generality,

one can always consider the origin to be the equilibrium point through a simple coordinate

transformation.

Definition 2 (Stability) The equilibrium point 𝑥 = 0 is said to be stable at initial time 𝑡0

if, for any 𝑅 > 0, there exists 𝑟(𝑅, 𝑡0) > 0, such that if ‖𝑥(𝑡0)‖ < 𝑟, then ‖𝑥(𝑡)‖ < 𝑅 for all

𝑡 ≥ 𝑡0. Otherwise, the equilibrium point is said to be unstable. Additionally, the equilibrium

point is said to be uniformly stable if the value of 𝑟 in the preceding definition can be chosen

independent of 𝑡0.

Definition 3 (Asymptotic stability) The equilibrium point 𝑥 = 0 is asymptotically stable

at initial time 𝑡0, if it is stable and, in addition, there exists some 𝑟(𝑡0) > 0 such that if

‖𝑥(𝑡0)‖ < 𝑟 then ‖𝑥(𝑡)‖ → 0 as 𝑡 → ∞. Additionally, the system is globally uniformly

asymptotically stable if these properties hold true for any choice of 𝑟.
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Definition 4 (Class K, KR functions) A function 𝜑(𝑥) belongs to class K if it is con-

tinuous, strictly increasing, and 𝜑(0) = 0. Additionally, 𝜑(𝑥) belongs to class KR if 𝜑(𝑥)

belongs to class K and 𝜑(𝑥) → ∞ as 𝑥 → ∞.

Definition 5 (Positive definite functions) A continuous function 𝑉 (𝑥, 𝑡) is said to be a

positive definite function if for some 𝜑(.) of class KR, 𝑉 (0, 𝑡) = 0 and 𝑉 (𝑥, 𝑡) ≥ 𝜑(|𝑥|) for

all 𝑡 ≥ 0. Additionally, 𝑉 (𝑥, 𝑡) is called a negative definite function if −𝑉 (𝑥, 𝑡) is positive

definite.

Definition 6 (Decrescent functions) A continuous function 𝑉 (𝑥, 𝑡) is said to be decres-

cent if there exists a function 𝛾(.) of class K, such that, 𝑉 (𝑥, 𝑡) ≤ 𝛾(|𝑥|) for all 𝑡 ≥ 0.

Theorem 1 (Lyapunov theorem for global asymptotic stability [152]) Assume there

exists a scalar function 𝑉 (𝑥, 𝑡) with continuous partial derivatives such that: (a) 𝑉 (𝑥, 𝑡) is

positive definite and decrescent, and (b) 𝑉̇ (𝑥, 𝑡), which is given by
(︁

𝜕𝑉
𝜕𝑡

+ 𝜕𝑉
𝜕𝑥
𝑓(𝑥, 𝑡)

)︁
, is neg-

ative definite. Then, the equilibrium point at the origin is globally uniformly asymptotically

stable.

Next, we develop a feedback controller for the sending rate such that the queue length

asymptotically tracks a desired value. The control input must be non-negative since it repre-

sents the sending rate, thereby imposing an additional constraint on the model uncertainty

(𝐹 (𝑥, 𝑡)) to guarantee tracking. The following lemma presents the control law for tracking

the queue length.

Lemma 2 Consider the fluid-flow model for a single queue served by a single server without

any propagation delays from the source (represented by the dynamics in Eq. (4.2), with the

bounded model uncertainties described by Eq. (4.3)). A control input of the form 𝑢(𝑡) =

max
(︁
− 𝛼̄(𝑥, 𝑡)+ 𝑥̇𝑑−𝑘 sgn(𝑥(𝑡)−𝑥𝑑(𝑡)), 0

)︁
, with 𝑘 = 𝐹 (𝑥, 𝑡)+𝜂 for some 𝜂 > 0, guarantees

asymptotic tracking of the desired queue length (𝑥𝑑(𝑡)) if the bounds on the model uncertainty

satisfy 𝐹 (𝑥, 𝑡) < −
(︀
𝛼̄(𝑥, 𝑡) − 𝑥̇𝑑

)︀
when 𝑥 > 𝑥𝑑(𝑡).
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Proof: A feedback law for the sending rate is determined using a sliding mode control

approach [162]. A sliding variable (𝑠) is defined in terms of the tracking error (𝑒) as follows:

𝑠 = 𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑑(𝑡) =⇒ 𝑠̇ = 𝛼(𝑥, 𝑡) + 𝑢(𝑡) − 𝑥̇𝑑(𝑡).

Asymptotic tracking (i.e., 𝑒(𝑡) → 0 as 𝑡 → ∞) of the queue length is achieved by requiring

the squared distance to the sliding surface (𝑠 = 0) decreases along all trajectories:

1

2

𝑑𝑠2

𝑑𝑡
≤ −𝜂|𝑠|, 𝜂 > 0 =⇒ 𝑠𝑠̇ ≤ −𝜂|𝑠| (4.5)

The best approximation to the control input that would achieve 𝑠̇ = 0 is represented by 𝑢̂,

and is given by, 𝑢̂ = −𝛼̄(𝑥, 𝑡) + 𝑥̇𝑑. Consider the control law of the form

𝑢(𝑡) = 𝑢̂− 𝑘 sgn(𝑠) = −𝛼̄(𝑥, 𝑡) + 𝑥̇𝑑 − 𝑘 sgn(𝑠). (4.6)

The discontinuity is added across the sliding surface to account for model uncertainties [162].

To determine the gain parameter, 𝑘, consider,

𝑠𝑠̇ = 𝑠
(︀
𝛼(𝑥, 𝑡) + 𝑢(𝑡) − 𝑥̇𝑑

)︀
(4.7)

= 𝑠
(︀
𝛼(𝑥, 𝑡) − 𝛼̄(𝑥, 𝑡) − 𝑘 sgn(𝑠)

)︀
(4.8)

= 𝑠
(︀
𝛼(𝑥, 𝑡) − 𝛼̄(𝑥, 𝑡)

)︀
− 𝑘|𝑠| (4.9)

If we chose 𝑘 ≥ 𝐹 (𝑥, 𝑡) + 𝜂, then the sliding condition in Eq. (4.5) is satisfied, and therefore

the resulting control law in Eq. (4.6) is guaranteed to asymptotically track the desired queue

length. However, the control input needs to be non-negative since it represents the sending

rate from the source. Therefore, the feedback law is modified as:

𝑢(𝑡) = max
(︀
𝑢̂− 𝑘 sgn(𝑠), 0

)︀
,
(︀
𝑢̂− 𝑘 sgn(𝑠)

)︀+
. (4.10)

Next, we show that the resulting closed loop dynamics asymptotically tracks the desired
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queue length even with the saturated control input under certain conditions.

We make use of the Lyapunov theorem (Theorem 1) to show that the queue length tracks

the desired value using the control input given in Eq. (4.10). Consider the Lyapunov function

candidate, 𝑉 (𝑠, 𝑡) = 𝑠2. Here, 𝑉 (𝑠, 𝑡) is a positive definite function and decrescent. The time

derivative of 𝑉 is given by

𝑉̇ = 𝑠𝑠̇ = 𝑠
(︀
𝛼(𝑥, 𝑡) +

(︀
𝑢̂− 𝑘 sgn(𝑠)

)︀+ − 𝑥̇𝑑

)︀
. (4.11)

When the control input is not saturated (𝑢̂ − 𝑘 sgn(𝑠) ≥ 0), the sliding condition ensures

that 𝑉̇ is negative definite.

Next, we consider the case when the control input is saturated. Using Eq. (4.10), the

condition for control input saturation is given by

(︀
− 𝛼̄(𝑥, 𝑡) + 𝑥̇𝑑 − (𝐹 (𝑥, 𝑡) + 𝜂) sgn(𝑠)

)︀
< 0. (4.12)

The control input can saturate only when 𝑠 > 0, if we choose 𝜂 > max
(︁

(𝛼̄− 𝑥̇𝑑−𝐹 (𝑥, 𝑡)), 0
)︁
.

For the case of saturated control input,

𝑉̇ ≤ 𝐹 (𝑥, 𝑡)|𝑠| + 𝑠
(︀
𝛼̄(𝑥, 𝑡) − 𝑥̇𝑑

)︀
. (4.13)

From the above inequality, 𝑉̇ ≤ −𝜂|𝑠| if 𝐹 (𝑥, 𝑡) = −
(︀
𝛼̄(𝑥, 𝑡) − 𝑥̇𝑑

)︀
+ 𝜂 for any 𝜂 > 0

and 𝑠 > 0. Therefore, 𝑉̇ is negative definite even with control input saturation if 𝐹 (𝑥, 𝑡) <

−
(︀
𝛼̄(𝑥, 𝑡)−𝑥̇𝑑

)︀
. Hence, the equilibrium 𝑠 = 0 (that corresponds to 𝑥 = 𝑥𝑑), is asymptotically

stable, guaranteeing perfect tracking.

�

Remark: The bounds on the uncertainty in the dynamics (𝐹 (𝑥, 𝑡)) becomes more conservative

if the desired queue length, 𝑥𝑑(𝑡), has larger fluctuations.
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4.2.2 Case with propagation delays

Consider the case in which there is a travel time, 𝜏 , to move from the source to the server.

Assume that the travel time is a known constant. The queue length is given by

𝑥̇ = 𝛼̄(𝑥, 𝑡) + 𝑢(𝑡− 𝜏). (4.14)

Applying the delay-free controller that we developed earlier on the time-delay system can

lead to poor tracking. To illustrate this, let us consider a simple example where the desired

queue length to be tracked is of the form 𝑥𝑑 = 8 + 2 sin(0.1𝑡). The system response with the

delay-free controller that we developed earlier is shown in Fig. 4-2. If there are no delays,

the tracking is perfect with the robust controller as intended. However, the observed queue

length deviates from the desired value with the introduction of time-delay, indicating the

need to develop a controller that explicitly accounts for it.
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Figure 4-2: Queue length obtained when the delay-free controller is applied on the time-delay
system. Parameters: 𝑥𝑑 = 8 + 2 sin(0.1𝑡)), 𝜏 = 5, 𝐶 = 1, 𝜇 = 1.

Predictor-based feedback control

A predictor based feedback controller is used to compensate for the time-delays in the sys-

tem [97]. The system is forward-complete, that is, the state trajectories are well-defined

for all 𝑡 ≥ 0, for every initial condition and bounded input signal. Forward-completeness
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ensures that the state does not become unbounded before the control acts on the state due

to delays. Let 𝑃𝑡(𝑡 + 𝜏) be the predictor for the state at time (𝑡 + 𝜏), computed at time

𝑡. The predictor, 𝑃𝑡(𝜃), ∀𝜃 ∈ (𝑡, 𝑡 + 𝜏 ] is obtained by integrating the model equations with

input delays (Eq. (4.14)) forward in time with the initial condition, 𝑃𝑡(𝑡) = 𝑥(𝑡), as:

𝑃𝑡(𝑡 + 𝜏) = 𝑃𝑡(𝑡) +

∫︁ 𝑡

𝑡−𝜏

(︁
𝛼̄
(︀
𝑃𝑡(𝜃 + 𝜏), 𝜃 + 𝜏

)︀
+ 𝑢(𝜃)

)︁
𝑑𝜃. (4.15)

Using the feedback law for the delay-free system (Eq. (4.10)), the predictor-based feedback

law for the delayed system is obtained by replacing the current state values with the corre-

sponding predicted states, as:

𝑢(𝑡) =
(︀
− 𝛼̄(𝑃𝑡(𝑡 + 𝜏), 𝑡 + 𝜏) + 𝑥̇𝑑(𝑡 + 𝜏) − 𝑘 sgn(𝑃𝑡(𝑡 + 𝜏) − 𝑥𝑑(𝑡 + 𝜏))

)︀+ (4.16)

Next, we determine the tracking guarantees with the above predictor-based feedback law.

We determine bounds on the prediction errors, and use those bounds to obtain guarantees

for tracking the queue length. The following lemma provides the bounds for the prediction

errors.

Lemma 3 Consider the fluid-flow model for a single queue served by a single server with a

known propagation delay (𝜏) to move from the source to the server (i.e., dynamics given by

Eq. (4.14), and bounded model uncertainties as in Eq. (4.3)-(4.4)). The error between the

predicted queue length (given by Eq. (4.15)) and its actual value is bounded by

|𝑃𝑡−𝜏 (𝑡) − 𝑥(𝑡)| < 𝑎𝜏. (4.17)

Proof: For the ease of notation, we denote 𝑃 (𝜃) = 𝑃𝑡−𝜏 (𝜃), the predictions for 𝑥(𝜃) com-

puted at time (𝑡− 𝜏). Using Eq. (4.15), the dynamics of 𝑃 (𝜃) is as follows:

˙̂
𝑃 (𝜃) = 𝛼̄

(︀
𝑃 (𝜃), 𝜃

)︀
+ 𝑢(𝜃 − 𝜏); 𝜃 ∈ [𝑡− 𝜏, 𝑡], (4.18)
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with the initial condition 𝑃 (𝑡 − 𝜏) = 𝑥(𝑡 − 𝜏). Suppose that the actual queue dynamics

evolves according to

𝑥̇ = 𝛼(𝑥, 𝑡) + 𝑢(𝑡− 𝜏). (4.19)

Similar to the delay-free case, we assume that the function 𝛼(𝑥, 𝑡) is unknown but bounded

by |𝛼(𝑥, 𝑡)− 𝛼̄(𝑥, 𝑡)| < 𝐹 (𝑥, 𝑡), and that the time delay (𝜏) is known. The error in predicting

𝑥(𝑡) at time (𝑡 − 𝜏) is given by 𝑒(𝜃) = 𝑒𝑡−𝜏 (𝜃) = 𝑃 (𝜃) − 𝑥(𝜃). From Eqs. (4.18)-(4.19), the

error dynamics is given by:

˙̂𝑒(𝜃) = 𝛼̄
(︀
𝑃 (𝜃), 𝜃

)︀
− 𝛼(𝑥(𝜃), 𝜃); 𝜃 ∈ [𝑡− 𝜏, 𝑡], (4.20)

with the initial condition 𝑒(𝑡− 𝜏) = 0. Simplifying further, we obtain

˙̂𝑒(𝜃) = −𝛾(𝜃)𝑒(𝜃) + 𝑑(𝑥(𝜃)), (4.21)

where 𝛾(𝜃) = 𝜇(𝜃)𝐶(𝜃)/
(︁

(𝐶(𝜃)𝑃 (𝜃) + 1)(𝐶(𝜃)𝑥(𝜃) + 1)
)︁
, and 𝑑(𝑥(𝜃)) =

(︀
𝛼̄(𝑥(𝜃), 𝜃)−𝛼(𝑥(𝜃), 𝜃)

)︀
.

The error dynamics is stable since 𝛾(𝜃) > 0, and the solution is given by

𝑒(𝑡) = exp
(︁
−
∫︁ 𝑡

𝑡−𝜏

𝛾(𝜃)𝑑𝜃
)︁
𝑒(𝑡− 𝜏)

+

∫︁ 𝑡

𝑡−𝜏

exp
(︁
−
∫︁ 𝑡

𝑟

𝛾(𝜃)𝑑𝜃
)︁
𝑑(𝑥(𝑟))𝑑𝑟 ≤ 𝑎𝜏,

since exp
(︁
−
∫︀ 𝑡

𝑟
𝛾(𝜃)𝑑𝜃

)︁
≤ 1 (since 𝛾(𝜃) > 0) and 𝑑(𝑥(𝑡)) ≤ 𝐹 (𝑥, 𝑡) < 𝑎. Therefore, the error

bound (𝐷) for the prediction of 𝑥(𝑡) computed at time 𝑡− 𝜏 is given by

|𝑃 (𝑡) − 𝑥(𝑡)| < 𝐷 = 𝑎𝜏. (4.22)

�

The above result indicates that the prediction error is proportional to the time delay (𝜏)

and magnitude of uncertainty in the dynamics (𝑎). Next, we investigate the impact of the

prediction error on tracking the queue length.
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Tracking performance of the controller

Using the results from Lemma 3, we can show that with predictor-based feedback control,

the queue length always converges to a set around the desired value. To do so, we define the

concept of ultimate boundedness [51].

Definition 7 (Ultimate boundedness for time-delay systems [174]) The solutions 𝑥𝑡(𝑡0, 𝜑)

of 𝑥̇ = 𝑓(𝑡, 𝑥𝑡) are said to be uniformly ultimately bounded if there exists an 𝜂 > 0 and a

𝑡 = 𝑡(𝜂, 𝛿) > 0 independent of 𝑡0 such that ‖𝑥𝑡(𝑡0, 𝜑)‖ ≤ 𝜂 for all 𝑡 ≥ 𝑡0 + 𝑡, when |𝜑| < 𝛿.

Here, 𝑥𝑡(𝑡0, 𝜑) refers to the solutions of 𝑥̇ = 𝑓(𝑡, 𝑥𝑡) with the initial condition 𝜑 at 𝑡0.

The following theorem presents the key result for tracking guarantees using predictor-based

feedback control:

Theorem 4 Consider the fluid-flow model for a single queue served by a single server, with

a known propagation delay (𝜏) to move from the source to the server (i.e., dynamics from

Eq. (4.14) and bounded model uncertainties given by Eq. (4.3)-(4.4)). Then, the control input

𝑢(𝑡) =
(︀
− 𝛼̄(𝑃𝑡(𝑡 + 𝜏), 𝑡 + 𝜏) + 𝑥̇𝑑(𝑡 + 𝜏) − 𝑘 sgn(𝑃𝑡(𝑡 + 𝜏) − 𝑥𝑑(𝑡 + 𝜏))

)︀+ (4.23)

with

𝑃𝑡(𝑡 + 𝜏) =

∫︁ 𝑡

𝑡−𝜏

(︁
𝛼̄
(︀
𝑃𝑡(𝜃 + 𝜏), 𝜃 + 𝜏

)︀
+ 𝑢(𝜃)

)︁
𝑑𝜃, 𝑃𝑡(𝑡) = 𝑥(𝑡); (4.24)

and 𝑘 = 𝐹 (𝑥, 𝑡) + 𝜂 + 𝜇𝐶𝑎𝜏 ; 𝜂 >
(︀
𝛼̄− 𝑥̇𝑑 − (𝐹 + 𝜇𝐶𝑎𝜏)

)︀+
guarantees that the queue length is uniformly ultimately bounded if 𝐹 (𝑥, 𝑡) < (−𝛼̄(𝑥, 𝑡) + 𝑥̇𝑑)

when 𝑥 > 𝑥𝑑+𝑎𝜏 . Furthermore, the ultimate bounds are given by ‖𝑥−𝑥𝑑‖ < 𝑎𝜏 ∀ 𝑡 ≥ 𝑡0+𝑇 ,

where 𝑇 = (𝑥0−𝑥𝑑)
2−𝑎2𝜏

2

𝑘𝑎𝜏
.
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Proof: Consider the Lyapunov function candidate, 𝑉 (𝑠, 𝑡) = 𝑠2, where 𝑠 = (𝑥 − 𝑥𝑑), as

before. The time derivative of 𝑉 is given by

𝑉̇ = 𝑠
(︁
𝛼(𝑥, 𝑡) +

(︀
− 𝛼̄(𝑃 (𝑡), 𝑡) + 𝑥̇𝑑 − 𝑘 sgn(𝑃 (𝑡) − 𝑥𝑑(𝑡))

)︀+ − 𝑥̇𝑑

)︁
.

When 𝑥 > 𝑥𝑑 + 𝐷, we have 𝑃 (𝑡) − 𝑥𝑑 > 0 from Eq. (4.17) and 𝑠 > 0. Then,

𝑉̇ = 𝑠
(︁
𝛼(𝑥, 𝑡) − 𝛼̄(𝑃 (𝑡), 𝑡) − 𝑘

)︁
≤ 𝑠𝐹 (𝑥, 𝑡) + 𝑠

(︁
𝛼̄(𝑥, 𝑡) − 𝛼̄(𝑃 (𝑡), 𝑡)

)︁
− 𝑠𝑘.

However, since
(︀
𝛼̄(𝑥, 𝑡) − 𝛼̄(𝑃 (𝑡), 𝑡)

)︀
= −𝜇𝐶(𝑥−𝑃 )

(𝐶𝑥+1)(𝐶𝑃+1)
≤ 𝜇𝐶𝐷, we obtain

𝑉̇ ≤ 𝑠𝐹 (𝑥, 𝑡) + 𝑠𝜇𝐶𝐷 − 𝑠𝑘 (4.25)

For the case when 𝑥 < 𝑥𝑑 − 𝐷, we have 𝑃 (𝑡) − 𝑥𝑑 < 0 from Eq. (4.17) and 𝑠 < 0. Then,

similarly:

𝑉̇ ≤ |𝑠|𝐹 (𝑥, 𝑡) + |𝑠|𝜇𝐶𝐷 + 𝑠𝑘. (4.26)

Eqs. (4.25)-(4.26) imply that 𝑉̇ < 0 for |𝑥 − 𝑥𝑑| > 𝐷 when the gain, 𝑘, is appropriately

chosen. With the above results, we can show that queue length always converges to

a set around the desired value with predictor-based feedback control, or equivalently, the

trajectories of the closed-loop system are uniformly ultimately bounded.

If the gain 𝑘 in Eqs. (4.25)-(4.26) is chosen such that 𝑘 = 𝜇𝐶𝐷 + 𝐹 (𝑥, 𝑡) + 𝜂, 𝜂 > 0,

then we obtain 𝑉̇ ≤ −𝜂|𝑠| for ‖𝑠‖ > 𝐷. Therefore, for ‖𝑠‖ > 𝐷, 𝑉̇ ≤ −𝜂𝐷, which implies

that the trajectory behaves as if the origin (𝑠 = 0) is asymptotically stable and satisfies an

inequality of the form, 𝑠2 ≤ 𝑠20 − 𝜂𝐷(𝑡 − 𝑡0). The trajectories that start in or those that

reach the set, {𝑠 : ‖𝑠‖ ≤ 𝐷}, will remain within that set since 𝑉̇ is negative on the boundary

of that set. Therefore, the system is uniformly ultimately bounded with an ultimate bound

𝐷, which implies ‖𝑥 − 𝑥𝑑‖ < 𝐷 ∀ 𝑡 ≥ 𝑡0 + 𝑇 , where 𝑇 = (𝑥0−𝑥𝑑)
2−𝐷2

𝜂𝐷
. Therefore, the queue
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length converges to a set around the desired queue length, {𝑥 : ‖𝑥−𝑥𝑑‖ < 𝐷 = 𝑎𝜏}, in finite

time. This set depends on the time-delay and model uncertainty.

The above results are valid even when the controller saturates under certain conditions.

From Eq. (4.16), the control input saturates if:

−𝛼̄(𝑃 (𝑡), 𝑡) + 𝑥̇𝑑 − (𝐹 + 𝜇𝐶𝐷 + 𝜂) sgn(𝑃 (𝑡) − 𝑥𝑑(𝑡)) < 0.

If 𝜂 > max
(︁
𝛼̄−𝑥̇𝑑−(𝐹+𝜇𝐶𝐷), 0

)︁
, then the control input does not saturate when 𝑥 < 𝑥𝑑−𝐷

(from Eq. (4.17)). For the case when the controller saturates and 𝑥 > 𝑥𝑑 + 𝐷, we have:

𝑉̇ ≤ 𝐹 (𝑥, 𝑡)|𝑠| + 𝑠
(︀
𝛼̄(𝑥, 𝑡) − 𝑥̇𝑑

)︀
.

From the above inequality, 𝑉̇ is negative for 𝑥 > 𝑥𝑑 + 𝐷 if 𝐹 (𝑥, 𝑡) ≤ −
(︀
𝛼̄(𝑥) − 𝑥̇𝑑

)︀
. The

condition on 𝐹 (𝑥, 𝑡) is similar to what we had obtained earlier for the case without time-

delays. Therefore, even with controller saturation, the above system is uniformly ultimately

bounded with these additional conditions. �

The predictor in Eq. (4.24) is computed through numerical integration. To eliminate

chattering (i.e., the control input switching at high frequencies at the sliding surface), the

sgn(.) function in the control input is replaced by a saturation function, {sat(𝑥) = 𝑥 if |𝑥| <

1, or sgn(𝑥) otherwise}, as is standard practice for sliding mode controllers [162].

4.2.3 Numerical experiments

To illustrate the tracking performance of the proposed approach, we consider the following

sinusoidal reference signal for the desired queue length: 𝑥𝑑(𝑡) = 8 + 2 sin(0.1𝑡), and the

parameter values 𝜇 = 1, 𝐶 = 1, 𝜏 = 5, 𝑎 = 0.3. The sinusoidal reference signal is used to

illustrate that the control algorithm can be used to maintain a time-varying desired queue

length. The parameters represent a server with exponential service time distribution with

a mean equal to one; however, the analysis can be adapted to other general service time

distributions by appropriately changing the value of 𝐶.

115



Figure 4-3 shows the control input and the achieved queue length (along with the ultimate

bounds) for the case with no model uncertainties. We see that one obtains perfect tracking,

and that the control input is continuous (no chattering). Next, we consider the case with

model uncertainty. Figure 4-4 shows the resulting queue length for the three cases that

correspond to instances when the uncertainty in the model dynamics is either lesser than,

equal to, and greater than the assumed value. In these examples, we assume that the actual

mean service rate deviates from the model. The output queue length deviates from the

desired value, but lies within the ultimate bound when the actual uncertainty is within the

assumed range. We note that the ultimate bound (𝑥𝑑 ± 𝑎𝜏) for the queue length that we

have obtained is very tight in this example.

The condition that the model uncertainty being less than the assumed value guaranteeing

uniform ultimate boundedness is a sufficient condition but not necessary. We could have

trajectories within the ultimate bound even if the model uncertainty is greater than the

assumed value when the prediction error over the time-horizon is smaller than 𝑎𝜏 . This could

happen when the errors in the assumed mean service rate fluctuates over time, resulting in

an instantaneous deviation higher than the assumed value, but the prediction error over

the time horizon is smaller than the threshold. This observation is particularly important

when we apply this control framework to discrete stochastic queuing systems, wherein, the

instantaneous deviation of the model might be large but the prediction errors over a horizon

are small. Also, note that the ultimate bound collapses to 𝑥𝑑 when there are no time-delays.

This shows that the robust controller guarantees nearly perfect tracking even in the presence

of model uncertainties when there are no delays in the system.

Next, the control law is tested on a queuing simulator instead of the analytical model to

test the performance of the controller on a discrete queuing system. The queuing simulator

advances in discrete time steps and the customers released at the source join the queue

after a time delay that corresponds to the travel time. The customers in the queue are

served on a first-come-first-serve basis and the service times of the server are sampled from

an exponential distribution. From an implementation point of view, we need to note that

the control law (Eq. 4.23) provides a continuous release rate into the queue. However, the
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Figure 4-3: Output queue length when there are no model uncertainties.
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(a) 𝜇𝑎 = 1.1; |𝛼(𝑥) −
𝛼̄(𝑥)| < 𝐹 (𝑥)
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(b) 𝜇𝑎 = 1.3; |𝛼(𝑥) −
𝛼̄(𝑥)| = 𝐹 (𝑥)
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(c) 𝜇𝑎 = 1.5; |𝛼(𝑥) −
𝛼̄(𝑥)| > 𝐹 (𝑥)

Figure 4-4: Tracking accuracy when the actual service rate (𝜇𝑎) is different from the nominal
service rate assumed in the model (𝜇 = 1).
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Figure 4-5: Queue length from the queuing simulation with exponential service time distri-
bution.

simulator (and any physical queuing system) requires the number of customers that need to

be released into the queue as the input. So one needs to convert the continuous sending rate,

that is the output of the feedback control policy, into discrete number of customers that
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need to be released into the queue at every time instant. The way we handle this issue is

by integrating the release rate with time and releasing a customer when the integral crosses

an integer value. Let ∆𝑡 be the discrete time step of the simulator and 𝑢(𝑡𝑛) be the release

rate determined from the feedback law (Eq. (4.23)) at discrete time step 𝑡𝑛. The number of

customers released into the queue at time 𝑡𝑛 is represented by 𝑈(𝑡𝑛), which is found using,

𝑈(𝑡𝑛) =

⌊︃
𝑛∑︁

𝑖=1

𝑢(𝑡𝑖)∆𝑡−
𝑛−1∑︁
𝑖=1

𝑈(𝑡𝑖)

⌋︃
(4.27)

Here, ⌊.⌋ represents the floor function. The objective in the simulation experiments is to

release customers into the queue to track a desired queue length. The ultimate bounds

obtained from the analytical model, 𝑥𝑑± 𝑎𝜏 , essentially depends on the error bounds for the

state predictions (𝑎𝜏). We obtain tighter empirical bounds for the predictor errors using the

simulated data and model predictions. Let 𝐸 be the empirical distribution of the predictor

error obtained from the simulation. We then define an approximate ultimate bound from

the simulation data as [𝑥𝑑 − 𝐸1, 𝑥𝑑 − 𝐸99], where, 𝐸𝑘 denotes the 𝑘𝑡ℎ percentile of the error

distribution. Fig. 4-5(a) shows the profile of the desired queue length, achieved queue length

and the ultimate bounds for a single realization of the simulation. We can see that the queue

length tracks the desired trajectory and stays almost within the bounds. To highlight the

fact that the output trajectories remain within the ultimate bounds, we present multiple

output trajectories in Fig. 4-5(b). The ensemble mean and standard deviation over multiple

realizations (50 in this case) is shown in Fig. 4-5(c). The ensemble mean of the queue length

shows better tracking since our analytical model is derived based on capturing the ensemble

mean. We can also see that the standard deviation of the resultant trajectory is relatively low

as desired. In an operational application, we can also compute the prediction errors of the

model using the actual operational data to obtain the error distributions, and then compute

the approximate ultimate bounds using the 1𝑠𝑡 and 99𝑡ℎ percentile of the error distribution.
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4.3 Control of queues in tandem

To illustrate the methodology for a queuing network, we first consider the simplest queuing

network: two queues in tandem as shown in Fig. 4-6. Let 𝑥1 and 𝑥2 be the length of the

first and second queue, respectively. Assume that the queues have infinite capacity to hold

customers (no blocking). Let 𝜇1 and 𝜇2 be the mean service rates of the first and second

server, respectively. For the present discussion, assume that the service time distributions

are time-invariant. Let the sending rate at the source be 𝑢(𝑡). The time taken by a customer

to reach the first queue from the source is 𝜏1 and similarly the time taken to reach the second

queue from after completing service in the first queue is 𝜏2. The objective is to control the

arrivals into the first queue to maintain a desired queue length in the second queue. For this

objective to be feasible, we assume that the mean service rate of the first server is greater

than the second server. The input into the second queue depends on the out-flow rate from

the first queue, that is upper bounded by mean service rate of the first queue. Moreover, the

out-flow rate from the second queue depends on its mean service rate. As a consequence,

there is a physical constraint on the trajectories that can be tracked by the controller.

Figure 4-6: Schematic of two queues in tandem.

Using the fluid flow model discussed earlier, the queuing model for tandem queues with

propagations delays is given by the following delay differential equations with appropriate

initial conditions,

𝑥̇1(𝑡) = −𝜇1
𝐶1𝑥1(𝑡)

(1 + 𝐶1𝑥1(𝑡))
+ 𝑢(𝑡− 𝜏1) (4.28)

𝑥̇2(𝑡) = −𝜇2
𝐶2𝑥2(𝑡)

(1 + 𝐶2𝑥2(𝑡))
+ 𝜇1

𝐶1𝑥1(𝑡− 𝜏2)

(1 + 𝐶1𝑥1(𝑡− 𝜏2))
(4.29)
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4.3.1 Controller for dynamics without propagation delays

As we had done in the case of a single queue, we first develop a robust controller for the non-

delayed system and then account for the delay terms through a predictor-based feedback.

The model for the queue length without time-delay is:

𝑥̇1 = −𝜇1(𝑡)
𝐶1(𝑡)𝑥1

(1 + 𝐶1(𝑡)𝑥1)
+ 𝑢(𝑡)

𝑥̇2 = −𝜇2(𝑡)
𝐶2(𝑡)𝑥2

(1 + 𝐶2(𝑡)𝑥2)
+ 𝜇1(𝑡)

𝐶1(𝑡)𝑥1

(1 + 𝐶1(𝑡)𝑥1)
.

(4.30)

The objective is to track the second queue length at a desired value considering model

uncertainties. The state that has to be tracked, 𝑥2, needs to be differentiated twice to obtain

the control input, leading to the following second-order differential equation:

𝑥̈2 = 𝛼̄(x, 𝑡) + 𝛽(x, 𝑡)𝑢

𝛼̄(x, 𝑡) = −𝜇2
1

𝐶2
1𝑥1

(𝐶1𝑥1 + 1)3
+ 𝜇2

2

𝐶2
2𝑥2

(𝐶2𝑥2 + 1)3
− 𝜇1

𝜇2𝐶1𝐶2𝑥1

(𝐶2𝑥2 + 1)2(𝐶1𝑥1 + 1)

𝛽(x, 𝑡) =
𝜇1𝐶1

(1 + 𝐶1𝑥1)2
,

where x = [𝑥1, 𝑥2]
𝑇 . We assume that the dynamics for the actual queue length is of the

form 𝑥̈2 = 𝛼(x, 𝑡) + 𝛽(x, 𝑡)𝑢, where 𝛼(x, 𝑡) and 𝛽(x, 𝑡) are unknown functions. However, we

assume that the error between the model and the actual dynamics is bounded. We assume

the following form for the error bounds:

|𝛼(x, 𝑡) − 𝛼̄(x, 𝑡)| ≤ 𝐹 (x, 𝑡), (4.31)

1
𝑐
𝛽(x, 𝑡) ≤ 𝛽(x, 𝑡) ≤ 𝑐𝛽(x, 𝑡), 𝑐 > 1. (4.32)

Since errors arise primarily due to uncertainties in the service times, we consider the following

form for 𝐹 (x, 𝑡):

𝐹 (x, 𝑡) = 𝑎1
𝐶2

1𝑥1

(𝐶1𝑥1 + 1)3
+ 𝑎2

𝐶2
2𝑥2

(𝐶2𝑥2 + 1)3
+ 𝑎3

𝐶1𝐶2𝑥1

(𝐶2𝑥2 + 1)2(𝐶1𝑥1 + 1)
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where 𝑎𝑖, 𝑖 = 1, 2, 3 are constants that determine the level of uncertainty. The goal is to

design a sliding controller to have 𝑥2 track a desired queue length, 𝑥2,𝑑(𝑡). Assume that the

desired trajectory is continuous and twice-differentiable. The sliding variable (𝑠) is defined

in terms of the tracking error, 𝑒 = 𝑥2 − 𝑥2,𝑑, as 𝑠 = 𝑒̇ + 𝜆𝑒, 𝜆 > 0.

𝑠̇ = 𝑒 + 𝜆𝑒̇ = 𝑥̈2 − 𝑥̈2,𝑑 + 𝜆𝑒̇ = 𝛼 + 𝛽𝑢− 𝑥̈2,𝑑 + 𝜆𝑒̇ (4.33)

The best approximation of the control input that would achieve 𝑠̇ = 0 is given by 𝑢̂ =

𝛽−1(𝑥̈2,𝑑 − 𝜆𝑒̇− 𝛼̄). Consider the control law of the form

𝑢 = 𝑢̂− 𝑘 sgn(𝑠). (4.34)

The gain parameter (𝑘) is determined from the sliding condition (Eq. (4.5)) to guarantee

asymptotic tracking. Using the definitions for 𝑠, the control law Eq. (4.34), and the sliding

condition (Eq. (4.5)), we get:

𝑠𝑠̇ = 𝑠
(︁
𝛼 + 𝛽(𝑢̂− 𝑘 sgn(𝑠)) − 𝑥̈2,𝑑 + 𝜆𝑒̇

)︁
= 𝑠
(︁
𝛼 + 𝛽(𝛽−1(𝑥̈2,𝑑 − 𝜆𝑒̇− 𝛼̄) − 𝑘 sgn(𝑠)) − 𝑥̈2,𝑑 + 𝜆𝑒̇

)︁
= 𝑠
(︁
𝛼− 𝛽𝛽−1𝛼̄

)︁
+ 𝑠(−𝑥̈2,𝑑 + 𝜆𝑒̇)(1 − 𝛽𝛽−1) − 𝛽𝑘|𝑠|

= 𝑠
(︁
𝛼− 𝛼̄

)︁
+ (𝛼̄− 𝑥̈2,𝑑 + 𝜆𝑒̇)(1 − 𝛽𝛽−1) − 𝛽𝑘|𝑠|

= 𝑠
(︁
𝛼− 𝛼̄

)︁
− 𝛽𝑢̂(1 − 𝛽𝛽−1) − 𝛽𝑘|𝑠|

Consider 𝑘 ≥ 𝛽−1𝑐(𝐹 + 𝜂) + (𝑐− 1)|𝑢̂|, then,

𝑠𝑠̇ ≤ 𝑠
(︁
𝛼− 𝛼̄

)︁
− 𝑢̂(𝛽 − 𝛽) − 𝛽

(︁
𝛽−1𝑐(𝐹 + 𝜂) + (𝑐− 1)|𝑢̂|

)︁
|𝑠| (4.35)

𝑠𝑠̇ ≤ 𝑠
(︁
𝛼− 𝛼̄

)︁
−
(︁
𝛽𝛽−1𝑐(𝐹 + 𝜂)

)︁
|𝑠| − 𝑢̂𝛽(𝛽𝛽−1 − 1) − 𝛽(𝑐− 1)|𝑢̂||𝑠| (4.36)

From the assumptions on the error bounds (Eqs. (4.31)-(4.32)), we obtain the following
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conditions: 𝛽𝛽−1𝑐 ≥ 1, (𝑐 − 1) ≥ (𝛽𝛽−1 − 1), (𝛼 − 𝛼̄) ≤ 𝐹 , and hence Eq. (4.36) implies

𝑠𝑠̇ ≤ −𝜂|𝑠|. Therefore, the gain parameter (𝑘) if chosen as per the above condition satisfies

the sliding condition (Eq. (4.5)) to guarantee asymptotic tracking. To reduce the effect of

chattering and to account for the non-negativity of the control input, we modify the feedback

law (as done in the single queue case) as follows:

𝑢 =
(︀
𝑢̂− 𝑘 sat(𝑠)

)︀
.+

As a result of saturating the control law, we lose the tracking guarantees obtained from the

sliding mode controller. In the case of a single queue, we were able to obtain conditions

for tracking even with controller saturation. While the analysis that was presented for the

case of a single queue is difficult to extend to the case of multiple queues, we show that the

feedback law performs well in numerical experiments.

Evaluating controller performance

To evaluate the performance of the feedback controller, we consider the case in which the

service time of the servers follows an exponential distribution. We first illustrate the perfor-

mance of the controller by applying the feedback law to the model equations with uncertain

service rates. The state derivative that is required for the feedback law is estimated using the

model equations. Fig. 4-7 shows the control input and the resulting queue length for the case

in which the desired queue length is sinusoidal (𝑥2,𝑑 = 8+2 sin(0.1𝑡)). The model parameters

used to develop the feedback control law are as follows: 𝜇1 = 2, 𝜇2 = 1, 𝐶1 = 𝐶2 = 1. In

this case, the actual service rates are considered to be 1.2 times the nominal service rates

that are used to derive the feedback controller. We can see that the controller offers very

good tracking even though the service rate used in the model differs from the actual service

rate, demonstrating robustness to model uncertainties.

Next, the feedback controller is tested on a stochastic queuing simulator to access its per-

formance on the discrete queuing system. The continuous sending rate obtained from the

control law is converted into discrete sending times in the same way as done earlier for the
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Figure 4-7: Controller performance for tracking the length of the second queue.
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(a) Single realization - 𝑥1
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(b) Single realization - 𝑥2
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Figure 4-8: Single realization and statistics over multiple realizations of the queue length.
Simulation parameters: 𝜇1 = 2, 𝜇2 = 1, 𝜆 = 23, 𝜂 = 0.5, ∆𝑡 = 0.1, 𝑥2,𝑑 = 8 + 2 sin(0.1𝑡)

single queue case. In addition, we drop the state dependence on the nominal value of the

control gain and consider 𝛽(𝑥) = 𝛽 = 3. Figures 4-8(a)-4-8(b) show a single realization of

the first and second queue length obtained from the simulations. We see that the length of

the second queue remains close to the desired value. The mean and standard deviation of

the queue length calculated from 30 sample realizations are shown in Figs. 4-8(a)-4-8(b). We

can see that the mean queue length is close to the desired value and the standard deviation

is relatively small.

Comparison with an exact solution

The solution obtained using the sliding mode controller is compared with an exact solution

obtained using Markov Decision Process (MDP). We can represent the queuing process as

a Markov chain (Fig. 4-9) for the case when the service time is exponentially distributed

and there are no propagation delays (𝜏1 = 𝜏2 = 0). The state of the Markov chain is

𝑋 = (𝑖, 𝑗), with 𝑖 being the length of the first queue and 𝑗 being the length of the second

queue. The control input, 𝑢, determines the number of customers released to the first queue.
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The transition probability (𝑃 ) of the Markov chain conditioned on the control input, 𝑢 = 𝑘,

is as follows,

𝑝(𝑖,𝑗)→(𝑙,𝑚)|𝑢=𝑘 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇1∆𝑡𝛿𝑖, if (𝑙,𝑚) = (𝑖− 1 + 𝑘, 𝑗 + 1)&(𝑖 ̸= 0|𝑘 > 0)

𝜇2∆𝑡𝛿𝑗, if (𝑙,𝑚) = (𝑖 + 𝑘, 𝑗 − 1)&(𝑗 ̸= 0)

1 − (𝜇1𝛿𝑖 + 𝜇2𝛿𝑗)∆𝑡, if (𝑙,𝑚) = (𝑖 + 𝑘, 𝑗)

0, otherwise.

(4.37)

Figure 4-9: Markov chain representation for tandem queue

Here, 𝛿𝑚 = 0 if 𝑚 = 0, or 1 otherwise. The aim of the control problem is to track the length

of the second queue at some desired value (𝑥𝑑). Here, we consider the desired value to be a

constant to obtain a static policy. The cost function (𝐶(𝑋, 𝑢)) for the MDP is considered

to be the following,

𝐶(𝑋,𝑢) = (𝑗 − 𝑥𝑑)
2 (4.38)

The cost function penalizes the deviation from the desired queue length. The 𝑠 − ℎ𝑜𝑟𝑖𝑧𝑜𝑛

cost under a stationary control policy 𝜋 is given by,

𝐽𝑠(𝑋,𝜋) = 𝐸𝜋

[︁ 𝑠−1∑︁
𝑛=0

𝛾𝑛𝐶(𝑋𝑛, 𝑢𝑛)|𝑋𝑜 = 𝑋
]︁

(4.39)

where, 𝐸𝜋 denotes the expectation over the path of the process under policy 𝜋, 𝛾 is the

discount factor and (𝑋𝑛, 𝑢𝑛) denotes the state and control input pair at time 𝑛∆𝑡. The

𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒− ℎ𝑜𝑟𝑖𝑧𝑜𝑛 cost under policy 𝜋 is given by,
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𝐽(𝑋,𝜋) = lim
𝑠→∞

𝐽𝑠(𝑋,𝜋) (4.40)

The optimal stationary policy 𝜋* satisfies the Bellman equation,

𝐽*(𝑋) = min
𝑢

[︁
𝐶(𝑋,𝑢) + 𝛾

∑︁
𝑋′

𝑃𝑋→𝑋′𝐽*(𝑋 ′)
]︁

(4.41)

The optimal policy, that is the solution to the above equation, is obtained using value

iteration. Fig. 4-10(a) shows the control policy as a function of the queue length for 𝑥𝑑 =

8, 𝜇1 = 2, 𝜇2 = 1. It is interesting to note that the control policy is to release one customer

only when there is one or less customers in the first queue and the lesser than the desired

value in the second queue. The mean and standard deviation of the second queue length

obtained from the stochastic simulations (over 30 sample realizations) with the MDP control

policy is shown in Fig. 4-10(b). The figure also shows the mean and standard deviation of

the queue length obtained from the sliding mode controller that was presented earlier. The

mean queue length obtained from both the control methodologies are close to the desired

value. The standard deviation of the queue length obtained from the sliding controller is only

slightly more compared to the optimal solution obtained from the MDP, indicating that the

performance of the sliding controller closely matches the optimal solution in this case. One

needs to note that the performance of the two solutions can slightly vary depending on the

parameters (cost function for MDP and gain parameters for the sliding mode controller). The

main drawback of the MDP solution is that the methodology cannot be extended to general

cases where the queues have a service time distribution that is not exponential or time-

varying. It can also be challenging to extend the methodology to a large network of queues

due to the issue of curse of dimensionality or to incorporate time-delays due to propagation.

These disadvantages can be overcome using the proposed sliding mode controller with a

small loss in performance.
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Figure 4-10: Control policy and queue length obtained from simulation (𝑥𝑑 = 8, 𝜇1 =
2, 𝜇2 = 1, ∆𝑡 = 0.1, 𝛾 = 0.99).

Case when the service rates are comparable

In the earlier cases, we had considered the mean service rate of the first server to be signif-

icantly greater than the mean service rate of the second server. This resulted in negligible

queuing in the first queue while tracking the queue length of the second queue. Consider the

case when the mean service rate of the first server is comparable to the second server (but still

needs to be smaller than the second one for the tracking problem to be feasible). The rea-

son for considering this particular case is to analyse the impact of the tracking performance

when there is significant queuing even in the first queue. Fig. 4-11 shows the queue length

obtained with the feedback controller for the analytical model as well as the simulations (50

trials). We can see a higher queue length for the first queue compared to the previous case as

expected. We also notice perfect tracking for the analytical model. However, there is some

tracking error even for the mean queue length in the simulations. This is primarily due to

the fact that when the first queue is not empty (or the first server has a high utilization),

then the outflow rate from the first queue which is the inflow rate into the second queue

is determined by the service rate of the first server and it cannot be manipulated much in

order to track the second queue length.
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Figure 4-11: Queue length for tandem queue without propagation delays.𝑥2,𝑑 = 8+2 sin(0.1𝑡).
Simulation parameters: 𝜇1 = 1.25, 𝜇2 = 1, 𝜆 = 0.3, 𝜂 = 0.5, ∆𝑡 = 0.1
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(a) Single realization - 𝑥1
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(b) Single realization - 𝑥2
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(c) Simulation statistics -
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Figure 4-12: Queue length for tandem queue obtained by using a controller without consid-
ering the first queue length information in the feedback.

Controller without considering the first queue length information in the feedback

Although the second queue is the primary bottleneck, controlling the second queue without

considering the first queue length information in the feedback leads to poor tracking perfor-

mance. This is more pronounced when there is significant queuing in the first queue that

occurs when the service rate of the first server is close to the service rate of the second server.

Fig. 4-12 shows the queue length obtained when only the second queue length is considered

in the feedback using the controller developed for a single queue. In this case, the mean

service rate of the first server is 1.25 and the mean service rate of the second server is 1. We

see that the tracking performance is poor in this case (compared to Fig. 4-11), noticeable

from the higher standard deviation of the second queue length.
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4.3.2 Controller for tandem queues with propagation delays

The model for tandem queues with propagation delays was shown earlier in Eqs. (4.28)-

(4.29). The system has delays in the state and control input. Also, note that the system is

forward complete. We can use a predictor-based feedback controller for tracking the queue

length. Using feedback controller for the non-delayed dynamics presented earlier (Eq. 4.34),

we can write the predictor based controller for time-delayed system as follows,

𝑢(𝑡) = max
(︁
𝛽−1(xp)[𝑢̂(xp)− 𝑘(xp) sgn(𝑠(xp))], 0

)︁
(4.42)

Here, xp(𝑡) = (𝑃1,𝑡(𝑡 + 𝜏1), 𝑃2,𝑡(𝑡 + 𝜏1 + 𝜏2)), with 𝑃𝑖,𝑡(.) defined as follows:

𝑃1,𝑡(𝑡+ 𝜏1) =𝑥1(𝑡) +

∫︁ 𝑡

𝑡−𝜏1

(︃
− 𝜇1

𝐶1𝑃1,𝑡(𝜃 + 𝜏1)

(1 + 𝐶1𝑃1,𝑡(𝜃 + 𝜏1))
+ 𝑢(𝜃)

)︃
𝑑𝜃,

𝑃2,𝑡(𝑡+ 𝜏1 + 𝜏2) =𝑥2(𝑡) +

∫︁ 𝑡

𝑡−𝜏2−𝜏1

(︃
− 𝜇2

𝐶2𝑃2,𝑡(𝜃 + 𝜏1 + 𝜏2)

(1 + 𝐶2𝑃2,𝑡(𝜃 + 𝜏1 + 𝜏2))

)︃
𝑑𝜃 +

∫︁ 𝑡

𝑡−𝜏2

(︃
𝜇1

𝐶1𝑃1,𝑡(𝜃 + 𝜏1)

(1 + 𝐶1𝑃1,𝑡(𝜃 + 𝜏1))

)︃
𝑑𝜃

+

∫︁ 𝑡

𝑡−𝜏1

(︃
𝜇1

𝐶1𝑥1(𝜃)

(1 + 𝐶1𝑥1(𝜃))

)︃
𝑑𝜃

with appropriate initial conditions for the state predictors, 𝑃1,𝑡(𝑡) = 𝑥1(𝑡) and 𝑃2,𝑡(𝑡) =

𝑥2(𝑡). If the server parameters are time varying, the integrands in the above equations need

to be modified to account for this factor.

The performance of the predictor based control law for tracking the second queue length

is shown in Fig. 4-13. For this case, we consider the following model parameters: 𝜇1 =

2, 𝜇2 = 1, 𝜏1 = 𝜏2 = 2.5, 𝐶1 = 𝐶2 = 1. The control parameters (𝜆, 𝜂) are picked to avoid

overshoot. We see that output queue length tracks the desired sinusoidal value after a small

initial transient. Fig. 4-14 shows the tracking performance for discrete stochastic queuing

simulations and the queue length statistics are computed over 30 realizations. We can see

that the ensemble mean queue length of the second queue closely matches the desired value.

However, the queue length has higher variability compared to the case without time delays as

one would expect. Next, we apply the robust controller for a queuing network that represents

the traffic movement on an airport surface to reduce congestion.
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Figure 4-13: Tandem queues with delays (𝜇1 = 2, 𝜇2 = 1, 𝜏1 = 𝜏2 = 2.5, 𝜂 = 0.1, 𝜆 =
0.04, 𝑥2,𝑑 = 8 + 2 sin(0.1𝑡)).
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Figure 4-14: Queue length for tandem queue with propagation delays.

4.4 Application to airport surface operations

We utilize the queuing network model presented earlier for CLT-NF to illustrate the appli-

cation of the robust control strategy for departure metering. In particular, we focus on the

movement of taxi-out flights since that is of primary interest for departure metering.

We provide a brief summary of the model before presenting the control framework. Fig-

ure 4-15(a) shows a snapshot of aircraft positions at CLT. The black triangles represent the

taxi-out flights (departures) and the white triangles represent the taxi-in flights (arrivals).

We observe that the taxi-out flights form long queues in the ramp area (close to the air-

port terminals) as well as near the departure runways. The movement of departures can be

represented as a queuing network as shown in Fig. 4-15(b). The departures pass through a

taxi-out ramp queue and one of the two runway queues, depending on their runway assign-

ment (36C or 36R). The corresponding queuing model for the departure process is given by
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(a) Layout of CLT with a focus on departure op-
erations.

(b) Queuing representation for the departure op-
erations at CLT.

Figure 4-15: Airport layout and queuing representation.

the following set of delay differential equations,

𝑥𝑠(𝑡) = 𝑥𝑠1(𝑡) + 𝑥𝑠2(𝑡) (4.43)

𝑥̇𝑠𝑖(𝑡) = −𝜇𝑠(𝑡)
𝐶𝑠(𝑡)𝑥𝑠𝑖(𝑡)

1 + 𝐶𝑠𝑥𝑠(𝑡)
+ 𝑢𝑟𝑖(𝑡− 𝑡1), 𝑖 = 1, 2; (4.44)

𝑥̇𝑟𝑖(𝑡) = −𝜇𝑟𝑖(𝑡)
𝐶𝑟𝑖𝑥𝑟𝑖(𝑡)

1 + 𝐶𝑟𝑖𝑥𝑟𝑖(𝑡)
+ 𝜇𝑠(𝑡− 𝑡1)

𝐶𝑠(𝑡− 𝑡2)𝑥𝑠𝑖(𝑡− 𝑡2)

1 + 𝐶𝑠(𝑡− 𝑡2)𝑥𝑠(𝑡− 𝑡2)
(4.45)

Here, 𝑥𝑠𝑖 represents the number of flights in the ramp queue headed to runway 𝑖, 𝑥𝑟𝑖 represents

the number of flights in the 𝑖𝑡ℎ departure runway queue, (𝐶𝑠, 𝜇𝑠) are the server parameters

of the ramp server, (𝐶𝑟𝑖 , 𝜇𝑟𝑖) are server parameters of the 𝑖𝑡ℎ departure runway server, 𝑡1 is

the average unimpeded time from the gate to the spot (exit of the ramp), 𝑡2 is the average

unimpeded time from the spot to the departure runway, and 𝑢𝑟𝑖 is the pushback rate to the

𝑖𝑡ℎ departure runway. The pushback rate is the number aircraft in a given time interval (5

min intervals in this work) that pushback from the gate before the start of taxi.

We assume that the service time distributions are piece-wise constant over 5 min intervals.

Fig. 4-16(a) illustrates the variation of the mean service rate for the ramp and runway servers

on a typical good weather day. The fluctuation in the mean service rate in this case is because

of the variation in the arrival traffic level over the course of the day. The service rate of the

ramp and runway servers can vary by about 20%. One can also notice that the service rate of
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the ramp server is slightly more than the sum of the service rates of the two runway servers.

This reaffirms that the critical bottleneck are the runway servers. The arrival and departure

demand at the airport also fluctuates throughout the day as shown in Fig. 4-16(b). This

highlights the need for a dynamic policy to reduce congestion that can account for these

factors.
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Figure 4-16: Variation of the mean service and demand for a typical good weather day
(07/12/2015).

4.4.1 Departure metering: controlling departure queue length

Lower taxi-out times can be achieved by maintaining smaller queues on the airport surface.

In the current scenario, pilots pushback whenever they are ready to go. There are intervals

during the day when many aircraft pushback around the same time, leading to the formation

of large queues. The objective is to tactically control departure push-backs in order to

maintain a desired runway queue length. Ideally, one would like to have a queue length

of zero, so that the departing aircraft can take-off without waiting on the airport surface.

However, this ideal goal is almost impossible to achieve without delaying take-offs (or under-

utilizing the runway) because of various uncertainties present in the system. Hence, the

trade-off is between having a smaller queue length and not under-utilizing the runway. We

will later discuss how to pick the desired queue length so as to not under-utilize the runway.
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First, we present a methodology for determining the pushback times to achieve a desired

runway queue length. We use a similar approach that we had presented earlier for single and

tandem queues, a sliding mode controller is developed for the non-delayed dynamics, followed

by a predictor based control law for handling the time delays. The key difference here is

that the queueing model for the airport surface leads to a multi-input-multi-output system

unlike the single-input-single-output systems discussed earlier. The outputs to be tracked

are the two runway queue lengths (𝑥𝑟1 , 𝑥𝑟2) and the inputs correspond to the pushback rate

to each runway (𝑢𝑟1 , 𝑢𝑟2). The inputs do not directly appear in the equations of the output

dynamics. Differentiating the outputs twice yields the following second order differential

equations containing the inputs (for the non-delayed dynamics),

¨̄y = 𝛼̄(x, 𝑡) + 𝛽(x, 𝑡)u (4.46)

Here, x = [𝑥𝑠1 , 𝑥𝑠2 , 𝑥𝑟1 , 𝑥𝑟2 ]
𝑇 and u = [𝑢𝑟1 , 𝑢𝑟2 ]

𝑇 . The functions 𝛼̄(x, 𝑡) ∈ 𝑅2 and 𝛽(x, 𝑡) ∈

𝑅2×2 are given by,

𝛼̄(x, 𝑡) =

⎡⎢⎣𝜇2
𝑟1

𝐶𝑟1𝑥𝑟1
(1+𝐶𝑟1𝑥𝑟1 )

2 − 𝜇𝑟1 𝜇𝑠
𝐶𝑠𝑥𝑠1
1+𝐶𝑠𝑥𝑠

− 𝜇2
𝑠

𝐶2
𝑠𝑥𝑠1

(1+𝐶𝑠𝑥𝑠)2

𝜇2
𝑟2

𝐶𝑟2𝑥𝑟2
(1+𝐶𝑟2𝑥𝑟2 )

2 − 𝜇𝑟2 𝜇𝑠
𝐶𝑠𝑥𝑠2
1+𝐶𝑠𝑥𝑠

− 𝜇2
𝑠

𝐶2
𝑠𝑥𝑠2

(1+𝐶𝑠𝑥𝑠)2

⎤⎥⎦ 𝛽(x, 𝑡) =

⎡⎢⎣𝜇𝑠
𝐶𝑠(1+𝐶𝑠𝑥𝑠2 )

(1+𝐶𝑠𝑥𝑠)2
−𝜇𝑠

𝐶2
𝑠𝑥𝑠1

(1+𝐶𝑠𝑥𝑠)2

−𝜇𝑠
𝐶2

𝑠𝑥𝑠2
(1+𝐶𝑠𝑥𝑠)2

𝜇𝑠
𝐶𝑠(1+𝐶𝑠𝑥𝑠1 )

(1+𝐶𝑠𝑥𝑠)2

⎤⎥⎦
(4.47)

The terms containing the derivatives of the server parameters in the queue model are ignored

(note that the service time distribution is considered to be a piecewise constant). As done

earlier, we shall assume that the actual dynamics is of the following form,

ÿ = 𝛼(x, 𝑡) + 𝛽(x, 𝑡)u (4.48)

Here, 𝛼(.) and 𝛽(.) are unknown functions, with the following error bounds,
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|𝛼𝑖(x, 𝑡)− 𝛼̄𝑖(x, 𝑡)| < 𝐹𝑖(x, 𝑡), 𝑖 = 1, 2. (4.49)

𝛽(x, 𝑡) = (I+Δ)𝛽(x, 𝑡), |Δ𝑖𝑗 | < 𝐷𝑖𝑗 ; 𝑖, 𝑗 = 1, 2. (4.50)

Motivated by the fact that the uncertainties arise primarily in the service times in the actual

system, we consider the following form for F,

F(x, 𝑡) =

⎡⎢⎣𝑎1
𝐶𝑟1𝑥𝑟1

(1+𝐶𝑟1𝑥𝑟1 )
2 + 𝑎2

𝐶𝑠𝑥𝑠1
1+𝐶𝑠𝑥𝑠

+ 𝑎3
𝐶2

𝑠𝑥𝑠1
(1+𝐶𝑠𝑥𝑠)2

𝑎4
𝐶𝑟2𝑥𝑟2

(1+𝐶𝑟2𝑥𝑟2 )
2 + 𝑎5

𝐶𝑠𝑥𝑠2
1+𝐶𝑠𝑥𝑠

+ 𝑎6
𝐶2

𝑠𝑥𝑠2
(1+𝐶𝑠𝑥𝑠)2

⎤⎥⎦ (4.51)

The 𝑎𝑖s and 𝐷𝑖𝑗s are design parameters that need to be picked appropriately depending on

the level of uncertainty in the system. The goal is to track the runway queue length at a

desired value, represented by 𝑥𝑟𝑖𝑑 , for each runway 𝑖. The sliding variable (s ∈ R2) is defined

in terms of the tracking error (e) as follows,

𝑠𝑖 = 𝑒̇𝑖 + 𝜆𝑒𝑖; 𝑒𝑖 = 𝑥𝑟𝑖 − 𝑥𝑟𝑖𝑑 , 𝑖 = 1, 2 (4.52)

Perfect tracking is guaranteed for the model dynamics if the sliding variable satisfies the

following sliding condition,

1

2

𝑑

𝑑𝑡
𝑠2𝑖 ≤ −𝜂𝑖|𝑠𝑖|, 𝜂𝑖 > 0 =⇒ 𝑠𝑖𝑠̇𝑖 ≤ −𝜂𝑖|𝑠𝑖| (4.53)

From the definition of s, we have,

𝑠̇𝑖 = 𝑥̈𝑟𝑖𝑑 − 𝑥̈𝑟𝑖𝑑 + 𝜆𝑒̇𝑖 (4.54)

= 𝛼𝑖(x, 𝑡) +
2∑︁

𝑗=1

𝛽𝑖𝑗(x, 𝑡)𝑢𝑟𝑗 − 𝑥̈𝑟𝑖𝑑 + 𝜆𝑒̇𝑖 (4.55)

Consider the control input of the form,

u = 𝛽−1(ū− k⊙ sgn(s)); (4.56)

133



Here, ū = (−𝛼̄(x, 𝑡) + 𝑥̈𝑟𝑖𝑑 − 𝜆𝑒̇𝑖) and ⊙ represents element-wise multiplication operation.

The value of k is obtained from the sliding condition to achieve perfect tracking (4.53),

−𝜂𝑖|𝑠𝑖| ≥𝑠𝑖𝑠̇𝑖, 𝑖 = 1, 2 (4.57)

−𝜂𝑖|𝑠𝑖| ≥𝑠𝑖

(︁
𝛼𝑖(x, 𝑡)− 𝑥̈𝑟𝑖𝑑 + 𝜆𝑒̇𝑖 +

(︀
𝛽u
)︀
𝑖

)︁
(4.58)

−𝜂𝑖|𝑠𝑖| ≥𝑠𝑖

(︁
𝛼𝑖(x, 𝑡)− 𝑥̈𝑟𝑖𝑑 + 𝜆𝑒̇𝑖 +

(︀
𝛽
(︀
𝛽−1(ū− k⊙ sgn(s))

)︀)︀
𝑖

)︁
(4.59)

−𝜂𝑖|𝑠𝑖| ≥𝑠𝑖

(︁
𝛼𝑖(x, 𝑡)− 𝑥̈𝑟𝑖𝑑 + 𝜆𝑒̇𝑖 +

(︀
(𝐼 +Δ)(ū− k⊙ sgn(s))

)︀
𝑖

)︁
(4.60)

−𝜂𝑖|𝑠𝑖| ≥𝑠𝑖

(︁
𝛼𝑖(x, 𝑡)− 𝑥̈𝑟𝑖𝑑 + 𝜆𝑒̇𝑖 + 𝑢̄𝑟𝑗 − 𝑘𝑖sgn(𝑠𝑖)

+

2∑︁
𝑗=1

Δ𝑖𝑗

(︀
𝑢̄𝑟𝑗 − 𝑘𝑗sgn(𝑠𝑗)

)︀)︁
(4.61)

−𝜂𝑖|𝑠𝑖| ≥𝑠𝑖

(︁
𝛼𝑖(x, 𝑡)− 𝛼̄𝑖(x)− 𝑘𝑖sgn(𝑠𝑖) +

2∑︁
𝑗=1

Δ𝑖𝑗

(︀
𝑢̄𝑟𝑗 − 𝑘𝑗sgn(𝑠𝑗)

)︀)︁
(4.62)

−𝜂𝑖|𝑠𝑖| ≥𝑠𝑖

(︁(︀
𝛼𝑖(x)− 𝛼̄𝑖(x)

)︀
+

2∑︁
𝑗=1

Δ𝑖𝑗 𝑢̄𝑟𝑗 − (1 + Δ𝑖𝑖)𝑘𝑖sgn(𝑠𝑖)−
2∑︁

𝑗=1,𝑗 ̸=𝑖

Δ𝑖𝑗𝑘𝑗sgn(𝑠𝑗)
)︁

(4.63)

Using triangular inequality and constraints on the error bounds, we get,

𝐹𝑖(x, 𝑡) +
2∑︁

𝑗=1

𝐷𝑖𝑗 |𝑢̄𝑗(x, 𝑡)| −
2∑︁

𝑗=1,𝑗 ̸=𝑖

𝐷𝑖𝑗𝑘𝑗 + 𝜂𝑖 ≤ (1−𝐷𝑖𝑖)𝑘𝑖 (4.64)

A particular value of k is chosen by solving the following linear equation,

(1−𝐷𝑖𝑖)𝑘𝑖 +
2∑︁

𝑗=1,𝑗 ̸=𝑖

𝐷𝑖𝑗𝑘𝑗 = 𝐹𝑖 +
2∑︁

𝑗=1

𝐷𝑖𝑗 |𝑢̄𝑟𝑗(x, 𝑡)|+ 𝜂𝑖 (4.65)

The control law in Eq. (4.56) is guaranteed to track the desired queue length if the value for

k is chosen such that it satisfies the above equation. However, the control input needs to be

saturated at zero since the pushback rate cannot be negative. The time delays in the original

model dynamics is handled using a predictor-based feedback. We consider the following

substitutions in the delay-free feedback law to account for time-delays: 𝑥𝑠𝑖(𝑡) → 𝑃𝑠𝑖,𝑡(𝑡+ 𝑡1),

(𝜇𝑠(𝑡), 𝐶𝑠(𝑡)) → (𝜇𝑠(𝑡+ 𝑡1), 𝐶𝑠(𝑡+ 𝑡1)), 𝑥𝑟𝑖(𝑡) → 𝑃𝑟𝑖,𝑡(𝑡+ 𝑡1 + 𝑡2), 𝑥𝑟𝑖,𝑑(𝑡) → 𝑥𝑟𝑖,𝑑(𝑡+ 𝑡1 + 𝑡2),
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(𝜇𝑟𝑖(𝑡), 𝐶𝑟𝑖(𝑡)) → (𝜇𝑟𝑖(𝑡+ 𝑡1 + 𝑡2), 𝐶𝑟𝑖(𝑡+ 𝑡1 + 𝑡2)). Here, 𝑃𝑦,𝑡(𝑡+ 𝑧) refers to the prediction of

state 𝑦(𝑡 + 𝑧) computed at time 𝑡. The derivatives of the states present in the control input

are also transformed in a similar way. We use the delay differential equations to compute

the predictions of the derivatives given the predictions of the states. However, there are no

guarantees for tracking since we have saturated the control input and considered a predictor

based feedback for time-delays. Nevertheless, we show that the control law performs well

through numerical simulations.

The pushback rate decisions need to be converted into flight specific hold decisions. The

day is divided into 5-min intervals and decisions are made at the beginning of every interval.

At the beginning of each interval, 𝑡, the pushback rate is determined for 𝑡 + 𝑇𝑝, where 𝑇𝑝

is the planning horizon. A planning horizon is included to improve predictability in the

system. The planning horizon essentially introduces additional input delay in the dynamics.

The number of aircraft that can be released during each 5-min window (𝑛) is determined

from the pushback rate. The first 𝑛 aircraft in the 5-min window are released as per the

control decision, and remaining aircraft are pushed to the beginning of the next time window,

awaiting decision for release. This approach specifies the flights that need to be released in

[𝑡+𝑇𝑝, 𝑡+𝑇𝑝+5] time window, and postpones the remaining flights to the next time window.

4.5 Evaluating the performance of departure metering

4.5.1 Benefits of departure metering

The performance of the departure metering algorithm is evaluated using simulations of the

airport surface as done in the previous chapter for the other departure metering algorithms.

The simulator is based on the discrete version of the queuing network model for the airport,

with the service time for each server being sampled from an empirical distribution.

We apply the controller developed earlier to compute the release rate for departure flights

to maintain a certain target queue length at the runway. Figs. 4-17(a)-4-17(b) show the mean

queue length for the two runways over multiple realizations (10 samples) of the simulation
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obtained using the pushback control strategy and they are compared with the baseline case.

The baseline case refers to the scenario without departure metering. We see that the resulting

queue length with departure metering is close to the desired target value during periods of

high demand (when there is a large queue in the baseline case). Note that the queue length is

not close to the target value at all times because of the fact there is not enough demand. The

schedule consists of banks of departures separated by banks of arrivals, a typical characteristic

of hub airports such as CLT. The target queue length is set to 3.75 for each runway queue.

The target queue length was set as the lowest value of the queue length that does not result

in under-utilization of the runway. The runway is under-utilized if the take-off time for

flights is delayed with departure metering compared to the baseline case. This occurs due to

excessive gate-holds that is a result of low values of target-queue length. On the other hand,

higher values of target queue length lead to decreased benefits in terms of taxi-out time

reduction. The optimal target queue length is determined through a parametric analysis

using simulations that ensures the average wheels-off delay over-all flights is close to zero

and yields a high taxi-out time reduction. Figure 4-17(c) shows the average taxi-out time

of flights with departure metering and they are compared to the baseline case. We can see

that the peaks in the taxi-out time in the baseline case are reduced with departure metering.

Moreover, the departure metering strategy appropriately holds the flights at the gate since

it does not result in significant wheels-off delay as seen in Fig. 4-17(d). The wheels-off delay

at some intervals is slightly negative because of the switch in the sequence of the order of

take-off. Although the peaks in the wheels-off delay is about 1 to 2 min, the mean wheels-off

delay is about 0.1 min, which we consider to be acceptable. One could obtain even lower

values of wheels-off delay by appropriately increasing the target queue length, but this would

come at the cost of reduced benefits in terms of taxi-out time reduction.

4.5.2 Comparison to other departure metering approaches

We compare the performance of the robust control approach with the ATD-2 logic and the

optimal control approach (that were discussed in the previous chapter). Table. 4.1 shows
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Figure 4-17: Average queue length, taxi-out time and wheels-off delay from the simulations
of the departure metering strategy for a typical day (May 7, 2015).

some key statistics obtained from the simulations comparing the two departure metering

approaches over three days of operations (6 AM-9 PM local time) using a 20-min planning

horizon and assuming perfect EOBT information. We notice that the reduction in taxi-out

time is higher with the robust control approach compared to the other approaches and results

in no significant wheels-off delay. Another distinguishing feature is that a smaller fraction of

flights are held for a larger duration with the robust controller. Overall, the robust control

approach performs better than the other two approaches.

Next, we consider the case when there is EOBT uncertainty. To account for the additional

uncertainty, the target queue length is increased to four in order to avoid wheels-off delay.
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Table. 4.2 shows a comparison of the departure metering approaches when there is EOBT

uncertainty (𝜎 = 6 min). Even in this case, we notice that the robust controller performs

better and performance gap in terms of taxi-out time reduction is larger compared to the

case without EOBT uncertainty.

Table 4.1: Comparison of simulations of departure metering approaches for CLT-NF (perfect
EOBT case).

Mean statistics ATD-2
logic

Optimal
control

Robust
control

Taxi-out reduction (min) 2.6 1.3 2.9
Hold time (min) 2.8 1.5 3.0

Wheels-off delay (min) 0.1 0.2 0.1
Fraction of flights held 0.6 0.3 0.4

Hold time of flights held (min) 4.3 4.5 8.4

Table 4.2: Comparison of simulations of departure metering approaches for CLT-NF (EOBT
uncertainty, 𝜎 = 6 min).

Mean statistics ATD-2
logic

Optimal
control

Robust
control

Taxi-out reduction (min) 0.9 1.2 2.2
Hold time (min) 1.0 1.3 2.3

Wheels-off delay (min) 0.0 0.1 0.1
Fraction of flights held 0.1 0.2 0.2

Hold time of flights held (min) 6.8 6.2 9.6

4.6 Discussions

In this section, we present a few extensions for the proposed approach.

4.6.1 Correcting for the prediction errors

The model uncertainties lead to tracking errors for time delay systems while using the

predictor-based feedback controller, as we had seen earlier in Fig. 4-4 for tracking a sin-

gle queue. We propose a heuristic to improve the tracking performance in the presence of

model uncertainties. The idea is to work on the lines of the classical Smith Predictor that is

used for stable linear time-delay system [2]. The Smith predictor provides feedback control
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not just using the predicted state but it also accounts for errors between the output and

model predictions that might arise due to disturbances or model uncertainties. In a similar

way, we account for the state prediction errors by estimating a correction factor online using

past predictions and observations. Instead of using model predictions as inputs to the feed-

back law, we intend to use corrected predictions based on past observations. Let 𝑃𝑘 be the

corrected value of the state predictor, 𝑃𝑘, at time 𝑡𝑘 (note a slight change in convention for

the subscript, here 𝑘 refers to the time index and we will illustrate the method for discrete

version of the dynamics as used in the implementation of the controller). We assume the

following form for 𝑃𝑘.

𝑃𝑘 = 𝑤𝑘𝑃𝑘 (4.66)

The correction factor, 𝑤𝑘, will be determined online using weighted recursive least squares

based on past model predictions and current state observations. The recursive algorithm to

obtain 𝑤𝑘 is as follows,

𝐾𝑘 = 𝑄𝑘−1𝑃𝑘(𝜆𝑓 +𝑄𝑘−1𝑃
2
𝑘 )

−1 (4.67)

𝑄𝑘 = (𝑄𝑘−1 −𝐾𝑘𝑃𝑘𝑄𝑘−1)/𝜆𝑓 (4.68)

𝑤𝑘 = 𝑤𝑘−1 −𝐾𝑘(𝑤𝑘𝑃𝑘 − 𝑥𝑘) (4.69)

Here, 𝜆𝑓 ∈ (0, 1] is an exponential forgetting factor. A smaller value for 𝜆 corresponds to

higher weighting for recent prediction errors compared to the past errors. Since the actual

prediction error can be determined only after waiting for the system delay, the correction

factor (𝑤𝑘) that we determine is for the past prediction. However, we neglect that lag and

assume that the correction factor determined is the best possible estimate for any given time.

This method is effective for handling prediction errors that have a fixed bias or slowly varying.

To illustrate the improvement in tracking performance, we consider queue length tracking for

a single queue. The mean service rate of the of the actual dynamics is considered to be 1.5

times the service rate used in the model to design the controller. Fig. 4-18 shows the queue
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length obtained with a corrected estimate for the predictor and it is compared with the value

obtained without the correction. The results are shown with the controller acting on the

analytical model (Fig.4-18(a)) as wells as on the discrete queuing simulation (Fig.4-18(b)).

We see significant improvements in the tracking performance compared to the case where

naive state predictions were used (Fig. 4-4(c)). For the results presented, a higher value of

the forgetting factor is chosen for the simulation (𝜆𝑓 = 1) compared to the analytical model

(𝜆𝑓 = 0.98) to account for the stochasticity in the simulations. Another potential approach

to deal with model uncertainty is to use a robust adaptive control approach to correct for

the model parameters [162]. The challenge even with this approach is that one has to deal

with delayed prediction errors.
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Figure 4-18: Correcting for the prediction errors using recursive least squares (𝜇 = 1, 𝜇𝑎 =
1.5, 𝐶 = 𝐶𝑎 = 1).

4.6.2 Multiple arrival sources into the queueing network

Motivated by the congestion control on the airport surface, we discussed about controlling

the sending rate from a single source into a queuing network. We could extend the analysis to

the control of queuing networks with multiple sources as given in the general expression for

the dynamics in Eq. 2.11. For example, in the tandem queue system that we had considered,

instead of having a single source feeding customers into the first queue, we could have two
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sources feeding into each of the two queues. The model queuing dynamics for the non-delayed

system would be of the form, ẋ = 𝛼̄(x) + u, where, x = [𝑥1, 𝑥2]
𝑇 ; u = [𝑢1, 𝑢2]

𝑇 and 𝛼(x) as

obtained from Eq. 2.11. We can compute the control inputs using the sliding mode approach

to track the queue length for the two queues with the sliding variable, s = x − xd. Similar

to the control input for a single queue, the control input for tracking would be of the form

u(𝑡) = max(−𝛼̄(x) + ẋd − k⊙ sgn(s), 0).
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Chapter 5

Reachability analysis for queuing

networks

5.1 Introduction

In the first part of this thesis, we presented a fluid flow model for queuing networks that

resulted in an ordinary differential equation representation for the evolution of the ensem-

ble mean queue length. The queuing model allowed us to use optimal and robust control

techniques to regulate the queue length in a network. A closely related problem that is of

interest is to analyze the performance of queuing networks.

The performance metrics, such as queue length and wait times, are generally obtained

using stochastic simulations. However, simulations might not be computationally tractable

for large queuing networks (as it involves sampling from a large joint distribution), partic-

ularly, if one wants to investigate the impact of uncertainty in network parameters such as

the service rate of the servers. Instead, we propose reachability analysis as an alternative

tool to analyse performance of large-scale uncertain queuing networks. The approach bears

some philosophical similarity to the recent robust optimization approach to analyze the per-

formance of queuing networks [28]. We note that both methods: (a) take a non-probabilistic

approach by specifying the underlying randomness as uncertainty sets, and (b) determine
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the queuing performance measures that correspond to the extreme case scenarios. However,

in contrast to the the robust optimization approach, our approach relies on control-theoretic

techniques for continuous dynamical systems, and the underlying queuing model is different.

In this chapter, we present a framework to compute the range of the expected queue

length in a network given the level (range) of uncertainty in the queue parameters. We

utilize the queuing network model developed earlier and some recent results in reachability

analysis for non-linear systems to realize this objective [48, 129, 128]. Reachability analysis

is a technique that has been used in formal controller verification and model checking. To

the best of our knowledge, this is the first attempt in employing reachability analysis for

queuing networks.

5.2 Reachability analysis

Reachability analysis involves computing the sets of future states achievable by a system

given an uncertain set of initial states and input parameters. To give an intuitive explanation,

the reachable sets obtained from the analysis is equivalent to performing multiple simulations

by exhaustively sampling the uncertainty set. For the queuing network example, the set of

states would correspond to the length of queues in the network, and the sources of uncertainty

include server service rates, arrival rates and initial queue length. To formalize the notion

of reachable sets, consider the following continuous dynamical system,

ẋ = f(x,p) (5.1)

here, x ∈ R𝑛 represents the state vector of the system, p ∈ R𝑞 denotes the vector of

uncertain parameters (that could represent either external disturbances or control inputs),

and f : R𝑛 × R𝑞 → R𝑛 is a continuously differentiable vector field. The state reached

by the above system (5.1) at time 𝑡 with initial state x0 and parameter p is denoted by

Φ(𝑡; 𝑡0,x0,p). Let X0 and P represent the set of initial states and parameters, respectively.
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Figure 5-1: Illustration of reachable sets

Then the reachable set of (5.1) at time 𝑡 is given by,

𝑅(𝑡; 𝑡0,x0,p) = {Φ(𝑡; 𝑡0,x0,p)|x0 ∈ X0,p ∈ P}. (5.2)

Computing the exact reachable set (𝑅(𝑡)) is often challenging, instead, one is interested

in a tight over-approximation to the reachable set (𝑅̄), such that 𝑅 ⊆ 𝑅̄. Figure 5-1 shows

an illustration for reachability analysis in a 2D space with the actual reach set and the

over-approximation represented by blue ellipse and orange rectangle, respectively. Different

methods have been proposed that vary by complexity and conservativeness to the over-

approximation. They include level set methods, interval analysis, sampling-based meth-

ods [14, 64], contraction analysis and Taylor methods [123, 8]. A key aspect of the reachable

set computation is the set representation. The set representation should scale well with

dimension of the state space and one must be able to perform standard mathematical oper-

ations (such as a linear transformation) in a computationally tractable manner. Commonly

used set representations include zonotopes, polytopes, high dimensional intervals and ellip-

soids. Multiple software toolboxes are available for reachability computation: CORA [7],

C2E2 [65], TIRA [128], etc. CORA is primarily based on Taylor approximation to the dy-

namics, with the reach-set being represented as a zonotope. TIRA offers different methods

that are based on contraction analysis and mixed-monotonicity, and high-dimensional in-

tervals for the set representation. In our work, we use a fairly recent technique known as
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Figure 5-2: Illustration for computing the interval reach set for monotonic systems

mixed-monotonicity method for reachability analysis [47]. The primary reason for using this

method is because it offers a good trade-off between computational tractability and extent

of over-approximation for non-linear systems such as the one considered in this thesis.

5.3 Mixed-monotonicity method

If a system is monotonic, then computing the interval reach sets is fairly straight forward:

the reach sets are obtained by propagating the lower bound and upper bound of the in-

terval set forward in time by numerically integrating the system dynamics (as illustrated

in Figure 5-2). The key idea behind the mixed monotonicity approach is to decompose a

non-monotone system into a mixed monotone system (loosely, monotonically increasing in

one of the function arguments and decreasing in the other function argument). To clarify

this idea with more rigor, we first present some preliminary definitions and then provide a

brief overview of the mixed monotonicity approach that is based on an earlier work [188].

Definition 8 (Monotone mapping) A mapping ℎ : 𝒳 → 𝒯 is said to be monotone if it is

order preserving,

x,y ∈ 𝒳 : x ≥ y =⇒ ℎ(x) ≥ ℎ(y). (5.3)

Definition 9 (Mixed monotone mapping) A mapping ℎ : 𝒳 → 𝒯 is mixed monotone if there

exists a decomposition function, 𝑔 : 𝒳 × 𝒳 → 𝒯 , satisfying the following properties: (a)

𝑔(𝑥, 𝑥) = ℎ(𝑥); (b) 𝑔 is monotone increasing in the first argument, 𝑥1 ≥ 𝑥2 =⇒ 𝑔(𝑥1, 𝑦) ≥

𝑔(𝑥2, 𝑦); (c) 𝑔 is monotone decreasing in the second argument, 𝑦1 ≥ 𝑦2 =⇒ 𝑔(𝑥, 𝑦1) ≤

𝑔(𝑥, 𝑦2).
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Remarks: (1) The decomposition function, 𝑔, may not be unique. (2) A system such as (5.1)

is mixed monotone if the flow map Φ(𝑡; 𝑡0,x0,p) that maps the initial states to the final

state at time 𝑡 is mixed monotone. (3) Mixed monotonicity is a very generic property; a

sufficient condition for mixed monotonicity requires the Jacobian of the function to be finite

everywhere in the domain [188].

We follow the reachability set computation as presented in [129]. Let 𝑐 ∈ {x,p} represent

a generic variable and a dimension 𝑚 ∈ {𝑛, 𝑞} such that 𝑐 ∈ R𝑚. Assume that the elements

of the Jacobian matrix are bounded as follows:

𝜕𝑓𝑖
𝜕𝑐𝑗

(x,p) ∈ [𝑎𝑐𝑖𝑗, 𝑏
𝑐
𝑖𝑗], 𝑖 ∈ {1, 2..𝑛}, 𝑗 ∈ {1, 2..𝑚}. (5.4)

The values of these bounds lead to the following four cases with respect to the signs

of the partial derivatives: (C1) positive: 𝑎𝑐𝑖𝑗 ≥ 0; (C2) mostly positive: 𝑎𝑐𝑖𝑗 ≤ 0 ≤ 𝑏𝑐𝑖𝑗 and

|𝑎𝑐𝑖𝑗| ≤ |𝑏𝑖𝑗|; (C3) mostly negative: 𝑎𝑐𝑖𝑗 ≤ 0 ≤ 𝑏𝑐𝑖𝑗 and |𝑎𝑐𝑖𝑗| ≥ |𝑏𝑖𝑗|; (C4) negative: 𝑏𝑐𝑖𝑗 ≤ 0.

Since we have assumed that the elements of the Jacobian matrix are bounded, the function

dynamics, 𝑓 , is mixed monotone [188]. Let 𝑔 be the decomposition function for 𝑓 , which is

defined as follows:

𝑔𝑖(x,p,x
*,p*) = 𝑓𝑖(𝑋𝑖, 𝑃𝑖) + 𝛼𝑥

𝑖 (x− x*) + 𝛼𝑝
𝑖 (p− p*) (5.5)

where 𝑋𝑖 = [𝑥𝑖1..𝑥𝑖𝑛]𝑇 , 𝑃𝑖 = [𝑝𝑖1..𝑝𝑖𝑞]
𝑇 and 𝛼𝑐

𝑖 = [𝛼𝑐
𝑖1, .., 𝛼

𝑐
𝑖𝑚] are defined according to cases

(C1)-(C4) as follows (note 𝑐 ∈ {x,p}):

𝑐𝑖𝑗 =

⎧⎪⎨⎪⎩𝑐𝑗 if (C1) or (C4),

𝑐*𝑗 otherwise.
𝛼𝑐
𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−𝑎𝑐𝑖𝑗 if (C2),

𝑏𝑐𝑖𝑗 if (C3),

0 otherwise.

(5.6)

The above definition satisfies the condition for 𝑔 to be a decomposition function since: (a)

𝑔𝑖(x,p,x,p) = 𝑓𝑖(x,p), (b) 𝜕𝑔𝑖
𝜕𝑐𝑖

≥ 0, (c) 𝜕𝑔𝑖
𝜕𝑐*𝑖

≤ 0, 𝑐 ∈ {x,p}. Next, define an ‘embedded’
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dynamical system as follows:

(︃
ẋ

ẋ*

)︃
= k(x,p,x*,p*) =

(︃
𝑔(x,p,x*,p*)

𝑔(x*,p*,x,p)

)︃
(5.7)

Let Φℎ(𝑡; 𝑡0,x0,p,x
*
0,p

*) be the flow map of the embedded system that maps the initial

states to the final states at time, 𝑡. Let Φℎ1 and Φℎ2 denote the first 𝑛 and last 𝑛 components

of Φℎ, respectively. Then the following theorem provides a way to compute a tight over-

approximation interval for the reachable set at time 𝑡.

Theorem 5 (Computing reachable sets [129]) For all bounds 𝑥, 𝑥 ∈ R𝑛, 𝑝, 𝑝 ∈ R𝑞 and for

all 𝑡 ∈ R+, x0 ∈ [𝑥, 𝑥], p ∈ [𝑝, 𝑝], we have

Φℎ1(𝑡; 𝑡0, 𝑥, 𝑝, 𝑥, 𝑝) ≤ Φ(𝑡; 𝑡0,x0,p) ≤ Φℎ2(𝑡; 𝑡0, 𝑥, 𝑝, 𝑥, 𝑝) (5.8)

Note that Φℎ𝑖 can be obtained by a simple numerical integration of the system dynamics

(Eq. (5.7)) forward in time. We have used TIRA [128], a MATLAB library for reachability

analysis, for computing the reachable sets in our work.

5.4 Application for queuing networks

To illustrate reachability analysis for queueing networks, we first consider a simple queuing

system, the 𝑀/𝑀/1 queue. Let 𝜆 be the mean arrival rate into the queue and 𝜇 be the mean

service rate of the server. Using our proposed fluid-flow queuing model, an approximation

for the dynamics of the ensemble mean queue length is given by,

𝑥̇ = −𝜇
𝑥

𝑥 + 1
+ 𝜆, 𝑥0 ≥ 0 (5.9)

The goal is to compute the bounds of the expected queue length at any particular time given

an uncertainty associated with the arrival rate, 𝜆. Note that although the solution to this

problem is trivial, we use this example to illustrate the methodology. The Jacobian of the
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dynamics is given by,

𝑓𝑥 =
−𝜇

(𝑥 + 1)2
, 𝑓𝜆 = 1; (5.10)

sgn(𝑓𝑥) = −1; sgn(𝑓𝜆) = 1 (5.11)

The Jacobian is always finite over the entire domain, and hence the system is mixed-

monotone [188]. Therefore, we could use Theorem 5 for computing the reachable sets.

Figure 5-3(a) shows the bounds on the expected queue length obtained from the reachability

computation for a particular set of the system parameters (𝜇 = 2 and 𝜆 ∈ [0.5, 1]) and they

are compared with simulations of the analytical model. The simulations of the analytical

model involve integrating the dynamics forward in time for various values of the arrival rate

sampled from the interval uncertainty set. We notice that the reachable set from the anal-

ysis tightly encloses the trajectories obtained from the simulations. Figure 5-3(b) shows a

comparison of the reachable sets along with the trajectories (ensemble mean queue length)

obtained from discrete queuing simulations (that represents the actual queuing system in-

stead of the analytical model). Even here we see that the trajectories are tightly enclosed

within the bounds generated by the reachable set computation.

(a) Simulation samples of the analytical
model compared with the reachable set
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Figure 5-3: Reachable set for the expected queue length for M/M/1 queue with uncertain
mean arrival rate (𝜆).

Next, we consider a more complex queuing network topology. For the sake of illustra-
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tion, we consider the queuing network representation for Charlotte airport (CLT) departure

process — a single queue connected to two parallel queues, with the first queue serving two

classes of customers depending on which parallel queue the customer joins (as shown earlier

in Fig. 4-15(b)). Assuming the service time distributions are exponential and arrivals are

Poisson, the queuing network model is given by,

𝑥𝑇 (𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡) (5.12)

𝑥̇𝑖(𝑡) = −𝜇
𝑥𝑖(𝑡)

1 + 𝑥𝑇 (𝑡)
+ 𝜆𝑖, 𝑖 = 1, 2; (5.13)

𝑥̇𝑖(𝑡) = −𝜇𝑖(𝑡)
𝑥𝑖(𝑡)

1 + 𝑥𝑖(𝑡)
+ 𝜇

𝑥𝑖−2(𝑡)

1 + 𝑥𝑇 (𝑡)
𝑖 = 3, 4; (5.14)

Note that the assumptions on the service time and arrival time distributions were made for

the ease of analysis, and one could have the dynamics with general service time distribution

as used earlier in Chapter 2. Figure 5-4 shows a comparison of the reachable sets and the

trajectories obtained from the simulations of the analytical model by sampling the uncer-

tainty set. For these computations, the uncertainty in the initial queue length (𝑥𝑖(0)) and

the network parameters (𝜇𝑖, 𝜆𝑖) are considered to be as follows:

𝑥𝑖(0) ∈ [0, 1], 𝑖 = 1, 2, 3, 4 (5.15)

𝜇 ∈ [1.8, 2.2]; 𝜇3 ∈ [0.8, 1.2], 𝜇4 ∈ [0.8, 1.2], (5.16)

𝜆𝑖 ∈ [0, 0.5] + max(sin(𝑡), 0), 𝑖 = 1, 2 (5.17)

The computational time for determining the reachable set at the final time, 𝑡𝑓 = 15, was

found to be just 0.51 s for this case. Figure 5-4 shows the time series and a time-slice of the

reachable sets representing the queue lengths. We notice that the over-approximation of the

reachable set becomes conservative, particularly for longer time horizons and for downstream

queues (𝑥3, 𝑥4). The primary reason for such conservative over-approximation is because of

wrapping effect. This arises when non-interval sets are over-approximated using interval

enclosures as illustrated in Fig. 5-5. Some of the ways to reduce conservativeness is to use
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a better set representation for the reachable set (such as ellipsoids or zonotopes) or use a

different method for analysis such as Taylor models [7]. However, these methods significantly

increase computational time that does not scale well with increase in state space dimension.

(a) Reachable set for 𝑥1(𝑡) (b) Reachable set for 𝑥3(𝑡)
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(c) Reachable set in 𝑥1−𝑥2 plane at 𝑡 = 𝑡𝑓 = 15
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(d) Reachable set in 𝑥3−𝑥4 plane at 𝑡 = 𝑡𝑓 = 15

Figure 5-4: The reachable set for the mean queue length in the network.

5.5 Partitioning the initial set

A straight forward approach to obtain a less conservative outer-approximation is to partition

the initial uncertainty set before computing the reachable sets. The set partitioning should

be such that the union of the partitioned sets should be equal to the original set. In the

analysis, reachable sets are computed for each of the partitioned sets and their union gives
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Figure 5-5: Illustration of wrapping effect: the resulting interval enclosure of the transformed
interval sets can be significantly conservative (source: [7])

the reachable set for the complete initial uncertainty set. An illustration of the benefits of

set partitioning is shown in Fig. 5-6. In this example, the initial uncertainty set undergoes

a rotational transformation. We can see that the interval enclosure using the partitioned set

gives a tighter over-approximation for the reachable set.

We also show the benefits of set partitioning for computing the reachable sets of a queuing

system. Consider two servers with exponential service time distributions in series, and with

the following parameters: mean service rate, 𝜇1 = 1.1, 𝜇2 = 2; arrival rate 𝜆 ∈ [0, 1]; initial

queue length 𝑥01 = [3, 4], 𝑥02 = [3.4, 3.6]. Figure 5-7 shows the reachable set obtained with

and without set partitioning. For the set partitioning case, the initial set was divided into

144 parts (4 equal parts for the states and 9 equal parts for the control input). We can

see that set partitioning gives a tighter outer-approximation for the reachable set. In terms

of computational time, the set partitioned case takes 1.75 s, whereas the case without set

partitioning takes 0.08 s. An extreme case of set partitioning is simulation by "exhaustive"

sampling of the uncertainty set. One should also note that naive set partitioning does not

scale well with increase in dimension of the state space. This motivates the question on

how we can intelligently partition the state space in a dynamic manner so as to avoid over-

approximation while keeping the computations tractable.
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(a) Interval enclosure using complete set (b) Interval enclosure after partitioning ini-
tial set

Figure 5-6: Comparing interval enclosure with and without partitioning the initial set.
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(b) Partitioning initial set

Figure 5-7: Reachable set for tandem queue system at 𝑡 = 5.
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Chapter 6

Data analytics for airport operations:

Beyond queuing models

6.1 Introduction

One of the earliest academic papers on the demand-capacity imbalance at airports and the

resulting flight delays was published way back in the 1940s [33]. Although the analyses in

those early papers were elegant and highlighted the underlying principles, the framework

relied on theoretical distributions of the key system parameters (such as runway separation

times) due to the lack of operational data, limiting the accuracy of those models. However,

the research landscape has dramatically changed in recent years, where researchers have

access to multiple sources of operational data. One can proclaim that we have entered the

era of "big data" even in aviation wherein large amounts of data are collected from a variety

of sources including sensors on the aircraft as well as on the ground. A good review of the

various aviation data sources can be found in [112]. These data sources play a critical role

in developing accurate models and practical decision support tools.

In the first part of this thesis, we presented airport-specific queuing models that were

developed using flight trajectories and flight schedules. In addition to flight trajectories and

schedules, there are other sources of operational data that one could exploit to characterize
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operations and develop decision support tools. In this chapter, we present models to analyse

airport operations that were developed using other emerging sources of aviation data with

two illustrative examples. First, we present a statistical model to estimate aircraft fuel burn

in the taxi phase using flight trajectories, which is intended for environmental monitoring of

airport operations. Next, we present an approach to extract operational information such as

flight ID and runway number from air traffic controller voice communications, which could

potentially be used in many applications such as improving system safety and enhancing air

traffic controller training. Further, information such as call-ready time is available primarily

through ATC voice data. Therefore, models to automatically transcribe ATC voice data

and extract such critical operational information will help characterize operations as well as

develop decision support tools for traffic management (such as departure metering).

6.2 Environmental impact assessment of airport opera-

tions

Aviation accounts for nearly 12% of all the emissions from transport related sources [3].

Emissions of carbon monoxide, unburned hydrocarbons and particulate matter are higher

at the surface level where aircraft taxi with low engine thrust settings [125]. Due to the

significant impact of fuel burn, and the resulting emissions on our health and environment,

there is a growing interest among regulatory agencies to monitor them at major airports.

Although aircraft fuel burn is archived in flight data recorders (FDR, commonly referred to

as the ‘black-box’), airlines do not share this data with regulatory agencies because of various

privacy concerns. Therefore, policy makers need good estimates of fuel burn and emissions to

set reasonable targets, which has motivated research into modeling these quantities [40, 16].

Industry standard models such as FAA’s Aviation Environment Development Toolbox

(AEDT) use taxi-time as the main input to estimate fuel burn [66]. However, such simple

models do not consider the second order effects such as spikes in the aircraft fuel consumption

during stop-and-go traffic, which is becoming more prominent with increasing congestion at
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airports. This motivates the need to develop more granular and accurate aircraft fuel burn

models using flight trajectories.

Aircraft trajectories on the airport surface can be obtained primarily from two sources:

aircraft’s Flight Data Recorder (FDR) and airport surface surveillance systems. A trajectory

here is specified by latitude, longitude, heading and velocity with an associated time stamp.

The data from FDR includes the aircraft trajectory as well as other critical flight parameters

such as engine fuel flow rate, airspeed, gross weight, ambient temperature and pressure. The

trajectory information from the FDR data has been used earlier to develop fuel burn models

for various phases of flight, and their predictive performance has been shown to be better

than some industry standard tools [153, 100, 40].

Unlike the FDR data, the trajectory information from the airport surface surveillance

system is easier to access, particularly for regulatory agencies such as the FAA that operate

them. Note that the trajectory information in the FDR data is based on an onboard GPS,

whereas the ASDE-X data is a fusion from multiple external sensors such as the airport

ground radars, multilateration sensors and Automatic Dependent Surveillance — Broadcast

(ADS-B) sensors. The inputs from multiple external sensors make the ASDE-X data more

noisy when compared to the FDR data. The other major drawback of the ASDE-X is its

poor coverage around the airport ramp areas.

Even though there are a couple of drawbacks with the ASDE-X data, there is significant

interest among regulatory agencies in utilizing archives of ASDE-X data for estimating fuel

burn and emissions because of the accessibility to this dataset. Another important aspect

to note is that the trajectory-based fuel burn models that have been developed earlier [100]

using FDR data have not been tested using ASDE-X trajectories because of the lack of

availability of ASDE-X trajectories corresponding to the FDR data (that contain the fuel

burn information). In this section, we develop a new statistical model to estimate aircraft

fuel burn using flight trajectories and present a framework that ensures that the models work

well even with noisy ASDE-X trajectories.
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6.2.1 Aircraft trajectory and fuel burn

The FDR data presented in this section was obtained from a major European airline.

The dataset contains multiple aircraft types operating from different airports around the

world [40]. We first discuss the modeling methodology using data from A330-343 aircraft,

and then present the results using the same procedure for all the aircraft types in our dataset.

The A330 dataset consists of 183 departures from seven major US airports (BOS, EWR, JFK,

LAX, MIA, ORD, SFO), and we focus our attention on the taxi-out phase of flight.

Figure 6-1 shows the time-series of speed and fuel flow rate during the taxi-out phase for

a sample flight. We notice that the fuel flow rate is constant for most periods and spikes

during some intervals. On an average over 183 A330 flights in our dataset, the fuel flow rate

spikes during 4.5% of the entire duration, and the spikes correspond to nearly 3.5% of the

total fuel burn during the taxi-out phase. Notice that the intervals of spikes in the fuel flow

rate correspond to the periods of acceleration. Moreover, the height and duration of these

spikes vary, and they correlate well with the duration and value of acceleration. The constant

fuel flow rate value (also referred to as the baseline fuel flow rate) corresponds to the idle

throttle setting of the engines, whereas spikes occur whenever the throttle setting is increased,

resulting in an acceleration. The aircraft could also accelerate without increasing the throttle

when the pilots release the brake from a stop. However, the magnitude of acceleration during

brake release or turns is smaller when compared to the acceleration obtained by increasing

the throttle. The other unlikely scenario to note is when the pilots brake while increasing

the throttle, resulting in a spike in the fuel flow rate without any acceleration.

The total fuel burn during the taxi-out phase of a flight can be split into a contribution

from the baseline fuel flow rate component and a contribution from the spikes. The constant

fuel flow rate component depends on the total taxi-out time of the flight. The spikes depend

on the acceleration, which needs to be estimated from the trajectory information. The idea

is to estimate the intervals of acceleration from the trajectory and use that to develop a

model for the total fuel burn. Note that the trajectory data contains speed at a low resolu-

tion (0.41 m/s), and therefore numerical differentiation of the speed to estimate acceleration
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does not yield good results. A simple moving average smoothing of the speed measurements,

followed by numerical differentiation is also not beneficial because it will under-estimate the

acceleration. To overcome these issues, some of the trajectory-based fuel burn models pro-

posed earlier use the number of stops as a surrogate for acceleration events [100]. Instead, in

our work, we propose using a multi-model smoothing algorithm for detecting the periods of

acceleration, and use that as the input feature in our models to obtain more accurate esti-

mates of the total fuel burn. Moreover, the trajectory data from the ASDE-X is noisy when

compared to the FDR data, making it challenging to estimate the periods of acceleration.

However, we show that our models perform well even with ASDE-X trajectories by tuning

some of the parameters in the smoothing algorithm to preserve the correlation between the

fuel burn spikes and acceleration.
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Figure 6-1: A sample profile of aircraft speed and total fuel flow rate during the taxi-out
phase of flight for A330-343.

6.2.2 Detecting acceleration events

A multi-model smoothing algorithm is used to determine the acceleration events from the

raw trajectory measurements. The smoothing algorithm is based on combining estimates

produced by an Interacting Multiple Model (IMM) filter with a backward-time recursion

[116]. The details of the smoothing algorithm are presented in Appendix B. In addition

to smoothed estimates of the state variables (trajectory), the smoothing algorithm outputs

the ‘most likely mode’ of the system at any time instant. We consider three modes to

represent the aircraft dynamics: (a) constant speed mode (𝑎 = 0, 𝜔 = 0), (b) acceleration
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mode, (𝑎 = 𝑎𝑡, 𝜔 = 0), and (c) deceleration mode, (𝑎 = −𝑎𝑡, 𝜔 = 0). Here 𝑎𝑡 is acceleration

threshold parameter that needs to be chosen and 𝜔 is the turn rate. The modes were

motivated by the fact that the fuel burn spikes correspond to the periods of acceleration,

whereas turns do not have any significant impact [100]. One could consider additional modes

such as turns or accelerated turns [99], however, it was decided to keep the number of modes

to a minimum to obtain a robust predictor for the fuel burn spikes.

The first plot in Fig. 6-2 shows the estimated speed profile for the flight trajectory along

with the raw data. The second plot in the same figure shows the normalized likelihood or

mode fraction of the three modes obtained from the smoothing algorithm, which represents

the probability of the aircraft being in one of the three modes considered in our analysis

(constant speed, acceleration or deceleration). We notice that periods of acceleration corre-

spond to a higher mode fraction for the acceleration event. Every instant of the trajectory

is classified into one of the three modes (constant speed, acceleration or deceleration) based

on the maximum value of the mode fraction. The third plot of Fig. 6-2 shows the periods in

the acceleration mode (indicated by 1), along with the total fuel flow rate into the engines.

We define an acceleration event as an extended period (at least 4 s) of the dynamics being

in the acceleration mode. Similarly, a fuel burn event corresponds to an extended period of

a spike in the fuel flow rate. We notice that the acceleration events correspond to fuel burn

events with a small time lag. The lag corresponds to the response time for the thrust to

increase with the fuel intake for a jet engine.

The acceleration threshold (𝑎𝑡) has a significant impact on the mode detection. A high

value of the threshold might not capture any acceleration event, whereas a low value would

detect small accelerations or even falsely report accelerations. For our application to predict

fuel burn, the threshold needs to be tuned such that the reported acceleration events corre-

spond to the fuel burn events. For example, in Fig. 6-2, although there is a slight acceleration

between 300 and 350 s, it does not correspond to a fuel burn spike. Such variations in speed

could be because of turns or braking that do not correspond to throttling (a higher fuel

flow rate). Therefore, we choose an optimal acceleration threshold, 𝑎𝑡 = 0.4 𝑚𝑠−2, which

ensures that a slight increase in speed is not flagged as an acceleration event and the value is
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Figure 6-2: The plot on the top shows a comparison of the speed profile obtained from
the smoothed estimate with the actual FDR data. The middle plot shows the normalized
likelihood (mode fraction) for the differet modes. The bottom plot shows the indicator
function for the acceleration event obtained from the mode fraction along with the total fuel
flow rate.

sufficiently large to capture the fuel burn spikes correctly. The details on the methodology to

choose the optimal acceleration threshold is skipped here and presented in Appendix B. At

the optimal threshold of 0.4 𝑚𝑠−2, 82% of the total duration of acceleration in our dataset

is mapped to fuel burn events and 78% of the total duration of fuel burn spike is mapped to

the acceleration events.

6.2.3 Fuel burn prediction using aircraft trajectories

In this section, we present three fuel burn models, each with a different set of predictors, to

determine the total fuel burn during taxi operations. For the sake of discussion, we call the

three models: Model A, Model B and Model C. The model equations are as follows:

∙ Model-A: 𝑓/
√
𝑇𝑎𝑚𝑏 = 𝑐1𝑡.

∙ Model-B: 𝑓/
√
𝑇𝑎𝑚𝑏 = 𝑐2𝑡 + 𝑑2𝑛𝑎.
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∙ Model-C: 𝑓/
√
𝑇𝑎𝑚𝑏 = 𝑐3𝑡 + 𝑑3𝑡𝑎.

Here, 𝑓 denotes the total fuel consumption for an aircraft during its taxi-out phase, 𝑇𝑎𝑚𝑏 is

the ambient temperature, 𝑡 is the taxi-out time, 𝑛𝑎 is the number of acceleration events, 𝑡𝑎 is

the total duration of acceleration and (𝑐𝑖, 𝑑𝑖) are constants that are determined using least

squares regression. The reason for not including the intercept term in the linear equations

is to ensure that the models are physically interpretable in a sense that the total fuel burn

should be zero when the taxi-out time is zero. Note that the fuel burn models are for the

taxi-out phase after pushback, and therefore the fuel flow rate consists of just the baseline

fuel flow rate with intermittent spikes, without any added component at pushback. In all

the models, the total fuel burn is normalized with
√
𝑇𝑎𝑚𝑏 because the engine specific fuel

consumption is proportional to this factor [100]. The taxi-out time is a natural choice as

a predictor because the total fuel burn depends on the time spent by the aircraft on the

airport surface with its engines turned on. The taxi-out time is considered to be the primary

explanatory variable to account for the constant fuel flow rate component, which is the key

contributor. To capture the fuel burn spikes, we consider the number of acceleration events

in Model-B and the total duration of acceleration in Model-C. In the past, researchers have

investigated using a linear model with the number of stops as a predictor (a surrogate for

the number of acceleration events), in addition to the taxi-out time [100]. In this work,

we investigate the benefits of using the duration of acceleration as the predictor (in Model-

C) instead of using just the number of acceleration events. The primary reason for not

considering aircraft gross weight as another explanatory variable in these models is because

there have been studies that have shown that the idle thrust (and hence the fuel flow rate)

does not vary significantly with aircraft mass [176]. Further, we wish to use predictors that

are accessible via openly available data sources, which is the other reason for not including

the aircraft mass as predictor because it is available only through the FDR data.

The models were trained using 60% of the sample points in the dataset and the rest were

used for testing. The number and duration of acceleration events is determined using the

optimal acceleration threshold in the smoothing algorithm. The predictive performance of

the three models are compared using the mean percentage error (MPE) and mean absolute
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percentage error (MAPE), with the error being calculated by subtracting the actual value

from the model prediction for each individual flight. Table 6.1 shows the model equations,

p-values of the regression coefficients and error statistics for different aircraft types. The

MAPE values indicate that Model-C performs the best compared to the other approaches,

followed by Model-B, which is better than Model-A. The predictive performance is better for

models with higher fidelity as one would expect (in a sense that the duration of acceleration

has more information than the number of acceleration events). The relative improvement

of the model varies for different aircraft types. The benefits of the higher fidelity model,

in terms of accuracy, depends largely on the fraction of the fuel burn spike duration in the

dataset.

Table 6.1: Model equation for the fuel burn and the error statistics for different aircraft types.
The number of data points in the test set is shown below the aircraft type in brackets. The
numbers below the model equation indicate the p-value of the model coefficients, and the
row below shows (𝑅2, MPE, MAPE).

Aircraft (engine
type)

Model-A Model-B Model-C

A330-343 (Trent
772B-60)

(84)

0.0259 𝑡

(0.0)
(0.9962, 1.49, 3.29)

0.0252 𝑡+ 0.3778 𝑛𝑎

(0.0) (0.0)
(0.9980, 0.05, 2.63)

0.0253 𝑡+ 0.0298 𝑡𝑎
(0.0) (0.0)
(0.9981, -0.14, 2.07)

A320-214
(CFM56-5B4/2)

(68)

0.0120 𝑡

(0.0)
(0.9598, 0.73, 6.98)

0.0116 𝑡+ 0.0759 𝑛𝑎

(0.0) (0.0394)
(0.9614, 0.94, 6.72)

0.0115 𝑡+ 0.0073 𝑡𝑎
(0.0) (0.0006)

(0.9642, 0.77,6.44)
A321-111

(CFM56-5B4/2)
(29)

0.0120 𝑡

(0.0)
(0.9600, -1.16, 5.01)

0.0112 𝑡+ 0.1663 𝑛𝑎

(0.0) (0.0001)
(0.9701, 0.13, 4.45)

0.0113 𝑡+ 0.0084 𝑡𝑎
(0.0) (0.0005)
(0.9703, -1.34, 4.10)

B777-300ER
(GE90-115BL)

(51)

0.0349 𝑡

(0.0)
(0.9975, 1.42, 2.14)

0.0346 𝑡+ 0.0848 𝑛𝑎

(0.0) (0.0416)
(0.9977, 1.27, 1.94)

0.0346 𝑡+ 0.0135 𝑡𝑎
(0.0) (0.0007)

(0.9979, 1.24, 1.82)
CS100 (PW1542G)

(59)
0.0089 𝑡

(0.0)
(0.9948, -1.86, 4.40)

0.0089 𝑡+ 0.0049 𝑛𝑎

(0.0) (0.67)
(0.9948, -1.77, 4.34)

0.0089 𝑡+ 0.0007 𝑡𝑎
(0.0) (0.37)
(0.9949, -1.76, 4.32)

6.2.4 Fuel burn estimation using airport surface surveillance data

The idea is to build fuel burn models with the FDR data and confirm that these models

work well with the openly available ASDE-X data. For this idea to work well, the trajectory

163



estimates from the noisy ASDE-X data have to closely match the FDR estimates.

The trajectory information in ASDE-X data is more noisy compared to the FDR data.

Figure 6-3 shows a comparison of the trajectory information for a sample flight obtained

from the raw FDR data and ASDE-X data. One can notice that the heading and speed

measurements in the ASDE-X data are more noisy, with several missing data points. The

mean error in the speed measurements in ASDE-X data is 0.31 𝑚/𝑠 and the mean absolute

error is 0.69 𝑚/𝑠, considering FDR data to be the ground truth. Note that both FDR and

ASDE-X have a speed resolution of 0.51 𝑚/𝑠. The ASDE-X measurements are reported

at 1Hz frequency, however, speed measurements are missing on an average for about 46%

of the taxi-out duration. These statistics were obtained from 104 A330 ASDE-X tracks in

our dataset that could be mapped to the FDR data. Since the fuel burn models developed

earlier need the duration of acceleration as one of the inputs, we need to ensure that we are

able to estimate the acceleration information from the ASDE-X data with the same level

of accuracy as we had done earlier with the FDR data. The acceleration threshold in the

smoothing algorithm is adapted to ensure that we have the same mode detection statistics for

the ASDE-X data as we had earlier for the FDR data (more details on this in Appendix B).

Table 6.2 shows the error statistics for the three models using the same set of flights

that was used for computing the FDR error statistics. The statistics indicate that Model C

performs better than the other two models even with the ASDE-X trajectories. We see a

relative improvement of 22.26% in the MAPE for Model-C relative to Model-A, indicating the

benefits of using the trajectory information for the fuel burn prediction. However, the relative

improvement is negative for Model-B indicating a slight drop in the model performance. This

shows that the duration of acceleration is a more robust predictor compared to number of

acceleration events while using ASDE-X trajectories. This could be because a falsely detected

acceleration event generally lasts for a smaller duration, making Model-C less sensitive to

false events than Model-B. The prediction errors using ASDE-X data are slightly higher than

those obtained using FDR data because the ASDE-X data is inherently more noisy. The last

column in the table shows the percentage increase in MAPE using ASDE-X data relative

to the error obtained using FDR data. We see that the error (MAPE) increases by about
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(a) Trajectory (FDR shown in blue and ASDE-
X shown in red).
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Figure 6-3: Comparison between measurements obtained from FDR and ASDE-X data for
a sample flight.

23.51% when we use ASDE-X trajectories instead of FDR data.

Table 6.2: Error statistics computed from ASDE-X trajectories using fuel burn models de-
veloped from FDR data for A330 data set

Model Mean
percentage error

(MPE)

Mean absolute
percentage error

(MAPE)

Relative
improvement in

MAPE (%)

Percentage
increase in

MAPE relative
to FDR

Model-A -1.77 3.40 0.00 0.00
Model-B 1.71 3.46 -1.81 31.74
Model-C -0.15 2.63 22.26 23.51
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6.3 Extracting operational information from ATC voice

communications

Air traffic control (ATC) voice communications contain rich operational information that

has been largely underutilized. Automatic transcription of ATC communications has the

potential to improve system safety, operational performance, conformance monitoring, and

enhance controller training [108]. However, automatic speech recognition (ASR) systems

proposed to date for the ATC applications have not yet demonstrated the levels of accuracy

needed for practical deployment [137]. Developing an ASR system for the ATC domain is

challenging because of factors such as noisy radio channels, high speech rates, and diverse

accents. On the other hand, ATC communications contain domain-specific vocabulary and

standard phraseology that can be exploited to develop algorithms tailored to the domain.

Recent improvements in machine learning techniques such as deep neural networks have led

to more accurate speech recognition algorithms [9]. These techniques present the potential

to develop better ASR algorithms to transcribe ATC voice communications. The transcribed

ATC voice data could be used to extract valuable operational information to analyse and

model airport operations. For example, information such as departure call-ready time is

available exclusively through ATC voice data.

In this section, we present an automatic speech recognition (ASR) model that transcribes

ATC voice communications to text. The proposed model is based on an end-to-end speech

recognition architecture with a deep neural network, which offers several advantages over

traditional approaches, such as Hidden Markov Model (HMM). This modeling approach is

easier to train, and has been shown to yield a better accuracy than traditional methods

for conversational speech [9]. Additionally, we present a methodology to accurately extract

operational information such as aircraft call signs and runway assignments from transcripts,

using state-of-the-art techniques from natural language processing. In this thesis, we present

a brief description of the model and some of the key results; and readers can find a more

detailed description of this work in our paper [19].
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6.3.1 Related work

ASR techniques have several potential applications in the ATC domain, including safety

monitoring of live operations [170, 42, 113] and identification of anomalous aircraft trajecto-

ries [170]. In another example of safety monitoring, Chen et al. [42] developed a framework

to automatically flag pilot-controller miscommunications (read back error detection) to pre-

vent untoward incidents. With the introduction of electronic flight strips in ATC towers,

speech assistants have been shown to reduce air traffic controller workload in early demon-

strations [85]. ASR systems can also be used instead of pseudopilots for training air traffic

controllers [163, 171], and for human-in-the-loop simulations and workload measurements in

air traffic management research [120, 50]. Additionally, the increasing demand for unmanned

aerial vehicle operations has stimulated the need for ASR systems [119]. However, the lack

of sufficiently accurate ASR models for the ATC domain has remained a significant barrier

to its deployment in these applications.

ATC applications of ASR have traditionally used HMM-based approaches, with limited

consideration of end-to-end speech recognition approaches [113]. In the recently-concluded

Airbus ATC speech recognition challenge, the top performing team used a HMM-based

hybrid model that yielded a word error rate (WER) of 7.6% on the Airbus test data [56], with

the second ranking team using an end-to-end speech recognition architecture that yielded a

WER of 8.4% [143]. In another recent study, a comparison of hybrid model (HMM/DNN in

Kaldi) and end-to-end speech recognition for ATC voice in English and Chinese was evaluated

by Lin et al. [113]. For English ATC voice, they found that the end-to-end speech recognition

model yielded a WER of 6%, performing better than the hybrid model that yielded a WER

of 9%. One needs to note that the performance of the models, in terms of the WER, also

depends on the quality of test data. If the test data is more representative of the training

data and is less noisy, one expects better performance from the speech recognition model.

Therefore, one cannot compare models based on WER if they are reported on different test

sets.
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6.3.2 ASR model for ATC communications

Automatic speech recognition model

The automatic speech recognition model is based on Deep Speech [80], an end-to-end speech

recognition model. We use Mozilla’s implementation of Deep Speech for our analysis [132].

A brief description of the model is presented in Appendix C. Additionally, training an

automatic speech recognition model requires large amounts of transcribed audio data. For

our analysis, we use AIRBUS-ATC dataset [56] that contains about 40 hours of transcribed

ATC voice communications.

Performance metrics

The Word Error Rate (WER) is a widely-used measure of ASR model accuracy. It is defined

as the sum of the number of words in the transcribed text that are either substituted (𝑆),

deleted (𝐷), or inserted (𝐼) relative to the reference text, divided by the number of words

in the reference (𝑁𝑟):

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁𝑟

. (6.1)

The WER includes errors arising from filler words or other words that are not relevant in a

particular context. The speed of transcription is also an important quantity. It is measured

in terms of the real-time factor (RTF), namely, the duration of input audio divided by

the required time to process the input. The real-time factor for our models is around 0.3,

implying that they can be deployed in live operations.

Model performance

We used approximately 36 hours of the 40-hour AIRBUS-ATC dataset for training the model,

2 hours for validation, and 2 hours for testing. The ASR model yields an average word error

rate of 0.22 on the 2-hour test dataset with 1,500 utterances. Figure 6-4(a) shows a box-plot

of the average WER as a function of the word count in the utterance. The WER is seen to be

higher for utterances with a lower word count, and is nearly constant for word counts greater
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(a) WER for different word counts (b) Histogram of word count

Figure 6-4: Statistics of word counts and WERs computed for the test set.

than six. The reason for this behavior is that missing one or two words (even filler words,

e.g., ‘um’ or ‘ah’) would lead to a higher WER for smaller sentences. Figure 6-4(b) shows

the histogram of the word count of utterances in the test set. The average word count is 12

words, and utterances with fewer than six words represent 7% of the test set. Additionally,

10.3% of the utterances in the test set have a foreign word or non-intelligible word in the

transcription. We therefore compute the WER after excluding utterances with fewer than

six words and the ones having foreign words or non-intelligible words, and this was found to

be equal to 0.17.

6.3.3 Extracting operational information

ATC communications contain extensive operational information (e.g., runway assignment,

heading, flight level) that are of value in decision-making. In this section, we present a

methodology to automatically extract operational information from ATC communication

transcripts. Natural language processing (NLP) techniques for extracting information from

unstructured text can be broadly classified into statistical models and rule-based grammar.

Statistical models are obtained using machine learning algorithms on the text data. On

the other hand, rule-based grammar techniques are based on a collection of hand-engineered

rules to perform the NLP task. We employ both the methodologies in this paper: a statistical

model is used for call-sign extraction, and a rule-based grammar approach is used to extract
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runway information.

Call-sign extraction

The utterances of the air traffic controllers and the pilots often contain the aircraft call-sign,

which serves as a unique identifier for a flight receiving or sending the information. The

call-sign typically comprises of the airline telephony designation (such as "American" for

"American Airlines"; "Speedbird" for "British Airways"), followed by the flight ID, which

comprises of 2-4 digits, with an optional suffix of 2-3 letters. A few examples of ATC

utterances are shown below, with the aircraft call-sign highlighted:

∙ air nostrum eight seven six one contact bordeaux one three three decimal seven

seven five goodbye

∙ five thousand feet one zero one zero easy six eight four romeo

∙ lufthansa zero one charlie reduce speed two two zero knots

To associate a flight with the instruction or command given by the air traffic controller or

pilot, one must be able to accurately extract call-signs from the transcript. There are multiple

challenges to accurate call-sign extraction: (a) controllers could use multiple airline identifiers

for the same airline; (b) the number of words following the airline identifier (corresponding to

the numerals/NATO phonetics) can vary; and (c) there could be call-signs with just the flight

number without the airline identifier. Although the digits are expected to be pronounced as

separate numbers as per ICAO nomenclature, the convention can vary in different regions

(for example, in the US, "2020" is often spoken as "twenty twenty" instead of "two zero

two zero"). One could also have non-standard pronunciation: for example, “0" could be

pronounced as ‘oh’, “9" could be pronounced as ‘nine’ instead of ‘niner’, and “F" could be

pronounced as ‘fox’ instead of ‘foxtrot’.

Given these variations, a rule-based grammar approach for call-sign extraction might not

be feasible. We instead use a statistical approach to train a model to identify call-signs using

transcripts of ATC communications. In order to extract call-signs, we use Named Entity
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Recognition (NER), a standard NLP technique, to classify information within unstructured

text into predefined categories. For the call-sign extraction problem, the objective is to

identify a sequence of words in each utterance, and to categorize it as the call-sign, if it

exists. We use a Python library called Spacy, which is one of many standard libraries for

NER [164]. The NER model in Spacy is based on a deep convolution neural network and uses

sub-word features. To categorize a particular word, the model accounts for the neighbouring

three words on either side. A key advantage of the sub-word feature is that it can identify

call-signs even if there are spelling errors in the transcripts, a particularly useful property

for ASR-generated transcripts.

Performance metrics: The accuracy of the model is evaluated using three performance

measures: precision, recall, and F-1 score. We introduce some notation to define these

performance measures: Let 𝐴 be the number of instances in the test set when there is no

call-sign in the reference text, and the model also detects no call-sign. Similarly, let 𝐵 be the

number of instances when there is a call-sign in the reference text, but the model does not

detect a call-sign. Let 𝐶 be the number of instances when there is no call-sign in the reference

text, but the model erroneously detects a call-sign. Let 𝐷 and 𝐸 be the number of instances

when the detected call-sign is correct and incorrect, respectively, among the instances when

the reference text has a call-sign. The mathematical expressions for precision (𝑃 ), recall

(𝑅), and F-1 score are as follows:

𝑃 =
𝐷

𝐶 + 𝐷 + 𝐸
; 𝑅 =

𝐷

𝐵 + 𝐷 + 𝐸
; 𝐹 − 1 =

2𝑃𝑅

𝑃 + 𝑅
. (6.2)

Precision is the fraction of instances for which the call-sign is correctly extracted from among

the instances when a call-sign is extracted. Recall is the fraction of instances for which the

correct call-sign is extracted from among the instances when the call-sign is present in the

reference text. The F-1 score is the harmonic mean of precision and recall.

Results: The model was trained using 25,000 samples of labelled data, which contained

the transcript of the utterance, and the corresponding call-sign in the utterance (if present).

The independent test data set contained approximately 3,000 utterances. For the call-sign
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extraction task from the reference transcript, the precision was 0.97, the recall was 0.93, and

the F-1 score was 0.95. In other words, 97% of the call-signs that were extracted matched the

reference call-sign, and 93% of the call-signs in the reference text were extracted correctly.

Table 6.3 shows a few example transcripts of the utterances in the test set, along with

the reference call-sign contained within the transcript, and the extracted call-sign from the

model. The first three rows in the table are instances in which the call-sign was correctly

extracted. The next three rows illustrate cases wherein the call-sign present in the text was

not extracted, which would impact the recall score. In these cases, the primary reason for

the error was that either the airline identifier in the test set was very different from those

seen in the training set, or that the call-sign did not follow the usual convention. The last

row in the table shows a case in which the model incorrectly extracted a call-sign when there

was none in the reference transcript, which would impact the precision score. Overall, a F-1

score of 0.95 is a good initial step, and can be improved by increasing the amount of training

data. One needs to note that even if the call-sign was not seen in the training data, the

model is capable of correctly identifying the call-sign based on neighboring words that gives

it context.

Next, we look at the performance of the call-sign extraction task on the transcribed voice

data that is output from the speech recognition model. For the call-sign extraction task from

the transcribed voice data, the precision is 0.81, recall is 0.57, and the F-1 score is 0.67, on

an independent test set. The performance here is worse than in the case where we had the

actual transcripts, because of inaccuracies in the voice transcription. It is worth noting that

even when the transcription of voice is not completely accurate (as reflected by the word

error rate), it may be possible to accurately extract the call-sign from the transcript if the

call-sign part of the utterance is transcribed correctly.

Some limitations of this statistical approach to call-sign extraction must be noted: (a)

detecting airlines unseen in the training set can be challenging, even though the approach

considers neighboring words for context; (b) call-sign digits are pronounced differently in

the US and in Europe (for example, flight number “2020" is pronounced ‘two zero two zero’

in Europe as per ICAO standard, but ‘twenty twenty’ in the US). These limitations can be
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Table 6.3: Extracting call-signs from reference transcripts.
Reference call-sign Reference Transcript Extracted call-sign
easy four seven tango lima roger we call you huh short final easy

four seven tango lima
easy four seven tango lima

beeline four papa golf report huh short final maximum one
sixty beeline four papa golf

beeline four papa golf

swiss one juliet bravo keep rolling and vacating via mike eight
swiss one juliet bravo

swiss one juliet bravo

easy _ whiskey toulouse tower @ easy _ whiskey estab-
lished on the ils three two right

airbus delta sierra airbus delta sierra after takeoff you will
maintain runway axis

binair seven alpha # huh good huh @ huh binair seven al-
pha approaching november eight
we leave via sierra three huh india lima sierra three huh india lima

overcome by including more diverse data sources for training.

Extracting runway information

A rule-based grammar was used for extracting runway information from the transcript.

Reasons for employing a rule-based grammar approach rather than a statistical approach for

runway extraction include: (a) the datasets do not contain the labelled runway information

needed to build a statistical model; and (b) relatively few runway numbers are uttered in

the datasets (because the voice recordings are from a small number of airports), which is not

sufficient to obtain a statistical model that generalizes well. Furthermore, the utterances of

runway numbers are highly structured, motivating the use of rule-based grammar. Runway

numbers are uttered in the following manner: one or two digits followed by ‘left’, ‘right’ or

‘center’. The transcript is searched for such patterns to obtain the runway information for

extraction. We hand-labelled about 200 utterances to test the performance of a rule-based

grammar approach for extracting runway information. The precision, recall and F-1 score is

1 on the reference transcript, indicating that the rule-based approach is perfectly accurate in

extracting runway information. Runway information extraction using the transcribed text

shows very good performance, achieving a precision of 0.97, recall of 0.93 and F-1 score of

0.95.
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6.3.4 Evaluating transcription accuracy in the absence of ground

truth data

Calculation of the word error rate requires the availability of ground truth data (i.e., the

actual transcript). However, the practical deployment of decision-making using ASR requires

an estimate of the likely accuracy of the transcription, even in the absence of ground truth

data. In other words, it is valuable to know when the ASR models are expected to be

accurate, and when they are not. To this end, we propose to use the uncertainty score, defined

as the negative logarithm of the confidence score (𝑄(𝑐)), as a surrogate for the word error

rate. Note that the confidence score is obtained directly from the speech recognition model

and one can find more information about this metric in Appendix C. The confidence score

of an utterance, and therefore its uncertainty score, depends on the character probabilities

of the transcribed text, as determined by the acoustic model and language model of the

ASR system. Figure 6-5(a) shows a scatter plot of the uncertainty score and word error

rate, for each utterance in the test set. For the purpose of illustration, the uncertainty score

was computed using only the acoustic model. The figure shows a clear correlation between

the uncertainty score and the word error rate. This correlation increases further when one

considers the normalized uncertainty score, defined as the uncertainty score divided by the

number of characters in the transcription of the utterance. Figure 6-5(b) shows a scatter

plot of the normalized uncertainty score and the word error rate, for the utterances in the

test set. The normalized uncertainty score increases with the word error rate, and can be

used to identify instances in which one would expect a high WER (i.e., low accuracy of the

ASR model).

For applications in which the ASR model is used as part of a decision-support tool,

one could flag, or even exclude, transcriptions that have a higher-than-average normalized

uncertainty score. The uncertainty score can also be evaluated at the word-level, when the

accuracy of the extracted operational information is a quantity of interest. The uncertainty

score can also be used to identify off-nominal events during which we expect the performance

of the speech recognition model to degrade (for example, because the speech-rate or the
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phraseology are significantly different from the nominal periods over which the model was

trained).

Figure 6-5(c) shows the distribution of the normalized uncertainty score computed over

two test datasets: (a) one that is similar to the dataset used for training the ASR model

(shown in blue, and representative of conversations during nominal events); (b) a test dataset

that is significantly different (in terms of accent and speech rate) from the training data set

(shown in red, and representative of conversations during off-nominal events). We observe

that the distribution of the normalized uncertainty score for the off-nominal data is signifi-

cantly different (with a higher mean value, indicative of higher WERs) from the distribution

obtained for the test dataset that is similar to the training data. Hypothesis testing tech-

niques can be used to determine if an utterance (or a series of utterances) lies outside the

nominal distribution in a statistical sense, and to flag those periods as off-nominal events.

(a) Uncertainty score (b) Normalized uncertainty score (c) Distribution of normalized un-
certainty score

Figure 6-5: Uncertainty score of the transcription
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Chapter 7

Conclusions

7.1 Summary

In this thesis, we presented new queuing network models of airport surface operations. The

proposed models reflect the time-varying nature of capacity and demand seen at airports,

and could be used to predict the queue lengths at congested locations on the airport surface

and the taxi times of aircraft. The key highlight of the queuing network model is that it can

account for multiple hot spots of congestion on the airport surface and the queuing dynamics

could be represented using a set of simple ordinary differential equations. The modeling

approach was applied to multiple major airports with different operating characteristics in

order to demonstrate its general applicability. We also demonstrated that the airport surface

model could be augmented with a terminal departure airspace model to predict the transit

time from the departure gate to the final departure fix.

Further, the models were used to develop and validate algorithms for departure meter-

ing, an approach that leads to lower taxi-out delays, resulting in lower operating cost and

emissions. In particular, we proposed two new algorithms for departure metering based on

optimal and robust control techniques, and they were compared with NASA’s ATD-2 logic

that is currently under field trials. Using stochastic simulations of the airport operations,

we showed that our robust control algorithm performs better (by about 11%1) than the
1Obtained using simulations for CLT; varies for other airports depending on the congestion level
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ones currently planned by the industry for future operational use. Moreover, the proposed

queuing network models could also be used to estimate the optimal value of the excess queue

time buffer, which is an important parameter within the ATD-2 logic.

The departure metering algorithms require information on departure demand as inputs,

usually in the form of the Earliest Off-Block Times or EOBTs. In this thesis, we evaluated

the accuracy of the EOBT information currently published by the airlines, and conducted

a parametric analysis of the impacts of EOBT uncertainty on the performance of departure

metering algorithms. The results showed that EOBT uncertainty can significantly reduce

the departure metering benefits in terms of taxi-out time and fuel burn savings. For example,

reducing the standard deviation of the EOBT error from the current value of around 6 min

to 4 min at a 20-min planning horizon would yield an additional annual fuel burn savings

of 200 metric tonnes at EWR, 1,300 metric tonnes at DFW, and 800 metric tonnes at

CLT2. This analysis can potentially incentivize airlines to improve the accuracy of reported

EOBTs. More importantly, several other downstream traffic management initiatives are

planned to utilize EOBTs, and therefore characterizing EOBT uncertainty is valuable for

such applications.

In addition to developing algorithms for improving airport operations, the tools and tech-

niques for analyzing queuing networks that were presented in this thesis also have a broader

applicability. Using point-wise steady state approximation, we were able to represent the

dynamics of the ensemble mean queue length using a simple ordinary differential equation

that could account for propagation delays between servers and general service time distribu-

tion. The dynamical system representation allowed us to develop robust controllers to track

the queue length at a desired value even in the presence of parameter uncertainties. For the

case of a single queue, we were able to determine the error bounds for tracking the queue

length using the predictor-based feedback controller. Additionally, the dynamical system

representation of the queuing process allows us to use reachability analysis to analyse the

performance of queuing networks.

The adaptation of queuing models to airport operations relied on operational data such

2Simulation results with the ATD-2 logic.

178



as flight tracks and flight schedules. Such aviation data sources play a critical role in de-

veloping accurate models and practical decision support tools. In addition to flight tracks

and schedules, we have shown how one could utilize other emerging aviation data sources

to characterize airport operations. In particular, we have developed a trajectory-based fuel

burn model to analyse the environmental impacts of aviation. Our models perform better

than the traditional fuel burn models, and they also have the potential to estimate taxiway

noise and emissions at airports. Additionally, we have proposed a methodology to extract

operational information such as runway number and flight ID from ATC voice communi-

cations data using recent techniques in automatic speech recognition and natural language

processing.

7.2 Practical implementation: opportunities and chal-

lenges

Departure metering is a part of FAA’s Terminal Flight Data Manager (TFDM), which is an

airport surface management solution for NextGen in the US [69]. The departure metering

concept has undergone several field trials at major airports [160, 169, 127], with the most re-

cent one conducted at Charlotte airport under the ATD-2 program (during 2017-2019) [149].

The concept is scheduled for operational deployment across major US airports in a phased

manner in the near future (originally scheduled for 2020, but delayed due to the COVID-19

pandemic) [62]. In addition to the US, departure metering is currently being deployed at

major airports in Europe and Asia [60, 39].

The underlying departure metering logic across all the surface management programs (in

the US as well as in Europe and Asia) is similar to the NASA’s ATD-2 logic. Therefore, the

analysis of the operational benefits of the ATD-2 logic that was presented in this thesis is of

potential interest to many operators. For example, choosing the optimal buffer parameter,

which decides the departure metering benefits, can be obtained using our numerical analysis.

Such an analytical approach can be efficient and cost-effective instead of running several field
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trials across different airports that can be prohibitive for various reasons. Additionally, we

showed that our proposed robust control approach that explicitly considers model uncertainty

performs better than the ATD-2 logic in numerical simulations. The next natural step is to

run the algorithm in field trials to test the efficacy in the real-world environments. Further,

we would like to highlight that the backbone required for operational implementation of any

new departure algorithm such as surface surveillance and digital data exchange is already (or

soon to be) deployed across major airports. Therefore, implementing our proposed departure

metering logic would require just a software update.

In addition to departure metering algorithms, the EOBT analysis presented in this thesis

provides insights on the benefits of improving the EOBT accuracy. Airlines update the time

a flight would be ready to pushback at irregular intervals close to the scheduled departure

time and this is published as EOBT. The EOBT information, which is essentially an airline’s

estimate of when a flight would be ready, can deviate from the actual pushready time because

of various operational reasons. Departure metering algorithms use EOBTs as inputs to make

scheduling decisions and our analysis was able to quantify the marginal improvement in

departure metering benefits due to reduction in EOBT uncertainty. For example, we found

that by reducing the standard deviation in EOBT error by 2 min at DFW, the benefits

in terms of taxi-out time savings from departure metering increases by about 75%, which

results in an additional fuel savings of about 3.4M kg/yr. The airlines can use such estimates

to decide on investment decisions to develop better models to reduce the EOBT uncertainty.

There are a few challenges in translating the departure metering algorithms presented in

this thesis to the real-world. First, we need to recognize that the models were trained using

historical operational data. As one might expect, the airport operations change with time

and this might influence the performance of these models. Certain aspects such as traffic

demand are ingrained in the model, therefore the queuing model is expected to work well

even if the volume and nature (demand-profile) of the traffic changes at an airport. However,

the model parameters would need refinement if there are other operational changes such as

changes in fleet mix or infrastructure. Along with the model, one might have to update the

parameters in the departure metering algorithm (such as the buffer time in the case of ATD-2
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logic or the target queue length in the case of robust control approach). The parameters

associated with the model and the control algorithm could be revised by monitoring the

predictive performance of the model. Another potential solution to this problem, is to

design an adaptive controller to update the model parameters with measurements. Further,

one could also update the model predictions based on the errors as shown in Section 4.6.1.

Another aspect that has been overlooked in this thesis is the need to incorporate flights

with other constraints such as delays assigned due to Traffic Management Initiatives (TMIs).

Additionally, departure metering posses a challenge in the US because of jurisdictional issues

associated with gate metering. FAA only has jurisdictional control over the active movement

area in the US, and the ramp areas (including the gate pushbacks) are controlled by the ramp

controllers (usually, the airline). However, there is push to accommodate gate metering by

coordinating with the ramp controllers.

Apart from aiding the development of control algorithms for departure metering, the

proposed queuing models of airport traffic movements can be used in industry software

tools to assess fuel burn and emissions. We are currently working with the FAA to propose

enhancements to the Aviation Environmental Design Tool (AEDT), a tool that is widely-used

by the regulatory agencies for predicting aviation environmental impacts. The enhancements

involve updating the airport queuing models to improve taxi-time predictions as well as

proposing accurate fuel burn models, such as those presented in Section 6.2 [23].

7.3 Opportunities for future research

In this section, we present opportunities for future research ranging from improvements to

the departure metering algorithm to exploring other potential applications of the queuing

network model.
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7.3.1 Improvements to departure metering algorithm

Integrated control of arrival and departure queues

The departure metering algorithms presented in this thesis focused on reducing the depar-

ture queues without accounting for arrival queuing. One could improve the efficiency of

operations further by considering integrated control of arrivals and departures. The objec-

tive would be to minimize the weighted sum of all queue lengths on the airport surface by

controlling the pushback rate and the arrival rate, accounting for the number of holds in the

air (arrivals) and at the gate (departures). The weights in the cost function could be chosen

to penalize airborne holds more than the ground holds. In addition to assigning gate-holds,

the algorithms can be extended to assign runways to ensure that the runways are equally

loaded and utilised, thereby increasing the overall airport throughput. However, one needs

to note that there is less flexibility in assigning runways because there are constraints arising

from the runway length required by aircraft, departure fix assignments, etc.

Incentives to improve EOBT accuracy

The analysis in Chapter 3 assumed that the EOBT uncertainty distribution was the same

for all airlines at an airport. However, as seen in Section 3.3 in Chapter 3, the uncertainty in

EOBT varies by airline. An interesting question is whether an airline would be rewarded for

improved EOBT accuracy by achieving greater taxi-out time reduction. A related question

would involve opportunities for airlines to manipulate the system by publishing inaccurate

EOBTs to obtain more benefits.

To incentivize airlines to publish more accurate EOBTs, the ATD-2 program categorizes

flights into a "planning" group and an "uncertainty" group based on the historical accuracy

of their EOBT information. The idea is to give priority to the flights in the planning

group so that they are able to get more benefits. Challenges remain with this approach: (a)

Deciding on a criterion to categorize flights into two groups (airlines could game by reporting

accurate EOBTs during periods with less congestion and incorrect EOBTs during periods

with congestion to obtain more benefits); and (b) developing strategies to disincentivize the
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uncertain group. One possible approach is to penalize airlines if they do not meet the TOBT

assigned by the controller. For example, under the Airport Collaborative Decision Making

concept, if a flight is unable to pushback within TOBT+5 min, its existing slot is cancelled

and it receives a new TOBT [39].

Impact of EOBT information updates

This thesis did not consider the impact of EOBT updates by the airlines. As we had discussed

in Section 3.3, airlines update the EOBT information at irregular intervals until a flight

pushes back from the gate. If gate-hold decisions are made 20 min prior to a flight’s EOBT

which continues to be updated, then one would have to determine the most efficient way to

accommodate flights with updated EOBTs.

If an airline updates a flight’s EOBT, we have one of the following two cases: (a) the

new EOBT is prior to the assigned pushback time, in which case, the flight needs to wait

at the gate before pushing back (equivalent to an additional hold); or (b) the new EOBT is

after the assigned pushback time. In the latter case, the controller considers the flight to be

entering the system at max((𝑡 + 𝑇𝑝),EOBT), and reassigns the gate-hold for that flight. In

the above discussion, 𝑡 is the time at which the EOBT was updated and 𝑇𝑝 is the planning

horizon. Both cases penalize the airline, incentivizing airlines to report a more stable EOBT.

This is just one approach by which EOBT updates can be accommodated; we could also

devise alternative strategies.

7.3.2 Emergence of advanced air mobility

The aviation domain is currently undergoing a significant transformation with multiple tech-

nological advances, operational changes and an increasing focus on environmental sustain-

ability. Advanced air mobility (AAM) aims to transport people and cargo between places

previously under-served, both in urban and rural areas, using new cost-effective vehicle tech-

nologies incorporating various levels of electrification and autonomy. The AMM concept

includes promising ideas such as drone delivery and urban air mobility. The AAM revo-
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lution is regarded as the next disruption in the aviation industry, with some projections

that have estimated the AAM market value to reach $115 billion US dollars annually by

2035 [114]. The current AAM concepts call for using either existing ground infrastructure

(heliports on tops of building, parking lots, under-utilised piers, etc.) or developing purpose

built veriports. However, there is limited study on integrating AAM operations at or near

airports, and their impact on conventional air traffic operations [177]. Recent airline invest-

ments indicate that the airlines are interested in operating a new generation of small electric

vertical take-off and landing (VTOL) aircraft to move their passengers to and from their

hub airports in congested areas [5]. These trends indicate that one can expect higher traffic

demand from these unconventional aircraft at or near airports, requiring airport planners to

think ahead to devise strategies to improve integrated operations.

7.3.3 Data analytics to evaluate airport operations

Environmental impact assessment of airport operations

The trajectory-based fuel burn models proposed in Chapter 6 have the potential to provide

spatial distribution of fuel burn on the airport surface. Figure 7-1 shows heat maps of average

value of engine fan speed (N1%), fuel flow rate and the estimated acceleration indicator value,

obtained from FDR data for 69 A320 flights operating at Zurich Airport (LSZH). The engine

fan speed (N1%) is closely coupled to the engine thrust, and it is a good indicator of the

thrust level. We see a strong correlation between these quantities. These correlations could

be used to estimate heat maps of thrust level and fuel flow rates from the acceleration

indicator values that can be obtained from openly available surface surveillance data such

as ASDE-X.

Moreover, the spatial distribution of fuel burn is essential to accurately model the dis-

persion of emissions around the airport, which is of significant interest to the regulatory

agencies. The amount of emissions is generally modelled as a function of the fuel flow rate

and the engine thrust setting. Additionally, the acceleration events presented in our analysis

correspond to the breakaway thrust conditions, and serve as a measure for change in thrust
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(a) Average engine fan speed (N1%) (b) Heat-map of average fuel flow rate (kg/s)

(c) Average value of acceleration indicator

Figure 7-1: Heat maps obtained by averaging values over 69 A320 taxi-out flight trajectories
in LSZH.

setting.

Our trajectory-based fuel burn models can also aid in airport noise modeling. Airport

noise impacts residential areas that are close by, particularly important for airports located

near urban areas such as in Boston (BOS) and Chicago (MDW). The noise profile of an

aircraft on the surface depends on the engine thrust level, that is in turn related to the fuel

flow rate. Spatial distribution of fuel burn is directly related to the distribution of noise

sources on the airport surface, which can be used to analyze airport noise levels due to taxi

operations.
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Automatic speech recognition of ATC voice communication

Alternative language models: In our work, we used a standard word N-gram language model

for simplicity, and focused primarily on the acoustic model and the extraction of operational

information. However, prior studies have shown that more sophisticated language models

such as the class N-gram or neural-network-based language models can improve the accuracy

of ASR systems [136, 113]. Another potential benefit of the class N-gram model is that one

can efficiently incorporate out-of-vocabulary data, such as new airlines or navigational aids

that are specific to a particular region.

Semi-supervised learning: The availability of sufficient amounts of high-quality data is a

key factor in improving the performance of ASR models. Our experiments have shown that

the use of diverse datasets for model training results in more general models. However, there

are not many openly-available corpora for ATC communications, and manual transcription of

ATC conversations requires significant effort. A potential approach is to use semi-supervised

learning, namely, to utilize widely-available but untranscribed ATC audio data [1] to improve

the accuracy of the ASR model. The proposed approach would be as follows: (a) train a

preliminary model with the existing ATC speech corpora; (b) use this preliminary model

to transcribe utterances of ATC voice communications that does not have transcripts; (c)

evaluate the accuracy of each of the utterances using the uncertainty score3 as a metric;

and (d) re-train the ASR model by including the utterances that yielded a low uncertainty

score in the training data. Although semi-supervised learning for ATC applications has been

previously attempted [165], we believe that the use of the normalized uncertainty score to

select data for retraining models is a promising direction for further investigation.

7.3.4 Queuing network representations of other systems

In this thesis, we have presented several techniques to represent queuing networks, analyse

their performance and developed algorithms to reduce congestion in queuing networks, with

an emphasis on airport surface operations. In general, queuing networks can be used to

3Uncertainty score as defined in Section 6.3.4
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model congestion in various other domains. We first present a couple of other systems in air

transportation that could be represented using queuing networks, and this is followed by a

discussion on potential applications in other domains.

For other areas in air transportation

Traffic flow model for the National Airspace System (NAS): Congestion-related delays at an

airport can propagate to other airports due to the networked nature of the air transportation

system. The entire air traffic network can be modeled using our analytical queuing network

model, with the nodes representing individual airport queues and edges corresponding to the

traffic flows between the airports. Such queuing representation for the NAS has been used

earlier to predict flight delays, however, those models relied on queuing simulations [147, 186].

The dynamics of the queuing network being represented as a differential equation (as in

our analytical model) makes it amenable to develop robust control strategies to efficiently

manage traffic over the entire network, in addition to predicting flight delays. However, we

acknowledge that there are several challenges associated with modeling the complexities of

the NAS.

Passenger queuing in airport terminals: The primary focus in this thesis has been on

aircraft queuing on the airport surface, which is a part of the airside operations. However,

queuing is also quite evident in the landside operations, such as passenger queuing at the

check-in counters and security lanes. The wait time, that represents the quality of service,

often depends on staffing at these check points. For example, we did a preliminary analysis

using operational data (for the period Jan 11 - Feb 12, 2014) from Shenzhen Bao’an Interna-

tional airport (ZGSZ), the 5𝑡ℎ busiest airport in China in terms of passenger counts [46, 184].

Our analysis indicated significantly high median queue length of passengers in the security

lanes (about 30), as a result of inefficient use of the available security lanes. An interesting

problem of practical importance is to determine the optimal staffing policy accounting for

the time-varying passenger arrival rate at an airport. There has been prior work on char-

acterizing and modeling passenger queuing at airport terminals [150]. However, there has

been very limited work on staffing policy, particularly determining an optimal policy for the
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security lanes [43, 44].

Queuing networks in other domains

For over a century, queuing networks have been used to represent congestion in a wide

variety of systems such as communication networks, urban traffic flows, manufacturing and

health care systems [178, 181, 140, 131, 130]. These domains are well studied and there

is extensive literature on modeling such systems as queuing networks. Here, we would like

to highlight an interesting application of optimizing water reservoir networks, which is not

typically represented as queuing networks.

Optimal operation of water reservoir networks is critical with the increase in water-use

as well as more frequent occurrence of extreme weather events. There has been extensive

work on modelling and operation of reservoir networks [38, 141, 182]. The potential benefits

of multi-reservoir optimization has been demonstrated through case studies in various re-

gions such as Upper Rhone River basin in Switzerland [94] and Lake Como water system in

Italy [37]. Most often, the discharge rates from the reservoirs in the network are determined

using dynamic programming or other stochastic optimization techniques. However, the chal-

lenge has been to accommodate larger reservoir networks that lead to a higher dimensional

state space. Additionally, the focus has been on controlling reservoirs to maximize power

generation or water for irrigation. Here, we present a slightly different motivation that fo-

cuses on flood management. More importantly, we present an analysis that motivates the

use of queuing networks to represent water reservoir networks.

To motivate this particular problem, we consider an example of a recent flood event in

India, that was exacerbated by the mismanagement of reservoirs. In the first two weeks of

August 2019, the upstream regions of the Krishna river basin received heavy rainfall, leading

to flooding. This caused significant damage to property and loss of life, impacting millions

of people [173]. The management of reservoirs has largely been overlooked, which could have

reduced or even prevented flooding in the region. Figure 7-2(a) shows the storage levels of

the major reservoirs in the Krishna Basin as a percentage of their capacity, with the arrows

indicating river connectivity and direction of flows. We can see a sharp spike in the storage
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(a)

(b)

Figure 7-2: (a) Reservoir storage levels as a percentage of capacity (%) over the days leading
up to the floods [10], (b) Queuing network representation of the reservoir network.
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levels in the upstream reservoirs as a result of heavy rains during early August, and the

storage levels reach their capacity, leading to flooding. However, the downstream reservoirs

remain largely empty during this period. This clearly shows that proactive decisions were

not taken to release water upstream when the forecasts had indicated heavy rainfall. Instead,

a very myopic decision to release water downstream only after filling up the upstream dams

led to the disastrous flood situation.

From an operational view-point, there is an interesting trade-off for releasing water from

the reservoirs: a higher discharge might lead to insufficient storage at the end of monsoon for

the dry season, whereas, a lower discharge might lead to flooding when there is a period of

heavy downpour. However, one can consider the rainfall forecasts to decide on the optimal

release rate from the reservoirs.

We propose modelling the reservoir system using our queuing network model. Figure 7-

2(b) shows the queuing network representation for the Krishna river system considering the

major reservoirs. The queue length represents the storage value, the network topology is

based on the river connectivity, the service rate represents the reservoir discharge rate and

the arrival rate represents the effective exogenous inflow into the reservoir. The reservoir

management problem is to determine an optimal service rate (discharge policy) that is robust

to uncertainties in the arrival rate (rainfall inflows) such that the total queue length is

maximized at the end of the horizon (maximize storage), while ensuring system constraints

on queue buffer (storage capacity) and service rate (reservoir discharge).

We developed algorithms to control the arrivals into a queuing network for the departure

metering application. The reservoir management problem provides a good motivation to

develop algorithms to control the service rate of servers in a queuing network.
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Appendix A

Queuing model and departure metering

for Paris airport (CDG)

Overview of CDG operations

CDG is the 2nd busiest airport in Europe and the 11th busiest airport in the world in terms

of aircraft movements, with 1,300 flights/day and 66 million passengers in 2016 [91]. The

airport has four parallel runways, and operates under two broad runway configurations:

West-flow (26𝐿, 27𝑅|26𝑅, 27𝐿) and East-flow (09𝐿, 08𝑅|09𝑅, 08𝐿). Our work focuses on

the more frequently-used West-flow configuration (75% of operations in July-August 2017).

Figure A-1(a) shows the CDG layout along with a snapshot of the traffic in the West-

flow configuration. Departing flights are represented by black triangles and arriving flights

represented by white ones. The departure and arrival runways are indicated using blue and

red arrows, respectively. We note the queues of aircraft near the departure runways.

Comparison of CDG and CLT

Although CLT and CDG handle approximately the same number of aircraft movements,

their fleet mixes are significantly different, with CDG handling a larger percentage of ‘heavy’

aircraft (25%) compared to CLT (2%). CDG operates under instrument meteorological

191



conditions (IMC) capacity even in visual conditions, unlike CLT. Both airports have same

number of departure runways, but CLT has mixed operations. Consequently, the declared

departure capacities in good weather conditions are similar at both airports. Another differ-

entiating feature is the nature of demand. Fig. A-2 shows the number of pushbacks (per 15

mins), declared departure capacity and total runway queue length for a typical day at CDG

(Fig. 2-2 showed a similar plot for CLT). Departure demand is significantly banked at CLT

compared to CDG, resulting in periods of increased congestion and the formation of larger

queues. One can also notice that the demand at CDG rarely exceeds capacity since it is

slot-constrained, unlike CLT. The higher imbalance between demand and capacity at CLT

leads to higher taxi-out delays. The average taxi-out delay is 4.2 min at CDG and 9 min at

CLT. We would therefore expect lower benefits from departure metering at CDG compared

to CLT.

(a) Airport layout with a snapshot of traffic
movement.

(b) Queuing representation.

Figure A-1: CDG in West-flow runway configuration.
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Figure A-2: Number of pushbacks (per 15 min), declared departure capacity and queue
length for a typical good weather day at CDG (July 10th, 2017).
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Queuing network model of CDG

The runways are the primary bottleneck at CDG, leading to the formation of departure

runway queues. The taxi-out process is represented using a single queue, one for each

departure runway as shown in Fig. A-1(b). After pushback, an aircraft enters the departure

runway queue after spending an unimpeded gate-to-runway time. The dynamics for the

evolution of the departure runway queues are given by

𝑥̇𝑟𝑖 = −𝜇𝑟𝑖(𝑡)
𝐶𝑟𝑖(𝑡)𝑥𝑟𝑖(𝑡)

𝐶𝑟𝑖(𝑡)𝑥𝑟𝑖(𝑡) + 1
+ 𝑢𝑑𝑖

(𝑡− 𝜏𝑔𝑟𝑖), 𝑖 = 1, 2 (A.1)

where 𝑥𝑟𝑖 represents the queue length of the 𝑖th departure runway, and 𝜏𝑔𝑟𝑖 is the average

unimpeded travel time from the gate to the 𝑖𝑡ℎ departure runway, 𝑢𝑑𝑖 represents the pushback

rate to the 𝑖th departure runway. The pushback rate is computed as the number of aircraft

pushing back from the gate in a given time interval (5 min in this paper). The time delay

in the dynamics accounts for the travel time from the gate to the departure runway.

The queue length can be predicted by integrating the dynamics forward in time with

appropriate server parameters and pushback rate. The wait times of aircraft entering the

queue are determined using the predictions of queue length and time-varying mean service

rates. The taxi-out time is then determined as the sum of the unimpeded gate-to-runway

time plus the waiting time in the queue. The unimpeded times are computed as the 10th

percentile of the empirical taxi-time distribution obtained from data.

Predictive performance of the queuing model

Fig. A-3(a) shows a comparison of the predicted and observed departure runway queue

lengths at CDG for a typical day. The data corresponds to a time-based definition of queue

length, in which an aircraft is said to be in the runway queue if it has spent unimpeded

gate-to-runway time after pushback but is yet to take-off. Our analysis has found that this

time-based definition is consistent with the observed physical queue. The taxi-out times

for this particular day, averaged over 15-min windows, are shown in Figure A-3(b). These

193



figures show a good match between the predictions and observed values.
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Figure A-3: Comparison between model predictions and data for CDG.

Table A.1: Error statistics using analytical queue models.
Airport Number of Taxi-out time (min) % of flights

departures Mean ME MAE |error| < 5 min
CDG 14,100 13.3 -0.3 3.0 82.4

Table A.1 shows the aggregate error statistics of taxi-out time prediction for individual

flights, computed for an independent test set of 14,100 departures for CDG. Flights with

taxi-out times greater than 50 min were not included while computing the statistics. The

mean errors (ME) and mean absolute errors (MAE) are found to be small relative to the

mean taxi-out times. A good overlap can be seen between the predicted and actual taxi-out

time distributions (Fig. A-3(c)). The mean error is slightly negative. From the point of view

of departure metering, positive errors are not desirable since they correspond to an over-

prediction of taxi-out times, leading to overly-aggressive holds and unnecessary wheels-off

delays.

Comparison of departure metering algorithms

Table A.2 validates the simulations by comparing the taxi-out time predictions from the

simulator in the baseline case (without any metering) to actual data over multiple days.

The results indicate that the simulations are quite accurate, and that the errors are small

relative to the mean taxi-out times. The stochastic simulations are used to evaluate the
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benefits of departure metering for three days of operations (6AM-10PM local time). This

case corresponds to 1,934 departures at CDG set (baseline mean taxi-out time of 12.8 min).

Table A.3 shows the departure metering statistics for CDG from the three days of simulation.

One can see that the benefits are lower than CLT as expected because of lower levels of

congestion.

Table A.2: Error statistics for stochastic simulations of baseline.
Airport Number of Taxi-out time (min) % of flights

departures Mean ME MAE |error| < 5 min
CDG 14,202 13.3 -0.3 3.0 84.0

Table A.3: Comparison of simulations of departure metering approaches for CDG.
Mean statistics ATD-2

logic
Optimal
control

Robust
control

Taxi-out reduction (min) 0.52 0.39 0.53
Hold time (min) 0.61 0.52 0.65

Wheels-off delay (min) 0.09 0.12 0.12
Fraction of flights held 0.26 0.17 0.17

Hold time of flights held 2.36 3.09 3.96
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Appendix B

Multi-model smoother for aircraft

trajectories

A multi-model smoother is used to estimate the aircraft trajectory from the measurements

(FDR/ASDE-X data), primarily to determine the acceleration events. A model for the

aircraft dynamics is presented first, followed by the smoothing algorithm.

Aircraft dynamics

The aircraft trajectory on the surface during taxi operations is modeled using the following

dynamics [99]:

˙̄x = f̄(x̄) + 𝐵𝑤w, (B.1)

where x̄ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥(𝑡)

𝑦(𝑡)

𝑉 (𝑡)

𝜃(𝑡)

⎤⎥⎥⎥⎥⎥⎥⎦ ; f̄(x̄) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑉 sin(𝜃(𝑡))

𝑉 cos(𝜃(𝑡))

𝑎(𝑡)

𝜔(𝑡)

⎤⎥⎥⎥⎥⎥⎥⎦ ; 𝐵𝑤 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ; w =

⎡⎣𝑤𝑎

𝑤𝜃

⎤⎦ (B.2)

Here, (𝑥, 𝑦) is the aircraft position on the ground with respect to a fixed origin, 𝑉 is the

speed, 𝜃 is the heading angle, 𝑎 is the acceleration, 𝜔 is the turn rate and w ∼ 𝒩 (0,𝑊 )

is the process noise. The process noise accounts for the uncertainty in the acceleration and
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turn rate. Here, 𝑤𝑎 and 𝑤𝜃 are assumed to be uncorrelated and independent.

The trajectory measurements (either from FDR or ASDE-X) provide full information

about the state vector, x̄, that needs to be estimated. Note that the trajectory data contains

latitude and longitude coordinates, which are converted into local (𝑥, 𝑦) coordinates. The

measurement vector (z̄) is given by,

z̄ = x̄ + v̄ (B.3)

Here, v̄ ∼ 𝒩 (0, 𝑅) is the additive noise, assumed to be independent and uncorrelated with

the process noise.

Smoothing algorithm

The state estimation is done using a fixed interval smoother since we need to estimate the

state at a particular time instant given the measurements for the entire trajectory [34]. For

estimating the state variables, the aircraft dynamics is approximated by a hybrid system of

the following form:

˙̄x = f̄ 𝑖(x̄) + 𝐵𝑤w; f̄ 𝑖(x̄) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑉 sin(𝜃(𝑡))

𝑉 cos(𝜃(𝑡))

𝑎𝑖

𝜔𝑖

⎤⎥⎥⎥⎥⎥⎥⎦ ; 𝑖 ∈ 1, 2..𝑀 (B.4)

The model dynamics are specified by 𝑀 modes, each correspond to a set specified by the

acceleration and turn rate (𝑎𝑖, 𝜔𝑖). The hybrid state vector consists of the original state vari-

ables (x̄) as well as the mode of operation. Multi-model dynamics provides better tracking

accuracy compared to a single model dynamics. Another advantage of using multi-model

dynamics is that we can identify the ‘most likely mode’ of the system at any instant. Mode

identification would allow us to correlate variations in engine fuel flow rate to specific modes

or discrete events (such as acceleration events).

The estimation is performed on the discretized version of this system with time dis-
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cretization equal to the sampling rate of the measurements (1Hz). The smoothing algorithm

is based on combining estimates produced by an Interacting Multiple Model (IMM) filter

with a backward-time recursion [116]. The algorithm gives out smoothed estimates of the

state variables (trajectory) as well as the probability of the system being in a particular mode.

The ‘most likely mode’ of the system at any time instant is determined from the maximum a

posteriori probability. The smoothing algorithm consists of two parts: a forward pass using

an Interacting Multiple Model (IMM) filter and a Rauch-Tung-Striebel (RTS) backward re-

cursion [116]. The algorithm is briefly discussed below and more details can be found in the

original paper [116]. The IMM filter is described first, followed by the backward recursion

step.

Forward pass using an IMM filter

The IMM algorithm is used for tracking states in systems that have multiple modes of

operation [30]. The main advantage of the IMM algorithm is that it provides good tracking

accuracy with a lower computational complexity. We assume the following: (a) the initial

state and mode distributions are known, (b) the mode transition is Markovian and transition

probabilities (𝜋𝑖𝑗) are known.

Few notations before we proceed further: 𝑥𝑘 represents the state vector x̄ at time 𝑘.

Similarly, 𝑚𝑖
𝑘 refers to the system being in the 𝑖𝑡ℎ mode at 𝑘. All the measurements until

and including time 𝑘 are represented by 𝑧1:𝑘. The probability (𝑃 (𝑚𝑖
𝑘|𝑧1:𝑘)) of being in the 𝑖𝑡ℎ

mode at time 𝑘 conditioned on all the measurements until 𝑘 is denoted by 𝜇𝑖
𝑘|𝑘. The filtering

algorithm proceeds forward in time. The steps at each iteration are as follows:

1. First, the posterior filtering probability density of the state at 𝑘 conditioned on the

mode at 𝑘 + 1, 𝑝(𝑥𝑘|𝑚𝑖
𝑘+1, 𝑧1:𝑘), is computed using filtered state and mode estimates

available until 𝑘. Here, 𝑝(𝑥𝑘|𝑚𝑖
𝑘, 𝑧1:𝑘) ≈ 𝒩 (𝑥𝑘; 𝑥̂𝑖

𝑘|𝑘, 𝑃
𝑖
𝑘|𝑘) and 𝑝(𝑥𝑘|𝑚𝑖

𝑘+1, 𝑧1:𝑘) ≈ 𝒩 (𝑥𝑘; 𝑥̄𝑖
𝑘|𝑘, 𝑃

𝑖
𝑘|𝑘).
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The first two moments of 𝑝(𝑥𝑘|𝑚𝑖
𝑘+1, 𝑧1:𝑘) are obtained using,

𝜇̄𝑖
𝑘+1|𝑘 =

∑︁
𝑗∈𝑀

𝜋𝑖𝑗𝜇
𝑖
𝑘|𝑘 𝑖 = 1, 2...𝑀 (B.5)

𝑥̄𝑖
𝑘|𝑘 =

∑︁
𝑗∈𝑀

𝜋𝑖𝑗𝜇
𝑗
𝑘|𝑘𝑥̂

𝑗
𝑘|𝑘/𝜇̄

𝑖
𝑘+1|𝑘 (B.6)

𝑃 𝑖
𝑘|𝑘 =

∑︁
𝑗∈𝑀

𝜋𝑖𝑗𝜇
𝑗
𝑘|𝑘

[︁
𝑃 𝑗
𝑘|𝑘 + [𝑥̂𝑗

𝑘|𝑘 − 𝑥̂𝑘|𝑘][.]𝑇
]︁
/𝜇̄𝑖

𝑘+1|𝑘 (B.7)

2. The second step involves using Unscented Kalman Filter (UKF) to obtain filtered

estimates for all the 𝑀 modes [180]. A prior estimate is obtained by propagating the

dynamics and then a posterior estimate is found by using measurements,

𝑝(𝑥𝑘|𝑚𝑖
𝑘+1, 𝑧1:𝑘)

propagate−−−−−→ 𝑝(𝑥𝑘+1|𝑚𝑖
𝑘+1, 𝑧1:𝑘) (B.8)

𝑝(𝑥𝑘+1|𝑚𝑖
𝑘+1, 𝑧1:𝑘)

measurements−−−−−−−−→ 𝑝(𝑥𝑘+1|𝑚𝑖
𝑘+1, 𝑧1:𝑘+1) (B.9)

3. The mode probabilities are then updated from the innovations of the 𝑀 Kalman filters

using,

𝜇𝑖
𝑘+1|𝑘+1 = 𝑐𝜇̄𝑖

𝑘+1|𝑘||𝑄𝑖
𝑘+1||−1/2 exp𝑒𝑖𝑘+1||𝑄

𝑖
𝑘+1||

−1𝑒𝑖𝑘+1 𝑖 = 1, 2...𝑀 (B.10)

here, 𝑐 is a normalizing constant, 𝑒𝑖𝑘+1 = 𝑧𝑘+1 − 𝑥̂𝑖
𝑘+1|𝑘+1 and 𝑄𝑖

𝑘+1 = 𝑃 𝑖
𝑘+1|𝑘+1 + 𝑅

4. Finally, the filtered estimate is a weighted sum of mode conditioned state estimates,

with the weights being equal to the mode probabilities. The first two moments of the

estimate are given by,

𝑥̂𝑘+1|𝑘+1 =
∑︁
𝑗∈𝑀

𝜇𝑗
𝑘+1|𝑘+1𝑥̂

𝑗
𝑘+1|𝑘+1 (B.11)

𝑃𝑘+1|𝑘+1 =
∑︁
𝑗∈𝑀

𝜇𝑗
𝑘+1|𝑘+1

[︁
𝑃 𝑗
𝑘+1|𝑘+1 + [𝑥̂𝑗

𝑘+1|𝑘+1 − 𝑥̂𝑘+1|𝑘+1][.]
𝑇
]︁

(B.12)

200



Backward recursion using RTS algorithm

The outputs from the filter are used in the backward recursion step to obtain smoothed

estimates. The steps for the backward recursion algorithm starting from the final time are

as follows:

1. The smoothed mixing density, which is 𝑝(𝑥𝑘|𝑚𝑖
𝑘+1, 𝑧1:𝑇 ), at time step 𝑘 is determined

from the smoothed state density at 𝑘+1 i.e. 𝑝(𝑥𝑘+1|𝑚𝑖
𝑘+1, 𝑧1:𝑇 ). Here, 𝑝(𝑥𝑘|𝑚𝑖

𝑘+1, 𝑧1:𝑇 ) ≈

𝑁(𝑥̄𝑖
𝑘|𝑇 , 𝑃

𝑖
𝑘|𝑇 ) and 𝑝(𝑥𝑘+1|𝑚𝑖

𝑘+1, 𝑧1:𝑇 ) ≈ 𝑁(𝑥̂𝑖
𝑘+1|𝑇 , 𝑃

𝑖
𝑘+1|𝑇 ). This is obtained using the

standard Rauch-Tung-Striebel (RTS) formulae for smoothing [53],

𝑥̄𝑖
𝑘|𝑇 = 𝑥̄𝑖

𝑘|𝑘 + 𝐺𝑖
𝑘(𝑥̂𝑖

𝑘+1|𝑇 − 𝑥̂𝑖
𝑘+1|𝑘) (B.13)

𝑃 𝑖
𝑘|𝑇 = 𝑃 𝑖

𝑘|𝑘 + 𝐺𝑖
𝑘(𝑃 𝑖

𝑘+1|𝑇 − 𝑃 𝑖
𝑘+1|𝑘)𝐺𝑖

𝑘

𝑇 (B.14)

𝐺𝑖
𝑘 = 𝐶𝑖

𝑘,𝑘+1(𝑃
𝑖
𝑘+1|𝑘)−1 (B.15)

here, 𝐶𝑖
𝑘,𝑘+1 =

∫︁
(𝑥𝑘 − 𝑥̄𝑖

𝑘|𝑘)(𝑓 𝑖
𝑘(𝑥𝑘) − 𝑥̂𝑖

𝑘+1|𝑘)𝑇𝑁(𝑥𝑘; 𝑥̄𝑖
𝑘|𝑘, 𝑃

𝑖
𝑘|𝑘)𝑑𝑥𝑘 (B.16)

The above integral to determine 𝐶𝑖
𝑘,𝑘+1 is evaluated by using unscented transform [180].

2. The mode conditioned smoothing density is expressed as the sum of distributions

conditioned on a sequence of modes over two consecutive sampling periods,

𝑝(𝑥𝑘|𝑚𝑗
𝑘, 𝑧1:𝑇 ) =

∑︁
𝑖∈𝑀

𝑝(𝑥𝑘|𝑚𝑗
𝑘,𝑚

𝑖
𝑘+1, 𝑧1:𝑇 )𝑃 (𝑚𝑖

𝑘+1|𝑚
𝑗
𝑘, 𝑧1:𝑇 ) (B.17)

Here, 𝑝(𝑥𝑘|𝑚𝑗
𝑘,𝑚

𝑖
𝑘+1, 𝑧1:𝑇 ) (≈ 𝒩 (𝑥𝑘; 𝑥̂𝑗𝑖

𝑘|𝑇 , 𝑃
𝑗𝑖
𝑘|𝑇 )) is obtained using estimates from the

IMM filter and the RTS recursion. The first two moments of the distribution are as

follows:

𝑥̂𝑗𝑖
𝑘|𝑇 = 𝑃 𝑗𝑖

𝑘|𝑇 [(𝑃 𝑖
𝑘|𝑇 )−1𝑥̄𝑖

𝑘|𝑇 − (𝑃 𝑖
𝑘|𝑘)−1𝑥̄𝑖

𝑘|𝑘 + (𝑃 𝑗
𝑘|𝑘)−1𝑥̂𝑗

𝑘|𝑘] (B.18)

𝑃 𝑗𝑖
𝑘|𝑇 = [(𝑃 𝑖

𝑘|𝑇 )−1 − (𝑃 𝑖
𝑘|𝑘)−1 + (𝑃 𝑗

𝑘|𝑘)−1] (B.19)
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The smoothed mixing probabilities present in the Eq. B.17 is obtained using,

𝜇̄
𝑖|𝑗
𝑘+1|𝑇 = 𝑃 (𝑚𝑖

𝑘+1|𝑚
𝑗
𝑘, 𝑧1:𝑇 ) (B.20)

=
𝑃 (𝑚𝑖

𝑘+1|𝑚
𝑗
𝑘)𝑝(𝑧𝑘+1:𝑇 |𝑚𝑗

𝑘,𝑚
𝑖
𝑘+1, 𝑧1:𝑘)

𝑝(𝑧𝑘+1:𝑇 |𝑚𝑗
𝑘, 𝑧1:𝑘)

=
𝜋𝑗𝑖Λ𝑗𝑖

𝑑𝑗
(B.21)

The likelihood (Λ𝑗𝑖) is approximated using a Gaussian distribution of the following

form,

Λ𝑗𝑖 = 𝑝(𝑧𝑘+1:𝑇 |𝑚𝑗
𝑘,𝑚

𝑖
𝑘+1, 𝑧1:𝑘) ≈ 𝒩 (𝛿𝑗𝑖𝑘 ; 0,Σ𝑗𝑖

𝑘 ) (B.22)

where, 𝛿𝑗𝑖𝑘 = 𝑥̂𝑏,𝑖
𝑘|𝑘+1 − 𝑥̂𝑗

𝑘|𝑘; Σ𝑗𝑖
𝑘 = 𝑃 𝑏,𝑖

𝑘|𝑘+1 + 𝑃 𝑗
𝑘|𝑘 (B.23)

The normalizing constant 𝑑𝑗 is given by,

𝑑𝑗 = 𝑝(𝑧𝑘+1:𝑇 |𝑚𝑗
𝑘, 𝑧1:𝑘) =

∑︁
𝑖∈ℳ

𝜋𝑗𝑖Λ𝑗𝑖 (B.24)

The smoothed mode conditioned density is then obtained using,

𝑝(𝑥𝑘|𝑚𝑗
𝑘, 𝑧1:𝑇 ) ≈ 𝒩 (𝑥𝑘; 𝑥̂𝑗

𝑘|𝑇 , 𝑃
𝑗
𝑘|𝑇 ) (B.25)

𝑥̂𝑗
𝑘|𝑇 =

∑︁
𝑖∈ℳ

𝜇̄
𝑖|𝑗
𝑘+1|𝑇 𝑥̂

𝑗𝑖
𝑘|𝑇 (B.26)

𝑃 𝑗
𝑘|𝑇 =

∑︁
𝑖∈ℳ

𝜇̄
𝑖|𝑗
𝑘+1|𝑇 [𝑃 𝑗𝑖

𝑘|𝑇 + (𝑥̂𝑗𝑖
𝑘|𝑇 − 𝑥̂𝑗

𝑘|𝑇 )(𝑥̂𝑗𝑖
𝑘|𝑇 − 𝑥̂𝑗

𝑘|𝑇 )𝑇 ] (B.27)

3. Finally, the output of the smoother are the state estimates (𝑝(𝑥𝑘|𝑧1:𝑇 )) and the mode

probabilities (𝑃 (𝑚𝑗
𝑘|𝑧1:𝑇 )). The mode probability is given by,

𝜇𝑗
𝑘|𝑇 = 𝑃 (𝑚𝑗

𝑘|𝑧1:𝑇 ) (B.28)

=
𝑝(𝑧𝑘+1:𝑇 |𝑚𝑗

𝑘, 𝑧1:𝑘)𝑃 (𝑚𝑗
𝑘|𝑧1:𝑘)∑︀

𝑗∈ℳ 𝑝(𝑧𝑘+1:𝑇 |𝑚𝑗
𝑘, 𝑧1:𝑘)𝑃 (𝑚𝑗

𝑘|𝑧1:𝑘)
=

𝑑𝑗𝜇
𝑗
𝑘|𝑘∑︀

𝑗∈ℳ 𝑑𝑗𝜇
𝑗
𝑘|𝑘

(B.29)
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The state estimates are found using,

𝑝(𝑥𝑘|𝑧1:𝑇 ) ≈ 𝒩 (𝑥𝑘; 𝑥̂𝑘|𝑇 , 𝑃𝑘|𝑇 ) (B.30)

𝑥̂𝑘|𝑇 =
∑︁
𝑗∈ℳ

𝜇𝑗
𝑘|𝑇 𝑥̂

𝑗
𝑘|𝑇 (B.31)

𝑃𝑘|𝑇 =
∑︁
𝑗∈ℳ

𝜇𝑗
𝑘|𝑇 [𝑃 𝑗

𝑘|𝑇 + (𝑥̂𝑗
𝑘|𝑇 − 𝑥̂𝑘|𝑇 )(𝑥̂𝑗

𝑘|𝑇 − 𝑥̂𝑘|𝑇 )𝑇 ] (B.32)

The mode detection is based on maximum a posteriori probability. The most likely

mode (𝑗̂𝑘) at time step 𝑘 is computed as follows,

𝑗̂𝑘 = arg max
𝑗∈ℳ

𝜇𝑗
𝑘|𝑇 (B.33)

Parameter values

For the analysis, we consider the process noise and measurement noise covariance matrix

to be a diagonal with the following components for FDR data: 𝑊11 = 0.04 𝑚2𝑠−4, 𝑊22 =

36 𝑑𝑒𝑔2𝑠−2, 𝑅11 = 𝑅22 = 25 𝑚2, 𝑅33 = 0.048 𝑚2𝑠−2, 𝑅44 = 1 𝑑𝑒𝑔2. We consider the same

process noise, but consider a slightly different measurement noise for the ASDE-X data:

𝑅11 = 𝑅22 = 16 𝑚2, 𝑅33 = 0.0625 𝑚2𝑠−2, 𝑅44 = 16 𝑑𝑒𝑔2. The mode transition probability

matrix for the smoothing algorithm is chosen such that there is a higher probability for

remaining in the same mode and we consider the following values: 𝜋𝑖𝑖 = 0.5, 𝜋𝑖𝑗,𝑖̸=𝑗 = 0.25.

Optimal acceleration threshold

Analysis for FDR data

We first define and present a few event detection statistics that enable us to pick an optimal

acceleration threshold considering the entire FDR dataset. The total taxi-out time consider-

ing all flights in the dataset is 2,406 min, containing 411 fuel burn events. The acceleration

events are determined using the trajectories and they are mapped to the fuel burn events.

203



An acceleration event is said to be mapped to a fuel burn event if the difference between

the start time of the acceleration event and the fuel burn event is less than 30 s. A 30 s

duration was chosen to account for the time lag between the fuel flow rate spike and acceler-

ation. The mapping between acceleration events and the fuel burn events is quantified using

missed detection rate and false alarm rate. Missed detection rate is defined as the fraction

of unmapped fuel burn events to the total fuel burn events. This represents the probability

of a fuel burn event not corresponding to an acceleration event. False alarm rate is defined

as the fraction of the unmapped acceleration events to the total acceleration events. This

represents the probability of an acceleration event not corresponding to a fuel burn event.

For the fuel burn events to correlate well with the acceleration events, we need to have low

values of missed detection rate and false alarm rate.

The impact of acceleration threshold on event detection is presented in Table B.1. For

low threshold values, such as 0.25 𝑚𝑠−2, the number of acceleration events detected is sig-

nificantly higher than the number fuel burn events (spikes). Most of the fuel burn spikes

can be mapped to one of the acceleration events but many of the acceleration events do not

correspond to a fuel burn spike. This leads to a low missed detection rate and a high false

alarm rate. For higher acceleration thresholds, fewer instances are classified as an accelera-

tion event. This results in a drop in false alarm rate, but the number of unmapped fuel burn

events increases, leading to an increase in the missed detection rate. Fig. B-1(a) shows the

trade-off between missed detection rate and false alarm rate which is obtained with different

acceleration thresholds. The missed detection rate increases as the false alarm rate decreases.

A threshold of 0.4 𝑚𝑠−2 can be considered as the optimal value since both missed detection

and false alarm rates are equally low. Fig. B-1(b) shows the fraction of the total duration of

acceleration that is mapped to fuel burn events (𝐹𝑎) and also the fraction of total duration of

fuel burn spikes that is mapped to acceleration events (𝐹𝑏). For low thresholds, only a small

fraction of the acceleration events correspond to fuel burn events, resulting in a low 𝐹𝑎. On

the other hand, most of the fuel burn events are mapped to acceleration events, yielding a

high 𝐹𝑏. As the threshold is increased, the fraction of the total acceleration duration that is

mapped increases whereas the fraction of the total fuel burn spike duration that is mapped
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Figure B-1: Analysis with different acceleration thresholds

decreases. At the optimal threshold of 0.4 𝑚𝑠−2, 82% of the total duration of acceleration

is mapped to fuel burn events and 78% of the total fuel burn spike duration is mapped to

the acceleration events.

Table B.1: Event detection statistics for different acceleration thresholds (𝑎𝑡) using FDR
data

Thres.
(𝑎𝑡,𝑚𝑠−2)

Acc.
events

Acc.
events

mapped
to fuel
burn
events

Unmapped
accelera-

tion
events

Unmapped
fuel burn
events

Missed
detec-
tion
rate

False
alarm
rate

Fraction
of accel-
eration

duration
mapped

Fraction
of fuel
spike

duration
mapped

0.25 1507 366 1141 45 0.11 0.76 0.37 0.94
0.30 934 341 593 70 0.17 0.63 0.52 0.90
0.35 580 312 268 99 0.24 0.46 0.70 0.86
0.40 394 281 113 130 0.32 0.29 0.82 0.78
0.45 280 218 62 193 0.47 0.22 0.87 0.64
0.50 187 164 23 247 0.60 0.12 0.92 0.49

Analysis for ASDE-X data

We present the ASDE-X analysis using the data from 104 A330 flights departing from the US

airports. The total taxi-out time for this subset of flights is 1,226 min, containing 216 fuel

burn events and 200 acceleration events. The fuel burn and acceleration events mentioned
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above are obtained from the FDR data for these flights using the optimal acceleration thresh-

old. The acceleration events detected using the ASDE-X data are then mapped with the

acceleration events from the FDR data. Table B.2 shows the acceleration detection statistics

with different acceleration thresholds for ASDE-X data. The number of acceleration events

is high for low thresholds and decreases as the acceleration threshold is increased, similar

to the detection statistics that we had seen earlier with the FDR data. As the threshold is

increased, the number of unmapped acceleration events detected using the ASDE-X data de-

creases, while the number of unmapped acceleration events detected with the FDR increases.

Therefore, the missed detection rate, defined here as the fraction of unmapped acceleration

events obtained with FDR data, increases with increase in acceleration threshold. On the

other hand, the false alarm rate, defined here as the fraction of the unmapped acceleration

events obtained with ASDE-X, reduces with increase in threshold. We notice that beyond

a threshold of 0.5 𝑚𝑠−2, the drop in false alarm rate is small compared to the increase in

missed detection rate. This difference can also be observed in the fraction of acceleration

duration mapped using the FDR and ASDE-X. Hence we consider 0.5 𝑚𝑠−2 as the opti-

mal acceleration threshold for ASDE-X. The last column in the table shows the fraction of

the duration of acceleration in ASDE-X to that in FDR. We notice that for a threshold of

0.5 𝑚𝑠−2, the fraction is close to one. The fraction being close to one is desirable because

the fuel burn model relies on the duration of acceleration as one of the predictors, so we need

the duration of acceleration picked up with the ASDE-X data to be same as that obtained

from the FDR data. Given that ASDE-X data is more noisy, one would have expected the

optimal acceleration threshold for the ASDE-X to be slightly higher than that for FDR to

reduce the false alarm rates.

Fig. B-2 shows a comparison of the ASDE-X and FDR estimates obtained from the

smoother using the optimal acceleration threshold for a sample trajectory. We see that

the speed profile from the ASDE-X estimate closely matches the FDR estimate. For this

particular trajectory, three acceleration events are detected using the FDR data, out of

which, only two of them are captured by the ASDE-X estimate. The missed detection rate

and false alarm rate statistics shown earlier can be used to quantify these errors over the all
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Figure B-2: Comparison between FDR and ASDE-X estimates for a sample trajectory.

the flights in our dataset.

Table B.2: Event detection statistics for different acceleration thresholds (𝑎𝑡) using ASDE-X
data

Thres.
(𝑚𝑠−2)

Acc.
events
from

ASDE-X

Mapped
acc.

events

Unmapped
acc.

events in
FDR

Unmapped
acc.

events in
ASDE-X

Missed
detec-
tion
rate

False
alarm
rate

Fraction
of acc.

duration
mapped

in
ASDE-X

Fraction
of acc.

duration
mapped
in FDR

Acc.
duration
in ASDE-
X/FDR

0.25 1294 194 6 1100 0.03 0.85 0.96 0.27 0.18
0.30 1029 195 5 834 0.03 0.81 0.98 0.34 0.25
0.35 757 191 9 566 0.05 0.75 0.98 0.42 0.37
0.40 538 187 13 351 0.07 0.65 0.97 0.51 0.53
0.45 376 170 30 206 0.15 0.55 0.91 0.57 0.76
0.50 289 159 41 130 0.21 0.45 0.89 0.62 1.05
0.55 216 132 68 84 0.34 0.39 0.78 0.63 1.46
0.60 161 98 102 63 0.51 0.39 0.58 0.60 1.98
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Appendix C

Automatic speech recognition model

The automatic speech recognition model is based on Deep Speech [80], an end-to-end speech

recognition model. We use Mozilla’s implementation of Deep Speech for our analysis [132].

We briefly describe the model in this section; more detailed information can be found in the

original papers [80, 132].

Model overview

Figure C-1 illustrates the model architecture of the speech recognition system. The main

components are the feature extraction module, acoustic model, language model, and de-

coding module. The feature extraction module takes the ATC audio signal as input, and

outputs coefficients associated with its frequency spectrum as follows: the entire time series

of the audio signal is divided into smaller (32 ms) time-windows with a 20 ms overlap; each

time-window is associated with a feature vector that corresponds to its Mel Frequency Cep-

stral Coefficients (MFCCs) [80]. The MFCCs of each time-window constitute the feature

vector that serves as the input to the acoustic model. The acoustic model is a recurrent

neural network that is trained to output a sequence of character probabilities based on the

sequence of input feature vectors. The characters here correspond to letters of the English

alphabet, apostrophe, space, blank, and additional identifiers corresponding to foreign words

or unintelligible words. The language model outputs the probability of a sequence of char-
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acters based on the training text data, independent of the audio signal. In the decoding

module, the output of the acoustic model is integrated with that of the language model to

determine the transcribed text.

Figure C-1: Model architecture for the ASR system.

Acoustic model

The acoustic model is a recurrent neural network composed of five hidden layers, the first

three of which are non-recurrent. The first layer takes the MFCC input for a particular

time-window as well as a few (9, in our case) context frames on either side of the window.

A clipped rectified-linear unit (ReLU) activation function is used for all the layers, except

the last one. The model architecture of Mozilla’s implementation differs slightly from the

original Deep Speech paper [132, 80]. Here, the fourth layer is a feed forward recurrent layer

instead of a bidirectional recurrent layer, to reduce computational time during inference.

The last layer is a non-recurrent output layer that yields the character probabilities based

on a Softmax function. A Connectionist Temporal Classification (CTC) loss function is

used to compute the prediction error during training [98]. We use an adaptive learning

rate (Adam method) for updating the model parameters through stochastic gradient descent

during training, and a dropout rate of 5% for regularization.
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Language model

Training the acoustic model for the ATC domain to produce accurate character level tran-

scription is challenging due to the limited availability of transcribed ATC audio. Further-

more, the neural network can output phonetically similar word renderings which can be in-

correct (e.g., "bostin" instead of "boston"). These issues can be addressed using a language

model that is tailored to the ATC domain. The language model is a probability distribution

over a sequence of words, which is used in the decoding stage. We choose an N-gram language

model because it can be trained using existing libraries (KenLM [83]) and yields good per-

formance. In this language model, the probability of the 𝑘𝑡ℎ word is assumed to depend only

on the 𝑁 − 1 preceding words, i.e., 𝑃 (𝑤𝑘|𝑤𝑘−1, 𝑤𝑘−2, .., 𝑤1) = 𝑃 (𝑤𝑘|𝑤𝑘−1, 𝑤𝑘−2, .., 𝑤𝑘−(𝑁−1)).

Consequently, the probability of a sequence of words, 𝑃 (𝑤1, 𝑤2, ...𝑤𝑚), can be expressed as

a product of conditional probabilities.

The conditional probabilities required for the model are determined from the ATC audio

transcripts in the training data. Although a higher value of 𝑁 will lead to better predictions,

there may not be sufficient data to obtain consistent statistics for a larger 𝑁 . An optimal

value of 𝑁 is determined using a parametric analysis to yield a lower word error rate on the

validation set.

Decoding step

The decoding step determines the most probable sequence of characters given the output

probabilities from the acoustic model and language model. Let 𝑃𝐴(c|x) represent the prob-

ability of a sequence of characters, c = {𝑐1, 𝑐2, 𝑐3..}, obtained from the acoustic model for a

given input audio (x). Similarly, let 𝑃𝐿𝑀(c) represent the probability of a sequence of char-

acters obtained from the language model. The objective of the decoding step is to obtain a

sequence of characters that maximizes the confidence score (𝑄(c)):

𝑄(c) = 𝑃𝐴(c|x) + 𝛼𝑃𝐿𝑀(c) + 𝛽 word count(c). (C.1)
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Here, 𝛼 and 𝛽 are weights to balance the influence of the acoustic model, the language

model, and the word count of the utterance. The last term is used because shorter sentences

inherently have a higher probability in the N-gram language model. The output sequence

of characters that maximizes the confidence score, 𝑄(), is determined using a beam search

algorithm [80]. Optimal values of 𝛼, 𝛽 and beam width are determined using a parametric

analysis such that the average WER over a validation set is minimized.
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