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Abstract
The opioid epidemic remains a significant public health challenge in the US. A po-
tential catalyst for reducing the incidence of opioid-related harm is the development
and operationalization of risk stratification models. Prior work has focused on the
statistical performance of such models without considering operational implications.
Predicting the most severe outcome (fatal overdose) is a particular challenge due to
imbalanced datasets. We partner with Staten Island Performing Provider System to
access claims data and electronic health records for the patient population on Staten
Island. For this population, we develop a single machine learning model for predicting
a full range of adverse opioid-related events, and achieve an area under the receiver
operating characteristic curve of 0.95, 0.87, 0.83 for the outcomes of any adverse
opioid event, opioid overdose, and fatal opioid overdose, respectively, even in the ab-
sence of training data on fatal overdoses. Subsequently, we conduct a rolling horizon
analysis to evaluate the capacity requirements of intervention policies leveraging the
model. We find that the model can be used to identify a small intervention cohort
(1% of the highest-risk patients) which includes the majority (69%) of adverse opioid
events, allowing for targeted interventions with limited intervention capacity. Finally,
we quantify the tradeoff between predictive performance and concerns that arise in
implementation, such as interpretability, delay in data feeds, and prediction window
length. Our results suggest that predictive performance does not need to be sacrificed
to satisfy implementation concerns.
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Chapter 1

Introduction

Opioid overdoses and opioid use disorder are significant public health challenges in the

United States: in 2018, 47,600 drug overdose deaths involved an opioid (Wilson et al.,

2020), an estimated 2 million people had an opioid use disorder, and over 10 million

people misused opioids (Substance Abuse and Mental Health Services Administra-

tion, 2019). Battling an epidemic of such magnitude requires persistent, coordinated,

and multi-pronged efforts, ranging from prevention to prophylaxis to treatment. A

potential catalyst for reducing the incidence of opioid-related harm is the effective

risk stratification of individual patients, as identification of high-risk patients is the

foundation for successful preventive actions, such as targeted interventions.1 In this

thesis, we investigate how to build and operationalize predictive models for opioid

risk stratification.

Imagine a healthcare organization that provides care to a patient population sus-

ceptible to opioid-related harm. The organization aspires to build a risk stratification

model that would identify patients at high risk of adverse events. The model, which

could either be a black-box machine learning model or a more interpretable one,

would assign personalized risk scores by predicting the risk of individuals for some

adverse outcome such as abuse, poisoning, or even death due to opioids. To make

accurate predictions, the model would use available electronic health record (EHR)

1Indeed, multiple works suggest that early detection of opioid abuse can help prevent addiction
(Fareed et al., 2011; Fishman et al., 2000).
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and prescription data, some of which might not be up-to-date, depending on data

feed access. The organization plans to employ some number of social workers, coun-

sellors, or psychologists, who could provide additional preventive care to patients at

risk. Operationally, the organization would then periodically apply the model to iden-

tify the highest risk patients and subsequently deploy these scarce and costly human

resources to provide targeted interventions.

The above is a prototypical and representative application of opioid risk strat-

ification models that we have envisioned together with our partners from Staten

Island Performing Provider System (SI PPS), an alliance of clinical and social service

providers on Staten Island in New York City. By outlining the operationalization of

such a system, we have identified five statistical and operational challenges, detailed

below, believed by SI PPS to be the most important ones to address prior to imple-

mentation. Each challenge is likely to be common across any practical application of

opioid risk prediction models. Our research strives to address these challenges and

our aspiration is that this work will facilitate widespread adoption of risk stratifica-

tion models that could help curb the opioid epidemic. While prior work has proposed

machine learning models to predict a patient’s risk of adverse opioid outcomes, it has

been mostly statistical in nature. To our knowledge, no rigorous investigation of the

implementation challenges, discussed below, has been conducted.

The first challenge (§2.4) is of a statistical nature and relates to using the appro-

priate outcome variable. In particular, depending on the use case, the models could

be calibrated to predict less severe outcomes, such as a diagnosis of opioid abuse, or

more severe outcomes, such as opioid-related poisoning or death. The latter outcomes

remain rare enough that they result in highly imbalanced datasets, making it a a chal-

lenge to build an effective prediction model. Indeed, as we discuss in our literature

review (§1.3), only a few prior studies have presented models built to predict fatal

overdoses (often using standard oversampling techniques), with modest success.

The second challenge (§3.1) relates to the fundamental operational problem of

capacity planning. Given an accurate model to stratify patients into risk categories,

what are the provider organization’s resource requirements as it plans to selectively
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intervene to mitigate a targeted percentage of adverse outcomes? For example, how

many patients would need to be preemptively enrolled in an intervention program

to help avert 50% of opioid overdoses? This is an important operational question,

since a larger intervention cohort would clearly increase the number of future ad-

verse outcomes identified correctly, but would also increase the required resources for

intervention, and this relationship may show a pattern of diminishing returns.

The other three challenges relate to design implementation choices involving trade-

offs that could compromise prediction accuracy. In particular, the third challenge

deals with interpretability of risk stratification models, which is often valued by im-

plementing organizations (§3.2.1). Interpretable models can improve the face validity

of the predictions for healthcare providers, and also aid in designing appropriate

interventions. However, the key question is to what extent, if any, this preference

affects the attainable prediction accuracy. The fourth challenge (§3.2.2) is to select

the appropriate prediction window. We expect that the length of a prediction win-

dow affects model accuracy, but the best choice from the perspective of prediction

accuracy may not be appropriate for a particular intervention. Similarly, the fifth

challenge (§3.2.3) is to develop accurate prediction models, even for settings where

the required input data may not be up-to-date. Understanding how data delay affects

prediction accuracy allows an implementing organization to appropriately prioritize

investment in IT infrastructure to ensure the availability of up-to-date data.

1.1 Overview of methods and results

We address the implementation challenges described above in partnership with SI

PPS. In 2018, Staten Island had a rate of 28.7 unintentional opioid overdose deaths

per 100,000 population, which was the highest rate among the five boroughs of New

York City (New York City Department of Health and Mental Hygiene, 2019), and

nearly double the rate of 14.6 for the US overall (Wilson et al., 2020). Through our

partnership with SI PPS, we access patient data from the Medicaid-insured popu-

lation residing on Staten Island and the uninsured population receiving treatment
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on Staten Island, a total of 251,781 patients. Our dataset (§2.1) links this popula-

tion’s medical and pharmacy claims; EHR data from both of the hospitals and three

of the four federally qualified health centers (FQHCs) on Staten Island; and opioid

overdose deaths recorded by the office of the Richmond County District Attorney.

This dataset allows us to construct predictor variables capturing information on filled

prescriptions, disease diagnoses, encounters with providers, and demographics, all

of which are among the known risk factors for opioid-related harm. We construct

three nested outcome variables of increasing severity: AnyOpioidHarm corresponds

to the occurrence of any opioid overdose, dependence, abuse, or adverse effects, or

medication-assisted treatment (MAT) for opioid use disorder (OUD); Overdose cor-

responds to an opioid poisoning; and FatalOverdose corresponds to a fatal opioid

poisoning.

We summarize three main findings. First, we utilize a novel approach to address

data imbalance due to the low frequency of FatalOverdose observations. To this end,

we leverage the nested structure of our outcomes and use the least severe adverse

event (AnyOpioidHarm) to train risk stratification models for more severe outcomes

(Overdose and FatalOverdose). This approach resembles oversampling or synthetic

generation of positive samples, both of which have been suggested in the machine

learning literature as methods to deal with imbalanced datasets. However, our tai-

lored approach is superior to the aforementioned generic methods, because the new

positive samples we add are drawn from distinct and genuine patients, as opposed

to duplicate or synthetically generated ones. Further, these samples also correspond

to patients who experienced adverse outcomes that are often precursors to the more

severe outcomes. With a 90-day prediction window, we find that the model trained

to predict AnyOpioidHarm has stronger performance in predicting Overdose (AUC

of 0.87) or FatalOverdose (AUC of 0.83) than the models specifically trained for pre-

dicting those outcomes, respectively.

Our novel approach also leads to a single parsimonious model that can be used

to predict different outcomes. What’s more, the predictive power of this parsimo-

nious model compares favorably with the best results in the existing literature, for all
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outcomes. This means that even if providers have different interventions tailored for

outcomes of different severity, only a single predictive model may be needed rather

than different ones tailored for each outcome, affording simplicity, easier implemen-

tation and maintenance. Moreover, FatalOverdose is difficult to predict, in general,

because of the relative rarity of the outcome, and is often infeasible to predict because

cause of death is generally not recorded in the claims and EHR databases used to fit

these models. In this scenario, our finding shows that a model which predicts a less

severe outcome would suffice to guide an intervention targeted to prevent FatalOver-

dose.

Second, we find that intervening with a small fraction of patients can identify

and potentially prevent a large fraction of opioid-related harms. Since the number

of patients whose outcomes could be prevented depends not only on the accuracy of

the predictive model, but also on the effectiveness of the intervention, we conduct

two separate analyses: one in which adverse events can only be “caught” if patients

are actively receiving an intervention, and one in which all future adverse events for

given patient are “caught” if the patient has received the intervention once. These

analyses provide upper and lower bounds on the intervention capacity required to

prevent a given percentage of adverse events. We find that in order to help avert 50%

of instances of AnyOpioidHarm, Overdose, or FatalOverdose, somewhere between 0.3-

0.5%, 1.2-2.4%, and 0.9-3.5% of patients need to receive intervention, respectively,

when their selection is guided by our risk stratification models.

Third, our results suggest that predictive performance does not need to be sac-

rificed to navigate the design implementation tradeoffs we consider. With regards

to interpretability, we fit an optimal classification tree (OCT) model (Bertsimas and

Dunn, 2017), which is highly interpretable because it consists of only a single deci-

sion tree. We find little difference in AUC compared to XGBoost (eXtreme Gradient

Boosting, Chen and Guestrin (2016)) models, but great improvement in interpretabil-

ity, given the opacity of an ensemble of trees. Similarly, we also find relatively little

variation in performance when we fit models to predict risk over different durations

of time in the future, meaning the duration can be chosen to suit the intervention
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of interest without concern for performance. Finally, we find that prediction perfor-

mance is not significantly affected when there is a delay in populating the underlying

dataset, suggesting that investments in IT infrastructure to reduce this delay may

not be a prerequisite for effective risk stratification.

1.2 Contributions

We make three main academic contributions, beyond the results specific to our study

setting. First, this study is the first to show that opioid overdoses, fatal or non-

fatal, can be predicted accurately using a model that was trained to predict any

opioid harm. Second, this study is the first to estimate the capacity requirements

for an intervention that targets patients on the basis of an opioid risk stratification

model. Existing works on early warning systems for opioid-related harm only report

the prediction accuracy of the resulting models, without considering the operational

resources that would be necessary to identify or prevent a targeted number of out-

comes using the model. Third, our research is the first to systematically explore how

the performance of a risk stratification model for opioid-related harm is affected by

the tradeoffs that arise in the operational deployment of the model. Prior research

develops predictive models for different settings: for example, Hastings et al. (2020)

predict risk of opioid-related harm in the next 5 years, for a patient who has never

experienced such harm, whereas Lo-Ciganic et al. (2019) predict risk of overdose in

the next 3 months, for a patient receiving prescription opioids and who may have pre-

viously experienced opioid-related harm. Comparing the performance of models for

these different settings is challenging because of differences in populations and vari-

able definitions. Our study allows such comparison by using the same dataset to fit

models for outcomes of different severity, for interpretability, for different prediction

windows, and for different delays in populating the underlying database.
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1.3 Literature review

We review two streams of literature related to this thesis: predictive models that

estimate risk of adverse opioid-related outcomes, and the operational deployment of

predictive models.

1.3.1 Predictive models for opioid-related harm

Clinical guidelines for the prescription of opioids for chronic pain recommend that

clinicians should estimate a patient’s risk for opioid-related harm, in particular for

overdose (Chou et al., 2009; Dowell et al., 2016; Nuckols et al., 2014). Accordingly,

a large body of literature applies traditional statistical techniques to infer which

clinical and demographic characteristics of patients are associated with higher risk

of opioid-related harm. Reviewing many of these papers, Webster (2017) and Cragg

et al. (2019) find that the risk factors for opioid misuse or addiction include current

or previous substance use or abuse, mental health disorders, younger age, and male

sex. Opioid abuse or dependence is also associated with higher numbers of outpatient,

inpatient, or emergency department (ED) encounters; opioid prescriptions with higher

days supply, or a greater number of opioid classes; and higher numbers of concurrent

prescriptions, including those for antidepressants and benzodiazepines (Cochran et al.,

2014). Reviews of risk factors for Overdose (Park et al., 2016; Webster et al., 2011)

show an association with mental health comorbidities, substance use, and use of long-

acting opioids2. FatalOverdose is also associated with number of filled prescriptions,

prescriptions of specific types of opioids (Paulozzi et al., 2012), use of muscle relaxants,

and use of Schedule II opioids3 (Garg et al., 2017).

Motivated by these studies of risk factors for opioid-related harm, several papers

propose tools for risk assessment of patients, including questionnaire-based screening

tools, regression models, and machine learning models. Two screening tools that as-
2Long-acting opioids are drug formulations that have a longer-lasting pain-relieving effect, as

compared to short-acting opioids (Argoff and Silvershein, 2009).
3Drugs are classified into schedules (I to V) by the US Drug Enforcement Administration (DEA),

where increasing schedule corresponds to higher potential for abuse, and Schedule I drugs are defined
such that they have no accepted medical use (United States Drug Enforcement Administration, n.d.).
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sign a risk score to a patient based on their self-reported answers to a questionnaire are

the Screener and Opioid Assessment for Patients with Pain (SOAPP) (Butler et al.,

2004) and the Opioid Risk Tool (ORT) (Webster and Webster, 2005). Although these

tools incorporate questions relating to several of the risk factors identified above, they

have limited accuracy (Dowell et al., 2016). More sophisticated approaches use logistic

regression or Cox proportional hazards models to predict various outcomes, includ-

ing opioid overdose (Chang et al., 2019; Zedler et al., 2015, 2018), opioid or heroin

overdose (Glanz et al., 2018), fatal opioid overdose (Ferris et al., 2019; Saloner et al.,

2020), opioid overdose resulting in death or hospitalization (Geissert et al., 2018),

nonfatal opioid overdose (Saloner et al., 2020), and opioid misuse, opioid abuse, or

OUD (Dufour et al., 2014; Hylan et al., 2015; Rice et al., 2012; Tarter et al., 2020;

White et al., 2009). Going beyond these regression-based approaches, several recent

papers propose using random forests, gradient boosting machines, or deep neural

networks to predict opioid overdoses (Dong et al., 2019; Ellis et al., 2019; Lo-Ciganic

et al., 2019) and incidence of OUD (Hasan et al., 2019; Lo-Ciganic et al., 2020). Hast-

ings et al. (2020) additionally use recurrent neural networks to predict the occurrence

of opioid abuse, dependence, or poisoning. The works reviewed here generally con-

struct predictor variables corresponding to known risk factors, using data sourced

from insurance claims, EHRs, or state-level prescription drug monitoring programs.

However, Saloner et al. (2020) and Hastings et al. (2020) additionally incorporate

criminal justice data, and Hastings et al. (2020) also use data on employment and

social benefits.

The preceding articles focus primarily on using standard methods to develop pre-

dictive models for a single outcome of interest, motivated by a single intervention

setting. Our study goes beyond standard approaches to propose a novel solution to

the class imbalance problem. Furthermore, our study is the first to systematically

explore the prediction of a full range of opioid-related harms, and tradeoffs between

predictive performance and interpretability, prediction window length, and data de-

lay. More generally, we study the performance of these models under operational

deployment, which is the next topic we review.
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1.3.2 Operationalizing predictive models

Several papers consider queuing models and study the effect of admission control

policies that incorporate some predicted information on customer arrivals. Yom-

Tov et al. (2020) study a setting where we have a predictive model that stratifies

prospective arrivals into classes corresponding to the expected revenue that would be

received if service were provided. They consider the question of how many customers

of each class to invite into the queuing system, and when, to maximize expected

revenue. The next three papers suppose that we have a model which predicts customer

arrivals in advance. Under this setting, Delana et al. (2021) and Zhang et al. (2016)

consider the policy of proactive service, i.e., using an opportunity when servers are idle

to proactively serve a customer who has not yet arrived. Delana et al. (2021) find that

this policy reduces wait time, even if predictions have limited accuracy and not all

identified customers are actually willing to be served proactively. Zhang et al. (2016)

show that the average wait decreases exponentially in the length of the future window

for which we have predicted information. Xu and Chan (2016) specifically propose

policies for when to divert patient arrivals away from an emergency department (ED),

and show using simulation that their policies reduce ED wait times while serving the

same number of patients.

Another group of papers uses more diverse methods to study how to optimally

use a predictive model to decide whether to transfer a patient to or from an intensive

care unit (ICU). In the former case, the decision maker has a model that predicts

for each individual patient in an inpatient ward their risk of deterioration requir-

ing transfer to an ICU. To potentially reduce their length of stay or improve their

eventual outcome, we can proactively transfer a patient at high estimated risk, with

the possible downside that we waste ICU capacity on a patient who was wrongly

identified, and take capacity away from a patient who needs ICU capacity urgently

(rather than one who is only predicted to need ICU capacity.) Hu et al. (2018) pro-

vide empirical evidence of the benefit of proactive transfer to ICU on the basis of a

predictive model, and also use a simulation model to evaluate three proposed policies.
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Hu et al. (forthcoming) propose a queuing model to describe this setting and derive a

cost-minimizing scheduling policy for transfers to ICU. Grand-Clément et al. (2020)

propose a robust Markov decision process (MDP), where each patient’s predicted risk

of deterioration is incorporated into the state space, and they derive a policy that

minimizes in-hospital mortality and length-of-stay. Finally, Cheng et al. (2019) also

propose an MDP incorporating each patient’s prediction in the state space, but they

instead consider the question of when to stop treatment in ICU, given the costs of

early and delayed ending of treatment.

We finally mention two additional applications related to capacity planning. Peck

et al. (2012) develop models that predict, upon triage at an ED, the probability of

whether a patient will be admitted to hospital. They then use the predictions for

all patients currently in the ED to estimate the total number of hospital beds that

will be required, which is intended to help bed managers plan in advance. Kurz and

Pibernik (2016) are motivated by a setting where a provider of maintenance services

for aircraft engines is able to predict in advance the number of customer arrivals for

a future period of time. They then study the question of when add to an M/M/1

queuing system extra capacity which can only be used for a limited amount of time,

to reduce average wait time.

Our study contributes to this stream of literature by studying novel aspects of

operationalizing a predictive model. The bulk of the preceding articles study how

predictive models can be used in admission control policies for a service system to

achieve objectives such as maximizing revenue, minimizing cost, or minimizing wait

time. On the other hand, we investigate the intervention capacity that is required to

prevent a targeted percentage of the predicted events; Peck et al. (2012) and Kurz

and Pibernik (2016) similarly consider capacity questions, but for different objectives.

We also consider how the quality of predictions is affected when the prediction task is

tailored to the intervention, in terms of interpretability and prediction window length,

and under the operational constraint of data delay.
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1.4 Organization

The body of this thesis is divided into two chapters, aligned with the two streams

of literature we have reviewed. In Chapter 2, we describe our data sources and our

machine learning methodology, including our novel approach to the class imbalance

problem, and we benchmark our model’s predictive performance against comparable

works in the literature. Chapter 3 has two parts: first we estimate the interven-

tion capacity required to use our model to prevent a targeted percentage of adverse

outcomes, and second we quantify the tradeoffs between predictive performance and

interpretability, prediction window length, and data delay. In Chapter 4, we offer

concluding remarks.

23



THIS PAGE INTENTIONALLY LEFT BLANK

24



Chapter 2

Opioid-related risk stratification

This chapter describes our approach to building prediction tools for stratifying pa-

tients based on their risk for different opioid-related adverse outcomes. That is, we

seek to build models that assign risk scores to individuals, with the goal that patients

who would experience an adverse event are more likely to be assigned a higher risk

score ex ante, relative to those who would not experience an adverse event. We first

describe our data in §2.1-2.3 and then our methodology in §2.4. An important in-

novation of our models is how we deal with dataset imbalance stemming from the

excessively low incidence rates of severe outcomes. In a nutshell, because all extant

generic methods to deal with data imbalance failed in our study, we propose a tailored

approach that leverages the nested structure of the outcomes we consider. We discuss

this approach in detail in §2.4.1. We report the test set performance of our models in

§2.5, and then discuss how the performance compares against prior results reported

in the literature in §2.6.

2.1 Data sources

We partner with SI PPS to access several databases containing data for both Medicaid-

insured and uninsured patients. For the Medicaid-insured population that has an

address of residence on Staten Island, the data includes adjudicated pharmacy and

medical insurance claims spanning July 2014 to February 2020, provided by the New
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York State Department of Health. For these patients, the data includes linked EHRs

spanning the same time period from both hospitals on Staten Island, and three of

the four FQHCs, which provide ambulatory care. These EHRs also include data on

care provided to uninsured patients at either hospital, whether or not they resided

on Staten Island. Finally, we also link a dataset from the Richmond County District

Attorney, which records instances of death due to opioid overdose from January 2018

to February 2020, within the boundaries of Staten Island.

All data analysis was performed in a cloud-based data warehouse with extensive

security measures, validated by external audits, to protect data from unauthorized

access. All data was deidentified to prevent attribution to any individual.

2.2 Dataset construction

Our study population includes all patients with any encounter or filled prescription

in the period spanned by the dataset. In this context, an encounter refers to any

inpatient or ED visit at either of the Staten Island hospitals, or any outpatient visit

at any of the three FQHCs covered by our data. A filled prescription refers to any

prescription which has been dispensed to the patient by an outpatient pharmacy.

Each patient enters the cohort on the date of their first encounter or filled prescrip-

tion, and then remains in the cohort until end of observation, cancer diagnosis, or

death (whichever comes first). We study a broad population, rather than restricting

ourselves to a population such as patients using prescription opioids (e.g., Lo-Ciganic

et al. (2019)), because opioid-related harms may also be caused by illicit rather than

just prescribed opioid use. The motivation for the cancer exclusion is that the aggres-

sive use of opioids for treating pain in patients with cancer is strongly supported by

the medical community despite the associated risks (National Academies of Sciences,

Engineering, and Medicine, 2017), and therefore a risk prediction tool developed for

the general population would not be appropriate for this subpopulation. The exclu-

sion is implemented using International Classification of Diseases (ICD) codes (Table

A.1 in Appendix A), and is also common in other studies examining prediction of
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Figure 2-1: Construction of an observation in the dataset

opioid-related disorders, e.g., Lo-Ciganic et al. (2019, 2020).

The dataset we construct for analysis has columns consisting of predictor and

outcome variables, and rows which we refer to as observations. An observation corre-

sponds to a specific patient at a specific point in time, capturing the patient history

prior to this time point in the form of predictor variables, and capturing future events

in the outcome variables AnyOpioidHarm, Overdose, and FatalOverdose. Specifically,

an observation records the values of diagnostic-based predictors using data from the

preceding year; prescription- and encounter-based predictors using data from the pre-

ceding 90 days; and the occurrence or non-occurrence of each possible outcome using

data from a period following the observation date (the prediction window, for which

we will test multiple values in §3.2.2). See Figure 2-1 for an illustration. More detail

on the predictor and outcome variables is given in the following two subsections.

To construct observations, we first identify the earliest chronological appearance

of any patient in the data. For each patient, we then record an initial observation one

year after that date, and every 90 days thereafter. We repeat the above-described

procedure twice, to construct one dataset for the FatalOverdose outcome and another,

distinct dataset, for the other two outcomes. This is because the data for the Fat-

alOverdose outcome is available only from January 2018 to February 2020, which is

a subset of the time period spanned by the remaining data sources, and therefore we

only use this subset of the data to construct a corresponding dataset.
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2.2.1 Predictor variables

For each observation, we construct a total of 107 predictor variables (Tables A.2-

A.4 in Appendix A), motivated by the known risk factors for opioid-related harm

identified in the literature reviewed in §1.3. Of the predictors, 73 are related to filled

prescriptions in the past 90 days. For each long-acting or short-acting formulation

of each prescription opioid compound, we count the number of prescription fills and

the total days supplied; an example variable is the number of prescriptions of short-

acting hydrocodone filled in the past 90 days. For each of antidepressants, muscle

relaxants, benzodiazepines, gabapentinoids, and pregabalin we also count the number

of prescription fills and the total days supplied; an example variable is the total days

supply of antidepressant prescriptions filled in the past 90 days. We also count the

number of days of co-prescription of benzodiazepines and opioids. Finally, for each

of the five drug schedules, we construct an indicator variable for whether an opioid

prescription in that schedule has been filled. Drugs are uniquely identified by their

FDA-issued National Drug Code (NDC): sources for NDCs for non-opioid drugs are in

Table A.5 in Appendix A, and NDC codes and DEA schedule for opioids are published

by the National Center for Injury Prevention and Control (2018).

Twenty-three of the predictors are related to diagnostic codes entered in the past

year for mental health disorders, alcohol use disorders, and (non-opioid) drug use

disorders. Specifically, we count the number of diagnostic codes entered for anxiety,

depression, schizophrenia, other psychosis, bipolar disorder, attention deficit hyper-

activity disorder (ADHD), and personality disorders. For non-opioid drugs and for

alcohol, we count the number of diagnostic codes entered for use, adverse effects,

abuse, dependence, poisoning, or other related diagnoses. ICD codes for these disor-

ders are found in the Chronic Condition Data Warehouse (2019).

Eleven variables remain. We identify each patient’s gender, race and ethnicity. We

compute the patient’s age on the observation date, and we also count their number

of inpatient, outpatient, and ED encounters in the past 90 days. Finally, we also

count the number of previous observations for the same patient that had a positive
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value for each of four outcome-based binary indicators, which will be defined in the

following subsection: Overdose; Overdose or opioid dependence; Overdose, opioid

dependence, opioid abuse, or filled prescriptions for medication-assisted treatment

(MAT) for OUD; and AnyOpioidHarm.

2.2.2 Outcome variables

For the prediction window of a given observation, we identify all occurrences of the

following nine possible indications of opioid-related harm: an instance of death due to

opioid poisoning; diagnostic codes for opioid poisoning, dependence, abuse, adverse

effects, or unspecified use; and filled prescriptions with NDC codes for buprenorphine,

methadone, or naltrexone. The latter three drugs are used in MAT for OUD, and the

occurrence of these prescriptions should therefore identify any patient who developed

OUD, but for whom a diagnosis code is missing in the data. Buprenorphine is itself

an opioid which can be used either for pain relief or MAT for OUD (National Center

for Injury Prevention and Control, 2018), so in our definition we only include drug

formulations used in MAT for OUD. For these nine types of opioid-related harm,

Table A.5 and National Center for Injury Prevention and Control (2018) list NDCs,

and Table A.6 lists ICD codes.

We then use the nine types of events to construct three nested binary outcome

variables of increasing severity. The variable AnyOpioidHarm corresponds to the

occurrence of any of the nine indicators. The variable Overdose corresponds to an

opioid poisoning, and FatalOverdose corresponds to a fatal opioid poisoning.

2.3 Data limitations

Three potential limitations of our dataset are censoring of variables, historical inter-

ventions that prevented adverse outcomes, and a biased representation of the Staten

Island population.

In our data, both predictor and outcome variables may be potentially censored.

Predictor variables may be censored if, for example, a patient visits an outpatient
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clinic which is not located on Staten Island and this visit is therefore unaccounted for

in the variable which counts the number of outpatient visits. This censoring could

affect predictive power. In practice, however, data environments in which predictive

models would actually be deployed are very likely to exhibit the exact same form

of censoring. Therefore, our analysis, being conducted under circumstances that

mimic practice, is likely to reveal the effectiveness of such predictive models when

implemented. Outcome variables may also be censored if, for example, a patient

died of an opioid overdose outside the boundaries of Staten Island, and the death

therefore would not be recorded in our data sourced from the District Attorney. In

this case, an observation that ought to be labelled as positive would be labelled as

negative. Although this remains a limitation, it may be mitigated by the fact that

our population resides on an island, potentially reducing the extent of travel outside

its boundaries, and also the number of outcomes of interest that occur outside its

boundaries.

Prior interventions may have altered the outcomes that occurred for patients in

the past. This would pose a challenge to fitting predictive models, since interven-

tions that had a material effect (for example, preventing an outcome that would have

otherwise occurred) would alter the relationship between predictor and outcome vari-

ables. However, all previous intervention efforts that SI PPS has been involved in

have targeted patients who had already had an overdose, and therefore the number

of patients with altered outcomes would be limited. There have not been any prior

interventions that proactively targeted at-risk individuals. In fact, our study is a

first step towards designing and managing such interventions that SI PPS aspires to

deploy.

Finally, there is a possibility that our data contains a biased representation of the

Staten Island population. For example, our data only includes records from three

of the four FQHCs on Staten Island, and the missing FQHC only serves patients

who are developmentally disabled, so these patients are likely underrepresented in

our dataset. However, this form of bias is likely not to affect our analysis because the

predictive models that we develop would only be applied to exactly the population
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of patients that is represented in the dataset.

2.4 Methodology

For each of our two datasets (one for the FatalOverdose outcome and another for the

other two outcomes, as described in §2.2), we divide the observations into two sets:

training set (spanning first 70% of the data duration) and testing set (spanning last

30% of the data duration) based on the observation date. We perform 𝐾-fold cross-

validation on the training set (𝐾 = 3 for the FatalOverdose outcome, and 𝐾 = 5 for

the other two). All performance metrics are reported based on the performance of

the models on the testing set.

Summary statistics of these datasets are provided in Table 2.1. The non-death

dataset that spans a larger time duration has approximately 2.4 and 1.2 million ob-

servations in the training and testing sets, respectively. The death dataset, spanning

slightly over two years, has approximately 1.2 and 0.7 million observations in the

training and testing sets. The number of patients is roughly the same in the training

and testing sets in each of the two datasets (close to 0.25 million). Notably, the

outcomes in such datasets are severely imbalanced, with very low incidence rates,

particularly for the FatalOverdose outcome, as also reported in antecedent studies.

We discuss this important issue and mitigating actions in §2.4.1.

We train models for predicting the three outcomes of interest over a 90-day pre-

diction window. We train our prediction models using a scalable gradient boosting

framework, XGBoost (Chen and Guestrin, 2016). XGBoost is a machine learning

method in which an ensemble of decision trees is fit sequentially, and each successive

tree is trained to correct the errors made by previous trees. Given the large size of

our datasets, the scalable nature of the XGBoost framework makes it particularly

attractive for our application.

Algorithms for regression, classification, and ranking tasks are available in the

XGBoost framework. While predicting each patient’s risk of an adverse opioid-related

outcome can be modeled as a classification task, our objective is to stratify patients
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Table 2.1: Summary statistics of the datasets
Death Dataset Non-death Dataset

Training Testing Training Testing

Dataset:
First observation date 12/31/17 3/26/19 6/30/15 9/12/18
Last observation date 12/26/18 9/22/19 6/14/18 9/7/19
No. of observations 1,165,107 733,828 2,408,815 1,211,499
No of. patients 247,497 249,229 246,377 251,781

Outcomes:
No. of AnyOpioidHarm events 27,084 (1.12%) 7,577 (0.62%)
No. of Overdose events 1,698 (0.07%) 446 (0.03%)
No. of FatalOverdose events 49 (0.004%) 18 (0.002%)

Notes: For the testing data, statistics based on a 90-day prediction window are reported.
The outcomes are ordered in increasing order of severity.

into categories of higher- and lower-risk. Therefore, we view our task as a bipartite

ranking problem (Freund et al., 2003) where the goal in training is to fit a model

which ranks patients who had an opioid-related outcome higher than those who did

not. We therefore use a ranking objective for model training. As a secondary analysis,

we include results from a model trained using a classification objective in Table B.1

in Appendix B.

2.4.1 Dataset imbalance

The datasets are highly imbalanced in terms of the ratio of positive observations (ob-

servations with an opioid-related outcome within the prediction window) to negative

observations (observations with no opioid-related outcome within the prediction win-

dow). Further, there is an order of magnitude reduction in the fraction of positive

observations as the severity of outcome increase, i.e., when we compare AnyOpioid-

Harm to Overdose and Overdose to FatalOverdose. Specifically, for the least severe

outcome (AnyOpioidHarm), 0.6 - 1.1% of observations are positive, whereas for the

most severe outcome (FatalOverdose), 0.002% - 0.004% of observations are positive

(Table 2.1). This makes prediction challenging, especially for the more severe out-

comes of Overdose and FatalOverdose.

In the statistics and machine learning literature, various heuristics have been
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proposed to deal with imbalanced datasets for prediction tasks (Sun et al., 2009).

Key approaches are oversampling the minority class, undersampling the majority

class, or introducing new samples of the minority class before training the model.

New samples are typically generated using existing samples from the minority class.

For example, Lee (1999) proposes taking samples from the minority class and adding

Gaussian noise to generate new samples, Menardi and Torelli (2014) propose taking

samples from the minority class and generating new samples in its neighborhood as

specified by a probability distribution, and Chawla et al. (2002) propose generating

new samples as those lying on a line connecting a sample from the minority class with

its nearest neighbor.

Application of the aforementioned heuristics to deal with the dataset imbalance

failed in our study. This is consistent with prior literature showing that the effective-

ness of oversampling is limited for high-dimensional data (Blagus and Lusa, 2012).

In our experiments, model performance did not improve after adding synthetically

generated observations, although there was a significant increase in the algorithm’s

runtime, due to the increased dataset size.

We propose a novel way to deal with this challenge within the context of our

problem. As less severe outcomes in our setting are often precursors to more severe

outcomes, positive observations from the less severe outcome make for good syn-

thetic positive observations when training a model for the more severe outcome. This

proposal adapts the core idea of the standard methods, which is to generate new

samples close to existing positive samples. Our approach is superior to oversampling

or creating new samples as it does not overfit to the existing positive samples, and

the new positive samples are also true patient samples. Thus, when training models

for predicting Overdose and FatalOverdose, we treat all observations with a positive

AnyOpioidHarm outcome as positive observations. Due to the nested structure of our

outcomes, this implies using a single model trained on the AnyOpioidHarm outcome

to predict all three outcomes, leading to a parsimonious modeling approach.
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2.4.2 Models trained and performance evaluation

In summary, we train three XGBoost models, one to predict risk for each of the

three outcomes. The model trained on the AnyOpioidHarm outcome also serves as a

parsimonious model that predicts risk for all outcomes, following the idea proposed

in §2.4.1.

A standard way to evaluate the performance of prediction models for risk stratifi-

cation is through the receiver operating characteristic (ROC) curve. The ROC curve

plots the sensitivity (or recall), the fraction of positive outcomes that the model iden-

tifies correctly, against its specificity, the fraction of negative outcomes that the model

identifies correctly. Ideally, a prediction model should have both high sensitivity and

high specificity. A commonly used summary statistic is the area under the curve. In

particular, the area under the ROC curve (AUC) equals the probability that if one

positive and one negative observation are chosen randomly, the model will identify

the positive observation as higher-risk. This metric is aligned with our goal of rank-

ing patients who would experience an adverse outcome as higher risk than those who

would not.

2.5 Results

We first discuss results for the three models separately trained for each of the three

outcomes. The corresponding AUC results are presented in Table 2.2. The AUC

obtained by the model predicting AnyOpioidHarm is highest at 0.95. This is followed

by the model for predicting Overdose (with an AUC of 0.87). The least AUC (0.68)

among these three outcomes is obtained for the FatalOverdose outcome. This is not

surprising given the extremely low incidence of the FatalOverdose outcome, leading

to a highly imbalanced dataset that makes learning challenging.

We now discuss the performance of the parsimonious model, which we introduced

as a way to mitigate the imbalance that seems to compromise AUC for the Fat-

alOverdose outcome in particular. Our results are reported in Table 2.3. For the

Overdose outcome, given that the model trained directly on that outcome already
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Table 2.2: AUC of XGBoost models for different outcomes

Outcome AUC
AnyOpioidHarm 0.95 (0.95 - 0.95)

Overdose 0.87 (0.85 - 0.89)
FatalOverdose 0.68 (0.54 - 0.82)

Notes: Parentheses report 95% confidence inter-
vals.

Table 2.3: AUC of parsimonious XGBoost model for different outcomes

Outcome AUC
AnyOpioidHarm 0.95 (0.95 - 0.95)

Overdose 0.87 (0.85 - 0.89)
FatalOverdose 0.83 (0.73 - 0.92)

Notes: Parentheses report 95% confidence inter-
vals.

enjoyed strong performance, it is not surprising that we observe only a modest im-

provement in AUC (beyond the second decimal point) when using the parsimonious

model. However, for the FatalOverdose outcome, AUC increases from 0.68 to 0.83.

Thus, the parsimonious modeling approach effectively deals with the challenge of data

imbalance for the FatalOverdose outcome.

To understand the parsimonious model’s sensitivity at different levels of specificity,

we plot the ROC curves for the three outcomes in Figure 2-2. For all three outcomes,

we observe performance much better than random guessing (denoted by the light

gray line in the figure). In particular, for the model predicting AnyOpioidHarm, we

observe that the ROC curve reaches very closely to the upper-left corner, indicating

simultaneously achieved high sensitivity and specificity.

2.6 Comparison with prior literature

How well does our parsimonious model perform compared to those presented in the

literature? The differences in study design, such as population under study, prediction
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Figure 2-2: ROC curves for the parsimonious XGBoost model
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window, and the exact definition of the opioid outcome, make a direct comparison

with other works challenging. When adjusting for such differences, our model approx-

imately matches or outperforms existing models in terms of AUC by a few percentage

points. We provide details for each of the three outcomes.

For the AnyOpioidHarm outcome, Hasan et al. (2019) consider a similar setting

to ours and report an AUC of 0.97, which our model approximately matches. For the

Overdose outcome, Dong et al. (2019) undersample the negative observations so that

at least 9% of observations are positive, whereas Lo-Ciganic et al. (2019) and Geissert

et al. (2018) limit the study population to patients who have already been prescribed

at least one opioid. Both of these choices artificially bypass the main challenge of

imbalance. Thus, our study is more in line with Ellis et al. (2019), who attempt to

deal with the original imbalanced dataset of the entire patient population. Ellis et al.

(2019) report an AUC of 0.82 for an outcome similar to the Overdose outcome, for

which we achieve an AUC of 0.87. As mentioned earlier, there are very few studies

building prediction models for FatalOverdose. Ferris et al. (2019) reports an AUC of

0.81 for this task, but their study population considers only patients who have received

at least one opioid prescription. Using data on all-payer hospital discharges, the

prescription drug monitoring program, public-sector specialty behavioral treatment,

and criminal justice records for property or drug-associated offenses, Saloner et al.

(2020) build a predictive model for FatalOverdose with an AUC of 0.89 over a one-

year prediction window. When using only hospital and prescription drug monitoring

data, as we do, Saloner et al. (2020) report an AUC of 0.86 for a one-year prediction

window. In §3.2.2, we consider a one-year prediction window and find that the AUC

of our model for FatalOverdose is 0.88, therefore providing a modest improvement

over Saloner et al. (2020) when a fair comparison is attempted.

Table 2.4 summarizes these comparisons along with some additional benchmarks.

Based on this comparison, we conclude that our parsimonious modeling approach

improves upon the state of the art models for predicting opioid-related adverse events.

Using a parsimonious approach also has other important advantages. Data from

medical insurance claims or EHRs typically do not contain information to identify the
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Table 2.4: AUC comparison with results in prior literature
Outcome Our AUC Comparable work Best AUC reported

AnyOpioidHarm 0.95
Hasan et al. (2019) 0.97

Hastings et al. (2020) 0.80, but for patients with at
least one opioid prescription

Overdose 0.87

Dong et al. (2019) 0.95, but in a dataset with
undersampled negative obs.

Ellis et al. (2019) 0.82

Geissert et al. (2018) 0.80, but for patients with at
least one opioid prescription

Lo-Ciganic et al. (2019) 0.89, but for patients with at
least one opioid prescription

FatalOverdose 0.83
Ferris et al. (2019) 0.81, but for patients with at

least one opioid prescription

Saloner et al. (2020) 0.89, but for a one-year
prediction window

outcome of FatalOverdose. (We obtained information on the FatalOverdose outcome

using a dataset from the District Attorney’s office.) We believe this is a key reason

for the scarcity of existing works on predicting FatalOverdose. Further, even when

this data is available (such as in Geissert et al. (2018)), the minimal number of

positive observations for the FatalOverdose outcome makes it challenging to build

good predictive models. Our parsimonious model illustrates that even in the absence

of data on FatalOverdose or with a highly imbalanced dataset, it is possible to train

models and operationalize programs aimed at dealing with FatalOverdose.

Our modeling approach is also in line with various other efforts to build models

for opioid risk prediction that seek parsimony. Geissert et al. (2018) and Hasan et al.

(2019) consider finding a small set of features that can predict opioid-related out-

comes. In addition to building models that use all claims data, Dong et al. (2019)

consider building models without using diagnosis codes from claims. As we are inter-

ested in predicting multiple opioid-related outcomes, our search for a parsimonious

approach focuses on training a single model that can be used for planning interven-

tions for all three outcomes. This decrease in complexity from maintaining only one

model is beneficial from an implementation perspective.
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Chapter 3

Operationalizing risk stratification

models

The previous chapter follows the literature on opioid-related risk stratification models

in aiming to maximize AUC, a standard measure of predictive model performance.

However, from the perspective of operationalizing such models in a healthcare sys-

tem, this analysis has two key limitations: it does not quantify the resources needed

for planning effective interventions, and it ignores important implementation issues,

such as a lag in obtaining data, or a need for different models for different kind of

interventions. To facilitate implementation and assist managerial decision making,

we further build on our analysis to address these two limitations in §3.1 and §3.2

respectively.

3.1 Capacity planning

Effective and timely interventions on the “right” patients have the potential for pre-

venting future opioid-related adverse outcomes. In practice, the model developed in

§2.4 can be used by a healthcare organization at regular time intervals to estimate

the risk of an adverse outcome for each patient, stratify patients by risk level, and

then intervene with the highest-risk patients. The objective of any intervention is to

intervene with a patient prior to an adverse opioid-related event occurring, which we

39



refer to as catching the adverse event. For an organization with limited resources,

this raises the question of how large the high-risk cohort needs to be to catch a tar-

geted fraction of outcomes, because a larger cohort implies a larger required number

of social workers, counselors, and psychologists. In this section, we present a counter-

factual analysis, based on our data, to generate bounds on the capacity requirements

for such interventions.

The number of opioid-related outcomes prevented by an intervention program

can be viewed as being impacted by two key factors: appropriate identification of

high-risk patients, and effectiveness of the intervention in preventing future opioid-

related adverse outcomes for a given patient. The focus of our analysis is exclusively

on the impact of the first factor. To abstract away the impact of the intervention

effectiveness, our counterfactual analysis assumes that the intervention in question is

fully effective only for a time window of certain length. By varying the length of that

time window, our approach enables us to derive approximate bounds on the desired

capacity requirements for intervention programs.

In our counterfactual analysis, we assume that our risk stratification model is

reapplied to the patient population every 90 days, to update the categorization of

patients as high- or low-risk for opioid-related harm. A high-risk cohort is formed

at the beginning of each period by ranking all patients in order of their predicted

risk of an opioid-related outcome and then taking the subset of patients at highest

risk, such that the size of the cohort is a prespecified fraction of all patients. The

provider organization uses its resources to intervene with the high-risk cohort during

the following 90-day interval. Therefore the fraction of the population defining the

high-risk cohort corresponds to the capacity requirement.

To develop bounds on the capacity required for the intervention program, we run

two sets of analyses. First, we assume that the effect of the intervention is short-lasting

and only catches adverse events occurring during exactly the 90 days that a patient is

receiving the intervention. This provides an upper bound on the required intervention

capacity since patients would only be protected from adverse events while they are

actively receiving the intervention (§3.1.1). Second, we assume that the intervention
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has a long-lasting effect, so that patients who have received the intervention at any

point in time in the past are protected from adverse events. This lasting intervention

would therefore catch all future adverse events, once it has been provided to a patient.

This provides a lower bound on the required intervention capacity since each patient

only needs to receive the intervention at most once (§3.1.2). For each analysis, we

examine what proportion of patients need to receive the intervention in order for a

target fraction of adverse events to be caught.

3.1.1 Upper bound on capacity requirements

Suppose that every 90 days when the risk stratification model is reapplied to the pa-

tient population, some proportion of the highest risk patients receive an intervention

that protects them from adverse opioid-related events for exactly the period of 90

days until the next risk stratification.

To shed light on the capacity requirements of such an intervention so that it

can catch a targeted percentage of adverse outcomes, we backtest our models using

historical information in the testing set. Specifically, we begin each 90-day period

stratifying patients based on information available at the beginning of the period and

then form the high-risk cohort using a certain fraction of the patient population. We

then focus on all outcomes that occurred during this period, and record the fraction

of these incidents (either AnyOpioidHarm, or Overdose, or FatalOverdose) that were

associated with patients from the high-risk cohort—in which case, we consider the

incident caught by the intervention.

In Figure 3-1, we plot the fraction of incidents caught by the intervention program

as we vary the fraction of patients who form the high-risk cohort. For both AnyOpi-

oidHarm and Overdose, we observe that there is a steep rise in the curve close to 0.

With an intervention cohort of size only 1% of the patient population, more than 17%

of FatalOverdose, 22% of Overdose and 69% of AnyOpioidHarm incidents are caught.

When the size of this cohort is increased to 15%, the number of incidents caught

increases to more than 65%, 75% and 90%, respectively. Thus, for all outcomes,

we observe that even by providing a short-lasting intervention to a relatively small
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Figure 3-1: Fraction of adverse opioid-related outcomes caught in the intervention
cohort, under an intervention with 90-day duration

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Size of intervention cohort
(% of population)

Pe
rc

en
ta

ge
 o

f a
dv

er
se

 e
ve

nt
s

fro
m

 p
at

ie
nt

s 
un

de
r 

in
te

rv
en

tio
n

0%

25%

50%

75%

100%

0.00% 0.25% 0.50% 0.75% 1.00%

Size of intervention cohort
(% of population)

Pe
rc

en
ta

ge
 o

f a
dv

er
se

 e
ve

nt
s

fro
m

 p
at

ie
nt

s 
un

de
r 

in
te

rv
en

tio
n

Outcome AnyOpioidHarm Overdose FatalOverdose

Notes: Plot on the right is a zoomed-in version of the plot on the left. Performance of an
intervention scheme based on a random classifier is presented as a dotted gray line.

fraction of the population, the intervention can catch a high number of opioid-related

adverse events. Intuitively, since prediction is more challenging for the FatalOverdose

outcome, a larger cohort needs to receive the intervention to catch such instances.

3.1.2 Lower bound on capacity requirements

Now suppose that every 90 days, when the risk stratification model is reapplied and

a new set of the highest risk patients receives an intervention, this intervention has

a lasting effect that protects patients from any future opioid-related adverse events.

Under this scenario, what proportion of patients should be used to construct the

high-risk cohort, in order for the intervention to catch a targeted fraction of patients

who will experience opioid-related adverse events?

To conduct our analysis, we use a similar backtesting strategy as in the previous

section. Specifically, in each period we begin by stratifying patients based on infor-

mation available at the beginning of the period and then form the high-risk cohort

using a certain fraction of the patient population. Patients in the high-risk cohort are
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Figure 3-2: Fraction of adverse opioid-related outcomes caught in the intervention
cohort, under an intervention that prevents any future adverse outcomes
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Notes: Plot on the right is a zoomed-in version of the plot on the left. Performance of an
intervention based on a random classifier is presented as a dotted gray line.

intervened upon and are subsequently considered to be under the effect of the inter-

vention for the rest of the horizon. We consider all opioid-related events that occur

for patients when they are under the effect of the intervention to be caught. We then

record the fraction of all adverse events that were caught due to the intervention.

In Figure 3-2, we plot this fraction as a function of the percentage of patients

intervened upon. Similar to the case of the short-lasting intervention, we observe that

intervening on a small fraction of the patients can prevent a large fraction of opioid

outcomes from occurring, especially for AnyOpioidHarm. This is even clearer from

the plot on the right in Figure 3-2, which zooms in to the region where the percentage

of patients intervened on is less than 1%. We observe that just by intervening on 1%

of the patients, more than 77%, 45% and 48% of AnyOpioidHarm, Overdose and

FatalOverdose outcomes can be averted, respectively.
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Table 3.1: Bounds on the intervention capacity required to prevent a targeted fraction
of adverse outcomes

(1) (2) (3)
Target AnyOpioidHarm Overdose FatalOverdose
10% 0.1% - 0.1% 0.2% - 0.5% 0.2% - 0.4%
20% 0.1% - 0.2% 0.4% - 0.9% 0.3% - 1.2%
30% 0.2% - 0.3% 0.5% - 1.3% 0.6% - 1.7%
40% 0.2% - 0.4% 0.8% - 1.7% 0.7% - 2.1%
50% 0.3% - 0.5% 1.2% - 2.4% 0.9% - 3.5%
60% 0.4% - 0.7% 2.2% - 4.5% 3.0% - 7.0%
70% 0.6% - 1.1% 4.5% - 10.0% 4.5% - 11.5%
80% 1.2% - 2.4% 10.0% - 20.5% 14.5% - 25.5%
90% 6.5% - 14.0% 19.0% - 47.5% 16.0% - 42.5%

Notes: Columns (1), (2), and (3) provide lower and upper bounds for
the proportion of the population that needs to receive an intervention to
catch a given target fraction of adverse events. Lower and upper bounds
are based on the data underlying the curves in Figures 3-1 and 3-2, re-
spectively.

3.1.3 Capacity planning bounds

Taken together, the results from the two previous subsections provide upper and lower

bounds on the intervention capacity required to catch a given fraction of adverse

events. Specifically, §3.1.1 provides an upper bound on the required intervention

capacity since it assumes we only catch adverse events for exactly the 90 days when

a patient is receiving an intervention. Similarly, §3.1.2 provides a lower bound on the

same capacity, as it assumes that an intervention can catch all future adverse events

for a patient by intervening once.

Table 3.1 summarizes the insights from this interpretation. It demonstrates that in

order to catch 50% of instances of AnyOpioidHarm, for example, somewhere between

0.3% (if the intervention is lasting) and 0.5% (if the intervention is only effective for

one period of 90 days) of the population would need to be enrolled in a prevention

program. The analogous statistics for Overdose and FatalOverdose are 1.2% - 2.4%

and 0.9% - 3.5%, respectively. This demonstrates the impact that risk stratification

can have on the cost-benefit trade-off for an intervention program. By enrolling a
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very small proportion of the population in prevention programs, a large proportion

of adverse events can be caught.

3.2 Implementation tradeoffs

In this section, we consider three different decisions that a healthcare organization

may have to make in the deployment of opioid risk predictive models, where each

decision affects multiple conflicting objectives. In particular, each decision involves

a tradeoff between predictive performance and another desirable objective, and we

quantify the change in predictive performance that may result. So doing could as-

sist healthcare organizations, like SI PPS, to navigate the underlying tradeoffs more

effectively. The decisions that we study concern (1) whether to use an interpretable

model, which can aid both in intervention design and face validity; (2) whether to

use a model with a shorter or longer prediction window; and (3) whether to invest in

IT infrastructure that reduces the lag in available data.

3.2.1 Interpretability

Healthcare practitioners often prefer predictive models that are interpretable (Ahmad

et al., 2018). These models provide a more intuitive understanding of the prediction

process, which can enable practitioners to validate the model and aid in choosing

appropriate interventions. Further, interpretability can help in making sure that the

model is not biased and does not derive its predictive power from sensitive features

of the patient. Predictive models that improve interpretability, however, sometimes

come at the cost of compromised predictive performance. Here we shed light on this

tradeoff in the context of our study by quantifying how much predictive performance

is lost when we fit an interpretable model rather than an XGBoost model.

We train an interpretable model for AnyOpioidHarm using an OCT (Bertsimas

and Dunn, 2017; Interpretable AI, LLC, 2020). An OCT is a single decision tree,

which provides a transparent view of its working. Whereas standard techniques for

learning decision trees such as CART (Breiman et al., 1984) build the decision tree in
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Table 3.2: AUC of OCT for different outcomes

Outcome AUC
AnyOpioidHarm 0.93 (0.93 - 0.94)
Overdose 0.84 (0.81 - 0.86)
FatalOverdose 0.74 (0.62 - 0.86)

Notes: Parentheses report 95% confidence inter-
vals.

sequential greedy steps, all the node splits in an OCT are simultaneously optimized.

This optimization is possible because of recent advancements in solvers for mixed

integer optimization, and can produce trees with higher accuracy (Bertsimas and

Dunn, 2017). The high accuracy and interpretability make OCT attractive for medical

applications.

The AUCs of this model for all three outcomes are presented in Table 3.2. We

observe that the performance is similar to the parsimonious XGBoost model, although

there is slight deterioration in AUC across outcomes. Thus, this analysis suggests that

with little compromise on accuracy, these models can be effectively used when there

is a preference for interpretability. Appendix C contains details on the training of the

OCT model as well as a depiction of the resulting decision tree (Figure C-1).

3.2.2 Prediction window length

In the prediction of opioid-related adverse outcomes, different prediction windows

can be of interest depending on the type of intervention under consideration, and the

outcome which we would like to prevent. Some interventions aim for long-term be-

havioral changes whereas others can aim for preventing immediate adverse outcomes,

particularly for severe harm such as FatalOverdose. The responsiveness required in

the latter scenario is best supported by a model with a shorter prediction window, but

the tradeoff is that we expect prediction of an adverse outcome to be more difficult

over a shorter period of time. We quantify this tradeoff by evaluating the performance

of parsimonious XGBoost models trained for different prediction windows: 15 days,

30 days, 90 days, and 365 days.
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Table 3.3: AUC of XGBoost models with different prediction windows
Prediction window

15 days 30 days 90 days 365 days

AnyOpioidHarm 0.98 (0.98 - 0.98) 0.97 (0.97 - 0.98) 0.95 (0.95 - 0.95) 0.94 (0.94 - 0.95)
Overdose 0.90 (0.87 - 0.94) 0.88 (0.85 - 0.91) 0.87 (0.85 - 0.89) 0.91 (0.89 - 0.92)
FatalOverdose 0.82 (0.60 - 1.00) 0.81 (0.69 - 0.94) 0.83 (0.73 - 0.92) 0.88 (0.81 - 0.94)

Notes: Parentheses report 95% confidence intervals.

To characterize the performance of these models, we report the AUC with varying

prediction windows in Table 3.3. We observe that fairly high AUC values (all above

0.94) are attained by the models predicting AnyOpioidHarm. This implies that pa-

tients at a high risk of having AnyOpioidHarm can be identified quite accurately both

over shorter and longer prediction windows. For both Overdose and FatalOverdose

outcomes, making predictions over the longest prediction window has the highest

AUC. However, the AUC values for both outcomes are still fairly high across all

prediction windows (all above 0.87 and 0.81, respectively). We conclude that the

parsimonious model loses relatively little predictive performance when varying the

prediction window.

3.2.3 Data delay

In practice, the prediction model would be used periodically to stratify patients by

risk level, but the most recent data might not be available for constructing predictor

variables. Due to a lag in claims submission by providers, most databases deem data

to be usable only after 90 days (Majumder and Rose, 2020). A lag in the dataset

becomes even more likely when the model dependss on data from multiple sources,

such as EHRs, insurance claims, and emergency medical services. A delay in any

one of the sources leads to a lag in the data available when using the prediction

models. This in turn could compromise predictive power. A healthcare organization

may consider investing money in their IT infrastructure to reduce this delay, but how

much would predictive performance be improved by this investment?

To capture the tradeoff between predictive performance and delay in data avail-
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Table 3.4: AUC of XGBoost models having delay in access to data
Data Delay

0 days 30 days 90 days 180 days

AnyOpioidHarm 0.95 (0.95 - 0.95) 0.95 (0.95 - 0.96) 0.94 (0.94 - 0.94) 0.94 (0.93 - 0.94)
Overdose 0.87 (0.85 - 0.89) 0.89 (0.88 - 0.91) 0.87 (0.85 - 0.89) 0.87 (0.85 - 0.89)
FatalOverdose 0.83 (0.73 - 0.92) 0.84 (0.77 - 0.92) 0.83 (0.73 - 0.92) 0.86 (0.77 - 0.94)

Notes: Parentheses report 95% confidence intervals.

ability, we construct datasets incorporating different lags (30, 60, and 180 days) in

accessing the data. In these datasets, each predictor variable is calculated using the

information up to 30, 60, or 180 days before the observation date. For example, if

there is a 30-day delay in accessing data, an observation on the date May 1, 2020 has

predictor variables that only use the patient history prior to April 1, 2020. We then

train and test a parsimonious XGBoost model on each of these datasets.

The performance of models trained on these datasets with different data delays is

presented in Table 3.4. For AnyOpioidHarm, the AUC drops from 0.95 when there is

no delay in the data to 0.94 when there is a 180-day delay. For all the three outcomes,

we observe that as the data delay increases up to 180 days, the change in predictive

performance is modest. Thus, the prediction models have the desirable property of

being robust to delays in the data, suggesting that investments in IT infrastructure

to reduce data delay may not be worthwhile.
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Chapter 4

Conclusion

The opioid epidemic caused more than 100 deaths per day in the US in 2018 (Wilson

et al., 2020). In addition to the impact on human life, the societal costs of OUD and

fatal opioid overdoses were estimated to be $1.02 trillion in the US in 2017, including

the costs of healthcare, criminal justice, and lost productivity (Florence et al., 2021).

To counter this problem, various kinds of policy measures have been taken (National

Academies of Sciences, Engineering, and Medicine, 2017). This includes personalized

preventive interventions aimed at individuals showing early symptoms or who are

predicted to be at a high level of risk, referred to as indicated interventions (National

Research Council and Institute of Medicine, 2009). These methods tailor prevention

and treatment by targeting them to the right patient at the right time. In planning

these interventions, a key step is to identify high-risk patients. In this work, we

present machine learning models to predict patient-level risk of various opioid-related

adverse outcomes. Then, we focus on various aspects of operationalization of these

models, including capacity planning for intervention, and tradeoffs that arise from

implementation considerations.

We show that machine learning models can be highly accurate for predicting

the risk of opioid-related adverse outcomes. When fitting an XGBoost model to

each of the outcomes AnyOpioidHarm, Overdose, and FatalOverdose, the least severe

outcome (AnyOpioidHarm) can be predicted with the highest accuracy, whereas it is

most challenging to predict the most severe outcome (FatalOverdose). We propose
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an alternative parsimonious modeling approach in which the model trained to predict

AnyOpioidHarm is also used to predict Overdose and FatalOverdose and find that

this improves AUC, particularly for prediction of FatalOverdose. This not only eases

implementation, since a healthcare organization would have to maintain only one

model rather than three, it also means that an organization can predict FatalOverdose

even without a data source recording deaths. Indeed, fatal opioid overdoses often

are not available in databases of health insurance claims or EHRs which are most

commonly used for building these risk prediction models.

We quantify the value of these prediction models in identifying a cohort with

whom to conduct interventions. We show that by forming a cohort using a small

fraction of patients who are estimated to be at high risk based on the above models,

a large fraction of future opioid-related outcomes would be potentially averted. Using

these prediction models as the basis for preventive interventions is therefore attractive

even in resource-constrained scenarios.

These machine learning models have multiple further desirable properties, in that

their predictive performance is robust to tradeoffs with other desirable objectives.

With very little compromise on accuracy, an easily interpretable decision tree model

can also be used to obtain risk estimates. As interventions might vary in the duration

they are effective for, we build separate models for varying prediction windows, and

find little change in predictive performance. Model performance is also robust to

delays in the availability of data.

Our dataset imposes some potential limitations on the results of our analysis.

Both our predictor variables and outcomes variables may be potentially censored. We

also do not have data from clinical notes which could provide additional information

beyond the structured data of diagnoses, prescriptions, encounters, and demographics.

Although these limitations may limit predictive power, they do not bias our analysis

because the available data mimics the data environment in which the models would

actually be deployed.

Our work opens up multiple avenues for further investigation on the role of indi-

cated interventions in controlling the opioid epidemic. To more accurately estimate
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the impact of an intervention program based on a predictive model, we would need

causal insights on how the intervention changes opioid disease progression, and how

long the intervention is effective for. These insights can be used to build a detailed

model for an appropriate timeline of conducting the intervention. Predictive models

can also be developed to predict which intervention will be effective on which patient,

further helping personalize interventions.
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Appendix A

Codes and variables for dataset

construction

The tables in this appendix provide further detail on the codes and definitions that

we used to transform our raw data into a dataset for analysis, as described in §2.2.
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Table A.1: ICD codes for cancer
Code Description

ICD-9:
140–149 Malignant neoplasms of lip, oral cavity, and pharynx
150–159 Malignant neoplasms of digestive organs and peritoneum
160–165 Malignant neoplasms of respiratory and intrathoracic organs
170–175 Malignant neoplasms of bone, connective tissue, skin, and breast
176–176 Kaposi’s sarcoma
179–189 Malignant neoplasms of genitourinary organs
190–199 Malignant neoplasms of other and unspecified sites
200–208 Malignant neoplasms of lymphatic and hematopoietic tissue

ICD-10:
C00–C14 Malignant neoplasms of lip, oral cavity, and pharynx
C15–C26 Malignant neoplasms of digestive organs
C30–C39 Malignant neoplasms of respiratory and intrathoracic organs
C40–C41 Malignant neoplasms of bone and articular cartilage
C43 Malignant melanoma of skin
C4A Merkel cell carcinoma
C44 Other malignant neoplasms of skin
C45–C49 Malignant neoplasms of mesothelial and soft tissue
C50 Malignant neoplasms of breast
C51–C68 Malignant neoplasms of genitourinary organs
C69–C72 Malignant neoplasms of eye, brain, and other parts of central nervous system
C73–C75 Malignant neoplasms of thyroid and other endocrine glands
C7A-C7B Neuroendocrine tumors
C76–C80 Malignant neoplasms of ill-defined, other secondary and unspecified sites
C81–C96 Malignant neoplasms of lymphoid, hematopoietic and related tissue
D37–D48 Neoplasms of uncertain behavior, polycythemia vera and myelodysplastic

syndromes
D49 Neoplasms of unspecified behavior
Q85.0 Neurofibromatosis (nonmalignant)

Notes: ICD-9 codes are from Lo-Ciganic et al. (2019), ICD-10 codes are from Office of
Inspector General (2018).
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Table A.2: Predictor variables and their definitions
Variable Description

Previous_Harm_N No. of previous incidents of AnyOpioidHarm
Previous_PDAMAT_N No. of previous incidents of Overdose, opioid dependence,

opioid abuse, or filled prescriptions for MAT
Previous_PD_N No. of previous incidents of Overdose or opioid dependence
Previous_Overdose_N No. of previous incidents of Overdose
Gender Female, male, unknown, or missing
Race Asian, Black, Hispanic, Native American, White, other, or

missing
Ethnicity Hispanic or Latino; not Hispanic or Latino; unknown; or

missing
Age Age in years
Outpatient_N No. of outpatient encounters in past 90 days
ED_N No. of emergency department encounters in past 90 days
Inpatient_N No. of inpatient encounters in past 90 days
Schedule_2_Ind Indicator of any schedule 2 prescription fills in past 90 days
Schedule_3_Ind Indicator of any schedule 3 prescription fills in past 90 days
Schedule_4_Ind Indicator of any schedule 4 prescription fills in past 90 days
Schedule_5_Ind Indicator of any schedule 5 prescription fills in past 90 days
Opioid_Benzo_Days Total days of co-prescription of opioids and benzodiazepines

in past 90 days

No. of prescription fills in past 90 days, of
Antidepressant_N Antidepressants
Benzo_N Benzodiazepines
Gabapentin_N Gapapentin
Muscle_Relaxant_N Muscle relaxants
Pregabalin_N Pregabalin
Buprenorphine_OUD_N Buprenorphine variants which are specifically used to treat

OUD
Methadone_N Methadone
Naltrexone_N Naltrexone
Buprenorphine_LA_N Buprenorphine (long-acting)
Butorphanol_SA_N Butorphanol (short-acting)
Codeine_SA_N Codeine (short-acting)
Dihydrocodeine_SA_N Dihydrocodeine (short-acting)
Fentanyl_LA_N Fentanyl (long-acting)
Fentanyl_SA_N Fentanyl (short-acting)
Hydrocodone_LA_N Hydrocodone (long-acting)
Hydrocodone_SA_N Hydrocodone (short-acting)
Hydromorphone_LA_N Hydromorphone (long-acting)
Hydromorphone_SA_N Hydromorphone (short-acting)
Levomethadyl_LA_N Levomethadyl (long-acting)
Levorphanol_LA_N Levorphanol (long-acting)
Meperidine_SA_N Meperidine (short-acting)
Morphine_LA_N Morphine (long-acting)
Morphine_SA_N Morphine (short-acting)
Opium_SA_N Opium (short-acting)
Oxycodone_LA_N Oxycodone (long-acting)
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Table A.3: Predictor variables and their definitions (continued)
Variable Description

No. of prescription fills in past 90 days, of
Oxycodone_SA_N Oxycodone (short-acting)
Oxymorphone_LA_N Oxymorphone (long-acting)
Oxymorphone_SA_N Oxymorphone (short-acting)
Pentazocine_SA_N Pentazocine (long-acting)
Propoxyphene_SA_N Propoxyphene (long-acting)
Tapentadol_LA_N Tapentadol (long-acting)
Tapentadol_SA_N Tapentadol (short-acting)
Tramadol_LA_N Tramadol (long-acting)
Tramadol_SA_N Tramadol (short-acting)

Total days supply of prescription fills in past 90 days, of
Antidepressant_DS Antidepressants
Benzo_DS Benzodiazepines
Gabapentin_DS Gabapentin
Muscle_Relaxant_DS Muscle relaxants
Pregabalin_DS Pregabalin
Buprenorphine_OUD_DS Buprenorphine variants which are specifically used to treat

OUD
Methadone_DS Methadone
Naltrexone_DS Naltrexone
Buprenorphine_LA_DS Buprenorphine (long-acting)
Butorphanol_SA_DS Butorphanol (short-acting)
Codeine_SA_DS Codeine (short-acting)
Dihydrocodeine_SA_DS Dihydrocodeine (short-acting)
Fentanyl_LA_DS Fentanyl (long-acting)
Fentanyl_SA_DS Fentanyl (short-acting)
Hydrocodone_LA_DS Hydrocodone (long-acting)
Hydrocodone_SA_DS Hydrocodone (short-acting)
Hydromorphone_LA_DS Hydromorphone (long-acting)
Hydromorphone_SA_DS Hydromorphone (short-acting)
Levomethadyl_LA_DS Levomethadyl (long-acting)
Levorphanol_LA_DS Levorphanol (long-acting)
Meperidine_SA_DS Meperidine (short-acting)
Morphine_LA_DS Morphine (long-acting)
Morphine_SA_DS Morphine (short-acting)
Opium_SA_DS Opium (short-acting)
Oxycodone_LA_DS Oxycodone (long-acting)
Oxycodone_SA_DS Oxycodone (short-acting)
Oxymorphone_LA_DS Oxymorphone (long-acting)
Oxymorphone_SA_DS Oxymorphone (short-acting)
Pentazocine_SA_DS Pentazocine (short-acting)
Propoxyphene_SA_DS Propoxyphene (short-acting)
Tapentadol_LA_DS Tapentadol (long-acting)
Tapentadol_SA_DS Tapentadol (short-acting)
Tramadol_LA_DS Tramadol (long-acting)
Tramadol_SA_DS Tramadol (short-acting)
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Table A.4: Predictor variables and their definitions (continued)
Variable Description

No. of diagnostic codes entered in past year, for
Opioid_Abuse_N Opioid abuse
Opioid_Dependence_N Opioid dependence
Opioid_Use_N Unspecified use of opioids
Opioid_Adverse_Effects_N Adverse effects due to opioids
Opioid_Poisoning_N Opioid poisoning
Drug_Dependence_N Dependence on drug(s) other than opioids
Drug_Abuse_N Abuse of drug(s) other than opioids
Drug_Other_Problems_N Other problems involving drug(s) other than opioids
Drug_Use_N Unspecified use of drug(s) other than opioids
Drug_Adverse_Effects_N Adverse effects due to drug(s) other than opioids
Drug_Poisoning_N Poisoning by drug(s) other than opioids
Alcohol_Dependence_N Alcohol dependence
Alcohol_Abuse_N Alcohol abuse
Alcohol_Use_N Unspecified use of alcohol
Alcohol_Other_Problems_N Other alcohol-related problems
Alcohol_Poisoning_N Alcohol poisoning
Anxiety_N Anxiety
Bipolar_Disorder_N Bipolar disorder
Personality_Disorders_N Personality disorders
Depression_N Depression
ADHD_N Attention deficit hyperactivity disorder (ADHD)
Schizophrenia_N Schizophrenia
Psychotic_Disorders_N Psychotic disorders other than schizophrenia

Table A.5: NDC codes for non-opioid drugs
Drug class Source of codes

Antidepressants National Committee for Quality Assurance (2018)
Benzodiazepines National Center for Injury Prevention and Control (2018)
Muscle relaxants National Center for Injury Prevention and Control (2018)
Gabapentinoids American Society of Health-System Pharmacists, Inc. (2019)
Pregabalin American Society of Health-System Pharmacists, Inc. (2019)
Naltrexone Chronic Condition Data Warehouse (2019)

Notes: AHFS ® Pharmacologic/Therapeutic Classification © used with permis-
sion. ©2020, the American Society of Health-System Pharmacists, Inc. (ASHP).
The Data is a part of the AHFS Drug Information ®; ASHP is not responsible for
the accuracy of transpositions from the original context.
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Table A.6: ICD codes for opioid-related harm
Type of harm Code Description

Unspecified use F11.9 Opioid use, unspecified
Opioid abuse 305.5[012] Opioid abuse

F11.1[024589] Opioid abuse
Opioid 304.0[012] Opioid type dependence
dependence 304.7[012] Combinations of opioid type drug with any other drug

dependence
F11.2[024589] Opioid dependence

Adverse effects E935.0 Heroin causing adverse effects in therapeutic use
of opioids E935.1 Methadone causing averse effects in therapeutic use

E935.2 Other opiates and related narcotics causing adverse effects in
therapeutic use

E940.1 Opiate antagonists causing adverse effects in therapeutic use
T40.0X5 Adverse effect of opium
T40.2X5 Adverse effect of other opioids
T40.3X5 Adverse effect of methadone
T40.4X5 Adverse effect of other synthetic narcotics
T40.605 Adverse effect of unspecified narcotics
T40.695 Adverse effect of other narcotics

Opioid 970.1 Poisoning by opiate antagonists
poisoning 965.00 Poisoning by opium (alkaloids), unspecified

965.01 Poisoning by heroin
965.02 Poisoning by methadone
965.09 Poisoning by other opiates and related narcotics
E850.0 Accidental poisoning by heroin
E850.1 Accidental poisoning by methadone
E850.2 Accidental poisoning by other opiates and related narcotics
T40.0X[14] Poisoning by opium
T40.1X[14] Poisoning by heroin
T40.2X[14] Poisoning by other opioids
T40.3X[14] Poisoning by methadone
T40.4X[14] Poisoning by other synthetic narcotics
T40.60[14] Poisoning by unspecified narcotics
T40.69[14] Poisoning by other narcotics

Notes: Codes that begin with a digit or the letter E are ICD-9 codes, and the remaining
codes are ICD-10 codes. Square brackets indicate that any one of the digits within the
brackets may occupy that position in the code. Codes are derived from Heslin et al. (2017).
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Appendix B

XGBoost classification model

In §2.5, we reported the performance of XGBoost models trained using a ranking

objective. We additionally train an XGBoost model with a classification objective,

using the parismonious approach (i.e., a single model trained on the AnyOpioidHarm

outcome). We report its performance in Table B.1, and find that it is similar to the

results obtained for the ranking-based parsimonious model (Table 2.3).

Table B.1: AUC of XGBoost classification model

Outcome AU-ROC
AnyOpioidHarm 0.95 (0.95 - 0.95)

Overdose 0.87 (0.86 - 0.89)
FatalOverdose 0.81 (0.69 - 0.92)

Notes: Parentheses report 95% confi-
dence intervals.
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Appendix C

OCT training

The OCT model in §3.2.1 takes a much longer time to train as compared to the

XGBoost models. Thus, we sub-sample the training data for use by the OCT model.

In particular, we randomly sample half of the observations from the full training

dataset and use the 50 most important features as reported by the XGBoost model

to construct the training dataset for the OCT model. The resulting decision tree

itself is pictured in Figure C-1. We stress that the variables selected for the tree are

predictive, but do not imply a causal effect on outcomes.

Figure C-1: Optimal classification tree

Notes: This is a visualization of the first few layers of the optimal classification tree.
no_outcome stands for predicting no occurrence of AnyOpioidHarm and any_outcome
stands for predicting an occurrence of AnyOpioidHarm. The nodes shaded gray denote
a collapsed subset of the tree whereas the nodes shaded red are leaf nodes.
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