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Abstract

The safe and reliable operation of a nuclear power plant requires a meticulous under-
standing of the various physics phenomena at play within the reactor core. Monte Carlo
neutron transport methods are commonly used for the purpose of high-fidelity full-core
reactor analysis, stochastically sampling a large number of neutron histories throughout
the reactor core with minimal approximations to the underlying phase space of the
problem. Monte Carlo methods, however, face several issues, primary of which is the
prohibitively large number of computational resources required for tallied quantities to
reach adequate uncertainty levels for full-core analysis. Advances in High-Performance
Computing (HPC) systems and significant code parallelization of Monte Carlo algo-
rithms have helped to reduce overall time to solution. This thesis extends these efforts
by proposing a novel ensemble averaged Coarse Mesh Finite Difference (CMFD) simulation
strategy in order to improve parallel efficiency on HPC systems while also addressing
other issues surrounding Monte Carlo methods including fission source stationarity, real
variance calculations, and nonlinear coupling schemes.

This thesis begins by proposing a fission source stationarity diagnostic that monitors
the behavior of Functional Expansion Tally (FET) coefficients. This method relies on the
efficient computation of meshless quantities that signal whether various spatial modes
of the fission source have stopped fluctuating within statistical limits, avoiding issues of
false convergence that are prevalent with more commonly used diagnostics that rely
on Shannon entropy calculations. This work provides the framework for establishing
total runtimes associated with Monte Carlo inactive generations, as well as a heuristic
for exact runtime savings from source acceleration methods such as CMFD.

Next, a rigorous sensitivity study of CMFD source acceleration is conducted in order
to pinpoint the exact parameters that affect the evolution of Monte Carlo simulations
in the inactive and active generations. Here, it is found that coarse CMFD meshes
should be used with an expanding windowing scheme that employs a relatively large
maximum window size in order to reduce overall runtime while ensuring that variance
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levels are on par with un-accelerated simulations. Runtime analysis also indicates that a
hybrid solution that combined a loosely-converged CMFD solution during initial inactive
generations while reverting to un-accelerated Monte Carlo during the later inactive
generations should be employed in order to reduce overall runtime to stationarity,
continuing to turn off CMFD feedback into the active generations as well.

Finally, a comparison of various Monte Carlo run strategies motivates the develop-
ment of the ensemble averaged CMFD simulation strategy, which is shown to be the
optimal simulation paradigm on large-scale computing systems. From the perspective
of parallel efficiency, ensemble averaged CMFD is shown to improve load balancing
by 5-10% on representative 1-D, 2-D, and 3-D reactor problems, while the use of an
aggregate seed stopping criteria ensures that initial error levels converge at ideal 1/

p
N

rates, where N is the total number of Monte Carlo ensembles simulated in parallel.
Ensemble averaging also provides a simple and accurate method for calculating real
variance estimates across statistically independent ensembles of neutrons, something
that is not typically possible with single seed Monte Carlo simulations. Moreover, the
asynchronous ensemble averaged CMFD implementation provides better fault tolerance
against possible node failures on large-scale computer facilities. Finally, arguments for
how ensemble averaging can be applied to nonlinear multiphysics coupling schemes as
well as Graphics Processing Unit (GPU)-based computer systems are also presented.
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Title: Associate Department Head, Professor of Nuclear Science and Engineering

Thesis Supervisor: Kord Smith
Title: KEPCO Professor of the Practice of Nuclear Science and Engineering

Thesis Reader: Paul Romano
Title: Computational Scientist, Argonne National Laboratory
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Chapter 1

Introduction and Background

1.1 Motivation

The safe and reliable operation of a nuclear power plant requires a meticulous under-

standing of the various physics phenomena at play within the reactor core. The frequency

and vast diversity of particle interactions within a nuclear reactor dictate the isotopic

evolution of materials that constitute the reactor core, the temperature distributions

of fuel and coolant media, and any short-term transients that could potentially lead to

accidents. Numerical simulations play an integral role in the field of nuclear reactor

physics, whereby the neutron physics that govern reactor core conditions are modeled

to accurately predict the power production, core reactivity, isotopic depletion, and time-

dependent behavior of nuclear systems. Advances in such nuclear reactor simulations

have contributed immensely to the safety and performance of the current fleet of Light

Water Reactors (LWR’s). Moreover, the predictive capabilities of reactor simulations

are being used today to simulate novel reactor concepts, facilitating the design and

development of next-generation nuclear reactors.

Current industrial standards in full-core Light Water Reactor (LWR) simulations

employ nodal diffusion methods, which trade off modeling accuracy for computational

speed. At the core-level, such methods assume a smoothly varying neutron flux distribu-

tion over a coarse spatial and energy grid and utilize a diffusion-based solution to solve

for power distributions within the core. Macroscopic cross sections that serve as the
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inputs to the diffusion equation are homogenized over assembly or quarter-assembly

regions and a few energy groups, and these cross sections are interpolated over a wide

range of Thermal Hydraulic (TH) conditions to solve the coupled neutron diffusion-TH

equations. While a number of approximations are embedded into this simulation proce-

dure, the biggest draw for nodal diffusion methods lies in its time to solution, where

full-core analyses can be conducted on the order of core-seconds and yield ~1% RMS

errors in pin power reconstructions at beginning of cycle, and 3-4% at high depletion [3].

The various assumptions underlying these methods, however, are highly specialized to

the modeling of LWR’s and are not easily transferable to arbitrary reactor configurations.

Furthermore, the homogenization techniques used in nodal diffusion simulators make

it difficult to capture highly localized flux gradients that may arise in more complex

core designs. Thus, the nuclear industry has looked to high-fidelity tools for reactor

modeling in order to reduce the number of approximations embedded into the simulation

tool-chain and allow for more accurate solutions on finer grids.

High-fidelity tools are typically divided into two categories: deterministic and proba-

bilistic methods. Deterministic methods such as Discrete Ordinates (SN ), Simplified PN ,

and Method of Characteristics (MOC) all aim to solve the Boltzmann transport equation

by discretizing the spatial, angular, and energy phase space variables on a much finer

grid than a diffusion-based solution. However, these discretizations, especially in the

energy domain, can still yield significant errors in the simulations. For example, the

process of generating multigroup cross sections for deterministic calculations requires

a collapse of pointwise continuous-energy cross section values over a bin of discrete

energy groups, and depending on the placement of these group boundaries and the

number of groups used, important energy self-shielding effects within the core can be

poorly predicted. As the grid refinement of the problem increases, so too do the memory

requirements for the problem. The issues from cross section generation are further

compounded once TH coupling and depletion are introduced, as the multigroup cross

sections now need to be generated as a function of energy, material density, and material

temperature [4, Chapter 9].

In order to avoid the generation of multigroup cross sections altogether, probabilistic
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Monte Carlo methods utilize pointwise continuous-energy nuclear data to stochastically

sample individual neutrons from life to death through a reactor, aggregating bulk neutron

behavior with some stochastic uncertainty to characterize distributions of interest. While

Monte Carlo methods make minimal approximations to the underlying geometry of

the problem and the energy grid, a substantial number of particles must be simulated

in order to reach adequate uncertainty levels for full-core analyses. This combined

with poor convergence rates can make Monte Carlo methods quite computationally

burdensome.

Many of the computational difficulties associated with high-fidelity nuclear reac-

tor simulations have been alleviated with the advancements in HPC systems built for

scientific computing. The nation’s top supercomputers are expected to achieve peak

calculation rates on the order of exaflops (1018 floating-point operations per second), and

this increase in computational capacity has paved the way for the reactor physics com-

munity to develop highly scalable simulation techniques for modeling three-dimensional

full-core LWR reactors. The peak performance of a supercomputer is only one small

component of what dictates the overall runtime of such simulations, however, and this

thesis expounds on this topic by pinpointing key bottlenecks in current probabilistic

simulation strategies and proposing a novel algorithm for Monte Carlo simulations that

is better suited for such exascale HPC architectures.

1.2 The Monte Carlo Method

Monte Carlo simulations track the particle interactions of neutrons within nuclear reac-

tors by stochastically sampling the transport of neutrons from life to death. Probability

distributions based on nuclear data dictate the distances these particles travel after each

collision, the types of collisions that occur, as well as the positions and outgoing energies

and angles of particles after each collision. As such, Monte Carlo methods treat the

underlying geometry and energy of the particles almost exactly without the need for any

discretizations to the solution phase space. The method of successive generations links

fission sites of a previous generation of particles to the source sites for the following
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generation, and the statistically-averaged behavior of these particles accumulated from

generation to generation determines the distributions of tallied quantities such as reactor

power and fission rates with some stochastic uncertainty. The independent nature of

neutron histories lends Monte Carlo methods quite naturally to the parallelization of

transport algorithms on multi-core computer architectures [5]. However, billions or even

trillions of particle histories still need to be simulated for reactor-type problems before

stochastic uncertainties reach acceptable limits in order to account for the number of

unknowns in the problem when small tally regions are used. Moreover, these particles

are not truly independent from a statistical point of view and this further degrades

convergence in the tally uncertainty rates . Thus, Monte Carlo methods pose a sig-

nificant computational burden and require large-scale computing systems to reduce

time-to-solution to adequate levels.

1.3 Evolution of HPC Architectures

In order to understand the parallel performance of Monte Carlo on large-scale computer

systems, a brief discussion about the trends in supercomputing is instructive. The first

computer to be coined a supercomputer was the Control Data Corporation (CDC) 6600,

built in 1964 and achieving 3 megaflops on a single Central Processing Unit (CPU)

machine (by comparison, the first Raspberry Pi built in 2012 was able to achieve 42

megaflops) [6]. Cooled with Freon circulation, the CDC 6600 was a relatively small

machine, built with four racks measuring 0.89m in width, 1.83m in depth, and 0.89m

in height each. Since then, the computing capabilities of computers grew exponentially

in accordance with Moore’s law [7], where manufacturing advances in the number of

transistors able to be packed onto a single circuit allowed for the doubling of processor

speeds roughly every 18 months. By 2006, however, single thread performance on CPU

’s began to flatten out as thermal limits began to restrict the number of transistors that

could be effectively utilized on a chip. With this realization, the computer industry in

general moved towards the adoption of multi-core architectures in order to keep up

with Moore’s law, where the number of logical cores in the system started increasing
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to compensate for the lack of improvement in single thread performance for each core.

With such systems, two forms of parallelization enable the efficient use of modern HPC

systems.

In the first paradigm - Single-Program Multiple-Data (SPMD) - multiple processors

execute a single program independently of each other. Each processor has its own set of

compute cores and unique memory so that processor units can operate on independent

chunks of a larger problem without ever having to communicate with each other. Typi-

cally, however, most algorithms require some level of broadcasting data to all processes

or gathering data across processors onto a single processor. In such cases, the Message

Passing Interface can be used to transfer data across processors through a network con-

nection. High-speed interconnects allow for efficient data transfer across compute nodes

on HPC systems, but can create bottlenecks in parallel efficiency as processors can spend

significant time idling waiting for data to be transferred or received.

The second paradigm - Single-Instruction Multiple-Data (SIMD) - utilizes vector

processing to efficiently perform the same instruction across a vector of data elements.

The set of instructions supported for vector arithmetic can be quite limited, thus making

it difficult to adapt a wide range of algorithms to be well-suited for such vectorization.

Regardless, most CPU architectures in modern supercomputers support SIMD vectoriza-

tion. For example, Argonne National Laboratory (ANL)’s supercomputer Theta, built

in 2016, uses Intel’s Xeon Phi Knights Landing processors to achieve a peak processor

speed of 11.7 petaflops. Each processor contains 64 cores and each core supports 2

512-bit SIMD vector units [8].

SIMD vectorization is the basis of parallelization for GPU’s as well, where such

chipsets possess a large number of simple cores optimized for vectorized calculations to

achieve higher peak computational performance than CPU ’s. This has led to the adoption

of General-Purpose Graphics Processing Unit (GPGPU)’s, where GPU’s originally designed

for efficient graphics processing are now used in general scientific and machine learning

domains to speed up applications. GPU’s will also become the building blocks for exascale

systems expected to come online in 2021. Oak Ridge National Laboratory (ORNL)’s

exascale supercomputer Frontier will contain 4 Advanced Mico Devices (AMD) GPU’s and
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1 AMD CPU per node and ANL’s exascale supercomputer Aurora will contain 2 Intel Xeon

CPU’s and 6 Intel Xe GPU’s per node to achieve exascale computing capabilities [9,10].

1.4 State of the Art in Monte Carlo Simulations

With these evolving computer architectures in leading HPC systems, application devel-

opers looking to develop scalable algorithms on such machines have had to significantly

adapt their methods and techniques to ensure that they leverage the supercomputer’s

parallelisms in the most optimal ways possible. This is especially true for Monte Carlo

simulations, where significant strides have been made to advance high-fidelity modeling

capabilities with incorporation of multiphysics feedback on leadership class computing

facilities. Nevertheless, many challenges still remain. To fully understand the existing

shortcomings with running full-core Monte Carlo simulations on these machines, one

must examine the advances in the field of Monte Carlo methods over the past decade. In

2012, Kelly et al. reported on the computational requirements surrounding Monte Carlo

simulations when trying to perform full-core simulations, and in the process illustrated

the many challenges that surrounded calculations of this scale at the time [11]. 200

billion active neutron histories and roughly 56,000 CPU-hours were required to con-

verge local tallies on the Nuclear Energy Agency (NEA) Monte Carlo benchmark [12]

to uncertainty levels where 95% of the tally regions had relative error levels in power

density of 1% or less at the 95% confidence interval. In order to ensure that statistical

uncertainties in the tally regions were not biased due to correlation effects, real variance

estimates had to also be calculated through a batching algorithm aimed to de-correlate

neutron histories from successive batches. Considering the computational resources

required just to simulate a single steady-state state point for a simplified performance

benchmark, the possibility of high-fidelity modeling was deemed unrealistic at the time

when considering any non-linear coupling scheme to incorporate thermal hydraulic

feedback, isotopic depletion, and/or transient analysis.

Since the publishing of the paper by Kelly et. al, however, much progress has

been made in terms of reducing the computational requirements of Monte Carlo while
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maintaining accurate statistics in tallied quantities. The improvements to parallel

efficiency, acceleration methods, real variance calculations, and non-linear coupling

capabilities will be examined further as these subjects motivate the objectives of this

thesis.

1.4.1 Parallelization Efforts

As previously mentioned, the perceived independence of neutron histories in Monte Carlo

simulations makes such methods simple to implement with SPMD parallelism. However,

the highly disjoint memory accesses and the stochastic nature of particle interactions

associated with Monte Carlo methods significantly degrade single core performance.

For example, every sampled particle collision requires a cross section lookup in memory

across a very wide range of energies. Memory bandwidth and performance have not

kept up at the same rate as Moore’s Law and thus frequent memory accesses required

by Monte Carlo simulations place significant performance penalties when run on HPC

systems. Likewise, the stochastic nature of particle histories implies that history-based

Monte Carlo simulations are unable to leverage the SIMD vectorization capabilities

provided by modern supercomputers, which require simple shared arithmetic operations

on large arrays of data.

Nevertheless, numerous efforts have been made to improve the parallel performance

of Monte Carlo transport with the goal of reducing time-to-solution on leadership com-

puting facilities. These improvements can come in different forms. Firstly, algorithmic

improvements to the Monte Carlo method such as parallelized fission bank algorithms

and tally reduction schemes are able to significantly reduce the total communication

costs from transferring data across independent processors on multi-core computer

platforms [13,14]. Similarly, strategies such as data decomposition via tally servers and

domain decomposition effectively reduce the memory limitations imposed from full-core

simulations that track the calculation of multiple tallies across various depletable materi-

als on fine spatial meshes [15–21]. Finally, many HPC system-specific optimizations have

been explored in order to reduce the run-times associated with tally updates, focused
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on reducing bottlenecks that arise when profiling tally routines for specific benchmark

geometries and processor architectures [22].

With the shift in HPC system towards GPGPU computing, this has also pushed the

reactor physics community towards overhauling the history-based Monte Carlo transport

algorithm entirely in favor of a vectorized approach. Event-based Monte Carlo groups

source particles based on the collision events in order to process like events on vector

units [23, 24]. Given that history-based Monte Carlo is better suited for CPU-based

systems and event-based Monte is better suited on the GPU, this can require two versions

of the same Monte Carlo application to be maintained in order to support computation

on both types of platforms [24]. Moreover, GPU’s tend to be limited on available on-node

memory, so this typically limits the maximum generation sizes that are achievable per

GPU [24].

1.4.2 Acceleration Methods

With these efforts in improving parallel efficiency in mind, another way to reduce overall

time to solution is to reduce the total number of neutron histories required to reach target

uncertainty levels. The total number of particles needed in a Monte Carlo simulation is

dependent on two factors. Firstly, a stationary fission source must be generated from

an initial starting guess in order to remove tally bias in the initial generations of the

simulation, since this fission source distribution is unknown a priori. This stage is known

as the inactive generations, where neutron histories are discarded and do not contribute

to accumulated tally results. A significant number of power iterations may be required

to reach this stationary distribution for reactor geometries due to their high dominance

ratios. While a variety of source acceleration schemes have been proposed to reduce the

computational requirements during this part of the simulation, CMFD - first proposed in

1983 to accelerate the convergence of nodal diffusion methods - will be the focus of this

thesis [25]. The specifics of the various source acceleration methods applied to Monte

Carlo will be examined more closely in later chapters.

The second stage of Monte Carlo simulations is referred to as the active generations,
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and this is where the tallies that are computed from a stationary fission source are accu-

mulated over a large number of generations in order to reduce statistical uncertainties

in each tally region. While ideal convergence rates in the active generations behave

as 1/
p

N with respect to the total number of particle histories, the presence of high

levels of correlation between successive generations of particles can significantly degrade

convergence rates [11,26,27]. The correlation stems from daughter neutrons in one

generation of particles being linked directly to the parent neutrons from a previous

generation. Multiple independent simulations can be used to de-correlate particles

across independent seeds, but will continue to be correlated over successive generations

as the number of active generations simulated increases [28]. Here, this thesis will

employ the term ensembles to describe independent simulations that differ solely by the

pseudo-random seed used to begin a Monte Carlo simulation.

1.4.3 True Variance Calculations

The computational overhead associated with correlated neutron generations raises the

subject of another important component to accurate Monte Carlo modeling - real variance

estimates. In the presence of strongly correlated tally regions, convergence rates in tally

uncertainties will reduce at a rate slower than 1/
p

N . However, variance calculations

that neglect these correlation effects yield estimates lower than the true values, resulting

in biased confidence intervals for tally results. Kelly et al. observed this phenomenon

when simulating the NEA benchmark and use the batching technique to obtain true

variance estimates [11]. However, batching reduces the number of available samples to

make variance estimates and can yield accurate but imprecise variance estimates [28].

Since then, the autoregressive (AR) model has been proposed to predict the under-

estimation of variance in Monte Carlo calculations but its scope is limited to 1-D problems

where the eigenvalue and eigenfunctions of higher-order modes in the fission source

distribution can be calculated analytically [29]. The simulation code MCCARD uses a

real variance estimation method based on a stochastic propagation model that estimates

the inter-cycle covariance of the fission source distribution [30, 31]. Miao designs
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a rigorous method for quantifying the level of correlation present in a Monte Carlo

simulation in order to accurately report variance estimates, and further goes on to

develop a run strategy to reduce correlations between generations through the Delayed

Neutron method [32–34]. However, the complexity associated with this method has

limited its widespread use in Monte Carlo solvers.

Once again, independent ensembles of Monte Carlo runs can be used to report

accurate variance levels, since these ensembles are uncorrelated from each other and

thus no adjustment in variance calculations need to be made for such run strategies.

However, the use of independent ensembles requires that each ensemble be evolved

independently and therefore places a higher burden on the inactive generations. This

ultimately increases the number of discarded particle histories and can reduce the active

neutron histories available to calculate variance levels compared to single ensemble

strategies. For example, if an ensemble of 10 million neutrons requires 10 generations

to reach stationarity, then a simulation running ten independent ensembles with 10

million neutrons per ensemble will discard 10 ensembles × 10 inactives × 10 million

histories = 1 billion neutron histories before active generations can begin. By contrast,

a single ensemble will require 100 million histories to reach stationarity and therefore

the remaining 900 million histories can be dedicated towards simulating the active

generations with correlated convergence rates. For typical simulations that require many

more inactive generations to reach stationarity, the total number of discarded neutron

histories in a multi-ensemble approach is prohibitively too high to be able to reduce total

simulated neutron histories while providing accurate variance measurements. Thus,

a single ensemble run with very large number of active generations and a batching

technique continues to be the preferred approach to running Monte Carlo simulations

with adequately low and accurate variance estimates.

1.4.4 Coupling with Nonlinear Solvers

With the advent of powerful supercomputers to dedicate towards high-fidelity simu-

lations, recent trends in the nuclear community have focused on nonlinear coupling
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schemes between the most accurate methods for multiphysics coupling. For exam-

ple, significant efforts between ANL, ORNL, and MIT have been made on the front

of coupled Monte Carlo for neutron transport with high-fidelity Computational Fluid

Dynamics (CFD) for TH calculations on an Small Modular Reactor (SMR) geometry [35].

Eventually, depletion analysis for this problem will also be included that will signifi-

cantly add to the nonlinearity of this tightly coupled problem [36]. Such high precision

modeling was previously unimaginable due to the sheer computational cost associated

with each physics solver involved in the coupled simulation workflow.

Recent investigations into coupling schemes show, however, that a direct coupling

between fully converged high-fidelity physics solvers is not the most efficient way to

generate accurate high-fidelity solutions to feedback problems. Instead, a single-batch

approach to Monte Carlo-TH coupling is shown to increase stability in the steady-state

solution while reducing time spent in costly Monte Carlo power iterations [37]. In such

a scheme, temperature updates occur between unconverged (i.e., stationarity not being

met) generations of Monte Carlo so that power levels change gradually between TH

updates instead of potentially creating instabilities by updating temperature only once a

fully converged Monte Carlo solution is generated.

Such a coupling scheme illustrates the importance of using low-order methods to

inexpensively pass solution fields back and forth between coupled solvers to generate

an approximate solution before ultimately refining the solution using higher-fidelity

methods. Otherwise, a direct high-fidelity coupling scheme is more susceptible to insta-

bilities that can be dampened through under-relaxation, but slows down convergence

rates between solvers that already possess significant computational costs [38]. A recent

extension of this idea comes from Harper in his Ph.D. dissertation where he tightly

couples a Monte Carlo-based low-order CMFD solution with a subchannel code using

tally derivatives to inexpensively generate an approximately converged TH coupling

scheme that is later refined by high-fidelity Monte Carlo [39]. In such a simulation

scheme, CMFD acts as the medium for efficient coupling between low-order transport

and TH solvers, which is then refined by single Monte Carlo iterations to add higher

fidelity to the solution. By doing so, Harper is able to generate stationary power distribu-
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tions in roughly fifteen generations for a quarter-core Pressurized Water Reactor (PWR)

benchmark simulation with temperature feedback. Johnson devises a similar approach to

Monte Carlo simulations coupled with depletion solvers, where reduced order methods

are used to evolve reaction rates on fine time steps efficiently and inform high-fidelity

Monte Carlo updates on coarser time intervals [40].

1.5 Objectives of Thesis

In this thesis, the issues surrounding Monte Carlo parallelization, acceleration methods,

real variance calculations, and nonlinear coupling will be explored in much detail. The

development of acceleration methods and parallelization of Monte Carlo methods on

HPC systems have occurred relatively independently of each other, and this work will

serve to link these concepts together to propose a novel simulation strategy that can

be used to run Monte Carlo efficiently on large-scale computing systems. This method,

coined ensemble averaged CMFD begins with the CMFD acceleration method for Monte

Carlo as its foundation and uses an ensemble averaged approach to generate reliable

tally statistics while minimizing overall runtime. Here, ensemble averaging refers to

the use of running multiple ensembles to generate mean and variance levels in the

underlying tally data across independent ensembles.

Before discussing the specifics of the ensemble averaged CMFD approach, this thesis

begins by investigating accurate stationarity diagnostics in Monte Carlo and also conduct-

ing a rigorous analysis of the exact performance benefits from using CMFD compared to a

non-accelerated Monte Carlo simulation. In order to accurately distinguish performance

benefits between inactive and active generations, a robust stationarity diagnostic is

needed in order to pinpoint when a stationary fission source has been achieved and

active generations can commence. Likewise, in order to make a fair comparison between

accelerated and non-accelerated simulations, an in depth investigation of CMFD accel-

eration is carried out in order to identify the exact parameters that contribute to the

performance benefits from acceleration methods. Figures of merit for such studies not

only include total number of generations to stationarity, but will also look at variance
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levels in the instantaneous fission source as well as the overall runtime on multi-core

computing systems.

On the subject of nonlinear coupling, this thesis will make a broad case for how

ensemble averaging can be applied to nonlinear multiphysics coupling schemes as well,

but specific numerical experiments will not be carried out. Ultimately, ensemble averaged

techniques can be applied to a variety of nonlinear solvers, and this thesis focuses on

CMFD as a surrogate for such schemes since it is tightly coupled to the Monte Carlo

routine and is relatively inexpensive to run. Similarly, the arguments for this work will

focus on CPU-based computer architectures due to availability, but ensemble averaging

has applications on GPU-based machines as well. The specifics of these applications

towards general nonlinear coupling schemes and GPU systems will be presented in the

concluding section of this thesis.

With this in mind, the following are regarded as major objectives of this thesis:

• Develop a heuristic and provide a framework to correctly diagnose fission source

stationarity in order to distinguish between inactive and active generations.

• Characterize the key parameters affecting the performance of CMFD acceleration,

based on generations to stationarity, variance levels in the instantaneous fission

source, and overall runtime.

• Develop and evaluate the efficacy of an ensemble averaged CMFD approach on HPC

systems and compare its performance to a variety of Monte Carlo run strategies.

This thesis will heavily utilize the open source Monte Carlo particle transport code

OpenMC to carry out numerical experiments. A detailed description of the code’s im-

plementation can be found in Romano’s PhD dissertation and accompanying journal

articles [41–43]. Furthermore, the following definitions are included below to disam-

biguate terms that relate to Monte Carlo methods that will commonly occur in this

thesis:

• Particle history: The simulation of an individual neutron from life to death through

a reactor, as well as any secondary particles created. Each collision in a particle’s
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histories can contribute to the accumulation of tallied quantities.

• Generation: A collection of independent neutron histories grouped together to

solve as a single power iteration

• Generation size: Number of particles in a generation

• Batch: A grouping of multiple generations into a single tally realization in order

to reduce correlation effects between successive batches

• Batch size: Number of generations in a batch. A large generation size implies a

larger generation lag between batches and can be used to measure real variance

according to [11].

• Ensemble: An independent run of Monte Carlo with some fixed generation size

but a different pseudorandom starting seed. Multiple ensembles are uncorrelated

from each other and thus can accurately measure real variance estimates.

• Inactive generation: Initial generations in a Monte Carlo simulation where bias in

the initial fission source distribution guess is removed before eventually reaching

stationary levels

• Active generation: Latter generations in a Monte Carlo simulation after which fission

initial source distribution bias and tallied quantities can begin to be accumulated

• Stationarity: The point at which the instantaneous fission source has reached

a stable level of fluctuation and active generations can commence. Since the

evolution of the fission source from inactive to active generations is a stochastic

process, the exact point at which stationarity occurs is not precisely defined.

• Fission bank: The spatial locations of fission sites that occur after the simulation

of a single generation of neutron histories

• Source bank: Initial location of source sites at the beginning of a generation.

Typically in an eigenvalue simulation, the source bank is sampled from the fission
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bank of a previous generation in order to retain the same number of neutron

histories per generation.

• Instantaneous fission source: Nu-fission reaction rates at each mesh and energy

group for a single generation

• Accumulated fission source: The average of instantaneous fission source from the

first active generation to a given active generation.

1.6 Thesis Outline

This thesis is segmented into three parts. Part I consists of this introductory chapter.

Part II discusses the development of reliable stationarity diagnostics for reactor-type

Monte Carlo eigenvalue simulations and explores a myriad of Monte Carlo run strategies

to evaluate the holistic benefits of CMFD on the grounds of overall runtime as well as

fission source variance levels. Chapter 2 introduces the framework for using Functional

Expansion Tallies (FET’s) to assess stationarity in the fission source. Chapter 3 discusses

how this stationarity diagnostic can be applied to simulations that use source acceleration

schemes such as CMFD and delineates the key parameters that contribute to the efficacy

of CMFD to determine optimal run strategies for CMFD-based Monte Carlo simulations.

Part III discusses the novel ensemble averaged CMFD approach and how it can be

optimized to run efficiently on HPC architectures. Chapter 4 motivates the need for

ensemble averaging in order to obtain accurate real variance estimates, and outlines

the different run strategies that will be evaluated on much larger computing machines.

One of the biggest draws of the ensemble-averaged CMFD approach is that it lends

itself to a client-server like communication model that improves load balancing through

asynchronous data communication. The implementation of this asynchronous ensemble

averaged CMFD approach will also be examined in Chapter 4. Finally in Chapter 5, the

asynchronous ensemble averaged CMFD approach will be applied to the final test case -

a three-dimensional full-core benchmark geometry.

Part IV summarizes the progress made in this thesis for ensemble averaging techniques
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in Chapter 6.
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Part II

Optimal Run Strategies Using

Traditional Monte Carlo Methods
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Chapter 2

Stationarity Diagnostics

As discussed in Chapter 1, Monte Carlo simulations are divided into two stages - the

inactive and active generations. This is needed since the converged source distribution

is not known a priori so during the inactive generations, an initial source distribution is

iterated on until it reaches stochastic convergence. At this point, the source distribution

is said to have reached stationarity and the tallying process can begin, where quantities of

interest such as power distribution and reaction rates are computed. The difficulty with

this approach, however, is that an adequate transition point between inactive and active

generations is difficult to determine, since the underlying source distribution will always

include statistical fluctuations. What may seem like a stationary source distribution

could be a slowly converging process with small statistical variations, while a source

distribution that looks unconverged due to large variations could actually be stationary

relative to the inherent noise in the system. In any case, determining a stationarity

point is an essential part of the Monte Carlo algorithm for eigenvalue problems. Start

the active generations too quickly and tallied results will bear significant bias from an

unconverged source distribution. On the other hand, if too many inactive generations

are simulated, computation time is wasted since the tallying process is delayed and each

additional generation no longer contributes to making the final tallied source distribution

any more accurate. Once source acceleration methods are employed to reduce runtime

in the inactive generations, a consistent metric for determining this cutoff point becomes

necessary as well.
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In order to address these issues, a new stationarity diagnostic is introduced in

this chapter that is meshless, determines stationarity on-the-fly, and characterizes how

converged the fission source is based on the number of neutrons in the system. This

chapter begins with an overview of commonly used metrics to diagnose stationarity,

presented in Section 2.1. The newly proposed stationarity diagnostic is based on FET’s,

which are explained in Section 2.2. Section 2.3 describes the methodology that will be

used to determine stationarity, and the results will be tested on 1-D and 2-D reactor

problems in Sections 2.4 and 2.5 respectively, where this newly-developed stationarity

diagnostic will be shown to outperform more traditional methods for assessing fission

source stationarity. Finally, Section 2.6 discusses the specific implementation details of

the FET-based stationarity diagnostic in the OpenMC Monte Carlo particle transport code

in order to illustrate how this methodology carries negligible overhead to the overall

runtime. The material in this chapter largely follows from a paper published in Annals

of Nuclear Energy [44].

2.1 Background on Stationarity Metrics

Much work has been carried out in the domain of stationarity diagnostics to characterize

when exactly to transition from inactive to active generations [45–49]. Shannon entropy

is perhaps the most commonly used metric, and gained wide acceptance once it was

understood broadly that simply monitoring the value of ke f f was insufficient in trying to

determine a stationary source distribution [45–49]. Shannon entropy relies on the use

of a spatial mesh for binning fission source sites, and is defined as,

S(n) = −
∑

m

pm(n) log2(pm(n)) (2.1)

where n is the generation number, m is the mesh index, and pm(n) is the fraction

of neutron source sites found in the m-th mesh cell in generation n. Once this scalar

value has stopped changing within statistical bounds, the fission source is said to have

reached stationarity, and active generations can commence.
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While Shannon entropy is a straightforward value to compute within a Monte Carlo

solver, it has been shown to lead to instances of false convergence, especially for loosely-

coupled problems with high dominance ratios [50, 51]. Furthermore, the value of

Shannon entropy is dependent on the kind of spatial mesh used for the problem, making

it difficult to generate reference values to compare to when trying to assess stationarity.

Reference Shannon entropy values change based on how refined the spatial mesh being

used is, and as a result different prescriptions can be made as to when to begin active

generations. These drawbacks will be explored more closely in Section 2.3, where

stationarity behavior based on Shannon entropy will be compared to the behavior of a

newly-devised diagnostic.

The limitations with Shannon entropy stem largely from the fact that a piecewise

constant function is used to characterize the fission source distribution. The fractional

neutron population in each mesh cell is summed over the entire domain, and while

the entropy value can represent fluctuations in the fission source distribution over the

entire domain of interest, it is likely to neglect any local changes that occur over a

finer region within the core. Moreover, Shannon entropy values are dependent on

the transport of neutrons from cell to cell, and the slow migration of fission source

sites from one region of the reactor to another can yield similar results for Shannon

entropy despite an unconverged fission source. Thus, more recent methods have started

to look at variations in higher order shape functions of the underlying fission source

distribution. Nowak et al. propose two additional metrics to supplement the use of the

entropy function to detect local fluctuations due to neutron clustering [52]. The first

is based on examining higher order moments of Shannon entropy to ensure that these

moments of the underlying fission source distribution have also reached stationarity,

while the second looks at the center of mass of the neutron population to make sure that

it does not fluctuate in the presence of strong neutron clustering. While these metrics are

clearly linked in systems with considerable undersampling, this work does not identify a

clear criterion to establish how much fluctuations in these metrics can be tolerated in

the context of systems that appear to have converged fission sources. This is especially

true for more complicated, full-core geometries, where Monte Carlo simulations with a
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seemingly sufficient number of particles per generation exhibit first moment entropy

values that don’t ever seem to fully converge [1].

Wenner expands on the center-of-mass-based diagnostic by devising a rigorous set of

statistical tests to definitively pinpoint when the fission source has reached stationarity

[53]. Since a neutron population’s center of mass will always be fluctuating around the

problem center for symmetric problems with symmetric starting sources, Ueki introduces

a stationarity indicator based on analyzing geometric centers of nine different locations

via the Wilcoxon rank sum to better characterize fluctuations occurring within the

fission source [54]. Shim and Kim also devise two stopping criteria for determining

stationarity based on the "intergeneration correlation length", the minimum number of

generations between two uncorrelated fission source distributions [55]. The stopping

criteria rely on statistical analysis of the covariance matrix of stochastic error components

between two stationary cycles, and assume that a generation length between two

completely uncorrelated source distributions exists and can be estimated. However,

for high dominance ratio problems, this correlation can be persistent for hundreds of

generations, and it is unclear whether the estimation techniques for this generation

length are applicable to a wide range of problems.

As a whole, the stationarity metrics presented thus far that have been applied to

nuclear reactors have primarily focused on test problems with symmetric geometries

and symmetric initial source guesses. However, more realistic problems are composed

of systems with strong asymmetries, which these methods have not been tested on

rigorously. Moreover, while these diagnostics provide prescriptions for how many

generations should be simulated in the inactive generations to reach stationarity, they

do not characterize the accuracy of the underlying fission source distribution itself. This

accuracy is largely a function of the number neutrons simulated per generation, but

most analysis is done with a fixed number of neutrons for each test problem, where it is

assumed that the same number of inactive generations should be simulated irrespective of

the number of neutrons per generation. Instead, stationarity metrics should account for

the global system-level of variance inherent within the simulation in order to determine

generations to stationarity.
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Figure 2-1: Monte Carlo errors decomposed by DFT frequency for 2D BEAVRS problem
with 2.5 million neutrons per generation [1].

Spectral analysis of the fission source brings insight into this notion of system-level

variance that is dictated by the number of particles in the problem [1]. Li decomposes the

error in fission source into their spatial frequencies using the Discrete Fourier Transform,

and the plots of these error frequency strengths are given in Figures 2-1 and 2-2 for the 2D

BEAVRS problem with 2.5 million and 10 million neutrons per generation, respectively.

These graphs illustrate how low-order frequency modes require source iterations to

remove initial bias, while high-order frequencies (such as the order 65 mode) contribute

to a nearly constant level of error due to statistical fluctuations. Additionally, the level

of these statistical fluctuations decreases as the number of neutrons per generation

increases from 2.5 million to 10 million. In this case, it can be argued that stationarity

occurs when the low order modes reach an asymptotic value, while the high-order modes

represent the system-wide statistical fluctuations. While this analysis provides insight

into the evolution of fission source error, such calculations can only be conducted with a

reference fission source distribution that can typically only be generated by running a

number of computationally expensive simulations with large number of particles per

generations and multiple independent seeds.
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Figure 2-2: Monte Carlo errors decomposed by DFT frequency for 2D BEAVRS problem
with 10 million neutrons per generation [1].

Shannon entropy is commonly used as a stationarity diagnostic but can some-

times lead to false stationarity. More recently, proposed metrics for reactor

analysis have only been tested on symmetric problems with symmetric ini-

tial source guesses. Existing stationarity metrics disregard the relationship

between generation size and generations to stationarity.

2.2 Background on Functional Expansion Tallies

FET’s allow for the continuous representation of tally distributions via Monte Carlo

simulations using a finite set of expansion coefficients, and have found applications in

reactor analysis to reconstruct spatial distributions of reactor power, flux, and reaction

rates [56–58]. Due to this efficient representation of continuous functions, FET’s have

also been implemented in multiphysics coupling algorithms where continuous feedback

fields are passed between solvers that utilize dissimilar representations of the underlying

geometry [59]. Additionally, the use of expansion coefficients has been explored as a
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tool for predicting true variance levels of Monte Carlo tallies in the presence of inter-

generational correlation [60].

As an example, FET’s can be used to represent a spatially varying function, f (~x) as a

linear combination of orthogonal basis functions over domain Γ:

f (~x) =
∞
∑

n=0

anknψn(~x) (2.2)

an = 〈 f ,ψn〉=
∫

Γ

f (~x)ψn(~x)d x (2.3)

kn =
1

‖ψn‖2
(2.4)

‖ψn‖2 =

∫

Γ

ψ2
n(~x)d x (2.5)

where ψn is an orthonormal basis function of order n, kn is a normalization constant,

and an is the expansion coefficient. It can be shown that an unbiased collision-based

estimator for coefficient an can be defined as:

ân =
1
Ng

N
∑

i=1

Ki
∑

k=1

wi,k

Σx(~ξi,k)

Σt(~ξi,k)
ψn(~ξi,k) (2.6)

where

~ξ≡ Neutron phase space in position, direction, and energy

Ng ≡ Total neutrons per generation

Ki ≡ Total collisions for particle i

wi,k ≡ Particle i weight at collision k

Σx ≡Macroscopic cross section for reaction x

Σt ≡ Total macroscopic cross section

Such a formulation allows for these expansion coefficients to be computed natively
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within Monte Carlo tallying routines. This functionality has already been implemented

in the OpenMC particle transport simulation code for a variety of spatially varying basis

functions [42] and will be used for test cases presented here onward. With expansion

coefficients ân computed, f (~x) can be approximated by:

f (~x)≈
N
∑

n=0

ânknψn(~x), (2.7)

where N is the degree of the basis set expansion. The equations presented in this

section will be revisited in Sections 2.4 and 2.5 when discussing the specific test problems

being simulated.

The FET formalism allows for the continuous representation of a tallied dis-

tribution as a set of coefficients over a predefined basis set.

2.3 Methodology for FET-based Stationarity Diagnostic

The high-level idea behind an FET-based stationarity diagnostic is to compute expansion

coefficients to approximate the fission source at each generation, and observe when

they have all stabilized. Once these expansion coefficients have all maintain a stable

value, then stationarity of the underlying fission source is considered to have occurred.

The magnitude of expansion coefficient of order n represents how significant the order

n moment of the basis function is in terms of explaining the shape of the underlying

distribution being represented by FET’s. Expansion orders that do not contribute to the

distribution under question will decay off to zero, while those that do will eventually

reach a stable value. Unlike the entropy function, higher order moments of the fission

source distribution are all being represented by the magnitude of each FET, so a station-

arity diagnostic based on all computed FET’s will ensure all shape functions specified

by the basis set have converged instead of just a single spatial metric as predicted by

Shannon entropy. The orthogonal set used to model the underlying fission source serves

as a representation of the eigenmodes of the system, and the closer the basis set is to
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the true eigenmodes the more accurately that FET’s can characterize the fission source.

Thus, such an approach to determining stationarity is applicable to reactors designed to

achieve flat power profiles, where a finite set of expansion coefficients can accurately

represent the spatial distribution of the fission source.

Consider a one-dimensional, 400cm homogeneous slab of uranyl sulfate (material

composition provided in Appendix A) in the x-direction with vacuum boundary conditions

and a starting point source at the center. The fission source at each generation can be

represented by the fission production rate, and the one-dimensional Legendre polynomial

basis set of order N is used to approximate this distribution:

νΣ f (x)ψ(x)≈
N
∑

n=0

ânPn

�

2(x − x0)
x1 − x0

− 1
�

(2.8)

Here, the fission source is characterized by the neutron production rate from fission

νΣ f (x)ψ(x), and it is decomposed as the sum of N well-defined Legendre polynomials,

Pn. The argument to the Legendre polynomial Pn represents the normalized position

between -1 and 1, the domain for which Legendre polynomials are defined, where x0 and

x1 are the lower and upper bounds of the problem domain. The coefficients ân include

the normalization constants kn defined in Equation 2.2 and determine how significant

each Legendre mode is in explaining the overall fission source. These coefficients are

computed as part of the Monte Carlo tallying routine as:

ân =
2n+ 1
x1 − x0

∫ 1

−1

d x Pn

�

2(x − x0)
x1 − x0

− 1
�

νΣ f (x)φ(x) (2.9)

The first term, (2n+ 1)/(x1 − x0), is the normalization constant that allows each

coefficient to be compared on the same scale, while the integral quantity can be computed

as a Legendre expansion filter that scores the nu-fission reaction rate. When calculated in

OpenMC for each generation, the magnitudes of the coefficients for Legendre moments

of up to order 7 in the 400cm problem with 100,000 neutrons are shown in Figure 2-3.

The corresponding Legendre basis functions up to order 7 are also provided in Figure

2-4.

From Figure 2-3, it can be seen that even-parity FET coefficients require initial
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Figure 2-3: Value of FET coefficients â0 to â7 for 400cm homogeneous problem with
100,000 neutrons.

Figure 2-4: Legendre basis functions Pn(x ′) for n = 0 to n = 7, where x ′ represents the
normalized x position between -1 and 1.
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generations to converge, beyond which point they fluctuate around a steady value. On

the other hand, odd-parity coefficients immediately fluctuate considerably around zero.

This is consistent with the idea that the magnitude of an FET coefficient represents the

contribution of that particular basis function to the shape of the underlying fission source.

Initially, high-order even parity modes will all contribute to the shape of a localized

fission source that evolves from a point source, but as the fission source assumes its

eventual cosine-shape, the contribution of these high-order even parity modes will all

decay off, leaving only the zeroth-order and second-order modes as the dominant modes

to explain the underlying shape of the fission source.

In this case, odd-parity moments reach a stable value very early on and do not

need to be included as part of the convergence analysis to determine stationarity of the

underlying fission source. To this end, a signal-to-noise ratio metric is used that is based

on Griesheimer’s work relating to fission source sampling methods from FET’s [61]. This

metric was used by Griesheimer to filter out modes that weren’t contributing to the

overall source when trying to approximate the source distribution from FET’s. Similarly,

this work uses the signal-to-noise ratio to exclude modes that are initially oscillating

around a steady value from the convergence analysis. The ratio is defined as:

SNR=
µân

σân

(2.10)

where the mean and standard deviation are defined over an interval size of 10

generations. FET coefficients that exhibit SNR << 1 in the initial generations are

deemed as "noisy" and are ignored when determining if all FET coefficients have reached

stationarity. Thus, fission source stationarity is defined as the point when the slowest

converging FET coefficient has reached stationarity. For the remainder of this paper, a

cutoff of 1 is used to filter out highly oscillating FET coefficients.
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Figure 2-5: Value of Shannon entropy for 400cm homogeneous slab problem calculated
using different number of mesh points.

2.3.1 Comparing FET-based Stationarity Diagnostic with Shannon

Entropy

At this juncture, it is instructive to look at how Shannon entropy behaves for this problem

to see how the FET-based stationarity diagnostic compares to traditional methods. As

mentioned in Section 2.1, the value of Shannon entropy is dependent on the meshing

scheme used to compute pm(n) in Equation 2.1. Figure 2-5 plots Shannon entropy for

the one-dimensional 400cm slab problem with vacuum boundary conditions, computed

using 5, 10, 100, and 1000 mesh points.

Based on the mesh discretization, it is clear that the value of Shannon entropy

changes drastically. This can cause difficulty in determining the number of generations

required to reach stationarity, since this can change based on the type of mesh used

for the problem. MCNP prescribes a minimum of 20 source particles per mesh cell for

accurate statistics, and can automatically resize the entropy grid to ensure that this

condition is met [62].

Furthermore, the axis used to represent Shannon entropy can heavily influence how

converged a problem looks. Figure 2-6 plots the Shannon entropy value using 100

mesh points for three different y-axis ranges, yielding very different outcomes for how

stationary the entropy function looks in each case. The narrower the y-axis range used

to represent Shannon entropy the more fluctuations within the entropy function begin to

appear, resulting in less certainty that the fission source distribution is indeed converged.
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Figure 2-6: Value of Shannon entropy for 400cm homogeneous slab problem with 100
mesh points, represented with different y-axis ranges. As the range is narrowed, the
noise within Shannon entropy becomes more apparent.

Figure 2-7: All even-parity FET coefficients up to order 10, as well as Shannon entropy
as a function of number of generations.

The same is true for FET coefficients. Thus, a visual approach to determining stationarity

should be avoided, and in Section 2.3.2, a statistical approach that can be used for both

Shannon entropy and FET-based diagnostics is presented.

2.3.2 Defining a Stopping Criteria

Figure 2-7 shows the behavior of FET coefficients and Shannon entropy as a function of

number of generations simulated. Only the even-parity FET coefficients are shown, since

the odd ones do not have a significant signal-to-noise ratio, as defined by Equation 2.10.
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Additionally, the value of Shannon entropy shown in Figure 2-7 is computed with 100

mesh points. While the a0 coefficient seems to be highly oscillatory, it actually reaches

stationarity very quickly and fluctuates around a stable mean. It can also be seen that

the other FET coefficients resemble a similar shape as Shannon entropy, with different

rates of reaching stationarity. In order to compare Shannon entropy and the FET-based

diagnostic, a stopping criteria needs to be devised that indicates when the two methods

claim stationarity has occurred.

The stopping criteria is based on seeing whether the mean of the diagnostic has

changed between some offset number of generations within statistical limits. Let SA be

the interval size over which the sample mean is computed, and SB be the offset number

of generations between the sample means. At each generation g, a check is made to see

if the sample mean at g + SB falls within two standard deviations of the sample mean at

generation g. In order to minimize the chance of a false positive, this behavior needs

to persist for a continued number of generations. A third parameter SC is introduced,

which represents the minimum number of continued generations of unchanging means

needed to define stationarity. Thus, stationarity is said to occur at generation G if all of

the conditions are met:

(µ− 2σ)[G−SA:G] < µ[G−SA+SB:G+SB] < (µ+ 2σ)[G−SA:G]

(µ− 2σ)[G−SA+1:G+1] < µ[G−SA+SB+1:G+SB+1] < (µ+ 2σ)[G−SA+1:G+1]

(µ− 2σ)[G−SA+2:G+2] < µ[G−SA+SB+2:G+SB+2] < (µ+ 2σ)[G−SA+2:G+2]

...

(µ− 2σ)[G−SA+SC :G+SC ] < µ[G−SA+SB+SC :G+SB+SC ] < (µ+ 2σ)[G−SA+SC :G+SC ]

(2.11)

In this case, µA:B and σA:B correspond to the sample mean and standard deviation

computed over the range from generations A to B. SA, SB, and SC are tunable parameters

that control how conservatively stationarity should be defined. For the purposes of this

work, values of SA = 10, SB = 30, SC = 10 are used as they work well for a wide range of

problems. This means that mean and standard deviations are computed over an interval
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Figure 2-8: Even-parity FET modes and Shannon entropy, shown with corresponding
stopping criteria.

of 10 generations, sample means are offset by 30 generations, and stationarity occurs

when the offset mean falls within two standard deviations of the current sample mean

for 10 consecutive generations.

Using this stopping criteria, the stationarity points for the FET coefficients and

Shannon entropy values in Figure 2-7 are computed and shown in Figure 2-8 with a

vertical line. This plot illustrates that Shannon entropy predicts stationarity to occur

at generation 301 when 100 mesh points are used, while the FET-based diagnostic

prescribes 299 generations to stationarity, showing close agreement between the two

methods. Based on the stopping criteria presented in Equation 2.11, the stopping criteria

varies between 290 generations to 311 generations when using 5, 10, 100, and 1000

mesh points to calculate Shannon entropy. Plotting the source distributions at these

two points also shows that the source is cosine-shaped, as seen in Figure 2-9. Due to

the relatively low neutron count for this case, there is a noticeable level of noise in

the source distribution that will always persist regardless of the number of generations

simulated.

61



Figure 2-9: Source distributions at the stopping criteria generation, as predicted by
the entropy-based metric (left) and the FET-based diagnostic (right). The reference
distribution is also given by the dashed line.

2.3.3 Low-order vs. High-order Modes

Section 2.3.2 looks at the stationarity behavior of all coefficients up to order 10 to define

stationarity. These are considered "low-order" modes for this problem that need to

converge to some stable mode. While higher order coefficients could also be looked at,

they typically converge much more rapidly than coefficients like a2 or a4, and so order

10 is chosen as the cutoff for low-order modes. The exact cutoff is not vital, as long as

all of the slowest converging modes have been included in the stationarity analysis.

Looking at the behavior of higher order modes also yields some insight into the

system-level fluctuations that are occurring. Figure 2-10 plots the behavior of a few

higher-order modes. The basis functions corresponding to these coefficients are plotted

in Figure 2-11. Similar to the odd-parity modes in Figure 2-3, these high-order modes are

very noisy and all fluctuate around zero. Given how oscillatory the basis functions are at

this level, it is unlikely that these polynomials would explain the underlying shape of the

source distribution. Yet, these modes have a nonzero magnitude at certain generations,

since they capture the deviations from the true cosine shape due to stochastic noise

within the simulation. One important attribute of these high-order modes is that the

average of a group of these modes will smoothen out and approach zero. Figure 2-12

plots the average value of FET coefficients from order 16 to order 30. After a few initial
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Figure 2-10: Value of FET coefficients for â16(x ′), â23(x ′), and â30(x ′).

Figure 2-11: Legendre basis functions for P16(x ′), P23(x ′), and P30(x ′).

generations, a lot of the fluctuations dampen compared to the behavior of individual

high-order coefficients. As will be explained in Section 2.4, the variance within this

collection of high-order modes is largely a function of the number of neutrons in the

system. A larger number of neutrons per generation will reduce the variance in the

high-order modes indicating that a more precise solution is obtained.

The FET-based stationarity diagnostic monitors the stationarity of low-order

FET coefficients and the slowest converging coefficient is the one that deter-

mines overall stationarity. A stopping criteria is devised based on the sample

mean fluctuating within statistical limits for a persistent number of genera-

tions. This stopping criteria can be used to compare stationarity predictions

between Shannon Entropy and FET-based methods. A signal-to-noise ratio is

used to filter out FET modes that exhibit high noise levels.
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Figure 2-12: The averaged value of FET coefficients from â16 to â30, as a function of
generations.

2.4 Results: One-Dimensional Test Problem

The 1-D results presented in Section 2.3 will be extended in this section to include

how stationarity behavior changes as a function of problem size, position of starting

source, and number of neutrons per generation. Section 2.3 looked at the results for

a fixed 400cm problem, but this will now be varied between 200cm and 800cm in

200cm increments. Shannon entropy is calculated using a fixed number of 100 mesh

points, since it was found that based on the stopping criteria in Equation 2.11 the

results were relatively insensitive to the entropy mesh size. Additionally, the starting

source was set as a point source at the center, and now the stationarity behavior will

also be determined for problems where the starting source is 10cm away from the

right boundary. An asymmetric starting source is analyzed to mimic the behavior of

a problem with an asymmetric geometry, where now the odd-parity FET modes will

become significant in explaining the underlying shape of the source distribution. Finally,

the number of neutrons per generation will be varied from 10,000 to 10,000,000 to

show how stationarity metrics are related to the number of particles in the system.

The dominance ratio of the problem as a function of slab length is shown in Table 2.1.

Dominance ratios were computed using CMFD [63].
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Table 2.1: Dominance ratio of 1-D slab problem for different slab lengths.

Slab length (cm) Dominance Ratio

200.0 0.9890

400.0 0.9971

600.0 0.9977

800.0 0.9987

Figure 2-13: Generations to stationarity for FET-based and entropy-based approaches
for different slab lengths at 100,000 neutrons per generation with initial point source at
center of problem.

2.4.1 Stationarity Behavior as a Function of Problem Size

The number of generations to stationarity as a function of 1-D slab sizes is shown in

Figure 2-13 for a generation size of 100,000 neutrons using both the FET-based and

entropy-based approach. Both methods show close agreement, and as expected, a larger

domain size requires more generations to stationarity due to the increased dominance

ratio.

Figure 2-14 plots the Shannon entropy and slowest converging FET coefficient for

each of the four domain sizes, along with a vertical line to identify when stationarity

occurs for the stationarity metric. In all cases, the a4 coefficient is the slowest converging

FET coefficient, and the variance behavior of the a4 coefficient, shown in Figure 2-15, also

illustrates how more generations are required for stationarity as the slab length increases.

Variance levels for each problem type reach a threshold level once enough generations

are simulated, signaling the point at which the mean and variance of the underlying

FET coefficient stop changing. The larger the problem, the slower the variance reduces,

so more generations are required to reach these threshold values. In order to reduce the
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Figure 2-14: Value of Shannon entropy and slowest-converging FET coefficient as a
function of slab length for a fixed generation size of 100,000 neutrons per generation.
Values correspond to an initial point source located at the center.

Figure 2-15: Variance of slowest converging FET coefficient, a4, for different domain
sizes, 10,000,000 neutrons per generation, and initial point source at center.

noisiness of the plots and clearly delineate the variance behavior between different slab

lengths, Figure 2-15 uses a larger generation size of 10,000,000 neutrons per generation

While there is close agreement between the FET-based approach and entropy-based

approach when the starting point source is at the center, large discrepancies start to arise

when the initial source is offset from center. Best practices for criticality analysis mandate

that starting fission sites be uniform across the entire geometry [49]. However, such an

offset starting source distribution is presented to show the impact of a large asymmetric

problem on source convergence. Instead of changing the underlying geometry, the

starting source is modified as a highly offset point source to simulate the slow migration

of fission source sites from one region of the reactor to another, illustrating another
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Figure 2-16: Generations to stationarity for FET-based and entropy-based approaches
for different slab lengths at 100,000 neutrons per generation with initial point source
offset 10cm away from right boundary of problem.

example problem where assessing stationarity is difficult. Figure 2-16 plots the number

of generations to stationarity for a range of domain sizes, where now the initial point

source is located 10cm away from the right boundary. These results indicate a larger

number of generations is required for the FET-based method to reach stationarity.

In order to understand the behavior of these two methods and illustrate that the

entropy-based method is indeed underpredicting the number of generations to station-

arity, Figure 2-17 plots the Shannon entropy and slowest converging FET coefficient as

a function of number of generations. Due to the asymmetry in the source distribution,

the odd-parity FET modes become more significant, and now the a1 coefficient takes the

most number of generations to reach stationarity for all domain sizes.

Figure 2-17 shows that Shannon entropy flattens out much quicker than the a1

coefficient for the same problem, and so the entropy-based approach predicts fewer

generations to stationarity. This in turn leads to an incorrect source distribution that

will lead to biased tallies in the active generations. Similar to Figure 2-9, Figure 2-18

shows the source distribution at the stationary generation as predicted by both the

entropy-based and FET-based approaches for a 400cm problem with 100,000 neutrons

and a starting point source 10cm away from the right boundary, indicating a clearly

biased source distribution when using the entropy-based method.
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Figure 2-17: Value of Shannon entropy and slowest-converging FET coefficient as a
function of slab length for a fixed generation size of 100,000 neutrons per generation.
Values correspond to an initial point source located 10cm away from the right boundary
of problem.

Figure 2-18: Source distributions at the stopping criteria generation, as predicted by the
entropy-based metric (left) and the FET-based diagnostic (right) for a 400cm problem
with 100,000 neutrons and a starting point source 10cm away from the right boundary.
The reference distribution is also given by the dashed line.
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Figure 2-19: Generations to stationarity for FET-based and entropy-based approaches
for varying generation sizes for 400cm slab with initial point source at center of problem.

2.4.2 Stationarity Behavior as a Function of Neutrons per Genera-

tion

Section 2.4.1 assumed a fixed neutron generation size and varied domain size, but

this section will fix the domain size and vary the generation size to detail stationarity

behavior as a function of neutrons per generation. Figure 2-19 plots the generations to

stationarity for 10,000, 100,000, 1,000,000, and 10,000,000 neutrons per generation

for a 400cm problem with an initial point source at the center, using the entropy-based

and FET-based methods. For these four cases, the value of Shannon entropy and the

slowest converging FET coefficient is plotted in Figure 2-20 as a function of generations,

along with a vertical line to signify when stationarity occurs for each case. The a4 FET

coefficient was the slowest converging coefficient in all cases. These plots show close

agreement between the two approaches, but also illustrate that a larger number of

generations to stationarity is required when the number of neutrons per generation

increases. Similar to Figure 2-15, the variance behavior of the low-order FET coefficients,

shown in Figure 2-21 explains why this is so.

Figure 2-21 plots the variance behavior of a2, a4, a6, and a8 for a varying number of

neutrons per generation. It is observed that the initial variance levels are comparable for

each coefficient with similar convergence rates for each cases. As the number of neutrons

per generation is increased, however, the threshold variance level also reduces. This

asymptotic variance level represents the point at which the underlying FET coefficient

has reached stationarity at a level comparable to the stochastic noise, beyond which
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Figure 2-20: Value of Shannon entropy and slowest-converging FET coefficient as a
function of generation size for a fixed slab length of 400cm. Values correspond to an
initial point source located at center.

Figure 2-21: Variance of slowest converging FET coefficients a2, a4, a6, and a8, for
different generation sizes and a fixed domain size of 400cm with an initial point source
at center.
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point the variance does not decrease with more generations simulated. Since a larger

number of neutrons generation implies more precise FET coefficient values with less

fluctuations, more generations are required to reach these lower asymptotic variance

levels.

This also suggests that if the same number of generations to stationarity is used

regardless of the number of neutrons per generations, then users are likely to carry the

same fission source error level over to the active cycles, even though the simulation uses

a larger number of particles that typically should yield more accurate solutions. This is

analogous to a deterministic calculation where more source iterations are performed to

converge the fission source error to lower values. In this context, the number of neutrons

per generation dictates the minimum source residual that can be reached in a Monte

Carlo simulation. In order to achieve lower variance levels at each generation, more

neutrons must be simulated per generation for a longer number of generations.

The variance behavior of the high-order modes specified in Section 2.3.3 also points

to similar observations. Figure 2-22 plots the average variance of FET coefficients from

order 20 to 30, and similar to Figure 2-21, initial generations are required to reduce

variance levels until a threshold value is reached that is related to the number of neutrons

per generation. By aggregating the behavior of a collection of FET coefficients, much of

the noise inherent within any single high-order coefficient is smoothened out. It can

also be seen that the threshold variance level reduces by a factor of 1
n , where n is the

number of neutrons per generation. These high-order coefficients fluctuate around zero

values because they do not explain the underlying cosine shape of the source distribution,

but still have a non-zero magnitude since they are able to capture the stochastic noise

intrinsic to the random walks of the simulated particles. Thus, the average variance of

these high-order coefficients represents the system-level variance similar to the high-

order Fourier modes depicted in Figures 2-1 and 2-2, and this variance level reduces in

magnitude as the number of particles per generation is increased.

Similar to Section 2.4.1, when the starting source is offset from center, large differ-

ences start to arise between the entropy-based and FET-based approaches when the

number of neutrons per generation is varied. Figure 2-23 plots the number of generations
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Figure 2-22: Average variance of high-order modes as a function of number of gener-
ations, for varying number of particles per generation and 1-D problem with starting
point source at center.

Figure 2-23: Generations to stationarity for FET-based and entropy-based approaches
for generation sizes for 400cm slab with initial point source offset 10cm away from right
boundary of problem.

to stationarity for a 400cm problem with varying number of neutrons per generation,

but this time the starting point source is offset 10cm away from the right boundary. Once

again, it can be seen that a larger number of neutrons is required to reach stationarity

as the generation size increases.

Figure 2-24 shows the value of Shannon entropy and the slowest converging FET

coefficient, where now the odd-parity FET coefficients become more significant due to

the asymmetry in the source distribution. Once again it can be seen that the value of

entropy flattens out much more rapidly than the a1 coefficient, thus mispredicting the

number of generations to stationarity. Figure 2-25 plots the relative difference between

a reference cosine distribution and the stationary source distribution as determined by

the entropy-based and FET-based methods. The entropy-based approach has a clear tilt

in the stationary source distribution, and while the magnitude of the error diminishes as

the number of neutrons in the system increases, the tilt does persist more clearly than
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Figure 2-24: Value of Shannon entropy and slowest-converging FET coefficient as a
function of generation size for a fixed slab length of 400cm. Values correspond to an
initial point source offset 10cm away from right boundary of problem.

the FET-based approach. The large errors near the problem boundaries are due to the

small magnitudes of the reference cosine shape in these regions.

For an offset starting source, the variance behavior of the low order and high order

FET coefficients once again shows that a larger number of generations is required for

simulations with larger number of neutrons per generation in order for variance levels

to approach their lower asymptotic levels. Figure 2-26 plots the variance of the a1, a3,

a5, and a7 coefficients, as well as the average variance of the high-order FET coefficients.

The threshold variance levels of the high-order FET coefficients are on the same order

as those in Figure 2-22, showing that the system-level variance levels represented by

these high-order FET coefficients follow σ2/n behavior and have consistent threshold

values irrespective of the starting source guess.

2.4.3 Stationarity Behavior as a Function of Seed Number

In order to show that the results presented in Section 2.4.2 are not dependent on

a particular random seed, the analysis is replicated for multiple independent seeds.

Figure 2-27 plots the generations to stationarity when run with five different seeds

using a starting point source at the center. Similarly, Figure 2-28 plots the generations

to stationarity for five seeds when the starting point source is offset 10cm away from
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Figure 2-25: Relative error with reference cosine distribution for source distributions
at the stopping criteria generation, as predicted by the entropy-based metric (left) and
the FET-based diagnostic (right) for a 400cm problem with varying number of neutrons
and a starting point source 10cm away from the right boundary.
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Figure 2-26: Variance of slowest converging FET coefficients a1, a3, a5, and a7, for
different generation sizes and a fixed domain size of 400cm with an initial point source
10cm from right boundary of problem. The rightmost plot shows the average variance
of high-order modes as a function of number of generations.

the right boundary. The average behavior of the five seeds shows that there is close

agreement between the FET-based and entropy-based diagnostics with a central starting

point source. On the other hand, the average of the five seeds yields a large discrepancy

between the two methods when an offset starting point source is used, where Shannon

entropy prescribes an insufficient number of generations to stationarity. Moreover, both

Figure 2-27 and 2-28 suggest that a larger number of generations should be simulated

to reach stationarity when the number of neutrons per generation is increased.

Stationarity analysis on a one-dimensional slab problem indicates that a larger

number of inactive generations is required to reach stationarity for prob-

lems with larger dominance ratios (controlled by slab size) and for problems

with larger generation sizes. FET-based diagnostic and Shannon entropy rec-

ommend similar generations to stationarity for problems with a symmetric

source but Shannon entropy underpredicts the number of inactive genera-

tions required for problems with a highly asymmetric starting source.
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Figure 2-27: Generations to stationarity as a function of number of neutrons for five
seeds of 400cm slab problem using entropy-based (right) and FET-based (left) ap-
proaches. The starting source is a point source at the center of the problem.

Figure 2-28: Generations to stationarity as a function of number of neutrons for five
seeds of 400cm slab problem using entropy-based (right) and FET-based (left) ap-
proaches. The starting source is a point source offset 10cm away from right boundary of
problem.
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2.5 Results: Two-Dimensional PWR Benchmark Problem

The analysis in Section 2.4 can be extended to two dimensions by changing the basis

set used to compute FET’s. This section uses a Zernike expansion in the radial and

azimuthal directions to capture the two-dimensional spatial detail of the fission source,

and the 2-D BEAVRS benchmark is simulated in order to model the stationarity behavior

of a typical PWR [64]. The dominance ratio of the problem, as measured using CMFD,

is 0.9955. Now, the two-dimensional fission production rate is computed as:

νΣ f (r,θ )ψ(r,θ )≈
N
∑

n

n
∑

m=−n

am
n Zm

n

� r
R

,θ
�

(2.12)

where N is the degree of radial order expansion of the Zernike basis set and Zm
n is

the Zernike polynomial of radial order n and azimuthal order m. am
n is the expansion

coefficient corresponding to Zernike radial order n and azimuthal order m, and the radial

domain is scaled over a unit disk and θ represents the azimuthal angle in cylindrical

coordinates. In this case, the spatial domain is defined as the smallest circle that

circumscribes the axial cross section of the core, where R is the radius of the circumscribed

circle. The expansion coefficient am
n is computed as:
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For reference, the basis functions corresponding to the Zernike polynomials up to

the fourth radial order are shown in Figure 2-29.

Likewise, a quarter-assembly mesh is used to compute Shannon entropy. As outlined

in Section 2.3, the same stopping criteria is used to define stationarity for the FET-based

and entropy-based approaches, and the same signal-to-noise ratio is utilized to filter

out noisy Zernike FET coefficients. All Zernike coefficients up to radial order 10 are

considered low-order coefficients that are analyzed for stationarity, and all Zernike
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Figure 2-29: Zernike basis functions Zm
n (r,θ ) for n= 0 to n= 4.
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coefficients of radial order 20 (n= 20 corresponds to 21 values for m) are aggregated

to characterize high-order behavior.

Since the domain size of the 2-D BEAVRS problem is fixed, this section will focus

solely on the effect of changing the number of neutrons per generation on the number

of generations to stationarity. Similar to Section 2.4, the results will be presented for

two different starting source distributions: one where the starting source is uniform

over all fissionable areas and the other where all neutrons are born on the right half

of the core. This offset source distribution will shed light into how the two stationarity

diagnostics will fare in the presence of strong asymmetries in the fission source.

Figure 2-30 plots the generations to stationarity for 100,000, 1,000,000, 4,000,000,

10,000,000, and 40,000,000 neutrons per generation for the 2-D BEAVRS problem using

the entropy-based and FET-based methods. The left plot uses a starting source that is

uniform over all fissionable areas, while the starting source distribution for the right plot

is uniform in all fissionable areas on the right half of the core. Thus, more generations

to stationarity are required for the right plot as the neutrons need to migrate from the

right half to the left half of the core. For the 2-D BEAVRS case, there is a small but

noticeable discrepancy in the left plot between the two methods despite the symmetric

starting source. This has to do with the fact that the fission source converges slowly for

such problems so an entropy-based metric that aggregates fission source behavior into

a single metric tends to falsely diagnose stationarity, when a closer analysis of specific

spatial moments through an FET-based method would show that these modes have not

fully converged yet. For both plots, it can also be seen again that a larger number of

generations is required to reach stationarity as the number of neutrons per generation

increases. As discussed in Section 2.4.2, this is due to the fact that for a larger number of

neutrons per generation, more generations are required to converge the spatial modes

to the reduced variance levels that result.

In order to illustrate the magnitude of the tilt that persists when starting with an offset

starting source distribution, Figure 2-31 plots the relative difference in the stationary

source distribution with the same distribution that is half-core symmetric for the different

numbers of neutrons per generation. The plots on the left-hand side correspond to the
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Figure 2-30: Generations to stationarity for FET-based and entropy-based approaches for
different number of neutrons per generation when running on 2-D BEAVRS benchmark
problem. Results based on starting source that is uniform in all fissionable areas (left)
and starting source that is offset to the right half of the core (right).

relative error using the FET-based approach, while the plots on the right-hand side

correspond to the entropy-based approach. Analogous to the one-dimensional case,

there is a clear tilt in the source distribution as predicted by the entropy-based approach.

As the number of neutrons per generation increases, the tilt becomes more prominent

even though the maximum error decreases in magnitude. This same tilt is not observable

for the FET-based approach, thus indicating that this diagnostic is able to accurately

determine stationarity.

Finally, comparing the average variance of high-order modes for the two starting

source distribution in Figure 2-32 shows that the threshold variance level is on the same

order regardless of the initial source. Once again, the variance decreases as a function

of 1/n, where n is the number of neutrons per generation. Due to the similarity in the

results for the 1-D and 2-D problems, detailed stationarity plots for the 2-D BEAVRS

benchmark are included in Appendix B. These plots include the evolution of Shannon

entropy and the slowest-converging FET’s as a function of number of generations, the

variance behavior of these stationarity diagnostics, as well as the aggregate stationarity

results over multiple independent seeds.
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Figure 2-31: Relative difference in source distribution compared to source at stationary
point, as predicted by the FET-based (left) and entropy-based (right) approaches for the
2-D BEAVRS benchmark problem with an offset starting source. Results are shown for
various number of neutrons per generation.

Figure 2-32: Average variance of high-order modes as a function of number of gener-
ations, for varying number of particles per generation when running on 2-D BEAVRS
benchmark problem. Results based on starting source that is uniform in all fissionable
areas (left) and starting source that is offset to the right half of the core (right).
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Stationarity analysis on the 2-D BEAVRS problem shows that a larger num-

ber of inactive generations are required to reach stationarity for problems

with larger generation sizes. The discrepancy between the FET diagnostic

and Shannon entropy with respect to generations to stationarity grew larger

even for problems with a symmetric source. Shannon entropy considerably

underpredicts the number of inactive generations required with an offset ini-

tial source distribution.

2.6 FET Stationarity Implementation in OpenMC

Currently, OpenMC provides the functionality to compute FET coefficients by defining

the FET as a tally, where the filter is the basis function of interest and the reaction rate

is the nu-fission reaction rate. However, such an implementation for calculating FET

coefficients is not efficient since it requires the computation of tallies in the inactive

generations, which can severely reduce calculation rates. For example, the calculation

rate drops from 3003 neutrons per second to 2091 neutrons per second when FET tallies

are computed instead of Shannon entropy for the 2-D BEAVRS problem. This simulation

was run on a single Intel Core i7 4790 processor with 1 Message Passing Interface (MPI)

process and 8 OpenMP threads.

If the FET tally is represented as an analog estimator instead of a collision estimator,

tally bins will be scored to only when a fission reaction occurs. The parallel efficiency

of FET calculations can thus be greatly improved if FET coefficients are processed for

groups of particles at a time through the stored fission bank at the end of each generation.

Since the fission bank stores the spatial locations of all fission reactions that occur in a

generation, FET coefficients can be computed by processing the expansion moments for

each particle in the fission bank in parallel. In this light, these FET’s can be viewed as the

spatial moments of the fission bank for each generation, and thus the stationarity in the

FET coefficients imply stationarity in the spatial moments of the fission bank. From an

implementation standpoint, each MPI process is in charge of computing FET coefficients
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on its local fission bank, while each OpenMP thread processes the contribution of each

source site’s location to each FET expansion coefficient in parallel. Once this is completed,

these coefficient values are reduced onto the master process to obtain aggregate values

over the entire global fission bank.

In order to assess the performance implications from FET computation, stationarity

FET’s are calculated for a variety of calculation methods and compared to the compu-

tation of traditional metrics such as Shannon entropy. Figure 2-33 plots the overall

runtime as a function of number of simulated inactive generations for the 400cm 1-D

homogeneous problem from this chapter with 10 million neutrons per generation. The

problem is run once again on a single Intel Core i7 4790 processor with 1 MPI process

and 8 OpenMP threads. The trendlines "Analog Estimator FET" and "Collision Estimator

FET" refer to runs where FET’s are specified directly as analog and collision estimators

respectively, using a Legendre basis expansion up to order 10. The trendline "Post-process

Fission Bank FET" signifies the computation of the same FET’s by post-processing the

fission bank in parallel after the particle transport routine has completed. Finally for

comparison, the trendline "Shannon Entropy" indicates a run where Shannon entropy

was calculated on a 1 cm mesh, and "No Shannon Entropy, No FET" specifies a run where

neither Shannon entropy nor FET’s were computed. These results indicate a significant

computational overhead associated with specifying FET’s directly as OpenMC tallies,

whereas the post-processing of the fission bank yields similar runtimes compared to

simulations with and without Shannon Entropy.

Similar conclusions can be drawn when looking at Figure 2-34, where the different

stationarity metrics are computed on the 2-D BEAVRS problem with a generation size

of 10 million. All FET calculations compute the coefficients of a radial and azimuthal

Zernike expansion up to radial order 10. Thus, for the remainder of this thesis, the fission

bank post processing method will be used to compute FET’s for stationarity diagnostics.

While an analog estimator possesses higher variance compared to a collision estimator,

a relatively large generation size of 10 million will be used for most test cases and thus

the conclusions drawn about stationarity should not vary greatly with the use of one

estimator type over the other.
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Figure 2-33: Runtime of different stationarity metrics as a function of number of inactive
generations for a 400cm 1-D homogeneous problem with a generation size of 10 million.
Green, purple, and red lines are on top of each other and indicate similar performance
between these three cases.

Figure 2-34: Runtime of different stationarity metrics as a function of number of inactive
generations for the 2-D BEAVRS problem with a generation size of 10 million. Green,
purple, and red lines are on top of each other and indicate similar performance between
these three cases.
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FET coefficients are calculated in OpenMC by post-processing the fission bank

and using a Legendre basis set for 1-D problems and a Zernike basis set for

2-D problems. Runtime to compute these coefficients is on par with that for

calculating Shannon entropy.

2.7 Conclusion

As more and more large-scale simulations are run to match the growing magnitude

of available computing resources, it becomes even more imperative for users to be

able to accurately pinpoint when stationarity occurs in Monte Carlo simulations in

order to reduce the computational burden of simulating additional generations without

introducing biases to the source distribution. This chapter investigates the issue of

determining fission source stationarity by proposing a new methodology based on

analyzing the stationarity of FET coefficients, which can represent the higher order

spatial moments of the fission source. The stationarity diagnostics from FET expansion

coefficients are compared to those from using Shannon entropy, which has been widely

adopted by the Monte Carlo reactor physics community.

The stationarity behavior of the FET-based and entropy-based diagnostics are eval-

uated on one-dimensional and two-dimensional test cases with varying parameters.

This analysis relies on defining a stopping criteria to determine whether the under-

lying stationarity metric has changed relative to its statistical fluctuations. For the

one-dimensional homogeneous problem with vacuum boundary conditions, a Legendre

basis set expansion was used to compute FET coefficients, while 100 mesh points were

used to calculate Shannon entropy. It was found that:

• For a fixed number of neutrons per generation, there is a close agreement in the

number of generations to stationarity between the entropy-based and FET-based

approach when the domain size is varied and the starting source is a point source

at the center of the problem. When the starting point source is offset 10cm away
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from the right boundary, the two methods diverge and the number of generations

to stationarity is underpredicted when using Shannon entropy.

• When the number of neutrons per generation is increased, a larger number of

generations is required to reach stationarity. This is due to the fact that a larger

number of particles per generation imposes a more stringent stopping criteria due

to the lower threshold variance levels in the FET coefficients that can be achieved.

• The average variance of high-order modes represents the system-level noise of the

system and follows the σ2/n behavior of uncorrelated tallies.

This analysis is extended to the 2-D BEAVRS problem as well by using a Zernike

expansion in the radial and azimuthal directions to represent the two-dimensional fission

source and compute FET coefficients. Likewise, a quarter assembly mesh was utilized to

compute Shannon entropy. For such problems, tracking all FET coefficients up to radial

order 10 were more than sufficient in capturing low-order fluctuations for stationarity

diagnosis. However, it is recommended that higher order FET coefficients should be

computed if the converged source distribution is highly asymmetric and unlikely to be

explained by Zernike expansion functions. Here, it was found that:

• There is a slight underprediction in the generations to stationarity when using

Shannon entropy as opposed to an FET-based approach when the starting source

is uniform over all fissionable areas. This discrepancy increases significantly when

the starting source is restricted to the right half of the core. In some cases, Shannon

entropy underpredicts the number of generations to stationarity by as many as

250 generations.

• Similar to the 1-D case, a larger number of generations is required to required

stationarity when the number of neutrons per generation increases, and the average

variance of the high-order modes follow σ2/n behavior.

The 1-D and 2-D problems with offset starting distributions are extreme test cases but

they help to illustrate the benefits of an FET-based diagnostic. Since FET’s are meshless
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and each source particle contributes to the basis functions anywhere in space, examining

the stationarity in FET coefficients helps to ascertain whether each spatial mode has

stopped fluctuating within statistical limits. On the other hand, Shannon entropy is a

mesh-based approach that examines the migration of particles in each mesh cell from

generation to generation in order to signal stationarity. If this migration occurs slowly,

this frequently leads to situations of false convergence when using Shannon entropy.

Finally, it was shown that by post-processing the banked fission sites at the end

of each generation, efficient computation of FET coefficients can be carried out with

minimal overhead to the underlying particle transport algorithm. Thus, for problems

with higher dimensionality and larger asymmetries, an FET-based diagnostic should be

used in tandem with Shannon entropy in order to ensure that a properly converged

fission source distribution is used in the active generations. Since the exact cutoff point

between inactive and active generations is needed in order to understand the total

runtime for Monte Carlo simulations, the FET-based stationarity diagnostic will be used

throughout the rest of this thesis to assess the number of inactive generations needed

to reach stationarity for a variety of test cases. The need for a reliable stationarity

diagnostic will become especially important in Chapter 5, where a full-core 3-D PWR

benchmark will be simulated, and it will be shown that Shannon Entropy does not

adequately determine stationarity in the underlying fission source. For the 3-D case, the

FET coefficients will be calculated by combining the 2-D Zernike basis set in the radial

direction with the 1-D Legendre basis set in the axial direction.
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Highlights

• An FET-based stationarity diagnostic is proposed that monitors the stationar-

ity of a set of expansion coefficients to assess overall fission source stationarity.

• A stopping criteria is devised in order to compare generations to stationarity

as prescribed by Shannon entropy and by the proposed FET-based method.

• The FET-based method is shown to outperform Shannon entropy for problems

with a highly asymmetric starting source as well as higher-dimensionality

problems.

• FET coefficients are computed efficiently in OpenMC by post-processing the

fission bank in parallel after the particle transport routine once a generation

has completed.
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Chapter 3

Parameter Sensitivity Study of CMFD

Source Acceleration

As alluded to in Chapter 1, a significant computational burden arises in Monte Carlo

methods from having to simulate an adequate number of inactive generations from an

initial starting guess in order to attain a stationary fission source. Chapter 2 discussed a

novel heuristic to determine when this stationary point occurs using FET’s, where it was

shown that monitoring the stationarity in individual FET coefficients gave a more holistic

diagnosis of fission source stationarity over more traditional metrics such as Shannon

entropy. In such cases, however, nearly 1000 inactive generations could be required

for certain problems before stationarity was achieved. In order to reduce the burden of

computation in the inactive generations, this chapter will investigate the use of source

acceleration methods to reduce the overall number of discarded generations before

beginning the tallying process to compute quantities of interest and sample statistics.

This chapter begins with a review of source acceleration methods in Section 3.1, with

a focus on CMFD source acceleration due to its extensive application to simulation of

reactor problems. Section 3.2 discusses how FET stationarity diagnosis can be extended

to Monte Carlo simulations that utilize CMFD source acceleration and defines the 1-D

and 2-D test problems that will be analyzed for the remainder of this thesis. While

Section 3.2 delineates the CMFD parameters used as part of the source acceleration

scheme, a sensitivity study on select CMFD parameters will be conducted in Section 3.3
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to illustrate how these parameters affect the evolution of Monte Carlo simulations in

the inactive generations. A similar sensitivity study is conducted in Section 3.4 to show

the effects of CMFD parameters in the active generations. Finally, Section 3.5 combines

the findings from this chapter to discuss optimal run strategies when running Monte

Carlo with CMFD source acceleration, with a focus on reducing overall runtime for the

test problems defined in Section 3.2.

3.1 Review of CMFD Source Acceleration

A variety of methods for accelerating source convergence has been proposed for Monte

Carlo methods in order to effectively reduce the number of generations required to reach

fission source stationarity [65–68]. While a detailed review of these methods can be

found in Li’s thesis [1], very few of these methods have successfully been applied to

full-core reactor problems without significantly increasing memory or computational

requirements. CMFD source acceleration is one such method that has been shown by

Kelly et al. and Herman to dramatically reduce the number of inactive generations

required for the simulation of 3-D PWR problems using continuous energy Monte Carlo

[26,69], and will be the primary focus of this thesis.

3.1.1 CMFD Equations

CMFD can be understood as a diffusion-based multigrid acceleration method, where the

feedback loop is carried out by taking tallied quantities during each Monte Carlo power

iteration as input to solve an eigenvalue problem with a system of linear diffusion-based

equations. The solution of these equations yields an approximate neutron source distri-

bution, and the weights of each particle in the fission bank are adjusted accordingly after

each CMFD update step to dictate the starting source distribution for subsequent Monte

Carlo iterations. The effectiveness of CMFD comes from the fact that the diffusion-based

CMFD fission source used to reweight fission bank particles is computed inexpensively

and drives the system to an approximate solution much more quickly than a typical

Monte Carlo power iteration process. CMFD-Monte Carlo coupling is typically divided
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into four steps, with equations that govern each step provided in the following sections.

A complete derivation of the CMFD equations can be found in Herman’s thesis [26].

3.1.1.1 Computation of CMFD tallies

As input to the CMFD solver, volume-integrated reaction rates and surface-integrated

currents are computed at each generation during the Monte Carlo transport step. A

summary of these terms is provided in Table 3.1, where

g, g ′ ≡ Energy group index

m≡Mesh index

Vm ≡ Volume of m-th mesh cell

Au
m ≡ Area of surface of m-th mesh perpendicular to u-th direction

Ju±
g,m ≡ Net current of u± surface at the m-th mesh

Here, u ∈ (x , y, z) and refers to the current along a given axis, while ± refers to the

left (−x) or right (+x) surface in the x axis, the back (−y) or front (+y) surface in the

y axis, and bottom (−z) or top (+z) surface in the z direction.

Table 3.1: Tallied CMFD quantities during the Monte Carlo power iteration

Term Description

〈φg,mVm〉 Volume-integrated flux

〈Σt,g,mφg,mVm〉 Volume-integrated total reaction rate

〈νsΣs,g ′→g,mφg ′,mVm〉 Volume-integrated scattering production rate

〈νsΣs1,g ′→g,mφg ′,mVm〉 Volume-integrated P1 scattering production rate

〈(χνΣ) f ,g ′→g,mφg ′,mVm〉 Volume-integrated fission production rate

〈Ju±
g,mAu

m〉 Surface-integrated net current
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3.1.1.2 Computation of CMFD Cross Sections, Diffusion Coefficients, and Cou-

pling Coefficients

During the restriction step, the CMFD tallies are used to define a set of diffusion equations

over a coarse spatial mesh and energy grid. Here, the inputs to these equations are a

set of MGXS, diffusion coefficients, and coupling coefficients that are computed from

Monte Carlo tallies from the previous step. Table 3.2 outlines the different parameters

that are calculated in this step in order to set up the CMFD equations that will be solved

in the next step.

Table 3.2: CMFD MGXS and diffusion coefficient parameters.

Term Description

Σt,g,m =
〈Σt,g,mφg,mVm〉
〈φg,mVm〉

Total macroscopic cross
section

νsΣs,g ′→g,m =
〈νsΣs,g ′→g,mφg ′,mVm〉

〈φg,mVm〉
Scattering production
macroscopic cross section

(χνΣ) f ,g ′→g,m =
〈(χνΣ) f ,g ′→g,mφg ′,mVm〉

〈φg,mVm〉
Fission production macro-
scopic cross section

Dg,m =
〈φg,mVm〉

3(〈Σt,g,mφg,mVm〉 − 〈νsΣs1,g ′→g,mφg ′,mVm〉)
Diffusion coefficient

D̃u±
g,m = −

2Dg,m±uDg,m

Dg,m±uAu
m + Dg,mAu

m

Linear coupling term be-
tween current and flux

D̂u±
g,m =

Ju±
g,m ± D̃u±

g,m(φg,m±u −φg,m)

φg,m±u +φg,m
Nonlinear coupling term
between current and flux

Here, the term D̃u±
g,m represents the linear coupling term between current and flux in

the diffusion equation. In order to maintain equivalence between the diffusion solution

and the transport solution, the nonlinear term D̂u±
g,m is introduced to the CMFD equations.
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3.1.1.3 Solution of CMFD Equations

With the parameters from the previous section, the linear set of equations governing the

CMFD solver can be constructed and solved for each energy group and spatial mesh:

∑

u∈(x ,y,z)

Au
m

�

−D̃u+
g,m(φg,m+u −φg,m) + D̂u+

g,m(φg,m+u +φg,m)

−D̃u−
g,m(φg,m−u −φg,m) + D̂u−

g,m(φg,m−u +φg,m)
�

+Σt,g,mφg,mVm =
∑

g ′
νsΣs,g ′→g,mφg ′,mVm +

1
k

∑

g ′
(χνΣ) f ,g ′→g,mφg ′,mVm

(3.1)

These equations can be written in matrix form as a balance equation:

MΦ=
1
k
FΦ (3.2)

where

M≡ Neutron loss matrix operator

F≡ Neutron production matrix operator

Φ≡Multigroup flux vector

k ≡ CMFD eigenvalue

Given the sparsity of the matrices M and F, these set of equations are solved in

OpenMC using power iteration and a Gauss-Seidel linear solver for k and Φ. The

computation of Φ yields the scalar flux for every energy group g and spatial mesh m,

and will be designated as φCMFD
g,m during the prolongation step in the next section.

3.1.1.4 Monte Carlo Fission Bank Source Reweighting

With the computation of φCMFD
g,m , the Monte Carlo fission bank needs to be adjusted in

order to incorporate the information from these newly computed scalar flux values. In
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doing so, the source bank for the next Monte Carlo generation will follow a distribution

that follows the fission source distribution as computed by the CMFD solver. The

fractional CMFD fission source for each energy group g and spatial mesh m is computed

as:

pg,m =

∑

g ′(χνΣ) f ,g ′→g,mφ
CMFD
g ′,m Vm

∑

m

∑

g ′(χνΣ) f ,g ′→g,mφ
CMFD
g ′,m Vm

(3.3)

and the weight adjustment factor for each energy group and spatial mesh is computed

as:

fg,m =
pg,m

∑

i∈(g,m)ωi
N (3.4)

where
∑

i∈(g,m)ωi represents the total weight of particles in the fission bank. Thus,

in order to incorporate the CMFD fission source information back into the Monte Carlo

solver, the weight of each particle in the fission bank is adjusted so as to match the

CMFD fission source. For each particle i in the fission bank that belongs to energy group

g and spatial mesh m, its weight ωi is adjusted to weight ω′i as:

ω′i =ωi fg,m (3.5)

Such a prolongation step assumes a flat fission source within each CMFD mesh cell,

but a shape function can be imposed during the prolongation step as well to match the

shape of the underlying fission source more closely. Section 3.2.3.5 discusses the use of

a linear prolongation update step in more detail.

In this manner, the CMFD feedback loop represents a tight coupling between the

Monte Carlo solver and the CMFD solver, where after each generation, tally information

from Monte Carlo informs the parameters needed to construct the CMFD equations, and

the resulting weight adjustment factors computed from the CMFD fission source are

passed back to the Monte Carlo solver to adjust the weights of each particle in the Monte

Carlo fission bank. This feedback loop is similar to that of a TH coupling mechanism

where local temperature and density fields calculated by the TH solver are iteratively
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passed to the Monte Carlo neutronics solver to update cross sections and recompute

power distributions, which in turn informs the next update to TH temperatures and

densities. In this light, CMFD can be seen as a surrogate for the non-linear coupling

process and will be viewed as such in the ensemble averaging analysis of the following

chapters.

3.1.2 Performance Considerations for CMFD Source Acceleration

Section 3.1.1 outlined the key equations used to describe the feedback loop between

the Monte Carlo and CMFD solvers. In order to characterize the exact benefits from

running CMFD, previous work has typically looked at generations to stationarity as a

key indicator of runtime savings from running CMFD source acceleration [1,26]. Two

issues arise from such an analysis in order to measure the true impact of CMFD in the

inactive generations. Firstly, a rigorous cutoff point between the inactive and active

generations is not delineated in such works and instead a visual approach based on

assessing when Shannon entropy has reached a stable level of fluctuations is used to

mark this transition point. As was described in Chapter 2, Shannon entropy can lead

to issues of false stationarity diagnosis and a more rigorous FET-based methodology

should be opted for in order to characterize fission source stationarity. This is exactly

the strategy that will be employed in this thesis to diagnose fission source stationarity

for CMFD accelerated simulations and will be the subject of discussion in Section 3.2.

The second issue with focusing solely on number of inactive generations reduced

in order to describe the benefits of running CMFD is that it tends to neglect other

factors that come into play when trying to understand the efficacy of source acceleration

methods with respect to overall simulation runtime. For example, while CMFD has been

shown to reduce the number of inactive generations needed for Monte Carlo simulations,

there is a computational overhead associated with running CMFD as well, namely in the

form of additional tallied quantities that are required during the inactive Monte Carlo

generations and the runtime associated with the CMFD solver. Moreover, naive CMFD

implementations may yield a worse solution compared to an un-accelerated Monte Carlo
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simulation, as will be shown in later sections. This will have implications in both the

inactive and active generations, and thus Sections 3.3, 3.4, and 3.5 focus on analyzing

the overall benefits of CMFD by analyzing its impact on the instantaneous fission source

variance levels, RMS error levels in the active generations, and overall runtime.

CMFD source acceleration represents a tight coupling between Monte Carlo

and a low-order diffusion-based solver, where CMFD tallies are passed from

Monte Carlo to CMFD, and weight adjustment factors are passed from CMFD

back to Monte Carlo.

3.2 CMFD Source Acceleration and FET Stationarity Di-

agnosis

As described in Chapter 2, the calculation of FET’s is native to the Monte Carlo tallying

routine, so any direct modification to the source of neutrons at each generations by

an acceleration method will be reflected in the FET tally scoring for that generation.

As was outlined in Section 3.1.1, this is exactly what occurs with CMFD acceleration

where each particle in the fission bank is reweighted so as to drive source particles for

subsequent generations closer to the CMFD-based fission source. The next generation

of source particles is sampled from the updated fission bank where there is now a

higher likelihood of sampling particles that belong to regions with a larger CMFD-based

fission source. During the transport of particles in the next Monte Carlo generation, FET

tallies are computed based on this updated source distribution, and will thus continue

to reflect the spatial modes of the fission source that mirrors that of the CMFD-based

solution. A simplified workflow of the CMFD acceleration routine coupled with FET tally

computation is shown in Figure 3-1.
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Figure 3-1: Flowchart for CMFD acceleration in the inactive generations with FET
calculation.

3.2.1 Outline of Test Problems

Before illustrating the effects of CMFD on fission source stationarity, the one-dimensional

and two-dimensional test problems that are the focus of this chapter and remaining

chapters are outlined. The one-dimensional geometry will be the same homogeneous

slab of uranyl sulfate that was introduced in Chapter 2. This time, however, the slab

length will remain fixed at 400cm to match the dominance ratio of higher-dimensional

reactor problems. In order to increase the difficulty of source stationarity, an offset

starting source distribution will be used, where 10% of the initial source particles are

distributed uniformly along the first 396cm of the slab, while the remaining 90% of
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the particles are distributed uniformly along the remaining 4cm of the problem1. The

two-dimensional problem will be the 2-D variant of the BEAVRS benchmark problem,

also equivalent to the one presented in Chapter 2. The initial source distribution for this

problem will be uniformly distributed throughout the core in fissionable areas. Thus,

the 1-D problem will require many more inactive generations due to its highly tilted

initial source distribution, but the 2-D problem possesses a more complicated geometry

with many materials and will thus require more simulation time per generation. Chapter

4 will continue to investigate the same 1-D and 2-D problems but focuses on running

simulations on larger computer systems. The ultimate test case will be the 3-D BEAVRS

problem that models a tilted full-core BEAVRS benchmark problem in its complete three-

dimensional geometry, which combines the difficulties of both the 1-D and 2-D problems.

However, analysis of the 3-D problem occurs separately in Chapter 5 once the behavior

of the 1-D and 2-D problems has been thoroughly investigated.

3.2.2 FET-based CMFD Stationarity on 1-D and 2-D Test Problems

In order to illustrate how the source distribution evolves as a function of the number

of generations with the use of CMFD for the 1-D problem, Figure 3-2 plots the source

distribution for the accelerated and un-accelerated cases at different generations. In

both cases, the generation size is 10 million neutrons, and a fine CMFD mesh size of

0.4cm is used for the CMFD solver, where an expanding window scheme is used to

reset tallies. A full list of CMFD parameters is listed in Table 3.3, and a more thorough

discussion of how these parameters were chosen can be found in Section 3.2.3. For this

problem, since CMFD feedback starts after the first generation, the source distributions

are equivalent at generation 1. For subsequent generations, however, it can be seen that

CMFD accelerates the source distribution to the true cosine shape much more rapidly.

Given that FET coefficients can continue to represent the strength of spatial modes

of the fission bank for CMFD-accelerated schemes, the stopping criteria presented in

1Such a distribution is chosen instead of an offset point source since CMFD equations cannot be solved in
regions with zero flux. While there are workarounds to this, modifying the initial source in this way was
the simplest approach to this issue without having to significantly modify the CMFD solver in OpenMC
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Figure 3-2: Source distribution at representative generations for the 1-D case with and
without CMFD acceleration.

Chapter 2 can be applied to such schemes to diagnose stationarity as well, where the

same parameters SA = 10, SB = 30, SC = 10 are used for the remainder of problems in

this thesis.

Figure 3-3 plots the FET coefficients a1 to a6 for the case with and without CMFD

acceleration. It can be seen that the FET coefficients approach the same value for both

cases, with the un-accelerated case requiring a larger number of generations to reach

the stationary value. In addition, the vertical lines in each subplot indicate the point

where the mean of the coefficients stops changing relative to the coefficient’s noise levels.

For a particular FET coefficient, the difference between the vertical lines represents the

difference in number of generations required for that coefficient to reach stationarity

from using CMFD acceleration. For the case with CMFD acceleration, the a4 coefficient

is the slowest converging, requiring 215 generations to reach stationarity, while the a1

coefficient is the slowest converging for the un-accelerated case, requiring 874 gener-

ations. The difference between these two values represents the overall reduction in

number of generations to stationarity by using CMFD acceleration.

When using Shannon entropy, however, the stationarity point is not correctly identi-
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Table 3.3: CMFD parameters for 1-D homogeneous problem

Parameter Value

CMFD tally estimator type Analog

Number of energy groups 1

Effective downscatter N/A

Acceleration map None

Reference diffusion parameters Not used

CMFD tally begin 1

CMFD solver begin 1

Weight clipping 0.2

Windowing scheme Expanding window

Maximum window size No limit

CMFD mesh size 0.4cm mesh

Generation size 10 million

Prolongation source shape Fixed source

fied. Figure 3-4 plots Shannon entropy as a function of generation number for the same

problem with and without CMFD acceleration. Based on the same stopping criteria for

the FET coefficients, stationarity would appear to occur at the same vertical point due to

the fact that the entropy function tends to flatten out relative to its noise before reaching

a stable value. Once again, by using Shannon entropy the exact number of generations

saved from using an acceleration method is not as apparent due to its inability to predict

stationarity for the un-accelerated case. In such cases, the stopping criteria parameters

SA, SB, and SC would need to be adjusted to account for the slower migration of the

fission source towards a stationary distribution. Such an approach, however, would

make the success of Shannon entropy much more problem dependent.

Similar trends are observed for the 2-D BEAVRS problem. The behavior of representa-

tive FET coefficients based on the Zernike basis set is shown in Figure 3-5, and the list of

CMFD parameters used for this problem are shown in Table 3.4. The CMFD-accelerated

problem uses a quarter assembly acceleration mesh and takes 70 generations to reach

stationarity, while the un-accelerated problem requires 160 generations. This difference

in number of generations is not as large for the 2-D case since a symmetric starting
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Figure 3-3: Value of FET coefficients a1 to a6 as a function of generation number for
1-D homogeneous test problem with CMFD acceleration (blue) and without CMFD
acceleration (green). The dashed vertical lines represent the stopping criteria for each
particular case.

source is used to simulate a symmetric problem, requiring fewer inactive generations to

reach stationarity.

3.2.3 CMFD Parameter Choice

Many of the CMFD parameters selected for the 1-D and 2-D problems were chosen

based on recommendations from the theses of Herman and Li, who focus significantly

on determining optimal parameters to improve CMFD functionality [1, 26]. For the

purposes of this chapter, the parameters that remain unchanged from these works are

outlined in the next paragraph. Any parameter choices that deviate significantly from

these works are outlined in Sections 3.2.3.1 to 3.2.3.5.

In this thesis, analog tallies are used to compute all CMFD tallies. Since many of

the test cases will use an adequately large generation size of 10 million, the use of

analog tallies trades faster computation time for a slight increase in tally variance levels.

One energy group is used for the 1-D problem while the 2-D problem uses two energy
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Figure 3-4: Value of Shannon entropy as a function of generation number for 1-D ho-
mogeneous test problem with CMFD acceleration (blue) and without CMFD acceleration
(green). The dashed vertical lines represent the stopping criteria for each particular
case.

groups as it was shown by Herman that a finer energy group structure did not increase

the quality of the CMFD solution and also increases the runtime of the solver [26].

The effective down-scattering macroscopic cross section is used for the 2-D BEAVRS

problem in order to remove any effects of infrequent neutron up-scattering events while

preserving neutron balance. Moreover, for the 2-D case, an acceleration map proposed

by Herman is used to overlay a Cartesian acceleration grid onto a non-Cartesian reactor

geometry, where an albedo boundary condition is used to define partial currents at

the core-reflector interfaces [26]. Finally, reference diffusion coefficients are used for

the 2-D BEAVRS problem based on the Cumulative Migration Method (CMM) method

developed by Liu et al. [70]. These diffusion coefficients were first used for Monte Carlo

CMFD acceleration by Li in her thesis where she shows that fixing these values for each

group reduces the number of CMFD tallies to be computed at each generation and drives

the source distribution to a stationary value in fewer generations [1]. In this chapter, a

Group 1 diffusion coefficient of 1.43 and Group 2 diffusion coefficient of 0.40 is used

for the 2-D problem.

3.2.3.1 Tally Begin, Solver Begin, and Weight Clipping

Due to the high likelihood that the first generation of CMFD tallies can carry large bias

and lead the initial generations of CMFD feedback in the wrong direction, both Herman

and Li recommend waiting a few generations before starting the CMFD tallying process
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Figure 3-5: Value of representative FET coefficients as a function of generation num-
ber for the 2-D BEAVRS problem with CMFD acceleration (blue) and without CMFD
acceleration (green). The dashed vertical lines represent the stopping criteria for each
particular case.

and the CMFD feedback step. Here, tally begin denotes the first generation where CMFD

tallying commences in Monte Carlo, while solver begin refers to the first generation

when CMFD equations are solved and CMFD source information is fed back into the

Monte Carlo fission bank weights. Instead, this thesis utilizes weight clipping in order

to reduce the fluctuations observed with beginning the CMFD process too quickly. First

proposed by Harper in his work coupling CMFD with TH feedback using Monte Carlo

tally derivatives, weight clipping limits the amount a particle weight can change in a

given CMFD mesh location [39]. A weight clipping amount of 20% is used in this thesis,

meaning that at the prolongation step, a particle’s weight can change by no more then

this amount. All weight adjustment factors are therefore clipped between 1/1.2 and 1.2.

This allows the CMFD tallying and feedback process to begin immediately at the first
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Table 3.4: CMFD parameters for 2-D BEAVRS problem

Parameter Value

CMFD tally estimator type Analog

Number of energy groups 2

Effective downscatter True

Acceleration map Used

Reference diffusion parameters Used

CMFD tally begin 1

CMFD solver begin 1

Weight clipping 0.2

Windowing scheme Expanding window

Maximum window size No limit

CMFD mesh size Quarter assembly mesh

Generation size 10 million

Prolongation source shape Fixed source

generation, and serves as a damping mechanism to stabilize fluctuations in the fission

source at early generations. Figure 3-6 plots the a1 FET coefficient for the 1-D problem

with and without weight clipping, and it can be seen that stationarity in this coefficient

is met in a much smoother fashion with the use of weight clipping.

3.2.3.2 Tally Windowing Scheme and Maximum Window Size

Li recommends the use of an expanding window scheme to reduce fluctuations that

arise from running CMFD. In such a scheme, tallies from multiple previous generations

are accumulated in order to pass into the CMFD solver at each generation, where the

motivation for such tally aggregation is to increase the total neutron histories that

contribute to the CMFD tallies, which in turn reduces fluctuations in the computed

CMFD source distribution. Here, the term window size is used to denote the number of

previous generations of tally data to compute CMFD cross sections, and in an expanding

window scheme, this window size grows by a factor of 2 when the number of simulated

generations increases by the same factor. Figure 3-7 illustrates which generations of

tally data are used in the CMFD cross section calculation step at each generation, and
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Figure 3-6: Behavior of a1 FET coefficient for an expanding window scheme with and
without weight clipping.

this thesis will be using an expanding window scheme as well.

One topic that was left unexplored in Li’s thesis, however, was whether this window

size should continue to expand indefinitely throughout the simulation. For example, it

can be seen in Figure 3-7 that at generation 30, the tally information from the previous

16 generations are aggregated in order to compute CMFD cross sections. While CMFD

cross section data is drawn from 16 times more generations of neutrons, it also introduces

much more correlation into the simulation, since the source sites at a single generation

are now directly linked to the fission sites from the previous 16 generations. Thus, the

term maximum window size is introduced to describe the maximum window size that an

expanding window scheme is allowed to grow to. Once this maximum is reached, the

window size will remain fixed at this maximum level for the duration of the simulation. A

sensitivity study on a variety of variable parameters is conducted in Sections 3.3 and 3.4,

and the effect of the maximum window size on both the inactive and active generations

will be explored in more detail.

105



Figure 3-7: Illustration of expanding window scheme for first 30 generations.

3.2.3.3 CMFD Mesh Size

Intuitively it may seem that a finer CMFD mesh will result in a finer shape distribution of

computed CMFD tallies and will lead to a finer representation of the underlying CMFD

source distribution. However, when generation size is kept fixed, the number of tally

events that contribute to each mesh cell will decrease, thus increasing overall variance

levels in each mesh location. This interplay will also be explored in Sections 3.3 and 3.4.

One new feature added to OpenMC to improve CMFD runtime is the ability to solve

CMFD equations with multiple OpenMP threads. By implementing the CMFD solver as

a red-black Gauss-Seidel linear solver, shared memory parallelism can be utilized to

reduce solver runtime [71, 72]. In such an algorithm, each gridpoint is ordered in a

checkerboard pattern where in one-dimension a gridpoint i is colored red if i is even
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and black if odd. Likewise, in two dimensions, each gridpoint (i, j) is colored red if i + j

is even and black if i + j is odd. In this manner, all red grid points can be updated in

parallel using multiple OpenMP threads since their results are decoupled from the black

grid points. In the next iteration, all black grid points are then updated in parallel. Thus,

a single Gauss-Seidel update step can be divided into parallel grid point updates of the

red cells followed by the black cells.

While increasing the number of OpenMP threads can speed up the runtime of such a

parallelized algorithm, the size of the problem must be adequately large enough in order

for this to happen. If the size of the problem is not large enough, different threads will

start to compete with one another to maintain cache coherency. For small problems, the

likelihood of different threads trying to access the same cache line in order to update flux

values increases. In such cases, threads will have to update entries in the same cache

line in a sequential manner once competing threads have finished their updates. This

situation is called false sharing and is a significant cause of performance degradation

when using OpenMP multithreading [73].

This is the situation that arises when using multiple threads on a CMFD problem

with a coarse mesh. Figure 3-8 plots the CMFD execution time per generation as a

function of number of OpenMP threads for the 1-D homogeneous problem using a 0.4cm

and 20cm CMFD mesh. Likewise, Figure 3-9 plots the CMFD execution per generation

for the 2-D BEAVRS problem using an assembly, quarter assembly, and pincell CMFD

mesh. It can be seen that CMFD runtime can actually increase if too many threads are

used to solve a coarse mesh CMFD problem. Thus, throughout this chapter only a single

OpenMP thread is used when running CMFD on a coarse mesh such as 1-D 20cm or

2-D assembly mesh, whereas a higher thread count is used for the 1-D 0.4cm and 2-D

quarter assembly mesh. For the 2-D pincell mesh, while the size of the problem results

in runtime savings even with 16 threads, the overall CMFD runtime at this level is still

over 500 times slower than a single thread assembly mesh solver, so this mesh size is not

pursued in the sensitivity studies conducted in Sections 3.3 and 3.4. All runtimes from

this section were collected on simulations that were run on a single node of a computer

cluster with dual-socket Intel Xeon E5-2650 v4 processors per node and 16 cores per
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socket.

Figure 3-8: Effect of number of OpenMP threads on CMFD execution time per generation
for 0.4cm and 20cm mesh size on 1-D test problem.

Figure 3-9: Effect of number of OpenMP threads on CMFD execution time per generation
for assembly, quarter assembly, and pincell mesh size on 2-D test problem.

3.2.3.4 Generation Size

For the 1-D and 2-D results presented in Section 3.2.2, a fixed generation size of 10

million was used for both cases. While it is a well-known fact that standard deviation in

tallied quantities reduces at a rate of 1/
p

N for uncorrelated particles that do not use

source acceleration schemes where N is the generation size, Section 3.3 will also vary

this parameter to see if this trend holds true for Monte Carlo simulations that utilize

CMFD acceleration.
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3.2.3.5 Prolongation Source Shape Function

Section 3.1.1.4 presented the equations to compute the weight adjustment factors used

to update each particle weight in the fission bank. However, such a prolongation step

assumes that the source in each mesh cell is spatially flat and does not assume any shape

variation within the mesh cell. This can lead to large approximations especially when a

flat shape is assumed over a coarsely defined mesh cell. For deterministic calculations,

CMFD source acceleration applied to Method of Characteristics has benefited from

assuming a shape profile within each mesh cell, where the coefficients that define this

shape are calculated by preserving neutron flux within each cell [74]. In a similar vein,

Section 3.4 will look at the impact of assuming a linear shape function within a coarsely

defined CMFD mesh cell to see if it improves the quality of the Monte Carlo solution. A

full derivation of the equations used to calculate the shape parameters for this linear

prolongation step can be found in Appendix C. Linear prolongation is pursued only in a

single dimension for the 1-D problem and is not conducted for the 2-D problem.

Given the multitude of CMFD parameters that have been introduced to this point,

Table 3.5 summarizes these parameter choices for both 1-D and 2-D sensitivity studies

that will be conducted in Sections 3.3 and 3.4. Parameters labeled "Variable" are allowed

to vary in these sections, and are followed by the values that they can take on.

FET stationarity is extended to the use of CMFD source acceleration, where

the exact savings in terms of generations to stationarity are identified for 1-

D and 2-D test problems. CMFD parameters are defined and four of these

parameters - generation size, CMFD mesh size, maximum window size, and

prolongation source shape - will be varied in ensuing sensitivity studies.
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Table 3.5: CMFD parameter choices for Sections 3.3 and 3.4.

Parameter Value for 1-D Problem Value for 2-D Problem

CMFD tally estimator type Analog Analog

Number of energy groups 1 2

Effective downscatter N/A True

Acceleration map Not used Used

Reference diffusion
parameters

Not used Used

CMFD tally begin 1 1

CMFD solver begin 1 1

Weight clipping 0.2 0.2

Windowing scheme Expanding window Expanding window

Maximum window size Variable - 8, 16, 32, 64 Variable - 8, 16, 32, 64

CMFD mesh size Variable - 0.4cm, 20cm Variable - Assembly, quar-
ter assembly

Generation size Variable - 1 million, 10 mil-
lion

Variable - 10 million, 100
million

Prolongation source shape Variable - Flat shape, lin-
ear shape

Flat shape

3.3 CMFD Parameter Sensitivity Study on Monte Carlo

Inactive Generations

During the inactive generations, the goal is to simulate enough generations so as to

remove any bias in the initial source guess, and at this point no accumulation of the

fission source occurs yet. The variance levels in the stationary instantaneous fission

source describes the level of statistical noise present in the system, which in turn dictates

the error level observed in the first active generation. An instantaneous fission source

that varies greatly from generation to generation is more likely to exhibit higher starting

error levels in the active generations, while lower starting error levels can be achieved if

the variance in the instantaneous fission source is lowered. An example of this is when

a larger generation size is used in Monte Carlo simulations. A larger generation size

results in an instantaneous fission source that exhibits lower system-level noise levels,
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and typically will yield a starting error level that is 1/
p

N times that of a simulation that

has a generation size that is N times smaller. Similarly, simulations that utilize source

acceleration schemes such as CMFD should also try to reduce variance levels in the

underlying fission source, so as to lower starting error levels in the active generations.

For both 1-D and 2-D cases simulated in Section 3.2.2, the expanding window scheme

allowed the tally windows to continue to expand exponentially without limit. In doing

so, later generations received tally information from many more previous generations in

order to compute CMFD cross sections compared to earlier generations, and over time

this reduces fluctuations in the fission source during the CMFD feedback step. In order

to illustrate this effect, Figure 3-10 plots the a1 FET coefficient as a function of simulated

generations for the 1-D case, where a maximum window size of 8 is imposed for the left

plot and a maximum window size of 32 is used for the right plot. For both cases, a 0.4cm

CMFD mesh is used. The equilibrium fluctuation levels in both of these plots represent

the fluctuations that occur in the stationary instantaneous fission source. For the case

with a maximum window size of 8, each of the later generations is only able to use the

tallies from the previous 8 generations to pass into the CMFD cross section calculations,

while the case with a maximum window size of 32 allows information from the previous

32 generations to be included as part of the cross section calculation process. From these

plots, it can be seen that the FET coefficients and hence the instantaneous fission source

at a given generation will have fewer fluctuations when a larger maximum window size

is achieved.

In order to quantify the exact statistical fluctuations in the fission source, this section

defines the standard deviation in the instantaneous fission source as:

s[Xn] =
1
M

M
∑

m=1





r

1
G−1

∑n+G
g=n

�

X g,m − X n:n+G,m

�2

X n:n+G,m



 (3.6)

which represents the average relative fluctuation per mesh cell computed over

a moving window of G = 100 generations for a single Monte Carlo trial. Here, X g,m

represents the fission source at generation g and mesh location m and X n:n+G,m represents

the average fission source value at mesh location m from generation n to n+G. s[Xn] is
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Figure 3-10: Behavior of a1 FET coefficient for an expanding window scheme with a
maximum window size of 8 (left) and 32 (right).

the mesh-averaged standard deviation in the instantaneous fission source at generation

n and serves as a proxy to the system-level statistical noise in the instantaneous fission

source. The mesh M over which the standard deviation is computed is a fine mesh of

0.4cm for the 1-D case and a pincell mesh for the 2-D case, and this is done in order to

neglect any correlation effects that may arise when trying to compute source fluctuations

over successive generations in a single seed simulation. Here, it is assumed that if a fine

enough mesh is used to compute the fission source, then source values in a given mesh

cell will behave independently from generation to generation [28].

3.3.1 Effect of Window Size on Instantaneous Fission Source Stan-

dard Deviation

Figure 3-11 plots the standard deviation in the instantaneous fission source as a function

of window size for the CMFD accelerated problem with a 0.4cm CMFD mesh. Figure 3-11

also shows the standard deviation of a problem that doesn’t use CMFD acceleration2.

In line with the behavior of Figure 3-10, this plot shows that fluctuations in the fission

source decrease as the maximum window size increases. However, it also shows that for

2Since we are interested in the equilibrium fission source standard deviation levels and not the generations
to stationarity, a uniform starting source is used for the 1-D problem instead of an offset starting source.
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standard deviation levels between CMFD-accelerated and un-accelerated simulations to

match, a relatively large window size of 64 needs to be achieved. This is a result that

is often overlooked when measuring the impact of CMFD on the inactive generations.

While CMFD may reduce the number of generations to stationarity, unless a windowing

scheme that uses a large window size is used, often times CMFD can introduce larger

noise levels to the underlying fission source.

Figure 3-11: Standard deviation in instantaneous fission source - No CMFD vs. 0.4cm
CMFD mesh with 10 million particles per generation and varying maximum window
size.

As the maximum window size continues to increase indefinitely, the fission source

variance levels for a CMFD-accelerated simulation actually overtake that of the un-

accelerated run. Figure 3-12 plots the standard deviation in the instantaneous fission

source for both the same CMFD-accelerated and un-accelerated cases as Figure 3-11

but this time the maximum window size is allowed to grow to 512. It can be seen

that a lower standard deviation level can be achieved when the window size is this

large. Typically, however, this is impractical in the inactive generations since at least

512 generations are required before such a window size can be achieved, and this is

well beyond the cutoff point between the inactive and active generations when running

CMFD for the 1-D case.

At this point, the term CMFD penalty factor is introduced. This factor represents the

minimum window size required in an expanding window scheme for a given generation
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Figure 3-12: Standard deviation in instantaneous fission source - No CMFD vs. 0.4cm
CMFD mesh with 10 million particles per generation and maximum window size 512.

size so that the standard deviation in the underlying fission source of a CMFD-accelerated

simulation is comparable to that of an un-accelerated scheme. According to Figure 3-11,

for the 1-D problem with a 0.4cm CMFD mesh and generation size 10 million, the CMFD

penalty factor is 64. If this minimum window size is not met, then variance levels in the

underlying instantaneous fission source will be higher when CMFD is used.

3.3.2 Effect of Generation Size on Instantaneous Fission Source

Standard Deviation

Section 3.3.1 introduced the notion of the CMFD penalty factor and described how a

maximum window size of at least 64 was needed in order for CMFD variance levels

to match that of an un-accelerated run for the 1-D case with 0.4cm CMFD mesh and

generation size of 64. This section keeps the window size fixed and varies the generation

size to see if the CMFD penalty factor is independent of the generation size. Figure 3-13

plots the standard deviation in the instantaneous fission source where the generation

size is varied between 1.25 million, 2.5 million, 5 million, and 10 million. For each of

these cases, the CMFD-accelerated and un-accelerated simulations possess the same

fluctuation levels when the generation size is the same and the maximum window size

is fixed at 64, which seems to suggest that the CMFD penalty factor remains the same

regardless of generation size.
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Figure 3-13: Standard deviation in instantaneous fission source - No CMFD vs. 0.4cm
CMFD mesh with maximum window size 64 and varying generation size.

While it has been shown that increasing generation size and maximum window size

both result in the reduction of instantaneous fission source variance, which parameter

has a larger effect? Figure 3-14 plots the un-accelerated case and CMFD accelerated

case where the CMFD penalty factor of 64 is met. The green line shows the case where

the window size is reduced by half but the generation size is increased by a factor of

two, and similarly the red line shows the case where window size is reduced by a factor

of 4 but the generation size is increased by this same factor. Keeping the product of

generation size and maximum window size constant between the orange, green, and red

lines, these results indicate that increasing generation size has a larger effect on reducing

standard deviation levels in the instantaneous fission source.This is likely due to the fact

that increasing generation size decouples particles that belong to the same generation,

while increasing the window size adds additional correlation to the fission source, which

leads to a situation of diminishing returns with respect to reduced standard deviation

levels.

3.3.3 Effect of Mesh Size on Instantaneous Fission Source Standard

Deviation

All results in Section 3.3 so far have been shown for the 1-D problem with a 0.4cm

CMFD mesh. This section analyzes the use of a coarser 20cm CMFD mesh and also
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Figure 3-14: Standard deviation in instantaneous fission source - No CMFD vs. 0.4cm
CMFD mesh with product of window size and generation size kept constant.

presents results for the 2-D BEAVRS case. Figure 3-15 plots the standard deviation in

the instantaneous fission source for a variety of maximum window sizes and generation

sizes using a 0.4cm CMFD mesh, while Figure 3-16 plots the same standard deviation

levels using a 20cm CMFD mesh. It can be seen for the 20cm CMFD mesh, the CMFD

penalty factor stays the same at 64 and is independent of generation size, and yields

roughly the same standard deviation levels as the 0.4cm case. In this light, given the

extra computational burden of computing a fine-mesh CMFD solution, it is prudent to

use a coarse mesh CMFD solution in order to reduce runtime in the inactive generations.

Moreover, fission source variance levels are not affected significantly with the use of

a coarse mesh CMFD solution either. This is because a fine mesh solution has a more

detailed shape profile, but the values within each mesh cell will exhibit higher noise

levels as fewer neutron events contribute to each tally region.

Similar trends emerge for the 2-D BEAVRS case as well. Figures 3-17 and 3-18 show

analogous plots to those in Figure 3-15, using assembly and quarter assembly CMFD

meshes respectively for the 2-D case. The type of CMFD mesh has minimal impact on

the instantaneous fission source, while the CMFD penalty factor now seems to be lower

than the 1-D case, where a maximum window size between 32 and 64 yields the same

standard deviation levels as the un-accelerated 2-D BEAVRS case. Once again, the CMFD

penalty factor is also independent of the generation size.
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Figure 3-15: Standard deviation in instantaneous fission source - No CMFD vs. 0.4cm
CMFD mesh with varying window size and generation size.

A fine-mesh CMFD solution and coarse-mesh CMFD solution exhibit similar

levels of standard deviation in the instantaneous fission source when gener-

ation size is kept fixed. Furthermore, the maximum window size in a CMFD-

based solution needs to be as large as the CMFD penalty factor in order for

these standard deviation levels to be on par between CMFD and un-accelerated

solutions. The CMFD penalty factor is independent of generation size.

3.4 CMFD Parameter Sensitivity Study on Monte Carlo

Active Generations

While Section 3.3 looked at the inactive generations to determine the optimal CMFD

parameters to minimize variance in instantaneous fission source variance levels, this

section will look at the active generations to refine those parameter choices. The biggest
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Figure 3-16: Standard deviation in instantaneous fission source - No CMFD vs. 20cm
CMFD mesh with varying window size and generation size.

takeaway from Section 3.3 was that the maximum window size should be as large as

possible in order to minimize the standard deviation in the fission source and in doing

so, allows the fluctuations to match that of the un-accelerated case. Here, the impact

of maximum window size, generation size, CMFD mesh size, and prolongation source

shape on the active generations will be explored.

Once the active generations begin, the instantaneous fission source is accumulated

so as to compute the fission source with greater confidence. The variable Yn,m,p denotes

the accumulated fission source at the n-th active generation, m-th mesh cell, and p-th

independent trial, and is defined as:

Yn,m,p =
1
n

n
∑

i=1

X i,m,p (3.7)

where X i,m,p refers to the instantaneous fission source at active generation i, mesh

m, and trial p. The cutoff point for the first active generation is no longer a fixed value

like what is typically done in active generation analysis, but is determined using the
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Figure 3-17: Standard deviation in instantaneous fission source - No CMFD vs. Assembly
CMFD mesh with varying window size and generation size for the 2-D BEAVRS problem.

FET-based stopping criteria for each independent trial.

In this section, the accuracy of the accumulated fission source distribution is assessed

by comparing it to a reference value, and the RMS error heuristic is used to describe the

trial-averaged, mesh-averaged error in the source distribution, defined as:

εRMS
n =

√

√

√

√

1
M

M
∑

m=1

 ∑P
p=1

�

Yn,m,p

�

/P − Y ref
m

Y ref
m

!2

∗ 100% (3.8)

where Y ref
m represents the reference accumulated source distribution in mesh m3.

Discussion of how these reference solutions are computed for each test case is explained

in more detail in Section 3.4.1.

During the active generations, one of the main obstacles to ideal 1/
p

N convergence

rates in the RMS error distribution is the emergence of correlation effects, since the

source sites of each additional generation are now directly linked to the fission sites

3For the RMS error plots that will be shown in this section, the accumulated fission source Yn,m,p is
computed with P = 1 trial.
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Figure 3-18: Standard deviation in instantaneous fission source - No CMFD vs. Quarter
assembly CMFD mesh with varying window size and generation size for the 2-D BEAVRS
problem.

of all previous active generations. Thus, the fission source sites that comprise the

entire sample of tally data to compute sample statistics can no longer be assumed to be

independent. Unless this correlation is accounted for, the apparent standard deviation

computed from the sample standard deviation of a single trial will under-predict the real

standard deviation [29,30,75]. Instead, the real standard deviation can be computed as

the mesh-averaged sample standard deviation across independent trials of Monte Carlo

simulations, and is defined as:

s[Yn] =
1
M

M
∑

m=1

√

√

√

√

1
P − 1

P
∑

p=1

(Yn,m,p − Y n,m)2 (3.9)

Here, real standard deviation can be calculated without a reference source distri-

bution, and it can be shown that the convergence rate of the real standard deviation

serves as a proxy to assess the convergence rate in RMS error rates for cases where a

reference source distribution is unavailable [1,28]. Real standard deviation levels will
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be calculated and examined in Section 3.4.4 for the 2-D BEAVRS problem.

3.4.1 Reference Solutions for Test Problems

In order to calculate RMS error to judge the quality of a simulation’s accumulated fission

source, reference solutions to the 1-D and 2-D test problems are required. For the 1-D

problem, the reference solution is computed as the average over 100 independent trials

and over 10,000 active generations per trial without CMFD source acceleration. In order

to also assess the impact of the mesh size on the reference solution, the reference fission

source is computed over different mesh sizes as well. The normalized fission source for

the 1-D problem is collected over both a 0.4cm and 20cm mesh - corresponding to a

similar mesh size to that of a PWR pincell and assembly respectively. In this section, the

term RMS error mesh is used to define the mesh M for the calculation of RMS error in

Equation 3.8, and the impact of RMS error mesh on active generation RMS will also be

explored.

The normalized average fission source for the 1-D reference solution computed over

these two mesh sizes is shown in Figure 3-19. The second column plots the real standard

deviation computed over the 100 independent trials. The third column plots the relative

error in the fission source for each mesh location, which is defined as the real standard

deviation divided by the average. These results show that regions of low fission source

values generally have low standard deviation levels as well, but if this standard deviation

is normalized to the average value for that mesh cell, then regions of low fission source

values have higher error levels. This is consistent with the idea that fewer neutron

histories frequent these low-flux regions and thus will possess higher relative variance

levels compared to high-flux regions.

For the 2-D problem, two reference solutions were generated - one with CMFD

acceleration and one without. Both of these solutions are computed as the average

over 100 independent trials and over 150 active generations, and the CMFD-accelerated

solution utilizes a quarter assembly CMFD mesh. The reference solutions are collected

over a pincell mesh and an assembly mesh, and these reference solutions are plotted in
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Figure 3-19: Reference solution for the 1-D homogeneous test problem. The top row
plots the reference using a 0.4cm RMS error mesh while the bottom row uses a 20cm
mesh. The first column plots the normalized average fission source, the second column
plots the relative standard deviation for each mesh location, and the third column plots
the relative error (standard deviation divided by the average, expressed as a percent).

Figures 3-20 and 3-21 for the un-accelerated and CMFD-accelerated cases respectively.

Similar to the 1-D case, the relative error in the fission source shows that the regions with

low source values have relatively higher standard deviation levels as well. Also, looking

at the areas with higher relative error values, the distribution of errors is tilted for the

un-accelerated case compared to the CMFD-accelerated case, so it seems as though a

CMFD-based solution is able to remove variations in the low-order radial modes of the

solution more effectively than without a source-acceleration scheme. Ultimately, the

2-D reference solution for this section was chosen as an eighth-core octant symmetric

solution of the un-accelerated case, but it was found that the results in the active

generations do not vary greatly based on whether an un-accelerated, CMFD-accelerated,

or octant-symmetric variant of these cases is chosen as the reference solution.
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Figure 3-20: Reference solution for the 2-D BEAVRS test problem computed without
CMFD acceleration. The top row plots the reference using a pincell RMS mesh while
the bottom row uses an assembly mesh. The first column plots the normalized average
fission source, the second column plots the relative standard deviation for each mesh
location, and the third column plots the relative error (standard deviation divided by
the average, expressed as a percent).

3.4.2 1-D Results - RMS Error in Accumulated Fission Source with

Fine RMS Mesh

Figure 3-22 plots the RMS error in the accumulated fission source as a function of active

generations for the 1-D un-accelerated case along with the CMFD-accelerated case with

a 0.4cm CMFD mesh. A generation size of 1 million and a 0.4cm RMS error mesh is

used, and the results are shown for a variety of maximum window sizes. The red line

shows the ideal 1/
p

N convergence line, and the right plot zooms in on the first 5 active

generations of the left plot. It can be seen that most of the trendlines behave similarly,

where the convergence rates are in accordance with the 1/
p

N rate, and this is because

the RMS error is computed over a fine mesh. At later active generations, there seems to

be slight deviations from the idealized convergence rates. At initial active generations,

there is also a slight decrease in RMS levels when a larger maximum window size is
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Figure 3-21: Reference solution for the 2-D BEAVRS test problem computed with CMFD
acceleration using a quarter assembly CMFD mesh. The top row plots the reference using
a pincell RMS mesh while the bottom row uses an assembly mesh. The first column plots
the normalized average fission source, the second column plots the relative standard
deviation for each mesh location, and the third column plots the relative error (standard
deviation divided by the average, expressed as a percent).

used. This is consistent with the idea that initial RMS error levels are dictated by the

standard deviation levels in the instantaneous fission source, which were shown to be

lower when larger maximum window sizes were achieved.

Figure 3-23 plots similar RMS error plots as Figure 3-22 but uses a 20cm acceleration

mesh instead. Once again, when a fine RMS error mesh is used, convergence rates

conform to ideal 1/
p

N rates, and there is a slightly lower starting RMS error when a

larger maximum window size is used. There does not seem to be a discernible difference

between using a 0.4cm or 20cm CMFD mesh on RMS error convergence rates with a

0.4cm RMS error mesh.
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Figure 3-22: RMS error as a function of number of active generations - No CMFD vs.
0.4cm CMFD mesh with varying window size for 1-D problem. Accumulated fission
source is computed with a generation size of 1 million and RMS error mesh of 0.4cm.
RMS error is shown for the first 1000 active generations (left) and zoomed into the first
5 active generations (right).

3.4.3 1-D Results - RMS Error in Accumulated Fission Source with

Coarse RMS Mesh

When a coarser 20cm RMS error mesh is used, convergence rate degradation from

correlation effects begins to appear. Figure 3-24 plots the RMS error using a 20cm RMS

error mesh for the un-accelerated and CMFD-accelerated case with a 0.4cm acceleration

mesh. Here, the initial RMS levels can vary much more based on the maximum window

size, where once again a larger window size results in the lowest RMS error. The

discrepancy between the ideal red line and the other trendlines illustrates the deviation

from 1/
p

N convergence rates in Monte Carlo simulations that occurs due to correlation

effects. When a coarse RMS error mesh is used, fission source sites within a mesh cell

become more closely linked from generation to generation, and thus the accumulation

of source sites over larger spatial regions results in tallied quantities that are no longer

independent of each other. In the limit of a large number of active generations, however,

RMS errors seem to reach the same levels regardless of window size. This suggests that

a larger maximum window size may be able to reduce initial error levels, but the larger

window size could also be introducing additional correlation effects due to the fact

that fission sites are now dependent on the CMFD feedback steps from a larger number

of previous generations. This ultimately reduces convergence rates even further and
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Figure 3-23: RMS error as a function of number of active generations - No CMFD vs.
20cm CMFD mesh with varying window size for 1-D problem. Accumulated fission
source is computed with a generation size of 1 million and RMS error mesh of 0.4cm.
RMS error is shown for the first 1000 active generations (left) and zoomed into the first
5 active generations (right).

therefore error levels can be overtaken by simulations that utilize a smaller maximum

window size.

Figure 3-24: RMS error as a function of number of active generations - No CMFD vs.
0.4cm CMFD mesh with varying window size for 1-D problem. Accumulated fission
source is computed with a generation size of 1 million and RMS error mesh of 20cm.
RMS error is shown for the first 1000 active generations (left) and zoomed into the first
5 active generations (right).

It should be noted here that correlation effects exist even when a fine RMS error

mesh is used. Simulations that utilize a fine RMS mesh achieve ideal 1/
p

N convergence

rates but begin at a higher starting error level compared to a coarse RMS error mesh. In

the limit of a very large number of active generations, fine RMS error mesh simulations

slowly deviate from ideal 1
p

N convergence rates and begin to approach the same error
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levels as the coarse RMS error mesh case. This can be seen when focusing on the region

between 100 and 1000 active generations in Figures 3-22 and 3-24, where terminal RMS

error levels reach similar values regardless of RMS error mesh size. A closer examination

of this behavior can be found in Appendix D.

Finally, Figure 3-25 plots the RMS error with a 20cm RMS error mesh for the un-

accelerated case and CMFD accelerated case with a 20cm CMFD mesh. A large dis-

crepancy can be seen between using a maximum window size of 64 and using a lower

maximum window size and could be due to the fact that a flat source approximation

is used over a coarse mesh cell during the CMFD prolongation step. Thus, a CMFD

prolongation step that utlizes a linear source approximation, denoted as lpCMFD for

linear prolongation CMFD, is plotted in Figure 3-25 as well. It can be seen that linear

prolongation CMFD with a smaller window size of 32 yields similar starting RMS error

levels when compared to flat source prolongation CMFD with a larger window size. This

suggests that assuming a linear shape within the CMFD source distribution for a coarse

mesh cell helps to reduce error levels in the active generations.

Figure 3-25: RMS error as a function of number of active generations - No CMFD vs.
20cm CMFD mesh with varying window size for 1-D problem. Accumulated fission
source is computed with a generation size of 1 million and RMS error mesh of 20cm.
RMS error is shown for the first 1000 active generations (left) and zoomed into the first
5 active generations (right).

When increasing the generation size from 1 million to 10 million, similar trends in

active generation convergence rates also arise. Increasing the generation size merely

shifts the starting RMS error level by a factor of 1/
p

N . However, as the number of

active generations increases, correlation effects continue to dominate when a coarse
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RMS error mesh is used. Analogous plots for Figures 3-22, 3-23, 3-24, and 3-25 with a

generation size of 10 million can be found in Appendix E.

3.4.4 2-D Results - RMS Error and Real Standard Deviation in Accu-

mulated Fission Source

For the 2-D BEAVRS case, RMS error levels using a coarse assembly-sized RMS error mesh

are used since typical Monte Carlo reactor simulations are concerned with convergence

behavior in the regime where correlation effects dominate the aggregation of tallied

quantities. Figure 3-26 plots the RMS error as a function of number of active generations

for a single seed trial of un-accelerated Monte Carlo and a CMFD-accelerated Monte

Carlo with an assembly-sized CMFD mesh. Both cases use a generation size of 10

million, and once again, the discrepancy between the RMS levels and the ideal 1/
p

N

trendline illustrates the diminished convergence rates that result from inter-generational

correlation. These results are also in line with the 1-D case, where a larger window size

yields lower starting RMS error levels. However, as the number of active generations

increases, the difference in error levels between the smaller window and larger window

cases starts to decrease. Figure 3-27 shows a similar plot where a quarter assembly

CMFD mesh is used instead of an assembly-size CMFD mesh, and once again there is no

discernible advantage over using a finer CMFD mesh in the active generations for the

2-D case.

For the un-accelerated case and CMFD-accelerated case with a quarter assembly

CMFD mesh, 100 independent trials of 100 active generations were also conducted.

This allows for the calculation of real standard deviation presented in Equation 3.9 as a

function of active generations, which is shown in Figure 3-28. The mesh over which

real standard deviation is computed is assembly-sized, and each trial has a generation

size of 10 million. These results are in accordance with Figure 3-27, where starting

standard deviation levels are lower when a larger window size is used, but convergence

rates slow down for simulations with larger window sizes as a larger number of active

generations are simulated. The exact numerical characterization of correlation effects
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Figure 3-26: RMS error as a function of number of active generations - No CMFD vs.
Assembly CMFD mesh with varying window size for 2-D problem. Accumulated fission
source is computed with a generation size of 10 million and assembly-sized RMS error
mesh. RMS error is shown for the first 100 active generations (left) and zoomed into
the first 5 active generations (right).

Figure 3-27: RMS error as a function of number of active generations - No CMFD vs.
Quarter assembly CMFD mesh with varying window size for 2-D problem. Accumulated
fission source is computed with a generation size of 10 million and assembly-sized RMS
error mesh. RMS error is shown for the first 100 active generations (left) and zoomed
into the first 5 active generations (right).

with CMFD acceleration is not explored in this thesis, but these trends are in line with

the results shown by previous work in this domain [1].
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Figure 3-28: Real standard deviation as a function of number of active generations -
No CMFD vs. Quarter assembly CMFD mesh with varying window size for 2-D problem.
Real standard deivation is computed over 100 independent trial with a generation size
per trial of 10 million and assembly-sized RMS error mesh. Real standard deviation
is shown for the first 100 active generations (left) and zoomed into the first 5 active
generations (right).
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Convergence in RMS error for simulations that use a fine RMS error mesh

behave in accordance with ideal 1/
p

N rates but correlation effects start to

emerge when a coarse RMS error mesh is used instead. A fine-mesh CMFD so-

lution and coarse-mesh CMFD solution exhibit similar RMS error levels when

generation size is kept fixed. Furthermore, a larger maximum window size

yields a lower starting RMS error level in the initial active generations, but

tends to result in slower convergence rates as active generations progress

when compared to the case when a smaller maximum window size is used.

Increasing generation size shifts RMS error plots lower by a factor of 1/
p

N

but does not eliminate correlation effects as the active generations progress.

A linear prolongation CMFD update step helps to lower initial RMS levels for

coarse CMFD acceleration meshes

3.5 Optimal Run Strategies for Monte Carlo Simulations

Using CMFD Source Accelerations

The sensitivity studies conducted in Sections 3.3 and 3.4 investigated the parameters

that affected the behavior of the standard deviation of the instantaneous fission source

in the inactive generations and the RMS error in the active generations. If CMFD

source acceleration is used in the inactive generations, it is recommended to use a

maximum window size that matches the CMFD penalty factor of the problem to ensure

that instantaneous fission source levels match that of the un-accelerated case. In the

active generations, simulations that attained maximum window sizes equivalent to

the CMFD penalty factor were able to reach initial RMS error levels in line with the

un-accelerated case. However, as the number of active generations simulated increased,

correlation effects tended to dominate convergence rates when a coarse RMS error mesh

was used irrespective of whether CMFD was used or not. It was also observed that

convergence rates in the active generations for CMFD source acceleration schemes with

large window sizes were lower than those that used smaller window sizes. In this light,
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it is recommended to turn off CMFD source acceleration in the active generations, as

it adds computational overhead to the Monte Carlo transport process, and does not

provide better convergence rates than the un-accelerated case. Finally, it was found

that coarse CMFD acceleration meshes should be preferred over fine meshes since there

was no discernible advantage in using a fine-mesh solution in the inactive and active

generations, and the fine-mesh solver is much more computationally costly to run. For

1-D problems, the use of linear prolongation helped reduce RMS error levels in the active

generations when a coarse CMFD acceleration mesh was used, but did not remove the

underlying stochasticity inherent in the Monte Carlo process. This stochasticity is largely

controlled by the generation size, where a larger generation size reduces initial error

levels in the active generations by a factor of 1/
p

N , but does not eliminate convergence

degradation from correlation effects when a large number of active generations are

simulated. From here onwards, all 1-D simulations will use a fixed source prolongation

step, but a linear prolongation step will be used once again for the 3-D BEAVRS test

cases in Chapter 5 in the axial dimension.

This section combines the findings from this chapter to assess overall runtime between

CMFD source acceleration and the un-accelerated case. Given that in the limit of many

active generations the behavior of RMS error does not change drastically based on

whether CMFD acceleration is used or not, the focus on this section is to compare

different run strategies and instead assess runtime in just the inactive generations to

determine how to reach stationarity in the quickest possible way. Here, the figures

of merit are not only total runtime and generations to stationarity, but also standard

deviation in the instantaneous fission source. In order to reduce the number of variables

for this study, generation size is kept fixed at 10 million and all test cases are run

on a single node on the same computer cluster that was described in Section 3.2.3.3.

Simulation strategies on larger computer systems will be explored in more detail in

Chapter 4.
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3.5.1 Summary of Run Strategies

Four simulation strategies will be explored in this section. The first run strategy, denoted

Strategy 1, does not use any source acceleration schemes. Strategies 2 and 3 will

use CMFD source acceleration with maximum window sizes of 16 and 64 respectively.

Strategy 4 will be a hybrid run strategy, where CMFD is run with an expanding window

scheme with no maximum window size until it reaches a loosely converged fission source

distribution. At this point, CMFD feedback is turned off until a tighter convergence

criteria is met. In this scenario, the convergence criteria is controlled by the stopping

criteria parameters presented in Section 2.3.2, where SA = 5, SB = 30, SC = 5 when

CMFD feedback is running, and the typical stopping criteria parameters SA = 10, SB =

30, SC = 10 are used when there is no CMFD feedback. This hybrid approach tries to

combine the benefits of CMFD acceleration and un-accelerated Monte Carlo, where

CMFD allows for the quickest reduction in fission source bias during initial inactive

generations, while un-accelerated Monte Carlo offers faster runtime per batch and a

reduction in instantaneous fission source variance without relying on a large CMFD

window size.

3.5.2 Run Strategy Results

Table 3.6 summarizes the runtimes for a variety of run strategies and mesh sizes for the

1-D case, and these results are computed as the average over five independent trials.

The case with no CMFD acceleration takes a considerable amount of time due to the

number of generations required for stationarity. Similarly, a fine mesh CMFD solution

requires a significant amount of runtime due to the computational constraints imposed

from tallying on a fine mesh and from running a fine-mesh CMFD solver. On the other

hand, a coarse mesh CMFD solution is able to effectively reduce the overall runtime to

reach stationarity. When a window size of 16 is used, fewer generations to stationarity

are required to reach the higher levels of system-level variance associated with using

a smaller window size. A larger window size, however, requires a larger number of

generations to reach lower variance levels. This behavior is in line with the observations
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from Chapter 2, where a larger number of generations were required for simulations

with larger generation sizes in order to reach lower target variance levels. In light of this,

the hybrid approach employed in Strategy 4 is the most effective for reducing runtime

while achieving variance levels on par with Strategy 1. Even though Strategy 4 takes

more generations to stationarity than Strategy 3, many of these generations occur while

CMFD is turned off, where runtime per generation is reduced by nearly 60%.

Similar results occur for the 2-D BEAVRS case, which are shown in Table 3.7, where

Strategy 3 with a coarse assembly-sized CMFD mesh is able to reduce runtime most

effectively while yielding variance levels on the same level as the un-accelerated case.

The 2-D BEAVRS problem is a much more realistic reactor problem with heterogeneous

geometry and many materials, so the runtime per generation for un-accelerated Monte

Carlo is now only 14% lower than that of CMFD-accelerated Monte Carlo, which makes

running Monte Carlo without CMFD relatively more costly. The symmetry of the initial

starting source guess also results in lower overall time to stationarity compared to the

1-D case. Thus, if Strategy 4 is employed, it can be said that CMFD source acceleration

results in a roughly 52% reduction in time to stationarity for the 1-D problem while

maintaining the same fission source standard deviation levels as un-accelerated Monte

Carlo. For the 2-D case, this reduction in runtime is roughly 60%, and the difference

between the CMFD-only strategies and the hybrid strategy do not vary significantly.

Table 3.6: Summary of run strategies and figures of merit related to inactive generation
stationarity for the 1-D Homogeneous case

CMFD Mesh Run Strategy Generations to Inst. Fission Total runtime

Size Stationarity Source Std (CPU-hrs)

None Strategy 1 879.0 1.554 ×10−2 189.80

20cm Strategy 2 190.0 2.132 ×10−2 95.34

20cm Strategy 3 213.0 1.557 ×10−2 106.88

20cm Strategy 4 241.6 1.555 ×10−2 92.76

0.4cm Strategy 2 193.4 2.120 ×10−2 270.23

0.4cm Strategy 3 216.8 1.568 ×10−2 302.93

0.4cm Strategy 4 243.0 1.556 ×10−2 215.49
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Table 3.7: Summary of run strategies and figures of merit related to inactive generation
stationarity for the 2-D BEAVRS case

CMFD Mesh Run Strategy Generations to Inst. Fission Total runtime

Size Stationarity Source Std (CPU-hrs)

None Strategy 1 169.8 1.002 ×10−1 116.85

Assembly Strategy 2 65.4 1.012 ×10−1 52.32

Assembly Strategy 3 72.0 1.002 ×10−1 57.60

Assembly Strategy 4 75.0 1.002 ×10−1 54.30

Quarter assembly Strategy 2 68.4 1.021 ×10−1 55.50

Quarter assembly Strategy 3 71.0 1.004 ×10−1 57.61

Quarter assembly Strategy 4 79.2 1.003 ×10−1 57.21

In order to reach stationarity in the inactive generations as quickly as possible

for a single-node simulation, it is recommended to use a hybrid simulation

strategy that uses CMFD source acceleration for initial inactive generations

while prematurely turning off CMFD after a loosely converged solution has

been achieved in order to reduce runtime per generation and achieve instan-

taneous fission source variance levels on par with the un-accelerated case.

CMFD feedback should continue to be turned off during the active genera-

tions as well.

3.6 Conclusion

This chapter investigated the efficacy of CMFD as well as the different parameters

associated with this source acceleration scheme. A significant portion of this work

centered around comparing CMFD simulations to un-accelerated simulations on the

same grounds to ensure both simulation strategies yielded the same quality of solution.

To this end, the FET-based stationarity diagnostic was extended to apply to CMFD

problems in order to make a fair comparison in terms of generations to stationarity

with the un-accelerated case. Then, a sensitivity analysis was conducted in the inactive

generations to determine the key parameters that affected the standard deviation in the
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instantaneous fission source. Here, it was found that refining the mesh size had little

impact on reducing global variance levels. On the other hand, increasing generation

size and maximum CMFD window size yielded lower standard deviation levels, where

a larger generation size had a significantly larger effect than window size on reducing

fluctuations. Also, for a fixed generation size, a minimum window size - defined as

the CMFD penalty factor - needed to be achieved in order for CMFD acceleration and

un-accelerated schemes to achieve comparable variance levels in the instantaneous

fission source. If this minimum window size was not met, a CMFD-based solution was

likely to introduce larger noise levels into the simulation.

Next, a similar sensitivity study was conducted in the active generations to consider

the effects of generation size, mesh size, maximum window size, and linear prolongation

shape function on RMS error and real standard deviation levels. Here, it was found

again that mesh size made little difference to error levels in the active generations,

whereas a larger window size typically led to lower starting RMS errors. However,

as the number of active generations increased, the convergence rate began to decline

for CMFD simulations with larger window sizes, likely due to the added correlation

effects introduced to each generation of source particles. For the 1-D case, assuming a

linear source shape function in the prolongation step helped to reduce RMS error levels

for coarsely-defined CMFD acceleration meshes but errors were still dominated by the

stochasticity inherent within the Monte Carlo process. Likewise, increasing generation

size helped to reduce error levels by a factor of 1/
p

N but did not remove correlation

effects in the active generations. Furthermore, given the similarity in error levels when a

large number of active generations was simulated, it is recommended to turn off CMFD

in the active generations in order to reduce runtime and minimize time in the Monte

Carlo tallying process.

Finally, a runtime analysis of various run strategies was administered to determine

how to minimize total time to stationarity in the inactive generations when running

Monte Carlo on a single-node machine. For this study, standard deviation in the fission

source was also monitored as a figure of merit. Here, it was found that running CMFD

with a small window size was the quickest way to reach stationarity but introduced higher
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variance levels in the instantaneous fission source when compared to the un-accelerated

case. Similarly, a CMFD acceleration scheme with a maximum window size as large

as the CMFD penalty factor spent a considerably higher number of generations in the

inactive generations just to reach a larger maximum window size. Thus a hybrid solution

that combined a loosely-converged CMFD solution during initial inactive generations

while reverting to un-accelerated Monte Carlo during the later inactive generations

was shown to reduce overall runtime without introducing additional variance to the

instantaneous fission source. Although this hybrid solution resulted in a larger number

of total generations to stationarity compared to the CMFD-only cases, many of the later

generations where CMFD is turned off run much faster since CMFD tallies no longer

have to be calculated. Overall, a CMFD-based run strategy is able to reduce time to

stationarity by 52% for the 1-D homogeneous test problem with an offset starting source,

and by 60% for the 2-D BEAVRS problem with a symmetric starting source.
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Highlights

• An FET-based stationarity diagnostic can be applied to simulations that utilize

CMFD source acceleration.

• Standard deviation in the instantaneous fission source for CMFD-based sim-

ulations is dictated primarily by the maximum window size for a windowing

scheme and by the generation size.

• Initial RMS errors levels in the active generations are dictated primarily by the

maximum window size for a windowing scheme and by the generation size.

As the number of active generations increases, most simulation strategies

reach comparable error levels due to the presence of correlation effects. A

linear prolongation step also helps reduce initial RMS error levels for coarsely

defined CMFD acceleration meshes.

• In order to reduce overall runtime in the inactive generations, a hybrid

run strategy can be employed that loosely converges a CMFD solution in

the initial inactive generations and then turns off CMFD altogether so as

not to introduce additional variance to the instantaneous fission source.

However, the difference in runtime between a hybrid approach and CMFD-

only approach is not substantial for realistic heterogeneous problems.
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Part III

Optimal Run Strategies Using

Ensemble Averaging
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Chapter 4

Motivation for Ensemble Averaging

Chapter 3 examined the effects of various CMFD parameters in both the inactive and

active generations, and one of the main takeaways from this work was that if a significant

number of active generations is simulated, a considerable degradation in active conver-

gence rate is incurred regardless of simulation strategy because of inter-generational

correlation effects. When thinking about how to distribute a fixed "budget" of source

particles between the inactive and active generations, a tradeoff emerges. If all of the

effort in a Monte Carlo simulation is spent in a single trial with a small generation

size and a large number of active generations, real standard deviation levels and thus

RMS error levels will decrease at slower than ideal 1/
p

N rates. Miao characterizes the

exact relationship between real standard deviation and number of active generations in

terms of the autocorrelation coefficients (ACC’s) and finds that asymptotic convergence

rates do approach 1/
p

N [28]. However, a considerable number of active generations is

required for high dominance ratio problems before this asymptotic regime is reached.

Instead, if a larger generation size or if multiple independent trials of Monte Carlo

are used, then a larger fraction of source particles will be in the discarded inactive

generations since a larger number of initial starting source particles will have to be

converged to a stationary fission source distribution. Once stationarity is met, however,

the initial RMS error reduces at a rate of 1/
p

N , where N is the generation size.

Romano et al. explore this relationship in more detail to determine optimal run

strategies for Monte Carlo simulations [76]. They develop a relationship to relate the

141



real variance in a Monte Carlo simulation to the number of independent trials and the

number of inactive and active generations simulated per trial, and the key equations are

summarized below.

Consider the random variable Y with variance σ2, which estimates a Monte Carlo

tally score for a single source particle. If we let X i represent the average tally score

based on the aggregate source particles in active generation i, then the real variance

of the sample mean X over N active generations and H particles per generation can be

calculated as:

Var
�

X
�

=
σ2

HN
r(N) (4.1)

r(N) represents the penalty factor incurred in the active convergence rate due to

inter-generational correlation effects and is defined as a function of the ACC’s ρk from

generations k = 1 to N − 1, where k is the generational lag and r(N) > 1 if ρk > 0.

An exact derivation of the term r(N) can be found in Appendix F. Now, assume S

independent trials are conducted each with Nd discarded (inactive) generations, N

active generations, and H source particles per generation4. If a fixed budget B of source

particles is available to distribute among the inactive and active generations for each

trial, then B = SH(Nd + N) and the sample mean X across all independent trials is

computed as:

X =
1
S

S
∑

i=1

X i (4.2)

where X i is the realization X for the i-th independent trial. Since all trials are

independent of each other, the variance of the sample mean across all independent trials

is calculated as:

Var
�

X
�

=
σ2

B − SHNd
r(N) (4.3)

4Romano et al. use the term simulation to denote independent runs of Monte Carlo with a different
starting pseudo-random seed, but this is synonymous with the term trial that has been used throughout
this thesis.
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This equation illustrates the tradeoff between inactive and active generations in an

alternate way. If a significant number of active generations N are simulated, convergence

rates in the variance will be worse than 1/N due to the strong correlation effects that

are present during initial inactive generations, which is represented by the fact that

r(N)> 1. On the other extreme, if the source particles are instead used to increase the

number of independent trials S or particles per generation H, then fewer active particles

- represented by the denominator B − SHNd - will be available to compute variance

levels, but the term r(N) goes to 1 and ACC’s can be neglected assuming that only a

single active generation is used to compute variance levels. In this scenario, all source

particles have been independently converged to a stationary source distribution, and

thus can be assumed un-correlated.

This chapter explores this idea of running multiple independent trials of Monte

Carlo, defined as ensembles, and aggregating tallies over these independent ensembles

to generate simple and accurate statistical quantities. Such a simulation strategy is

coined ensemble averaging in this thesis. Ensemble averaging has been proposed in the

domain of CFD simulations of turbulent flow in order to reduce time to solution [77].

However, this idea of ensemble averaging has typically been used in the field of Monte

Carlo neutronics to verify real variance estimates, but has not been explored fully as a

viable run strategy on large-scale computing systems.

As illustrated in Equation 4.3, ensemble averaging is best suited for running simula-

tions with fewer active generations but larger generation sizes where each generation is

split over multiple independent trials. While convention dictates that a large number

of active generations is necessary to reach acceptable limits in tally variance levels for

Monte Carlo simulations, it was shown recently that there is merit to running Monte

Carlo simulations with larger generation sizes and fewer active generations in the context

of multiphysics coupling as well. Harper shows that running fewer active generations

between successive multiphysics Picard iterations helps limit the amount of change that

occurs in the fission source distribution during the TH update step, thereby reducing

instabilities in the multiphysics solver [39]. Running a larger generation size also helps

to reduce fluctuations in the fission source from successive Monte Carlo iterations after
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receiving TH updates from the multiphysics solver. Harper also designs a framework

for coupling the Monte Carlo CMFD solver with a TH subchannel code through the

use of Monte Carlo tally derivatives, and here too it was found that a relatively large

generation size of 200 million was required on quarter-core problems in order to reduce

fluctuations with the CMFD to appropriate levels [39]. Thus, the model of ensemble

averaging lends itself organically to the simulation of Monte Carlo with multiphysics

feedback, where fewer active generations but larger generations sizes should be run.

Several arguments can be made for ensemble averaging on the basis of increased

computational performance and resilience on large-scale systems as well. Unlike Chapter

3 where all run strategy considerations were based on single-node runs of Monte Carlo,

this chapter assumes a larger availability of computational resources. Each ensemble of

particles are run on a single compute node in parallel, and a case will be made in this

chapter as to why ensemble averaging is the optimal run strategy for such large-scale

Monte Carlo simulations. All runtime analysis and performance considerations are based

on simulations that run on multiple nodes of Idaho National Laboratory (INL)’s Falcon

supercomputer, where each compute node is composed of 2 Intel Xeon E5-2695 v4 CPU’s

with 18 cores per CPU.

This chapter is therefore organized as follows: Section 4.1 introduces different strate-

gies for ensemble averaging by running multiple independent trials in parallel. Given

the larger job sizes that are considered in this chapter, these methods will be evaluated

on the merits of both parallel efficiency as well as generations to stationarity. Section 4.2

motivates the ensemble averaged CMFD run strategy, where all CMFD calculations are

offloaded onto a separate compute node while still running Monte Carlo in an ensemble

averaged manner. This methodology allows for further parallelization based on asyn-

chronous CMFD updates in a client/server manner, and the implications with respect

to performance benefits and potential variance biases are explored. Section 4.3 sum-

marizes all of the different ensemble averaging run strategies proposed in this chapter

and compares them on the grounds of overall runtime. Finally, Section 4.4 summarizes

the arguments for running ensemble averaging based on computational performance,

ability to calculate real variance estimates, and applications to GPU computations and
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coupling with nonlinear multiphysics solvers.

4.1 Performance Considerations with Ensemble Averag-

ing

This section introduces the different run strategies that will be employed in this chapter.

The same 1-D and 2-D problems are analyzed as Chapter 3. However, this time 32

compute nodes will be used to simulate these problems, and the number of total particles

simulated across all of these compute nodes per generation will also be scaled up by

a factor of 32. This can be done in two ways: by increasing the generation size for

a single trial to 320 million or by increasing the number of independent trials to 32

but keeping generation size per trial fixed at 10 million. In the first case, since only

a single trial is run, accurate variance estimates cannot be obtained without explicitly

quantifying the correlation levels or by using a batching method. Moreover, as will

be explored in Section 4.1.1, using a larger generation size means that each compute

node will also have to wait for all other compute nodes to finish their respective particle

transport routines in order to redistribute fission source sites across all processes for the

following generation and also to gather global tallies. On the other hand, when multiple

independent trials of Monte Carlo are run, they are implemented in such a way that

the processes handling each trial don’t need to communicate with each other during

the entirety of the simulation. This allows for the calculation of real variance estimates

across all independent trials, and also leads to higher parallel efficiency because now

each ensemble of 10 million neutrons can continue to its next generation without having

to wait for all other ensembles to finish their transport of neutrons as well. However,

as will be shown in Section 4.1.2, without an explicit synchronizing step, a looser

convergence of the fission source in the inactive generations will be attained since the

inactive generation stopping criteria is based on the behavior of a single ensemble of 10

million neutrons instead of the aggregate 320 million neutrons available across all trials.

Using the term single trial to denote a Monte Carlo simulation that runs a single trial
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and the term multiple trial to denote the ensemble averaging approach where multiple

independent trials of Monte Carlo are run in parallel, the following four run strategies

are therefore presented in this section:

• Run Strategy 1 - Multiple trial Monte Carlo: The first run strategy simulates 32

independent trials of Monte Carlo in parallel without CMFD, where each compute

node simulates an independent trial with 10 million neutrons per generations per

trial.

• Run Strategy 2 - Multiple trial CMFD: The second run strategy simulates 32

independent trials of Monte Carlo in parallel with CMFD, where each compute

node simulates an independent trial with 10 million neutrons per generations per

trial. The maximum window size is set to meet the CMFD penalty factor so as to

ensure that equivalent variance levels are achieved between the CMFD-accelerated

and un-accelerated cases. For both 1-D and 2-D problems, the maximum window

size is set to 64.

• Run Strategy 3 - Single trial Monte Carlo with large generation size: The third run

strategy simulates a single trial of Monte Carlo without CMFD, with a generation

size of 320 million.

• Run Strategy 4 - Single trial CMFD with large generation size: The fourth run

strategy simulates a single trial of Monte Carlo with CMFD and a generation size

of 320 million. Once again, the maximum window size is set to be equal to the

CMFD penalty factor

As will be discussed in Section 4.1.1, run strategies 1 and 2 have better parallel

efficiency when compared to run strategies 3 and 4 due to the lack of a synchronizing

step between all particles in a generation. However, run strategies 1 and 2 also represent

variance levels that are higher than run strategies 3 and 4 due to the fact that only

a single ensemble of neutrons is used to determine stationarity. This subject will be

explored in more detail in Section 4.1.2.
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Table 4.1: CMFD parameters for 1-D homogeneous and 2-D BEAVRS problems for test
cases in Chapter 4

Parameter Value for 1-D Problem Value for 2-D Problem

CMFD tally estimator type Analog Analog

Number of energy groups 1 2

Effective downscatter N/A True

Acceleration map None Quarter assembly map

Reference diffusion parameters Not used Used

CMFD tally begin 1 1

CMFD solver begin 1 1

Weight clipping 0.2 0.2

Windowing scheme Expanding window Expanding window

Maximum window size 64 64

CMFD mesh size 20cm mesh Quarter assembly mesh

Prolongation source shape Fixed source Fixed source

Table 4.1 summarizes the 1-D and 2-D CMFD parameters for the run strategies where

CMFD is employed. Since it was found in Chapter 3 that CMFD mesh size did not greatly

affect the results in both the inactive and active generations, this chapter keeps CMFD

mesh size fixed at 20cm for the 1-D problem and uses a quarter assembly CMFD mesh

for the 2-D problem. It should also be noted that for run strategies 1 and 2 where

multiple trial ensemble averaging is employed, a single Python script is called using

mpi4py, which provides the Python bindings to make MPI calls and run multiple trials in

parallel [78]. Specifically, the global MPI communicator, MPI_COMM_WORLD is split into

32 equivalent communicators using MPI_Comm_split and each of these communicators

is mapped to a separate compute node that runs a different trial of OpenMC. In addition,

since each compute node is comprised of two sockets with 18 cores each, each split

communicator is further divided into two MPI processes and 18 OpenMP threads each,

so that each socket is bound to a separate MPI process and each OpenMP thread is bound

to a separate process core on the socket. For run strategies 3 and 4 where a single trial

is run, the global communicator is split into 64 MPI processes so that the total work is

distributed among all available sockets in a similar fashion to run strategies 1 and 2. A
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summary of the different run strategies introduced in this section as well as the compute

resource parameters associated with these run strategies can be found in Table 4.2.

Table 4.2: Compute resource parameters for run strategies 1 to 4

Run Strategy
Total

Compute
Nodes

Total Inde-
pendent

Trials

Generation
Size per

Trial

MPI
Processes
per Trial

OpenMP
Threads
per MPI
Process

1 - Multiple Trial
Monte Carlo

32 32 10 Million 2 18

2 - Multiple Trial
CMFD

32 32 10 Million 2 18

3 - Single Trial
Monte Carlo

32 1 320 Million 64 18

4 - Single Trial
CMFD

32 1 320 Million 64 18

4.1.1 Identifying Bottlenecks in Monte Carlo Simulations

In order to assess the parallel efficiency of these four run strategies, a performance

profiling tool is created in order to analyze communication bottlenecks for large-scale

Monte Carlo runs, which produces a graphical representation of when each MPI process

is doing useful work. In the un-accelerated case, particle transport of all neutrons in the

source bank constitutes the majority of useful work, while any time spent synchronizing

the fission bank or accumulating global tallies after a generation would count towards

process downtime. In the case of CMFD acceleration, all CMFD multigroup cross section

and flux calculations occur on the master process (process 0), and the resulting CMFD

fission source is broadcasted to all other processes for a particular trial in order to

reweight all particles in the fission bank. Therefore, downtime in the CMFD algorithm

constitutes time that processes have to wait for the CMFD source to synchronize across

all processes.

Figures 4-1 through 4-4 illustrate the performance profiling plots for run strategies 1

to 4 respectively on the 1-D homogeneous problem for 10 generations. The horizontal

axis represents time elapsed by the simulation, while the vertical axis plots the behavior
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Figure 4-1: Performance profiling plot for run strategy 1 on 1-D homogeneous problem.
The green boxes represent when processes are running particle transport at each gener-
ation for each trial, while horizontal green lines indicate when processes are stalling
while synchronizing the fission source and accumulating global tallies.
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Figure 4-2: Performance profiling plot for run strategy 2 on 1-D homogeneous problem.
The green portions indicate time spent in the Monte Carlo routine, while the red portion
indicates time spent in the CMFD feedback step. Green boxes represent when processes
are running particle transport at each generation for each trial, while horizontal green
lines indicate when processes are stalling while synchronizing the fission source and
accumulating global tallies. Likewise, red boxes indicate when CMFD calculation is
occurring on the master process or when particle reweighting occurs on each process.
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Figure 4-3: Performance profiling plot for run strategy 3 on 1-D homogeneous problem.
The green boxes represent when processes are running particle transport at each gener-
ation for each trial, while horizontal green lines indicate when processes are stalling
while synchronizing the fission source and accumulating global tallies.
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Figure 4-4: Performance profiling plot for run strategy 4 on 1-D homogeneous problem.
The green portions indicate time spent in the Monte Carlo routine, while the red portion
indicates time spent in the CMFD feedback step. Green boxes represent when processes
are running particle transport at each generation, while horizontal green lines indicate
when processes are stalling while synchronizing the fission source and accumulating
global tallies. Likewise, red boxes indicate when CMFD calculation is occurring on the
master process or when particle reweighting occurs on each process.
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of each process running in parallel, and runtimes are normalized to the slowest-running

trial across all different run strategies. Green portions indicate where the Monte Carlo

solver routines are running, while red portions indicate areas where CMFD solver

routines are being called. In addition, areas with green or red boxes represent parts of

the simulation where the underlying process is busy with computation. On the other

hand, horizontal lines represent sections of the program where the process is in an idle

state, where the process is waiting to communicate or synchronize with other processes.

Run strategies 1 and 2 minimize time between generations, as each trial only has to

wait for two processes to synchronize before moving onto simulating the next generation

of neutrons, and each trial progresses completely independently of all other trials. On

the other hand, run strategies 3 and 4 have to synchronize the fission bank and global

tallies across all 64 available MPI processes, so each process has to wait for the slowest-

running process to finish its particle transport routine before being able to progress to

the next generation. The total integrated time over all trials and processes indicates

the total CPU-time for a particular run strategy, and this amount is lower when an

ensemble-averaged approach is chosen over a single trial approach.

Another observation from these plots is the additional runtime incurred by the use

of the CMFD solver. While the time spent in the red CMFD feedback step is quite low

compared to the overall time taken to simulate a generation of neutrons in the Monte

Carlo solver, the runtime for the Monte Carlo transport algorithm is significantly larger

for the CMFD-accelerated case as compared to the un-accelerated case. This is because

CMFD tallies have to be computed during the particle transport routine, and this incurs a

significant computational overhead in the inactive generations. While the un-accelerated

case is able to run faster than the CMFD-accelerated case on a per-generation basis

for a fixed number of generations, this analysis ignores the reduction in number of

generations to stationarity that is provided through CMFD acceleration. Section 4.3

analyzes the overall runtime associated with these run strategies by accounting for both

total time per generation as well as generations to stationarity.

Figures 4-5 through 4-8 plot the same profiling figures for run strategies 1 to 4 re-

spectively on the 2-D BEAVRS problem. Similar to the 1-D homogeneous case, ensemble
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averaging in run strategies 1 and 2 allows for a reduction in overall runtime due to better

load balancing across all independent trials. For the 2-D BEAVRS case, however, the

heterogeneous geometry of the problem as well as the presence of additional materials

in the reactor core increases the time to simulate each additional Monte Carlo generation

and thus reduces the relative cost of running CMFD.

From these figures, it can be seen that running multiple independent trials of Monte

Carlo helps to reduce communication costs associated with fission source synchronization

and tally accumulation. However, as will be explored in Section 4.1.2, the absence of a

synchronization step across these independent trials of Monte Carlo will ultimately lead

to a less stringent convergence criteria, since stationarity will be diagnosed based on the

fission source behavior of a single ensemble of neutrons instead of looking at the entire

source distribution across all ensembles. A tighter convergence criteria on par with run

strategies 3 and 4 can only be attained if there is some level of synchronization across

all trials.

4.1.2 Single Trial vs. Aggregate Trial Stopping Criteria

In Chapter 2, the idea of having the stopping criteria be a function of generation size was

introduced. Figures 2-21, 2-22, and 2-23 illustrate how when a larger generation size is

used, the variance in FET coefficients - which represents the variance in the underlying

fission source - reduces to a lower asymptotic level, but this level is only attainable

through the simulation of additional inactive generations. Similar to a deterministic

calculation where more source iterations are required to reach a tighter fission source

error convergence, a larger generation size in a Monte Carlo simulation allows for a lower

fission source variance through the simulation of additional inactive generations. A run

strategy that keeps the number of inactive generations constant regardless of generation

size is likely to carry higher fission source error levels in the active generations.

This situation leads to an inherent tradeoff when analyzing inactive generation

stopping criteria for the multiple trial ensemble averaging approaches introduced in run

strategies 1 and 2. While these run strategies eliminate the need to synchronize data
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Figure 4-5: Performance profiling plot for run strategy 1 on the 2-D BEAVRS problem.
The green boxes represent when processes are running particle transport at each gener-
ation for each trial, while horizontal green lines indicate when processes are stalling
while synchronizing the fission source and accumulating global tallies.
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Figure 4-6: Performance profiling plot for run strategy 2 on the 2-D BEAVRS problem.
The green portions indicate time spent in the Monte Carlo routine, while the red portion
indicates time spent in the CMFD feedback step. Green boxes represent when processes
are running particle transport at each generation for each trial, while horizontal green
lines indicate when processes are stalling while synchronizing the fission source and
accumulating global tallies. Likewise, red boxes indicate when CMFD calculation is
occurring on the master process or when particle reweighting occurs on each process.
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Figure 4-7: Performance profiling plot for run strategy 3 on the 2-D BEAVRS problem.
The green boxes represent when processes are running particle transport at each gener-
ation for each trial, while horizontal green lines indicate when processes are stalling
while synchronizing the fission source and accumulating global tallies.
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Figure 4-8: Performance profiling plot for run strategy 4 on the 2-D BEAVRS problem.
The green portions indicate time spent in the Monte Carlo routine, while the red portion
indicates time spent in the CMFD feedback step. Green boxes represent when processes
are running particle transport at each generation, while horizontal green lines indicate
when processes are stalling while synchronizing the fission source and accumulating
global tallies. Likewise, red boxes indicate when CMFD calculation is occurring on the
master process or when particle reweighting occurs on each process.
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across multiple independent trials, the stopping criteria used to determine stationarity

in the inactive generations will be based on the fission source of at most a single trial of

fission source data. Specifically, since fission source data is not communicated between

trials, each trial will base its stopping criteria on a fission bank of 10 million neutrons

instead of the aggregate 320 million particles available across all multiple independent

trials if a fission bank synchronizing mechanism is utilized like run strategies 3 and

4. Therefore, run strategies 1 and 2 base convergence on a less stringent stationarity

criteria, and will be prone to higher starting error levels in the active generations.

To illustrate this point, consider the case where 100 independent trials of the 2-

D BEAVRS problem is simulated without CMFD acceleration, where each trial has a

generation size of 10 million particles. When diagnosing the stationarity point between

the inactive and active generations, one of two approaches can be pursued. The first

approach would be to compute the stopping criteria completely independently for each

trial such that the stopping criteria is based on the 10 million source particles that

comprise each trial’s source distribution. For the remainder of this thesis, the term single

trial stopping criteria will be used to designate such an approach, where a separate

stopping criteria is established for each independent trial based on data from a single

trial’s source distribution. The second way to establish stationarity would be to aggregate

the source particles for each generation over all trials and set a single stopping criteria

based on this aggregated source distribution of 100×10million = 1billion source particles

per generation. Such an approach is coined aggregate trial stopping criteria, where the

aggregated source over all multiple independent trials is used to determined a single

stopping criteria for all trials.

Figure 4-9 plots the overall RMS error as a function of the number of independent

trials that contribute to the observed source distribution. Each additional trial contributes

a single active generation of 10 million source particles to the overall observed source

distribution. The trendline marked as "single trial stopping criteria" designates its first

active generation based on the single trial stopping criteria described in the previous

paragraph, where stationarity for each Monte Carlo trial is based separately on each

trial’s fission source of 10 million particles. On the other hand, the "aggregate trial

159



Figure 4-9: RMS error as a function of number of trials used to compute observed
source distribution. Each additional trial contributes a single active generation of 10
million source particles to the overall source distribution. The blue curve corresponds
to the case where the first active generation for each trial is determined based on a
single trial stopping criteria, while the orange line corresponds to the case where the
first active generation for each trial is determined based on an aggregate trial stopping
criteria.

stopping criteria" trendline designates the first active generation based on the aggregate

fission source across all 100 trials, and this stopping criteria is kept the same across all

independent trials. RMS error is calculated on an assembly-sized mesh, and the RMS

error is expected to decrease at a 1/
p

N rate, since the contribution of each additional

trial yields an additional 10 million uncorrelated particles to the overall fission source.

However, it can be seen that when a single trial stopping criteria is used, there is

some residual error that remains from the fact that an insufficient number of inactive

generations were simulated that did not account for the aggregate source distribution

across all independent trials. Instead, when an aggregate trial stopping criteria is used,

which sets the cutoff point between inactive and active generations as a constant value

across all trials based on the aggregate fission source, the convergence in the RMS error

follows ideal 1/
p

N rates. For comparison, the single trial stopping criteria diagnosed

stationarity at 167.2 generations when averaged across all 100 trials, while the aggregate

trial stopping criteria diagnosed stationarity at 198 generations, indicating a stricter

convergence criteria when an aggregate trial stopping criteria is utilized.

Returning to the four run strategies presented in Section 4.1, a single trial stopping
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criteria results in a roughly 29% higher starting RMS error value for the 1-D problem

and a 33% higher starting RMS for the 2-D problem when compared to the case where

an aggregate trial stopping criteria is used. Hence, a tradeoff arises between the multi-

ple trial ensemble averaging approaches in run strategies 1 and 2 and the single trial

approaches employed by run strategies 3 and 4. In the multiple trial case, each Monte

Carlo trial is able to progress to subsequent generations without having to wait for all

other trials to finish running their ensembles of neutrons, yielding higher parallel utiliza-

tion on larger compute jobs. However, if these trials do not contain any synchronizing

step, then stationarity will be determined based on the behavior of at most a single

ensemble of neutrons, and this results in a looser stationarity criteria, which translates

to a higher starting RMS error in the active generations. On the other hand, if a single

trial simulates all available particles in a generation, then stationarity is determined by a

stricter convergence criteria based on the aggregate source at each generation, ensuring

asymptotic variance levels according to the larger generation sizes are met. However,

such a simulation strategy requires that all particles in the generation are transported

before being able to progress to the next generation. If the entire generation of particles

is split evenly among all available processes, this results in a higher percentage of CPU

idling as processes have to wait for all other processes to finish their work before being

able to continue to the next generation of particle transport.

A multiple trial ensemble averaging approach improves parallel efficiency and

load balancing on Monte Carlo runs with a larger availability of computa-

tional resources. However, fission source stationarity is based on a single

trial of source data instead of considering the aggregate fission source, so

this yields a less stringent stationarity criteria and hence a higher residual er-

ror in the active generations. On the other hand, running a single trial with a

large generation size assesses stationarity on the aggregate fission source but

increases communication costs in fission source synchronization and global

tally accumulation.
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4.2 Motivation for Asynchronous Ensemble Averaged CMFD

Section 4.1 illustrated the tradeoff between running a single trial simulation with a

larger generation size and a multiple trial ensemble averaged approach where the

total generation size was split into smaller ensembles that run in parallel. For the

ensemble averaged case, running independent ensembles in parallel helped increase

parallel efficiency, but the independence of these ensembles also meant that only a

single ensemble of neutrons could be used to diagnose stationarity, which would yield a

less stringent stationarity point when compared to the case where all source particles

across all ensembles were aggregated. On the other hand, a single trial approach

ensured stationarity was based on the aggregate source across all available particles in

a generation, but yielded lower parallel efficiency due to explicit synchronizing calls

across all available processes. Moreover, quantifying real variance estimates in a single

trial simulation is not straightforward without computing correlation effects between

active generations, which can become quite costly.

This section therefore presents an alternate avenue towards ensemble averaging,

where all CMFD calculations are offloaded to a separate compute node. This run

strategy is coined ensemble averaged CMFD. In this approach, all compute nodes running

independent trials of Monte Carlo still continue to progress independently of each other.

However, these compute nodes now communicate with a separate central compute node

responsible for all CMFD calculations and FET stationarity diagnosis when entering the

CMFD update step. The compute nodes running Monte Carlo will be referred to as

the Monte Carlo (MC) nodes, while the centralized node responsible for CMFD and FET

stationarity calculations will be called the CMFD node. Unlike the multiple trial CMFD

approach described in Section 4.1 where all multiple independent trials of Monte Carlo

calculate CMFD completely independently, now each trial will share the same CMFD

operator while progressing with the Monte Carlo transport algorithm independently

of other trials. The CMFD node aggregates FET coefficients across all ensembles, so

stationarity can be diagnosed based on the aggregate source across all ensembles of

neutrons per generation as well. In doing so, it will be argued that such an approach
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allows for increased parallel efficiency and a stricter stationarity criteria, while continuing

to enable real variance calculations across multiple independent trials.

Section 4.2.1 discusses the necessary background in process communication in order

to explain how an ensemble averaged CMFD run strategy can be implemented. Section

4.2.2 introduces the bulk synchronous ensemble averaged CMFD run strategy, where all

process communication with the CMFD node is carried out in a synchronous manner

across all MC nodes. Section 4.2.3 then goes on to propose an asynchronous ensemble

averaged CMFD run strategy, where each MC node communicates with the CMFD node

without having to synchronize with other MC nodes, in an attempt to significantly reduce

communication overhead. Finally, Section 4.3 evaluates the ensemble averaged CMFD

run strategies on the merits of overall runtime to stationarity and any potential variance

biases introduced.

4.2.1 Background on Remote Memory Access

In order to understand how ensemble averaged CMFD run strategies can be implemented,

some discussion about processor-to-processor communication is pertinent, as this is the

core mechanism through which CMFD calculations and FET stationarity diagnosis are

offloaded to a separate compute node in a parallelized manner. Specifically, CMFD tally

data and FET coefficients from each MC node need to be communicated to the CMFD

node, while the updated CMFD source and the signal for whether active generations

should begin need to be communicated from the CMFD node back to the MC node.

Since this communication model is based on distributed memory, any updates that occur

to a variable on one process will not be observed by another process and instead this

updated variable needs to be communicated to other processes through MPI calls. The

MPI implementation allows for such communication to occur in multiple ways, and will

be summarized in the following paragraphs.

Firstly, blocking communication allows for point-to-point data communication be-

tween two processes, where one process sends data and the other process receives this

data. Calls such as MPI_Send and MPI_Recv achieve this sort of communication pattern,
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but an important point to note here is that these function calls do not return until the

communication has been finished between both processes. What this means is that if

process A is not ready to send or receive data while process B is, then process B will

be in an idle state and will be unable to progress with any further function calls until

process A has reached the part of the code where it is ready to communicate data. While

blocking communication allows for the transfer of data in a predictable and replicable

manner, it also creates communication bottlenecks in parallel programs, especially when

processes have to wait a considerable time for communication to be established.

To reduce this overhead, non-blocking communication provides an alternate pathway

for point-to-point communication, where processes are now allowed to return from

function calls instead of having to wait in an idle state until the other process is ready

to communicate. MPI calls such as MPI_Isend and MPI_Irecv initialize send/receive

requests but do not complete them, and this allows for processes to initiate other

computational tasks while they wait for processes to become available to communicate.

For example, if process B is ready to communicate but process A is not, process B can

periodically check on process A to see if it is ready to communicate at a later time through

calls such as MPI_Status, and process B can go and do other work while it waits for

process A to reach a point where it is ready to communicate.

Ultimately, however, non-blocking communication requires both sender and receiver

to be free to communicate before data can actually be transferred. For Monte Carlo

simulations where the completion time of particle transport routines is stochastic in

nature, this sort of two-way communication can lead to undesirable behavior where

processes have to continually check if other processes are ready to communicate. Further-

more, a process that is waiting to communicate with another process may not have any

meaningful work to occupy itself with while it waits for the other process to participate

in data communication and will therefore be left in an idle state, much like the model

for blocking communication.

Instead, one-way communication allows for the transfer of data from a target process

to a remote process without explicit synchronization with the target process. In such a

communication model, a portion of a process memory is made accessible to all other
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processes by the target process at the beginning of the program, and remote processes

are allowed to access and modify this data without the approval of the target process.

The function call MPI_Get allows for the one-sided retrieval of remote memory, while

MPI_Fetch_and_op performs a one-sided read-modify-write on remote memory5. In

order to avoid data races where one process tries to read or modify shared data while

another process also modifies this data, data locks need to be appropriately acquired

and released so that only one process handles this shared memory at a time.

Therefore, blocking communication will be the primary mode of data transfer for

the bulk synchronous ensemble averaged CMFD case, while one-sided communication

through RMA will be used for the asynchronous case. For both ensemble averaged CMFD

cases, the global MPI commmunicator MPI_COMM_WORLD is split into S + 1 equivalent

communicators corresponding to S MC nodes and an additional communicator for the

CMFD node. It should be noted here that while each compute node could be comprised

of multiple MPI processes, for simplicity, it is assumed that all MPI calls that occur

between MC nodes and the CMFD node happen exclusively on the master processes of

these node communicators. For scenarios where compute nodes comprise of multiple

MPI processes, extra broadcasting steps are required to communicate remote memory

data such as the CMFD source to all helper MPI processes on an MC node. Additionally,

all other MPI calls or OpenMP multithreading routines that would typically occur in a

Monte Carlo transport algorithm remain exactly the same on MC nodes.

4.2.2 Implementation of Bulk Synchronous Ensemble Averaged CMFD

Algorithms 4-1 and 4-2 summarize the workflow for the MC nodes and CMFD node

respectively in the bulk synchronous ensemble averaged CMFD implementation. After

each OpenMC generation completes on the MC node, CMFD tallies and FET coefficients

from each MC node are transferred to the CMFD node through blocking MPI send

operations, and the CMFD node initiates the corresponding receive calls such that it

expects to receive this data from MC Node process 1 first, MC node process 2 next, and

5Here, op refers to the operation to perform on the remote memory to modify it. Only basic operations
such as MAX, MIN, SUM, PROD, REPLACE etc. are allowed

165



so on until finally it receives data from MC node process S. Only until all data has been

transferred from all MC node processes to the CMFD node can the CMFD equations be

solved. The flag MPI_ANY_SOURCE can be used by the CMFD node so that it can handle

MPI messages in the order they are sent by the MC nodes instead of processing them

sequentially by process ID. However, each MC node process will ultimately have to wait

for all other MC node process to finish their next generations in order to proceed with

the CMFD update step, since each MC nodes also invokes a synchronous receive call to

receive the updated CMFD fission source data from the CMFD node. This source data is

computed only once the CMFD node receives tally data from all MC nodes. On the CMFD

node, a similar windowing scheme is implemented as described in Section 3.2.3.2, where

the window size is updated based on the number of generations of banked CMFD tallies

across all MC nodes. Once the CMFD node solves the CMFD equations, it also processes

the FET coefficients it receives from all MC nodes to determine whether stationarity

has been met, and it then sends both the CMFD source and the signal to begin active

generations to all MC nodes through blocking communication. The transferred CMFD

source is used to reweight the local fission bank on each MC node. If stationarity has

not been met, then each MC node will proceed to running another inactive generation

of OpenMC. Otherwise, each MC node will begin its active generations.

In this manner, a bulk synchronous ensemble averaged CMFD approach allows for

each MC node to progress independently of each other, while sharing the same CMFD

operator during the CMFD feedback step that aggregates CMFD tally data across all MC

nodes. Moreover, the CMFD node aggregates FET coefficient data across all Monte Carlo

trials and therefore stationarity diagnosis will be based on the aggregate source across all

available source particles in a generation. Such a run strategy thus combines the ability

to compute variance estimates across parallel ensembles while determining stationarity

on a stricter convergence criteria. However, the synchronous send and receive calls

between the MC nodes and CMFD node pose significant communication bottlenecks,

and the asynchronous ensemble averaged CMFD run strategy proposed in Section 4.2.3

serves to reduce this overhead.
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Algorithm 4-1: MC Node Algorithm for Bulk Synchronous Ensemble Averaged CMFD
1: Let proc_id= process id’s of master process for each MC node, mapped from

proc_id= 1...S
2: Let proc_id= 0 refer to process id of master process for CMFD node
3: Let F = number of FET coefficients computed at each generation by MC node
4: Let C = length of CMFD tally data communicated from MC node to CMFD node
5: Let M = total number of mesh cells (spatial × energy) in CMFD problem

6: if proc_id 6= 0 then . MC Node
7: begin_active← false
8: Initialize fet_coeffs as vector of length F
9: Initialize cmfd_tallies as vector of length C

10: loop
11: Run next generation of OpenMC
12: Update cmfd_tallies with tally data from most recent generation
13: Update fet_coeffs with FET data from most recent generation
14: Send cmfd_tallies to process 0 through blocking communication
15: Send fet_coeffs to process 0 through blocking communication
16: Receive cmfd_source from process 0 through blocking communication
17: Reweight fission bank based on cmfd_source . Eqn. 3.3 to 3.5
18: Receive begin_active from process 0 through blocking communication
19: if begin_active then . Begin active generations
20: exit loop
21: end if
22: end loop
23: end if

4.2.3 Implementation of Asynchronous Ensemble Averaged CMFD

In the asynchronous ensemble averaged CMFD approach, one-sided communication

through RMA is used to facilitate all communication between each MC node and the

CMFD node. Algorithms 4-3 and 4-4 describe the workflow for the MC node and CMFD

node respectively for this run strategy. All variables that are underlined are defined

as shared variables that can be accessed and modified through RMA. As described in

Section 4.2.1, data locks need to be acquired and subsequently released when these

variables are accessed or modified in order to prevent race conditions. On the MC node,

the FET coefficient variables and CMFD tally variables for each node are shared with the

CMFD node. An additional shared variable begin_active is also introduced, which the

CMFD node can directly modify to signal to each MC node to begin the active generations.

On the CMFD node, the variable cmfd_source represents the CMFD fission source and
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Algorithm 4-2: CMFD Node Algorithm for Bulk Synchronous Ensemble Averaged CMFD
1: Let proc_id= process id’s of master process for each MC node, mapped from

proc_id= 1...S
2: Let proc_id= 0 refer to process id of master process for CMFD node
3: Let F = number of FET coefficients computed at each generation by MC node
4: Let C = length of CMFD tally data communicated from MC node to CMFD node
5: Let M = total number of mesh cells (spatial × energy) in CMFD problem

6: if proc_id = 0 then . CMFD Node
7: Initialize cmfd_source as vector of length M
8: Initialize received_cmfd_tallies as matrix of size S × C
9: Initialize windowed_cmfd_tallies as matrix of size W × S × C , where the size of W is

determined by the windowing scheme
10: Initialize global_fet as matrix of size S × F
11: begin_active← false . Has FET stationarity been met?
12: while not begin_active do
13: for s← 1 to S do . Get data from MC nodes
14: Receive cmfd_tallies from process s through blocking communication, bank to

received_cmfd_tallies[s]
15: Receive fet_coeffs from process s through blocking communication, bank to

global_fet[s]
16: end for
17: Update windowed_cmfd_tallies with received_cmfd_tallies according

to windowing scheme
18: Recompute CMFD MGXS from windowed_cmfd_tallies . Table 3.2
19: Recompute cmfd_source . Eqn. 3.1, 3.3
20: Update begin_active from global_fet . Eqn. 2.11
21: if begin_active then
22: begin_active← true
23: else
24: begin_active← false
25: end if
26: for s← 1 to S do
27: Send cmfd_source to process s through blocking communication
28: Send begin_active to process s through blocking communication
29: end for
30: end while
31: end if
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is shared with all MC nodes, and the shared variable finished_next_gen allows each

MC node to signal to the CMFD node that an MC node has finished simulating its next

generation.

The algorithm for asynchronous ensemble averaged CMFD is loosely related to that

of the bulk synchronous case, where all CMFD and FET stationarity calculations are

offloaded to the CMFD node and each MC node only directly communicates with the

CMFD node. At the end of each OpenMC generation, however, instead of facilitating

two-way communication with the CMFD node to exchange data fields, the MC node

with process ID p accesses the most current version of the CMFD source available

on the CMFD node through RMA to reweight its fission source. It also signals to the

CMFD node that new CMFD tally data and FET coefficients are available by setting

finished_next_gen[p] to true on the CMFD node.

On the CMFD node, once all source update calculations have been performed, the

node keeps checking to see if any elements of finished_next_gen have been set to true.

If so, the elements where finished_next_gen are set to true indicate which processes

the CMFD node has to obtain CMFD tally and FET coefficient data fields from. Once

these values have been retrieved through RMA and banked to global arrays global_fet

and windowed_cmfd_tallies, all elements of finished_next_gen are reset to false.

Then, the CMFD node goes on to recompute the CMFD source as well as whether FET

stationarity has been met. While these calculations occur, other MC nodes could finish

their next generations and thus the CMFD node repeats the loop once again by checking

to see if any new elements of finished_next_gen have been set to true.

This asynchronous ensemble averaged CMFD is therefore implemented in such a

way where time between CMFD update steps on the MC nodes is minimal. During each

CMFD update step on the MC node, the master process obtains the most current version

of the CMFD fission source available on the CMFD node and signals to the CMFD node

to obtain the newly available data on the MC node. The CMFD node, on the other hand,

is responsible for recomputing its shared values whenever new data is available, and

does not have to concern itself with synchronizing with specific processes. It also signals

to all MC node processes to begin active generations when stationarity has been met
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by remotely modifying the variable begin_active on all MC nodes. While the newly

computed CMFD tally information will not be incorporated into the CMFD source data

that is retrieved from the CMFD node, the assumption here is that this lag does not affect

the quality of the CMFD update step since the CMFD operator still incorporates tally

data from previous generations across all other MC nodes as well. The relatively low

cost of running CMFD compared to Monte Carlo also allows for quick CMFD updates

in time for subsequent MC nodes that finish their next generation and require most

up-to-date CMFD source data.

Once again, an expanding window update scheme is used for asynchronous ensemble

averaged CMFD, where the window size grows exponentially to discard earlier genera-

tions of biased CMFD data while banking tally data that comes in at later generations.

In this case, however, the sequence with which CMFD tallies comes to the CMFD node

is not known with certainty anymore, so the window size grows in multiples of S once

the CMFD node has undergone S new source update calculations, where S is the total

number MC nodes running in parallel.

4.2.4 Performance Profiling for Ensemble Averaged CMFD

Run strategies 5 and 6 are now included to the list of potential ways to simulate large-

scale Monte Carlo simulations, corresponding to the bulk synchronous and asynchronous

ensemble averaged CMFD methodologies respectively. Both run strategy 5 and 6 simulate

S = 32 trials of Monte Carlo in parallel with S + 1= 33 total compute nodes to account

for the additional CMFD node. These run strategies also use the same CMFD parameters

as described in Table 4.2, and the updated table of compute resource parameters with

run strategies 5 and 6 included are shown in Table 4.3.

Similar to Section 4.1.1, performance profiling is conducted on run strategies 5 and

6, and the profiling plots for the 1-D case are shown in Figures 4-10 and 4-11, while

the same plots for the 2-D case are shown in Figures 4-12 and 4-13. The top row of

these plots marked as "CMFD" shows the CPU utilization for the CMFD node. For the

bulk synchronous case, it can be seen that CPU utilization is very low since this node
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Algorithm 4-3: MC Node Algorithm for Asynchronous Ensemble Averaged CMFD
(All underlined variables are shared across processes through RMA and locks for these variables
need to be acquired and released before and after any data reads/writes.)

1: Let proc_id= process id’s of master process for each MC node, mapped from
proc_id= 1...S

2: Let proc_id= 0 refer to process id of master process for CMFD node
3: Let F = number of FET coefficients computed at each generation by MC node
4: Let C = length of CMFD tally data communicated from MC node to CMFD node
5: Let M = total number of mesh cells (spatial × energy) in CMFD problem

6: if proc_id 6= 0 then . MC Node
7: begin_active← false
8: Initialize fet_coeffs as vector of length F
9: Initialize cmfd_tallies as vector of length C

10: loop
11: Run next generation of OpenMC
12: Update cmfd_tallies with tally data from most recent generation
13: Update fet_coeffs with FET data from most recent generation
14: finished_next_gen[proc_id]← true for process 0

through RMA . Signal to CMFD node that
MC node has finished
next generation

15: Get cmfd_source from process 0 through RMA
16: Reweight fission bank based on cmfd_source . Eqn. 3.3 to 3.5
17: if begin_active then . Set to true by CMFD node
18: exit loop
19: end if
20: end loop
21: end if
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Algorithm 4-4: CMFD Node Algorithm for Asynchronous Ensemble Averaged CMFD
(All underlined variables are shared across processes through RMA and locks for these variables
need to be acquired and released before and after any data reads/writes.)

1: Let proc_id= process id’s of master process for each MC node, mapped from
proc_id= 1...S

2: Let proc_id= 0 refer to process id of master process for CMFD node
3: Let F = number of FET coefficients computed at each generation by MC node
4: Let C = length of CMFD tally data communicated from MC node to CMFD node
5: Let M = total number of mesh cells (spatial × energy) in CMFD problem

6: if proc_id = 0 then . CMFD Node
7: Initialize finished_next_gen to boolean vector of length S with all elements equal false
8: Initialize cmfd_source as vector of length M
9: Initialize windowed_cmfd_tallies as matrix of size W × C , where the size of W is

determined by the windowing scheme
10: Initialize global_fet as matrix of size S × F
11: begin_active← false . Has FET stationarity been met?
12: while not begin_active do
13: if any element of finished_next_gen = true then
14: for s← 1 to S do . Get data from MC nodes that

finished next generation
15: if finished_next_gen [s] then
16: Get cmfd_tallies from process s through RMA, bank to

windowed_cmfd_tallies
17: Get fet_coeffs for process s through RMA, bank to global_fet[s]
18: finished_next_gen[s]← false . Reset value
19: end if
20: end for
21: Recompute CMFD MGXS from windowed_cmfd_tallies . Table 3.2
22: Recompute cmfd_source . Eqn. 3.1
23: Update begin_active from global_fet . Eqn. 2.11
24: if begin_active then . Send signal to all MC nodes

to start active generations
25: for s← 1 to S do
26: begin_active← true for process s through RMA
27: end for
28: end if
29: end if
30: end while
31: end if
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Table 4.3: Compute resource parameters for run strategies 1 to 6

Run Strategy
Total

Compute
Nodes

Total Inde-
pendent

Trials

Generation
Size per

Trial

MPI
Processes
per Trial

OpenMP
Threads
per MPI
Process

1 - Multiple Trial
Monte Carlo

32 32 10 Million 2 18

2 - Multiple Trial
CMFD

32 32 10 Million 2 18

3 - Single Trial
Monte Carlo

32 1 320 Million 64 18

4 - Single Trial
CMFD

32 1 320 Million 64 18

5 - Bulk
Synchronous

Ensemble
Averaged CMFD

33 32 10 Million 2 18

6 - Asynchronous
Ensemble

Averaged CMFD
33 32 10 Million 2 18

173



is responsible for a single CMFD update only once all Monte Carlo (MC) nodes have

communicated their data to the CMFD node. The rest of the time, the CMFD node is left

in an idle state simply waiting for incoming tally data. Furthermore, the communication

bottlenecks from blocking communication can be clearly seen on the MC nodes as well.

Each trial, no matter when it finishes its generation, is stuck waiting for CMFD fission

source data from the CMFD node, and this data is obtained only once the last trial to

finish the next generation has transferred its tally data to the CMFD node. Only then is

the CMFD source recomputed. This CPU downtime is indicated by the horizontal red

lines that appear after each trial finishes a generation.

On the other hand, the asynchronous case has a higher CPU utilization on the CMFD

node, since now this node recomputes the fission source whenever new data is available

from any MC node that finishes its next generation. Moreover, each trial is now able

to proceed to its next generation without having to synchronize with other trials, as

is indicated by the visible reduction in red horizontal lines in the profiling plots. This

indicates that the CMFD update step is conducted with very little latency, as each node

simply has to invoke an RMA call to retrieve source data in order to reweight its fission

source weights. Even in the asynchronous case, the CMFD node still has a considerable

amount of downtime waiting for newly available tally data, which indicates that scaling

up the number of MC nodes in the problem could lead to a higher CPU utilization by

the CMFD node.

The profiling plots shown here and in Section 4.1 were presented in order to provide

a graphical illustration of parallel communication bottlenecks and per-batch runtimes

among the six different run strategies introduced so far. However, Section 4.3 will take

a closer look at overall runtime to stationarity as well as any potential variance biases in

order to assess these run strategies on more holistic grounds.
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Figure 4-10: Performance profiling plot for run strategy 5 on the 1-D homogeneous
problem. The green portions indicate time spent in the Monte Carlo routine, while the
red portion indicates time spent in the CMFD feedback step. Green boxes represent
when processes are running particle transport at each generation, while horizontal green
lines indicate when processes are stalling while synchronizing the fission source and
accumulating global tallies. Likewise, red boxes indicate when CMFD calculation is
occurring on the master process or when particle reweighting occurs on each process,
while red horizontal lines signify when processes are stalled due to synchronization of
CMFD parameters.
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Figure 4-11: Performance profiling plot for run strategy 6 on the 1-D homogeneous
problem. The green portions indicate time spent in the Monte Carlo routine, while the
red portion indicates time spent in the CMFD feedback step. Green boxes represent
when processes are running particle transport at each generation, while horizontal green
lines indicate when processes are stalling while synchronizing the fission source and
accumulating global tallies. Likewise, red boxes indicate when CMFD calculation is
occurring on the master process or when particle reweighting occurs on each process,
while red horizontal lines signify when processes are stalled due to synchronization of
CMFD parameters.
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Figure 4-12: Performance profiling plot for run strategy 5 on the 2-D BEAVRS problem.
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Figure 4-13: Performance profiling plot for run strategy 6 on the 2-D BEAVRS problem.
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An ensemble averaged CMFD run strategy offloads all CMFD and FET station-

arity calculations to a separate compute node while still running ensembles

of Monte Carlo in parallel. The bulk synchronous implementation communi-

cates CMFD and FET data back and forth between MC nodes and the CMFD

node using blocking two-sided communication, while the asynchronous im-

plementation uses one-sided RMA to communicate this data with smaller com-

munication overhead.

4.3 Runtime Analysis and Variance Bias for Ensemble

Averaging

Section 4.2 introduced the bulk-synchronous and asynchronous implementations of

the ensemble averaged CMFD run strategies and compared the performance profiling

plots of these run strategies to those presented in Section 4.1. These performance

plots illustrate parallel performance and runtime for a fixed number of generations.

However, this section looks at overall runtime for run strategies 1 to 6 by accounting for

total generations to stationarity. Additionally, this section examines whether ensemble

averaged CMFD causes any potential variance biases that stem from the fact that the

same CMFD operator is shared across all MC nodes. For these ensembles of Monte Carlo

trials to be characterized as statistically independent, it must be shown that the use of a

shared CMFD operator during the CMFD feedback step does not introduce biases to the

reported mean and variance levels of these ensembles.

As described in Section 4.1.2, the use of a single trial stopping criteria results in a

less stringent stationarity criteria compared to the use of an aggregate trial stopping

criteria. Therefore, Section 4.3.1 describes a methodology for applying a single trial

stopping criteria onto the ensemble averaged CMFD strategy that uses an aggregate

trial stopping criteria. Once this procedure is established, runtimes between different

ensemble averaging approaches that use different stopping criteria can be compared on

the same footing. Section 4.2.3 then summarizes the overall runtime and real variance

179



calculations across run strategies 1 to 6, and finally in Section 4.3.3, the ensemble

averaged CMFD approach is compared to the case where a single trial is run with a small

generation size and a large number of active generations.

4.3.1 Comparing the Variance Between Multiple Trial Ensemble Av-

eraging and Bulk Synchronous Ensemble Averaged CMFD Sim-

ulations

Run strategies 1 and 2 use a single trial stopping criteria to determine stationarity and

this results in fewer generations to stationarity but also a higher variance level in the

stationary fission source. On the other hand, the ensemble averaged CMFD run strategies

5 and 6 bank FET coefficients across all MC nodes and thus determine stationarity based

on the aggregate fission source. For ensemble averaged run strategies to be compared to

the multiple trial ensemble averaged approaches on the same grounds, a procedure for

providing an apples-to-apples comparison between these run strategies must be devised.

Specifically, since the bulk synchronous implementation synchronizes the FET coefficients

after each generation across all MC nodes, the fluctuations in the aggregated coefficients

can be post-processed and compared to the fluctuations in the FET coefficients for a

single ensemble of neutrons in the multiple trial ensemble averaging approach.

For instance, Figure 4-14 plots the standard deviation in the instantaneous FET

coefficient for the a3 coefficient for a single ensemble of neutrons in run strategy 1

(Multiple trial Monte Carlo with no CMFD) along with the standard deviation in the

average a3 coefficient across all Monte Carlo trials in run strategy 5 (bulk-synchronous

ensemble averaged CMFD). Here, the a3 FET coefficient represents the slowest converg-

ing FET coefficient for the 1-D homogeneous problem, and the standard deviation in

the instantaneous FET coefficient is defined as

s[an,m] =

√

√

√

√

1
G − 1

m+G
∑

g=m

�

an,g − an,m:m+G

�2
(4.4)

for the single ensemble case, where an,g represents the value of the an FET coefficient
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Figure 4-14: Standard deviation in instantaneous a3 FET coefficient the 1-D homoge-
neous problem. The blue line plots the single trial standard deviation for run strategy 1,
the orange line plots the 32-trial standard deviation for run strategy 5, the horizontal
dashed green plots the asymptotic standard deviation, and the vertical blue line plots
the generation where the orange line crosses the asymptotic dashed green line. The
right plot is the zoomed version of the left plot.

at generation g, and an,m:m+G represents the average FET coefficient computed over a

moving window of G = 100 generations starting at generation m. For the ensemble

averaged CMFD case where FET coefficients over S = 32 ensembles are aggregated, the

standard deviation in the instantaneous FET is defined as

s[an,m] =

√

√

√

√

1
G − 1

m+G
∑

g=m

�

1
S

�

S
∑

s=1

(an,g,s)−
S
∑

s=1

(an,m:m+G,s)

��2

(4.5)

where now the term an,g,s represents the value of the an FET coefficient at generation

g and trial s, and
∑S

s=1 an,m:m+G,s/S represents the trial-averaged an FET coefficient

over a moving window of G = 100 generations starting at generation m. In Figure

4-14, the horizontal green dashed line represents the asymptotic variance in the FET

coefficient when a single ensemble is used to compute the standard deviation in the

instantaneous FET coefficient. For the ensemble averaged CMFD case where the average

of 32 ensembles is used to compute the standard deviation in the instantaneous FET

coefficient, the asymptotic standard deviation level is 1/
p

32 times lower, and the
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generation at which this orange line intersects the green line represents the point at

which the bulk synchronous ensemble averaged CMFD possesses the same standard

deviation level as that dictated by a single trial stopping criteria. This generation number

is indicated by the blue vertical line, and this occurs at generation 120 for the 1-D

homogeneous problem. This is the stopping criteria used for run strategy 5 when

comparing runtime results for run strategies 1 and 2, where a looser stopping criteria

based on the stationarity behavior of a single ensemble of 10 million neutrons is applied

to strategies 1, 2, and 5. The analogous plot to Figure 4-14 for the 2-D BEAVRS case is

shown in Figure 4-15, and the single trial stopping criteria for run strategy 5 now occurs

at generation 19. These plots show that the presence of S = 32 ensembles towards the

computation of instantaneous FET coefficient standard deviation yields a much quicker

convergence to a single trial stopping criteria compared to the case when only S = 1

ensemble of data is available.

Figure 4-15: Standard deviation in instantaneous a−1
3 FET coefficient the 2-D BEAVRS

problem. The blue line plots the single trial standard deviation for run strategy 1,
the orange line plots the 32-trial standard deviation for run strategy 5, the horizontal
dashed green plots the asymptotic standard deviation, and the vertical blue line plots
the generation where the orange line crosses the asymptotic dashed green line. The
right plot is the zoomed version of the left plot.
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4.3.2 Runtime Results and Variance Bias

This section presents the overall runtime results based on generations to stationarity

for the six run strategies presented so far. The RMS error and relative uncertainty

levels associated with the ensemble averaged CMFD cases will also be compared to the

cases where ensemble averaging is not utilized in order to show any potential mean or

standard deviation biases that may arise from the presence of a shared CMFD operator.

Here, RMS error is calculated using Equation 3.8 and relative uncertainty is defined as

the mesh-averaged ratio of the sample standard deviation in the fission source across P

independent trials to the average fission source across P independent trials:

εrel.
n =

1
M

M
∑

m=1

Ç

1
P−1

∑P
p=1(Ym,n,p − Y m,n)2

Y m,n

∗ 100%

=
1
M

M
∑

m=1

√

√

√

√

1
P − 1

P
∑

p=1

�

Ym,n,p − Y m,n

Y m,n

�2

∗ 100%

(4.6)

where Ym,n,p is the accumulated fission source at active generation n, mesh cell m,

and trial p, and Y m,n is the trial-averaged accumulated fission source at active generation

n and mesh cell m. All accumulated fission source values in this section are computed

over a single active generation.

As described in Section 4.3.1, run strategies that utilize a single trial stopping criteria

cannot be compared directly to the run strategies that employ an aggregate trial stopping

criteria, so runtime results will be separated by stopping criteria type. Table 4.4 and

Table 4.5 report the runtime results for the 1-D and 2-D problems respectively with

run strategies that utilize a single trial stopping criteria, and the results for the bulk

synchronous ensemble averaged CMFD from applying a single trial stopping criteria

as described in Section 4.3.1 are shown as well. Similarly, Table 4.6 and Table 4.7

summarize the runtime results for the run strategies that utilize an aggregate trial

stopping criteria for the 1-D and 2-D problems respectively. For these problems, the

mesh-averaged RMS error levels and relative uncertainty levels as established by the
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aggregate trial stopping criteria are calculated as well. The mesh over which these

quantities are computed are 20cm for the 1-D case and an assembly-sized mesh for the

2-D case. Also, for the single trial simulations, multiple trials were conducted in order to

compute relative uncertainties since these run strategies do not have a straightforward

way to compute accurate standard deviation levels otherwise.

Table 4.4: 1-D runtime results for run strategies that utilize a single trial stopping
criteria

Run Strategy
Trial-Averaged
Generations to

Stationarity

Total
Computational
Time (CPU-hrs)

1 - Multiple Trial
Monte Carlo

874.4 5903.06

2 - Multiple Trial
CMFD

215.3 2975.30

5 - Bulk Synchronous
Ensemble Averaged

CMFD
120 1772.02

Table 4.5: 2-D BEAVRS runtime results for run strategies that utilize a single trial
stopping criteria

Run Strategy
Trial-Averaged
Generations to

Stationarity

Total
Computational
Time (CPU-hrs)

1 - Multiple Trial
Monte Carlo

161.2 4071.91

2 - Multiple Trial
CMFD

70.5 2256.8

5 - Bulk Synchronous
Ensemble Averaged

CMFD
19 658.27

For the results in this section, the total computational time for a run strategy, in

CPU-hours, is computed as

Total computational time=
Nnode
∑

n=1

Tstationarity,nNCPU,n (4.7)
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where Nnode represents the total compute nodes in the simulation, Tstationarity,n represents

the total time to stationarity for the OpenMC trial running on compute node n, and NCPU,n

represents the total number of CPU’s running on node n. For multiple trial ensemble

averaging, total time to stationarity is trial-dependent, while time to stationarity is the

same across all compute nodes for both the single trial and ensemble averaged CMFD

cases since stationarity is determined based on the global instantaneous fission source

across all trials. For the ensemble averaged CMFD case, an additional compute node is

included as part of Nnode to account for the CMFD node.

Table 4.6: 1-D runtime, relative uncertainty, and RMS error results for run strategies
that utilize an aggregate single trial stopping criteria.
*32 Multiple independent trials were conducted to generate statistics on single trial
simulations.

Run Strategy
Trial-Avg. Gens.
to Stationarity

Total
Comp.
Time

(CPU-hrs)

Rel. Uncer-
tainty
(%)

RMS Error
(%)

3 - Single Trial Monte
Carlo w/ Large Gen.

1119 8008.8 0.113* 0.115

4 - Single Trial CMFD
w/ Large Gen.

235 3400.44 0.115* 0.114

5 - Bulk Synchronous
Ensemble Averaged

CMFD
234 3450.56 0.114 0.112

6 - Asynchronous
Ensemble Averaged

CMFD
232.6 3210.70 0.114 0.113

These results illustrate the benefits and drawbacks of different Monte Carlo run

strategies on overall Monte Carlo runtime. Firstly, the use of CMFD results in a signif-

icantly larger reduction in runtime compared to the un-accelerated case, due to the

fact that source acceleration reduces generations to stationarity by a larger percentage

than the computational overhead per generation associated with running CMFD. These

results are consistent with the conclusions from Chapter 3.

Secondly, a single trial stopping criteria results in a lower total runtime compared to

the aggregate trial stopping criteria, but this is due to the fact that fewer generations
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Table 4.7: 2-D runtime, relative uncertainty, and RMS error results for run strategies
that utilize an aggregate trial stopping criteria.
*32 Multiple independent trials were conducted to generate statistics on single trial
simulations

Run Strategy

Trial-Avg.
Gens. to
Stationar-

ity

Total Comp.
Time (CPU-hrs)

Rel. Uncer-
tainty
(%)

RMS Error
(%)

3 - Single Trial Monte
Carlo w/ Large Gen.

192 5105.78 0.170* 0.171

4 - Single Trial CMFD
w/ Large Gen.

90 2979.76 0.170* 0.171

5 - Bulk Synchronous
Ensemble Averaged

CMFD
89 3081.60 0.171 0.172

6 - Asynchronous
Ensemble Averaged

CMFD
89.1 2725.76 0.171 0.170

to stationarity are run, and this leads to a looser stationarity criteria. When applying

the single trial stopping criteria onto the bulk synchronous ensemble averaged CMFD

case, the total runtime is lower than the multiple trial ensemble averaging approach due

to the fact that a significantly lower number of generations are required to reach this

equivalent stopping criteria. Here, the presence of S = 32 times more ensembles reduces

fission source variance at a much faster rate than if only a single ensemble of data is used

to determine stationarity. As shown by Figure 4-9, this single trial stopping criteria also

represents a higher error level than the aggregate trial stopping criteria, as an insufficient

number of generations are simulated in the inactive generations commensurate to the

terminal variance level attainable by the aggregate source across all ensembles.

Finally, the asynchronous ensemble averaged CMFD case most effectively reduces

overall computational time to stationarity when comparing the various strategies that

utilize an aggregate trial stopping criteria. This is because the asynchronous implemen-

tation minimizes communication bottlenecks between Monte Carlo generations as there

are no longer any blocking MPI calls between processes. This results in a roughly 5%

reduction in overall runtime compared to the single trial case with a large generation
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size. Moreover, there is no significant bias in reported statistics across the different

run strategies, and this is likely due to the fact that the same overall generation size

and maximum CMFD window size was used across all run strategies, which were the

two factors shown in Chapter 3 to affect instantaneous fission source variance levels.

It should be noted once again that single trial run strategies 3 and 4 have no direct

way of computing accurate relative uncertainty and standard deviation levels, and any

true measures of these statistical quantities need to be obtained by running multiple

independent simulations separately.

4.3.3 Comparing Asynchronous Ensemble Averaged CMFD to Sin-

gle Trial Simulations with Small Generation Sizes

As a final simulation scheme for comparison to the ensemble averaged CMFD approach,

this section looks at the efficacy of running a single trial simulation with a small gen-

eration size and a large number of active generations. Keeping the total runtime from

run strategy 5 with a single trial stopping criteria fixed, the same test cases are now

simulated with the same computational resources but with a single trial of 10 million

neutrons. Once the single trial stopping criteria is met, the remaining runtime is devoted

towards simulating as many active generations as possible. Since this approach only

simulates a single trial, a batching method is used to generate relative uncertainty esti-

mates, and these levels are compared with the relative uncertainty levels as computed

by the ensemble averaged CMFD approach with multiple independent trials and a single

trial stopping criteria. Thus, run strategies 7 and 8 are introduced as single trial Monte

Carlo and single trial CMFD respectively with a small generation size, and Table 4.8

summarizes the compute resource parameters for these run strategies along with the

previous 6 run strategies introduced so far.

Figure 4-16 plots the relative uncertainty as predicted by run strategies 5, 7, and 8

where a single trial stopping criteria is used to delineate inactive and active generations.

Total runtime is kept fixed among all three run strategies, and multiple independent

trials are conducted for each run strategies to get a sense of how much these standard
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Table 4.8: Compute resource parameters for run strategies 1 to 8

Run Strategy
Total

Compute
Nodes

Total Inde-
pendent

Trials

Generation
Size per

Trial

MPI
Processes
per Trial

OpenMP
Threads
per MPI
Process

1 - Multiple Trial
Monte Carlo

32 32 10 Million 2 18

2 - Multiple Trial
CMFD

32 32 10 Million 2 18

3 - Single Trial
Monte Carlo

32 1 320 Million 64 18

4 - Single Trial
CMFD

32 1 320 Million 64 18

5 - Bulk
Synchronous

Ensemble
Averaged CMFD

33 32 10 Million 2 18

6 - Asynchronous
Ensemble

Averaged CMFD
33 32 10 Million 2 18

7 - Single Trial
Monte Carlo

32 1 10 Million 64 18

8 - Single Trial
CMFD

32 1 10 Million 64 18

deviation levels vary through repeated trials. Firstly, run strategy 7 (single trial Monte

Carlo) resulted in 3400 active generations, which were split into 17 batches with 200

generations per batch, while run strategy 8 (single trial CMFD) yielded 3000 active

generations that were split into 15 batches with 200 generations per batch. The value for

generations per batch was chosen based on recommendations by Kelly et. al to ensure

independence between batches. The first observation from this plot is the higher relative

uncertainty levels when running CMFD compared to the un-accelerated case. This has to

do with the overhead associated with CMFD source acceleration in the active generations,

which results in fewer available active generations to compute batch statistics.

Secondly, the ensemble averaged CMFD case results in the lowest overall relative un-

certainty levels, which illustrates the point that an equivalent run strategy that simulates
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a single trial with a large number of active generations still results in a higher relative

uncertainty due to correlation effects that degrade convergence rates in the initial active

generations.

Finally, when comparing the fluctuations in relative uncertainty by trial, it can be

seen that the use of multiple trial statistics through ensemble averaging results in a

much narrower confidence interval than through the use of batching. This is because all

particle histories in a single generation across multiple independent trials are used to

generate statistical quantities. On the other hand, generational quantities are averaged

over a large number of generations when splitting active generations into batches, so

the number of tallied quantities associated with a batching method is based on the total

number of batches available (17 batches for the un-accelerated case and 15 batches

for the case with CMFD acceleration), which is markedly smaller than the case where

multiple independent trials are conducted. This is consistent with the findings by Miao,

who shows that the uncertainty in a generation-based variance estimator is lower than

that of a batch-based variance estimator [28].

Figure 4-16: Relative uncertainty as predicted by multiple independent trials of bulk
synchronous ensemble averaged CMFD and by the batching method using a single trial
with a large number of active generations. Runtime is kept fixed across all run strategies
and multiple independent trials are conducted for each of the three run strategies shown,
and results are shown for the 1-D homogeneous problem.

For the 2-D BEAVRS case, the use of batch statistics is complicated by the fact that

now only 750 active generations are available for run strategy 7 with no CMFD, and

only 375 active generations are available for run strategy 8 with CMFD. Thus, using a

value of 200 for the number of generations per batch results in an insufficient number

of samples to generate batch statistics, and a smaller number of generations per batch
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must be used. In this specific case, the active generations are split into 10 batches with

75 generations per batch for the un-accelerated case, while the CMFD accelerated case

is split into 5 batches of 75 generations per batch. Now, however, the batches cannot

be assumed to be independent anymore as there is a non-negligible level of correlation

associated with an inter-generational lag of 75. Thus, relative uncertainty levels are

calculated assuming correlated batches, and these uncertainty levels using single trial

batching and multiple trial ensemble averaging are shown in Figure 4-17. The details

of how standard deviation levels are corrected to account for inter-batch correlation is

outlined in Appendix F. Once again, a simulation strategy that utilizes a single trial with

a small generation size yields uncertainty levels that are higher and more dispersed than

the case where ensemble averaged CMFD is used. Stated another way, for the batching

method to yield the same uncertainty as the ensemble averaged CMFD case, a larger

number of active generations are required, thus increasing overall runtime. Assuming

independent batches, ∼50 more batches of 200 generations per batch are needed for the

1-D homogeneous case and ∼17 more batches of 75 generations per batch are required

for the 2-D BEAVRS case in order for relative uncertainties between the un-accelerated

single trial batching method and ensemble averaged CMFD approach to reach parity.

Figure 4-17: Relative uncertainty as predicted by multiple independent trials of bulk
synchronous ensemble averaged CMFD and by the batching method using a single trial
with a large number of active generations. Runtime is kept fixed across all run strategies
and multiple independent trials are conducted for each of the three run strategies shown,
and results are shown for the 2-D BEAVRS problem. 75 generations per batch are used
so the standard deviation levels shown in the blue and orange lines correct for the
correlation levels that are present between batches.
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The various run strategies presented so far are compared in terms of over-

all computational time to stationarity. Multiple trial ensemble averaging re-

sults in higher runtime compared to the bulk synchronous ensemble aver-

aged CMFD when an apples-to-apples single trial stopping criteria is applied.

For single trial simulations with small generations, a larger variance level

resulted when compared to the bulk synchronous ensemble averaged CMFD

case where total runtime was kept the same across all strategies. Finally, for

single trial simulations with large generation sizes, runtimes were roughly

5% higher when compared to runtimes for the asynchronous ensemble av-

eraging case. It was also shown that there was no significant evidence of

variance bias when using a shared CMFD operator for the ensemble averaged

CMFD run strategy.

4.4 Summary of Arguments for Ensemble Averaging

This chapter proposed a multitude of run strategies for running Monte Carlo simulations

on multi-node computer systems, with a focus on increasing parallel efficiency while

still being able to calculate real variance estimates. All numerical experiments were

conducted on INL’s Falcon computer cluster, where each compute node comprises of

36 CPU cores. The following bullets summarize the merits and drawbacks of each run

strategy

• CMFD source acceleration vs. Un-accelerated Monte Carlo: For every run strat-

egy proposed in this chapter, two variants were investigated - one that utilized

CMFD source acceleration and one that used vanilla Monte Carlo without any

source acceleration. For reactor simulations, the reduction in generations to sta-

tionarity far outweighs the computational overhead associated with running CMFD

source acceleration, thus CMFD should be turned on in the inactive generations.

In the active generations, however, there is no direct benefit in terms of improving

the convergence rate and so CMFD should be turned off in the active generations
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to minimize computational costs. These results for large-scale simulations are

consistent with those described in Chapter 3.

• Multiple trial ensemble averaging: The naive approach to ensemble averaging

runs multiple independent trials in parallel. This improves parallel efficiency as

each ensemble of neutrons no longer has to wait for other ensembles of neutrons to

finish running in order to be able to continue to subsequent generations. However,

as was described in Section 4.1.2, without synchronization each independent

trial diagnoses stationarity based on a single trial stopping criteria, which yields

a less stringent stationarity criteria and a higher fission source error residual

when starting the active generations. It should also be noted that in this chapter

where multiple independent trials with CMFD were run, each ensemble had a

generation size of 10 million, which was a sufficiently large enough generation

size for CMFD fluxes to be computed without any stability issues. However, if the

number of computational resources available were to increase while keeping the

total number of particles per generation fixed, the number of particles per ensemble

would decrease to a level where the CMFD solver would be unable to run due to

highly biased CMFD tallied quantities. Herman describes this phenomenon when

simulating the 3-D BEAVRS problem with 1 million particles per generation [26].

However, CMFD is susceptible to these solver failures regardless of problem type if

an insufficient number of particles per generation are simulated to generate CMFD

parameters, so the multiple trial CMFD strategy fails to produce solutions in the

strong scaling limit.

• Single trial simulations: This chapter separated the effectiveness of a single trial

simulation based on whether a large generation size or small generation size was

used. When a large generation size is used, stationarity is diagnosed based on the

aggregate source. However, parallel efficiency is degraded as all particles in the

generation need to be transported before the Monte Carlo solver can proceed to its

next generation. Moreover, the fact that a single trial is run means that accurate

variance estimates cannot be computed. When a small generation size is used,
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it was shown that the use of batch statistics to compute real standard deviation

leads to higher variance levels and higher uncertainty levels in the variance when

compared to an ensemble averaged CMFD approach that is run for an equivalent

number of CPU-hours. Specifically for the 2-D BEAVRS case, it was also shown that

an insufficient number of active generations was simulated in order to be able to

compute batch statistics with completely uncorrelated batches. In this case, batch

statistics were computed assuming correlated batches. In most cases, however,

these correlation levels are a priori unknown and unless they are accounted for,

reported variance levels can be significantly biased. It should also be noted here

that as outlined by Romano et. al, as the number of processors used to simulate a

single trial simulation increases while keeping generation size fixed, situations of

processor starvation will occur, where a limited amount of work divided over a

large number of processes leads to scenarios where each process no longer has

enough work to run efficiently [76].

• Bulk synchronous ensemble averaged CMFD: This was the first and simpler

of the two implementations of an ensemble averaged CMFD run strategy that

makes use of a shared CMFD operator across ensembles of Monte Carlo that all

have different starting pseudo-random seeds. It uses an aggregate trial stopping

criteria and enables the computation of unbiased real variance estimates across

multiple Monte Carlo ensembles. However, parallel efficiency is sacrificed due

to the synchronous communication pattern between MC nodes and CMFD node

during the CMFD feedback step.

• Asynchronous ensemble averaged CMFD: The second of two implementations

for the ensemble averaged CMFD run strategy tries to combine the benefits of a

bulk synchronous approach while trying to improve parallel efficiency. In the asyn-

chronous case, each ensemble communicates only with the CMFD node through

one-sided MPI RMA calls, and does not have to synchronize with other MC nodes.

This run strategy was shown to reduce overall runtime to stationarity without

leading to biased real variance estimates.
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Thus, the asynchronous ensemble averaged CMFD combines the following advan-

tages into a single run strategy

1. A CMFD-based run strategy: Asynchronous ensemble averaged CMFD uses

CMFD as a basis for source acceleration, which results in reduced overall runtime

and generations to stationarity.

2. Utilizes an aggregate trial stopping criteria: The CMFD node determines sta-

tionarity based on an aggregate trial stopping criteria so a sufficient number

of generations to stationarity is prescribed to minimize variance levels in the

aggregate fission source across all ensembles of neutrons in a generation.

3. Better load balancing: As shown through the performance profiling plots in

Figures 4-11 and 4-13 and from the runtime results in Tables 4.6 and 4.7, an

asynchronous ensemble averaged CMFD approach reduces communication over-

head between generations of ensembles, which leads to lower overall runtime to

stationarity and better load balancing on large-scale Monte Carlo simulations.

4. Better resilience to node failures: Through ensemble averaging, if any compute

node were to go offline due to a node failure, results could continue to be collected

across the remaining compute nodes still in operation. Therefore, ensemble

averaging provides additional fault tolerance on large-scale compute jobs.

5. Ability to calculate real variance levels: A recurring theme throughout this

chapter has been the idea that single trial simulations do not provide the ability to

compute accurate variance levels without simulating a substantially large number

of active generations. An asynchronous ensemble averaged CMFD solves this

problem by running multiple ensembles of neutrons in parallel, and it has been

shown that even with the use of a shared CMFD operator, these ensembles are

statistically independent and can be used to calculate unbiased real variance levels

in a simple manner.

Additionally, the ensemble averaging method has applications to TH coupling and

GPU computation, which are detailed below:
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6. Extension to TH Coupling: As was alluded to in Chapter 3, CMFD can be seen

as a surrogate for the non-linear coupling process, and once again ensemble

averaging can be leveraged to improve Monte Carlo coupling capabilities with

deterministic non-linear solvers. As described at the beginning of this chapter,

running Monte Carlo with larger generations and fewer active generations should

be the preferred method for TH-coupling, and such a schematic is depicted in

Figure 4-18a. The issue with such an approach is that since only a single trial is

being run, it is difficult to generate Monte Carlo variance estimates before and

after the deterministic coupling step to get a sense of how much fluctuations

tallied quantities possess. On the other hand, if completely independent trials

of Monte Carlo are run with smaller generation sizes per trial - as illustrated in

Figure 4-18b - then the Monte Carlo parameters passed to the TH solver are subject

to larger noise levels since fewer neutron histories contribute to the calculation

of these parameters. This may push the deterministic solver into an erroneous

solution. Therefore, an ensemble averaging approach allows for variance levels

to be calculated across multiple Monte Carlo trials while aggregating coupling

parameters across all trials in order to reduce statistical fluctuations during the

coupling step. The schematic for ensemble averaging in shown in Figure 4-18c.

7. Extension to GPU Computing: As mentioned in Chapter 1, both exascale ma-

chines being currently built at ANL and ORNL are GPU-based machines, so the

reactor physics community has been working towards porting existing Monte Carlo

algorithms to a vectorized, event-based algorithm more suited for GPU compu-

tation. However, GPU’s have limited availability of on-device memory, and this

restricts the maximum generation sizes that are achievable per GPU [24]. For

example, Hamilton et al. showed that on the NVIDIA Tesla K20X GPU that has 6

gigabytes of memory, only 3.2 million particles per generation could be run before

the device ran out of memory when running a fresh fuel SMR problem. Similarly,

on the NVIDIA Tesla V100, which has 16GB of on-GPU memory, the maximum gen-

eration size was 6.4 million on the same SMR problem. The computation of tallies
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in the active generations would further increase the memory constraints on the

problem and reduce the number of particles per generation that can be run on the

GPU. ORNL’s exascale supercomputer Frontier features 4 AMD GPU’s and 1 AMD

CPU per node, where each GPU will now have 32 gigabytes of memory, so memory

will continue to be limited on these machines as well [10]. Given the smaller

generation sizes that are attainable on each GPU, an ensemble averaging approach

can be leveraged to run on multiple nodes of such supercomputers. Since CMFD

requires less computational time to run than Monte Carlo, each CPU on a com-

pute node can be designated as the CMFD server responsible for communicating

CMFD parameters, while an ensemble of neutrons running the maximum possible

number of particles per generation can be run with Monte Carlo on each GPU of

the compute node. In this manner, the total target generation size is distributed

among the available GPU’s in a compute job, while CMFD source updates and FET

stationarity diagnosis continue to occur on the CPU.
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(a) MC-TH coupling with single MC trial and large generation size

(b) MC-TH coupling with completely independent MC trials

(c) MC-TH coupling with multiple independent MC trials and a shared TH operator
Figure 4-18: Schematics for running MC-TH coupling
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Highlights

• The asynchronous ensemble averaged CMFD approach is a CMFD-based run

strategy that utilizes an aggregate trial stopping criteria and is shown to

reduce communication overhead and increase parallel efficiency for Monte

Carlo on large-scale computing systems. The use of ensemble averaging also

allows for the calculation of unbiased real variance estimates.

• When compared to single trial simulations with small generation sizes and

larger number of active generations with a fixed runtime, an ensemble av-

eraged CMFD approach is able to achieve lower variance levels with lower

uncertainty in the variance as well.

• CMFD is a surrogate for the non-linear coupling process, and ensemble

averaging can be leveraged with other types of deterministic non-linear

solvers to generate Monte Carlo parameters with smaller statistical noise

levels while still providing a sense of Monte Carlo uncertainty levels before

and after the deterministic coupling step.

• Ensemble averaging can be extended to the GPU-based architectures of next-

generation exascale machines by distributing target generation sizes over the

available GPU’s in a compute job while centralizing all CMFD calculations

and FET diagnosis on the CPU, thus overcoming memory limitations faced

by GPU’s.
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Chapter 5

Comparison of Simulation Strategies

on the 3-D BEAVRS Benchmark

This chapter combines the findings from this thesis so far and applies them to the

final test case - the 3-D BEAVRS benchmark. This benchmark represents the full three-

dimensional PWR core geometry with all axial heterogeneity at HZP conditions [64].

The FET stationarity diagnostic introduced in Chapter 2 will be applied to this test

problem to determine an adequate number of generations to stationarity in the inactive

generations. CMFD will be used to speed up fission source stationarity, and the CMFD

parameters for this problem will be based on recommendations from Chapter 3. Finally,

a comparison of the run strategies proposed in Chapter 4 will be applied to the 3-D

BEAVRS case using similar-sized computational resources.

When using Monte Carlo methods, the 3-D BEAVRS benchmark represents a similar

computational complexity as the 2-D BEAVRS benchmark problem in terms of per-

generation runtime. For the 3-D case, however, more fission source generations are

required in the inactive generations to attain stationarity [26]. This difference in

generations in stationarity is largely due to the fact that a uniform starting source closely

represents the true radial solution, while in the axial dimension, a larger number of

generations is required to converge a uniform starting source to the true cosine-shaped

solution. In the active generations, the 2-D and 3-D BEAVRS problems have similar

ACC’s, so convergence rates remain on par between these two variants. As such, most
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Monte Carlo analysis for PWR reactor simulations conclude by analyzing the 2-D BEAVRS

problem in detail with a recommendation to increase computational resources in order

to simulate the 3-D problem in full. In order to bridge this gap between the 2-D and

3-D models using Monte Carlo, Herman successfully applies CMFD source acceleration

to the full 3-D BEAVRS model in order to gauge the efficacy of CMFD in the inactive

generations [26], while Jo et al. expands on this work by applying the unconditionally

stable p-CMFD method to the 3-D BEAVRS problem in order to shed light on how p-CMFD

feedback affects real variance estimates and inter-generational correlation effects [79].

This chapter expands on work by Herman and Jo et al. by investigating how ensemble

averaging run strategies fare on the 3-D BEAVRS problem, with a focus on overall runtime

and real variance levels associated with each run strategy. While previous studies focus on

the symmetric 3-D BEAVRS core, which is easier to converge in the inactive generations,

flux measurements from actual operating data indicate a substantial radial tilt in the

axially integrated fission source despite an eighth-core symmetric geometry [2,80]. This

tilt is hypothesized to be caused by varying inter-assembly gaps from the core loading

process [2]. In order to truly capture the impact of a non-symmetric core on the overall

Monte Carlo time to solution, this work will alter the 3-D BEAVRS model by artificially

inducing a radial tilt in the core to match the tilt observed from BEAVRS operational

data. This is achieved by modifying the water density in each assembly. Modifying the

core geometry in this way adds a level of computational complexity to the Monte Carlo

process that is indicative of modeling realistic full-core problems that are not always

guaranteed to be symmetric in nature.

This chapter is therefore laid out as follows: The exact problem parameters and

geometry specifications of the benchmark problem will be discussed in Section 5.1, with

a description of how the radial tilt is induced in Section 5.1.1. The details of stationarity

diagnosis will be included in Section 5.2. Finally, all performance profiling and runtime

analysis for the 3-D BEAVRS problem are covered in Section 5.3.
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Table 5.1: CMFD parameters for the 3-D BEAVRS problem for test cases in Chapter 5

Parameter Value for 3-D BEAVRS Problem

CMFD tally estimator type Analog

Number of energy groups 2

Effective downscatter True

Acceleration map Used

Reference diffusion parameters Used

CMFD tally begin 1

CMFD solver begin 1

Weight clipping 0.2

Windowing scheme Expanding window

Maximum window size 32

CMFD mesh size Assembly mesh radial, ∼20cm mesh axial

Prolongation source shape Linear source axially, fixed source radially

5.1 Problem Parameters

Table 5.1 summarizes the CMFD parameters for this chapter. At the CMFD prolongation

step, a linear source prolongation described in Section 3.2.3.5 and Appendix C is used in

the axial direction, while a fixed source prolongation is used in the radial direction. It was

also found that the CMFD penalty factor - defined in Section 3.3.1 - for the 3-D BEAVRS

problem is now 32, so a maximum window size of 32 is used in all CMFD-accelerated

problems to ensure that instantaneous fission source variance levels match those of

the un-accelerated case. The acceleration map used for the 3-D BEAVRS problem is

similar to the 2-D case radially, mapping directly to an assembly-sized mesh with an

albedo boundary condition used to define partial currents at the core-reflector interfaces.

Axially, the acceleration map uses the same discretization as the CMFD mesh with an

additional axial layer above the top of the active fuel and below the bottom of the active

fuel to define partial currents.

The CMFD mesh is defined in a similar manner as the quarter-core CMFD mesh

defined by Harper in his dissertation [39]. where a rectilinear mesh is imposed on the

3-D BEAVRS active fuel region to account for the non-uniform spacing of spacer grids
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in the axial direction. In the radial direction, an assembly sized mesh is used. In the

axial direction, mesh boundaries are places at the bottom and top of the grid spacers in

order to encompass each grid spacer region exactly. Between the grid spacer mesh cells,

each segment is filled with the smallest number of mesh cells that yields a spacing of

less than 20cm.

While this mesh overlay represents a coarsely defined CMFD mesh, the added dimen-

sionality of the problem results in a larger number of total mesh cells to solve for in the

CMFD solver, with a total of 193 radial mesh locations × 22 axial mesh locations × 2

energy groups = 8, 492 total mesh cells in the problem. Thus, OpenMP multi-threading

as outlined in Section 3.2.3.3 is now used with 18 threads to reduce computational

overhead in the CMFD solver. A finer CMFD mesh is not considered for this chapter

since it was found that refining the mesh size added a significant performance penalty

without increasing the quality of the solution. For reference, when the CMFD mesh

is defined as a quarter assembly mesh radially and a 10cm mesh axially, the overall

runtime per generation increases by nearly 30% when a generation size of 10 million is

used. Moreover, the use of a finer mesh CMFD solution does not lead to lower variance

levels in the inactive or active generations.

5.1.1 Inducing a Radial Tilt in the 3-D BEAVRS Benchmark

As described in previous uncertainty quantification work for the BEAVRS benchmark

model, the BEAVRS core possesses a radial tilt in operating data despite an eighth-core

symmetric core loading pattern. This tilt is largest at HZP and dissipates with burnup and

power ramp-up [2,80]. The exact source of this tilt is unknown, but it is hypothesized

that uneven water gaps during core loading causes this irregularity [2]. This radial tilt

represents an un-modeled phenomenon that cannot be replicated by simulation tools,

which produce symmetric reaction rate maps for symmetric core loading patterns. Figure

5-1 plots the radial distribution of axially integrated fission rates at HZP as computed

from measured in-core detector signals for the BEAVRS benchmark, along with the

fractional difference with simulated data when modeling the BEAVRS core with the
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CASMO/SIMULATE code package.
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Figure 5-1: Radial assembly measurements of fission rates calculated at HZP for BEAVRS
Cycle 1 operating data. The top number is the axially integrated normalized assembly
signal while the bottom number is the fractional difference with data simulated from
the CASMO/SIMULATE code [2].

In order to mimic a similar tilt with Monte Carlo simulation tools, the input files

to the 3-D model are altered in OpenMC so as to artificially induce a radial tilt in the

fission source distribution. This is done by adjusting the density of each water region in

each assembly. Figure 5-2 plots the value for water density for each assembly, where

0.741 g/cc is the base water density level in the core without any modification, and
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each crescent-shaped layer in the northwest and southeast directions observes a change

in density of ±0.004 g/cc. This is done as a simple way to mimic variations in inter-

assembly spacing. This change in density was tuned in order to produce a roughly

∼10% radial tilt in the axially-integrated fission source distribution when compared

to the symmetric 3-D BEAVRS model, on par with the level of tilt observed in Figure

5-1. Figure 5-3 plots the relative difference in the axially-integrated stationary fission

source distribution between the symmetric and titled 3-D BEAVRS cases. In this manner,

a radially tilted distribution is more difficult to converge as it activates the odd modes of

the radial distribution, while a symmetric core takes fewer generations to stationarity

since it activates fewer modes in the radial solution. In most cases, tilts in the reactor

core may not be this large, but minor asymmetries can still exist.

The induced tilt in the 3-D BEAVRS problem therefore represents the added compu-

tational demands required of realistic reactor-type problems, where more generations

are needed in the inactive regime to resolve the asymmetries in the stationary fission

source. As such, this 3-D problem combines the difficulties of the 1-D and 2-D problems

presented in this thesis. Specifically, the simulation of an asymmetric fission source

distribution from a symmetric starting source distribution for the 3-D case is similar

to the 1-D case where an asymmetric starting source is used to simulate a symmetric

stationary distribution. As will be explored in Section 5.2, this adds computational

difficulty in the form of added generations to stationarity. Similar to the 2-D problem,

the heterogeneity in the 3-D core geometry and materials also results in computational

overhead to the per-generation runtime. It should be noted that the radially tilted 3-D

BEAVRS test problem does not contain significant axial asymmetries. However, such

asymmetries in the form of control rod insertions, for example, would necessitate an

even larger number of generations to stationarity.

A radial tilt is induced to the 3-D BEAVRS test case in order to create an asym-

metric stationary fission source distribution, which is on par with BEAVRS

operating data. This is done in OpenMC by modifying the water density of

each water region in the core.
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Figure 5-2: Modified water density values for each assembly location
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Figure 5-3: Relative difference in axially integrated stationary fission source distribution
between the symmetric 3-D BEAVRS and the tilted 3-D BEAVRS case. The tilted case
uses the water density distribution shown in Figure 5-2.

5.2 Stationarity Diagnosis

This chapter will once again use an FET-based diagnostic to assess fission source sta-

tionarity. In line with the findings from Chapter 2, Shannon entropy does not properly

diagnose stationarity due to the asymmetry of the 3-D problem. Figure 5-4 plots the

entropy as a function of inactive generations and it can be seen that the entropy value

flattens out relatively quickly for both the un-accelerated and CMFD-accelerated cases.

Here, A generation size of 320 million is used to match the total generation size of the run

strategies that will be considered in Section 5.3, and Shannon entropy is computed over

a quarter assembly radial and roughly 10cm axial mesh. According to the entropy-based

diagnostic presented in Section 2.3.2, stationarity occurs at generation 236 when CMFD

is used and at generation 392 when CMFD is not used, as represented by the vertical

lines in Figure 5-4.

When an FET-based diagnostic is used instead, however, a more conservative value

for generations to stationarity is recommended. Here, a generation size of 320 million

is used again, and the neutron fission rate is represented over the 3-D spatial domain

as a separable Zernike expansion in the radial and azimuthal directions, and Legendre

expansion in the axial direction:
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Figure 5-4: Value of Shannon entropy as a function of generation number for the tilted
3-D BEAVRS problem with CMFD acceleration (orange) and without CMFD acceleration
(blue). The dashed vertical lines represent the stopping criteria according to Shannon
entropy for each case.
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where L is the degree of the Legendre basis expansion, N is the degree of the radial

order expansion of the Zernike basis set, Pl is the Legendre polynomial of order l, and Zm
n

is the Zernike polynomial of radial order n and azimuthal order n. am
n,l is the expansion

coefficient corresponding to Legendre order l, Zernike radial order n, and azimuthal

order m. The axial domain is normalized between -1 and 1 and the Zernike radial domain

is scaled to be defined over a unit disk. Effectively, the spatial domain encompasses the

smallest cylinder that circumscribes the entire core. The expansion coefficient am
n,l is

tallied as part of the Monte Carlo algorithm as:
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All Zernike-Legendre FET pairs up to Legendre order 10 and Zernike radial order

10 are considered “low-order" and analyzed to assess stationarity. Figure 5-5 plots the

value of representative FET coefficients for the tilted 3-D BEAVRS problem with and

207



without CMFD, and the vertical lines represent the point when each of these modes has

reach stationarity based on the FET-based stopping criteria. Here, it can be seen that a

significantly larger number of generations to stationarity are required when using an

FET-based diagnostic, where 830 inactive generations are recommended without CMFD

and 344 generations are recommended with CMFD. Like the 1-D and 2-D cases, the

entropy-based stationarity diagnostic underpredicts generations to stationarity due to the

slow migration of source particles through the core. On the other hand, the FET-based

approach more suitably diagnoses stationarity as each source particle contributes to

the evaluation of each spatial moment of the fission source. For reference, Figure 5-6

plots the relative error between the axially integrated fission source as predicted by an

FET-based and entropy-based stationarity diagnostic, and shows a noticeable error that

results from using an entropy-based stopping criteria that underpredicts the number of

inactive generations to stationarity. The mesh-averaged relative error between the axially

integrated fission source on a quarter assembly mesh between these two stationarity

diagnostics equates to ∼0.4%.

Figure 5-5: Value of representative FET coefficients as a function of generation number
for the tilted 3-D BEAVRS problem with CMFD acceleration (orange) and without CMFD
acceleration (blue). The dashed vertical lines represent the stopping criteria for each
particular mode.
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An FET-based diagnostic that utilizes separable radial Zernike and axial Leg-

endre basis functions is used to diagnose fission source stationarity for the

3-D BEAVRS test case, and recommends a larger number of generations to

stationarity when compared to an entropy-based diagnostic.

5.3 Performance Profiling and Runtime Analysis

Table 5.2: Compute resource parameters for run strategies 1 to 6 applied to 3-D BEAVRS
problem

Run Strategy
Total

Compute
Nodes

Total Inde-
pendent

Trials

Generation
Size per

Trial

MPI
Processes
per Trial

OpenMP
Threads
per MPI
Process

1 - Multiple Trial
Monte Carlo

32 32 10 Million 2 18

2 - Multiple Trial
CMFD

32 32 10 Million 2 18

3 - Single Trial
Monte Carlo

32 1 320 Million 64 18

4 - Single Trial
CMFD

32 1 320 Million 64 18

5 - Bulk
Synchronous

Ensemble
Averaged CMFD

33 32 10 Million 2 18

6 - Asynchronous
Ensemble

Averaged CMFD
33 32 10 Million 2 18

This section demonstrates the performance profiling studies and runtime analysis

for the tilted 3-D BEAVRS problem. The run strategies pursued are summarized in Table

5.2 and mirror the same computational parameters as run strategies 1 to 6 explained in

Chapter 4. Due to the computational constraints of producing a reference solution for

this problem, RMS errors are not calculated for these run strategies, and instead real

standard deviation levels calculated across multiple independent Monte Carlo trials will

209



be used to determine any potential variance biases among the run strategies. Moreover,

the single trial run strategies with small generation sizes are not considered either (run

strategies 7 and 8 in Chapter 4), as it was shown in Section 4.3.3 that such run strategies

possess higher variance levels and higher uncertainties in the variance.

Performance plots similar to the ones in Sections 4.1.1 and 4.2.4 are shown for the

3-D case for run strategies 1 to 6 in Figures 5-7 to 5-12. Here, it can be seen that the

CMFD solver runs more slowly than the 1-D and 2-D cases due to the added number

of CMFD mesh cells in the axial dimension. However, the use of multithreading on 18

threads is able to effectively reduce this runtime, and the cost of running the solver is

still significantly lower than that of running a single Monte Carlo power iteration.

Table 5.3: 3-D runtime results for run strategies that utilize a single trial stopping
criteria

Run Strategy
Trial-Averaged
Generations to

Stationarity

Total
Computational
Time (CPU-hrs)

1 - Multiple Trial
Monte Carlo

612.7 15,217

2 - Multiple Trial
CMFD

269.5 10,778

5 - Bulk Synchronous
Ensemble Averaged

CMFD
47 1,401

Table 5.3 summarizes the total runtime associated with run strategies that utilize a

single trial stopping criteria. Similar to the methodology in Section 4.3.1, the multiple

trial test cases are compared to the bulk synchronous ensemble averaged CMFD case,

and it is found that only 47 generations to stationarity are required when imposing

a single trial stopping criteria onto the aggregate trial source computed by the bulk

synchronous approach. Figure 5-13 plots the standard deviation in the instantaneous

a1
1,2 FET coefficient for a single ensemble of neutrons for the multiple trial Monte Carlo

case (run strategy 1) along with the standard deviation in the average a1
1,2 coefficient

across all Monte Carlo trials in the bulk-synchronous case (run strategy 5). Here, the

a1
1,2 FET coefficient represents the slowest FET coefficient to reach the same terminal
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variance levels as a single ensemble of neutrons for the 3-D BEAVRS problem.

Once again, the results from Table 5.3 signify that the use of an ensemble averaged

CMFD approach results in a significantly lower number of generations to stationarity

when compared to the multiple trial run strategies. As explained in Chapter 4, this is due

to the fact that the presence of a larger number of ensembles towards the calculation of

FET coefficient standard deviation yields a much faster convergence to the single trial

stopping criteria when compared to the case where only a single ensemble of data is

available.

Table 5.4: 3-D runtime and real standard deviation results for run strategies that utilize
an aggregate trial stopping criteria.
*Calculated over a 2-D axially integrated assembly mesh.
**Calculated over a 3-D quarter assembly radial, 10cm axial mesh.
***32 Multiple independent trials were conducted to generate statistics on single trial
simulations

Run
Strategy

Trial-Avg.
Gens. to

Stationarity

Total Comp.
Time

(CPU-hrs)

2-D Mesh Rel.
Uncertainty* (%)

3-D Mesh Rel
Uncertainty**

(%)

3 - Single
Trial MC

830 19,334 0.953*** 9.59***

4 - Single
Trial CMFD

344 9,916 0.955*** 9.60***

5 - Bulk
Synch. Ens.
Avg. CMFD

345 10,259 0.953 9.59

6 - Asynch.
Ens. Avg.

CMFD
341.3 9,083 0.954 9.59

Table 5.4 summarizes the runtimes and standard deviation levels associated with run

strategies that utilize an aggregate trial stopping criteria. Here, a few things should be

noted. Firstly, it can be seen that the asynchronous ensemble averaged CMFD case has

the lowest overall computational time to stationarity, leading to a nearly ∼10% decrease

compared to the single trial CMFD case. This is primarily due to the fact that the CMFD

solver is relatively more expensive now compared to the 2-D BEAVRS case, so in a single

trial CMFD update step, each process has to wait for a comparatively higher time in
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order to receive CMFD source data from the master process. On the other hand, the

asynchronous approach continues to have low levels of latency during the CMFD update

step since each OpenMC node only has to probe the CMFD node for the latest available

source data in an asynchronous manner without having to wait for the CMFD node to

recalculate any source values.

Next, the results also show a consistent level of relative uncertainty across the

different run strategies presented. Relative uncertainty is computed using Equation 4.6

with two different types of meshes. The fourth column of Table 5.4 uses a 2-D mesh,

where all fission rates are axially-integrated over an assembly-sized mesh. The fifth

column, on the other hand, uses a finer 3-D mesh, where each mesh cell is quarter

assembly sized radially and roughly 10cm in size axially. These results show that axially

integrated quantities possess a roughly ∼1% uncertainty on the assembly mesh, while a

high level of uncertainty on the order of ∼10% still remains when a 3-D mesh is used.

Extrapolating these values to target uncertainties on the 3-D mesh to ∼1% levels

would require on the order of 800,000 - 900,000 CPU-hours. This is a significant

computational burden that stems largely from the fact that a uniform starting source

distribution is a poor starting point for each ensemble to begin the inactive generations.

As a result, the total runtime is compounded from the fact that each additional ensemble

spends an extremely large percentage of runtime in the inactive generations trying to

converge an incorrect starting source distribution to a very strict aggregate trial stopping

criteria. By comparison, the comparable runtimes for Table 5.4 for the symmetric 3-D

BEAVRS problem with an asynchronous ensemble averaging run strategy requires 94.8

generations to stationarity and a total runtime of 2,481 CPU-hours, indicating that the

total runtime is directly proportional to the total number of inactive generations to

stationarity per ensemble. Thus, reducing the total number of inactive generations

simulated by each ensemble is imperative in order to alleviate the amount of work

required in the inactive generations. This could be done by relaxing the convergence

criteria by using a single trial stopping criteria. Alternatively, another way to achieve

this is to pass a loosely converged probability distribution function of a single ensemble

run in the inactive generations as the starting guess for all ensuing ensembles, where a
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better starting source guess translates to fewer work required to reach stationarity in the

inactive generations. The concluding chapter proposes such a methodology as future

work, in Section 6.3.1.

Finally, it should be noted that this work illustrates the need for accurate variance

estimates, which are provided by ensemble averaging techniques. Without an proper

treatment of true variance estimates, results from Monte Carlo methods can be incorrectly

reported and made to look a lot more accurate than they truly are. As shown in Section

4.3.3, even if traditional batching methods are used to generate real variance estimates

for single trial simulations, a prohibitively large number of generations per batch are

required before batches can be assumed independent of each other, and the uncertainty

in the reported variance estimates will also be larger. Therefore, ensemble averaging

techniques provide a simple and reliable approach to measuring true variance levels in

Monte Carlo simulations.

In summary, this chapter focused on the simulation of the 3-D BEAVRS problem, and

an artificial radial tilt was induced to the fission source distribution by modifying the

density of each water region in the core. This was done so as to mimic the actual tilt

observed in operating data for the BEAVRS core and make the problem more difficult

to converge. Thus, this problem combined the difficulties of the 1-D and 2-D test cases

presented in this thesis, where the asymmetry of the core fission source distribution

requires more generations to stationarity, while the heterogeneity in the core geometry

and materials results in a larger time to simulate each additional generation. An FET-

based stationarity diagnostic was shown to determine stationarity more accurately when

compared to an entropy-based approach. Finally, runtime analysis shows a nearly 10%

reduction in computational time to stationarity for the asynchronous ensemble averaged

CMFD case when compared to a single trial CMFD approach. Thus, the asynchronous

ensemble averaged CMFD approach is deemed as the optimal run strategy for full-core

3-D Monte Carlo simulations on the grounds of better load balancing and ability to

calculate simple and accurate variance levels.
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Figure 5-6: Relative error in axially integrated stationary fission source distribution as
predicted by an FET-based and entropy-based stopping criteria for the tilted 3-D BEAVRS
problem. The first row corresponds to the fission source as predicted by an FET-based
stopping criteria when CMFD is used (344 generations to stationarity), while the second
row corresponds to the fission source as predicted by an FET-based stopping criteria
when CMFD is not used (830 generations to stationarity). Likewise, the first column uses
an entropy-based stopping criteria with CMFD (236 generations to stationarity), while
the second column uses an entropy-based stopping criteria with no CMFD feedback (392
generations to stationarity).
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Figure 5-7: Performance profiling plot for run strategy 1 on the 3-D BEAVRS problem.
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Figure 5-8: Performance profiling plot for run strategy 2 on the 3-D BEAVRS problem.
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Figure 5-9: Performance profiling plot for run strategy 3 on the 3-D BEAVRS problem.
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Figure 5-10: Performance profiling plot for run strategy 4 on the 3-D BEAVRS problem.
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Figure 5-11: Performance profiling plot for run strategy 5 on the 3-D BEAVRS problem.
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Figure 5-12: Performance profiling plot for run strategy 6 on the 3-D BEAVRS problem.
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Figure 5-13: Standard deviation in instantaneous a1
1,2 FET coefficient the 3-D BEAVRS

problem. The blue line plots the single trial standard deviation for run strategy 1, the
orange line plots the standard deviation computed across 32 trials for run strategy 5, the
horizontal dashed green plots the asymptotic standard deviation, and the vertical blue
line plots the generation where the orange line crosses the asymptotic dashed green line.
The right plot is the zoomed version of the left plot.
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Highlights

• The findings from previous chapters are applied to the 3-D BEAVRS model.

This 3-D test case is altered by modifying water densities in each water region

so that a radial tilt is induced to the stationary fission source, which mimics

the radial tilt observed in the actual BEAVRS core.

• FET coefficients are calculated and used to assess stationarity in the 3-D

BEAVRS core by representing the spatial domain as a separable Zernike

expansion in the radial and azimuthal directions, and Legendre expansion in

the axial direction.

• The asynchronous ensemble averaged CMFD run strategy is shown to be the

optimal run strategy for the 3-D BEAVRS problem, improving load balancing

by ∼10% when compared to a single trial approach while providing accurate

and simple variance estimates.

• The full core solution requires 9,083 CPU-hours on INL’s Falcon super com-

puter, and yields a relative uncertainty level of 0.954% on 2-D axially inte-

grated assembly-sized meshes and a relative uncertainty level of 9.59% on

3-D quarter assembly-sized meshes.
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Part IV

Conclusions
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Chapter 6

Conclusions and Perspectives

The main objective of this thesis was to develop a novel run strategy for Monte Carlo

simulations of typical reactor problems. This objective was motivated by the need to

efficiently run such simulations on large-scale computer systems while addressing many

of the outstanding issues with Monte Carlo methods. Before analyzing overall runtime

associated with Monte Carlo, two initial steps were taken to carry out this objective.

Firstly, an FET-based diagnostic was devised in order to delineate between the inactive

and active generations, and this stopping criteria was shown to accurately determine

when stationarity occurred in the fission source. This work was the basis for all ensuing

runtime analysis, providing a systematic approach to assessing the number of inactive

generations and hence the overall runtime in the inactive generations associated with

various Monte Carlo run strategies. Secondly, a sensitivity study of CMFD parameters

was conducted in order to assess how these parameters affected the evolution of Monte

Carlo simulations in both the inactive and active generations. This sensitivity study

identified the key parameters that affected variance levels in both the inactive and active

generations and provided a framework to ensure similar quality of solutions between

the CMFD-accelerated and un-accelerated cases. The findings from this work were

ultimately used to establish the optimal quantities for parameters such as CMFD mesh

size, maximum window size, and generation size for all subsequent Monte Carlo runtime

analysis.

The newly developed run strategy in this thesis, coined asynchronous ensemble aver-
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aged CMFD, was then shown to increase parallel efficiency and improve load balancing

by 5-10% on representative 1-D, 2-D, and 3-D reactor problems, while providing a

simple and reliable approach to measuring real variance estimates. Arguments for how

ensemble averaging can be applied to nonlinear multiphysics coupling schemes as well

as GPU-based computer systems were also presented. In light of these advantages,

this chapter summarizes how the ensemble averaged CMFD run strategy addresses

the overarching objective of this thesis. Section 6.1 highlights the key results of this

thesis, Section 6.2 underscores the key contributions of this thesis to the field of Monte

Carlo reactor physics, and Section 6.3 discusses avenues for future work in the field of

ensemble averaging.

6.1 Summary of Work

The following sections outline the key results of this thesis. Section 6.1.1 highlights the

merits of an FET-based stationarity diagnostic, Section 6.1.2 lays out the recommen-

dations for the various parameter choices associated with CMFD source acceleration.

Section 6.1.3 lists the pros and cons associated with various Monte Carlo run strategies,

while Section 6.1.4 presents the arguments for an ensemble averaging approach. Finally,

the runtime results for the 3-D BEAVRS benchmark are discussed in Section 6.1.5.

6.1.1 FET-based Stationarity Diagnostics

Monte Carlo simulations are divided into two stages - the inactive and active generations.

During the inactive generations, an initial source distribution is iterated on until it reaches

stochastic convergence. At this point, the active generations commence and the tallying

process can begin, where quantities of interest such as power distribution and reaction

rates are computed. Typically, Shannon entropy is calculated in order to determine

stationarity in the fission source, but as is shown in this thesis, an entropy-based approach

can lead to scenarios of false stationarity, especially for higher-dimensional problems as

well as for problems with large degrees of asymmetry relative to the stationary fission

source.
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Instead, an FET-based stationarity diagnostic is devised, where the stationarity in

a set of FET coefficients computed over a predefined basis set is assessed in order to

determine overall stationarity in the fission source. The fission source is represented in

one-dimension as a Legendre polynomial expansion, as a Zernike radial and azimuthal

expansion in two dimensions, and a separable Legendre and Zernike expansion in three

dimensions. In doing so, it is shown that analyzing the stationarity behavior of low-order

FET coefficients provides an accurate methodology for determining stationarity in the

fission source, while the average behavior of high-order FET coefficients represents the

degree of system-level noise in the Monte Carlo simulation.

Since FET’s are meshless and each source particle contributes to the basis functions

anywhere in space, examining the stationarity in FET coefficients helps to ascertain

whether each spatial mode has stopped fluctuating within statistical limits. On the

other hand, Shannon entropy is a mesh-based approach that examines the migration of

particles in each mesh cell from generation to generation in order to signal stationarity.

If this migration occurs slowly, this frequently leads to situations of false convergence

when using Shannon entropy.

Moreover, stationarity analysis indicates that a larger number of inactive generations

is required to reach stationarity for problems with larger dominance ratios and for

problems with larger generation sizes. Finally, it is shown that post-processing the fission

bank allows for the efficient calculation of FET coefficients with runtimes on par with

Shannon entropy calculations, and the FET-based diagnostic can also be applied to

problems that utilize CMFD source acceleration. Such a formulation allows for the exact

savings in terms of generations to stationarity when utilizing CMFD when compared to

an un-accelerated Monte Carlo simulation.

6.1.2 Best Practices for CMFD Source Acceleration

While investigating the parameters associated with CMFD source acceleration in Chapter

3, it is found that while CMFD may reduce the number of generations to stationarity,

it can often times introduce larger noise levels to the underlying fission source when
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compared to the case without CMFD acceleration. When using the expanding window

scheme to reduce these fluctuations, it is shown that increasing the maximum CMFD

window size helps to reduce variance levels in the instantaneous fission source, leading

to the notion of the CMFD penalty factor. This factor represents the minimum window

size required in an expanding window scheme for a given generation size so that the

standard deviation in the underlying fission source of a CMFD-accelerated simulation is

comparable to that of an un-accelerated scheme, and this penalty factor is independent of

generation size. Here, it is found that the CMFD penalty factor for the 1-D homogeneous

case is roughly 64, the penalty factor the 2-D BEAVRS case is between 32 and 64, and

the penalty factor is 32 for the 3-D BEAVRS case. If the maximum window size does

not meet this penalty factor, a larger variance in the instantaneous fission source arises

in the CMFD-based solution when compared to the un-accelerated case with the same

generation size.

The CMFD sensitivity study also shows that a fine-mesh CMFD solution and coarse-

mesh CMFD solution exhibit similar variance levels when generation size is kept fixed.

However, a fine-mesh solver is much more computationally costly to run, and thus it is

recommended to use a coarse CMFD mesh in order to reduce overall runtime.

In the active generations, simulations that attain maximum window sizes equivalent

to the CMFD penalty factor are able to reach initial RMS error levels in line with the

un-accelerated case. However, as the number of active generations simulated increases,

correlation effects tend to dominate convergence rates when a coarse RMS error mesh

is used, irrespective of whether CMFD is used or not. It is also observed that correlation

effects in the active generations tend to be stronger when a larger maximum window

size is used, as evidenced by the slower convergence rates in the accumulated fission

source. Therefore, it is recommended not to utilize CMFD source acceleration in the

active generations, as it adds computational overhead to the Monte Carlo transport

process without providing better convergence rates.

Finally, a runtime analysis of CMFD source acceleration is conducted in order to

assess how to reach stationarity in the inactive generations as quickly as possible. Here,

a hybrid simulation strategy is recommended that uses CMFD source acceleration for
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initial inactive generations while prematurely turning off CMFD after a loosely converged

solution has been achieved in order to reduce runtime per generation and achieve

instantaneous fission source variance levels on par with the un-accelerated Monte Carlo

case. On a single compute node with a generation size of 10 million, a CMFD-based

run strategy is able to reduce time to stationarity by 52% for the 1-D homogeneous test

problem with an offset starting source, and by 60% for the 2-D BEAVRS problem with a

symmetric starting source.

6.1.3 Pros and Cons of Various Monte Carlo Run Strategies

Given the significant degradation in active generation convergence rates associated with

Monte Carlo simulations, Chapter 4 examines the validity and efficacy of an ensemble

averaging approach, where multiple independent trials of Monte Carlo with varying

starting seeds are simulated in parallel. Such a simulation strategy allows for the

computation of real variance across independent ensembles of neutrons, and the initial

RMS error reduces at a 1/
p

M rate, where M is the number of independent ensembles.

However, a larger number of independent trials (equivalently, a larger generation size

per trial) equates to a larger number of source particles being discarded in the inactive

generations. Thus CMFD is employed in the inactive generations to reduce time to

stationarity.

Through a preliminary comparison of run strategies on 32 compute nodes of INL’s

Falcon supercomputer cluster, it was found that a multiple trial ensemble averaging

approach improves parallel efficiency and load balancing on Monte Carlo runs with

a larger availability of computational resources. However, fission source stationarity

is based on a single trial of source data instead of considering the aggregate fission

source, so this yields a less stringent stationarity criteria and hence a higher residual

error in the active generations. On the other hand, running a single trial with a large

generation size assesses stationarity on the aggregate fission source but comes at the cost

of reduced parallelization due to the synchronizing step at the end of each generation in

order to perform fission source synchronization and global tally accumulation across all
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running processes. Similar to the findings from Chapter 3, overall time to stationarity is

minimized for run strategies that employ CMFD source acceleration when compared

to those that do not. Specific to the multiple trial CMFD case, however, a minimum

generation size is required in order for the CMFD solver to run without failing, and such

a strategy is susceptible to solver failures if the generation size per ensemble is too small.

In order to address these issues, the ensemble averaged CMFD run strategy is pro-

posed, where all CMFD and FET stationarity calculations are offloaded to a separate

compute node while still running ensembles of Monte Carlo in parallel. The bulk syn-

chronous implementation communicates CMFD and FET data back and forth between

MC nodes and the CMFD node using blocking two-sided communication, and such

an approach suffers from poor parallelization due to the synchronizing step across all

processes to accumulate CMFD and FET data onto the CMFD node. In order to reduce

communication overhead with ensemble averaged CMFD, an asynchronous implementa-

tion that uses one-sided RMA to communicate FET and CMFD data is shown to minimize

latency in the CMFD update step on each MC node.

These various run strategies are compared in terms of overall computational time

to stationarity, and the asynchronous ensemble averaged CMFD approach is shown to

reduce overall runtime without introducing additional variance bias. Bulk synchronous

ensemble averaged CMFD (and hence asynchronous ensemble averaged CMFD) results

in lower runtime compared to the multiple trial ensemble averaging case when an

apples-to-apples single trial stopping criteria is applied. For single trial simulations with

small generations, batch statistics are used to compute real variance levels. However,

this results in higher variance levels as well as higher uncertainties in the variance

when compared to the variance levels as computed across the multiple trials of the bulk

synchronous ensemble averaged CMFD case, keeping total runtime constant. Finally, the

asynchronous ensemble averaging case results in higher parallel efficiency when com-

pared to single trial simulations with large generation sizes, reducing overall runtimes

by roughly 5-10% on representative 1-D, 2-D, and 3-D reactor problems.

Table 6.1 summarizes the disadvantages associated with the preliminary Monte Carlo

run strategies proposed in Chapter 4, where the asynchronous ensemble averaged CMFD
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Table 6.1: Disadvantages associated with various Monte Carlo run strategies.

Multiple Trial MC • Stationarity based on single trial stopping

criteria

• Doesn’t utilize CMFD

Multiple Trial CMFD • Stationarity based on single trial stopping

criteria

• CMFD solver is likely to fail if generation size

per ensemble is too small

Single Trial MC w/ Large Gen. • Poor parallel efficiency

• No method for real variance calculations

• Doesn’t utilize CMFD

Single Trial CMFD w/ Large Gen. • Poor parallel efficiency

• No method for real variance calculations

Bulk Synchronous Ens. Avg. CMFD • Poor parallel efficiency

Single Trial MC w/ Small Gen. • Requires a large number of active generations

• Batch statistics result in higher variance levels

and higher uncertainty in the variance

• Doesn’t utilize CMFD

Single Trial CMFD w/ Small Gen. • Requires a large number of active generations

• Batch statistics result in higher variance levels

and higher uncertainty in the variance

is recommended as the optimal run strategy to address all of these issues. The specific

advantages of the asynchronous ensemble averaged CMFD approach are presented in

the following section.

6.1.4 Arguments for Ensemble Averaging and Ensemble Averaged

CMFD

This thesis develops the ensemble averaged CMFD run strategy with the aim of ad-

dressing many of the outstanding issues associated with Monte Carlo methods. On the
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issue of source acceleration, this run strategy utilizes CMFD as a means to reduce the

computational burden in the inactive generations. From a parallelization perspective,

ensemble averaged CMFD uses one-sided RMA to communicate data, which is shown

to improve load balancing on large-scale computer systems. Such an implementation

also helps to provide better fault tolerance on such large-scale computer facilities, as

results can continue to be collected across operational compute nodes if any compute

node were to go offline during a node failure. Moreover, ensemble averaging provides a

simple and accurate method for calculating real variance estimates across statistically

independent ensembles of neutrons, and the use of an aggregate trial stopping criteria

ensures that a sufficient number of inactive generations are simulated so that initial

error levels converge at ideal 1/
p

N rates, where N is the total number of Monte Carlo

ensembles simulated in parallel.

The CMFD feedback loop can also be viewed as a surrogate for the non-linear coupling

process between Monte Carlo and deterministic solvers for thermal hydraulic feedback,

isotopic depletion, and transient analysis. As such, the findings from Chapters 3, 4, and

5 can be applied to workflows that involve non-linear coupling schemes with Monte

Carlo neutronics as well. A CMFD windowing scheme and a larger generation size

can be used in order to reduce variance in the underlying Monte Carlo fission source

before the coupling step, while ensemble averaging provides an avenue for calculating

real variance across multiple Monte Carlo trials while aggregating coupling parameters

across all trials in order to reduce statistical fluctuations during the coupling step.

Additionally, the ensemble averaging method has applications to GPU-based com-

puter systems, where each CPU on a compute node can be designated as the CMFD

server responsible for communicating CMFD parameters, while an ensemble of neutrons

running the maximum possible number of particles per generation can be run with

event-based Monte Carlo on each GPU of the compute node. In this manner, the total

target generation size is distributed among the available GPU’s in a compute job, while

CMFD fission source updates and FET stationarity diagnosis continue to occur on the

CPU. Such an approach helps to alleviate the memory limitations inherent to GPU

processors, and can be applied to the GPU-based exascale machines that are currently
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being designed.

6.1.5 Extension of Work to 3-D Full-Core Reactor Problems

As a final test case for the ensemble averaging approach, the run strategies introduced

in Chapter 4 are applied to the 3-D BEAVRS full-core model. A radial tilt is induced to

this test case by modifying the water density of each water region in the core, and this

was done so as to mimic the actual tilt observed in operating data for the BEAVRS core

and make the problem more difficult to converge.

A uniform starting source guess now results in a larger number of inactive generations

to reach fission source stationarity, as the asymmetries in the stationary fission source

distribution activate a larger number of spatial modes of the radial distribution. An

FET-based diagnostic is used to determine stationarity by representing the 3-D spatial

domain as a separable Zernike expansion in the radial and azimuthal directions, and a

Legendre expansion in the axial direction. Once again, the entropy-based stationarity

diagnostic underpredicts generations to stationarity, which results in a noticeable error

due to a premature stationarity diagnosis.

Finally, runtime analysis shows a nearly 10% reduction in computational time to

stationarity for the asynchronous ensemble averaged CMFD case when compared to a

single trial CMFD approach, while yielding consistent levels of relative uncertainties

among different run strategies. The full core solution requires 9,083 CPU-hours on

INL’s Falcon supercomputer, and yields an average relative uncertainty level (standard

deviation divided by mean) of 0.954% on 2-D axially integrated assembly-sized meshes

and a relative uncertainty level of 9.59% on 3-D quarter assembly-sized meshes. Thus,

the asynchronous ensemble averaged CMFD approach is once again deemed as the

optimal run strategy for full-core 3-D Monte Carlo simulations on the grounds of better

load balancing and ability to calculate simple and accurate variance levels.
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6.2 Contributions

• Devised a meshless, FET-based diagnostic that analyzes the behavior of spe-

cific spatial moments of the fission source in order to characterize stationarity

and prevent situations of false convergence.

• Conducted a rigorous parameter sensitivity to pinpoint the key parameters

that affect the performance of CMFD source acceleration in both the inactive

and active generations. More importantly, introduced the notion of the CMFD

penalty factor to describe how a minimum window size needs to be attained

in order for variance levels between CMFD-accelerated and un-accelerated

simulations to be comparable.

• Investigated the merits of various Monte Carlo run strategies on large-scale

computing systems, with an emphasis not only on total runtime but also

ability to calculate accurate real variance estimates.

• Proposed the novel ensemble averaged CMFD run strategy and demonstrated

that this is the optimal run strategy for large-scale Monte Carlo simulation

on the basis of parallel efficiency, ability to calculate real variance estimates,

and better fault tolerance.

• Described the framework for how ensemble averaging can be applied to

GPU-based computer systems and Monte Carlo workflows with non-linear

multiphysics coupling for thermal-hydraulics, depletion, and/or transient

analysis.

• Applied the ensemble averaged CMFD methodology to the radially tilted

3-D BEAVRS full-core problem with figures of merit for overall runtime and

relative uncertainty levels.
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6.3 Future Work

This thesis introduced ensemble averaging as a viable run strategy in the field of Monte

Carlo neutronics and outlined its merits beyond simply a verification tool for real variance

estimates. However, future work is needed in order to realize further benefits of ensemble

averaging outside of its current scope of steady-state Monte Carlo simulations with CMFD

source acceleration.

6.3.1 Particle Ramp-Up Approach to Ensemble Averaging

The results from Section 5.3 indicate a significant runtime is required for a 3-D full-core

problem to converge to low statistical uncertainties on fine, pellet-level meshes. A single

trial stopping criteria is shown to reduce number of inactive generations and overall

runtime by requiring a looser convergence criteria in the inactive generations, but this is

also likely to induce larger biases in the fission source that would therefore require a

larger number of independent ensembles in order to reach target uncertainty levels.

The work in Chapter 5 also illustrates that a significant source of computational

overhead for the asymmetric 3-D BEAVRS case stems from the fact that each ensemble

has to converge independently to a stationary fission source from a poor starting guess,

thus magnifying the number of inactive generations across all independent trials. Instead,

a particle ramp up approach could be used, where only a single ensemble is simulated

initially to get a loosely converged fission source distribution as a probability distribution

over a fine mesh. Then, the number of ensembles being run in parallel can be ramped

up using this approximate probability distribution as the starting guess for the inactive

generations among these ensembles. The inactive generations during this stage of

ensemble averaging would therefore be responsible for reducing the fission source error

residual according to the aggregate trial stopping criteria. Such an approach is similar to

the particle ramp-up technique pursued by Lund et al. [81], but instead of modifying the

source distribution directly, a probability distribution function defined over the fission

source mesh cells is passed during the particle ramp-up stage, where a single ensemble

is responsible for removing the large bias from a poor starting source guess, while the
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number of independent ensembles being run is ramped up from a coarsely converged

starting source in order to refine the error residual in the inactive generations.

Assuming that on the order of 20-30 inactive generations would be required for

ensembles to converge to an aggregate trial stopping criteria from a coarsely converged

starting source distribution, the projected total runtime to reach 1% uncertainties will

be on the order of 80,000 - 100,000 CPU-hours.

6.3.2 Further Parallelizations to the CMFD Solver

The CMFD solver used in this thesis relies on OpenMP multithreading in order to reduce

the computational overhead associated with running the CMFD solver on a problem

with a large number of mesh cells. While CMFD multithreading can lead to degradation

in parallel efficiency due to false sharing if the problem is too small, it was shown in

Chapter 5 to effectively reduce runtime in the CMFD solver for the 3-D BEAVRS problem,

which used 18 threads to solve the CMFD equations over 8,492 total CMFD mesh cells.

An additional avenue for parallelization is to use domain decomposed CMFD in order

to introduce an additional level of parallelism to the CMFD solver. Such an implementa-

tion splits the problem into disjoint subdomains over which each process would solve for,

transferring only any boundary data that need to be accessed between processes through

MPI communication. Domain decomposition has been shown to successfully increase

parallel efficiency on CMFD acceleration coupled with deterministic solvers [74,82], and

would help to increase CPU utilization as well. This is especially important if ensemble

averaged CMFD was to be implemented on GPU-based machines, where each compute

node has a designated number of CPU’s. With domain decomposition, each of these

CPU’s would be responsible for solving CMFD equations on a subdomain of the problem,

instead of relying on a central CPU to carry out all calculations solely through OpenMP

multithreading. However, communication costs between CPU’s need to be assessed in

order to determine the overall effectiveness of domain decomposed CMFD.
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6.3.3 Testing on Larger Compute Jobs

The runtime analysis conducted in Chapter 4 and 5 used roughly 30 compute nodes

totaling job sizes on the order of thousands of CPU cores in order to assess overall time

to solution. Compared to the total size of modern supercomputers, this represents a

small fraction of how large compute jobs can be. Thus, in order to illustrate the complete

picture of how effective ensemble averaged CMFD can be, a more thorough analysis of

runtime behavior for a larger number of computational resources should be pursued. As

was shown in the performance profiling plots for ensemble averaged CMFD in Figures

4-11, 4-13, and 5-12, the CPU utilization of the CMFD node is relatively low, with a

visibly large portion of CPU idling. This indicates that the presence of additional MC

nodes that communicate with the CMFD node would increase CPU utilization on the

CMFD node without sacrificing on data contention among MC nodes. However, as

the size of the compute job gets larger and larger, latency issues and bandwidth limits

associated with node-to-node data transfer may start to arise, especially if these compute

nodes are separated by a large physical space without a direct communication pathway.

6.3.4 Testing on GPU-based Computer Systems

As indicated in Section 4.4, an ensemble averaging approach to Monte Carlo neutronics

can be extended to GPU-based computer systems. By extending this work to GPU-based

systems, the runtime savings from performing Monte Carlo calculations on the GPU can

be realized, while avoiding memory limitations from having to run large generation

sizes by distributing the total number of particles per generations across all available

GPU’s. All CMFD calculations and FET stationarity diagnosis can occur on the CPU’s of

each compute node, but further work is required in order to ascertain how data should

be transferred between the CPU and GPU. Similar to the CPU-only ensemble averaging

approach taken in this thesis, all data on each GPU can be transferred directly to a

central CPU in order to conduct CMFD updates and FET stationarity diagnosis. On the

other hand, a multi-level approach can also be pursued, where GPU’s communicate

only directly with the CPU’s that are available on the compute node, while CPU’s across
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different compute nodes are responsible for periodically synchronizing CMFD and FET

data with each other.

6.3.5 CMFD as a Surrogate for Nonlinear Multiphysics Coupling

As a final avenue for future work, this thesis discusses how CMFD can be viewed as

a surrogate for the non-linear coupling process, where ensemble averaging can be

leveraged to improve Monte Carlo coupling capabilities with deterministic solvers.

Typically, single trial Monte Carlo simulations with large generation sizes are used to

reduce fluctuations in the tallying process, but accurate variance estimates are difficult to

compute for such simulation strategies. Instead, ensemble averaging allows for variance

levels to be calculated across multiple independent Monte Carlo trials while aggregating

coupling parameters across all trials in order to reduce statistical fluctuations during the

coupling step. This is the issue faced in Harper’s thesis, for example, where his work

tightly couples a Monte Carlo-based low-order CMFD solution with a subchannel code

using tally derivatives to inexpensively generate an approximately converged TH coupling

scheme, which is later refined by high-fidelity Monte Carlo [39]. Harper is forced to

run multiple independent simulations in order to gauge whether fluctuations during the

Monte Carlo surrogate iterations were within statistical bounds of these independent

trials. Alternatively, ensemble averaging could also be used to verify whether similar

variance levels across ensembles can be calculated during the Monte Carlo surrogate

iterations.
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Appendix A

Uranyl Sulfate Material Composition

The material composition of uranyl sulfate is taken from the water boiler experiment

outlined in the International Handbook of Evaluated Criticality Safety Benchmark Ex-

periments handbook, identification number IEU-SOL-THERM-004 [83]. The material

density and nuclide densities are included in Table A.1

Table A.1: Material composition for 14.7% enriched uranyl sulfate

Uranyl sulfate 14.7% enriched, density (g/cc) 1.33175

Isotopes Number density (atom/b-cm)

U-235 9.6795E-05

U-234 7.4257E-07

U-238 5.5518E-04

S-32 6.5272E-04

O-16 3.5185E-02

H-1 6.2538E-02
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Appendix B

Stationarity Behavior of FET’s and

Shannon Entropy for 2-D BEAVRS

Benchmark Problem

Figure B-1 plots the value of Shannon entropy and the slowest converging FET coefficient

as a function of generations, along with a vertical line to signify when stationarity occurs

for each case where a varied number of neutrons per generation is used. Likewise,

Figure B-2 plots the variance of the slowest converging FET coefficients as a function

of generations for different neutrons per generation. Finally, Figure B-3 plots the

generations to stationarity using the FET-based and entropy-based diagnostics for five

independent trials. Figures B-1, B-2, and B-3 use a starting source that is uniform over

the fissionable areas. The analogous plots using a starting source that is offset to the

right half of the core is shown in Figures B-4, B-5, and B-6.

These results show that as generation size increases, a larger number of generations

in the inactive generations are required to reach stationarity. This is consistent with

the idea that when a larger generation size is used, a lower threshold variance level is

attainable by the FET coefficients, but this threshold requires a larger number of inactive

generations to reach.

These results also illustrate how when an asymmetric starting source is used, large

differences occur between the entropy-based and FET-based approaches. In such scenar-
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Figure B-1: Value of Shannon entropy and slowest-converging FET coefficient as a
function of neutrons per generations for 2-D BEAVRS benchmark problem. Values
correspond to a starting source that is uniform in the fissionable areas.

Figure B-2: variance of slowest converging FET coefficients for 2-D BEAVRS benchmark
problem using different generation sizes. Values correspond to a starting source that is
uniform in the fissionable areas.

Figure B-3: Generations to stationarity as a function of number of neutrons for five
independent trials of 2-D BEAVRS benchmark problem using entropy-based (right) and
FET-based (left) approaches. The starting source is uniform in the fissionable areas.
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Figure B-4: Value of Shannon entropy and slowest-converging FET coefficient as a
function of neutrons per generations for 2-D BEAVRS benchmark problem. Values
correspond to a starting source that is offset to the right half of the core.

Figure B-5: variance of slowest converging FET coefficients for 2-D BEAVRS benchmark
problem using different generation sizes. Values correspond to a starting source that is
offset to the right half of the core.

Figure B-6: Generations to stationarity as a function of number of neutrons for five
independent trials of 2-D BEAVRS benchmark problem using entropy-based (right) and
FET-based (left) approaches. The starting source is offset to the right half of the core.
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ios, the value of Shannon entropy flattens out much more quickly than the values for the

FET coefficients, and therefore Shannon entropy mispredicts when stationarity occurs.

Finally, these results are independent of seed number, where the average behavior of the

five trials shows that there is close agreement between the FET-based and entropy-based

diagnostics with a symmetric starting point source. On the other hand, the average of

the five trials yields a larger discrepancy between the two methods when an asymmetric

starting point source is used, where Shannon entropy prescribes an insufficient number

of generations to stationarity.
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Appendix C

Equations for Linear Prolongation

CMFD

This section defines the equations used to apply a CMFD prolongation step that assumes

a linearly varying fission source in a single dimension. In this case, the weight adjustment

factor from Equation 3.4 will now be a function of the spatial dimension of the axis with

which linear prolongation is applied, and is represented as:

f LP
g,m(z) = ag,m(z − zm−1/2) + bg,m (C.1)

Here, ag,m and bg,m represent the slope and intercept of the linear fit of the weight

adjustment factor through mesh cell with spatial index m and group index g. zm−1/2

and zm+1/2 will be used to represent the lower and upper bounds of spatial mesh m. The

slope ag,m is defined as a function of the weight adjustment factors of the neighboring

mesh cells:

ag,m =
fg,m+1 − fg,m−1

zm+1/2 − zm−1/2
(C.2)

and the intercept shifts f LP
g,m(z) vertically such that f LP

g,m(zm) = fg,m, where fg,m is the

weight adjustment factor when a fixed source approximation is used. This implies that
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bg,m = fg,m −
fg,m+1 − fg,m−1

2
(C.3)

and bg,m is chosen in this manner so that the fission source is conserved within the

mesh cell for the linear source prolongation case and the fixed source prolongation case.

In other words, with this formulation it can be shown that:

1
zm+1/2 − zm−1/2

∫ zm+1/2

zm−1/2

f LP
g,m(z)dz = fg,m (C.4)

At boundary locations where neighbor source regions are not defined, the boundary

weight values will be set as the neighbor weight value. For example, if the CMFD problem

has M spatial indices indexed from 1 to M , then:

ag,1 =
fg,2 − fg,1

z3/2 − z1/2
(C.5)

bg,1 = fg,1 −
fg,2 − fg,1

2
(C.6)

ag,M =
fg,M − fg,M−1

zM+1/2 − zM−1/2
(C.7)

bg,M = fg,M −
fg,M − fg,M−1

2
(C.8)

Figure C-1 plots the weight adjustment factor as predicted by a fine mesh CMFD

solution with a fixed source prolongation (orange), a coarse mesh CMFD solution with a

fixed source prolongation (blue), and a coarse mesh CMFD solution with a linear source

prolongation (green). One issue with such such a forumlation is that the slope ag,m is

not a function of fg,m, so in order to improve this prolongation model, a bi-linear fit

could also be used where ag,m for the left half of cell m is dependent on fg,m and fg,m−1,

and ag,m the right half of cell m is dependent on fg,m and fg,m+1.
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Figure C-1: Illustration of weight adjustment factor as prescribed by a fine mesh CMFD
solution with a fixed source prolongation (orange), a coarse mesh solution with a fixed
source prolongation (blue), and a coarse mesh CMFD solution with a linear source
prolongation (green).

249





Appendix D

Effect of RMS Error Mesh Size in the

Limit of Large Number of Active

Generations

This section plots RMS error as a function of active generations for the un-accelerated

CMFD accelerated cases, in order to show the effect of RMS error mesh size on the active

generations. Figure D-1 plots RMS error as a function of number of active generations for

the 1-D problem, where the first subplot uses no CMFD acceleration while the remaining

four subplots vary the CMFD mesh size and maximum window size. Each subplot has

two trendlines - one where RMS error is calculated with a coarse 20cm error mesh and

one where a fine 0.4cm error mesh is used. Here it can be seen that when a coarse error

mesh is used, initial error levels start lower than the case where a fine error mesh is

used. However, due to correlation effects, the RMS error level for the fine error mesh

case catches up to the coarse mesh error. Eventually, in the limit of a large number of

active generations, the error levels converge to similar values, and RMS error no longer

depends on the error mesh size used. The fluctuations observed at higher number of

active generations is likely due to the statistical uncertainties in the reference solution

at this level of error convergence.
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Figure D-1: RMS error as a function of number of active generations - 20cm RMS error
mesh vs. 0.4cm RMS error mesh for a variety of CMFD / No CMFD configurations.
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Appendix E

Effect of Generation Size on Active

Generations

Figures E-1 to E-4 show the analogous plots of Figures 3-22 to 3-25, but with a generation

size of 10 million instead of 1 million. For these cases, the increase in the generation

size shifts the overall RMS error by a factor of 1/
p

10, but correlation effects are still

present when a coarse RMS error mesh is used. When a fine RMS error mesh is used,

convergence in the active generations follows 1/
p

N behavior, but deviates slightly from

this as the number of active generations increases. Finally, as shown in Figure E-4, the

use of linear prolongation helps to reduce initial RMS errors when a coarse CMFD mesh

is used.
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Figure E-1: RMS error as a function of number of active generations - No CMFD vs.
0.4cm CMFD mesh with varying window size for 1-D problem. Accumulated fission
source is computed with a generation size of 10 million and RMS error mesh of 0.4cm.
RMS error is shown for the first 1000 active generations (left) and zoomed into the first
5 active generations (right).

Figure E-2: RMS error as a function of number of active generations - No CMFD vs.
20cm CMFD mesh with varying window size for 1-D problem. Accumulated fission
source is computed with a generation size of 10 million and RMS error mesh of 0.4cm.
RMS error is shown for the first 1000 active generations (left) and zoomed into the first
5 active generations (right).
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Figure E-3: RMS error as a function of number of active generations - No CMFD vs.
0.4cm CMFD mesh with varying window size for 1-D problem. Accumulated fission
source is computed with a generation size of 10 million and RMS error mesh of 20cm.
RMS error is shown for the first 1000 active generations (left) and zoomed into the first
5 active generations (right).

Figure E-4: RMS error as a function of number of active generations - No CMFD vs.
20cm CMFD mesh with varying window size for 1-D problem. Accumulated fission
source is computed with a generation size of 10 million and RMS error mesh of 20cm.
RMS error is shown for the first 1000 active generations (left) and zoomed into the first
5 active generations (right).
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Appendix F

Variance Underestimation Ratio for

Correlated Tally Samples Using

Generation Statistics and Batch

Statistics

This section computes real variance levels when correlated samples are used, both for

the case of generation statistics as well as for batch statistics. The equations that result

will then be applied to the 2-D BEAVRS problem to compute the real standard deviation

levels shown in Figure 4.3.3. These derivations are largely taken from work by Romano

et. al and Miao [28,76].

F.1 Variance of the Sample Mean in the Presence of Cor-

related Generations

We begin once again with the problem formulation at the beginning of Chapter 4, where

we let random variable Y with mean µ and variance σ2, which represents the Monte

Carlo tally score for a single source particle. If {Yj|1 ≤ j ≤ B} represents the set of all

realizations of Y and {Yj|(i − 1)H ≤ j ≤ iH} denotes the realizations for generation i
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with generation size H, then the random variable X will be used to define the generation

average of the tally scores, i.e.:

X i =
1
H

iH
∑

j=(i−1)H+1

Yj (F.1)

Here, it is assumed that all Yj are independent and identically distributed and X

converges to a normal distribution with mean µ and variance σ2/H. The variance of

X (N), which is the average of X over N active generations, can be written as:

Var(X (N)) = Var

�

1
N

N
∑

i=1

X i

�

=
1

N 2
Var

�

N
∑

i=1

X i

�

=
1

N 2

�

N
∑

i=1

Var(X i) + 2
N−1
∑

k=1

N−k
∑

i=1

Cov(X i, X i+k)

�

=
1

N 2

�

Nσ2

H
+ 2

N−1
∑

k=1

(N − k)Cov(X i, X i+k)

�

(F.2)

where the last expression results from modeling X (n) as a stationary time series with

covariance that depends on the batch lag k. Next, we define the ACC pk with generation

lag k as

ρk =
Cov(X i, X i+k)

p

Var(X i)Var(X i+k)
(F.3)

and now the covariance can be expressed as:

Cov(X i, X i+k) =
σ2ρk

H
(F.4)

Substituting Equation F.4 into Equation F.2, we obtain:

Var(X (N)) =
1

N 2

�

Nσ2

H
+ 2

N−1
∑

k=1

(N − k)σ2ρk

H

�

=
σ2

HN

�

1+ 2
N−1
∑

k=1

�

1−
k
N

�

ρk

�

=
σ2

HN
r(N)

(F.5)
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In the absence of inter-generational correlation effects, the variance in the sample

mean converges at a 1/N rate, however, the term r(N), defined as:

r(N) = 1+ 2
N−1
∑

k=1

�

1−
k
N

�

ρk (F.6)

represents the penalty factor incurred in the active convergence rate due to inter-

generational correlation effects and is a function of the ACC’s ρk, where r(N) > 1

if ρk > 0. The term r(N) is the same term discussed at the beginning of Chapter

4. This analysis shows that unless correlation coefficients are calculated for problems

where generation statistics are used in the active generations, the variance levels will be

underestimated by a factor of r(N).

F.2 Variance of the Sample Mean in the Presence of Cor-

related Batches

A batching algorithm helps to calculate tally variance levels without the need for calcu-

lating r(N), but this is only true if the number of generations in a batch is sufficiently

large. Typically, however, there is no established way to evaluate how large the number

of generations in a batch needs to be in order for the assumption of uncorrelated batches

to hold. As will be shown, if this value is too small, correlation effects can still persist

between batches and need to be properly accounted for in order to report accurate

variance estimates.

Suppose the total number of active generations N is divided into NB=N/B batches,

where B represents the number of consecutive generations per batch. Similar to Equation

F.1, the batch k tally value is calculated as:

Xk =
1
B

kB
∑

i=(k−1)B+1

X i (F.7)

and the variance in the sample mean over {X1, . . . , XNB
} can be represented as
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Var(X(NB)) = Var

�

1
NB

NB
∑

i=1

χi

�

=
1

N 2
B

Var

� NB
∑

i=1

χi

�

=
1

N 2
B

�

NBσ
2

HB
+ 2

NB−1
∑

k=1

NB−k
∑

i=1

Cov(Xi, Xi+k)

� (F.8)

which takes the same form as Equation F.2. Miao relates the covariance between

batch J and K in terms of the batch lag and the generational correlation coefficients

as [28]:

Cov(XJ , XK) =
σ2

HB2

(∆+1)B−1
∑

l=(∆−1)B+1

(∆B − |∆B − l|)ρl (F.9)

where ∆= |J − K |≥ 1 is the batch lag and ρl is the correlation coefficient between

generations with lag l, equivalent to the definition in Equation F.4. Substituting Equation

F.9 into Equation F.8,

Var(X(NB)) =
1

N 2
B

�

NBσ
2

HB
+ 2

NB−1
∑

∆=1

(NB −∆)Cov(Xi, Xi+∆)

�

=
1

N 2
B

 

NBσ
2

HB
+ 2

σ2

HB2

NB−1
∑

∆=1

(NB −∆)
(∆+1)B−1
∑

l=(∆−1)B+1

(∆B − |∆B − l|)ρl

!

=
σ2

NBHB

 

1+
2
B

NB−1
∑

∆=1

�

1−
∆
NB

� (∆+1)B−1
∑

l=(∆−1)B+1

(∆B − |∆B − l|)ρl

!

=
σ2

NBHB
r(NB)

(F.10)

Once again, we relate the variance in the sample mean over NB batches, and define

the variance underestimation ratio r(NB) for the case of batch statistics as:

r(NB) = 1+
2
B

NB−1
∑

∆=1

�

1−
∆
NB

� (∆+1)B−1
∑

l=(∆−1)B+1

(∆B − |∆B − l|)ρl (F.11)

The extra 1/B term in the second term in this equation comes from the fact that the

expression for covariance was substituted directly into Equation F.8 instead of expressing
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the covariance in terms of the ACC’s between batches. However, if a large enough B is

used, r(NB) should approach 1 and thus each batch can be assumed to be uncorrelated

with each other. The following section uses Equation F.11 to determine what the variance

underestimation ratio is for the 2-D BEAVRS problem with B = 75, as was used in Section

4.3.3.

F.3 Variance Underestimation Ratio for the 2-D BEAVRS

Problem with B=75

Equation F.11 relates the variance underestimation ratio to the case where a batching

method is used to determine tally variance levels. This equation is used to compute the

variance underestimation ratio and hence the correlation-corrected standard deviation

levels for the 2-D BEAVRS case presented in Figure 4-17. Generational ACC’s ρk are

computed using a single-term exponential fit of observed autocorrelation coefficients

for the 2-D BEAVRS problem in the form ρk = ρ0qk. The exact parameters for this

exponential fit are taken from work by Li, who studies the convergence behavior of

ACC’s in detail for both the un-accelerated and the CMFD-accelerated cases of the 2-D

BEAVRS problem [1]. In order to estimate the variance underestimation ratio for B = 75,

we compare the ratio of r(NB = 75) to r(NB = 200), where it is assumed that r(NB)≈ 1

when NB = 200. For the un-accelerated case, ρ0 = 0.351, and q = 0.969, which yields

a value of r(NB = 75)/r(NB = 200) = 2.87. Likewise, for the CMFD-accelerated case,

ρ0 = 0.251, and q = 0.984, and this results in a value of r(NB = 75)/r(NB = 200) = 3.92.

Therefore, there is a considerable amount of variance underestimation when a value

of B = 75 is used for both un-accelerated and CMFD-accelerated cases, and correlation

effects cannot be neglected when using a batching method with such a small number

of generations per batch. This is evident by the fact that a considerable amount of

correlation still persists even at a generation lag of 75. For reference, the fitted ACC’s as

a function of generation lag are shown in Figure F-1 for both the un-accelerated and

CMFD-accelerated case.
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Figure F-1: Fitted ACC’s as a function of generation lag for the 2-D BEAVRS problem
using un-accelerated Monte Carlo (blue) and CMFD acceleration (orange) [1].
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