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Abstract
In this thesis, I present and analyze the novel stack-augmented split-tree data struc-
ture to support splitter hyperobjects for task-parallel systems. Splitters can mitigate
races on shared, nonlocal state, where parallel nested tasks make independent local
modifications without affecting shared history. The data structure is inspired by “per-
sistent” trees, but refined to achieve optimal performance in the common case. I prove
that in a program with 𝑛 splitter variables using the mechanism based on the stack-
augmented split-tree data structure, read and write accesses to a splitter variable cost
Θ(1) except for the first access after a task migration, which costs 𝑂(log 𝑛 + log 𝐷)
where 𝐷 is the maximum depth of task nesting. This splitter data structure will
enable the parallelization of search algorithms for computationally expensive appli-
cations, such as SAT solvers, theorem provers, and game-playing programs.

This thesis also contains theory and implementation work on other topics related
to task-parallel programming and work stealing schedulers.

Some parts of this thesis represent joint work with William Kuszmaul.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

In an age where Moore’s law is coming to an end, the importance of parallelization

is increasingly clear. Individual processor cores are no longer doubling in speed every

two years. As a result, increasing performance must come from other sources such as

parallelization, which can speed up a program many-fold by dividing the necessary

work among multiple cores.

Task-parallel programming, also known as dynamic multithreading or fork-

join parallelism, is one model of concurrency. A programmer working in a task-parallel

language can specify potential parallelism in a program without worrying about the

details of how the instructions are mapped onto static threads and executed. Cilk,

an extension to C and C++, is one example of a task-parallel language and the

one that we consider in detail in this thesis. Opportunities for parallel work are

created using the spawn keyword at the invocation of a function, which indicates

that spawned function may execute concurrently with the continuation that follows

the spawn [42]. Parallel loops can be decomposed efficiently by the compiler and the

runtime system into nested spawns.

Parallelizing code is a difficult task, however, even with the intricacies of static-

thread programming abstracted away. Concurrency introduces many potential sources

of bugs, especially when it comes to variables or memory shared between threads.

Nondeterministic behavior occurs when one thread updates a memory location while

another thread reads the same location. This phenomenon, known as a determinacy
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race [38], can cause programs to behave incorrectly.

Hyperobjects, introduced by Frigo et al. [41], make parallelization easier and

help eliminate determinacy races. Using hyperobjects, a programmer can write par-

allel code that is similar to serial code, yet correct and safe from determinacy races.

Existing reducer hyperobjects in Cilk, for instance, has seen much use. A reducer

is defined by an associative binary reduction operation, and it is used to safely accu-

mulate values together in parallel. Figure 1-1 demonstrates how an integer reducer

with the addition operation can be used to compute the sum of an array of integers

in parallel. Besides declaring the shared variable x as a reducer and adding loop

parallelism with cilk_for, no other code needed to be modified to parallelize this

program.

int sum(int* A, int N) {
int x;
for (int i = 0; i < N; ++i)

x += A[i];
return x;

}

int p_sum(int* A, int N) {
int __reducer__((opadd)) x;
cilk_for (int i = 0; i < N; ++i)

x += A[i];
return x;

}

Figure 1-1: A Cilk parallelization of a simple program using an integer sum reducer.
cilk_for indicates that iterations of the loop may execute in parallel.

In addition to reducers, Frigo et al. proposed another natural kind of hyperob-

ject called a splitter . A splitter variable behaves as if at every spawn, the spawned

function and the continuation each receive their local version of the variable. Any

modifications made in the spawned function is not be seen in the continuation, and

vice versa. The need for splitters arises naturally in algorithms that perform a search

while modifying some non-local state, such as the simple SAT solver and game tree

evaluators in chess-playing algorithms. Frigo et al. provided a sketch of a simple

12



splitter mechanism that does not achieve any strong theoretical performance guaran-

tees. This thesis focuses on the design and analysis of the novel stack-augmented

split-tree data structure for supporting splitters, which achieves provably good per-

formance.

The desired splitter functionality can be attained by simply creating a copy of all

splitter variables at every spawn, so that the spawned function and the continuation

use different versions of each splitter. This solution is expensive, however, when the

number of splitter variables is large, such as in a SAT solver where every variable

in a large formula is a splitter. A full copy also seems wasteful when relatively few

variables change in each spawn, as is the case for many search applications. The

challenge lies in supporting the desired functionality for a large number of splitters

while incurring low overhead.

A few approaches seem potentially applicable. The copy-on-write technique used

in the OS fork() call, as described in [69, Chapter 10.3], seems to target this same

problem. Every page is marked as copy-on-write upon a fork(), and a page is copied

only when actually written to, reducing the cost of a fork() call. While performant

enough in practice for the fork call use case, the copy-on-write technique does not

give good theoretical guarantees — either the fork() call or the first write to each

page has an asymptotically large cost.1

Another approach is to keep track of changes using lazily initialized maps. At

a spawn, each of the two branched paths start with an empty map. An access to

a splitter variable first attempts to look up the variable in the current map; if not

found, it checks the maps stored at higher levels. This approach works well if there

is only ever one spawn, but it does not work well when the forking structure of the

program is complex. An access to a splitter may need to examine maps in a large

number of ancestors before finding one that contains the target variable, resulting

in potentially expensive accesses. The protocol proposed by Frigo et al. in [41] has

similar issues.
1In a single-level page table covering 𝑛 entries, either the page table size exceeds

√
𝑛 and thus

the cost of a fork() call exceeds Θ(
√

𝑛), or the page size exceeds
√

𝑛 and thus the cost of the first
write to each page exceeds Θ(

√
𝑛).
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Another possible mechanism involves using persistent arrays. A fully persistent

data structure keeps track of its change history in a “branching” model, so that every

past version is available for queries and updates. Dietz’s work in [31] shows that a

fully persistent array of size 𝑛 can support queries and stores for an amortized cost

of 𝑂(log log 𝑛) per operation, later proven to be asymptotically optimal in [70]. The

state of 𝑛 splitter variables in a task-parallel program can be represented by a fully

persistent array of size 𝑛. Each splitter read and write access then simply performs

a persistent query or store to the appropriate version of the fully persistent array.

This persistent-array mechanism suffers from three deficiencies, however. Firstly,

Dietz’s persistent array data structure is not naturally concurrent. If concurrent op-

erations from different threads must be serialized using a lock to preserve correctness,

then the running time of the program can be significantly impacted. Secondly, the

𝑂(log log 𝑛) cost is amortized, and amortized analysis of a serial algorithm generally

does not hold in the parallel setting. If a large number of expensive operations hap-

pen to fall onto one thread, then this program loses the guarantees that amortization

provides, as these expensive operations cannot be amortized against cheap operations

on the same thread. Lastly, a 𝑂(log log 𝑛) overhead is not necessarily satisfactory.

The stack-augmented split-tree mechanism presented in this thesis achieves a constant

cost for read and write accesses in the “common case.” A small number of accesses

in the “uncommon case” are more expensive, but even those have a cost logarithmic

in the number of splitters and the maximum depth of nested spawns.

To understand what constitutes the “common case,” one must first understand

how a parallel program is executed. This thesis assumes the use of the randomized

work stealing scheduler , which has provably good running time guarantees as

analyzed in [1, 18] and as used in practice in Cilk. Upon startup, the scheduler

creates a collection of threads called workers, typically one worker per processor in

a multicore system. Each instruction in the program is subsequently mapped by the

scheduler onto some worker for execution.

In some abstract sense, a spawned function and its continuation are equivalent:

a spawn branches the computation into two valid paths, and either can be taken.
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The scheduler does not treat the two equally, however. Upon encountering a spawn,

a worker always executes the spawned function before the continuation. In the case

that a worker runs out of work, it “steals” from another worker a continuation not

currently being worked on and executes it.

The scheduler implements this functionality by having each worker maintain a

deque, or double-ended queue, of function frames. When a function is spawned, its

frame is pushed onto the bottom of the deque; when it returns, its frame is popped

off the bottom. Thus, in the common case, each worker’s deque operates like a call

stack, and execution proceeds in the order that results from replacing all function

spawns with serial function invocations. In the uncommon case where a worker runs

out of work — that is, when the worker’s deque becomes empty — the worker turns

into a thief and steals the top frame from the deque of a randomly chosen victim

worker. The thief then executes the continuation in the stolen frame. As analyzed

in [18], steals are rare in a sufficiently parallel program.

The new stack-augmented split-tree mechanism supports 𝑛 splitter variables in a

task-parallel program and achieves the following guarantees:

1. The stack-augmented split-tree data structure supports full concurrency. It can

even be implemented with no additional synchronization primitives (e.g. locks)

whatsoever, as described in Appendix A.

2. Most read and write accesses incur Θ(1) cost. The first access to each splitter

after a steal is the uncommon exception, and has 𝑂(log 𝑛 + log 𝐷) cost, where

𝐷 is the maximum depth of nested spawns.

3. No garbage collection is required. Auxiliary memory allocations performed by

the mechanism are freed under an explicit scheme in a safe and performant

manner.

The purpose of this thesis is to lay down the theoretical groundwork for the stack-

augmented split-tree mechanism. I describe in detail the data structure used, its

supported operations, and how these operations tie into the work stealing scheduler
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and the runtime. I also provide a detailed theoretical analysis proving properties of

the mechanism. A preliminary implementation of splitter hyperobjects based on the

stack-augmented split-tree mechanism has already been built by a different team.

The chapters on splitter hyperobjects are organized as follows. Chapter 2 provides

background on task-parallel programming, the work stealing scheduler, and natural

use cases motivating splitter hyperobjects. Chapter 3 provides a high level overview of

the key technical points of the design of the mechanism and data structure. Chapter

4 presents a simple split-tree mechanism that does not offer the desired theoretical

guarantees. Chapters 5 and 6 present the stack-augmented split-tree mechanism in

full, building upon the simple mechanism. Chapter 7 proves the full mechanism’s

correctness. Lastly, Chapter 8 presents an analysis of the theoretical performance

impact of using splitters following the stack-augmented split-tree mechanism.

This thesis also includes several other theoretical and practical results related

to task-parallel progrmaming and work stealing schedulers. Chapter 9 investigates

an alternative mechanism for reducer hyperobjects and evaluates its performance in

practice. Chapter 10 presents a technique for bounding the concentration of random

variables. It uses this technique to correct a long standing error in the analysis of

contention in work stealing schedulers as presented in a seminal paper. Chapter 11

examines an intuitive parallel algorithm for the single-source shortest path problem

and demonstrates that the parallel algorithm fails to achieve any speedup over its

serial counterpart on a family of graphs.
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Chapter 2

Background

This chapter provides background on task-parallel programming and work stealing.

It also discusses motivation for splitter hyperobjects and describes the desired splitter

functionality.

2.1 Task-Parallel Programming and the DAG Model

Task-parallel programming is a model of concurrency that allows the programmer to

specify potential parallelism in a program, while abstracting away complexities of how

the instructions are mapped onto static threads and executed. Cilk is one example

of a platform that supports task-parallel programming. An overview of task-parallel

programming can be found in [27, Chapter 27].

Parallel pseudocode under this model differs from regular, serial pseudocode by

two concurrency keywords, spawn and sync.

∙ The spawn keyword is used to create parallel work. Putting the spawn key-

word before the invocation of a function indicates that the parent continuation

— the code that immediately follows the spawn — may execute concurrently

with the spawned child function.

∙ The sync keyword serves as a barrier, indicating that the function must wait for

all of its spawned children to complete before proceeding to the statement after

17



sync. Every function implicitly syncs before it returns, preventing orphaned

children.

An additional keyword, parallel, can be used in conjunction with for to indicate

that different iterations of a loop may all execute in parallel. Parallel loops are

implemented using spawn and sync in a divide-and-conquer fashion.

For ease of later analysis, parallel programs must obey the following restrictions:

1. a spawn of a function is not immediately followed by a sync, and

2. there exists at least one un-synced spawn before a sync.

These restrictions are reasonable since these two constructs provide no useful paral-

lelism. Identical behavior can be achieved by calling instead of spawning the function

in the first case, and by removing the unnecessary sync in the second case. In fact,

these optimizations are done automatically by the OpenCilk compiler.

One example of a task-parallel algorithm is the following simple (albeit extremely

inefficient) parallel recursive algorithm for computing Fibonacci numbers. This algo-

rithm executes recursive calls to Fib in parallel using spawn, and ensures that the

results from these recursive calls are safe using sync before combining the results and

returning.

1: function Fib(n)
2: if 𝑛 ≤ 1 then
3: return 𝑛
4: else
5: 𝑥 = spawn Fib(𝑛− 1)
6: 𝑦 = Fib(𝑛− 2)
7: sync
8: return 𝑥 + 𝑦
9: end if

10: end function

An execution of a task-parallel program can be modeled using an execution

trace or trace, which is a directed acyclic graph (DAG). The trace of an execution

can be defined and constructed in many ways. The approach taken in this work is

similar to those used in [1, 18,55], and quite different from the model used in [38].

18



The nodes of an execution trace consist of spawns, syncs, and strands. Strands

are sequences of instructions containing no parallel flow control (i.e. no spawn, sync,

or return from spawn). A serial sequence of instructions may be broken into strands

in many different ways, ranging from very coarse (one strand for the entire sequence)

to very fine (one strand per machine instruction in the sequence). More frequently,

we choose some in-between grain of division that is convenient for the situation. The

cost of a node is defined to be the amount of time required to execute the instructions

in the node. The cost of a spawn or sync node is considered to be unit time. In

this theoretical model, we assume that the cost of a strand is fixed and not subject

to variability due to caching and other system effects.

Directed edges between nodes of an execution trace represent the minimal depen-

dencies between the execution order of strands. The existence of an edge from node

A to node B indicates that instructions in node A must complete execution before

instructions in node B are allowed to start. The set of edges is minimal in the sense

that if a dependency between two nodes can be derived from existing edges, then an

edge is not added between these two nodes.

With the exception of the start and end strands of a trace, a strand node has

in-degree 1 and out-degree 1. A spawn node has in-degree 1 and out-degree 2, with

one outgoing edge to the spawned child and one to the continuation. A sync node

has in-degree at least 2 and out-degree 1, with one incoming edge for each spawned

child, as well as one incoming edge from the strand corresponding to the continuation

that comes before the sync in the program text.

It is useful to distinguish particular edges by type. The two out-edges of a spawn

node are its spawn edge and its continuation edge. The in-edge of a sync node

from the parent continuation is its sync-continuation edge, and all other in-edges

from spawned children are its sync-spawn edges. Edges which do not fall under the

described categories are regular edges.

Figure 2-1 illustrates an execution trace for a call to Fib(3). This figure, as well as

all illustrations of execution traces in the rest of this thesis, use the legend in Figure

2-2 for nodes and edges.
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Figure 2-1: An execution trace for Fib(3).

Figure 2-2: Legend for illustrations of execution traces.

The efficiency of a task-parallel algorithm can be gauged using two metrics: the

work and the span. The work of an execution trace is the sum of the costs of all

nodes in the trace. The span of an execution trace is the total cost of nodes on the

most expensive path through the trace; this path is called the critical path. The

work of a trace can be interpreted as the amount of time required to perform the

execution on a single processor, where all nodes must execution serially. The span

can be interpreted as the amount of time required to perform the execution given

an unlimited number of processors, since in such a situation, the running time is

determined by the length of the longest chain of dependencies on instructions — in

other words, the cost of the critical path. The running time of an execution trace on

𝑃 processors is denoted by 𝑇𝑃 . The work of a trace is thus expressed by 𝑇1, and the

span is expressed by 𝑇∞.
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2.2 The Cilk Runtime and Randomized Work Steal-

ing Schedulers

The amount of time it takes to execute a task-parallel program depends not only on

the structure of the execution trace and the cost of its nodes, but also on the way

that the instructions in these nodes are mapped to processors for execution. This is

the job of the scheduler . This thesis assumes the use of the randomized work

stealing scheduler , such as the one used in the Cilk runtime.

At start up, the runtime system allocates a pool of threads called workers to

cooperate in executing a task-parallel program. Each worker maintains a deque, or

double-ended queue, of call stacklets. Each call stacklet consists of a number of

function frames, where the first frame in each call stacklet results from a spawn,

and all other frames result from serial calls. Since we’re only interested in what

happens at parallel control points, we simplify the model by ignoring serial function

calls. Worker deques are treated as containing spawned function frames.

When a function is spawned, its frame is pushed onto the bottom of its worker’s

deque. When it returns, its frame is popped off the bottom. Thus, in the common

case, the worker’s deque operates like a normal function stack in serial code.

When a worker runs out of work, it becomes a thief . A thief performs a random

steal by picking a victim uniformly at random among the other workers and at-

tempting to remove the top frame from the victim’s deque and place it on the thief’s

own deque. The random steal may fail if the victim’s deque is empty or if other

thieves concurrently target the same victim, in which case only one thief succeeds.

The thief continues attempting random steals until it succeeds.

A frame becomes suspended if the worker that was executing this frame encoun-

ters a sync instruction that cannot be executed. A suspended frame is removed from

the worker’s deque, and the worker becomes a thief. Once all its spawned children

complete, a suspended frame is resumed by the worker that executed the spawned

child that returned last. This worker performs a provably good steal of the sus-

pended parent frame, placing the frame onto its deque.
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A more detailed description of Cilk’s implementation of work stealing and runtime

operations can be found in [41,42].

Work-stealing achieves good running time as analyzed by Blumofe and Leiserson

in [18]. Two key lemmas are restated here.

Lemma 1 (Lemma 12 in [18]). If a trace is executed on 𝑃 processors using the

randomized work stealing scheduler, then the expected total number of random steal

attempts performed is bounded by 𝑂(𝑃𝑇∞).

Lemma 2 (Lemma 13 in [18]). If a trace is executed on 𝑃 processors using the

randomized work stealing scheduler, then its expected execution time is bounded as

𝑇𝑃 ≤ 𝑇1/𝑃 + 𝑂(𝑇∞).

2.3 Motivation and Desired Behavior of a Splitter

Hyperobject

This section examines a class of algorithms with similar structure, with a particular

focus on a naive algorithm for the boolean satisfiability problem. Parallelizing such

algorithms naturally motivates the need for a runtime data structure like a splitter.

The end of this section describes the desired functionality of a splitter in both intuitive

and formal terms.

Algorithms with a DFS-like Structure

A large class of problems are naturally solved by algorithms that resemble depth-first

search (DFS) in structure. Consider, for instance, the boolean satisfiability problem

(SAT).

Problem 3. Given a boolean formula on a set of variables, find whether or not there

exists some assignment of variables to boolean values that causes this formula to

evaluate to true.
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A simple, naive solution stores a partial assignment of booleans to variables in

some global structure, representing the partial assignment currently under investiga-

tion. The algorithm recursively explores ways to complete the assignment, backtrack-

ing to reassign earlier variables when a partial assignment is shown to not lead to a

valid solution. A pseudocode sketch for this algorithm is shown below.

Pseudocode for naive SAT solver
1: Variables 𝑥0, ..., 𝑥𝑛−1
2: 𝑀 mapping variables to {true, false, unknown}
3: function Solve(i)
4: if 𝑖 == 𝑛 then
5: return true if formula satisfied by 𝑀 , return false otherwise
6: else
7: 𝑀 [𝑥𝑖]← true
8: if Solve(𝑖 + 1) then return true
9: 𝑀 [𝑥𝑖]← false

10: if Solve(𝑖 + 1) then return true
11: 𝑀 [𝑥𝑖]← unknown
12: return false
13: end if
14: end function
15: Solve(0)

This algorithm is intuitively straightforward to parallelize. Instead of serially

checking the validity of assigning a variable to true and the validity of assigning it

to false, the two paths can be explored in parallel. In the example pseudocode, one

might imagine spawning off lines 9 and 10 to run in parallel with lines 7 and 8.

Unfortunately, this simple parallelization does not work due to the global variable

𝑀 . Workers concurrently exploring different paths in the problem access and modify

this same shared variable. Any modification to 𝑀 performed by one worker is seen

by all other workers exploring different parts of the space of possible assignments.

These modifications from different workers conflict with each other, and the parallel

algorithm fails to run correctly.

The naive SAT solver is not the only algorithm with this structure. For instance,

some chess-playing algorithms compute the quality of a move by evaluating its game

tree, which involves modifying a global representation of the chessboard by making
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and unmaking a sequence of moves during traversal of the game tree’s nodes. It

is incorrect to directly parallelize such an algorithm by traversing the game tree in

parallel, since modifications to the board representation at different points in the

game tree interfere with each other. Sudoku solvers provide another such example.

One potential solution is to pass an immutable snapshot of the structure as an

argument into each recursive call, instead of using a global, mutable structure. The

solution based on this mechanism is expensive, however, if the number of variables is

large, since it requires making a copy of this structure at every recursive call. Copying

also seems wasteful, as most parts of this structure are unchanged at each recursive

call — only a single boolean assignment is updated — yet the entire structure is

copied.

The problem of parallelizing these algorithms can be solved efficiently by declaring

these shared global variables as splitters.

Splitter Functionality

Intuitively, a splitter behaves like a variable whose value “splits” at every spawn,

so that the spawned child and the parent continuation read and modify logically

different copies of the splitter. Any modifications to the splitter value made by the

spawned child cannot be seen by the parent continuation, and vice versa. When a

spawned child returns, all modifications made in the spawn are discarded.

The following definition introduces a concept used to precisely state the function-

ality of a splitter.

Definition 4. Let 𝑣 be a node of an execution trace 𝐺. The canonical path to

node 𝑣 is the unique directed path in 𝐺 that starts at the start strand, ends at 𝑣, and

does not pass through any sync-spawn edge.

The canonical path can be thought of as the path through the execution that does

not enter any unnecessary spawns. The desired functionality can now be stated as

follows.

24



Property 5. Let 𝐺 be an execution trace, constructed so that every splitter read

and write belongs to its own strand. Let 𝑣𝑟𝑒𝑎𝑑 be a node in 𝐺 performing a read to

splitter 𝑋. Let 𝑣𝑤𝑟𝑖𝑡𝑒 be the last node on the canonical path to 𝑣𝑟𝑒𝑎𝑑 that performs

a write to splitter 𝑋, if such a node exists. Then the value read in 𝑣𝑟𝑒𝑎𝑑 equals the

value written in 𝑣𝑤𝑟𝑖𝑡𝑒, or to the value at initialization if 𝑣𝑤𝑟𝑖𝑡𝑒 does not exist.

Figure 2-3: An execution trace snippet involving the splitter variable 𝑋. The canon-
ical path to 𝑣𝑟𝑒𝑎𝑑 is highlighted in orange. The value read at 𝑣𝑟𝑒𝑎𝑑 is 𝑋 = 1, since it
is the value written in 𝑣𝑤𝑟𝑖𝑡𝑒, the last node performing a write to 𝑋 on the canonical
path.
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Chapter 3

Technical Overview of the

Stack-Augmented Split-Tree

Mechanism

This chapter gives a high level summary of the key ideas behind the design of the

data structure used to represent splitters. We start by exploring the simple split tree,

which is a simplified variant of the data structure that serves as a starting point.

We then move onto how the simple data structure can be augmented to achieve low

theoretical overheads. We’ll also gain some intuition on why the stack-augmented

split-tree mechanism maintains correctness.

The Simple Split-Tree Mechanism

The simple split-tree data structure, described in detail in Chapter 4, is based on

a fully persistent tree. The state of 𝑛 splitters at each point in a computation is

captured by the root node of a balanced binary tree with 𝑛 leaves, as shown in Figure

3-1. The 𝑖th leaf of the tree stores the value of the 𝑖th splitter, and internal nodes

store pointers to children but not to parents. Thus, there is some particular collection

of 𝑛 leaf nodes reachable from each root node, and the root node can be seen as a

snapshot of the state of splitters taking on the values stored in these leaves.
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Figure 3-1: An example showing how a simple split tree represents the state of four
splitters.

Writes are performed in a history-preserving manner, as nothing is ever modified.

Instead, a write access creates a new version of the tree containing a mixture of new

and old nodes. Writing to the 𝑖th splitter creates a new 𝑖th leaf node, as well as new

versions of all nodes on the root-to-leaf path to the 𝑖th leaf. Other internal and leaf

nodes remain unchanged. This operation called path-copy is illustrated in Figure

3-2.

Figure 3-2: Updating splitter 𝑋 calls path-copy on splitter 𝑋, creating new versions
of all nodes on the root-to-leaf path to leaf 𝑋 drawn in red.

In the mechanism based on this simple split tree, each frame keeps track of a

split-tree root node. No special handling of the root node in the stolen frame takes

place at a successful random steal. Writing to a splitter only updates the root node

stored in the current frame. All other frames are unaffected, achieving the desired

logical separation.
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Read accesses under this simple split-tree mechanism must walk down the tree

from a root node to the appropriate leaf node in order to access the value stored in

the leaf. Write accesses must copy all nodes on a root-to-leaf path. Every read and

write to splitter variables takes time 𝑂(log 𝑛), proportional to the height of the tree.

This bound does not meet the goal of constant-time for most operations.

The Stack-Augmented Split-Tree Mechanism

The stack-augmented split-tree data structure, described in detail in Chapter 5, builds

upon this simple variant by reducing the number of expensive root-to-leaf copies and

root-to-leaf walks. Leaf nodes store not a single value, but a mutable array of values

called a “leaf stack.” In the common case, a write access to the 𝑖th splitter simply

modifies the 𝑖th leaf stack. Only a small number of accesses result in a path-copy.

As with the simple protocol, each frame keeps track of a split-tree root node.

Using mutable stacks may seem problematic. Different versions of the split tree

stored in different frames often share nodes. It is now possible for a write access

in one frame to make a change to a leaf stack which is visible from other frames.

Maintaining logical separation is much less straightforward, relying on restrictions as

to how these leaf stacks can be shared.

Each leaf stack is shared in a single-writer multiple-reader fashion, where only a

serially executed section of the execution trace can modify any particular leaf stack.

The trace can divided into a number of pieces called “chunks”. Roughly speaking,

a chunk starts when a worker performs a successful random steal and ends when

this worker runs out of work on its deque and must steal again.1 The “primary

access”, defined to be the very first access to a splitter variable in a chunk, results

in a path-copy operation that creates a new leaf stack. This leaf stack may only be

modified by subsequent write accesses to this splitter within this chunk.

After the primary access, the protocol is comparatively simple. The leaf stack

created by the primary access is cached for lookup within the worker to avoid the

cost of future root-to-leaf walks. Write accesses either append a new value to the leaf
1See Section 6.1.
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stack or modify the last value stored in the leaf stack. Read operations return the

last value in the leaf stack.

The primary access is more complex. When this access takes place, the leaf stack

corresponding to the splitter contains values written at various points within some

ancestor2 chunk. This stack can even change under our feet — the chunk that created

this leaf stack may still be ongoing and performing write accesses. The mechanism

must extract the correct value from this stack. This task seems daunting. What

additional information is associated with values written into these leaf stacks? What

logic determines which of these values is correct to read at different points in the

execution?

The key lies in the measure of “spawn depth,” defined by the number of nested

spawns at a given point in the execution. Each value in a leaf stack is associated

with the spawn depth of the point in the program where the write took place. Write

accesses maintain the invariant that entries in each leaf stack have distinct and strictly

increasing spawn depths.

The primary access needs to extract the value corresponding to the appropriate

spawn depth in the leaf stack created within some ancestor chunk. What is this appro-

priate spawn depth? Consider the point in the execution trace where the computation

branches out from the ancestor chunk due to a steal, and where the branch eventually

leads to this access. Write accesses in the ancestor chunk before this branching point

should be reflected in the value read, while write accesses after this branching point

are logically separate and should not be read. It is thus correct to read the value

associated with the largest spawn depth that does not exceed the spawn depth of this

branching point.

It remains to solve the problem of tracking the spawn depths of these branching

points. The leaves of different splitters may have been created inside different ancestor

chunks, and thus different splitters may have different branching points. A straw-man

approach iterates through every splitter when a steal occurs. For each splitter that

had a new leaf created, its branching point spawn depth is updated to the spawn depth

2See Definition 9.
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of this steal. This approach has the clear downside that steals take an asymptotically

large amount of time, which breaks the fundamental assumption in the work stealing

scheduler that steals take constant time.

The stack-augmented split-tree mechanism performs the necessary updates at a

steal in constant time. The branching point spawn depths of splitters returned by the

operation depth-query are tracked through values written on the edges of the split

tree in a cascading manner. Calling depth-query on a splitter returns the last non-

NIL value (if any) encountered on the root-to-leaf walk. When a new leaf is created,

the path-copy operation updates the values on edges appropriately so that all edges

on the path to the new leaf have a value of NIL, while depth-query on every other

leaf is unchanged.3 At a steal, the value written on the top-level edge is updated to

the spawn depth of the steal, which updates depth-query on exactly those splitters

with new leaves.4

Figure 3-3 illustrates an example of splitters represented using the stack-augmented

split tree.

Figure 3-3: An example shwoing how the stack-augmented split-tree represents four
splitters.

Additional care must be taken to ensure that the stack-augmented split-tree mech-

anism cleans up after itself properly and frees all memory allocated for nodes created

at path-copy operations. Responsibility for allocations is determined in two stages
3See Property 6.
4See Property 7.
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based on chunks. Chapter 6 describes how memory can be explicitly freed in a safe

and thorough manner.
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Chapter 4

Simple Split-Tree Mechanism

This chapter presents a simplified variant of the mechanism called the simple split-

tree mechanism. The simple split-tree mechanism does not achieve the desired theo-

retical overhead, as no access has a cost of Θ(1). Nonetheless, the data structure used

in the simple split-tree mechanism serves as a foundation for that used in the stack-

augmented split-tree mechanism. Understanding this simplified mechanism aids the

understanding of the complexities of the augmented mechanism.

Section 4.1 presents the simple split-tree mechanism assuming that memory al-

locations are freed through automatic garbage collection. Section 4.2 removes this

assumption and examines explicitly memory management, necessary in a language

like Cilk. This structure mirrors the presentation of the augmented mechanism in

Chapters 5 and 6.

4.1 Garbage-Collected Simple Split-Tree Mecha-

nism

This section temporarily assumes that memory allocations performed by the mecha-

nism are freed through automatic garbage collection.

We’ll start by learning about the simple split-tree data structure and the oper-

ations it supports. Then, we’ll look at the actions of the runtime system at each
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runtime operation. Lastly, we’ll quickly analyze the theoretical performance over-

head of this mechanism, finding that every splitter access costs 𝑂(log 𝑛) time in a

program that uses 𝑛 splitters.

Data Structure

Simple split tree

The state of 𝑛 splitters at each point in time is represented by a simple split tree:

a balanced binary tree with 𝑛 leaves, where each leaf corresponds to a splitter and

stores a value.1 Each internal node of the tree contains pointers or edges to its child

nodes. It notably does not contain pointers to any parent node.

A split tree is accessed through the use of a handle, which is a pointer (represented

as a directed edge) to the root node of the tree. The handle is said to attach to the

split tree whose root it points to. All parts of this tree can be accessed by following

parent-to-child edges/pointers starting at the root.

Figure 4-1: An example of a handle (highlighted in orange) leading to a split tree in
a parallel program using four splitter variables.

Simple split trees support the following operation:

path-copy(handle, splitter, new-val)

1“Balanced” means that the depth of every leaf is 𝑂(log 𝑛). While that is the only requirement in
order for the theoretical analysis to hold, diagrams will picture split trees that are full and complete.
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This operation takes as arguments a handle, a splitter variable, and a new value

for the splitter. It updates the handle to attach to a new tree. The new tree shares

many of its nodes with the tree previously attached to the handle, but all nodes lying

on the path from the leaf of the input splitter to the root are new. No part of the old

tree is modified. This operation is illustrated in Figure 4-2.

Figure 4-2: path-copy is performed on splitter 𝑋, updating it to a new value of 2.
This process creates new nodes in red. The new tree is drawn in red and black, and
the old tree is drawn in grey and black. No part of the old tree is modified by the
path-copy operation. The handle is updated from pointing to the root in grey to the
new root in red.

The path-copy operation modifies splitters in a history-preserving way. The split

tree accessible from each root represents the state of splitters at some point in history.

In a split tree with 𝑛 leaves, path-copy takes 𝑂(log 𝑛) time to run, as it walks

down 𝑂(log 𝑛) nodes in the tree and creates 𝑂(log 𝑛) new nodes.

Protocol

State Maintained

To support splitters, every spawned function frame keeps track of a handle.

The spawned frame at the bottom of each worker’s deque — the frame closest

to currently executing code — is important for describing the splitter protocol. For

ease of explanation, the handle stored in this spawned frame is called the worker

handle, as it is the handle most actively operated on by the worker.
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Operations

Read access

Start from the worker handle and traverse to the leaf node of the target splitter.

Return the value stored in the leaf node.

Write access

Perform path-copy, using as arguments the worker handle, the target splitter,

and the value to be written.2

Spawn

Set the handle in the newly spawned frame to be a copy of the previous worker

handle (the handle in the previously bottommost spawned frame).

Return from spawn

No-op. The previous worker handle is discarded and any writes performed in

this spawn lost, as is expected.

Random steal

No-op. The stolen frame contains the worker handle to be used by the thief

going forward.

Sync

No-op. If the sync fails, the frame containing the worker handle becomes sus-

pended, and later correctly reinstated.

Provably good steal of parent

No-op. The suspended spawned frame reinstated on the worker deque contains

the worker handle to be used going forward.
2This can result in unnecessary path-copy operations. For instance, if there is no parallel control

flow between two writes to the same splitter, it is safe for the second write to simply modify the
value stored in the leaf node created in the first write. We won’t worry about optimizing for this
case in the simple mechanism.
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Theoretical Overhead

The theoretical performance overhead of the simple split-tree mechanism is straight-

forward to analyze. A write access must perform a path-copy operation, which

requires creating a root-to-leaf path of length 𝑂(log 𝑛). A read access must traverse

a root-to-leaf path of length 𝑂(log 𝑛). Therefore, every splitter read and write access

takes time 𝑂(log 𝑛).

Other runtime operations are unaffected. Spawns, returns, and random steals still

take constant time.

4.2 Explicit Memory Management in the Simple

Split-Tree Mechanism

This section examines how memory allocations performed by the mechanism can be

explicitly managed and freed without relying on garbage collection. We’ll discover

that a simple memory management scheme can have a surprisingly high impact on

performance. This phenomenon will also later be observed to a lesser extent in the

stack-augmented mechanism.

Protocol

State Maintained

Every spawned function frame keeps track of a log, which is a linked list of pointers

to memory allocations performed by the split tree. The log stored in the bottommost

spawned frame on each worker’s deque is called the worker log.

The memory needed for new nodes created in a path-copy operation can be

allocated in a single piece. Each path-copy operation therefore produces a single

memory pointer to add to a log.
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Operations

Write access

Add a pointer to the memory allocation performed by path-copy to the worker

log.

Spawn

Set the log of the new spawned frame to be an empty linked list.

Return from spawn

Free all memory allocations those pointers are stored in the worker log, taking

time proportional to the size of the log.

All other operations

No-op.

Theoretical Overhead

The memory deallocations performed at return-from-spawns can have a surprisingly

high impact on the parallelism of an execution trace.

The number of frees done at a return-from-spawn equals the number of splitter

write accesses performed within the body of the spawn. One may mistakenly reason

that the cost of these frees can be amortized against the cost of splitter writes, and

therefore have no more than a constant factor impact on the work and span of an

execution trace. This logic is incorrect regarding the span, however, as demonstrated

in the following example.

When we ignore the cost of deallocations performed at return-from-spawns, the

span of this program’s execution is Θ(𝑀). The longest path through an execution

of this program passes through 𝑀 spawns, 𝑀 writes to splitters, and 𝑀 returns.

Each spawn and splitter write takes constant time and, ignoring deallocations, each

return-from-spawn takes constant time.
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Example where memory frees at return-from-spawns heavily impacts par-
allelism

1: Splitter 𝑋
2: Int M
3: function Example(m)
4: if m > 0 then
5: spawn Example(m-1)
6: end if
7: for 𝑖 = 1 . . . 𝑀 do
8: Write 𝑋 ← 𝑖
9: end for

10: sync
11: end function
12: function Main
13: Example(M)
14: end function

Taking the cost of deallocations into account, every return-from-spawn takes 𝑀

time as 𝑀 deallocations need to be performed. The previously described path through

the execution now has a length of Θ(𝑀2), which is equal to the work of the execution.

The parallelism of the program has dropped from Θ(𝑀) to Θ(1).

We will see similar issues in the stack-augmented split-tree protocol regarding

costs at return-from-spawns that cannot simply be amortized away.
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Chapter 5

Garbage-Collected

Stack-Augmented Split-Tree

Mechanism

This chapter describes the stack-augmented split-tree mechanism, temporarily as-

suming that memory allocations performed by the mechanism are freed automatically

through garbage collection. Making explicit memory management efficient and safe

is a complex problem examined in detail in Chapter 6.

The augmented mechanism builds on the ideas from the simple mechanism. It uses

a more sophisticated version of the split tree that minimizes the number of expensive

path-copy operations required.

One key definition used throughout the protocol is the spawn depth. The spawn

depth of a point in an execution trace is the depth of nested spawns. For example,

the spawn depth of every instructions in the trace of a serial program is 0.

Section 5.1 describes data structures used in the mechanism and their supported

operations. Section 5.2 specifies how these data structures are used in the runtime

system and what happens at various runtime operations. Section 5.3 examines in

detail several example code snippets that use splitters, in order to illustrate subtleties

in the mechanism.
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5.1 Data Structures

This section describes key data structures used in the protocol and the operations

that they support.

Dynamic array

The dynamic array supports create, append, pop, get at any index, modify at any

index, and destruct, all in 𝑂(1) time. These costs are not amortized.

A dynamic array uses a reader-writer lock, so that all append and modify oper-

ations are serialized and do not happen concurrently with get operations.1 When

all writes take place sequentially, the use of a reader-writer lock does not impact

performance by more than a constant factor.

The dynamic array is used extensively throughout the splitter protocol. De-

amortizing the cost of operations is key in its design, as data structures whose oper-

ations have amortized costs impact the span of an executions in unpredictable ways.

A dynamic array keeps track of pointers to two pieces of memory, the primary

and backup, as well as two integers p-ind and b-ind, which track the number of

items in primary and backup respectively.

Operations are performed as follows:

Create

Set primary to be a small, newly allocated array (e.g. size 2). Set backup to

a newly allocated array double the size of the primary. Set p-ind and b-ind

to 0.

Append

Place the new item in the next (p-indth) slot in the primary, increment p-ind.

Copy up to two items from the primary to the backup. To be precise, first

set the b-indth item in the backup to be equal to the b-indth item in the
1It is possible to use dynamic arrays without any locking mechanism, which may be of interest

for particular theoretical models of computation. Appendix A describes changes to the dynamic
array data structure and to the splitter mechanism that eliminate the need for locks.
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primary, and increment b-ind. If b-ind is still less than p-ind, meaning that

the backup is lagging behind the primary, then copy the next element as well

and increment b-ind again.

If the primary is now full after the new append, call resize-up.

Resize-up

Rearrange the internal structure to double the size of both primary and backup

as follows:

Free the memory of primary.

Set the new primary to point to the old backup.

Allocate a new piece of memory that is double the size of the old backup, point

backup to the new memory, and set b-ind to 0.

Pop

Decrement p-ind. If b-ind is now larger than p-ind, decrement b-ind.

If primary is now no more than 1/4 filled, and it is larger than its initial size,

call resize-down.

Resize-down

Free the second half of both primary and backup.

Get

Return the item at the desired index in primary. If the desired index is larger

than p-ind, return that the read is invalid.

Modify

Modify the value at the desired index in primary. If backup is long enough

that it includes the desired index, also modify the value at the desired index in

backup.

Destruct

Free both primary and backup.
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Figure 5-1: An example of calling append of value 3 on a dynamic array, which then
triggers resize-up.

The only question regarding correctness is whether any data is lost during a

resize-up, or, in other words, whether backup contains all data in primary when

resize-up is called. This can be proven as follows:

∙ Consider each resize-up operation 𝑅 in a sequence of operations on a dynamic

array. Let 𝑆 be the latest create, resize-up, or resize-down operation that

occurred before 𝑅, so that the only operations between 𝑆 and 𝑅 are appends

and pops.

∙ Suppose that after 𝑆, the primary has a capacity of 2𝑥. By construction, right

after 𝑆, at most 𝑥 items are filled in primary. Therefore, the difference between

p-ind and b-ind is at most 𝑥 right after 𝑆.

∙ Since the primary must be full in order for the resize-up operation 𝑅 to be

called, at least 𝑥 append operations must take place between 𝑆 and 𝑅.

∙ Whenever the difference between p-ind and b-ind is nonzero, an append or
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Figure 5-2: An example of calling pop on a dynamic array, which then triggers
resize-down.

pop operation decreases this difference by 1. Whenever the difference is zero,

an append or pop maintains the difference to be zero.

∙ By the time the resize-up operation 𝑅 is called, the difference between p-ind

and b-ind has decreased to zero as at least 𝑥 append operations have taken

place. Thus, backup contains all data in primary when resize-up is called.

All diagrams below only illustrate items contained within each dynamic array.

The details of internal working of dynamic arrays are abstracted away.

Stack-augmented split tree

Similar to in the simple mechanism, the state of 𝑛 splitters is represented by a split

tree: a balanced binary tree with 𝑛 leaves. Unlike the simple split tree, the stack-

augmented split tree contains additional information as follows:

∙ Each child pointer (parent-to-child edge) is associated with a value depth, which
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is either NIL or a non-negative integer.

∙ Each leaf node contains not a single value, but a dynamic array of (depth,

value) pairs. Such an array is called a leaf stack.

As before, a split tree is accessed using a handle, which is a pointer/edge to the root

node of the tree. Much like edges in the stack-augmented split tree, the handle to a

stack-augmented split tree is associated with a value depth. The handle is said to

attach to the split tree whose root it points to.

Figure 5-3: An example of a handle (highlighted in orange) leading to a stack-
augmented split tree in a program using four splitter variables.

Stack-augmented split trees support the following operations:

depth-query(handle, node)

This operation takes as arguments a handle, and any node in the split tree that the

handle is attached to. It returns either NIL or a non-negative integer. This operation

walks down the tree, traversing a sequence of edges starting with the handle and

ending with the edge pointing to the target node. If all edges on this path have a

NIL depth, then the operation returns NIL. Otherwise, the operation returns the last

non-NIL depth encountered along this walk.

As a shorthand, depth-query(handle, splitter) is generally written in place

of depth-query(handle, leaf node corresponding to splitter).

For example, for the split tree illustrated in Figure 5-3,
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∙ depth-query(handle, W) returns NIL,

∙ depth-query(handle, X) returns 1,

∙ depth-query(handle, Y) returns 1, and

∙ depth-query(handle, Z) returns 0.

path-copy(handle, splitter, new-val)

This operation takes as arguments a handle, a splitter variable, and a new value

for the splitter. It updates the handle to attach to a new split tree without modifying

any part of the old tree, as follows:

Let the root-to-leaf path in old (input) split tree consist of nodes 𝑥0, ..., 𝑥𝑘, where

𝑥0 is the root and 𝑥𝑘 is the leaf node corresponding to the input splitter. Denote

by 𝑐𝑖+1 the child of 𝑥𝑖 other than 𝑥𝑖+1. Construct a new root-to-leaf path, 𝑥′
0, ..., 𝑥′

𝑘,

as follows:

∙ Set the child pointers/edges of 𝑥′
𝑖 to point to 𝑥′

𝑥+1 and 𝑐𝑖+1.

∙ Set depth of edge 𝑥′
𝑖𝑥

′
𝑖+1 to NIL.

∙ Set depth of edge 𝑥′
𝑖𝑐𝑖+1 to depth-query(𝑥0, 𝑐𝑖+1).

∙ Create a new leaf stack for node 𝑥′
𝑘 that only contains the (depth, value) pair

(-1, new-val).

Finally, update the handle to a depth of NIL and point it to the new root 𝑥′
0.

In a stack-augmented split tree with 𝑛 leaves, path-copy takes 𝑂(log 𝑛) time

to run. Note that depth-query(handle, 𝑐𝑖+1) for all 𝑂(log 𝑛) values of 𝑖 can be

computed in a total of 𝑂(log 𝑛) time as follows:

∙ Compute the sequence of values depth-query(handle, 𝑥𝑖) iteratively in 𝑂(log 𝑛)

time, by computing each depth-query(handle, 𝑥𝑖+1) using the previous term

of depth-query(handle, 𝑥𝑖) and the depth of edge 𝑥𝑖𝑥𝑖+1.

∙ Compute each depth-query(handle, 𝑐𝑖+1) using depth-query(handle, 𝑥𝑖)

and the depth of edge 𝑥𝑖𝑐𝑖+1.
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Figure 5-4: path-copy is performed on splitter 𝑍 with a new value of 9. This process
creates new nodes and dynamic array in red. No part of the old split tree, drawn in
grey and black, is modified. The handle is updated from pointing to the old root in
grey and having a depth of 1, to pointing to the new root in red and having a depth
of NIL.

Figure 5-5: path-copy is performed on splitter 𝑋𝑛 in a larger split tree. Much of the
tree is unaffected by this operation and omitted from the drawing.

The path-copy operation guarantees the following key property, evident by con-

struction.

Property 6. Let path-copy(handle, input-splitter, new-val) update the con-

tents of the handle from old-handle to new-handle. Then
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∙ depth-query(new-handle, input-splitter) equals NIL, and

∙ for all other splitters s distinct from input-splitter,

depth-query(new-handle, s) equals depth-query(old-handle, s).

handle-update(handle, new-depth)

This operation takes as arguments a handle and an integer depth value. If the

depth of the input handle is NIL, it updates the depth to new-depth. Otherwise, it

makes no modification.

Figure 5-6: handle-update is performed with a depth of 2, updating the depth of
the handle from NIL, written in grey, to 2.

The handle-update operation guarantees the following key property, evident by

construction.

Property 7. Let handle-update(handle, new-depth) update the contents of the

handle from old-handle to new-handle. Then for each splitter s,

∙ if depth-query(old-handle, s) equals NIL, then

depth-query(new-handle, s) equals new-depth, and

∙ if depth-query(old-handle, s) does not equal NIL, then

depth-query(new-handle, s) equals depth-query(old-handle, s).
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Cache

A cache is a map taking splitter variables to leaf stacks. The cache supports constant

time reads and writes.

Record

A record is a collection of values. It supports constant time create, insert, and

destruct, as well as linear-work log-span parallel traversal of its contents. The

underlying data structure of a record can be, for instance, a dynamic array.

5.2 Protocol

The protocol operates very differently at the first access to a splitter after a steal,

called the primary access, and at all other accesses, called secondary accesses.

At a primary access, the protocol searches an existing leaf stack for the correct value

to read, then performs a path-copy operation to create a new leaf. Information

about what values must be found in these searches is tracked through depth values

on edges of the split tree. At a secondary access, the protocol performs a constant

time operation on a cached leaf stack.

State Maintained

Every spawned function frame keeps track of a handle and a record of splitter identi-

ties. Every worker keeps track of a cache. In addition, suspended frames temporarily

hold a cache.

The handle and record of the bottommost spawned frame on each worker’s deque

are called the worker handle and worker record, as they are most actively oper-

ated on by the worker throughput the protocol.

The record is used to track which splitter leaf stacks have been appended to.
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Initialization

At startup of the runtime system, one worker has the 𝑀𝑎𝑖𝑛 frame as the only frame

on its deque. The initial handle contained in the 𝑀𝑎𝑖𝑛 frame has the following

properties:

∙ The handle is associated with a depth of NIL.

∙ Every edge in the split tree that the handle attaches to is associated with a

depth of NIL.

∙ Every leaf stack contains a single entry of (-1, init-val) where init-val is

the initial/default value of each splitter.

The worker starts with a fully populated cache, mapping each splitter to the

corresponding leaf stack in the initial tree.

Operations

Read access

If the splitter is present in the cache, return the value stored in the last entry

of the cached leaf stack.

If the splitter is not present in the cache, start from the worker handle and tra-

verse to the leaf stack leaf of the target splitter. Compute depth-query(worker

handle, splitter) = d-leaf, which is guaranteed to be non-NIL. Binary

search2 leaf to find the pair (d-found, v-found) such that d-found is the

largest depth less than or equal to d-leaf. Perform path-copy(worker handle,

splitter, v-found). Cache the newly created leaf stack. Return v-found.3

Write access
2One needs be careful with invalid values seen in the binary search, as the array being searched

may shrink during the search due to another worker performing pop operations. An invalid value
(where the index being read is greater than the current length of the array) must be treated as
reading a too-large depth.

3This protocol performs some unnecessary path-copy operations. One can optimize the protocol
to only perform path-copy on write accesses instead of on read accesses. This optimization may be
important in practice, but as it does not impact the theoretical overhead, we won’t worry it in this
work.
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If the worker cache does not contain this splitter, first perform a read access to

this splitter.

Let d-spawn be the current spawn depth. Examine the last (d, v) pair in the

cached leaf stack. If d equals d-spawn, then overwrite v with the new value.

Otherwise, append (d-spawn, new value) to the cached leaf stack, and add

this splitter to the worker record.

Spawn

Set the handle in the newly spawned frame to be a copy of the previous worker

handle (the handle in the previously bottommost spawned frame).

Set the record in the newly spawned frame to be empty.

Return from spawn

Update the handle in the newly bottommost spawned frame (the new worker

handle) to the value of the handle in the just-returned spawned frame (the old

worker handle).

Iterate over the record in the just-returned spawned frame (the old worker

record). For each iterated splitter, perform pop on its cached leaf stack.

Random steal

Let d be the current spawn depth (at the stolen continuation) and let handle

be the handle in the stolen frame. Perform handle-update(handle, d).

Destroy the record in the stolen frame. Create a new empty record and set it

to be the new worker record.

Invalidate/clear the worker cache.

Sync

If the sync fails and the frame becomes suspended, store the worker cache in

the suspended frame. The cache will later be correctly reinstated.

Provably good steal of parent
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Destroy the current worker cache and reinstate the cache stored in the previ-

ously suspended frame as the worker cache.

5.3 Examples

In this section, we examine several example program snippets to highlight subtleties

in the mechanism. The goal is to ensure understanding of the mechanism and to

provide some intuition for the upcoming proofs of correctness and performance.

Each example is presented as a sequence of chronological events in an execution

of a parallel program. Workers are referred to as 𝑊𝑖. Splitters are referred to as 𝑆𝑖,

and every splitter is initialized to have a value of init-val. All example programs

in this section use four splitter variables.

Victim reads correct value after steal

Steps:

1. 𝑊1 enters spawned 𝑓 .

2. 𝑊2 steals the 𝑀𝑎𝑖𝑛 frame from 𝑊1.

3. 𝑊2 writes new-val to 𝑆4.

4. 𝑊1 reads 𝑆4.

The state of the system after each step in this example is illustrated in Figure 5-7.

In step 2, thief 𝑊2 steals a continuation from victim 𝑊1. The mechanism must

ensure that even though the thief modifies the value of a splitter in step 3, the victim

is unaffected and reads the correct, unmodified value of this splitter in step 4.

This is satisfied as 𝑊2 performs path-copy on its primary access to 𝑆4 in step

4, creating a new leaf stack without modifying the previous leaf stack. The updated

value of new-val only appears in the newly created leaf stack drawn in red. The read

access in step 4 examines the old leaf stack reachable from the worker handle of 𝑊1,

which only contains init-val, and correctly return the value in the last entry of this

array.
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Figure 5-7: Boxes on the left represent worker deques of spawn frames. The edge
leading out of each frame represents the handle stored in this frame. Nodes present
since the start of the program are drawn in black, and nodes created by path-copy
in step 3 are drawn in red. The entry containing the accessed value in step 4 is
highlighted in orange.
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Thief reads correct value after steal

Steps:

1. 𝑊1 writes val-1 to 𝑆4.

2. 𝑊1 enters spawned 𝑓 .

3. 𝑊2 steals the 𝑀𝑎𝑖𝑛 frame from 𝑊1.

4. 𝑊1 writes val-2 to 𝑆4.

5. 𝑊2 reads 𝑆4.

The state of the system after each step in this example is illustrated in Figure 5-8.

In step 3, thief 𝑊2 steals a continuation from victim 𝑊1. The protocol must

ensure that even though the victim modifies the value of a splitter in step 4, the thief

is unaffected and reads the correct value in step 5.

The thief 𝑊2 performs its primary access to splitter 𝑆4 in step 5, which involves

searching through the old leaf stack to find the entry with the appropriate associated

depth. 𝑊2 starts by calling depth-query on 𝑆4 to find the target depth in the search;

this operation walks along the path highlighted in green and returns a depth of 0. 𝑊2

then searches the leaf stack of 𝑆4 to find the entry with the largest depth less than

or equal to the target of 0, finding the entry (0, val-1) highlighted in orange. The

write of value val-2 to splitter 𝑆4 performed by worker 𝑊1 in step 4 does not affect

the result of this search, since the write happened at a spawn depth of 1, larger than

the target depth of the search.

After the entry is found, 𝑊2 performs path-copy to splitter 𝑆4. The value in the

found entry is used to populate the newly created leaf stack. Lastly, the value in the

found entry is returned.

Worker keeps previous handle at return-from-spawn

Steps:

1. 𝑊1 enters spawned 𝑓 .

2. 𝑊2 steals the 𝑀𝑎𝑖𝑛 frame from 𝑊1.
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Figure 5-8: The path traversed in depth-query in step 5 is highlighted in green, and
the entry found by the binary search is highlighted in orange.
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3. 𝑊2 enters spawned 𝑔.

4. 𝑊2 writes new-val to 𝑆4.

5. 𝑊2 returns from 𝑔.

Figure 5-9 illustrates the state of worker 𝑊2 after each step from 2 through 5.

The primary access to 𝑆4 inside the spawned function 𝑔 in step 4 calls path-copy.

This operation creates a new root-to-leaf path to 𝑆4 and updates the handle in the 𝑔

frame to point to the new root. When 𝑊2 returns from function 𝑔, it does not discard

this root-to-leaf path by going back to using the handle stored in the 𝑀𝑎𝑖𝑛 frame.

Instead, in step 5, the 𝑀𝑎𝑖𝑛 frame’s handle is updated to be equal to the handle in

the just-returned 𝑔 frame.

This behavior contrasts the simple split-tree mechanism. At a return-from-spawn

in the simple mechanism, the worker uses the handle stored in the parent frame. This

behavior of the simple mechanism effectively discards all root-to-leaf paths created

in the spawn, and undoes all writes performed in the spawn. In the stack-augmented

mechanism, these writes are instead undone by explicitly popping elements from leaf

stacks.

Not discarding these root-to-leaf paths is important for performance. It guarantees

that expensive path-copy operations only happen once per splitter per steal.

Worker discards previous handle at provably good steal

Steps:

1. 𝑊1 enters spawned 𝑓 .

2. 𝑊2 steals the 𝑀𝑎𝑖𝑛 frame from 𝑊1.

3. 𝑊2 writes new-val to 𝑆4.

4. 𝑊2 fails to pass sync, 𝑀𝑎𝑖𝑛 becomes suspended.

5. 𝑊1 returns from 𝑓 and provably-good steals 𝑀𝑎𝑖𝑛.

Figure 5-10 illustrates the state of the system after steps 2 through 5 (the omitted

steps are identical to those in Figure 5-7).
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Figure 5-9: The handle in the 𝑀𝑎𝑖𝑛 frame is updated in step 5.
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Figure 5-10: The handle in the 𝑀𝑎𝑖𝑛 frame is not updated in step 5.
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Unlike at a normal return-from-spawn, upon a provably good steal of the parent

frame, the worker does discard its previous handle and does not update the handle

stored within the stolen frame. Changing the handle in 𝑀𝑎𝑖𝑛 to point to the black

root in step 5 like the handle in 𝑓 is dangerous, since doing so loses any updates

performed in the continuation.
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Chapter 6

Explicit Memory Management in

the Stack-Augmented Split-Tree

Mechanism

The stack-augmented split-tree mechanism described in the previous chapter assumes

automatic garbage collection. This chapter describes how the mechanism can be mod-

ified to explicitly free its allocated memory. Explicitly tracking and freeing allocated

memory is necessary since Cilk, an extension of C and C++, does not support auto-

matic garbage collection.

Section 6.1 defines key terms used in the protocol for determining responsibility

for memory allocations. Section 6.2 describes the memory management protocol.

Section 6.3 examines one example program in detail to illustrate subtleties in the

protocol.

6.1 Definitions

This section defines key terms used to determine responsibility for deallocating mem-

ory.

Chunk: Nodes of an execution trace can be divided into chunks as follows:
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∙ Incident nodes of a regular, spawn or sync-continuation edge belong to the

same chunk.

∙ Incident nodes of a continuation edge belong to the same chunk if and only if

this continuation is not stolen.

When all sync-spawn edges are removed from an execution trace, all nodes (except

for the start strand) have an in-degree of 1. As a result, the execution trace becomes

a tree. Chunks are the connected sub-trees that result from additionally removing all

continuation edges corresponding to stolen continuations.

Figure 6-1: An example pseudocode snippet and execution trace, labelled with where
steals occurred in the execution. Chunks are highlighted in matching colors in the
pseudocode and in the trace.

Origin of a chunk: Each chunk corresponds to a particular spawn invocation

called its “origin.” A chunk starts within the body of its origin. In other words, the

steal that started this chunk happened within the body of its origin spawn. A chunk

is also said to originate from its origin.

P-footprint: A P-footprint contains the memory footprint of a single path-copy

operation. It holds two pointers, one to the memory allocated for the root-to-leaf path

created in path-copy, and the other to the dynamic array located in the created leaf
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Figure 6-2: Origins of the blue and green chunks are shown with arrows and high-
lighting in the pseudocode, and with colored boxes in the trace. The origins of the
red and orange chunks are outside of this snippet.

node. Freeing a P-footprint involves freeing both the allocated memory used to stored

the root-to-leaf path, and calling destruct on the dynamic array.

P-track: The P-track of a chunk is a dynamic array of P-footprints. Every

path-copy operation executed in this chunk appends one more P-footprint to the

P-track. As a chunk is executed serially, appends to a P-track do not race.

P-log: The P-log is a dynamic array of pointers to P-tracks. The P-log located

in a particular spawned frame contains pointers to the P-track of every chunk that

originated from this spawn.

6.2 Protocol

The protocol ensures that memory allocations performed within a chunk are freed

when the origin of this chunk returns. This is done in two stages. Allocations within

a chunk are managed using a P-track, and allocations from multiple chunks with the

same origin are managed using a P-log of pointers to P-tracks.
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State Maintained

Every spawned function frame keeps track of a P-log. Every worker keeps track of a

P-track. In addition, suspended frames temporarily hold a P-track.

Operations

Read access

If this splitter read access caused path-copy to be called, construct the P-

footprint for this call and add it to the worker’s P-track.

Write access

No-op.

Spawn

Set the P-log of the newly spawned frame to a newly created empty P-log.

Return from spawn

Consider the P-log in the just-returned spawned frame. Iterate over its contents,

which are pointers to P-tracks, in parallel. For each P-track pointed to, iterate

over the P-footprints contained within in parallel and free each P-footprint,

then free the P-track itself. Finally, after processing all pointers to P-tracks,

free the P-log.

Random steal

Create a new P-track and set it to be the worker’s P-track. To the P-log located

in the stolen frame, append a pointer to this new P-track.

Sync

If the sync fails and the frame becomes suspended, store the worker P-track in

the suspended frame. The P-track will later be correctly reinstated.

Provably good steal of parent
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Reinstate the P-track stored in the previously suspended frame as the new

worker P-track. Note that the old worker P-track is not destroyed and is still

accessible through a P-log.

6.3 Example

This section examines how memory is managed and freed in one example execution.

The goal is to ensure understanding of the protocol.

The example is presented in two ways: as a piece of pseudocode, and as a sequence

of chronological events following an execution of the pseudocode. Figures in this

example include different details compared to figures in Section 5.3. Split trees are

simplified and drawn without depths on edges or leaf dynamic arrays. Moreover, the

example only uses two splitters as opposed to four. New details involve P-tracks and

P-logs. Each P-track is represented by a color. The nodes created by a path-copy

operation are drawn in a particular color; the P-footprint of this operation is added

to the P-track represented by this color. The worker P-track is indicated to the left

of the worker. Each frame contains a P-log, which is drawn as a sequence of colors.

Figure 6-3: An example illustration of a worker’s state. The P-log in the 𝑀𝑎𝑖𝑛
frame contains two P-tracks, red and black. Worker 𝑊2’s worker P-track is the red
P-track. All nodes drawn in red are created in path-copy operations that have their
P-footprints added to the red P-track.

Steps:

1. 𝑊1 enters spawned 𝑓1 (line 2).

2. 𝑊1 enters spawned 𝑓2 (line 3).
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1: Main {
2: spawn 𝑓1 {
3: spawn 𝑓2 { ... }
4: ...
5: read 𝑆2
6: spawn 𝑓3 {
7: read 𝑆1
8: }
9: ...

10: read 𝑆1
11: sync
12: read 𝑆2
13: }
14: ...
15: read 𝑆2
16: read 𝑆1
17: }

3. 𝑊2 steals the 𝑀𝑎𝑖𝑛 frame from 𝑊1 (line 14).

4. 𝑊2 reads 𝑆2 (line 15).

5. 𝑊3 steals the 𝑓1 frame from 𝑊1 (line 4).

6. 𝑊3 reads 𝑆2 (line 5)

7. 𝑊3 enters spawned 𝑓3 (line 6).

8. 𝑊4 steals the 𝑓1 frame from 𝑊3 (line 9).

9. 𝑊3 reads 𝑆1 (line 7).

10. 𝑊3 returns from 𝑓3 (line 8).

11. 𝑊4 reads 𝑆1 (line 10).

12. 𝑊4 fails to pass sync, the 𝑓1 frame becomes suspended (line 11).

13. 𝑊1 returns from 𝑓2 and provably-good steals 𝑓1 (line 11).

14. 𝑊1 reads 𝑆2 (line 12).

15. 𝑊1 returns from 𝑓1 (line 13).

16. 𝑊2 reads 𝑆1 (line 16).

17. 𝑊2 returns from 𝑀𝑎𝑖𝑛, program ends.

Steps are explained in more detail, accompanied by diagrams, in the following

pages.

66



Figure 6-4

0. Program starts, 𝑊1’s deque contains the
𝑀𝑎𝑖𝑛 frame.
The P-track of 𝐶𝑖𝑛𝑖𝑡 is somewhat special
— no path-copy operations is called in
𝐶𝑖𝑛𝑖𝑡, so there are no new memory allo-
cations for this P-track to manage. The
nodes in the initial split tree (drawn in
black) are instead considered to be the
responsibility of the P-track of 𝐶𝑖𝑛𝑖𝑡.

1. 𝑊1 enters spawned 𝑓1 (line 2).

2. 𝑊1 enters spawned 𝑓2 (line 3).

3. 𝑊2 steals the 𝑀𝑎𝑖𝑛 frame from 𝑊1 (line
14).
Upon a steal, the thief starts a new
chunk and is assigned a new P-track.
The new P-track of 𝑊2 is represented
by red. The new P-track is added to the
P-log in the stolen frame 𝑀𝑎𝑖𝑛.

4. 𝑊2 reads 𝑆2 (line 15).
The nodes allocated in this path-copy
are drawn in red, as they are the respon-
sibility of worker 𝑊2’s P-track, which is
represented by red.

5. 𝑊3 steals the 𝑓1 frame from 𝑊1 (line 4).
Similar to step 3, thief 𝑊3 is assigned a
new P-track, represented by green. The
new P-track is added to the P-log in the
stolen frame 𝑓1.

6. 𝑊3 reads 𝑆2 (line 5)

67



Figure 6-4

7. 𝑊3 enters spawned 𝑓3 (line 6).

8. 𝑊4 steals the 𝑓1 frame from 𝑊3 (line 9).
Thief 𝑊4 is assigned a new P-track, rep-
resented by blue. The new P-track is
added to the P-log in the stolen frame
𝑓1.

9. 𝑊3 reads 𝑆1 (line 7).
Nodes created by 𝑊3 in this path-copy
are still the responsibility of the green P-
track, even though 𝑓1, whose P-log con-
tains the green P-track, has been stolen
by 𝑊4.

10. 𝑊3 returns from 𝑓3 (line 8).
Green nodes are not freed at this step.
Doing so is dangerous, as 𝑊4 can still
access some green nodes.

11. 𝑊4 reads 𝑆1 (line 10).

68



Figure 6-4

12. 𝑊4 fails to pass sync, the 𝑓1 frame be-
comes suspended (line 11).

13. 𝑊1 returns from 𝑓2 and provably-good
steals 𝑓1 (line 11).
At the provably good steal, 𝑊1 discards
its previous black P-track and takes up
the blue P-track stored in the previously
suspended frame. The black P-track and
its contents are not destroyed, merely
discarded, and the black P-track is still
accessible from the P-log of 𝑀𝑎𝑖𝑛. De-
stroying black nodes at this point is dan-
gerous, as 𝑊2 can still access a black leaf.

14. 𝑊1 reads 𝑆2 (line 12).

15. 𝑊1 returns from 𝑓1 (line 13).
The P-log in 𝑓1 stores the green and blue
P-tracks. When 𝑓1 returns, all green and
blue nodes are freed.

16. 𝑊2 reads 𝑆1 (line 16).

17. 𝑊2 returns from 𝑀𝑎𝑖𝑛, program ends.
The P-log in 𝑀𝑎𝑖𝑛 stores the black and
red P-tracks. When 𝑀𝑎𝑖𝑛 returns, all
black and red nodes are freed.
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Chapter 7

Proofs of Correctness

This chapter presents proofs that the stack-augmented split-tree mechanism is correct

in three aspects — read accesses to splitter variables return correct values, the mech-

anism is not affected by concurrency, and memory allocations are freed thoroughly

and safely.

Section 7.1 defines key terms and notations used in the proofs. Section 7.2 states

and proves properties and invariants of the runtime system. Particular attention

should be paid to Lemma 18 in this section, as it captures the key structural invariant

of the mechanism. The next sections each focus on one aspect of correctness. Section

7.3 proves that read accesses return correct values, Section 7.4 proves that correctness

holds despite possible concurrent operations, and Section 7.5 proves that all memory

allocations are freed in a safe manner.

7.1 Definitions

This section defines terms and notation used in the rest of the chapter.

Definition 8. Denote by 𝐶𝑖𝑛𝑖𝑡 the chunk containing the start of the execution.

Remark. 𝐶𝑖𝑛𝑖𝑡 is special in several ways. It does not originate from stealing a spawn

continuation, and it “owns” all of its leaf nodes right from the start, never performing

path-copy upon accessing a splitter.
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Definition 9. A chunk 𝐶 is said to be the parent of chunk 𝐶 ′ if 𝐶 ′ was started by

stealing the continuation to a spawn inside 𝐶. 𝐶 ′ is said to be a child of 𝐶.

A chunk 𝐶 is said to be an ancestor of chunk 𝐶 ′ if there exists a sequence of

chunks 𝐶0, · · · , 𝐶𝑘 such that 𝐶0 = 𝐶, 𝐶𝑘 = 𝐶 ′, and 𝐶𝑖 is the parent of 𝐶𝑖+1 for

0 ≤ 𝑖 < 𝑘. 𝐶 ′ is said to be a descendant of 𝐶.

Figure 7-1: Parent/child relations among the chunks of an execution of an example
code snippet. Chunks are highlighted in different colors. Each directed edge in the
tree on the right points from a parent chunk to a child chunk.

Remark. The directed graph representing parent/child relations on chunks in an

execution forms a rooted tree where 𝐶𝑖𝑛𝑖𝑡 is the root. 𝐶 is an ancestor of 𝐶 ′ if there

exists a directed path from 𝐶 to 𝐶 ′ in this graph.

Definition 10. For any chunk 𝐶 ̸= 𝐶𝑖𝑛𝑖𝑡, consider the worker that executed the

very start of 𝐶. Denote by 𝐻𝑠𝑡𝑎𝑟𝑡(𝐶) its worker handle at the start of 𝐶, after the

handle-update operation performed in the steal is complete.

Definition 11. For any chunk 𝐶 ̸= 𝐶𝑖𝑛𝑖𝑡, denote by 𝑑𝑠𝑡𝑒𝑎𝑙(𝐶) the spawn depth of

very start of 𝐶, or the spawn depth of the stolen continuation that started 𝐶.
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Definition 12. For any splitter 𝑋 and handle 𝐻, denote by 𝐿𝑋(𝐻) the leaf stack

corresponding to splitter 𝑋 in the split tree that 𝐻 is attached to.

7.2 Basic Properties and Invariants

This section presents key properties and invariants of the runtime system’s state,

starting with simple lemmas and observations stated without proof, and ending with

the subtle and important Lemma 18. These lemmas and observations are used in

proofs in the following sections.

Lemma 13. The following statements are equivalent — that is, either all are true or

none are true.

∙ The primary access to splitter in the worker’s current chunk has happened.

∙ The value returned by depth-query(worker handle, splitter) equals NIL.

∙ The leaf stack of splitter reachable from the worker handle was created within

the worker’s current chunk.

∙ The worker’s cache contains splitter.

The very start of the execution is considered to implicitly access every splitter.

Lemma 14. A leaf stack can only be modified inside the chunk where it was created.

Lemma 15. Every leaf stack’s contents of (depth, value) are sorted by depth in

increasing order, with no two entries having the same value of depth.

It is easy to check that, by construction, every operation in the mechanism pre-

serves the simple invariants described in the above lemmas.

Next, we make some observations about the spawn depths of chunks.

Observation 16. Let 𝐶 be any chunk. Then the spawn depths of all parts of 𝐶 are

greater than or equal to 𝑑𝑠𝑡𝑒𝑎𝑙(𝐶).

Proof. When all sync-spawn edges are removed from the execution trace, the re-

maining edges form a tree. Each edge in this tree satisfies the property that the spawn
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depth of its source node is less than or equal to the spawn depth of its destination

node. For intuition, consider a drawing of the tree that places each node at a vertical

height according to its spawn depth. A node of a larger spawn depth is drawn lower

down on the page, and nodes of the same spawn depth are drawn at the same height.

Then all edges of the tree in this drawing are either horizontal or point downwards.

Figure 7-2 illustrates an example execution trace drawn in this manner.

Chunks are the connected sub-trees formed when all sync-continuation edges

corresponding to stolen continuations are additionally removed from this tree. All

edges in such a sub-tree are horizontal or point downwards. The first node in a chunk

𝐶 is therefore the node drawn highest on the page among all nodes in 𝐶. The spawn

depth of this node, 𝑑𝑠𝑡𝑒𝑎𝑙(𝐶), is the smallest among spawn depths of all nodes in

𝐶.

Observation 17. Let chunk 𝐶𝑝𝑎𝑟𝑒𝑛𝑡 be the parent of chunk 𝐶𝑐ℎ𝑖𝑙𝑑. Consider the spawn

𝑠 in 𝐶𝑝𝑎𝑟𝑒𝑛𝑡 whose stolen continuation is the start of chunk 𝐶𝑐ℎ𝑖𝑙𝑑. Then 𝑑𝑠𝑡𝑒𝑎𝑙(𝐶𝑐ℎ𝑖𝑙𝑑)

is strictly less than the spawn depth of every part of 𝐶𝑝𝑎𝑟𝑒𝑛𝑡 after 𝑠.

Proof. Thieves steal from victims starting from the top of the victim’s deque. As

a result, in order for the continuation to spawn 𝑠 to be stolen, the continuations to

those spawns in 𝐶𝑝𝑎𝑟𝑒𝑛𝑡 at higher levels must have already been stolen. Therefore,

the parts of 𝐶𝑝𝑎𝑟𝑒𝑛𝑡 that take place after 𝑠 are contained within the function spawned

at 𝑠. All such parts have a spawn depth strictly greater than the spawn depth of 𝑠.

The spawn depth of 𝑠 is equal to 𝑑𝑠𝑡𝑒𝑎𝑙(𝐶𝑐ℎ𝑖𝑙𝑑). Combining these last three statements

concludes the proof.

The following lemma describes a key restriction on operations on stack-augmented

split trees. This lemma captures the core of why this mechanism is correct and

concurrency-safe.

Lemma 18 (Main structural lemma). Let 𝑋 be a splitter and let 𝐶 ̸= 𝐶𝑖𝑛𝑖𝑡 be a

chunk. Let 𝑠 be the spawn whose stolen continuation starts 𝐶. Then every modifi-

cation of the leaf stack 𝐿𝑋(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶)) after the execution of 𝑠 happens at a spawn

depth strictly greater than depth-query(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶), 𝑋).
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Figure 7-2: Example trace snippet illustrating Observations 16 and 17.
Observation 16: All parts of 𝐶𝑐ℎ𝑖𝑙𝑑, highlighted in green, have a spawn depth greater
than or equal to 𝑑𝑠𝑡𝑒𝑎𝑙(𝐶𝑐ℎ𝑖𝑙𝑑).
Observation 17: 𝐶𝑝𝑎𝑟𝑒𝑛𝑡 is highlighted in orange, and the part of 𝐶𝑝𝑎𝑟𝑒𝑛𝑡 that happen
after 𝑠 is highlighted in dark orange. All nodes highlighted in dark orange have a
spawn depth strictly greater than 𝑑𝑠𝑡𝑒𝑎𝑙(𝐶𝑐ℎ𝑖𝑙𝑑).

Proof. The proof proceeds by induction on chunks. We’ll see that the lemma holds

for children of 𝐶𝑖𝑛𝑖𝑡, and that if the lemma holds for a parent chunk, then it also holds

for a child chunk.

Base case. The lemma holds when 𝐶 is a child of 𝐶𝑖𝑛𝑖𝑡.

Subproof. The handle at every point in 𝐶𝑖𝑛𝑖𝑡 has a depth of NIL and is attached to

the initial split tree whose edges all have a depth of NIL.

The handle 𝐻𝑠𝑡𝑎𝑟𝑡(𝐶) results from calling handle-update on such a handle with

depth NIL, and thus the depth of handle 𝐻𝑠𝑡𝑎𝑟𝑡(𝐶) is set to to 𝑑𝑠𝑡𝑒𝑎𝑙. Since all edges

of the tree that 𝐻𝑠𝑡𝑎𝑟𝑡(𝐶) is attached to have a depth of NIL, depth-query(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶),

𝑋) equals 𝑑𝑠𝑡𝑒𝑎𝑙(𝐶).

The leaf stack 𝐿𝑋(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶)) = 𝐿𝑋(𝑅𝑠𝑡𝑎𝑟𝑡(𝐻𝑖𝑛𝑖𝑡)) is created in the initialization

process. By Lemma 14, it can only be modified inside 𝐶𝑖𝑛𝑖𝑡.

By Observation 17, 𝑑𝑠𝑡𝑒𝑎𝑙(𝐶) is strictly greater than the spawn depth of all parts

of 𝐶𝑖𝑛𝑖𝑡 after 𝑠.

Therefore, every modification to 𝐿𝑋(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶)) after the start of 𝐶 happens at a

spawn depth strictly greater than depth-query(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶), 𝑋). �
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Inductive step. Let chunk 𝐶𝑝𝑎𝑟𝑒𝑛𝑡 be the parent of chunk 𝐶𝑐ℎ𝑖𝑙𝑑. If the lemma holds

for 𝐶 = 𝐶𝑝𝑎𝑟𝑒𝑛𝑡, then it holds for 𝐶 = 𝐶𝑐ℎ𝑖𝑙𝑑.

Subproof. Let 𝑠 be the spawn in 𝐶𝑝𝑎𝑟𝑒𝑛𝑡 whose stolen continuation starts 𝐶𝑐ℎ𝑖𝑙𝑑. Con-

sider the following two cases:

∙ The primary access of 𝑋 in 𝐶𝑝𝑎𝑟𝑒𝑛𝑡 happens after 𝑠 (or never happens).

In this case, path-copy on splitter 𝑋 is not among the operations that evolved

𝐻𝑠𝑡𝑎𝑟𝑡(𝐶𝑝𝑎𝑟𝑒𝑛𝑡) into 𝐻𝑠𝑡𝑎𝑟𝑡(𝐶𝑐ℎ𝑖𝑙𝑑). Therefore, 𝐿𝑋(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶𝑝𝑎𝑟𝑒𝑛𝑡)) and 𝐿𝑋(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶𝑐ℎ𝑖𝑙𝑑))

must be the same leaf stack. By Properties 6 and 7, all other operations — call-

ing path-copy on any other splitter, or calling handle-update — do not change

the result of depth-query(𝐻, 𝑋). Therefore, the value depth-query(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶𝑝𝑎𝑟𝑒𝑛𝑡),

𝑋) equals depth-query(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶𝑐ℎ𝑖𝑙𝑑), 𝑋). The inductive hypothesis then di-

rectly implies the desired result.

∙ The primary access of 𝑋 in 𝐶𝑝𝑎𝑟𝑒𝑛𝑡 happens before 𝑠.

In this case, path-copy must have been called on splitter 𝑋 before 𝑠 in 𝐶𝑝𝑎𝑟𝑒𝑛𝑡.

The leaf stack 𝐿𝑋(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶𝑐ℎ𝑖𝑙𝑑)) is thus created within 𝐶𝑝𝑎𝑟𝑒𝑛𝑡.

By Property 6 and the fact that path-copy was called on 𝑋 before 𝑠 in

𝐶𝑝𝑎𝑟𝑒𝑛𝑡, depth-query on splitter 𝑋 starting from the handle in the stolen frame

equals NIL. By Property 7, the handle 𝐻𝑠𝑡𝑎𝑟𝑡(𝐶𝑐ℎ𝑖𝑙𝑑) that results from calling

handle-update on the stolen handle has depth-query(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶𝑐ℎ𝑖𝑙𝑑), 𝑋) set

to 𝑑𝑠𝑡𝑒𝑎𝑙(𝐶𝑐ℎ𝑖𝑙𝑑).

By Lemma 14, the leaf stack 𝐿𝑋(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶𝑐ℎ𝑖𝑙𝑑)) can only be modified inside

𝐶𝑝𝑎𝑟𝑒𝑛𝑡. By Observation 17, 𝑑𝑠𝑡𝑒𝑎𝑙(𝐶𝑐ℎ𝑖𝑙𝑑) is strictly less than the spawn depth

of every part of 𝐶𝑝𝑎𝑟𝑒𝑛𝑡 that executes after 𝑠. Therefore, every write after 𝑠 to

the leaf stack 𝐿𝑋(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶𝑐ℎ𝑖𝑙𝑑)) happens at a spawn depth strictly greater than

𝑑𝑠𝑡𝑒𝑎𝑙(𝐶𝑐ℎ𝑖𝑙𝑑).

Combining the conclusions of the two above paragraphs implies the desired

result.

�
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The graph representing parenthood on chunks forms a tree rooted at 𝐶𝑖𝑛𝑖𝑡. We

have seen that the lemma holds for all direct children of 𝐶𝑖𝑛𝑖𝑡, and that if the lemma

holds for a parent, then it holds for a child. Therefore, the lemma holds for every

chunk in an execution other than 𝐶𝑖𝑛𝑖𝑡.

7.3 Correctness of Accessed Values

This section proves that the stack-augmented split-tree mechanism provides the cor-

rect functionality as described in Section 2.3. The desired functionality is restated

here.

Property 5. Let 𝐺 be an execution trace, constructed so that every splitter read

and write belongs to its own strand. Let 𝑣𝑟𝑒𝑎𝑑 be a node in 𝐺 performing a read to

splitter 𝑋. Let 𝑣𝑤𝑟𝑖𝑡𝑒 be the last node on the canonical path to 𝑣𝑟𝑒𝑎𝑑 that performs

a write to splitter 𝑋, if such a node exists. Then the value read in 𝑣𝑟𝑒𝑎𝑑 equals the

value written in 𝑣𝑤𝑟𝑖𝑡𝑒, or to the value at initialization if 𝑣𝑤𝑟𝑖𝑡𝑒 does not exist.

We’ll see a proof to a somewhat stronger statement:

Theorem 19. Let 𝐺 be an execution trace, constructed so that every splitter write is

in its own strand. Let 𝑣 be any node, and let 𝑣𝑤𝑟𝑖𝑡𝑒 be the last node on the canonical

path to 𝑣 (not including 𝑣) that performs a write to splitter 𝑋, if such a node exists.

Replace the instructions in 𝑣 by a read to splitter 𝑋. Then the value read in 𝑣 equals

the value written in 𝑣𝑤𝑟𝑖𝑡𝑒, or to the value at initialization if 𝑣𝑤𝑟𝑖𝑡𝑒 does not exist.

We’ll first see a proof to the following lemma, which covers a scenario that appears

multiple times in the proof of Theorem 19.

Lemma 20. Let 𝑢, 𝑣 be two nodes in the same chunk 𝐶, where node 𝑢 executes

before node 𝑣. If the primary access to splitter 𝑋 in 𝐶 happens at or after 𝑣 (or

never happens), then a read access to splitter 𝑋 at nodes 𝑢 and 𝑣 return the same

value.
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Proof. Consider the sequence of path-copy operations that evolved the worker handle

in chunk 𝐶 from 𝐻𝑠𝑡𝑎𝑟𝑡(𝐶) to the worker handle in node 𝑢. Since the primary access

to 𝑋 does not happen by node 𝑣 and thus does not happen by node 𝑢, this sequence

of path-copy operations are only called on splitters other than 𝑋. Since no new leaf

stack of 𝑋 is created in this process, the leaf stack of 𝑋 reachable from 𝑢 is equal to

𝐿𝑋(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶)). For the same reason, the leaf stack of 𝑋 reachable from 𝑣 is equal to

𝐿𝑋(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶)).

By Property 6, the path-copy operations on splitters other than 𝑋 cannot change

the result of depth-query on splitter 𝑋. Thus, depth-query on splitter 𝑋 from

handle 𝐻𝑠𝑡𝑎𝑟𝑡(𝐶), from the handle in node 𝑢, and from the handle in node 𝑣 all return

the same non-NIL value 𝑑.

The leaf stack 𝐿𝑋(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶)) was created within some ancestor chunk of 𝐶. By

Lemma 18, the entries of 𝐿𝑋(𝐻𝑠𝑡𝑎𝑟𝑡(𝐶)) that correspond to a depth less than or equal

to 𝑑 cannot change after 𝐶 starts execution.

Reading splitter 𝑋 at nodes 𝑢 and 𝑣 involve searching the same leaf stack for the

entry whose depth is the largest possible less than or equal to 𝑑. Since entries of

depth less than or equal to 𝑑 in this leaf stack cannot change, the leaf stacks searched

at 𝑢 and at 𝑣 share a prefix up to the target entry. Therefore, the same entry is found

in the two searches, and the same value returned at the two read accesses.

Proof of Theorem 19. Proceed by induction on nodes of the execution trace. We’ll

see that the theorem holds for the start strand, and that if the theorem holds for the

source node of a regular, spawn, sync-continuation, or continuation edge in the trace,

then it also holds for the destination node.

Base case. The theorem holds for when 𝑣 is the start strand.

Subproof. Trivially true by construction. �

Inductive case 1. Let 𝑢𝑣 be a regular or sync-continuation edge where node 𝑢

performs a write to splitter 𝑋. If the theorem holds for node 𝑢, then it holds for 𝑣.

Subproof. Nodes 𝑢 and 𝑣 belong to the same chunk, and node 𝑢 is executed immedi-

ately before 𝑣 in this chunk.
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After the execution of 𝑢, splitter 𝑋 is guaranteed to be cached, with the last

entry of the cached leaf stack reflecting the newly written value. By Lemma 14, this

leaf stack cannot be modified by some other worker between the execution of 𝑢 and

𝑣. The read access at node 𝑣 examines the last entry in the cached leaf stack and

correctly returns the value written in 𝑢.

Note that this case does not require the inductive hypothesis. �

In all cases below, the last write access to splitter 𝑋 is the same on the canonical

paths to 𝑢 and to 𝑣. We’ll show that the values accessed at 𝑢 and 𝑣 are the same.

Inductive case 2. Let 𝑢𝑣 be a regular, spawn, or sync-continuation edge where node

𝑢 does not perform a write to splitter 𝑋. If the theorem holds for node 𝑢, then it

holds for node 𝑣.

Subproof. Nodes 𝑢 and 𝑣 belong to the same chunk 𝐶, and node 𝑢 is executed imme-

diately before 𝑣 in this chunk. Considering the following cases:

∙ The primary access of 𝑋 in 𝐶 happens before 𝑢.

The same leaf stack created within 𝐶 is reachable from 𝑢 and from 𝑣. By

Lemma 14, this leaf stack is not modified between 𝑢 and 𝑣. The read accesses

at 𝑢 and 𝑣 thus examine the last entry of the identical leaf stacks, returning the

same value.

∙ The primary access of 𝑋 in 𝐶 happens at 𝑢.

The read access at 𝑢 creates a new leaf stack with only a single entry that

contains the value read at 𝑢. The read access at 𝑣 examines the last, and only,

entry in this leaf stack, returning the same value as the one read at 𝑢.

∙ The primary access of 𝑋 in 𝐶 happens at or after 𝑣 (or never happens).

Lemma 20 finishes this case.

�

Inductive case 3. Let 𝑢𝑣 be a continuation edge where the continuation was not

stolen. If the theorem holds for node 𝑢, then it holds for node 𝑣.
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Subproof. Since thieves steal starting at the top of the victim’s deque, the fact that

continuation 𝑢𝑣 is not stolen implies that no continuation is stolen within the function

spawned at 𝑢. Therefore, the same worker executes 𝑢, the spawned function, then 𝑣,

within the same chunk 𝐶.

Consider the following cases:

∙ The primary access of 𝑋 in 𝐶 happens before 𝑢.

The same leaf stack created within 𝐶 is reachable from 𝑢 and from 𝑣. Every

splitter write that happens in the spawned function is undone (through popping

entries from the stack) by the time the spawned function returns. The read

accesses at 𝑢 and 𝑣 thus examine the last entry of the identical leaf stacks,

returning the same value.

∙ The primary access of 𝑋 in 𝐶 happens after 𝑢, and before 𝑣.

Let the primary access of 𝑋 in 𝐶 take place at node 𝑤 inside the function

spawned at 𝑢. By Lemma 20, the same value is read at 𝑢 and at 𝑤.

The execution of node 𝑤 performs a path-copy operation and creates a new leaf

stack with a single entry that contains the value read in 𝑤. All other entries

appended to this leaf stack in the spawned function are popped by the time

that the spawned function returns. The read access at 𝑣 examines the last

entry, which is also the only entry, in this leaf stack, returning the value read

in 𝑤. Since the values read in 𝑤 is the same as that read in 𝑢, the read accesses

at 𝑢 and 𝑣 return the same value.

∙ The primary access of 𝑋 in 𝐶 happens at or after 𝑣.

Lemma 20 finishes this case.

�

Inductive case 4. Let 𝑢𝑣 be a continuation edge where the continuation was stolen.

If the theorem holds for node 𝑢, then it holds for node 𝑣.

80



Subproof. Let the chunk containing node 𝑢 be 𝐶, and the chunk containing node 𝑣

be 𝐶 ′. Note that the same leaf stack of 𝑋 is reachable from 𝑢 and 𝑣.

Consider the following cases:

∙ The primary access to splitter 𝑋 in 𝐶 happens before 𝑢.

Since the primary access to 𝑋, which calls path-copy on 𝑋, has taken place by

node 𝑢, we know that depth-query on 𝑋 at node 𝑢 returns NIL by Property

6. By Lemma 18, those entries in the leaf stack of depth less than or equal to

𝑑 cannot be changed after 𝑢 executes. The contents of the leaf stack at 𝑢 is

therefore a prefix of the contents of the leaf stack at node 𝑣. The entry found

in the read access at 𝑣, the entry whose depth is the largest possible less than

or equal to 𝑑, is the last entry in this prefix. The read access at 𝑢 takes the last

entry in its leaf stack, which is the same entry. The read accesses at 𝑢 and 𝑣

thus return the same value.

∙ The primary access to splitter 𝑋 in 𝐶 happens after 𝑢 (or never happens).

The proof for this case is similar to the proof to Lemma 20. Since the primary

access to 𝐶 has not taken place by 𝑢, depth-query on 𝑋 at 𝑢 returns some

non-NIL value 𝑑. By Property 7, depth-query on 𝑋 at node 𝑢 returns the

same value 𝑑. By Lemma 18, those entries in the leaf stack of depth less than

or equal to 𝑑 cannot be changed after 𝑢 executes.

Reading splitter 𝑋 at nodes 𝑢 and 𝑣 involve searching the same leaf stack for

the entry whose depth is the largest possible less than or equal to 𝑑, and the

contents searched at 𝑢 and 𝑣 share a prefix up to the target entry. Therefore,

the same entry is found in the two searches, and the same value returned at the

two read accesses.

�

When all sync-spawn edges are removed from the execution trace, the resulting

graph is a tree. We’ve seen that the theorem holds for the root of the tree, and that
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if the theorem holds for a parent node then it holds for its child nodes. Therefore,

the theorem holds for all nodes in the trace.

7.4 Concurrency Safety

This section shows that the mechanism behaves correctly despite potential concurrent

operations from multiple workers.

The problem of interest is concurrent accesses or modifications to the same leaf

stack. A dynamic array uses a reader-write lock, and thus the mechanism avoids

the most direct type of races on a leaf stack. We need to additionally ensure that a

reader or writer making a sequence of operations to a leaf stack is not impacted by

concurrent writes from other workers interleaved into the sequence.

Firstly, observe that concurrent writes to the same leaf stack cannot happen.

Lemma 14 implies that only one chunk is able to modify any leaf stack, and a chunk

is executed serially.

The remaining question is whether it is safe for reads to happen concurrently

with modifications from a writer. Such reads happen as a part of the binary search

performed at a primary access. By Lemma 18, the target of the binary search, as

well as all entries before it in the leaf stack, cannot be modified by the writer. It is

possible for the part of the stack after the target entry to change between consecutive

reads in the same binary search — for instance, the writer may perform many pops

in a row, which shortens the stack to the point where the reader’s next read is at an

index past the end of the stack. This turns out to not be a problem. An “invalid

value” from reading at an index past the end of the stack implies that this index is

larger than the index of the target entry. Thus, as long as the reader treats “invalid

values” as if a too-large value was read, the binary search will complete successfully

and return the correct target value.

82



7.5 Memory Safety

This section shows that the mechanism manages memory safety — all memory is

freed by the end of the program, and no memory is freed when still potentially useful.

We’re interested only in the memory allocated in calls to path-copy. Other

memory allocations, such as caches and records, are freed in a very straightforward

fashion.

We start by looking at a simple lemma that is evident by the construction of the

memory management protocol.

Lemma 21. Every P-footprint belongs to exactly one P-track, and every P-track is

pointed to in exactly one P-log.

At a return-from-spawn, the mechanism takes the P-log in the returning frame

and frees all P-footprints in P-tracks pointed to by this P-log. Therefore, every P-

footprint is freed exactly once by the end of the program, once every spawned frame

has returned.

It remains to be shown that a P-footprint is not freed until it can no longer be

accessed.

Lemma 22. Let 𝐶 be a chunk with origin 𝑠. A P-footprint created within 𝐶 is

inaccessible after 𝑠 returns.

Proof. Note that by the time 𝑠 returns, all descendant chunks of 𝐶, along with 𝐶

itself, have completed. A P-footprint created in 𝐶 can only be accessed from 𝐶 and

its descendant chunks. Therefore, this P-footprint is inaccessible once 𝑠 returns.

It is not true that a P-footprint created within some spawn is inaccessible after

this spawn returns, or that a P-footprint created within some chunk 𝐶 is inaccessible

after 𝐶 ends. If the continuation to a spawn was not stolen, then a P-footprint

created within this spawn may continue to be used after this spawn, as illustrated in

example worker keeps previous handle at return-from-spawn in Section 5.3.

A P-footprint created within a chunk may still be used after this chunk ends if a child

of this chunk is still ongoing, as illustrated in step 10 of the example in Section 6.3.
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The mechanism specifies that a P-footprint is freed exactly at the return of the

origin of the chunk where the P-footprint is created. Therefore, memory is managed

safely and not freed until no longer used.
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Chapter 8

Analysis of Theoretical Overhead

This chapter analyzes the theoretical performance impact of using the stack-augmented

split-tree mechanism to support splitters. We’ll see how the real runtime of an exe-

cution can be expressed based on performance measures of the execution trace from

the user’s perspective. We’ll find that in the theoretical worst case, using 𝑛 splitters

causes the real running time of a program to behave as if the parallelism of the user

program is impacted by a factor of roughly 𝑂̃(𝑛).

Defining the User Trace and the Runtime Trace

We start by looking at two key concepts, the user trace and the runtime trace. The

user trace represents an execution trace from the user’s perspective, and the runtime

trace represents what actually took place in the execution.

The user trace of a computation, 𝐺𝑢𝑠𝑒𝑟, is the execution trace that does not

account for any overheads from splitter operations. In particular, every splitter access

in the user trace costs constant time for some sufficiently large constant, and a return-

from-spawn takes constant time. From the perspective of the user, who only knows

about instructions explicitly invoked in the program, the user trace is the correct

trace.

The runtime trace of a computation, 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒, is the execution trace that reflects

what actually took place. In the runtime trace, some splitter accesses take more than
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constant time due to overheads from path-copy, and some return-from-spawns take

more than constant time due to cleanup costs associated with record-keeping and

P-log management.

For ease of analysis, 𝐺𝑢𝑠𝑒𝑟 is constructed such that every splitter access or write

is in its own strand, and every return-from-spawn is in its own strand at the end of

the returning function. Note that 𝐺𝑢𝑠𝑒𝑟 and 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒 have nearly identical structures.

𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒 can be constructed from 𝐺𝑢𝑠𝑒𝑟 by splicing in substructures to replace some

return-from-spawn nodes, changing the cost of some splitter operation strand nodes,

and retaining the rest of the graph without change.

We’ll express the true running time, or 𝑇𝑃 (𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒), in terms of performance mea-

sures visible to the user — the work and span of 𝐺𝑢𝑠𝑒𝑟. By Lemma 2, 𝑇𝑃 (𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒) =

𝑇1(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)/𝑃 + (𝑇∞(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)) in expectation. Therefore, we need to bound the

work and span of 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒 in terms of those of 𝐺𝑢𝑠𝑒𝑟.

In the rest of the analysis, 𝑛 denotes the number of splitters used in the compu-

tation.

Work and Span of the Runtime Trace

We start by accounting for the costs of splitter accesses. As defined before, 𝐷 denotes

the maximum depth of nested spawns.

Lemma 23. The primary access of a splitter in a chunk costs 𝑂(log 𝑛 + log 𝐷). All

secondary accesses cost Θ(1).

Proof. By Lemma 13, a splitter exists in a worker’s cache if and only if the primary

access has already taken place. A secondary access extracts the cached leaf stack

and returns the last value in the stack, which takes Θ(1) time. A primary access

takes 𝑂(log 𝑛) time to perform depth-query and path-copy, as well as 𝑂(𝐷) time

to search through a leaf stack containing up to one entry for each possible distinct

spawn depth.

Each splitter access in 𝐺𝑢𝑠𝑒𝑟 therefore corresponds to a node in 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒 whose
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cost is either 𝑂(log 𝑛 + log 𝐷) or Θ(1).

Next, we consider the effect of record-keeping at return-from-spawns. Upon re-

turning from a spawn, the mechanism undoes all writes performed in the spawn by

popping entries from leaf stacks. If 𝑚 splitters have been written to inside the spawn,

then this cleanup takes 𝑂(𝑚) work and 𝑂(log 𝑚) span, as the cleanup happens via a

parallel loop over the record.

The number of splitters written to inside a returning spawn can be crudely

bounded by the total number of splitters. Therefore, each return-from-spawn node in

𝐺𝑢𝑠𝑒𝑟, after taking into account record-keeping costs, corresponds to a substructure

in 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒 with up to 𝑂(log 𝑛) span.

Finally, we consider the cost of managing logs. Upon returning from a spawn,

the size of the P-log in the returning frame is equal to the number of steals that

occurred inside the body of the spawn. If 𝑘 steals happened inside the body of the

spawn, iterating over the P-log in parallel takes 𝑂(𝑘) work and 𝑂(log 𝑘) span. For

each P-track iterated in the P-log, cleaning up the P-track involves parallel iterating

over its contents, and the cost of this operation depends on the length of the P-track.

Each return-from-spawn node in 𝐺𝑢𝑠𝑒𝑟, after taking into account both record-

keeping and log-management, corresponds to a substructure in 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒 with up to

𝑂(log 𝑛 + log 𝑘) span, where 𝑘 is the number of steals that occurred in the body of

the returning spawn. The log 𝑛 term results from the fact that the length of a P-track

can be crudely bounded by 𝑛.

Given how each of these overheads locally transform 𝐺𝑢𝑠𝑒𝑟 into 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒, we con-

sider the global impact of these overheads on running time by bounding the work and

span of 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒.

Lemma 24. In expectation,

𝑇∞(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒) = 𝑂(log 𝑛 + log 𝐷 + log 𝑃 )𝑇∞(𝐺𝑢𝑠𝑒𝑟).

Proof. Consider the most expensive path through 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒 and the corresponding

path through 𝐺𝑢𝑠𝑒𝑟. Let 𝑣 be a node on the path through 𝐺𝑢𝑠𝑒𝑟. We analyze the
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length of the path through 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒 by considering how 𝑣 is transformed into the

corresponding node or path in 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒.

Case 1: 𝑣 is not a splitter access or a return-from-spawn.

𝑣 is unchanged between 𝐺𝑢𝑠𝑒𝑟 and 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒.

Case 2: 𝑣 is a splitter access.

𝑣 corresponds to a node of cost up to 𝑂(log 𝑛 + log 𝐷) in 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒.

Case 3: 𝑣 is a return-from-spawn.

𝑣 corresponds to a path of cost up to 𝑂(log 𝑛 + log 𝑘) in 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒, where 𝑘 is

the number of steals that occurred in the body of the returning spawn.

Temporarily ignoring the 𝑂(log 𝑘) cost of return-from-spawn nodes, the cost of

the path through 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒 is at most 𝑂(log 𝑛 + log 𝐷) times the cost of the path

through 𝐺𝑢𝑠𝑒𝑟, as each individual node on the path from 𝐺𝑢𝑠𝑒𝑟 can increase in cost by

a factor of at most 𝑂(log 𝑛 + log 𝐷). Since the cost of a path through 𝐺𝑢𝑠𝑒𝑟 is upper

bounded by 𝑇∞(𝐺𝑢𝑠𝑒𝑟), we find that the cost of the path through 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒 is bounded

by 𝑂(log 𝑛 + log 𝐷)𝑇∞(𝐺𝑢𝑠𝑒𝑟).

Analyzing the impact of the 𝑂(log 𝑘) overhead at return-from-spawn nodes takes

more finesse, as there is no useful bound on this overhead in any one return-from-

spawn node. Instead, we’ll see how to bound the total of these 𝑂(log 𝑘) overheads on

the entire path through 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒.

Let the number of return-from-spawn nodes along this path in 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒 be 𝑙.

Clearly, 𝑙 ≤ 𝑇∞(𝐺𝑢𝑠𝑒𝑟). Let the number of steals that happened in the body of

each of these spawns be 𝑘1, 𝑘2, ..., 𝑘𝑙. To be precise in the following algebra and avoid

undefined behavior if 𝑘𝑖 = 0, the span of iterating over a P-log of length 𝑘 is considered

to be log(1 + 𝑘). The total overhead on this path from iterating over P-logs is thus∑︀𝑙
𝑖=1 log(1 + 𝑘𝑖).

Denote the total number of steals in the execution of 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒 by 𝑆. Each steal

can contribute to at most one 𝑘𝑖, and thus ∑︀𝑙
𝑖=1 𝑘𝑖 ≤ 𝑆. By Lemma 1, the expected

number of steals E[𝑆] = 𝑂(𝑃 · 𝑇∞(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)).
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We now upper bound the overhead ∑︀𝑙
𝑖=1 log(1 + 𝑘𝑖). Firstly, we can assume that

𝑙 = 𝑇∞(𝐺𝑢𝑠𝑒𝑟); if 𝑙 is in fact smaller than 𝑇∞(𝐺𝑢𝑠𝑒𝑟), we may set the value of all extra

variables 𝑘𝑙+1, ..., 𝑘𝑇∞(𝐺𝑢𝑠𝑒𝑟) to 0 without impacting either the restriction on ∑︀
𝑘𝑖 or

the quantity being bounded. Applying Jensen’s inequality, we find that under the

restriction ∑︀𝑇∞(𝐺𝑢𝑠𝑒𝑟)
𝑖=1 𝑘𝑖 ≤ 𝑆, the expression ∑︀𝑇∞(𝐺𝑢𝑠𝑒𝑟)

𝑖=1 log(1 + 𝑘𝑖) is maximized to a

value of 𝑇∞(𝐺𝑢𝑠𝑒𝑟) log(1 + 𝑆/𝑇∞(𝐺𝑢𝑠𝑒𝑟)), achieved when all 𝑘𝑖 are equal. Applying

Jensen’s inequality again on the expectation of the log of a random variable, we derive

that

E[
𝑙∑︁

𝑖=1
log(1 + 𝑘𝑖)] ≤ E[𝑇∞(𝐺𝑢𝑠𝑒𝑟) log(1 + 𝑆/𝑇∞(𝐺𝑢𝑠𝑒𝑟))]

≤ 𝑇∞(𝐺𝑢𝑠𝑒𝑟) log(E[1 + 𝑆/𝑇∞(𝐺𝑢𝑠𝑒𝑟)])

≤ 𝑇∞(𝐺𝑢𝑠𝑒𝑟) log
(︃

1 + 𝑂

(︃
𝑃 · 𝑇∞(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)

𝑇∞(𝐺𝑢𝑠𝑒𝑟)

)︃)︃

= 𝑇∞(𝐺𝑢𝑠𝑒𝑟)
(︃

log 𝑃 + log
(︃

𝑇∞(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)
𝑇∞(𝐺𝑢𝑠𝑒𝑟)

)︃
+ 𝑂(1)

)︃
.

Combining the bound on these log 𝑘 overheads and our previous derivation about all

other overheads, we find that the cost of the most expensive path through 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒,

equivalently the span of 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒, may be upped bounded in expectation as

E[𝑇∞(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)] ≤
(︃

𝑂(log 𝑛 + log 𝐷) + log 𝑃 + log
(︃

𝑇∞(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)
𝑇∞(𝐺𝑢𝑠𝑒𝑟)

)︃)︃
𝑇∞(𝐺𝑢𝑠𝑒𝑟).

Dividing both sides by 𝑇∞(𝐺𝑢𝑠𝑒𝑟) and rearranging,

E
[︃

𝑇∞(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)
𝑇∞(𝐺𝑢𝑠𝑒𝑟)

− log
(︃

𝑇∞(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)
𝑇∞(𝐺𝑢𝑠𝑒𝑟)

)︃]︃
≤ 𝑂(log 𝑛 + log 𝐷) + log 𝑃.

With all overheads taken into account, the expected value of 𝑇∞(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)/𝑇∞(𝐺𝑢𝑠𝑒𝑟)

is on the order of 𝑂(log 𝑛 + log 𝐷 + log 𝑃 ), which implies the lemma.

Lemma 25. In expectation,

𝑇1(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒) = 𝑇1(𝐺𝑢𝑠𝑒𝑟) + 𝑃 ·𝑂(𝑛(log 𝑛 + log 𝐷)𝑇∞(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)).
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Proof. First, note that overheads for record keeping and for iterating over the contents

of P-tracks can be amortized against splitter accesses. Therefore, assuming that the

costs of splitter access nodes are set to a sufficiently large constant in 𝐺𝑢𝑠𝑒𝑟, we do

not need to account for these overheads when considering the work of 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒.

We focus on the overhead from non-constant cost splitter operations, and from

append to and iterating over P-logs. Each steal in the execution causes a constant

amount of extra work from creating a P-track, adding it to a P-log, and later iterating

over the contents of a P-log. More importantly, each steal can cause up to 𝑛 expensive

splitter primary accesses, each with a cost of 𝑂(log 𝑛 + log 𝐷). Therefore, each steal

can cause an increase in work of 𝑂(𝑛(log 𝑛 + log 𝐷)).

In expectation, the number of steals that occur in the execution of 𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒 is

𝑂(𝑃 · 𝑇∞(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)) by Lemma 1. Combining these facts yields the lemma.

Running time of a Program Using Splitters

To conclude this analysis, we look at how the true running time of an execution

that uses splitters can be bounded in terms of performance measures known to the

programmer.

Theorem 26. In expectation,

𝑇𝑃 (𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒) = 𝑇1(𝐺𝑢𝑠𝑒𝑟)
𝑃

+ 𝑂(𝜏 · 𝑇∞(𝐺𝑢𝑠𝑒𝑟))

where 𝜏 = 𝑛(log 𝑛 + log 𝐷)(log 𝑛 + log 𝐷 + log 𝑃 ).

Proof. By Lemma 2, 𝑇𝑃 (𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒) = 𝑇1(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)/𝑃 + 𝑂(𝑇∞(𝐺𝑟𝑢𝑛𝑡𝑖𝑚𝑒)) in expecta-

tion. Combining this result with Lemmas 24 and 25 yields the theorem.

Recall that without overheads from the splitter mechanism,

𝑇𝑃 (𝐺𝑢𝑠𝑒𝑟) = 𝑇1(𝐺𝑢𝑠𝑒𝑟)
𝑃

+ 𝑂(𝑇∞(𝐺𝑢𝑠𝑒𝑟)).
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Comparing the two bounds shows us that splitters may theoretically cause the effec-

tive parallelism of a program to drop by a factor of 𝜏 . Nonetheless, this theoretical

worst-case overhead analyzed here may not be realized in practice.
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Chapter 9

Evaluation of the Commutative

Mechanism for Cilk Reducer

Hyperobjects

9.1 Introduction

Many algorithms and programs involve accumulation of values onto some common

variable. For instance, taking the sum of an array of integers involves repeatedly

updating a variable representing the partial result. Figure 9-1 illustrates a more

complex example that involves collecting nodes into a linked list during a binary tree

traversal.

These common variables inhibit parallelization of a program, since they cause

“race conditions” in parts of the program that could otherwise run in parallel. A

determinacy race [38] occurs when a thread updates a memory location while

another thread concurrently accesses the same location, producing nondeterministic

behavior. For instance, in the program in Figure 9-1, the left and right branches

of a tree node could be walked in parallel if not for the common variable l. This

parallelization, illustrated in Figure 9-2, contains a determinacy race on variable l

due to potential concurrent push operations executed on different nodes x. Depending
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struct llist_t l;
void walk(node_t *x) {

if (x) {
if (has_property(x)) {

push(l, x);
}
walk(x->left);
walk(x->right);

}
}

Figure 9-1: Serial C code collecting nodes of a binary tree that satisfy a particular
property into the linked list l. Figure adapted from [41].

on the exact implementation of push, these concurrent operations could cause updates

to be lost or leave l in an inconsistent state.

struct llist_t l;
void walk(node_t *x) {

if (x) {
if (has_property(x)) {

push(l, x);
}
cilk_spawn walk(x->left);
walk(x->right);
cilk_sync;

}
}

Figure 9-2: An incorrect Cilk parallelization of Figure 9-1, with a determinacy race
on the variable l.

Cilk reducer hyperobjects provides a way to avoid determinacy races in such

programs. A reducer hyperobject helps concurrent threads coordinate updates to

a shared variable by providing different threads with different “views” of the vari-

able, and a thread may access and modify its view without synchronizing with other

threads. Reducer hyperobjects can avoid the performance, scalability, and correctness

problems caused by the traditional solution of using locks around critical regions.

Formally, a reducer can be described by an algebraic monoid (𝑇,⊗, 𝑒), where 𝑇

is a set and ⊗ is a binary operation over 𝑇 with identity 𝑒. In the context of Cilk,
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a reducer is defined by an underlying data type, a reduction function for merging

two views, and an identity function for producing a new view. For instance, Figure

9-1 can be correctly and efficiently parallelized using a linked list reducer with list

concatenation as its reduction operation.

struct llist_t __reducer__((list_concat, list_new)) l;
void walk(node_t *x) {

if (x) {
if (has_property(x)) {

push(l, x);
}
cilk_spawn walk(x->left);
walk(x->right);
cilk_sync;

}
}

Figure 9-3: A correct Cilk parallelization of Figure 9-1 using a linked list reducer.

The existing implementation of reducer hyperobjects in Cilk follows the mecha-

nism first described by Frigo et al. in [41] and later further analyzed and discussed

in [53–55]. This mechanism satisfies the semantic guarantee that if the reduction op-

eration is associative, then the final value of the reducer is deterministic and identical

to if all updates had occurred serially. Commutativity is not required. For instance,

the linked list concatenation operation is associative, but not commutative as con-

catenating two lists in reverse order results in differently-ordered elements. In Figure

9-3, the final contents of the linked list reducer 𝑙 is guaranteed to be identical to what

results from a serial walk of the tree.

This semantic property is stronger than what is offered by reductions in some

other concurrency platforms. As an example, the reduction mechanism in OpenMP

does not specify the order in which values are combined, and a reduction operation

must be both commutative and associative in order to ensure that the result is the

same as what the serial code produces [62, p. 299].

Attaining this strong semantic guarantee comes with a cost in performance, how-

ever. A non-constant cost reducer can have a surprisingly large effect on the paral-
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lelism, and thus the running time, of a program. As analyzed in [55], a reducer with

a 𝜏 -cost reduction can effectively decrease the parallelism of a program by a factor of

𝜏 2.

In many cases, it is not necessary to maintain the order of reductions. Many

common reductions are naturally commutative, including integer sum, max, and min,

as well as bitwise AND, OR, and XOR. Even linked list concatenation is logically

commutative if one only cares for the contents of the list but not the order of its

elements. When the reduction operation is commutative, we can devise alternative

mechanisms with potentially better performance guarantees.

This chapter investigates a new mechanism for supporting reducer hyperobjects

in the Cilk runtime, called the commutative mechanism. As its name implies,

the commutative mechanism requires that the reduction operation be commutative

in addition to associative. Section 9.2 reviews the existing mechanism, called the

associative mechanism for ease of reference. Section 9.3 describes the new com-

mutative mechanism. Section 9.4 highlights the differences in their semantics and the

theoretical performance guarantees, noting that the commutative mechanism lacks

some desirable semantic properties but has a lower theoretical impact on the paral-

lelism of a program. Section 9.5 evaluates the two mechanisms in practice by compar-

ing their performance on several microbenchmarks. We’ll see that the commutative

mechanism performs better than the associative mechanism by 1%-30% among the

realistic benchmarks considered.

9.2 The Existing Associative Mechanism

This section reviews how the associative mechanism works as described in by Frigo

et al. in [41].

The associative mechanism creates, destroys, and combines views of reducers dy-

namically throughout the execution of a program. Ownership of views is defined in

terms of strands. As defined in Section 2.1, a strand is a sequence of instructions

containing no parallel flow control.
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At every point during the execution of a program, each view of the reducer is

owned by one strand. At parallel control points, views evolve as follows:

∙ When a reducer is first created, the strand that creates the reducer owns an

initial view of the reducer with the identity value 𝑒.

∙ At a spawn, two new strands are created: the child strand 𝐶 corresponding to

the spawned function, and the parent strand 𝑃 corresponding to the continua-

tion. The child strand inherits the view owned by the strand before the spawn,

and the parent strand owns a new view with the identity value 𝑒.

∙ At a return from spawn, the view owned by the child 𝑥𝐶 is reduced with the

view owned by the parent 𝑥𝑃 . To be precise, 𝑥𝐶 is updated to a value of 𝑥𝐶⊗𝑥𝑃 ,

where ⊗ is the reduction operation. 𝑥𝑃 is then destroyed, and the parent strand

becomes the new owner of 𝑥𝐶 .

There are two key optimizations related to the identity view. Firstly, views are

created lazily, and a new identity view only needs to be created when first accessed.

Secondly, reducing the identity view with any other view is a trivial operation and

does not require actually paying the cost of the reduction operation. Due to these

two optimizations, as long as the continuation to a spawned function is not stolen,

this spawn and return-from-spawn do not result in the initialization and reduction of

a new view. Instead, the same view simply changes ownership from the parent strand

to the child strand at a spawn, and from the child strand back to the parent strand

at the return from this spawn. During a serial execution, for instance, the entire

program is executed using only a single view, incurring no overheads for initializations

or reductions. A new view is only created upon the first access after a steal, and the

initialization and reduction overheads only occur due to successful steals.

By construction, reductions happen in the serial left-to-right order. Moreover,

reductions happen eagerly. Whenever a strand completes, the view owned by the

strand is reduced with the adjacent left and right views if possible. By the point that

a program passes a sync, all strands before the sync must have completed and all
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necessary reductions taken place. The programmer does not need to explicitly invoke

the reduction operation.

9.3 The Commutative Mechanism

In the commutative mechanism, views are largely static. Ownership of views is defined

based on workers. An identity view is created upon a worker’s first access to a

reducer, and all future operations performed by this worker to this reducer modify

this same view. Throughout the execution of a program, a worker performs a number

of steals and executes code in multiple non-adjacent sections of the program; as a

result, modifications performed on each view are out-of-order compared to a serial

execution.

Unlike in the associative mechanism, reductions do not happen eagerly and im-

plicitly. Reductions are triggered by an explicit invocation of reducer_merge, which

accumulates all workers’ views onto the view of the worker 𝑊𝑖 that performs the

merge. reducer_merge iterates over the views of all other workers 𝑊𝑗 in some arbi-

trary order, updates the view of 𝑊𝑖 to the result of reducing the views of 𝑊𝑖 and 𝑊𝑗,

and resets the view of 𝑊𝑗 to the identity value 𝑒.

Updates and reductions do not happen in the serial left-to-right order for two

reasons: Modifications performed on a single view are out-of-order, and reductions of

views take place in arbitrary order. Therefore, the reduction operation must be both

commutative and associative in order to ensure that the final result is deterministic

and equal to what the serial projection of the program produces.

9.4 Comparison of Semantics and Theoretical Per-

formance Impact

Previous sections have already described the most major difference between the two

mechanisms, which is that commutativity of the reduction operation is required to ob-

tain a deterministic result under the commutative mechanism. This section highlights
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some other important differences between the two mechanisms.

Under the associative mechanism, reducer views obey the peer-set semantics

as defined in [53]. The peer set of a strand 𝑢 in a trace consists of those strands that

are neither ancestors nor descendants of 𝑢. Peer-set semantics guarantees that, given

two strands with the same peer set, the difference between the views of a reducer at

these two strands is fixed. The peer-set semantics can be stated formally as follows.

Definition 27. Let 𝐺 be an execution trace, and let 𝑢 and 𝑣 be two strands in 𝐺

with the same peer set. Consider a serial walk of 𝐺, and let 𝑎1, · · · , 𝑎𝑘 denote the

updates to a reducer 𝑥 after the start of strand 𝑢 and before the start of strand 𝑣.

Let 𝑥(𝑢) and 𝑥(𝑣) denote the views of 𝑥 at the start of strands 𝑢 and 𝑣, respectively.

Then 𝑥(𝑣) = 𝑥(𝑢)⊗ 𝑎1 ⊗ 𝑎2 ⊗ · · · ⊗ 𝑎𝑘.

As an example, consider the program shown in Figure 9-4, which recursively counts

the number of nodes in a binary tree using an integer sum reducer. The lines retriev-

ing the values count_before and count_after within the same instance of walk

have the same peer set. By peer-set semantics, if the count reducer is implemented

using the associative mechanism, then the views of count at these two points in the

program differ by exactly the updates that occur in the lines in-between. Therefore,

the difference between count_after and count_before is guaranteed to equal the

number of nodes within the subtree rooted at node x.

int __reducer__((opadd, opzero)) count;
void walk(node_t *x) {

if (x) {
int count_before = count;
count++;
cilk_spawn walk(x->left);
walk(x->right);
cilk_sync;
int count_after = count;

}
}

Figure 9-4: A parallel program using an integer sum reducer for counting nodes in a
binary tree.
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The commutative mechanism does not satisfy peer-set semantics. As the integer

addition operation is commutative, using the commutative mechanism in Figure 9-4

gives a correct final value for count. However, there is no guarantee on how the

intermediate values of count_before and count_after are related.

In addition to semantic differences, the two mechanisms differ in what theoretical

bounds can be derived on their performance impact.

Under the associative mechanism, non-constant cost reductions can have a large

effect on the parallelism of a program. Due to how views are dynamically created and

reduced in the associative mechanism, the more successful steals there are, the more

work is spent on initialization and reduction of views. The number of successful steals

in a program is in turn bounded by the span of the program as analyzed in [18]. This

causes a compounding effect — reductions may fall onto the critical path of a program

and increase its span, which increases the number of steals that occur, which in turn

increases the number of reductions performed and potentially further increases the

span of the program. As analyzed in [55], the worst case impact of a reducer with a

𝜏 -cost reduction on the effective parallelism of a program can be bounded by a factor

of 𝜏 2.

Under the commutative mechanism, the number of reductions performed is fixed

based on the number of reducer_merge calls and the number of workers. It does

not depend on how the program is scheduled on these workers. In many common use

cases, reducer_merge is only called once after a long period of parallel accumulation.

In such programs, reduction overheads are negligible and have nearly no impact on a

program’s work or parallelism.

9.5 Microbenchmarks

This section compares the performance of the associative and commutative mecha-

nisms in practice. Experiments were performed on an AWS EC2 c4.8xlarge instance,

which uses the 2.9 GHz Intel Xeon E5-2666 v3 Processor with 18 cores and has 60

GiB DRAM. To reduce performance anomalies, benchmarks are executed using the
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tools taskset -c 0-n and numactl -i all. Results shown are the median running

time of 20 runs.

We start with a simple sum benchmark, which involves taking the sum of the

elements of an input array containing random elements. This benchmark can be

parallelized with a simple sum reducer, as shown in Figure 9-5.

void sum_zero(long* s) {
*s = 0;

}
void sum_add(long* ls, long* rs) {

*ls += *rs
}

int parallel_sum(uint8_t* array, int len) {
long __reducer__((sum_add, sum_zero)) n;
cilk_for (int i = 0; i < len; i++) {

n += array[i];
}
reducer_merge(n); // Included only for the commutative mechanism
return n;

}

Figure 9-5: The parallel sum microbenchmark, using simplified reducer linguistics.

A few details regarding this benchmark are worth pointing out:

∙ An initial version of the benchmark exhibited high performance variance for

particular combinations of input array size and worker number. After some

investigation, the likely cause is determined to be the fact that a view of the

reducer, type long, is vulnerable to false sharing. This problem is fixed by

padding the reducer type to a cache line in size.

∙ cilk_for is implemented using cilk_spawn and cilk_sync in a recursive bi-

nary divide-and-conquer fashion. The base case, a serial for loop, occurs once

the number of iterations covered is under some threshold called the grain size.

While using a grain size larger than 1 generally improves performance by re-

ducing overheads, a grain size of 1 is used in this benchmark as the goal is to

compare the two mechanisms rather than to maximize performance.
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∙ The amount of time taken on a single run of sum depends on the size of the input

array. To make it easier to compare performance trends across input arrays of

different sizes, the sum benchmark is run serially for a number of repetitions, so

that the total amount of work taken is the same. To be precise, sum is run for

224−𝑥 repetitions when the input array has size 2𝑥.

Timing results are shown in Figure 9-6. As can be seen, the associative mecha-

nism’s performance on the sum benchmark ranges from 1% to 30% slower than the

commutative mechanism, depending on the size of the input array and the number

of workers.

This performance difference is greater when the parallelism of the program is

low relative to the number of workers, or, in other words, when there is little to no

additional benefit gained from adding more workers. This behavior is not unexpected.

In a program with low parallelism and ample opportunities for steals — as is the case

for a simple cilk_for loop — a larger number of successful steals tend to occur. As

a result, the associative mechanism needs to spend more work creating and reducing

views, resulting in a worse performance.

To better understand whether the additional complexity of supporting commuta-

tive reducers is justified, we investigate how much benefit the commutative mechanism

can offer in the most extreme case. A microbenchmark maximizes the comparative

advantage of commutative reducers if it uses a reducer with an expensive reduction

of cost 𝜏 , has relatively low parallelism, and offers ample opportunities for steals. In

such a program, we may expect to see a significant performance problem with the

associative mechanism due to the 𝜏 2 factor impact on the parallelism of a program,

as analyzed in [55].

The histogram microbenchmark offers a natural example of such behavior. This

benchmark involves counting the number of occurrences of each value in an input

array of integers, producing a histogram of the array’s distribution of values. A serial

version of this benchmark is shown in Figure 9-7.

Parallelizing this program using a reducer requires a method of combining views

of the histogram. Reducing together two histograms involves adding together the
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Figure 9-6: Results of running the parallel_sum benchmark on input arrays of
varying sizes.
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typedef struct Hist {
int counts[MAX_VAL];

} Hist;

// Computes a histogram of how often each value appears
Hist histogram(val_t* array, int len) {

Hist hist = {};
for (int i = 0; i < len; i++)

hist.counts[array[i]]++;
return hist;

}

Figure 9-7: The serial histogram microbenchmark.

number of of occurrences of each possible value, or, in other words, adding together

the two count arrays term-by-term. A parallel version of this benchmark is shown in

Figure 9-8.

void hist_zero(Hist* hist) {
for (int i = 0; i < MAX_VAL; i++)

hist->counts[i] = 0;
}
void hist_add(Hist* lhist, Hist* rhist) {

for (int i = 0; i < MAX_VAL; i++)
lhist->counts[i] = lhist->counts[i] + rhist->counts[i];

}

Hist parallel_histogram(val_t* array, int len) {
Hist __reducer__((hist_add, hist_zero)) hist;
cilk_for (int i = 0; i < len; i++)

hist.counts[array[i]]++;
reducer_merge(hist); // Included only for the commutative mechanism
return hist;

}

Figure 9-8: The parallel histogram microbenchmark, using simplified reducer linguis-
tics.

A reduction operation of the histogram reducer is expensive, as it requires sum-

ming over all entries of an entire array. This behavior meets our goal. To further

increase the cost of the reduction operation, vectorization is disabled using the flags
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-fno-vectorize and -fno-slp-vectorize.

The exact cost of the reduction depends on the size of the histogram. We examine

two versions of this benchmark, one where the entries of the input array are of type

uint8_t and the histogram has a length of 28 = 256, one where the entries of the

input array are of type uint16_t and the histogram has a length of 216 = 65536.

Timing results are shown in Figures 9-9 and 9-10.

As can be seen in Figure 9-9, the behavior of the histogram benchmark on input

arrays of type uint8_t is similar to the parallel_sum benchmark. The associa-

tive mechanism’s performance ranges from 2% to 30% slower than the commutative

mechanism, and the performance difference is more significant when the input array

is smaller and the program has less parallelism. A reduction operation that pair-

wise sums two 256-element arrays appears to not have a high enough cost to majorly

impact the comparative performance of the associative and commutative reducer

mechanisms.

In contrast, Figure 9-10 displays very different trends. The histogram benchmark

on input arrays of type uint16_t shows much greater performance differences between

the two mechanisms. The benchmarks on smaller input arrays of size 212 and 216 are

not shown, as the cost of reductions overwhelms the amount of useful work. On larger

arrays of size 220 and 224, the commutative mechanism shows a clear advantage over

the associative mechanism. In the most extreme case shown here, given an input array

of size 220 and on 16 workers, the commutative mechanism performs over 3× faster

than the associative. These performance differences are unlikely to be seen in real

use cases, however; normal reductions do not take tens of thousands of instructions

to execute.

These microbenchmarks show that the commutative mechanism offers a moderate

performance advantage over the existing associative mechanism in realistic use cases,

and that the difference is more significant in programs with low parallelism. It is

uncertain whether this performance improvement justifies the additional complexity

of supporting the new commutative mechanism in Cilk, especially given its weaker

semantic properties.
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Figure 9-9: Results of running the parallel_histogram benchmark with uint8_t
type input arrays of varying sizes.
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Figure 9-10: Results of running the parallel_histogram benchmark with uint16_t
type input arrays of varying sizes.
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Chapter 10

The Multiplicative Version of

Azuma’s Inequality, with an

Application to Contention Analysis

in Work Stealing Schedulers

Azuma’s inequality is a tool for proving concentration bounds on random vari-

ables. The inequality can be thought of as a natural generalization of additive

Chernoff bounds. On the other hand, the analogous generalization of multi-

plicative Chernoff bounds has, to our knowledge, never been explicitly formu-

lated.

We formulate a multiplicative-error version of Azuma’s inequality. We then

show how to apply this new inequality in order to greatly simplify (and cor-

rect) the analysis of contention delays in multithreaded systems managed by

randomized work stealing.

10.1 Introduction

One of the most widely used tools in algorithm analysis is the Chernoff bound, which

gives a concentration inequality on sums of independent random variables. The Cher-
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noff bound exists in many forms, but the two most common variants are the additive

and multiplicative bounds:

Theorem 28 (Additive Chernoff Bound). Let 𝑋1, . . . , 𝑋𝑛 ∈ {0, 1} be independent

random variables, and let 𝑋 = ∑︀𝑛
𝑖=1 𝑋𝑖. Then for any 𝜀 > 0,

P [𝑋 ≥ E[𝑋] + 𝜀] ≤ exp
(︃
−2𝜀2

𝑛

)︃
.

Theorem 29 (Multiplicative Chernoff Bound). Let 𝑋1, . . . , 𝑋𝑛 ∈ {0, 1} be indepen-

dent random variables. Let 𝑋 = ∑︀𝑛
𝑖=1 𝑋𝑖 and let 𝜇 = E[𝑋]. Then for any 𝛿 > 0,

P[𝑋 ≥ (1 + 𝛿)𝜇] ≤ exp
(︃
− 𝛿2𝜇

2 + 𝛿

)︃

and for any 0 < 𝛿 < 1,

P[𝑋 ≤ (1− 𝛿)𝜇] ≤ exp
(︃
−𝛿2𝜇

2

)︃
.

Although the additive Chernoff bound is often convenient to use, the multiplicative

bound can in some cases be much stronger. Suppose, for example, that 𝑋1, 𝑋2, . . . , 𝑋𝑛

each take value 1 with probability (log 𝑛)/𝑛. By the additive bound, one can conclude

that ∑︀𝑖 𝑋𝑖 = 𝑂(
√

𝑛 log 𝑛) with high probability in 𝑛. On the other hand, the multi-

plicative bound can be used to show that ∑︀𝑖 𝑋𝑖 = 𝑂(log 𝑛) with high probability in

𝑛. In general, whenever E[𝑋]≪ 𝑛, the multiplicative bound is more powerful.

Handling dependencies with Azuma’s inequality. Chernoff bounds require

that the random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent. In many algorithmic ap-

plications, however, the 𝑋𝑖’s are not independent, such as when analyzing algorithms

in which 𝑋1, 𝑋2, . . . , 𝑋𝑛 are the results of decisions made by an adaptive adversary

over time. When analyzing these applications (see, e.g., [2,3,5,8,9,19,23,28,33,43,44,

51,52,57,74]), a stronger inequality known as Azuma’s inequality is often useful.

Theorem 30 (Azuma’s inequality). Let 𝑍0, 𝑍1, . . . , 𝑍𝑛 be a supermartingale, mean-

ing that E[𝑍𝑖 | 𝑍0, . . . , 𝑍𝑖−1] ≤ 𝑍𝑖−1. Assume additionally that |𝑍𝑖−𝑍𝑖−1| ≤ 𝑐𝑖. Then
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for any 𝜀 > 0,

P[𝑍𝑛 − 𝑍0 ≥ 𝜀] ≤ exp
(︃
− 𝜀2

2∑︀𝑛
𝑖=1 𝑐2

𝑖

)︃
.

By applying Azuma’s inequality to the exposure martingale for a sum ∑︀
𝑖 𝑋𝑖

of random variables, one arrives at the following corollary, which is often useful

in analyzing randomized algorithms (for direct applications of Corollary 31, see,

e.g., [21–23,35,51,57]).

Corollary 31. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be random variables satisfying 𝑋𝑖 ∈ [0, 𝑐𝑖]. Sup-

pose that E[𝑋𝑖 | 𝑋1, . . . , 𝑋𝑖−1] ≤ 𝑝𝑖 for all 𝑖. Then for any 𝜀 > 0,

P
[︃∑︁

𝑖

𝑋𝑖 ≥
∑︁

𝑖

𝑝𝑖 + 𝜀

]︃
≤ exp

(︃
− 𝜀2

2∑︀𝑛
𝑖=1 𝑐2

𝑖

)︃
.

This work: an inequality with multiplicative error. Azuma’s inequality can

be viewed as a generaliation of additive Chernoff bounds. In this work, we formulate

the multiplicative analog to Azuma’s inequality.

Theorem 32. Let 𝑍0, 𝑍1, . . . , 𝑍𝑛 be a supermartingale, meaning that E[𝑍𝑖 | 𝑍0, . . . , 𝑍𝑖−1] ≤

𝑍𝑖−1. Assume additionally that −𝑎𝑖 ≤ 𝑍𝑖 − 𝑍𝑖−1 ≤ 𝑏𝑖, where 𝑎𝑖 + 𝑏𝑖 = 𝑐 for some

constant 𝑐 > 0 independent of 𝑖. Let 𝜇 = ∑︀𝑛
𝑖=1 𝑎𝑖. Then for any 𝛿 > 0,

P[𝑍𝑛 − 𝑍0 ≥ 𝛿𝜇] ≤ exp
(︃
− 𝛿2𝜇

(2 + 𝛿)𝑐

)︃
.

This theorem yields the following corollary.

Corollary 33. Let 𝑋1, . . . , 𝑋𝑛 ∈ [0, 𝑐] be real-valued random variables with 𝑐 > 0.

Suppose that E[𝑋𝑖 | 𝑋1, . . . , 𝑋𝑖−1] ≤ 𝑎𝑖 for all 𝑖. Let 𝜇 = ∑︀𝑛
𝑖=1 𝑎𝑖. Then for any 𝛿 > 0,

P
[︃∑︁

𝑖

𝑋𝑖 ≥ (1 + 𝛿)𝜇
]︃
≤ exp

(︃
− 𝛿2𝜇

(2 + 𝛿)𝑐

)︃
.
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In the same way that multiplicative Chernoff bounds are in some cases much

stronger than additive Chernoff bounds, the multiplicative Azuma’s inequality is in

some cases much stronger than the standard (additive) Azuma’s inequality, as occurs,

in particular, when ∑︀𝑖 𝑎𝑖 ≪ 𝑐𝑛.

As far as we know, no one to date has explicitly formulated the multiplicative

version of Azuma’s inequality. Our work is targeted towards algorithm designers. Our

hope is that Theorem 32 will simplify the task of analyzing randomized algorithms,

providing an instrument that can be used in place of custom Chernoff bounds and

ad-hoc combinatorial arguments.

Extensions. We present two extensions of Theorem 32 and Corollary 33.

In Section 10.4, we generalize Theorem 32 so that 𝑎1, 𝑎2, . . . , 𝑎𝑛 are determined

by an adaptive adversary. This means that each 𝑎𝑖 can be partially a function

of 𝑍0, . . . , 𝑍𝑖−1. As long as the 𝑎𝑖’s are restricted to satisfy ∑︀
𝑖 𝑎𝑖 ≤ 𝜇, then the

bound from Theorem 32 continues to hold. We also discuss several applications of

the adaptive version of the theorem.

In Appendix B, we extend Theorem 32 to give a lower tail bound. In particular,

just as Theorem 32 gives an upper tail bound for supermartingales, a similar approach

gives a lower tail bound for submartingales (also with multiplicative error).

An application: work stealing. In order to demonstrate the power of Theorem

32 we revisit a classic result in multithreaded scheduling. In the problem of scheduling

multithreaded computations on parallel computers, a fundamental question is how to

decide when one processor should “steal” computational threads from another. In the

seminal paper, Scheduling Multithreaded Computations by Work Stealing

[18], Blumofe and Leiserson presented the first provably good work-stealing scheduler

for multithreaded computations with dependencies. The paper has been influential

to both theory and practice, amassing almost two thousand citations, and inspiring

the Cilk Programming language and runtime system [17,42,67].
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One result in [18] is an analysis of the so-called (𝑃, 𝑀)-recycling game,1 which

models the contention incurred by a randomized work-stealing algorithm. By com-

bining the analysis of the (𝑃, 𝑀)-recycling game with a delay-sequence argument,

the authors are able to bound the execution time and communication cost of their

randomized work-stealing algorithm.

The (𝑃, 𝑀)-recycling game takes place on 𝑃 bins which are initially empty. In

each step of the game, if there are 𝑘 balls presently in the bins, then the player selects

some value 𝑗 ∈ {0, 1, . . . , 𝑃 − 𝑘} and then tosses 𝑗 balls at random into bins. At the

end of each step, one ball is removed from each non-empty bin. The game continues

until 𝑀 total tosses have been made. The goal of the player is to maximize the total

delay experienced by the balls, where the delay of a ball 𝑏 thrown into a bin 𝑖 is

defined to be the number of balls already present in bin 𝑖 at the time of 𝑏’s throw.

Lemma 6 of [18] states that, even if the player is an adaptive adversary, the total

delay is guaranteed to be at most 𝑂(𝑀 + 𝑃 log 𝑃 + 𝑃 log 𝜖−1) with probability at

least 1− 𝜖.

In part due to lack of good analytical tools, the authors of [18] attempt to an-

alyze the (𝑃, 𝑀)-recycling game via a combinatorial argument. Unfortunately, the

argument fails to notice certain subtle (but important) dependencies between random

variables, and consequently the analysis is incorrect.2

In Section 10.3, we give a simple and short analysis of the (𝑃, 𝑀)-recycling using

Theorem 32. We also explain why the same argument does not follow from the

standard Azuma’s inequality. In addition to being simpler (and more correct) than the

analysis in [18], our analysis enables the slightly stronger bound of 𝑂(𝑀 + 𝑃 log 𝜖−1).

Related Work

Although Chernoff bounds are often attributed to Herman Chernoff, they were orig-

inally formulated by Herman Rubin (see discussion in [24]). Azuma’s inequality, on

1Not to be confused with the ball recycling game of [7].
2We thank Charles Leiserson of MIT, one of the original authors of [18], for suggesting that the

analysis in [18] should be revisited.
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the other hand, was independently formulated by several different authors, including

Kazuoki Azuma [6], Wassily Hoeffding [46], and Sergei Bernstein [14] (although in a

slightly different form). As a result, the inequality is sometimes also referred to as

the Azuma-Hoeffding inequality.

The key technique used to prove Azuma’s inequality is to apply Markov’s inequal-

ity to the moment generating function of a random variable. This technique is well

understood and has served as the foundation for much of the work on concentration

inequalities in statistics and probability theory [12, 30, 36, 37, 40, 45, 48, 56, 58–60, 63–

65,72] (see [20] or [25] for a survey). Extensive work has been devoted to generalizing

Azuma’s inequality in various ways. For example, Bernstein-type inequalities param-

eterize the concentration bound by the 𝑘th moments of the random variables being

summed [12–14, 30, 36, 37, 40, 45, 48, 63]. Most of the research in this direction has

been targeted towards applications in statistics and probability theory, rather than

to theoretical computer science.

The main contribution of this work is to explicitly formulate the multiplicative

analogue of Azuma’s inequality, and to discuss its application within algorithm anal-

ysis. We emphasise that the proof of the inequality is not, in itself, a substantial

contribution, since the inequality is relatively straightforward to derive by combin-

ing the proof of the multiplicative Chernoff bound with that of Azuma’s inequality.

Nonetheless, by presenting the theorem as a tool that can be directly referenced by

algorithm designers, we hope to simplify the task of proving concentration bounds

within the context of algorithm analysis.

Besides Azuma’s inequality, there are several other generalizations of Chernoff

bounds that are used in algorithm analysis. Chernoff-style bounds have been shown

to apply to sums of random variables that are negatively associated, rather than in-

dependent, and several works have developed useful techniques for identifying when

random variables are negatively associated [34,47,49,73]. Another common approach

is to show that a sum 𝑋 of not necessarily independent random variables is stochasti-

cally dominated by a sum 𝑋 ′ of independent random variables (see Lemma 3 of [4]),

thereby allowing for the application of Chernoff bounds to 𝑋.
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10.2 Multiplicative Azuma’s Inequality

In this section we prove the following theorem and corollary.

Theorem 32. Let 𝑍0, 𝑍1, . . . , 𝑍𝑛 be a supermartingale, meaning that E[𝑍𝑖 | 𝑍0, . . . , 𝑍𝑖−1] ≤

𝑍𝑖−1. Assume additionally that −𝑎𝑖 ≤ 𝑍𝑖 − 𝑍𝑖−1 ≤ 𝑏𝑖, where 𝑎𝑖 + 𝑏𝑖 = 𝑐 for some

constant 𝑐 > 0 independent of 𝑖. Let 𝜇 = ∑︀𝑛
𝑖=1 𝑎𝑖. Then for any 𝛿 > 0,

P[𝑍𝑛 − 𝑍0 ≥ 𝛿𝜇] ≤ exp
(︃
− 𝛿2𝜇

(2 + 𝛿)𝑐

)︃
.

Corollary 33. Let 𝑋1, . . . , 𝑋𝑛 ∈ [0, 𝑐] be real-valued random variables with 𝑐 > 0.

Suppose that E[𝑋𝑖 | 𝑋1, . . . , 𝑋𝑖−1] ≤ 𝑎𝑖 for all 𝑖. Let 𝜇 = ∑︀𝑛
𝑖=1 𝑎𝑖. Then for any 𝛿 > 0,

P
[︃∑︁

𝑖

𝑋𝑖 ≥ (1 + 𝛿)𝜇
]︃
≤ exp

(︃
− 𝛿2𝜇

(2 + 𝛿)𝑐

)︃
.

We start our proof by establishing a simple inequality.

Lemma 34. For any 𝑡 > 0 and any random variable 𝑋 such that E[𝑋] ≤ 0 and

−𝑎 ≤ 𝑋 ≤ 𝑏,

E
[︁
𝑒𝑡𝑋

]︁
≤ exp

(︂
𝑎

𝑎 + 𝑏

(︁
𝑒𝑡(𝑎+𝑏) − 1

)︁
− 𝑡𝑎

)︂
.

Proof. Consider the linear function 𝑓 defined on [−𝑎, 𝑏] that passes through points

(−𝑎, 𝑒−𝑡𝑎) and (𝑏, 𝑒𝑡𝑏). Since 𝑒𝑡𝑥 is convex, Jensen’s inequality states that 𝑓 upper

bounds 𝑒𝑡𝑥, implying that E[𝑒𝑡𝑋 ] ≤ E[𝑓(𝑋)]. Since 𝑓 is linear, E[𝑓(𝑋)] only depends

on E[𝑋], and one can derive that

E[𝑓(𝑋)] = 𝑏− E[𝑋]
𝑎 + 𝑏

𝑒−𝑡𝑎 + 𝑎 + E[𝑋]
𝑎 + 𝑏

𝑒𝑡𝑏.

This quantity is maximized when E[𝑋] is maximized at E[𝑋] = 0. Therefore,

E[𝑒𝑡𝑋 ] ≤ 𝑏

𝑎 + 𝑏
𝑒−𝑡𝑎 + 𝑎

𝑎 + 𝑏
𝑒𝑡𝑏
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= 𝑒−𝑡𝑎
(︂

1 + 𝑎

𝑎 + 𝑏

(︁
𝑒𝑡(𝑎+𝑏) − 1

)︁)︂
≤ exp

(︂
𝑎

𝑎 + 𝑏

(︁
𝑒𝑡(𝑎+𝑏) − 1

)︁
− 𝑡𝑎

)︂
.

Proof of Theorem 32. By Markov’s inequality, for any 𝑡 > 0 and 𝑣,

P[𝑍𝑛 − 𝑍0 ≥ 𝑣] = P
[︁
𝑒𝑡(𝑍𝑛−𝑍0) ≥ 𝑒𝑡𝑣

]︁
≤ E[𝑒𝑡(𝑍𝑛−𝑍0)]

𝑒𝑡𝑣
. (10.1)

Let 𝑋𝑖 = 𝑍𝑖−𝑍𝑖−1. Since 𝑍𝑖 is a supermartingale, for any 𝑖, E[𝑋𝑖 | 𝑍0, . . . , 𝑍𝑖−1] ≤ 0.

Moreover, from the assumptions in the problem, −𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖. Therefore, Lemma

34 applies to 𝑋 = (𝑋𝑖 | 𝑍0, . . . , 𝑍𝑖−1), and we have

E[𝑒𝑡𝑋𝑖 | 𝑍0, . . . , 𝑍𝑖−1] ≤ exp
(︂

𝑎𝑖

𝑐

(︁
𝑒𝑡𝑐 − 1

)︁
− 𝑡𝑎𝑖

)︂
. (10.2)

In the following derivation, which will involve expectations of expectations, it will be

important to understand which random variables each expectation is taken over. We

will adopt the notation E𝑆[𝑓(𝑆)] to denote an expectation taken over a set of random

variables 𝑆. Using (10.2) along with the law of total expectation, which states that

E𝑋,𝑌 [𝐴] = E𝑋 [E𝑌 [𝐴|𝑋]] for any random variable 𝐴 that is a function of random

variables 𝑋 and 𝑌 , we derive

E𝑍0,𝑋1,...,𝑋𝑖−1,𝑋𝑖

⎡⎣ 𝑖∏︁
𝑗=1

𝑒𝑡𝑋𝑗

⎤⎦ = E𝑍0,𝑋1,...,𝑋𝑖−1

⎡⎣E𝑋𝑖

⎡⎣ 𝑖∏︁
𝑗=1

𝑒𝑡𝑋𝑗

⃒⃒⃒⃒
⃒⃒ 𝑍0, 𝑋1, . . . , 𝑋𝑖−1

⎤⎦⎤⎦
= E𝑍0,𝑋1,...𝑋𝑖−1

⎡⎣⎛⎝𝑖−1∏︁
𝑗=1

𝑒𝑡𝑋𝑗

⎞⎠E𝑋𝑖

[︁
𝑒𝑋𝑖

⃒⃒⃒
𝑍0, 𝑋1 . . . , 𝑋𝑖−1

]︁⎤⎦
= E𝑍0,𝑋1,...𝑋𝑖−1

⎡⎣⎛⎝𝑖−1∏︁
𝑗=1

𝑒𝑡𝑋𝑗

⎞⎠E𝑋𝑖

[︁
𝑒𝑋𝑖

⃒⃒⃒
𝑍0, 𝑍1, . . . , 𝑍𝑖−1

]︁⎤⎦
≤ E𝑍0,𝑋1,...𝑋𝑖−1

⎡⎣⎛⎝𝑖−1∏︁
𝑗=1

𝑒𝑡𝑋𝑗

⎞⎠ exp
(︂

𝑎𝑖

𝑐

(︁
𝑒𝑡𝑐 − 1

)︁
− 𝑡𝑎𝑖

)︂⎤⎦
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= exp
(︂

𝑎𝑖

𝑐

(︁
𝑒𝑡𝑐 − 1

)︁
− 𝑡𝑎𝑖

)︂
E𝑍0,𝑋1,...𝑋𝑖−1

⎡⎣𝑖−1∏︁
𝑗=1

𝑒𝑡𝑋𝑗

⎤⎦ .

By applying the above inequality iteratively, we arrive at the following:

E[𝑒𝑡(𝑍𝑛−𝑍0)] = E𝑍0,𝑋1,...,𝑋𝑛

[︃
𝑛∏︁

𝑖=1
𝑒𝑡𝑋𝑖

]︃

≤
𝑛∏︁

𝑖=1
exp

(︂
𝑎𝑖

𝑐
(𝑒𝑡𝑐 − 1)− 𝑡𝑎𝑖

)︂

= exp
(︂

𝜇

𝑐

(︁
𝑒𝑡𝑐 − 1

)︁
− 𝑡𝜇

)︂
.

By (10.1), we have

P[𝑍𝑛 − 𝑍0 ≥ 𝑣] ≤ exp
(︂

𝜇

𝑐

(︁
𝑒𝑡𝑐 − 1

)︁
− 𝑡𝜇− 𝑡𝑣

)︂
.

Plugging in 𝑡 = (ln(1 + 𝛿))/𝑐 and 𝑣 = 𝛿𝜇 for 𝛿 > 0 yields

P[𝑍𝑛 − 𝑍0 ≥ 𝛿𝜇] ≤ exp
(︃

𝜇𝛿

𝑐
− 𝜇

𝑐
ln(1 + 𝛿)− 𝜇

𝑐
𝛿 ln(1 + 𝛿)

)︃

= exp
(︂

𝜇

𝑐
(𝛿 − (1 + 𝛿) ln(1 + 𝛿))

)︂
.

For any 𝛿 > 0,

𝛿 − (1 + 𝛿) ln(1 + 𝛿) ≤ − 𝛿2

2 + 𝛿
,

which can be seen by inspecting the derivative of both sides.3 As a result,

P[𝑍𝑛 − 𝑍0 ≥ 𝛿𝜇] ≤ exp
(︃
− 𝛿2𝜇

(2 + 𝛿)𝑐

)︃
.

Remark. A stronger but more unwieldy bound may sometimes be helpful. By skip-

3Consider 𝑓(𝑥) = 𝑥/(1 + 𝑥) − ln(1 + 𝑥) + 𝑥2/((1 + 𝑥)(2 + 𝑥)). Then 𝑓(0) = 0 and 𝑓 ′(𝑥) =
−𝑥2/

(︀
(1 + 𝑥)(2 + 𝑥)2)︀ ≤ 0 for 𝑥 ≥ 0. Therefore, 𝑓(𝑥) ≤ 0 for 𝑥 ≥ 0, and the inequality holds for

𝛿 > 0.
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ping the approximation of 𝛿 − (1 + 𝛿) ln(1 + 𝛿), we derive

P[𝑍𝑛 − 𝑍0 ≥ 𝛿𝜇] ≤
(︃

𝑒𝛿

(1 + 𝛿)(1+𝛿)

)︃𝜇/𝑐

.

We conclude the section by proving Corollary 33.

Proof of Corollary 33. Define 𝑍𝑖 = ∑︀𝑖
𝑗=1(𝑋𝑗 − 𝑎𝑗). Note that 𝑍𝑖 − 𝑍𝑖−1 = 𝑋𝑖 − 𝑎𝑖.

The given condition

E[𝑋𝑖 | 𝑋1, . . . , 𝑋𝑖−1] ≤ 𝑎𝑖

implies that

E[𝑍𝑖 − 𝑍𝑖−1 | 𝑍0, . . . , 𝑍𝑖−1] = E[𝑍𝑖 − 𝑍𝑖−1 | 𝑋1, . . . , 𝑋𝑖−1] ≤ 0

and thus that 𝑍𝑖 is a supermartingale. Moreover, as each 𝑋𝑖 ∈ [0, 𝑐], we have that

𝑍𝑖 − 𝑍𝑖−1 ≥ −𝑎𝑖, 𝑍𝑖 − 𝑍𝑖−1 ≥ 𝑐− 𝑎𝑖. Setting 𝜇 = ∑︀𝑛
𝑖=1 𝑎𝑖, Theorem 32 implies

P[𝑍𝑛 − 𝑍0 ≥ 𝛿𝜇] ≤ exp
(︃
− 𝛿2𝜇

(2 + 𝛿)𝑐

)︃
.

We may break down 𝑍𝑛 − 𝑍0 as

𝑍𝑛 − 𝑍0 =
𝑛∑︁

𝑖=1
(𝑍𝑖 − 𝑍𝑖−1)

=
𝑛∑︁

𝑖=1
(𝑋𝑖 − 𝑎𝑖)

=
𝑛∑︁

𝑖=1
𝑋𝑖 − 𝜇.

Therefore,

P
[︃

𝑛∑︁
𝑖=1

𝑋𝑖 ≥ (1 + 𝛿)𝜇
]︃
≤ exp

(︃
− 𝛿2𝜇

(2 + 𝛿)𝑐

)︃
.
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10.3 Analyzing the (𝑃, 𝑀)-Recyling Game

In this section we revisit the analysis of the (𝑃, 𝑀)-recycling game given in [18]. We

begin by defining the game and explaining why the analysis given in [18] is incorrect.

Then we apply Theorem 32 to obtain a simple and correct analysis.

Defining the Game

The (𝑃, 𝑀)-recycling game is a combinatorial game, in which balls labelled 1 to 𝑃

are tossed at random into 𝑃 bins. Initially, all 𝑃 balls are in a reservoir separate

from the 𝑃 bins. At each step of the game, the player executes the following two

operations in sequence:

1. The player chooses some of the balls in the reservoir (possibly all and possibly

none). For each of these balls, the player removes it from the reservoir, selects

one of the 𝑃 bins uniformly and independently at random, and tosses the ball

into it.

2. The player inspects each of the 𝑃 bins in turn, and for each bin that contains

at least one ball, the player removes any one of the balls in the bin and returns

it to the reservoir.

The player is permitted to make a total of 𝑀 ball tosses. The game ends when 𝑀

ball tosses have been made and all balls have been removed from the bins and placed

back in the reservoir. The player is allowed to base their strategy (how many/which

balls to toss) depending on outcomes from previous turns.

After each step 𝑡 of the game, there are some number 𝑛𝑡 of balls left in the bins.

The total delay is defined as 𝐷 = ∑︀𝑇
𝑡=1 𝑛𝑡, where 𝑇 is the total number of steps in

the game. Equivalently, if we define the delay of a ball 𝑏 being tossed into a bin 𝑖 to

be the number of balls already present in bin 𝑖 at the time of the toss, then the total

delay is the sum of the delays of all ball tosses.

We would like to give high probability bounds on the total delay, no matter what

strategy the player takes.
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An Incorrect Analysis of the Recycling Game

The following bound is given by [18].

Theorem 35 (Lemma 6 in [18]). For any 𝜀 > 0, with probability at least 1− 𝜀, the

total delay in the (𝑃, 𝑀)-recycling game is 𝑂(𝑀 + 𝑃 log 𝑃 + 𝑃 log 𝜀−1).

In order to prove Theorem 35, the authors [18] sketch a complicated combinatorial

analysis of the game. Define the indicator random variable 𝑥𝑖𝑟 to be 1 if the 𝑖th toss

of ball 1 is delayed by ball 𝑟, and 0 otherwise. A key component in the analysis [18]

is to show that,4 for any set 𝑅 ⊆ [𝑃 ] of balls,

Pr[𝑥𝑖𝑟 for all 𝑟 ∈ 𝑅] ≤ 𝑃 −|𝑅|. (10.3)

Unfortunately, due to subtle dependencies between the random variables 𝑥𝑖𝑟,

(10.3) is not true (or even close to true). To see why, suppose that the player (i.e.,

the adversary) takes the following strategy: Throw balls 𝐴 = {2, 3, . . . , 𝑃} in the first

step. If the balls in 𝐴 do not land in the same bin, then wait 𝑃 − 1 steps until all

bins are empty, and throw the balls in 𝐴 again. Continue rethrowing until there is

some step 𝑡 in which all of the balls in 𝐴 land in the same bin. At the end of step 𝑡,

remove ball 2, leaving balls 3, 4, . . . , 𝑃 in the same bin as each other. Then on step

𝑡 + 1 perform the first throw of ball 1.

If 𝑀 is sufficiently large so that all balls in 𝐴 almost certainly land together before

the process ends, then the probability that the first throw of ball 1 lands in the same

bin as balls 3, 4, . . . , 𝑃 is approximately 1/𝑃 . In contrast, (10.3) claims to bound the

same probability by 1/𝑃 𝑃 −2.

The difficulty of proving Theorem 35 via an ad-hoc combinatorial argument is

further demonstrated by another error in [18]’s analysis. Throughout the proof, the

authors define 𝑚𝑖 to be the number of times that ball 𝑖 is thrown, and then treat

each 𝑚𝑖 as taking a fixed value. In actuality, however, the 𝑚𝑖’s are random variables

that are partially controlled by an adversary (i.e., the player of the game), meaning
4In fact, the analysis requires a somewhat stronger property to be shown. But for simplicity of

exposition, we focus on this simpler variant.
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that the outcomes of the 𝑚𝑖’s may be linked to the outcomes of the 𝑥𝑖,𝑟’s. This

consideration adds even further dependencies that must be considered in order to

obtain a correct analysis.

A Simple and Correct Analysis Using Multiplicative Azuma’s

Inequality

We now give a simple (and correct) analysis of the (𝑃, 𝑀)-recycling game using the

multiplicative version of Azuma’s inequality. In fact, we prove a slightly stronger

bound than Theorem 35.

Theorem 36. For any 𝜀 > 0, with probability at least 1 − 𝜀, the total delay in the

(𝑃, 𝑀)-recycling game is 𝑂(𝑀 + 𝑃 log(1/𝜀)).

Proof. For 𝑖 = 1, 2, . . . , 𝑀 , define the delay 𝑋𝑖 of the 𝑖th toss to be the number of

balls in the bin that the 𝑖th toss lands in, not counting the 𝑖th toss itself. The total

delay can be expressed as 𝐷 = ∑︀𝑀
𝑖=1 𝑋𝑖.

As the player’s strategy can adapt to the outcomes of previous tosses, the 𝑋𝑖’s

may have complicated dependencies. Nonetheless, since there are at most 𝑃 − 1 balls

present at time of the 𝑖th toss, we know that 𝑋𝑖 ∈ [0, 𝑃 ]. Moreover, since the toss

selects a bin {1, 2, . . . , 𝑃} at random, each ball present at the time of the toss has

probability 1/𝑃 of contributing to the delay 𝑋𝑖. Thus, no matter the outcomes of

𝑋1, . . . , 𝑋𝑖−1, we have that E[𝑋𝑖 | 𝑋1, . . . , 𝑋𝑖−1] ≤ (𝑃 − 1)/𝑃 ≤ 1. We can therefore

apply Corollary 33, with 𝑎𝑖 = 1 for all 𝑖 and 𝑐 = 𝑃 , to deduce that

Pr[𝐷 ≥ (1 + 𝛿)𝑀 ] ≤ exp
(︃
− 𝛿2𝑀

(2 + 𝛿)𝑃

)︃
. (10.4)

If 𝑀 ≥ 𝑃 ln(1/𝜀), we may substitute 𝛿 = 2 into (10.4) to derive P[𝐷 ≥ 3𝑀 ] ≤

exp (−𝑀/𝑃 ) ≤ 𝜀. If 𝑀 ≤ 𝑃 ln(1/𝜀), we may instead substitute 𝛿 = 2𝑃 ln(1/𝜀)/𝑀 .

As 𝛿 ≥ 2, we have 𝛿/(2 + 𝛿) ≥ 1/2, and we derive P [𝐷 ≥𝑀 + 2𝑃 ln(1/𝜀)] ≤

exp (−𝛿𝑀/(2𝑃 )) = 𝜀.
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In either case, P [𝐷 ≥ 3𝑀 + 2𝑃 ln(1/𝜀)] ≤ 𝜀, which proves the theorem statement.

Why Standard Azuma’s Inequality Does Not Suffice

In order to fully understand the proof of Theorem 36, it is informative to consider

what happens if we attempt to use (the standard) Azuma’s inequality to analyze

𝐷 = ∑︀𝑀
𝑖=1 𝑋𝑖. Applying Corollary 31 with 𝑐𝑖 = 𝑃 for all 𝑖, we get that

Pr[𝐷 > (1 + 𝛿)𝑀 ] ≤ exp
(︃
−(𝛿𝑀)2

2𝑀𝑃 2

)︃
= exp

(︃
−𝛿2𝑀

2𝑃 2

)︃
. (10.5)

In contrast, for 𝛿 ≥ 2, Corollary 33 gives a bound of

Pr[𝐷 > (1 + 𝛿)𝑀 ] ≤ exp
(︃
− 𝛿2𝑀

(2 + 𝛿)𝑃

)︃
≤ exp

(︃
−𝛿𝑀

2𝑃

)︃
. (10.6)

Since 𝐷 ≤ 𝑃𝑀 trivially, the interesting values for 𝛿 are 𝛿 ≤ 𝑃 . On the other hand,

for all 𝛿 satisfying 2 ≤ 𝛿 < 𝑃 , the bound given by (10.6) is stronger than the bound

given by (10.5). The reason that the multiplicative version of Azuma’s does better

than the additive version is that the random variables 𝑋𝑖 have quite small means,

meaning that the 𝑎𝑖’s used by the multiplicative bound are much smaller than the 𝑐𝑖’s

used by the additive bound. When 𝛿 is a constant, this results in a full factor-of-Θ(𝑃 )

difference in the exponent achieved by the two bounds. It is not possible to derive a

𝑂(𝑀 + 𝑃 log 𝜀−1) high probability bound with (10.5) alone.

10.4 Adversarial Multiplicative Azuma’s Inequal-

ity

In this section, we extend Theorem 32 and Corollary 33 in order to allow for the values

𝑎1, 𝑎2, . . . , 𝑎𝑛 and 𝑏1, 𝑏2, . . . , 𝑏𝑛 to be random variables that are determined adaptively.

Formally, we define the supermartingale 𝑍0, . . . , 𝑍𝑛 with respect to a filtration, and

then defining 𝑎1, 𝑎2, . . . , 𝑎𝑛 and 𝑏1, 𝑏2, . . . , 𝑏𝑛 to be predictable processes with respect
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to that same filtration.

The statement of Theorem 37 uses several notions that are standard in probability

theory (see, e.g., [66] and [15] for formal definitions) but less standard in theoretical

computer science.

Theorem 37. Let 𝑍0, . . . 𝑍𝑛 be a supermartingale with respect to the filtration

𝐹0, . . . , 𝐹𝑛, and let 𝐴1, . . . , 𝐴𝑛 and 𝐵1, . . . , 𝐵𝑛 be predictable processes with respect

to the same filtration. Suppose there exist values 𝑐 > 0 and 𝜇, satisfying that

−𝐴𝑖 ≤ 𝑍𝑖 − 𝑍𝑖−1 ≤ 𝐵𝑖, 𝐴𝑖 + 𝐵𝑖 = 𝑐, and ∑︀𝑛
𝑖=1 𝐴𝑖 ≤ 𝜇 (almost surely). Then for

any 𝛿 > 0,

P[𝑍𝑛 − 𝑍0 ≥ 𝛿𝜇] ≤ exp
(︃
− 𝛿2𝜇

(2 + 𝛿)𝑐

)︃
.

Corollary 38. Suppose that Alice constructs a sequence of random variables 𝑋1, . . . 𝑋𝑛,

with 𝑋𝑖 ∈ [0, 𝑐], 𝑐 > 0, using the following iterative process. Once the outcomes of

𝑋1, . . . , 𝑋𝑖−1 are determined, Alice then selects the probability distribution 𝒟𝑖 from

which 𝑋𝑖 will be drawn; 𝑋𝑖 is then drawn from distribution 𝒟𝑖. Alice is an adap-

tive adversary in that she can adapt 𝒟𝑖 to the outcomes of 𝑋1, . . . , 𝑋𝑖−1. The only

constraint on Alice is that ∑︀𝑖 E[𝑋𝑖 | 𝒟𝑖] ≤ 𝜇, that is, the sum of the means of the

probability distributions 𝒟1, . . . ,𝒟𝑛 must be at most 𝜇.

If 𝑋 = ∑︀
𝑖 𝑋𝑖, then for any 𝛿 > 0,

P[𝑋 ≥ (1 + 𝛿)𝜇] ≤ exp
(︃
− 𝛿2𝜇

(2 + 𝛿)𝑐

)︃
.

Remark. Formally, a filtration 𝐹0, . . . , 𝐹𝑛−1 is a sequence of 𝜎-algebras such that

𝐹𝑖 ⊆ 𝐹𝑖+1 for each 𝑖. Informally, one can simply think of the 𝐹𝑖’s as revealing

“random bits.” For each 𝑖, 𝐹𝑖 reveals the set of random bits used to determine all of

𝑍0, . . . , 𝑍𝑖, 𝐴0, . . . , 𝐴𝑖, and 𝐵0, . . . , 𝐵𝑖. The fact that 𝑍0, 𝑍1, . . . , 𝑍𝑛 is a martingale

with respect to 𝐹0, 𝐹1, . . . , 𝐹𝑛−1 means simply that the random bits 𝐹𝑖 determine

𝑍𝑖 (that is, 𝑍𝑖 is 𝐹𝑖-measurable), and that E[𝑍𝑖 | 𝐹𝑖−1] = 𝑍𝑖−1. The fact that
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𝐴1, . . . , 𝐴𝑛 and 𝐵1, . . . , 𝐵𝑛 are predictable processes, means simply that each 𝐴𝑖 and

𝐵𝑖 is determined by the random bits 𝐹𝑖−1 (that is, 𝐴𝑖, 𝐵𝑖 are 𝐹𝑖−1-measurable).

To prove Theorem 37, we prove the following key lemma:

Lemma 39. Let 𝑍0, . . . 𝑍𝑛 be a supermartingale with respect to the filtration 𝐹0, . . . , 𝐹𝑛,

and let 𝐴1, . . . , 𝐴𝑛 and 𝐵1, . . . , 𝐵𝑛 be predictable processes with respect to the same

filtration. Suppose there exist values 𝑐 > 0 and 𝜇, satisfying that −𝐴𝑖 ≤ 𝑍𝑖−𝑍𝑖−1 ≤

𝐵𝑖, 𝐴𝑖 + 𝐵𝑖 = 𝑐, and ∑︀𝑛
𝑖=1 𝐴𝑖 ≤ 𝜇 (almost surely). Then for any 𝑡 > 0,

E
[︁
𝑒𝑡(𝑍𝑛−𝑍0)

⃒⃒⃒
𝐹0
]︁
≤ exp

(︂
𝜇

𝑐
(𝑒𝑡𝑐 − 1)− 𝑡𝜇

)︂
.

Proof. We proceed by induction on 𝑛.

The base case. For 𝑛 = 0, 𝑍𝑛 − 𝑍0 = 0, and for any 𝑐, 𝑡 > 0, (𝑒𝑡𝑐 − 1)/𝑐 − 𝑡 > 0.

Therefore, 𝜇(𝑒𝑡𝑐 − 1)/𝑐− 𝑡𝜇 ≥ 0 = 𝑡(𝑍𝑛 − 𝑍0), and the inequality holds.

The inductive step. Assume that this statement is true for 𝑛 − 1, and we shall

prove it for 𝑛.

The law of total expectation states that for any random variable 𝑋 and any 𝜎-

algebras 𝐻1 ⊆ 𝐻2, E[E[𝑋 | 𝐻2] | 𝐻1] = E[𝑋 | 𝐻1]. As {𝐹𝑖} is a filtration, we know

𝐹𝑖−1 ⊆ 𝐹𝑖, and thus

E
[︁
𝑒𝑡(𝑍𝑛−𝑍0)

⃒⃒⃒
𝐹0
]︁

= E
[︁
E
[︁
𝑒𝑡(𝑍𝑛−𝑍0)

⃒⃒⃒
𝐹1
]︁ ⃒⃒⃒

𝐹0
]︁

.

Since 𝑒𝑡(𝑍1−𝑍0) is 𝐹1-measurable, we can pull it out of the expectation as follows:

E
[︁
E
[︁
𝑒𝑡(𝑍𝑛−𝑍0)

⃒⃒⃒
𝐹1
]︁ ⃒⃒⃒

𝐹0
]︁

= E
[︁
𝑒𝑡(𝑍1−𝑍0) · E

[︁
𝑒𝑡(𝑍𝑛−𝑍1)

⃒⃒⃒
𝐹1
]︁ ⃒⃒⃒

𝐹0
]︁

. (10.7)

Let 𝑍 ′
𝑖 = 𝑍𝑖+1, 𝐹 ′

𝑖 = 𝐹𝑖+1, 𝐴′
𝑖 = 𝐴𝑖+1, 𝐵′

𝑖 = 𝐵𝑖+1. We know that 𝑍 ′
0, . . . , 𝑍 ′

𝑛−1 is

a supermartingale with respect to 𝐹 ′
0, . . . , 𝐹 ′

𝑛−1. Additionally, we know 𝐴′
1, . . . , 𝐴′

𝑛−1

and 𝐵′
1, . . . , 𝐵′

𝑛−1 are predictable processes with respect to 𝐹 ′
0, . . . , 𝐹 ′

𝑛−1 satisfying

that −𝐴′
𝑖 ≤ 𝑍 ′

𝑖 − 𝑍 ′
𝑖−1 ≤ 𝐵′

𝑖, 𝐴′
𝑖 + 𝐵′

𝑖 = 𝑐, and ∑︀𝑛−1
𝑖=1 𝐴′

𝑖 ≤ 𝜇 − (𝐴1 | 𝐹0). Therefore,
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we may apply our inductive hypothesis to derive

E
[︁
𝑒𝑡(𝑍𝑛−𝑍1)

⃒⃒⃒
𝐹1
]︁

= E
[︁
𝑒𝑡(𝑍′

𝑛−1−𝑍′
0)
⃒⃒⃒
𝐹 ′

0

]︁
≤
(︂

exp
(︂

𝜇− 𝐴1

𝑐
(𝑒𝑡𝑐 − 1)− 𝑡(𝜇− 𝐴1)

)︂ ⃒⃒⃒⃒
𝐹0

)︂
. (10.8)

Combining (10.7) and (10.8), we find that

E
[︁
𝑒𝑡(𝑍𝑛−𝑍0)

⃒⃒⃒
𝐹0
]︁

= E
[︂
𝑒𝑡(𝑍1−𝑍0) · exp

(︂
𝜇− 𝐴1

𝑐
(𝑒𝑡𝑐 − 1)− 𝑡(𝜇− 𝐴1)

)︂ ⃒⃒⃒⃒
𝐹0

]︂
.

As 𝐴1 is 𝐹0-measurable, we can pull the exponential term out of the expectation to

arrive at

E
[︁
𝑒𝑡(𝑍𝑛−𝑍0)

⃒⃒⃒
𝐹0
]︁

=
(︂

exp
(︂

𝜇− 𝐴1

𝑐
(𝑒𝑡𝑐 − 1)− 𝑡(𝜇− 𝐴1)

)︂ ⃒⃒⃒⃒
𝐹0

)︂
E
[︁
𝑒𝑡(𝑍1−𝑍0)

⃒⃒⃒
𝐹0
]︁

.

(10.9)

Since 𝑍𝑖 is a supermartingale, E[𝑍1 − 𝑍0 | 𝐹0] ≤ 0. Therefore, Lemma 34 applies

to 𝑋 = (𝑍1 − 𝑍0 | 𝐹0), 𝑎 = (𝐴1 | 𝐹0), 𝑏 = (𝐵1 | 𝐹0), and we have

E[𝑒𝑡(𝑍1−𝑍0) | 𝐹0] ≤
(︂

exp
(︂

𝐴1

𝑐
(𝑒𝑡𝑐 − 1)− 𝑡𝐴1

)︂ ⃒⃒⃒⃒
𝐹0

)︂
. (10.10)

Combining (10.9) and (10.10), we have

E
[︁
𝑒𝑡(𝑍𝑛−𝑍0)

⃒⃒⃒
𝐹0
]︁
≤
(︂

exp
(︂

𝜇

𝑐
(𝑒𝑡𝑐 − 1)− 𝑡𝜇

)︂ ⃒⃒⃒⃒
𝐹0

)︂
= exp

(︂
𝜇

𝑐
(𝑒𝑡𝑐 − 1)− 𝑡𝜇

)︂
.

Proof of Theorem 37. By Lemma 39 and the law of total expectation,

E[𝑒𝑡(𝑍𝑛−𝑍0)] = E[E[𝑒𝑡(𝑍𝑛−𝑍0) | 𝐹0]]

≤ E
[︂
exp

(︂
𝜇

𝑐
(𝑒𝑡𝑐 − 1)− 𝑡𝜇

)︂]︂
= exp

(︂
𝜇

𝑐
(𝑒𝑡𝑐 − 1)− 𝑡𝜇

)︂
.

The rest of the proof is identical to the proof of Theorem 32.
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Corollary 38 is a straightforward application of Theorem 37.

Proof of Corollary 38. Define the filtration 𝐹0, 𝐹1, . . . , 𝐹𝑛 by

𝐹𝑖 = 𝜎(𝑋1, 𝑋2, . . . , 𝑋𝑖,𝒟1,𝒟2, . . . ,𝒟𝑖+1).

That is, 𝐹𝑖 is the smallest 𝜎-algebra with respect to which all of 𝑋1, 𝑋2, . . . , 𝑋𝑖 and

𝒟1,𝒟2, . . . ,𝒟𝑖+1 are measurable.

Define 𝐴𝑖 = E[𝑋𝑖 | 𝒟𝑖] to be the expected value of 𝑋𝑖 once its distribution is

determined, and 𝐵𝑖 = 𝑐− 𝐴𝑖. Define 𝑍0, . . . , 𝑍𝑛 to be given by

𝑍𝑖 =
𝑖∑︁

𝑗=1
𝑋𝑖 −

𝑖∑︁
𝑗=1

𝐴𝑖.

Since 𝐴𝑖 and 𝐵𝑖 are 𝐷𝑖-measurable and 𝐹𝑖−1 contains 𝐷𝑖, we know that 𝐴𝑖 and 𝐵𝑖

are also 𝐹𝑖−1-measurable, implying that they are predictable processes with respect

to filtration 𝐹0, ..., 𝐹𝑛.

As each 𝑋𝑖 is drawn from distribution 𝐷𝑖 after all of 𝑋1, ..., 𝑋𝑖−1 and 𝐷1, ..., 𝐷𝑖

have been determined, we have E[𝑋𝑖 | 𝐹𝑖−1] = E[𝑋𝑖 | 𝐷𝑖]. We can then compute that

E[𝑍𝑖 | 𝐹𝑖−1] = E[𝑋𝑖 − 𝐴𝑖 + 𝑍𝑖−1 | 𝐹𝑖−1]

= E[𝑋𝑖 | 𝐹𝑖−1]− 𝐴𝑖 + 𝑍𝑖−1

= E[𝑋𝑖 | 𝐷𝑖]− 𝐴𝑖 + 𝑍𝑖−1

= 𝑍𝑖−1,

implying that 𝑍0, ..., 𝑍𝑛 is a martingale with respect to filtration 𝐹0, ..., 𝐹𝑛.

Finally, {𝑍𝑖}, {𝐴𝑖} and {𝐵𝑖} satisfy the requirements of Theorem 37, namely that

−𝐴𝑖 ≤ 𝑍𝑖−𝑍𝑖−1 ≤ 𝐵𝑖, that 𝐴𝑖 + 𝐵𝑖 = 𝑐, and that ∑︀𝑖 𝐴𝑖 ≤ 𝜇. Thus, by Theorem 37,

P[𝑍𝑛 ≥ 𝛿𝜇] ≤ exp
(︃
− 𝛿2𝜇

(2 + 𝛿)𝑐

)︃
.

126



Expanding out 𝑍𝑛 gives

P
[︃∑︁

𝑖

𝑋𝑖 ≥
∑︁

𝑖

𝐴𝑖 + 𝛿𝜇

]︃
≤ exp

(︃
− 𝛿2𝜇

(2 + 𝛿)𝑐

)︃
,

and thus we have

P
[︃∑︁

𝑖

𝑋𝑖 ≥ (1 + 𝛿)𝜇
]︃
≤ exp

(︃
− 𝛿2𝜇

(2 + 𝛿)𝑐

)︃
,

as desired.

Applications of Theorem 37 in Concurrent Work

By allowing for an adaptive adversary, Theorem 37 naturally lends itself to appli-

cations with online adversaries. We conclude the section by briefly discussing two

applications of Theorem 37 that have arisen in several of our recent concurrent works.

In both cases, Theorem 37 significantly simplified the task of analyzing an algorithm.

Edge orientation in incremental forests In [10], Bender et al. consider the prob-

lem of edge orientation in an incremental forest. In this problem, edges 𝑒1, 𝑒2, . . . , 𝑒𝑘

of a forest arrive one by one, and we are responsible for maintaining an orientation of

the edges (i.e., an assignment of directions to the edges) such that every vertex has

out-degree at most 𝑂(1). As each edge 𝑒𝑖 arrives, we may need to flip the orientations

of other edges in order to accommodate the newly arrived edge. The goal in [10] is to

flip at most 𝑂(log log 𝑛) orientations per edge insertion (with high probability). We

refer to an edge insertion as a step.

A key component of the algorithm in [10] is that vertices may “volunteer” to

have their out-degree incremented during a given step. During each step 𝑖, there are

polylog 𝑛 vertices 𝑆𝑖 that are eligible to volunteer, and each of these vertices volunteers

with probability 1/ polylog 𝑛. The algorithm is designed to satisfy the property that

each vertex 𝑣 can appear in at most 𝑂(log 𝑛) 𝑆𝑖’s.

An essential piece of the analysis is to show that, for any set 𝑆 of size polylog 𝑛,
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the number of vertices in 𝑆 that ever volunteer is at most |𝑆|/2 (with high proba-

bility). On a given step 𝑖, the expected number of vertices in 𝑆 that volunteer is

|𝑆 ∩ 𝑆𝑖|/ polylog 𝑛. 𝑆𝑖 is partially a function of the algorithm’s past randomness,

and thus 𝑆𝑖 are effectively selected by an adaptive adversary, subject to the con-

straint that each vertex 𝑣 appears in at most 𝑂(log 𝑛) 𝑆𝑖’s. By applying Theorem 37,

one can deduce that the number of vertices in 𝑆 that volunteer is small (with high

probability).

Note that, since |𝑆| = polylog 𝑛, a bound with additive error would not suffice

here. Such a bound would allow for the number of vertices that volunteer to deviate

by Ω(
√

𝑛) from its mean, which is larger than |𝑆|/2.

Task scheduling against an adaptive adversary Another concurrent work to

ours [11] considers a scheduling problem in which the arrival of new work to be

scheduled is controlled by a (mostly) adaptive adversary. In particular, although the

amount of new work that arrives during each step is fixed (to 1 − 𝜖), the tasks to

which that new work is assigned are determined by the adversary. The scheduling

algorithm is then allowed to select a single task to perform 1 unit of work on. The

goal is to design a scheduling algorithm that prevents the backlog (i.e., the maximum

amount of unfinished work for any task) from becoming too large.

Due to the complexity of the algorithm in [11], we cannot explain in detail the

application of Theorem 37. The basic idea, however, is that the adversary must decide

how to allocate its resources across tasks over time, but that the adversary can adapt

(in an online fashion) to events that it has observed in the past. Theorem 37 allows

for the authors of [11] to obtain Chernoff-style bounds on the number of a certain

“bad events” that occur, while handling the adaptiveness of the adversary.
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Chapter 11

Counterexample to the Naive

Parallel Dijkstra’s Algorithm

11.1 Introduction

The single-source shortest path (SSSP) problem on graphs with non-negative weights

is an extremely well studied and practically important problem in graph theory. For

a graph 𝐺 with vertex set 𝑉 , source vertex 𝑠 ∈ 𝑉 , edge set 𝐸, and edge weights

𝑤 : 𝐸 → R+, the SSSP problem finds the length of the shortest path from 𝑠 to every

vertex 𝑢 ∈ 𝑉 , where the length of a path is the sum of the weights of its edges.

In the serial setting, Dijkstra’s algorithm [32] using Fibonacci heaps [39] achieves

the best known serial asymptotic running time of 𝑂(|𝐸| + |𝑉 | log |𝑉 |) for general

graphs. Better running times are known for special cases; for instance, [71] presents

an algorithm with 𝑂(|𝐸|+ |𝑉 |) running time for graphs with integer edge weights.

Finding an efficient parallel algorithm for the SSSP problem is notoriously difficult.

The Δ-stepping algorithm presented in [61] has good empirical performance on many

kinds of graphs, but has no good theoretical guarantees on general graphs. A number

of other algorithms have been proposed, such as [16, 26, 29, 50, 68], but none are able

to both match the optimal work bound of 𝑂(|𝐸|+ |𝑉 | log |𝑉 |) and achieve low span.

One intuitive solution to the SSSP problem directly parallelizes Dijkstra’s algo-

rithm. Instead of extracting the lowest cost vertex and processing it in each step, the
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𝑃 lowest cost vertices can be extracted at the same time and processed in parallel

on 𝑃 processors. As we’ll see in this chapter, this seemingly reasonable algorithm

is in fact fundamentally flawed. I construct a class of graphs on which this parallel

algorithm achieves no speedup over the serial Dijkstra’s algorithm.

11.2 Naive Parallelization of Dijkstra’s Algorithm

We start by recalling the serial version of Dijkstra’s algorithm. The following pseu-

docode presents a slightly non-standard version of Dijkstra’s algorithm that is conve-

nient to parallelize.

Serial Dijkstra’s Algorithm
1: function Dijkstra(𝐺, 𝑤, 𝑠)
2: for 𝑢 ∈ 𝐺.𝑉 do
3: 𝑑[𝑢]←∞
4: end for
5: 𝑑[𝑠]← 0
6: 𝑄← {𝑠}
7: while 𝑄 ̸= ∅ do
8: 𝑢← Extract-Min(𝑄)
9: for edges 𝑢𝑣 do

10: Relax(𝑢, 𝑣, 𝑤, 𝑄)
11: end for
12: end while
13: end function
14: function Relax(𝑢, 𝑣, 𝑤, 𝑄)
15: if 𝑑[𝑣] > 𝑑[𝑢] + 𝑤(𝑢𝑣) then
16: 𝑑[𝑣]← 𝑑[𝑢] + 𝑤(𝑢𝑣)
17: 𝑄.Insert(𝑣) ◁ Reinsertion equivalent to no-op
18: end if
19: end function

Dijkstra’s algorithm keeps track of a measure of tentative distance, 𝑑, and a

priority queue 𝑄 of vertices to be visited. The algorithm proceeds in rounds. In each

round, the algorithm extracts the vertex 𝑢 in 𝑄 with the lowest tentative distance,

and relaxes all edges from 𝑢. If the length of the path to a neighbor 𝑣 through 𝑢

is shorter than the recorded tentative distance to 𝑣, then the tentative distance is
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updated and 𝑣 added to the priority queue of vertices to be examined. It is possible

for a vertex already in the priority queue to be inserted again in this process; such a

re-insert has no effect on the priority queue.

A vertex 𝑢 is said to be settled if its tentative distance 𝑑(𝑢) equals the length of

the true shortest distance path to 𝑢. Dijkstra’s algorithm satisfies the key property

that the vertex 𝑢 with the lowest tentative distance extracted from 𝑄 in each round

must be settled. This property is proven on [27, p. 660]. The tentative distance

of a settled vertex cannot be further improved; as a result, a vertex that has been

extracted in this algorithm is never inserted back into 𝑄 and extracted a second time.

The algorithm is thus guaranteed to end after |𝑉 | rounds.

Serial Dijkstra’s algorithm can be parallelized by extracting up to 𝑃 vertices in

each round instead of a single vertex, where the extracted vertices are examined in

parallel on 𝑃 processors. The efficiency of the algorithm depends heavily on which

vertices are extracted. Extracting and processing a vertex 𝑢 that is not settled is a

waste of work, since the tentative distance of 𝑢 will later decrease, and vertex 𝑢 will

be added back into the queue and extracted again. The ideal algorithm only extracts

settled vertices in each round.1

Unfortunately, it is difficult to determine which vertices, besides the one with the

lowest tentative distance, are settled. The most intuitive and naive alternative is to

extract the 𝑃 vertices with the lowest tentative distances.

It turns out that this naive approach does not always work well. I will construct

a family of graphs where this parallel approach performs poorly. When the algorithm

is run on these graphs, the priority queue 𝑄 almost always contains a large number

of settled vertices. Nonetheless, the algorithm is “tricked” into extracting the wrong

vertices; only one vertex out of the 𝑃 extracted vertices in each round is settled, and

the rest of the work is wasted. As a result, the parallel Dijkstra’s algorithm achieves

almost no speedup over the serial Dijkstra’s algorithm on these graphs.

1Note that some graphs do not benefit from this parallelization approach as there are not enough
settled vertices in 𝑄 in each round. For instance, if the graph is simply a path with the source vertex
𝑠 being one end of the path, then the priority queue 𝑄 never contains more than one vertex.
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Naive Parallel Dijkstra’s Algorithm
1: function Dijkstra(𝐺, 𝑤, 𝑠)
2: for 𝑢 ∈ 𝐺.𝑉 do
3: 𝑑[𝑢]←∞
4: end for
5: 𝑑[𝑠]← 0
6: 𝑄← {𝑠}
7: while 𝑄 ̸= ∅ do
8: 𝑢1, · · · , 𝑢𝑃 ← Extract-P-Min(𝑄) ◁ Extracts fewer if |𝑄| < 𝑃
9: parallel for 𝑢𝑖 ∈ {𝑢1, · · · , 𝑢𝑃} do

10: for edges 𝑢𝑖𝑣 do
11: Relax(𝑢, 𝑣, 𝑤, 𝑄)
12: end for
13: end for
14: end while
15: end function
16: function Relax(𝑢, 𝑣, 𝑤, 𝑄)
17: if 𝑑[𝑣] > 𝑑[𝑢] + 𝑤(𝑢𝑣) then
18: 𝑑[𝑣]← 𝑑[𝑢] + 𝑤(𝑢𝑣)
19: 𝑄.Insert(𝑣) ◁ Reinsertion equivalent to no-op
20: end if
21: end function

11.3 Construction of Counterexample

Denote the family of graphs by 𝒢 = {𝐺1, 𝐺2, · · · }. 𝐺𝑘 is constructed in two stages.

First, construct the subgraph 𝐴 as shown in Figure 11-1. Subgraph 𝐴 contains

2𝑘 + 1 vertices labelled 𝑎1, · · · , 𝑎2𝑘+1. Each vertex 𝑎𝑖, 1 ≤ 𝑖 ≤ 2𝑘 is connected to 𝑎𝑖+1

by an edge of weight 1, and each vertex 𝑎2𝑖−1, 1 ≤ 𝑖 ≤ 𝑘 is connected to 𝑎2𝑖+1 by an

edge of weight 3.

Next, using the subgraph 𝐴, construct 𝐺𝑘 as shown in Figure 11-2. Start with

a full and complete binary tree with 𝑘 layers of edges. For edges in layer 𝑖, where

edges incident to the root are in layer 1 and edges incident to the leaves are in layer

𝑘, give all left-pointing edges a weight of 0 and all right-pointing edges a weight of

2𝑘−𝑖. Finally, attach subgraph 𝐴 to every leaf node of this binary tree. The subgraph

𝐴 attached to the 𝑖th leaf node (counting from the left, starting at 0) is labelled by

𝐴𝑖, and its vertices from top to bottom are labelled 𝑎𝑖
1, 𝑎𝑖

2, · · · , 𝑎𝑖
2𝑘+1.
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Figure 11-1: Subgraph 𝐴. The entire subgraph is represented by a tag with letter 𝐴
inside.

Figure 11-2: Graph 𝐺𝑘.
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Note that this construction 𝐺𝑘 has a number of desirable properties. It is sparse

with a maximum degree of merely 4. It has a low diameter, and in fact does not

contain any long, cycle-free paths at all. A longest path through this graph starts at

the bottom of a subgraph 𝐴𝑖, passes through the root of the binary tree, then ends

at the bottom of another subgraph 𝐴𝑗, for a total length of ≈ 6𝑘 = 𝑂(log |𝑉 |).

Since 𝐺𝑘 does not contain long paths, the parallel Dijkstra’s algorithm is not

bottlenecked by a lack of settled vertices in the priority queue 𝑄. Nonetheless, we’ll

see that the algorithm almost never extracts more than one settled vertex in each

round.

11.4 Proof that Naive Parallel Dijkstra’s Algorithm

Fails on Construction

This section proves that parallel Dijkstra’s algorithm takes nearly |𝑉 | rounds to com-

plete. Since the serial Dijkstra’s algorithm takes |𝑉 | rounds to complete, this shows

that the parallel algorithm achieves almost no speedup over its serial counterpart.

Theorem 40. For a fixed constant 𝑃 , parallel Dijkstra’s algorithm on 𝑃 processors

takes |𝑉 | · (1− 𝑜(1)) rounds to complete on the family of graphs 𝐺𝑘.

Intuition

Before diving into a precise proof, we’ll see an intuitive explanation of why this

theorem holds.

The 𝐴 subgraphs are constructed such when the parallel Dijkstra’s algorithm is

run on just 𝐴, with the exception of 𝑃 rounds to ramp up at the beginning and 𝑃

rounds at the end, the priority queue 𝑄 always contains at least 𝑃 vertices available

to be extracted. However, the true shortest path to each vertex in 𝐴 only contains

edges of weight 1, and thus only one vertex in 𝑄 is actually settled in each step.

The binary tree in 𝐺𝑘 ensures that the distances to the first vertex in different 𝐴

subgraphs are far apart. Therefore, when the parallel Dijkstra’s algorithm is run on
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𝐺𝑘, tentative distances to vertices in subgraph 𝐴𝑖 are always all less than tentative

distances to vertices in 𝐴𝑗 for 𝑖 < 𝑗.

As a result, even though multiple settled vertices belonging to different 𝐴 sub-

graphs are available in 𝑄, the algorithm generally only extracts vertices from one

particular 𝐴 subgraph and thus only extract a single settled vertex in each round.

The algorithm ends after all |𝑉 | vertices have been settled and extracted, and thus

the parallel Dijkstra’s algorithm takes close to |𝑉 | rounds on 𝐺𝑘.

Proof

We start with Lemma 41, which observes important invariants about the algorithm’s

internal state. Recall that 𝑑 denotes tentative distances.

Lemma 41. At the beginning of every round of the algorithm, for every 0 ≤ 𝑖 ≤

2𝑘 − 1, either 𝑄 ∩ 𝐴𝑖 = ∅, or the following invariants hold:

1. 𝑄 ∩ 𝐴𝑖 consists of vertices 𝑎𝑖
𝑠, 𝑎𝑖

𝑠+1, · · · , 𝑎𝑖
𝑡 for some 1 ≤ 𝑠 ≤ 𝑡 ≤ 2𝑘 + 1, 𝑡 odd.

2. For 1 ≤ 𝑟 ≤ 𝑠, vertex 𝑎𝑖
𝑟 is settled.

3. For 𝑠 + 1 ≤ 𝑟 ≤ 𝑡, we have 𝑑[𝑎𝑖
𝑟] ≥ 𝑑[𝑎𝑖

𝑟−1] + 2.

4. For 𝑡 + 1 ≤ 𝑟 ≤ 2𝑘 + 1, we have 𝑑[𝑎𝑖
𝑟] =∞.

Proof. Proceed by induction. For notational simplicity, 𝐴 is written in place of 𝐴𝑖,

and 𝑎𝑟 in place of 𝑎𝑖
𝑟.

Base case. The lemma holds up to and including the first round where 𝑄 ∩ 𝐴 ̸= ∅.

Subproof. The lemma is trivially true when 𝑄 ∩ 𝐴 = ∅.

𝑄 ∩ 𝐴 first becomes non-empty when the incoming edge of 𝑎1 in the binary tree

is relaxed. When this happens, 𝑎1 is added to 𝑄, and since the path from 𝑠 to 𝑎1 is

unique, 𝑑[𝑎1] is updated to the correct shortest distance and 𝑎1 is settled. All other

𝑎𝑟, 𝑟 ≥ 2 have not had an incident edge relaxed, and thus 𝑑[𝑎𝑟] = ∞, 𝑎𝑟 ̸∈ 𝑄. This

satisfies all invariants. �
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Inductive step. Let the priority queue be 𝑄 and tentative distances be 𝑑 at the

beginning of round 𝑋. Let the priority queue be 𝑄′ and tentative distances be 𝑑′ at

the beginning of round 𝑋 + 1.

If 𝑄 ∩ 𝐴 ̸= ∅ and the invariants hold for 𝑄 and 𝑑, then the invariants also hold

for 𝑄′ and 𝑑′.

Subproof. Consider how 𝑄′ ∩ 𝐴 and 𝑑′ restricted on 𝐴 change as a result of relaxing

the incident edges of extracted vertices. Any vertex outside of 𝐴 extracted in this

round have no neighbors in 𝐴 and thus have no effect on 𝐴.2 Thus, we only need

to consider what happens to vertices in 𝐴 as a result of relaxing incident edges of

extracted vertices in 𝐴.

Let 𝑄 ∩ 𝐴 = {𝑎𝑠, ..., 𝑎𝑡} by invariant 1. Suppose that in round 𝑋, the algorithm

extracts and processes 𝑞 vertices from 𝑄∩𝐴. If 𝑞 = 0, then nothing changed and the

invariants continue to hold. Otherwise, assume 𝑞 ≥ 1. By invariant 3, the extracted

vertices must be 𝑎𝑠, 𝑎𝑠+1, · · · , 𝑎𝑠+𝑞−1, as these vertices have the lowest tentative dis-

tances. Consider the following cases:

∙ Case 1: 𝑎𝑟 for 1 ≤ 𝑟 ≤ 𝑠.

By invariant 2, 𝑎𝑟 was settled in round 𝑋 and remains settled in round 𝑋 + 1.

Moreover, if 1 ≤ 𝑟 ≤ 𝑠− 1, then 𝑎𝑟 ̸∈ 𝑄, and if 𝑟 = 𝑠, then 𝑎𝑟 ∈ 𝑄 but is extracted

in round 𝑋. In both cases, 𝑎𝑟 ̸∈ 𝑄′ since a settled vertex cannot be re-inserted into

the priority queue.

Summary: 𝑎𝑟 settled, 𝑎𝑟 ̸∈ 𝑄′.

∙ Case 2: 𝑎𝑟 for 𝑟 = 𝑠 + 1.

𝑎𝑠 was extracted and edge 𝑎𝑠𝑎𝑠+1 with weight 1 relaxed. Since 𝑎𝑠 was already settled

and the shortest path to 𝑎𝑠+1 does indeed contain edge 𝑎𝑠𝑎𝑠+1, 𝑎𝑠+1 becomes settled

in round 𝑋 + 1. Since the tentative distance of 𝑎𝑠+1 decreased, 𝑎𝑠+1 is re-inserted

into the priority queue.
2The only vertex outside of 𝐴 with a neighbor in 𝐴 is the vertex 𝑣 in the binary tree adjacent to

𝑎1. Since 𝑄 ∩ 𝐴 ̸= ∅, 𝑎1 must be settled and thus 𝑣 must also be settled, so 𝑣 cannot be extracted
in this round.
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Summary: 𝑎𝑟 settled, 𝑎𝑟 ∈ 𝑄′.

∙ Case 3: 𝑎𝑟 for 𝑠 + 2 ≤ 𝑟 ≤ min(𝑠 + 𝑞, 2𝑘 + 1), 𝑟 even.

The tentative distance of 𝑎𝑟 was only updated through extracting 𝑎𝑟−1 and relaxing

the edge 𝑎𝑟−1𝑎𝑟 with weight 1. Therefore, 𝑑′[𝑎𝑟] = 𝑑[𝑎𝑟−1] + 1. By invariant 3,

𝑑[𝑎𝑟−1] + 1 ≤ 𝑑[𝑎𝑟]− 1. Therefore, 𝑑′[𝑎𝑟] ≤ 𝑑[𝑎𝑟]− 1, and 𝑎𝑟 is (re)-inserted into the

priority queue.

Moreover, 𝑑′[𝑎𝑟−1] ≤ 𝑑[𝑎𝑟−2] + 1 since the tentative distance of 𝑎𝑟−1 is at least

updated by relaxing 𝑎𝑟−2𝑎𝑟−1. Therefore,

𝑑′[𝑎𝑟] = 𝑑[𝑎𝑟−1] + 1

≥ 𝑑[𝑎𝑟−2] + 3 (invariant 3)

≥ 𝑑′[𝑎𝑟−1] + 2

Summary: 𝑑′[𝑎𝑟] ≥ 𝑑′[𝑎𝑟−1] + 2, 𝑎𝑟 ∈ 𝑄′.

∙ Case 4: 𝑎𝑟 for 𝑠 + 2 ≤ 𝑟 ≤ min(𝑠 + 𝑞 + 1, 2𝑘 + 1), 𝑟 odd.

The tentative distance of 𝑎𝑟 was also updated in two ways: extracting 𝑎𝑟−1 and

relaxing the edge 𝑎𝑟−1𝑎𝑟 with weight 1, and extracting 𝑎𝑟−2 and relaxing the edge

𝑎𝑟−2𝑎𝑟 with weight 3. By invariant 3, 𝑑[𝑎𝑟−2] + 3 ≤ 𝑑[𝑎𝑟−1] + 1. Therefore, relaxing

through edge 𝑎𝑟−2𝑎𝑟 gives the stronger bound, and 𝑑′[𝑎𝑟] = 𝑑[𝑎𝑟−2] + 3. We also

know that 𝑑′[𝑎𝑟−1] = 𝑑[𝑎𝑟−2] + 1, since the tentative distance of 𝑎𝑟−1 was only

updated through relaxing the edge 𝑎𝑟−2𝑎𝑟−1. Therefore,

𝑑′[𝑎𝑟] = 𝑑[𝑎𝑟−2] + 3

= 𝑑′[𝑎𝑟−1] + 2

Summary: 𝑑′[𝑎𝑟] ≥ 𝑑′[𝑎𝑟−1] + 2, 𝑎𝑟 ∈ 𝑄′.

∙ Case 5: 𝑎𝑟 for 𝑙 ≤ 𝑟 ≤ 𝑡, where 𝑙 =

⎧⎪⎪⎨⎪⎪⎩
𝑠 + 𝑞 + 1 if 𝑠 + 𝑞 + 1 even

𝑠 + 𝑞 + 2 if 𝑠 + 𝑞 + 1 odd
is the smallest
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index not covered by case 3 or 4.

𝑎𝑟 ∈ 𝑄 was not extracted and also did not have any incident edge relaxed. There-

fore, 𝑎𝑟 remains inside 𝑄′, and 𝑑′[𝑎𝑟] = 𝑑[𝑎𝑟]. We also know that 𝑑′[𝑎𝑟−1] ≤ 𝑑[𝑎𝑟−1]

since tentative distances cannot increase. Therefore,

𝑑′[𝑎𝑟] = 𝑑[𝑎𝑟]

≥ 𝑑[𝑎𝑟−1] + 2 (invariant 3)

≥ 𝑑′[𝑎𝑟−1] + 2

Summary: 𝑑′[𝑎𝑟] ≥ 𝑑′[𝑎𝑟−1] + 2, 𝑎𝑟 ∈ 𝑄′.

∙ Case 6: 𝑎𝑟 for max(𝑡 + 1, 𝑙) ≤ 𝑟 ≤ 2𝑘 + 1, where 𝑙 is as defined in case 5.

𝑎𝑟 ̸∈ 𝑄 did not have any incident edge relaxed. Therefore, 𝑎𝑟 remains outside of

𝑄′, and 𝑑′[𝑎𝑟] remains at ∞.

Summary: 𝑑′[𝑎𝑟] =∞, 𝑎𝑟 ̸∈ 𝑄′.

Lastly, we combine the summaries of these cases.

As covered by cases 2 through 5, 𝑄′ contains {𝑎𝑠′ , · · · , 𝑎𝑡′} where 𝑠′ = 𝑠 + 1 and

𝑡′ = max(𝑡, 𝑙− 1, 2𝑘 + 1). Since 𝑡 is odd by invariant 1 and 𝑙 is even by definition, we

have that 𝑡′ is odd. Case 1 and 2 state that for 1 ≤ 𝑟 ≤ 𝑠′, vertex 𝑎𝑟 is settled. Cases

3, 4, and 5 state that for 𝑠′ + 1 ≤ 𝑟 ≤ 𝑡′, we have that 𝑑′[𝑎𝑟] ≥ 𝑑′[𝑎𝑟−1] + 2. Case 6

states that for 𝑡′ + 1 ≤ 𝑟 ≤ 2𝑘 + 1, we have that 𝑑′[𝑎𝑟] =∞. This concludes the proof

of the inductive step.

�

Combining the base case and the inductive step concludes the proof of Lemma 41.

Corollary 42. Let the priority queue at the beginning of round 𝑋 be 𝑄, and let the

priority queue at the beginning of round 𝑋 + 1 be 𝑄′. Suppose that 𝑞 > 0 vertices

are extracted from 𝑄∩𝐴𝑖 in round 𝑋, and 𝑎𝑖
2𝑘+1 is not among the vertices extracted.

Then |𝑄′ ∩ 𝐴𝑖| ≥ min(|𝑄 ∩ 𝐴𝑖|+ 1, 𝑞).
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Proof. We’ll use Lemma 41 as well as the final part of proof of the inductive step.

Let 𝑄 ∩ 𝐴𝑖 = {𝑎𝑠, · · · , 𝑎𝑡} and 𝑄′ ∩ 𝐴𝑖 = {𝑎𝑠′ , · · · , 𝑎𝑡′}. Note that 𝑠′ = 𝑠 + 1 and

𝑡′ ≥ 𝑡.

In the first case, 𝑞 < 𝑡−𝑠+1, or equivalently not all vertices in 𝑄∩𝐴𝑖 are extracted

in round 𝑋. In this case, 𝑄′∩𝐴𝑖 contains at least 𝑡′−𝑠′ +1 ≥ 𝑡−(𝑠+1)+1 = 𝑡−𝑠 ≥ 𝑞

vertices.

In the second case, 𝑞 = 𝑡−𝑠+1, or equivalently all vertices in 𝑄∩𝐴𝑖 are extracted

in round 𝑋. Since 𝑎𝑡 is extracted and 𝑎𝑡 ̸= 𝑎2𝑘+1 is not the last vertex in 𝐴, it holds

that 𝑡′ > 𝑡. Since 𝑡′ and 𝑡 are both odd, 𝑡′ − 𝑡 ≥ 2. In this case, 𝑄′ ∩ 𝐴𝑖 contains at

least 𝑡′ − 𝑠′ + 1 ≥ (𝑡 + 2)− (𝑠 + 1) + 1 = 𝑡− 𝑠 + 2 = |𝑄 ∩ 𝐴𝑖|+ 1 vertices.

Definition 43. At any point in the algorithm, denote by 𝑐𝑜𝑢𝑛𝑡(𝐴𝑖) the number of

rounds that extracted a nonzero number of vertices from 𝐴𝑖.

Corollary 44. 𝑄 ∩ 𝐴𝑖 = ∅ for the current and all future rounds of the algorithm if

and only if 𝑐𝑜𝑢𝑛𝑡(𝐴𝑖) = 2𝑘 + 1.

Proof. We’ll use Lemma 41 as well as the final part of proof of the inductive step.

Consider the lowest-indexed vertex 𝑎𝑖
𝑟 contained in 𝑄∩𝐴𝑖. When 𝑄∩𝐴𝑖 first becomes

non-empty, this lowest-indexed vertex is 𝑎𝑖
1. Each round that extracts a nonzero

number of vertices from 𝐴𝑖 increases this lowest index by 1. Once 𝑎𝑖
2𝑘+1 is extracted,

all vertices in 𝐴𝑖 are settled and will not be inserted into 𝑄 again. Therefore, 𝑄∩𝐴𝑖

becomes and remains empty if and only if 2𝑘 + 1 rounds have extracted a nonzero

number of vertices from 𝐴𝑖.

Definition 45. Subgraph 𝐴𝑖 is said to be the active subgraph at the beginning of

a round of the algorithm if 𝑖 is the minimal index for which 𝑐𝑜𝑢𝑛𝑡(𝐴𝑖) < 2𝑘 + 1.

In order to upper bound the total number of rounds of the algorithm, we’ll upper

bound the number of rounds for which 𝐴𝑖 is the active graph for each fixed 𝑖. To do

so, we need to investigate in what order extractions happen on different subgraphs

𝐴𝑖.
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Lemma 46. In each round, the algorithm extracts those vertices from 𝑄 that belong

to the leftmost subgraphs 𝐴𝑖. To be precise, the algorithm extracts up to 𝑃 vertices

from 𝑄 ∩ 𝐴0. If |𝑄 ∩ 𝐴0| < 𝑃 , it extracts up to the missing amount from 𝑄 ∩ 𝐴1. If

still fewer than 𝑃 vertices have been extracted, it extracts up to the missing amount

from 𝑄 ∩ 𝐴2, and so on.

Proof. Observe that the length of the shortest path to 𝑎𝑖
1 is 4𝑘 · 𝑖. In addition, every

path within subgraph 𝐴 has a length less than 4𝑘.

As a result, for 𝑖 < 𝑗, it holds at the beginning of every round the tentative

distances of all vertices in 𝑄 ∩ 𝐴𝑖 are less than the tentative distances of all vertices

in 𝑄 ∩ 𝐴𝑗. Therefore, Extract-P-Min proceeds from left to right when extracting

from subgraphs 𝐴𝑖.

Lemma 47. The leaves of the binary tree are discovered from left to right. To be

precise, if vertex 𝑎𝑖
1 is added to 𝑄 in round 𝑋 and vertex 𝑎𝑗

1 is added to 𝑄 in round

𝑌 for 𝑖 < 𝑗, then 𝑋 ≤ 𝑌 .

Proof. This holds by construction. For any two nodes in the tree on the same level,

the shortest distance to the left node is less than the shortest distance to the right

node.

Lemma 48. For each 𝐴𝑖, among the rounds for which 𝐴𝑖 is the active subgraph,

there are at most 2𝑃 rounds where fewer than 𝑃 vertices were extracted from 𝐴𝑖.

Proof. By Lemma 46, once 𝐴𝑖 becomes the active subgraph, all future rounds extract

as many vertices from 𝐴𝑖 as possible. By Corollary 42, each of these rounds where

𝐴𝑖 is the active subgraph increases |𝑄 ∩𝐴𝑖|, until it is guaranteed that |𝑄 ∩𝐴𝑖| ≥ 𝑃

after 𝑃 rounds. Every round starting from when |𝑄 ∩ 𝐴𝑖| ≥ 𝑃 and ending at when

𝑎𝑖
2𝑘+1 is extracted extracts a full 𝑃 vertices from 𝐴𝑖. 𝑎𝑖

2𝑘+1 can only be extracted if

all but the last 𝑃 vertices of 𝐴𝑖 have settled. Therefore, at most 𝑃 more rounds can

take place before 𝑐𝑜𝑢𝑛𝑡(𝐴𝑖) = 2𝑘 + 1 and 𝐴𝑖 is no longer the active subgraph.

Lemma 49. For each 𝐴𝑖, there are at most 2𝑃 2 rounds where 𝐴𝑖 is not the active

subgraph, but the algorithm extracts a nonzero number of vertices from 𝐴𝑖.
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Proof. Suppose that 𝐴𝑚 is the active subgraph at the beginning of some round.

Lemmas 46 and 47 imply that the algorithm extracts vertices starting at 𝐴𝑚 and

move rightwards to other subgraphs as needed. Suppose that this round extracts a

non-zero number of vertex from each of the subgraphs 𝐴𝑚, 𝐴𝑚+1, · · · , 𝐴𝑚+𝑙−1; since

a round can extract at most 𝑃 vertices total, 𝑙 ≤ 𝑃 . As a result, the algorithm can

extract a nonzero number of vertices from 𝐴𝑖 only if the current active subgraph 𝐴𝑚

satisfies that 𝑚 > 𝑖− 𝑃 .

In addition, the algorithm can only extract a nonzero number of vertices from 𝐴𝑖

if it does not extract all 𝑃 vertices from the active subgraph 𝐴𝑚. By Lemma 48, for

each 𝑚, there are at most 2𝑃 rounds where not all 𝑃 vertices are extracted from 𝐴𝑚.

Combining these two results implies that the algorithm can, at worst, spend 2𝑃

rounds extracting from 𝐴𝑖 for each of the 𝑃 values of 𝑚 where 𝐴𝑚 is the active

subgraph. This results in a total of at most 2𝑃 2 rounds spent extracting from 𝐴𝑖

while 𝐴𝑖 is not the active subgraph.

Finally, Corollary 44 and Lemma 49 combined proves Theorem 40. By Lemma

49, 𝑐𝑜𝑢𝑛𝑡(𝐴𝑖) ≤ 2𝑃 2 when 𝐴𝑖 first becomes the active subgraph. By Corollary 44,

𝑐𝑜𝑢𝑛𝑡(𝐴𝑖) = 2𝑘 + 1 when 𝐴𝑖 is no longer the active subgraph. Combining these two

statements and using the fact that 𝑐𝑜𝑢𝑛𝑡(𝐴𝑖) can increment by at most 1 in each

round, we find that the algorithm spends at least 2𝑘 + 1− 2𝑃 2 rounds with 𝐴𝑖 being

the active subgraph for each 𝐴𝑖. As there are 2𝑘 subgraphs 𝐴𝑖, the algorithm must

take at least 2𝑘(2𝑘 + 1− 2𝑃 2) rounds.

Simple counting reveals that the graph contains 2𝑘(2𝑘 + 2) − 1 vertices. We can

thus write 2𝑘(2𝑘 + 1 − 2𝑃 2) = 2𝑘(2𝑘 + 2)(1 − 2𝑃 2+1
2𝑘+2 ) = |𝑉 |(1 − 𝑜(1)), which proves

Theorem 40.
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Appendix A

The Stack-Augmented Split-Tree

Mechanism without

Synchronization Primitives

In this section, we describe how the dynamic array data structure and the stack-

augmented split-tree mechanism can be modified to maintain correctness against de-

terminacy races without using any form of synchronization primitives, such as locks,

atomic compare-and-swaps, and more.

The dynamic array is modified to support a slightly different set of operations

with different theoretical overheads, but with stronger guarantees when it comes to

concurrent single-writer-multiple-reader scenarios.

The dynamic array stores entries of the form (key, value), where the key is of

a type that can be read and modified atomically. Moreover, there must exist some

value INV that is never used as a valid key, and can be used to indicate that an entry

is invalid. For leaf stack in the stack-augmented split-tree mechanism, the key has

integer type, and −2 may be used as the invalid value.

The dynamic array supports the operations create, append, and pop in 𝑂(1)

time. It supports destruct in 𝑂(log 𝑛) time, where 𝑛 is the length of the dynamic

array being destroyed. It does not support modify at an arbitrary index, but does

indirectly support modify at the last index using a pop followed by an append. It
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also does not support get at an arbitrary index, at least not in constant time, but

does support get at the last index in 𝑂(1) time. It supports an additional operation

search of an input key that replaces the need for get at arbitrary indices in the

mechanism.

The modified dynamic array guarantees that the following key property holds:

Property 50. Consider a key 𝑘 and a sequence of append and pop operations to a

dynamic array performed sequentially by a single writer, such that at every point in

the sequence of operations,

∙ the keys in the array are sorted and all distinct,

∙ the length of the array is greater than or equal to some value 𝑙 > 0, and

∙ the key at index 𝑙 is the largest key less than or equal to 𝑘.

Then, a reader performing a search for key 𝑘, concurrently with the writer performing

this sequence of operations, will return the value at index 𝑙, no matter how the

instructions from the reader and writer are interleaved.

The dynamic array makes use of linked lists. Each link in the linked list contains

pointers to the previous and next link, and the list keeps track of the head and tail.

This linked list is only modified by adding or removing a link at the tail end. One

does not need to be careful about the exact order of modification of the next/previous

links versus the tail pointer when it comes to updates.

The dynamic array stores a number of memory allocations in a linked list. Each

link contains the pointer to the start of an allocation and the size of this allocation, and

each allocation is double the size of the previous allocation in the list. Each allocation

stores an array of (key, value) entries. Combining entries from allocations in the

linked list order yields the entirety of the contents of the dynamic array.

In addition to the linked list, the dynamic array keeps track of two integer indices,

next-ind and inv-ind. The next-ind keeps track of the next unused index in the

second-to-last array (that is, the array in the link that is next to the tail in the list).

The array in the last link is empty and the key of its first entry is guaranteed to be

INV. inv-ind keeps track of the next index of the tail array that should be set to
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invalid.

To help understand where one needs to be careful in the following operations, keep

in mind that dynamic arrays are used in a single-writer multiple-reader situation,

where the writer may call append, pop, and get last, and readers are only allowed

to call search.

Operations are performed as follows:

Create

Allocate a small array (e.g., size 2) and set the key to INV for each of its entries.

Allocate an array double the size of the first array, and set the key of its first

entry to INV. Create a linked list from these two arrays. Set next-ind to 0 and

inv-ind to 1.

Append

Write into the entry at index next-ind in the second-to-last array in the list.

Increment next-ind.

If the entries of the last array have not all been set to invalid since inv-ind is

not equal to the length of the last array, set the key in up to two more entries

to INV and update inv-ind accordingly.

If the second-to-last array is now full, call resize-up.

Resize-up

Allocate a new array double the size of the array in the tail link. Set the key

of its first entry to INV. Create a new link for this array and add it to the tail

end of the linked list. Set next-ind to 0 and inv-ind to 1.

Pop

If the second-to-last array is empty, call resize-down.

Decrement next-ind, setting it to one less than the length of the second-to-last

array if it was 0. Set the key of the entry at index next-ind in the second-to-last

array to INV.
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Resize-down

Remove the tail link of the linked list and free the array stored inside.1 Set

inv-ind to the length of the new last array.

Get last

Get the value stored in the entry at the index one before next-ind in the

second-to-last array; if next-ind is 0, get the last element in the third-to-last

array.

Search

This operation takes as input a key 𝑘 and performs something akin to a binary

search. It returns the value of the entry with the largest possible key less than

or equal to 𝑘.

Start at the head of the linked list. If the key in the first entry of the array in

the next link is valid and less than or equal to 𝑘, then move onto the next link

of the linked list and repeat.

Otherwise, perform a binary search on the array in the current link to find the

entry with the largest key less than or equal to 𝑘. The INV key is considered to

be larger than all valid keys. Return the value of the entry found in the search.

Destruct

Free the allocation pointed to by each link in the list, then free the list itself.

Proof sketch of Property 50. Let the array piece that contains index 𝑙 be in link 𝑚.

Since the length of the array never drops below 𝑙 throughout this sequence of opera-

tions, the entry in index 𝑙 is never modified. Moreover, the length of the linked list

never drops below 𝑚 + 1, link 𝑚’s pointer to its next link is never modified, and link

𝑚+1’s pointer to its allocated array is never modified. Throughout these operations,

the first key of the array in link 𝑚 + 1 is either larger than 𝑘 or INV. Therefore,
1Under the current scheme, it’s possible for a sequence of alternating append and pop operations

to cause repeated allocations and deallocations. This can be easily fixed, but as it has no impact on
theoretical performance, we do not worry about this optimization.
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search will correctly end at link 𝑚. The binary search within the array in link 𝑚

will correctly find the entry at index 𝑙, as the key of every entry past index 𝑙 will be

either larger than 𝑘 or INV throughout these operations.

The splitter protocol is effectively unmodified. A primary access of a splitter will

directly call search instead of manually performing a binary search.

Property 50 replaces Section 7.4 in showing that concurrent operations are safe.

Analysis of the span of the execution trace needs to take into account an additional

𝑂(log 𝑛) term at return-from-spawn nodes, as destruct on a dynamic array of up

to length 𝑛 takes span up to 𝑂(log 𝑛) instead of Θ(1). This does not impact the

analysis, and the results in Section 8 still hold.
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Appendix B

Lower Tail Bounds for the

Multiplicative Azuma’s Inequality

In this section we prove a lower tail bound with multiplicative error for both the

normal and the adversarial setting. Whereas Theorem 32 and Theorem 37 allow

us to bound the probability of a random variable substantially exceeding its mean,

Theorem 51 and Theorem 53 allow us to bound the probability of a random variable

taking a substantially smaller value than its mean.

Theorem 51. Let 𝑍0, 𝑍1, . . . , 𝑍𝑛 be a submartingale, meaning that E[𝑍𝑖 | 𝑍0, . . . , 𝑍𝑖−1] ≥

𝑍𝑖−1. Assume additionally that −𝑎𝑖 ≤ 𝑍𝑖 − 𝑍𝑖−1 ≤ 𝑏𝑖, where 𝑎𝑖 + 𝑏𝑖 = 𝑐 for some

constant 𝑐 > 0 independent of 𝑖. Let 𝜇 = ∑︀𝑛
𝑖=1 𝑎𝑖. Then for any 0 ≤ 𝛿 < 1,

P[𝑍𝑛 − 𝑍0 ≤ −𝛿𝜇] ≤ exp
(︃
−𝛿2𝜇

2𝑐

)︃
.

Corollary 52. Let 𝑋1, . . . , 𝑋𝑛 ∈ [0, 𝑐] be real-valued random variables with 𝑐 > 0.

Suppose E[𝑋𝑖 | 𝑋1, . . . , 𝑋𝑖−1] ≥ 𝑎𝑖 for all 𝑖. Let 𝜇 = ∑︀𝑛
𝑖=1 𝑎𝑖. Then for any 0 ≤ 𝛿 < 1,

P
[︃∑︁

𝑖

𝑋𝑖 ≤ (1− 𝛿)𝜇
]︃
≤ exp

(︃
−𝛿2𝜇

2𝑐

)︃
.
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Theorem 53. Let 𝑍0, . . . 𝑍𝑛 be a submartingale with respect to the filtration 𝐹0, . . . , 𝐹𝑛,

and let 𝐴1, . . . , 𝐴𝑛 and 𝐵1, . . . , 𝐵𝑛 be predictable processes with respect to the same

filtration. Suppose there exist values 𝑐 > 0 and 𝜇, satisfying that −𝐴𝑖 ≤ 𝑍𝑖−𝑍𝑖−1 ≤

𝐵𝑖, 𝐴𝑖 + 𝐵𝑖 = 𝑐, and ∑︀𝑛
𝑖=1 𝐴𝑖 ≥ 𝜇 (almost surely). Then for any 𝛿 > 0,

P[𝑍𝑛 − 𝑍0 ≤ −𝛿𝜇] ≤ exp
(︃
−𝛿2𝜇

2𝑐

)︃
.

Corollary 54. Suppose that Alice constructs a sequence of random variables 𝑋1, . . . 𝑋𝑛,

with 𝑋𝑖 ∈ [0, 𝑐], 𝑐 > 0, using the following iterative process. Once the outcomes of

𝑋1, . . . , 𝑋𝑖−1 are determined, Alice then selects the probability distribution 𝒟𝑖 from

which 𝑋𝑖 will be drawn; 𝑋𝑖 is then drawn from distribution 𝒟𝑖. Alice is an adap-

tive adversary in that she can adapt 𝒟𝑖 to the outcomes of 𝑋1, . . . , 𝑋𝑖−1. The only

constraint on Alice is that ∑︀𝑖 E[𝑋𝑖 | 𝒟𝑖] ≥ 𝜇, that is, the sum of the means of the

probability distributions 𝒟1, . . . ,𝒟𝑛 must be at least 𝜇.

If 𝑋 = ∑︀
𝑖 𝑋𝑖, then for any 𝛿 > 0,

P[𝑋 ≤ (1− 𝛿)𝜇] ≤ exp
(︃
−𝛿2𝜇

2𝑐

)︃
.

We begin by proving Theorem 51. The proof is similar to the proof for the upper tail

bound, with a different approximation used.

Lemma 55. For any 𝑡 < 0 and any random variable 𝑋 such that E[𝑋] ≥ 0 and

−𝑎 ≤ 𝑋 ≤ 𝑏,

E[𝑒𝑡𝑋 ] ≤ exp
(︂

𝑎

𝑎 + 𝑏

(︁
𝑒𝑡(𝑎+𝑏) − 1

)︁
− 𝑡𝑎

)︂
.

Proof. Same as Lemma 34.
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Proof of Theorem 51. By Markov’s inequality, for any 𝑡 < 0 and 𝑣,

P[𝑍𝑛 − 𝑍0 ≤ 𝑣] = P[𝑡(𝑍𝑛 − 𝑍0) ≥ 𝑡𝑣]

= P
[︁
𝑒𝑡(𝑍𝑛−𝑍0) ≥ 𝑒𝑡𝑣

]︁
≤ E[𝑒𝑡(𝑍𝑛−𝑍0)]

𝑒𝑡𝑣
.

Let 𝑋𝑖 = 𝑍𝑖 − 𝑍𝑖−1. Since 𝑍𝑖 is a submartingale, for any 𝑖, E[𝑋𝑖 | 𝑍0, . . . , 𝑍𝑖−1] ≥ 0.

Moreover, from the assumptions in the problem, −𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖. Therefore, Lemma

55 applies to 𝑋 = (𝑋𝑖 | 𝑍0, . . . , 𝑍𝑖−1), and we have

E[𝑒𝑡𝑋𝑖 | 𝑍0, . . . , 𝑍𝑖−1] ≤ exp
(︂

𝑎𝑖

𝑐

(︁
𝑒𝑡𝑐 − 1

)︁
− 𝑡𝑎𝑖

)︂
,

for any 𝑡 < 0. Using the same derivation as in the proof for Theorem 32, we have

P[𝑍𝑛 − 𝑍0 ≤ 𝑣] ≤ exp
(︂

𝜇

𝑐

(︁
𝑒𝑡𝑐 − 1

)︁
− 𝑡𝜇− 𝑡𝑣

)︂
.

Plugging in 𝑡 = ln(1− 𝛿)/𝑐 and 𝑣 = −𝛿𝜇 for 𝛿 > 0 yields

P[𝑍𝑛 − 𝑍0 ≤ −𝛿𝜇] ≤ exp
(︂

𝜇

𝑐
(−𝛿 − (1− 𝛿) ln(1− 𝛿))

)︂
.

For any 0 ≤ 𝛿 < 1,

−𝛿 − (1− 𝛿) ln(1− 𝛿) ≤ −𝛿2

2 ,

which can be seen by inspecting the derivative of both sides.1 As a result,

P[𝑍𝑛 − 𝑍0 ≤ −𝛿𝜇] ≤ exp
(︃
−𝛿2𝜇

2𝑐

)︃
.

Remark. As with the upper tail bound, we may derive a stronger but more unwieldy

1Consider 𝑓(𝑥) = −𝑥/(1−𝑥)− ln(1−𝑥)+𝑥2/(2(1−𝑥)). Then 𝑓(0) = 0, and 𝑓 ′(𝑥) = −𝑥2/(2(1−
𝑥)2) ≤ 0 for 0 ≤ 𝑥 < 1. Therefore, 𝑓(𝑥) ≤ 0 for 0 ≤ 𝑥 < 1, and the inequality holds for 0 ≤ 𝛿 < 1.
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bound of

P[𝑍𝑛 − 𝑍0 ≤ −𝛿𝜇] ≤
(︃

𝑒−𝛿

(1− 𝛿)(1−𝛿)

)︃𝜇/𝑐

.

The proof of Corollary 52 is identical to the proof of Corollary 33.

The proof of Theorem 53 can be obtained by combining the proofs of Theorem 37

and Theorem 51.

The proof of Corollary 54 is identical to the proof of Corollary 38.
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