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ABSTRACT 

Are we able to perceive an architect’s intention through observation of his or her sketches? Yes, 
but it requires a probing process of observation. Across time and continents, master architects have 
developed a collection of the processes for expressing powerful design intentions through succinct and 
dynamic representation, or design sketches. Different types of sketches describe, express, or gesture about 
the architecture they represent. They deliver active ideas that are not limited to objects but provide a raw 
sense for both the perception and creation enabled through visual thinking. 

I propose a method to utilize eye-tracking as a translator between the graphics and the architects’ 
perception of three types of intention: shape, composition, and circulation. My hypothesis is that we can 
perceive how architects represent these intentions -- through the means of graphics, which allows a more 
ambiguous and dynamic translation between intention and sketches, we can probe the underlying process 
by observing a viewer’s eye movements. Furthermore, heat maps, obtained from eye movements, can be 
adapted to a machine learning algorithm -- Image-conditioned Generative Adversarial Networks (GANs). 
I use this algorithm to translate the raw sense of space and visual gesture to capture human-level 
information acquisition of these intentions. 

To demonstrate the work, I first discuss the history of visual power in design and a shift towards 
units and segmentation, covering the development from the emergence of design drawings to the 
innovation in parametric design. I then proceed with an eye-tracking study where I asked graduate 
architecture students to observe sketches by Louis Kahn. I study how the graphics of heat maps from eye-
tracking decode the participants’ perception of intentions in sketches based on a shared educational 
background in architecture. Then, I propose a framework of utilizing such a representation system to train 
machines to predict human-level view patterns. Finally, I examine how effective this system will function 
with an image-to-image machine learning algorithm known as the image-conditional GANs. 

From the study it can be implied that mechanical eye-movements reveal a shared visual-thinking 
procedure that has been unconsciously practiced by human designers. Such a procedure, if learned by 
machines, will facilitate a creative process that utilize such informal dynamics derived from eye 
movement in visual representation in design. 
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“The marble not yet carved can hold the form of every thought the greatest artist has.” 

---- Michelangelo 

“The value of uncompleted things is very strong…If the spirit is there and can be recorded, what is lost? 

The drawing is important, the incomplete scheme is important, if it has a central gravitational force which 

makes the arrangement not just an arrangement but something which gives a richness to the associations 

which are lost. Recording of that which has not been done must be made much of.” 

---- Louis Kahn 
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Figure 1. Perception from labels to intention is assisted by active observation and deliberate abstractness.  
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Introduction 

 

“The marble not yet carved can hold the form of every thought the greatest artist has” (Quotes of 

Michelangelo, 2021). This quote of Michelangelo emphasizes on visual potentials of artists’ eyes to 

“carve out” design intentions from a piece of stone by finding their own interpretation of the images 

within. Such images are undefined, dynamic, and enriched with visual possibilities, in contrast with a 

stone’s natural properties which are defined and measurable with labels and numbers. 

How designers, especially architects, apprehend these ambiguous and hidden intentions within the stones 

is what I have been interested in since the first day I learned about how to observe in order to design. To 

retrieve any innate design power of an object in addition to physical properties and generate my own 

image before eyes. Like the statue of Niki, a thoughtful recess from complete definition of the form 

brings out a power for imaginations to fly (figure 2.).  

 

 

Figure 2. Michelangelo’s the “Atlas”, 1525 – 1530 (Wikipedia, n.d.); a block of marble (Marbleicons, 2020); 
Winged Victory of Samothrace, 200 – 190 BC (Lyokoï88, 2015). 
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Figure 3. Three major goals of design representation. After James S. Ackerman, 2016, and a pendulum between 
intentions and labels. 

 

Visions “is a key to man’s creative power, even on the most rudimentary level” (Kepes, 1965), and many 

aspects compose this wing of imagination. How such willful power of the eyes is related to design 

representations, unsurprisingly, has been a long-established topic among practitioners and theorists, 

producing connections as well as gaps among how and why to use designers’ eyes. For example, James S. 

Ackerman (2016) discusses visual goals of design and design representation in his book “Origins, 

invention and revision: Studying the history of art and architecture”. On the topic “goals in design 

representation”, Ackerman proposes three major goals: explores, records and open pursuits, forming a 

triangular relationship (figure 3.). To fill this triangle, I have placed words of small goals which 

Ackerman uses when explaining the three major goals. Shortly after I put the circles and shades of greys 

in, I noticed that a gap exists between “record” and the other two if this diagram represents how people 

and machines see and interpret design images. Then, I noticed that what could make this gap is a 

disconnection between objective attributes with informal representations. Where I place a red, dashed 

circle. Unlike other connections between circles, for example (figure 4.): in 1969 Charles Eastman 
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proposed a system to strengthen the link between solution and control in his novel system which was later 

developed into BIM; Google’s image segmentation automated searching of objects by low-level patterns 

that represent as unique attributes of a label in reading of 2D images (Li, F., Johnson, J., & Yeung, S. 

2017). Zaha Hadid’s sketch connects imagination visually with experiments and other projects on image 

generation and matching added a form of control after experiments of algorithmic translation for visual 

perception. This gap here, between vivid imagination and objective attribute, is where I like to explore. 

That means attempting to fill the gap requires a combination of human observation behaviors and 

understanding of the images, or “design intentions.” 

 

Figure 4. Examples of visual tasks the bridge pairs of goals in design representation. From top left, 
counterclockwise: Michelangelo, study of the entablature of the theater of Marcellus (Brothers, 2008); Da Vinci, 
study of the Battle of Cascina (Brothers, 2008); Zaha Hadid, sketch of design for Rothenthal Center, 2003; Louis 
Kahn, plan study of the Morris residence. (Architectural Archives, University of Pennsylvania, 2021); Da Vinci, 
diagram of lines of sight (1955); Li, Fei-Fei, Detection and Segmentation (2017); Park, Synthetic Tutor (2015); 
Negropoonte, the Architecture Machine (1973); Eastman, prototype of BIM (1969). 
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Apprehension of intentions --and more specifically, in architectural design -- rests beyond object 

segmentation in more abstract qualities and robust, graphical representations that emerge and change. It 

requires a probe of observation and is especially powerful to architects when designing without defining 

labels while seeking big moves of volume and its visual manifestation. Different types of drawings, some 

describe, some express, and some gesture about ideas that are not limited to objects, but raw senses of the 

space in many exemplary buildings. To explore this further, my motivation is to inquire representations of 

these dynamic visual intentions that are innate to design sketches, and a machine learning algorithm to 

possibly translate these raw senses of spaces and gestures visually.  

The primary idea is that graphical representation of eye movement from gaze-tracking studies can extract 

and represent “intention” from design sketches, as well as interpret human designers’ observational 

process into an image-based form learnable by machines.  

I developed my work into four chapters, the first two chapters discuss the history of visual power in 

design and a shift towards mechanical description and segmentation. The third chapter includes 

documentation and analysis of gaze-tracking experiments of architecture students’ reaction to design 

sketches. The fourth chapter proposes a framework of observation named “Envisage” based on the first 

three chapters’ discussion and tests, followed by two prototype tests using sets of trained neural networks 

on predicting human-like viewing patterns, and translating viewing patterns into conceptual design 

graphics using visual imagination. 

Chapter 1: The Power of Seeing: Record and Imagine. 

The first chapter starts by discussing a timeline of evolution in visual media and tools from cave paintings 

to machine vision algorithms. Following the identification of these representational methods, I discuss 

how architectural designers utilize them to assist design processes. I look at visual powers in three major 

areas: designers, tool and machines, and machines’ visual intelligence. By linking discoveries parallelly 

on the timeline, I examine the emergence of graphical representations, their adaptation in the 

Renaissance, Bauhaus System, and later human-machine collaboration initiated by Sutherland’s 

sketchpad in 1960. I also discuss the development of imaging tools and algorithms such as hardware of 

photography starting in the 19th century, and statistical pattern recognition that founded the base of 

machine vision in the mid-20th century. Finally, I conclude this investigation in history by suggesting a 

potential of utilizing the three realms in a cohesive manner, which relies on the translation of information 

among all.  

Chapter 2: Discovering by the Eyes: Intention from Designers’ Observation. 



16 
 
 

In this chapter, I investigate a linkage between designer’s intention and its manifestation in the form of 

architectural design sketches. I answer questions of “where” and “how” architectural intentions are 

represented. To explore a fuller spectrum of intention, which has been developed and applied in 

architectural design, this chapter investigates one of the most straightforward visual expressions of design 

ideas: sketches, with works from classical, modern, contemporary examples. I analyze design drawings in 

the early Renaissance of Michelangelo, Da Vinci, Louis Khan, Mies Van de Rohe and Kazuyo Sejima; 

and “visual thinking” systems discussed by Negroponte, Kepes, and James S. Ackerman. To compare to 

the approach of architects, I discuss another process of segmentation includes image recognition 

algorithms in popular search engines and machine learning algorithms for assisting visual design, 

includes Google’s Image search, object detection, origins of BIM and a MIT PhD thesis in 2015 using 

pattern detection to match plan drawings. From analyzing these examples, I conclude important 

inspirations for the eye-tracking study in chapter three. 

Chapter 3: Interpreting the Eyes: Architectural Design Intention in Eye-Tracking. 

In the third chapter, I explained logistics behind eye-tracking to explore architectural intentions in design 

sketches. Then, I report a set of tests and assessments on a particular representation strategy empowered 

by gaze-based interaction for analyzing forty-five plan sketches of Louis Kahn. I asked three questions to 

each participant regarding observing architectural intentions: shapes, composition, and circulation. 

Following test documentation, I conduct analysis of heat maps and graphical relatedness, and proposed 

three major findings from the heat maps and sketches.  

Chapter 4: Creating with the Eyes. 

The fourth chapter will propose a framework of observation named “Envisage” based on the first three 

chapters’ discussion and tests, followed by two prototype tests on representational strategy and eye-

tracking software for conceptual design using visual imagination. This prototype utilizes Image-

conditioned Generative Adversarial Network, a machine learning algorithm which is recently proposed to 

translate one image into another. The first section consists of descriptions of this application. The second 

section consists of examples and discussions on the two prototypes that will be an attestation on how 

effectively this framework can become in delivering high-level representation of design intentions from 

new sketches: one is “Sketch to Intention”, and the second “Observation to Gesture”. The third section 

will be a discussion of all the work so far and explain why this application will be a step towards a more 

dynamic, observer-based design system that encourages more natural human-computer interaction. 
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Chapter 1 The Power of Seeing: Record and Imagine 

 

Visual perception and creation are crucial for artists and designers. Among many tools that designers 

utilize and express to compose their works, vision is one of the most sought after and multi-leveled 

aspects of human sensory. Others includes tactile, olfactory, auditory, and motor (Negroponte, 1969). 

Continuous training and development of visual ability are crucial to a designer in both two-dimensional 

and spatial imagination. It facilitates visual thinking and reference-making when one observes and 

envisions subsequential decisions without adhering to objects and their physical properties. Either 

functioning to absorb the “primal sanities of nature”(Walt Whitman, 1900), or “reproduc[ing] them in the 

world [man] shapes for himself”(Kepes, 1969), how these two visual forms of thinkings could be 

mastered by designers has been an ever-attractive exploration among hunters and gathers, artists, art 

theorists, psychologies, neuroscientists, sociologists, and computer scientists alike -- since the very dawn 

of one of the first artistic visual expressions created by human ancestors in the cave painting in Lascaux, 

France in 15,000 BC (figure 5.).   

 

Figure 5. A painting of the Giant Deer from Lascaux (HTO, 2009) 

Although how and for what visual communication were created can be attributed to an exceptionally long 

and deep stream which is as complicated as the human neural system, the primary goals are twofold: first, 

to record events and objects in the real world; and second, to experiment on something imaginarily. The 
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former goal has existed as long as people started observing the natural world around them, and the later 

were systematically formed into branches when the pursuit of art and design were deemed as intelligent 

activities. The following discussion will provide some historical examples to explain these two goals. 

Visual power in recording has widely appeared across time and places. Recording of a natural object 

using graphical interpretation is resulted from haptic interaction between the observer and the object. 

Paleolithic Arts such as the cave paintings in Lascaux, while they are hardly attributed to exact uses 

(Karstworlds, 2018 ), are products of recording what the drawers had seen in life: one famous example 

among all is the painting of “the Giant Deer” (figure 5.), which was thought to depict hunting or ritual 

scenes composed of animals; hieroglyphs are a more abstract form of figurative recording and 

interpretation of meaningful objects in order to communicate: many characters in Egyptian hieroglyphs 

resembles natural object to signal a specific trait related to that object, and so does ancient Chinese 

characters (small seal script) and prototypes of Phoenician alphabet (figure 6.); Early Roman frescos in 

houses and temples depicted scenes of human or deity lives, presenting another dimension of reality by 

“showing” what a dream house or a luxury party will look like from a human perspective; and funeral 

murals prevailing in both ancient East and West embodied ideal rest places for souls. Records and 

interpretation of visually meaningful existence made it possible for those who had never seen before to 

relate and to remember what had happened and what could happen, in the most straightforward way of 

visual stimulus.  

 

Figure 6. Visual information of languages delivered through abstract characters. From left to right: Hieroglyphs at 
Amada, at temple founded by Tuthmosis III (UNESCO, 1960); Pictographs examples in Chinese Characters 

(Buckingham- Hsiao, 2018). 
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Figure 7. Selective major events in the development of visual communication of Designers, Tools, and Machine 
Intelligent. 
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1.1 Eyes of Observers: Perceive and Imagine 
 

Moving forward to the second blooming of Western Arts in the Renaissance, the second goal of visual 

communication has been more or less acknowledged. The goal is to extract and therefore facilitate 

intelligent visual imagination, or in other word, design. When the re-discovery and adaptation of ancient 

Greek and Roman Arts had been a pursuit of high-level design intelligence such as architects, they started 

seeking a level of understanding towards incorporating ancient treasures and ruins into practical design 

and celebration of new lifestyles. One of the most significant contributors in the heart of Renaissance is 

the development of sketch freely, which was initially discovered in prints in the mid-1500s (Ackerman, 

2016). Such an innovative method on how drawing became a way of abstraction, reflection, exploration, 

and most importantly, or testing and materializing design intentions. James Ackerman, an art historian 

specializing in Renaissance works, points out that in the creative process, sketch “liberated from 

convention” in comparison to “deliberate preparatory drawings” (p. I), and it is therefore purposed for 

three major kinds:  

“One that explores possible solutions for a particular work; one without a specific goal – an open pursuit 

of potentialities that may not even represent anything; and one that records an object or occurrence in the 

external world…with some degree of reliability” (Ackerman, p. 2). 

Ackerman’s three goals of making a sketch can also be interpreted into a set of goals to create visual 

representation of a certain existing or to-exist object. Renowned masters of architecture and art in this 

period demonstrated how such connection can be made: between what is visually presented and what can 

be visually created. This perception-creation circle is a recurring process enriched by multiple goals of 

describing and imagining. According to Ackerman (2016), the starting of sketch exploration emerged 

from the painter Pisanello from Verona (1395 - 1455), succeeded traditions in “pattern books composed 

of nature studies”, documented an inauguration event in 1438 with brief line drawings of horses and 

textual description for later paintings. Leonardo da Vinci utilized sketch to “study nature, solve problems, 

develop compositions, and fantasize” (p. 8). Later, Michelangelo’s graphical interpretation of 

architectural motifs from ancient ruins and documentation drawings are not merely representation of 

existing conditions but “was extended to human analogies” (p. 17), seeing them as a base of abstraction 

and inspiration to morph and alter. Leon Battista Alberti greatly appraised the imagination and artistic 

discovery brought forth by “the Winged Eye”, as seeing and observing became an inseparable component 

of holistic beauty when designing architecture. Andrea Palladio, who initialized architecture career as a 

stone caver, later produced “freehand fantasies” in ink (figure 8.) to “just exercising his imagination” (p. 
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17). As Ackerman summarized in his book “Origins, Invention, Revision: Studying the History of Art and 

Architecture”, sketch, as a part of visual thinking, “unrestrained by tradition, loose and indeterminate in 

structure, and issuing straight from the artists’ inspiration and vision, and the hand” (p. 17).  

 

Figure 8. Andrea Palladio, 1564, Proposals for the Grimani Tombs at S. Francesco della Vigna, Venice (D -17). 
Museo Civico, Vincenza. (Joachim, H. 1981). 

 

Not only from the hands of Renaissance innovators the use of vision has been flourishing, but the 

discovery of photography techniques also streamed into the long river of visual perception and creation, 

about one century earlier than the revolution of the Bauhaus. To “capture the world in its types and 

regularities” on “objective splash” (Daston and Galison, 2017, p. 11), this raising of technology to 

recreate images of real-world objects on a durable, physical surface, establishes the industry of “imaging” 

through human-designed “eyes” of machines. By the end of 18th century, Thomas Wedgwood proposed 

the first process of visually “fixing” silhouette images on stable medium like paper using light-sensitive 

chemical reactions, physically imitating the process of human retinal receiving light signals, and then 

forming an image (figure 9.). About half a century after the discovery of physical photography 
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techniques, advances in electricity enabled creation of electrical imaging equipment to generate lights, 

forming images in addition to capturing them using silver-plated paper. In 1857, German physicist and 

glassblower Heinrich Geissler invented the Geissler Tube, which is deemed as the primal version of gas 

discharge tubes that later advanced into television and many digital imaging devices. This technique made 

the visual interpretation of natural objects no longer a human-only ability but gained a level of objectivity 

and solidity, for the image could become a direct product from natural interaction – chemical or physical -

-- between objects and objects, and without human interventions. How to make more true-to-nature1 

images has become a crucial consideration since the emergence of these techniques.  

For example, many photo-realistic renderings, either still or animated, are one type of reflections of 

“reality.” These digital images of an unbuilt design are heavily modeled and executed through mechanical 

simulation, mapping natural phenomena such as light reflection and dynamics of water and winds. More 

comprehensive simulations of realistic environments facilitate a process of describing and predicting 

towards complete objectivity. Such process then assures the translation between imagination and the real 

word as a product of verifiable, scientific interpretation2. 

 

Figure 9. Images of leaves captured using similar methods as Thomas Wedgwood’s proposal to “fix” lights using 
chemical reactions (Photohistoryreview, 2008). 

 
 

1 True-to-nature was a “precondition for mechanical objectivity, just as mechanical objectivity was a precondition 
for trained judgement.” - Daston and Galison, p. 18. 
2 Discussion in this paragraph was inspired by Prof. Kilian. 
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Up to this point, shortly after Alan Campbell-Swinton’s proposal of television theories in 1915, the rapid 

advances of machinery, and the increasingly realistic interpretation of visual signals, the field of design 

looked forward to another systematic approach of expressing visual information in a meaningful while 

encoded through machines perception. In addition to its claim of renewing the design industry and 

pursuing “comprehensive artwork”, the Bauhaus incorporated mechanical aesthetics as an important 

aspect in visual education and creation. Clean, efficient, and industrial visions of design have given visual 

observation another level of intentions: allocating functions of each part in addition to general 

composition and appearance. While eyes of designers capture appearances, gestures, and compositional 

values through observation, they are also responsible for extracting machine-like austerity and dynamics 

from massing and abstract representation of shapes and relations. The Bauhaus’ shift from visual 

aesthetics to visual analogies has made the roles of designers’ eyes to perform another task: to “see” 

internal and elemental connections and properties of the design as a system (figure 10.): a link of objects 

to mechanisms, to how the design should be operated.  

 

Figure 10. “An edifice of flesh, muscles, bones” (Schlemmer, p.41). Figure drawing for Paul Klee’s course, Karl 
Hermann Haupt, 1923. Bauhaus Student Work, 1919-1933. The Getty Research Institute. More than a diagram of 

joint-and-bone structure, the resemblance between mechanical gears or conveying belts and human body is obvious 
in this orthogonal view of a standing figure. 
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1.2 Eyes of Machines: Efficient Communication 
 

In order to operate design products, more substantial and attribute-oriented “vision systems” have risen 

given the increasing demand on construction communication and efficiency. Tools and machines have 

been developed to perform one similar task as that of what designers are able to perform: recording 

objects and events of the real world but with greater accuracy and efficiency. Utilization of machines’ 

precision and fast processing of complicated images has been developed fiercely. Starting in the 1960s 

where the first digital imaging of a close-up of Mars surface was captured by NASA with the work of Dr. 

Robert Nathan, around the same time pattern recognition and three-dimensional shape perception were 

explored on pixel and contour-based (Roberts, 1963) Machine Vision tasks. A turning point for designers 

to enhance their ability in order to create visual representation and link to a computerized processing 

system is the invention of SketchPad by Ivan Sutherland at MIT in 1963 (Sutherland, 1963).  

SketchPad made it possible to link designer’s hand input, which was originally applied to unalterable, 

physical surfaces only, to be translated into a digitized form through another visual medium know as the 

digital screen using mathematical representations. Therefore, machines started to “see” what has been 

drawn by referring to zero-dimensional Boolean operations: lines are represented by two points, and 

points are represented by a pair of numbers of their relative location on a screen coordinate system. While 

machines’ efficiency made input more definitive and convenient to be transferred, they also reversely 

made visual perception of lines, for example, to be viewed more likely as a mathematical expression than 

an abstraction of any possible visual interpretation. 
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Figure 11. Conceptual pipeline of Eastman’s system. “A schematic flowchart of the search aspect of space planning 
problems”, Eastman, 1970, p. 690. 

 

Shortly after the invention of SketchPad, Charles Eastman summarized and criticized existing vagueness 

and uncertainty in describing design problems using conventional process (Eastman, 1970). His 

influential response3 to the “ill-defined” problem in architectural design is to specify “formal languages” 

to translate abstract design goals such as “’more luxurious’ and spacious”, and to establish a flow of 

operation (figure 11.) that identifies “design units” and modifies their properties for the sake of achieving 

“design goals”.  These goals, or systemized intentions, are mathematically evaluable by finding numeric 

thresholds to size, feeling of space, accessibility and so on. Identification, composition, and 

decomposition of “design units” also “widen the solution space” (p. 672) that augmented solution-finding 

process by human designers. His work changed the vision of what or who can express design intentions: 

from trained individual observational reflection to a systematic pipeline of discerning, allocating, and 

compilation.  

However, designers’ self-aware powers of vision have not lost their deserved attention. Emergence of the 

Computer Aided Design (CAD) programs, on the other hand, promoted further exploration of human 

 
 

3 Eastman’s paper was regarded as “The first paper in design cognition”. 
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designers’ pursuit and their reflection of visual communication in design: on meanings and on dynamics 

in addition to “recording” and “enhancing”. Almost at the same time when Eastman proposed the 

prototype of BIM, artists, and architecture design theorist such as Georgy Kepes and Nicholas 

Negroponte of MIT, in the 1970s, emphasized on high-level abstraction and compositions, which human 

designers are rather highly competent in their performance, proceeding far beyond just reasoning about 

mathematical and material representations of design forms4. Along with theoretical approach of Rudolf 

Arnheim, they assigned tasks of vision to another level of dynamics, to thinking and create: 

 

“In all these instances the elements of a problem situation are changed, rearranged, and 

transformed; the emphasis is shifted, new functions are assigned, new connections are 

discovered. Such operations, undertaken with a view to attaining solutions, constitute what is 

known as thinking.” 

---- Rudolf Arnheim, “Visual Thinking”. In Gyorgy Kepes (1965), “Education of Vision.”  

 

1.3 Eyes from Tools: Visual Tasks Enabled by Digital Tools 
 

“All problems can be said to consist of translating some entity (A), into some other entity (B), which is 

specified in terms of goals to be achieved.”  

–-- Eastman,1969. “Cognitive Process and Ill-defined Problems: A Case Study from Design.” 

 

Time-accumulated training of designers’ use of visions and progressive advances in digital imaging 

systems have signaled a merging of the two into a cooperative entity. A shared goal has been to augment 

and reflect design processes. Systems in delivering design solutions such as Eastman’s proposal have 

given another definition for what to be seen in the eyes of digital tools. Starting approximately in the mid-

1960s, discussion has risen to seek for a merging or balance between the context-based information 

acquisition from designer’s human vision and computerized design units and shapes: as an alternative 

 
 

4 Shape Grammars by George Stiny. 
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interpretation of Arnheim’s (1965) emphasis on “the next steps'' performed by vision and visual thinking, 

that is to “shift emphasis, assign new functions, and discover new connections”.  

Architects have been adept at abstracting design intentions and materializing them in tangible forms and 

designing by haptic, audio, and visual interactions. Especially in vision, these designers reflect upon 

meanings of their work and see various potentials even from a brief acquisition of visual signals. 

According to Brothers (2008), Ackerman (2016), Negroponte (1970) and Kepes (1965), it was more 

likely to base on the abstraction process of embedded ambiguity and morphing potentials in images. Such 

attitude towards visual experience is also acknowledged by late 20th century design theorists such as 

Ronald Finke (1995) and Alexander Koutamanis (1995) on creative cognitive power and visual 

memories. 

Around the same time, an “architect-machine partnership” was envisioned, which would be achievable 

through intelligent sensory exchange between the two sides (Negroponte, 1969).  Negroponte not only 

suggested a foreseeable future when humans and machines collaborate to solve architectural problems, 

but also proposed frameworks on which this relationship would be built: mapping and interpretating 

human sensory in computer interfaces, including “visual, tactile, olfactory, auditory, and extra sensory or 

motor command” (Negroponte, 1969). Among these sensory aspects, the architect emphasized the 

importance of vision, and the potential for machines to “challenge and question” a design problem by 

extracting high-level information such as “probabilities, commonalities, intents and 

patterns.” Researchers in the computational design realm have explored many opportunities of this 

mentality: Multimodal sensory applications are implemented into personal experiences (figure 12.) for a 

comprehensive description of the spatial quality (Papadopoulou, 2014; Jensen, Foged, and Andersen, 

2020); computer vision algorithms are explored to establish computational models that represent human-

level experience of architectural spaces (Koile, 2000; Peng, 2018); and interactive visual experiences are 

incorporated into learning and creative process in exploring design opportunities (Sung, 2013; Park, 

2015).  
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Figure 12. Papadopoulou, 2014.  Perceptual Prototypes. 

 

However, before making decisions on the next systems, how to acquire visual information from a design 

“situation” is even more challenging for machines to accomplish. One persistent problem regarding 

machines’ reading and “understanding” of meaningful information in a graphical stimulus, which is 

embedded with multiple “intentions” that are aligned with human designer’s individual interpretation and 

wills. Especially in computer vision, a distinctive difference between how people and machines perceive 

an image is that people are able to pick up contextual and high-level semantic meanings from visual 

stimulus, while machines are more adept at picking up sub-level, pixelated pattern groups that are deemed 

to be “distinctive” to a specific image. Machines, especially computer vision (CV) algorithms, deems 

uncertainty and abstractness very differently from that of human designers: in most situations’ ambiguity 

leads to a drop in optimization score, brittleness of the recognition model (Ilyas et al., 2019), and thus 

becomes targets of “reduction”; while in the visual design process, abstractness leads to further discovery 

and exploitation, becoming a crucial generator of opportunities.  

Many pioneers have ventured in the realm of constructing artificial intelligence algorithms and its 

relevance to the process and teleological aspect of design, some recent examples include small scale 

graphic design tasks, primal spatial arrangement of furniture, and scenic graphics generated from 

gesturing strokes. The backbones of these AI designers fall into two major categories: one establishing on 

the exhaustive mathematical modeling of effective properties, and the other is supported via the versatile 

pattern recognition and matching. The AI is responsible for generating the outcomes that have a particular 

meaning graphically to human beholders, yet very little to the generating algorithms, as one of the well-
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known inadequacies in computer vision: what is meaningful to a recognition algorithm is not always 

meaningful to human perception (Ilyas, A. et al., 2019). Researchers discovered that some minimal 

disturbance to a test image could completely trick a high-performance, well-trained recognition system to 

produce errors. 

Comparing the two approach of building up a new design, the former is structured from the very elements 

of formal qualities (Koile, 2000; Takehiko, 1995; Peng, 2018), and the latter is achieved by 

acknowledging an expressive nature of the imagery itself and therefore designate the imagery as the basic 

operation unit (Knight, 2015). Computer vision algorithms that distill unique imagery features of a given 

input to pairing up with a predetermined graphic data (Isola et al., 2018), optimization algorithms that 

take in numeric interpretation of spatial qualities, and label-matching procedure that links a certain 

graphic outcome with words and sentences. They are sophisticated, well-described procedures of 

matching and re-combining. In order for computerized design tasks to give meaningful responses, specific 

descriptions are required to be presented as a “translation” of the designed context.  

In the next section, I discuss two examples of utilizing encoded machine vision in assisting perception 

and design work.  

1.3.1 Google Image Search: Feature Matching 

Google’s image search, or “reverse image search” was implemented in the summer of 2001. According to 

Alex Wild (2021), the search enables back-tracking of similar images without needs of keywords, and 

thus makes tasks like locating credits and seeking image popularity possible. In the same year of its 

release Google (2021) posted a short video explaining briefly how the algorithm works: the engine 

“finds” out “distinctive colors, points, lines, and textures” from an input image; then each of these 

features will be sent to the “back ends for matching against” Google’s database. Then the engine returns 

“visually similar” results by correlating recognizable features as “labels” of an identifiable object.  
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Figure 13. “Examples of 3D object recognition with occlusion.” Loew, 1999, p. 6, figure 5. 

 

More specifically, the algorithm is a feature detection algorithm called Scale-invariant feature transform 

(SIFT), which was published by David Lowe in 1999. As an alternative to earlier template matching 

algorithms (Robert, 1963) which are constrained by slight variation of the image, it utilizes a training 

database where important “features” of an image would be extracted and labeled as a distinct 

“description” of the input. For an object to be recognized in a 2D image, many distinctive “image keys” 

(figure 13.), which are sub-areas within an object that are visually persistent regardless of slight scaling or 

rotation of the object. 

For example, in Lowe's (1999) paper, the author represented “image keys” in white rectangles within 

outlines of each segmented object. The higher contrast or more stable relative to “image translation, 

scaling and rotation”, the better the “keys” are. These keys are obtained based only on appearance visible.   

Noticeably, Lowe discussed the connections to “biological vision”, and along with other neuroscience 

scholars they might agree on specific regions of a visual stimulus will contribute to the recognition of 

particular objects, such as “shapes” (p. 8). “The feature responses have been shown to depend on previous 

visual learning from exposure to specific objects containing the features” (Logothetis et al. 1995). 

However, how these “local features” actually make sense or have higher-dimensional meanings rather 

than a “found” stimulus has been consistently ambiguous towards “recognition” of meanings of the 

images themselves. 
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Figure 14. Searching algorithm of Feature matching recognition, Lowe 1999 

 

1.3.2 “Synthetic Tutor”: Feature-based Pattern Matching Algorithms on Two-dimensional 

Architectural Diagrams 

In 2015 MIT PhD student Ju Hong Park explored in his dissertation on feature-based pattern-matching 

algorithms (p. 19) in assistance for finding similar-appearance plan drawings in conceptual design phases. 

An “Intelligent tutor system” named as “the Synthetic Tutor” was developed to provide “customized 

teaching materials”, including graphical suggestions of a drawn plan, serving as “precedents” to facilitate 
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students’ design learning experience (p. 11). This section will focus on a summary of how Park 

implemented the algorithm to capture “semantic” information from plan drawings.  

Figure 15. Pattern Matching in Computer Vision Tutor, after Juhong Park, 2015. 

 

Park discussed about the positive potentiality of utilizing image recognition to provide “instructor-like 

feedback” (p.54) in the “computer vision tutor”, in a form of architectural plan drawings. One goal of 

Park’s system is to extract “meaningful” information from input drawings through various processing of 

the input image. Another goal is to perform “understanding” by the machine on “meaningful” 

information, by a “global and local feature-based” (p.56) algorithm similar to the Google Image “reverse 

search” in the previous section (figure 15.). A straightforward global feature evaluates average of the sum 

of Euclidean distance between every pair of pixels from input and database images; a local feature 

detection by using interest points, which are recognized from high contrast value from pixel information. 
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Figure 16. Examples of human input and the “Tutor’s” suggestion of recognized plan drawings (Park, 2015). 

 

Park commented positively on the pedagogical feedback provided by the CV tutor (figure 16.). From the 

example result provided in the paper, it is clear that a good match for a clean, definitive plan drawing can 

be effectively “translated” and thus related to another clean plan drawing in the database (p. 107). 

However, the author had yet demonstrated drawings in a more ambiguous manner, or in the “sketch” 

stage for developing schematic design. One possibility of a lack of “sketch” situation is due to a more 

uncertain graphical representation of information extractable from the inputs. Since the matching 

algorithm directly retrieves pixel-based, vectorial information and pattern groups from the image itself, it 

has yet to overcome the disadvantage of capturing “intention” from a design image, which includes 

recognition of shapes as contextual entities, and their interrelations that structure the whole composition 

on the canvas. 

From the two examples, it is obvious that current computerized visual thinking is mostly benefited by 

low-level features that make little sense to humans, or distinctly defined image group that respond to 

search algorithms. They are either too atomic, or too complete. One major guiding principle in machines’ 
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training of matching images is to minimize a predetermined loss function. Such goal is meaningful 

mathematically, however, it is lack of high-level intentions, or contextual understanding of the images 

themselves. These visual perception algorithms, therefore, reflect only partial of the human design 

processes that are often emergent, reflective and ephemeral. Greater opportunities reside in the magical 

“abstractness” of vision that translate a defined object into dynamic representations of visual thinking.  

Such thinking process requires a high-level, willful execution of design intentions. “Talking freely about 

the things I see, and that they alter at will, as I go on5” is supported by the reasoning of individual 

designers. When a novice architect is asked a simple question: “Why did you draw that?”, the person 

should have a decent explanation, whether graphical, mystical or verbal, about the “intention” within. 

Each of these transient moments in the design process is dynamic, and the next step is executed based on 

acquiring meaningful information from the previous state, which is to be captured visually.  

If machines are capable of performing a similar process of understanding visual inputs, it will be possible 

to further bridge the making with thinking in a visual manner, which will allow intentional extraction of 

abstract representation towards a given form. 

However, before thinking about how machines will possibly perform a design-like visual task, it is crucial 

to think first about how designers use visual power and abstractness. Therefore, a history of the designer’s 

visual power is needed to be examined: to find the discovery moments that have shaped and translated 

design imagination onto visible forms. How designs were progressed when acknowledging the 

“intentions” that have facilitated those transformation. 

  

 
 

5 Stiny, 2021. “Calculating in imagination’s magical realm”, script. 
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Chapter 2 Discovering by the Eyes: Intentions from Designers’ Observation 

  

In this chapter, I focus on investigating the link between designer’s intentions and their manifestation in 

the form of architectural design sketches. To explore a fuller spectrum of this relationship between 

intentions and observations which has been developed and applied in architectural design, I investigate 

one of the most straightforward visual expressions of design ideas: sketch, with works from classical, 

modern, and contemporary times. The classic examples will be focusing on works by Michelangelo and 

Da Vinci, whose use of lines and abstractions are considered to be the first in architectural design 

graphics. The modern examples will be focusing on works by Le Corbusier, Louis Kahn, Mies van der 

Rohe and Kazuyo Sejima; and later on, design framing assisted by parametric and interactive 

programs. Then, I examined three digital examples that consist of machine vision and machine learning 

programs that consider abstraction as one goals in addition to object segmentation. Sequentially this 

chapter answers to “how” and “why” intentions have been perceived and created by human architects. To 

conclude this chapter, I identified three inspirational aspects from the examples of machine algorithms 

and how they would fit in to the broader narrative of dynamic observation in perceiving design intentions: 

how to express “verifiability”, a time-sensitive description of enclosed shapes, and an image-to-image 

translation enabled through machine learning algorithms. 

2.1 Origins of Intention in Architectural Design Drawings: Find Abstractness through Observation 
 

Subtracting pure descriptive drawings and obtaining abstracted contours that are efficiently expressive is 

one strategy of invention through drawing practiced by Michelangelo. From the extensive study of the 

architect’s progression in finding design intentions through graphical clues, negating the needs of 

“binding category or definition to forms” by taking profiles in descriptive drawings away enables visual 

information in shape and composition to be clearly presented. In Brothers’ (2008) book “Michelangelo: 

The Invention of Architecture”, the author describes that by “omitting measurements and origins of the 

details,” Michelangelo transformed a “drawing of an ancient monument” and into a “design drawing” (p. 

66).  Deduction of every singular detail makes abstracted forms to have enough representative power to 

indicate what form should be completed: such as the horizontal running lines of dentals and curved profile 

in the upper partial triglyph. More specifically, his copy of Codex Coner presented a shift from 

descriptive line drawings towards a form of abstractive qualities that encapsulate both the forms and 

gestures of an architectural motif, such as the trabeation of the Theatre of Marcellus (figure 17.). The 
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original graphics in Codex Coner are descriptive and definite, with orthographic projections of ancient 

Roman monuments with measurement attached to notes of properties of size and location. However, 

Brother argues that Michelangelo’s interpretation of less-defining lines is a continuation of the architect’s 

“graphic tendency” from his figure studies, where embedded motions and gestures are seen inherently 

with the graphic itself. “A profile”, as the author points out, “also has an inherent ambiguity of positive 

and negative qualities that Michelangelo fully exploited” (p. 67). What is useful and linkable to his own 

design is selected and therefore extracted. These useful and linkable graphics are “intentions” to be 

explored in the following section. 

 
Figure 17. Bernardo della Volpaia Codex Coner’s documentation (left) and Michelangelo’s study of the same motif 

(Brothers, 2008). 
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Figure 18. One sketch from Michelangelo’s study of the Battle of Cascina (left) and Da Vinci’s sketch study of the 

Battle of Anghiari (right) (Brothers, 2008). 

 

Leonardo Da Vinci’s influence in visual experiment using sketches also shifted the use of visual 

imagination from recording of object properties to free explorations based on perception and calibration. 

Most importantly, a visual process of extracting useful representations for foreseeable choices of “next 

line to be drawn” based on observations.  In Da Vinci’s sketch study of the Battle of Anghiari and 

Michelangelo’ study of the Battle of Cascina (figure 18.), movements and collisions among figures and 

gestures of the whole composition are loosely applied. Multiple possibilities of posture and combination 

of these figures thus become visible according to how the artist will see them as the next step when 

interpreting the curves and shades. Michelangelo’s habits that he developed for drawing to search for 

figure poses affected his later interpretation of architectural drawings (Brothers, p. 62). Selective 

abstraction of the descriptive graphics serves as indications of “design.” Retraction from the descriptive 

drawing makes the visual focus to work more efficiently and therefore facilitates visual imagination, 

seeing “more” than objects but to gestures, movements, layers, and jointly, to intentions. 

As a polymath, Da Vinci’s inquiries on the human eyes are as fascinating as the use of them in artistic 

pursuit, suggesting that anything that “reaches the eye through this central line can be seen distinctly” 

(Hunziker, 2006).  This “central line” (figure 19.) was latterly studied extensively in modern science as 

“fovea vision” in different from “peripheral vision.” The distinction between perceptive level at these two 

visual areas is also relatable with the recognition of labels and perception of “intentions” in a visual clue.  
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Figure 19. A sketch by Leonardo Da Vinci on the “eye line of sight” (Da Vinci, 1955). 

 

To the discussion of “intention”, what is more important than the sketch technique and the sketch 

themselves are the designer's observational ability to acquire and imagine the dynamics of possibilities, 

while appropriately recessing from identifying what exactly every part in the drawings is. A process or 

method of observation facilitates graphical clues in the retrieval of “intentions”: the observer’s personal 

language obtained through observation.  

Using the example of Michelangelo’s interpretation of the entablature of the Theatre of Marcellus, how 

the architect’s abstraction of the original drawing helps to explain a designer’s observational method. 

After the studies practiced by Medieval craftsmen and the progression of more durable rag paper, the 

architect was able to perform slight transformation of the original profiles and contours into abstract 

forms that suit his ways of observing design intentions----“Incorporating forms into a personal language”. 

Such is how Brothers (2008) describes Michelangelo’s attitude towards his copying of the measured 

drawing by Bernardo della Volpaia, “Codex Coner” in 1514.  

As a method to “seek the best examples and improve upon them”, Michelangelo only took models and 

parts he deemed worthy visually and filled the rest with imagination. Brothers also notes that imagination 

came from multiplicity of readings latent in an abstract profile, or expression of edges but without 

measurements and origins of the details, which, more specifically explained by the author as “expressing 

a quality apart from an object.” From the original drawing, the architect saw volumes, connection among 

parts, repetition of elements, and contours of the whole composition to inform depth and alignments.  

These abstract qualities of the profile add another layer of a figurative description of the drawn object, 

rather than deduce the description to be an abstracted product. As Ackerman (2016) comments: “As in the 

fortification of drawings, there are lines that have nothing to with structure, representing in this case 

visual and conceptual axes” (Ackerman, p. 15). Brothers also states that “Michelangelo’s tendency to 
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favor the profile to the exclusion of other aspects may have depended on the abstract quality of the 

profile...A profile also has an inherent ambiguity of positive and negative qualities” (Brothers, p. 23). 

Thus, his drawings made another level of visual interpretation for architectural drawings, and furtherly 

enables “Selection of subjects that suggests a link to his designs” (p. 24). 

Michelangelo’s example enables retraction from pure objective description and indications of 

compositional visual dynamics, in order to serve as a starting point to search for imagination (Brothers, 

2008). Vision connects what is objectified to representations of design, and towards a form that internally 

retains gestures and movements. The architect’s work suggested a more distinctive approach in the works 

of modern pioneers. Design intentions have become not only a manifestation of architectural ideology, 

but a justification of the power of visual perception beyond objectivity towards movements and dynamics.  

2.2 Activating Forms in Abstraction in Architectural Design Drawings 
 

“Each day of my life has been dedicated in part to drawing. I have never stopped drawing and 

painting, seeking, where I could find them, the secrets of form.” —Le Corbusier (Pauly, 2018). 

“Le Corbusier used drawing to imprint images on the mind. [His] method of drawing on the 

Acropolis in particular, fast, excited, exploratory sketches served to actively propel his reasoning 

forward more than merely recording and memorizing fixed conclusions.” -- Geoffrey Baker, 

2001, p. 182. 

 

From the masters of the Renaissance, the sketches, as one of the first forms in abstract visual 

communication, have been succeeded by generations of architects in education and practice alike. 

“Training of the eyes” is an important realm of all designers of both the classists and the pioneers. The 

trust and practice of the power of vision and envision have been silently passed down to the era of 

machines and industries. In this second section of chapter two, I discuss exemplary architects’ sketches 

and how visual intentions are generated and retrieved from these “rough-and-delicate, loose-and-

disciplined beauty” (Merrill, 2010, p. 13), in other words, the abstract representation of intentions in 

design images. 

 

2.2.1 Le Corbusier: Elements of Evocation 
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Being directly personal and self-reflective (Harris, 2015, p. 1), the self-claimed crow-like architecture 

pioneer used sketches to facilitate, improve, and shape his ways of thinking on observation, turning 

records into innovation. His sketches were “often minimal, fast and emotive with which he perfected both 

his analytical and design ideas” (p. 1). These powers of “schematic evocation” were usually done with a 

few quick lines. As early as his “Grand Tour” through northern Italy, the young art students developed a 

“repertoire” of “added analytical sketches that captured the core of spatial forms and became a means of 

shorthand visual note taking” (Brillhart, 2018). His drawings are deemed as a way of thinking and inquiry 

beyond objectivity to the composition and dynamic of forms, as Giuliano Gresleri (2000) commented: 

“...his awareness of ‘being able to begin again.’...The notes, the sketches, and the measurements were 

never ended in themselves, nor were they a part of the culture of the journey. They ceased being a diary 

and became design.”  

Discussed thoroughly in Harris’ investigation of Le Corbusier’s sketches, these lively, abstract lines and 

gestures serve more than tools of memory but as “actively investing[ation]” (Harris, p. 2), to “transform 

his thoughts into original interpretations of the essence of classical architecture and discover its new 

relevance to twentieth century architecture.” Unsurprisingly, this approach of translation “memory” into 

“thinking” has been a key point for Michelangelo’s personal interpretation of Codex Corner and thus 

catalyzed the first architecture design drawings. More specifically on the quality of these evocative 

sketches, the architect’s focus gradually formed to architectural qualities such as “the relationship of 

architecture and ground, and the representation of movement and spatial sequence” (Harris, p. 4). The two 

following sketches and analysis diagrams (figure 20.) by Harris show how one sketch, although 

seemingly as a “recording of a scene”, can be seen and understood by same-minded designers as three 

distinctive representations of movement, depth of field, and “balanced asymmetry of contrasting graphic 

techniques” (Harris, p. 14). 
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Figure 20. Two examples of Le Corbusier’s sketches and potential diagrams drawn after observation (Harris, 2015). 
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2.2.2 Louis Kahn: Form and Design 

“Form is ‘what’, Design is ‘how’. Form is impersonal. Design belongs to the designer.” 

---- Louis Kahn, 1960. 

 

Figure 21. Two sketches by Louis Kahn: Plan studies of Morris residence. (Architectural Archives, University of 
Pennsylvania, 2021).  

 

Producing hundreds, if not thousands, of plan sketches through his design career, Architect Kahn drew in 

an expressive, yet diagrammatic way, linking definite shapes with emergent forces on paper. “Kahn’s 

insight into the architectural process as one uniting intuition and ratio, Platonic idealism and 

realism…representation and its transcendence…” (Merrill, 2010, p. 30). His sketches were about 

experimenting with the “Form”, or in Merrill’s perspective (p. 30), a defining process about the 

“hierarchical and reciprocal relationships between its activities and was thus the architect’s insight into 

the unchanging essence of the institution in question” (p. 30). The expression of the “Form” is not 

restrained by objective design contingencies such as budgets and materials, but to demonstrate and to 

flow. Essences of space making, in Kahn’s eyes, travel beyond the frames of programming and even 

scientific reasoning. They instead were given to and initiated by “intuitive powers”, which is “probably 

our most accurate sense” (p. 29). Investing greatly in his sense of “appropriateness”, Kahn advocated for 

trusting and exercising a process of architectural design that took roots from human and historical 

inspiration. 

Norberg-Schulz stated in his discussion of “Aesthetics” that form and expression of an artistic object has 

no conflicting cause, and thus “expression belongs to the form” (p. 73). Instead of obtaining expression 
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from elsewhere, the form itself facilitates the expression. From the two sketches above, although the 

compositional elements are almost the same (squares and rectangles in a series of cross-shaped 

arrangements), by selectively darkening certain edges Kahn presented two possible distinct intentions: 

one on the enclosure of spaces (left), and another on the progression of connective spaces (right). By 

giving graphical clues on what to see when seeing, the architect suggested his intentions of space-making 

in those loose lines and their compositions. 

 

2.2.3 Ludwig Mies van der Rohe: Composed Dynamics 

 

Figure 22.  Barcelona Pavilion sketch (left) (Mies van der Rohe); Farnsworth House, Plano, Illinois, Elevation, 
1945 (right) (MoMA Mies van der Rohe Archive, 2013).  

 

Appraised as “the Master Composer” (Artemel, 2021), the architect earned this grand adoration by his 

“restrained-yet-powerful” composition emerging from collages and drawings. Formerly worked at his 

father’s stone-carving shop, his use of lines and planes in drawings inherent to a disciplined expression 

from a builder, and a space-maker. Although the objectivity of planes and spaces are much more 

recognizable and formalized in these drawings, a sense of a composing moment varies depending on 

where and when an observer chooses to focus on. For instance, if one focuses on the vertical planes in the 

first sketch of the Barcelona Pavilion, it will imply about a progression of transparency and a distinction 

in texture and massing; if one stead focuses on the highest contrast, human figure, then the drawing is 

about the convergence of spatial movement to a defined, one-point perspective setup. Similarly, the two 

horizontal stripes in the second drawing of an elevation of the Farnsworth House hint about the extent of 

longitudinal mass; and the tri-colored rectangles suggests interior and subdivision of spaces restrained by 

the previous white stripes.  
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2.2.4 Contemporary (after postmodernism): Diagrammatic and Parametric 

Kazuyo Sejima’s diagram for project Platform I is assembled out of geometric forms. Toyo Ito wrote in 

his commentary on the work of architect Sejima, “You see a building as essentially the equivalent of the 

kind of spatial diagram used to describe the daily activities for which the building is intended in abstract 

form. At least it seems as if your objective is to get as close as possible to this condition” (Vidler, 2000). 

 

Figure 23. Kazuyo Sejima’s diagram, for project Platform I, 1987 (Rodriguez, p. 382). 

 

As a new star shining in the once male-dominated realm of architecture and space-making, Kazuyo 

Sejima is undoubtedly one of the most skillful seekers of new lifestyles with architectural ingenuity. Her 

use of visual medium not only justifies spatial arrangement, but also indicates other “sensual potential” 

(Rodriguez, 385) and textures. The drawings themselves are rather objectified and synchronized with 

actual, physical imaginary of the space to-be-made in an inspirational manner to provoke multiple sensers 

at once. In this case the “intentions” are less ambiguous as probing a thinking process, but leaning 

towards connectivity to real-world, tangible objects that actually compose the story composed by curves 

and enclosed shapes.  

Undeniably popularized by its affinity to the computational approach of generating and manufacturing 

buildings, parametric design has been a force to absorb internal attributes of objectivity into the dynamics 

and accessibility of digitized design and construction interfaces. Extending further into contemporary 
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parametric design that has been widely accepted in the current architectural industry, “internal logic” 

(Jabi, 2013) of objects is ascribed and manipulated as attributes of a recognizable object. Design 

representation is therefore more of a reflection of internal forces of identifiable objects and mathematized 

logics to connect these components. Visual powers of intentions that was heavily relied on architects’ 

personal abilities has been set to the background, seen as a reminiscence of “instinct” and “slow” 

compared to the computational power of machines.  

While architects have partially shared their visual power with the machines for reasoning and efficiency, 

how machines actually perceive or utilize such visual power is also an interesting topic to be explored. 

2.3 In the Eyes of Machines: Shifting Perspective 
 

 

Figure 24. A classical image recognition model of extracting shape features. Proceedings, 4th Mexican Conference 
on Pattern Recognition (MCPR), Perceptual Grouping using Superpixels, 2012, S. Dickinson, A. Levinshtein, and 

C. Sminchisescu, p. 14, Fig. 1 

 

As discussed in chapter one, machine vision has gained a systematic approach to how and what image 

signals could be translated into digitized expression that synchronizes with computational frameworks. 

Usually, these frameworks are established on detecting “shape features” (Dickinson et al., 2013, Chapter 

1) as a right-or-wrong response to recognize a specific category from a database of candidates, as the 

targets to be seen as verifiable, solid, and definitive entities. To summarize, from the 1950s to 1970s just 

in the span of two decades machine vision was developed from a test of algorithmic analysis to a system 
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of retrieving visual information of the real world: to distinct and describe as realistic as possible. The first 

“pattern recognition” algorithm separated points of different properties into groups by linear borders, and 

MIT’s curriculum established for “Machine Vision” with the aim to understand real world objects 

empowered by “low-level” vision tasks such as edge detection and segmentation. The answer is usually 

“right” or “wrong”, as similar to the judging point of “matching” or “not matching” a design criterion in 

Eastman’s design cognition system6. “Segmentation” has therefore been one important core of Machine 

Vision. Mathematical criteria are implemented to examine whether a trained machine will perform the 

tasks of identifying objects in a least erroneous manner. Its fall back, however, has been a “weaker, 

domain-independent shape prior” (Dickinson et al., 2013, Chapter 1) as contrary to the grouping effects in 

human visual perception. 

However, as designers, we face another question if adding machines’ visual power to our bags of tricks: 

can machines give answers on an abstract level? The answer can be partially found in recent explorations 

in the form of “extracted” abstractions of shapes, from photos of objects, as a partial response to the 

abstraction enabled by human eyes when observing images (Dickinson et al., 2013). The following 

discussion will focus on three examples with abstractness and machines.  

More importantly, before discussing any disparities between human and machine vision it is crucial to 

acknowledge that from conflict comes mutual understanding. “To understand machines, we need to 

become machines first7”. To inform the limitation means exploring unseen opportunities. The following 

examples provides not only some insight of machines’ processing power on “abstractness”, how they are 

similar or dissimilar to that mastered by human architects, but also three inspirations that inspired the eye-

tracking study I conducted: how to express “verifiability”, a time-sensitive description of enclosed shapes, 

and an image-to-image translation machine learning algorithm known as the image-conditional 

Generative Adversarial Networks (GANs). 

 

 

  

 
 

6 Prototype of BIM, discussed in chapter 1. 
7 One quote from Prof. Randall Davis from his MIT 6.835 Interactive Multimodal Interface lectures. 
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2.3.1 Abstract Perception of Shapes in Machines: is It Verifiable? Is It Dynamic? 

 

 

Figure 25. “Black, amorphous blobs”, when grouped and perceived together, forms a scene of a horse and a rider. 
(Street, 1931, p. 55, Fig. 8) 

 

Machines perceive, or have been encoded to perceive, abstractness based on individual frameworks of 

finding and matching shapes from predetermined search spaces. This design of searching is partial similar 

to human perception in the sense of finding meaningful graphics. When looking at a particular visual 

composition, like the famous example of “a horse and a rider” (Street, 1931, p. 55, Fig. 8), the human 

visual system is able to “group the fragments to form a set of abstract parts, then group those parts into 

larger configurations, then ‘queried’ your visual memory for similar configurations” (Dickinson et al., 

2013. Chapter 1). This grouping effect from quick, multiple visual perception to form a composed 

meaning from a given stimulus is called “perceptual grouping.” The related research works had been 

thriving in the latter half of the 1990s, however it has been declining due to the conflicting operation 

required by object detection and segmentation from a large database in machine learning (Dickinson et 

al., 2013). Resulted uncertainty from the composing process to reformulate image information from 

components has not justified to be effective in detection problems for a particular target object. 
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Figure 26. Detection of abstract forms from photographs. Springer Science+Business Media: Proceedings, 11th 
European Conference on Computer Vision (ECCVC), Contour Grouping and Abstraction using Simple Part Models, 

2010, P. Sala and S. Dickinson, p. 606, Fig. 2) 

However, such grouping and search are also different from human perception due to its emphasis on 

individuality and distinctive feature when composing a reliable answer. To follow the aim of fidelity and 

completeness of machine vision, one of the strongest disadvantages of composing abstract patterns done 

by machines comparing human designers is the “verifiability” from recombination of observed patterns. 

To achieve a certain degree of any verifiability is to regulate solutions search spaces into a collection of 

describable features or units. These search spaces excluded any furthering inquiry and extension of the 

abstract shapes. The above image showing retrieving primary shapes from a photo heavily focuses on the 

“objects” that provide the shapes, which are fairly decisive in the photo provided. The collection of 

abstract shapes in the “vocabulary” (Sala & Dickinson, p. 606) are enclosed, well-defined shapes with 

distinct features and parametric maneuverability, such as symmetrical rectangles with different levels of 

smoothed corners, and a series of trapezoids of different ratios between bases. To this extent the 

abstractness in the segmented result is still considered as labels that can be searched through data space 

and possess little contextual meanings with the objects from which the shapes are conducted. 

Identification of objects in a clean background, real-life photos, the extracted shapes are only verifiable 

by the predetermined database as individual “most similar” to a pattern template. An area in the photo 

usually is identified with one label and then such label becomes a verifiable segmentation that exclude an 

area from other parts in the photo. What’s more, labeling areas with one system limits the reading of other 

graphical opportunities: for instance, the facing of the cups in photo (a).  
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This example of segmenting image regions and composing informative parts into potential matched 

shapes suggests an approach to allow a variety of different levels of graphic component to be grouped and 

perceived together. Next example will provide another insight to the machines’ eyes. 

 

 

Figure 27. Example of medial representations (Siddiqi & Pizer, 2008) 

 

Another system of describing abstractness in machine algorithms is the medial Representations 

introduced by Blum in 1967. Unlike the previous edge-detection approach to identify and segment shape 

from a given scene, the medial representations establish an imaginative skeletal network and a system of 

inscribed disks centered on p and their corresponding object angles (θ) and radii (r) (Rezanejad & Siddiqi, 

2013). This representational system considers both the interior and boundaries of an enclosed line 

drawing, and therefore describing the contours from within, by the assistance of a sets of potentially 

moving points (the centers of disks). The circles which determine every pair of boundary points (b+1 and 

b-1) can be furtherly expressed as a moving object following the skeletal structure to “fill” the interior of 

the shape. 

This example in the “rolling” movement of a point on a set of frames provided another inspiration to the 

eye-tracking study.  

 

2.3.2 Image-Conditioned Generative Adversarial Network 

Image-to-image translation has become more and more frequent with recent development in the machine 

learning realm, especially of designing and training convolutional neural nets. In architecture design, 

generative networks that translate one graphical representation of design into another have been adapted 

to floor plan prediction (Wu, 2020) and footprint (figure 28.) and furniture layout (Chaillou, 2019; Huang 
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& Zheng, 2018). These applications have been focusing on clean plan drawings where each sublevel 

design unit such as beds and tables have distinct graphical representations. Their commonality is to use 

color-coded blocks to indicate matching areas with the original architecture drawing8. 

 

Figure 28. Chaillou, S. (2020). Selected generated floor plan with furniture. 

 

The major distinctive feature of conditional Generative Adversarial Network (cGANs) is to use a 

discriminator to classify between real and fake image pairs. Conditional GANs are “generative models 

that learn a mapping from observed image x and random noise vector z to output image y, G: {x, z} → y” 

(Isola et al., p. 3). Recently developed in 2015, this algorithm was designed to allow a more general 

solution to image translation problems in computer vision and image processing. As the authors states, 

this algorithm provides a “common framework” (p.1) to predict pixels from pixels by minimizing loss 

 
 

8 Architectural drawings in these examples are computer drafted plan drawings compared to architects’ design 
sketches.  
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through a high-level goal, such as “making the output indistinguishable from reality” (p. 2), in contrast to 

other task specific convolutional neural nets (CNN). 

2.4 Expressing Intentions Through a Mechanical Process  
 

Gradually shifting from the trained designers’ willful perception to the algorithmic search of clean forms, 

a gradient of human and machines’ perception of given graphics stimulus can be formed. Human 

designers, especially of greater skills and innovative visual powers, are more likely to use dynamic, yet 

undefined graphics to assist further iteration of design forms. Their personal experiences, whether of 

Michelangelo’s sculpture practices and Corbusier’s grand tour in Northern Italy, produced a large 

collection of visual data and thus is able to be searched or associated with new abstract stimulus such as 

the gestures of figure study and quick lines that indicates spatial dynamics. To the machines, however, it 

is hardly possible to code the processing power of a trained human design completely into definite 

pipelines. What is possible, is to explore what kind of forces might help to bridge the two sides: one of 

the experiences and one of the experimentations. 
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Figure 29. Diagrams for delivering of architectural intentions (Norberg-Schulz, illustrations). 

 

One potential bridging force, therefore, can be found through examinations in the design diagrams, for 

they are decisive graphical expressions made by trained designers for the goals of guiding or describing 

design ---- or design intentions. More importantly, they are results from active observation or visual 

imagination. In these design diagrams by Norberg-Schulz (figure 29), labels and intentions may be fairly 

distinctive not only because they are represented visually, but how to think based on each in the design 

process are determined by two mindsets: perception and creation. Previous discussion on the parametric 

design logic, which categorizes objects into atomic “design units” (Eastman, 1965), synchronizes with 

conventional computational approach to “perceive” and process visual stimuli as variables which can be 

identified and evaluated. However, objective attributes are only partial of an entity under the 

scrutinization of designers. The perception of design intention based on abstractness is another part of the 

creative design procedure that requests a different level of perception and imagination. “Dynamic 

observation”, as something not easily described by identifying properties or choosing languages, is 
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attached to human consciousness to extract and compose rough or ambiguous perception into analysis and 

prediction of the potential within an image, sometimes in an even rule-less manner. To capture it while it 

is active, we must capture the dynamics of its perception. 

 

Figure 30. A pendulum between the perception of intentions and labels, swings by the force of observation. 

 

Despite the pendulum of design mindsets that swings between these two ends, the former (label) is 

usually seen as more rational and mechanical, while the latter one (intention) being sensory and intuitive. 

However, the artificial line drawn between logic and instinct would be much blurred if taking the answers 

of “how and why designers see” into consideration when describing and composing design 

representations or structures. Dynamic Observation, drawn as a two-directional arrow that indicates a 

dynamic translation between intentions and labels, is tested and discussed in the next chapter for its two 

manifestations: one from the observational process recorded via eye-tracking, another from the design 

representation obtained by analysis of both eye-tracking result and visual stimuli. 

Using eye-tracking to decode design intentions in architectural sketches is an attempt made here to 

reverse the conventional roles of “instinct” and “logic”: to utilize machine-captured human observation 

patterns as mechanical logic behind visual interpretation of design intentions; and design sketches 

themselves as evocative visual representations seen be trained professions. In the next chapter I describe 

human behavior as a series of captured Euclidean coordinates and scan paths to seek a formal graphical 
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representation; and give uncertainty and interpretation to design sketches that are drawn to be seen not as 

attributes of objects, but as “observation” that facilitate design thinking on the level of “intentions”. In 

such an exploration and examination of human behavior and design thinking I aim to contribute to a more 

sympathetic understanding between designers’ visual power and machines’ power in representation. More 

importantly, to inquire about the collaborative future between humans and machines when their vision’s 

power becomes both perceptive and creative. 
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Chapter 3 Interpreting the Eyes: Architectural Design Intention in Eye Tracking 

 

This chapter consists of three major sections: Design and logistic behind the eye-tracking studies; 

documentation of the eye-tracking studies on observing three expressions of architectural intentions from 

Louis Kahn’s plan sketches by MIT architecture graduate students; and analysis of the resulted heat maps 

from eye-tracking studies.  

In this chapter I demonstrates three major implications respectively: affinity between mechanical eye 

movements and the observational goals of architects; goal-oriented observation results in different 

interpretation of a single design sketch; and view patterns reflect meaningful design information visually. 

3. 1 Logistics Behind Eye-tracking for Design Cognition: Why Use Eye-tracking to Reveal 
Architectural Intentions? 
 

Eye-tracking, or more specifically gaze-tracking for fixation time and viewing sequence, bonds 

mechanical movement of visual observation to another visual medium such as sketches graphically and 

takes account of individuality in observation processes. As discussed in the previous two chapters, how 

designers observe and understand visual stimuli from a given sketch has been a consisting exploration of 

practitioners of many realms of visual thinking. While many design studies focus on the creative methods 

and theories of observing and thus the tangible products in forms of diagrams9, human behavior research 

projects emphasize on the physical process and relations between mechanical movement patterns and 

information retrieved according to spatial and temporal sequences (S.Djamasbi et al., p. 308). However, 

what has not become a topic is that by what process or medium might bridge, or facilitate a transition 

between, the creative and mechanical process of designer’s visual power. If machines, in their nature of 

Boolean operation, can be furtherly elevated into a level of human-like creative perception, an 

examination on how these two processes may converge and be translated into each other is meaningful.  

Human creative perception is multi-layered, made possible from various goals when observing, and 

difference in individual experiences. As Christian Norberg-Schulz (1963) described in his book 

“Intentions in Architecture”, how the forms in visual representation will be interpreted differently 

according to personal inclination and training. “Intentions” in general are perceived from an active 

 
 

9 “Aesthetic preference” in works Arnheim, 1988.  



56 
 
 

process, which goes beyond “simple classifications” (Norberg-Schulz, p. 31) to a “greater ‘intentional 

depth’” to “grasp the situation”. For extracting different expressions of intention in a design sketch, 

therefore, I propose to also give thought to the physical properties of eyes and seeing, or at least to how 

designers like Leonardo Da Vinci used to interpret them. 

 

Figure 31. A sketch by Leonardo Da Vinci on the “eye line of sight”. 

 

How mechanical movements relate or facilitate graphical recognition of visual design stimuli can be 

interpreted through a link between the brain's control of eyes and areas of observation that reflect the 

brain's choice of interest. Gaze location reflects gestures of a designer’s observation. Back to the masters 

of Renaissance, Da Vinci is speculated to be the first in Europe to acknowledge “certain special optical 

qualities” of eyes, most likely from his practices as an artist and a researcher in human anatomy. He 

ascribed two qualities of vision, and only what wa at the “line-of-sight” is clearly perceived (Eye 

Movement in Reading [Wikipedia], 2020). Building up on this artist’s interpretation of nature of seeing, 

contemporary scientists define eye tracking as “an experimental method of recording eye motion and gaze 

location across time and task.”: as Carter and Luke (2020) briefly summarized in the beginning of their 

review on the eye tracking practices: 

 

“The origins of eye tracking can be traced to Charles Bell, who first ascribed eye movement 

control to the brain, classified eye movement, and described the effect of eye movement on visual 

orientation. This defined a physiological connection between the eyes and the nervous system, 

connecting their motion to neurological and cognitive processes and thereby opening a potential 

window into the inner workings of the mind” (p. 50). 
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Echoing the power of eye movement to serve as a reflection of how a visual stimulus is understood by 

minds, an approach of extracting “design intentions” from graphical representation of mechanical eye 

movement is made reliable by how the eyes work when processing visual stimulus: “mental processing” 

and “decision making” reflected by what and how long the eyes are looking at. Because of the anatomy of 

eyes, only a small portion of images projected into the retina receives strong intention, where the fovea is 

located in the human visual field. Carte and Luke (2020) point out that “there is a strong motivation to 

move the eyes so that the fovea is pointed at whatever stimulus we are currently thinking about or 

processing.” More specifically, it is called “the eye-mind link” by Rayner (2009) in his long-time work 

for understanding eye movements and cognition. According to Rayner, it is even “necessary” to move 

eyes in order to understand better visual stimulus due to eye structure limitation in anatomy (p. 1459). 

Experienced visual task performers, such as designers and architects, “have a consistently higher average 

fixation duration than do novices” (p. 1459). Therefore, not only the locations and durations of gaze are 

important for understanding what has been “perceived” from visual stimulus, but the time-stamped 

sequences and relationship between critical visual areas are critical to link mechanical behavior with 

“understanding intentions”. 

Therefore, in order to understand how a design image is perceived by human designers, it is crucial to 

measure “where, how and in what order gaze is being directed during a specific task” (Carte & Luke, p. 

50). My studies therefore utilize eye-tracking technique and graphical representation of the result – heat 

maps – to examine the relationship between extracted visual information according to fixation time and 

viewing sequences (scanpaths) interpreted in architectural languages. This heatmap based graphical 

representation is tested in a machine learning algorithm to generate heatmap as “representation of 

intentions” in chapter four. 
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Figure 32.  The range of mean fixation durations and the mean saccade length in silent reading, oral reading, scene 
perception, and visual search. (Rayner, 2009, p. 1460). 

 
3.1.1 Fixation-based Eye-tracking and Visual behavior 

 

Before reporting the design of gaze tracking studies, what visual behavior is particularly focused is 

explained in this section. Two types of visual behavior are commonly accepted by scientists: “Visual 

behavior in general can be characterized by fixations, and the rapid, ballistic movements that connect 

those fixations, which are known as saccades.” Fixation is the process of retrieving information. “Most 

fixations tend to fall on the informative parts of the scene” (Rayner, 2009). During fixations, the eye is 

briefly stationary and situated such that objects of interest fall within the foveal region of the eye (the 

central point of one’s field of vision) where visual acuity is greatest, with most intentional visual behavior 

being comprised of fixations” (King et al., 2019; Duchowski, 2017).  

On the other hand, areas of fixation also suggested effective graphical cues to the observer. “Fixations 

reveal what objects are subject to cognitive processing at a given moment (Duchowski, 2017).” Often the 

duration of these fixations is considered to reflect one’s depth of processing” (Josephson, 2005; Rayner, 

1998). In Visual Search: eye movement control in visual search: “where and when to move the eyes 

was one question asked by Rayner in 1995, suggesting that the trigger to move the eyes in a search task is 

something like: Is the target present in the decision area of the perceptual span?”  
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A variety of fixation time furtherly assigned four different visual behaviors as silent reading, oral reading, 

scene perception, and visual search (figure 32.). More information on exact functions during fixations was 

reported in Carter and Luke’s “Best Practices in Eye Tracking'' (2020), various visual tasks result or 

require distinctive length in fixation duration. “Scene perception” and “visual search” are the two 

functions the plan comprehension tasks my eye-tracking study is focusing on. From the above chart it is 

obvious that “scene perception” requires the longest fixation time: 260 - 330ms, while “visual search” 

requires the shortest as 180 - 275ms. These two fixation duration ranges will be used in deciding which 

areas shown in the resulted heatmaps in the test result section.  

 

3.1.2 Why Use Plan Drawings: Shapes, Composition, and Circulation 

 

Training in Architecture, and the greater realm of design, how to observe has been one of the paramount 

aspects in enhancing and gaining fundamental abilities of a novice and an expert. Plan sketches, as a form 

of orthographic projection, are one of the most easy-to-execute and “richest and reliable source[s] of 

spatial information” (Koutamanis, 1995, p. 18). These sketches not only facilitate reading of spatial 

arrangement and formal articulation of shapes and composition, but also give clues and prediction on 

circulation, which is about imaginative movement within the represented spaces.  

Two major characters representing intentions using plan drawings: diffusing and overlapping. As 

Norberg-Schulz (1966) discussed architectural forms and elements: 

 

“Elements which are topologically defined have a diffuse, amorphous character, and their 

‘expression’ merely consists in their concentration or closure...The bounding surfaces may be 

articulated in such a way that they ‘characterize’ the mass, for instance as a ‘block’ or as a 

‘box’” (p. 144). 

“An ‘interpenetration’ is created when two elements overlap. This does not mean that they lose 

their independence, only that ambiguous zones are formed, which at the same time ‘belong to’ 

both elements...that a formal separation becomes meaningless” (p. 141). 
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How exactly such “characterization” and “interpenetration” are revealed through Area of Interests (AOIs) 

and therefore establish a system of narrative to capture10 “intentions” graphically using diffusing and 

overlapping is then tested and examined in the next two sections: Gaze-tracking methodology and sample 

heat map results. 

 

3.2 Design of the Eye-Tracking Tests: Gaze-tracking Methodology, Data Collection, Measures and 
Procedures 
 

To provide evidence for the visual power in revealing “design intention”, I designed a gaze-tracking 

experiment to collect gaze-tracking heat maps from architecture students at MIT. For visual stimuli, I 

collected forty-five Louis Kahn’s design sketches of building plans that possess “evocative and dynamic” 

design information as discussed in chapter two; and possess graphical characteristics of diffusing and 

overlapping as mentioned from the previous section. Twenty-nine of the sketches were accessed from an 

online collection of Louis Kahn’s drawings from MoMA; sixteen of the sketches were accessed from 

digital archives of Philadelphia Architects and Buildings11. The detailed information and sources of these 

forty-five sketches can be found in the appendix. 

The objectives of the gaze-tracking study were to provide quantitative evidence from the discussion the 

beginning of chapter three: affinity between mechanical eye movements and the observational goals of 

architects; goal-oriented observation results in different interpretation of a single design sketch; and view 

patterns reflect meaningful design information visually. At the same time, the resulted heat maps were 

prepared into training images for the machine learning algorithm in chapter four. Participants’ eye 

movements were traced and recorded in empirical data, including fixation coordinate and scanpaths. 

Fixation data and gaze coordinates can show where and how quickly participants examine sketches of 

Louis Kahn when given observational tasks on architectural design intentions: Shapes, Composition, and 

Navigation (Circulation). 

 
 

10 Such capture of graphical clues in intention through heat map results might be an interested parallel to Thomas 
Wedgwood’s capturing of silhouette images. 
11 These archives were accessed in April 2021 by paid monthly membership fee as required. 
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Using the gaze-tracking data, a heat map was generated for each sketch to demonstrate overlapping “areas 

of interests” (AOIs) on and how the focused areas progress in the 10-second window.   

 

3.2.1 Participants 

This study focused on using vision to “express” architectural intentions from plan sketches of Louis 

Kahn. Fifteen participants were examined, and all of them are architecture students or have had 

professional architecture and design education of undergraduate or graduate level. They ranged from 

twenty-two to thirty-three years old, and consist of seven female participants, six male participants, and 

two participants who preferred not to report gender identity (table 1.). 

 

Table 1. Age and gender distribution of the participants. 

 

3.2.2 Devices 

Due to the health protocol effective at the time of the thesis, all eye-tracking studies were delivered and 

collected via an online eye tracking platform: GazeRecorder. The study was composed and distributed 

using this web-delivered eye-tracking study service, achieved through webcams on laptops screens or 

desktop monitors to calibrate and track gaze movement. The accuracy of this webcam-based API is ~1.0 

degree, with precision ~0.2 degree of visual angle (GazeRecorder, 2021). All participants were asked to 

keep the head relatively still, and no operation for the auto-played visual stimulus slides. 

Below are key settings of this gaze recording system; and two examples of displays used in the tests. 
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Sampling interval: 35ms +- 3ms, 10s total for each stimulus (512 x 512-pixel x 72 dpi, at full screen mode 

of laptop screen or desktop monitor.)  

Total sampling of each stimulus about 273 – 280 points of eye-gaze focus (fovea vision) for each sketch. 

Display 1: Dell Monitor S2715H. 27-inch diagonal display. Image display size 38cm x 38 cm. Optimal 

eye distance from the monitor: 38 cm. 

Display 2: Apple MacBook Mid 2015 screen, 15.4-inch diagonal display. Image display size 20.5 cm x 

20.5 cm. Optimal eye distance from the monitor: 21 cm.  

Each participant was specifically asked to take the GazeRecorder web test in full screen mode of their 

browser so that the eye movement can be assigned to more detailed areas in sketches.  

 

3.2.3 Testing Images 

The components of each testing set are plan sketches of Louis Kahn in early design iterations, especially 

reflecting the testing and thinking process architecturally and visually. Why Louis Kahn’s sketches are 

particularly favored are their known quality in expressing visual thinking and “incompleteness” that 

facilitate recognition and integration of architectural intentions: the “locus of its[architecture] making” 

(Merrill, p. 13). A collection of all forty-five sketches used as visual stimuli of the gaze-tracking studies 

are presented as the following (figure. 33): 
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Figure 33. All forty-five sketches in three sets used in the gaze-tracking studies. 
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Figure 34. Gaze-tracking procedure. 
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3.2.4 Procedures 

i. Before Gaze-tracking: 

Participants were contacted by the author and asked if they would be interested in participating in the 

study. After agreement, the author sent out emails containing one letter-sized instruction document and 

three links are contained in the instruction for participants to click and start eye-tracking immediately. 

Key features of the instruction documents are summarized as below: 

Each gaze-tracking is centered on three architectural intentions: Shapes (or Elements), Composition (or 

Formal Structures), and Circulation12. 

Three sets of fifteen images per set are composed, for each intention the participant was given one of the 

three sets randomly. Repetition of the same set but for different intention task was allowed. 

Each set took 3 mins 20 secs to finish, and before each set a 10-point calibration will take about 2 min to 

finish. Total time required for 3 sets is 10 + 6 = 16 mins including calibration before each set. All 

participants had flexibility to choose when to take each of the tests. 

ii. During Gaze-tracking: 

Calibration 

The procedure of calibration consisted of the participants following instructions designed by 

GazeRecorder at the beginning of each test: to position head to a proper distance in order to fit the given 

frame and proceed to a 16-dots calibration that took less than 2 minutes to finish. “The calibration 

procedure measures [participants’] eye position and maps eye movements to targets with a known 

position. The calibration is done by following a point across the screen” (GazeRecorder, 2021). 

Instruction 

Due to the health protocol of MIT and Massachusetts, the tests were distributed without any in-person 

contact. Therefore, instructions before each test session were shown to the participants in a presentation 

form, same size, and duration as each of latter sketches. 

Examples of test instruction 

 
 

12 First two taken from Norberg-Schulz’s discussion of Form, as “Pride” and “Study of Architecture itself”.  P131. 
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Figure 35. An example of the instruction page sent out to participants. 
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Instruction text is the following: 

In this gaze-tracking test you will observe 3 sets of 15 architectural plan sketches and 45 images in total. 

Each sketch will have 3 observation tasks regarding architectural intentions: Shapes, Composition, and 

Navigation. Each image for observation will last 10 seconds, and before each 15-sketch task, you will see 

an instruction page for 10 sec and an example image which will not be recorded. Each task will take 3 

mins 20 secs plus a less-than 2 mins of calibration time. 

Shape:  Look for shapes that you think are architectural component, such as room, wall, column, stairs, 

etc. 

Composition: Pay attention to spatial compositions such as symmetry and central space. 

Navigation13: Imagine how you can move through the space in the plan 

Stimuli  

Thereafter, the participants received the stimuli.  

 

  

 
 

13 The use of navigation was replaced by “circulation” when describing this intention category. However, in the eye-
tracking tests, all participants were given the instruction in “navigation.” 
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3.3 Analyses of Heat Map Results 
 

This section consists of three sections of heat map analysis and their implications on how architectural 

intentions are focused and extracted. Specifically, to provide graphic evidence on the following 

arguments: 

1. Affinity between mechanical eye movements and the observational goals of architects. 

2. Goal-oriented observation results in different interpretation of a single design sketch. 

3. Viewing patterns reflect meaningful design information visually. 

The examination for the first argument focuses on the time-sensitive pattern between heat maps and 

sketches: I compare the mechanical pattern of gaze locations and durations with their corresponding areas 

in sketches, using one second as a step to find direction and discovery of new focusing area to the 

architectural intentions14 the participants were asked to observe.  

For the second argument, I examine the representational difference among heat maps and their 

overlapping areas of same sketches but different intentions. I utilize image-processing software programs 

such as photoshop to extract informative patterns and compare them accordingly.  

For the third argument, I use extracted areas from sketches and discuss on their compositional 

characteristics in composing or implicating design sketches. I use the concept of medial axes to locate a 

skeletal system that will interpret gaze pattern movement and architectural meanings as a holistic 

composition. 

Before the analysis, how heat map results from GazeRecorder were interpreted and processed are 

explained in the following section. 

  

 
 

14 Shape, composition, and circulation. 
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3.3.1 Graphical Interpretation of Heat Maps 

 

Figure 36. An example of the heat map superimposed on the original sketch. 

 

From the previous chart on the differences in fixation duration between scene perception and visual 

search (figure 36), it is obvious that “scene perception” requires the longest fixation time: 260 - 330ms, 

while “visual search” requires the shortest as 180 - 275ms. These two duration ranges will be used in 

deciding which areas shown in the resulted heatmaps in the test result section. Taking 35ms as an average 

sampling frequency for each plan sketch, in the total of 10 seconds task time the average sampling points 

number will be 285. If an area in a sketch overlaps at least with 7 - 9 sampling points, then it is a fixation 

area. Similarly, if it overlaps at 6-8 sampling points then it suggests a “visual search” in observing the 

sketch. I selected 6 heat maps from each intention group and calculated the average of scene perception 
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time and visual search time based on the numbers of sampling points that fit into the two categories (table 

2.) The resulting values suggest that perception of shapes requires the most of scene perception time, 

while the perception of composition requires the least time in scene perception. In all three intentions, 

scene perception times are always longer than that of visual search. The fixation areas are furtherly 

analyzed for where they would overlap with original sketches.  

Architectural 

Intentions 

Avg. Scene Perception 

time (s) 

Avg. visual search 

time (s) 

Perception/Search Ratio 

Shapes 7.39 2.61 2.83: 1 

Composition 6.29 3.71 1.70: 1 

Circulation 6.73 3.27 2.06:1 

Table 2. Difference between scene perception and visual search time in each of the three intentions. Average times 
were calculated through 18 selected heat maps, 6 heat map per intention group, and 3 of each group are attached in 

Appendix II. 

 

Extracting areas of different levels of interests of perceptive strength is made possible by isolating areas 

in a sketch which are color-coded differently in the original heat map results according to visual 

behaviors. As shown in table (table 3.) below, visual behavior such as scene perception are allocated to 

the red and yellow color range, for their sampling rate corresponds to at least 7 - 9 points within the same-

colored areas; green, cyan, and blue areas are assigned to visual search for similar reasons. The distance 

between each pair of sample points is calculated using the original image resolution: 512 x 512 pixel and 

count the distance between two sampling circles’ centers by the numbers of pixels.  

Color(s) (RGB) Visual Behavior15 Distances d between two sampling point 

(pixels) in 512 x 512 original image 

 

Red scene perception +  d < =4  

Yellow - orange  scene perception  4 < d < =9  

Green visual search + 9 < d <=15  

Cyan, Blue visual search  15 < d  

Table 3. Meanings of color in resulted heat maps in this study. 

 

 
 

15 Relating to exploration and inspection. (Duchowski A.T., & Krejtz K, 2017) 
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Many former eye-tracking studies used heat maps stopped at recognizing where AOIs were appearing, 

rather than asking further about what specific graphical contents within those AOIs were supporting the 

interpretation of the whole image as a communicative agent for designers (Jahanian, A., Keshvari, S., & 

Rosenholtz, R. 2018). However, in the eyes of designers, specific graphics of the focused area render 

additional information on the forms and connections of architectural significance: as “characterization” 

and “interpenetration” which are proposed by Norberg–Schulz (1965). In the next section I conduct a 

detailed analysis of overlapping AOIs and sketches to provide examples on how designers’ abstractive 

visual thinking can be interpreted through AOIs, in addition to a more conventional approach of reading 

the locations of AOIs. 
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3.3.2 Affinity between Mechanical Eye Movements and the Observational Goals of Architects 

 

Figure 37. An example of heat map result of “shape” analysis on Louis Kahn’s 1964 sketch. 
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One of the major concerns in eye-tracking studies in general is how much the heat maps are able to imply 

given the shapes and areas they are overlapping with original visual stimuli. However, due to the nature 

of visual thinking of training architects, where and by what sequence the eyes were commanded to move 

reflect the choice of observation for given goals. One explanation of the deliberate eye movement can be 

attributed to the requirement of long-time fixation for scene perception: 260 – 330ms. In this section, I 

take a direct approach to interpret the meaningful observation of shape, composition, and circulation of 

one participants’ heat map results using one-second time stamp to examine whether the mechanical 

movements captured by the heat maps and scan paths will serve as meaningful graphic clues responsive to 

the three intentions.  

Above is an example of ten heat maps resulted from “shape” analysis (figure. 37): this plan sketch was 

done by Louis Kahn in 1964 for classroom building for the Indian Institute of Management in 

Ahmedabad, India. A series of black arrows and dashed triangles indicates how the observer’s fixation 

points shift over the ten-seconds task window. The red areas indicate the longest fixation time, and time 

declines following the rainbow spectrum from red to blue. The following is a brief description of the 

intentions captured in this example of heat map: 

Time Stamp Visual Behavior Focused Areas on the Sketch 

1s Fixing A rectangle (A) 

2s Scan A neighboring rectangle (B) and interior of two major 

shapes (C) and (D) 

3s Fixing Rectangle (B) 

4s Fixing + Scan Shape (C), (D) and new area (E) 

5s Fixing + Scan Contour of (D) 

6s Fixing Contour of (A) and (B) 

7s Fixing Contour of (A) and (B) 

8s Fixing Contour of (C) 

9s Fixing Contour of (D) 

10s Fixing Between (C) and (D) 

Table 4. Sequential visual behavior observed in a ten-second observation task of the intention: shape in figure xx. 

 

Scanpaths and fixation locations have implied how “shape” was perceived in this particular example. The 

overall viewing pattern suggests that the participant started at a fairly simple rectangular shape(A), then 

quickly scanned its neighboring rectangle (B), and searched for adjacent, larger shapes (C) and (D). After 
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the first impression of the relative location (B) was identified, on the 4th second the participant searched 

another shape (E) to the opposite side of the sketch, continuing building up peripheral shapes by 

allocating partial contours from the 5th – 7th seconds. Then the participant focused back into the inner 

areas of the plan, and identified connecting areas between major shapes, such as (C) and (D). A 

compilation of fixation areas and shape segments can be seen in the bottom two images of figure. 38.  

The participant, within the brief ten-seconds window of the observation task, was able to focus on critical 

graphic clues that were distinct and expressive enough to describe shapes accordingly in the way they 

were perceived. For example, the obtuse angle of shape (C), two diagonal corners of shape (D), and the 

extrusion of shape (E). Although these clues of shapes were identified, they were not necessarily 

dedicated to one shape per clue only. Due to their fragmented appearances, these clues can be merged in 

another way in order to be imagined into another expression of shapes: such as the edge fragment of (D) 

and the leftmost side of shape (E) will combine together and produce a long rectangle. Consequently, 

what the intention of shape in this sketch, through the view pattern of this participant, was the 

identification and shape clues that best describe the characteristics of potential shapes, and relations 

among these clues. Scanpaths served as connection that tied these clues together.  

     

Figure 38. The participant’s result comparing to the compilation of all seven participants’ result. 

 

Similar approach when observing composition and circulation as architectural intentions can be found 

using the same analysis method.  
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Figure 39. Composition (top) and circulation (bottom) results of the same sketch. 

 

In the top pair of composition diagrams (figure 39), it is clear that scene perception areas (overlapping 

with at least 7 fixation points) were more spread than in the example of shapes. This is a result from the 

participant paying more attention to the relationships among shapes as they provided stronger clues on 

how the composition of entire sketch was presented. We see an increasing amount of fixation on visually 

similar shapes, such as the row of rectangle at the top of this plan sketch. This is also explainable by what 

architects consider for arranging inter-shape relationships: by strengthening rhythms, repetition, and 

connections. 
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In the bottom pair of circulation diagrams, a greater amount of scene perception areas was given to the 

inside of shapes in comparison to the former two intentions. Most of these areas running either parallelly 

or perpendicularly with graphic clues which are interpreted as walls and other plan elements for such 

sketch. The scene perception areas were even more spread out comparing to the composition, as they 

indicate imaginary movement in the plan drawing. The scanpaths indicates that the participant was 

examine through enclosed contours for circulative patterns.  

The above three interpretations of intentions and their relation to view pattern and fixation areas imply 

that the observer’s eye moments were impacted by what type of observational goals is effective. How the 

graphical elements of a sketch will interact differently with view patterns to fit any selected goal, or 

architecture intention in these examples. Although the sketch of an architecture plan is usually seen as one 

image that perform one function of representing an idea, the actual perception of such “idea” is rather 

depending on the one who observes, and the intention to be observed. The resulting variations on 

graphical clues and eye movement patterns assist the different interpretation of the intentions, facilitating 

livening a plan sketch to consist multiple innate visual opportunities for further imagination.  
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3.3.3 Goal-oriented Observation Results in Different Interpretation of a Single Design Sketch. 

 

 

Figure 40. Four Participants’ heat map result on the intention of “shape”. 

 

Previous discussion on how scanpaths affected graphical clues to be interpreted differently further implies 

the resulted graphical areas of heat maps overlapping with sketches will likely provide another level of 

translation between intentions are extracted, abstract visual components. In this section I continue to 

examine how these resulted heat map areas, especially the areas of interests (AOIs) from eye moments 

relate to the reading of the three architectural intentions. For a cleaner graphical representation of eyes’ 
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fixation areas, in this section the difference in attention levels is divided into two major categories as in 

the first sections’ color code analysis: red, orange, and yellow region as scene perception; green, cyan, 

and blue as visual search. To start, I compare heat maps from relatively simple plan drawings by Louis 

Kahn, and progress with more complicated plan sketches.  

The first four simple sketches are the following (figure. 40): 

First row: Penn center studies A: a centralized square form with almost bilateral symmetrical layout 

within the square. The scene perception areas are consistence and covering one quarter of the overall 

rectangular shape. 

Second row: City Tower Project: a centralized equilateral triangular layout. Most scene perception areas 

are grouped and overlapping with one of the three similar portions that compose the triangular plan. 

Third row: Penn center studies B: a bilateral rectangular primary shape with three similar additive 

rectangles on the left. Scene perception areas consist of three major groups: one on the bottom square 

shape, one on the top, darker rectangle, and the third on the left grouping of three small rectangles.  

Fourth row: Civic Center Studies: a centralized form of concentric circles with indication of three similar 

subdivisions. Scene perception areas are again grouped on one of the three subdivisions, and the division 

lines suggesting the subdivisions. 

By superimposing heat maps of “shape” on four sketches relatively by four selected responses from 

participants, I summarize three persistent characters that can be found from these sample heat maps: 

firstly, scene perception areas are covering one characteristic representation of the symmetrical form; in 

most of the cases on the borders where two shapes of different properties touch; and interior of the shapes 

attracted less attention than the borders. The symmetry of the composition is indicated very briefly by 

visually “copying” the overlapping areas under visual perception to their reflected locations.  
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Figure 41. One participant’ on three intentions: shape, composition, and circulation. 

 

Next the variations on heat maps on different architectural intentions are examined. The middle column of 

the above figure (figure 41.) consists of four heat maps responses on “composition” by the same 

participant, and similarly the right row is a collection of responses on “circulation.” The first observation 

of differences between the latter two and “shapes” are their extended scene perception areas in other 

symmetrical parts, which in “shapes” receive less or little attention. Compared to heat map forms in 

“shapes”, in “composition” they appear to be more aligned to the compositional characters of each sketch. 
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For example, in the triangular form, the heat map contains extrusion from the center to all three corners. 

Similarly in the rectangular and circular forms. As for “circulation”, major scene perception areas cover 

more of the sketches and connect more often than the early two architectural qualities. These 

characteristics are consistent with the previous analysis of eye movements.  

At this point it is proper to link the eye movement by observers for a given architecture intention to the 

graphical representation in color-coded heat maps. Therefore, a graphic-to-graphic relationship can be 

established by extracting scene perception areas and find the overlapping segments in the original 

sketches. These areas begin to demonstrate effective areas varies for different intentions graphically. 

 

 

Figure 42. Notation on the effect areas for intention: shape, based on the color-coded heat maps from three different 
participants’ data. 
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Figure 43. Example of different areas in a sketch receiving different level of attention from the observer. 
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3.3.4 Viewing Patterns Reflect Meaningful Design Information Visually. 

 

Not only observers’ eye movement suggested that the formation of heat maps can be affiliated with 

deliberate visual process used by goal-oriented design professional, but the resulted scene perception 

areas possess consistent graphical qualities that aligned with each design intention accordingly. However, 

before proceeding into the discussion of graphic-to-graphic translation between viewing pattern and 

architectural intentions, I will reemphasize the implication of graphical translation connecting these 

intentions with visual representations: abstractness. The more an architect like Michelangelo or Le 

Corbusier see, the more effective those visual stimuli were translated into a form of abstract, graphical 

representation of any labeled objects: from a row of columns, they see the interplay of light and shadow; 

from a repetitive motif they see rhythm and movements; and from blocks of geometries, they see 

connectivity, negative and positive spaces, and gestures of composition embedded in any explorative 

sketches. Therefore, this section will be a primitive exploration on these capacities through direct use of 

scene perception areas and overlapping sketch segments to suggest an approach of utilizing the power of 

abstractness to facilitate representation of intentions: from perception to creation. 

Each intention, as observation goals, facilitate a set of different forces that form the interpretation of the 

intention through the graphical clues overlapped by heat maps (figure 43.). If these graphical clues are 

extracted and placed back into a potential representation of the intention respectively, it is possible to 

obtain a variety of these representations, using only a small segment of extracted visual clue. The 

following diagrams, taken from the previous four participants’ response on “shape” (figure 44. & 45.), 

present a small selection of what can be reconstructed using the segment in the pink scene perception 

areas. Figure 45 is an invert-colored figure 44, presenting the scene perception areas as positive solids and 

graphical clues as negative “carvings” against the solids. 
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Figure 44. “Reconstructed” potential forms using scene perception areas as indicated in figure 40. 
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Figure 45. Invert-colored figure-ground diagram of scene perception areas in figure 44. 
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Figure 46. “Reconstructed” potential forms using scene perception areas of more complicated plan sketches in 
figure 41. 
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Figure 47. Invert-colored figure-ground diagram of scene perception areas in figure 46. 

 

Findings from the analysis on heat maps indicates that composed intention is itself a dynamic gesture of 

geometries based on formal characteristics. As eye movement potentially opens a path to form graphic 

representations of deliberate observation on architectural intentions, it is then possible to reframe how 

these intentions can be perceived using a more machines-like process. Back to the previous discussion on 

the three inspirations from machine vision algorithms at the end of chapter two: grouping of graphical 
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clues, a skeletal system based on movements of a point, and an algorithm for image-to-image translation. 

If the scene perception areas are potential segments for grouping, and the viewing patterns indicates 

centers of these segments and movement directions, a structure of representing architectural intentions 

based on eye movement can be proposed for the following three architecture intentions (figure 48.): 

Shapes: clustering of corners/segments of distinctive forms and then reflecting using symmetry. 

Composition: Successive graphical clues linked by scanpaths. 

Circulation: on converging points and “interior” of shapes that mark potential paths in circulation. 

 

 

Figure 48. Diagram of graphical characteristic and level of influences in representing each architectural intention. 

 

The viewing pattern and resulted AOIs overlaps suggest a similar system of 2-D vision tasks’ richness in 

perceiving shapes: as two-dimensional shape perception to be considered as a “mid-level vision Gestalt” 

(Wagemands, 2013), and a mix of “low-level and high-level” (Wagemans, 2013) dynamic “interplay” of 

visual elements. “Curvature singularity” (Attneave, 1954), which means that where the curvature on a 

shapes’ contours reaches local maximum is the most “informative” component of the shapes. Formal 

perception is an eminently active occupation (Sánchez & Bragado 2019). Taking in the shapespace 
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(Wagemans 2013) enabled by uncertainty innate with sketches, and scan path directions from mechanical 

eye movement, a graph on the representation of potential weighting on visual interpretation of eye 

movements can be made similar to figure 48. Fixation areas are therefore seen as anchors from where the 

graphical clues, such as lines and shapes, to be multiplied by their influence in contour, connection, 

symmetry, and other abstract architectural qualities to be translated into intentions in a graphical manner. 

3.4 Discussion on the Eye-Tracking Tests 
 

Through the design and implementation of eye-tracking studies, I concluded three major graphical 

characteristics that are shared in most of resulting heat maps: a link between eye movement and intended 

visual perception areas; a correspondence between different intentions and view patterns; and distinct 

graphical emphasis of fixation areas reflected in each intention. However, many improvements will 

support a more comprehensive examination of these discoveries.  

First of all, the hardware implementation in this study was limited in accuracy. Webcam-based eye-

tracking has a lower resolution comparing to other wearable devices (Semmelmann & Weigelt, 2018). 

Recorded view patterns from online platforms can have “an offset about 211 pixels (18% of screen size, 

4.38 ° visual angle)” (p. 460). Additional environmental factors that affected the accuracy of the tests are 

lighting, resolution, and refreshing rate of the webcams.  

Secondly, framing of each intention instruction can affect the participants viewing patterns, both for the 

term given to describe an intention and the meanings of terms for different intentions. For example, in the 

question of “Navigation: Imagine how you can move through the space in the plan”, the word 

“navigation” was originally designed for a more active expression of using eyes to trace an imaginative 

path to navigate in the plan. This word was replaced with “circulation” for a clearer architectural 

expression when analyzing heat map results. Another example will be the use of “shape” and 

“composition” as two distinct expressions of architectural intentions. In the study, “shape” implies 

recognizable geometries that form architectural spaces, such as circles, squares, and triangles; 

“composition” implies interconnectivity among these recognizable shapes and their formal relations such 

as symmetry, major and minor spaces, enclosure, and centrality. Although these terms of intention and 

their implications are familiar and shared among architectural students, for people who have little to no 

professional training or knowledge, “shape” and “composition” potentially mean the same. In future 

studies, a comparative study between expert and non-expert groups is required to observe how differently 

view patterns can be affected by these goals for observation. 
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Thirdly, the three intentions used in this study are a small selection of possible intentions innate to design 

sketches in Louis Kahn and other architects (figure. 49). When a participant was given no instruction to 

observe a sketch, he or she will be more likely to pay additional attention to other possible intentions in 

presence. Meanwhile, how the three given intentions perception will also be influenced by the graphical 

appearance of each sketch, if their prominent intention is seen differently from shape, composition, and 

navigation. 

 

Figure 49. Other implications of architectural intentions can be seen from Louis Kahn’s sketches. 

 

Finally, on the individuality of each participant and design sketch, the dynamic and emergent nature of 

observational process and graphics are highly receptable to personal choice. Furthermore, how exactly 

Louis Kahn expected for his sketch to express or to be seen would be most likely different. A group of 

fifteen architectural students’ eye movement results would only consist a very small segment of the vast 

sea of graphical intention and dynamics just from on drawing. The examples discussed in chapter 3.3 

would only be a tiny scope into the willful visual powers in architectural sketches. Such connection 

between eye and mind still requires a far greater amount of work in the future to just glancing into one 

spot of the full picture. 

However, even from this minuscule inspection of the visual power in design sketches, it is possible to 

make and test how a machine translator will be able to start recognizing and representing the willful 

observation of human designers meaningfully.  
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Chapter 4 Creating with Eyes 

 

In this chapter I continue the discussion in chapter two and three on vision and eye-tracking results to 

propose a novel application: Envisage, using machines learning. Then, I test two prototypes of this 

framework in representing architectural intentions through a Neural Network algorithm recently 

developed as “Image-conditional Generative Adversarial Network” (Isola et al., 2018). The first section 

consists of descriptions of this application. The second section consists of examples and discussions on 

the two prototypes that will be an attestation on how effectively this framework can become in delivering 

high-level representation of design intentions from new sketches: one is “Sketch to Intention”, and the 

second “Observation to Gesture”. The third section will be a discussion of all the work so far and explain 

why this application will be a step towards a more dynamic, observer-based design system that 

encourages visual thinking of ambiguity and intention in machine learning. Furthermore, the discussion 

section takes a step further from the label-based deterministic calculation into a broader use of image-

based thinking exploration stemmed from uncertainty and innate creativity in visual thinking. Finally, this 

chapter will conclude with future possibilities enabled by vision based communication strategy between 

designers and machines, and a critical analysis of the work done so far. 

 

Figure 50. Existing practices in utilizing eye-movement in assisting decision-making (Shehu, I., Wang, Y., 
Athuman, A., & Fu, X. 2020).  
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4.1 Sketch to Intention + Observation to Gesture: A Novel Application of Image-conditioned GANs 
 

In this first section I present two applications of image-conditional Generative Adversarial Networks 

(GAN’s) from heat map- sketch datasets collected for chapter three. The major goal to train GAN’s is to 

test on how perception of more abstract intentions can be translated by machine learning algorithms, and 

therefore the tests conducted will not be conventional application of neural networks to find definitive 

description or one-to-one translation from one image into another. For the translation problem is between 

two graphical inputs: heat maps and sketches, I applied the algorithm of an Image-conditional Generative 

Adversarial Network (GANs) proposed by Isola et al. in 201516, which is currently an open-sourced code 

accessible through Google Colab environment in the TensorFlow examples called “Pix2Pix.”  

For GAN’s has been discussed in the third section of chapter one, in this section I will start with 

description of specifics that are related to the new applications (figure 51.). 

 

Figure 51. Workflow of GAN’s, after Isola et al., 2018. 

 

 
 

16 The original paper was published in 2015, the reference used is the third version published in 2018. 



92 
 
 

4.1.1 “Sketch to Intention” GANs 
 

i. Data Preparation 
The first “Sketch to Intention” GAN’s is a direct image-to-image translation by assigning sketches as 

input and heat maps of viewing patterns as prediction. The training and testing image sets consist of 

sketch-heat map pairs that obtained through the eye-tracking tests in chapter three. The original rainbow-

colored heat maps, which were obtained from GazeRecorder, were processed in Photoshop through an 

invert image filter to prepare for training set images, assigning the background as black.  

 

 

Figure 52. Input pair of a sketch (left) and a heat map (right), and color codes for the heat map. 

 

“Labeling” process in the preparation of training images was to combine the invert-colored heat map to 

corresponding sketches for all three intention. Two types of measurements from the heat maps were taken 

into consideration: fixation durations which were color-coded accordingly, and shapes of these colored 

regions (figure 52.). Both the sketches and heat maps were resized to 256 x 256 pixels to fit the kernel 

operation in neural net layers for regression (need clear use of terms). For training each intention’s 

corresponding GANs, one-hundred-eighty pairs of sketch-heat maps were assigned to training set,                                                                                                                                                                                                                                                           

and thirty pairs were assigned to testing set (table 5). Due to the data size, a typical prediction from this 

GAN’s is a vaguer presentation comparing to actual heat maps from human data. However, they are 
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salient enough to cover and indicate potential areas of “intention” overlapping the sketches, following 

discovered characteristics of graphical clues in chapter three17.  

 

GANs Properties Sketch to Intention Sketch to Gesture 

Input  Louis Kahn’s plan sketches Human observation heat maps 

Ground Truth Human observation heat maps Louis Kahn’s plan sketches 

# of images in Training set  

(each “intention” GAN) 

180 180 

# of images in Testing set 

(each “intention” GAN) 

30 30 

Table 5. Training and testing data properties of both GANs. 

 

ii. Training 
Following the collection of training and testing data, I trained the network using sketches as input and 

invert-colored heat maps as output. The trained network is capable of generating a “heat map-like” color-

coded representation indicating an imaginative human observer’s viewing pattern in terms of fixation 

time and areas. The whole training process for each GANs was processed in the Google Colab cloud 

environment. It took 15 seconds for one epoch with 180 images, and a total of 120 epochs took an 

average of 30 minutes for one network. 

A major goal of this training of three separate GANs is to predict individual heat maps for each intention 

and assign different weights as a combination of quantitative and graphical representation of machines’ 

viewing patterns. These view patterns were “learned” through human data on the same visual tasks. More 

specifically, based on the different gaze-tracking tasks done by human participants, three GANs were 

trained separately for each of the three “intentions”: shape, composition, and circulation. The following 

figure 53 provides two set of examples of predicted heat maps. 

 
 

17 In Huang and Zheng, 2018, the “plan-to-map” training sets contained 115 pair of images.  
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Figure 53. Predicted heat maps from three trained GANs on the three intentions. From left to right: original sketch 
as input; predicted heat maps overlaying on corresponding sketches; and predicted heat maps. 
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iii. Result Examples 
Trained GAN’s prediction provides evidence to the three graphical characteristics discussed in chapter 

three:  

1. Affinity between mechanical eye movements and the observational goals of architects. 

2. Goal-oriented observation results in different interpretation of a single design sketch. 

3. Viewing patterns reflect meaningful design information visually. 

The top three images consist of predicted heat maps (right) and overlaying of these heatmaps on the 

original study sketch of Louis Kahn for President’s estate at the First Capital of Pakistan in 1966. In the 

first row of shape predictions, the trained network performed well in recognizing the hinge areas that are 

composed by one circular and a trapezoidal shape. The composition of two squares and one circular shape 

in the upper left corner of the sketch were recognized by assigning high fixation time areas (in color red) 

to overlap with one quarter of these symmetrical shapes. This continuous red area implied a consistent 

reading of these partial contours to extract graphical clues of reconstructing the shapes. In the upper right 

corner, a small area overlapping a corner of the square inscribed in a circle. Towards the bottom right area 

another patch of heat map overlaps with two of the four symmetrically arranged rectangles. This 

prediction is consistent with the graphic features discussed in section 3.3 on how shape is represented 

through identified distinctive shape features and utilize quick scans to complete the reading. 

The second row provided result from the networks predicting composition. It is obvious that the high 

fixation areas were connected more closely than that in the shape prediction. Similarly, to the previous 

result, major forms such as the circle close to the center of sketch and the upper left corner were 

recognized. Additionally, this predicted heat map implies a connectivity from the central circular shape to 

the upper right area, and to the bottom right area. More interestingly, the predicted heat map clearly 

indicates a symmetrical reflection to the second half of the kite-shaped composition. 

The third row shows prediction on circulation from the corresponding trained GANs. This heat map’s 

representation of circulation is also consistent with discoveries in the first chapter. The areas of high 

fixation time are even more tightly connected and overlapping with insides of enclosed spaces, such as a 

courtyard like space inside the kite composition. Meanwhile, this heat map prediction seems to 

“prioritize” symmetrical and graphically cleaner areas to imagine circulation patterns, such as the four 

edges of the kite shape. Such “prioritizing” move would very likely due to a learned bias from human 

data in the training process. 
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iv. Weighting the Predicted Heat Maps 
 

 

Figure 54. Weighting pipeline of the three networks’ predictions on shape, composition, and circulation. 

 

In the test of this GAN, a participant who had taken the previous test sets on the three intentions was 

asked again to observe ten new sketches by Louis Kahn which were not presented in either training sets or 

previous visual tasks. The participant was given no specific instructions on what intention categories he 

needed to focus on in a ten-seconds time frame. Instead, he was instructed to have fifteen seconds to 

observe and describe what the sketch is about in terms of architectural design language to the author via 

phone call after the task. The generated heat maps from the fifteen seconds tasks were processed using a 

custom black-and-white filter in Photoshop to obtain a more optimal grayscale image for intensity (figure 

55.). Intensity of pixels are used in calculation of the average of Euclidean distance in intensity value (0 - 

100) between each pair of pixels in the human result and GANs prediction to obtain raw difference scores 

(S’, C’, and N’) for each prediction-uninstructed heat map pair. Adjusted weights (WS, WC, and WN) are 
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calculated by dividing raw difference scores from a constant D (if every Euclidean distance between 

every pair of pixels is exactly 0.5), then take the power of 2. The smaller the differences are, the more 

likely that the corresponding “intention” weights more in the uninstructed viewing pattern. Therefore, the 

higher the corresponding adjusted weight will become. 

 

 

Figure 55. Pair of a sketch (left) and a heat map (right), and Black-and-white intensity codes for the heat map. 
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Equation 2. Calculating adjusted weights. 

 

Using this set of three GANs, I collected their prediction result as from “imaginative observers” and 

compared the similarity between human participants heat map result of uninstructed task on 10 new 

sketches that were absent in training and testing sets. The resulting heat map prediction and weighting to 

the uninstructed human data is presented in the following table 6: 
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Table 6. Weights of Predicted Heat Map Sets. 

 

 

 

1 2 3 4 5 6 7 8 9 10
Shape 1.587520545 2.946868902 1.956974503 2.596281142 2.279692854 2.671942366 2.633547736 2.551919181 2.853847343 2.632556783
Composition 1.988256786 3.157135737 1.997563781 4.433728015 3.033197278 2.154237547 2.793669572 2.388074623 2.610381656 3.300289192
Circulation 1.584886811 2.602010074 2.002639588 2.611257092 2.129177476 2.524474082 1.982008731 2.128419175 2.410211088 2.177544415
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Figure 56. Predicted heat maps (No. 1 – No. 5) and weights comparing to an uninstructed observation data. 
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Figure 57. Predicted heat maps (No. 6 – No. 10) and weights comparing to an uninstructed observation data. 
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v. Analysis of Predicted Heat Maps and Their Weights 
Predicted heat maps from the three GANs on shape, composition, and circulation were processed and 

evaluated using equation 1 and 2. In this section I present four examples marked figure 56 And 57 To 

explain in detail about potential features in predicted heat maps that affect the weighting. 

Heat map A: Circulation prediction for sketch 1, lowest weight (1.58) comparing to the rest of 

predictions. 

This heat map attribute high fixation areas in the sketch to corridor-like areas in the kite-shaped 

arrangement, which is consistent with the graphical clues found in human heat map data under the 

intention of circulation. However, the uninstructed result from the human observer instead emphasizes 

these three main areas: the upper left composition of two squares and a circle, the area between this 

composition and the upper right circle, and the bottom right triangular shape. These areas are connected 

through a trail of low fixation areas, and thus contribute to a higher weighting on the composition 

prediction. 

Heat map B: Composition prediction for sketch 4, highest weight (4.43) comparing to the rest of 

predictions. 

This heat map shows a very high, continuous fixation area for the central rectangular area marked with a 

dark spot. A smaller fixation area appears towards the top of this heat map, corresponding to the upper 

left corner of the upper rectangle on top of the central shape. In addition, a small tail-like fixation area 

extends from the center and points towards the lower rectangle. In the uninstructed heat map from the 

human observer, both the upper and the lower rectangles receive attention and therefore the composition 

prediction most closely resemble the human result by mainly indicating a vertical composition with main 

space in the center. 

Heat map set C: Shape, composition, and circulation prediction for sketch 6.  

This set of heat maps present a new observation in the weighting calculation comparing to appearances of 

predicted results. At a first glance, the predicted heat map of circulation resembles the most to the 

uninstructed one due to an extending gesture towards the right of the images. However, when taking the 

results of shape and composition, it is clearly shown that both heat maps are able to show the other high-

fixation areas in the uninstructed result which is pointing towards lower right corner of the image. The 

shape prediction also indicates the triangular composition of the central circle and the three squares 

around it, and a small segment of the inscribing circle. Both of them are presence in the human data. 
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Heat map D: Shape prediction for sketch 9, highest weight (2.86) comparing to composition (2.61) and 

circulation (2.41) predictions of the same sketch. 

This heat map presents another observation between heat map appearance and numeric values from 

weighting calculation. Again, at a first glance that all three predictions look very similar to that of the 

human data: a horizontally, semi-symmetrical arrangement of circular shapes. However, the human data 

has an emphasis on the rightmost circular shapes that only the shape prediction is able to show. On the 

contrary, the composition prediction emphasized on the left circular shape and the symmetrical aspect of 

the drawing; and the circulation prediction gives more fixation areas to interior spaces.  

vi. Discussion of the Prediction and Weighting Results: 
Intention: composition weights the highest among three intentions 

The previous four examples provide evidence for an effective method of predicting human view patterns 

(heat maps) and evaluate their contribution to a real human data graphically. From table xx it is clear that 

in the ten examples presented, it is more likely for predictions of shape (avg. 2.47) and composition (avg. 

2.78) to have higher weights than that of circulation (avg. 2.21). Composition predictions have the highest 

average weights, and they are the highest weight in sketches 1, 2, 3, 4, 5, 7, and 10 (70% of the sketches). 

Shape prediction received the highest weights in the rest of the sketches: 6, 8, and 9 (30% of the 

sketches). One potential explanation behind composition’s high weighting is designer’ learned tendency 

to think about overall arrangement when looking at an architectural plan, and such arrangement is better 

perceived by identifying shapes and their interrelations. On the other hand, circulation is comparatively a 

more abstract intention that requires further interpretation of the plan sketch by locating possible interior 

spaces indicated through graphics: as less “visible” comparing to the former two.  

Problems and improvements 

However, both the weighting calculation and the predictions are in their primitive forms. Calculating the 

weights is currently limited to pixel-based intensity difference in Euclidean distances. One improvement 

will be to find a more effective weighting process that takes the areas of different fixation intensity as 

well as connectivity between same level of fixation areas. Another improvement will be to introduce 

probabilistic models for measuring how the different intensity areas are likely to be shaped and connected 

according to different intentions.  

If future work continues, it will be important to control the representational appearance of the sketches, 

for all fifty-five sketches used in the study are not of consistent graphic styles. Some sketches have dark 

yellow backgrounds while some have light grey backgrounds; line qualities ranged from light 
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construction lines to that of heavy hatches. It will be interesting to explore how the variety of line quality 

affect both the perception and prediction of heat maps. 

 

4.1.2 “Observation to Gesture” GANs  
The second “Observation to Gesture” GANs predicts a sketch-like representation of gestures from lively 

captured heat maps. This set of GANs reversely generate a sketch-like interpretation of what has been 

learned by machines to be the most “truthful” result of the image translation. The three networks: shape, 

composition, and circulation, were trained using heat maps as inputs while the corresponding sketches as 

prediction. In the limited testing of this network, I used a live-captured heat map frames in a ten-second 

observation session as input to the three networks and examined how the sequential predictions evolve 

and form a graphical representation. To give a hint of what this network could achieve, I selected several 

predicted “gesture” results in the next page (figure 59.). 

In the 10s prediction of the shape intention, an arrangement of three larger circular forms is seen in the 

graphics, with a bilateral symmetry centered on the middle circle. The shape predictions started from 

rectangular forms on the upper left and gradually morphed into cleaner and definitive circular forms. On 

the other hand, 10s predictions for composition and circulation have more complex representation of 

gestures. 

More interestingly, when given a blank input as a 256 x 256-pixel white square, the three networks also 

produce predictions (figure 58). Not only the predicted images have distinct background color, but they 

also indicate a tendency of global symmetry in all three graphics. For composition and circulation, a 

“gesture” of a centralized form with emphasis on either top or bottom of the canvas is especially obvious. 

What these three predictions from a blank input might suggested a “blank” state of visual imagination in 

plan sketches? 
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Figure 58. Three examples of prediction from a blank square: shape, composition, and circulation. 
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Figure 59. Examples of “Observation to Gesture”: generated “gestures” under each intention for the same 10s heat 
map in at eight time stamps.  
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4.2 A “Super Network” of Predicting Designers’ Viewing Patterns of Intentions 

 

Figure 60. Training pipeline of the “super network” based on Generative Adversarial Networks (Isola et al., 2018). 

 

Following the study of the three separate GANs in predicting and weighting human view patterns, I 

propose a composite network that can be training through a combination of weighting evaluation and heat 

map predictions from individual intention networks to produce a human-like interpretation of a given plan 

sketch. The training data of this “super network” will be a set of weighted predictions from individual 

intention GANs. These weighted predictions will be processed through a composite generator to compose 

a heat map using these weights, and to compare with a human observers’ heat map result. Then a 

discriminator will determine whether this composed “human-like” heat map is real or fake, and improve 

the composite generator based on the result (figure 60.). The composed heat map prediction can be 

expressed as the following, where S, C, and N are heat map graphics, and S’, C’, and N’ are weights that 

will be improved through the composite generator. 

Due to the time limit of the thesis, I was not able to proceed with this design of a “super network”. If 

future opportunity allows, it will be an interesting exploration to the machines’ learning and 

compositional power which can be obtained through human observational data. The next section consists 

of a theoretical explanation for this network. 
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4.3 Architectural Intentions in Visual Representation: An Alternative “Seeing Machine” 
 

“The elusive quality of such experiences is hard to capture with our language which commonly 

describes objects by their tangible, material dimensions. But it is a quality invaluable for abstract 

thought in that it offers the possibility of reducing a theme visually to a skeleton of essential 

dynamic features, none of which is a tangible part of the actual object.” -- Rudolf Arnheim, 

“Visual Thinking”. 1969. 

 

Figure 61. Conceptual diagram of the “super network” – “Envisage” 

 

Reflecting on chapter two’s discussion of machines’ `eyes”, such “elusive quality” of visual experience in 

design has not been widely acknowledged due to its mysteriously nature and ambiguity. As the adage 
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once said: “A picture is worth a thousand words'', not only an image will consist of many recognizable 

visual elements, but also they are observed and combined together for further imagination by individuals. 

While how machines will design and what does design mean when encountering any Boolean operation 

and numeric calculation have been a persistent exploration from both sides -- artists and scientists, one 

possibility to connect creative observation is to link mechanical movement to potential graphical 

representation as in the same dimension as visual stimulus. Following the path of this idea, I approach this 

problem of translation from the angle of extracting abstract representations of architectural intentions in 

plan sketches. I collected and tested eye-tracking results using Louis Kahn’s sketches from professionally 

trained architecture students. Meanwhile I examined these sketches and their corresponding heatmaps 

using both quantitative data analysis and architect’s visual interpretation, supported by the existing 

connection between deliberate eye movements and goal-oriented visual observational process. From the 

analysis between scene perception areas indicated by heat maps and the actual sketch segments that 

facilitates the comprehension of these graphical clues, I summarized how the plan drawings, when seen 

with different dynamics, are able to gather and recreate corresponding representations for each intention.  

At the same time, this connection is indeterministic, meaning a less of one-to-one identification of 

“correct answer”, but a “some-to-more” extension of possibilities. Therefore, I propose a framework 

named “Envisage”, which means to not only a retrieval of information using eyes, but a forward-looking 

representation of graphic potentials. In this framework machines learns through human designers view 

patterns to assess and determine a graphical representation of design intentions and thus communicate 

visually using layers of weighted predictions.  
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i. A Metaphor: Pond, Pebble, and the One Who Throws the Pebble.  

 

 

Figure 62. Diagram of Arnheim’s magnetic forces on a structural net (Bradley S., 2014). 

 

Returning to the points of visual focus and its derived dynamics to compose architectural intentions, this 

framework will be built on taking in images as communicators for the next step in design processing. As 

heat maps and gaze tracking results bring up a skeletal structure of containing associated design 

information, how this structure is constructed and how it will affect greater utilization in communicating 

design intentions can be summarized as the following: Partially echoing Arnheim’s “elusive quality” 

(1954), this framework is a “pond” of captured visual entities that serve as “rocks” that are tossed into the 

water of design and give ripples of design representation. Designer’s eye movements are encoded as 

“rocks” and the water dynamics are parallel to the “intentions” being produced. Progressive interaction 

among the ripples forms the image of the whole. Instead of asking “what the shape is” for each ripple, the 

water surface asks for how the ripples collide and morph. The next location for a pebble to be thrown into 

the pond is decided by the one who observes the pond and throws the pebble. 

ii. Input and Output 

For both human visual system and machines’ operating system’s sake, inputs and outputs of this 

framework are defined as the following: What is the input of calculation here will be human eye 

movement, whose mechanical nature can be much more precisely captured and delivered by mechanical 

sensors. The machine takes in these temporal-spatial features of eyes in the observation process. Then 

these coordinates and directions are processed by a translator to produce real-time graphical 
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representation, such as heat maps into a continuously evolving graphic form of colors and areas. These 

heat maps become “translators”. Potential output will be graphical translations of the input graphics, in a 

form of designers’ choice: whether to reveal intention or generate live “sketches”. The translator can be 

based on detecting low-level features of the input and calculating these features to synthesize outputs, 

which can be controlled by minimizing losses in most algorithms. 

4.4 Discussion: Behind “Envisage”: Architectural Design Intention in Humans and Machines 
 

“Envisage” describes both a potential of machines to learn to observe visual design representations from 

human exports, and a creative process facilitated through image-based generative algorithm. Through the 

work of chapter three and four, I probed into the mechanical characteristics of human eye movements 

with perception of architectural intentions from plan sketches by Louis Kahn. I proposed an alternative 

approach to explain visual perception done by trained architecture professionals by incorporating 

graphical analysis with visual behaviors determined by fixation time and scanpaths. I demonstrated that a 

translation of how visually we interpret a design drawing for its innate expressive power of intentions can 

be assisted and represented through another graphical translation of our eye movement patterns. Such a 

graphic-to-graphic translation is important because it raises the one-dimensional labeling process of 

machines’ “eyes” to a level of two-dimensional images. Machine is then able to learn how to probe a 

design image from trained human experts, and potentially delve into further opportunities of 

communicating design intentions with human partners.  

By developing experimentation using image conditional GAN’s, I provided evidences of how machines 

learn from human behavior patterns to produce their “own” interpretation of a design sketch. Although 

the predictions in the study are rather ambiguous and unrefined, it is more valuable in the sense of visual 

design that has been an under-appreciated aspect in design representation. In the spirit of designers, and 

their inherited practice of seeing in a layered, unfeigned way, I advocate for a braver embrace of 

abstractness and dynamics for the eyes of machines to see and create beyond what is recognizable and 

what is not. The following two sections provides a detailed explanation for this advocation. 

 
i. Use of Non-Descriptive, Layered Information.  

Information processing of visual perception is not limited to distinctive and descriptive qualities such as 

labels and names, but many times includes a layered composition (“multilevel interrelationships”) of less-

descriptive visual stimuli. Particularly in the architectural design and education, how to effectively 
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compose and conduct visual information has always been a work of art and science in many generations 

of professionals and students. Seeking for possible methodologies of transferring designers’ visual 

thinking process to forms which are suitable for computer processors will be a part of the solution. As 

Alexander Koutamanis (1994) wrote in his paper “Recognition and Retrieval in Visual Architectural 

Databases” that for digitizing visual qualities and expressions, how effective, efficient and reliable the end 

result are depends a lot more on human operators’ “choices” and “interpretations” of the documents, texts 

and pictures alike. 

Meanwhile, Koutamanis clearly states that “Of architectural documents drawings require particular 

attention. One reason is that they pose the most intricate interpretation-related problems in 

computerization” (P17). Another being that “Drawings are probably the most informative sources on the 

built environment in terms of measurability and accuracy,” for they are what “we employ to understand or 

envisage a building”. The verb “envisage” therefore echoes with this critical point for its indication of 

“imagining something new from things seen”. How such “things” are and will be expressed in a digitized 

manner to reflect a designer’s visual thinking process will be studied by three comparative studies using 

machine learning. However, Koutamanis’ progress takes the symbol aspect of visual stimuli to 

parameterizable planar elements such as doors and walls. 

Additionally, Goldschmidt's proposition declares that “visual displays” are an important part of 

information retrieval for designers via “scrutinizing, intentionally or unintentionally”. More importantly, 

“[b]ringing additional and new pictorial information into the problem space has the potential of 

restructuring the problem representation.” The author then proposed two methods to utilize the visual 

displays: one to improve “cognitive design operations” by supplying sorted collections of visual display; 

and the other to weave in the “ill-structuredness mechanisms” to further enhance the information. What 

“Envisage” suggests an incorporation of these two methods.  

ii. Brittleness as Opportunities 

Designer’s visual process can be partially uncertain, brittle, and abstract. However, these seemly 

disadvantages are actively facilitating imagination through “visual imagery” (Koutamanis, p. 55). Visual 

imagery is a cognitive apparatus well-suited to reasoning in tasks of a high degree of novelty (Finke et 

al.,1992; Kaufmann, 1980). As a tangible, solidified version of visual imagery, design sketches facilitate 

these functions in enhancing exploration, state transition and transformations. 

Uncertainty and brittleness store energies as an ever-flowing database and prepare “for designers to pull 

the changes and leaps at proper times” (Vermeulen, 1995). These characteristics of designers’ visual 
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power have been built upon a complex system for imagination and creativity, and they will do so for 

designers’ computerized counterpart to model and process. Machines usually stop at identifying and 

calculating problems (firmitas + utilitas), while on the more “aesthetic” (venustas) they have little 

authority or input. If we can incorporate the emergent quality of visual perception and the sheer number 

of possibilities and varieties resulted from personal aesthetic experiences into the perceptive ability of 

machines, it would be thinkable to design a type of system by which human and machine designers 

exchange and reflect about high-level intentions using visual interactions – a prerequisite for 

understanding visible beauty of creativity and mutual appreciation.  

4.5 Future Work 
 

Further improvements in both the eye-tracking tests will allow for a more comprehensive examination of 

the view patterns and the resulting heat maps’ graphical implication to design intentions. In my study the 

participants were all professionally trained architecture graduates who have been influenced by a shared 

educational approach to observe and interpret design sketches. If the view patterns I concluded for these 

tasks are unique to an expert group, it will be necessary to collect data from non-professional participants 

to compare and isolate distinctive visual behaviors for perceiving architectural intentions. In addition, 

there exist many more expressions of architectural intention such as lighting, rhythm, transparency, etc., 

and even more graphical conventions than those adopted by Louis Kahn to represent building plans. 

Therefore, another meaningful addition for eye-tracking studies will be to compare differences in fixation 

points and scanpaths of a variety of design representations of one intention category. For example, use of 

watercolor sketches, pen drawings, or even primal massing models in contrast with the pencil sketches. 

Such exploration will likely reveal if the eye movement are rather general across different design 

representations, or contextual with how intentions are designed to be represented.  

Weakness of human visions will be another remaining question to the design of using eye-tracking as a 

base to deliver graphical interpretations of visual thinking process. Human eyes, although powered by the 

processing power of our brains, possess many inadequacies when compared to machine vision: such as 

the small high-resolution area on the retina due to the limitation of fovea, or weak three-dimensional 

perception when given a two-dimensional stimulus. In the tests of GANs the predictions from machines 

are rather unfeigned and ambiguous due to the uncertainty in human viewing patterns as a general 

graphical input, which is performing against the segmentation process in the neural network learning 

process. Considering the architectural design is essentially a three-dimensional problem, whether the 

discoveries based on two-dimensional interfaces can be adaptable to a higher dimensional environment 
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requires further studies. Some questions would be: how human designers imagine a 2D scene differently 

than a 3D scene? What would the equivalent of ambiguity in a 2D sketch in a 3D environment since 3D 

environment is generally consisted of defined objects? Whether designers’ vision still plays a similar role 

in a 3D environment, and if machines essentially perform better instead? 

The strength of machine visions cannot be overlooked. Although a majority of machine vision tasks has 

been focusing on precisely and actively identifying and segmenting objects or their attributes from a 

given scene, it will be extremely hasty to conclude that vision tasks empowered by these segmenting 

algorithms will always lack of power to be creative. Creativity has been appraised in human perception of 

beauty and teleology that ascend our impression of our species to be somehow special and hard to be 

surpassed or redefined. Especially in the rising era of Artificial Intelligent and human-machine 

partnership, it is even more crucial than before to inquire and communicate between the two sides. 

Emotive or rational, experiential, or experimental, our creativity and its meaning to us and machines alike 

might be continuously challenged. However, from the discourses we (humans and machines) always find 

collaborative opportunities. Especially in the field of architectural design, it is time now to communicate 

further between to two sides on what aspects of our perceptive process shapes our creativity, and how we 

move further as mutual-understanding companions. Afterall, our future requires us to “envisage” together 

with beautiful intentions. 
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4.6 Contributions 
 

1. Identified a problem between recognition of labels and units in design and freer and dynamic graphic 

expression of design intentions and proposed a solution through examine observational processes. 

The first chapters investigate both from a historical and designer’s perspective about the innovative and 

dynamic observational process enabled by active, goal-oriented observation in the perception and 

expression of architectural intentions. I provided a retrospective of the methods and graphical 

representations mastered by great architects in assisting of their creative power: both for recognizing 

design elements and associating personal experiences. I compared how the rise of scientific tools such as 

photographing techniques has broadened the mindset of recording and capturing objectivity; and how the 

last century’s progression on machine intelligence expanded the pursuit of “true-to-nature” and the 

subsequent search-based design-solving methods -- such as BIM and Artificial Intelligence. To explore a 

potential link between the dynamic intention and recognizable representations in design sketch, I 

proposed a method of translating active observational process of designers into a graphical representation 

which would allow a type of communication to be less relied on exact labels, but from direct perceptions 

done by goal-oriented observation behaviors. 

2. Conducted an eye-tracking study which produced meaningful results in: 

Identifying intention-specific graphical characteristics in heat maps from professional architecture 

students’ observation responses of three architectural intentions: shape, composition, and circulation 

(navigation). 

Providing evidence in graphically meaningful clues which facilitate translation of the abstract intentions 

through view patterns: how differently the reading of graphical clues can imply the formation of 

intentions from a single sketch; and how mechanical viewing patterns built up areas of interests which are 

architecturally expressive. 

The goals of chapter three are to both examine and attest how willful observation could serve as a 

translator between a visual stimulus and its stored visual information as perceived as architectural 

intention. I introduced an alternative perspective to interpret heat maps from gaze-tracking as a visual 

expression in graphic form. Designers’ observations possess an active force that pull the embedded 

information from images through how and where they would like to see and probe. Such visual power 

functions beyond identifying objects to a level of mind-eye interaction that facilitate creative perception 

and imagination.  
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3.  Demonstration of an initial step towards utilizing graphical representation of human observation 

behavior to perceive or extract abstract visual information in design. Envisaged an application that take 

advantage of the dynamic ambiguous graphical translation obtained from eye-tracking tests. 

In the fourth chapter I inquired on the question of visual perception and its extension into a reciprocal, 

human-machine linkage problem. I propose a prototype application to enable a translation between 

intentional observation and expressions of abstract architectural qualities in shape, composition, and 

circulation. Using a machine learning algorithm: image-conditional Generative Adversarial Networks, I 

trained three separate networks to predict each intention tested in chapter three from collected human 

participants’ data; and examined their similarity and compositional weights against uninstructed human 

heat map data. The three trained networks performed decently considering training and testing data’s 

limitation in resolution and accuracy: under the perspective of “Envisage”, they predict distinct heat maps 

which shared graphical characteristics discovered in chapter three. Some predictions even present a high 

similarity to human data. Although the weighting algorithm was rather primitive and what the heat maps 

were really indicating beyond pure graphical clues still needs further investigation, the results from these 

three “translators” were inspiring in the sense of bringing more willful and magical human behaviors into 

the learning process of image-based machine algorithms. To conclude chapter four, I envisioned a 

framework of future to promote visual communication between humans and machines on another level of 

perceiving intentions not through matching of patterns and symbols, but through the matching of eyes. 

 

 

 

  



116 
 
 

Bibliography 

Ackerman, J. S. (2016). Origins, invention, revision: Studying the history of art and architecture. Yale 
University Press.  

Adler, A., & Davis, R. (2007). Speech and sketching: An empirical study of multimodal interaction. 
Proceedings of the 4th Eurographics Workshop on Sketch-Based Interfaces and Modeling, 83–90. 
https://doi.org/10.1145/1384429.1384449 

Ahlquist, S. (2020). Negotiating human engagement and the fixity of computational design: Toward a 
performative design space for the differently-abled bodymind. International Journal of Architectural 
Computing, 18(2), 174–193. https://doi.org/10.1177/1478077120919850 

Ahuja, S., & Chopson, P. (2020). Automation and Machine Learning in Architecture: A new agenda for 
performance-driven design. Architectural Design, 90(2), 104–111. https://doi.org/10.1002/ad.2553 

Alberti, L. B. (1988). On the art of building in ten books (T. Rykwert, J., Leach, N. & Tavernor, R. 
Trans.). The MIT Press. (Original work published 1485) 

Andy J. K., Nadine Bol, R. Glenn C. & Kevin K. J. (2019). Improving visual behavior research in 
communication science: An overview, review, and reporting recommendations for using eye-
tracking methods. Communication Methods and Measures, 13:3, 149-177, DOI: 
10.1080/19312458.2018.1558194 

Arnheim, R. (1954). Art and visual perception: The psychology of the creative eye. University of 
California Press. 

Artemel, AJ. (2021. April 20). The Master composer: 17 collages and drawings by Ludwig Mies van der 
Rohe. Architizer. https://architizer.com/blog/inspiration/industry/mies-van-der-rohe-collages/ 

Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61 (3), 183-
193. 

Baker, G. H. (2001). Le Corbusier - The Creative Search: The Formative Years of Charles-Edouard 
Jeanneret. Taylor & Francis. 

Blum, H. (1967). A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (Ed.). 
Models for the perception of speech and visual form. The MIT Press, Cambridge, pp 362-380 

Bradley, S. (2014, December 12). Design Principles: Visual Weight and Direction. Smashingmagazine. 
https://www.smashingmagazine.com/2014/12/design-principles-visual-weight-
direction/#:~:text=Visual%20weight%20is%20a%20measure,the%20greater%20its%20visual%20w
eight 

Brillhart, J. (2018, October 6). Drawing on the road: The story of a young Le Corbusier’s travels through 
Europe. Archdaily. https://www.archdaily.com/784616/drawing-on-the-road-the-story-of-a-young-
le-corbusiers-travels-through-europe 

Brothers, C. (c2008.). Michelangelo, drawing, and the invention of architecture. Yale University Press. 
Buckinghan-Hisao, R. (2018). Drawn words: Pictographs in the Chinese language and visual culture. 

Drawing: Research, Theory, Practice, 3(2), pp. 229-240. https://doi.org/10.1386/drtp.3.2.229_1 
Burch, M., Chuang, L., Fisher, B., Schmidt, A., & Weiskopf, D. (2015). Eye tracking and visualization: 

Foundations, techniques, and applications. Springer. 
Carte, B. T., & Luke, S. G. (2020). Best practices in eye tracking research. International Journal of 

Psychophysiology, 155, 49-62. https://doi.org/10.1016/j.ijpsycho.2020.05.010 
Chaillou, S. (2020). ArchiGAN: Artificial intelligence x architecture. In: Yuan P., Xie M., Leach N., Yao 

J., Wang X. (Eds). Architectural Intelligence. Springer, Singapore. https://doi.org/10.1007/978-981-
15-6568-7_8 

Da Vinci, L. (1955). Das lebensbild eines genies. Emil Vollmer Verlag, Wiesbaden Berlin.  
Davis, R. (1998). What are intelligence? And why? 1996 AAAI presidential address. AI Magazine, 19(1), 

91–110. 
Dickinson, S. J., & Pizlo, Z. (Ed.). (2013). Shape perception in human and computer vision: an 

interdisciplinary perspective. Springer. 

https://doi.org/10.1145/1384429.1384449
https://doi.org/10.1145/1384429.1384449
https://doi.org/10.1177/1478077120919850
https://doi.org/10.1002/ad.2553
https://architizer.com/blog/inspiration/industry/mies-van-der-rohe-collages/
https://doi.org/10.1016/j.ijpsycho.2020.05.010


117 
 
 

Duchowski, A.T. (2017). Eye tracking methodology [eBook edition]. Springer. 
https://link.springer.com/book/10.1007%2F978-3-319-57883-5 

Dulaney, R., & Lyn, F. (2010). Representational craft and production: Comparison of the value of hand 
drawing and digital media in architectural academies and practices. Design Principles & Practice: 
An International Journal. https://lib.mit.edu/record/asu/66386392 

Eastman, C, M. (1969). Cognitive processes and ill-defined problems: A case study from design. 
IJCAI’69: Proceedings of the 1st international joint conference on Artificial intelligence. ACM 
Digital Library. https://dl.acm.org/doi/10.5555/1624562.1624622 

Elgammal, A., Mazzone, M., Liu, B., Kim, D., & Elhoseiny, M. (2018). The shape of art history in the 
eyes of the machine. ArXiv, 1801.07729 [Cs]. http://arxiv.org/abs/1801.07729 

Eye Movement in Reading. (2020, August 30). In Wikipedia. 
https://en.wikipedia.org/w/index.php?title=Eye_movement_in_reading&oldid=975808659 

Frey, B. J. (1998). Graphical models for machine learning and digital communication. The MIT Press. 
Galle, P. (1994). Computer support of architectural sketch design: A matter of simplicity? Environment 

and Planning B: Planning and Design, 21(3), 353–372. https://doi.org/10.1068/b210353 
Gallov, G. (2019). Observations on drawing: The art of architecture. Architectural Design. 

https://doi.org/info:doi/10.1002/ad.2501 
GazeRecorder. (2021). FAQ. GazeRecorder. https://gazerecorder.com/faq/ 
Gil-Mastalerczyk, J. (2015). The significance of drawing and painting in architectural design (as 

exemplified by Le Corbusier’s sacred architecture). 
Goel, V. (1988). Complicating the ‘logic of design.’ Design Studies, 9(4), 229–234. 

https://doi.org/10.1016/0142-694X(88)90008-7 
Google. (2021, March 6). How search by image works [Video]. YouTube.  

https://www.youtube.com/watch?v=keTZaJg0784. 
Gresleri, G. (2000). Le Corbusier: Carnets, les voyages d'allemagne voyage D'orient. Electa. 
Halpern, O., & Halpern, O. (2014). Beautiful data: A history of vision and reason since 1945 [EBook].. 

https://lib.mit.edu/record/nlebk/991585 
Harris, S. (2015). Le Corbusier between sketches: A graphic analysis of the Acropolis sketches. LC2015 – 

Le Corbusier, 50 years later. DOI:10.4995/LC2015.2015.911 
Huang, W., & Zheng, H. (2018). Architectural drawings recognition and generation through machine 

learing. ACADIA 2018. http://papers.cumincad.org/data/works/att/acadia18_156.pdf 
Ilyas, A., Santurkat, S., Tsipras, D., Engstrom, L., Tran, B., & Madry, A. (2019). Adversarial examples 

are not bugs, they are features. arXiv:1905.02175 [stat.ML] 
Isola, P., Zhu, J., Zhou, T., & Efros, A. A. (2018). Image-to-image translation with conditional 

adversarial networks. arXiv:1611.07004[cs.CV]. https://arxiv.org/abs/1611.07004 
Jahanian, A., Keshvari, S., & Rosenholtz, R. (2018). Web pages: What can you see in a single fixation? 

Cognitive Research: Principles and Implications, 3, 14. https://doi.org/10.1186/s41235-018-0099-2 
Jensen, M. B., Foged, I. W., & Andersen, H. J. (2020). A framework for interactive human–robot design 

exploration. International Journal of Architectural Computing, 18(3), 235–253. 
https://doi.org/10.1177/1478077120911588 

Joachim, H. (1981). The Drawings of Andrea Palladio. Bulletin of the Art Institute of Chicago (1973-
1982), 75(3), 8-9. Retrieved May 14, 2021, from http://www.jstor.org/stable/4104008 

Karstworlds. (2018) Lascaux cave: History. www.karstworlds.com. Retrieved 26 November 2018. 
http://www.karstworlds.com/2010/12/lascaux-cave-history.html 

Kepes, G. (1965). Education of vision. New York: G.Braziller.  
Kilian, A. (2000). Defining digital space through a visual language. [Master’s thesis, Massachusetts 

Institute of Technology]. MIT DSpace. 
Knight, T., & Stiny, G. (2015). Making grammars: From computing with shapes to computing with 

things. Design Studies, 41(A), 8-28. https://doi.org/10.1016/j.destud.2015.08.006 

https://lib.mit.edu/record/asu/66386392
http://arxiv.org/abs/1801.07729
https://doi.org/10.1068/b210353
https://doi.org/info:doi/10.1002/ad.2501
https://doi.org/info:doi/10.1002/ad.2501
https://doi.org/10.1016/0142-694X(88)90008-7
https://doi.org/10.1016/0142-694X(88)90008-7
https://www.youtube.com/watch?v=keTZaJg0784
https://lib.mit.edu/record/nlebk/991585
https://lib.mit.edu/record/nlebk/991585
https://arxiv.org/abs/1611.07004
https://doi.org/10.1177/1478077120911588
https://doi.org/10.1177/1478077120911588


118 
 
 

Koile, K. (1997). Design conversations with your computer: Evaluating experiential qualities of physical 
form. In R. Junge (Ed.), CAAD futures 1997 (pp. 203–218). Springer Netherlands. 
https://doi.org/10.1007/978-94-011-5576-2_16 

Koile, K. (2004). An intelligent assistant for conceptual design. In J. S. Gero (Ed.), Design Computing 
and Cognition ’04 (pp. 3–22). Springer Netherlands. https://doi.org/10.1007/978-1-4020-2393-4_1 

Koile, K. (2006). Formalizing abstract characteristics of style. AI EDAM, 20(3), 267–285. 
https://doi.org/10.1017/S0890060406060203 

Koutamanis, A. (1994) Recognition and retrieval in visual architectural databases. CUMINCAD. 
Koutamanis, A., Timmermans, H., & Vermeulen, I. (1995). Visual database in architecture: Recent 

advances in design and decision making. Avebury. 
Lafuente Sánchez V.A., López Bragado D. (2019) A new approach to architectural representation 

according to the principles of Gestalt perception. In: Marcos C. (eds) Graphic Imprints. EGA 2018. 
Springer, Cham. https://doi.org/10.1007/978-3-319-93749-6_120 

Li, F., Johnson, J., & Yeung, S. (2017). Lecture 11: Detection and segmentation [Slides]. Stanford 
University. http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf 

Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior temporal cortex of 
monkeys. Current Biology, 5(5), 552 – 563. https://doi.org/10.1016/S0960-9822(95)00108-4 

Lorenzo-Eiroa, P., & Sprecher, A. (2013). Architecture in Formation: On the Nature of Information in 
Digital Architecture [EBook]. Architecture in Formation : On the Nature of Information in Digital 
Architecture. https://lib.mit.edu/record/nlebk/649844 

Lowe, D. G. (2019). Object recognition from local scale-invariant features. Proceedings of the Seventh 
IEEE International Conference on Computer Vision, Kerkyra, Greece, vol.2, 1150-1157. doi: 
10.1109/ICCV.1999.790410. 

Lyokoï88. (2015). Français : Gros plan de la statue de la victoire. Wikimedia Commons. 
https://commons.wikimedia.org/wiki/File:Victoire_de_Samothrace_-_vue_de_trois-
quart_gauche,_gros_plan_de_la_statue_(2).JPG 

Marinčić, N. (2019). Computational models in architecture: Towards communication in CAAD. Spectral 
characterization and modelling with conjugate symbolic domains. Birkhäuser. https://www-
degruyter-com.libproxy.mit.edu/view/title/542043 

Marbleicons (n.d.). [Your story immortalized in marble]. Retrieved May 13, 2020, from 
https://www.marbleicons.com 

Morris, C. W. (1939). Esthetics and the theory of signs. The Journal of Unified Science, 8, 131-150. 
Merrill. (2010). Louis Kahn: On the Thoughtful Making of Spaces: The Dominican Motherhouse and a 

Modern Culture of Space. Lars Müller Publishers.  
Mcgrath, B., & Gardner, J. (2008). Cinemetrics: Embodying Architectural Representation in the Digital 

Age. Architectural Theory Review, 13, 29–51. https://doi.org/10.1080/13264820801915104 
Negroponte, N. (1970). The Architecture Machine: Toward a More Human Environment. MIT Press. 
Orquin, J. L., Ashby, N. J. S., & Clarke, A. D. F. (2016). Areas of interest as a signal detection problem in 

behavioral eye-tracking research. Journal of Behavioral Decision Making, 29, 103-115. 
Papadopoulou, A. (2014). Perceptual prototypes: Towards a sensory pedagogy of space [Thesis, 

Massachusetts Institute of Technology]. https://dspace.mit.edu/handle/1721.1/91411 
Park, J. H. (2015). Synthetic tutor: Profiling students and mass-customizing learning processes 

dynamically in design scripting education. [Thesis, Massachusetts Institute of Technology]. 
https://dspace.mit.edu/handle/1721.1/101544 

Pauly, D. (2018). Le Corbusier: Drawing as Process. Yale University Press. 
Peng, W. (2018). Machines’ perception of space. [Master’s thesis, Massachusetts Institute of 

Technology]. MIT DSpace. 
Photohistoryreview. (2008, September 17). Invention. Photography Project. 

http://photohistoryreview.blogspot.com/2008_09_01_archive.html 

https://doi.org/10.1007/978-94-011-5576-2_16
https://doi.org/10.1007/978-94-011-5576-2_16
https://doi.org/10.1007/978-1-4020-2393-4_1
https://doi.org/10.1017/S0890060406060203
https://doi.org/10.1017/S0890060406060203
https://doi.org/10.1007/978-3-319-93749-6_120
https://lib.mit.edu/record/nlebk/649844
https://www-degruyter-com.libproxy.mit.edu/view/title/542043
https://www-degruyter-com.libproxy.mit.edu/view/title/542043
https://doi.org/10.1080/13264820801915104
https://dspace.mit.edu/handle/1721.1/91411
https://dspace.mit.edu/handle/1721.1/101544


119 
 
 

Pilsitz, M. (2017). Drawing and Drafting in Architecture Architectural History as a Part of Future Studies. 
Periodica Polytechnica: Architecture. https://doi.org/info:doi/10.3311/PPar.11310 

Quotes of Michelangelo. (n.d.). Michelangelo. Retrieved April 13, 2021, from 
https://www.michelangelo.org/michelangelo-
quotes.jsp#:~:text=The%20marble%20not%20yet%20carved,thought%20the%20greatest%20artist%
20has.%20%E2%80%9D&text=Trifles%20make%20perfection%2C%20and%20perfection%20is%
20no%20trifle.%20%E2%80%9D&text=A%20beautiful%20thing%20never%20gives,to%20hear%2
0and%20see%20it.%20%E2%80%9D 

Rayner, K. (2009). The 35th Sir Frederick Bartlett Lecture: Eye movements and attention in reading, 
scene perception and visual search. The Quarterly Journal of Experimental Psychology, 62 (8), 1457 
- 1506. 

Reisner, Y. (2019). Abstraction and Informality Generate a New Aesthetic: An Interview with Kazuyo 
Sejima. Architectural Design, 89(5), 30–37. https://doi.org/10.1002/ad.2476 

Reverse Image Search. (2021, February 21). In Wikipedia. 
https://en.wikipedia.org/w/index.php?title=Reverse_image_search&oldid=1008027369 

Rezanejad M., & Siddiqi K. (2013). Flux graphs for 2D shape analysis. In: Dickinson S., Pizlo Z. (Eds.) 
Shape perception in human and computer vision. advances in computer vision and pattern 
recognition (pp. 41-54). Springer, London. https://doi.org/10.1007/978-1-4471-5195-1_3  

Roberts, L. G. (1961). Machine perception of three-dimensional solids. [Master’s thesis, Massachusetts 
Institute of Technology]. MIT DSpace. 

Rodriguez, M. (2014). Transnational architecture and new femininity. Open Cities: The New Post-
Industrial World Order. https://www.acsa-arch.org/chapter/transnational-architecture-and-
newfemininity 

Sung, W. (2013). Sketching in 3D: Towards a fluid space for mind and body. [Master’s thesis, 
Massachusetts Institute of Technology]. MIT DSpace. 

Sánchez, V. A. F., & Bragado, D., L. (2019) A new approach to architectural representation according to 
the principles of gestalt perception. In Marcos, C.L. (Ed.). Graphic Imprints: The influence of 
representation and ideation tools in architecture, Springer, pp. 1449 – 1450.  

Sandoval, C., Pirogova, E., & Lech, M. (2019). Two-Stage Deep Learning Approach to the Classification 
of Fine-Art Paintings. IEEE Access, 7, 41770–41781. 
https://doi.org/10.1109/ACCESS.2019.2907986 

Schlemmer, O. (1971). Dairy entry dated February 1925. In Kuckling, H. (Ed.). Man: Teaching Notes 
from the Bauhaus. The MIT Press. 

Semmelmann, K., & Weiglt, S. (2017). Online webcam-based eye-tracking in cognitive science: A first 
look. Behavior Research Methods, 50, 451 - 465. https://doi.org/10.3758/s13428-017-0913-7 

Shehu, I., Wang, Y., Athuman, A., & Fu, X. (2020). Paradigm shift in remote eye gaze tracking research: 
highlights on past and recent progress. In Kacprzyk, J. (Ed.), Advanced in Intelligent Systems and 
Computing, Springer Press, Switzerland, pp. 171. 

Smith, S. M., Ward, T. B., & Finke, R. A. (2009). The Creative Cognition Approach. MIT Press. 
Stiny, G. (1981). A Note on the Description of Designs. Environment and Planning B: Planning and 

Design, 8(3), 257–267. https://doi.org/10.1068/b080257 
Stiny, G. (2006). Shape: Talking about Seeing and Doing. The MIT Press. 

https://doi.org/10.7551/mitpress/6201.001.0001 
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception 

Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2818–2826. https://doi.org/10.1109/CVPR.2016.308 

Tamke, M., Nicholas, P., & Zwierzycki, M. (2018). Machine learning for architectural design: Practices 
and infrastructure. International Journal of Architectural Computing, 16(2), 123–143. 
https://doi.org/10.1177/1478077118778580 

https://doi.org/info:doi/10.3311/PPar.11310
https://doi.org/10.1002/ad.2476
https://doi.org/10.1007/978-1-4471-5195-1_3
https://www.acsa-arch.org/chapter/transnational-architecture-and-newfemininity
https://www.acsa-arch.org/chapter/transnational-architecture-and-newfemininity
https://doi.org/10.1109/ACCESS.2019.2907986
https://doi.org/10.1109/ACCESS.2019.2907986
https://doi.org/10.3758/s13428-017-0913-7
https://doi.org/10.1068/b080257
https://doi.org/10.7551/mitpress/6201.001.0001
https://doi.org/10.7551/mitpress/6201.001.0001
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1177/1478077118778580
https://doi.org/10.1177/1478077118778580


120 
 
 

Tausky, D., Labahn, G., Lank, E., & Marzouk, M. (2007). Managing ambiguity in mathematical matrices. 
Proceedings of the 4th Eurographics Workshop on Sketch-Based Interfaces and Modeling, 115–122. 
https://doi.org/10.1145/1384429.1384454 

Wagemans J. (2013) Two-dimensional shape as a mid-level vision gestalt. In: Dickinson S., Pizlo Z. 
(Eds.). Shape Perception in Human and Computer Vision. Advances in Computer Vision and Pattern 
Recognition. Springer, London. https://doi-org.libproxy.mit.edu/10.1007/978-1-4471-5195-1_6 

Wikipedia, (n.d.). [The Atlas Slave]. Retrieved May 13, 2020, from 
https://en.wikipedia.org/wiki/Atlas_Slave#/media/File:Michelangelo_-_Atlas.jpg 

Wild, A. (2011, August 16). Google’s Reverse Image Search. Scientific American. 
https://blogs.scientificamerican.com/compound-eye/googles-reverse-image-search/ 

Vlavianos, N. (2016). Shape Grammar Reality (SGr): Computing in the real world. [Master’s thesis, 
Massachusetts Institute of Technology]. MIT DSpace. 

Vidler, A. (2000). Diagrams of Diagrams: Architectural Abstraction and Modern Representation. 
Representations, 72, 1–20. JSTOR. https://doi.org/10.2307/2902906 

 

 

 

  

https://doi.org/10.1145/1384429.1384454
https://doi.org/10.1145/1384429.1384454
https://doi.org/10.2307/2902906


121 
 
 

Appendix I: Catalog of Louis Kahn’s Sketches Used Eye-tracking and GANs Studies 
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Image Titles 

Image 
Name 

Sketch Information 

1 Eleanor Dannelley erdman Hall, Bryn Mawr College, Bryn Mawr, Pennsylvania, Plan 
sketches 

2 Philadelphia College of Art, project, Philadelphia, Pennsylvania, Site-plan and elevation 
sketches. 1965 

3 Philadelphia College of Art, project, Philadelphia, Pennsylvania, Site-plan sketches. 1965 
4 Indian Institute of Managementm, Ahmedabad, India, Plan sketch of classroom building. 

1964 
5 Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, National Assembly 

Building: plan sketch. 1963 
6 Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, National Assembly 

Building: plan sketch. 1964 
7 Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, National Assembly 

Building: plan sketch. 1963 
8 Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, Prayer Hall: plan 

sketch. 1965 
9 Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, Prayer Hall: plan 

sketch. 1965 
10 Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, Prayer Hall: plan 

sketch. 1965 
11 Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, Prayer Hall: plan 

sketch. 1965 
12 Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, Prayer Hall: plan 

sketch. 1965 
13 Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, Prayer Hall: plan 

sketch. 1965 
14 Ludwig Mies van der Rohe. IIT Master Plab, Chicago, Illinois, Student Union building. 

Plan. Partial. 1939 
n01 Plan of the Buildings of the Indian Institute of Management, Ahmedbad 
n02 Plan of the Buildings of the Indian Institute of Management, Ahmedbad, plan and 

elevation 
n03 Tribune Review Publishing Company Building, Greensburg, Pennsylvania, Plan 

sketch1958 
n06 Louis I. Kahn .First Unitarian Church and School, Rochester, New York, Plan and 

elevation sketches1959 

n07 Louis I. Kahn. Mikveh Israel Synagogue, project, Philadelphia, Pennsylvania, Plan 
sketches1963 

n08 Louis I. Kahn. Mikveh Israel Synagogue, project, Philadelphia, Pennsylvania, Ceiling 
sketch1965 

n09 Louis I. Kahn. Fine Arts Center, School, and Performing Arts Theater, Fort Wayne, 
Indiana, Site-plan sketch1963 

n10 Louis I. Kahn. Fine Arts Center, School, and Performing Arts Theater, Fort Wayne, 
Indiana, Site-plan and elevation sketches1963 

n11 Louis I. Kahn. Fine Arts Center, School, and Performing Arts Theater, Fort Wayne, 
Indiana, Site-plan sketch1963 

https://www.moma.org/artists/2964
https://www.moma.org/artists/2964
https://www.moma.org/artists/2964
https://www.moma.org/artists/2964
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https://www.moma.org/artists/2964
https://www.moma.org/artists/2964
https://www.moma.org/artists/2964
https://www.moma.org/artists/2964
https://www.moma.org/artists/2964
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n12 Louis I. Kahn. Indian Institute of Management, Ahmedabad, India, Plan sketches of 
clssroom building1963 

n13 Louis I. Kahn. Indian Institute of Management, Ahmedabad, India, Plan sketches of 
clssroom building1963 

n14 Louis I. Kahn. Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh (Plan 
sketch)1963 

n15 Louis I. Kahn. Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, 
National Assembly Building: plan sketch1963 

n16 Louis I. Kahn 
Fine Arts Center, School, and Performing Arts Theater, Fort Wayne, Indiana, Site-plan 
sketch 
1963 

n17 Louis I. Kahn. Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, Prayer 
Hall: plan sketch1965 

n18 Louis I. Kahn. Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh (Plan 
sketch)1963 

n19 Louis I. Kahn. Indian Institute of Management, Ahmedabad, India, Plan 

p01 Project: Abbasabad Development 
p02 Penn Center Studies 
p03 Penn Center Studies 
p04 Penn Center Studies 
p05 Penn Center Studies 
p06 City Tower Project 
p07 City Tower Project, Floor plan, section 
p08 City Tower Project, Floor plan, section 
p09 Peabody Museum, alterations and additions (Hall of Ocean Life) 
p10 Kansas City Office Building 
p11 Adler Residence, Plan studies 
p12 Adler Residence, Plan studies 
p13 Morris Residence, detail plan 
p14 Morris Residence, detail plan 
p15 Civic Center Studies 
pl1 President’s Estate at the First Capital of Pakistan. Islamabad, 1966. 
pl2 Indian Institute of management, Ahmedabad, India, Plan sketch of classroom building, 

1963 
pl3 Morris Residence 
pl4 Morris Residence 
pl5 Salk Institute for Biological Studies, Site plan study 
pl6 Salk Institute for Biological Studies, Site plan study 
pl7 United States Consulate and Residence, Site and floor plan of chancellery, section 
pl8 Erdman Hall, Plan, various studies 
pl9 General Motors Exhibit, 1964 World's Fair, Diagrammatic site plan, elevation 
pl10 General Motors Exhibit, 1964 World's Fair, Partial floor plan 
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Image Sources 

Image 
Name 

Source link 

1 Louis I. Kahn. Eleanor Donnelley Erdman Hall, Bryn Mawr College, Bryn Mawr, 
Pennsylvania, Plan sketches. 1960-61 | MoMA 

2 Louis I. Kahn. Philadelphia College of Art, project, Philadelphia, Pennsylvania, Site-plan and 
elevation sketches. 1965 | MoMA 

3 https://www.moma.org/collection/works/626 

4 Louis I. Kahn. Indian Institute of Managementm, Ahmedabad, India, Plan sketch of 
classroom building. 1964 | MoMA 

5 https://www.moma.org/collection/works/518 

6 Louis I. Kahn. Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, National 
Assembly Building: plan sketch. 1964 | MoMA 

7 Louis I. Kahn. Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, National 
Assembly Building: plan and elevation sketches. 1963 | MoMA 

8 Louis I. Kahn. Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, Prayer Hall: 
plan sketch. 1965 | MoMA 

9 Louis I. Kahn. Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, Prayer Hall: 
plan sketch. 1965 | MoMA 

10 Louis I. Kahn. Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, Prayer Hall: 
plan sketch. 1965 | MoMA 

11 Louis I. Kahn. Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, Prayer Hall: 
plan sketch. 1964 | MoMA 

12 Louis I. Kahn. Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, Prayer Hall: 
plan sketch. 1965 | MoMA 

13 Louis I. Kahn. Sher-e-Bangla Nagar, Capital of Bangladesh, Dhaka, Bangladesh, Prayer Hall: 
plan sketch. 1965 | MoMA 

14 Ludwig Mies van der Rohe. IIT Master Plan, Chicago, Illinois, Student Union building. Plan. 
Elevation. Two exterior perspectives. 1939 | MoMA 

n01 https://www.sothebys.com/en/auctions/ecatalogue/2018/boundless-india-in1801/lot.6.html 

n02 https://www.moma.org/collection/works/596 

n03 https://www.moma.org/collection/works/414?artist_id=2964&page=1&sov_referrer=artist 

n06 https://www.moma.org/collection/works/442 

n07 https://www.moma.org/collection/works/489 

n08 https://www.moma.org/collection/works/503 

n09 https://www.moma.org/collection/works/529 

n10 https://www.moma.org/collection/works/534 

n11 https://www.moma.org/collection/works/485 

n12 https://www.moma.org/collection/works/592 

n13 https://www.moma.org/collection/works/592 

n14 https://www.moma.org/collection/works/507 

n15 https://www.moma.org/collection/works/543 

n16 https://www.moma.org/collection/works/485 

n17 https://www.moma.org/collection/works/584 

n18 https://www.moma.org/collection/works/512 

n19 https://www.moma.org/collection/works/600 

https://www.moma.org/collection/works/474?artist_id=2964&page=1&sov_referrer=artist
https://www.moma.org/collection/works/474?artist_id=2964&page=1&sov_referrer=artist
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https://www.moma.org/collection/works/576
https://www.moma.org/collection/works/578
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Appendix II: Heat Maps Examples Used for Average Time Calculation in Chapter 3.3.1 
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