
Democratizing Details-on-demand Data Visualizations

at Scale

by

Wenbo Tao

B.Eng., Tsinghua University (2016)
S.M., Massachusetts Institute of Technology (2018)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 14, 2021

Certified by. .
Michael Stonebraker

Adjunct Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Democratizing Details-on-demand Data Visualizations

at Scale

by

Wenbo Tao

Submitted to the Department of Electrical Engineering and Computer Science
on May 14, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Details-on-demand is a powerful interaction paradigm which features the use of simple
mouse interactions such as pan and zoom to help the viewer navigate through a large
data space. In the past years, we have witnessed an increasing amount of data
visualization applications that embrace this paradigm to facilitate data exploration
and analysis. Web maps are a clear example. However, due to the highly specialized
nature of these applications as well as the lack of general scalable toolkits, building
new details-on-demand data visualizations remains hard especially for large datasets.
This thesis proposes new tools and systems to “democratize” details-on-demand-based
data visualizations, i.e., to make it much easier to build such applications at scale.
The main approach is to offer declarative data visualization languages for developers
to author applications in small amounts of code, and work with a database backend to
transparently handle the rendering and performance optimizations needed to enable
fluid interactions on large datasets.

Thesis Supervisor: Michael Stonebraker
Title: Adjunct Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

This section will be a little bit long and narrative. Bear with me - I simply have too

many people to thank, and too many thankful words to type. Hopefully the stories

will be interesting to you.

To my advisor Mike Stonebraker

“I’m a big fan of details on demand ”. This is what Mike said to me when pitching the

idea of Kyrix. We then started the incredible journey of building our data visualization

systems. Mike actually repeated this sentence many times when introducing our

systems to other people. Of course, he is not saying that we should be a fan of details

on demand because he is. There is an underlying reason to his fandom of the details-

on-demand paradigm. Quoting Mike again: “The user does not need a manual to

start using a details-on-demand interface. It’s very simple.”

This actually exemplifies one big thing that I’m grateful for being around Mike.

He is essentially an idea filter that highly discourages ideas that are too complex to

be expressed in one or two sentences. This had pushed me to organize my ideas in

a way that can be succinctly summarized. If I could not, it is probably too complex

to make the idea work. Of course, the real world is powered by many complex ideas

that probably would not pass Mike’s filter. Yet his strong inclination towards simple

ideas taught me to think about my ideas critically, to try to express ideas in a way

that a layman can understand as much as possible. “Simple is good, complex I don’t

trust.” This is another quote from Mike that firmly stuck in my head.

Looking back, I could not thank Mike enough for teaching me the importance

of keeping users in the loop when building a system. When we first had a working

prototype of Kyrix, we were introduced a collaborator from MGH who had a use

case for our system. I was reluctant to collaborate because their use case seemed to

deviate a lot from what we initially intended to support. Yet Mike was very decisive

and suggested that we do all we could to support their use case. As a result, we added

three important features that had benefited lots of later applications. Meeting with

5

users to polish our systems was a norm in building the systems. I learned a great

deal by just observing how Mike talked to the users to learn about their requirements

deep down. It was Mike’s strong focus of practicality that constantly reminded me of

the importance of engaging with users in all stages of system building.

Mike had also helped me in many other ways which I am very grateful for. I

remember that Mike invited me to his home to help revise my first paper in my first

year. It was only a couple days after his lower body surgery! Mike was well known

for disliking revising papers for students and often commented that “every graduate

student in the building is a bad writer.” So you could easily understand my ecstasy

when Mike commented on my last paper that “It reads pretty well. Did you suddenly

become a good writer?”

No, I did not. Without Mike’s help, I would not be who I am today. Thank you

Mike.

To my advisor Remco Chang

As my co-advisor, Remco had provided me with immense amount of help and support.

Countless times when I was stuck, Remco would invite me to his lab at Tufts to talk

it through. Every time I went to Tufts, we would talk for hours about not only

technical stuff, but also life, sports and how Kyrix should not be named after Kyrie

Irving. Those conversations at Tufts were one of my most cherished moments during

my PhD. They got me unstuck. They showed me things from different perspectives.

They taught me professional and people skills. Whenever I am back in Boston in the

future, Remco’s office will for sure be on the top of my list of places to visit (even

above TD garden).

In retrospect, what Remco brought to our projects was indeed invaluable. It was

easy for us database people to get too obsessed with database optimizations. When-

ever that happened, we would hear the sane voice from Remco which reminded us

that we were building a visualization system. Remco would offer useful insights from

the visualization standpoint but also with insights into the underlying optimizations

because of the cross-disciplinary expertise he had. Remco was very humble and open-

6

minded, which made our discussions easy and productive. I want to also thank Remco

for his coming to MIT for our weekly meeting. To a busy professor that was a huge

sacrifice.

Remco is a unique professor. The first thing on his homepage is not the list of

projects, the list of publications nor a short bio. It is a list of his students who

have become professors. He sees mentoring of students as his first priority. That is

probably why I have learned so much from him. Although I may not be added to

that list, I will make sure to become a useful person to the society whom Remco can

be proud of. Thank you Remco.

To the genius hacker Adam Sah

Adam was a former student of Mike who joined our project halfway and since made

our systems orders of magnitudes better. Given that he was a pretty senior type

of person (a successful serial entrepreneur), it was a huge surprise to me when he

actually started contributing code to Kyrix. As he said, he is an old Berkeley hacker

who loves to code. In Mike’s terms, Adam is a “super programmer”.

The series of improvements he made to Kyrix had life-changing influences on me.

I had zero industrial experiences back then. Adam’s code showed me what I never

thought was possible. To scale Kyrix beyond single-node PostgreSQL, he orchestrated

six systems together (PostgreSQL, Citus, PLV8, Kubernetes, Docker and GCP), two

of which he had to learn from scratch. I was not only amazed by what his code

can do, but also his “hacker” mentality, i.e., to be super enthusiastic about making

things work, usually through lots of trial and error. Adam seemed to have awaken that

programming nerd inside me who had since become fascinated by systems engineering.

I had determined to start “hacking” like him, no matter what I do in the future.

I am also grateful for just having the opportunity to witness how Adam communi-

cated his work to other people. The way he made proposals and reported experiment

results was eye opening. As he often joked about, he was a 20+th year PhD student

of Mike. So while I was the single PhD student in the Kyrix project, Adam served as

that senior “student” who I could learn a lot from. Thank you Adam.

7

To everyone on the Kyrix team

The Kyrix team has been a big one. In addition to Mike and Remco, Leilani Battle

was another professor involved. She contributed a lot of useful ideas and feedback on

my work. Thank you Leilani. Near my graduation, Leilani introduced Ameya Patil,

who became the second PhD student (in addition to me) in the Kyrix family. So I

will pass the torch to Ameya, who plans to augment Kyrix in exciting ways, such as

supporting graph networks.

The people I spent the most time with are two visiting students Xiaoyu Liu and

Xinli Hou. Between us, tons of meaningful conversations and pair programming

happened that led Kyrix to a better place. Thank you Xiaoyu and Xinli. You were

the best company on my PhD journey.

I want to thank especially Peter Griggs (a master student) for his work on Kyrix.

Peter’s story was a little twisted because he spent quite some time investigating

different indexing methods which did not end up in his thesis. But frankly, those

early work was important and informative. I especially respected Peter’s ambitious

attempt in writing a PostgreSQL extension to support faster Kyrix indexing. Although

it did not end up being fruitful, it showed Peter’s hacker mentality since writing a

PostgreSQL extension is non-trivial.

Four other master students also did amazing work that I learned a lot from.

Jim Peraino produced an amazing application which showcased how Kyrix can be

extended to 3D. Abhishek Bassan designed an elegant caching algorithm for the Kyrix

backend. Erica Zhou studied how Kyrix can be applied to trace the transmission paths

of infectious diseases. Amy Zhang built a neat front-end authoring tool which made

the authoring of Kyrix easier for non-experts.

Lastly, I want to acknowledge all other people who had contributed to Kyrix

through either PDF or code: Yedi Wang, Maxime Schoemans, Giovanni Simonini,

Elkindi Rezig, Lei Cao, and Ishan Sen. The names listed here are by no means

complete. Thank you everyone who was a member of the Kyrix family.

8

To my other committee member Arvind Satya

I am very grateful to Arvind for agreeing to be on my committee and providing

valuable feedback on my thesis and defense talk. We only had a few meetings but every

meeting was informative. The design of the systems in this thesis was also inspired

by many Arvind’s works on visualization authoring. I look forward to following more

works of his in the future. Thank you Arvind.

To my friends

I enjoyed being with folks in the data systems group (formerly the database group).

They are super smart people who can also be very good friends with me. I enjoyed

the lunch chatting, trips, board games, billiard and ping pong. Spending time with

them chatting about life and tech was a good break from my research. Thank you

guys!

There are fellow students at MIT whom I often hung out with: Favyen Bastani,

Jie Xu, Dong Deng, Songtao He, Shichao Yue, Oscar Moll, Yu Xia, Joana M. F.

da Trindade, Yi Lu, Zeyuan Shang, Lei Cao, Yuanming Hu, Hao He, Kapil Vaidya,

Hongzi Mao, Matt Perron, Xiangyao Yu and many others. I enjoyed every meal we

had, every movie we watched, every time we played basketball and every Celtics game

we went to together. Thanks for the company and best of luck!

To my family

Lastly, I want to thank my family especially my parents and my twin brother. While

I had been studying abroad, they have provided unconditional support. COVID has

separated us for so long. Hopefully we can reunite soon once the world reopens.

There is an interesting story about the names of mine and my brother’s. The first

name of my brother means the master degree in Chinese. And my first name means

the doctoral degree. My brother got his master degree a while ago and went into

industry. Now I will get my doctoral degree. We should thank our grandfather, the

giver of our names, who accurately predicted (or destined?) our academic paths.

9

10

Contents

1 Introduction 23

1.1 Background . 23

1.2 Research Challenges . 24

1.3 Solution . 26

2 Kyrix: General Details-on-demand Data Visualizations at Scale 29

2.1 Introduction . 29

2.2 Related Works . 33

2.2.1 ZUI Toolkits and Systems . 33

2.2.2 Performance Optimization in Visualization Systems 34

2.2.3 Declarative Visualization Specification 35

2.3 Design Requirements . 36

2.4 Declarative Model . 37

2.4.1 Overview . 37

2.4.2 Canvas and Layer . 38

2.4.3 Zoom and Jump . 40

2.4.4 Data Transform . 41

2.4.5 Rendering Function . 42

2.4.6 Placement Function . 43

2.4.7 Implementation . 43

2.5 Performance Optimizations . 44

2.5.1 Building and Searching Database Spatial Indexes 46

2.5.2 Caching and Incremental View Maintenance 47

11

2.5.3 Comparison with Existing Optimization Frameworks. 47

2.6 Example Visualizations . 48

2.6.1 Using Kyrix’s Declarative Model to Create Example Visualizations 48

2.6.2 Expressivity of Kyrix’s Declarative Model 50

2.7 Developer Study . 51

2.7.1 Protocol . 52

2.7.2 Results and Discussion . 53

2.8 Performance Evaluation . 56

2.8.1 Scalability . 56

2.8.2 Performance on Real Applications 57

2.8.3 Effects of Caching and Incremental View Maintenance 58

2.9 Discussions . 59

2.9.1 Limitations and Future Work 59

2.9.2 Using Kyrix as a Foundation System 60

2.10 Conclusion . 60

3 Kyrix-S: Authoring Scalable Scatterplot Visualizations of Big Data 61

3.1 Introduction . 61

3.2 Related Works . 65

3.2.1 General DoD Visualization Systems 65

3.2.2 Specialized SSV Systems . 66

3.2.3 Static Scatterplot Designs . 67

3.2.4 Declarative Visualization Languages 68

3.3 Design Goals . 68

3.4 Declarative Language . 69

3.4.1 Example SSVs . 69

3.4.2 Language Design . 71

3.5 Optimization Framework . 76

3.6 Layout Generation and Data Fetching 77

3.6.1 Layout Generation: Problem Definition 77

12

3.6.2 A Single-node Layout Algorithm 78

3.6.3 A Multi-node Distributed Layout Algorithm 82

3.6.4 Data Fetching . 85

3.7 Implementation . 86

3.8 Evaluation . 87

3.8.1 Performance . 87

3.8.2 Authoring Effort . 90

3.9 Discussions . 91

3.9.1 Limitations and Future Work 91

3.9.2 A Tabular Comparison . 93

3.9.3 More on Layout Generators 93

3.10 Conclusion . 94

4 Kyrix-J: Supporting Pivot Jumps between Visualizations for Many

Tables in a Relational Database 97

4.1 Introduction . 97

4.2 Related Works . 101

4.2.1 Pivot Jump Systems . 101

4.2.2 Understanding Relationships between Visualizations 102

4.2.3 Data Exploration in an RDBMS 102

4.3 Kyrix-J Overview . 103

4.3.1 A Usage Scenario . 103

4.3.2 Design Requirements . 105

4.3.3 System Architecture . 107

4.3.4 Organization . 108

4.4 Automatic Generation of Pivot Jump Paths 109

4.4.1 Problem Definition . 109

4.4.2 A Solution based on RDBMS PK-FK Relationships 112

4.5 User Interface . 115

4.5.1 The Keyword Search Box . 115

13

4.5.2 The Graph View . 116

4.5.3 The Visualization View . 118

4.5.4 Informational Views . 119

4.5.5 Bookmarking and History . 120

4.6 Evaluation: A First-use Study . 121

4.6.1 Procedure and Tasks . 121

4.6.2 Results and Discussions . 122

4.7 Discussions on Limitations and Future Work 126

4.8 Conclusion . 128

5 More Discussions 129

5.1 The Multi-dimensional Performance Problem 129

5.1.1 Online Performance . 130

5.1.2 Offline Performance . 131

5.2 Updating Data . 135

5.3 Continuous Zooming . 136

5.4 Open Source . 137

6 Conclusion 139

14

List of Figures

2-1 Two example visualizations created using Kyrix: (a) a visualization of

the 2017-2018 regular season of the NBA, where the user can zoom

from one view showing NBA team logos to another view showing a

timeline of NBA games and (b) a pannable and zoomable EEG time

series consisting of 100 million data points. 30

2-2 Kyrix system architecture. 32

2-3 Kyrix’s declarative model. Canvases are “levels of details” connected

by zooms or jumps. A canvas has multiple layers. A data transform

prepares the data source for rendering a layer. A rendering function

maps data to visual objects. A placement function provides spatial

information of objects to enable fast data fetching. 38

2-4 Specifications of canvases and layers for the NBA example in Figure 2-

1a. 39

2-5 Specification of the jump from the logo canvas to the timeline canvas

for the NBA example in Figure 2-1a. 41

2-6 Specification of the data transform for a layer in the NBA example in

Figure 2-1a. 42

2-7 Specification of the placement function for a dynamic layer in the NBA

example in Figure 2-1a. 42

2-8 An illustration of performance optimizations in Kyrix. 45

15

2-9 Four more example applications created using Kyrix: (a) a scatterplot

visualizing 17 million 2-second EEG segments; (b) a map of animals

in the Amazon rainforest; (c) a zoomable crime rate map of the US;

(d) a zoomable circle packing layout of the class hierarchy in Flare, an

ActionScript library for visualization [130]. 49

2-10 The scatterplot visualization used both in Task 1 of the developer study

and in the performance evaluation: (a) the top-level canvas; (b) the

bottom-level canvas. Two canvases are connected by a zoom. The

zoom factor is 2. 53

2-11 Kyrix’s ability to scale with increasing data size. The scatterplot in

Figure 2-10 is used as the benchmark visualization. Average response

time and network latency are shown. 57

2-12 Kyrix is a foundational DoD data visualization system on which more

higher-level authoring systems can be built. 60

3-1 A scalable scatterplot visualization created by Kyrix-S and its Kyrix-S

specifications. One billion comments made by users on Reddit.com

from Jan 2013 to Feb 2015 are visualized on 15 zoom levels. On every

level, 𝑋 and 𝑌 axes are respectively the posting time and length of the

comments. Each circle represents a cluster of comments. The number

inside each circle is the size of the cluster and also encodes the radius

of the circle. As can be seen, the distribution of comments is roughly

uniform over time but rather skewed in length. Through a pan or

zoom interaction, the user can navigate this multi-scale data space to

get either an overview (left) or inspect an area of interest (middle).

One can hover over a circle to see three highest-scored comments in

the cluster, as well as a bounding box showing the boundary of the

cluster. 63

16

3-2 A gallery of SSVs authored with Kyrix-S and their specifications. (a):

a heatmap of 178.3 million taxi trips in Chicago since 2013, 𝑋: trip

length (seconds), 𝑌 : trip total (dollars); (b): the same dataset/axes

as (a) in contour plots; (c): an SSV of 18,207 soccer players in the

video game FIFA19, 𝑋: shooting rating, 𝑌 : defense rating, 𝑍: wage

(i.e. highly-paid players appear on top zoom levels); (d): a pie-based

SSV of 17.3 million liquor purchases by retailers in Iowa, 𝑋: unit price

(dollars), 𝑌 : quantity (# of bottles), 𝑍: purchase date; (e): a text

visualization of the dataset of one billion Reddit comments in Figure

3-1 with the same axes; (f): the same dataset/axes as (c) in a radar-

chart. 70

3-3 Kyrix-S’s declarative language in the BNF notation. Inside ⟨⟩ or []

is a component. Every rule (1-24) defines what the left-hand side

component is composed of. On the right hand side of a rule, | means

OR, * means zero or more, + means one or more and [] means that a

component is optional. 72

3-4 Kyrix-S optimization framework. 76

3-5 Marks 𝑃 and 𝑄 with an 𝑛𝑐𝑑 of 𝜃. Inner boxes (dashed) are the bound-

ing boxes of the marks. Outer boxes (solid) are bounding boxes scaled

by a factor of 𝜃. Scaled boxes do not overlap and touch on one side. In

general, for any two marks that have 𝑛𝑐𝑑 greater than 𝜃, their bounding

boxes do not overlap after being scaled by a factor of 𝜃. 79

3-6 An illustration of the hierarchical clustering. There are 9 objects A-I,

in decreasing order of importance. Each octagon is a cluster, with the

representative object inside it. (a): Three zoom levels constructed.

A dashed ellipse indicates the merging of the lighter cluster into the

darker one. (b): A tree representation of the hierarchical clusters.

The number next to a cluster is the number of objects this cluster

represents. These numbers, along with other possible aggregation in-

formation, are computed when clusters merge. 81

17

3-7 An illustration of the distributed clustering algorithm for zoom level

𝑖. (a), (b): clusters on zoom level 𝑖 + 1 are spatially partitioned and

stored on multiple database nodes. KD-tree is used for skew-resilient

partitioning. In (a), non-leaf tree nodes (1, 2, 3 and 6) represent KD-

tree splits, while leaf tree nodes (4, 5, 7, 8 and 9) correspond to actual

partitions. Each circle in (b) is a mark/cluster; (c): the single-node

algorithm is run for each partition in parallel, merging clusters that

have an 𝑛𝑐𝑑 smaller than 𝜃; (d): merging clusters close to partition

boundaries. 82

3-8 An example of merging clusters along a KD-tree split. 83

3-9 Serving scalability on the synthetic SSV Syn. 89

3-10 Indexing scalability on the synthetic SSV Syn. 89

4-1 A typical usage flow of deployed on the MONDIAL database [89] which

involves identifying a table of interest using the keyword search (a),

inspecting data visualizations (b, d, f and i), performing pivot jumps

between visualizations (b→c→d, d→e→f or b→h→i) and using the

history panel to go back to a visited visualization (g). 99

4-2 The Kyrix-J system architecture. 105

18

4-3 The Kyrix-J user interface: (a) the keyword search box which allows

a user to identify a table to start their exploration; (b) the visualiza-

tion view; (c) the graph view where a simplified Entity-Relationship

diagram shows each table as a graph node and PK-FK relationships

between tables as graph edges; (d-f) informational views showing the

current SQL query, filters and mappings from visual properties to data

attributes; (g) a popover appearing after the user clicks on an object,

which contains a list of new visualizations to “jump” to. These pivot

jump paths between pairs of visualizations are automatically generated

by Kyrix-J based on PK-FK links; (h) the list of bookmarked visual-

izations; (i-j) when hovering over a node/edge in the graph view, more

information shows up in a popover; (k) the user clicks on the “raw

data” button to see the data items in a tabular format. 106

4-4 An example pivot jump path with annotations of the SQL queries,

data items and primary keys of the visualizations, the filter function

and the PK-FK relationship used to identify this path. 110

4-5 Another example jump path with annotations on the right to illustrate

Algorithm 1. 113

4-6 Expanding the graph view: a) one can click on a node/table to go to

that table; b) an animation highlighting new nodes and edges added

to the graph. 116

4-7 Hovering over a meta node. 117

4-8 When hovering over a jump path, an animated astronaut icon signals

the move from one table to the next. 118

4-9 The visualization view uses an animated rocket to indicate a jump to

the next visualization, which is coordinated with the astronaut icon

movement in the graph view. 119

4-10 Hovering over See Another Vis reveals a list of all visualization for the

current table. 120

19

20

List of Tables

3.1 Comparison of existing systems for authoring SSVs. 62

3.2 Online serving time (95-th percentile, in milliseconds). 88

3.3 Offline indexing time (in minutes). 88

3.4 Comparison of lines of specifications when using Kyrix-S and Kyrix to

author the two example SSVs in Figure 3-2d and Figure 3-2f. 90

3.5 A tabular comparison of systems/toolkits for authoring SSVs. This is

a more detailed version of Table 3.1. 92

4.1 Search tasks used in the user study. 122

4.2 Average task completion times and standard deviations (in minutes). 123

21

22

Chapter 1

Introduction

1.1 Background

Details-on-demand (DOD) is a powerful interaction paradigm which enables the user

to locate data of interests in a large data space using intuitive interactions such as

pan and zoom. In the past three decades, we have seen increasingly wide application

of this paradigm in a variety of domains. This popularity dates back to the advent

of Zoomable User Interface (ZUI) toolkits [103, 22] in the 90s, which has prompted

the use of DOD in a diverse range of user-facing applications [21, 43, 49, 124]. Shnei-

derman in 1996 proposed the information seeking mantra “Overview first, zoom and

filter, then details on demand” in his seminal work [120], which has inspired a series

of subsequent research efforts on building systems and applications that embody the

spirit of DoD. As smartphones and tablets become ubiquitous in the mid 2000s, the

popularity of web maps (e.g. Google Maps), an exemplary class of applications that

embrace the DOD paradigm, has skyrocketed. This widespread adoption is also due

to the intuitive nature of the interactions: without reading a user manual, the user

can start using the application via pan and zoom actions to get dynamically updated

map content. Web maps have also become a platform where sophisticated data ex-

ploration and analysis is performed. Data objects are usually arranged at different

resolutions [62, 45, 32, 90], allowing the user to both capture overviews and inspect

details. Furthermore, the DOD paradigm is also frequently adopted to visualize graph

23

networks [69], analyze genomic data [78], support workspace awareness [64] and so

on.

As datasets become larger and more complex, DOD data visualizations will con-

tinue being an indispensable technique for people to make sense of their data. In this

thesis, we study how to make creating a DoD data visualization easy at scale.

1.2 Research Challenges

Despite the usefulness of the DOD paradigm, developing a DOD-based data visual-

ization application still remains surprisingly hard. While many tools exist to support

the developer in designing DOD data visualizations, there are a number of challenges

that these systems do not address well, and thus prevent the developer from efficiently

creating an application at scale.

Scaling to large datasets. First and foremost, a DoD system should enable fluid

interactions on large datasets, which requires the system’s response times to user

interactions to be bound within 500 ms, an empirical upper bound used by popular

websites [11]. However, existing tools for developing DOD-based data visualizations

often lack the backend support to handle large datasets. More often than not, tools

and systems assume that data fits in the memory of one computer [22, 23, 106, 95,

62, 90, 32, 45], and fetch everything into the memory before computations can begin.

This assumption does not hold any more because the datasets nowadays typically

have large data tables with millions to billions of data items that are too large to fit

in memory [87, 31, 84]. As a result, these systems cannot respond to user interactions

within 500 ms on large datasets that need disk storage and thus fail to sustain an

interactive user experience.

Handling multiple tables. The requirements for “being scalable” entail more than

handling a large data table. Nowadays, data are often stored in a database man-

agement system in the form of many interconnected data tables. The relationships

between tables are often very complex and difficult to understand especially for new

24

users [138]. DoD is especially helpful in helping the user navigate between related

data tables. For example, in a relational database, there are lots of data columns from

multiple tables that represent the same real-world entity, which are typically referred

to as primary keys and foreign keys [143]. Consider one department table with

department_id being the primary key and one student table with department_id

being a foreign key. We can connect a scatterplot visualization of departments with

a bar chart showing the average GPA of students by allowing the user to click on

one department in the scatterplot, and “jump” to the bar chart to see the average

GPA of students in that particular department. In other words, these relationships

between tables/visualizations can be utilized to see different facets of data visualiza-

tions [50, 145] and perform drill down analysis [52, 18].

While several tools have been developed to capture such relationships between

visualizations [122, 145, 50, 52, 18] using DoD, they all assume that data is a single

data table and focuses on “pivoting” between visualizations of that table. Unfortu-

nately this single-table assumption does not hold in practice. Further, it is hard to

extend those systems to a multi-table setting because they often lack the multi-table

semantics needed to support effective data explorations among multiple tables.

Supporting rapid authoring on general data. To make it more accessible to

create DoD data visualizations, we need systems and tools that offer easy-to-use

developer interfaces. These interfaces should provide primitives that are 1) simple,

which enables quick prototyping and 2) expressive, which means being able to support

a variety of different types of DoD visualizations and being agnostic to application

domains and data types.

Status quo. To our best knowledge, while point solutions exist that address some of

the challenges, we are not aware of a prior system that addresses all three challenges.

For example, as a result of the limited scalability of existing tools, many DOD data vi-

sualization applications have been purpose-built for specific domains and data types

(e.g. geographical analysis [62], satellite imagery [19], genomics data [78]) to sup-

port large-scale data. These applications are typically hardcoded for the underlying

25

domain and cannot be easily extended to support more general usage scenarios.

1.3 Solution

The goal of this thesis is to design and build systems to address the aforemen-

tioned challenges and limitations of existing DOD data visualization systems, and

ultimately take one concrete step towards democratizing DOD data visualizations at

scale. Specifically, this thesis contributes three end-to-end systems Kyrix, Kyrix-S and

Kyrix-J which respectively focus on large-scale DOD data visualizations of various

kinds. These three systems are built on top of one another and all adopt the same

high-level approach: offering declarative visualization languages for rapid authoring

and transparently handling the underlying rendering and performance optimizations

needed for scalability.

Kyrix is a low-level system which serves as an expressive authoring engine for

general DOD data visualizations and also the foundation on which both Kyrix-S and

Kyrix-J are built. Kyrix contributes a declarative language that works with arbitrary

data types (by assuming that the data comes out of a generic database) and expresses

a wide range of DOD visualizations using simple concepts such as canvases (zoom

levels) and jumps (transitions between zoom levels). Making use of database spatial

indexes, Kyrix dynamically fetches the data in the user’s viewport on demand to

achieve interactive response times on large disk-based datasets.

Kyrix-S focuses on a very common type of DOD data visualizations which we call

scalable scatterplot visualizations (SSVs). An SSV expands a static scatterplot onto

multiple zoom levels. With more screen resolution available, the overdraw issue of

static scatterplots can be effectively mitigated [90]. Data objects can be represented

with a dot, polygon or aggregation-based marks such as pie charts and bar charts.

Kyrix-S offers a declarative language for SSVs, which allows the developer to describe

a complex SSV in 10s of lines of code. Behind the scenes, Kyrix-S works with a

distributed database to calculate the layout of objects across all zoom levels in a highly

paralleled fashion, and uses parallel database spatial indexing to achieve interactive

26

browsing of SSVs with billions of objects.

Kyrix-J uses DOD to enable visual data exploration of a relational database that

has large amounts of relationships between data tables and visualizations. Given

pairs of columns that represent the same information (e.g. primary-key and foreign-

key relationships), Kyrix-J automatically adds DOD-based interactions between visu-

alizations to facilitate faceted browsing of data tables and drill down analyses. To

help the user stay oriented during their exploration of these relationships between

visualizations, Kyrix-J implements a series of visual aids using coordinated multiple

views, animated transitions, text search, bookmarking and so on.

Extensive experiments are conducted to study both the usability and performance

of these three systems. All three systems are open-sourced1 which will enable evalu-

ation of the systems in a broader setting.

1Kyrix and Kyrix-S are open-sourced at https://github.com/tracyhenry/kyrix. Kyrix-J is
open-sourced at https://github.com/tracyhenry/kyrix-j

27

https://github.com/tracyhenry/kyrix
https://github.com/tracyhenry/kyrix-j

28

Chapter 2

Kyrix: General Details-on-demand

Data Visualizations at Scale

2.1 Introduction

Interactive visual data exploration for massive datasets is becoming increasingly im-

portant with the rapid generation of data across domains, from healthcare to sciences.

Data analysts often have to deal with datasets of sizes in the order of terabytes or

petabytes. When exploring data of this size, it is not unusual for them to be bur-

dened by information overload [140], leading to error-prone and prolonged analysis

processes.

As discussed in Chapter 1, DoD data visualizations [21, 43, 49, 61] have been

shown to be effective in facilitating the navigation in large dataspaces. By presenting

information in multiple levels of details and enabling the user to smoothly traverse

between and within levels, these interfaces reduce the user’s cognitive load and help

preserve their sense of position and context [121]. Figure 2-1 shows two example DoD

data visualizations created using the system we introduce in this chapter. Figure 2-1b

shows an EEG diagram of one patient in a large US hospital. To detect abnormal

patterns in large EEG data, the doctor can pan to conveniently scroll through the

long time series, or zoom in to see larger, detailed views of the visualization. In Figure

2-1a, a basketball fan can click on the logo of his favorite NBA team in the first view,

29

(a)

(b)

Figure 2-1: Two example visualizations created using Kyrix: (a) a visualization of
the 2017-2018 regular season of the NBA, where the user can zoom from one view
showing NBA team logos to another view showing a timeline of NBA games and (b)
a pannable and zoomable EEG time series consisting of 100 million data points.

30

then jump to a timeline showing the team’s basketball games.

The usefulness of DoD data visualizations has led to the development of a num-

ber of zoomable UI (ZUI) toolkits, e.g., Pad++ [22] and ZVTM [106], to support

zooming-based DoD applications. However, while these toolkits support the devel-

oper in designing DoD data visualizations, they do not provide the backend database

support but instead assume that data can fit in memory. Nowadays, datasets are

often too large to fit in memory, containing millions or billions of records that re-

quire storage in disk-based database systems [87, 31, 84]. Therefore, as data gets

large, DoD visualizations developed using existing ZUI toolkits can fail to bound

interaction response times within 500 ms, which is required for sustaining an interac-

tive user experience [11]. In addition, they do not provide data-driven primitives for

specifying data-visual mappings. Low-level graphics primitives make it tedious and

fault-prone to author large data visualizations [28, 111]. As a result of these inad-

equacies of existing ZUI tools, many purpose-built systems (e.g. Google Maps [61]

and ForeCache [19]) have emerged, using highly-customized solutions to support the

exploration of large amounts of data. Nevertheless, these systems are often hardcoded

for certain data types and applications and thus cannot be easily extended to support

general scenarios.

To ease the creation of general and scalable DoD visualizations, we need tools

that can help the developer handle large datasets and use effective optimizations

to ensure interactivity. This warrants an integrative approach to data-driven visual

specification, where performance optimizations and data are pushed to the server side

computation and data management systems.

In this chapter, we present Kyrix1, an integrated system for developing scalable

visualizations driven DoD interactions such as pan and zoom. Our goal is to achieve

generality (support for general data types and visualizations), ease of development

and scalability. Figure 2-2 shows the system architecture. On the developer side, we

offer a concise yet expressive declarative model for easy specification of general DoD

visualizations. Declarative designs hide execution details (e.g. backend optimization

1Code is available at https://github.com/tracyhenry/kyrix.

31

https://github.com/tracyhenry/kyrix

ask data

return data

Developer spec

Backend server

Database
pan zoom

Kyrix
Kyrix

Frontend renderer

user

compile

Figure 2-2: Kyrix system architecture.

and frontend rendering) from the developer, so that they can focus on visual specifica-

tion [115]. On the execution side, the compiler parses the developer’s specification and

performs basic constraint checking. Based on the specification, the backend server

then precomputes necessary database indexes for performance optimizations. The

frontend renderer is responsible for listening to user activities, communicating with

the backend server to fetch data and rendering the visualizations.

As a unified system, Kyrix contributes the following:

• An integrated visual specification and data management pipeline to ease the

creation of general DoD visualizations at scale.

• To our best knowledge, the first declarative model for authoring general DoD

visualizations of large, disk-based data (Section 2.4).

• A suite of performance optimizations that integrate with the underlying data

management system to guarantee interactivity on large datasets (Section 2.5).

We evaluate the expressivity of Kyrix’s model through building several example vi-

sualizations (Section 2.6). To assess Kyrix’s accessibility, we conduct a developer study

with 8 visualization developers recording task performance time and accuracy along

with qualitative feedback (Section 2.7). Results show that developers can quickly

learn Kyrix’s programming model and create nontrivial visualizations by completing

32

partial specifications. Also, feedback from developers suggests that Kyrix can be valu-

able in accelerating the development of interactive visualizations at scale, addressing

an important need in practice. Lastly, we report results from performance experi-

ments to demonstrate the scalability of Kyrix (Section 2.8). We find that Kyrix can

support interactive exploration over 100 million data points with an average latency

of 100 ms or below.

2.2 Related Works

Kyrix is related to prior research in Zoomable UI (ZUI) design tools, scalable visual-

ization systems and declarative visual encoding.

2.2.1 ZUI Toolkits and Systems

Perlin and Fox introduces the Pad system [103], which redesigns the computer desktop

as a fully zoomable user interface. This seminal work has sparked multiple efforts in

designing toolkits to support the creation of ZUIs, a prominent example class of DoD

interfaces. Examples include Pad++ [22], Jazz [23] and ZVTM [106]. These tools

provide application programmers with low-level graphics primitives and have enabled

the creation of numerous ZUIs in various domains [21, 49, 43, 61, 116, 127, 108].

Nevertheless, the aforementioned tools cannot scale to large datasets due to two

common limitations. First and foremost, they assume that data can fit in main

memory – an assumption that does not hold for large datasets that require disk-based

data storage [87]. Second, they lack data-driven primitives for easy mapping from data

to visual properties. For instance, to create visual objects that match a dataset, the

developer is required to individually create each visual object and attach pan/zoom

event listeners. Similar to how native Javascript hinders large-scale visualization

authoring [28], this cumbersome process prevents the developer from reasoning on

the data level, and is ill-suited for creating large-scale data visualizations.

In contrast, Kyrix offers an integrated workflow for declarative visual authoring

and large-scale data management, providing programmers with high-level data-driven

33

abstractions while freeing them from writing complex execution code to optimize

performance and render visualizations.

2.2.2 Performance Optimization in Visualization Systems

The inability of general ZUI toolkits to handle large data has led to many custom-

made DoD systems optimized for specific data types and applications.

Image tile browsers such as Deepzoom [91], Google Maps [61] and Zoomify [147]

generally assume or create a pyramid of image tiles with varied resolution, and only

render tiles that fall within the viewport. While convenient for viewing a high-

resolution image at multiple scales, this rigid paradigm does not work well with general

web-based visualizations (unless a tedious conversion from a web-based visualization

to multi-resolution images is done first). We will later use an example application

(Figure 2-9b) to show that Kyrix can also be used as an image tile browser.

ATLAS [31] adopts predicative caching to enable interactive pan and zoom on

time series data. In a similar vein, ForeCache [19] prefetches data tiles to efficiently

render dense array-based data such as satellite imagery data. Aperture Tiles [37]

precomputes and fetches image tiles from distributed storage systems with a focus

on geospatial applications. HiGlass [78] is a recent system for visualizing genomic

data which precomputes image tiles. Different from these purpose-built systems,

Kyrix is agnostic to data and visualization types. Kyrix also uses novel database

spatial indexing and extends some of the optimization techniques in these systems

(e.g. prefetching and caching) to optimize general DoD interactions.

Prior works have studied in-memory techniques to fetch only needed data in re-

sponse to user actions. The Splash framework [59] offers the developer an interface

for writing a data fetching procedure that returns data items falling in the current

viewport. Despite its flexibility, writing this procedure can be nontrivial. Kyrix offers

a more lightweight mechanism by allowing the developer to specify a data-driven func-

tion that assigns bounding boxes to data items, and then automates the data-fetching

process using database spatial queries in a disk-based setting. This idea draws in-

spiration from Pad++ [22] and ZVTM [106] which provide shape-level bounding box

34

specifications.

A long line of research also studies how to reduce visual clutter [53] on large

data visualizations using techniques such as sampling [47, 48, 107] and binned ag-

gregation [55, 60]. This type of data manipulation is often performed before data

visualization [60, 59], so we assume this is an orthogonal process that is done either

outside Kyrix or through a custom preprocessing procedure (Section 2.4.4).

Multidimensional data tiles/cubes [87, 84, 99, 30] have been widely adopted to

support interactive aggregation queries. However, due to huge amounts of memory

used, the index structures proposed cannot support complex DoD interactions where

frequent querying of visual objects falling in a rectangular viewport is needed. In

contrast, our method is based on database spatial indexes to perform spatial queries

on disk-resident data.

2.2.3 Declarative Visualization Specification

Kyrix’s declarative model is related to earlier research on declarative visual analysis

grammars. Wilkinson introduces a grammar of graphics [136] and its implementation

(VizML), forming the basis of the subsequent research on visualization specification.

Drawing from Wilkinson’s grammar of graphics, Polaris [125] (commercialized as

Tableau) uses a table algebra, which has later evolved to VizQL [68], the underly-

ing representation of Tableau visualizations. Wickham introduces ggplot2 [135], a

widely-adopted package in the R statistical language, based on Wilkinson’s grammar.

Similarly, Protovis [27], D3 [28], Vega [114], Brunel [137], and Vega-Lite [113] all

provide grammars to declaratively specify visualizations. Some of these declarative

languages (e.g. D3 [28] and Vega [114]) are capable of expressing DoD interactions

on small data. However, because of their general-purpose nature, the specification is

often verbose, involving tens or hundreds lines of imperative event handling [28] or

event-driven functional reactive programming code [114]. Vega-lite [113] offers much

simpler primitives to specify DoD interactions pan and zoom, but it is a high-level

language not designed for customizability. Kyrix enables declarative specification of

DoD interactions in a few lines of code, and is flexible enough to support general

35

visualizations.

Part of Kyrix’s declarative abstractions shares conceptual similarities with existing

grammars. However, our abstractions are designed to delineate DoD visualizations

with multiple levels of details, and are conducive to integration with a server-side

data management pipeline. For example, while the layer abstraction is common in

prior grammars [135, 113], in Kyrix a layer is also associated with a bounding box

function to enable fast data fetching on the server side.

2.3 Design Requirements

We first present a set of requirements we identify before and during the development of

Kyrix, inspired by limitations of prior art, established design principles and our multi-

year experiences working with visualization users and developers. These requirements

inform the choices we make and guide us to refine our design through multiple design

iterations.

R1. Generality. In terms of design space, our system should support general data

types and visual encodings, i.e., not be limited to certain data types such as time

series data.

R2. Ease of development. From the developer’s standpoint, Kyrix should al-

low simple visual authoring of large visualizations. More specifically, we collect the

following sub-requirements:

• R2-a. Data-driven primitives. The system should provide data-driven

primitives rather than shape-level function calls [22, 106], which are labori-

ous and error-prone especially for large data. Data-driven abstractions make it

more accessible to author data-dependent visual properties [28].

• R2-b. Easy creation of interactions. Specifying interactions should be

declarative and should avoid complex imperative event handling code.

• R2-c. Automatic performance optimizations. To decouple specification

from execution details, performance optimizations should be hidden from the

36

developer and performed behind the scenes. This also requires that the speci-

fication model provides the backend with enough information to perform opti-

mizations.

R3. Scalability. As empirically suggested by popular websites [11], we should

bound response times to user operations within 500 ms, a threshold for enabling fluid

interactions.

2.4 Declarative Model

Our declarative model contributes an easy mechanism to specify general and scalable

DoD data visualizations. In this section, we first give an overview of the concepts

in our model and then describe them in more detail. We use the basketball data

visualization (Figure 2-1a) as a running example and show in Figures 2-4∼2-7 rel-

evant specification snippets. In our current implementation, the developer specifies

visualizations using Javascript.

2.4.1 Overview

Figure 2-3 is an illustration of the declarative concepts and their relationships. Con-

sidering the fact that a DoD data visualization typically comprises multiple levels of

details [55, 59], we naturally use a canvas to model one level of details. We model the

relationships between two canvases using two types of connections zoom and jump.

Canvases and their connections form a connected directed graph if we consider can-

vases as nodes and connections as edges.

A canvas is composed of one or more overlaid layers. To render a layer, the

developer needs to specify a data transform as its data source, a rendering function

mapping data to visual objects and a placement function which informs the backend

of the locations of the visual objects on the canvas for fast data fetching.

The four views in Figure 2-1a show the progression of a jump from an initial

canvas (showing NBA team logos) to the second canvas (showing a timeline). Note

37

Raw Data

Data
Transform 1

Data
Transform K

Layer 1

Layer 2

Layer M

Canvas 2

Canvas 1

Canvas N

Zoom

Jump

Rendering

Placement

Rendering

Placement

Rendering

Placement

Figure 2-3: Kyrix’s declarative model. Canvases are “levels of details” connected by
zooms or jumps. A canvas has multiple layers. A data transform prepares the data
source for rendering a layer. A rendering function maps data to visual objects. A
placement function provides spatial information of objects to enable fast data fetching.

that the second canvas has two layers: a static layer showing a logo background and

a title text, and a dynamic layer where the user can pan across the timeline. Figure

2-1b shows a zoom from coarser-grained time series to finer-grained time series. We

detail the difference between a zoom and a jump later in Section 2.4.3.

In the following, we describe the Kyrix model in more detail. In addition to

providing specification details, we present relevant design rationales by connecting

the design choices made with requirements established in Section 2.3.

2.4.2 Canvas and Layer

A canvas sets up a shared Cartesian coordinate system for its layers. This coordinate

system is a rectangular painting area with developer-specified width and height (in

number of pixels). If the size of a canvas is larger than the size of the viewport, the

frontend renderer automatically enables panning (R2-b).

The layer concept in our model is conceptually analogous to the layer operator

proposed in existing visual specification grammars [113, 135]. The primary goal is

to enable multiple different visual encodings on a single view [135]. Nonetheless, our

layer concept has its own unique definition in a large-scale DoD visualization setting.

38

1 var viewportWidth = 1000, viewportHeight = 1000;
2 var p = new Project(“nba", viewportWidth, viewportHeight);

3 // ================== logo canvas ==================
4 var width = 1000;
5 var height = 1000;

6 // construct a canvas object
7 var logoCanvas = new Canvas("logo", width, height);
8 p.addCanvas(logoCanvas);

 // construct a logo layer (static)
9 var logoLayer = new Layer(transforms.logoTransform, true);
10 logoLayer.addRenderingFunc(renderers.logoRendering);
11 logoCanvas.addLayer(logoLayer);

 // ================== timeline canvas ==================
12 var width = 1000 * 16;
13 var height = 1000;

 // construct a canvas object
14 var timelineCanvas = new Canvas("timeline", width, height);
15 p.addCanvas(timelineCanvas);

 // timeline layer (dynamic)
16 var timelineLayer = new Layer(transforms.timelineTransform, false);
17 timelineLayer.addPlacement(placements.timelinePlacement);
18 timelineLayer.addRenderingFunc(renderers.timelineRendering);
19 timelineCanvas.addLayer(timelineLayer);

 // background layer (static)
20 var timelineBkgLayer = new Layer(transforms.bkgTransform, true);
21 timelineBkgLayer.addRenderingFunc(renderers.bkgRendering);
22 timelineCanvas.addLayer(timelineBkgLayer);

Figure 2-4: Specifications of canvases and layers for the NBA example in Figure 2-1a.

First, we want to enable a mixed visual representation by allowing a layer to be

either dynamic or static. Dynamic layers move and trigger dynamic data fetching as

the user pans on the canvas. Static layers, on the other hand, are for creating static

visual objects such as background images, titles and legends.

Second, each dynamic layer is associated with a placement function that is used

by the backend to perform fast data fetching in response to DoD interactions such as

pan and zoom (R2-c). We describe this concept in more detail in Section 2.4.6.

39

2.4.3 Zoom and Jump

The major distinction between a zoom connection and a jump connection lies in

whether the two canvases share the same coordinate system. Two canvases connected

by a zoom typically share the same type of spatial dimensions, and sometimes the

same type of visual representations. For example, in the zoom represented by Figure

2-1b, two corresponding canvases both have time and amplitudes as the two axes

and both render the data points as EEG time series. As another example, canvases

in Google Maps all have longitude and latitude as the two spatial dimensions. But

their visual representations can vary: top levels can show continents and oceans while

bottom levels visualize cities and rivers. On the other hand, two canvases connected

by a jump can have disparate spatial dimensions and visual representations. The

jump often serves as a smooth transition from one visualization to another vastly

different one. Figure 2-1a is a clear example.

A zoom can simply be constructed by specifying a source and a destination canvas

(R2-b). The user will then be able to perform continuous geometric zoom on source

before the magnification reaches the zoom factor (determined by the sizes of two

canvases), at which point the scenegraph is updated to show the destination canvas.

A jump connection is usually triggered by selecting an object, and can be cus-

tomized with several lightweight data-driven abstractions (R1, R2-a, R2-b).

Selector enables custom selection of visual objects that can trigger a jump. In the

NBA example, every logo can trigger a jump to the timeline view (line 1-3, Figure

2-5). A more interesting scenario would be that only playoff teams can trigger a jump

into a “playoff” view. A selector is specified using a function that takes a data item as

input and returns whether visual objects that this data item is bound to can trigger

a jump.

Viewport customizes the viewport location after the jump. This is a function that

takes the data item bound to the clicked object (the visual object that trigger the

jump), and returns the coordinates of the new viewport. In the NBA example, this

function returns a constant viewport location (line 4, Figure 2-5) indicating that the

40

 // ======== teamlogo -> teamtimeline ========
1 var selector = function (row) {
2 return true;
3 };

4 var viewport = function (row) {
5 return [0, 0];
6 };

7 var predicate = function (row) {
8 return {
9 "layer 0" : "home_team=" + row.team_id + " and "
10 + "away_team=" + row.team_id,
11 "layer 1" : “id=" + row.team_id
12 };
13 };

14 p.addJump(logoCanvas,
15 timelineCanvas,
16 selector,
17 viewport,
18 predicate);

Figure 2-5: Specification of the jump from the logo canvas to the timeline canvas for
the NBA example in Figure 2-1a.

user will see the start (the leftmost part) of the timeline after the jump.

Predicate is a data-driven function used to select a subset of data to render on the

destination canvas. For example, in lines 7-13 in Figure 2-5, the predicate function

specifies that only games of the clicked team are displayed. In a sense, this enables

“faceting” the destination canvas, i.e., to create a series of views sharing a common

data schema, without creating a canvas for each view.

2.4.4 Data Transform

A data transform serves as the data source for rendering a layer. To support general

large disk-based data, our model allows this data source to be specified as a generic

query to the underlying database (R1). For simplicity, we assume raw data is stored

in a relational database for the rest of Chapter 2.2 Therefore, this query should be

a SQL query. Optionally, a preprocess function can “cook” raw data into desired

form before further passed into the rendering/placement functions. Examples include
2Kyrix currently supports two popular databases: PostgreSQL and MySQL. In general, it is

straightforward to put Kyrix on top of any database with spatial indexes.

41

1 var logoTransform = new Transform("logoTransform”,
2 "select * from teams;",
3 "nba",
4 function (row){
5 var id = parseInt(row[0]);
6 var y = Math.floor(id / 6);
7 var x = id - y * 6;
8 var ret = [];
9 ret.push((x * 2 + 1) * 80); // x coordinate of logos
10 ret.push((y * 2 + 1) * 80 + 100); // y coordinate of logos
11 for (var i = 1; i <= 4; i ++)
12 ret.push(row[i]); // raw data attributes
13 return ret;
14 },
15 ["x", "y", "team_id", "city", "name", "abbr”]);

Figure 2-6: Specification of the data transform for a layer in the NBA example in
Figure 2-1a.

1 var timelinePlacement = {
2 centroid_x : "column:x",
3 centroid_y : "column:y",
4 width : "constant:160",
5 height : "constant:130"
6 };

Figure 2-7: Specification of the placement function for a dynamic layer in the NBA
example in Figure 2-1a.

adding canvas coordinates, scaling and sorting data.

Figure 2-6 shows the data transform used by the only layer in the logo canvas,

which essentially queries team information via a SQL query (line 2) and then calcu-

lates canvas coordinates of each logo in a preprocess function (lines 9 and 10).

2.4.5 Rendering Function

A rendering function is associated with each layer to map data transform results to

visual objects. Our model can work with arbitrary renderers that bind data to visual

objects (R1). The purpose of data binding is to enable data-driven specifications of

placement functions and jumps. In the current implementation, we allow Javascript-

based renderers (e.g. D3 [28]).

42

2.4.6 Placement Function

The key to high performance is to fetch only needed data when the viewport changes.

Prior systems [22, 59] use bounding boxes of shapes to render only shapes whose

bounding boxes intersect the viewport. The developer needs to specify a bounding

box for each shape, which is tedious and error-prone.

In our model, we extend this idea but instead associate each dynamic layer with

a more lightweight data-driven placement function (R2-a, R2-c). This function

calculates a bounding box for each row in the data transform result representing

where this row appears on the canvas. To simplify the specification, we allow the

centroid, width and height of a bounding box to be either a constant or a column

from the data transform result. An example is in Figure 2-7.

Compared to the use of bounding boxes in earlier systems, another differentiating

factor is that we perform data fetching in a much larger, disk-based setting. We will

describe how Kyrix uses the bounding boxes to perform optimizations in Section 2.5.

2.4.7 Implementation

We implement Kyrix’s declarative language as a Node.js library. After the developer

specifies an application, the compiler checks whether basic constraints (e.g. a dynamic

layer requires a placement function, a canvas must have at least one layer, etc.) are

satisfied, and gives error messages if the checking fails. If the specification passes all

constraint checks, it is passed to the backend server and saved in the database.

Upon receiving a new specification, the backend precomputes necessary indexes for

performance optimizations (details are in the next section). At runtime, the frontend

communicates with the backend to dynamically fetch data. The frontend renders

visualizations using SVG and uses D3’s zoom library [28] to implement interaction

listeners and zoom/jump animations.

43

2.5 Performance Optimizations

Kyrix uses a suite of performance optimizations to enable fluid interactions at scale

(R3). All these are done in the backend or the frontend and are transparent to the

developer (R2-c).

The key optimization problem is how to only fetch visual objects falling into the

viewport as the viewport is frequently changed by DoD interactions. A natural idea

we adopt is to build spatial indexes (e.g. R-trees [63]) for visual objects and only fetch

those whose bounding boxes (specified by placement functions) intersect the viewport.

The idea of using spatial indexes has also been adopted in prior systems [22, 106].

However, those systems assume that the spatial indexes can fit in memory while

spatial indexes typically consume space that is linear in the data size. Therefore,

they cannot scale to large data.

To support frequent spatial queries at scale, instead of maintaining R-trees in

memory, we keep the R-trees on disk by utilizing R-tree indexing offered by modern

databases. We describe in Section 2.5.1 how to build and search disk-based R-tree

indexes based on the developer specification.

While disk-based spatial indexing allows for scalability and removes the in-memory

requirement of existing ZUI toolkits, there are two challenges when used in highly

interactive visualization systems. First, the cost of a lookup (e.g. triggered by a user’s

pan interaction) is more expensive because each lookup requires issuing a query from

the frontend to the backend and further to the database. Rapid user interactions

will lead to frequent network and database trips that consume both bandwidth and

CPU resources on the backend. Second, when using a disk-based indexing scheme,

the backend needs to be aware of the frontend in order to fetch the data items that

correspond to the user’s interaction and fall within the viewport. To cope with

these challenges, we devise caching and view maintenance techniques to reduce the

communication between the frontend and the backend while ensuring interactivity.

We describe these techniques in Section 2.5.2.

44

Step 1: Fetching raw data from DB

Home Away Score

Celtics Warriors 92-88

Bucks Lakers 98-100

...

Step 2: Applying the preprocess function
(Figure 6)

Home Away Score x y

Celtics Warriors 92-88 400 300

Bucks Lakers 98-100 200 50

...

Step 3: Applying the placement function
(Figure 7)

Home Away Score x y bbox

Celtics Warriors 92-88 400 300 RECT1

Bucks Lakers 98-100 200 50 RECT2

...

Step 4: Creating R-tree spatial index on
bbox column

Adding canvas coordinatesSELECT * FROM nba_games INTO g;

ALTER TABLE g ADD COLUMN bbox geometry; CREATE INDEX on g USING gist (bbox);

...

...

 R1 R2 R3

R4 R5 R6

R7 R8 R9 R10 R11

...

... ...

...

(a) (b)

(c) (d)

Offline Indexing

Online Data Fetching

Spatial Query

SELECT * from g where ST_Intersects(bbox,
Polygon(A, B, C, D, E, F));

Fetching Scheme

Caching. The frontend maintains a box (dashed
blue) slightly larger than the viewport (solid red).

Incremental View Maintenance. As the viewport
changes, the frontend fetches new data
(polygon ABCDEF), and removes stale data
(polygon BGHIDJ).

A B

C
D

EF

G H

I

J

Figure 2-8: An illustration of performance optimizations in Kyrix.

45

2.5.1 Building and Searching Database Spatial Indexes

Our approach to a disk-based spatial index makes use of an auxiliary table in the

database for each dynamic layer specified by the developer. This table is precomputed

offline and stores two pieces of derived information for each data item in the layer:

(1) the data attributes produced by the data transform and (2) the bounding box of

the visual object (derived from the placement function). The R-tree indexes are then

built on the bounding boxes. Specifically, the four steps for computing this table are:

• Step 1: run the SQL query of the data transform to fetch raw data. The

backend then processes raw data records one by one. For instance, game records

are fetched for the timeline layer of the NBA example (Figure 2-8a).

• Step 2: for each record in the query result, apply the preprocess function

defined in the data transform. In Figure 2-8b, canvas coordinates are added to

raw data records.

• Step 3: for each preprocessed record, apply the placement function associated

with the layer. This step adds a column typed geometry representing the

bounding boxes of records (Figure 2-8c). Modern databases generally have

built-in geometry types for representing spatial objects.

• Step 4: create an R-tree spatial index [63] on the bounding box column. Mod-

ern databases (or their spatial database extensions) generally provide R-tree

indexes to efficiently process spatial queries that consider relationships between

geometries (e.g. intersection and containment).

To fetch data inside a given viewport, the backend issues a spatial query that

returns all records whose bounding boxes intersect the viewport. As shown in the

bottom in Figure 2-8, this spatial query has a predicate involving a built-in function

ST_Intersects applied on the bounding box column. The underlying database will

use an R-tree index scan (with logarithmic time complexity) to execute this query.

46

2.5.2 Caching and Incremental View Maintenance

Fetching data in exactly the viewport is problematic because every time the user

pans, zooms or jumps, the frontend needs to send a request to the backend asking

for new data, which incurs one network and one database trip. Frequent requests are

detrimental and will drain valuable CPU resources on the server side especially in a

multi-user setting.

To reduce the number of network and database trips, the Kyrix frontend imple-

ments a simple caching strategy that fetches data in a box slightly larger than the

viewport (e.g. 50% larger in width/height). This eliminates communication with the

backend while the user is exploring inside this box. The bottom part of Figure 2-8

illustrates this fetching scheme. The frontend sends a request to the backend to fetch

a new box only when the viewport moves close to the boundary of the box (e.g. the

distance from the viewport to the box is within one third of the box size).

It is not efficient to fetch an entire new box for each request, since consecutive

boxes fetched often have much overlap. Therefore, the backend executes an incre-

mental view maintenance approach by caching the last box fetched and fetching the

intersection between the new box and the last one. The intersection is represented as

a polygon and fed to the ST_Intersects function (see Figure 2-8). Upon receiving

new data, the frontend first renders new data (polygon ABCDEF) and then removes

stale data (polygon BGHIDJ).

2.5.3 Comparison with Existing Optimization Frameworks.

Many purpose-built systems (e.g. ForeCache [19], Aperture Tiles [37] and HiGlass [78])

use an “image tiling” framework where a canvas is partitioned into equal-sized tiles

that are precomputed offline and fetched online. However, this approach has the fol-

lowing drawbacks. First, when rendering a canvas as images, the frontend loses track

of spatial information of objects, making interactions with objects (e.g. clicking on

an object to start a jump) more difficult. Second, it is often hard to decide a tile

size because small tile sizes lead to excessive network/database trips (one for each

47

tile) while large tile sizes often cause extra data being fetched. In contrast, our use of

spatial indexing is novel in that it enables interactions with objects by preserving the

placement of objects and strikes a balance between database accesses and the amount

of data fetched. Note that, however, our spatial index can still be used to fetch data

in tiles (without precomputing all tile images). We leave an in-depth performance

study on these two data fetching granularities as future work.

2.6 Example Visualizations

We demonstrate the expressivity of Kyrix’s declarative model through a gallery of

example DoD data visualizations (Figures 2-1 and 2-9). In the following, we first

describe details of these example applications (Section 2.6.1). We then use these

examples to describe an expressive design space enabled by our model (Section 2.6.2).

2.6.1 Using Kyrix’s Declarative Model to Create Example Vi-

sualizations

NBA. Figure 2-1a shows two canvases of a basketball data visualization. Descriptions

of this example can be found in Section 2.4.1.

EEG. The visualization in Figure 2-1b shows an EEG time series of a patient in

a large US hospital where doctors apply Kyrix to visualize their data. There are

two canvases connected by a zoom (zoom factor is 2). One can zoom from the top

canvas into the bottom canvas and see more detailed time series. Both canvases are

horizontally pannable. The whole EEG is 7-hour long, consisting of 100 million data

points in total.

Cluster. Figure 2-9a shows a zoomable multi-class scatterplot of 17 million 2-second

EEG segments from over 2,000 patients. This data comes from the same US hospital

we mention in EEG. Doctors use a t-SNE projection [88] to map 2-second EEG

segments into a 2D space to identify potential clusters and outliers. Different colors

represent different EEG patterns (e.g. Seizure). There are 7 canvases (zoom levels)

48

(a)

(c)

(b)

(d)

Figure 2-9: Four more example applications created using Kyrix: (a) a scatterplot
visualizing 17 million 2-second EEG segments; (b) a map of animals in the Amazon
rainforest; (c) a zoomable crime rate map of the US; (d) a zoomable circle packing
layout of the class hierarchy in Flare, an ActionScript library for visualization [130].

49

in this example arranged in a multi-scale layout. Random sampling is performed on

canvases 1–6 to reduce visual clutter. The bottom-most canvas has all 17 million data

points.

Forest. Figure 2-9b is a map of animals in the Amazon rain forests. There are two

canvases (zoom levels), each with two layers. One shows background images. The

other layer shows the animals. In the top canvas, animals are previewed as white dots.

In the bottom canvas, images of the animals are shown. The background images in

the bottom canvas are higher-resolution versions of those in the top canvas.

USMap. The visualization in Figure 2-9c shows a crime rate map of the US. There

are two canvases. The top canvas is a state-level map of crime rates per 100,000

population. Darker colors indicate higher crime rates. The user can click on a state

to zoom into a second canvas3 showing a pannable county-level map initially centered

at the selected state. Each canvas has two layers: a pannable map layer and a static

legend layer.

Flare. Figure 2-9d visualizes a tree hierarchy, where the classes in the Flare visual-

ization library [130] are arranged in a circle packing layout. The user can click on a

class to jump to another view showing its direct child classes. This visualization is

composed of only one canvas, so the jump is a self-loop of this canvas.

2.6.2 Expressivity of Kyrix’s Declarative Model

In the following, we demonstrate an expressive design space enabled by our declarative

model.

General Data Types and Visualizations. In our model, the data source of a

layer is specified using a generic database query. The rendering function for a layer

can also be arbitrary renderers with minimal constraints (Section 2.4.5). Therefore,

our model naturally supports generic data types and visual representations (R1).

The six example visualizations cover a variety of data types: 2D spatial data

(USMap, Forest and Cluster), temporal data (EEG), hierarchical data (Flare) and

3Kyrix allows zooming via clicking on an object, in addition to via spinning a mouse wheel and
using zoom buttons.

50

general relational data (NBA).

Highly Customizable Jumps. The jump concept in Kyrix’s declarative model

provides lightweight data-driven abstractions for customizing zooms between canvases

(R2-a, R2-b).

Jump selector. The selector function decides which visual objects on the canvas

can trigger a jump. Some example visualizations (NBA and Flare) utilize this func-

tion. For instance, in Flare, we use the selector function to ensure that only visual

objects representing child classes can be clicked on for a jump.

New viewport location. Recall that the viewport function is used to specify the

viewport location after a jump. Besides constant coordinates, we allow this function

to return a viewport location using the data item bound to the clicked object. This

data-driven viewport location adds more expressivity to our model. For example,

one can click on a state in a scatterplot of states in the US, and then jump to the

bottom canvas in USMap with the viewport centered at the clicked state. This can be

achieved by letting the viewport function return the centroid location of the clicked

state scaled by a zooming factor.

Predicate. The predicate function enables custom selections of data on the desti-

nation canvas. For example, in NBA, the predicate function is used to render games

of the clicked team. Similarly in Flare, the predicate function is used to select child

classes of the clicked class.

2.7 Developer Study

We conducted an observational study with developers to evaluate the accessibility of

Kyrix and its declarative language. We recruited 8 developers with different back-

grounds (7 males, 1 female; ages range from 23 to 44) by posting recruitment ads.4

All participants reported prior experience using Javascript and SQL. Four of the par-

ticipants (P1-P4) reported long-term experience in using visualization tools such as

4Demographics information were collected in a sign-up form. We excluded one participant due
to English communication barriers.

51

D3.js and Tableau. The remaining four (P5-P8) had little or no experience with

visualization programming.

2.7.1 Protocol

Participants were given a tutorial on how to program in Kyrix after filling out a

consent form. They were then asked to perform a warm-up exercise, which involved

completing the specification of an example visualization used in the tutorial. After

the warm-up exercise, participants were asked to complete two programming tasks

(with access to the code from the warm-up exercise). Each task involved completing

the specification of a Kyrix application, which we describe in detail below. Before

the start of each task, the experimenter verbally described the task. A completed

visualization was also shown to the participants. After the completion of the tasks,

the participants were asked to provide feedback by completing a questionnaire and a

semi-structured post-study interview.

All tasks were completed on a laptop with a resolution 2, 880× 1, 980. During the

tasks, one experimenter sat next to the participant to observe their coding behavior

and answer questions if necessary. We used a think-aloud protocol throughout the

study and a second interviewer transcribed notes during each session. We also audio

recorded the interviews. Participants were compensated $30 for a 2-hour session.

Task 1. Task 1 required each participant to complete the specification of a scatterplot

visualization with one million points (Figure 2-10) using Kyrix. The scatterplot had

two zoom levels (canvases) with two layers on each canvas (one scatterplot layer and

one static layer showing a title text). In this task, participants were given completed

data transforms along with rendering and placement functions, but were required to

complete the definitions of canvases, layers and a zoom. Specifically, Task 1 involved

the following specifications:

a) A top-level canvas with two layers.

b) A bottom-level canvas with two layers.

c) A zoom from the top-level canvas to the bottom-level canvas.

52

(a) (b)

Figure 2-10: The scatterplot visualization used both in Task 1 of the developer study
and in the performance evaluation: (a) the top-level canvas; (b) the bottom-level
canvas. Two canvases are connected by a zoom. The zoom factor is 2.

Task 2. Task 2 required participants to complete a partial specification of the NBA

example in Figure 2-1a, which has two canvases (logo and timeline) and a jump

between the two. Similar to Task 1, participants were provided with data transforms

and rendering functions, and then were asked to complete the following specifications:

a) Two layers on the timeline canvas.

b) The placement function for the timeline layer.

c) The jump between the two canvases.

2.7.2 Results and Discussion

Task completion. All participants completed Task 1, Tasks 2a and 2b under min-

imal or no guidance. Three participants (P1, P2, P5) completed Task 2c under

minimal guidance, and the remaining five completed Task 2c with more hints. Fin-

ishing times are: 𝜇 = 17.25 min, 𝜎 = 3.69 min for Task 1, 𝜇 = 26.25 min, 𝜎 = 7.07

min for Task 2.

Ease of learning. In the post-study questionnaire, participants rated the ease of

understanding concepts in Kyrix’s declarative model on a 5-point Likert scale (1−very

53

difficult, 5−very easy). The results indicate that our model is easy to learn: canvas

(𝜇 = 4.50, 𝜎 = 0.76,𝑀 = 5, 𝐼𝑄𝑅 = 1), layer (𝜇 = 4.50, 𝜎 = 0.76,𝑀 = 5, 𝐼𝑄𝑅 = 1),

data transform (𝜇 = 4, 𝜎 = 0.76,𝑀 = 4, 𝐼𝑄𝑅 = 0.5) and zoom (𝜇 = 4, 𝜎 = 0.76,𝑀 =

4, 𝐼𝑄𝑅 = 0.5).

Participants gave many positive comments about canvases and layers in the in-

terview. They thought they were “intuitive (P1),” “really nice (P2),”“user-friendly

and understandable (P8).” Some drew connections with concepts in other software

packages: “layering seems familiar to Illustrator (P1),” “(layer) It’s like Photoshop

layers, you don’t have to think about it any more (P6).”

Data transform and zoom were not as easy to learn for the participants, as in-

dicated by the relatively lower ratings and longer completion times of Task 2. A

recurring pain point we observed was that participants often could not recall what

the input to the functions (the data item bound to the clicked object) meant when

completing Task 2c, and often confused it with visual objects on the destination can-

vas. As noted by P7, “I was a bit confused about the data flow, how data was moving

from one view to the other, specifically when defining the predicates.” Our imper-

fect implementation also contributed to the confusion, which we discuss later in this

section.

Fortunately, participants praised the shallow learning curve of our system: “I don’t

think it’s complicated at all once you get the hang of it (P1),”“...once you know what

the pieces you need to do, which is probably similar across different projects, you can

go a lot faster (P2),” “If you get in the mindset of how it works, you can go faster

(P4).”

Ease of coding using Kyrix. Participants rated that it was easy to code Kyrix

applications overall (𝜇 = 4.50, 𝜎 = 0.53,𝑀 = 4, 𝐼𝑄𝑅 = 1, 1−strongly disagree,

5−strongly agree). They also reported that it was straightforward to create a new

Kyrix application by just imitating existing ones. One comment from P6: “It was

enjoyable to use it. Once you know the concepts, the declarative part of it is quite

clear.”

Scalability and expressivity. Participants liked Kyrix’s ability to scale to very

54

large datasets: “The fact that it can handle a ton of data is really cool (P2),”“To plot

a huge amount of data, I don’t know if there is any tool that can do that in such an

easy way (P4).”

Participants were also impressed by the example visualizations: “I like the general

look and feel of the whole visualization. The way you can jump from one canvas to

another, from a visual point of view, it’s nice, I like it a lot (P4).

Suggestions and improvements. When asked about improvements that can be

made to Kyrix, most participants pointed out that our Javascript APIs used in the

study were not very polished. For example, we asked developers to write SQL pred-

icates for the predicate function, instead of writing Javascript-style objects which

Kyrix could turn into SQL predicates by itself. This actually caused much confusion

when participants were completing Task 2c. We have addressed this type of issues by

revising our API to be cleaner and more understandable.

P1 and P6 also commented that the time required to precompute indexes (3

minutes for Task 1) hindered the development flow. As visualization developers,

they tend to seek more rapid feedback. As P1 noted, “In lots of tools I used, I try

something, compile it, run it and see what happens. In Kyrix the time it actually takes

to run it seems slow due to the precomputation.” In the future, we plan to reduce

this turnaround time by applying more sophisticated performance optimizations and

sampling techniques. More discussion about debugging Kyrix applications is in Section

2.9.

Note that controlled studies carried in the lab provide useful but partial assessment

of accessibility by design. We make the source code of Kyrix available at https://

github.com/tracyhenry/kyrix with several real world examples, enabling a broader

evaluation of Kyrix in the future that would account for diverse developer backgrounds

and workflows.

55

https://github.com/tracyhenry/kyrix
https://github.com/tracyhenry/kyrix

2.8 Performance Evaluation

In this section, we report results from performance experiments on two real large

datasets (EEG and Cluster) and synthetic benchmarks. Specifically, we evaluate

Kyrix’s ability to scale as the data size grows, performance on real applications and

effects of the caching and incremental view maintenance strategies. For each dataset,

we run a synthetic user trace and report the number of data fetching request trig-

gered, the average response time per data fetching request (i.e. time elapsed from the

backend receiving the request to the backend getting the data from the database),

and the average network transmission time (i.e. the time taken to send the data back

to the frontend). We design the synthetic traces to be both challenging (e.g. going

through dense areas) and comprehensive (e.g. with alternating pans and zooms). All

experiments were run on an AWS EC2 m4.2xlarge instance with 8 cores and 32GB

RAM. PostgreSQL 9.3 was used as the backend database. All numbers reported were

averaged over three runs.

2.8.1 Scalability

To test the scalability of Kyrix, we used the scatterplot in Figure 2-10 as a bench-

mark visualization and varied the data size from 1 million to 100 million points. We

generated the data such that there were always approximately 5, 000 points in the

viewport for the top level canvas. We used a user trace where the user first panned

2,000 pixels to the right on the top canvas, then zoomed into the bottom canvas and

then panned 2,000 pixels to the right again. The average response and network times

are shown in Figure 2-11.

As can be seen, the latency remained stably under 50 ms as the data size grew.

This scalability came from using database spatial indexes to efficiently fetch data as

the user’s viewport changes, as well as caching and incremental view maintenance

strategies. Note that this does not mean Kyrix can scale to infinite data size. Kyrix’s

scalability is limited by the underlying database’s scalability.

56

1 2 5 10 20 50 100
Data size (# of points in millions)

0

10

20

30

40

50

60

Ti
m

e
(m

s)

response time
network time

Figure 2-11: Kyrix’s ability to scale with increasing data size. The scatterplot in Figure
2-10 is used as the benchmark visualization. Average response time and network
latency are shown.

2.8.2 Performance on Real Applications

In this experiment, we evaluated Kyrix’s performance on EEG and Cluster, two large-

scale real applications. The index build time for Cluster and EEG were respectively

40 minutes and 6 hours.

On EEG with 100 million data points, we used a trace where the user first panned

2,000 pixels to the right on the top canvas, then zoomed into the bottom canvas

and then panned 2,000 pixels to the right. There were always 40,000 points in the

viewport. The average response time per data request was 70.6 ms, while the network

transmission time was 29.7 ms on average.

On Cluster with 17 million data points arranged in 7 zoom levels, we used a trace

where the user first zoomed into the second level, panned 1,000 pixels to the right,

then panned 1,000 pixels downwards, and then zoomed all the way into the bottom

zoom level. The visual density varies due to skewed data distribution, so the user

trace is made to traverse through the densest green area shown in Figure 2-9a, where

around 5,300 points are visible at the same time. The average response time per data

request was 15.7 ms. The average network transmission time was 6.4 ms.

These results indicate that not only does Kyrix support the maximum response

57

latency for interactive visualizations of 500 ms [11], it has the potential to support

real-time visualizations. Cluster ’s total response time of 22.1 ms equates to rendering

at 45 frames-per-second (fps), surpassing the 30 fps typically required for commercial

3D games [39, 38]. EEG ’s response time is 100.3 ms, or 10 fps, which is close to the

rate where humans perceive animation (instead of individual frames) [26].

2.8.3 Effects of Caching and Incremental View Maintenance

In this experiment, we evaluated the effects of caching and incremental view mainte-

nance techniques described in Section 2.5.2.

Caching. We disabled caching (i.e. fetching exactly data in the viewport rather

than in a 50% larger box) and tested the performance on EEG and Cluster using the

same user traces. The average response times were respectively 20.6 ms (EEG) and

3.9 ms (Cluster). Although this was a speedup compared to when caching was used

(because it fetched less data), it came at a cost of significantly more data requests

(83.3 requests on average vs. 27 on EEG and 73.7 vs. 22 on Cluster, the fraction

was due to subtle differences of network speed across three runs). This result showed

that caching could be useful to reduce communication between the frontend and the

backend to save bandwidth and CPU resource on the server side, while maintaining

desirable interactivity.

Incremental View Maintenance. We disabled incremental view maintenance and

instead fetched the entire box for each request. On EEG, the average response time

increased by 4.5× to 390.2 ms (was 70.7 ms), whereas the average network latency

increased to 265.1 ms (was 29.7 ms), making the overall latency exceed 500 ms.

On Cluster, the average response time increased to 42.1 ms (was 15.7 ms) and the

average network latency increased to 30 ms (was 6.4 ms). This result showed that our

incremental strategy greatly reduced both response and network latency by avoiding

fetching already fetched data.

58

2.9 Discussions

2.9.1 Limitations and Future Work

While Kyrix eases the creation of scalable DoD visualizations, there is still room for

improvement. We identify four areas of future research moving forward.

Performance Hygiene. Currently, the developer needs to carefully design the ap-

plication so that visual density is not too high (e.g what canvases exist and how data

is distributed on the canvases). High visual density can slow down both the frontend

and the backend. One future research direction is to detect overly high visual den-

sity before runtime, and use sampling or aggregation schemes [20, 55] or server-side

rendering techniques to automatically manage visual density.

Dynamic data. Maintaining the spatial indexes upon data updates is automatically

handled by the underlying database (e.g. PostgreSQL automatically updates index

when a table is modified [16]). However, recall that in Kyrix, spatial indexes are built

on auxiliary tables, which are computed from raw data (Section 2.5). To handle

dynamic data, we aim to use database triggers to automatically update the auxiliary

tables upon changes to the raw data. This will in turn result in updates to the spatial

indexes.

Debugging. As noted in Section 2.7, the long precomputation time for large data

can be detrimental to the iterative debugging workflow of visualization developers.

We plan to investigate algorithmic ways to reduce the precomputation time. Another

avenue of future research is to augment Kyrix’s debugging capabilities with visualiza-

tions of canvas and layer states, zooms between canvases, etc.

Higher-level abstractions. Despite that many specifications (e.g. data transforms

and rendering functions) can be shared across zoom levels, canvases and rendering

functions can be tedious to write. We plan to offer higher-level abstractions that

enable the developer to specify, in some cases, just a few parameters (e.g. mappings

from data columns to 2D dimensions) and generate the definitions of canvases, layers

and rendering functions automatically.

59

Kyrix

Kyrix-S Kyrix-J

→

→
 Automate Zoom Automate Jump

→

More customized
use cases

Figure 2-12: Kyrix is a foundational DoD data visualization system on which more
higher-level authoring systems can be built.

2.9.2 Using Kyrix as a Foundation System

The general purpose nature of Kyrix makes it a perfect low-level “foundational” plat-

form on top of which more extensions can be built to expose higher-level authoring

primitives and further ease the creation of certain types of DoD visualizations. The

two extension systems Kyrix-S and Kyrix-J are exactly built based on this idea, and fur-

ther automate a large class of zoom-based and jump-based applications respectively

(Figure 2-12).

As also shown in Figure 2-12, higher level extensions are focused on applications

with specific traits and do not attempt to replace Kyrix completely. For use cases that

require lots of customizations, Kyrix will be a choice that offers flexibility.

2.10 Conclusion

To accelerate the development pace of interactive visualization systems at scale, tools

are needed to help the developer easily author large-scale visualizations and use ef-

fective performance optimizations for sustaining interactive rates. In this chapter,

we present the design of Kyrix, a novel integrated system for the developer to build

interactive DoD visualizations at scale. Kyrix provides a declarative language for easy

specification of visualizations, while utilizing Kyrix’s suite of optimizations and data

management model. Our evaluation of Kyrix has demonstrated that Kyrix meets the

design requirements we identify, namely generality, ease of development and scala-

bility. Thanks to its general purpose nature, Kyrix can serve as the foundation for

high-level systems which we will introduce in the following chapters.

60

Chapter 3

Kyrix-S: Authoring Scalable

Scatterplot Visualizations of Big Data

3.1 Introduction

Scatterplots are an important type of visualization used extensively in data science

and visual analytic systems. Objects in a dataset are visualized on a 2D Cartesian

plane, with the dimensions being two quantitative attributes from the objects. Each

object can be represented as a point, polygon or other mark. Aggregation-based

marks (e.g. pie chart, heatmap) can also be used to represent groups of objects.

The user of a scatterplot can perform a variety of tasks to provide insights into the

underlying data, such as discovering global trends, inspecting individual objects or

characterizing distributions [110].

Despite the usefulness of static scatterplots, they suffer from significant overdraw

problem on big skewed datasets [104, 90]. Here, we focus on scatterplots with millions

to billions of objects, where significant overlap of marks is unavoidable, leading to

visual clutter that makes the visualization ineffective. To address this issue in scatter-

plots, there has been substantial research [71, 73, 87, 84] on devising aggregation-based

scatterplots using visual aggregates such as contours or hexagon bins. While avoiding

visual clutter, the resulting visualization lacks the functionality to inspect individual

objects, which is a fundamental scatterplot task [110]. Prior works also used trans-

61

Table 3.1: Comparison of existing systems for authoring SSVs.

High Scalability
(scale well to

billions of points)

Concise Authoring
(10s of lines

of code)

Diverse SSV
Designs (arbitrary
marks, bounded

density, etc)

Kyrix-S X X X

General DoD
systems (e.g. Kyrix,
Pad, Jazz, ZVTM)

X

Specialized SSV
systems (e.g. [62],

[32], [83], [2])

X

parency [57, 80], animation [33] and displacements of objects [132, 77, 128] to ease

the overdraw problem. However, due to limited screen resolution, these methods have

scalability limits.

On the other hand, the use of zooming in scatterplots has the potential to ef-

fectively mitigate visual clutter. By expanding the 2D Cartesian plane into a series

of zoom levels with different scales, more screen resolution becomes available, al-

lowing objects to be placed in a way that possibly avoids occlusion and excessive

density. Interacting with large amounts of individual objects thus becomes feasible.

Aggregation-based marks such as circles or heatmaps can still be used to visualize

groups of objects. Figure 3-1 shows such a visualization created by Kyrix-S, the sys-

tem we introduce in this chapter, which shows one billion comments made by users on

Reddit.com from January 2013 to February 2015, where 𝑋 is the posting time and

𝑌 is the number of characters in the comments. Additional examples are in Figure

3-2. For simplicity, we term such visualizations scalable scatterplot visualizations, or

SSV.

There has been significant work on building systems/toolkits to aid the creation

of SSVs (e.g. [22, 62, 45]). 3.1 shows a comparison of existing systems for authoring

SSVs. Specifically, prior systems can be classified into two categories: general DoD

systems (next to last row) and specialized SSV systems (last row). Kyrix is a typical

example of a general DoD system. These systems are typically expressive, supporting

62

{
 data: {query: "SELECT * FROM comments;"},
 layout: {
 x: {field: "created_utc", extent: [1356998400, 1425167999]},
 y: {field: "body_len", extent: [0, 10000]},
 z: {field: "score", order: "desc"}
 },
 marks: {
 cluster: {
 mode: "circle",
 config: {circleMinSize: 50, circleMaxSize: 80}
 },
 hover: {
 rankList: {
 mode: "custom",
 custom: redditCommentRenderer,
 topk: 3
 },
 boundary: "bbox"
 }
 },
 config: {axis: true}
};

Figure 3-1: A scalable scatterplot visualization created by Kyrix-S and its Kyrix-S
specifications. One billion comments made by users on Reddit.com from Jan 2013
to Feb 2015 are visualized on 15 zoom levels. On every level, 𝑋 and 𝑌 axes are
respectively the posting time and length of the comments. Each circle represents a
cluster of comments. The number inside each circle is the size of the cluster and
also encodes the radius of the circle. As can be seen, the distribution of comments
is roughly uniform over time but rather skewed in length. Through a pan or zoom
interaction, the user can navigate this multi-scale data space to get either an overview
(left) or inspect an area of interest (middle). One can hover over a circle to see
three highest-scored comments in the cluster, as well as a bounding box showing the
boundary of the cluster.

63

not only SSVs, but also DoD visualizations of other types of data (e.g. hierarchical

and temporal data) or that connect multiple 2D semantic spaces1. Specialized SSV

systems (e.g. [62, 32]), on the other hand, generally have a narrow focus on SSVs.

While these systems have been shown to be effective, they can suffer from some

drawbacks that limit their ability to support general SSV authoring at scale. In

particular, limited scalability is a common drawback of both types of systems. As

often as not, implementations assume all objects reside in the main memory of a

computer [32, 90, 83, 62, 84, 93, 22, 106].

General DoD systems, while being flexible, generally incur too much developer

work due to their low-level nature. When authoring an SSV, the developer needs to

manually generate the layout of visual marks on zoom levels. In very large datasets,

there will be many levels (e.g. Google Maps has 20). Individually specifying the

layout of a set of levels is tedious and error-prone. In particular, big skewed data can

make it challenging for the developer to specify a layout that avoids occlusion and

excessive density in the visualization.

Another drawback of specialized SSV systems is low flexibility. Oftentimes

systems are hardcoded for specific scenarios (e.g., supporting specific types of visual

marks such as heatmaps [104, 84] or points [45, 32], enforcing a density budget but

not removing overlap, etc.) and are not extensible to general use cases. The developer

cannot make free design choices when using these systems, and is forced to constantly

switch tools for different application requirements.

In this chapter, we describe Kyrix-S2, a system for SSV authoring at scale which

addresses all issues of existing systems.

To enable rapid authoring, we present a declarative language for SSVs, which

1A 2D semantic space consists of zoom levels sharing the same coordinate system and visualizing
the same type of objects. An SSV has only one semantic space. General DoD systems typically
allow “semantic jumping” from one semantic space to another [106] (e.g. from a space of Reddit
comments to a space of Reddit forums). More examples can be found in Chapter 2.

2The birth of Kyrix-S is driven by the limitations we see when we use Kyrix, the general DoD
system described in the previous chapter, to build real-world SSV-based applications. The name
Kyrix-S here suggests that we implement Kyrix-S as an extension of Kyrix for SSVs, rather than a
replacement. S may suggest scale, scatterplots, skew or spatial partitioning. More detailed discussion
on the relationship between the two systems can be found in Sections 3.2 and 3.7.

64

Kyrix-S implements. To enable rapid authoring, we abstract away low-level details

such as rendering of visual marks. The developer can author a complex SSV in a few

tens of lines of JSON. We show that compared to Kyrix, this is 4X–9X reduction in

specification on several examples. In addition, we build a gallery of SSVs to show

that our language is expressive and that the developer can easily extend it to add

his/her own visual marks.

This language for SSVs is supported by an algorithm that automatically chooses

the layout of visual marks on all zoom levels, thereby freeing the developer from

writing custom code. We store objects in a multi-node parallel database using multi-

node spatial indexing. As we show in Section 3.8, this allows us to respond to any

pan/zoom action in under 500 ms on datasets with billions of objects.

To summarize, we make the following contributions:

• An integrated system called Kyrix-S for declarative authoring and rendering of

SSVs at scale.

• A concise and expressive declarative language for describing SSVs (Section 3.4).

• A framework for offline database indexing and online serving that enables in-

teractive browsing of large SSVs (Sections 3.5 and 3.6).

3.2 Related Works

3.2.1 General DoD Visualization Systems

A number of systems have been developed to aid the creation of general DoD visu-

alizations(e.g. [22, 23, 106]). These systems are expressive and capable of producing

not only SSVs, but also DoD visualizations of other types of data (e.g. hierarchical,

temporal, relational, etc) or with multiple semantic spaces connected by jumps [106].

However, as mentioned in the introduction, these systems fall short in supporting

SSVs due to limited scalability and too much developer work.

The Kyrix system introduced in Chapter 2 is a general DoD visualization system

65

we have developed. Here, we summarize the novel aspects of Kyrix-S compared to

Kyrix:

• Kyrix-S provides a high-level language for SSVs, which enables much shorter

specification than what Kyrix’s language requires for the same SSV (see Section

3.8.2 for an empirical comparison);

• Kyrix-S implements a layout generator which frees the developer from decid-

ing the layout of objects on zoom levels. Kyrix does not assist the developer

in choosing an object layout, which makes authoring SSVs using Kyrix fairly

challenging;

• Kyrix-S is integrated with a distributed database which scales to billions of

objects. In contrast, Kyrix only works with a single-node database which cannot

scale to billions of objects.

Note that Kyrix-S has a narrow focus on SSVs and is not intended to completely

replace general DoD visualization systems. As we will discuss more in Section 3.7,

we build Kyrix-S on top of Kyrix as an extension.

3.2.2 Specialized SSV Systems

There has been considerable effort made to develop specialized SSV systems, which

mainly suffer from two limitations: low flexibility and limited scalability.

Many systems focus on a small subset of the SSV design space, and are not

designed/coded to be easily extensible. For example, many focus on specific visual

marks such as small-sized dots (e.g. [45, 32, 76]), heatmaps (e.g. [104, 84, 100, 93, 85]),

text [105], aggregation-based glyphs [83, 24] and contours [90]. Some works maintain

a visual density budget [45, 104, 62], while some focus on overlap removal [24, 32, 47].

In contrast to these systems, Kyrix-S aims at a much larger design space. We

provide a diverse library of visualization templates that are suitable for a variety of

scatterplot tasks. For high extensibility, Kyrix-S’s declarative language is designed

with extensible components for authoring custom visual marks.

66

In addition to the limited focus, most specialized SSV systems cannot scale to

large datasets with billions of objects due to an in-memory assumption [2, 46, 62, 90,

32, 81, 51, 97]. We are only aware of the work by Perrot et al. [104] which renders

large heatmap visualizations using a distributed computing framework. However,

that work only focuses on heatmaps.

Specialized SSV systems generally come with a layout generation module which

computes the layout of visual marks on each zoom level. The design of Kyrix-S’s

layout generation is inspired by many of them and bears similarities in some aspects.

For example, favoring placements of important objects on top zoom levels is adopted

by many works [62, 105, 45]. The idea of enforcing a minimum distance between

visual marks comes from blue-noise sampling strategies [104, 32, 62].

However, the key differentiating factor of Kyrix-S comes from its more stringent

requirements on scalability and the design space. Theses requirements (see Section

3.3) pose new algorithmic challenges. For instance, Sarma et al. [45] uses integer

programming to generate the layout without considering overlaps of objects. To

enable overlap removal, one needs to add 𝑂(𝑛2) pairwise non-overlap constraints into

the integer program, making it hard to solve in reasonable time. As another example,

Guo et al. [62] and Chen et al. [32] do not support visual marks that show a group of

objects with useful aggregated information. This requires a bottom-up aggregation

process which breaks their top-down algorithmic flow. In order to scale to billions

of objects, Kyrix-S cannot rely on existing algorithms and instead needs to compute

visual mark layouts in parallel using a distributed algorithm as described in Section

3.6.

3.2.3 Static Scatterplot Designs

Alleviating the overdraw problem of static scatterplot visualizations has been a pop-

ular research topic for a long time. Many methods have been proposed, including

binned aggregation [94, 87, 73], appearance optimization [57, 80, 33], data jitter-

ing [132, 77, 128] and sampling [48, 36]. We refer interested readers to existing

surveys on scatterplot tasks and designs [110], binned aggregation [71] and visual

67

clutter reduction [53, 54]. Kyrix-S’s design follows many guidelines in these works,

which we elaborate in Section 3.3.

3.2.4 Declarative Visualization Languages

Numerous declarative languages have been proposed for authoring visualizations at

different levels of abstractions. The first of these is Wilkinson’s grammar of graphics

(GoG) [135], which forms the basis of subsequent works. For example, ggplot2 [134] is

the direct implementation of GoG in R and is widely used. D3 [28] and Protovis [27]

are low-level libraries that provide useful primitives for authoring basic visualizations.

Vega is the first language that concerns specifications of interactions. Built on top

of Vega, Vega-lite [113] offers a more succinct language for authoring interactive

graphics. Recently, more specialized languages have emerged for density maps [73],

unit visualizations [101], and DoD visualizations (Kyrix).

Despite the diversity of this literature, not many languages support SSVs well.

Some low-level languages such as D3 [28], Vega [114] and Kyrix’s language can express

SSVs, but the specification is often verbose due to their low-level and general-purpose

nature. Also, they do not help the developer manage the layout of visual marks.

Kyrix-S, on the contrary, uses a high-level language that abstracts away unimportant

low-level details and is designed with several components that help the developer

control the layout, density and occlusion.

3.3 Design Goals

Limitations of prior art, existing guidelines and our experience with SSV users drive

the design of Kyrix-S. Here, we present a few goals we set out to achieve.

G1. Rapid authoring. Our declarative language should enable specification of

SSVs in a few tens of lines of code. This goal is inspired by the design rationale of

several high-level declarative languages (e.g. Vega-lite [113] and Atom [101]), and

driven by the limitations we see in using Kyrix author SSVs.

G2. Visual expressivity. Kyrix-S should enable exploration of a broad SSV design

68

space and not limit itself to specific visual representations. Moreover, it is crucial

to allow inspection of individual objects in addition to showing aggregation infor-

mation. As outlined by Sarikaya et al. [110], there are four common object-centric

scatterplot tasks: identify object, locate object, verify object and object comparison.

A recent study [81] also highlights the importance of browsing objects in multi-scale

visualizations.

G3. Usable SSVs. The SSVs authored with Kyrix-S should be usable, e.g. free of

visual clutter, using simple visual aggregates, etc. We identify usability guidance from

a range of surveys and SSV systems (e.g. [54, 62, 45]), which we formally describe in

Section 3.6.

G4. Scalability. Kyrix-S should be able to handle large datasets with billions of

objects and potentially skewed spatial distribution. This goal has the following two

subgoals:

• G4-a. Scalable offline indexing. Offline indexing should finish in reasonable

time on big skewed data, and scale well as the data size grows.

• G4-b. Interactive online serving. The end-to-end response time to any user

interaction (pan or zoom) should be under 500 ms, an empirical upper bound

that ensures fluid interactions [11].

In the rest of Chapter 3, we justify the design choices we make by referencing the

above goals when appropriate.

3.4 Declarative Language

In this section, we present Kyrix-S’s declarative language. We start with showing a

gallery of example SSVs authored with Kyrix-S (Section 3.4.1), which we then use to

illustrate the design of the language in Section 3.4.2.

3.4.1 Example SSVs

Figure 3-2 shows a gallery of SSVs and their specifications.

69

{
 ...
 layout: {
 x: {field: "unit_price"},
 y: {field: "quantity"},
 z: {field: "purchase_date", order: "desc"}
 },
 marks: {
 cluster: {
 mode: "pie",
 aggregate: {
 measures: [{
 field: ["*"],
 function: "count"
 }],
 dimensions: [{
 field: "day",
 domain: ["1", "2", "3", "4", "5", "6", "7"]
 }]
 },
 },
 hover: {
 rankList: {
 mode: "tabular",
 fields: ["store", "item", "total"]
 topk: 3,
 },
 boundary: "convexhull"
 }
 },
 config: {
 legendTitle: "On Which Day of the Week Do
 Retailers Buy Liquor in Iowa?",
 legendDomain: ["Sun", "Mon", "Tue", "Wed",
 "Thu", "Fri", "Sat"]
 }
}

{
 ...
 layout: {
 x: {field: "trip_length"},
 y: {field: "trip_total"},
 },
 marks: {
 cluster: {
 mode: "heatmap",
 config: {
 heatmapRadius: 68,
 heatmapOpacity: 0.8
 }
 }
 },
 ...
}

{
 ...
 layout: {
 x: {field: "shooting"},
 y: {field: "defending"},
 z: {field: "wage", order: "desc"}
 },
 marks: {
 cluster: {
 mode: "radar",
 aggregate: {
 measures: {
 fields: ["defending", "general",
 "mental", "passing", "mobility",
 "power", "rating", "shooting"],
 function: "avg",
 extent: [0, 100]
 }
 },
 },
 hover: {
 rankList: {
 mode: "custom",
 custom: playerRenderer,
 topk: 3,
 orientation: "horizontal",
 }
 }
 }
 ...
}

{
 ...
 layout: {
 x: {field: "shooting"},
 y: {field: "defending"},
 z: {field: "wage"},
 theta: 0.5
 },
 marks: {
 cluster: {
 mode: "custom",
 custom: playerRenderer,
 config: {bboxW: 180,
 bboxH: 240}
 }
 },
 ...
}

{
 ...
 layout: {
 x: {field: "created_utc"},
 y: {field: "body_len"},
 z: {field: "score", order: "desc"},
 },
 marks: {
 cluster: {
 mode: "custom",
 custom: redditCommentBodyRenderer,
 config: {bboxW: 300, bboxH: 65}
 }
 },
 ...
}

{
 ...
 layout: {
 x: {field: "trip_length"},
 y: {field: "trip_total"},
 },
 marks: {
 cluster: {
 mode: "contour",
 config: {contourColorScheme:
 "interpolateBlues",
 contourBandwidth: 20}
 }
 },
 ...
}

(b)

(c)

(d)

(e) (f)

(a)

Figure 3-2: A gallery of SSVs authored with Kyrix-S and their specifications. (a): a
heatmap of 178.3 million taxi trips in Chicago since 2013, 𝑋: trip length (seconds),
𝑌 : trip total (dollars); (b): the same dataset/axes as (a) in contour plots; (c): an SSV
of 18,207 soccer players in the video game FIFA19, 𝑋: shooting rating, 𝑌 : defense
rating, 𝑍: wage (i.e. highly-paid players appear on top zoom levels); (d): a pie-based
SSV of 17.3 million liquor purchases by retailers in Iowa, 𝑋: unit price (dollars), 𝑌 :
quantity (# of bottles), 𝑍: purchase date; (e): a text visualization of the dataset
of one billion Reddit comments in Figure 3-1 with the same axes; (f): the same
dataset/axes as (c) in a radar-chart.

70

Taxi. In Figure 3-2a, a multi-scale heatmap shows the distribution of 178.5M taxi

trips in Chicago since 2013, where 𝑋 is trip length (in seconds) and 𝑌 is trip total (in

dollars). In the overview (upper), the long thin “heat” region suggests that most trips

have a similar total-length ratio. In a zoomed-in view (lower), we see vertical “heat”

regions around entire minutes. In fact, more than 70% of the trips have a length

of entire minutes, indicating the possible prevalent use of minute-precision timers.

Figure 3-2b is the same representation of this dataset in contour lines.

FIFA. The SSV in Figure 3-2c visualizes 18,207 soccer players in the video game FIFA

19. 𝑋 and 𝑌 are respectively the shooting and defensive rating of players. Players

with the highest wages are shown at top levels. Lesser-paid players are revealed as

one zooms in. Figure 3-2f is a radar-based SSV with the same 𝑋 and 𝑌 . Each radar

chart shows the averages of eight ratings (e.g. passing, power) of a cluster of players.

When hovering over a radar, three players from that cluster with the highest wages

are shown.

Liquor. Figure 3-2d is an SSV of 17.3M liquor purchases by retailers in Iowa since

2012. 𝑋 and 𝑌 axes are the unit price (dollars) and quantity (# of bottles) of the

purchases. Each pie shows a cluster of purchases grouped by day of the week. One

can hover over a pie to see a tabular visualization of the three most recent purchases,

as well as a convex hull showing the boundary of the cluster.

Reddit. Figure 3-2e is another representation of the one-billion Reddit comments

dataset. Different from Figure 3-1, comments are directly visualized as non-overlapping

texts. The number above each comment represents how many comments are nearby,

giving the user an understanding of the data distribution hidden underneath.

3.4.2 Language Design

The primary goal of Kyrix-S’s declarative language is to help the developer quickly

navigate a large SSV design space (G1 and G2). The high-level design of the language

closely follows a survey of scatterplots designs and tasks by Sarikaya et al. [110], which

outlined four common design variables of scatterplot visualizations: point encoding

(i.e. visual representation of one object), point grouping (i.e. visual representation of

71

⟨SSV⟩ ::= ⟨Marks⟩⟨Layout⟩⟨Data⟩[Config] (3.1)
; marks

⟨Marks⟩ ::= ⟨Cluster⟩[Hover] (3.2)
⟨Cluster⟩ ::= ⟨Mode⟩⟨Aggregate⟩[Config] (3.3)
⟨Hover⟩ ::= ⟨Ranklist⟩⟨Boundary⟩[Config] (3.4)
⟨Mode⟩ ::= Circle | Contour | heatmap |

Radar | Pie | ⟨Custom⟩ (3.5)
⟨Aggregate⟩ ::= ⟨Dimension⟩ * ⟨Measure⟩+ (3.6)
⟨Ranklist⟩ ::= ⟨Topk⟩(Tabular | ⟨Custom⟩) (3.7)
⟨Boundary⟩ ::= Convex Hull | BBox (3.8)
⟨Custom⟩ ::= Custom JS mark renderer (3.9)

⟨Dimension⟩ ::= ⟨Field⟩[Domain] (3.10)
⟨Measure⟩ ::= ⟨Field⟩⟨Function⟩[Extent] (3.11)
⟨Topk⟩ ::= A positive integer (3.12)

⟨Domain⟩ ::= A list of string values (3.13)
⟨Function⟩ ::= Count | Sum | Avg | Min |

Max | Sqrsum (3.14)
; layout

⟨Layout⟩ ::= ⟨X⟩⟨Y⟩⟨Z⟩[Theta] (3.15)
⟨X⟩ ::= ⟨Field⟩[Extent] (3.16)
⟨Y⟩ ::= ⟨Field⟩[Extent] (3.17)
⟨Z⟩ ::= ⟨Field⟩⟨Order⟩ (3.18)

⟨Theta⟩ ::= A number between 0 and 1 (3.19)
⟨Field⟩ ::= A database column name (3.20)
⟨Extent⟩ ::= A pair of float numbers (3.21)
⟨Order⟩ ::= Ascending | Descending (3.22)

; data
⟨Data⟩ ::= a database query (3.23)

; config
⟨Config⟩ ::= Key value pairs (3.24)

Figure 3-3: Kyrix-S’s declarative language in the BNF notation. Inside ⟨⟩ or [] is a
component. Every rule (1-24) defines what the left-hand side component is composed
of. On the right hand side of a rule, | means OR, * means zero or more, + means one
or more and [] means that a component is optional.

72

a group of objects), point position (e.g. subsampling, zooming) and graph amenities

(e.g. axes, annotations).

These design variables map to the highest-level components in Kyrix-S’s language,

i.e., Marks, Layout, Data and Config, as illustrated in Figure 3-3 using the BNF

notation [79]. We elaborate the design of them in the following subsections.

Marks: Templates + Extensible Components

The Marks component (Rules 2-143) defines the visual representation of one or more

objects, and covers both point encoding and point grouping in [110].

Visual marks of a single or a cluster of objects span a huge space of possible vi-

sualizations. To keep our language high-level (G1), we adopt a templates+extensible

components methodology, where we provide a diverse library of template mark de-

signs, and offer extensible components for authoring custom marks.

We divide the Marks component into two subcomponents: Cluster (Rule 3) and

Hover (Rule 4).

Cluster: cluster marks are static marks rendering one or a group of objects. Cur-

rently, Kyrix-S has five built-in Cluster marks including Circle (Figure 3-1), Con-

tour (Figure 3-2b), Heatmap (Figure 3-2a), Radar (Figure 3-2f) and Pie (Figure

3-2d). The developer can choose one of these marks by specifying just a name (G1).

These built-in Cluster marks are carefully chosen to cover a range of aggregate-level

SSV tasks [110]. For example, heatmaps and contour plots enable the user to charac-

terize distribution and identify correlation between the two axes. The user can per-

form numerosity comparison and identify anomalies with circle-based SSVs. Radar-

based and pie-based SSVs allow for exploring object properties within a neighborhood.

For fast authoring, Kyrix-S sets reasonable default values for many parameters (G1),

e.g., inner/outer radius of a pie and bandwidth of heatmaps. The developer can also

make customizations (G2-b) using a Config component (Rules 3 and 24).

With the Custom component (Rules 5 and 9), the developer can specify custom

3Hereafter, rules referenced inside parentheses implicitly refer to rules in Figure 3-3. A rule
defines the composition logic of one component in the language.

73

visual marks easily. For example, player profiles in Figure 3-2c are specified as a

custom visual mark. Kyrix-S currently supports arbitrary Javascript-based renderers

(e.g. D3 [28] or Vega-lite-js [14]). For increased expressivity, a custom mark ren-

derer is passed all useful information about a cluster of objects, including aggregation

information in both Aggregate and Hover. As an example, the custom renderer in

Figure 3-2e displays both an example comment and the size of the cluster. More

importantly, Custom also facilitates rapid future extension of Kyrix-S, allowing easy

addition of built-in mark types.

The Aggregate component (Rule 6) informs Kyrix-S details of aggregations statis-

tics shown by a Cluster mark. This component is composed of Dimensions (Rule 10)

and Measures (Rule 11). A Dimension is a categorical field of the objects that indi-

cates how objects are grouped (e.g. by day of the week in Figure 3-2d). A Measure

defines an aggregation statistic (e.g. average of a rating in Figure 3-2f). Currently

Kyrix-S supports six aggregation functions: count, average, min, max, sum and square

sum (Rule 14).

Hover: Hover marks add more expressivity into the language by showing additional

marks when the user hovers over a Cluster mark. For example, in Figure 3-1 three

example comments are shown upon hovering a circle. The motivation for adding this

component is two-fold.

First, as outlined in G2, we want to enable tasks that require inspection of indi-

vidual objects in addition to showing visual aggregates with Cluster marks. To this

end, we design a Ranklist component which visualizes objects with top-k importance

(Rule 7). The importance of objects is defined in the layout component as a field

from the objects. We offer a default tabular visualization template (e.g. Figure 3-2d),

and allow custom marks via Custom (e.g. player profiles in Figure 3-2f).

Secondly, multi-scale visualizations often suffer from the “desert fog” problem [74],

where the user is lost in the multi-scale zooming space and not sure what is hidden

underneath the current zoom level. Boundary is designed to aid the user in the

navigation process (G3) by showing the boundaries of a cluster of objects (Rule 8),

using either the convex hull (Figure 3-2d) or the bounding box (Figure 3-1). By

74

hinting that there is more to see by zooming in, more interpretability is added to the

Cluster marks [54].

Layout: Configuring All Zoom Levels at Once

The Layout component (Rules 15-22) controls the placement of visual marks4 on zoom

levels, which corresponds to the point position design variable in [110]. We aim to

assist the developer in specifying the layout for all zoom levels together rather than

independently, motivated by the limitation of general DoD visualization systems [23,

22] that mark placements are manually configured for every zoom level.

𝑋 and 𝑌 (Rules 16 and 17) define the two spatial dimensions. The only specifi-

cations required are two raw data columns that map to the two dimensions (e.g. trip

length and total in Figures 3-2a and 3-2b). An optional Extent component (Rule 21)

can be used to indicate the visible range of raw data values on the top zoom level.

The 𝑍 component (Rule 18) controls how visual marks are distributed across zoom

levels. Drawn from prior works [45, 62, 105], we use a usability heuristic that makes

objects with higher importance more visible on top zoom levels. The importance is

defined by a field of the objects. For example, in Figure 3-2e, highest-scored comments

are displayed on top zoom levels.

Optionally, Theta is a number between 0 and 1 indicating the amount of overlap

allowed between Cluster marks (Rule 19), with 0 being arbitrary overlap is allowed

and 1 being overlap is not allowed. For instance, Theta is 0.5 in Figure 3-2c, making

the player profiles overlap to a certain degree.

The above layout-related parameters serve as inputs to the layout generator, which

we detail in Section 3.6.

Data and Config

We assume that the raw spatial data exists in the database, and can be specified as

a SQL query (Rule 23).

4For KDE-based SSVs (e.g. heatmaps and contours), a visual mark here refers to the kernel
density estimates generated by a weighted object.

75

User
SSV

Specifications

Layout Generator

JSON

Data Fetcher Frontend

Multi-node Database

Offline Indexing Online Serving

Pan Zoom

Figure 3-4: Kyrix-S optimization framework.

The highest-level Config component corresponds to the design variable graph

amenities in [110]. The developer can use it to specify global rendering parameters

such as the size of the top zoom level, number of zoom levels, as well as annotations

such as axes, grid lines and legends.

3.5 Optimization Framework

Figure 3-4 illustrates the optimization framework adopted by Kyrix-S to scale to

large datasets(G4). There are two main phases: offline indexing and online serv-

ing. Specifically, given an SSV specification, the layout generator computes offline

the placement of visual marks on zoom levels using several usability considerations

(G3), e.g., bounded visual density, free of clutter, etc. Along the way, useful ag-

gregation information (e.g. statistics and cluster boundaries) is also collected. The

computed layout information is stored in a multi-node database with multi-node spa-

tial indexes. Online, the data fetcher communicates with the frontend and fetches

data in user’s viewport from the multi-node database with interactive response times

(G4-b). In the next section, we describe these two components in greater detail.

76

3.6 Layout Generation and Data Fetching

Here, we first describe how we model the layout generation problem (Section 3.6.1).

We then describe a single-node layout algorithm (Section 3.6.2), which is the basis of

a distributed algorithm detailed in Section 3.6.3. Lastly, Section 3.6.4 describes the

design of the data fetcher.

3.6.1 Layout Generation: Problem Definition

We assume that there is a discrete set of zoom levels numbered 1, 2, 3. . . from top to

bottom with a constant zoom factor between adjacent levels (e.g. 2 as in many web

maps). The layout generation problem concerns how to, in a scalable manner, place

visual marks onto these zoom levels in a general way that works for any SSV that

Kyrix-S’s declarative language can express (G2).

To aid the formulation of the layout generation problem, we collect a set of existing

layout-related usability considerations from prior SSV systems and surveys [62, 24,

32, 45, 54, 83], and list them as subgoals of G3: Usable SSVs.

G3-a. Non/partial overlap. Cluster visual marks (Rule 3) should not overlap or

only overlap to a certain degree (if specified by Theta in Rule 19). For simplicity, we

assume that Cluster marks have a fixed-size bounding box, which is either decided

by Kyrix-S or specified by the developer (see Figure 3-2e for an example). We then

only check the overlap of bounding boxes.

G3-b. Bounded visual density. Mark density in any viewing region should not

exceed an upper bound. Excessive density stresses the user and slows down both the

client and the server. Kyrix-S sets a default upper bound 𝐾 on how many marks should

exist in any viewport-sized region based on empirical estimates of the processing

capability of the database and the frontend.

We should also avoid very low visual density, which often leads to too many zoom

levels and thus increased navigation complexity. We therefore try to maximize spatial

fullness without violating the overlap constraint and the density upper bound.

G3-c. Zoom consistency. If one object is visible on zoom level 𝑖, either through a

77

custom Cluster mark or a Ranklist mark (Rule 7), it should stay visible on all levels

𝑗 > 𝑖. This principle is adopted by many SSV systems that support inspection of

individual objects (e.g. [45, 32, 62]). The rationale is to aid object-centric tasks

where keeping track of locations of objects is important.

G3-d. Data abstraction quality. Data abstraction characterized by visual marks

should be interpretable and not misinform the user. For Cluster marks, it is important

to reduce within-cluster variation [41, 142, 54], which can be characterized by average

distance of objects to the visual mark that represent them [41]. We also adopt an

importance policy, where objects with high importance (Rule 18) should be more

likely to be visible on top zoom levels than objects with low importance. This is a

commonly adopted principle to help the user see representative objects early on in

the navigation process [62, 45].

Discussion. Despite that subgoals G3-a∼d are all from existing works, we are not

aware of any prior system that addresses all of them. As mentioned in Section 3.2,

a key distinction of Kyrix-S’s layout generation is the broad design requirements of

building a general and scalable SSV authoring system. Due to this broad focus,

finding an “optimal layout” with the objectives and constraints in G3-a∼d is hard.

In fact, one prior work [45] proves that with only a subset of G3-a∼d, finding the

optimal layout is NP-hard (for an objective function they define). Therefore, we do

not attempt to define a formal constraint solving problem. Instead we keep our goals

qualitative and look for heuristic solutions.

3.6.2 A Single-node Layout Algorithm

Here, we describe a single-node layout algorithm which assumes that data fits in the

memory of one computer.

We assume that the 𝑋/𝑌 placement of a Cluster mark comes from an object it

represents. Alternatively, one could consider inexact placement of the marks (e.g.

“median location” or binned aggregation), which we leave as our future work. Ad-

ditionally, we assume that the 𝑋/𝑌 placement of a Hover mark is the same as the

corresponding Cluster mark. So in the rest of Section 3.6, any mention of mark refers

78

WB

Q

HB WB

HB

WB · 𝜃

P

WB · 𝜃

WB · 𝜃

HB · 𝜃
HB · 𝜃

Figure 3-5: Marks 𝑃 and 𝑄 with an 𝑛𝑐𝑑 of 𝜃. Inner boxes (dashed) are the bounding
boxes of the marks. Outer boxes (solid) are bounding boxes scaled by a factor of 𝜃.
Scaled boxes do not overlap and touch on one side. In general, for any two marks
that have 𝑛𝑐𝑑 greater than 𝜃, their bounding boxes do not overlap after being scaled
by a factor of 𝜃.

to a Cluster mark if not explicitly stated.

We make two important algorithmic choices. First, we enforce a minimum distance

between marks in order to cope with the overlap and density constraints (G3-a and

G3-b). Second, we use a hierarchical clustering algorithm to ensure zoom consistency

(G3-c) and data abstraction quality (G3-d).

Enforcing a minimum distance between marks. For overlap and density con-

straints, we make use of the normalized chessboard distance (𝑛𝑐𝑑) between two marks

𝑃 and 𝑄:

𝑛𝑐𝑑(𝑃,𝑄) = max(
|𝑃𝑥 −𝑄𝑥|

𝑊𝐵

,
|𝑃𝑦 −𝑄𝑦|

𝐻𝐵

)

where 𝑃𝑥(𝑃𝑦) is the 𝑥(𝑦) coordinate of the centroid of 𝑃 in the pixel space and

𝑊𝐵(𝐻𝐵) is the width (height) of the bounding box of a mark (note that bounding

boxes of marks are of the same size).

𝑛𝑐𝑑 helps us reason about non/partial overlap constraints. If 𝑛𝑐𝑑(𝑃,𝑄) ≥ 1, 𝑃

and 𝑄 do not overlap because they are at least one bounding box width/height away

on 𝑋 or 𝑌 . Even if 𝑛𝑐𝑑 is smaller than one, the degree of overlap is bounded. For

example, if 𝑛𝑐𝑑(𝑃,𝑄) = 0.5, the centroids of 𝑃 and 𝑄 remain visible despite the

potential overlap.

To this end, we set a lower bound 𝜃 on the 𝑛𝑐𝑑 between any two visual marks,

which is specified through the Theta component (e.g. Figure 3-2c) or built-in with

79

Cluster marks.

We also use 𝜃 to enforce the visual density upper bound 𝐾 (G3-b). Intuitively,

the smaller 𝜃 is, the closer marks are, and thus the denser the visualization is. We

search for the smallest 𝜃 (for maximum spatial fullness, G3-b) that does not allow

more than 𝐾 marks in any viewport-sized region (𝑊𝑉 × 𝐻𝑉). To find this 𝜃 value,

we show in Figure 3-5 another perspective on how 𝜃 controls the placement of marks:

enforcing that any 𝑛𝑐𝑑 ≥ 𝜃 is equivalent to scaling the bounding boxes of marks by a

factor of 𝜃, and then enforcing that none of these scaled bounding boxes overlap. So

we are left with a simple bin-packing problem. For a given 𝜃, the maximum number

of marks that can be packed into a viewport is:

𝒫(𝜃) =

⌈︂
𝑊𝑉

𝑊𝐵 · 𝜃

⌉︂
·
⌈︂

𝐻𝑉

𝐻𝐵 · 𝜃

⌉︂

With this, we can find the smallest 𝜃 such that 𝒫(𝜃) ≤ 𝐾 using a binary search on 𝜃.

We take the larger 𝜃 calculated/specified for the overlap and density constraints.

By imposing this lower bound on 𝑛𝑐𝑑, these two constraints are strictly satisfied.

Hierarchical clustering. The key part of the algorithm is a bottom-up hierarchical

clustering process. Suppose there are 𝜂 zoom levels. We start with a fake bottom level

𝜂 + 1 where every object is in its own cluster. Each cluster’s aggregation information

(e.g. aggregated stats and cluster boundaries) is initialized using the only object in

it, which we call the “representative object” of a cluster in the following.

Then we build the clusters level by level. For each zoom level 𝑖 ∈ [1, 𝜂], we

construct a new set of clusters by merging the clusters on level 𝑖+1. Zoom consistency

(G3-c) is then guaranteed because each zoom level merges clusters from the one level

down. By mathematical induction, we can show that if an object is visible on level 𝑖,

it is visible on any level 𝑗 > 𝑖.

Specifically, we iterate over all clusters on level 𝑖+1 in the order of the importance

of their representative objects, which is a greedy strategy to make important objects

more visible (G3-d). For each cluster 𝛼 on level 𝑖 + 1, we search for a cluster 𝛽 on

the current level 𝑖 with the closest 𝑛𝑐𝑑. If this 𝑛𝑐𝑑 is smaller than 𝜃, we merge 𝛼

80

A B C

A F B D E C G

A F B D E C GHI

Level 1

Level 2

Level 3
1 1 1 1 1 1 1 1 1

11

A

B

C

D

E

F

G
H I

Level 2

2121

3 4

1

2

A

B

C

D

E

F

G
H I

Level 3

A

B

C

D

E

F

G

Level 1
(a)

(b)

Figure 3-6: An illustration of the hierarchical clustering. There are 9 objects A-I, in
decreasing order of importance. Each octagon is a cluster, with the representative
object inside it. (a): Three zoom levels constructed. A dashed ellipse indicates the
merging of the lighter cluster into the darker one. (b): A tree representation of
the hierarchical clusters. The number next to a cluster is the number of objects this
cluster represents. These numbers, along with other possible aggregation information,
are computed when clusters merge.

into 𝛽; otherwise we add 𝛼 to level 𝑖. By merging a cluster into its nearest neighbor

(measured in 𝑛𝑐𝑑), within-cluster variances can be reduced (G3-d). Figure 3-6 shows

an example with 9 objects and 3 zoom levels.

Identifying outliers. The single-node algorithm preserves an outlier if it is not

within 𝜃 𝑛𝑐𝑑 of any other object. To identify less isolated outliers, one would need

to assign to each object a score (i.e. the importance field) indicating how distant an

object is from other objects. Kernel density estimations would be an example of such

type of score.

Optimizations and complexity analysis. Let 𝑛 be the total number of ob-

jects. When constructing clusters for level 𝑖, sorting the clusters on level 𝑖 + 1 takes

𝑂(𝑛 log 𝑛). We maintain a spatial search tree (e.g. R-tree) of the clusters on level 𝑖 so

that nearest neighbor searches can be done in 𝑂(log 𝑛). Inserting a new cluster into

the tree also takes 𝑂(log 𝑛). Therefore, the overall time complexity of this algorithm

is 𝑂(𝑛 log 𝑛) if we see the number of zoom levels as a constant.

81

1

2 3

4 5 6 7

8 9

(a)

(c)

4

(b)

1
2

3

5

6

7

8 9

(d)

Figure 3-7: An illustration of the distributed clustering algorithm for zoom level 𝑖.
(a), (b): clusters on zoom level 𝑖 + 1 are spatially partitioned and stored on multiple
database nodes. KD-tree is used for skew-resilient partitioning. In (a), non-leaf tree
nodes (1, 2, 3 and 6) represent KD-tree splits, while leaf tree nodes (4, 5, 7, 8 and
9) correspond to actual partitions. Each circle in (b) is a mark/cluster; (c): the
single-node algorithm is run for each partition in parallel, merging clusters that have
an 𝑛𝑐𝑑 smaller than 𝜃; (d): merging clusters close to partition boundaries.

3.6.3 A Multi-node Distributed Layout Algorithm

The algorithm presented in Section 3.6.2 only works on a single machine which has

limited memory. Here, we extend it to work with a multi-node database system.5

Given the sequential nature of the single-node algorithm, one major challenge here

is how to utilize the parallelism offered by the multi-node database. Our idea is to

spatially partition a zoom level, perform clustering in each partition independently in

parallel and then merge the partitions. Figure 3-7 shows an illustration of the three

steps. We detail them in the following, assuming the context of constructing clusters

on zoom level 𝑖 from the clusters on level 𝑖 + 1.

5The distributed algorithm proposed here works with any multi-node database that supports
basic data partitioning (e.g. Hash-based) and 2D spatial indexes.

82

HB · 𝜃 B
A KD-tree

split
A

D

HB · 𝜃
C

E

WB · 𝜃

HB · 𝜃

Figure 3-8: An example of merging clusters along a KD-tree split.

Step 1: skew-resilient spatial partitioning. We use a KD-tree [25] to spatially

partition the 2D plane so that each resulting partition has similar number of clusters

from zoom level 𝑖+1. Note that each cluster belongs to exactly one partition according

to its centroid. A KD-tree is a binary tree (Figure 3-7a) where every non-leaf tree

node represents a split of a subplane, and every leaf tree node is a final partition

stored as a table in one database node. KD-tree splits are axis-aligned and alternate

between horizontal and vertical as one goes down the hierarchy. For each split, the

median value of the corresponding axis is used as the split point. We stop splitting

when the number of clusters in a partition can fit into the memory of one database

node.

Step 2: processing partitions in parallel. Since each partition fits in the memory

of one database node, we can efficiently run the single-node clustering algorithm on

each partition in parallel. As a result, a new set of clusters is produced in each

partition where no two clusters have an 𝑛𝑐𝑑 smaller than 𝜃 (Figure 3-7c).

Step 3: merging clusters on partition boundaries. After Step 2, some clusters

close to partition boundaries may have an 𝑛𝑐𝑑 smaller than 𝜃. Step 3 resolves these

border cases by merging clusters along KD-tree splits. We “process” (i.e. merging

clusters along) KD-tree splits in a bottom-up fashion, starting with splits that con-

nect two leaf partitions. After the KD-tree root is processed, we finish the layout

generation for level 𝑖.

When processing a given split, we make use of the fact that only clusters whose

centroid is within a certain distance to the split (𝑊𝐵 · 𝜃 or 𝐻𝐵 · 𝜃 depending on the

orientation of the split) need to be considered. Consider the horizontal split in Figure

83

3-8. The two horizontal dashed lines indicate the range of cluster centroids that we

need to consider. Any cluster whose centroid is outside this range is at least 𝜃 away

(in 𝑛𝑐𝑑) from any cluster on the other side of the split.

We use a greedy algorithm to process a KD-tree split. We iterate over all clusters

in the aforementioned range in the order of their 𝑥 coordinates (𝑦 if the split is

vertical). We keep track of the last added/merged cluster 𝛼. Let 𝛽 be the currently

considered cluster. If 𝑛𝑐𝑑(𝛼, 𝛽) ≥ 𝜃, we add 𝛽 and set 𝛼 to 𝛽; otherwise we merge

𝛼 and 𝛽. The one with the less important representative object is merged into the

other (g3-d). Then we update 𝛼 accordingly.

Consider again Figure 3-8. There are five clusters A-E in decreasing importance

order. The boxes around clusters are their bounding boxes scaled by a factor of 𝜃.

So if two boxes overlap, two corresponding clusters have an 𝑛𝑐𝑑 smaller than 𝜃 (see

Figure 3-5). The above algorithm iterates over the clusters in the following order:

𝐵,𝐷,𝐴,𝐶,𝐸. When 𝛽 = 𝐴, 𝛼 = 𝐷. 𝐷 is then merged into 𝐴 because 𝑛𝑐𝑑(𝐴,𝐷) < 𝜃

and 𝐷 has a less important representative object. For the same reason, 𝐸 is merged

into 𝐶.

Optimizations and complexity analysis. Let 𝑀 be the upper bound on the

number of clusters that can fit in memory. Hence there are roughly 𝑇 = 𝑛
𝑀

partitions,

which means there are 𝑂(𝑇) KD-tree nodes. Determining the splitting point can be

done in 𝑂(log 𝑛), thus constructing the spatial partitions takes 𝑂(𝑇 · log 𝑛). Step 1

also involves distributing the clusters to the correct database node, which is often an

expensive I/O bound process. So we do spatial partitioning only once based on the

bottom level, and reuse the same partition scheme for other levels to avoid moving

data around database nodes. Step 2 runs in 𝑂(𝑀 log𝑀) because the single node

algorithm is run in parallel across partitions. Step 3 takes 𝑂(𝑛 log 𝑇) because there

are log 𝑇 KD-tree levels in total, and we need to consider for each KD-tree level 𝑛

clusters in the worst case. However, Step 3 is expected to run very fast in practice

because most clusters are out of the range in Figure 3-8.

Other partitioning strategies. One could partition the data using fields other

than 𝑥 and 𝑦 and then in a similar fashion, run the single-node algorithm on the

84

resulting partitions in parallel. However, since the two spatial attributes are not in-

volved in partitioning, objects in each partition would span the whole 2D space. So

even though overlap and density constraints are satisfied within each partition, when

merged together, they will very likely be violated unless extra spatial postprocess-

ing are in place. We therefore choose to perform spatial partitioning throughout to

guarantee G3-a and G3-b.

3.6.4 Data Fetching

The data fetcher’s job is to efficiently fetch data in the user’s viewport (G4-b). We

make use of multi-node spatial indexes, which can help fetch objects falling in a

viewport-sized region with interactive response times.

Creating multi-node spatial indexes. Suppose the 𝑗-th (1 ≤ 𝑗 ≤ 𝑇) partition

on zoom level 𝑖 is stored in the database table 𝑡𝑖,𝑗, which has roughly 𝑀 clusters.

We augment all such 𝑡𝑖,𝑗 with a box-typed column bbox, which stores the bounding

box of cluster marks. We then build a spatial index on column bbox, by issuing the

following query:

CREATE INDEX sp_idx ON 𝑡𝑖,𝑗 using gist(bbox);

where gist is the spatial index based on the generalized search tree [8]. In practice,

these CREATE INDEX statements can be run in parallel by the multi-node database.

Fetching data from relevant partitions. Given a user viewport 𝑉 on zoom level

𝑖, clusters from partition 𝑡𝑖,𝑗 that are inside 𝑉 can be fetched by the following query:

SELECT * FROM 𝑡𝑖,𝑗 WHERE bbox && 𝑉 ;

where && is the intersection operator. The spatial index on bbox ensures that this

query runs fast. We traverse the KD-tree to find out partitions that intersect 𝑉 , run

the above query on these partitions and union the results. Note that for top zoom

levels that are small in size, there can be too many partitions that intersect with the

viewport, which can be harmful for data fetching performance because we need to

wait for sequential network trips to many database nodes. Therefore, we merge all

85

partitions on each of the top 𝐿 levels into one database table. 𝐿 is an empirically

determined constant based on the relative size of the zoom levels to the viewport

size.

3.7 Implementation

We implement Kyrix-S as an extension to Kyrix, the general DoD system introduced in

Chapter 2. This enables the developer to both rapidly author SSVs and reuse features

of a general DoD system in one integrated system. For example, Kyrix supports

multiple coordinated views. Without switching tools, the developer can construct a

multi-view visualization in which one or more views are SSVs authored with Kyrix-S.

As another example, the developer can augment SSVs with the jump functionality

provided by Kyrix, where the user can click on a visual mark and jump to another

SSV. Furthermore, Kyrix provides APIs for integrating a DoD visualization into a

web application, which are highly desired by the SSV developers we collaborate with.

Examples include programmatic interaction control, notifications of pan/zoom/jump

events and getting current visible data items.

Specification compilation. Kyrix-S uses a Node.js module to validate the JSON-

based SSV specification. Validated specifications are compiled into low-level Kyrix

specifications so that part of Kyrix’s frontend code can be reused to handle rendering

and pan/zoom interactions. Specifically, we construct a canvas (see Section 2.4.2) for

each zoom level, and use the zoom connection (see Section 2.4.3) to connect adjacent

zoom levels.

Layout generator and data fetcher. Kyrix-S’s layout generator and data fetcher

override respectively Kyrix’s index generator and data fetcher. Both components are

written in the same Java application, using the Java Database Connectivity (JDBC)

to talk to Citus6, an open-source multi-node database built on top of PostgreSQL. The

layout generator uses PLV87, a PostgreSQL extension that enables implementation

6https://www.citusdata.com/
7https://plv8.github.io/

86

of algorithms in Section 3.6 in Javascript functions, along with parallel execution of

those functions directly inside each Citus database node.

Database deployment and orchestration. Kyrix-S provides useful scripts for

one-command deployment of Kyrix-S and database dependencies (G1). We use Ku-

bernetes8 to orchestrate a group of nodes running containerized Citus and Kyrix-S

built with Docker9.

3.8 Evaluation

We conducted extensive experiments to evaluate two aspects of Kyrix-S: 1) perfor-

mance and 2) authoring effort.

3.8.1 Performance

We conducted performance experiments to evaluate the online serving and indexing

performance of Kyrix-S. We used both example SSVs in Figures 3-1 and 3-2 and a

synthetic circle-based SSV Syn that visualizes a skewed dataset where 80% of the

objects are in 20% of the 2D plane, and the rest of the 20% are uniformly distributed

across the 2D plane. For database partitioning, we set 𝑀 = 2 million, i.e., each

partition has roughly 2 million objects. So for a dataset with 𝑁 objects, there are

𝐾 =
⌈︀
𝑁
𝑀

⌉︀
partitions. Based on the number of partitions, we provision a Google

Cloud Kubernetes cluster with
⌈︀
𝐾
8

⌉︀
n1-standard-8 PostgreSQL nodes (8 vCPUs,

30GB memory), each serving 8 partitions.

Online Serving Performance

To measure the online response times, we used a user trace where one pans around

to find the most skewed region on a zoom level, zooms in, repeats until reaching the

bottom level and then zooms all the way back to the top level. We measured the

8https://cloud.google.com/kubernetes-engine/
9https://www.docker.com/

87

Table 3.2: Online serving time (95-th percentile, in milliseconds).

Reddit Text
(Figure 3-2e,
1B objects)

Reddit Circle
(Figure 3-1,
1B objects)

Taxi Heatmap
(Figure 3-2a,

178.3M objects)

Taxi Contour
(Figure 3-2b,

178.3M objects)

Liquor
(Figure 3-2d,

17.3M objects)
Data Fetching 14 17 32 32 14

Network 1 1 223 254 1

Table 3.3: Offline indexing time (in minutes).

Reddit Text
(Figure 3-2e,
1B objects)

Reddit Circle
(Figure 3-1,
1B objects)

Taxi Heatmap
(Figure 3-2a,

178.3M objects)

Taxi Contour
(Figure 3-2b,

178.3M objects)

Liquor
(Figure 3-2d,

17.3M objects)
Building KD-tree (Step 1) 11.8 10.5 2.7 2.4 0.7

Redistributing data (Step 1) 94.3 100.0 8.5 8.4 1.3
Parallel clustering (Step 2) 9.9 3.7 6.9 9.0 4.7
Merge partitions (Step 3) 61.3 18.2 1.1 0.8 0.1
Creating Spatial Indexes 2.4 1.3 1.2 1.2 1.3

Total 179.7 133.8 20.3 21.8 8.2

95-th percentile10 of all data fetching time and network time.

Table 3.2 shows the results on five SSVs. The 95-percentile data fetching times

were all below 32 ms. The reason was because we only fetched data from the partitions

that intersect with the viewport and we built spatial indexes which sped up the spatial

queries. Network times were mostly negligible except for Taxi Heatmap and Taxi

Contour, where many more data items were fetched due to smaller 𝜃 values.

Figure 3-9 shows the response times on different sizes of the synthetic SSV Syn.

We can see that the response times remained stably under 20 ms for data sizes from

32 million to 1 billion.

Offline Indexing Performance

Table 3.3 shows the indexing performance of the layout generator on five example

SSVs. We make the following observations. First, the indexing phase finished in

reasonable time: every example finished in less than 3 hours. Second, redistributing

the data to the correct spatial partition was the most time consuming part since it

was an I/O bound process. Fortunately, the same spatial partitions can be reused for

updatable data if the spatial distribution does not change drastically. Third, parallel
10A 95-percentile says that 95% of the time, the response time is equal to or below this value.

This is a common metric for measuring network latency of web applications.

88

Data size (# of objects)

R
es

po
ns

e
tim

es
 (m

s)
0

5

10

15

20

1B512M256M128M64M32M

Network Data Fetching

Figure 3-9: Serving scalability on the synthetic SSV Syn.

Data size (# of Objects)

In
de

xi
ng

 T
im

e
(m

in
ut

es
)

0

50

100

150

1B512M256M128M64M32M

Spatial Index Step 3 Step 2 Redistribution KD Tree

Figure 3-10: Indexing scalability on the synthetic SSV Syn.

clustering and spatial index creation took the least time because they could be run in

parallel across partitions. Fourth, merging clusters along KD-tree splits was mostly

a cheap process. In fact, the largest number of clusters along a KD-tree split was

16,647. The reason that this step took longer on Reddit Text than on Reddit

Circle was because it had more zoom levels (20 vs. 15) due to larger mark size (text

vs. circle). Moreover, iterating through objects along KD-tree splits were much more

time-consuming on the bottom five levels.

Figure 3-10 shows how indexing time changed for different sizes of the synthetic

SSV Syn. We can see that the indexing time scaled well as the data size grew: as

data size doubled, indexing time roughly doubled as well.

89

Table 3.4: Comparison of lines of specifications when using Kyrix-S and Kyrix to
author the two example SSVs in Figure 3-2d and Figure 3-2f.

Kyrix-S Kyrix
Kyrix-S’s saving

over Kyrix
Figure 3-2d 62 lines 568 lines 9.2×
Figure 3-2f

w/ custom renderer
164 lines 610 lines 3.7×

Figure 3-2f
w/o custom renderer

68 lines 514 lines 7.6×

3.8.2 Authoring Effort

In this experiment, we compared the authoring effort of Kyrix-S with Kyrix. To our

best knowledge, Kyrix is the only system that offers declarative primitives for pro-

gramming general DoD visualizations. Former systems/languages such as D3 [28],

Pad++ [22], Jazz [23] and ZVTM [106] require procedural programming which gen-

erally takes more authoring effort as we discussed in Chapter 2. We measured lines

of specifications using both systems for the two examples SSVs in Figures 3-2d and

3-2f. We used a code formatter11 to standardize the specifications, and only counted

non-blank and non-comment lines.

Table 3.4 shows the results. We can see that when authoring the two example

SSVs, Kyrix-S achieved respectively 9.2× and 3.7× saving in specifications compared

to Kyrix. In the second example, when we excluded the custom renderer for soccer

players (which has 96 lines), the amount of savings was 7.6×. These savings came

from Kyrix-S abstracting away low-level details such as rendering of visual marks,

configuring zoom levels, etc.

The above comparison did not include the code for layout generation. To enable

the comparison, we stored the layouts generated by Kyrix-S as database tables so

that Kyrix could directly use them. However, programming the layout was in fact a

challenging task, as indicated by the total lines of code of Kyrix-S’s layout generator

(1,439). Therefore, we conclude that Kyrix-S greatly reduced the user’s effort in

authoring SSVs compared to general DoD visualization systems.
11https://prettier.io/

90

3.9 Discussions

3.9.1 Limitations and Future Work

Other layout strategies. Kyrix-S’s layout generator assumes that the location of a

mark comes from an object. This can be relaxed to diversify our layout generator.

For example, supporting inexact placement of marks such as binned aggregation [71]

in SSVs is one future direction. We also plan to investigate layout strategies that

concern multi-class scatterplots, e.g. how to preserve relative density orders among

multiple classes [32, 36].

More built-in templates. Our declarative language is designed to enable rapid

extension of the system with custom marks. This motivates us to engage more with

the open-source community and enrich our built-in mark gallery with templates com-

monly required/authored by developers.

Incremental updates. Currently, Kyrix-S assumes that data is static and pre-

materializes mark layouts. To interactively debug, the developer needs to either use

a sample of the data or reduce the number of zoom levels. It is our future work

to identify ways to incrementally update our mark layout upon frequent changes of

developer specifications, as well as when the data itself is updated dynamically.

Animated transitions. A discrete-zoom-level model simplifies layout generation,

but can potentially lead to abrupt visual effect upon level switching, especially for

KDE-based renderers such as heatmaps. As future work, we will use animated tran-

sitions to counter this limitation.

Raster Images-based SSVs. The visual density constraint, partly due to limited

processing capabilities of the frontend and the database, forbids the creation of dense

visualizations such as point clouds [105]. We envision the use of raster images to

remove this constraint for these visualizations where interaction with objects is not

required.

91

Table 3.5: A tabular comparison of systems/toolkits for authoring SSVs. This is a
more detailed version of Table 3.1.

Scalability Authoring Capability Expressivity & Usability

Support data
that cannot fit

in memory

Distributed architecture
(billion-object

scalability)

Declarative
authoring in 10s of

lines of code

Automatic
layout

generation

Inspection
of important

objects

Arbitrary
mark
types

Show
aggregation
information

Support both
partial &

non-overlap

Automatic
bounded visual

density

Our work Kyrix-S X X X X X X X X X

General

DoD systems

Kyrix X X X X X

Pad++ [22] X X X X

Jazz [23] X X X X

ZVTM [106] X X X X

Specialized

SSV systems

Cartolabe [105] X X X

Leaflet [2] X X X X

Beilschmidt et al. [24] X X

Chen et al. [32] X X X X

Sarma et al. [45] X X X X

Delort et al. [46] X X

Derthick et al. [47] X X X X

Disc [51] X X X

Guo et al. [62] X X X X

Kefaloukos et al. [76] X X X X X

Lekschas et al. [81] X X X

Nanocubes [84] X X X X

Splatterplots [90] X X X X X

Nutanong et al. [97] X X X X

Hashedcubes [100] X X X X

Perrot et al. [104] X X X X X

92

3.9.2 A Tabular Comparison

Table 3.5 shows a more detailed version of Table 3.1 introduced in Section 3.1. We

include 21 systems as subrows, and 9 detailed features as subcolumns. Check marks

are used to indicate that a system has the corresponding feature.

We can use this table to illustrate the claims we have made on the limitations of

existing systems:

• Both general DoD systems and specialized SSV systems have limited

scalability. We can see from the Scalability column that only four systems

can support data beyond memory size, and only Perrot et al. [104] scales to

billion-object scatterplots.

• General DoD systems incur too much developer work. As can be seen,

none of the general DoD systems support declarative authoring in 10s of lines

of specifications. Also, all of them put the burden of mark layout generation on

the developers. Specialized SSV systems, in contrast, mostly provide a concise

authoring interface and all have an automatic layout generator.

• Specialized SSV systems have low flexibility. As Table 3.5 shows, none

of the specialized SSV systems support all features under “Expressivity & Us-

ability”. In fact, the number of such features supported by any specialized

SSV system is at most three (Guo et al. [62], Kefaloukos et al. [76] and Splat-

terplots [90]). In particular, every specialized SSV system is focused on very

specific visual marks, as indicated by the empty “arbitrary mark types” column.

The inflexible nature of these systems makes it hard to extend them to general

scenarios.

Kyrix-S, on the other hand, supports all features.

3.9.3 More on Layout Generators

The layout generator in Kyrix-S decides how marks are placed on each zoom level,

and serves as the key component to make Kyrix-S scale to big skewed datasets. As

93

discussed briefly in Section 3.2.2, Kyrix-S’s layout generator is algorithmically similar

in some ways to the ones in existing systems, but also significantly different in many

aspects due to the broader design requirements.

Here, we expand the discussion in Section 3.2.2 to elaborate how Kyrix-S’s layout

generator compares to existing ones.

Offline vs. online. Some systems [62, 51, 97] use an online approach which computes

the layout of visual marks on the fly as user’s viewport changes. Although being more

amenable to updating data, this approach has two inherent drawbacks. First, it is

susceptible to data skew as it often needs to iterate through a great portion, if not

all of the objects in the viewport. In our examples, there can be tens of millions of

objects in a viewport which would make these system unable to respond within 500 ms

(G4-b). Second, these systems cannot support aggregation-based marks (e.g. pie or

bar) because without any precomputed indexes, computing the aggregation statistics

requires going through all data in the current viewport. As shown in Table 3.5, none

of [62, 51, 97] can show aggregation information. In contrast, Kyrix-S precomputes

the mark layouts offline, which makes it possible to support aggregation marks and

respond to user interactions under 500 ms despite data skew.

Greedy-based hierarchical sampling/clustering. Kyrix-S’s single-node layout

algorithm is inspired by prior systems [62, 32, 76, 104]. Specifically, the basic algo-

rithmic flow of iterating over all objects in importance order and then maintaining

a minimum distance between objects is drawn from those systems. Nevertheless,

Kyrix-S’ goes two steps further by 1) generalizing this algorithmic framework to sup-

port more usability requirements (last three columns of Table 3.5), and 2) using spatial

partitioning techniques to extend the algorithm to support scatterplots of billions of

objects (Section 3.6.3).

3.10 Conclusion

In this chapter, we presented the design of Kyrix-S, a system for easy authoring

of SSVs at scale. Kyrix-S contributed a declarative language that enabled concise

94

specification of a wide range of SSVs and rapid authoring of custom marks. Behind

the scenes, Kyrix-S automatically generated layout of visual marks on zoom levels

using a range of usability guidelines such as maintaining a visual density budget

and high data abstraction quality. To scale to big skewed datasets, Kyrix-S worked

with a multi-node parallel database system to implement the layout algorithm in

a distributed setting. Multi-node spatial indexes were built to achieve interactive

response times. We demonstrated the expressivity of Kyrix-S with a gallery of example

SSVs. Experiments on real and synthetic datasets showed that Kyrix-S scaled to big

skewed datasets with billions of objects and reduced the authoring effort significantly

compared to general DoD visualization systems such as Kyrix.

95

96

Chapter 4

Kyrix-J: Supporting Pivot Jumps

between Visualizations for Many

Tables in a Relational Database

4.1 Introduction

In Chapter 2, we introduced the jump connection (Section 2.4.3), which connects two

Kyrix canvases with different coordinated systems and visual representations using

smooth transitions. It is a powerful operation that allows a user to select an object

in a visualization and see a new visualization about this selected object. Essentially,

the user “jumps to” the new visualization, whose data is filtered to match the selected

object. Consider a series of jumps in Figure 4-1 supported by the system Kyrix-J

introduced in this chapter. Figures 4-1b-d describe one jump where a user selects

an object (China) from a visualization showing countries and jumps to a new visu-

alization showing the provinces of the selected country (China) and their areas. In

the jump described by Figures 4-1d-f, the user selects the Sichuan province and then

jumps to a new visualization showing the populations of Sichuan over time. These

chained jumps allow the user to drill into specifics of the data based on objects of

interest, which embody the spirit of the details on demand design principle. Jumps

97

are supported in many academic and commercial systems such as GraphTrail [52],

PivotPaths [50], Spotfire [18] and Tableau [125], and are often alternatively termed

as pivoting, pivot search or pivot jump. In the rest of this chapter, we will use pivot

jump to refer to a jump which is a more common terminology used in the literature.

While prior systems support users in performing pivot jumps, a common limitation

is that they only allow pivot jumps between visualizations for a single data table [122,

50, 52, 18, 4, 125]. In practice, data is often scattered in multiple data tables managed

by a relational database system (RDBMS) [96, 56]. Enabling pivot jumps in a multi-

table RDBMS setting brings two new challenges that existing systems cannot easily

address.

First, data attributes across different tables are highly interconnected in an RDBMS,

which can lead to many possible pivot jump paths (i.e. pairs of visualizations con-

nected by a pivot jump). Existing pivot jump systems require significant manual

effort to label these relationships by either writing code (e.g. Kyrix and [4]) or specifi-

cation via a visualization interface [18, 52, 96] in order to create visualization filtered

on some object. This makes the use of existing pivot jump systems to explore multiple

tables tedious and impractical.

Second, it can be overwhelming and disorienting for a user to perform pivot jumps

across many tables because these jumps involve joining columns from multiple tables.

For example, the pivot jump in Figures 4-1b-d corresponds to a join between the name

column in the country table and the country column in the province table. Without

support, the user can become lost in the exploration process, not knowing where they

are and how to locate where they want to go [133]. Existing systems [18, 50, 52, 122]

are often hardcoded for a single table and lack the multi-table semantics to help users

stay oriented, e.g., to keep track of which table they are visually examining and to

understand what the current query and filters are. In this chapter, we present Kyrix-J,

a system to support pivot jumps between visualizations for multiple tables in an

RDBMS. To free users from manually joining columns to create filtered visualizations,

Kyrix-J automatically generates pairwise pivot jump paths between data visualizations

based on primary key and foreign key (PK-FK) [13] relationships between data tables.

98

A

B

C D

EF

G

H I

Figure 4-1: A typical usage flow of deployed on the MONDIAL database [89] which
involves identifying a table of interest using the keyword search (a), inspecting data
visualizations (b, d, f and i), performing pivot jumps between visualizations (b→c→d,
d→e→f or b→h→i) and using the history panel to go back to a visited visualization
(g).

99

The pivot jump paths are presented in a popover window after a user clicks on an

object (Figure 4-3g), enabling the user to browse and navigate a large number of pivot

jump paths in an efficient manner. In one case study we identify more than 1,000

pairwise pivot jump paths between 70 visualizations in an RDBMS with 40 tables,

which would be infeasible to explore with tools that require significant manual effort

to enable a pivot jump.1

To help users stay oriented while performing pivot jumps, Kyrix-J contributes a

novel UI (Figure 4-3) with carefully designed components. To start a pivot jump,

a user can identify a table of interest using keyword search. We make use of a

network graph of tables to signal where the user is, what the neighboring tables are

and what the relationships between tables are. Additional panels enable the user

to easily inspect information such as the current table, SQL query and filters. We

make use of animated transitions in coordinated views to help the user preview the

information (e.g. table and query) of the next visualization. Bookmarking and history

functionalities are also provided to help the user recall and share exploration history.

We conduct a first-use study with eight users to evaluate the usability of the Kyrix-J

UI. Results of the study suggest that participants could perform pivot jumps with

Kyrix-J to quickly and accurately complete search tasks in an RDBMS. Participants

reported that they were able to stay oriented during their exploration of the RDBMS.

They rated Kyrix-J as easy to use and gave positive feedback about the system.

To summarize, we make the following contributions:

• We design an end-to-end system called Kyrix-J to support effective and efficient

pivot jumps between visualizations for multiple tables in an RDBMS.2

• Kyrix-J automatically generates pairwise pivot jump paths between data visu-

alizations in an RDBMS based on PK-FK relationships between data tables
1Kyrix requires manual coding for performing a pivot jump, which is the main motivation behind

Kyrix-J. Kyrix-J is built on top of Kyrix to automatically generate Kyrix code for the pivot jump
paths, and generates roughly 30,000 lines of Kyrix code (in Javascript) for 1,000+ pairwise pivot
jump paths. The name Kyrix-J here suggests that Kyrix-J is built as an extension of Kyrix (rather
than a replacement) to mainly support pivot jumps in an RDBMS. The J in the name refers to
jumps.

2The source code for the system can be found at https://github.com/tracyhenry/kyrix-j

100

https://github.com/tracyhenry/kyrix-j

(Section 4.4). As a result, exploring a large number of pivot jump paths be-

comes possible.

• We contribute a novel user interface which features the use of coordinated views,

animated transitions, bookmarking, text search and other visual aids to help

users stay oriented when performing pivot jumps in a multi-table space (Section

4.5).

• We conducted a user study and confirm that Kyrix-J enables effective and effi-

cient pivot jumps in an RDBMS setting with 40 tables, 70 visualizations and

more than 1,000 pairwise pivot jump paths between visualizations (Section 4.6).

4.2 Related Works

4.2.1 Pivot Jump Systems

A number of systems [50, 52, 18, 4, 125, 96, 102, 122] have been developed to support

pivot jumps. As mentioned in Section 4.1, these systems mostly focus on pivot jumps

between visualizations for one data table. As such, pivoted search or simply pivoting

are commonly used terms for describing pivot jumps in those systems. In our multi-

table RDBMS setting, we use the term pivot jumps to indicate that the interaction

“jumps” across the table boundaries. In Section 4.1 we have detailed two common

limitations of existing pivot jump systems when applied in an RDBMS setting, namely

1) too much manual effort to support a large number of pivot jump paths and 2) lack

of multi-table semantics to help users stay oriented.

Multi-view cross-filter systems such as Snap [96] and Falcon [94] also support our

definition of pivot jumps in that a user can select an object in a view and as a result

see other views filtered to match the selected object. However, since the underlying

coordinations between the views need to be manually configured, they also suffer

from limitation 1. Note that Kyrix-J is not a replacement to those systems as they

support more types of selections, e.g. brushing and linking in Falcon and synchronized

scrolling in Snap, whereas Kyrix-J is limited to click-based selection of a single object.

101

Supporting more types of selections is part of our future work as we discuss more in

Section 4.7.

Kyrix introduced in Chapter 2 also supports pivot jumps in an RDBMS. However,

it requires writing tens of lines of Javascript to create a pivot jump path. Also, it

does not offer UI support to help users stay oriented. Thus Kyrix has both limitations

1 and 2. Kyrix-J advances Kyrix by automatically generating pivot jump paths based

on PK-FK relationships between tables, and offering a novel UI to enable effective

RDBMS exploration while performing pivot jumps.

Despite the limitations in these prior systems, they have inspired the design of

Kyrix-J in several ways. For example, prior pivot jump systems [52, 146] allow users to

easily go back to a visited visualization, which inspires the design of the bookmarking

and history functionality in Kyrix-J. As another example, automatic generation of

pivot jump paths based on PK-FK is inspired by the categorization of view coordi-

nations in an RDBMS proposed by Snap [96].

4.2.2 Understanding Relationships between Visualizations

Several works [123, 131, 40, 146] tackle the problem of understanding the relationships

between data items in multiple visualizations. These systems typically propose new

visual representations that explicitly display the relationships between data items in

two or more visualizations [35]. While Kyrix-J is related to these systems in that

pivot jumps also help users to understand the relationships between data items in a

dataset, it has a different focus than these systems. Kyrix-J focuses on supporting

“jumping” to a filtered visualization, while the aforementioned systems are concerned

with explicitly displaying the connections between data items such as drawing an

arrow between related data items.

4.2.3 Data Exploration in an RDBMS

An RDBMS typically offers a command line (e.g. [7]) or a graphical interface (e.g. [5])

that allows users to access the database content using the SQL language. Although

102

proven to be useful, the SQL language has its limitations when used to explore com-

plex datasets. For example, it is often hard to get an overview of the tables and their

relationships, leading to slow query construction [138]. Over the years, there have

been multiple lines of research efforts in improving data exploration in an RDBMS.

Many works (e.g. [138] and [42]) utilize the Entity-Relationship diagram [34], which

visualizes the tables and their connections in a graph network, to facilitate RDBMS

schema comprehension. The Kyrix-J UI also has a variant of an entity relationship

diagram, whose design is inspired by prior works on this topic. Other interesting ap-

proaches include allowing users to pose natural language-based queries [44, 82, 117],

enabling RDBMS exploration in a computational notebook environment [58] and au-

tomatic construction of queries based on example query results [119] (a.k.a query by

example).

Kyrix-J’s approach is to use interactive data visualizations to assist RDBMS data

exploration. While there are prior data visualization-based RDBMS exploration sys-

tems (e.g. Snap [96], Kyrix and Kyrix-S), Kyrix-J’s distinctions lie in its support for

effective pivot jumps in a multi-table setting.

4.3 Kyrix-J Overview

In this section, we provide an overview of the Kyrix-J system.

4.3.1 A Usage Scenario

We illustrate the usage of Kyrix-J with a motivating example (Figure 4-1). This

example is based on a public relational database called MONDIAL [89], which has 40

tables that correspond to real world entities (e.g. country, lake, island) and their

relationships (e.g. lakeonisland). Examples in this chapter are all based on this

dataset.

To start, a user types the search term China, a keyword of interest, into the

search box, sees a list of tables matching this keyword and then clicks on the table

country (Figure 4-1a). The visualization view (Figure 4-3b) then switches to the

103

default visualization for the table country, which is a circle pack visualization of

countries where the color and size of circles encode the population of the countries

(Figure 4-1b).

The user then clicks on the circle with the label China, which renders a menu

showing a list of pivot jump paths from the current visualization (Figure 4-1c) which

are automatically generated by Kyrix-J. The user chooses to perform a pivot jump to

the visualization called Provinces and their Area for the table province. Prior

to jumping, another popover window appears upon hovering over the pivot jump

path, allowing the user to examine the SQL query and filters of the new visualization

(Figure 4-1c).

The target visualization (Figure 4-1d) is again a circle pack visualization showing

provinces in China and their area, in which the user is interested in the Sichuan

province. After clicking on Sichuan, the user decides to jump to a new visualization

Province Population Over Time for the provpops table (Figure 4-1e) to see the

population of Sichuan over time in a bar chart (Figure 4-1f).

Next, the user decides to see something about United States. Recalling seeing

United States in the visualization in Figure 4-1b, the user opens up the history panel

(Figure 4-1g) and clicks on the item containing that visualization to go back to Figure

4-1b. From there, the user clicks on United States and goes to the visualization

Percentage of Ethnic Groups in the Country for the ethnicgroup table. The

new visualization shows what ethnic groups there are in the United States and what

their percentages are.

In this example, the user has performed two chains of pivot jumps (b → c → d

→ e → f and b → h → i in Figure 4-1), each of which allows drilling into details of

the data tables and seeing different facets of the visualizations. At any point during

exploration, the user can utilize the graph view (Figure 4-3c) to inspect what the

current table is, what the neighboring tables are and their schema information. The

user can also use the informational views (Figures 4-3d-f) to understand the details

of the current SQL query and visualization. If the user wants to save a visualization

and later shares it with colleagues, they can use the bookmark functionality (Figure

104

Frontend Backend

App Generator JSON

Visualization
Specifications

RDBMS

User

Figure 4-2: The Kyrix-J system architecture.

4-3h).

4.3.2 Design Requirements

The design of Kyrix-J follows an iterative design methodology. We surveyed existing

pivot jump visualization systems and visualizations that support RDBMS exploration,

and synthesized the findings based on our combined experience in developing database

systems and visualization systems. Iterations of the design of Kyrix-J were presented

to colleagues, collaborators and students, whose feedback informed the list of design

requirements specified below.

R1. Make pivot jumps effortless. In an RDBMS there can be many pivot

jump paths between visualizations due to complex relationships between data tables.

To enable efficient pivot jumps, we must minimize the human effort involved. This

requires that:

• R1-a. The pivot jump paths need to be automatically generated since opera-

tions to construct filtered visualizations are often tedious and time-consuming.

• R1-b. There is an easy way to browse a large number of pivot jump paths from

a given visualization.

Theses requirements are also informed by the limitations we see in prior pivot jump

systems, which typically require significant manual effort to perform even one pivot

jump (see discussions in Sections 4.1 and 4.2).

105

B

A

C

D

F

E

G

H

I

J

K

Figure 4-3: The Kyrix-J user interface: (a) the keyword search box which allows a user
to identify a table to start their exploration; (b) the visualization view; (c) the graph
view where a simplified Entity-Relationship diagram shows each table as a graph node
and PK-FK relationships between tables as graph edges; (d-f) informational views
showing the current SQL query, filters and mappings from visual properties to data
attributes; (g) a popover appearing after the user clicks on an object, which contains
a list of new visualizations to “jump” to. These pivot jump paths between pairs of
visualizations are automatically generated by Kyrix-J based on PK-FK links; (h) the
list of bookmarked visualizations; (i-j) when hovering over a node/edge in the graph
view, more information shows up in a popover; (k) the user clicks on the “raw data”
button to see the data items in a tabular format.

106

R2. Help users stay oriented. Disorientation is a common problem in interactive

interfaces where a user needs to find a path to navigate through (e.g. a complex

website) [133]. In a pivot jump setting where each step involves joining columns from

two tables, it is easy for the user to get lost. We need to provide navigation support

to help the user build location and analysis-context awareness which has the potential

to boost both performance and engagement [133, 98]. More specifically,

• R2-a. Enable common user task during RDBMS exploration such as finding a

starting table, understanding the schema of the tables, the current query and

relationships between tables, etc.

• R2-b. Help the user keep track of which table they are currently examining,

which table they come from and which table they will go to.

• R2-c. Support quick navigation to a previously visited visualization. This is

a common requirement adopted by many prior systems that allow the user to

navigate between multiple visualizations [139, 52, 146].

In the rest of the chapter, when describing the design of Kyrix-J, we will refer back

to this list of requirements.

4.3.3 System Architecture

The architecture of Kyrix-J is illustrated in Figure 4-2. There are five key components

involved: the RDBMS, visualization specifications, the app generator, the backend

and the frontend.

RDBMS. In our prototype, we use PostgreSQL [6] as the RDBMS.

Visualization Specifications. Kyrix-J accepts as input a set of visualizations spec-

ified in a JSON-based visualization language offered by Kyrix, which can support bar

charts, pie charts, treemaps, circle packs and word clouds.3 We also support scatter-

3For the documentation for this language, see https://github.com/tracyhenry/Kyrix/wiki/
Template-API-Reference#static-aggregations

107

https://github.com/tracyhenry/Kyrix/wiki/Template-API-Reference#static-aggregations
https://github.com/tracyhenry/Kyrix/wiki/Template-API-Reference#static-aggregations

plots using the JSON-based language offered by Kyrix-S.4 Additional visualizations

can be authored and added to Kyrix-J using the JSON-based authoring interface.

In Section 4.7 we describe more about our future plans to better support authoring

visualizations in Kyrix-J.

App Generator. The app generator takes in two pieces of information as input:

1) the RDBMS schema (e.g. table/column names and PK-FK relationships) and 2)

the set of visualization specifications. The output of the app generator contains two

parts: 1) a Kyrix application specification containing auto-generated definitions of

pivot jumps which is used by the backend to build necessary database indexes and 2)

JSON-based metadata about the application (e.g. mappings from pivot jump paths

to pairs of tables, database schema, etc), which is used by the frontend to generate

the UI and the visualizations.

Backend. The backend extends the Kyrix backend with one added capability: to

receive keyword queries from the client and return the database content (tables,

columns, primary keys) that matches the keyword(s). The backend talks to the

PostgreSQL RDBMS and uses the Generalized Inverted Indexes (GIN) [9] offered by

PostgreSQL to support fast keyword search queries. The backend is also responsible

for parsing the application specification generated by the app generator and building

necessary database indexes to support efficient data serving for the frontend.

Frontend. The frontend is the user interface and is responsible for interacting with

the backend to fetch data as a user performs pivot jumps. It is currently implemented

as a React JS [10] application.

4.3.4 Organization

The rest of the chapter is organized as follows. Section 4.4 shows how the app

generator automatically generates pivot jump paths. Section 4.5 presents the design

of the Kyrix-J UI. In Section 4.6 we describe a user study we conduct to evaluate the

4For our prototype we support these six types of visualizations. In the future we will consider in-
tegrating with established visualization libraries such as Vega-lite [112] to support more visualization
types.

108

usability of Kyrix-J. Section 4.7 discusses the limitations of the current system and

future work. Section 4.8 concludes the paper.

4.4 Automatic Generation of Pivot Jump Paths

To free users from manually creating filtered visualizations, we automatically generate

pivot jump paths (R1-a). In this section, we describe how the app generator achieves

this goal. We first formally define the problem in Section 4.4.1 and then describe in

Section 4.4.2 a solution that utilizes the PK-FK relationships in the RDBMS.

In the rest of this chapter, we will use path, jump path and pivot jump path

interchangeably for simplicity.

4.4.1 Problem Definition

Here, we use the auto jump problem to refer to the problem of automatically identify-

ing jump paths between visualizations for multiple tables in an RDBMS. To formally

define the auto jump problem, we first introduce a few definitions.

Definition 1 (Visualizations). A visualization V is a tuple (𝑉𝑄, 𝑉𝐷, 𝑉𝑇 , 𝑉𝑃𝐾). 𝑉𝑄 is

the SQL query used to fetch the data items for 𝑉 from the RDBMS. 𝑉𝐷 represents

the query results of 𝑉𝑄. 𝑉𝑇 denotes the table used in 𝑉𝑄. The primary key of a

visualization V, denoted as 𝑉𝑃𝐾, is the set of data fields in 𝑉𝐷 which uniquely identify

each object in V.

To compute 𝑉𝑃𝐾 , i.e., the primary key for each visualization 𝑉 , we use 𝑉𝑄, i.e.,

the SQL query of 𝑉 . If 𝑉𝑄 is a SQL GROUP BY aggregation query, we use the GROUP

BY columns in 𝑉𝑄 as 𝑉𝑃𝐾 ; otherwise we use the primary key of 𝑉𝑇 as 𝑉𝑃𝐾 .5

We illustrate Definition 1 with Figure 4-4a. 𝑉1 is a pie chart showing continents

and their area. 𝑉1𝑄 is a simple SELECT query, therefore 𝑉1𝑃𝐾
is the primary key of

5We make two assumptions to simplify the presentation. First, each RDBMS table has exactly
one primary key. Our techniques easily extend to the case where a table has multiple primary keys.
Second, the SQL query for a visualization is either a GROUP BY query, or simply a SELECT query
which selects some fields from a table. If a SQL query is too complex for this assumption, we assume
that an expert (e.g. a database administrator) materializes the query result into a table and rewrites
the SQL query to fit this assumption.

109

country MAX(area)
Argentina 2,766,890

Brazil 8,511,965

Paraguay 406,750

... ...

name area
Asia 44,614,500

Europe 10,523,000

South America 17,840,000

... ...

continent.name

Filters

encompasses.country

A

B

PK-FK Filter function

continent

encompasses

Figure 4-4: An example pivot jump path with annotations of the SQL queries, data
items and primary keys of the visualizations, the filter function and the PK-FK
relationship used to identify this path.

110

𝑉1𝑇 , i.e., the name column in table continent. This suggests that the each object

(pie) in 𝑉1 is a continent.

As another example, consider 𝑉2 in Figure 4-4b which is a bar chart showing

countries in South America and their area. 𝑉2𝑇 is a table called encompasses where

each data item denotes one continent encompassing a country and has a corresponding

attribute area indicating the area of the country. 𝑉2𝑄 is a SQL GROUP BY query which

groups all data items by country and also computes the area of the country using the

MAX aggregate.6 Thus 𝑉2𝑃𝐾
is the GROUP BY columns of 𝑉2𝑄 , i.e., the country column

in table encompasses. This suggests that each object (bar) in 𝑉2 is a country.

Next, we define a filter function.

Definition 2 (Filter Functions). A filter function 𝐹 takes a visual object 𝑜 as input,

and outputs a set of filters. Each filter is in the form 𝑏 = 𝑜.𝑎 where 𝑏 is one column

and 𝑜.𝑎 is the value of the 𝑎 field of 𝑜.

A pivot jump path is then defined as follows.

Definition 3 (Pivot Jump Paths). A jump path from 𝑉1 to 𝑉2 is a tuple (𝑉1, 𝑉2, F)

that satisfies the following: 1) 𝑉1 and 𝑉2 are visualizations; 2) F is a filter function;

and 3) the output of 𝐹 when applied on an object in 𝑉1 satisfies the following: a)

there are |𝑉1𝑃𝐾
| filters in total; b) each column in 𝑉1𝑃𝐾

appears on the right-hand side

of exactly one filter; and c) the left-hand side of each filter is a column in 𝑉2𝑇 .

In other words, requirement 3) says that the resulting filters of 𝐹 applied on an

object in 𝑉1 form a one-to-one mapping from columns in 𝑉1𝑃𝐾
to a subset of columns

in 𝑉2𝑇 .

Consider the example path in Figure 4-4 where a user selects South America

in the pie chart 𝑉1 and jumps to 𝑉2 to see countries in South America and their

area. The filter function returns continent = 𝑜.name when applied on an object 𝑜

in 𝑉1, which forms a one-to-one mapping from the only column in 𝑉1𝑃𝐾
(the name

column in table continent) to one column in 𝑉2𝑇 (the continent column in table
6Data items in the same group have the same area. The MAX aggregate is only used to get that

number, and could be replaced by MIN or AVG.

111

encompasses). When the user selects the object South America to start the pivot

jump, the filter function returns the filter continent = South America.

While Definition 3 is useful in characterizing a jump path, note that there could

be many possible filter functions that map columns in 𝑉1𝑃𝐾
to columns in 𝑉2𝑇 . Not

every mapping is useful. Therefore, we need to define what constitutes a meaningful

jump path.

Definition 4 (Meaningful Pivot Jump Paths). We say that a jump path (𝑉1, 𝑉2, 𝐹)

is meaningful, if and only if any filter generated by 𝐹 connects two columns from

𝑉1 and 𝑉2 that represent the same type of object (referred to as matching columns

subsequently).

For example, the filter continent = 𝑜.name makes the pivot jump path in Figure 4-

4 meaningful because both two columns represent continents. Yet if the filter function

is changed to return country = 𝑜.name, the path would not be meaningful.

With Definitions 1-4, we can now define the auto jump problem.

Definition 5 (The Auto Jump Problem). Given a set of visualizations V, identify

all meaningful pivot jump path (𝑉1, 𝑉2, 𝐹) such that 𝑉1 ∈ V and 𝑉2 ∈ V.

4.4.2 A Solution based on RDBMS PK-FK Relationships

Given two visualizations 𝑉1 and 𝑉2, the key in identifying meaningful jump paths

from 𝑉1 to 𝑉2 is to look for matching columns between 𝑉1𝑃𝐾
and 𝑉2𝑇 . With tools

that require manual creation of the jump paths (e.g. [52, 18]), users typically look for

matching columns using common sense and constructs the filters manually.

Our idea is based on the fact that matching columns are readily available in an

RDBMS in the form of PK-FK relationships between tables [58, 96], which can be

used to automatically identify meaningful jump paths. Consider again the jump path

in Figure 4-4. the continent column in the table encompasses is a foreign key

referencing the primary key column name in the table continent, which is the only

column in 𝑉1𝑃𝐾
. Therefore, we can match these two columns up to get the filter

function that satisfies the requirements in Definition 3.

112

Algorithm 1: Automatic Generation of Meaningful Jump Paths
Input: A set of visualizations V and the PK-FK relationships in the

RDBMS.
Output: A set of meaningful pivot jump paths between visualizations in

V.
1 𝑃 ← ∅;
2 for each 𝑉1 ∈ V do
3 for each 𝑉2 ∈ V, 𝑉2 ̸= 𝑉1 do
4 𝐶2 ← all columns in 𝑉2𝑇 ;
5 for each 𝑐 ∈ 𝑉1𝑃𝐾

do
6 𝑓𝑘𝑐 ← the set of foreign keys in 𝐶2 that reference 𝑐;

7 𝑀 ← {𝑚 | 𝑚 : 𝑉1𝑃𝐾
→ 𝐶2

8 and ∀𝑐 ∈ 𝑉1𝑃𝐾
,𝑚(𝑐) ∈ 𝑓𝑘𝑐

9 and ∀𝑐𝑥, 𝑐𝑦 ∈ 𝑉1𝑃𝐾
, 𝑐𝑥 ̸= 𝑐𝑦 ⇔ 𝑚(𝑐𝑥) ̸= 𝑚(𝑐𝑦)};

10 for each 𝑚 ∈𝑀 do
11 𝐹 = 𝑜→ {𝑚(𝑐) = 𝑜.𝑐 | 𝑐 ∈ 𝑉1𝑃𝐾

};
12 Insert (𝑉1, 𝑉2, 𝐹) into 𝑃 ;

13 return 𝑃 ;

A B C Algorithm 1 variable values

Figure 4-5: Another example jump path with annotations on the right to illustrate
Algorithm 1.

113

Using this idea, our solution is presented as pseudo code in Algorithm 1. The

high-level strategy is to search for meaningful jump paths between every possible

pair of visualizations (Lines 2-3). For each pair of visualizations 𝑉1 and 𝑉2, we first

identify for each column 𝑐 in 𝑉1𝑃𝐾
, all foreign keys in 𝑉2𝑇 that reference it (Lines

5-6).7 Next, we use this information to get all mappings from 𝑉1𝑃𝐾
to columns in 𝑉2𝑇

that connect columns in 𝑉1𝑃𝐾
to distinct foreign keys in 𝑉2𝑇 (Line 9). Each of these

mappings corresponds to one filter function and thus one pivot jump path, which we

then add to a global jump path array (Lines 10-12).

We illustrate this solution using another example jump path in Figure 4-5. A user

selects egypt from 𝑉1, a visualizations showing the largest provinces in the world

(Figure 4-5a), and jumps to 𝑉2, a visualization showing the mountains in egypt and

their elevation (Figure 4-5b). Figure 4-5c shows what value each variable in Lines

4-12 holds for this given pair of 𝑉1 and 𝑉2. There are two columns in 𝑉1𝑃𝐾
, which

respectively match one foreign key in 𝑉2𝑇 . This leads to one match in 𝑀 , which

results in one jump path.

Complexity Analysis. The average time complexity of Algorithm 1 is 𝑂(|V|2 ·

|𝑀̄ |) where |𝑀̄ | is the average size of the variable 𝑀 on Line 9 of Algorithm 1,

which holds all possible matches from 𝑉1𝑃𝐾
to columns in 𝑉2𝑇 . In practice 𝑀 should

have a small size since it is not common to have multiple foreign keys for the same

column. Therefore this algorithm should run reasonably fast (e.g. finishes within a

few minutes) on a single machine on tens of thousands of visualizations.8 In the case

where new visualizations are added to the system dynamically, the time complexity

of identifying the new jump paths from/to a new visualization is 𝑂(|V| · |𝑀̄ |).

Discussions. Although PK-FK relationships can help identify meaningful jump

paths, they only represent a subset of all pairs of matching columns. However, Al-

gorithm 1 can take in any input set of matching columns (e.g. those generated by

a data discovery system [58]) and therefore is not limited to PK-FK relationships.

Nevertheless, we expect that PK-FK relationships can generate a large number of

7To enable pivot jumps between visualizations for the same table, i.e., when 𝑉1𝑇 = 𝑉2𝑇 , we see
each column in 𝑉1𝑃𝐾

as a foreign key of itself. Therefore in Line 6, each 𝑓𝑘𝑐 is simply {𝑐}.
8For the example application with 70 visualizations, the algorithm finishes in a few seconds.

114

paths that are sufficient for initial RDBMS exploration uses. For example, we have

identified over 1,000 jump paths between 70 visualizations for 40 tables in the example

MONDIAL database.

4.5 User Interface

The high-level goal of the Kyrix-J UI is to present the jump paths generated by the

algorithm in Section 4.4 using intuitive UI elements that users can understand and

use. Specifically, we should make it easy to browse a large number of such jump paths

(R1-b) and also help users stay oriented during their exploration with pivot jumps

(R2).

Figure 4-3 shows an overview of the UI, which features multiple coordinated views.

In this section we describe the design of each UI element in detail.

4.5.1 The Keyword Search Box

The search box (Figure 4-3a) enables a user to identify a starting table for exploration

(R2-a) using keywords of interests. The rationale for this choice comes from prior

works on using keywords to search through RDBMS content, which usually assume

that even if the user is not familiar with the database schema (e.g. names of the tables

and columns), they generally have something of interest expressible as keywords [58,

86, 72].

There are three types of search results: a table name match, a column name match

and a primary key value match, which are indicated using a tag to the right of each

result. The search results are grouped by tables. Clicking on a group brings the user

to the table and updates several other views, including showing a default visualization

in the visualization view (Figure 4-3b) and updating the graph view (Figure 4-3c) to

showing the table and its direct neighbors.

115

A B

Figure 4-6: Expanding the graph view: a) one can click on a node/table to go to that
table; b) an animation highlighting new nodes and edges added to the graph.

4.5.2 The Graph View

To support RDBMS exploration tasks such as inspecting table schema and relation-

ships between tables (R2-a), we present a variant of the Entity-Relationship (ER)

diagram [34] where each node is a table and each edge represents a set of PK-FK

relationships between two tables (Figure 4-3c). We use an astronaut icon9 to indicate

which table the user is currently examining (R2-b). In the top left-hand corner there

is also a text saying what the current table is.

This graph view offers a rich set of interactions that enable useful exploration

of the RDBMS by itself. The user can click on a node/table and go to that table

(Figure 4-6a). Any new direct neighbors of the clicked table and corresponding edges

are added to the graph and highlighted with an animation (Figure 4-6b). The user

can click on the What’s new button to replay the highlight animation. To reduce

the density of the graph, the user can hit the Trim button to see only the current

table and its direct neighbors. The user can also pan the graph and use the Re-center

button to bring the current table back to the center of the graph view.

Note that in a traditional ER diagram10, data columns and PK-FK relationships

are always visible. Yet this generates visual clutter when there are tables with many

columns or too many PK-FK relationships. While many have worked on addressing

9We use a galaxy setting for our UI where the user explores a database as an astronaut jumping
between planets that represent tables.

10The ER diagram of the example MONDIAL database is available here: https://www.dbis.
informatik.uni-goettingen.de/Mondial/mondial-ER.pdf

116

https://www.dbis.informatik.uni-goettingen.de/Mondial/mondial-ER.pdf
https://www.dbis.informatik.uni-goettingen.de/Mondial/mondial-ER.pdf

Figure 4-7: Hovering over a meta node.

this issue of ER diagrams (e.g. [129, 118, 141]), we take the simple approach of only

revealing the columns or PK-FKs upon hovering a node or edge (Figures 4-3i and

4-3j).

The rationale is that understanding schema information is a relatively secondary

task and can be completed on demand. To cope with “wild datasets” where a table has

many neighbors, we implement a strategy showing only a sample of neighbors at the

beginning11, and use a meta node in grey to represent the rest of the neighbors. The

user can hover over a meta node and see the rest of the neighbors in collapsed panels

(Figure 4-7). Each panel can be expanded which reveals the detailed information

about a table. Clicking on the go icon on the right brings the user to that neighboring

table, similar to clicking on a normal node. After that, the meta node becomes a

normal node representing the clicked neighbor and a new meta node is generated for

the last table.

11There are numerous ways to choose which tables to sample, e.g., based on popularity, PK-FK
connections a table has, etc.

117

Figure 4-8: When hovering over a jump path, an animated astronaut icon signals the
move from one table to the next.

4.5.3 The Visualization View

The visualization view (Figure 4-3b) presents one visualization at a time. We reuse

some functionalities from the Kyrix frontend including rendering the visualizations

and navigation buttons (top left-hand corner in Figure 4-3b), but also add several

new functionalities.

First, we group the jump paths based on the table (𝑉𝑇) of the target visualization

𝑉 (Figure 4-3g). This enables quick browsing of similar jump paths on the same

data (R1-a). The table names are sorted alphabetically to make it easy to locate a

destination table based on its name.

Second, when hovering over a jump path, a popover shows up to help the user

preview the query of the next visualization and the generated filters (Figures 4-1c,

4-1e and 4-1h) which facilitates the understanding of the queries and relationships

between tables (R2-a). Further, in the graph view, we show an animation of a semi-

transparent astronaut icon moving from the current table to the table of the target

visualization (Figure 4-8) to help the user be aware of which table they will go to

(R2-b). Labels of the table names are also shown at this time.

Third, when the user decides to take a jump path, we show an animation of a

flying rocket (Figure 4-9) before switching to the next visualization to help the user

stay aware of an ongoing jump (R2-b). At the same time, there is also a animation

118

Figure 4-9: The visualization view uses an animated rocket to indicate a jump to
the next visualization, which is coordinated with the astronaut icon movement in the
graph view.

of the astronaut icon in the graph view moving along the corresponding edge. We

coordinate these two animations so that the rocket flies in the same direction as the

astronaut icon moves, to help the user achieve a stronger sense of the movement from

one table to another. After the animation ends, the astronaut icon ends up at the new

table. New direct neighbors and corresponding edges are added if not exist, similar

to clicking on a node to expand the graph.

Lastly, the user can hover over the See Another Vis button to see a list of all

visualizations for the current table (Figure 4-10). Clicking on a visualization brings

the user to that visualization and updates other views accordingly. This enables quick

switch to visualizations on the same data without going through pivot jumps.

4.5.4 Informational Views

The informational views display relevant information about the current state (R2-

a), including the current query (Figure 4-3d), the current filters (Figure 4-3e) and

mappings from data columns to visual properties (Figure 4-3f).

In the query view, the user can click on the raw data button to see a sample

of raw data items in a tabular format. We separate filters from the query because

filters help signal what objects have triggered a pivot jump, therefore helping keep

track of the user’s location (R2-b). For example, in Figure 4-3, the filter province

119

Figure 4-10: Hovering over See Another Vis reveals a list of all visualization for the
current table.

= California suggests that the user selected the object California to trigger the

last pivot jump.

4.5.5 Bookmarking and History

To support going back to a previously visited visualization (R2-c), Kyrix-J allows the

user to bookmark a visualization by clicking on the Save to Bookmarks button in

the visualization view. All bookmarks can be browsed in the bookmark tab (Figure

4-3h). Each bookmark item contains a thumbnail of the visualization, as well as

the corresponding table name at the bottom which serves as the “address” of the

bookmark in the data space. Clicking on the thumbnail brings the user back to the

bookmarked visualization. Clicking on the magnifier icon in the bottom right reveals

a full screenshot of the bookmarked visualization which the user can download, edit

and share with others.

The history tab (Figure 4-1g) logs all visualizations visited. Each item works

similarly as a bookmark item. For simplicity we only show in our prototype a linear

history where visualizations are sorted by the order in which they are visited. In the

future we will investigate more complicated mechanisms (e.g. support branching [70]).

120

4.6 Evaluation: A First-use Study

We conducted an observational first-use study to evaluate the usability of Kyrix-J.

Specifically, we want to answer the following questions through the study: 1) Can

Kyrix-J help users perform pivot jumps in an efficient and accurate manner? 2) How

much can Kyrix-J help users stay oriented during exploration? 3) How helpful is each

UI element? 4) What are possible improvements for the current system?

We recruited eight participants (5 females, 3 males, age range 21-55) through post-

ing ads in online forum and mailing lists. Participants reported a diverse background

in database and visualization technologies. Six participants reported more than one

year of experience with RDBMS related tools while four reported more than one year

of experience with data visualization. The Kyrix-J application used in this study was

based on the MONDIAL database (which is the example RDBMS used throughout

the chapter) and had 40 tables, 70 visualizations and over 1,000 pairwise jump paths

between visualizations.

4.6.1 Procedure and Tasks

At the start of each study session, we asked the participant to fill out a consent

form. We then gave the participant a tutorial on Kyrix-J and demonstrated how to

use Kyrix-J to complete simple search tasks. The participant then went through a

training phase where they were asked to complete two example search tasks to gain

familiarity with the UI and the data. The participant was also encouraged to spend

as much time with the system and ask as many questions as they need. In the main

experiment we asked the participant to complete five search tasks (Table 4.1) using

Kyrix-J and recorded the time taken and the accuracy. During task completion, the

participants were allowed to ask the experimenter general questions about the UI

and the dataset. After the completion of the tasks, we collected free-form feedback

from the participant in a semi-structured interview. The study concluded with the

participants filling out a post-study questionnaire where they rated how much they

agree with statements about the usability of Kyrix-J on a 5-point Likert scale (1 –

121

Table 4.1: Search tasks used in the user study.
Task 1 Is the following statement true? The 3rd largest ethnic

group in the 4th largest country in the South America con-
tinent is European.

Task 2
a: Find the 4th most populated country in the world.

b: Find the most populated city in that country.

c: Find one organization headquartered at that city.

Task 3 Find the population (in 2011) of the 3rd most populated
city in the most populated province in the world.

Task 4 Is the following statement true? Ukerewe is an island in the
3rd largest lake in the world.

Task 5
a: Find the country with the 2nd largest average city eleva-
tion.

b: Find the 2nd most spoken language in that country.

strongly disagree and 5 – strongly agree).

Each session was conducted on a video conferencing platform and lasted roughly

one hour. We asked the participant to share their screen when using Kyrix-J to

complete the search tasks. With the consent from the participants, we recorded the

session including all the interviews for post-study analysis. Each participant was

compensated $20 for their time.

The tasks in Table 4.1 were designed so that the participants could start from a

visualization and perform one or more pivot jumps to another visualization contain-

ing the answer. We varied the descriptions of the tasks (checking if a statement is

true/false, one-sentence question and subtask-based question) to account for potential

human bias in understanding the tasks.

4.6.2 Results and Discussions

Task completion. All participants were able to complete all tasks with minimal

guidance. The completion times for the tasks are shown in Table 4.2. The average

total completion time for all tasks was 11.4 minutes. It is worth noting that Task 5

took longer to complete because we designed the task so that it was not straightfor-

ward to search for the starting visualization, which required using the See Another

122

Vis button (Figure 4-10).

Completions of the tasks were mostly accurate. Only two participants got one

task wrong on the first try, which was due to inaccurate numerical comparison (e.g.

mistaking the 4th lengthiest bar for the 3rd) and misunderstanding of the task. Both

were able to quickly correct themselves after realizing the mistakes.

Table 4.2: Average task completion times and standard deviations (in minutes).
Task 1 Task 2 Task 3 Task 4 Task 5

𝜇 2.2 1.7 1.8 1.7 4.1

𝜎 0.6 0.7 0.6 1.0 2.0

Ease of use and learning. In the questionnaire, participants rated that Kyrix-J was

easy to use (𝜇 = 4.63, 𝜎 = 0.52) and easy to learn (𝜇 = 4.75, 𝜎 = 0.46). Many partic-

ipants gave positive comments on the overall experience: “it’s very natural to jump

from thing to thing (P1)”,“this (Kyrix-J) helps me figure out what tables are related

to each other, what are the PK-FK relationships, where am I in filtering (P2)”,“the

jumps help data discovery (P7)”,“I want to use this tool for my personal use if I can

(P8)”. Participants especially liked the ability to browse a lot of jump paths: “I like

the options for drill down (jumps), you can have multiple options so you are not lim-

ited (P6)”,“it helps showcase the possible ways you can filter different tables (P7)”,“the

pace at which I can quickly jump from one visualization to another is amazing (P8)”.

Helping users stay oriented. In the questionnaire, participants rated that they

could effortlessly navigate the database content and be aware of their current location

in the space (𝜇 = 4.25, 𝜎 = 0.46). When asked how much they were able to “stay ori-

ented” and keep track of things like the current table and query, participants reported

that “I have a pretty good feel for it (P1)”,“it was pretty easy to keep track of where I

was (P3)”,“I was able to do that (stay oriented) a lot (P4)”,“fairly well (P6)”. They

commented that they could understand what table they were at by looking at the

SQL query (P5) and where they jumped from/to by looking at the filters (P3 and P5).

On the other hand, one participant (P7) felt that “after you spend sometime digging

into the visualizations, it’s more difficult to remember exactly where you came from.”.

123

In a post-study interview, P7 and the experimenter discussed possible improvements

such as visualizing the current jump chain in the graph view using several astronaut

icons with decreasing opacity. We will investigate these possible designs in future

work.

The keyword search box. All participants rated the keyword search functionality

to be helpful (𝜇 = 4.88, 𝜎 = 0.35) and gave many positive comments: “I really like

being able to search for column names and keys (P3)”,“search and vis work really

well together (P8)”,“I found it really easy to search for my starting point (P8)”. One

observation was that the participants used the search box more often than alternatives

(e.g. the graph) to find a starting visualization or table. The reason could be that the

search functionality was similar to using a web search engine which people nowadays

are very familiar with.

The graph view. The Likert score on the helpfulness of the graph view is relatively

high (𝜇 = 4.00, 𝜎 = 1.60). Most participants found the graph view to be useful, e.g.,

“graph is easy to pan and see three or four jumps, it might get too busy, but still pretty

easy to follow (P3)”. However, two participants (P1 and P5) expressed that they did

not find the graph to be helpful. They explained that this was in part because the

search tasks are specific enough to be accomplished without much interaction with

the graph view. As P7 pointed out, “if I’d do more free form exploration the graph

would be more useful”.

The informational views. In the questionnaire, participants rated that the in-

formational views (i.e. query, filters and visual-data mappings) were helpful (𝜇 =

4.25, 𝜎 = 0.71). One participant (P6) who is an experienced RDBMS user commented

that “The fact that the query is there and the filter is there is helpful, especially since

I’m used to SQL, so it feels like home”. P1 also said that “The query box is nice to

see what’s going on”. Others noted that “the information presented is straightforward

and can be something that is toggled on (P6)”. P7 suggested that “query and filters

view might not be super helpful for free explorations, but useful if my end goal is to

write a query”. Based on these feedback, we can offer the option to toggle off the

informational views as a possible improvement.

124

The animations. Participants had diverging opinions on the helpfulness of the

animations in the UI as indicated by the Likert score (𝜇 = 3.25, 𝜎 = 1.66). P3

commented “animations might not be helpful if I know the schema very well”. P6

suggested that the rocket animation “needed to be shorter”. Others who liked the

animations noted that they enjoyed the interactivity the animations brought. As

an improvement, we can make the animations and their duration configurable and

shorter by default.

Bookmarks and history. Participants feedback on the helpfulness of the book-

marking and history functions are mostly positive (𝜇 = 3.63, 𝜎 = 1.06 for bookmarks,

and 𝜇 = 4.00, 𝜎 = 0.93 for history). Although the Likert scores are not very high, it

was largely due to the fact that it was hard to justify the need to recall history in a

short study session. As P7 noted, “If I spend a lot of time with the tool, the bookmark

will be helpful”.

Comparison with alternative techniques. Not all participants had prior experi-

ences with pivot jumps, but they still provided insights on what alternative techniques

they might use to complete similar tasks. Many participants mentioned using the SQL

command-line interface offered by the RDBMS as an alternative. However, they also

pointed out using a graphical interface like Kyrix-J would be easier and more intuitive:

“that (using a SQL command-line interface) would require knowing the schema a lot

better. I need to pay a lot more attention (P1)”,“it (Kyrix-J) automates all the painful

coding you have to do (P2)”,“I don’t have to write 10 to 20 lines of code, everything

(in Kyrix-J) is a click away. It’s like shopping on Amazon (P4)”.

One participant (P6) had used a variety of tools (e.g. Tableau [125], Chartio [1]

and SSIS [12]) to do pivot jumps in professional settings. She noted that a common

limitation of the tools she used was that they only supported pivot jumps in the same

table, which is inline with our discussions in Sections 4.1 and 4.2: “going to another

chart is challenging because when they (tool creators) are building it, they often will

grab the only the values you can find in that chart (table). When you want to grab

something outside that chart (table), it’s not easy to do”. P6 further commented that

“Having drill down (pivot jump) like Kyrix-J in one of those tools I’m using would be

125

amazing.” P8 also compared using Tableau to do pivot jumps versus using Kyrix-J

and echoed that Kyrix-J offers a better experience.

More suggestions on improvements. A common feature suggested by the partic-

ipants was to enable editing of the visualizations in the UI. They thought “being able

to edit the query and filters would be nice (P4)”, and many wanted to create their own

SQL query and visualization directly in the UI (P1 and P4). Although all tasks in

the study were doable with the 70 available visualizations, being able to create visu-

alizations in situ could make the system more powerful. P2 commented “it (Kyrix-J)

is limiting when the thing should show up doesn’t show up”, which was referring to the

case where a desired jump path does not exist from a visualization and she wanted to

write custom queries and visualizations instead of searching for another visualization.

Currently, Kyrix-J offers a JSON interface for authoring visualizations. Bring that

functionality into the UI is an obvious and straightforward improvement.

The rest of the suggestions were more minor, which included examples such as

using the right mouse click instead of the left click to open up the jump paths popover

window (Figure 4-3g), which resembled a menu that people are more accustomed to

open using right clicks. We have digested these feedback and are preparing a more

polished version of the system in a future release.

4.7 Discussions on Limitations and Future Work

In this section, we discuss the limitations we see in the current system and outline

potential future work.

Enabling visualization authoring. As suggested by the user study results, a de-

sirable feature is to enable authoring/editing visualizations in the UI. Although it is

straightforward to bring the current JSON-based command-line authoring paradigm

into the UI, it currently only supports simple SELECT and GROUP BY queries as dis-

cussed in Section 4.4.1. We plan to lift this restriction in the future to support more

types of SQL queries. The challenge here is how to support large query results in the

process of visualization authoring. It is undesirable if a user has to wait for a long

126

time for the query result to return every time a query is changed. We will look into

using sampling strategies to enable interactive authoring on large datasets, as well as

design an asynchronous workflow to query the database if a user decides to run a full

query.

Tackling databases in the wild. RDBMSes in the wild are very complex, consisting

of a large number of tables that often lack maintenance [126] which leads to data

lakes [66, 92] or even data swamps [29] that are highly unstructured and hard to

understand. To deploy Kyrix-J in the wild, we face the following challenges.

First, table and column names are often machine-generated. The quality of vi-

sualization titles may not be high if they are authored by users in a multi-user en-

vironment. These will make it harder to comprehend the meaning of a pivot jump.

We plan to address this challenge by integrating with metadata management systems

(e.g. Google’s Goods [65] and Lyft’s Amundsen [3]) to ensure that popular tables are

more visible to the users and get more quality crowd-sourced annotations of tables

and columns. We will also investigate quality control mechanisms such as allowing

custom-made data visualizations by users to be rated by a pool of users so that we

can make highly-rated jump paths more visible and vice versa.

Second, the amount of jump paths will grow tremendously at scale when there are

hundreds of even thousands of visualizations. The current way of browsing the jump

paths is limiting in that it requires a user to scroll through a list of paths. To enable

more efficient browsing of the jump paths, we plan to offer a functionality to allow

the user to search a jump path using keywords.

Supporting more types of filters. Currently the filter function of a jump path

(Definition 2) supports only the selection of one input object and outputs only equality

filters. One avenue of future research is to support more powerful types of filter

functions, e.g., ones that allow the selection of multiple objects or even support more

numerical comparisons such as greater than. More powerful filter functions will make

Kyrix-J able to answer questions such as: what countries have an area between United

States and India? Note, however, that one potential challenge is that the space of

possible jump paths will be significantly larger because of more ways to compare

127

values and combine the filters. We envision that there needs to be a mechanism to

intelligently filter out “unexciting” jump paths or guide users through constructing

their own jump paths.

4.8 Conclusion

In this chapter, we present the design of Kyrix-J, an end-to-end system for support-

ing effective pivot jumps between visualizations for multiple tables in an RDBMS

environment. Kyrix-J addresses two major challenges raised by a multi-table RDBMS

setting which prior systems fail to address. First, data attributes are highly con-

nected in an RDBMS, leading to a large number of possible jump paths. Kyrix-J

automatically generates meaningful jump paths based on PK-FK relationships be-

tween tables, thereby freeing users from manually creating filtered visualizations.

Second, performing pivot jumps between multiple tables can be disorienting to users

because it involves comparing and joining columns from multiple tables. To support

the users in staying oriented, Kyrix-J contributes a novel UI which features the use of

coordinated multiple views to enable users to quickly navigate between visualizations

using pivot jumps, while also being able to keep track of information such as what

table they are visually examining, where they come from and what the current SQL

query is. To evaluate the effectiveness of Kyrix-J, we conducted a user study where

eight participants performed search tasks using Kyrix-J in an RDBMS with 40 ta-

bles, 70 visualizations and over 1,000 pairwise jump paths between the visualizations.

The results showed that all participants completed the tasks fast and accurately and

rated Kyrix-J to be easy to use and help them stay oriented during their exploration.

Participants also gave positive feedback on the system as well as suggestions which

inspired possible improvements.

128

Chapter 5

More Discussions

Systems research is coupled with a lot of decision making, usually as attempts to

optimize for both generality and applicability in the real world. The three systems

described in previous chapters are no exception. Over the course of the develop-

ment, we constantly prioritize certain features that might be of more interest to the

visualization and database community than others, try different directions and im-

plementation methods, and optimize between trying a lot of novel ideas and making a

more usable research prototype system in order to see more applications of completed

research. After the thesis is done, we have collected a list of things that we have tried

but did not end up in publications as well as things that are worth being worked on in

the future. This chapter serves as a documentation of such things, including lessons

learned, alternative designs, limitations and future work.

5.1 The Multi-dimensional Performance Problem

We have tackled the performance problems in the systems, Kyrix and Kyrix-S in par-

ticular, along many dimensions. First, we need to optimize for both the online perfor-

mance and the offline performance. Second, we also need to consider both the vertical

scalability (i.e. the ability to scale on a single computer) as well as the horizontal

scalability (i.e. the ability to scale with more computers). Lastly, different types of

databases also require different scaling strategies. In the following, we elaborate on

129

these performance dimensions.

5.1.1 Online Performance

In both Kyrix and Kyrix-S, we have required the systems to respond to any user inter-

action under 500 ms, en empirical upper bound used widely by popular websites [11].

While in the performance experiments we showed that the systems could satisfy this

requirement in a variety of settings, we do note that we made a few assumptions about

the experiment settings and that to relax these assumptions we need to improve the

systems in certain ways.

First, we used cloud instances with decent internet connections to host our web

server. The client was in the same country (the United States). This setup ensured

that the network transmission times were only a small fraction of the end-to-end

latency. However, in the real world not everyone has good internet connections. We

probably need to assume that network time is a big fraction of the 500 ms budget

and further constrain the latency budget for fetching the data from the database.

Fortunately, experiments in Sections 2.8 and 3.8 have shown that the data fetching

response times were in the order of tens of milliseconds, leaving plenty of room for

potentially long network transmission times. Further, in really bad situations, we can

progressively send data (e.g. one object at a time) from the backend to the frontend

so that the user could see partial visualizations quickly.

Second, we assumed that the number of objects in any viewport was not too

high (e.g. thousands at most) and thus the frontend rendering time was negligible.

Bounded visual density is guaranteed by Kyrix-S. In Kyrix, it is the developer’s job

to ensure that the density of objects is low otherwise both the frontend rendering

and the network transmission can be more time consuming. However, as the field of

information visualization advances, a few visual representations emerge where high

visual densities are in fact desirable. For example, Philippe et. al visualizes a large

collection of documents as point clouds [105] in a galaxy-like environment which

allows a user to both grab high-level object distributions as well as inspect individual

objects. The current object-based data fetching paradigm is limiting in these high-

130

density cases because it is prohibitive to both transmit a lot of objects to the client

and render them in the frontend. To make high-density visual representations work,

we can explore a few directions. First, we can pre-render the visualizations as images

on the server-side, and only fetch the images into the client. This approach has several

drawbacks which are discussed in Section 2.5.3. Second, we can look into advanced

compression mechanisms to make the network transmission times acceptable, and

then use GPU-based renderers to render a massive amount of objects in parallel.

5.1.2 Offline Performance

Both Kyrix and Kyrix-S use an offline phase to compute object layouts and spatial

indexes. As noted in the developer study results (Section 2.7), this can hinder the

iterative workflow of visualization developers. We have made some attempts to re-

duce this turnaround time, both in a single-node setting (vertical scaling) and using

multiple nodes (horizontal scaling). Here, we describe the approaches we have tried

and also other potential solutions.

Vertical Scaling Approach 1: the “Funny” R-tree

The most time-consuming part of the indexing phase in Kyrix (and also in Kyrix-S)

is building the database spatial indexes, which are often in the form of 2D data

structures such as R-trees [63]. Building a disk-based R-tree for a large set of data

points is expensive because the database needs to write out many new pages to store

R-tree nodes, which are linear in the number of data points. A post-sorting process

is also needed to “cluster” the index pages in Z order [109] or Hilbert order [75] so

that online queries incur less disk seeks, which is another process with a running time

directly related to the number of data points.

The “funny R-tree” solution1 is based on a simple idea: we compress nearby data

points into one row (e.g. with a big string field) in the database table instead of

multiple rows, and then build the indexes on the new table with much fewer rows.

1The name “funny” R-tree was how Professor Michael Stonebraker was referring to this approach.

131

The intuition is that by reducing the number of rows, we essentially reduce the size

of an R-tree, which leads to shorter build time. Each of these “super” rows now

represents a set of data points, whose bounding box column (the bbox column in

Figure 2-8) is the bounding box of these data points.

The runtime logic is also simple: the backend fetches from the database all super

rows whose bounding boxes intersect the viewport, decompresses the rows into normal

rows and then sends them to the client. Note that there can be rows fetched that

contain objects not in the viewport which can be simply discarded. It is, however,

guaranteed that objects in the viewport will always be fetched.

Now the “magical aspect” of this approach is that the runtime performance is also

improved because the runtime performance is linear in the depth of the R-tree and

that we now have a shallower R-tree because of the reduction in the number of rows.

This means that we are not trading off runtime performance for shorter build time.

A key question is how we define what “nearby points” are when performing the

row compression. While many clustering algorithms can be applied, only ones with

a relatively short running time are acceptable otherwise it might lead to even longer

build time. Note that we do not need exact clustering algorithms such as kNN which

tend to have a quadratic time complexity. Therefore, approximate algorithms with a

linear time complexity such as Birch [144] can be applied.

In our experimentation, we used an even simpler approach which partitions a Kyrix

canvas into equal-sized grids, and compress all objects in each grid as one database

row. This approach is simple yet effective. It reduced the build time of Kyrix on

one billion objects in a single-node PostgreSQL database from one week down to 12

hours. The runtime performance was on the order of single-digit milliseconds, which

was also a big improvement over the original one-row-per-object approach.

Note that this approach is not without limitations. By serializing a set of data

points into one compressed row, we lose the ability to apply filters on the raw data

attributes. Therefore jumps may not be applicable in canvases that adopt this opti-

mization. To enable filtering, we can apply the filters in the backend or in the client.

Yet that requires the selectivity of the filter to be low to prevent fetching a large

132

number of unfiltered objects into the memory.

Vertical Scaling Approach 2: Spatial Partitioning

Our second single-node approach is based on database partitioning. The idea is

to partition the set of objects in one Kyrix layer into multiple database tables. The

original big R-tree index thus turns into a set of smaller R-trees, one on each partition

table, which can lead to a shorter aggregated build time. The reason is that the disk

thrashing involved when the R-tree index could not fit in the memory can be much

more expensive as the number of objects increases.

We can partition the table spatially (e.g. similar to the spatial partitioning used

in Kyrix-S) so that runtime queries tend to hit the same table more often. The

only difficult case is when a user viewport spans multiple partition tables where the

database needs to query different tables.

In one case study using PostgreSQL, we observed that the build time was improved

by five times using this approach compared to the original approach. The dataset

used had 100 million objects. The response times still stayed around 100ms-200ms

even when multiple queries were involved.

Moreover, this approach can be combined with the first vertical scaling approach

to further optimize both build time and runtime performance.

Vertical Scaling Approach 3: Pre-sorting the Data

Another approach which could in theory reduce the build time is to pre-sort the 2D

objects using Z order [109] or Hilbert order [75] outside the database. This observation

comes from the fact that we need the objects in the database to layout in Z order

or Hilbert order to reduce disk seeks at runtime, and that currently we rely on the

database to perform this sorting, which is often not optimized. For example, in

PostgreSQL, the data is sorted by traversing the 2D spatial index tree, which could

lead to large amounts of disk seeks and thrashing. Nowadays, there are very powerful

external disk-based sorting algorithms that fully leverage the underlying hardware for

high performance [15]. By utilizing these algorithms, it is possible that build time

133

can be reduced without affecting runtime performance.

Horizontal Scaling: Multi-node Approaches

As shown in the Kyrix-S Chapter, our index paradigm is amenable to scaling hor-

izontally, which means utilizing a set of distributed database instances to perform

indexing in parallel. For Kyrix we also implemented distributed indexing using Citus,

the distributed extension for PostgreSQL.

The key in making Kyrix work with a distributed database lies in how we partition

the data. We have two options: hash-based partitioning and spatial partitioning.

Both strategies have their pros and cons. Hash-based partitioning involves little build-

time overhead after the data is loaded (often in parallel), but may have poor runtime

performance especially in a multi-user setting. The reason is that in a distributed

database with a coordinator-worker model, the coordinator needs to communicate

with multiple workers for one data fetching request, which can incur lots of CPU and

I/O costs. On the other hand, partitioning the data spatially can avoid this problem,

but can involve expensive build-time overhead as the coordinator needs to reshuffle

the data across the cluster in order to put objects in the right partitions, which is

often an expensive I/O bound process as shown in Figure 3-10. More experimentation

is needed in order to decide which approach to use for a given use case.

Sampling for Interactive Debugging

It is conceivable that even with extensive optimizations, it might still be hard to

achieve interactive debugging which requires sub-second build time. As one possible

future work, we can investigate the use of sampling to allow a developer to see partial

visualizations interactively for debugging, and only commit for a full indexing once

they are sure that no more change/tweak of indexing-related parameters is needed.

Alternative Databases

The prototype systems are “married” to the relational database PostgreSQL, which

is decision we make based on its popularity and also after experimenting with other

134

databases. For example, we have tested the integration with Vertica, a columnar

database. However, the spatial indexes were not fast enough to support 500 ms

response times. We have also tried SciDB, an array database, but failed to integrate

because the array database data model did not allow objects to have any overlap.

Nevertheless, there are alternative databases that are worth exploring in the fu-

ture. For example, the Citus distributed extension of PostgreSQL used in Kyrix and

Kyrix-S, while being powerful, uses a coordinator-worker model which incurs signifi-

cant build-time overhead for spatial partitioning. A distributed database with a more

decentralized model could alleviate this problem. Also, we can extend Kyrix-J to sup-

port document databases [67] where there are lots of relationships between objects

that can be better understood with the help of jumps.

5.2 Updating Data

Frequently updating data is very common in a variety of domains such as trans-

portation, finance and web monitoring. Yet due to potentially limited outreach, we

unfortunately did not meet a real use case that required the support for data that

is frequently updated. Oftentimes, daily/weekly updates of the data were performed

and therefore re-running the offline indexing phase was sufficient for the use cases we

met. Since we drove our research based on the use cases at hand, we did not prioritize

the support for frequent data updates.

To support streaming data updates in the future, we outline here a few possible

strategies. In Kyrix, supporting updating data is actually straightforward. Since Kyrix

builds an index table for each layer, we only need to use database triggers to listen to

updates on the raw data table, and then propagates the updates to raw data tables to

the index tables. The spatial indexes built will typically be updated by the database

automatically in logarithmic time.

Supporting data updates in Kyrix-S is more challenging due to the inflexible place-

ment requirements used in the layout algorithm: 1) objects can only overlap to a cer-

tain degree, 2) object density cannot be higher than a given threshold in any regions

135

and 3) we need to place more important objects on top zoom levels. The layout algo-

rithm is expensive so we cannot afford re-running it on every change to the placement

of one object. Without rerunning the algorithm, the users will possibly experience

undesirable visual clutter, see some unimportant objects on top levels, and miss im-

portant objects that are buried in lower levels as the updates come in. A potential

way to alleviate this problem is to re-run the algorithm periodically, or maybe use

a profiler to monitor the overlap, density, and the visibility of importance objects,

and only rerun the algorithm if the metrics being monitored become too low to be

acceptable.

Fortunately, it is still straightforward to update attributes that do not affect the

placement of the objects in Kyrix-S. Similar to supporting updates in Kyrix, we listen

to data updates to the raw data tables using database triggers. Then starting from the

bottom zoom level, we propagate the changes according to how clusters are merged

and update the aggregations at the same time.

Note that even if the database indexes are up-to-date, a user might still be looking

at stale data. We can use modern web technologies such as web sockets to notify users

that the data is out of date and that they can refresh the browser to see new data.

Another way to look at data updates is that the systems themselves can be used as

interfaces for performing data updates. We refer interested readers to Peter Griggs’s

masters thesis [17] which includes several promising proposals on how to use Kyrix

and Kyrix-S as interfaces for updating the database.

5.3 Continuous Zooming

A common question we get is: given the discrete canvas model of Kyrix, can Kyrix sup-

port continuous zooming? Continuous zooming often means that a user can seemingly

infinitely scroll to zoom in and see more objects appear in a smooth and continuous

way.

The answer to this question is yes, despite that the canvas model is discrete. The

reason is that for any continuous zooming application, the set of altitudes of objects

136

(i.e. a real number indicating how deep one object is down the zoom hierarchy) is

always finite and discrete. We can create a canvas for each distinct altitude. The

resulting application will then be a continuous zooming application.

A more relevant question is: whether the canvas model is the best way to author

a continuous zoom application? The answer is probably no. Ideally, a developer only

needs to specify what objects are on the same altitude, and the exact altitude on

which those objects appear, without worrying about canvases and their sizes. Yet, we

can easily build a higher-level language on top of the current canvas-based language

which allows such specifications and translate them to canvases behind the scenes.

Implementation wise, a related challenge in Kyrix-S is that it is hard to achieve

continuous zooming for some renderers that are based on Kernel Density Estimations

(KDE), e.g., heatmap and contour in Figures 3-2a and 3-2b, which need to be re-

rendered on every zoom-in (scroll) event in order to see continuous changing of the

visualizations. These renderers, which require computations that are on the order of

total available pixels, are too compute-intensive for the web SVG model we use. We

plan to investigate GPU-based renderers such as WebGL to address this issue in the

future.

5.4 Open Source

We have released the prototype systems as open source software. Kyrix and Kyrix-S are

in the same Github repository at https://github.com/tracyhenry/kyrix. Kyrix-J

is in this Github repository at https://github.com/tracyhenry/kyrix-j.

Although we have tried extensively to create a community around open source

Kyrix, we have not succeeded much in doing so as of writing this thesis. Although we

could use the excuse that we have been shorthanded (with only one full-time PhD

student and master/undergraduate students who come and go), there are things that

we could have done better at. Here, we want to document these learnings which

hopefully can inspire interested readers.

First, we have not been super committed in helping our users deploy their appli-

137

https://github.com/tracyhenry/kyrix
https://github.com/tracyhenry/kyrix-j

cations. Due to the need to write papers and theses as well as the desire to work on

more general research problems, we graduate students could easily get bored by the

endless minor revision requirements proposed by our users. This has contributed in

part to some users deciding not to use the applications built by us. In fact, as shared

by maintainers of many successful open-source research projects, it is critically im-

portant to “over” deliver on the first few users so that they are willing to help spread

the words. More adopters could lead to more use cases, more collaborators and thus

more interesting research ideas, which are often worth the grunt work that needs to

get done.

Second, it is important to choose the technology stack that integrates well with the

rest of the world. We were not super careful in choosing our tech stack, partly because

of the inexperienced lead maintainer, the author of this thesis, me. I had written

very little full-stack code before we started the Kyrix project in 2018. As a result,

many immature engineering decisions were made that did not follow industry best

practices/standards. For example, I chose to write the backend in Java in part because

of personal familiarity, which is arguably not one of the top choices for a backend

language. As another example, although I made the right call that Kyrix should offer

mechanisms to easily embed a Kyrix app in other web applications, the implementation

required the target application to include many large dependency files. The industry

standard seems to be using HTML iFrame, which is more convenient and lightweight.

In hindsight, there are countless ways we can architecture the systems differently

so that they are easier to be integrated with other systems such as popular frontend

frameworks (e.g. React and Vue) and data science platforms (e.g. Jupyter note-

books), and potentially will attract more users and collaborators. Fortunately, we

have learned the lessons and will try harder in the future.

138

Chapter 6

Conclusion

In this thesis, we contributed three integrated systems Kyrix, Kyrix-S and Kyrix-J to

facilitate the creation of scalable details-on-demand (DoD) data visualizations. As

datasets get increasingly larger, the need for scalable tools that bring insight into big

data is increasing rapidly. With the release of these systems as open source software,

we hope that we have equipped visualization developers another powerful weapon to

tame their complex datasets.

In addition to being useful tools on their own, the systems open up a lot of

future possibilities. With Kyrix being the foundation system, we can explore high-

level designs for a variety of other use cases. For example, a large graph network is

inherently amenable to being visualized in multiple level of details to mitigate the

potential visual clutter generated by lots of nodes and edges. It is an interesting

and open research question as to how to construct the levels of details to satisfy

similar usability requirements in Kyrix-S. The problem should be harder since it

also involves the display of edges. An even harder case would be to visualize a

large knowledge graph, where the nodes and edges can have different categories.

Nonetheless, regardless of how the levels of details are constructed, Kyrix can serve as

the foundation that a high-level extension is built on top of where its data fetching

pipeline and rendering engine can be reused. In fact, the research team behind Kyrix

is working on building such an extension system of Kyrix for graph networks. As

other examples, the DoD paradigm can facilitate the understanding of hierarchical

139

data and time series data. It would make sense to build on top of Kyrix to support

these types of data as well.

Looking forward, we hope that our research can inspire researchers to explore more

scalability problems in the field of data visualization. Historically, the visualization

field is largely concerned with designing new visual representations for small-scale

data that usually can fit in the client memory. As datasets get bigger, it makes sense

to remove this assumption and explore ways to scale novel visualization methods to

practical data size.

Further, our systems have shown that the meaning of scalability could be different

in different settings. In Kyrix, we aim to scale to large data tables. In Kyrix-S, we

have handled “perceptual scalability”, which means designing algorithms to make

visualizations easier to be consumed by a human. In Kyrix-J, we need to scale to

a large number of relationships between pairwise visualizations. Similar scalability

problems exist in every corner of the rapidly evolving field of data visualization. For

instance, one can explore the problem of multi-user scalability, i.e., supporting a large

number of concurrent users who are viewing/editing the visualization collaboratively.

As another example, data visualizations are scattered all over the Internet. We can

explore how to identify interesting visualizations (e.g. ones that match a natural

language description or match a given visualization) from a potentially large number

of sources on the Web.

To solve these scalability problems, we believe the design principles proposed in

this thesis, namely 1) offer declarative visualization languages to facilitate rapid au-

thoring and 2) work with a database system to transparently handle the optimizations

needed for interactivity, form a framework that future scalable visualization systems

adopt or refer to. With more emphasis on scalability, our visualization community

will be able to contribute significantly to the democratization of big data.

140

Bibliography

[1] Chartio. https://chartio.com/. accessed: 2021/03.

[2] Leaflet markercluster plugin. https://github.com/Leaflet/Leaflet.
markercluster. accessed: 2019/11.

[3] Lyft amundsen. https://eng.lyft.com/amundsen-lyfts-data-discovery-metadata-engine-62d27254fbb9.
accessed: 2021/03.

[4] More powerful data drilling. https://help.looker.com/hc/en-us/articles/
360023589613--More-Powerful-Data-Drilling. accessed: 2021/03.

[5] Mysql workbench. https://www.mysql.com/products/workbench/. accessed:
2021/03.

[6] Postgresql. https://www.postgresql.org/. accessed: 2021/03.

[7] Postgresql documentation: Accessing a database. https://www.postgresql.
org/docs/current/tutorial-accessdb.html. accessed: 2021/03.

[8] Postgresql generalized search tree. https://www.postgresql.org/docs/12/
textsearch-indexes.html. accessed: 2020/07.

[9] Postgresql gin. https://www.postgresql.org/docs/13/gin-intro.html. ac-
cessed: 2021/03.

[10] React js. https://reactjs.org/. accessed: 2021/03.

[11] Site performance for webmasters. https://youtu.be/OpMfx_Zie2g. accessed:
2021/05.

[12] Sql server integration services. https://docs.microsoft.com/en-us/
sql/integration-services/sql-server-integration-services?view=
sql-server-ver15. accessed: 2021/03.

[13] Sqlite foreign key. https://sqlite.org/foreignkeys.html. accessed:
2021/03.

[14] Vega-lite javascript api. https://observablehq.com/@vega/vega-lite-api.
accessed: 2019/11.

141

https://chartio.com/
https://github.com/Leaflet/Leaflet.markercluster
https://github.com/Leaflet/Leaflet.markercluster
https://eng.lyft.com/amundsen-lyfts-data-discovery-metadata-engine-62d27254fbb9
https://help.looker.com/hc/en-us/articles/360023589613--More-Powerful-Data-Drilling
https://help.looker.com/hc/en-us/articles/360023589613--More-Powerful-Data-Drilling
https://www.mysql.com/products/workbench/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/tutorial-accessdb.html
https://www.postgresql.org/docs/current/tutorial-accessdb.html
https://www.postgresql.org/docs/12/textsearch-indexes.html
https://www.postgresql.org/docs/12/textsearch-indexes.html
https://www.postgresql.org/docs/13/gin-intro.html
https://reactjs.org/
https://youtu.be/OpMfx_Zie2g
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-ver15
https://sqlite.org/foreignkeys.html
https://observablehq.com/@vega/vega-lite-api

[15] Sort benchmark. http://sortbenchmark.org/, 2008. Accessed: 2018-09-19.

[16] Introduction to postgresql indexing. https://www.postgresql.org/docs/
current/indexes-intro.html, 2019.

[17] Masters thesis: Database updates using interactive pan and zoom visualizations.
https://peterg17.github.io/files/thesis.pdf, 2021. Accessed: 2021-05.

[18] Christopher Ahlberg. Spotfire: an information exploration environment. ACM
SIGMOD Record, 25(4):25–29, 1996.

[19] Leilani Battle, Remco Chang, and Michael Stonebraker. Dynamic prefetching of
data tiles for interactive visualization. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages 1363–1375, New York,
NY, USA, 2016. ACM.

[20] Leilani Battle, Michael Stonebraker, and Remco Chang. Dynamic reduction of
query result sets for interactive visualizaton. In Big Data, 2013 IEEE Interna-
tional Conference on, pages 1–8. IEEE, 2013.

[21] Benjamin B. Bederson. Photomesa: A zoomable image browser using quantum
treemaps and bubblemaps. In Proceedings of the 14th Annual ACM Symposium
on User Interface Software and Technology, UIST ’01, pages 71–80, New York,
NY, USA, 2001. ACM.

[22] Benjamin B Bederson and James D Hollan. Pad++: a zooming graphical
interface for exploring alternate interface physics. In Proceedings of the 7th
annual ACM symposium on User interface software and technology, pages 17–
26. ACM, 1994.

[23] Benjamin B Bederson, Jon Meyer, and Lance Good. Jazz: an extensible
zoomable user interface graphics toolkit in java. In The Craft of Information
Visualization, pages 95–104. Elsevier, 2003.

[24] Christian Beilschmidt, Thomas Fober, Michael Mattig, and Bernhard Seeger. A
linear-time algorithm for the aggregation and visualization of big spatial point
data. In Proceedings of the 25th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, page 73. ACM, 2017.

[25] Jon Louis Bentley. K-d trees for semidynamic point sets. In Proceedings of
the sixth annual symposium on Computational geometry, pages 187–197. ACM,
1990.

[26] Kenneth Boff, Lloyd Kaufman, and James Thomas. Handbook of perception
and human performance. 1986.

[27] Michael Bostock and Jeffrey Heer. Protovis: A graphical toolkit for visualiza-
tion. IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2009.

142

http://sortbenchmark.org/
https://www.postgresql.org/docs/current/indexes-intro.html
https://www.postgresql.org/docs/current/indexes-intro.html
https://peterg17.github.io/files/thesis.pdf

[28] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven docu-
ments. IEEE transactions on visualization and computer graphics, 17(12):2301–
2309, 2011.

[29] Will Brackenbury, Rui Liu, Mainack Mondal, Aaron J Elmore, Blase Ur, Kyle
Chard, and Michael J Franklin. Draining the data swamp: A similarity-based
approach. In Proceedings of the Workshop on Human-In-the-Loop Data Analyt-
ics, pages 1–7, 2018.

[30] Maarten A Breddels. Interactive (statistical) visualisation and exploration of a
billion objects with vaex. Proceedings of the International Astronomical Union,
12(S325):299–304, 2016.

[31] Sye-Min Chan, Ling Xiao, J. Gerth, and P. Hanrahan. Maintaining interactivity
while exploring massive time series. In IEEE Symposium on Visual Analytics
Science and Technology, pages 59–66, 2008.

[32] Haidong Chen, Wei Chen, Honghui Mei, Zhiqi Liu, Kun Zhou, Weifeng Chen,
Wentao Gu, and Kwan-Liu Ma. Visual abstraction and exploration of multi-
class scatterplots. IEEE Transactions on Visualization and Computer Graphics,
20(12):1683–1692, 2014.

[33] Helen Chen, Sophie Engle, Alark Joshi, Eric D Ragan, Beste F Yuksel, and
Lane Harrison. Using animation to alleviate overdraw in multiclass scatterplot
matrices. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, page 417. ACM, 2018.

[34] Peter Pin-Shan Chen. The entity-relationship model—toward a unified view of
data. ACM transactions on database systems (TODS), 1(1):9–36, 1976.

[35] Xi Chen, Wei Zeng, Yanna Lin, Hayder Mahdi Al-Maneea, Jonathan Roberts,
and Remco Chang. Composition and configuration patterns in multiple-view
visualizations. IEEE Transactions on Visualization and Computer Graphics,
2020.

[36] Xin Chen, Tong Ge, Jian Zhang, Baoquan Chen, Chi-Wing Fu, Oliver Deussen,
and Yunhai Wang. A recursive subdivision technique for sampling multi-class
scatterplots. IEEE transactions on visualization and computer graphics, 2019.

[37] Daniel Cheng, Peter Schretlen, Nathan Kronenfeld, Neil Bozowsky, and William
Wright. Tile based visual analytics for twitter big data exploratory analysis. In
Big Data, 2013 IEEE International Conference on, pages 2–4. IEEE, 2013.

[38] Mark Claypool and Kajal Claypool. Latency and player actions in online games.
Communications of the ACM, 49(11):40–45, 2006.

143

[39] Mark Claypool, Kajal Claypool, and Feissal Damaa. The effects of frame rate
and resolution on users playing first person shooter games. In Multimedia Com-
puting and Networking 2006, volume 6071, page 607101. International Society
for Optics and Photonics, 2006.

[40] Christopher Collins and Sheelagh Carpendale. Vislink: Revealing relationships
amongst visualizations. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1192–1199, 2007.

[41] Qingguang Cui, Matthew Ward, Elke Rundensteiner, and Jing Yang. Measuring
data abstraction quality in multiresolution visualizations. IEEE Transactions
on Visualization and Computer Graphics, 12(5):709–716, 2006.

[42] Bogdan Czejdo, Ramez Elmasri, Marek Rusinkiewicz, and David W. Embley.
A graphical data manipulation language for an extended entity-relationship
model. Computer, 23(3):26–36, 1990.

[43] Raimund Dachselt, Mathias Frisch, and Markus Weiland. Facetzoom: A con-
tinuous multi-scale widget for navigating hierarchical metadata. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’08,
pages 1353–1356, New York, NY, USA, 2008. ACM.

[44] Shaul Dar, Gadi Entin, Shai Geva, and Eran Palmon. Dtl’s dataspot: Database
exploration using plain language. In VLDB, volume 98, pages 24–27, 1998.

[45] Anish Das Sarma, Hongrae Lee, Hector Gonzalez, Jayant Madhavan, and Alon
Halevy. Efficient spatial sampling of large geographical tables. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data,
pages 193–204. ACM, 2012.

[46] Jean-Yves Delort. Vizualizing large spatial datasets in interactive maps. In 2010
Second International Conference on Advanced Geographic Information Systems,
Applications, and Services, pages 33–38. IEEE, 2010.

[47] Mark Derthick, Michael G Christel, Alexander G Hauptmann, and Howard D
Wactlar. Constant density displays using diversity sampling. In Information Vi-
sualization, 2003. INFOVIS 2003. IEEE Symposium on, pages 137–144. IEEE,
2003.

[48] Alan Dix and Geoff Ellis. by chance enhancing interaction with large data
sets through statistical sampling. In Proceedings of the Working Conference on
Advanced Visual Interfaces, pages 167–176. ACM, 2002.

[49] Marian Dörk, Sheelagh Carpendale, and Carey Williamson. Fluid views: A
zoomable search environment. In Proceedings of the International Working Con-
ference on Advanced Visual Interfaces, AVI ’12, pages 233–240, New York, NY,
USA, 2012. ACM.

144

[50] Marian Dörk, Nathalie Henry Riche, Gonzalo Ramos, and Susan Dumais. Piv-
otpaths: Strolling through faceted information spaces. IEEE transactions on
visualization and computer graphics, 18(12):2709–2718, 2012.

[51] Marina Drosou and Evaggelia Pitoura. Disc diversity: result diversification
based on dissimilarity and coverage. Proceedings of the VLDB Endowment,
6(1):13–24, 2012.

[52] Cody Dunne, Nathalie Henry Riche, Bongshin Lee, Ronald Metoyer, and George
Robertson. Graphtrail: Analyzing large multivariate, heterogeneous networks
while supporting exploration history. In Proceedings of the SIGCHI conference
on human factors in computing systems, pages 1663–1672, 2012.

[53] Geoffrey Ellis and Alan Dix. A taxonomy of clutter reduction for informa-
tion visualisation. IEEE transactions on visualization and computer graphics,
13(6):1216–1223, 2007.

[54] Niklas Elmqvist and Jean-Daniel Fekete. Hierarchical aggregation for informa-
tion visualization: Overview, techniques, and design guidelines. IEEE Trans-
actions on Visualization and Computer Graphics, 16(3):439–454, 2009.

[55] Niklas Elmqvist and Jean-Daniel Fekete. Hierarchical aggregation for informa-
tion visualization: Overview, techniques, and design guidelines. IEEE Trans-
actions on Visualization and Computer Graphics, 16(3):439–454, 2010.

[56] Wu Eugene, Battle Leilani, and R Madden Samuel. The case for data visualiza-
tion management systems. Proceedings of the VLDB Endowment, 7(10):903–
906, 2014.

[57] J-D Fekete and Catherine Plaisant. Interactive information visualization of a
million items. In IEEE Symposium on Information Visualization, 2002. INFO-
VIS 2002., pages 117–124. IEEE, 2002.

[58] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. Aurum: A data discovery system. In 2018
IEEE 34th International Conference on Data Engineering (ICDE), pages 1001–
1012. IEEE, 2018.

[59] Michael Glueck, Azam Khan, and Daniel J Wigdor. Dive in!: Enabling progres-
sive loading for real-time navigation of data visualizations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 561–570.
ACM, 2014.

[60] Jade Goldstein and Steven F Roth. Using aggregation and dynamic queries for
exploring large data sets. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 23–29. ACM, 1994.

[61] Google, Inc. Google maps. https://www.google.com/maps.

145

https://www.google.com/maps

[62] Tao Guo, Kaiyu Feng, Gao Cong, and Zhifeng Bao. Efficient selection of geospa-
tial data on maps for interactive and visualized exploration. In Proceedings of
the 2018 International Conference on Management of Data, pages 567–582.
ACM, 2018.

[63] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In
Proceedings of the 1984 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’84, pages 47–57, New York, NY, USA, 1984. ACM.

[64] Carl Gutwin and Saul Greenberg. The effects of workspace awareness support
on the usability of real-time distributed groupware. ACM Transactions on
Computer-Human Interaction (TOCHI), 6(3):243–281, 1999.

[65] Alon Halevy, Flip Korn, Natalya F Noy, Christopher Olston, Neoklis Polyzotis,
Sudip Roy, and Steven Euijong Whang. Goods: Organizing google’s datasets.
In Proceedings of the 2016 International Conference on Management of Data,
pages 795–806, 2016.

[66] Alon Y Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston, Neoklis
Polyzotis, Sudip Roy, and Steven Euijong Whang. Managing google’s data lake:
an overview of the goods system. IEEE Data Eng. Bull., 39(3):5–14, 2016.

[67] Jing Han, Ee Haihong, Guan Le, and Jian Du. Survey on nosql database.
In 2011 6th international conference on pervasive computing and applications,
pages 363–366. IEEE, 2011.

[68] Pat Hanrahan. Vizql: a language for query, analysis and visualization. In Pro-
ceedings of the 2006 ACM SIGMOD international conference on Management
of data, pages 721–721. ACM, 2006.

[69] Jeffrey Heer and Danah Boyd. Vizster: Visualizing online social networks. In
IEEE Symposium on Information Visualization, 2005. INFOVIS 2005., pages
32–39. IEEE, 2005.

[70] Jeffrey Heer, Jock Mackinlay, Chris Stolte, and Maneesh Agrawala. Graphical
histories for visualization: Supporting analysis, communication, and evaluation.
IEEE transactions on visualization and computer graphics, 14(6):1189–1196,
2008.

[71] Florian Heimerl, Chih-Ching Chang, Alper Sarikaya, and Michael Gleicher.
Visual designs for binned aggregation of multi-class scatterplots. arXiv preprint
arXiv:1810.02445, 2018.

[72] Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword search in
relational databases. In VLDB’02: Proceedings of the 28th International Con-
ference on Very Large Databases, pages 670–681. Elsevier, 2002.

146

[73] Jaemin Jo, Frédéric Vernier, Pierre Dragicevic, and Jean-Daniel Fekete. A
declarative rendering model for multiclass density maps. IEEE Transactions
on Visualization and Computer Graphics, 25(1):470–480, 2018.

[74] Susanne Jul and George W Furnas. Critical zones in desert fog: aids to multi-
scale navigation. In Proceedings of the 11th annual ACM symposium on User
interface software and technology, pages 97–106. ACM, 1998.

[75] Ibrahim Kamel and Christos Faloutsos. Hilbert r-tree: An improved r-tree using
fractals. Technical report, 1993.

[76] Pimin Konstantin Kefaloukos, Marcos Vaz Salles, and Martin Zachariasen.
Declarative cartography: In-database map generalization of geospatial datasets.
In 2014 IEEE 30th International Conference on Data Engineering, pages 1024–
1035. IEEE, 2014.

[77] Daniel A Keim and Annemarie Herrmann. The gridfit algorithm: An efficient
and effective approach to visualizing large amounts of spatial data. IEEE, 1998.

[78] Peter Kerpedjiev, Nezar Abdennur, Fritz Lekschas, Chuck McCallum, Kasper
Dinkla, Hendrik Strobelt, Jacob M Luber, Scott B Ouellette, Alaleh Azhir,
Nikhil Kumar, et al. Higlass: web-based visual exploration and analysis of
genome interaction maps. Genome biology, 19(1):1–12, 2018.

[79] Donald E Knuth. Backus normal form vs. backus naur form. Communications
of the ACM, 7(12):735–736, 1964.

[80] Robert Kosara, Silvia Miksch, and Helwig Hauser. Focus+ context taken liter-
ally. IEEE Computer Graphics and Applications, 22(1):22–29, 2002.

[81] Fritz Lekschas, Michael Behrisch, Benjamin Bach, Peter Kerpedjiev, Nils
Gehlenborg, and Hanspeter Pfister. Pattern-driven navigation in 2d multi-
scale visualizations with scalable insets. IEEE transactions on visualization
and computer graphics, 2019.

[82] Fei Li and HV Jagadish. Constructing an interactive natural language interface
for relational databases. Proceedings of the VLDB Endowment, 8(1):73–84,
2014.

[83] Hongsen Liao, Yingcai Wu, Li Chen, and Wei Chen. Cluster-based visual ab-
straction for multivariate scatterplots. IEEE transactions on visualization and
computer graphics, 24(9):2531–2545, 2017.

[84] Lauro Lins, James T. Klosowski, and Carlos Scheidegger. Nanocubes for real-
time exploration of spatiotemporal datasets. IEEE TVCG, 19(12):2456–2465,
2013.

147

[85] Can Liu, Cong Wu, Hanning Shao, and Xiaoru Yuan. Smartcube: An adaptive
data management architecture for the real-time visualization of spatiotemporal
datasets. IEEE transactions on visualization and computer graphics, 2019.

[86] Fang Liu, Clement Yu, Weiyi Meng, and Abdur Chowdhury. Effective key-
word search in relational databases. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages 563–574, 2006.

[87] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. imMens: Real-time visual querying
of big data. Comput. Graphics Forum, 32:421–430, 2013.

[88] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[89] Wolfgang May. Information extraction and integration with Florid: The
Mondial case study. Technical Report 131, Universität Freiburg, Institut für
Informatik, 1999. Available from http://dbis.informatik.uni-goettingen.
de/Mondial.

[90] Adrian Mayorga and Michael Gleicher. Splatterplots: Overcoming overdraw
in scatter plots. IEEE transactions on visualization and computer graphics,
19(9):1526–1538, 2013.

[91] Microsoft Corporation. Deepzoom. https://www.microsoft.com/
silverlight/deep-zoom/, 2008. Accessed: 2018-09-19.

[92] Natalia Miloslavskaya and Alexander Tolstoy. Big data, fast data and data lake
concepts. Procedia Computer Science, 88:300–305, 2016.

[93] Fabio Miranda, Lauro Lins, James T Klosowski, and Claudio T Silva. Topkube:
a rank-aware data cube for real-time exploration of spatiotemporal data. IEEE
Transactions on visualization and computer graphics, 24(3):1394–1407, 2017.

[94] Dominik Moritz, Bill Howe, and Jeffrey Heer. Falcon: Balancing interactive la-
tency and resolution sensitivity for scalable linked visualizations. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems, page
694. ACM, 2019.

[95] Randall Munroe. Zoomcharts. https://zoomcharts.com/en/, May 2010.

[96] Chris North and Ben Shneiderman. Snap-together visualization: a user interface
for coordinating visualizations via relational schemata. In Proceedings of the
working conference on Advanced visual interfaces, pages 128–135, 2000.

[97] Sarana Nutanong, Marco D Adelfio, and Hanan Samet. Multiresolution select-
distinct queries on large geographic point sets. In Proceedings of the 20th In-
ternational Conference on Advances in Geographic Information Systems, pages
159–168. ACM, 2012.

148

http://dbis.informatik.uni-goettingen.de/Mondial
http://dbis.informatik.uni-goettingen.de/Mondial
https://www.microsoft.com/silverlight/deep-zoom/
https://www.microsoft.com/silverlight/deep-zoom/

[98] Heather L O’Brien and Elaine G Toms. What is user engagement? a concep-
tual framework for defining user engagement with technology. Journal of the
American society for Information Science and Technology, 59(6):938–955, 2008.

[99] Cicero A. L. Pahins, Sean A. Stephens, Carlos Scheidegger, and Joao L. D.
Comba. Hashedcubes: Simple, low memory, real-time visual exploration of
big data. IEEE Transactions on Visualization and Computer Graphics, pages
671–680, 2017.

[100] Cicero AL Pahins, Sean A Stephens, Carlos Scheidegger, and Joao LD Comba.
Hashedcubes: Simple, low memory, real-time visual exploration of big data.
IEEE transactions on visualization and computer graphics, 23(1):671–680, 2016.

[101] Deokgun Park, Steven M Drucker, Roland Fernandez, and Niklas Elmqvist.
Atom: A grammar for unit visualizations. IEEE transactions on visualization
and computer graphics, 24(12):3032–3043, 2017.

[102] Christian Partl, Alexander Lex, Marc Streit, Hendrik Strobelt, Anne-Mai
Wassermann, Hanspeter Pfister, and Dieter Schmalstieg. Contour: data-driven
exploration of multi-relational datasets for drug discovery. IEEE transactions
on visualization and computer graphics, 20(12):1883–1892, 2014.

[103] Ken Perlin and David Fox. Pad: an alternative approach to the computer
interface. In Proceedings of the 20th annual conference on Computer graphics
and interactive techniques, pages 57–64. ACM, 1993.

[104] Alexandre Perrot, Romain Bourqui, Nicolas Hanusse, Frédéric Lalanne, and
David Auber. Large interactive visualization of density functions on big data
infrastructure. In 2015 IEEE 5th Symposium on large Data Analysis and Visu-
alization (lDAV), pages 99–106. IEEE, 2015.

[105] Caillou Philippe, Renault Jonas, Fekete Jean-Daniel, Letournel Anne-
Catherine, and Sebag Michèle. Cartolabe: A web-based scalable visualization
of large document collections. arXiv preprint arXiv:2003.00975, 2020.

[106] Emmanuel Pietriga. A toolkit for addressing hci issues in visual language envi-
ronments. In null, pages 145–152. IEEE, 2005.

[107] Davood Rafiei. Effectively visualizing large networks through sampling. In
Visualization, 2005. VIS 05. IEEE, pages 375–382. IEEE, 2005.

[108] Gonzalo Ramos and Ravin Balakrishnan. Zliding: fluid zooming and sliding
for high precision parameter manipulation. In Proceedings of the 18th annual
ACM symposium on User interface software and technology, pages 143–152.
ACM, 2005.

[109] Frank Ramsak, Volker Markl, Robert Fenk, Martin Zirkel, Klaus Elhardt, and
Rudolf Bayer. Integrating the ub-tree into a database system kernel. In VLDB,
volume 2000, pages 263–272. Citeseer, 2000.

149

[110] Alper Sarikaya and Michael Gleicher. Scatterplots: Tasks, data, and designs.
IEEE transactions on visualization and computer graphics, 24(1):402–412, 2017.

[111] Arvind Satyanarayan and Jeffrey Heer. Lyra: An interactive visualization de-
sign environment. Computer Graphics Forum, 33(3):351–360, jun 2014.

[112] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey
Heer. Vega-lite: A grammar of interactive graphics. IEEE transactions on
visualization and computer graphics, 23(1):341–350, 2016.

[113] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey
Heer. Vega-lite: A grammar of interactive graphics. IEEE Trans. Visualization
& Comp. Graphics (Proc. InfoVis), 2017.

[114] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. Reactive
vega: A streaming dataflow architecture for declarative interactive visualization.
IEEE transactions on visualization and computer graphics, 22(1):659–668, 2016.

[115] Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey Heer. Declarative
interaction design for data visualization. In ACM User Interface Software &
Technology (UIST), 2014.

[116] Doug Schaffer, Zhengping Zuo, Saul Greenberg, Lyn Bartram, John Dill,
Shelli Dubs, and Mark Roseman. Navigating hierarchically clustered networks
through fisheye and full-zoom methods. ACM Transactions on Computer-
Human Interaction (TOCHI), 3(2):162–188, 1996.

[117] Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Özcan, Vasilis Efthymiou,
Ayushi Dalmia, Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik
Sankaranarayanan. Athena++ natural language querying for complex nested
sql queries. Proceedings of the VLDB Endowment, 13(12):2747–2759, 2020.

[118] Muhammad Shahbaz, Syed Ahsan, Muhammad Shaheen, Rao Muham-
mad Adeel Nawab, and Syed Athar Masood. Automatic generation of extended
er diagram using natural language processing. Journal of American Science,
7(8):1–10, 2011.

[119] Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri, Bolin Ding, and Lev
Novik. Discovering queries based on example tuples. In Proceedings of the
2014 ACM SIGMOD international conference on Management of data, pages
493–504, 2014.

[120] Ben Shneiderman. The eyes have it: A task by data type taxonomy for informa-
tion visualizations. In Proceedings 1996 IEEE symposium on visual languages,
pages 336–343. IEEE, 1996.

[121] Ben Shneiderman. The eyes have it: A task by data type taxonomy for infor-
mation visualizations. In Proceedings of the 1996 IEEE Symposium on Visual
Languages, 1996.

150

[122] Michael Spenke and Christian Beilken. Infozoom-analysing formula one racing
results with an interactive data mining and visualisation tool. WIT Transactions
on Information and Communication Technologies, 25, 2000.

[123] John Stasko, Carsten Görg, and Zhicheng Liu. Jigsaw: supporting investigative
analysis through interactive visualization. Information visualization, 7(2):118–
132, 2008.

[124] Jason Stewart, Elaine M Raybourn, Ben Bederson, and Allison Druin. When
two hands are better than one: Enhancing collaboration using single display
groupware. In CHI 98 conference summary on Human factors in computing
systems, pages 287–288, 1998.

[125] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: A system for query, anal-
ysis, and visualization of multidimensional relational databases. IEEE Trans-
actions on Visualization and Computer Graphics, 8(1):52–65, 2002.

[126] Michael Stonebraker, Dong Deng, and Michael L Brodie. Database decay and
how to avoid it. In 2016 IEEE International Conference on Big Data (Big
Data), pages 7–16. IEEE, 2016.

[127] Kenneth L Summers, Timothy E Goldsmith, Steve Kubica, and Thomas P
Caudell. An experimental evaluation of continuous semantic zooming in pro-
gram visualization. In Information Visualization, 2003. INFOVIS 2003. IEEE
Symposium on, pages 155–162. IEEE, 2003.

[128] Marjan Trutschl, Georges Grinstein, and Urska Cvek. Intelligently resolving
point occlusion. In IEEE Symposium on Information Visualization 2003 (IEEE
Cat. No. 03TH8714), pages 131–136. IEEE, 2003.

[129] Yannis Tzitzikas and Jean-Luc Hainaut. How to tame a very large er diagram
(using link analysis and force-directed drawing algorithms). In International
Conference on Conceptual Modeling, pages 144–159. Springer, 2005.

[130] UC Berkeley Visualization Lab. Flare data visualization tool. http://flare.
prefuse.org/, 2008. Accessed: 2018-09-19.

[131] Christophe Viau and Michael J McGuffin. Connectedcharts: explicit visual-
ization of relationships between data graphics. In Computer Graphics Forum,
volume 31, pages 1285–1294. Wiley Online Library, 2012.

[132] Carsten Waldeck and Dirk Balfanz. Mobile liquid 2d scatter space (ml2dss).
In Proceedings. Eighth International Conference on Information Visualisation,
2004. IV 2004., pages 494–498. IEEE, 2004.

[133] Jane Webster and Jaspreet S Ahuja. Enhancing the design of web navigation
systems: The influence of user disorientation on engagement and performance.
Mis Quarterly, pages 661–678, 2006.

151

http://flare.prefuse.org/
http://flare.prefuse.org/

[134] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York, 2009.

[135] Hadley Wickham. A layered grammar of graphics. Journal of Computational
and Graphical Statistics, 19(1):3–28, 2010.

[136] Leland Wilkinson. The Grammar of Graphics. Springer, 1st edition, 1999.

[137] Graham Wills. Brunel v2.5. https://github.com/Brunel-Visualization/Brunel,
2017. Accessed: 2018-04-04.

[138] Harry KT Wong, Ivy Kuo, et al. Guide: Graphical user interface for database
exploration. In VLDB, pages 22–32. Citeseer, 1982.

[139] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay,
Bill Howe, and Jeffrey Heer. Voyager: Exploratory analysis via faceted brows-
ing of visualization recommendations. IEEE transactions on visualization and
computer graphics, 22(1):649–658, 2015.

[140] Richard Saul Wurman. Information anxiety. Number 302.234 WUR. CIMMYT.
2001.

[141] Shuyun Xu, Yu Li, and Shiyong Lu. Erdraw: An xml-based er-diagram drawing
and translation tool. In Computers and Their Applications, pages 143–146.
Citeseer, 2003.

[142] Jing Yang, Matthew O Ward, and Elke A Rundensteiner. Interactive hierar-
chical displays: a general framework for visualization and exploration of large
multivariate data sets. Computers & Graphics, 27(2):265–283, 2003.

[143] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M Procopiuc,
and Divesh Srivastava. On multi-column foreign key discovery. Proceedings of
the VLDB Endowment, 3(1-2):805–814, 2010.

[144] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data
clustering method for very large databases. ACM sigmod record, 25(2):103–114,
1996.

[145] Jian Zhao, Christopher Collins, Fanny Chevalier, and Ravin Balakrishnan. In-
teractive exploration of implicit and explicit relations in faceted datasets. IEEE
Transactions on Visualization and Computer Graphics, 19(12):2080–2089, 2013.

[146] Jian Zhao, Christopher Collins, Fanny Chevalier, and Ravin Balakrishnan. In-
teractive exploration of implicit and explicit relations in faceted datasets. IEEE
Transactions on Visualization and Computer Graphics, 19(12):2080–2089, 2013.

[147] Zoomify, Inc. Zoomify, 1999. Accessed: 2018-09-19.

152

	Introduction
	Background
	Research Challenges
	Solution

	Kyrix: General Details-on-demand Data Visualizations at Scale
	Introduction
	Related Works
	ZUI Toolkits and Systems
	Performance Optimization in Visualization Systems
	Declarative Visualization Specification

	Design Requirements
	Declarative Model
	Overview
	Canvas and Layer
	Zoom and Jump
	Data Transform
	Rendering Function
	Placement Function
	Implementation

	Performance Optimizations
	Building and Searching Database Spatial Indexes
	Caching and Incremental View Maintenance
	Comparison with Existing Optimization Frameworks.

	Example Visualizations
	Using Kyrix's Declarative Model to Create Example Visualizations
	Expressivity of Kyrix's Declarative Model

	Developer Study
	Protocol
	Results and Discussion

	Performance Evaluation
	Scalability
	Performance on Real Applications
	Effects of Caching and Incremental View Maintenance

	Discussions
	Limitations and Future Work
	Using Kyrix as a Foundation System

	Conclusion

	Kyrix-S: Authoring Scalable Scatterplot Visualizations of Big Data
	Introduction
	Related Works
	General DoD Visualization Systems
	Specialized SSV Systems
	Static Scatterplot Designs
	Declarative Visualization Languages

	Design Goals
	Declarative Language
	Example SSVs
	Language Design

	Optimization Framework
	Layout Generation and Data Fetching
	Layout Generation: Problem Definition
	A Single-node Layout Algorithm
	A Multi-node Distributed Layout Algorithm
	Data Fetching

	Implementation
	Evaluation
	Performance
	Authoring Effort

	Discussions
	Limitations and Future Work
	A Tabular Comparison
	More on Layout Generators

	Conclusion

	Kyrix-J: Supporting Pivot Jumps between Visualizations for Many Tables in a Relational Database
	Introduction
	Related Works
	Pivot Jump Systems
	Understanding Relationships between Visualizations
	Data Exploration in an RDBMS

	Kyrix-J Overview
	A Usage Scenario
	Design Requirements
	System Architecture
	Organization

	Automatic Generation of Pivot Jump Paths
	Problem Definition
	A Solution based on RDBMS PK-FK Relationships

	User Interface
	The Keyword Search Box
	The Graph View
	The Visualization View
	Informational Views
	Bookmarking and History

	Evaluation: A First-use Study
	Procedure and Tasks
	Results and Discussions

	Discussions on Limitations and Future Work
	Conclusion

	More Discussions
	The Multi-dimensional Performance Problem
	Online Performance
	Offline Performance

	Updating Data
	Continuous Zooming
	Open Source

	Conclusion

