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Abstract

Conventional ultrasound data-acquisition platforms have a limited number of I/O
channels, and thus cannot be directly interfaced with multiple ultrasound transducer
arrays. A high-voltage multiplexer is designed to allow a 128-signal DAQ to interface
with up to eighteen 128-signal arrays in a time-multiplexed manner. The multiplexer
is then implemented as part of a novel conformable multi-array ultrasound imaging
system. Synthetic array ultrasound data is acquired and processed using delay-and-
sum beamforming to form individual array images, then the images are combined to
provide an expanded field of view compared to a single-array system.
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Chapter 1

Introduction

Ultrasound imaging is a valuable tool in medical diagnosis. However, it still faces

fundamental challenges that limit its use in the imaging of soft, curved-surface tis-

sues such as the human breast. The face of the ultrasound transducer probe is rigid,

meaning it must be pushed into the tissue to make full contact. This introduces sig-

ni�cant distortion of the image. Furthermore, most transducer probes use 1D phased

arrays, meaning the acquired image is a 2D slice of the tissue volume. Acquisition

of the 3D tissue volume requires an operator to move the probe around to di�erent

viewing angles, meaning the tissue deformation changes between images. This intro-

duces image artifacts and complicates the image registration required for assembly

of the volumetric image. As a result, the process is highly operator-dependent, and

generally requires expert training which limits availability to the public.

There have been some past e�orts to address these issues. For example, �exible

electronics have been proposed, but these su�ered from large pitch between transducer

elements relative to the operating wavelength, creating strong grating lobes [4, 17, 18,

15]. Moreover, the position of elements would change unpredictably due to mechanical

deformation, causing image distortion during beamforming. Attempts to localize

elements have generally failed due to poor position-resolution [16, 5, 8]. Some 2D

transducer arrays have been reported in recent work, but they had issues with small

apertures and small imaging windows [2, 13, 4, 17].

The work of this thesis is part of an ongoing e�ort to develop a conformable,
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user friendly, volumetric-imaging ultrasound patch for use in breast cancer detection.

By mounting multiple 2D arrays in a soft, conformable substrate, the patch would

be able to adhere to the curved shape of the breast without applying pressure and

causing deformation. As a result, it will be possible to perform full-breast volumetric

imaging in a single shot without the need for an expert operator.

The proposed patch will consist of up to eighteen 2D arrays, each containing a

64x64 grid of elements. Fellow members of the Conformable Decoders group in the

MIT Media Lab - Dr. Lin Zhang and David Mejorado - are working to develop the

array and conformable substrate, respectively. The aim of my work, and the topic of

this thesis, is to create electronics to allow the multi-array patch to interface with a

Verasonics Vantage 128— ultrasound data acquisition system.

The Verasonics system has I/O su�cient to interface with a single 128-signal 2D

array. Thus, interfacing with up to eighteen arrays required the development of a

computer controlled time-division multiplexing system. This thesis deals with the

multiplexer design and some of the following experimental imaging.

The Multiplexer system design is elaborated in Chapter 2, while the experimen-

tal imaging results are presented in Chapter 3. It is impractical to go over every

design decision, so the Multiplexer discussion focuses on the important points and

parameters. The full schematics are made available in the System Overview section

of Chapter 2, and key fabrication-related images are available as well. Similarly, a

great number of ultrasound images were acquired during the course of the past few

months, so those shown here are just some of the highlights.

The ongoing goal of the project is to support the use of multiple fully 2D ul-

trasound arrays for use in breast cancer detection. However there are actually two

parallel ultrasound projects in progress: a 2D array breast cancer project, and a 1D

array bladder imaging project. The Multiplexer is used in both projects, but most of

our experimental work so far has focused on bladder imaging, so those are the images

that will be shown in Chapter 3.
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Chapter 2

Multiplexer System Design

2.1 System Overview

The overall purpose of the Multiplexer is to allow the Verasonics Vantage 128— to

interface with up to eighteen 128-signal ultrasound transducers. The Verasonics sys-

tem can natively interface with only one 128-signal transducer, so the Multiplexer

must allow the Verasonics system to selectively connect to one transducer at a time.

To accomplish this, the Multiplexer essentially puts a switch in series with every

transducer element, for a total of 2304 switches.

The ultrasound imaging mode used in this work is synthetic array (SAR) pulsed

ultrasound. This means that the Multiplexer must withstand high voltages - in this

work, it was designed to withstand up to� 100V, though we operated at� 50V to

keep a margin of safety. Moreover, in this work the ultrasound bandwidth went up

to 10MHz, so the Multiplexer must have a su�ciently �at frequency response up to

that frequency.

The Multiplexer consists of three modules: up to 18 Mux Cards (Fig. 2-3) each

containing 128 high voltage analog switches, a Picko� Card (Fig. 2-7) that rearranges

the analog signals for connection to the Verasonics system cable, and a Backplane

(Fig. 2-11) providing the necessary analog and digital interconnect between all of the

cards and an external controller. The cards plug into the Backplane via full-length,

164 pin PCIe card-edge connectors. The entire system is designed to be mounted on
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a stand for convenience.

As shown in Figures 2-1a & 2-1b, the backplane provides interconnect for 128

analog channels, 5 LVDS signals including a simplex multi-endpoint SPI bus, an I2C

bus, a 5-bit Board ID providing an identi�er for each PCIe slot, and a +5V power rail.

The Backplane provides shared analog, I2C, and SPI signal busses, to which the Mux

Cards connect in parallel. The dashed red line in Fig. 2-1a shows the connections of

an individual analog signal.

(a) System Overview: Analog Signal Paths

(b) System Overview: Digital Signal Paths

Figure 2-1: High level representation of signal paths in the system

A typical setup used in our ultrasound experiments is shown in Fig. 2-2. Each Mux

Card is connected to either a single 128-signal array or to two 64-signal arrays (not

shown). In the most common con�guration a single Mux Card will be fully connected

(all analog switches closed) while all other Mux Cards are disconnected. An Arduino
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Due provides an interface between a PC and the I2C bus on the backplane. Each Mux

Card has a separate I2C address and can be sent commands to control the switch

states.

Figure 2-2: Typical Multiplexer Setup

The Mux and Picko� Cards provide generic rectangular headers for the analog

signals, which are not compatible with the proprietary Verasonics system cable or

the ACF cables used to connect with the piezo transducers. Therefore, small adaptor

cards were fabricated to perform the conversion between connectors. This approach

was chosen because these interfaces were considered subject to change, and the adap-

tor cards could be altered and fabricated more easily and cheaply than the Multiplexer

Cards themselves.
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The system was designed with all logic signals set to 3.3V for compatibility. As

discussed in Section 2.5 the system power is distributed at 5V and converted to 3.3V

where needed by linear regulators. This approach was chosen because the power con-

sumption of the logic is low and the use of switching regulators would risk generating

spurious signals in the frequency bands used for ultrasound imaging (in this work,

approx 1-10 MHz).

Finally, it should be noted that all 3 modules were designed using 4-layer PCB

stackups. This is because typical 4-layer PCBs have the inner layers very close

(0.12mm) to the outer layers, making the inner layers suitable for use as ground

planes. This allows 50
 traces on the outer layers to have convenient 6-7 mil widths.

Moreover, the crosstalk between analog traces is greatly reduced when the ground

plane is close.
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