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Abstract

Recent advances in machine learning (ML) and deep learning in particular, enabled
by hardware advances and big data, have provided impressive results across a wide
range of computational problems such as computer vision, natural language, or rein-
forcement learning. Many of these improvements are however constrained to problems
with large-scale curated data-sets which require a lot of human labor to gather. Ad-
ditionally, these models tend to generalize poorly under both slight distributional
shifts and low-data regimes. In recent years, emerging fields such as meta-learning
or self-supervised learning have been closing the gap between proof-of-concept results
and real-life applications of ML.

We follow this line of work and contribute a novel few-shot multi-task image to im-
age translation problem. We then present several benchmarks for this problem using
ideas from both meta-learning and contrastive-learning and improve upon baselines
trained using simple supervised learning. Additionally, we contribute to another area
of growing interest—applying deep learning to physical problems—and focus our ef-
forts on modeling weather phenomena.

We define an image translation problem between different radar and satellite sen-
sor modalities and leverage spatial and temporal locality to pose it as a multi-task
problem. We improve upon naive solutions that ignore this hierarchical dataset struc-
ture and demonstrate the effectiveness of meta-learning methods to solving real-world
problems. We make our code available here.

Thesis Supervisor: Marin Soljaci¢
Title: Professor of Physics
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Chapter 1

Introduction

Benchmarks such as ImageNet [9] in computer vision or SQuAD [35] in natural lan-
guage processing have been pivotal in popularizing deep-learning techniques and
demonstrating their power. More recently, works such as ObjectNet [3] in vision
have shown impressive performance on these established benchmarks do not trans-
late to good performance in real-world situations, where the datasets might be less
structured or more diverse. There is a lot of interest in devising more challenging
datasets, both of general interest as well as domain-specific applications, that more
closely resemble real-world situations practitioners might encounter when trying to
put machine learning models into production.

Growing fields such as self-supervised [30] or multi-task learning [19] reflect these
interests and provide promising solutions to the aforementioned issues. However,
the problem of model evaluation remains: for example, in few-shot learning model
evaluation is currently largely constrained to Omniglot |28, 27| (which has essentially
been saturated), Miniimagenet [48] and Metadataset [44]. We address these known
limitations in our field by contributing a new computer vision multi-task problem
and move away from classification problems towards the field of image-generation
by leveraging a weather dataset (that has been recently been introduced to the ML
community) to formulate a novel few-shot image-to-image translation problem.

The rest of this thesis is organized as follows:

e (Chapter 2) Background: we review training techniques (adversarial and
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gradient-based meta-learning), pretraining techniques (contrastive learning),
model architectures, and the meteorological dataset we will use throughout

our work.

(Chapter 3) Related Work: we present recent progress in low-data and/or
multi-task settings that are largely orthogonal with our work and could be used
either in conjunction with or as an additional benchmark to our contribution.
These include data augmentation and regularization techniques in adversarial

training, as well as different approaches to multi-task and generative learning.

(Chapter 4) Meta-Learning: we define the few-shot image-to-image trans-
lation benchmark we propose and present the settings of all our experiments.
We evaluate models trained with MAML or joint optimization on adversarial
or reconstruction losses and present empirical differences between all these ap-
proaches. In many cases we show MAML provides improvements over the joint

training baselines.

(Chapter 5) Self-Supervised Pretraining: We turn our attention to self-
supervised pretraining and show it can provide improvements in the most simple

scenario above.

(Chapter 6) Conclusion and Future Work: We conclude this thesis and

present several experimental and theoretical directions for future work.
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Chapter 2

Background

2.1 Training Techniques

We first review a couple of established bilevel gradient-based optimization techniques,
model-agnostic meta-learning and adversarial training, and specify their associated

loss functions, training algorithms, and general properties.

2.1.1 Model Agnostic Meta Learning (M AML)

Model Agnostic Meta Learning or MAML [12, 16] is a bilevel optimization algorithm
that seeks to find a good weight initialization for multi-task problems and bias the

optimization procedure towards models that are easy to fine-tune.

Let the model we want to meta-learn be parameterized by # and assume we have
J tasks available (7; for j € {1,2,...J}), each with a loss function £;. Each task
has a limited number of train examples, which we split into N support and M query
examples. On each task 7; we finetune the model weights from 6 to task-specific
weights ¢;(0) using the N support datapoints z;, , j, € {1,2,... N}, through a simple

gradient descent with early stopping inner-loop optimization procedure. In the case

15



of a single inner gradient step the finetuned weights ¢;(6) are:
9,(6) = 6 — aVLy, (6;;,) 2.1

We then evaluate the finetuned weights ¢; using the M query examples z;,. =,

INtm €E{N+1,N+2,... N + M}, and compute losses L7 (¢;; ). In the afore-

xjN+m

mentioned single-step inner loop case this become L (6 — aVyLr (0;2;,); vjy.,.)-
We described the inner loop or adaptation procedure above, which is also how

we evaluate models in the MAML framework. For training, we perform the above

procedure for several tasks within meta-batches and do an outer-loop optimization

where we search for a good common initialization for all train-tasks:

1
arg min — Z Lr1,(0;(0); %jx )

je{1,...J}

using algorithms in the family of stochastic gradient descent (usually Adam [24]).

2.1.2 Adversarial Training

Model: Generative Adversarial Networks (GAN )[14] are deep generative models that
learn to sample from an unknown distribution by playing a two-player minimax game
with an additional network that learns to discriminate between real train examples
and generated samples. In the original formulation the generator and discriminator

networks minimize or maximize, respectively, the following objective:
£ = E.log (1 - D(G(2))) + E, log (D(x)), (2:2)

where z o< p,(z) is a stochastic noisy variable that the generator uses to output a
distribution over samples. Real examples are drawn from an unknown = & pgata ().

The transformation G, applied on z, induces a transformed probability distribution

Pdata (T)

in sample space pg(z). [14] show the optimal discriminator is D(x) = N EE T

under which the generator’s objective functions becomes 2 - JS(pg||paata) — 210g 2,
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where JS(pg||pdata) is the Jensen-Shannon divergence. This divergence is minimized
when p () = paata().

Training: GANs are trained by applying stochastic alternate gradient descent-
ascent algorithms to a saddle-point problem, which often results in training instabil-
ities, exploding losses, or cycling behavior. In more controlled settings, which gen-
erally assume convex-concave problems, the optimization community has proposed
alternate algorithms (such as optimistic gradient descent or extra-gradient methods)
which provably converge with good rates [33]. For example, [8] trained GANs with op-
timistic gradient descent methods and improved generated images’ quality. Another
difficulty in training GANSs is the issue of exploding gradients: the gradient signal
to GG from Eq. 2.2 vanishes when the discriminator classifier can perfectly discern
between real and fake samples. Thus, [14] propose making the generator maximize
E, log (D(G(2))) rather than minimizing E, log (1 — D(G(z))) because the former ob-

jective is not-saturating.

Regularization: |[1| minimize an approximation to the Wasserstein distance
rather than divergence loss functions and introduced Wasserstein GANs (WGANS).
They compute Wasserstein distances though the Kantorovich-Rubinstein duality and
require the discriminator to be a Lipschitz continuous function. They enforce this con-
dition through a straightforward gradient-clipping procedure, which has since been
refined by works such as [17] to use gradient penalties in the loss function. [26] note
the GAN objective function does not consistently correspond to divergences such as
KL or JS and view GAN training though the lens of regret minimization instead.
They explain training instabilities, and mode collapse in particular, by sharp discrim-
inator gradients around real samples and propose a gradient penalty scheme with
good results. Similarly, [11] show reducing the two-player zero-sum game between
the generator and discriminator networks to a divergence minimization process does
not always explain situations where GAN training successfully converges. They also
show that controlling the norm of gradients from the discriminator to the generator
helps even in situations where doing so is not theoretically justified as it was in [1].

All these work have shown that an important part of improving and stabilizing GAN
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training is regularizing the discriminator by limiting its rate of change or enforcing it
is a Lipschitz continuous function [54]. [32] constrains linear layers’ spectral norms
by normalizing weight matrices after each update with an approximation to their
maximum singular values.

Pix2Pix: [21]| extends this body of work to image-to-image translation. The
dataset now comes with aligned multiple views of identical scenes {x,y} and we wish
to learn to generate y from x. In other words, we are modeling a distribution pg(y)
over the target modality y and the generator G(z,x) is now a function of not only
a stochastic variable z, but also the input modality x. We also move towards using
conditional GANs [31] and let the discriminator network D(z,y) look at the input
modality = in order to judge not only if a generated sample y is realistic, but also if

it is aligned with the inputs x. The objective in Eq. 2.2 becomes:
Legan =E,; . log (1 — D(x,G(x,2)) + E, y log D(x,y) (2.3)

An additional loss term for the generator can be added — tasking it to pro-
duce images that not only fool the discriminator, but are also close to ground-truth
Ly, =E;,.|ly — G(z,2)||;. In practice, image-to-image architectures trained adver-
sarially drop the explicit stochastic component z and incorporate randomness through

architectural elements such as dropout [42].

2.2 Self-Supervised Pre-Training

Self-Supervised learning (SSL) pretraining techniques have provided state-of-the-art
results in both natural language processing and computer vision problems by training
feature extractors on large unlabelled datasets that construct useful representations
of the input modalities.

In computer vision several related frameworks have recently been introduced.
They all construct representations of the input by clustering together representations

of related inputs (and sometimes pushing apart representations of different examples).
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The former are called positive pairs and are different views of the same datapoint,
obtained using data augmentations the problem domain should be invariant with re-
spect to. The latter consist of negative pairs and are obtained from different train
examples. In computer vision common data augmentations include color transforma-
tions such as color jitter, geometric transformations such as translations, rotations,

or cropping, and context based ones such as jigsaw puzzles [22].

This pretraining strategy is called contrastive learning and has been used in several
recent works with slight variations [6]. The common thread is using a Siamese network
[25] with two closely related branches to pull together positive pairs while enforcing
the network does not collapse to a constant function by pushing apart negative pairs

and/or introducing various constraints or asymmetries between the two branches.

One of the most successful models in this line of work is SImCLR [4, 5|, which uses
both positive and negative pairs. They create positive pairs by stochastically applying
various augmentations to any datapoint z to create two different views z; and z; of
x. An encoder network f constructs representations h; = f(z;) and h; = f(7;), and a
simple MLP projector g generates the two vectors z; = g(h;) and z; = g(h;) used for
contrastive learning. They construct negative pairs by assuming that all pairs (z;, z)
that did not originate from same input = are negative pairs. For a given mini-batch
with N inputs z they construct 2N vectors z and for each positive pair (i, ) they

define a loss function

exp (sim(z;, z;))

foszk;si exp (sim(z;, 2))

li,j = — log

Note that the above is not symmetrical in z; and z;. The loss-function for the whole

batch is an average over all 2V positive pairs (z;, ;) and (z;, 2;):

1
L= IN Z (lig + 1)

positive pairs (4,5)
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2.3 Model Architecture

U-Net architectures [37] are the established models for image-to-image translation
problems. This model augments encoder-decoder architectures with skip connections
across the informational bottleneck in order to both compress information into a
meaningful latent space, as well as enable gradient flow throughout all layers.

[21] leveraged this established model when proposing an adversarial training strat-
egy for image-to-image translation problems. They add the additional patch discrim-
inator network because this allows for implicitly learning loss functions better suited
for image evaluation than the simpler L, or Ly norms. Learning just a U-Net with
reconstruction losses leads to blurry samples because they bias the model towards
predicting the expected value for each pixel rather than outputting realistic images
[29].

The U-Net generator consists of convolutional blocks in both the encoder and de-
coder parts and use batch normalization and ReLLU activation functions at each layer.
The encoder and decoder also contain downsampling and upsampling operations, re-
spectively. The discriminator uses a PatchGAN convolutional architectures with the
same batch normalization and ReLLU block structure and looks at 70 x 70 regions to

discern whether or not its input is a realistic sample or not.

2.4 Storm Event Imagery

The Storm Event Imagery (SEVIR) [47] is a dataset curated by MIT Lincoln Labs
to democratize research in radar and satellite meteorology. It is a collection of over
10,000 weather events, each of which tracks 5 sensor modalities within 384 km x
384 km patches for 4 hours. The events are uniformly sampled so that there are 49

frames for each 4 hour period, and the 5 channels consist of:

e 1 visible and 2 IR sensors from the GOES-16 advanced baseline [39]
e vertically integrated liquid (VIL) from NEXTRAD
e lightning flashes from GOES-16

20



Fig. 2-1 shows examples of the two IR and the VIL modalities. From now on we will
consistently disregard the visible channel because it often contains no information as

visible radiation is easily occluded.

Lightning

Figure 2-1: Frame from The Storm Event Imagery (SEVIR) dataset. We use
four of the five available modalities: 2 IR, VIL, and lightning information.

[47] suggested several machine learning problems that can be studied on SEVIR
and provided baselines for two of these: nowcasting and synthetic weather radar gen-
eration. The former refers to short-term forecasts of either input modality, and the
latter to image-to-image translation between different modalities. In practice VIL
information is less readily available and they focus on this sensor as the target for

both nowcasting and image translation tasks.

In both cases they train U-Net models and experiment with various loss functions.
For nowcasting [47] propose a simple mean squared error (MSE) objective, as well as
a style and content (SC) loss, and then introduce a patch discriminator for adversarial
training with conditional GANs as proposed in [21]. The synthetic radar generation
image translation setup follows the same objectives, and additionally experiments

with mean absolute error (MAE).

2.4.1 Evaluation

We review common evaluation metrics used in the satellite and radar literature to
analyse artificially-generated VIL imagery. They all compare the target and generated
samples after binarizing them with an arbitrarily threshold in [0, 255] and looking at

21



counts in the associated confusion matrix. Let H denote the number of true positives,
C' denote the number of true negatives, M denote the number of false negatives and F'
the number of false positives. [47] define four evaluation metrics: Critical Succes Index
(CSI) is equivalent to the intersection over union ﬁ; Probability of detection

(POD) is equivalent to recall HJFLM; Succes Ratio (SUCR) is equivalent to precision

HLJFF; BIAS is defined as f{iﬂ
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Chapter 3

Related Work

Most closely related to our work is [7], which is the only prior work we are aware of on
the topic of few-shot multi-task image generation. They optimize using Reptile [34],
a first-order approximiation to MAML, and evaluate on the MNIST and Omniglot
datasets. They also introduce a dataset which presents a very clear delimitation
between different tasks and more generally does not exhibit the challenges of modeling

real-world phenomena because the examples are icons rather than realistic images.

We focus our attention on [21], the default solution to image-to-image translation
problems, which has been extended by works such as [49] to increase photo-realism

or [55] to use unpaired image datasets by imposing a cycle-consistency loss function.

3.1 Low Data GAN Training

There has been a lot of interest in training GANs in low-data settings. In this scenario
the main challange is that the discriminator network can simply memorize the train-
set and quickly reach perfect performance on known examples. In this case training
quickly becomes unstable and the generator is not able to create realistic samples.
Additionally, the discriminator performs poorly when evaluated on held-out validation

or test splits.
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3.1.1 Data Augmentation

In classification or regression tasks data augmentation is a technique pivotal to in-
creasing the effective number of train-examples, improving robustness w.r.t. common
noisy distortions, and encoding known domain-specific invariant transformations. Ap-
plying data augmentation to generative modeling is complicated by the fact that we
want to sample from the original data distribution and not include augmentations
into our samples. [52] apply augmentations to both real and generated samples and
require the transformations to be differentiable in order to backpropagate to the gen-

erator with good results using as little as 10% of the available samples.

3.1.2 Consistency Regularization

Consistency Regularization(CR) is a semi-supervised training technique introduced to
GANSs by [50] as a discriminator regularization method that can be used in conjunction
with gradient normalization methods. They have an additional discriminator loss
term that encourages this network’s predictions to be invariant under arbitrarily
transformations applied to real samples. They perform an ablation study where they
compare their technique with simply applying data augmentation and show that while
the latter prevents the discriminator from over-fitting, it does not lead to an increase
in generated image quality, and that CR actually improves the sample quality. They
speculate this suggests CR helps the discriminator learn better representations of the

data distribution.

[53] extend this work to balanced Consistency Regularization (bCR) and latent
Consistency Regularization (zCR) and combine the two into Improved Consistency
Regularization (ICR). The former augments CR by applying transformations to the
generated samples and adding a regularizer loss term to the generator. zCR modifies
CR by applying transformations only to the stochastic latent variable z and regu-
larizing the discriminator to be invariant with respect to this augmentation while

encouraging the generated images to be far away in sample space.
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3.2 Multi Task Learning

Multi-task learning [51], closely related to meta-learning, is a field traditionally as-
sociated to methods that use parameter sharing or task relationships to improve
performance of machine learning models. [38] surveys many of these parameter-
sharing methods and discerns between soft and hard sharing. Parameter sharing can
be formulated as a combinatorial optimization problem where we are interested in
assigning multiple tasks to multiple possible components of larger deep models. In
computer vision encoder networks are often shared while decoders are task-specific.
While solving this type of problem exactly is known to be NP-hard, numerous ap-
proximate methods obtain good performance in practice. [43] use early stopping and
extrapolate task-relation from pairwise assignment experiments to solve the combi-
natorial problem under a constrained compute budget. Many of these works consider
tasks which have different objectives (e.g. segmentation, edge recognition) while in
our case the objective is the same while the input and output samples come from

different data distributions on the same domains.

[15] recently introduced the idea of a shared global work-space to deep learning by
adapting the Transformer architecture [46]. They replace attention mechanisms with
an attention-based two-step process : i) write to a shared workspace ii) read from
shared workspace to inform next-layer’s representation. One of the key characteristics
of this process is that the write-read process introduces a computational bottleneck.
[15] speculate this forces specialization in neural models that would help in multi-task
learning. They show improvements in vision object tracking and relational reasoning
tasks as well as a multi-agent world modeling problem. This development is of par-
ticular interest to us because recent work has also shown transformer architectures

are able to obtain good performance in adversarial training scenarios [23].
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3.3 Generative Modeling

We considered adversarial generative modeling because these models are currently
state-of-the-art in most image generation benchmarks and we build upon prior work
from the meteorology community. Recent work has shown a renewed interest in
other generative approaches. [45] improve variational autoencoder approaches by dis-
cretizing the latent space and learning the prior rather than using a static normal
distribution. [41] revisit learning the data distribution with score-matching [20] and
perturb data samples with Gaussian noise in order to address two practical concerns:
i) if the data resides in a lower-dimensional manifold scores are not properly defined
everywhere; i) low-density regions make both score estimation and sampling tech-
niques perform poorly. At inference time they propose an annealed Langevin sampling
technique and produce high quality samples. [18, 40] introduce probabilistic diffusion
models, another latent variable model which imagines a Markov Chain process that
sequentially adds noise to data samples until the original distribution is transformed
into a simple prior and then learn to reverse this process.

The main advantages of these promising research directions are that training is
more stable than in the adversarial setup and there are fewer parameters that require

tuning to obtain good performance.
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Chapter 4

Meta-Learning

4.1 Benchmark Construction

We leverage the SEVIR [47] dataset to construct a few-shot multi-task image-to-image
translation problem where each task corresponds to one event. From the 49 available
frames we keep the first Ngypport frames to form the task’s support set and the next
Nquery to be the query. Throughout the following experiments we set Nsypport =
Nquery = 10.

For the sake of this discussion let’s assume we have re-scaled all input modalities
to the maximum observed resolution 384 x 384 so that we can view all of SEVIR
as a simple input tensor D; € RNVeventXNwamesXCxwxh “where: ) Ny = 11479; i4)
Niames = Nsupport T Nquery; ) C' = 4; w) w = h = 384. The four input channels
are split into three input modalities Cy, = 3 and one target C,,y = 1. For joint
training we ignore the hierarchical dataset structure and collapse the first two axis

Dy € RV¥Oxwxh where N = Neyent X Niames - the total number of frames.

4.2 Methods

We solve the aforementioned task using either first-order or second-order gradient
descent methods on U-Nets trained using either reconstruction or adversarial objec-

tives. Note that in the case when we train GANs using MAML we are searching for
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a good initialization for multiple related saddle-point problems and still obtain good

performance.

Below we present the meta-train loop for adversarial networks, which is a novel
contribution of our work. For simplicity, we only present the variant with a single
SGD inner-loop adaptation step. We train a U-Net generator G with model weights
w¢ jointly with an extranous patch discriminator D with model weights wp using
data D € RNeventXNiamesxCxwxh — \We yse batched alternating gradient descent as
our optimization algorithm and consider batches B € RE*NmamesxCxwxh “where B
is the meta-batch size. FEach of these can be split along the second axis into the

support and query sets, and along the third axis into the source (S) and target tensors
(T) to create Ssupport c ]RBXNsuppon><Cin><w><h7 Sauery < IRBXNONCW><Cin><w><h7 Tsupport c

RB*Nsupport X Couexwxh = pauery ¢ RBXNqueryXCoutxwxh = For any of these tensors X €

{/gsupport - Gauery - rsupport - pqueryl we refer to the four-dimensional tensor given by
the i*" task or event as X;. We use such four-dimensional tensor quantities to evaluate
7

the generator and discriminator loss functions:

ﬁG(tgenerated’ t, s we, wD) — log D(S, tgenerated) + )\Htgenerated o t‘ |1 (41)

. 1
Lp(tsrerated ¢ sowe, wp) = 5 (log D(s, t& ey —1og D(s, 1)), (4.2)
where tgenerated — (G(s) is a generated target sample, t and s are corresponding

input and output modalities, ||x||; is the mean absolute error. Note the slight
abuse of notation where by log D(x,y) with x,y € R¥**®*" we mean the aver-
age % Zfil log D(x;,y;). This formulation also uses the trick mentioned in 2.1.2
of replacing maxlog (1 — D(G(z))) with minlog D(G(z)) to obtain a non-saturating
generator objective. We wrote the loss functions above such that both players want
to minimize their respective objectives.

For each task in a meta-batch size we evaluate the losses above on the support set
frames and adapt to this event using SGD to obtain parameters ¢. We then evaluate
the same losses on the task’s query set using finetuned models. We repeat these two

steps for each event in the meta-batch and perform a second-order gradient update to
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the initial parameters to optimize the average loss across all events in the meta-batch.

This procedure is schematically summarized in Algorithm 1.

Algorithm 1: One Epoch MAML-Train Loop for U-Net Generator with
Adversarial Loss.

for meta-train-batch B € RB*NramesxCxwxh qq
unpack B € RE*NuamesxCxwxh glone support /query, source/target into:

Ssupport Squery Tsupport Tquery
init lga“h =0, [batch —
for each event 7 out of B in meta-batch do
t; ted t

jvisuppor generated __ G(Sisuppor )

forward pass

dapt t; ted t t
[5PF = Lo (T;prors senerated reupport | GRUPPOT g, wp) from Eq. 4.1

7 ? 2
dapt t; ted t t
[5PF = Lp(T7HPPers senerated ipsipport | gauppor ;d wg,wp) from Eq. 4.2
task-specific parameters ¢g < wg — NV lo apt

task-specific parameters ¢p < wp — anDlaDdap ‘

forward pass jviquery; generated _ G(gguery)

lG _ EG(ﬂquery; generatedj fl—;quelry7 Szguery; ¢G; (bD) from Eq 4.1
lD _ »CD (/IVZ_query; generated’ T;query) Szguery; ¢G7 ¢D) from Eq 4.9
update rolling sums [2*"+ = |5 and [Bth4 = [}

end
backpropagate 2"¢ order updates V(2" and V,,, %" to wg and wp
end

return good initializations wg and wp for both generator and discriminator.

4.3 Experimental Details

We run experiments on MIT Supercloud [36] using a single 32GB Nvidia Volta V100
GPU. For MAML optimization [2| we use meta-batch sizes of 2 — 4 events. For the
corresponding joint training baselines we used Ngypport + Nquery frames from each event
and comparable number of events to keep comparisons fair. We randomly split all
SEVIR events into 9169 train, 1162 validation, and 1148 test tasks.

Joint training baselines and MAML outer loop optimizations are both performed
using the Adam optimizer [24| with learning rate 0.0002 and momentum 0.5.

We resize input modalities to all have 192 x 192 resolution and keep the target at
384 x 384. The generator’s encoder has four convolutional blocks, and the decoder

has five. All generator blocks except for the last decoder layer use ReLLU activation
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functions. The very last layer uses linear activation functions to support z-score

normalization for all four image modalities.

4.4 Results

We test our multi-task few-shot formulation and demonstrate MAML provides empir-
ical gains by comparing the performance of models trained using either meta-learning
algorithms or joint training for both reconstruction and adversarial loss objectives. We
find throughout all our experiments that meta-learning minimizes the reconstruction
error compared to joint training. On the other hand, achieving better performance on

the training objective does not always translate to higher weather evaluation metrics.

4.4.1 Hyper-parameter sweep

We first do a cursory hyper-parameter sweep over A during adversarial training and n
during MAML’s inner-loop task adaptation. We experiment with A € {10%,10%,10%}
and n € {1074,1075}.

Table 4.1: Reconstruction MAML and Adversarial Joint - hyperparameter
sweep. Best observed MAE on validation split.

Reconstruction MAML Adversarial Joint
n=10"14 n=10"1 A=10% | A =10° | A = 10*
0.35 0.35 0.39 0.40 0.40

We summarize best MAE values on validation split for models trained adversar-
ially with joint optimization or meta-learnt when optimizing the reconstruction loss
in table 4.1. We show the same MAE’s evolution throughout training in Fig. 4-1 and
find marginal differences between different hyperparameter values.

We perform the same analysis for the more complex setting of meta-learning GANs
and summarize performance in table 4.2 and figure 4-2. In this case we find training is
more brittle and the hyperparameter choice has a higher impact on training dynamics.

We find that different models converge at very different speeds: for example, when
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Reconstruction MAML: n Adversarial Joint: A
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Figure 4-1: Reconstruction MAML and Adversarial Joint - hyperparame-
ter sweep. Train curve plots performance on validation-split throughout training.
Adversarial settings are slightly more sensitive to the A hyperparameter than MAML
is to 7).

Table 4.2: Adversarial MAML - hyperparameter sweep. Best observed MAE
on validation split.

A=10% | A =103 | A =10*
n=10"* 0.31 0.32 0.29
n=10"° 0.32 0.32 0.32

using an inner SGD learning rate n = 10~%, models optimizing loss functions with \ =
10* converge much slower than those with A = 103. Interestingly, the former actually
achieves better performance, which suggests that stabilizing training dynamics is

important in meta-learning adversarial networks.

4.4.2 Reconstruction Loss

Fig. 4-3 compares the performance of models trained using either traditional joint
training and MAML-based optimization on a held-out validation set. We find that
MAML consistently out-performs Joint-Training and is robust with respect to arbi-
trary hyper-parameters such as the number of inner-steps or the meta-batch size. We
restrict our attention to the simplest MAML variant above, which uses meta-batches
of two tasks and performs a single adaptation step for each event, and evaluate model
performance using weather metrics. We summarize our results in Table 4.3 and find
that even though U-Nets trained with MAML achieve better performance on the op-

timization objective, these improvements do not consistently translate to gains on
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Adversarial MAML: A and n
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Figure 4-2: Adversarial MAML - hyperparameter sweep. Train curve plots
performance on validation-split throughout training. The choice of A and 7 signifi-
cantly impact convergence speed and final train objective value.

weather-specific evaluation. In particular, we see that finetuning to specific tasks

leads to better precision but worse recall and IOU.

Table 4.3: Reconstruction loss - evaluation. Comparison of joint-training and
MAML-based optimization with a single inner-adaptation step. Test-set evaluation
on meteorological metrics. MAML has better precision but worse recall and I0OU.

threshold 74 133
metric | CSI | POD | SUCR || CSI | POD | SUCR
Joint | 0.21 | 0.23 0.81 || 0.27 | 0.30 0.79
MAML | 0.14 | 0.14 0.86 | 0.20| 0.20 0.98

Figure 4-4 shows sample images generated by U-Nets trained with reconstruction
loss using either the baseline joint training method or MAML. Limitations given by
training with reconstruction loss, such as blurry outputs, remain. The task adaptation
mechanism helps in this case to recognize that there are some storm events in the
bottom-left corner, although it is not very effective at predicting the correct shape of

these low-intensity precipitations on a fine-grained scale.
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Comparison of MAML and Joint Training performance
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Figure 4-3: Reconstruction loss - train curve. MAML outperforms Joint Train-
ing. Evaluation done on validation test throughout training. The number of inner
steps and meta-batch size do not significantly impact performance.

4.4.3 Adversarial Loss

We train generative adversarial networks using the second-order MAML procedure
(on both the generator and discriminator networks, as described in Algorithm 1) and
the joint training baseline. We compare the evolution of the reconstruction error
throughout training in Fig. 4-5 and notice MAML significantly helps in minimizing
the train objective. We used A = 102 and 1 = 10~* for this MAML curve.

Because the study in Section 4.4.1 suggested both adversarial training methods are
more susceptible to hyper-parameters choice, we evaluate on meteorological metrics
for all values of A\ and 7, and summarize our results in Table 4.4 and 4.5 for joint
and MAML training, respectively. For joint adversarial training, especially when
evaluating with lower thresholds, we see the critical success index is fairly constant
as we vary A while increasing A leads to lower recall and higher precision. This seems
to suggest that placing more weight on the reconstruction loss will lead to predicting
fewer high-valued VIL pixels.

For MAML adversarial training we do not identify any clear trend between hy-
perparameters \ and n and the values of meteorological metrics on the test-split. We
believe this shows training is more unstable in this regime: instabilities are further

exacerbated when optimizing a bilevel Nash equilibrium problem with gradient de-
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target joint train prediction maml train prediction

Figure 4-4: Reconstruction loss - generated samples. Comparison of joint-
training and MAML-based optimization with a single inner-adaptation step. Sample
generated VIL frames. Finetuning helps the model predict low-intensity regions.
Reconstruction loss makes outputs somewhat blurry.

Table 4.4: Adversarial Joint - evaluation. Test-set evaluation on meteorological
metrics.

threshold 74 133
metric | CSI | POD | SUCR || CSI | POD | SUCR
A=10%10.29 | 0.50 0.56 || 0.27 | 0.30 0.76
A=10%1{0.29 | 0.46 0.58 || 0.29 | 0.35 0.71
A=10*1{0.29 | 0.43 0.64 || 0.29 | 0.33 0.73

scent, as we did above. A comparison between tables 4.4 and 4.5 shows that, similarly
to the case of reconstruction loss, MAML optimization leads to higher precision and
lower recall. After visually inspecting the generated samples we find that some of
the models seem to exhibit mode collapse where the generated samples are not even
realistic, while some of them do resemble the ground-truth. We present examples
of samples successfully generated by models trained with MAML on adversarial loss
below and note there is a large variance in the fraction of realistic samples across dif-
ferent models. This is not reflected in any of the evaluation metrics: we believe this
further underscores that in image generation the correlation between good evaluation

performance and high sample quality is rather weak.

Figures 4-6 and 4-7 compare samples generated by models trained on adversarial
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2500 Comparison of MAML and Joint Training performance
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Figure 4-5: Adversarial loss - train curve. MAML outperforms Joint Training.
Evaluation done on validation test throughout training.

target

Joint A =102

Joint A =103

Joint A =10%

Figure 4-6: Adversarial Joint - generated samples. Reconstruction loss biases
the model towards sparser predictions.

loss through either joint or MAML-based procedures for different values of \. The

MAML models all used an inner SGD learning rate of 107°. We see that in this

case the intuitions from the reconstruction loss setting are still valid and the task-
adaptation inherent to MAML enables it to correctly generate low-intensity VIL data

that joint-setting misses out on. We also confirm the aforementioned trend of higher

A values leading to lower VIL values.
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Table 4.5: Adversarial MAML - evaluation. Test-set evaluation on meteorologi-
cal metrics. MAML models have higher precision and lower recall and IOU.

threshold 74 133

metric CSI | POD | SUCR || CSI | POD | SUCR
A=10% 1] 0.14 | 0.16 0.93 || 0.24 | 0.26 0.90
n=10"*| X =103 | 0.09 | 0.09 0.98 || 0.20 | 0.20 0.99
A=10* | 0.13 ] 0.21 0911 0.21 | 0.32 0.87
A=10%1{0.19 | 0.23 0.87 || 0.23 | 0.27 0.84
n=10"° | A=10%1] 0.17 | 0.20 0.90 || 0.25 | 0.29 0.87
A=10*[ 0.12 | 0.15 0931 0.22| 0.26 0.91

MAML A = 102 MAML A = 103 MAML A = 10%

Figure 4-7: Adversarial MAML - generated samples. Finetuning helps identify
low-intensity VIL regions.
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Chapter 5

Self-Supervised Pretraining

5.1 Method

We follow recent work in self-supervised pretraining which applies contrastive learn-
ing to convolutional networks before finetuning on classification tasks and improves
downstream performance and data efficiency. We ask if these improvements extrap-
olate to our image-to-image setup. The main distinction between our scenario and
those in previous work is that we can initialize only a fraction of our parameters

trough contrastive pretraining.

We restrict our attention to the U-Net encoder parameters during the pretraining
stage and follow the same network architecture as in Chapter 4. We experiment
with both the SimCLR|[4] and SimSiam [6] pretraining methods and find the former

performs better on downstream tasks.

Data Augmentations. Another difficulty particular to our setup is the problem
of choosing data augmentations the input domain is invariant to because weather
modalities have different invariances than natural images: for example, the popular
color jitter transformation is not applicable here. From the standard augmentations,
the only ones we consider are: random resized crops, random horizontal flips, gaussian
noise and gaussian blur. We also further exploit the temporal structure of SEVIR to

obtain “natural augmentations”.
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5.1.1 Natural augmentations

We further consider using the temporal structure of SEVIR for augmentations, as fol-
lows. Each even consists of 49 frames, so we anchor frames [0, 6,12, 18, 24, 30, 36, 42].
Then for each anchored frame, we sample an offset uniformly from the interval [0, I),
and add it to the index of the frame to obtain a positive pair of frames. We use the 8
positive pairs from 16 events to form a batch of 128 positive pairs. We apply the fol-
lowing transformations to each frame: the upper bound of the interval I for forming
positive pairs of the anchors is either 0 or 3; optionally (either with probability 0 or
1) we apply random resized crops using scale (0.2, 1.0); either with probability 0 or
0.5 we apply diagonal gaussian noise with mean 0 and standard deviation 0.1; either
with probability 0 or 0.2 we apply gaussian blur with standard deviation sampled
from (0.1 and 2.0). The rest of the augmentation arguments follow the default in the
Torchvision library!. In Figure 5-1 we present a conceptual visualization of the trans-
forms. The base learning rate for contrastive pretraining is 0.015 and we consider a

cosine decay scheduler from [6] with 4 warm-up epochs and 40 total epochs.

. Random . .
Time . Gaussian Gaussian
Invariance Resized
anchor
N 3
positive o)
—
negative

Figure 5-1: Augmentations for the contrastive learning experiment The pos-
itive pair for the anchor is 2 frames after the anchor. The negative pair is frame 42.
Where we indicate “more” is an example of a larger magnitude of the augmentation
being applied. We do not vary the magnitude in our experiments in this section,

however we present it here as a possibility for future work.

https://pytorch.org/vision/stable/transforms.html
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Below we report results from preliminary checkpoints evaluated at early epoch
stages. We track validation-split MAE throughout training in Fig. 5-2 using U-Net
encoders initialized with SimCLR pretraining using either a single type of data aug-
mentation or multiple transformations. In all settings we find marginal yet somewhat
consistent gains. Interestingly, we see that pretraining with multiple augmentations

leads to both slightly better performance, as well as more diverse training dynamics.

SimCLR: single transformation 050 SimCLR: multiple transformations

— blur and crop
@

048

046

044

validation set)

042

(
4
MAE (validation set)

MAE

0.00 025 050 075 100 125 150 175 200 0.00 025 050 075 100 125 150 175 200
Train Epochs Train Epochs

Figure 5-2: Pretrained encoder - train curve. Pretraining encoder parameters
marginally improves reconstruction loss.

Table 5.1: Contrastive Pretraining - evaluation. Test-set evaluation on meteo-
rological metrics. Pretraining significantly improves model precision. Using multiple
augmentations leads to better performance.

Augmentation 74 133
noise | blur | crop | short time | CSI | POD | SUCR || CSI | POD | SUCR
0.30 | 048 | 0.58 || 0.27 | 0.29 | 0.79
0.28 | 048 | 0.55 | 0.26 | 0.27 | 0.82
0.27 | 0.37 | 0.67 | 0.27 | 0.30 | 0.81
0.28 | 0.47 | 0.58 | 0.26 | 0.27 | 0.84
0.28 | 0.43 | 0.61 | 0.25 | 0.27 | 0.81
0.29 | 043 | 0.62 | 0.27 | 0.30 | 0.77
0.29 | 0.51 | 0.51 | 0.28 | 0.31 | 0.76
0.25 | 0.32 0.74 0.29 | 0.34 | 0.73
0.21 | 023 | 0.81 || 0.27 | 0.30 | 0.79

Z|Z| K| < 2| 2| 2| 2| <
z|Zz|z|z| < 2|z <|=Z
zZi<| 2| <<z <z =z
Z| K| K| 2| 2| <| 2| 2| =

We evaluate on meteorological metrics and summarize our results in table 5.1.
We find that even though pretraining had a marginal effect on the reconstruction
loss train objective, it often provides important gains on domain-specific evaluation

criteria. We highlight the large improvement in CSI for low threshold values, which
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stems mostly from significant improvements in precision.
We show example samples in figure 5-3 and find that pretraining the U-Net encoder

leads to better performance in high-VIL regions.

target pretrained prediction baseline prediction

Figure 5-3: Pretrained encoder - generated samples Pretrained models better

identify the sparse high VIL values.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We formulate a novel few-shot multi-task image-to-image translation problem lever-
aging spatio-temporal structure in a large-scale storm event dataset. We provide
several benchmarks for this problem and consider two optimization procedures (joint
training and gradient-based meta-learning) and two loss functions (reconstruction
and adversarial). We train U-Nets in all these regimes and present each model’s
performance, as well as evaluate on various domain-specific metrics. We discuss the
advantages and disadvantages of each of these. In this process we have also explored a
training scheduled unexplored until now to the best of our knowledge: meta-learning
adversarial GANs with second-order gradient updates. Additionally, we explore pre-
training U-Net encoder parameters using various augmentations in both the spatial

and temporal domains.

6.2 Future Work

6.2.1 Improving performance and stability

There are numerous tricks for training GANs that have been shown to work well

in practice for natural image generation. An interesting research direction would be
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exploring if these gains extend to our meteorological domain. Two of these techniques
are applying spectral normalization to the discriminator network and updating the
generator network more often than the discriminator.

We have not fully explored the interplay between adversarial training and MAML’s
bilevel optimization and believe it would also be very interesting to further develop
this aspect of our work. The most immediate next step could be meta-learning just
a subset of the networks’ parameters.

Another interesting direction would be applying importance sampling or even
curriculum learning techniques to the training schedule. An important difference
between SEVIR and the natural images datasets we are more accustomed with is
that not all events are equally informative: our models can presumably learn much
more from complex storms than from frames taken during calm weather where the

VIL and lighting frames are very sparse, and the IR imagery has very little variance.

6.2.2 Theoretical guarantees

[10] study both MAML and its first-order approximation in the standard single-agent
scenario and prove both of these convergence to a stationary point. They additionally
show convergence rates for the second order MAML method. [13] prove a universal
theorem variant for second order MAML. In the future it would be interesting to
analyse if these results extend to adversarial training and how to combine these for-
malisms with results that show adversarial training induces the optimal underlying
sample distribution, follows universality guarantees, and converges in convex-concave
problems when using algorithms such as extra-gradient or optimistic gradient descent.

We have also found that while algorithmic improvements help the optimization
procedure reach optima that perform better on the objective function, these gains do
not always translate to improvements of evaluation metrics of interest to the mete-
orology community, and believe it would be worthwhile to formulate loss functions

more closely related to our end-goal of generating realistic VIL imagery.
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