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Abstract
In this thesis we explore adversarial examples for simple model families and simple
data distributions, focusing in particular on linear and kernel classifiers. On the
theoretical front we find evidence that natural accuracy and robust accuracy are
more likely than not to be misaligned. We conclude from this that in order to learn
a robust classifier, one should explicitly aim for it either via a good choice of model
family or via optimizing explicitly for robust accuracy. On the empirical front we
discover that kernel classifiers and neural networks are non-robust in similar ways.
This suggests that a better understanding of kernel classifier robustness may help
unravel some of the mysteries of adversarial examples.
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Chapter 1

Adversarial examples: an overview

In its 2012 debut at the ImageNet competition, AlexNet [10] set a record of 84.7% for

top-5 accuracy, beating the second place model by over 10% [8]. In the years since,

deep vision networks have achieved top-5 accuracies of 98.7% [26], surpassing

humans who top out at around 95% [19]. Given these amazing results, one may

be tempted to conclude that we have solved the problem of image classification.

Adversarial examples are evidence that this is not true.

It turns out deep neural networks trained using standard methods are actually

very fragile. Given an arbitrary input G, one can usually perturb G a tiny amount

to G + & such that the network outputs nonsense when fed G + & as input [11]. A

visualization of this effect for an image classifier is given in Figure 1.0.1.

For a more concrete sense of the extent of this fragility, consider a ResNet-50

neural network trained on ImageNet. Such a model achieves 76% top-1 accuracy,

which corresponds to around 93% top-5 accuracy [15]. However, if we adversarially

perturb the test inputs by at most 2/255 intensity-levels per pixel, the same ResNet-

50 achieves a top-1 accuracy of 0.036% [22]. 2/255 intensity-levels per pixel is

imperceptible to a human, but this is enough to completely break a standard ResNet-

50.

Moreover, adversarial vulnerability is also extremely hard to get rid of. While

we do have methods that increase the robustness of a network, even state of the art

robust models don’t come close to reaching human levels of robustness.

8



Figure 1.0.1: An adversarial chair. The left image was taken by the author using a
smartphone and is of a chair in his residence. When fed to CLIP [16], a cutting edge
multimodal image classification model, CLIP says the image is a chair with 99.99%
confidence. However, by perturbing the left image in a slight1 but adversarial
manner to the image on the right, CLIP changes its prediction and says the right
image is a hat with 95.56% confidence. The almost imperceptibly perturbed image
on the right is called an “adversarial example”.
1 Up to 2.55/255 intensity levels per pixel.

For example, on CIFAR10, human accuracy is around 94% [9]. We feel this num-

ber is roughly unchanged even when an adversary is able to perturb up to 8/255

intensity-levels per pixel, since from Figure 1.0.2 it appears that such perturbations

are near imperceptible. So let’s be generous and say human robust accuracy is 90%

under the 8/255 threat model. State of the art neural networks on the other hand

are only able to achieve 66.56% robust accuracy [4].

We can summarize the empirical phenomena of adversarial examples thusly:

1. Adversarial examples are ubiquitous and severe in naturally trained networks.

2. Adversarial examples are less severe but ever-present in our best attempts at

robust models.

This is a sobering state of affairs, especially when it comes to deploying neural

networks in the real world where there are potentially life threatening consequences

to adversarial examples.1

1For example, researchers have performed proof of concept adversarial attacks in which they
placed small stickers on a road that caused a Tesla to swerve into the wrong lane [1].
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However, adversarial examples are not all bad news. Fundamentally, the exis-

tence of adversarial examples suggests that artificial neural networks may be doing

some critically different things than biological neural networks, which are much

more robust. Thus understanding the phenomenon of adversarial examples may

1) help us understand what current ANNs are really doing under the hood and 2)

reveal key things biological NNs have that current ANNs don’t have. Advancing

this understanding is the goal of this thesis.

1.1 Open problems in adversarial examples

We feel there are three major open problems in the field of adversarial examples:

(A) What are naturally trained neural networks learning that enables them to

have high natural accuracy but simultaneously abysmal robust accuracy?

(B) How can we train neural networks to have high robust accuracy? Is it even

possible?

(C) How do we build a machine in practice that has high robust accuracy (like a

human)?

Below, we give a (incomplete) summary of what existing literature has to say

about these questions.

1.1.1 Open problem A: What are ANNs learning?

In the vision domain, [7] show that neural networks heavily utilize non-robust fea-

tures that are easily flipped via small imperceptible perturbations, but nonetheless

encode a large amount of signal. The utilization of these non-robust features is

so great that by manipulating just these non-robust features in the training data,

networks can be made to learn arbitrary classification functions.

In [6], it is shown that when trained to classify two nested high dimensional

spheres (using standard training methods), simple fully connected neural networks
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are highly non-robust. This is shocking given the fact that it is easy to construct

even by hand a fully connected NN that robustly classifies the two nested spheres.

In [14], a simple demonstration is given in which label noise causes adversarial

examples in a neural network. Thus ANNs are very sensitive to label noise, which

makes sense given that they are often trained to perfectly fit their training data. It

is unclear how much this influences adversarial examples in practice though, since

adversarial examples appear even on close to perfectly clean data.

1.1.2 Open problem B: How can we train robust ANNs, if at all?

In [12], the authors introduce adversarial training, a block coordinate ascent/descent

algorithm for training robust models. Standard adversarial training yields close to

state of the art results for many tasks.

1.1.3 Open problem C: Building robust machines

Much of the existing theoretical work on adversarial examples is most relevant

towards open problem C. The results of this theoretical work is best understood in

terms of guidelines for what to do when it comes to building a robust machine. We

review a few of the most important guidelines below.

• Optimize explicitly for robustness. In [23], it is shown that there exist

scenarios in which natural accuracy and robust accuracy are at odds with

each other. That is to say, making one too big will necessarily make the other

small. Thus if robustness is the goal, it is generally wise to explicitly optimize

for it.

• Pick the right model family. In [13] it is shown that there are scenarios in

which using the wrong model family causes non-robustness to be inevitable,

and using the right model family makes learning a robust classifier possible

and easy. In addition, [20] gives a similar construction where using the wrong

model family causes the sample complexity of learning a robust classifier to
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blow up. Overall, the message here is that the right model family can make

all the difference when it comes building a robust machine.

• Have enough training data. In [20], it is shown that learning a robust model

can sometimes take significantly more training data than learning a well-

performing but non-robust model.

• Try to have clean training data. In [2], it is shown that when data labels

are noisy, interpolative kernel methods (i.e., methods that get 100% training

accuracy) learn classifiers that blow in norm and are non-robust. Likewise,

[14] also gives a simple demonstration of this fact for neural networks, which

is also an interpolative method in practice. Though a robust machine need

not be an interpolator, it still seems wise to try and have clean training data

when possible.

• Have enough compute. In [3], the authors construct a scenario in which

learning a robust model is computationally intractable even when learning an

accurate but non-robust model is computationally easy. Though the construc-

tion is a bit pathological and is not very reflective of real data distributions,

it nonetheless shows it is possible for robust learning to take more compute.

Thus having ample compute at one’s disposal would probably not hurt when

it comes to building a robust machine.

1.2 Outline of thesis

This thesis is centered on the exploration of simple datasets and models that demon-

strate some degree of adversarial example phenomena. We use our observation in

these simple settings to comment on and conjecture solutions to open problems A,

B, and C. The remaining chapters are laid out in the following manner:

• In Chapter 2 we study the joint behavior of natural and robust accuracy, and

conclude that there are at least two different ways of tackling problem C. One
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could either design optimization processes that better promote robustness,

or design better model architectures that are "automatically" robust.

• In Chapter 3, we analyze linear classifiers on a simple Gaussian dataset.

We discover that on this dataset, misalignment between natural accuracy and

robust accuracy is the norm rather than the exception. This reinforces the idea

that solving open problem C must involve explicitly optimizing/designing

for robustness.

• In Chapter 4, we study adversarial example for kernel classifiers. We find

that classical kernel classifiers are vulnerable to adversarial examples in sim-

ilar ways to neural networks. From this, we conjecture that classical kernel

classifiers may hold some secrets to what neural networks are doing under

the hood (problem A).

We also provide some weak evidence that classical kernel classifiers are funda-

mentally unable to be robust. Due to the similarity between kernel classifiers

and neural networks, this is also weak evidence for the impossibility of open

problem B.

• Finally in Chapter 5, we study some empirical properties of neural networks.

We find further evidence suggesting that neural networks and classical kernel

classifiers may be non-robust for similar reasons (problem A).
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Size Perturbed CIFAR10 test images

0/255

2/255

4/255

8/255

16/255

32/255

64/255

128/255

255/255

Figure 1.0.2: Visualization of different levels of pixel perturbations on CIFAR10
images. The images are the first ten images of the CIFAR10 test set. For each
perturbation size &, the pixel intensities in the left-half of each image are decreased
by & and clipped to zero if they go negative. A maximum perturbation of size
255/255 results in an completely black left-half. Note that a perturbation of & =
8/255 is near-imperceptible.
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Chapter 2

Alignment

In this chapter we develop a formal framework for studying the interplay between

natural accuracy and robust accuracy. Our main idea is to look at the global joint

behavior of the two losses, and we develop notions for when this joint behavior is

aligned and when it is not.

We then introduce a simple dataset on which natural accuracy is misaligned

with robust accuracy, and demonstrate how modifying the model family can elim-

inate misalignment. We thus conclude that there are multiple roads to robustness.

Finally, we show under certain conditions the tradeoff curve between natural

and robust error is convex.

2.1 Formalizing adversarial robustness

When people say a classifier “is vulnerable to adversarial examples” or “lacks

adversarial robustness” what they generally mean is that the robust accuracy of the

classifier is much lower than the natural accuracy of the classifier. Let us formalize

this notion.

Let � : X → Y be a classifier, let -,. ∼ %-,. be random variables representing

a random datapoint and its label, and letA : X → 2X denote a perturbative threat
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model ( i.e., a datapoint G can be adversarially perturbed to any point inA(G)).1
We can write the natural error of � on %-,. as

!nat-err(�) , P%-,. (�(-) ≠ .) (2.1.1)

and the robust error of � on %-,. with respect to threat modelA as

!rob-err
A (�) , P%-,. (�(A(-)) ≠ {.}) (2.1.2)

Thus a more formal way to say � “lacks adversarial robustness” is to say

!nat-err(�) � !rob-err
A (�). (2.1.3)

To understand when Equation (2.1.3) occurs, it will be helpful to understand

the joint behavior of !nat-err and !rob-err over a family of classifiers ℱ . This will be

the focus of later sections. Before we move on to this joint behavior however, let us

first introduce a useful alternate form of robust error.

2.1.1 Adversarial robustness as distributional robustness

An alternative way of writing robust error is

!rob-err
A (�) = max

&-,. ∈ �A(%-,.)
P-,.∼&-,. (�(-) ≠ .), (2.1.4)

where �A(%-,.) is the set of all probability distributions over -,. that can be

obtained from %-,. be perturbing - to some element in A(-). More precisely,

&-,. ∈ �A(%-,.) if and only if there exist three random variables -, -′, . where

the variables -,. have joint distribution %-,. , the variables -′, . have joint distri-

bution &-,. , and P(-′ ∈ A(-)) = 1.

The expression in Equation (2.1.4) is written in distributional robustness form,

1The most commonly studied perturbative threat models in the literature [21] are those of &-ℓ?
perturbations for ? ∈ {0, 2,∞}, where A(G) = {G + Δ | ‖Δ‖? ≤ &}. In this work, our analysis will
center primarily on the ? = 2 case.
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and reveals that adversarial robustness is a special case of distributional robust-

ness.2 This form will prove useful for us both for mathematical convenience, and

because it allows us to treat minimizing robust error as a minimax game, enabling

us to make statements about equilibria.

2.2 Joint loss behavior and loss alignment

Let us now cover some general properties of of joint loss behavior. We define a

loss function ! : YX → [0, 1] to be a function that maps a classifier � : X → Y to

a real number !(�) ∈ [0, 1]. As the name implies, smaller values of loss functions

are more desirable. The joint behavior of two loss functions !1, !2 is captured via

the notion of a joint achievable region, defined as follows.

Definition 2.2.1. The joint achievable region of two losses !1, !2 : YX → [0, 1] across

a family of classifiers ℱ ⊆ YX is the subset of [0, 1]2 defined by

ℛ(!1, !2, ℱ ) , {(!1(�), !2(�)) | � ∈ ℱ }. (2.2.1)

To avoid cumbersome technical conditions, we assume throughout this work

that joint achievable regions are closed sets.3

Since smaller losses are more desirable, we can also define a notion of classifier

efficiency and a notion of an efficient frontier.

Definition 2.2.2. A classifier � ∈ ℱ is efficient with respect to two losses !1, !2 if there

does not exist a classifier in �′ ∈ ℱ with strictly better performance, i.e. !1(�′) ≤ !1(�)
and !2(�′) ≤ !2(�) with at least one of the inequalities strict.

Definition 2.2.3. The efficient frontier with respect to losses !1, !2 across a family of

classifiers ℱ is the subset of ℛ(!1, !2, ℱ ) generated by efficient classifiers. In other words:

ℰ(!1, !2, ℱ ) , {(!1(�), !2(�)) | � ∈ ℱ , � efficient} . (2.2.2)

2A related but separate problem of study from that of adversarial examples. Some have proposed
that adversarial example research may benefit from taking more of a distributional robustness
viewpoint [6].

3A sufficient condition for this would be for ℱ to be compact and !1 and !2 to be continuous
over ℱ .
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Now, let us define some notions of loss alignment, which describes the extent

to which minimizing loss !1 is equivalent to minimizing loss !2.

Definition 2.2.4. Two losses !1 and !2 are strongly aligned (or alternatively have strong

alignment) over ℱ if

!1(�) < !1(�′) ⇐⇒ !2(�) < !2(�′)

for all �, �′ ∈ ℱ .

Note that strong alignment is both symmetric and reflexive (i.e. any loss is

always strongly aligned with itself). When two losses are strongly aligned, opti-

mizing for one is just a good as optimizing for the other (modulo computational

concerns).

The following weaker notion of alignment will also prove to be useful:

Definition 2.2.5. Two losses !1 and !2 are aligned in the limit (or alternatively have

limit alignment) over ℱ if

�∗ ∈ argmin
�∈ℱ

!1(�) ⇐⇒ 5∗ ∈ argmin
�∈ℱ

!2(�).

Strong alignment always implies limit alignment, but not necessarily the other

way around. Limit alignment of !1 and !2 means that minimizing !1 perfectly

is equivalent to minimizing !2 perfectly. Emphasis here on perfectly here, since

weak positive alignment makes no guarantees on alignment outside of perfect

minimization.

The complement to limit alignment is limit misalignment:

Definition 2.2.6. Two losses !1 and !2 are misaligned in the limit (or alternatively

have limit misalignment) over ℱ if the efficient frontier ℰ(!1, !2, ℱ ) has more than one

element.
Limit misalignment implies there is a genuine tradeoff involved in optimizing

!1 and !2, i.e., minimizing one objective necessarily leaves the other sub-optimal.

When limit misalignment is present, one should explicitly optimize for the objective

they care about, since optimizing for the other may be actively harmful.
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On occasion we will also speak of the "alignment" of two functions where larger

values of the functions more desirable. In this case we really refer to the alignment

of properly scaled negations of the quantities, which are loss functions. As an

example, the two statements “natural accuracy is strongly aligned with robust

accuracy” and “natural error is strongly aligned with robust error” are equivalent

when accuracy = 1 − error.

2.3 Alignment between natural and robust error

We are now ready to study the alignment of !nat-err and !rob-err
A . We assume in this

section that A is non-degenerate, meaning G ∈ A(G) always holds. Due to this

non-degeneracy, it holds for any classifier � that

!nat-err(�) ≤ !rob-err
A (�). (2.3.1)

Next we explore a simple example where natural error and robust error are

misaligned in the limit.

Consider the following data model with data - and labels .,

. ∼ Unif({False, True})

- = (-1, -2)

-1 = .

-2 =


., w. prob (1 − ?)

¬., w. prob ?

with an adversary that can perturb -1 at will:

A(G1, G2) = {(False, G2), (True, G2)}

The joint achievable region for this dataset over the set ℱ of all possible random-
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ized4 classifiers is visualized in Figure 2.3.1.

This dataset is a simple demonstration of the fact that natural error and robust

error can be negatively aligned. By varying ?, the degree of negative alignment

can be changed. In particular, for |? | < 1, any classifier achieving optimal natural

error necessarily achieves 100% robust error.

Thus in order to get a classifier with low robust error on this simple dataset, we

must explicitly optimize for robustness. This is not the only way to get low robust

error though. We could instead change the model family to get robustness. Indeed

when we restrict the model family to randomized classifiers that only use the -2

feature, natural error and robust error become perfectly aligned.
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Figure 2.3.1: Joint achievable regions of natural and robust error for a simple dataset
with a non-robust feature for different settings of ?.

2.4 Shape of tradeoff between natural and robust error

In the simple dataset of the previous section, the efficient frontier of natural and

robust error is linear (as can be seen in Figure 2.3.1). In general this efficient frontier

can be of any shape (and in the case of strong alignment is a single point).

4We assume that the adversary does not have access to the classifiers randomness.
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However when the model family is sufficiently rich, the efficient frontier is

convex. This is captured by the following theorem:

Theorem 2.4.1. Let ℱ be a family of randomized classifiers closed under taking mixtures.

That is to say, if �0 and �1 are in ℱ then for any � ∈ [0, 1], the randomized classifier

��(G) =


�0(G) with probability 1 − �

�1(G) with probability �

is also in ℱ . It then holds that the efficient frontier of natural and robust error over ℱ is a

convex.

This theorem is a consequence of the fact that �� will perform at least as well as

the corresponding weighted average of the performances of �0 and �1:

Lemma 2.4.2. Let �0 and �1 be two classifiers, and let �� denote a randomized mixture

classifier that behaves as

��(G) =


�0(G) with probability 1 − �,

�1(G) with probability �,
� ∈ [0, 1].

Then for any � ∈ [0, 1], it holds that

!rob-err
A (��) ≤ (1 − �) · !rob-err

A (�0) + � · !rob-err
A (�1). (2.4.1)

Proof. Using the distributional robustness form of robust error as given defined in
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Equation (2.1.4), we have

!rob-err
A ( 5�)

= max
&-,. ∈ �A(%-,.)

P-,.∼&-,. (��(-) ≠ .)

= max
&-,. ∈ �A(%-,.)

[
(1 − �) · P-,.∼&-,. (�0(-) ≠ .) + � · P-,.∼&-,. (�1(-) ≠ .)

]
≤ (1 − �) ·

[
max

&-,. ∈ �A(%-,.)
P-,.∼&-,. (�0(-) ≠ .)

]
+ � ·

[
max

&-,. ∈ �A(%-,.)
P-,.∼&-,. (�1(-) ≠ .)

]
= (1 − �) · !rob-err

A (�0) + � · !rob-err
A (�1). �

Having established Lemma 2.4.2, the proof of Theorem 2.4.1 follows easily.

Proof of Theorem 2.4.1. Let �0 and �1 be two arbitrary points on the efficient frontier

of ℱ . To show the efficient frontier is convex, we must show that for any � ∈ [0, 1],


inf
� ∈ ℱ

!rob-err
A (�)

s.t. !nat-err(�) = (1 − �) · !nat-err(�0) + � · !nat-err(�1)


≤ (1 − �) · !rob-err

A (�0) + � · !rob-err
A (�1).

Lemma 2.4.2 easily implies this inequality, since �� has natural error (1 − �) ·
!nat-err(�0)+� ·!nat-err(�1) and robust error at most (1−�) ·!rob-err

A (�0)+� ·!rob-err
A (�1).

�
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Chapter 3

Linear classification of symmetric

Gaussians

In this chapter we study the problem of robustly classifying two symmetric Gaus-

sians using a linear model. The data distribution under study is heavily inspired

by the work in [20] and [7].

The major result of this chapter is that on this dataset, it is the rule rather than the

exception that natural and robust accuracy are limit misaligned. This suggests that

such misalignment may be commonplace in practice, in which case it is imperative

that one optimizes/designs explicitly for robustness if one desires robustness.

This result follows from the main theorem of this chapter, Theorem 3.3.1, which

presents a fairly precise characterization of linear classifiers that are efficient with

respect to natural and robust accuracy on the symmetric Gaussian dataset.
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3.1 Problem setup

The linear models we study are parameterized functions �F : R3 → {±1} parame-

terized by F ∈ (R3 − {0}) × R of the form1

�F(G) , sgn( 5F(G)) , sgn(〈F, G〉), (3.1.1)

where the smaller 5F : R3 → R denotes the pre-sgn activation of �F .

The particular data distribution of interest is the following symmetric two-class

Gaussian,

. ∼ Unif({±1}),

- |. ∼ N(. · �,Σ),

where . is the class label and - ∈ R3 for 3 ≥ 2. We assume that � ≠ 0 and that

Σ ∈ R3×3 is positive definite.

Our study of robustness will be with respect to an &-ℓ2 perturbative threat model,

where

A&(G) = {G + Δ | ‖Δ‖2 ≤ &}.

This threat model plays nicely with the geometry of the classifier and data dis-

tribution. As shorthand, we will write !rob-err
& in place of the more cumbersome

!rob-err
A&

.

Under the symmetric two-class Gaussian data distribution, a linear classifier �F
has natural and robust error

!nat-err(�F) = &
(
F>�

‖F‖Σ

)
, (3.1.2)

!rob-err
& (�F) = &

(
F>� − &‖F‖2
‖F‖Σ

)
, (3.1.3)

1Note that the absolute scale of F do not effect the behavior of the classifier. Many of the
expressions in this chapter will be scale invariant in F for this reason.
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where ‖F‖Σ ,
√
F>ΣF and &(·) is the tail distribution function of a standard

Gaussian. We comment on the behavior of biased classifiers in Appendix A.1.

3.2 Isotropic covariance

We first consider the isotropic covariance setting, whereΣ = �2 ·�3 for some constant

� > 0. In this setting the natural and robust errors for a classifier �F can be written

as

!nat-err(�F) = &
(
F>�

�‖F‖2

)
, (3.2.1)

!rob-err
& (�F) = &

(
F>�

�‖F‖2
− &
�

)
. (3.2.2)

Since & is a strictly decreasing function, we see that natural error and robust error

are strongly aligned. This will actually turn out to be an exceptional case, and thus

we will note this result down as a theorem.

Theorem 3.2.1. For linear classifiers on a symmetric two-class Gaussian dataset, natural

error is strongly aligned with robust error.

Let us now return to the expressions in Equation (3.2.1) and Equation (3.2.2).

We note that {
F>�

‖F‖2

����� F ∈ R − {0}
}
=

[
−‖�‖ , ‖�‖

]
,

which means{
!nat-err(�F)

����� F ∈ R − {0}
}
=

[
&

(
−
‖�‖
�

)
, &

( ‖�‖
�

)]
{
!rob-err
& (�F)

����� F ∈ R − {0}
}
=

[
&

(
−
‖�‖ − &

�

)
, &

( ‖�‖ − &
�

)]
Thus, the joint achievable region of natural and robust loss is governed entirely by

the two ratios ‖�‖/� and &/�. We will refer to these ratios as the signal-to-noise

ratio (SNR) and signal-to-adversary ratio (SAR) respectively.
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We visualize the effect that SNR and SAR have on the joint behavior of natural

and robust error, in Figure 3.2.1 and Figure 3.2.2. These figures show the joint

achievable region as a one-dimensional line that is strictly increasing in natural

error, which is to be expected given Theorem 3.2.1.

We also make two trivial but important observations:

1. Any point in top right quadrant of the plot is strictly worse than a constant

classifier, which has natural and robust error 1/2.

2. Any point in the top left quadrant of the plot has strictly greater robust error

than a constant classifier, which has robust error 1/2.

Thus, looking at Figure 3.2.1, observation (2) tells us that when SNR = 1 and

SAR = 2, natural accuracy and robust accuracy are misaligned in the limit.

Figure 3.2.1: Joint achievable region for an isotropic Gaussian: SAR fixed. When the
SNR and SAR is fixed, changing the SAR increases the width of the joint achievable
region along a fixed tradeoff curve. The right plot is a logit-scaled version of the
left plot.

3.3 General covariance

When the covariance is not isotropic, the story is considerably more nuanced. In

particular assuming general position (explained below), natural error and robust

error will be misaligned in the limit. This fact (Corollary 3.3.2) follows from the

following theorem, which characterizes which linear classifiers are efficient with

respect to natural and robust error.
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Figure 3.2.2: Joint achievable region for an isotropic Gaussian: SNR − SAR fixed.
When the difference between SNR and SAR is fixed, the optimal robust accuracy
is fixed. When we keep this difference fixed and increase SNR, we sharpen the
tradeoff between robust and natural accuracy. In this manner we can construct
a dataset on which we can get arbitrarily low natural error while keeping robust
error near 100%. The right plot is a log-scaled version of the left plot.

Theorem 3.3.1. For a symmetric two-class Gaussian data distribution in general position†,

the efficient frontier of natural and &-ℓ2-robust error over linear models {�F | F ∈ R3−{0}}
is generated by models �F∗(�) where

F∗(�) ,
(� + �Σ)−1�

‖(� + �Σ)−1�‖2
, � ∈ [�rob

∗ ,∞].

Here we adopt the convention that F∗(∞) = Σ−1�/‖Σ−1�‖2.

Over the range [�rob
∗ ,∞], natural error !nat-err(�F∗(�)) is strictly decreasing in � and

robust error !rob-err
& (�F∗(�)) is strictly increasing in �. So �F∗(∞) is a zero-bias linear model

that minimizes natural error, and �F∗(�rob
∗ ) is a zero-bias linear model that minimizes robust

error.

Finally, �rob
∗ is the unique constant in (− 1

�max(Σ) ,∞) satisfying

(� + �rob
∗ Σ)−1�


2 = &. (3.3.1)

† General position here means � is not an eigenvector of Σ and � is not orthogonal to

the eigenspace of Σ with the largest eigenvalue.

Proof. See Appendix A.2. �
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Limit misalignment of natural and robust error is an immediate corollary of this

theorem.

Corollary 3.3.2. For a symmetric two-class Gaussian data distribution in general position,

over linear classifiers natural error and robust error are misaligned in the limit.

Another slightly more involved corollary of Theorem 3.3.1 is that in this Gaus-

sian case, a Nash equilibrium exists for minimizing robust error:

Corollary 3.3.3. If & is small enough such that �rob
∗ > 0, then �F∗(�rob

∗ ) is both the optimal

&-ℓ2-robust classifier for the base distribution where - |. ∼ N(.�,Σ), and the optimal

natural classifier when

- |. ∼ N(.(� − (� + �rob
∗ Σ)−1�),Σ). (3.3.2)

In fact, this perturbed data distribution and �F∗(�rob
∗ ) form a strong Nash equilibrium in the

game of minimizing robust loss:

min
� :R3→{±1}

max
&-,. ∈ �A& (%-,.)

P-,.∼&-,. (�(-) ≠ .), (3.3.3)

where %-,. is the base distribution. Note that this Nash equilibrium is over all classifiers,

not just linear ones.

Proof. See Appendix A.2. �

When Σ and � are known, Equation (3.3.1) also provides an efficient way of

computing the optimal robust classifier:

Corollary 3.3.4. Since the LHS of Equation (3.3.1) is strictly decreasing in �, the value of

�rob
∗ can be computed efficiently using binary search.

This algorithm is used to generate the plots in Figure 3.3.1, which provide some

visualizations of the joint behavior of natural and robust error for Gaussians with

general covariance structure. We note that
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• A large Σ causes natural error and robust error to be more aligned, and a

small Σ causes natural error and robust error to be more misaligned.

• Natural and robust error are most severely misaligned when Σ is small and �

is close to the maximum eigenvector of Σ.

Figure 3.3.1: Joint achievable regions for general Gaussian. In the figures above,
Σ ∈ R32×32 with condition number �max(Σ)/�min(Σ) = 1000. The eigenvalues of
Σ are evenly log-spaced. In each plot, � is approximately a maximal eigenvector
(i.e. with largest eigenvalue), a minimal eigenvector, or a middle eigenvector (with
eigenvalue �mid(Σ) =

√
�min(Σ)�max(Σ)). We show in each plot the effect of scaling

Σ. The black points correspond to the optimal classifiers for natural and robust
accuracy, and the black dashed lines trace out the efficient frontier.
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Chapter 4

Kernel classifiers

In this chapter, we study the robustness of binary kernel classifiers. We again focus

on &-ℓ2 perturbative threat models.

Our major empirical finding is that naturally trained classical kernel classifiers

are vulnerable to adversarial examples in similar ways to naturally trained neural

networks. Due to this similarity, we conjecture that the non-robustness of naturally

trained neural networks may have the same root cause as the non-robustness of

naturally trained kernel methods.

We then develop some theory to explain the non-robustness of kernel methods

and evaluate our theory empirically.

Finally, we provide experimental evidence that suggests classical kernel classi-

fiers are fundamentally unable to achieve anything more than trivial robust accu-

racy. If this is indeed the case, it suggests that perhaps neural networks in their

current form are also fundamentally unable to achieve robust accuracies on the

level of humans.

4.1 Model definitions

A binary kernel classifier Φ : R3 → {±1} can be thought of as the composition of

an embedding ! : R3 → ℋ (where ℋ is a Hilbert space) and a linear classifier
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�F,1 : ℋ → {±1} where F, 1 ∈ ℋ × R. Written out explicitly, Φ behaves as

Φ(G) = �F,1(!(G)) = sgn( 5F,1(!(G))) = sgn
(
〈F, !(G)〉ℋ + 1

)
, (4.1.1)

where 5F,1 : ℋ → R is the pre-sgn activation of �F,1 . Linear classifiers are a

special case of kernel classifiers where ! is the identity function on R3, giving

Φ = �F,1 ◦ ! = �F,1 ◦ Id = �F,1 .

The expression in Equation (4.1.1) the primal form of a kernel classifier. Though

conceptually useful, in practice we often work with kernel classifiers in their dual

form:

Φ(G) = �X ,,1(G) , sgn
(
6X ,,1(G)

)
, sgn

(
1 +

=∑
8=1

8 :(G8 , G)
)
, (4.1.2)

where like above 6X ,,1 : R3 → R is the pre-sgn activation of �X ,,1 . Here X =

{G1, . . . , G=} ⊆ R= is a set of datapoints that we call the data-basis of Φ,  ∈ R= is

a vector of coefficients, and : : R3 × R3 → R is a kernel function that implicitly

defines (and is defined by) the embedding ! via the relation

:(G, G′) , 〈!(G), !(G′)〉ℋ . (4.1.3)

The primal and dual forms of a kernel classifier are connected by the following

equivalence:

F =

=∑
8=1

8 !(G8) ⇐⇒ 5F,1 ◦ ! ≡ 6X ,,1 . (4.1.4)

Put another way, the dual form of a kernel classifier is the decomposition of the

primal form into the contributions from a set of datapoints X.

31



4.1.1 Choice of kernel

The choice of the kernel / embedding for a kernel classifier has an immense impact

on its behavior. Indeed with an arbitrary kernel, a kernel classifier can represent

arbitrary classification functions. When learning a kernel classifier from data, a

choice of kernel can be interpreted as a choice of prior for the learning algorithm.

In this chapter, we will study kernel classifiers with classical kernels. This is a

loose term, and we mean by it simply those kernels with simple closed forms that

are commonly used in pedagogy and practice. A list of the classical kernels used

in this chapter is given in Table 4.1.

Table 4.1: A list of the classical kernels we study in Chapter 4. In this chapter our
data always lies in R3, so the kernels we study are functions from R3 × R3 to R.

Kernel Parameters Kernel expression

Linear :(G, G′) = G>G′

Polynomial degree: : :(G, G′) = (G>G′ + 1):

RBF bandwidth: � :(G, G′) = exp
(
− ‖G−G

′‖22
�2

)
Laplace bandwidth: � :(G, G′) = exp

(
− ‖G−G

′‖2
�

)

4.2 Learning kernel classifiers

There are many ways of learning a kernel classifiers from data, but for this chapter

we will focus on support vector machine (SVM) inspired learning algorithms.

The base SVM algorithm works as follows. Given a labeled dataset

(G1, H1), . . . , (G= , H=) ∈ R3 × {±1}, we learn a kernel classifier Φ = sgn ◦ 5F,1 ◦ !
optimized for natural accuracy by minimizing the empirical SVM loss

!svm(Φ) , 1
=

=∑
8=1

(
1 − H8 · 5F,1(!(G8))

)+
, (4.2.1)
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where (G)+ = max(0, G) denotes the ReLU function. One interesting fact about

the SVM loss is that the minimizing F∗ lies in the span of !(G1), . . . , !(G=), which

means we can equivalently optimize the dual form of the classifier�{G1 ,...,G=},,1 and

optimize over  instead of F. This is known as the kernel trick.

Whether in primal or dual form, the SVM loss is convex, which means stochastic

gradient descent or more advanced convex optimization routines can be used to

minimize it. We will use both such methods in this chapter.

4.3 Kernel classifiers have adversarial examples

It turns out that on image classification tasks like MNIST and CIFAR10, classical

kernel classifiers are vulnerable to adversarial examples in ways that are similar to

neural networks.

For example, a RBF kernel classifier trained for natural accuracy on a binarized

MNIST task (where the task is to distinguish 0-4 from 5-9), achieves 97.72% natural

accuracy and 0% robust accuracy on the test set.1 This shares striking similarities

with neural networks, which achieves 98.67% natural and 6.69% robust test accuracy

on the same task under natural training.

From conducting experiments (results summarized in Table 4.2) involving var-

ied choices of kernel, training procedure, and dataset, we conclude that severe

non-robustness seems to be an inherent property of naturally trained kernel classi-

fiers with standard kernels. This mirrors the endemic non-robustness of naturally

trained deep vision networks.

Since the robust accuracies in Table 4.2 are well below 50%, it must hold that

natural accuracy and robust accuracy are misaligned in the limit on binarized image

classification for MNIST and CIFAR10. While the degree of this misalignment may

be surprising or at least non-obvious, its mere existence should not come as a

surprise given results like Corollary 3.3.2 from the previous chapter.

1We also binarize CIFAR10 in a similar way, forming two groups of labels 0-4 and 5-9 and making
the classification task to distinguish between the two groups.
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Table 4.2: Natural and robust accuracies of naturally trained kernel classifiers and
neural networks on binarized MNIST and CIFAR10. Accuracies are for the test
set. All models are trained to maximize natural accuracy except for the last row,
which has numbers for a robustly trained neural network. Robust accuracies are
measured under an &-ℓ2 perturbative adversary with & = 2 on MNIST and & = 0.5
on CIFAR10. Pixel intensities are normalized to lie in [0, 1] and perturbations are
clipped to this range. We use [24] to train kernel models and picked the SVM
regularization constant � for each model by hand to maximize test accuracy. The
Random Fourier feature (RFF) [17] architectures were trained using TensorFlow,
and neural networks were taken from [4], [18], and [5].
∗ Evaluated on a subset of the train set due to computational limitations.

Architecture MNIST nat. MNIST rob. CIFAR nat. CIFAR rob.
Linear 88.07 0.06 60.37 0.00
Poly kernel (deg 2) 97.54 0.00 65.46 10.71
RBF kernel 97.72 0.00 66.27 16.87∗

RBF RFF 95.17 0.00 64.66 3.97
Laplace RFF 93.77 0.21 67.81 0.29
Natural NN 98.67 6.69 96.29 4.39
Robust NN 99.28 88.09 96.06 85.16

Finally, though neural networks and kernel classifiers are both non-robust, their

respective adversarial examples have characteristic visual differences that can be

used to tell them apart. We visualize some of these differences for the MNIST

dataset in Figure 4.3.1.

4.4 Margin and robustness

We now develop some theoretical tools for thinking about kernel classifier robust-

ness. In particular, we will focus on the idea of margin. At a high level, the margin

of a datapoint G with respect to a classifier � is a measure of the distance from G

to the decision boundary of �. The larger this margin is, the more robustly � will

classify G.

There are actually a few different notions of margin that we will care about for

kernel classifiers. The first such notion of margin measures distances in the pre-sgn

output space of kernel classifier Φ:

34



Sample adversarial examples (binarized MNIST)

Clean

Linear

Poly

RBF

RBF RFF

Laplace RFF

Natural NN

Figure 4.3.1: Visualization of adversarial examples for kernel classifiers and a
neural network on binarized MNIST. The top row is a set of clean test set images,
and the subsequent rows are adversarial images for different models under a &-ℓ2
perturbative adversary with & = 2. These models are the same as the ones evaluated
in Table 4.2. The adversarial images for each model type have their own distinctive
characteristics. Interestingly, the Laplace RFF’s adversarial examples are almost
indistinguishable from the clean images, setting it apart from the other models.

Definition 4.4.1. The functional-margin of a labeled datapoint (G, H) ∈ R3 × {±1} with

respect to a kernel classifier Φ = �F,1 ◦ ! is defined as

Fmarg
Φ
(G, H) , H ·

(
〈F, !(G)〉 + 1

)
(4.4.1)

The absolute functional-margin of an unlabeled datapoint G is just the absolute value of

the above quantity, and is defined as

Fmarg
Φ
(G) , Fmarg

Φ
(G,Φ(G)). (4.4.2)
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This definition of functional-margin is relevant to SVM methods. For example,

a kernel classifierΦwith zero SVM loss will have a functional-margin of at least one

on every labeled datapoint. The functional margin however, is not scale invariant

in F and 1. This motivates the following definition.

Definition 4.4.2. The geometric-margin of a datapoint (G, H) ∈ R3 × {±1} with respect

to a kernel classifier Φ = �F,1 ◦ ! is defined as

Gmarg
Φ
(G, H) ,

Fmarg
Φ
(G, H)

‖F‖ℋ
. (4.4.3)

The absolute geometric-margin of an unlabeled datapoint G is just the absolute value of

the above quantity, and is defined as

Gmarg
Φ
(G) , Gmarg

Φ
(G,Φ(G)). (4.4.4)

The geometric-margin measures the signed distance between !(G) and the de-

cision boundary of Φ in the embedding space using the norm ‖ · ‖ℋ . When ! is

an isometric embedding2, Φ robustly classifies G as H under an &-ℓ2 adversary if

and only if Gmarg
Φ
(G, H) > &. In general though, ! is not isometric and warps

the geometry of R3, complicating the relationship between geometric-margin and

robustness.

To avoid this warping caused by !, we can define a final notion of margin that

measures distances directly in the data space.

2i.e., when 〈G, G′〉 = 〈!(G), !(G′)〉ℋ .
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Definition 4.4.3. The data-margin of a datapoint (G, H) ∈ R3 × {±1} with respect to a

generic classifier � : R3 → {±1} is defined as

Dmarg�(G, H) , H · �(G) ·


min
G′

‖G′ − G‖2

s.t. �(G′) ≠ H

 . (4.4.5)

The absolute data-margin of an unlabeled datapoint G is just the absolute value of the

above quantity, and is defined as

Dmarg
Φ
(G) , Dmarg

Φ
(G,Φ(G)). (4.4.6)

Data-margin directly measures the robustness of a classifier. Indeed a classifier

� robustly classifies G as H under an &-ℓ2 adversary if and only if Dmarg�(G, H) >
&. Moreover data-margin is more general than functional-margin or geometric-

margin, as it applies to a generic binary classifier. For example, we could speak of

the data-margin for a neural network or even a human.

4.4.1 A margin bound for shift-invariant kernels

It turns out that for kernels of special shift-invariant form, we can lower bound the

absolute data-margin by the absolute geometric-margin (see Theorem 4.4.4). This

is a consequence of the following theorem from [27]:

Theorem 4.4.4. Let : : R3 × R3 → R be a shift-invariant kernel of the form :(G, G′) =
#(‖G − G′‖2) for some strictly decreasing function # : [0,∞) → R. Let Φ be a kernel

classifier with kernel :. Then for any G ∈ R3, it holds that

Dmarg�(G) ≥ �−1 (
Gmarg�(G)

)
. (4.4.7)

where �(·) is the strictly increasing function

�(3) =
√

2#(0) − 2#(3) , 3 ≥ 0, (4.4.8)
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and �−1 :
[
0,

√
2#(0) − 2#(∞)

)
→ [0,∞) is its inverse.

Proof. See Appendix B.1. �

Theorem 4.4.4 holds in particular for RBF and Laplace kernels. Using the forms

of these kernels as given in Table 4.1, we have

#RBF(3) = exp
(
− 3

2

�2

)
and #Laplace(3) = exp

(
− 3
�

)
,

with corresponding �−1(·) functions

�−1
RBF = � ·

√
− log

(
1 − 3

2

2

)
and �−1

Laplace = −� · log
(
1 − 3

2

2

)
.

A plot of these two functions is given in Figure 4.4.1.

Figure 4.4.1: Visualization of the lower bound in Theorem 4.4.4 for a RBF and
Laplace kernel (with bandwidth � = 1). Note that both lower bounds functions
have a vertical asymptote at

√
2. Thus when using a RBF or Laplace kernel, as the

absolute geometric-margin of a point G approaches
√

2, the absolute data-margin
approaches∞.
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4.5 Empirical behavior of margin

Let us now examine the empirical behavior of classifier margin.

In Figure 4.5.1 we plot the joint distribution of geometric-margin and (approxi-

mate) data-margin for some RBF classifiers. We make two observations about these

plots:

1. The bound given by Theorem 4.4.4 is not tight. This means the RBF classifiers

in Figure 4.5.1 are more robust than they appear from looking at geometric-

margin alone.

2. Data-margin is close to a perfect linear function of geometric-margin! Thus

we can tell if a point is robustly classified under an &-ℓ2 perturbative adversary

simply by seeing if its geometric-margin is greater than some threshold 20&,

where 20 is the proportionality constant linking geometric-margin and data-

margin.

In general, the data-margin is difficult to analyze theoretically due to the non-

linear effects of the kernel embedding, whereas the geometric-margin is easier to

analyze because it falls under the umbrella of linear classification theory. Observa-

tion 2 is particularly exciting because it describes scenario in which there is a simple

and precise relationship between data-margin and geometric-margin, allowing us

to study data-margin using the better understood geometric-margin. The following

set of open questions are thus of theoretical interest:

(a) When does the linear relationship in Observation 2 hold? It is specific to

the RBF kernel classifiers, or can we see similar behavior in other types of

classifiers?

(b) When the linear relationship does hold, what determines the proportionality

constant 20?
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Figure 4.5.1: Joint distribution of geometric-margin and (approximate) data-margin
of RBF classifiers on binarized MNIST and CIFAR. Each plot is for 1024 test samples,
and the classifiers are the same ones as in Table 4.2. A sample is classified correctly
if its corresponding point on the plot lies in the upper right quadrant, and it
is classified incorrectly if the corresponding point is in the lower left quadrant.
A point is robustly classified correctly (for an &-ℓ2 adversary) if its y-coordinate
is greater than &. Finally, the black dashed line represents the bound given by
Theorem 4.4.4, which looks linear due to us being near the origin (see Figure 4.4.1
for a more complete picture). We compute the approximate data-margin by first
performing PGD with early stopping, and then doing binary search to find the
smallest perturbation from the base point that still flips the label.
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4.6 Learning robust kernel classifiers

The empirical results from Section 4.3 tell us that naturally accuracy and robust

accuracy are heavily misaligned for kernel classifiers on image classification. Thus

if we want to obtain a robust kernel classifier we must explicitly optimize for robust-

ness. In this section, we propose some algorithms for doing precisely this. These

algorithms aim to learn robust kernel classifiers from data, and are all extensions

to the basic SVM algorithm described in Section 4.2.

4.6.1 Robust SVM loss

The basic idea behind the SVM algorithm is that a classifier Φ = sgn ◦ 5F,1 ◦ ! with

low SVM loss

!svm(Φ) = 1
=

=∑
8=1

(
1 − H8 · 5F,1(!(G8))

)+
tends also to have low natural error !nat-err(Φ). If we take this implication for

granted, then to guarantee low robust error !rob-err
& (Φ) it suffices to ensure !svm(Φ)

is small under all possible &-ℓ2 adversarial data perturbations.

This inspires our first algorithm for learning a robust kernel classifier – we

simply find a classifier that has low robust SVM loss:

!svm-rob(Φ) , 1
=

=∑
8=1

max
‖Δ8 ‖≤&

(
1 − H8 · 5F,1(!(G8 + Δ8))

)+
. (4.6.1)

One of the standard methods for minimizing a robust loss like !svm-rob is to perform

adversarial training [12], which can be thought of as block coordinate ascent/descent

where we alternate between minimizing the loss with respect to E, 1 while fixing

the Δ8 , and maximizing the loss with respect to Δ8 while fixing E, 1. So when !

is an explicit finite dimensional embedding, we can apply adversarial training to

optimize !svm-rob.

Things are problematic when ! is infinite-dimensional or implicitly defined by a

kernel however. For the vanilla SVM loss, the solution here is to use the kernel trick
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and optimize the dual coefficients of the kernel classifier. However for !svm-rob this

no longer works because the optimal F∗ may not lie in the span of !(G1), . . . , !(G=)
(since we are allowed to perturb the G8). Thus the kernel trick can no longer be

safely applied. There are a few potential solutions to this dilemma:

1. Apply the kernel trick anyways with a well chosen data-basis {I1, . . . , I<}
and hope that the optimal F∗ is “close” to the span of !(I1), . . . , !(I<).

2. Approximate the infinite-dimensional or implicitly defined ! with an explicit

finite dimensional !̃ : R3 → R< where

〈!(G), !(G′)〉ℋ ≈ !̃(G)>!̃(G′).

Then apply primal adversarial training using !̃ in place of !.

4.6.2 Robust SVM loss with data-margin bound

This approach is directly inspired by [25].

When ! is the embedding of a shift-invariant kernel that satisfies the conditions

specified in Theorem 4.4.4, it holds that

!svm-rob(Φ) = 1
=

=∑
8=1

max
‖Δ8 ‖≤&

(
1 − H8 · 5F,1(!(G8 + Δ8))

)+
≤ 1
=

=∑
8=1

(
1 − H8 · 5F,1(!(G8 + Δ8)) + �(&) · ‖F‖ℋ

)+
.

Thus instead of minimizing !svm-rob we could minimize

!svm-rob-ub
& (�E,1 ◦ !) ,

1
=

=∑
8=1

(
1 − H8 · 5F,1(!(G8 + Δ8)) + �(&) · ‖F‖ℋ

)+
. (4.6.2)

Since Theorem 4.4.4 is not tight, a low !svm-rob-ub
& (Φ)may not imply a low !svm-rob(Φ).

However !svm-rob-ub
& has two advantages over !svm-rob:
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1. !svm-rob-ub
& does not have an inner maximization problem. Thus we can apply

standard convex optimization techniques (since the loss is convex).

2. The kernel trick is valid for !svm-rob-ub
& .

Finally, to account for that fact that Theorem 4.4.4 may be a loose bound, we

could adjust the & in !svm-rob-ub
& via a procedure like cross-validation.

4.6.3 L2-Regularized SVM loss

In the same way that we upper bounded !svm-rob by the simpler loss !svm-rob-ub
& , we

can upper bound !svm-rob-ub
& by an even simpler loss in the following way

!svm-rob-ub
& (Φ) = 1

=

=∑
8=1

(
1 − H8 · 5F,1(!(G8 + Δ8)) + �(&) · ‖F‖ℋ

)+
≤

[
1
=

=∑
8=1

(
1 − H8 · 5F,1(!(G8 + Δ8))

)+] + �(&) · ‖F‖ℋ
= !svm-rob(Φ) + �(&) · ‖F‖ℋ (4.6.3)

Thus instead of minimizing !svm-rob-ub
& we could minimize this upper bound.

Note now that ‖ · ‖ℋ and !svm-rob are both convex in F and 1. Thus by convex

optimization theory, minimizing Equation (4.6.3) is equivalent to the constrained

optimization problem
min
F,1

!svm-rob(Φ)

s.t. ‖F‖ℋ ≤ �
(4.6.4)

for some constant � that depends on �(&). But again by convex optimization theory,

Equation (4.6.4) is equivalent to the unconstrained minimization of the standard

L2-regularized SVM loss

!
svm-reg
� (Φ) , !svm-rob(Φ) + � · ‖F‖2ℋ (4.6.5)

for some � that depends on � (and thus & implicitly).
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Thus with an appropriate choice of regularization constant, the standard L2-

regularized SVM loss is an upper bound on robust SVM loss and to some extent its

minimization promotes low robust error.

4.7 Classical kernel classifiers seem unable to be ro-

bust

Having developed some robust SVM losses in the previous section, we move onto

trying to optimize them in practice. Surprisingly however, regardless of the loss

we use, we were unable in our experiments to do better than trivial adversarial

accuracy (50% for our binary classification setting).

Unfortunately this is only weak evidence as our optimization methods are only

approximate and the consistency properties of our robust losses are unknown.

Nonetheless, based on our results we conjecture that perhaps classical kernel

methods are fundamentally unable to achieve high robust accuracy on image clas-

sification tasks like MNIST and CIFAR10. If this conjecture is true, we believe

understanding it’s theoretical underpinnings might give us a better understanding

of the limitations of neural networks.
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Chapter 5

Neural networks

In this chapter we conduct some empirical experiments related to neural network

robustness.

We show that kernel classifiers with naturally trained NN embeddings seem

fundamentally unable to be robust. Since in the previous chapter we saw evidence

that this is also the case for classical kernel embeddings, this supports our conjecture

that naturally trained neural networks and classical kernel classifiers may be non-

robust for similar reasons.

5.1 Natural neural network embeddings are non-robust

The final set of experiments in the previous chapter weakly suggest that linear

models trained on top of standard kernel embeddings can only achieve trivial

robustness. In this section we provide evidence suggesting the same is true of

naturally trained neural network embeddings.

What do we mean by a naturally trained neural network embedding? Well,

most neural network classifiers � : X → {1, . . . , �} can be broken up into three

components:

1. A parameterized embedding function !� : X → R3 (consisting of various

layers and modules) that takes in an input G ∈ X and spits out and an

embedding !�(G) ∈ R3.
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2. A linear layer 5,,1 : R3 → R� that affinely transforms an embedded input

!�(G) to a vector of activations. The action of 5,,1 looks like

5,,1

(
!�(G)

)
=,!�(G) + 1, for some, ∈ R�×3 , 1 ∈ R� .

3. A final argmax operation that returns the predicted class:

�(G) = argmax
2 ∈ {1,...,�}

5,,1

(
!�(G)

)
2
.

By naturally trained neural network embedding, we simply mean a !� that has its

parameters � optimized for minimizing natural error (or some proxy of it).

To determine whether a robust linear model could be trained on top of a natu-

rally trained neural network embedding, we took a naturally pre-trained model on

CIFAR10 and attempted to re-train just its final layer of weights in order to make it

robust. Over the course of re-training, this model never reached a robust validation

accuracy of over 10%, suggesting that the natural network’s embedding could not

support robust classification.

To make sure that something wasn’t wrong with our fine-tuning procedure,

we also ran the same experiment but starting from a robustly pre-trained model

instead. Re-training the final layer of this robust model yielded a robust validation

accuracy of around 54.4%, showing that with the right embedding nontrivial robust

accuracy is possible.

A more comprehensive set of statistics for these two experiments and additional

ablation experiments is given in Table 5.1.
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Table 5.1: Performance of various neural network embeddings. Base indicates
the base pretrained model from which re-training commenced, Finetune indicates
whether only the last layer was re-trained, and Rand indicates whether the re-
trained layers were re-initialized with random weights at the beginning of training.
The last four columns report the natural and robust accuracy at initialization and
and their peak during training. Accuracies are on the test set except for the last
column which is on the training set. Pretrained models were taken from [5].
∗ Results not collected.

Base Finetune Rand Nat init Rob init Rob peak Rob peak (train)
Nat. Y N 95.25 0 10 6.1
Nat. Y Y 5.86 0 9.8 3.5
Rob. Y N 87.03 53.5 ∗ ∗
Rob. Y Y 10.6 5.07 54.4 87.3
Rand. N Y 9.55 1.26 52 86
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Appendix A

Linear classifiers:

derivations and proofs

A.1 Effect of bias

Let �F,1 denote the biased classifier

�F(G) , sgn(〈F, G〉 + 1). (A.1.1)

The natural and robust error of this classifier on a symmetric Gaussian dataset is

!nat-err(�F,1) =
1
2&

(
F>� + 1
‖F‖Σ

)
+ 1

2&
(
F>� − 1
‖F‖Σ

)
, (A.1.2)

!rob-err
& (�F,1) =

1
2&

(
F>� − &‖F‖2 + 1

‖F‖Σ

)
+ 1

2&
(
F>� − &‖F‖2 − 1

‖F‖Σ

)
. (A.1.3)

In effect, the bias term 1 allows one to interpolate between any natural-robust-

error pair and the (0.5, 0.5) performance point by sending 1 →∞.

A.2 Proof of Theorem 3.3.1

Before proving the main result, we establish a key lemma.
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Lemma A.2.1. Define F∗(�) as in Theorem 3.3.1:

F∗(�) ,
(� + �Σ)−1�

‖(� + �Σ)−1�‖2
.

Then for � ∈
(
− 1
�max(Σ) ,∞

)
, the quantities

F∗(�)>�
‖F∗(�)‖Σ

and
‖F∗(�)‖2
‖F∗(�)‖Σ

are non-decreasing functions of �, meaning the parameterized curve

C(�) =
(
F∗(�)>�
‖F∗(�)‖Σ

,
‖F∗(�)‖2
‖F∗(�)‖Σ

)
is a function of the first coordinate. Whenever C(�) has non-zero velocity, the slope of this

function is ‖(� + �Σ)−1�‖−1
2 . Thus C(�) as a function of its first coordinate is strictly

increasing for � ∈
(
− 1
�max(Σ) ,∞

)
.

Proof. As shorthand we let )� , (� + �Σ)−1. Note that when � > − 1
�max(Σ) , )� is

positive definite.

To show F∗(�)>�/‖F∗(�)>‖Σ is non-decreasing in �, we will show its derivative

with respect to � is non-negative. To begin, we note that

3

3�

F∗(�)>�
‖F∗(�)‖Σ

=
3

3�

�>)��

(�>Σ)2
��)1/2

(A.2.1)

=
(�>)��)(�>Σ2)3

��) − (�>Σ)
2
��)2

(�>Σ)2
��)3/2

. (A.2.2)

Now without loss of generality rotate coordinates such thatΣ = diag(B)with B ∈ R3.
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The positivity of Equation (A.2.2) then follows from Cauchy-Schwarz:

(�>Σ)2
��)

2 =

〈 |�|
(B + �)1/2

,
B � |�|
(B + �)3/2

〉2

(A.2.3)

≤
〈 |�|
(B + �)1/2

,
|�|

(B + �)1/2

〉
·
〈
B � |�|
(B + �)3/2

,
B � |�|
(B + �)3/2

〉
(A.2.4)

= (�>)��)(�>Σ2)3
��), (A.2.5)

where the �, division, exponents on B, and absolute value on � all act coordinate-

wise.

To show ‖F∗(�)>‖2/‖F∗(�)>‖Σ is non-decreasing in �, note that when � ≠ 0,

3

3�

‖F∗(�)‖2
‖F∗(�)‖Σ

=
3

3�

(
�>)2

��

�>Σ)2
��

)1/2

(A.2.6)

=
(�>)2

��) · (�>Σ2)3
��) − (�>Σ)

2
��) · (�>Σ)

3
��)

(�>)2
��)1/2 · (�>Σ)

2
��)3/2

(A.2.7)

=
(�>)2

��)(�>()
−1
� − �)2)

3
��) − (�>()

−1
� − �))

2
��)(�>()

−1
� − �))

3
��)

�2 · (�>)2
��)1/2 · (�>Σ)

2
��)3/2

(A.2.8)

=
(�>)��)(�>()−1

� − �)2)
3
��) − (�>()

−1
� − �))

2
��)2

�2 · (�>)2
��)1/2 · (�>Σ)

2
��)3/2

(A.2.9)

=
(�>)��)(�>Σ2)3

��) − (�>Σ)
2
��)2

(�>)2
��)1/2 · (�>Σ)

2
��)3/2

(A.2.10)

=

3

3�

F∗(�)>�
‖F∗(�)‖Σ

(�>)2
��)1/2

. (A.2.11)

By continuity, this relation also holds when � = 0.

By Equation (A.2.11), whenever C(�)has nonzero velocity, its slope is (�>)2
��)−1/2.

Now note that �>)2
�� is positive and strictly decreasing in �, since without loss of
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generality letting Σ = Diag(�1, . . . , �3), we have

�>)2
�� =

3∑
8=1

�2
8

(1 + ��8)2
.

Thus the curve C(�) as a function of the its first coordinate is strictly increasing and

convex for � ∈
(
− 1
�max(Σ) ,∞

)
. �

We are now ready to prove the main result.

Proof of Theorem 3.3.1. An efficient classifier �F must have F that is a solution to the

optimization problem

min
F ∈R3−{0}

&

(
F>� − &‖F‖2
‖F‖Σ

)
s.t. &

(
F>�

‖F‖Σ

)
= 2.

(A.2.12)

for some 2 ∈ (0.5, 1]. We only need to consider 2 ∈ (0.5, 1] because an efficient F

must have F>� > 0. We will implicitly use this fact throughout our proof.

Since &(·) is strictly decreasing, F must also be a solution the optimization

problem


max

F ∈R3−{0}

F>� − &‖F‖2
‖F‖Σ

s.t.
F>�

‖F‖Σ
= 2.

 ⇐⇒


min

F ∈R3−{0}

‖F‖2
‖F‖Σ

s.t.
F>�

‖F‖Σ
= 2.

 (A.2.13)

for some other 2 ∈ R. Now note that both the objective and constraint of Equa-

tion (A.2.13) are scale invariant with respect to F. Thus without loss of generality

we can force ‖F‖Σ = 1 and rewrite the RHS of Equation (A.2.13) as


min

F ∈R3−{0}
‖F‖2

s.t. F>� = 2

‖F‖Σ = 1


⇐⇒


min

F ∈R3−{0}
F>F

s.t. F>� = 2

F>ΣF = 1


. (A.2.14)

Since both the objective and constraints of the RHS of Equation (A.2.14) are
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differentiable in F, by the method of Langrange multipliers a efficient F must

satisfy the equation

(� + �1Σ)F = �2�

for some �1,�2 ∈ R. Or equivalently, an efficient F must satisfy

(� + �Σ)F ∝ � (A.2.15)

for some � ∈ R. From here, some careful analysis tells us that it suffices for

� > −1/�max(Σ). We can then finish by using the results of Lemma A.2.1. �

With the main theorem proved, let us now prove the claimed Nash equilibrium

corollary.

Proof of Corollary 3.3.3. When using �F∗(�rob
∗ ) as the classifier, the optimal adversary

should perturb - in the direction −.F∗(�rob
∗ ) by a distance &. But F∗(�rob

∗ ) ∝ (� +
�rob
∗ Σ)−1� and by Theorem 3.3.1, ‖(�+�rob

∗ Σ)−1�‖2 = &.ThusN(.(�−(�+�rob
∗ Σ)−1�)

is indeed the worst case distribution for �F∗(�rob
∗ ).

Now for the other direction. Assume the adversary chooses the distribution

N(.(�− (� +�rob
∗ Σ)−1�). In this case the optimal natural accuracy classifier �F∗ has

F∗ ∝ Σ−1
(
� − (� + �rob

∗ Σ)−1�
)

∝ (� + �rob
∗ Σ)−1�,

as desired (the proportionality is most easily shown by working in a basis whereΣ is

diagonal). We need�rob
∗ > 0 for the signs not to flip in the chain of proportionalities.

�

Finally, we give a sketch of the modifications to Theorem 3.3.1 needed when the

data distribution is not in general position.

Comment A.2.2. When general position does not hold in, the following modifications to

Theorem 3.3.1 are needed:
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1. If � is an eigenvector of Σ, then �rob
∗ = ∞.

2. If � is orthogonal to the eigenspace of Σ with largest eigenvalue, lower robust error

may be achieved by classifiers 5F′∗(�′) where ‖F′∗(�′)‖ = 1,

F′∗(�′) ∝
(
� − Σ

�max(Σ)

)+
� + �′I, �′ ∈ [−∞, 0], (A.2.16)

and I is a non-zero eigenvector of Σ with maximal eigenvalue, i.e. ΣI = �max(Σ) · I.
Here, we use a similar convention that F′∗(−∞) = −I/‖I‖2.
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Appendix B

Kernel classifiers: Details

B.1 Proof of Theorem 4.4.4

As mentioned in the main text, Theorem 4.4.4 is a result of [27], in particular

theorem 14. However, theorem 14 as written in [27] is actually flawed, since it

implies that the inequality of Theorem 4.4.4 is an equality, which is false.

In the remainder of this section, we give a proof of the corrected theorem.

Proof of Theorem 4.4.4. This proof is essentially identical to the first half of the proof

of theorem 14 in [27].

First, let us decompose Φ as Φ = sgn ◦ 5F,1 ◦ ! where ! : R3 → ℋ is an

embedding for the kernel : that satisfies

:(G, G′) =
〈
!(G), !(G′)

〉
ℋ .

Since we assume : is shift-invariant with the form :(G, G′) = #(‖G − G′‖2), we have

〈
!(G), !(G′)

〉
ℋ = #(‖G − G′‖2).
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Now for any datapoint G ∈ R3 and perturbation Δ ∈ R3, it holds that

�� 5F,1(!(G)) − 5F,1(!(G + Δ))��
=

��〈F, !(G) − !(G + Δ)〉ℋ ��
≤ ‖F‖ℋ · ‖!(G) − !(G + Δ)‖ℋ

= ‖F‖ℋ ·
√〈

!(G) − !(G + Δ), !(G) − !(G + Δ)
〉

= ‖F‖ℋ ·
√〈

!(G), !(G)
〉
+

〈
!(G + Δ), !(G + Δ)

〉
− 2 ·

〈
!(G), !(G + Δ)

〉
= ‖F‖ℋ ·

√
2 5 (0) − 2 5 (‖Δ‖2)

= ‖F‖ℋ · � (‖Δ‖2) .

Thus, any perturbation with Δ that satisfies

� (‖Δ‖2) <
| 5F,1(!(G))|
‖F‖ℋ

= Gmarg�(G)

cannot change the prediction of � (i.e. �(G) = �(G + Δ)). Since �(·) is strictly

increasing, inverting both sides of the above inequality yields the equivalent impli-

cation

‖Δ‖2 < �−1(Gmarg�(G)) =⇒ �(G) = �(G + Δ).

Since a perturbation of size Dmarg�(G) is able to change the prediction of �, it must

be that

Dmarg�(G) ≥ �−1 (
Gmarg�(G)

)
. �
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