
Robust Control and Learning for Autonomous
Spacecraft Proximity Operations with Uncertainty

by

Charles E. Oestreich

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Aeronautics and Astronautics

May 18, 2021

Certified by. .
Richard Linares

Charles Stark Draper Assistant Professor at MIT
Thesis Supervisor

Certified by. .
Ravi Gondhalekar

Senior Member of the Technical Staff at Draper
Thesis Supervisor

Accepted by .
Zoltan Spakovszky

Chair, Graduate Program Committee

2

Robust Control and Learning for Autonomous Spacecraft

Proximity Operations with Uncertainty

by

Charles E. Oestreich

Submitted to the Department of Aeronautics and Astronautics
on May 18, 2021, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

As the number of spacecraft and debris objects in orbit rapidly increases, active de-
bris removal and satellite servicing efforts are becoming critical to maintain a safe
and usable orbital environment. At the same time, future unmanned solar system ex-
ploration missions are targeting challenging destinations for scientific data collection.
For practical realization of these technologies, the involved spacecraft must be highly
autonomous and able to perform complex proximity operations maneuvers in a safe
manner. This requires that the guidance and control system must reliably address
inevitable sources of uncertainty while performing the maneuvers.

This thesis seeks to improve the flexibility and performance of autonomous space-
craft in uncertain scenarios by leveraging robust control theory and reinforcement
learning. A novel algorithm, termed online tube-based model predictive control,
is proposed and applied to a simulated mission involving the intercept of an tum-
bling target with unknown inertial properties. This algorithm demonstrates superior
performance and exhibits less reliance on initial knowledge of the uncertainty when
compared to standard robust control methods. Separately, reinforcement learning
is utilized to develop a policy (to be employed as a feedback control law) for six-
degree-of-freedom docking with a rotating target. The policy provides near-optimal
performance in a simulated Apollo transposition and docking maneuver with uncer-
tainty in the initial conditions. Both of these methods enhance the level of autonomy
in their respective scenarios while also maintaining practical computational run-times.
As such, this thesis represents an incremental step towards making missions based on
highly autonomous proximity operations a reality.

Thesis Supervisor: Richard Linares
Title: Charles Stark Draper Assistant Professor at MIT

Thesis Supervisor: Ravi Gondhalekar
Title: Senior Member of the Technical Staff at Draper

3

4

Acknowledgments

This work was performed under funding from the Draper Fellow Program. The author

is thankful for Draper’s support and resources throughout this research effort.

I’d first like to thank my advisors Richard and Ravi. Richard, your optimism,

big-picture thinking, and broad expertise have inspired me to think creatively about

cutting-edge research ideas. Ravi, your precise technical knowledge, level-headed

guidance, and tireless support have made this thesis a reality. You’ve instilled in me

what it truly means to be a researcher.

Thanks to all of the friends and colleagues I’ve met over the past two years in

Cambridge. Daniel, Adriana, Mario, and the rest of the ARCLab: the positive and

relaxed lab culture you’ve all created has made the time enjoyable. I hope you didn’t

mind the loud ramblings on PPO and H-∞ control Daniel and I had in building 37.

Thanks also to all of the GA3 leaders, the sense of the community among the graduate

students within the department is awesome. And of course, thanks to Connor (and

Kiva!), Nico, Kathy, Cole, and the other MITOC community members that have

made mountain adventures truly memorable.

I’d also like to thank Keenan, Tonio, Jess, Martin and the rest of the Astrobee

team. Keenan, I’ve learned a lot from you on practical space robotics and I’m sure

those late nights in the lab will pay off. I’d also like to thank Caroline and Roberto

from DLR for their open sharing of results and data that are an integral part of this

thesis.

Of course, I would absolutely not be here if it weren’t for my family. Mom and

Dad, thanks for raising me right and instilling a sense of drive in me that has gotten

me through the past two years. Will, Elaine, and Kyle, it’s the best time hanging out

with you guys. Special extra thanks to Will for advice on graduate school, I definitely

wouldn’t be here without it.

Finally, thank you Morgan for being such an amazing partner. Running, coffee,

music, and books are all just simply better when shared with you. You’ve made what

should’ve been one of the worst years instead be one of the best.

5

6

Contents

List of Figures 11

List of Tables 13

Nomenclature 14

Acronyms 20

1 Introduction 22

1.1 Background on Autonomous Proximity Operations 23

1.2 Sources of Uncertainty . 25

1.3 Literature Review . 26

1.3.1 Current Flight Approaches . 27

1.3.2 Trajectory Optimization and Tracking Control 28

1.3.3 Model Predictive Control . 30

1.3.4 Reinforcement Learning . 33

1.4 Thesis Objectives and Outline . 34

2 Online, Tube-based Model Predictive Control 37

2.1 Model Predictive Control . 37

2.2 Standard Tube-based Model Predictive Control 40

2.2.1 Exogenous Input Rejection . 41

2.2.2 Minimum Robust Positively Invariant Set 42

2.2.3 Constraint Shrinking . 44

7

2.2.4 Nominal Model Predictive Control Problem 45

2.2.5 Application to the 2-D Double-Integrator System 47

2.3 Online Tube-based Model Predictive Control 49

2.3.1 Control Input Determination 52

2.3.2 Exogenous Input Estimation and Tube Updates 53

2.3.3 Exogenous Input Prediction 56

2.3.4 Application to the 2-D Double-Integrator System 60

3 Robust Control for Intercepting a Tumbling Target 63

3.1 Problem Definition . 63

3.1.1 Mission Overview . 63

3.1.2 Dynamics and Constraints . 67

3.1.3 Uncertainty Modeling . 70

3.2 Simulation Environment . 72

3.2.1 Spacecraft Configurations . 72

3.2.2 Nominal Trajectory . 74

3.2.3 Simulating Inertia Estimation Errors 76

3.3 Controller Implementation Details . 79

3.3.1 MPC Formulation . 79

3.3.2 Exogenous Input Estimation and Tube Updates 80

3.3.3 Exogenous Input Prediction 81

3.3.4 Full Controller Framework . 82

3.4 Results and Discussion . 84

3.4.1 Case 1: ̂︁𝒲(0) is over-conservative 84

3.4.2 Case 2: ̂︁𝒲(0) is too small to be robust 90

3.4.3 Monte Carlo Performance Analysis 91

4 Reinforcement Learning for Six-Degree-of-Freedom Docking 94

4.1 Reinforcement Learning Theory . 95

4.1.1 Conceptual Overview . 95

4.1.2 Proximal Policy Optimization 97

8

4.2 Implementation for 6-DOF Docking 99

4.2.1 Dynamics . 99

4.2.2 Policy Parameterization . 101

4.2.3 Reward Function . 103

4.3 Experimental Setup . 105

4.4 Results and Discussion . 109

4.4.1 Learning Results . 109

4.4.2 Monte Carlo Test Results . 111

4.4.3 Comparisons with GPOPS-II Solutions 112

4.4.4 Discussion . 117

5 Conclusions and Future Work 122

5.1 Conclusions and Contributions . 122

5.2 Future Work . 123

Appendix A 2-D Double-Integrator System 125

Appendix B Polytopic and Ellipsoidal Sets 127

Appendix C GPOPS-II Optimal Control Problems 129

Bibliography 131

9

10

List of Figures

2-1 Example 2-D, double-integrator trajectory produced by nominal MPC 39

2-2 Example ellipsoidal tube that approximates the mRPI set 44

2-3 Example of constraint shrinking for tube-MPC 46

2-4 Successful standard tube-MPC trajectory for the disturbed 2-D system 48

2-5 Failed standard tube-MPC trajectory for the disturbed 2-D system . 49

2-6 Online tube-MPC concept of increased performance 50

2-7 Example estimation of the exogenous input in online tube-MPC . . . 55

2-8 Probability parameter effects on the size of the exogenous input set . 56

2-9 Example of exogenous input prediction in online tube-MPC 60

2-10 Online tube-MPC trajectory (2-D) where the initial tube is too large 61

2-11 Online tube-MPC trajectory (2-D) where the initial tube is too small 62

3-1 Illustration of Envisat, a large tumbling space object 64

3-2 Mission phases to intercept a tumbling space object 65

3-3 Coordinate frames for the tumbling target intercept problem 67

3-4 Visualizing the exogenous input in the tumbling target intercept problem 72

3-5 A resulting tumbling trajectory produced by Envisat 75

3-6 Collision zones to model target spacecraft appendages 76

3-7 Nominal motion plan (body frame) for intercepting a tumbling target 77

3-8 Nominal motion plan (inertial frame) for intercepting a tumbling target 78

3-9 Full block diagram for online tube-MPC 83

3-10 Test Case 1: Body frame trajectory produced by online tube-MPC . . 85

3-11 Test Case 1: Inertial frame state and control input history 87

11

3-12 Test Case 1: Exogenous input estimation 88

3-13 Test Case 1: Exogenous input prediction 89

3-14 Test Case 2: 𝑣𝑧 exogenous input estimation 91

4-1 General schematic of reinforcement learning 96

4-2 Coordinate frames for the Apollo transposition and docking maneuver 106

4-3 Modeling the Apollo transposition and docking maneuver 108

4-4 LQR reference translational trajectory 109

4-5 Rewards over the course of learning 112

4-6 Training statistics over the course of learning 113

4-7 Five trajectories from the Monte Carlo test 114

4-8 GPOPS-II trajectory comparison, optimal reward function 117

4-9 GPOPS-II trajectory comparison, minimum control effort 118

B-1 Examples of polytope (top) and ellipsoidal (bottom) sets in R2 128

12

List of Tables

3.1 Initial conditions for intercepting a tumbling target 73

3.2 Nominal MPC parameters for intercepting a tumbling target 80

3.3 Exogenous input estimation and tube update parameters 81

3.4 Exogenous input prediction parameters 82

3.5 Test Case 1 Statistics . 86

3.6 Test Case 2 Statistics . 90

3.7 Monte Carlo test statistics for online/standard tube-MPC comparison 92

4.1 Neural network structural parameters 102

4.2 6-DOF docking actuator constraints 107

4.3 Collision geometry and docking port parameters for 6-DOF docking . 107

4.4 Conditions for a successful 6-DOF dock 107

4.5 Initial condition range for training and testing 109

4.6 Training and reward parameters . 110

4.7 Monte Carlo test statistics . 113

4.8 GPOPS-II comparison statistics, optimal reward function 116

4.9 GPOPS-II comparison statistics, minimum control effort 116

13

Nomenclature

𝐴𝜋
𝜂 advantage function

A state transition matrix

A*
w state transition matrix representation of the ARMA prediction model

A𝒳 ,A𝒰 polytopic state and control input constraint “A” matrices

𝒜 action space

𝑎 autoregressive parameter value in ARMA model

B input distribution matrix

b𝒳 ,b𝒰 polytopic state and control input constraint “b” vectors

𝐶 chaser body frame

𝑐 moving average parameter value in ARMA model

𝑑 successful dock reward term coefficient

ℰ ellipsoidal set

F thrust command

𝑔(x) piecewise function for the successful dock reward

ℎ collision reward term coefficient

𝐽 online tube-MPC performance cost metric

14

𝐽𝜃 PPO policy objective function

J inertia tensor

̂︀J estimated inertia tensor

̃︀J inertia tensor estimate error

𝐾𝐿des desired KL-divergence value between policy updates

K LQR reference gain value for reinforcement learning reward function

K𝐴 ARMA model parameter update gain

K𝑟 exogenous input rejection gain

𝑘 discrete time-step index

𝐿𝜂 PPO state-value loss function

L torque command

M matrix variable for mRPI ellipsoidal approximation

𝑚 control input dimension

𝑁 number of steps in the prediction horizon

𝑛 state dimension

𝑛𝑎 number of autoregressive parameters in the ARMA model

P quadratic terminal state cost matrix

P𝑒 ellipsoid shape matrix

p𝑒 ellipsoid center

𝒫 polyhedron set

𝑝𝜃 policy probability ratio

15

𝑝w probability that the estimated bounded set of exogenous inputs con-

tains the true exogenous input

Q quadratic state error cost matrix

Q𝑎 quadratic state error cost matrix (attitude state only)

Q𝑡 quadratic state error cost matrix (translational state only)

q attitude quaternion

q𝑣 vector quaternion component

𝑞𝑤 scalar quaternion component

R quadratic control input cost matrix

R𝑋
𝑌 rotation matrix; attitude of frame 𝑌 with respect to 𝑋

R̄𝑋
𝑌 predicted attitude via estimated inertia tensor

r̄ desired position

r position

r𝑝 relative position between docking ports

r𝑑𝑐, r𝑑𝑡 position of docking port in the spacecraft body frame

𝑟 reinforcement learning rewards

𝑟𝑐𝑜𝑙 maximum possible distance for a collision

𝒮 state space

𝑠 covariance scaling factor for the estimated set of exogenous inputs

𝑇 target body frame

𝑇𝑠 discrete sampling time

16

T set of all possible state-action pair trajectories

𝑡𝑓 final trajectory time-step

𝒰 shrunk control input constraints for tube-based MPC

u control input

𝒰 control input constraints

𝑢𝑝 control limit magnitude

𝑉 𝜋
𝜂 state-value function

v̄ desired velocity

v velocity

v𝑝 relative velocity between docking ports

𝑊 world frame

w exogenous input, i.e., the uncertainty

w* stack of predicted exogenous inputs

𝒲 bounded exogenous input set

̂︀w estimated exogenous input

̂︁𝒲 estimated bounded exogenous input set

̃︀w exogenous input estimation error

𝒳 shrunk state constraints for tube-based MPC

x̄ desired state

x state

x′ translational component of the state

17

𝒳 state constraints

Y matrix variable for mRPI ellipsoidal approximation

𝑦 generic ARMA model output

z̄ desired nominal state

z nominal state

𝒵 approximate minimum robust positively invariant set, i.e., the “tube”

𝒵* true minimum robust positively invariant set

𝛼 design parameter for mRPI ellipsoidal approximation

𝛼 attitude and angular velocity error vector

𝛽 control limit allocation percentage for mRPI ellipsoidal approximation

𝛽𝜂 state-value function learning rate

𝛽𝜃 policy learning rate

𝜖 ARMA model prediction error caused by white noise

𝜂 reinforcement learning state-value function parameter vector

𝛾 reward discount factor

𝜆 forgetting factor for estimating the next exogenous input

𝜆𝐴 forgetting factor for updating the exogenous input prediction model

𝜇w mean exogenous input

𝜈 nominal control input

Ω angular velocity matrix for quaternion kinematics

�̄� predicted angular velocity via estimated inertia tensor

18

𝜔 angular velocity

𝜑 ARMA regression vector for recursive least-squares updates

𝜑 Euler angle for roll

𝜋𝜃 reinforcement learning policy

̂︀𝜋𝜃 reinforcement learning policy prior to a PPO update

𝜓 Euler angle for yaw

𝜌 spectral radius

Σw exogenous input covariance

̂︀Σw estimated exogenous input covariance

𝜏 trajectory of state-action pairs

𝜃 reinforcement learning policy parameter vector

𝜃𝐴 ARMA model parameter vector

𝜃w full set of ARMA model parameters for exogenous input prediction

𝜃 Euler angle for pitch

𝜉 PPO clipping parameter

𝜁 sum of geometric progression

19

Acronyms

ARMA autoregressive moving average

CSM command service module

DAP digital autopilot

DOF degrees of freedom

ENTRY orbital re-entry control system

ISS International Space Station

LM lunar module

LQR linear quadratic regulator

MEV Northrop Grumman’s Mission Extension Vehicle

MPC model predictive control

mRPI minimum robust positively invariant set

OSAM-1 NASA’s On-Orbit Servicing, Assembly, and Manufacturing-1 mission

PPO proximal policy optimization

20

QCQP quadratically constrained quadratic program

QP quadratic program

RCS reaction-control system

RL reinforcement learning

RPI robust positively invariant

SDP semi-definite programming

SOCP second-order cone programming

SPHERES Synchronized Position Hold Engage and Reorient Experimental Satellites

TVC thrust-vector-control system

21

Chapter 1

Introduction

Earth-orbiting spacecraft perform a variety of critical functions, such as providing

reliable communication links or supporting climate science via remote sensing. As

launch systems improve in both terms of efficiency and cost, it is expected that the

number of objects in Earth orbit will continue to grow rapidly [64]. This in turn

exacerbates already-crowded orbits and increases the risk of catastrophic collisions

between satellites. To address these impending challenges, active debris removal and

on-orbit servicing missions are seen as a critical aspect of future space operations as

a whole [46].

Active debris removal missions involve a “chaser” spacecraft maneuvering to cap-

ture and de-orbit a debris object (the “target”), which could be a used rocket stage,

defunct satellite, or any generic piece of “space junk”. The physical method of de-

orbiting or capturing the target object can vary greatly depending on mission design

[38]. However, nearly all mission designs require the chaser spacecraft to perform

precise, close-range maneuvers that approach the target in order to prepare for cap-

ture or de-orbiting operations. These maneuvers are included under the general term

of proximity operations, which also includes well-known cooperative docking maneu-

vers such as the cargo vehicles performing a rendezvous with the International Space

Station [15].

On-orbit servicing missions aim to re-fuel, repair, or perform any other opera-

tions that assist and extend the lifespan of a currently operating satellite [16]. By

22

extending the lifetime of existing satellites, on-orbit servicing diminishes the need of

launching new replacement satellites and also limits the number of new space objects.

Perhaps the most notable on-orbit servicing operations were carried out in the Hubble

Space Telescope repair missions [26]. Using the Space Shuttle to perform proximity

operations, astronauts were able to successfully repair the faulty mirror and restore

nominal operations to the telescope.

Proximity operations also arise in many solar system exploration missions. This

is most notable for asteroid exploration missions, where the spacecraft must perform

precise orbit and landing maneuvers to gather useful scientific data [6]. These missions

are especially challenging due to the highly uncertain environment of operations and

significant time delays with Earth communication systems.

While proximity operations have a significant history in terms of manned mis-

sions, autonomous proximity operations have rarely been performed. Autonomous

proximity operations that do not involve astronauts and minimize human operations

in general are desirable for several key reasons: 1) robotic spacecraft are much less

expensive than human-rated spacecraft, 2) less human oversight can offer more ef-

ficient and widespread servicing/debris removal capabilities, and 3) the risk that is

associated with astronaut-based missions is eliminated. Full autonomy is sometimes

a strict requirement for cases with large communication delays, such as a Mars land-

ing. As such, there are many entities that are developing spacecraft and algorithms

to enable effective, autonomous proximity operations. This thesis is focused on guid-

ance and control algorithms that enable autonomous proximity operations to occur

despite uncertainty in the particular mission scenario.

1.1 Background on Autonomous Proximity Opera-

tions

Regardless of the mission type, autonomous proximity operations generally involve a

chaser spacecraft that performs precise maneuvers around the target. These maneu-

23

vers can include docking with the target, orbiting the target to inspect it, grappling

the target with a robotic arm, etc. While the degree of human oversight can vary

based on the specific mission, generally speaking, the chaser spacecraft must be able

to autonomously navigate relative to the target and utilize guidance and control al-

gorithms to safely perform the required maneuvers. This thesis only focuses on the

guidance and control aspects of proximity operations; it is generally assumed that

navigational state information on both the chaser and the target is readily available.

There are several autonomous on-orbit servicing missions currently being oper-

ated or planned for the near-future. Northrop Grumman’s Mission Extension Vehicle

(MEV) performed the first docking maneuver with a commercial satellite in 2020 [51].

This mission was performed to relocate the Intelsat 901 satellite, but was largely per-

formed via tele-operation (i.e., humans in-the-loop). NASA’s On-Orbit Servicing,

Assembly, and Manufacturing-1 (OSAM-1) mission is planned to autonomously re-

fuel a satellite in a low-Earth polar orbit [9]. While the spacecraft will perform

some portion of maneuvers autonomously, the mission is once again designed in the

framework of having humans in-the-loop. Similarly, the Robotic Servicing of Geosyn-

chronous Satellites mission led by DARPA is planned to service multiple satellites

located in the geostationary orbit [59].

There are fewer missions in development for active debris removal. The ESA

is developing the RemoveDebris mission, which intends to demonstrate autonomous

rendezvous and capture technologies needed for active debris removal [17]. This is

part of a larger ESA effort in active debris removal called “e.Deorbit”, which intends

to eventually de-orbit Envisat, one of the largest, defunct satellites that poses a

collision hazard in low-Earth orbit [61]. Active debris removal generally requires

highly autonomous capabilities or long mission time-frames to deal with the uncertain

properties of debris objects.

Apart from full missions in development, there are a wide range of research efforts

to improve various phases of autonomous proximity operations. A selection of key

research advancements in the field is covered in the literature review (Section 1.3).

One of the most pressing challenges yet to be resolved is to safely and effectively

24

address the inherent uncertainty present in many missions involving proximity op-

erations. This challenge is currently handled by enabling humans to tele-operate or

take control from the autonomous system if necessary in risky or uncertain situations.

However, to truly enhance the active debris removal and on-orbit servicing missions,

fully autonomous spacecraft are necessary. This thesis focuses on specific guidance

and control algorithmic developments that contribute to making robotic spacecraft

more reliable and autonomous despite inherent uncertainty.

1.2 Sources of Uncertainty

There are a wide range of factors that can potentially contribute to the overall uncer-

tainty in an autonomous proximity operations mission. Generally speaking, sources of

uncertainty can be classified as either aleatoric or epistemic [24]. The term aleatoric

refers to unknown values that simply cannot be precisely determined by their very

nature. On the other hand, the term epistemic refers to unknown values that could

be known if more information was available in the mission scenario.

Autonomous spacecraft performing proximity operations must deal with both

forms of uncertainty. Sensor noise (aleatoric) affects the accuracy of navigational state

estimates during maneuvers. Similarly, thruster noise (also aleatoric) will produce

slightly different chaser dynamics than expected. In general, aleatoric uncertainty

is a stochastic process that is always present and can usually be practically handled

via feedback control. However, in particular scenarios where the uncertainty may be

significant or safety is paramount, the control system for performing maneuvers must

be robust to the uncertainty, guaranteeing stability and constraint satisfaction.

Epistemic uncertainty is also common in proximity operations scenarios; however,

it usually arises from sources specific to the mission scenario. Epistemic uncertainty is

synonymous with unmodeled dynamics, in that there is a way to model the uncertainty,

but its often too complex or simply requires information that is not available at hand.

As such, epistemic uncertainty contains a deterministic but unknown component that

is not covered by the nominal model the controller uses.

25

In future autonomous proximity operations, epistemic uncertainty sources will be

highly significant. Examples include fuel slosh, flexible (i.e., non-rigid) dynamics,

unknown mass/inertial properties of the target, solar radiation pressure disturbances

while orbiting an asteroid, etc. Robust control techniques can address epistemic

uncertainty in the same manner as aleatoric uncertainty, but do not consider poten-

tial performance gains that could be had by identifying characteristics or a dynamic

model of the uncertainty. Additionally, adaptive controllers are specifically designed

to alter control parameters based on the real, online dynamics experienced during the

trajectory.

This thesis is generally focused on combining the benefits of robust control with

online adjustments and learning to appropriately handle the uncertainties associated

with fully autonomous proximity operations. The next section shares a selection

of previous research in guidance and control techniques for autonomous proximity

operations, including some works that directly address the challenge of uncertainty.

1.3 Literature Review

Autonomous proximity operations pose a number of guidance and control challenges

[57]. Chief among these is reliably ensuring safe and successful maneuvers, as the

missions typically have high risk and cost. Spacecraft maneuvering is also highly

constrained, especially in terms of actuator capability since most spacecraft have a

low thrust-to-mass ratio. Performing optimal maneuvering trajectories is also highly

desirable, whether the objective is to minimize fuel usage or some other performance

metric. If performing a docking or intercept maneuver, the target object may be

tumbling, which in turn adds greater complexity to the trajectory. Finally, in addition

to the numerous epistemic uncertainty examples covered above, autonomous fault

tolerance is also desirable as it enhances the reliability of the chaser spacecraft.

Many research efforts have targeted one or several of these challenges. A selection

of key works and their contributions are included below. Current flight approaches

are discussed first, followed by more advanced techniques that are mostly untested

26

onboard real spacecraft. Research works that directly address uncertainty in the

context of proximity operations are given special attention.

1.3.1 Current Flight Approaches

Some of the earliest autonomous guidance and control technologies for proximity op-

erations were implemented in the Apollo missions. The command service module

(CSM) had three main automatic control systems: the orbital re-entry digital autopi-

lot (ENTRY DAP), the reaction-control system digital autopilot (RCS DAP), and

the thrust-vector-control digital autopilot (TVC DAP) [63]. All of these were largely

based on phase-plane control logic. Phase-plane logic commands discrete on-off con-

trol inputs by defining switching curves in the 2-D space of the state error and its

rate [57].

The ENTRY DAP performed the entire re-entry maneuver after jettison of the

service module and used phase-plane logic controllers to command thrusters that

provided the necessary lift to reach the landing zone. The RCS DAP also utilized

phase-plane logic for controlling the CSM’s attitude in most flight stages. Since the

CSM had sixteen thrusters arranged in four quads around the spacecraft, the control

system also required logic to translate the desired thrust/torque commanded by the

controller into suitable individual thruster firings. The TVC DAP utilized phase-plane

logic in order to control the CSM during main-engine burns, commanding gimbal

servos of the main engine while also controlling the RCS thrusters. These three

autonomous control systems were highly successful despite their relatively simple

design; however, the ability of human intervention to correct for errors was always

available and thus they do not constitute a fully autonomous system.

The most common autonomous proximity operations occurring in the present

day are the rendezvous and docking maneuvers performed by visiting vehicles to

the International Space Station (ISS). These spacecraft perform a series of phasing,

far-range rendezvous, and close-range approach maneuvers before they reach a final

berthing position in close proximity to the station [15]. From there, the spacecraft

performs the final docking maneuver (as with the Soyuz spacecraft) or is captured by

27

the ISS Canadarm (which is operated by astronauts onboard the station). The full

pipeline of these maneuvers is meticulously planned in advance and has significant

human oversight at each stage, with hold points in between stages to make manual

corrections. Thus, the spacecraft can rely on simple control systems to follow the

trajectory, as large sources of uncertainty are not handled by the spacecraft itself.

Current and near-future missions such as Northrop Grumman’s MEV and NASA’s

OSAM-1 also have a similar framework of pre-planned trajectories followed by sim-

ple controllers with significant human oversight, thus making them, in general, low-

autonomy proximity operations. Since space missions have high risk and cost asso-

ciated with them, these incremental steps in on-orbit technology demonstrations are

necessary and significant. Meanwhile, there have been many research efforts that pro-

pose guidance and control frameworks for highly autonomous proximity operations.

1.3.2 Trajectory Optimization and Tracking Control

Trajectory Optimization

Highly autonomous frameworks for proximity operations often split the guidance and

control aspects into modular components. The guidance component typically consists

of an optimization algorithm that provides the reference trajectory that minimizes a

cost function, satisfies constraints, and is dynamically feasible. Since the optimization

problem can often involve nonlinear dynamics, non-convex constraints, and a high-

dimension state space, solving times can be significant (especially on low-performance

spacecraft computing hardware). As such, the solving algorithms are typically imple-

mented in an open-loop fashion, i.e., computed once using the available information

and not updated or corrected by future information.

Trajectory optimization algorithms for guidance can vary depending on the specifi-

cally target mission scenario. Breger and How [10] developed a trajectory optimization

method that enforced passive safety constraints (i.e., guaranteeing collision avoidance

if the chaser loses actuation authority). Boyarko et al. [7] computed minimum-time

and minimum-energy trajectories for a chaser spacecraft to rendezvous with a tum-

28

bling space object. Using a direct collocation method based on Gauss pseudospectral

approach, trajectories were optimized while also enforcing collision avoidance. How-

ever, the computational time was significantly long and likely unsuitable for onboard

spacecraft computing. Stoneman and Lampariello [58] utilized nonlinear optimization

techniques and a look-up table framework to compute six-degree-of-freedom (6-DOF)

optimal docking trajectories that guide the chaser to reach a synchronized mating

point with a tumbling object. Trajectories were successfully computed for a variety

of tumble types, and also enforced collision avoidance with respect to appendages on

the target, such as antennae or solar panels. While the use of a look-up table algo-

rithm produced reasonable computational times (roughly 10 seconds), re-planning the

trajectory onboard an actual spacecraft as the trajectory progress was still infeasible.

Jewison and Miller [23] directly addressed uncertainty in trajectories by probabilisti-

cally optimizing performance while balancing safety. Uncertainties in obstacle posi-

tions and the target spacecraft attitude were successfully dealt with via this method.

Recently, Malyuta et al. [36] developed a 6-DOF trajectory optimization method for

performing docking maneuvers. This method utilized successive convexification to

simplify the nonlinear, non-convex problem and enable reasonable run-times (about

5 seconds). This work was also significant in its ability to address discrete control

input variables and a number of realistic, challenging constraints.

Tracking Control

Once a trajectory has been computed, is then followed (“tracked”) by a controller

operating in a closed-loop fashion (i.e., repeatedly computing new control inputs

based on new state information numerous times per second). By operating in a

closed-loop fashion, controllers are often able to deal with small levels of aleatoric

or epistemic uncertainty, and can be usually designed with a simple dynamic model

(often linear) for fast computation times.

There have been a number of research efforts to develop autonomous tracking

control for proximity operations. Lee and Pernicka [32] developed optimal control

methods for a simulated Space Shuttle rendezvous with the ISS. The state-dependent

29

Riccati equation and linear quadratic tracking controllers were successfully tested in

the 6-DOF simulation. Jiang et al. [25] utilized adaptive control to provide actuator

fault-tolerance in a 3-DOF (no attitude dynamics) docking scenario. Lampariello et

al. [31] developed a visual servo controller for approaching and grasping a tumbling

space object. The method’s close link with the computer-vision based navigation

system provided effective control in the extremely precise required maneuvering at

the moment of capturing the object. This method was successfully validated on

ground hardware that simulated the real spacecraft dynamics.

As an aside, note that many controller frameworks avoid addressing the full 6-

DOF docking scenario (translational and attitude dynamics). This is largely due to

the nonlinear attitude dynamics, which can significantly complicate controller design.

As such, many standard tracking control frameworks for proximity operations often

assume there is an existing attitude controller that can stabilize the spin of the chaser

and achieve the correct attitude as it performs the translational maneuver. However,

this can raise issues: on a real spacecraft (such as the Apollo CSM), the thrust and

torque are naturally coupled due to the arrangement of individual thrusters around

the spacecraft.

1.3.3 Model Predictive Control

Recent years have seen a significant interest in applying model predictive control

(MPC) methods for autonomous proximity operations. MPC [28] solves a finite-

horizon optimization problem in order to minimize a cost function and satisfy the

constraints of the scenario. Using a model of the system, the controller can “predict”

future state values throughout the horizon that are used in the optimization problem.

The problem is re-solved at each time-step, which enables it to operate in closed-loop

fashion as long as the prediction horizon is not too long and the optimization problem

is relatively simple. This section is split into two parts. A selection of nominal MPC

methods are covered first, which are not inherently robust to uncertainty (although

nominal MPC is robust in a practical sense for small uncertainties). Then, a selec-

tion of robust MPC methods are covered, which seek to guarantee performance and

30

constraint satisfaction despite the uncertainty present in the problem.

Nominal MPC methods

Park et al. [44] utilized MPC to perform rendezvous and docking of spacecraft as well

as maneuvers to avoid debris objects. Constraints included a line-of-sight cone (to

keep the docking port in the field of view of the chaser’s sensors), an upper limit on

the approach velocity, and thrust limits. This work was one of the earlier efforts to

apply MPC to the spacecraft docking problem with its unique constraints. The suc-

cessful performance in simulation demonstrated the potential of MPC to be used as a

suitable controller for scenarios where there are complex constraints and performance

must be optimized. MPC was used in a similar manner by Pong et al. [49] to deal

with minor actuation faults during proximity operations while satisfying constraints.

The method was successfully tested on the Synchronized Position Hold Engage and

Reorient Experimental Satellites (SPHERES) ground hardware testbed in 3-DOF

scenarios. This points to the ability of MPC to sometimes handle minor uncertainties

simply via its feedback nature.

Further emphasizing the ability of MPC to effectively handle constraints in a feed-

back manner, Jewison et al. [22] utilized MPC to avoid ellipsoidal obstacle constraints

in a simulated spacecraft rendezvous scenario. Modeling the obstacles as ellipsoids

creates non-convex constraints, which can pose challenges in running MPC in real-

time. However, the sequential quadratic programming method successfully solved the

relevant optimization problem in reasonable run-times for a slow-moving rendezvous

maneuver.

Finally, Park et al. [45] implemented nonlinear MPC for docking with a rotating

target and successfully implemented it on a ground hardware testbed. Once again,

the nonlinear MPC in this scenario had to address non-convex collision avoidance

constraints. The ability to solve nonlinear MPC problems in under 50 ms (as was

observed in the ground hardware experiments) showcases the trend of increased com-

putational power that makes complex controller designs more practically realizable

on hardware.

31

Robust MPC methods

Nominal MPC does not explicitly guarantee satisfactory performance and constraint

satisfaction in the presence of uncertainty, despite its feedback nature. Considering

the uncertainty associated with autonomous proximity operations and the high con-

sequences of violating constraints (such as collisions), robust MPC formulations are

advantageous. One of the most common ways to provide robust MPC is through

so-called “tube-based” methods [40]. Details on tube-based MPC theory are given in

Chapter 2.

Mirshams and Khosrojerdi [41] implemented tube-based MPC for attitude control

despite an underactuated system due to thrust not being available in one axis. The

robust MPC framework was successfully able to de-tumble a simulated satellite de-

spite uncertainty in its moment of inertia and low effectiveness in certain thrust axes.

Mammarella et al. [37] also utilized tube-based MPC to provide robust performance in

docking maneuvers despite uncertainty arising from errors in thruster specifications.

This algorithm was successfully tested on a ground hardware testbed and had better

performance than a nominal MPC controller. This demonstration also showed that

tube-based MPC is practically effective in dealing with general aleatoric uncertainty

sources associated with hardware testing. Galivan et al. [20] also addressed robust

control for docking maneuvers, with simulated uncertainty arising from thruster noise,

errors in the chaser’s attitude, eccentric orbits, and rotating target objects. However,

robustness was provided via chance constraints, which essentially guarantee satisfac-

tion with a defined probability. Although probabilistic guarantees are less desirable

than absolute guarantees in the context of spacecraft operations, this idea allows for

the robust controller to be much more flexible in its characterization of the uncer-

tainty.

Robust MPC formulations can also be utilized to track reference trajectories that

have already been determined. As an example, Buckner and Lampariello [12] de-

veloped a tube-based MPC framework to track trajectories produced by the motion

planner detailed in [58] in order to intercept a tumbling target. In this case, the

32

uncertainty arises from estimation errors in the target’s rotational state and iner-

tial properties that cause it to tumble in a different manner than predicted. The

robust control application of this thesis (Chapter 3) focuses on the same tracking

problem, and seeks to make the standard tube-based MPC framework more flexible

and practical for proximity operations while improving performance.

1.3.4 Reinforcement Learning

In recent years, there has been an explosion of machine learning applications for a

variety of robotics tasks, especially with regards to computer vision tasks and relative

navigation. This trend is largely driven by increased computational performance

and memory, which have steadily made deep learning techniques more practical and

effective. Learning-based techniques are also gaining in the ground of autonomous

control, often in the context of reinforcement learning (RL) [60]. RL involves an

autonomous agent learning a policy connecting states to actions (i.e., control inputs)

in order to maximize a reward signal. Since the learning environment is essentially

a black box, the resulting policy is ideally general, model-free, and robust to various

sources of uncertainty. Moreover, by using rich deep neural networks to model the

policy, several of the issues in standard control methods are avoided, such as challenges

in dealing with nonlinear dynamics.

However, the extension of RL to spacecraft guidance, navigation, and control is

still largely unexplored. Recent efforts include the application of the “reinforce” algo-

rithm for asteroid mapping (Chan and Agha-mohammadi [13]) and the use of an RL

actor-critic framework to widen the capabilities of the zero-effort-miss/zero-effort-

velocity guidance algorithm, generalizing it for path constraints in near-rectilinear

orbits (Scorsoglio et al. [54]). Broida and Linares [11] used proximal policy optimiza-

tion (PPO) to accomplish 3-DOF rendezvous trajectories that exploit relative orbital

dynamics. Likewise, Gaudet et al. [19, 18] used PPO for producing 6-DOF planetary

landings and asteroid hovering maneuvers. The latter work utilized meta-learning,

where the RL agent can adapt to a novel environment from learning on a wide range

of possible environments. Implementing meta-learning via recurrent neural networks,

33

the trained agent was able to adapt to unique asteroid dynamic environments and

actuator faults. Hovell and Ulrich [21] recently presented a guidance policy for 3-DOF

proximity operations using the “distributed distributional deep deterministic policy

gradient” algorithm, testing it successfully in granite surface hardware experiments.

The hardware implementation distinguishes this work from most RL research efforts

that are limited to simulation.

However, several aspects of RL must be validated more strongly in order to render

the method safely usable for autonomous proximity operations. The lack of guarantees

on constraint satisfaction and stability, despite exceptional performance in practice,

is undesirable for spacecraft operations. Thus, it is expected that future RL research

involving autonomous proximity operations will focus on safety and constraint satis-

faction guarantees, along with merging its benefits with standard control methods to

develop highly capable hybrid methods.

1.4 Thesis Objectives and Outline

Having covered previous research in the areas of robust control and reinforcement

learning for autonomous proximity operations, this section outlines the main pur-

pose of this thesis and its research contributions. This thesis is focused on extending

specific methods of robust control and reinforcement learning to make autonomous

proximity operations more general and flexible for uncertain scenarios and improve

performance in terms of the specified cost function. In doing so, this work incremen-

tally improves the existing pool of guidance and control technologies for autonomous

proximity operations, which in turn brings fully-fledged autonomous servicing and

active debris removal spacecraft one step closer to reality.

In terms of robust control, this work seeks to extend standard tube-based MPC

to develop an algorithm in what is termed as “online” tube-based MPC. This algo-

rithm allows the robust “tube” to shrink and grow accordingly with measured un-

certainty data as the trajectory progresses. In this way, online, tube-based MPC

both a) removes the need for precise prior knowledge about the uncertainty char-

34

acteristics, and b) improves performance for cases when standard tube-based MPC

is over-conservative. Having developed the online, tube-based MPC algorithm, it is

then applied to an autonomous proximity operations scenario involving a tumbling

space object with uncertain inertial properties. The controller is able to successfully

track intercept trajectories despite incorrect prior knowledge on the target’s inertia

tensor. Throughout numerous simulation runs, online tube-based MPC outperforms

standard tube-based MPC.

With regards to reinforcement learning, this work utilizes PPO to develop a 6-DOF

docking policy that is implemented as a feedback control law. The policy is robust to

an range of uncertain initial conditions, successfully docking with a rotating target

while preventing collisions and minimizing state error and control input costs. Once

learned, the policy commands control inputs at a very fast rate, and thus is suitable

for real-time implementation. To the best of the author’s knowledge, this is the first

application of RL for spacecraft docking involving a full 6-DOF dynamic environment.

Results also include a comparison with standard trajectory optimization techniques

in order to give discussion and general insight on the benefits and disadvantages of

using RL for spacecraft proximity operations.

In summary, the contributions of this thesis are as follows:

1. Development of the “online” tube-based MPC algorithm, which enhances the

flexibility and performance of tube-based MPC.

2. Application and validation of the online tube-based MPC algorithm in a simu-

lated proximity operations scenario involving the intercept of a tumbling target

with uncertain inertial properties.

3. Development and validation of a RL-based policy that is able to successfully

dock with a rotating target in a simulated 6-DOF dynamic environment.

The thesis is structured as follows: Chapter 2 consists of the theoretical develop-

ment of the online tube-based MPC algorithm. Chapter 3 outlines the tumbling target

intercept problem and shares the results obtained by applying the online tube-based

35

MPC algorithm. Chapter 4 formulates the RL-based 6-DOF policy for docking with

rotating targets and shares results obtained by applying the policy to the simulated

Apollo transposition and docking maneuver. Finally, Chapter 5 shares conclusions

and discussions regarding future work. Appendices cover a 2-D double integrator

system for controller demonstrations, details on polytopic and ellipsoidal sets, and a

formulation of the optimal control problems used in evaluating the RL-based policy’s

docking performance.

36

Chapter 2

Online, Tube-based Model Predictive

Control

This thesis proposes online, tube-based MPC as the method of choice for robust con-

trol in autonomous proximity operations. This chapter focuses on the theoretical for-

mulation of this control algorithm. A background on nominal (i.e., non-robust) MPC

and standard tube-based MPC is covered first, before introducing the proposed, on-

line, tube-based MPC algorithm. Throughout this chapter, a 2-D, double-integrator

system is utilized to explain and demonstrate the properties of each control method.

Details on the 2-D, double-integrator test cases are given in Appendix A.

2.1 Model Predictive Control

MPC is a commonly used strategy for constrained control systems [28]. An important

advantage of MPC when compared to less advanced control methods, e.g., a linear

quadratic regulator (LQR), is that it computes an online solution to a numerical op-

timization problem that allows for constraint satisfaction. This problem is solved for

a finite horizon (termed the prediction horizon), where predicted states are obtained

via the dynamic model of the system. Using a finite horizon permits fast solving

times; this allows the controller to rapidly accept new state information and provide

closed-loop control while enforcing state and control input constraints.

37

Optimization is implemented in the MPC framework using a cost function that

balances tracking performance and controller efficiency. Thus, at each time-step, the

constrained optimization problem is solved over the prediction horizon to determine

the optimal sequence of control inputs u(0, 1, ..., 𝑁 − 1) where 𝑁 is the number of

time-steps in the prediction horizon. The first control input u0 is then applied to

the system. Then, at the next time-step, the constrained optimization problem is

re-solved based on the new current state, yielding an updated solution. By re-solving

the optimization problem at each time-step based on the new state, MPC exhibits

feedback control according to a so-called “receding horizon” control law.

Model predictive control utilizes the following form for the linear, time-invariant

system dynamics:

x(𝑘 + 1) = Ax(𝑘) +Bu(𝑘) (2.1)

where x ∈ R𝑛 is the state and u ∈ R𝑚 is the control input. The terms 𝑛 and 𝑚

refer to the state and control input dimensions, respectively. These dynamics are

formulated in discrete time with a sample period 𝑇𝑠. The matrices A ∈ R𝑛×𝑛 and

B ∈ R𝑛×𝑚 are the state transition and input distribution matrices, respectively. To

ensure that the optimized control sequence can be calculated efficiently, MPC cost

functions are typically convex while the constraints are typically linear. In this work,

the MPC optimization problem is formulated as a quadratic program (QP):

min
u, x

𝑘+𝑁−1∑︁
𝑖=𝑘

(︁⃒⃒⃒⃒
x(𝑖)− x̄(𝑖)

⃒⃒⃒⃒2
Q
+
⃒⃒⃒⃒
u(𝑖)

⃒⃒⃒⃒2
R

)︁
+
⃒⃒⃒⃒
x(𝑘 +𝑁)− x̄(𝑘 +𝑁)

⃒⃒⃒⃒2
P

(2.2a)

s.t. x(𝑖+ 1) = Ax(𝑖) +Bu(𝑖) ∀𝑖 = 𝑘, ..., 𝑘 +𝑁 − 1 (2.2b)

x(𝑖) ∈ 𝒳 ∀𝑖 = 𝑘 + 1, ..., 𝑘 +𝑁 (2.2c)

u(𝑖) ∈ 𝒰 ∀𝑖 = 𝑘, ..., 𝑘 +𝑁 − 1 (2.2d)

where x̄ is the desired state, Q ∈ R𝑛×𝑛,Q ⪰ 0 is the cost matrix applied to tracking

error, R ∈ R𝑚×𝑚,R ≻ 0 is the cost matrix applied to control inputs, and P ∈

R𝑛×𝑛,P ≻ 0 is the “terminal” tracking cost matrix applied to the final state of the

prediction horizon. The cost notation
⃒⃒⃒⃒
u(𝑖)

⃒⃒⃒⃒2
R

is equivalent to u(𝑖)⊤Ru(𝑖). The

38

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Position (m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

V
el

oc
ity

 (
m

/s
)

Real traj.
Initial state
Desired state
State constraints

Figure 2-1: A trajectory produced via a model-predictive controller for the 2-D
double-integrator system with no uncertainty. The red indicates the trajectory while
the large box indicates the state constraints. Notice how the predictive capabilities
of MPC enable constraint satisfaction in a feedback manner.

state and control input constraints are represented by 𝒳 and 𝒰 respectively. For the

QP formulation, these constraints are polytopes and can be re-written as

x ∈ 𝒳 := {x ∈ R𝑛 : A𝒳x ≤ b𝒳} (2.3a)

u ∈ 𝒰 := {u ∈ R𝑚 : A𝒰u ≤ b𝒰} (2.3b)

where A𝒳 , A𝒰 are the “A” polytope matrices and b𝒳 , b𝒰 are the “b” polytope vectors

from (B.1). More information on polytope sets can be found in Appendix B.

The above QP formulation for MPC is applied to the 2-dimensional system defined

in Appendix A. Figure 2-1 depicts a resulting trajectory produced by the controller.

The prediction horizon was 𝑁 = 5, while the cost matrices were Q = I2 and R = 10.

The controller successfully reaches the goal state in an optimized manner while abid-

ing by the position/velocity constraints. This is due to the constrained optimization

problem in (2.2) being solved at each time-step using new state information.

39

However, if the system is uncertain, there is no guarantee for MPC that the un-

modeled disturbances will not cause the controller to violate the constraints or become

unstable. While the feedback nature of MPC can handle uncertainty in the uncon-

strained case, for controllers operating in critical scenarios (such as an autonomous

spacecraft performing a docking maneuver), it is desirable to have guarantees in ad-

dressing the uncertainty. This points to the need of robust control methods, which,

despite the uncertainty, can still guarantee constraint satisfaction and stability.

2.2 Standard Tube-based Model Predictive Control

Tube-based MPC is an effective way to guarantee stability and the satisfaction of con-

straints in the presence of uncertainty while still retaining nominal MPC optimization

capabilities [40]. Standard tube-based MPC applies a feedback gain to counteract the

uncertainty in the real system, which results in a robust positively invariant (RPI) set,

i.e., the “tube”. Positive invariance means that the state will stay within a bounded

set as time progresses; the robust term denotes that positive invariance is achieved

despite the presence of uncertainty. As such, the tube is guaranteed to contain any

possible evolving trajectories that are disturbed by the unmodeled terms. The tube

is also used to shrink the original constraints of the problem, which are then imple-

mented in a standard MPC optimization problem to determine the nominal states

and control inputs throughout the prediction horizon.

Standard tube-based MPC uses the following notation to address both the real

and nominal dynamics of the system. The real system that includes the uncertainty

is

x(𝑘 + 1) = Ax(𝑘) +Bu(𝑘) +w(𝑘) (2.4)

where w ∈ R𝑛 is an unknown but bounded term referred to as the exogenous input to

the system. This term encapsulates the uncertainty of the real system. The nominal

dynamics do not include the exogenous input:

z(𝑘 + 1) = Az(𝑘) +Bv(𝑘) (2.5)

40

where z ∈ R𝑛 is the nominal state and v ∈ R𝑚 is the nominal control input. Referring

to the term w as “bounded” means it resides in the closed set 𝒲 , which contains all

possible finite values of w:

w ∈ 𝒲 ⊂ R𝑛 (2.6a)

max
w∈𝒲

|w| <∞ . (2.6b)

While the true set 𝒲 typically does not have well-defined geometry, it is often ap-

proximated via polytopes or ellipsoids (Appendix B).

2.2.1 Exogenous Input Rejection

The tube-based MPC law for each time-step is written as

u(𝑘) = 𝜈(𝑘) +K𝑟

(︀
x(𝑘)− z(𝑘)

)︀
(2.7)

where K𝑟 ∈ R𝑚×𝑛 is the exogenous input rejection feedback gain and 𝜈(𝑘) and z(𝑘)

are the nominal initial control input and state, respectively, determined through MPC

optimization. Essentially, the feedback gain K𝑟 counteracts the difference between

the real and nominal states of the trajectory. Certain gain values of K𝑟 can result in

an RPI set centered on the nominal state z(𝑘) (see Section 2.2.2). This is critical for

obtaining stability and constraint satisfaction guarantees despite the uncertainty in

the system.

There are a number of methods to determine suitable gain values for K𝑟. Perhaps

the simplest is to calculate a stablizing gain matrix K𝑟 via linear-quadratic-regulator

(LQR) design, where

𝜌(A+BK𝑟) < 1 (2.8)

with 𝜌 signifying the spectral radius.

With tuning, this can achieve suitable results; however, a) it does not always

guarantee the existence of an RPI set, and b), does not explicitly seek to minimize the

size of the resulting set. Since a smaller RPI set reduces the difference between the real

41

and nominal states and limits the degree of constraint shrinking (see section 2.2.3), it

is generally favorable to seek gain values for K𝑟 that minimize the resulting RPI set.

However, more aggressive gain values for K𝑟 that reduce the size of the RPI set also

result in a greater degree of constraint shrinking on the control inputs. Practically

speaking, more of the limited control authority is transferred to the exogenous input

rejection part of the problem, and less is available for the MPC optimization step.

Thus, care must be taken to choose a gain for K𝑟 that does not result in an empty

shrunk constraint for the control inputs.

2.2.2 Minimum Robust Positively Invariant Set

The minimum RPI (mRPI) set 𝒵* is the smallest set that contains all trajectories

that result from applying the feedback gain K𝑟 to the difference between the real and

nominal states:

(A+BK𝑟)x+w ∈ 𝒵*, ∀ x ∈ 𝒵*,w ∈ 𝒲 . (2.9)

In other words, the set 𝒵* contains all future states x despite the exogenous inputs

w as long as the initial state x(0) is also contained in 𝒵*. Note that the true minimal

set 𝒵* is often difficult to determine; thus, an approximate set 𝒵 is usually found

instead and used as the tube set in tube-based MPC. Also note that the tube set

𝒵 is directly influenced by the definition of the uncertainty bounds, 𝒲 . Thus, it is

important to have accurate knowledge of the bounds of w in order to properly define

𝒲 and compute 𝒵.

Given the uncertainty set 𝒲 and the dynamic matrices A and B, there are several

algorithms to calculate an exogenous input rejection gain K𝑟 that results in the tube

set 𝒵. These algorithms differ depending on the parameterization of the uncertainty

set 𝒲 and the desired parameterization of the tube 𝒵. Limón et al. [33] present an

effective strategy to find the gain matrix K𝑟 that minimizes the tube 𝒵 if 𝒲 and 𝒵 are

assumed to be parameterized as polytopes. Based on linear matrix inequalities (LMIs)

[8] and convex optimization, this method optimizes the gain matrix K𝑟 while ensuring

the shrunk control input constraint is not empty. However, the actual resulting

42

definition of the tube 𝒵 must still be approximated separately. As such, Raković et

al. [50] present a straightforward algorithm based on the gain matrix K𝑟 to provide

a close, polytope approximation to 𝒵* while still guaranteeing RPI properties.

For reasons detailed in Section 2.3, the chosen parameterizations of 𝒲 and 𝒵 are

ellipsoids for this thesis. The method developed by Polyak et al. [48] is utilized to

find the combination of the gain matrix K𝑟 and the tube 𝒵 that results in the min-

imal ellipsoidal approximation to 𝒵*. Also based on LMIs, this convex optimization

problem is formulated as

min
P𝑍 , Y, M

trace
(︀
P𝒵
)︀

(2.10a)

s.t.
1

𝛼

(︁
AP𝒵A

⊤ +BYA⊤ +AY⊤B⊤ +BMB⊤
)︁
−P𝒵 +

1

1− 𝛼
P𝒲 = 0 (2.10b)⎡⎣M Y

Y⊤ P𝒵

⎤⎦ ≥ 0 (2.10c)

⎡⎣P𝒵 Y⊤

Y (𝛽𝑢𝑝)
2I𝑚

⎤⎦ ≥ 0 (2.10d)

where P𝒵 is the resulting ellipsoidal shape matrix of the tube set 𝒵, P𝒲 is the

ellipsoidal shape matrix of the exogenous input set 𝒲 , and M ∈ R𝑚×𝑚 and Y ∈ R𝑛×𝑚

are additional optimization variables. The terms 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1) are design

parameters, with 𝛽 being applied to allocate a certain percentage of the defined control

limit magnitude 𝑢𝑝 in minimizing 𝒵. Note that using the trace of the ellipsoidal

shape matrix retains convexity of the optimization problem. As such, this problem

is efficiently solved using semi-definite programming (SDP) techniques.

The corresponding exogenous input rejection gain K𝑟 is then simply calculated as

K𝑟 = Y−1P𝒵 . (2.11)

Figure 2-2 depicts an ellipsoidal tube 𝒵 that approximates the mRPI for a given

system. Note that, since the initial state started within the tube, all future states

remain in the tube despite being perturbed by bounded values of the exogenous input

43

-0.1 -0.05 0 0.05 0.1

x1 (m)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x
2
 (

m
/s

)

Figure 2-2: An example ellipsoidal tube that approximates the minimum robust posi-
tively invariant set for a double-integrator system. All future states (red) stay within
the tube despite the perturbations caused by the exogenous input w since the initial
state (blue) was within the tube.

w. This concept serves as the source of robustness for tube-based MPC.

2.2.3 Constraint Shrinking

After the tube set 𝒵 has been calculated, the original constraints of the problem can

be shrunk in order to retain a constraint satisfaction guarantee despite the uncertainty.

These shrunk constraints are utilized in the subsequent nominal MPC optimization

problem, which does not consider the uncertainty.

The shrunk constraints are simply obtained via the Pontryagin set difference:

𝒳 = 𝒳 ⊖ 𝒵 (2.12a)

𝒰 = 𝒰 ⊖K𝑟𝒵 (2.12b)

44

where ⊖ indicates the Pontryagin difference, and 𝒳 and 𝒰 indicate the shrunk state

and control input constraints, respectively. As mentioned before, it is clear that more

aggressive selections of the exogenous input rejection gain K𝑟 result in more shrinking

of the control input constraint. Thus, there is a trade-off between robustness (more

aggressive gain K𝑟) and optimal controller performance (more control input authority

allocated for the nominal MPC problem).

If the original constraints 𝒳 and 𝒰 are modeled via polytopes, the resulting shrunk

constraints 𝒳 and 𝒰 are also polytopes sets if the tube 𝒵 is either a polytope or

ellipsoid. Since the parameterization of the tube 𝒵 in this work is chosen to be an

ellipsoid, the Pontryagin set difference between a polytope and ellipsoid is explicitly

stated for the state constraint:

A𝒳 = A𝒳 (2.13a)

𝑏𝒳𝑖
= 𝑏𝒳𝑖

−
√︁

P𝒵a⊤
𝒳𝑖

· a⊤
𝒳𝑖

(2.13b)

where 𝑏𝒳𝑖
is the 𝑖-th element of the vector b𝒳 and a𝒳𝑖

is the 𝑖-th row of the matrix

A𝒳 . Figure 2-3 depicts the original and shrunk constraints the example 2-D problem.

2.2.4 Nominal Model Predictive Control Problem

Having defined the tube 𝒵 and the shrunk constraints 𝒳 and 𝒰 , it is now possible to

formulate an MPC optimization problem that guarantees robust constraint satisfac-

tion despite only using the nominal system dynamics without uncertainty. The result

of the nominal MPC optimization problem is the nominal control input 𝜈 as well as

the nominal initial state z. Together, these terms are used in (2.7) to determine the

final robust control input that is applied to the real system.

45

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1 (m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x
2
 (

m
/s

)

Figure 2-3: An example of state constraint shrinking for tube-based MPC on the 2-D
system. The outer, blue-colored box (polytope) is the original state constraint, while
the inner, red-colored box is the shrunk constraint that ensures constraint satisfaction
despite the exogenous inputs.

The nominal MPC problem for standard, tube-based MPC is formulated as

min
𝜈, z

𝑘+𝑁−1∑︁
𝑖=𝑘

(︁⃒⃒⃒⃒
z(𝑖)− x̄(𝑖)

⃒⃒⃒⃒2
Q
+
⃒⃒⃒⃒
v(𝑖)

⃒⃒⃒⃒2
R

)︁
+
⃒⃒⃒⃒
z(𝑘 +𝑁)− x̄(𝑘 +𝑁)

⃒⃒⃒⃒2
P

(2.14a)

s.t. z(𝑖+ 1) = Az(𝑖) +Bv(𝑖) ∀𝑖 = 𝑘, ..., 𝑘 +𝑁 − 1 (2.14b)

z(𝑖) ∈ 𝒳 ∀𝑖 = 𝑘, ..., 𝑘 +𝑁 (2.14c)

v(𝑖) ∈ 𝒰 ∀𝑖 = 𝑘, ..., 𝑘 +𝑁 − 1 (2.14d)

z(𝑘) ∈ x(𝑘)⊕−𝒵 (2.14e)

where ⊕ indicates the Minkowski sum.

There are several important differences between the above problem and (2.2). For

one, the initial state of the trajectory throughout the (nominal) prediction horizon is

now a decision variable z(𝑘). The tube 𝒵 is centered at this nominal initial state; thus

(2.14e) requires that the real initial state x(𝑘) is encapsulated within the tube. By

46

requiring x(𝑘) to be inside the tube centered at z(𝑘), the robust positively invariant

properties shown in Figure 2-2 are achieved and all future states x will continue

to remain in the tube, thus guaranteeing stability. Furthermore, since the tube is

contained in the original constraints by restricting the nominal state z to be within

the shrunk constraints, it also guarantees robust constraint satisfaction despite the

uncertainty.

Practically speaking, choosing an ellipsoidal form of 𝒵 creates a quadratic con-

straint for (2.14e) (︀
x(𝑘)− z(𝑘)

)︀⊤
P𝒵
(︀
x(𝑘)− z(𝑘)

)︀
≤ 1 . (2.15)

This makes the MPC problem a quadratically constrained quadratic program (QCQP),

which is slightly more complex than the QP formulation in (2.2). However, the prob-

lem is still convex and can be easily handled via second-order cone programming

(SOCP) methods.

2.2.5 Application to the 2-D Double-Integrator System

The above formulation of standard, tube-based MPC was applied to the 2-D double-

integrator system outlined in Appendix B. Figure 2-4 depicts a resulting trajectory

produced by the controller for a case when the exogenous input w was sampled using

the standard deviation values of 𝜎𝑟 = 7.5× 10−3, 𝜎𝑣 = 7.5× 10−3, and a mean value

of 𝜇w = [0, 0]⊤. The prediction horizon was 𝑁 = 5, while the cost matrices were set

as Q = I2 and R = 10. The P matrix was obtained via LQR design using Q and

R. The exogenous input rejection gain K𝑟 and tube 𝒵 were determined via (2.10),

yielding a gain of K𝑟 = [−7.04,−4.54].

Notice that, despite the perturbations caused by the exogenous input w, the real

state stays within the tube and thus within the original constraints of the problem.

The exogenous input rejection gain K𝑟 also effectively counteracts w, driving the real

state to the desired final state near the end of the trajectory.

However, there are important drawbacks to the standard, tube-based MPC for-

mulation. Since the exogenous input rejection gain and tube set are both calculated

47

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Position (m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

V
el

oc
ity

 (
m

/s
)

Real traj.
Nominal traj.
Tube sets
Initial state
Desired state
State constraints

Figure 2-4: An successful trajectory produced by the standard, tube-based MPC for
the disturbed 2-D double-integrator system.

offline prior to online implementation, it is critically reliant on an accurate bound-

ing set 𝒲 of the exogenous inputs. If the estimated bounding set ̂︁𝒲 is significantly

conservative and the level of uncertainty is actually lower, the standard tube-based

MPC misses out on performance gains since it allocates too much control authority

to the non-optimized exogenous input rejection gain K𝑟.

On the other hand, a more catastrophic result occurs when the approximated

bounding set of the exogenous inputs ̂︁𝒲 is less conservative than the true set of

exogenous inputs. This issue can arise when there is a greater-than-expected variance

or a significant bias in the exogenous inputs. This results in the standard tube-MPC

calculating a tube set that is not sufficient for the actual level of uncertainty. Thus,

the robust guarantees of stability and constraint satisfaction are gone.

Consider the following scenario in the 2-D double-integrator problem where the

real exogenous inputs are sampled using standard deviations of 𝜎𝑟 = 5 × 10−3, 𝜎𝑣 =

5× 10−3 and the mean 𝜇w = [0, 0.04]⊤ while the estimated exogenous input standard

deviations are �̂�𝑟 = 5 × 10−3, �̂�𝑣 = 5 × 10−3, and the mean �̂�w = 0. As shown in

48

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Position (m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

V
el

oc
ity

 (
m

/s
)

Real traj.
Nominal traj.
Tube sets
Initial state
Desired state
State constraints

Figure 2-5: A failed trajectory produced by the standard tube-based MPC for the
disturbed 2-D double-integrator system. Since the initialized uncertainty bounds
did not accommodate a strong bias in the velocity exogenous input component, the
velocity constraint was violated.

Figure 2-5, the tube is not accurate and the strong velocity bias in the exogenous

inputs forces the real state outside the constraints. Thus, the standard tube-MPC

failed the trajectory since it relied completely on pre-determined information about

the exogenous input w, and did not attempt to infer its characteristics online.

2.3 Online Tube-based Model Predictive Control

An online tube-based MPC algorithm is developed to address the aforementioned

issues of standard tube-based MPC. This algorithm is one of the main contributions

of this thesis. The idea is to constantly update the approximated tube set throughout

the trajectory using measured exogenous input data. This allows for the estimated

bounds on the exogenous inputs ̂︁𝒲 to be formulated via real, measured data instead

of using a pre-determined value as in standard tube-based MPC. The current value

of the exogenous input w is also estimated in this process and fed into the nominal

49

Figure 2-6: An illustration of how standard tube-based MPC strips away part of the
control authority for exogenous input rejection, and how online tube-based MPC can
re-allocate control authority to the nominal MPC optimization step if the uncertainty
is relatively low.

model. Furthermore, if the exogenous inputs are found to be generally non-stochastic

(i.e., low amounts of noise), predictions of their future values can be obtained via an

identified system model. This allows the dynamic nature of the exogenous inputs to

be incorporated into the prediction horizon of the nominal MPC optimization step.

By adjusting the tube online based on measured data, the two previously men-

tioned issues of standard tube-based MPC can be addressed. The first issue of having

an over-conservative estimate of 𝒲 and losing out on a potential increase in per-

formance is clearly addressed by online tube-based MPC; the tube will be shrunk

over time as the measured exogenous input data indicates a smaller set of exogenous

inputs 𝒲 when compared to its initial estimate ̂︁𝒲 . As such, a greater portion of

the finite control authority will be allocated for the nominal MPC optimization step,

which generally increases performance in minimizing the cost function (Figure 2-6).

This is especially true in such cases where the exogenous input w is a fairly large

but constant or highly deterministic term. In this case, the tube is shrinks to a small

set centered around the estimated value of w. Since the online estimates of w are

incorporated into the nominal model, the nominal MPC handles most of the control

input needed to address the exogenous inputs.

The second, more serious, issue of having an initial estimate ̂︁𝒲 that is too small

to encapsulate the true possible exogenous input values w is also addressed via online

tube-based MPC. The controller still lacks robustness early on in the trajectory since

there is not yet enough data on the exogenous inputs to converge to a correct estimate

50

of their bounds. Thus, care should be taken if the initial conditions of the trajectory

are close to the constraint boundaries. But after a sufficient amount of data has been

collected, the calculated tube will grow in size based on the up-to-date estimates of

the exogenous input bounds ̂︁𝒲 . Since the estimation of ̂︁𝒲 is dynamic, online tube-

based MPC is eventually able to provide robustness despite a poor initial estimate

of the exogenous input bounds. This allows for greater flexibility in applying robust

control to problems when the characteristics of the exogenous inputs w are (initially)

largely unknown.

Of course, re-calculating the tube based on updated estimates of ̂︁𝒲 raises ques-

tions on the computational feasibility of the overall algorithm. This is why ellipsoidal

sets are chosen for describing the tube set 𝒵 and exogenous input set 𝒲 . The num-

ber of parameters for an ellipsoidal set is fixed for a given state dimension 𝑛. This

contrasts with polytopes, which scale poorly with increasing values of 𝑛 and can often

be very complex depending on the method used to approximate the tube 𝒵. Further-

more, the optimization problem to approximate an ellipsoidal tube set (2.10) is convex

and can be solved efficiently. Finally, ellipsoidal descriptions of the exogenous input

set 𝒲 naturally correspond to the covariance obtained in estimating the exogenous

input values w. As such, for practical implementation, ellipsoidal representations of

the tube 𝒵 and exogenous input set 𝒲 are the most suitable for online tube-based

MPC.

Generally, the online tube-based MPC algorithm follows three major steps for

each time-step 𝑘:

1. Compute a control input u(𝑘) via the nominal MPC problem and the exogenous

input rejection gain K𝑟(𝑘).

2. Estimate the next exogenous input w(𝑘 + 1) and its covariance, which in turn

yields an updated tube and shrunk constraints.

3. If applicable, update the parameters of the identified dynamic model that pre-

dicts future values of the exogenous inputs w throughout the MPC prediction

horizon.

51

These steps are explained in more detail below.

2.3.1 Control Input Determination

The control input u(𝑘) is determined in a similar manner to standard tube-based

MPC. However, there are a few modifications to the nominal MPC optimization

problem. The estimate of the exogenous input at time-step 𝑘, denoted as ̂︀w(𝑘), is

included as an initial condition. This allows for an improved nominal dynamic model

for the first step in the prediction horizon 𝑘:

z(𝑘 + 1) = Az(𝑘) +Bv(𝑘) + ̂︀w(𝑘) (2.16)

This means that the tube only has to encapsulate the error in estimating w(𝑘):̃︀w(𝑘) , w(𝑘)− ̂︀w(𝑘).

Furthermore, if predictions of future exogenous inputs via an identified model

are enabled, we can include them as part of the state vector throughout the entire

prediction horizon. In this work, an autoregressive moving average (ARMA) model

structure is used for prediction. Via the ARMA formulation, the linear dynamic

model to predict future exogenous inputs is defined as

w*(𝑘 + 1) = A*
w(𝑘)w

*(𝑘) (2.17)

where w*(𝑘) ∈ R𝑛(𝑛𝑎) is a stack of 𝑛𝑎 past measured/predicted values of w and 𝑛𝑎 is

the number of autoregressive parameters used in the ARMA model formulation (i.e.,

the model order). The matrix A*
w(𝑘) ∈ R𝑛(𝑛𝑎)×𝑛(𝑛𝑎) is the state transition matrix

representation of the identified ARMA model. More details on the ARMA system

identification method for predicting future exogenous inputs are included in Section

2.3.3.

The extended state vector that is modeled via the nominal dynamics can now be

written as
[︀
z(𝑘),w*(𝑘)

]︀⊤. The resulting nominal MPC problem for online, tube-based

52

MPC is now formulated as:

min
𝜈, z

𝑘+𝑁−1∑︁
𝑖=𝑘

(︁⃒⃒⃒⃒
z(𝑖)− x̄(𝑖)

⃒⃒⃒⃒2
Q
+
⃒⃒⃒⃒
𝜈(𝑖)

⃒⃒⃒⃒2
R

)︁
+
⃒⃒⃒⃒
z(𝑘 +𝑁)− x̄(𝑘 +𝑁)

⃒⃒⃒⃒2
P

(2.18a)

s.t.

⎡⎣ z(𝑖+ 1)

w*(𝑖+ 1)

⎤⎦ =

⎡⎣A [I𝑛, 0]

0 A*
w(𝑘)

⎤⎦⎡⎣ z(𝑖)

w*(𝑖)

⎤⎦+

⎡⎣B
0

⎤⎦𝜈(𝑖) ∀𝑖 = 𝑘, ..., 𝑘 +𝑁 − 1

(2.18b)

z(𝑖) ∈ 𝒳 (𝑘) ∀𝑖 = 𝑘, ..., 𝑘 +𝑁 (2.18c)

𝜈(𝑖) ∈ 𝒰(𝑘) ∀𝑖 = 𝑘, ..., 𝑘 +𝑁 − 1 (2.18d)

z(𝑘) ∈ x(𝑘)⊕−𝒵(𝑘) (2.18e)

w*(𝑘) =
[︀̂︀w(𝑘), ̂︀w(𝑘 − 1), ... ̂︀w(𝑘 − 𝑛𝑎 + 1)

]︀⊤ (2.18f)

Notice that the sets 𝒵(𝑘), 𝒳 (𝑘), and 𝒰(𝑘) vary depending on the time-step 𝑘: this is

because the tube is constantly being updated based on the latest measured exogenous

inputs w. The identified exogenous input dynamic model A*
w(𝑘) is also updated at

each time-step based on this data. This problem is still a QCQP, and can be solved

via SOCP methods.

The final control input value applied to the real system, u(𝑘), is calculated via

the control law

u(𝑘) = v(𝑘) +K𝑟(𝑘)
(︀
x(𝑘)− z(𝑘)

)︀
(2.19)

Notice that the only difference when compared to (2.7) is that K𝑟(𝑘) now varies from

time-step to time-step since the tube is being updated.

2.3.2 Exogenous Input Estimation and Tube Updates

Estimating the Next Exogenous Input

Once the control input has been applied to the system, the exogenous input for time-

step 𝑘 can be measured as the difference from the real state at 𝑘+1 and the nominally

expected state:

w(𝑘) = x(𝑘 + 1)−Ax(𝑘)−Bu(𝑘). (2.20)

53

Since the exogenous input at time-step 𝑘 is only measurable at time-step 𝑘 + 1, it is

imperative to estimate its next value, denoted as ̂︀w(𝑘+1). This allows for the control

input at step 𝑘 + 1 to utilize the estimated exogenous input in the nominal model.

A simple forgetting factor algorithm, based on the work of [20], is implemented to

estimate the next value ̂︀w(𝑘+1). The estimate covariance ̂︀Σw(𝑘+1) is also provided

in this algorithm. This covariance is directly used for determining a suitable set̂︁𝒲(𝑘+1) that best encapsulates the possible values of the exogenous input w(𝑘+1).

Defining the recursive sum of a geometric progression as

𝜁(𝑘 + 1) ,
𝑘∑︁

𝑖=0

𝑒(𝜆−1)(𝑘+1−𝑖) =
𝑒(𝜆−1)

[︀
1− 𝑒(𝜆−1)(𝑘+1)

]︀
1− 𝑒(𝜆−1)

, (2.21)

we can obtain the following estimates for the next exogenous input ̂︀w(𝑘+1) and the

covariance ̂︀Σw(𝑘 + 1):

̂︀w(𝑘 + 1) =
𝑒(𝜆−1)

𝜁(𝑘 + 1)

(︀
𝜁(𝑘)̂︀w(𝑘) +w(𝑘)

)︀
(2.22a)

̂︀Σw(𝑘 + 1) =
𝑒(𝜆−1)

𝜁(𝑘 + 1)

(︁
𝜁(𝑘)̂︀Σw(𝑘) +

(︀
w(𝑘)− ̂︀w(𝑘)

)︀(︀
w(𝑘)− ̂︀w(𝑘)

)︀⊤)︁
. (2.22b)

The 𝜆 term (i.e., the forgetting factor) is a constant design parameter in the range

(0, 1). Values of 𝜆 that approach 1 result in more weighting of past measured data in

the estimate. Lower values of 𝜆 produce more dynamic estimates that largely rely on

only the past few measurements of the exogenous input w. Thus, there is a trade-off

between utilizing more data for estimates and quickly capturing dynamic patterns of

the exogenous input. Figure 2-7 shows the application of this estimation algorithm

for a component of the exogenous input vector. Note that the estimation algorithm

is able to quickly adjust the estimate of the true exogenous input and encapsulate it

via the 3-𝜎 bounds.

Estimating the Set of Exogenous Inputs via the Covariance

The estimated covariance allows us to define a ellipsoidal set ̂︁𝒲(𝑘+ 1) that provides

the best estimate of the bounds on the exogenous input w(𝑘+1). A constant scaling

54

0 5 10 15 20 25 30

(s)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

ve
lo

ci
ty

 (
m

/s
)

Real
Estimated
Sigma-3

Figure 2-7: Estimation results by applying the forgetting factor algorithm to a noisy
component of the exogenous input (in this case, the velocity component for the 2-D
double-integrator system).

factor 𝑠 is applied to the covariance that results in an ellipsoid ̂︁𝒲(𝑘 + 1) that en-

capsulates w(𝑘 + 1) with a probability 𝑝w. The probability 𝑝w is chosen as a design

parameter and thus yields the corresponding scaling factor 𝑠. This process of scaling

the covariance ellipsoid to produce the estimated set of exogenous inputs ̂︁𝒲(𝑘 + 1)

is formally defined as

𝑃 (𝜒2(𝑛) ≤ 𝑠) = 𝑝w (2.23a)̂︁𝒲(𝑘 + 1) :
(︀
w(𝑘 + 1)− ̂︀w(𝑘 + 1)

)︀⊤(︀
𝑠̂︀Σw(𝑘 + 1)

)︀−1(︀
w(𝑘 + 1)− ̂︀w(𝑘 + 1)

)︀
≤ 1

(2.23b)

where 𝜒2(𝑛) is the chi-square distribution with the number of degrees of freedom

equal to the state dimension. For instance, if 𝑛 = 2 and 𝑝w = 0.99, the scaling factor

𝑠 = 9.2103. Figure 2-8 depicts several ellipsoidal sets ̂︁𝒲(𝑘 + 1) for increasing values

of 𝑝w.

Having obtained an updated exogenous input set ̂︁𝒲(𝑘+ 1), it is straight-forward

55

-0.04 -0.02 0 0.02 0.04
x1 (m)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

x
2
 (

m
/s

)

p = 0.8
p = 0.9
p = 0.95
p = 0.975
p = 0.99

Figure 2-8: An depiction of increasingly larger definitions of ̂︁𝒲(𝑘+1) based on increas-
ing probabilities that the set contains the possible values of w(𝑘+1). The probability
levels are set as design parameters for the online tube-based MPC algorithm.

to compute an updated tube set 𝒵(𝑘+1) and exogenous input rejection gain K𝑟(𝑘+1)

using (2.10) and (2.11). The constraints are also shrunk again via (2.12) using the

updated tube 𝒵(𝑘+1). Together, these steps ensure robustness for the next time-step.

2.3.3 Exogenous Input Prediction

If it is inferred that the nature of the exogenous inputs exhibits dynamic patterns and

is not purely stochastic, an identified model can be utilized to predict their future

values. In this work, the linear dynamic model is formulated as an ARMA model

[34].

56

Autoregressive-Moving-Average Model Definition

An ARMA model consists of the parameter vector 𝜃𝐴 ∈ R𝑛𝑎+𝑛𝑐 :

𝜃𝐴 = [𝑎1, 𝑎2, ..., 𝑎𝑛𝑎 , 𝑐1, 𝑐2, ..., 𝑐𝑛𝑐]
⊤. (2.24)

where 𝑛𝑎 is the number of poles and 𝑛𝑐 is the number of coefficients used in modeling

the error terms during identification (thus accounting for noise in the data). The

output 𝑦(𝑘 + 1) of an ARMA model for a single-output system is then obtained as

𝑦(𝑘 + 1) = −𝑎1𝑦(𝑘)− ...− 𝑎𝑛𝑎𝑦(𝑘 − 𝑛𝑎 + 1) + 𝑐1𝜖(𝑘) + ...+ 𝑐𝑛𝑐𝜖(𝑘 − 𝑛𝑐 + 1) (2.25)

where 𝜖(𝑘) is equal to the prediction error caused by white noise entering the system.

It is clear that there are two distinct parts to (2.25): the first part is the autoregressive

part, which essentially regresses the past values of 𝑦 to yield the prediction of 𝑦(𝑘+1)

using the parameters 𝑎1, ..., 𝑎𝑛𝑎 . The second part models the current noise in the data

as a moving, weighted average of past error values using the parameters 𝑐1, ..., 𝑐𝑛𝑐 .

The number of parameters 𝑛𝑎 and 𝑛𝑐 are tunable design values: greater values utilize

more past measurements, but also induce more model complexity (which in turn

requires a larger dataset for system identification convergence).

Predicting Exogenous Inputs via ARMA Models

In the context of predicting future exogenous inputs for online, tube-based MPC, the

model structure defined in (2.25) is applied to predict each element of the exogenous

input vector w (thus there is an ARMA model per element of w). In a state transition

formulation, the state is defined as a stack of past predicted exogenous input values:

w*(𝑘) ∈ R𝑛(𝑛𝑎) =
[︀̂︀w(𝑘)⊤, ̂︀w(𝑘 − 1)⊤, ... , ̂︀w(𝑘 − 𝑛𝑎 + 1)⊤

]︀⊤
. (2.26)

Since the error terms 𝜖(𝑘) cannot be propagated throughout the MPC prediction

horizon (there is no available real data to measure errors), only the autoregressive

57

parameters of the ARMA models are used in the state transition matrix. Before

defining the full state transition matrix A*
w(𝑘) ∈ R𝑛(𝑛𝑎)×𝑛(𝑛𝑎), smaller 𝑛× 𝑛 matrices

A*(𝑘), A*(𝑘 − 1), ... ,A*(𝑘 − 𝑛𝑎 + 1) are defined as

A*(𝑘) ,

⎡⎢⎢⎢⎢⎢⎢⎣
𝑎11 0 · · · 0

0 𝑎21 · · · 0
...

...

0 0 · · · 𝑎𝑛1

⎤⎥⎥⎥⎥⎥⎥⎦ , A
*(𝑘 − 1) ,

⎡⎢⎢⎢⎢⎢⎢⎣
𝑎12 0 · · · 0

0 𝑎22 · · · 0
...

...

0 0 · · · 𝑎𝑛2

⎤⎥⎥⎥⎥⎥⎥⎦ , · · · (2.27)

where 𝑎11 corresponds to the ARMA 𝑎1 model parameter for the first element of w,

𝑎21 corresponds to the ARMA 𝑎1 model parameter for the second element of w, and so

on. This finally allows us to define the full state transition matrix used in predicting

future values of w:

A*
w(𝑘) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A*(𝑘) A*(𝑘 − 1) · · · A*(𝑘 − 𝑛𝑎 + 2) A*(𝑘 − 𝑛𝑎 + 1)

I𝑛 0 · · · 0 0

0 I𝑛 · · · 0 0
...

... . . . · · · · · ·

0 0 · I𝑛 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.28)

This state transition matrix corresponds to the one used in equations (2.17) and

(2.18).

Parameter Updates for the Identified Model

Predicting future values of the exogenous input w in this way results in a stack of

parameter vectors 𝜃w ∈ R𝑛(𝑛𝑎+𝑛𝑐) for each ARMA model that is dedicated to each

element of w. These parameters are updated at each time-step via a recursive least-

squares algorithm [34]. Summarizing the recursive least-squares parameter update for

one of the ARMA models 𝜃𝐴 that predicts an element 𝑤 of the w vector, we define

the regression vector as

𝜑(𝑘) , [𝑤(𝑘 − 1), ... 𝑤(𝑘 − 𝑛𝑎), 𝜖(𝑘 − 1), ... 𝜖(𝑘 − 𝑛𝑐)]
⊤ . (2.29)

58

We can then outline the rest of the recursive least-squares algorithm that yields the

updated parameter vector 𝜃𝐴(𝑘 + 1):

K𝐴(𝑘) =
P𝐴(𝑘)

𝜆𝐴 + 𝜑⊤(𝑘)P𝐴(𝑘)𝜑(𝑘)
𝜑(𝑘) (2.30a)

𝜃𝐴(𝑘 + 1) = 𝜃(𝑘) +K𝐴(𝑘)
[︁
𝑤(𝑘)− 𝜑⊤(𝑘)𝜃𝐴(𝑘)

]︁
(2.30b)

P𝐴(𝑘 + 1) =
1

𝜆𝐴

(︁
P𝐴(𝑘)−K𝐴(𝑘)𝜑

⊤(𝑘)P𝐴(𝑘)
)︁

(2.30c)

where K𝐴 ∈ R𝑛𝑎+𝑛𝑐 is the parameter update gain, P𝐴 ∈ R(𝑛𝑎+𝑛𝑐)×(𝑛𝑎+𝑛𝑐) is the error

covariance in parameter estimation, and 𝜆𝐴 is a forgetting factor term used similarly

to the 𝜆 term in (2.22).

Demonstration for a Deterministic Exogenous Input Pattern

Figure 2-9 depicts an application of this online system identification method using

𝑛𝑎 = 2 and 𝑛𝑐 = 1 for an exogenous input that exhibits an oscillating dynamic

pattern. The ability to predict future values of w solely based on measured data

allows the exogenous input to be incorporated into nominal MPC model throughout

the entire prediction horizon. This allows for potential performance gains since the

MPC optimization step more accurately models the evolution of the real system.

However, the above method of online system identification can yield poor results if

the exogenous input follows an almost entirely stochastic pattern, as it would require

many data points to uncover any sort of deterministic, dynamic pattern. The iden-

tified model’s performance is also poor in these cases since the estimated exogenous

input values ̂︀w used to initialize the sequence of predicted values in the MPC opti-

mization step can be significantly noisy. Thus, it is suggested that if the magnitude

of the covariance matrix ̂︀Σw(𝑘) is above a design threshold (indicating significantly

noisy exogenous input data), the exogenous input prediction should be disabled by

setting A*
w = 0 for all time-steps past 𝑘 in the MPC prediction horizon.

It is also noted that the ARMA formulation for performing recursive, online system

identification is a fairly general approach to the problem. This gives an advantage of

59

0 200 400 600 800 1000

k

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

w

Real value

Figure 2-9: Applying the ARMA-based, online system identification method to pre-
dict future values of the exogenous input. In this case, the exogenous input (dashed
line) follows a distinct oscillating pattern; the predictions throughout the MPC hori-
zon are given by colored curves at selected intervals.

being flexible for many different exogenous input scenarios. However, this also means

it requires a sizeable amount of data points before the identified model parameters

properly converge. Thus, if there are unique characteristics known about the exoge-

nous inputs in a particular application of online tube-based MPC, it is potentially

advantageous to investigate more specific model structures that are better tuned for

the system at hand.

2.3.4 Application to the 2-D Double-Integrator System

The online, tube-based MPC algorithm is applied to the 2-D double-integrator system

defined in Appendix B. Figure 2-10 depicts a resulting trajectory produced by the

controller for a case when the exogenous inputs w are sampled using 𝜎𝑟 = 4× 10−3,

𝜎𝑣 = 4× 10−3 and 𝜇w = 0. However, the initial estimate of the exogenous input set

was obtained using �̂�𝑟 = 8.5 × 10−3, �̂�𝑣 = 8.5 × 10−3, and �̂�w = 0 making the set̂︁𝒲(0) unnecessarily conservative. The prediction horizon was 𝑁 = 5, while the cost

60

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Position (m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

V
el

oc
ity

 (
m

/s
)

Real traj.
Nominal traj.
Tube sets
Initial state
Desired state
State constraints

Figure 2-10: A trajectory produced by the online tube-based controller when the
initial estimate of the exogenous input set is over-conservative. Notice that the tube
shrinks immediately after the 5-step warm-up period in accordance with the measured
exogenous input data. By shrinking the tube, more control authority is allocated to
the nominal MPC optimization step and thus performance is increased.

matrices were set as Q = I2 and R = 10. The P matrix was obtained via LQR design

using Q and R. Exogenous input estimation parameters were set as 𝜆 = 0.875 and

𝑝w = 0.99. Tube updates did not take place until a estimation warm-up period of 5

time-steps was completed. Note that the exogenous input prediction was disabled in

this case since a), there are a very small amount of available data points for system

ID in this toy problem, and b), the exogenous input is purely stochastic. As shown in

the trajectory, the tube size shrinks as the algorithm adjusts its estimate of exogenous

input set ̂︁𝒲(𝑘) based on the measured exogenous input data. This naturally allows

for more optimization in the nominal MPC problem and produces better performance

when compared to standard tube-based MPC.

Figure 2-11 shows another trajectory produced by the online, tube-based MPC

in the same case where the standard tube-based MPC failed. The online tube-based

MPC is able to successfully estimate the exogenous input and adjust the tube size

61

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Position (m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

V
el

oc
ity

 (
m

/s
)

Real traj.
Nominal traj.
Tube sets
Initial state
Desired state
State constraints

Figure 2-11: A successful trajectory produced by the online tube-based MPC for the
disturbed 2-D double-integrator system. In the same exogenous input case where the
standard tube-based MPC failed (Figure 2-5), the online tube-based MPC was able
to adjust the estimate of the exogenous input and the tube size to accommodate a
strong velocity component bias that was not included in the initial estimate of the
exogenous input set.

accordingly to accommodate the strong velocity component bias, thus reclaiming

robust properties. Notice that the nominal states near the end of the trajectory have

a negative velocity value; this is because the controller knows there is a strong positive

velocity bias acting on the real state.

62

Chapter 3

Robust Control for Intercepting a

Tumbling Target

This chapter focuses on the application of the aforementioned robust control methods

to intercept a tumbling target with unknown inertial properties. First, an overview

of the problem including its its dynamics, constraints, and uncertainty sources is

provided. Then, the simulation environment for the maneuver is presented, and

a complete controller framework is formulated to apply online, tube-based MPC.

Finally, the results obtained by applying the controller to the tumbling target problem

are shared and discussed.

3.1 Problem Definition

This section provides context on the tumbling object intercept problem and defines

the relevant dynamics and constraints. A discussion of how uncertainty enters the

system is also included.

3.1.1 Mission Overview

Defunct satellites or debris objects often exhibit uncontrolled, tumbling motion due to

the accrual of disturbances such as drag, gravity gradient, or solar radiation pressure.

63

Figure 3-1: An illustration of Envisat, a large, defunct satellite that is exhibiting
a uncontrolled tumble while residing in a high-density LEO orbit. Image credit:
European Space Agency.

A notable example is Envisat [29] (Figure 3-1), whose orbit and large size poses a

risk for collisions. As such, autonomous on-orbit servicing or active debris removal

efforts must be prepared to intercept tumbling targets whose inertial properties may

be unknown.

A typical pipeline for intercepting a tumbling target follows three distinct phases

(Figure 3-2):

1. Estimation of the target’s rotational state and inertial properties.

2. Motion planning to determine an optimal, collision-free intercept trajectory.

3. Tracking control to follow the collision-free trajectory despite errors in the esti-

mation and modeling of the target.

Various frameworks exist for estimating the target’s state and inertial properties,

including filtering-based [4] and simultaneous localization and mapping approaches

64

Chaser
Target

2D/3D camera
measurements

(a) Phase 1: Estimation of the target’s rotational state and inertial properties.

Chaser
Target

Intercept
Axis

Offset
PointNominal Trajectory

(b) Phase 2: Planning the nominal intercept trajectory.

Chaser
Target

Real Trajectory

(c) Phase 3: Tracking the real trajectory that accounts for estimation errors.

Figure 3-2: A depiction of the mission phases required to autonomously intercept an
unknown, uncontrolled tumbling target.

65

[62], [55], [14]. However, the estimation of the target’s inertia tensor is a challenging

task due to measurement error and the potential complexity of the target’s tumbling

motion. Thus, there will always be some degree of error in the estimated target’s

inertia tensor versus its true value.

The motion planning step uses the estimated target state and inertia tensor to

predict its motion and determine an optimal, collision-free trajectory for the chaser

to follow and intercept the target. To successfully intercept the target, the chaser

must reach a desired offset distance in the target body frame and synchronize its

motion with the target’s tumble. At this point, a robotic manipulator could reach

out and grapple the target. Collision avoidance and motion synchronization is defined

in the body frame of the target; thus, the resulting motion plan itself is defined in

the target’s body frame as well.

This is a complex motion planning problem due to the 6-DOF, nonlinear dynamics

and non-convex collision avoidance constraints. For instance, in cases such as Envisat,

there are large solar panels and antennae that produce time-varying collision zones.

Thus, optimized trajectories can significantly differ depending on the target’s inertia

tensor and determined initial rotational state. A state-of-the-art motion planner for

this task is developed in [58], which utilizes nonlinear optimization techniques and

a look-up-table to provide the optimal, collision-free trajectory in the target’s body

frame.

The main focus of this thesis is on the tracking control step, where the chaser

actually attempts to follows the nominal trajectory produced by the motion planner

and intercept the target. Since there will be error present in the target’s estimated

inertia tensor, the predicted motion used by the motion planner in creating the nom-

inal trajectory will differ from the real tumbling motion of the target. As such, the

nominal relationship between the inertial and target body frames is disturbed, and

the controller must be robust to this uncertainty in order to successfully avoid col-

lisions and synchronize the motion at the desired offset point. In [12], a standard

tube-based MPC was developed for this task. The focus of this chapter is on advanc-

ing this controller framework to adapt to the measured uncertainty online in order

66

Chaser

Target

𝐶

𝑇

𝑊

v𝑊𝐶

𝜔𝑇
𝑇

Figure 3-3: An overview of the relevant coordinate frames and state variables for
intercepting a tumbling target. Red/green/blue indicate the x/y/z axes, respectively.

to increase performance and expand the flexibility of the overall approach. The next

section outlines the dynamics involved for the tumbling object intercept problem.

3.1.2 Dynamics and Constraints

Coordinate Frames

Figure 3-3 depicts the relevant coordinate frames for this problem. The 𝑊 frame

represents the world (i.e., inertial) frame and is situated at the target’s center of

mass. The 𝑇 frame represents the target’s body frame, whose origin is also located at

the target’s center of mass. The 𝐶 frame represents the chaser’s body frame, whose

origin is located at the chaser’s center of mass. The goal of the controller is to bring

the 𝐶 frame to the stationary offset point in the 𝑇 frame.

State Definitions

The scope of this work only focuses on controlling the chaser’s 3-DOF translational

motion to track the desired trajectory; it is assumed that there is a sufficient attitude

controller to keep the target in the chaser’s field of view and synchronize the relative

attitude. This allows the tracking controller to be formulated with a linear model,

which in turn provides a straightforward path to robustness guarantees. As such, the

67

chaser’s state is defined as

x𝑊
𝐶 ,

[︁(︀
r𝑊𝐶
)︀⊤
,
(︀
v𝑊
𝐶

)︀⊤]︁⊤ ∈ R6 (3.1)

where r𝑊𝐶 ∈ R3 is the chaser’s position with respect to the 𝑊 frame and v𝑊
𝐶 ∈ R3 is

the chaser’s velocity with respect to the 𝑊 frame.

The target is assumed to be stationary with respect to translation at the origin

of the 𝑊 frame. Thus, the only relevant target state variables are its attitude with

respect to the 𝑊 frame R𝑊
𝑇 ∈ 𝑆𝑂(3) and its angular velocity with respect to the

𝑇 frame 𝜔𝑇
𝑇 ∈ R3 where 𝑆𝑂(3) is the special group of orthogonal 3 × 3 matrices

that describe 3D rotations. Attitude can also be described via unit quaternions

q =
[︁(︀
q𝑣

)︀⊤
, 𝑞𝑤

]︁⊤
where q𝑣 =

[︀
𝑞𝑥, 𝑞𝑦, 𝑞𝑧

]︀⊤ ∈ R3 is the vector part and 𝑞𝑤 ∈ R is the

scalar part. Quaternions offer a simpler way to model the target’s tumbling dynamics.

Conversions from rotation matrices to quaternions are performed by

q =

⎡⎢⎢⎢⎢⎢⎢⎣
1

4𝑞𝑤
(𝑅32 −𝑅23)

1
4𝑞𝑤

(𝑅13 −𝑅31)

1
4𝑞𝑤

(𝑅21 −𝑅12)

1
2

√
1 +𝑅11 +𝑅22 +𝑅33

⎤⎥⎥⎥⎥⎥⎥⎦ (3.2)

and vice versa

R =
(︀
𝑞2𝑤 − q⊤

𝑣 q𝑣

)︀
I3 + 2q𝑣q

⊤
𝑣 + 2𝑞𝑤

[︁
q𝑣

]︁
×

(3.3)

where I3 is the 3 × 3 identity matrix and
[︁
p
]︁
×

is the cross-product matrix operator

for any vector p = [𝑝𝑥, 𝑝𝑦, 𝑝𝑧]
⊤ ∈ R3:

[︁
p
]︁
×
,

⎡⎢⎢⎢⎣
0 −𝑝𝑧 𝑝𝑦

𝑝𝑧 0 −𝑝𝑥
−𝑝𝑦 𝑝𝑥 0

⎤⎥⎥⎥⎦ . (3.4)

Alternate formulations of (3.2) are available if 𝑞𝑤 ≈ 0 [56].

68

Dynamics

We assume that the distance between the chaser and target at the beginning of the

intercept maneuver is relatively small and orbital effects are inconsequential. Thus, we

avoid the usage of the Hill-Clohessy-Wiltshire relative orbital dynamics and instead

adopt a simple double-integrator model:

ṙ𝑊𝐶 = v𝑊
𝐶 (3.5a)

v̇𝑊
𝐶 =

F

𝑚
(3.5b)

where F ∈ R3 is the applied thrust in each direction of the 𝑊 frame and 𝑚 ∈ R is

the chaser’s mass.

Since this is a linear system, it can be written in the state-space form (continuous

time)

ẋ𝑊
𝐶 = Ax𝑊

𝐶 +Bu (3.6)

where

A =

⎡⎣0 I3

0 0

⎤⎦ , B =

⎡⎣0
I3

⎤⎦ (3.7)

and u , F
𝑚

∈ R3 is the control input to the system.

The target is assumed to be a rigid body and follow torque-free tumbling dynamics.

The tumbling dynamics are modeled through Euler’s equations:

q̇𝑊
𝑇 =

1

2
Ω
(︁
𝜔𝑇

𝑇

)︁
q𝑊
𝑇 (3.8a)

�̇�𝑇
𝑇 = J−1

𝑇

(︁
− 𝜔𝑇

𝑇 × J𝑇𝜔
𝑇
𝑇

)︁
(3.8b)

where

Ω(𝜔) ,

⎡⎣0 −𝜔⊤

𝜔 −
[︁
𝜔
]︁
×

⎤⎦ (3.9)

and J𝑇 ∈ R3×3 is the target’s inertia tensor.

69

Constraints

As is typical of most autonomous spacecraft maneuvers, the chaser must satisfy con-

straints on the state and control inputs. For the tumbling object intercept maneuver,

the collision constraint is already handled by the nominal reference trajectory in the

target body frame that is produced by the motion planner. Thus, the only constraints

the controller must consider while operating online are limits on the position, velocity,

and control inputs.

The position constraint essentially forms a box in which the maneuver must stay.

In practice, this keep-in-box is large; thus the position constraint is rarely active and

generally does not affect controller performance. The velocity constraint limits the

maximum chaser velocity in each axis to a set value. Depending on the context of the

specific mission, this constraint could be used to both a) reduce the overall risk of the

maneuver and b) assist the relative navigation algorithm. Finally, the control input

constraint represents the maximum available thrust in each axis for the chaser. This

particular constraint typically has the most influence on the controller’s performance

as it directly inhibits the chasers ability to track the nominal reference trajectory if

the target is spinning at a considerable rate.

3.1.3 Uncertainty Modeling

The source of uncertainty in this problem arises from errors in the estimated target’s

inertia tensor ̂︀J𝑇 when compared to the true value J𝑇 . Based on (3.8), the value of

J𝑇 directly influences the target’s tumbling motion, which means that the predicted

motion used to plan the reference trajectory will differ from the real motion of the

intercept maneuver.

Therefore, the controller must react to changes in the 𝑊 frame state that maintain

the collision-free reference trajectory within the target body frame. The reference

trajectory in the target’s body frame is denoted as

x̄𝑇
𝐶(𝑘 = 0, 1, ..., 𝑡𝑓) ,

[︁
r̄𝑇𝐶(𝑘 = 0, 1, ..., 𝑡𝑓)

⊤, v̄𝑇
𝐶(𝑘 = 0, 1, ..., 𝑡𝑓)

⊤
]︁⊤

(3.10)

70

where r̄𝑇𝐶 and v̄𝑇
𝐶 indicate the desired position and velocity, 𝑘 indicates the time-step

of each trajectory setpoint, and 𝑡𝑓 indicates the final time-step. At each time-step 𝑘,

this result is transformed into the 𝑊 frame using the current estimate of the target’s

attitude R𝑊
𝑇 (𝑘) and angular velocity 𝜔𝑇

𝑇 (𝑘):

x̄𝑊
𝐶 (𝑘) ,

[︁
r̄𝑊𝐶 (𝑘)⊤, v̄𝑊

𝐶 (𝑘)⊤
]︁⊤

(3.11a)

r̄𝑊𝐶 (𝑘) = R𝑊
𝑇 (𝑘) r̄𝑇𝐶(𝑘) (3.11b)

v̄𝑊
𝐶 (𝑘) = R𝑊

𝑇 (𝑘) v̄𝑇
𝐶(𝑘)− 𝜔𝑊

𝑇 (𝑘)×
(︁
R𝑊

𝑇 (𝑘)
)︁⊤

r̄𝑊𝐶 (𝑘) (3.11c)

where 𝜔𝑊
𝑇 = R𝑊

𝑇 𝜔𝑇
𝑇 is the target’s angular velocity expressed in the 𝑊 frame. Trans-

forming the reference trajectory setpoint into the 𝑊 frame is necessary since the

dynamic model used by the controller (3.6) is also formulated in the 𝑊 frame.

The values of R𝑊
𝑇 (𝑘) and 𝜔𝑇

𝑇 (𝑘) are used along with the estimated inertia tensor̂︀J𝑇 to propagate the target dynamics (3.8). This results in the expected target state

R̄𝑊
𝑇 (𝑘 + 1) and �̄�𝑇

𝑇 (𝑘 + 1). These values, along with the next reference trajectory

setpoint x̄𝑇
𝐶(𝑘 + 1), are used to obtain the nominally expected desired state for the

controller, termed z̄𝑊𝐶 (𝑘 + 1), in the same manner as in (3.11).

However, the real state of the target at time-step 𝑘+1 will differ from the expected

values due to the error between ̂︀J𝑇 and the true inertia tensor J𝑇 . This results in

an actual desired state in the 𝑊 frame based on the real target attitude and angular

velocity, termed x̄𝑊
𝐶 (𝑘+ 1). Thus, there is a difference between the nominal and real

states the controller must track in the 𝑊 frame in order to maintain the collision-free

reference trajectory in the 𝑇 frame. This divergence occurs over the time-step 𝑘 and

is modeled as an uncertain term since its value cannot be measured until time-step

𝑘 + 1 when a new target state estimate is available:

w𝑊
𝐶 (𝑘) , x̄𝑊

𝐶 (𝑘 + 1)− z̄𝑊𝐶 (𝑘 + 1). (3.12)

This uncertain term is modeled as an additive, exogenous input to the system to

fit the robust control framework outlined in Chapter 2. The controller must handle

71

Chaser Target

x̄𝑊
𝐶 (𝑘 + 1)

z̄𝑊𝐶 (𝑘 + 1)

w𝑊
𝐶 (𝑘)

x̄𝑊
𝐶

z̄𝑊𝐶

R𝑊
𝑇 (𝑘 + 1)

R̄𝑊
𝑇 (𝑘 + 1)

Figure 3-4: A depiction of how errors in estimating the target’s inertia tensor creates
uncertainty in the world frame as the chaser tries to maintain the reference trajectory
in the target’s body frame.

this exogenous input to the system at time-step 𝑘 in order to track the correct,

actual desired states x̄𝑊
𝐶 and maintain the collision-free trajectory in the 𝑇 frame

that properly intercepts the target. Figure 3-4 provides a visualization of how the

trajectory uncertainty in the 𝑊 frame arises due to errors in estimating ̂︀J𝑇 .

3.2 Simulation Environment

The following section formulates the simulation environment used for modeling the

tumbling target intercept scenario. First, the spacecraft configurations are given.

Then, the nominal trajectory provided by the motion planner for the scenario is

presented and discussed. Finally, the methods used to simulate target inertia tensor

estimate errors are shared.

3.2.1 Spacecraft Configurations

The simulation scenario begins at the end of the motion planning phase; the target’s

inertial properties have been estimated and the nominal trajectory has been produced

by the motion planner. It is assumed that target attitude and angular velocity es-

timates are continuously available. The chaser starts from a resting state situated 3

72

Table 3.1: Initial conditions for simulating the intercept of a tumbling target.

Parameter Value Units
r𝑊𝐶 (0) [0,−3, 0] m
v𝑊
𝐶 (0) [0, 0, 0] m/s

q𝑊
𝑇 (0) [0.622, 0.307,−0.449,−0.564] -

𝜔𝑇
𝑇 (0) [0, 3.53, 3.53] deg/s

meters away from the target. The target’s initial attitude is arbitrary, since the chaser

could finish the estimation and motion planning phases at any particular moment in

the target’s tumbling motion pattern. The full list of initial state conditions for the

chaser and target in are given in Table 3.1.

The target’s angular velocity is initialized with 𝜔𝑇
𝑇 (0) = [0, 3.53, 3.53] deg/s. This

is chosen to roughly match the expected tumbling rates of the Envisat spacecraft.

The target’s inertia tensor is also set to match Envisat’s inertia tensor:

J𝑇 =

⎡⎢⎢⎢⎣
17023.3 397.1 −2171.4

397.1 124825.7 344.2

−2171.4 344.2 129112.2

⎤⎥⎥⎥⎦ kg·m2 (3.13)

Despite the relatively slow tumbling rate, the initial angular velocity vector evolves

over time in a nonlinear fashion according to (3.8). This is due to the inertia tensor

being tri-axial and asymmetric. In simulation, the dynamics are propagated via 4th-

order Runge Kutta numerical integration. Figure 3-5 shows the resulting tumbling

trajectory for the target arising from the initial conditions and Envisat’s inertia tensor.

The chaser’s state is constrained within position and velocity box constraints. The

minimum/maximum position values are ±8 meters in each axis. This creates a cube

within which the trajectory must take place. The velocity in each axis is constrained

to a maximum magnitude of 0.1 m/s. The chaser’s control inputs (accelerations) are

limited to a maximum magnitude of 0.075 m/s2. This is the most critical constraint

as the online, tube-based MPC design must appropriately allocate this finite control

authority to both the nominal MPC optimization and the exogenous input rejection

73

aspects. Both the state and control input constraints are formulated as polytopes

(2.3), yielding the sets 𝒳 and 𝒰 .

3.2.2 Nominal Trajectory

A nominal trajectory to intercept the target (given its estimated inertia tensor) is

provided by the motion planning phase. The optimal trajectory reaches the desired

intercept point with the correct rates to synchronize with the target’s rotational mo-

tion while avoiding collisions with target spacecraft appendages. The simulated target

spacecraft appendages are shown in Figure 3-6. The cost function is a combination

of minimizing control input usage as well as maximizing the time to a collision if

the chaser loses actuation capabilities. This optimization problem is formulated as a

nonlinear boundary value problem, where trajectory solutions are parameterized as

clamped, nonuniform B-splines. More details on the motion planner and its methods

can be found in [58].

Utilizing the initial conditions from Table 3.1 and the estimated value of the tar-

get’s inertia tensor ̂︀J𝑇 as inputs, the motion planner’s solution yields the desired

intercept trajectory in the target’s body frame x̄𝑇
𝐶(𝑘 = 0, 1, ..., 𝑡𝑓). Note that the

nominal trajectory has a fixed final time of 120 seconds to reach the intercept point

of 0.5 m along the target’s x-axis. Using up-to-date estimates of the target’s rota-

tional state enables the nominal trajectory to be transformed into the inertial frame

(x̄𝑊
𝐶) for robust tracking control (3.11). Figures 3-7 and 3-8 show the resulting nom-

inal trajectory in both the target body and inertial frames, respectively, assuming

perfect estimation of ̂︀J𝑇 . However, as discussed earlier, errors in ̂︀J𝑇 cause divergence

between the predicted motion used by the motion planner and the real motion. Since

the motion planner is not capable of re-planning in real-time, the robust tracking

controller must account for the exogenous inputs w𝑊
𝐶 that affect the trajectory in the

inertial frame (3.12).

74

0 20 40 60 80 100 120
Time (s)

-1

-0.5

0

0.5

1

A
tti

tu
de

 (
qu

at
)

x
y
z
w

0 20 40 60 80 100 120
Time (s)

-3

-2

-1

0

1

2

3

4

5

A
ng

ul
ar

 V
el

oc
ity

 (
de

g/
s)

x
y
z

Figure 3-5: The resulting target tumbling trajectory over 120 seconds, produced by
the initial conditions in Table 3.1 and Envisat’s inertia tensor.

75

Figure 3-6: A depiction of the simulated chaser and target collision areas. A sphere
encapsulates the chaser collision area; ellipsoids and spheres encapsulate the target
and its appendages, which include solar panels and an antenna. Image credit: Caro-
line Specht and Roberto Lampariello, German Aerospace Center (DLR).

3.2.3 Simulating Inertia Estimation Errors

To better analyze the capabilities and performance of the robust tracking controller,

different levels of inertia estimation error are chosen for numerous simulated tra-

jectories. The estimated inertia tensor ̂︀J𝑇 for each test case always corresponds to

Envisat’s nominal value (3.13). The real inertia tensor for a particular simulated

trajectory J𝑇 is obtained by adding an error matrix ̃︀J𝑇 to the nominal value:

J𝑇 = ̂︀J𝑇 + ̃︀J𝑇 (3.14)

76

0 20 40 60 80 100 120
Time (s)

-3

-2

-1

0

1

2

3

P
os

iti
on

 (
m

)

x
y
z

0 20 40 60 80 100 120
Time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
el

oc
ity

 (
m

/s
)

x
y
z

Figure 3-7: The nominal trajectory in the target body frame produced by the motion
planner [58] for the initial conditions given in Table 3.1.

77

0 20 40 60 80 100 120
Time (s)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

P
os

iti
on

 (
m

)

x
y
z

0 20 40 60 80 100 120
Time (s)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

V
el

oc
ity

 (
m

/s
)

x
y
z

Figure 3-8: The nominal trajectory produced by the motion planner [58], rotated into
the inertial frame using the predicted target’s motion, for the initial conditions given
in Table 3.1.

78

where ̃︀J𝑇 is explicitly written as

̃︀J𝑇 =

⎡⎢⎢⎢⎣
̃︀𝐽𝑥𝑥 ̃︀𝐽𝑥𝑦 ̃︀𝐽𝑥𝑧̃︀𝐽𝑥𝑦 ̃︀𝐽𝑦𝑦 ̃︀𝐽𝑦𝑧̃︀𝐽𝑥𝑧 ̃︀𝐽𝑦𝑧 ̃︀𝐽𝑧𝑧

⎤⎥⎥⎥⎦ . (3.15)

Each error term ̃︀𝐽𝑥𝑥, ... can be explicitly chosen for a particular trajectory to analyze,

or can be randomly sampled to generate a wide variety of test cases.

However, once J𝑇 has been initially determined, it must be checked to see if it

satisfies the physically realistic inertia tensor constraints:

𝐽𝑥𝑥 + 𝐽𝑦𝑦 > 𝐽𝑧𝑧 (3.16a)

𝐽𝑥𝑥 + 𝐽𝑧𝑧 > 𝐽𝑦𝑦 (3.16b)

𝐽𝑦𝑦 + 𝐽𝑧𝑧 > 𝐽𝑥𝑥. (3.16c)

If the real inertia tensor does not meet these constraints, the error tensor ̃︀J𝑇 is re-

calculated.

3.3 Controller Implementation Details

This section outlines how the online, tube-based MPC algorithm developed in Chapter

2 is specifically applied and tuned for intercepting a tumbling object. This includes

specifics on the MPC problem formulation, exogenous input estimation/tube updates,

and exogenous input prediction.

3.3.1 MPC Formulation

The online, tube-based MPC controller utilizes the double-integrator dynamics (3.6)

for the nominal model of the chaser’s dynamics. This system is discretized using a

sample time 𝑇𝑠 = 1 second. The sample time is chosen to realistically ensure that

the MPC and tube-update optimization problems can reliably be solved within a full

79

Table 3.2: Chosen parameters for the nominal MPC problem in intercepting a tum-
bling target.

Parameter Value
𝑁 30

Q 10I𝑛

R 104I𝑚

control loop on hardware. In practice, the online, tube-based MPC would likely be

implemented in a cascading framework on hardware with a simpler controller (e.g.,

proportional-derivative control) running at a faster rate.

The nominal control input is computed via the MPC optimization problem defined

in (2.18). The Q and R costs are tuned appropriately, after which the P terminal

cost is obtained from the algebraic Riccati equation:

P = A⊤PA− (A𝑇PB)(R+B⊤PB)−1(B⊤PA) +Q. (3.17)

The prediction horizon 𝑁 is chosen to balance controller performance and computa-

tional simplicity. The relevant MPC parameter values are shared in Table 3.2. The

MOSEK optimization software [5] is used to solve this QCQP. After the nominal

control input is computed, the final control input applied to the system is computed

via (2.19).

3.3.2 Exogenous Input Estimation and Tube Updates

After the control input is applied and the full chaser-target system takes a dynamic

step, the algorithm proceeds to estimate the exogenous input and its covariance, which

in turn leads to an updated tube for robustness. The exogenous input at time-step 𝑘 is

measured via (3.12). The estimation procedure provided by (2.21) and (2.22) is then

applied. The forgetting factor 𝜆 is chosen to balance the accuracy/stability of the

estimates with the ability to adapt to the true exogenous input dynamics. The initial

values of the estimate ̂︀w(0) and its covariance ̂︀Σ(0) are set as design parameters.

The covariance estimate is then used along with the probability parameter 𝑝w in

80

Table 3.3: Chosen parameters for the exogenous input estimation and tube updates
in intercepting a tumbling target.

Parameter Value
𝜆 0.8
𝑝 0.99

𝛼 0.5

𝛽 0.75

𝑢𝑝 0.1

(2.23b) to update the set of possible exogenous input values ̂︁𝒲(𝑘 + 1). Care must

be taken in setting the probability value 𝑝w; values that are too low will significantly

reduce the robustness of the controller, while values that are exceedingly high will

produce very large 𝒲 sets that can render the problem of finding a tube infeasible.

In this work, 𝑝w is set to 0.99, meaning that the estimated exogenous input set ̂︁𝒲
has a 99% chance of containing the true exogenous input.

Using ̂︁𝒲(𝑘 + 1), the updated tube 𝒵(𝑘 + 1) and rejection gain K𝑟(𝑘 + 1) are

obtained via (2.10). This SDP problem is solved via the MOSEK software suite and

the YALMIP modeling toolbox [35]. The values of 𝛼 and 𝛽 are tuned to balance

acceptable trajectory performance while reliably ensuring there is a valid tube solu-

tion. Generally speaking, 𝛼 values close to 0.5 and 𝛽 values greater than 0.75 work

in most cases. It will be an aspect of future work to more precisely define 𝛼 and 𝛽

values that work across different systems. For the tumbling object intercept problem,

the maximum available control input in each axis is 0.075 m/s2; therefore 𝑢𝑝 is set to

0.075. Table 3.3 shares the relevant parameters and their values for estimating the

exogenous input and updating the tube.

3.3.3 Exogenous Input Prediction

Since the exogenous inputs arise from errors in estimating the target’s inertia tensor,

they are in a sense deterministic but unknown. Therefore, the dynamic patterns of

the w𝑊
𝐶 as the target rotates throughout a trajectory are smooth and generally noise-

free. This enables the use of exogenous input prediction as part of the online, tube-

81

Table 3.4: Chosen parameters for the exogenous input prediction in intercepting a
tumbling target.

Parameter Value
𝑛𝑎 2

𝑛𝑐 1

𝜆𝐴 0.875

𝜃𝐴 [0,0,0]
P𝐴 106I𝑛𝑎+𝑛𝑐

warm-up period 60 s

based MPC framework. However, the ARMA-based prediction framework detailed in

Section 2.3.3 is still challenging as the dynamic model A*
w must be identified purely

from collected data during the trajectory.

An ARMA model (2.25) is identified for each of the six components of w𝑊
𝐶 (three

position, three velocity). The ARMA model orders are set as 𝑛𝑎 = 2 and 𝑛𝑐 = 1.

These values were found to exhibit relatively effective identification capabilities while

reducing model complexity (which in turn reduces the number of samples needed for

successful convergence of the parameters). The dynamic model A*
w is then formulated

as in (2.28).

Parameter updates are carried out using the measured exogenous inputs and the

recursive least-squares algorithm detailed in (2.29) and (2.30). The parameters 𝜆𝐴,

𝜃𝐴(0), P𝐴(0) were tuned to provide acceptable prediction performance for the spe-

cific problem at hand. Finally, a warm-up period is implemented, which prevents

exogenous input predictions from being used in the nominal MPC problem (2.18)

until the ARMA models have converged. Table 3.4 summarizes the parameters and

their selected values for the task of predicting each component of the exogenous input

vector.

3.3.4 Full Controller Framework

Having defined each component of the online, tube-based MPC algorithm applied

to intercepting a tumbling object, a typical control loop can be summarized by the

following five steps:

82

Nominal MPC w Rejection Real Dynamics

w Estimation

Tube Update

w Prediction

z, 𝜈 u x

xx

K𝑟 ŵ︀w ̂︀w
̂︁𝒲𝒵

wA*
w

Figure 3-9: A block diagram of the full online, tube-based MPC for providing robust
control to intercept a tumbling object.

1. Compute the robust control input.

2. After a step of the dynamic system, characterize the exogenous input via (3.12).

3. Estimate the next exogenous input and update the set of exogenous inputs.

4. Update the robust tube set.

5. Update the exogenous input prediction model.

Figure 3-9 provides a block diagram of the full controller. Using the parameters

defined in Tables 3.2-3.4, this control loop runs until the trajectory is completed.

A trajectory is successful if the offset point of 0.5 meters in the 𝑥-axis is reached

with near-zero velocity in the 𝑇 frame. A trajectory is unsuccessful if constraints are

violated or a time-limit is reached (180 seconds).

83

3.4 Results and Discussion

This section analyzes several test cases where the online, tube-based MPC is applied

to the tumbling intercept problem. Each test case is uniquely defined by the selection

of the inertia tensor error ̃︀J as well as the initial estimate of the exogenous input̂︀w(0) and its covariance ̂︀Σw(0). The covariance directly influences the initial tube set

𝒵(0). For each test case, a standard, tube-based MPC is also applied to the problem

in order to provide performance comparisons. The online and standard controllers

both use the same initial values of ̂︀w(0) and ̂︀Σw(0).

The first two test cases present scenarios where the initially estimated exogenous

input set ̂︁𝒲(0) is a), over-conservative when compared to the true set, and b), small

enough when compared to the true set that the tube-based MPC would not be robust.

Then, a Monte Carlo test of 100 different scenarios with randomly selected values of̃︀J is performed to provide a more comprehensive performance comparison between

the online and standard tube-based MPC algorithms.

3.4.1 Case 1: ̂︁𝒲(0) is over-conservative

This test case represents the scenario where the initially chosen set of exogenous

inputs is over-conservative when compared to the true range of possible values. The

test case-specific parameters are given as

̃︀J =

⎡⎢⎢⎢⎣
851.17 −19.86 −108.57

−19.86 −6241.3 −17.21

108.57 −17.21 6455.6

⎤⎥⎥⎥⎦ kg · m2 (3.18a)

̂︀w(0) = 0 (3.18b)̂︀Σw(0) = (2.5× 10−5) I𝑛. (3.18c)

Notice that the components of the error inertia tensor represent a 5% estimation error

when compared to Envisat’s nominal inertia tensor defined in (3.13).

Both the online and standard tube-based controllers successfully completed the

84

0 20 40 60 80 100 120 140
s

-3

-2

-1

0

1

2

3

m

x
y
z
des

Figure 3-10: The position trajectory in the target body frame produced by the online,
tube-based controller for test case 1 (compared to the desired nominal trajectory
produced by the motion planner).

intercept trajectories without violating constraints. Figure 3-10 shows the resulting

trajectory (position) produced by the online, tube-based MPC in the 𝑇 frame. The

online, tube-based MPC provided better overall performance when compared to the

standard, tube-based MPC. Performance was measured by using the following cost

function that closely matches the MPC objective function:

𝐽 =

𝑡𝑓∑︁
𝑘=0

⃒⃒⃒⃒
x(𝑘)− x̄(𝑘)

⃒⃒⃒⃒2
Q
+
⃒⃒⃒⃒
u(𝑘)

⃒⃒⃒⃒2
R
. (3.19)

Table 3.5 shares the cost function and trajectory time statistics for the standard and

online tube-based controllers.

The online, tube-based MPC performs better largely due its shrinking of the tube

based on measured exogenous input data and ability to predict exogenous input val-

85

Table 3.5: Case 1 statistics for online and standard tube-based MPC.

Statistic Online Standard
Trajectory time length (s) 130 119

𝐽 (cost) 66.98 78.49

ues. This allows the originally shrunk constraints to be somewhat more relaxed.

Meanwhile, the standard, tube-based MPC is stuck with the originally shrunk con-

straints, and thus is more limited in its tracking performance of the desired trajectory.

Figure 3-11 shows the state and control input components of the trajectory in the

inertial frame. Figure 3-12 depicts the online estimation of the exogenous input

(which also implicitly shows the shrinking of the tube), while Figure 3-13 shows the

exogenous input predictions using the identified ARMA model.

In Figure 3-11, notice that the standard tube-based MPC is limited by the tight-

ened constraints (visibly evident in the 𝑧-axis velocity component). Furthermore,

there are more spikes in the control inputs for the standard tube-MPC due to the

greater exogenous input rejection gain. Since the online, tube-based MPC adapts to

the tube size, these unwanted performance characteristics are largely removed from

the trajectory. Figure 3-12 shows that the online, tube-based MPC quickly adapts

its estimates of the exogenous input and its associated bounds arising from the es-

timated covariance. The 3-𝜎 bounds shown in the graph for each component are

proportional to the tube size in that particular component. Figure 3-13 shows open-

loop predictions produced by the identified ARMA model over the MPC horizon at

select time-steps (after the warm-up period has passed). Notice that the initial values

of the open-loop predictions are the current estimate ̂︀w(𝑘). While there is certainly

prediction error, the patterns largely follow the real exogenous input data and still

help to improve controller performance. Future work will focus on better tuning and

model structures to better predict exogenous inputs. There is also a corresponding

spike in control inputs when the exogenous input prediction is activated in the MPC

problem after the warm-up period. While this is somewhat expected since the model

used in (2.18b) is suddenly altered, future work will focus on providing a smoother

86

0
50

100
150

(s)

-0.4

-0.2 0

0.2

0.4

0.6

x (m)

O
nline

S
tandard

0
50

100
150

(s)

-3 -2 -1 0 1

y (m)

0
50

100
150

(s)

-2 -1 0 1

z (m)

0
50

100
150

(s)

-0.04

-0.02 0

0.02

v x (m/s)

0
50

100
150

(s)

-0.05 0

0.05

0.1

v y (m/s)

0
50

100
150

(s)

-0.1

-0.05 0

0.05

0.1

v z (m/s)

0
50

100
150

(s)

-10 -5 0 5

u x (m/s 2)

#
10

-3

0
50

100
150

(s)

-0.02

-0.01 0

0.01

u y (m/s 2)

0
50

100
150

(s)

-0.03

-0.02

-0.01 0

0.01

0.02

u z (m/s 2)

F
igure

3-11:
State

and
control

input
history

in
the

inertial
fram

e
for

the
online

and
standard,

tube-based
controllers

in
test

case
1.

87

0
50

100
150

(s)

-0.02

-0.01 0

0.01

0.02

x (m)

R
eal

E
stim

ated
3-sigm

a
3-sigm

a init

0
50

100
150

(s)

-0.02

-0.01 0

0.01

0.02

y (m)

0
50

100
150

(s)

-0.02

-0.01 0

0.01

0.02

z (m)

0
50

100
150

(s)

-0.02

-0.01 0

0.01

0.02

v x (m/s)

0
50

100
150

(s)

-0.02

-0.01 0

0.01

0.02
v y (m/s)

0
50

100
150

(s)

-0.02

-0.01 0

0.01

0.02

v z (m/s)

F
igure

3-12:
E

stim
ated

values
of

the
exogenous

input.
T

he
3-𝜎

bounds
of

the
estim

ate
(provided

by
the

covariance)
help

visualize
the

approxim
ated

set
ofexogenous

inputs ̂︁𝒲
(𝑘
).

88

0
50

100
150

(s)

-6 -4 -2 0 2 4

x (m)

#
10

-4

R
eal w

0
50

100
150

(s)

-3

-2.5 -2

-1.5 -1

-0.5 0

0.5 1

y (m)

#
10

-3

0
50

100
150

(s)

-4 -3 -2 -1 0 1 2

z (m)

#
10

-3

0
50

100
150

(s)

-10 -5 0 5

v x (m/s)

#
10

-4

0
50

100
150

(s)

-6 -5 -4 -3 -2 -1 0 1 2
v y (m/s)

#
10

-3

0
50

100
150

(s)

-8 -6 -4 -2 0 2 4

v z (m/s)

#
10

-3

F
igure

3-13:
O

pen-loop
predictions

of
the

exogenous
input

throughout
the

M
P

C
horizon

using
the

identified
A

R
M

A
m

odelin
test

case
1.

T
he

predictions
are

denoted
in

color
at

select
intervals

w
hile

the
realexogenous

input
is

in
black.

89

Table 3.6: Case 2 statistics for online and standard tube-based MPC.

Statistic Online Standard
Trajectory time length (s) 139 137∑︀𝑡𝑓

𝑘=0 𝑉 (𝑘) (cost) 49.22 34.32

transition when activating the exogenous input prediction in the MPC optimization.

3.4.2 Case 2: ̂︁𝒲(0) is too small to be robust

Another test case is examined where the initial estimated set of exogenous inputŝ︁𝒲(0) is too small when compared to the true set. The test-specific parameters are

given as

̃︀J =

⎡⎢⎢⎢⎣
3404.7 39.71 −434.28

39.71 −12482.6 −172.1

−434.28 −172.1 0

⎤⎥⎥⎥⎦ kg · m2 (3.20a)

̂︀w(0) = 0 (3.20b)̂︀Σw(0) = (5.625× 10−7) I𝑛 . (3.20c)

Once again, both the online and standard tube-based controllers successfully com-

pleted the trajectory. In this case, the standard, tube-based MPC outperforms the

online, tube-based MPC (Table 3.6). However, the standard, tube-based MPC did

not have robust properties for a significant portion of the trajectory, as the initialized

tube based on ̂︁𝒲(0) was too small. This demonstrates its flaw in requiring accurate

initial values of ̂︁𝒲(0) in order to retain robust properties.

Conversely, the online, tube-based MPC quickly grows the estimate of ̂︁𝒲 based

on the measured exogenous input data. This allows it to recover the robust proper-

ties despite the error in ̂︁𝒲(0), demonstrating its flexibility when there is little prior

knowledge on the characteristics of the exogenous input set. Figure 3-14 shows the

exogenous input estimates in the 𝑧-axis velocity component. Notice how the initial

90

0 50 100 150
(s)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

v
z (

m
/s

)

Real
Estimated
3-sigma
3-sigma init

Figure 3-14: The online estimates of the 𝑧-axis velocity component of the exogenous
input in test case 2. Notice that the online, tube-based MPC grows the bounds on w
accordingly to retain robust properties.

3-𝜎 bounds are not sufficient to capture the exogenous input, but the updated 3-𝜎

bounds provided by online, tube-based MPC work well.

3.4.3 Monte Carlo Performance Analysis

A Monte Carlo test of 100 different trajectories was performed to provide a more

comprehensive analysis on the performance differences between online and standard

tube-based MPC. For each trajectory, the error inertia tensor was created by ran-

domly perturbing the nominal inertia tensor. The perturbation levels were drawn

from the uniform distribution with 10% error bounds. The initial exogenous input

estimate/covariance values were the same across each trajectory:

̂︀w(0) = 0 (3.21a)̂︀Σw(0) = (2.5× 10−5) I𝑛. (3.21b)

91

Table 3.7: Monte Carlo test statistics for online and standard tube-based MPC.

Statistic Online Standard
Mean trajectory time length (s) 130.57 120.89

Mean 𝐽 (cost) 54.07 85.23
Mean mRPI comp. time (s) 0.0101 -
Mean MPC comp. time (s) 0.0213 -

Table 3.7 shares key cost and trajectory time statistics from the Monte Carlo

trajectories. The online tube-based MPC considerably outperforms the standard

tube-based MPC across the 100 trials. Additionally, the online tube-based MPC has

the unique advantage of recovering robust properties in the case where the initialized

set ̂︁𝒲(0) is unsuitable. The solving times for the mRPI approximation and the

MPC optimization are also reasonably short; this points to the practical feasibility

of online tube-based MPC for future implementations on resource-limited spacecraft

processors.

Although online tube-based MPC tends to work better than standard tube-based

MPC in the tumbling intercept problem with uncertainty arising from errors in es-

timating the target’s inertia tensor, this does not always mean it should be the al-

gorithm of choice for any application requiring robust control. If the nature of the

exogenous input is largely aleatoric with no discernible dynamic patterns, the at-

tempts at dynamic prediction over the MPC horizon will fail. Additionally, while

the exogenous input estimate ̂︀w can still be successfully estimated, its inclusion into

the nominal MPC problem can drive up performance costs due to its high variance

between time-steps. Therefore, standard tube-based MPC is recommended if the

exogenous input is aleatoric and there is a somewhat reasonable guess for its bounds.

However, in many cases related to autonomous spacecraft proximity operations,

the main factors contributing to exogenous inputs are from epistemic uncertainty

sources. Examples other than inertia tensor uncertainty include solar radiation pres-

sure disturbances that are dependent on orbit location and incident angles, unmodeled

asteroid gravitational terms arising from shape model errors and flexible manipulator

dynamics upon grappling an object. Future work on the online, tube-based MPC

92

algorithm will focus on nonlinear formulations and the use of more advanced function

approximators to characterize the exogenous input, which in turn will enable it to

address these other types of epistemic uncertainty.

93

Chapter 4

Reinforcement Learning for

Six-Degree-of-Freedom Docking

In this section, RL is proposed as a solution framework for 6-DOF docking control

with rotating targets. RL involves learning a policy that maps observations to actions

in order to maximize a reward signal given by the environment. Since it is a general,

model-free framework, RL is potentially advantageous over model-based methods for

scenarios where model identification is infeasible or prohibitive; the environment in

RL is a black box during the learning process and the resulting policy is solely de-

pendent on the experienced states, actions, and rewards. Moreover, once learned,

implementation of the policy requires low amounts of computational effort and mem-

ory, making it practically realizable with current spacecraft computing resources.

The source of uncertainty in this scenario is in the initial conditions of the chaser

and target spacecraft. If the initial conditions were precisely known, standard trajec-

tory optimization techniques could easily be applied; however, trajectory re-planning

(which is computationally expensive in the 6-DOF case) would need to occur if the

initial conditions varied significantly from the expected values. As such, RL is imple-

mented here to provide feedback control that accounts for a range of initial conditions

while also abiding by collision constraints and successfully docking in the nonlinear,

6-DOF environment. The strength of learning here is thus to generalize the cor-

rect docking policy over the range of initial conditions and maintain computational

94

efficiency.

This chapter begins with the required theoretical background on proximal pol-

icy optimization (PPO), which is the specific reinforcement learning algorithm used.

Then, its adaptation for the 6-DOF problem of docking with rotating targets is pre-

sented along with the specific dynamics and constraints of the scenario. Finally, re-

sults obtained by applying a developed policy to the simulated Apollo transposition

and docking maneuver are shared and discussed. The results also include a compar-

ison with standard optimal control methodology using the GPOPS-II software suite

[47]. The main contributions are two-fold: first, to present an RL-based framework

for 6-DOF docking policies with rotating and non-rotating target spacecraft, and,

second, to provide methods, results, and insight that will benefit future research in

learning-based methods for spacecraft proximity operations [42], [43].

4.1 Reinforcement Learning Theory

This section outlines the necessary theoretical background for the specific implemen-

tation of PPO to the 6-DOF docking problem.

4.1.1 Conceptual Overview

RL is a subdivision of machine learning where an agent learns a policy that maps

observations to actions in order to maximize a numerical reward across experienced

trajectories [60]. The agent learns a policy by repeatedly interacting with the en-

vironment over numerous trajectories (termed “episodes”), either real or simulated,

and receiving rewards based on the action taken at each time step (Figure 4-1).

RL is modeled as a Markov decision process that includes a state space 𝒮, action

space 𝒜, state transition distribution 𝑃
(︁
x(𝑘+1)

⃒⃒(︀
x(𝑘),u(𝑘)

)︀)︁
, and reward function

𝑟
(︀
x(𝑘),u(𝑘)

)︀
, where state x ∈ 𝒮, action (control input) u ∈ 𝒜, and 𝑘 is the discrete

time-step index. During the learning process, the policy 𝜋𝜃 =
(︀
u(𝑘)|x(𝑘)

)︀
is formal-

ized as a conditional probability distribution, dependent upon the parameter vector

𝜃, mapping states to actions.

95

One episode results in a trajectory of state-action pairs, denoted as

𝜏 =
[︀
x(0),u(0), ..., x(𝑡𝑓),u(𝑡𝑓)

]︀
∈ T (4.1)

with 𝑡𝑓 being the number of time steps in the trajectory and T being the set of

all possible state-action pair trajectories. Rewards received at successive time-steps

are discounted to accommodate infinite-horizon problems. The sum of discounted

rewards over the trajectory is

𝑟(𝜏) =

𝑡𝑓∑︁
𝑘=0

𝛾𝑘𝑟
(︀
x(𝑘),u(𝑘)

)︀
, (4.2)

where 𝛾 ∈ (0, 1) is the discount factor. The goal of RL is to maximize the expectation

of discounted rewards across all trajectories experienced by the agent:

E𝑝𝜃(𝜏) [𝑟(𝜏)] =

∫︁
T
𝑟(𝜏)𝑝𝜃(𝜏)𝑑𝜏 . (4.3)

The probability of experiencing a particular trajectory based upon the policy’s pa-

rameter vector 𝜃 is

𝑝𝜃(𝜏) =

[︃
𝑡𝑓−1∏︁
𝑘=0

𝑝(x(𝑘 + 1)
⃒⃒(︀
x(𝑘),u(𝑘)

)︀]︃
𝑝
(︀
x(0)

)︀
, (4.4)

where u(𝑘) is sampled from 𝜋𝜃
(︀
u(𝑘)|x(𝑘)

)︀
. Note that the state transition is stochas-

Agent Environment

Action, u(𝑘)

Reward, 𝑟(𝑘)

Next State, x(𝑘 + 1)
⃒⃒(︀
x(𝑘),u(𝑘)

)︀
Figure 4-1: The general schematic of reinforcement learning.

96

tic in the general case: this can be replaced by a deterministic state transition in

certain applications. For example, the Apollo docking scenario presented in this work

assumes nominal dynamics and thus a deterministic state transition is used. The

variance of the policy’s conditional distribution results in a stochastic action choice,

enabling further exploration of the action space. As learning progresses, the variance

is reduced to instead encourage more exploitation of the current policy. After the

learning process is completed, the variance of the policy is set to zero, resulting in a

deterministic action choice as the mean value of 𝜋𝜃
(︀
u(𝑘)|x(𝑘)

)︀
, i.e., a deterministic

feedback control law during implementation.

4.1.2 Proximal Policy Optimization

The specific RL algorithm used in this work is PPO [53]. PPO is a state-of-the-

art policy learning algorithm with successful results in control tasks with continuous

or discrete state/action spaces. PPO is a model-free, actor-critic algorithm where

the policy that selects actions (the actor) and an advantage function that evaluates

the selected actions (the critic) are learned concurrently. The state-value function

𝑉 𝜋
𝜂

(︀
x(𝑘)

)︀
(with the parameter vector 𝜂) is used in PPO and estimates the sum of

future discounted rewards over the trajectory starting at the current state x(𝑘) and

following the current policy. However, this function is initially unknown and the

parameter vector 𝜂 must be learned concurrently with the policy parameter vector

𝜃. The resulting advantage function 𝐴𝜋
𝜂

(︀
x(𝑘),u(𝑘)

)︀
is the difference between the

empirical rewards received during the learning process and the state-value function’s

estimate.

𝑉 𝜋
𝜂

(︀
x(𝑘)

)︀
= E𝜋

[︃
𝑡𝑓∑︁
𝑖=𝑘

𝛾𝑖−𝑘𝑟
(︀
x(𝑖),u(𝑖)

)︀⃒⃒⃒⃒⃒x(𝑘)
]︃

(4.5)

𝐴𝜋
𝜂

(︀
x(𝑘),u(𝑘)

)︀
=

[︃
𝑡𝑓∑︁
𝑖=𝑘

𝛾𝑖−𝑘𝑟
(︀
x(𝑖),u(𝑖)

)︀]︃
− 𝑉 𝜋

𝜂

(︀
x(𝑘)

)︀
(4.6)

PPO is a descendant of the trust region policy optimization algorithm [52], re-

taining the ability to mitigate large policy updates (thus reducing the risk of learning

divergence) while being simpler and more widely implementable. Central to PPO is

97

the policy probability ratio

𝑝𝜃(𝑘) =
𝜋𝜃
(︀
u(𝑘)|x(𝑘)

)︀
̂︀𝜋𝜃(︀u(𝑘)|x(𝑘))︀ , (4.7)

which compares the probability 𝜋𝜃
(︀
u(𝑘)|x(𝑘)

)︀
of selecting a particular action after a

learning update to the probability ̂︀𝜋𝜃(︀u(𝑘)|x(𝑘))︀ of selecting the same action prior to

the update. The probability ratio is then directly used in the PPO objective function

to be maximized:

𝐽𝜃 = E𝑝(𝜏)

[︂
min

(︁
𝑝𝜃(𝑘)𝐴

𝜋
𝜂

(︀
x(𝑘),u(𝑘)

)︀
, clip

[︀
𝑝𝜃(𝑘), 𝜉

]︀
𝐴𝜋

𝜂

(︀
x(𝑘),u(𝑘)

)︀)︁]︂
(4.8)

where the clip function, defined as

clip
[︀
𝑝𝜃(𝑘), 𝜉

]︀
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1− 𝜉 if 𝑝𝜃(𝑘) < 1− 𝜉

1 + 𝜉 if 𝑝𝜃(𝑘) > 1 + 𝜉

𝑝𝜃(𝑘) otherwise ,

(4.9)

imposes bounds on the policy probability ratio using the clipping parameter 𝜉 ∈

(0, 1). The clipping parameter controls how close the updated policy is to the old

policy, effectively implementing a trust region and eliminating large, unwanted policy

updates. Note that this objective function is measured relative to the policy prior

to the update. Thus, the numerical value of the objective function over the course

of many updates is uninformative. Instead, its immediate gradient is more critical in

guiding the policy to maximize rewards over all trajectories.

To learn the state-value function, the commonly used mean squared error cost

function is minimized:

𝐿𝜂 =
1

2
E𝑝(𝜏)

⎡⎣(︃𝑉 𝜋
𝜂

(︀
x(𝑘)

)︀
−

𝑡𝑓∑︁
𝑖=𝑘

𝛾𝑖−𝑘𝑟
(︀
x(𝑖),u(𝑖)

)︀)︃2
⎤⎦ . (4.10)

Essentially, the mean squared difference between the state-value function estimate and

98

the actual sum of resulting rewards is minimized. The multiplication by 1
2

simplifies

the loss gradient calculation. There now exists an objective function to improve the

policy in (4.8) and a cost function to correct errors in the state-value function in

(4.10). Thus, the gradients of these functions can be used to perform gradient ascent

on 𝜃 and gradient descent on 𝜂:

𝜃+ = 𝜃− + 𝛽𝜃∇𝜃𝐽𝜃|𝜃=𝜃− (4.11a)

𝜂+ = 𝜂− − 𝛽𝜂∇𝜂𝐿𝜂|𝜂=w− (4.11b)

where the scalars 𝛽𝜃 and 𝛽𝜂 are the policy learning rate and state-value function

learning rate, respectively, which must be chosen by the designer.

4.2 Implementation for 6-DOF Docking

This section outlines how the theoretical PPO algorithm is formulated and applied

to the 6-DOF docking problem with rotating targets.

4.2.1 Dynamics

The world frame 𝑊 , the chaser body frame 𝐶, and the target body frame 𝑇 are

utilized in the 6-DOF docking scenario. The target’s rotational motion, if non-zero, is

assumed to be around the docking axis with a constant angular velocity 𝜔𝑇
𝑇 . Moreover,

the target’s body frame origin is assumed to be co-located with the world frame. The

state is defined as

x =
[︁(︀
r𝑊𝐶
)︀⊤
,
(︀
v𝑊
𝐶

)︀⊤
,
(︀
q𝑊
𝐶

)︀⊤
,
(︀
𝜔𝐶

𝐶

)︀⊤
,
(︀
q𝑊
𝑇

)︀⊤
,
(︀
𝜔𝑇

𝑇

)︀⊤]︁⊤ (4.12)

with r𝑊𝐶 ∈ R3 as the position of the chaser in the world frame, v𝑊
𝐶 ∈ R3 as the

velocity of the chaser in the world frame, q𝑊
𝐶 ∈ R4 as the attitude quaternion of the

chaser with respect to world frame, 𝜔𝐶
𝐶 ∈ R3 as the angular velocity of the chaser

in its body frame, q𝑊
𝑇 ∈ R4 as the attitude quaternion of the target with respect to

99

the world frame, and 𝜔𝑇
𝑇 ∈ R3 as the angular velocity of the target with respect to

the world frame. The control action u = [F⊤, L⊤]⊤ consists of a thrust command

F ∈ R3 and a torque command L ∈ R3, both in the 𝑊 frame. The thrust and torque

commands are bounded by minimum/maximum actuator constraints. Control actions

are commanded by the policy at discrete time intervals. The dynamics are derived

below in continuous-time, and are subsequently discretized using a sample period of

1 second.

The translational dynamics are modeled using the double-integrator equations:

ṙ𝑊𝐶 = v𝑊
𝐶 (4.13a)

v̇𝑊
𝐶 =

F

𝑚
(4.13b)

where 𝑚 refers to the chaser mass. In practice, to compute individual thruster com-

mands, the net force command must be determined in the chaser body frame. This

is calculated using the chaser’s current attitude, parameterized as a rotation matrix

R𝑊
𝐶 ∈ R3×3:

F𝐶 =
(︀
R𝑊

𝐶

)︀⊤
F. (4.14)

The translational state variables are defined with respect to the 𝑊 frame since the

target is spin-stabilized around the docking axis and thus has zero translational mo-

tion relative to the chaser.

The chaser’s attitude dynamics are modeled using quaternion kinematics and Eu-

ler’s equations for rigid bodies:

q̇𝑊
𝐶 =

1

2
Ω
(︀
𝜔𝐶

𝐶

)︀
q𝑊
𝐶 (4.15a)

�̇�𝐶
𝐶 = J−1

𝐶

(︁
L− 𝜔𝐶

𝐶 × J𝐶𝜔
𝐶
𝐶

)︁
(4.15b)

where

Ω(𝜔) ,

⎡⎣0 −𝜔⊤

𝜔 −
[︁
𝜔
]︁
×

⎤⎦ (4.16)

and J𝐶 is the chaser’s inertia tensor.

100

The target’s attitude dynamics are also propagated via quaternion kinematics.

Since the target’s spin is assumed to be undisturbed around a constant axis, its

attitude dynamics can be defined as

q̇𝑊
𝑇 =

1

2
Ω
(︀
𝜔𝑇

𝑇

)︀
q𝑊
𝑇 (4.17a)

�̇�𝑇
𝑇 = 0 . (4.17b)

Thus, (4.13), (4.15), and (4.17) govern the dynamics of the nonlinear, 6-DOF

system. The relative attitude and angular velocity of the chaser with respect to the

target are defined as

q𝑇
𝐶 = q𝑊

𝐶 ⊗
(︀
q𝑊
𝑇

)︀−1 (4.18a)

𝜔𝑇
𝐶 = 𝜔𝐶

𝐶 − 𝜔𝑇
𝑇 , (4.18b)

where ⊗ refers to quaternion multiplication. As docking requirements are often for-

mulated on the relative state of the chaser and target docking ports, it is useful to

define the relative position r𝑝 and velocity v𝑝 of the chaser docking port with respect

to the target docking port as

r𝑝 = r𝑊𝐶 +R𝑊
𝐶 r𝑑𝑐 − r𝑑𝑡 (4.19a)

v𝑝 = v𝑊
𝐶 +

[︀
𝜔𝐶

𝐶 ×R𝑊
𝐶 r𝑑𝑐

]︀
, (4.19b)

where r𝑑𝑐 and r𝑑𝑡 refer to the chaser and target docking port positions in the 𝐶 and

𝑇 frames, respectively.

4.2.2 Policy Parameterization

The policy and state-value function are modeled through standard, feedforward neural

networks. Thus, the parameters 𝜃 and 𝜂 represent the weights and biases of each net-

work’s respective layers. The neural network backpropagation algorithm and Adam

optimizer [27] are used to perform gradient ascent/descent on the parameter vectors

101

Table 4.1: Neural network structural parameters.

Policy Network State-Value Function Network
Layer Neurons Activation Neurons Activation

1st hidden 200 tanh 200 tanh
2nd hidden 110 tanh 32 tanh
3rd hidden 60 tanh 5 tanh

Output 6 linear 1 linear

𝜃 and 𝜂 according to (4.11). The policy is specifically a multivariate, Gaussian distri-

bution with a diagonal covariance matrix. The neural network output consists of the

resulting mean action based on the given state. The variance for each action is also

learned, but is independent of the state. This essentially controls the degree of action

space exploration throughout the learning process. In general, the agent learns to set

large variance values during the learning process to encourage more exploration, and

then diminish them in the later stages of learning to induce more exploitation of the

current policy.

The inputs for both the policy and state-value function neural networks are scaled

using a running mean and standard deviation of experienced state data while learning.

This helps prevent the saturation of activation functions within each network layer.

Similarly, neural network outputs are best defined when close to unity. As such, the

policy network outputs are scaled accordingly so that an output of ±1 corresponds to

the maximum/minimum thrust or torque command. Table 4.1 shares the structure

of network layers and their corresponding activation functions.

This work follows the example of Gaudet et al. [19] when implementing PPO in

that we dynamically adjust learning parameters to target a desired Kullback-Leibler

(KL) divergence value between successive policy updates [30]. This helps to prevent

large policy updates that could derail the learning process, while yielding smoother

policy updates. Over the course of learning, both the PPO clipping parameter 𝜉 and

the policy learning rate 𝛽𝜃 are adjusted to keep the KL-divergence between updates

as close as possible to the desired target value (𝐾𝐿des).

102

4.2.3 Reward Function

Employing a valid reward function is critical to the success of PPO as the policy

will learn to explicitly maximize this function. For 6-DOF docking maneuvers with

rotating targets, the reward function consists of several terms that together account

for minimizing state tracking errors and control effort, preventing collisions, and re-

inforcing successful docks. All terms are weighted relative to one another through

design coefficients.

To account for translational state error, the term

[︀
v̇𝑊
𝐶 (𝑘)− ˙̄v𝑊

𝐶 (𝑘)
]︀⊤

Q𝑡

[︀
v̇𝑊
𝐶 (𝑘)− ˙̄v𝑊

𝐶 (𝑘)
]︀

(4.20)

defines the quadratic weighted error between the acceleration produced by the RL

agent via (4.13b) and a reference acceleration (˙̄v𝑡) provided by a LQR feedback law:

˙̄v𝑊
𝐶 (𝑘) = −Kx′(𝑘) (4.21)

where K ∈ R3×6 is the LQR gain matrix and x′(𝑘) ∈ R6 is the translational part of

the state vector (chaser position and velocity). The LQR design process is performed

offline before the implementation of PPO. By adjusting the standard LQR perfor-

mance and control cost matrices, the resulting gain matrix can be tuned to target a

desired trajectory time length for nominal docking initial conditions. Additionally,

the tuning process can account for a desired, non-zero final docking velocity by setting

the LQR origin at an offset from the actual docking port location. The benefits of

this reward term are two-fold. First, it provides a clear reward signal at all points in

the translational state-space that guides the RL agent to achieve a successful docking

trajectory. Second, it encourages the RL agent to produce docking trajectories with

a specific time length (an important design consideration for many docking maneu-

vers). This is to alleviate the fact that, unlike most standard guidance and control

techniques, the PPO algorithm does not afford the ability to enforce hard time con-

straints on the docking trajectory. Finally, Q𝑡 ∈ R3×3,Q𝑡 ⪰ 0 where the weights in

103

Q𝑡 are design parameters.

To account for errors between the actual and desired relative attitude and angular

velocity, we define the reward function term ̃︀𝛼(𝑘)⊤Q𝑎̃︀𝛼(𝑘). This term is based on

the error quaternion ̃︀q𝑇
𝐶(𝑘) between the current and desired final relative attitude q̄𝑇

𝐶 :

̃︀q𝑇
𝐶(𝑘) = q̄𝑇

𝐶 ⊗ q𝑇
𝐶(𝑘)

−1 . (4.22)

From Markley [39], the vector component of the error quaternion ̃︀q𝑣 is doubled to

measure attitude error. The relative angular velocity error, ̃︀𝜔𝑇
𝐶(𝑘), between the cur-

rent and desired relative angular velocity �̄�𝑇
𝐶 is also penalized. This results in a vector̃︀𝛼(𝑘) =

[︁
2̃︀q𝑣(𝑘)

⊤, ̃︀𝜔𝑇
𝐶(𝑘)

⊤
]︁⊤

∈ R6 that penalizes both attitude and angular velocity

errors. This term also has a weighting design matrix Q𝑎 ∈ R6×6,Q𝑎 ⪰ 0.

A quadratic control cost, collision penalty, and docking bonus are also included

in the reward function. The quadratic control cost u(𝑘)⊤Ru(𝑘) is applied to the

force/torque command with a weighting design matrix R ∈ R6×6,R ≻ 0. The col-

lision penalty ℎ sin
(︁

𝜋
2

||r𝑝||
𝑟col

)︁
is applied at each time-step the chaser docking port is

within the boundary of the target spacecraft (modeled as a rectangular region). The

penalty is scaled based upon the relative docking distance at the time of collision and

the maximum possible distance for a collision (𝑟col). Together with the sine function

and a weighting coefficient ℎ > 0, this results in a smooth function that penalizes col-

lisions with significant state error more heavily. The docking bonus 𝑔(x𝑡) is a discrete

term applied if the agent achieves the docking requirements:

𝑔
(︀
x(𝑘)

)︀
=

⎧⎪⎨⎪⎩𝑑 if x(𝑘) satisfies docking conditions

0 otherwise
(4.23)

where 𝑑 > 0 is a weighting coefficient.

Two distinct reward functions are defined and are based on the aforementioned

104

reward contributions:

𝑟1
(︀
x(𝑘),u(𝑘)

)︀
= −

[︀
v̇𝑊
𝐶 (𝑘)− ˙̄v𝑊

𝐶 (𝑘)
]︀⊤

Q𝑡

[︀
v̇𝑊
𝐶 (𝑘)− ˙̄v𝑊

𝐶 (𝑘)
]︀
− ̃︀𝛼(𝑘)⊤Q𝑎̃︀𝛼(𝑘) −

u(𝑘)⊤Ru(𝑘)− ℎ sin

(︂
𝜋

2

||r𝑝||
𝑟col

)︂
(4.24a)

𝑟2
(︀
x(𝑘)

)︀
= 𝑔
(︀
x(𝑘)

)︀
(4.24b)

where 𝑟1 represents the “shaping” penalties (LQR error, attitude/angular velocity

error, control cost, and collision penalty) and 𝑟2 represents the terminal docking

bonus. Following the example of Gaudet et al. [19], a slightly smaller discount factor

is used for the shaping penalties (𝛾1) while a larger discount factor is used for the

terminal docking bonus (𝛾2). This results in the docking bonus being weighted more

heavily in the long-term than the shaping penalties. Thus, the advantage function

(4.6) and the state-value loss function (4.10) can be re-written as:

𝐴𝜋
𝜂

(︀
x(𝑘),u(𝑘)

)︀
=

𝑡𝑓∑︁
𝑖=𝑘

[︀
𝛾𝑖−𝑘
1 𝑟1

(︀
x(𝑖),u(𝑖)

)︀
+ 𝛾𝑖−𝑘

2 𝑟2
(︀
x(𝑖)

)︀]︀
− 𝑉 𝜋

𝜂

(︀
x(𝑘)

)︀
(4.25)

𝐿𝜂 =
1

2
E𝑝(𝜏)

⎡⎣(︃𝑉 𝜋
𝜂

(︀
x(𝑘)

)︀
−

𝑡𝑓∑︁
𝑖=𝑘

[︀
𝛾𝑖−𝑘
1 𝑟1

(︀
x(𝑘),u(𝑘)

)︀
+ 𝛾𝑖−𝑘

2 𝑟2
(︀
x(𝑘)

)︀]︀)︃2
⎤⎦ . (4.26)

The training episode either ends if the docking requirements are met or a trajectory

time limit has been reached.

4.3 Experimental Setup

The above methodology was applied to the simulated Apollo transposition and dock-

ing maneuver. This maneuver involves the CSM re-orienting itself and docking with

the lunar module (LM) in order to extract it from the third stage of the Saturn V

rocket [2]. Historically, the LM did not have any rotational motion. However, in

this particular simulation case, an initial angular velocity around the docking axis is

induced in the LM to create a rotating target scenario. Figure 4-2 depicts the rele-

105

Figure 4-2: Overview of coordinate frames and initial configuration for the Apollo
transposition and docking maneuver. The 𝑌 -axis is defined according to the right-
hand rule. Reproduced with permission from the NASA History Division (Project
Apollo Drawings and Technical Diagrams, publicly available).

vant coordinate frames: the 𝐿𝑀 frame represents the target body frame while the

𝐶𝑆𝑀 frame represents the chaser’s body frame. The docking axis is aligned with the

𝑥-axis of the 𝐿𝑀 frame. Note that Fig. 4-2 shows the LM and CSM in their initial

configuration for the maneuver: the 𝐶𝑆𝑀 frame has a 180° pitch rotation relative to

the 𝐿𝑀 frame.

Actuator constraints are imposed on the minimum/maximum force and torque

commands (Table 4.2). These are derived from approximating the maximum thrust

and torque outputs achievable through the CSM’s sixteen reaction control system

thrusters [1]. Note that the policy produces thrust and torque commands within a

continuous range of values; in reality, the CSM thrusters produce discrete, on/off

thrust. A rectangular region is defined around the LM’s center of mass to model

collisions (Fig. 4-3). The region’s 𝑦 and 𝑧 dimensions approximate the largest diameter

of the LM and its surface intersects with the LM docking port. The collision geometry

parameters, as well as the docking port positions of the CSM/LM in their respective

spacecraft frames, are shown in Table 4.3. To perform a successful dock, the CSM

docking port must meet the conditions outlined in Table 4.4. The angles
(︀
𝜑𝑇
𝐶 , 𝜃

𝑇
𝐶 , 𝜓

𝑇
𝐶

)︀
represent the Euler angle representation of the relative attitude q𝑇

𝐶 [3]. Notice that

the maneuver requires a strictly positive velocity and a −60° relative roll in the 𝑥-axis

to activate the docking mechanism.

For both training and testing episodes, the policy accepts the given state and

106

Table 4.2: Actuator minimum/maximum constraints.

Action Command Value Units
F ± [790.80, 790.80, 790.80] N
L ± [2534.91, 2534.91, 2534.91] N-m

Table 4.3: Collision geometry and docking port parameters.

Parameter Value Units
Collision box 𝑦-dim. 7 m
Collision box 𝑧-dim. 7 m

r𝑑𝑐 [4.479, 0, 0] m
r𝑑𝑡 [−3.250, 0, 0] m

Table 4.4: Conditions for successful docking.

Docking State Term Goal Acceptable Deviation Units
r𝑝 0 ± 0.15 m
𝑣𝑝𝑥 0.1 [0.05, 0.15] m/s

𝑣𝑝𝑦, 𝑣𝑝𝑧 0, 0 ± 0.1 m/s
𝜑𝑇
𝐶 , 𝜃

𝑇
𝐶 , 𝜓

𝑇
𝐶 −60, 0, 0 ± 5 deg

𝜔𝑇
𝐶 0 ± 0.75 deg/s

produces a commanded force/torque at discrete, 1-second intervals. Episodes during

training are limited to 150 seconds (a rough approximation of the time needed to

dock) to gather suitable data while retaining efficiency in the overall learning process.

However, for testing, the time limit is extended to 250 seconds (an arbitrary time

limit greater than any time length needed for successful docking) to make sure valid

docking trajectories are not prematurely terminated.

An objective of this research is to synthesize a feedback control law that is robust

to significant uncertainty in the initial condition of the docking maneuver. To this

end, the RL goal is to generate a docking policy that can successfully be employed

within a wide range of initial conditions. This range of initial conditions should

wholly contain the range of uncertainty with respect to which robustness is required.

For the Apollo transposition and docking maneuver, the initial condition range is

specifically defined as in Table 4.5. Monte Carlo tests of the policy randomly sample

107

Figure 4-3: Modeling the Apollo transposition and docking maneuver. The CSM
is shown in red while the LM rectangular collision area is shown in blue. The LM
docking port is the yellow point on the collision area surface.

an initial condition (in each state variable) for the trajectory according the “Testing

Range”. However, to ensure the policy learns across a wide region of the state space,

and thus gains more robust qualities, each training episode’s initial conditions are

sampled from the wider “Training Range” (also shown in Table 4.5).

A suitable LQR reference gain K was derived by tuning the LQR cost terms to

result in a translational trajectory lasting 105 seconds for the nominal initial condition

case
(︀
r𝑊𝐶 = [−20, 0, 0] m, v𝑊

𝐶 = [0, 0, 0] m/s
)︀
. The LQR origin state was adjusted

by a +3 meter offset in the 𝑥-axis of the inertial frame to account for the required

non-zero final velocity. The resulting position and velocity of CSM center of mass

from the LQR reference accelerations is shown in Fig. 4-4.

108

Table 4.5: Initial condition range. The testing range is used for closed-loop simulation
testing while the training range is employed during learning.

State Term Testing Range Training Range Units
r𝑊𝐶 (0) [−20, 0, 0] ± 2 [−20, 0, 0] ± 4 m
v𝑊
𝐶 (0) [0, 0, 0] ± 0.1 [0, 0, 0] ± 0.2 m/s

[𝜑𝑊
𝐶 , 𝜃

𝑊
𝐶 , 𝜓

𝑊
𝐶](0) [0, 180, 0] ± 20 [0, 180, 0] ± 40 deg

𝜔𝐶
𝐶(0) [0, 0, 0] ± 5 [0, 0, 0] ± 10 deg/s

[𝜑𝑊
𝑇 , 𝜃

𝑊
𝑇 , 𝜓

𝑊
𝑇](0) [0, 0, 0] ± 0 [0, 0, 0] ± 0 deg

𝜔𝑇
𝑇 (0) [0, 0, 0] ± [2.5, 0, 0] [0, 0, 0] ± [5, 0, 0] deg/s

0 20 40 60 80 100

Time (s)

-20

-15

-10

-5

0

(m
)

CSM Position (COM)

x
y
z

0 20 40 60 80 100

Time (s)

-0.05

0

0.05

0.1

0.15

(m
/s

)

CSM Velocity (COM)

Figure 4-4: The LQR reference for the translational trajectory in the nominal initial
condition case. Note that the final, non-zero position of the center of mass (COM)
corresponds to a successful dock in the inertial frame.

4.4 Results and Discussion

4.4.1 Learning Results

For training the agent to perform the Apollo transposition and docking maneuver,

PPO was implemented using PyTorch1 and building on Patrick Coady’s open-source

work2. Learning occurred over 1 × 106 episodes. The agent accumulated batches

of 128 episodes before performing a policy and state-value function learning update

(according to (4.11)) using the collected data. The initial conditions for each episode

1https://pytorch.org/
2https://github.com/pat-coady/trpo

109

were randomly sampled from the training range shown in Table 4.5. Table 4.6 shares

key learning parameters.

Table 4.6: Training and reward parameters.

Parameter Value
𝐾𝐿des 0.001

𝛾1 0.98

𝛾2 0.995

Q𝑡 2× 105I3
Q𝑎 20I6

R
(︀
[10, 10, 10, 1.11, 1.11, 1.11]⊤ × 10−6

)︀
I6

𝑐 10

𝑑 1000

The algorithm kept track of the “best” policy over the course of learning by per-

forming a 128-episode test using the current policy after each update. The 128

episodes for this deterministic test (i.e., no policy variance) used initial conditions

at the limits of the testing ranges shown in Table 4.5. Specifically, the combinations

of the minimum/maximum initial values for the seven variables

[︁(︀
𝑣𝑊𝐶
)︀
𝑥
,
(︀
𝑣𝑊𝐶
)︀
𝑦
,
(︀
𝑣𝑊𝐶
)︀
𝑧
,
(︀
𝜔𝐶
𝐶

)︀
𝑥
,
(︀
𝜔𝐶
𝐶

)︀
𝑦
,
(︀
𝜔𝐶
𝐶

)︀
𝑧
,
(︀
𝜔𝑇
𝑇

)︀
𝑥

]︁
(4.27)

were used as edge cases to provide an accurate evaluation of the policy (27 = 128). If

the current policy was able to achieve greater than or equal to the number of successful

docks from the previous, “best” policy, it was saved as the new “best” policy. This

process ensured that a high-performing policy was extracted over the duration of the

learning process.

Figure 4-5 depicts the mean score (sum of rewards) per batch over the course of the

entire learning process. Also included are the score portions attributed to the main

shaping reward terms in (4.24) (LQR reference, attitude, and control). Generally,

the terms were maximized roughly in unison. Each reward term had a significant

increase early on in the learning process, with the remainder of the learning process

dedicated to making fine-tuned improvements to achieve more docks, follow the LQR

110

reference more closely, and decrease control efforts. There is a section of learning

(episodes 400,000-600,000) where the scores increased significantly. This is where the

policy started to experience successful docks and generally reached the approximate

optimal solution.

Figure 4-6 depicts the KL-divergence between policy updates, the PPO clipping

parameter (𝜉), and the maximum action variance over the course of learning. The

variance shows the expected trend: initially large to permit adequate exploration of

the action space and then tapering off as the policy converges. The significant de-

crease in variance around episodes 500,000-700,000 reflect the strong score improve-

ments shown in Fig. 4-5. This exemplifies the desired behavior of the policy learning

to decrease variance and further exploit the current policy upon an increase in score

performance. The KL-divergence is largely controlled (via the adjustable PPO clip-

ping parameter 𝜉 and policy learning rate 𝛽𝜃) around the desired value despite a few

spikes in the early and late stages of training. The desired KL-divergence value of

0.001 was chosen to match previous RL research works [19, 18].

4.4.2 Monte Carlo Test Results

After termination of the learning process, the learned policy was tested in a series of

1000 Monte Carlo trials across randomly sampled initial conditions from the test range

in Table 4.5. All variance was removed from the policy, resulting in a deterministic

state-feedback control law, based on the mean policy action as a function of the

state. The policy produced successful docks over all 1000 test trajectories. It took on

average about 1 millisecond (on a medium performance desktop PC) for the policy

neural network to compute a control input, exhibiting the fast implementation speed

of an RL controller. Figure 4-7 shows five superimposed trajectories from the Monte

Carlo trials. Table 4.7 shares key statistics on the Monte Carlo test. The total thrust

and torque expenditures are calculated by integrating the thrust/torque commands

over the trajectory. Figure 4-7 shows that the policy exhibits varied behavior over

the different trials, which is especially influenced by the LM’s angular velocity. This

points to the motivation of developing a docking policy: the resulting feedback control

111

0 2 4 6 8 10

Episode #10 5

-10 7

-10 6

-10 5

-10 4

-10 3

-10 2

S
co

re

Control Score
LQR Score
Attitude Score
Total Score

Figure 4-5: Mean scores (sum of rewards) experienced per training batch over the
learning process, including score portions from some individual reward terms.

law produces trajectories in a fast and robust manner across a range of scenarios. In a

general sense, the policy tended to quickly correct the attitude to match the rotational

state of the LM, all while correcting translational errors and approximating the LQR

trajectory to achieve the dock.

4.4.3 Comparisons with GPOPS-II Solutions

The General Purpose Optimal Control Software (GPOPS-II) [47] was utilized to pro-

vide comparisons between the converged policy and fully optimized solutions (as the

former is an approximation to maximize the reward signal). Additionally, nonlinear

optimization techniques (such as GPOPS-II) are typically the standard approach to

characterizing (offline) optimal solutions to problems subject to nonlinear dynamics,

112

0 2 4 6 8 10

Episode #10 5

0

1

2

3

4

5

6
K

L-
D

iv
er

ge
nc

e
#10 -3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
P

O
 C

lip
pi

ng
 P

ar
am

et
er

, V
ar

ia
nc

e

KL-Div
PPO Clip
Variance

Figure 4-6: KL-divergence, PPO clipping parameter 𝜉, and maximum action variance
over the course of learning.

Table 4.7: Monte Carlo test statistics.

Statistic Mean Max Units
Trajectory time length 111.32 130 s
Cross-track position error [𝑦, 𝑧] [0.031, 0.057] [0.102, 0.129] m
Cross-track velocity error [𝑦, 𝑧] [4.3, 3.0]× 10−3 [0.0092, 0.0095] m/s
Final 𝑣𝑥 0.069 0.078 m/s
Final attitude error (axis-angle) 1.57 3.49 deg
Final angular velocity error [0.03, 0.04, 0.03] [0.09, 0.08, 0.06] deg/s
Total thrust expenditure 8, 951 13, 471 N
Total torque expenditure 58, 795 82, 549 N-m

a high-dimensional state space, and non-convex constraints (i.e., the collision con-

straint). Thus, the GPOPS-II solutions represent the comparison of the RL policy

with standard trajectory optimization techniques more typically seen in spacecraft

113

-20

-15

-10

-5

0

5

r p
(m

)

x
y
z

-0.1

-0.05

0

0.05

0.1

0.15

0.2

v
W C

(m
/s

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

q
T C

-15

-10

-5

0

5

10

!
T C

d
eg

/
s

0 20 40 60 80 100 120
Time (s)

-100

-50

0

50

100

150

200

250

300

350

F
(N

)

0 20 40 60 80 100 120
Time (s)

-2000

-1000

0

1000

2000

L
(N

*
m

)

Figure 4-7: A selection of five successful trajectories from the Monte Carlo test.

guidance and control design. The first application of GPOPS-II was to calculate the

optimal trajectory using the LQR reference, attitude, and control penalties from Eq.

(4.24) as the objective function, thus providing a truly optimal solution to the RL

reward function. The collision penalty and docking bonus terms are neglected, and

instead final state constraints are included to enforce the successful docking conditions

from Table 4.4. The second application of GPOPS-II was to calculate the optimal

trajectory that simply minimizes overall control effort, which provides a comparison

114

between the converged policy and the best possible solution for the problem as a

whole.

The comparisons were made on the nominal docking trajectory:

r𝑊𝐶 (0) = [−20, 0, 0] m

v𝑊
𝐶 (0) = [0, 0, 0] m/s

q𝑊
𝐶 (0) = [0, 1, 0, 0]

𝜔𝐶
𝐶(0) = [0, 0, 0] deg/s

q𝑊
𝑇 (0) = [1, 0, 0, 0]

𝜔𝑇
𝑇 (0) = [2.5, 0, 0] deg/s .

The GPOPS-II solutions were obtained using a fixed final time of 105 seconds to

match the designed LQR reference trajectory’s length. A detailed formulation of the

GPOPS-II optimal control problems for the two applications is given in Appendix

C. The trajectory resulting from employing the policy as a closed-loop control law

u(𝑘) = 𝜋𝜃
(︀
x(𝑘)

)︀
and the optimal trajectories produced by GPOPS-II are shown

shown in Figures 4-8 and 4-9. Quantitative statistics on the comparison of the two

solutions are shown in Tables 4.8 and 4.9.

From Fig. 4-8, it is clear that the policy’s trajectory is a sub-optimal approxi-

mation of the optimal trajectory for the reward function. The benefit of this ap-

proximation is that the control law u(𝑘) = 𝜋𝜃
(︀
x(𝑘)

)︀
resulting from the policy is

quickly implementable in a closed-loop fashion (albeit within a restricted subset of

the state-space). One notable difference between the two solutions is that the policy

lags behind the optimal solution and produces a longer trajectory. This is likely an

indicator that the policy was not fully optimized with regards to the LQR reference

error penalty. Tighter adherence to the LQR reference would result in a shorter tra-

jectory (closer to the designed 105 seconds). Also present in the policy’s solution are

slight, unnecessary thrust inputs in the 𝑦 and 𝑧 axes.

From Fig. 4-9, the policy’s trajectory is noticeably different from the minimum

control effort trajectory. This is largely due to the direct influence of the designed

115

Table 4.8: Policy vs. GPOPS-II Optimal Reward Function, Comparison Statistics

Statistic Policy GPOPS-II Units
Time Length 110 105 s
Cross-track position error [−0.043− 0.058] [5.1,−2.0]× 10−3 m
Cross-track velocity error [7.1,−4.3]× 10−3 [−1.4, 0.6]× 10−3 m/s
Final 𝑣𝑥 0.071 0.0956 m/s
Final attitude error 1.12 0.056 deg
Final angular velocity error [3.2, 2.6, 1.2]× 10−2 [−0.01,−0.5, 2]× 10−2 deg/s
Thrust expenditure 6, 952 6, 163 N
Torque expenditure 63, 568 56, 379 N-m

Table 4.9: Policy vs. GPOPS-II Optimal Control Effort, Comparison Statistics

Statistic Policy GPOPS-II Units
Time Length 110 105 s
Cross-track position error [−0.043− 0.058] [0.150,−0.133] m
Cross-track velocity error [7.1,−4.3]× 10−3 [0.061, 0.067] m/s
Final 𝑣𝑥 0.071 0.148 m/s
Final attitude error 1.12 5.69 deg
Final angular velocity error [3.3, 2.6, 1.2]× 10−2 [−0.75,−0.75, 0.75] deg/s
Thrust expenditure 6, 952 5, 170 N
Torque expenditure 63, 568 8, 738 N-m

reward function on the policy’s behavior. The optimal trajectory produces far less

acceleration (in both translational and rotational motion) than the converged policy.

Notably, to minimize control effort, the optimal trajectory results in a final state that

is at the upper limit of the successful docking conditions. Based on this comparison,

there needs to be clear improvements to the learning process to produce a policy

for minimum-fuel docking trajectories. However, simply removing the other shaping

reward terms and only penalizing control effort would not be sufficient for a successful

learning process. The docking problem is far too sparse to solely rely on the discrete

docking bonus term for learning. As such, the other shaping penalties (LQR reference

and attitude error) are needed to provide rich reward signals and improve agent

performance. This comes with the disadvantage of losing control effort optimality.

116

-20

-15

-10

-5

0

5

r p
(m

)

x
y
z

-0.05

0

0.05

0.1

0.15

v
W C

(m
/
s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

q
T C

-15

-10

-5

0

5

!
T C

d
eg

/
s

0 20 40 60 80 100
Time (s)

-50

0

50

100

150

200

250

300

F
(N

)

0 20 40 60 80 100
Time (s)

-2000

-1000

0

1000

2000

L
(N

*
m

)

Figure 4-8: Comparison of policy and optimal reward function trajectory (GPOPS-II)
on the nominal case (dashed lines represent the GPOPS-II solution).

4.4.4 Discussion

The motivation of using RL for 6-DOF docking is to generate a policy that is imple-

mentable as a feedback control law. This control law should be capable of producing

successful docking maneuvers and be robust to initial conditions within a subset of the

state-space. This contrasts with the more common, standard trajectory generation

techniques (such as GPOPS-II) where the trajectory is optimized for a single scenario

117

-20

-15

-10

-5

0

5

r p
(m

)

x
y
z

-0.05

0

0.05

0.1

0.15

v
W C

(m
/s

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

q
T C

-15

-10

-5

0

5

!
T C

d
eg

/s

0 20 40 60 80 100
Time (s)

-50

0

50

100

150

200

250

300

F
(N

)

0 20 40 60 80 100
Time (s)

-2000

-1000

0

1000

2000

L
(N

*
m

)

Figure 4-9: Comparison of policy and minimum control effort trajectory (GPOPS-II)
on the nominal case (dashed lines represent the GPOPS-II solution).

and must be re-calculated in the case of deviations from this particular scenario. An

RL-based control law is also potentially robust to disturbances, noise, uncertain dy-

namics, and faults if the learning process is implemented appropriately, as exemplified

in Gaudet et al. [18].

However, there are several shortcomings with the current RL methodology, par-

ticularly with respect to docking maneuvers. First, it is difficult to target a desired

118

time length for the docking trajectory, which may be a critical parameter in space-

craft docking operations. Secondly, it is difficult to strategically enforce constraint

satisfaction. Docking scenarios often include complex path constraints preventing

collisions, maintaining the target docking port within the sensor field-of-view, and

avoiding plume impingement upon the target [36]. The policy generated in this work

is able to yield trajectories that suffer no collisions, but only a simple model is used

and there is no explicit guarantee that collisions are prevented. Extending the cur-

rent methodology to include more complex constraints (such as plume impingement)

would be challenging. Finally, the learning process as a whole is currently difficult

to interpret from a design perspective, as it is sensitive to the tuning of learning

and reward parameters. These problems are often unique to learning-based meth-

ods; for example, the online tube-based MPC algorithm outlined in Chapters 2 and

3 (not learning-based) explicitly enforces constraints and is intuitive to tune. Thus,

it is expected that future research efforts in the use of RL for autonomous spacecraft

maneuvers will address these concerns.

To facilitate future research in this area, several specific challenges experienced in

this work, and their work-arounds, are discussed below.

1. The dilemma of exploration vs. exploitation is a challenge in most applications

of RL. In this work, the variance enables the agent to explore different control

actions and better improve its maximization of rewards. However, the stochastic

nature of control inputs during training due to this variance directly affects the

received control effort reward signal: more variance leads to more control “chat-

ter”, and the agent inevitably accrues a higher overall control cost. Therefore,

high control cost coefficients can possibly lead to a sharp, premature decrease in

the policy variance that prohibits successful learning convergence. By carefully

tuning the control cost coefficient, as well as the degree to which policy variance

adjustments are made, this problem can be mitigated.

2. The author initially experimented with a simple state error term in the reward

function to encourage the agent to achieve the desired position and velocity.

119

However, issues were experienced with the scaling of the respective state vari-

ables and there was also no control over the trajectory time length. Thus, it

is advocated to use a rich reward term [19, 18] that is equally effective across

the entire state-space and also enables the agent to target a desired trajectory

time length. In this work, the LQR reference reward term fulfills both of these

objectives. However, there is certainly room for improvement as the time target

was not precisely met, and the LQR design process is not valid for nonlinear

translational dynamics. Additionally, the LQR reward basis limits the general

applicability of the policy, which is typically one of the main factors when decid-

ing to use RL for guidance and control. In this work, the use of the LQR reward

term is considered a trade-off between general applicability and reliable learning

convergence. While the policy still performed well in off-nominal initial condi-

tion cases, it is expected that future work will seek to use a less specific reward

term to encourage general behavior. Specifically, the advantages of meta-RL

could be utilized to address this issue.

3. Rare, but large, spikes in the KL-divergence between successive policy updates

(due to the stochastic nature of action exploration) have the potential to derail

the learning process. Thus, tight, frequent updates to the PPO clipping param-

eter and policy learning rate were made to ensure the KL-divergence stays close

to the desired value of 0.001 throughout the entire learning process.

4. In addressing the collision avoidance constraint, a smooth, continuous penalty

was found to be most effective. Additionally, it is advantageous to not terminate

the episode upon collision. Terminating the episode may result in the agent

determining that the most optimal policy is to violate the collision constraint

as quickly as possible, end the episode, and thus avoid the accrual of other

penalties in the reward function.

The use of meta-RL via recurrent neural networks is a potential way to address

some of the above concerns. Promising results obtained in other areas of spacecraft

guidance and control [18] indicate its ability to develop a policy that adapts to the

120

scenario at hand. While this is typically geared towards fault-tolerance and adapting

to unknown dynamics (which are both areas of future work in the spacecraft docking

scenario), meta-RL could potentially overcome the limitations imposed by the LQR

reward term in the current work. Simply put, the adaptive nature of meta-RL allows

for more flexible and informative policy learning over the differing episodes. This

more effective way of learning could remove the need for specific reward terms like

the LQR basis in the current work, and instead could be replaced by simpler terms

that encourage more general behavior.

121

Chapter 5

Conclusions and Future Work

5.1 Conclusions and Contributions

This work focused on extending robust control and reinforcement learning methods

to address some of the challenges associated with autonomous proximity operations

and their associated sources of uncertainty. Autonomously addressing uncertainty

in a reliable manner is currently one of the most significant challenges in large-scale

on-orbit servicing or active debris removal missions.

Chapter 2 developed the online tube-based MPC algorithm, which allows for the

exogenous input (i.e., the uncertainty) to be measured and estimated online. This in

turn enables the robust tube to be shrunk and grown appropriately as the trajectory

progresses. This results in two main benefits. The first is improved performance in

cases where the initial tube is over-conservative. The second is greater flexibility in

preserving robust properties without requiring precise initial information about the

exogenous input characteristics. This allows the robust controller to adapt to a wider

range of scenarios and improve its practicality.

Chapter 3 outlined the autonomous proximity operations scenario of intercepting

an unknown, tumbling space object. The online tube-based MPC algorithm was

successfully applied in simulation to track the nominal reference trajectories despite

significant errors in the estimates of the target’s inertial properties. The two benefits

of online, tube-based MPC mentioned above were confirmed in this realistic scenario.

122

Moreover, it was shown that the computational run-time of the online, tube-based

MPC was reasonably fast.

Finally, chapter 4 utilized reinforcement learning to develop a policy for docking

with rotating target spacecraft in a full 6-DOF dynamic environment. For the sim-

ulated Apollo transposition and docking maneuver, the policy was able to handle a

range of uncertain initial conditions while preventing collisions and optimizing per-

formance. Moreover, once learned, using the policy allowed computing control inputs

to be performed very quickly, thus enabling it to run real-time in a feedback loop.

Comparisons with standard, optimized trajectories using GPOPS-II yielded useful

results and discussions. To the best of the author’s knowledge, this is the first use of

RL to develop a spacecraft docking policy in a full 6-DOF dynamic environment.

5.2 Future Work

With regards to the robust control developments covered in this thesis, there are a

number of avenues for future work. Chief among them is extending the online, tube-

based MPC algorithm for nonlinear dynamics. This would enable the robust controller

to address uncertainty in terms of the chaser’s attitude and angular velocity as well

as its translational motion. The algorithm should also be tested with more types

of uncertainty sources, such as noisy navigational state updates, thruster noise, and

actuator faults. Different autonomous proximity scenarios should be considered as

well, such as asteroid hovering and landing maneuvers or post-capture movements

with a target that has flexible dynamics. Improvements also need to be made to the

exogenous input prediction methodology, as it seems the ARMA model formulation is

somewhat weak in capturing dynamic patterns with a relatively low amount of data

samples.

With regards to the use of reinforcement learning for autonomous proximity op-

erations, the most pressing item is to rigorously test and define key characteristics

of the feedback control policy, such as its region of stability and rate of constraint

satisfaction. Without stronger verification methods, reinforcement learning-based

123

methods cannot be reliably used in autonomous proximity operations as the risk is

too high. Additionally, to enable the policy to deal with a larger, more varied class

of uncertainty sources, meta-learning should be implemented in the training process.

In general, more approaches that connect the domains of robust control and learn-

ing should be investigated. For instance, in the online, tube-based MPC one could

potentially use a learning-based model identification method to yield more effective

predictions of the exogenous inputs. Similarly, learning-based techniques could also

enhance the estimation of the set of exogenous inputs. Robust control helps to ensure

safety and reliability despite uncertainty; learning seeks to generalize the autonomous

agent across a range of scenarios. Together, these domains have the potential to

greatly improve the capabilities of autonomous proximity operations in future mis-

sion concepts.

124

Appendix A

2-D Double-Integrator System

This appendix provides an overview of the two-dimensional, double-integrator system

utilized for demonstrating the controller methods developed in Chapter 2. The state

vector x ∈ R2 is defined as x = [𝑟, 𝑣]⊤, where 𝑟 is the position and 𝑣 is the velocity

(only in one direction). The control input 𝑢 ∈ R is the acceleration applied to the

system. The sample time is set to 0.25 seconds; thus, the discrete-time A and B

matrices are written as

A =

⎡⎣1 0.25

0 1

⎤⎦ ,B =

⎡⎣0.03125
0.25

⎤⎦ . (A.1)

Limits on the position, velocity, and acceleration are implemented as polytope

constraints. For the state constraints, the position is limited to 2 m in either direction

from the origin, and the velocity is limited to 0.75 m/s in either direction. For the

control input constraints, the acceleration is limited to 0.4 m/s2 in either direction.

The initial state is x(0) = [−1,−0.5]⊤ and the desired state for all time-steps is

x̄ = [1.5, 0]⊤.

Exogenous inputs w ∈ R2 are simulated by randomly sampling from a multivariate

normal distribution with a diagonal covariance matrix:

w ∼ 𝒩 (𝜇w,Σw), Σw =

⎡⎣𝜎2
𝑟 0

0 𝜎2
𝑣

⎤⎦ . (A.2)

125

For each simulation trial, the characteristics of the exogenous input can be adjusted

by adjusting the standard deviation values 𝜎𝑟 and 𝜎𝑣 for position and velocity as well

as the mean exogenous input 𝜇w.

126

Appendix B

Polytopic and Ellipsoidal Sets

This appendix provides a brief overview of polytope and ellipsoidal sets along with

their notation. Polytope and ellipsoidal sets are an integral part in the design of on-

line, tube-based MPC and robust control algorithms in general. A convex polyhedron

set 𝒫 takes the form of

𝒫 =
{︀
d ∈ R𝑛 : A𝑝d ≤ b𝑝

}︀
(B.1)

where A𝑝 ∈ R𝑐×𝑛,b𝑝 ∈ R𝑐 where 𝑐 denotes the number of constraints that define the

set. As such, the constraints that formulate the polyhedron set are linear. The set is

deemed a polytope if it is bounded and not empty.

General ellipsoidal sets ℰ take the form of

ℰ =
{︀
d ∈ R𝑛 : (d− p𝑒)

⊤P−1
𝑒 (d− p𝑒) ≤ 1

}︀
(B.2)

where P𝑒 ∈ R𝑛×𝑛,P𝑒 ≻ 0 is the ellipsoid shape matrix and p𝑒 ∈ R𝑛 is the ellipsoid

center. An alternative definition of ellipsoid sets is given by

ℰ =
{︀
d ∈ R𝑛 : ||A𝑒d+ b𝑒|| ≤ 1

}︀
(B.3)

where A𝑒 = P
−1/2
𝑒 , b𝑒 = −A𝑒p𝑒 and ||(·)|| represents the L2 norm. The constraints

represented by either (B.2) or (B.3) are quadratic in nature. Examples of generic

polytope and ellipsoid sets are given in Figure B-1.

127

Figure B-1: Examples of polytope (top) and ellipsoidal (bottom) sets in R2

128

Appendix C

GPOPS-II Optimal Control Problems

This appendix formally outlines the optimal control problems that are solved by

GPOPS-II in order to provide a comparison to the 6-DOF docking policy developed

in Chapter 4. Two problems are solved; one using the reinforcement learning reward

function as the objective function, and another using the minimum control effort as

the objective function.

The following is the optimal control problem solved by GPOPS-II to maximize

the RL reward function:

min
x,u

∫︁ 𝑡𝑓

𝑡0

[︀
v̇𝑊
𝐶 − ˙̄v𝑊

𝐶

]︀⊤
Q𝑡

[︀
v̇𝑊
𝐶 − ˙̄v𝑊

𝐶

]︀
+ ̃︀𝛼⊤Q𝑎̃︀𝛼+ u⊤Ru 𝑑𝑡 (C.1a)

s.t. ṙ𝑊𝐶 = v𝑊
𝐶 (C.1b)

v̇𝑊
𝐶 =

F

𝑚
(C.1c)

q̇𝑊
𝐶 =

1

2
Ω𝜔𝐶

𝐶 (C.1d)

�̇�𝐶
𝐶 = J−1

𝐶

(︀
L− 𝜔𝐶

𝐶 × J𝐶𝜔
𝐶
𝐶

)︀
(C.1e)

q̇𝑊
𝑇 =

1

2
Ω𝜔𝑇

𝑇 (C.1f)

�̇�𝑇 = 0 (C.1g)

r𝑝 = r𝑊𝐶 +R𝑊
𝐶 r𝑑𝑐 − r𝑑𝑡 (C.1h)

v𝑝 = v𝑊
𝐶 +

[︀
𝜔𝐶

𝐶 ×R𝑊
𝐶 r𝑑𝑐

]︀
(C.1i)

q𝑇
𝐶 = q𝑊

𝐶 ⊗
(︀
q𝑊
𝑇

)︀−1 (C.1j)

129

𝜔𝑇
𝐶 = 𝜔𝐶

𝐶 − 𝜔𝑇
𝑇 (C.1k)

𝑡0 = 0 sec (C.1l)

𝑡𝑓 = 105 sec (C.1m)

r𝑊𝐶 (𝑡0) = [−20, 0, 0] m (C.1n)

v𝑊
𝐶 (𝑡0) = [0, 0, 0] m/s (C.1o)

q𝑊
𝐶 (𝑡0) = [0, 0, 1, 0] (C.1p)

𝜔𝑐(𝑡0) = [0, 0, 0] deg/s (C.1q)

q𝑊
𝑇 (𝑡0) = [1, 0, 0, 0] (C.1r)

𝜔𝑇
𝑇 (𝑡0) = [2.5, 0, 0] deg/s (C.1s)

− 0.15 ≤ 𝑟𝑝𝑥(𝑡𝑓) ≤ 0,
⃒⃒
𝑟𝑝𝑦(𝑡𝑓), 𝑟𝑝𝑧(𝑡𝑓)

⃒⃒
≤ 0.15 m (C.1t)

0.05 ≤ 𝑣𝑝𝑥(𝑡𝑓) ≤ 0.15,
⃒⃒
𝑣𝑝𝑦(𝑡𝑓), 𝑣𝑝𝑧(𝑡𝑓)

⃒⃒
≤ 0.1 m/s (C.1u)

− 65 ≤ 𝜑𝑇
𝐶(𝑡𝑓) ≤ 55,

⃒⃒
𝜃𝑇𝐶(𝑡𝑓), 𝜓

𝑇
𝐶(𝑡𝑓)

⃒⃒
≤ 5 deg (C.1v)⃒⃒

𝜔𝑇
𝐶(𝑡𝑓)

⃒⃒
≤ 0.75 deg/s (C.1w)

The following is the optimal control problem solved by GPOPS-II to minimize

overall control effort:

min
x,u

∫︁ 𝑡𝑓

𝑡0

F2 + L2 𝑑𝑡 (C.2a)

s.t. ṙ𝑊𝐶 = v𝑊
𝐶 (C.2b)

v̇𝑊
𝐶 =

F

𝑚
(C.2c)

q̇𝑊
𝐶 =

1

2
Ω𝜔𝐶

𝐶 (C.2d)

�̇�𝐶
𝐶 = J−1

𝐶

(︀
L− 𝜔𝐶

𝐶 × J𝐶𝜔
𝐶
𝐶

)︀
(C.2e)

q̇𝑊
𝑇 =

1

2
Ω𝜔𝑇

𝑇 (C.2f)

�̇�𝑇 = 0 (C.2g)

r𝑝 = r𝑊𝐶 +R𝑊
𝐶 r𝑑𝑐 − r𝑑𝑡 (C.2h)

v𝑝 = v𝑊
𝐶 +

[︀
𝜔𝐶

𝐶 ×R𝑊
𝐶 r𝑑𝑐

]︀
(C.2i)

130

q𝑇
𝐶 = q𝑊

𝐶 ⊗
(︀
q𝑊
𝑇

)︀−1 (C.2j)

𝜔𝑇
𝐶 = 𝜔𝐶

𝐶 − 𝜔𝑇
𝑇 (C.2k)

𝑡0 = 0 sec (C.2l)

𝑡𝑓 = 105 sec (C.2m)

r𝑊𝐶 (𝑡0) = [−20, 0, 0] m (C.2n)

v𝑊
𝐶 (𝑡0) = [0, 0, 0] m/s (C.2o)

q𝑊
𝐶 (𝑡0) = [0, 0, 1, 0] (C.2p)

𝜔𝑐(𝑡0) = [0, 0, 0] deg/s (C.2q)

q𝑊
𝑇 (𝑡0) = [1, 0, 0, 0] (C.2r)

𝜔𝑇
𝑇 (𝑡0) = [2.5, 0, 0] deg/s (C.2s)

− 0.15 ≤ 𝑟𝑝𝑥(𝑡𝑓) ≤ 0,
⃒⃒
𝑟𝑝𝑦(𝑡𝑓), 𝑟𝑝𝑧(𝑡𝑓)

⃒⃒
≤ 0.15 m (C.2t)

0.05 ≤ 𝑣𝑝𝑥(𝑡𝑓) ≤ 0.15,
⃒⃒
𝑣𝑝𝑦(𝑡𝑓), 𝑣𝑝𝑧(𝑡𝑓)

⃒⃒
≤ 0.1 m/s (C.2u)

− 65 ≤ 𝜑𝑇
𝐶(𝑡𝑓) ≤ 55,

⃒⃒
𝜃𝑇𝐶(𝑡𝑓), 𝜓

𝑇
𝐶(𝑡𝑓)

⃒⃒
≤ 5 deg (C.2v)⃒⃒

𝜔𝑇
𝐶(𝑡𝑓)

⃒⃒
≤ 0.75 deg/s (C.2w)

131

Bibliography

[1] Apollo Operations Handbook, Block II Spacecraft, Volume 1: Spacecraft Descrip-
tion. National Aeronautics and Space Administration, 1969. SN2A-03-Block
II-(1) ed.

[2] CSM/LM Spacecraft Operation Data Book, Volume 3: Mass Properties. National
Aeronautics and Space Administration, 1969. SNA-8-D-027(III) REV 2 ed.

[3] CSM/LM Spacecraft Operation Data Book, Volume 1: CSM Data Book, Part 1:
Constraints and Performance. National Aeronautics and Space Administration,
1970. SNA-8-D-027(I) REV 3 ed.

[4] F. Aghili and C. Y. Su. Robust Relative Navigation by Integration of ICP and
Adaptive Kalman Filter Using Laser Scanner and IMU. IEEE/ASME Transac-
tions on Mechatronics, 21(4):2015–2026, 2016.

[5] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version
9.2., 2021.

[6] K. Berry, B. Sutter, A. May, K. Williams, B. W. Barbee, M. Beckman, and
B. Williams. OSIRIS-REx Touch-and-Go (TAG) Mission Design and Analysis.
Advances in the Astronautical Sciences, 149:667–678, 2013.

[7] G. Boyarko, O. Yakimenko, and M. Romano. Optimal Rendezvous Trajectories
of a Controlled Spacecraft and a Tumbling Object. Journal of Guidance, Control,
and Dynamics, 34(4):1239–1252, 2011.

[8] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, Cambridge, UK, 2004.

[9] J. C. Brannan, C. R. Carignan, and B. J. Roberts. Hybrid Strategy for Evaluat-
ing On-orbit Servicing, Assembly, and Manufacturing Technologies. In Acceler-
ating Space Commerce, Exploration, and New Discovery Conference (ASCEND),
November 2020.

[10] L. Breger and J. P. How. Safe Trajectories for Autonomous Rendezvous of
Spacecraft. Journal of Guidance, Control, and Dynamics, 31(5):1478–1489, 2008.

132

[11] J. Broida and R. Linares. Spacecraft Rendezvous Guidance in Cluttered Envi-
ronments via Reinforcement Learning. Advances in the Astronautical Sciences,
168, 2019.

[12] C. Buckner and R. Lampariello. Tube-Based Model Predictive Control for the
Approach Maneuver of a Spacecraft to a Free-Tumbling Target Satellite. Pro-
ceedings of the American Control Conference, pages 5690–5697, June 2018.

[13] D. M. Chan and A. Agha-mohammadi. Autonomous Imaging and Mapping of
Small Bodies Using Deep Reinforcement Learning. IEEE Aerospace Conference
Proceedings, March 2019.

[14] A. Espinoza. Versatile Inference Algorithms using the Bayes Tree for Robot
Navigation. PhD thesis, Massachusetts Institute of Technology, 2020.

[15] W. Fehse. Automated Rendezvous and Docking of Spacecraft. Cambridge Uni-
versity Press, Cambridge, UK, 2003.

[16] A. Flores-Abad, O. Ma, K. Pham, and S. Ulrich. A review of space robotics
technologies for on-orbit servicing. Progress in Aerospace Sciences, 68:1–26, 2014.

[17] J. L. Forshaw, G. S. Aglietti, N. Navarathinam, H. Kadhem, T. Salmon, A. Pis-
seloup, E. Joffre, T. Chabot, I. Retat, R. Axthelm, S. Barraclough, A. Rat-
cliffe, C. Bernal, F. Chaumette, A. Pollini, and W. H. Steyn. RemoveDEBRIS:
An in-orbit active debris removal demonstration mission. Acta Astronautica,
127:448–463, 2016.

[18] B. Gaudet, R. Linares, and R. Furfaro. Adaptive guidance and integrated navi-
gation with reinforcement meta-learning. Acta Astronautica, 169:180–190, 2020.

[19] B. Gaudet, R. Linares, and R. Furfaro. Deep reinforcement learning for six
degree-of-freedom planetary landing. Advances in Space Research, 65(7):1723–
1741, 2020.

[20] F. Gavilan, R. Vazquez, and E. F. Camacho. Chance-constrained model pre-
dictive control for spacecraft rendezvous with disturbance estimation. Control
Engineering Practice, 20(2):111–122, 2012.

[21] K. Hovell and S. Ulrich. Deep Reinforcement Learning for Spacecraft Proximity
Operations Guidance. Journal of Spacecraft and Rockets, 58(2):254–264, 2021.

[22] C. Jewison, R. S. Erwin, and A. Saenz-Otero. Model Predictive Control with
Ellipsoid Obstacle Constraints for Spacecraft Rendezvous. IFAC Proceedings
Volumes, 28(9):257–262, 2015.

[23] C. Jewison and D. W. Miller. Probabilistic Trajectory Optimization Under Un-
certain Path Constraints for Close Proximity Operations. Journal of Guidance,
Control, and Dynamics, 41(9):1843–1858, 2018.

133

[24] C. M. Jewison. Guidance and Control for Multi-stage Rendezvous and Docking
Operations in the Presence of Uncertainty. PhD thesis, Massachusetts Institute
of Technology, 2017.

[25] B. Jiang, Q. Hu, and M. I. Friswell. Fixed-Time Rendezvous Control of Space-
craft With a Tumbling Target Under Loss of Actuator Effectiveness. IEEE Trans-
actions on Aerospace and Electronic Systems, 52(4):1576–1586, 2016.

[26] C. Joppin and D. E. Hastings. On-Orbit Upgrade and Repair: The Hubble Space
Telescope Example. Journal of Spacecraft and Rockets, 43(3):614–625, 2006.

[27] D. P. Kingma and J. L. Ba. Adam: A Method for Stochastic Optimization.
Proceedings of the 3rd International Conference on Learning Representations,
May 2015.

[28] B. Kouvaritakis and M. Cannon. Model Predictive Control. Springer, Switzer-
land, 2016.

[29] D. Kucharski, G. Kirchner, Franz K., C. Fan, R. Carman, C. Moore,
A. Dmytrotsa, M. Ploner, G. Bianco, M. Medvedskij, A. Makeyev, G. Appleby,
M. Suzuki, J. M. Torre, Z. Zhongping, L. Grunwaldt, and Q. Feng. Attitude and
Spin Period of Space Debris Envisat Measured by Satellite Laser Ranging. IEEE
Transactions on Geoscience and Remote Sensing, 52(12):7651–7657, 2014.

[30] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, 1951.

[31] R. Lampariello, H. Mishra, N. Oumer, P. Schmidt, M. De Stefano, and A. Albu-
Schaffer. Tracking Control for the Grasping of a Tumbling Satellite with a Free-
Floating Robot. IEEE Robotics and Automation Letters, 3(4):3638–3645, 2018.

[32] D. R. Lee and H. Pernicka. Optimal Control for Proximity Operations and
Docking. International Journal of Aeronautical and Space Sciences, 11(3):206–
220, 2010.

[33] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho. On the design of Robust
tube-based MPC for tracking. IFAC Proceedings Volumes, 41(2):15333–15338,
2008.

[34] L. Ljung. System Identification: Theory for the User (2nd edition). Pearson,
Upper Saddle River, NJ, 1999.

[35] J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB.
Proceedings of the CACSD Conference, pages 284–289, September 2004.

[36] D. Malyuta, T. Reynolds, M. Szmuk, B. Açıkmeşe, and M. Mesbahi. Fast Trajec-
tory Optimization via Successive Convexification for Spacecraft Rendezvous with
Integer Constraints. Proceedings of the AIAA SciTech Forum, January 2020.

134

[37] M. Mammarella, E. Capello, H. Park, G. Guglieri, and M. Romano. Tube-
based robust model predictive control for spacecraft proximity operations in the
presence of persistent disturbance. Aerospace Science and Technology, 77:585–
594, 2018.

[38] C. P. Mark and S. Kamath. Review of Active Space Debris Removal Methods.
Space Policy, 47:194–206, 2019.

[39] F. L. Markley. Attitude Error Representations for Kalman Filtering. Journal of
Guidance, Control, and Dynamics, 26(2):311–317, 2003.

[40] D. Q. Mayne, M. M. Seron, and S. V. Raković. Robust model predictive control
of constrained linear systems with bounded disturbances. Automatica, 41(2):219–
224, 2005.

[41] M. Mirshams and M. Khosrojerdi. Attitude control of an underactuated space-
craft using tube-based MPC approach. Aerospace Science and Technology,
48:140–145, 2016.

[42] C. E. Oestreich, R. Linares, and R. Gondhalekar. Autonomous Six-Degree-of-
Freedom Spacecraft Docking Maneuvers via Reinforcement Learning. Proceedings
of the AAS/AIAA Astrodynamics Specialist Conference, August 2020.

[43] C. E. Oestreich, R. Linares, and R. Gondhalekar. Autonomous Six-Degree-of-
Freedom Spacecraft Docking with Rotating Targets via Reinforcement Learning.
To appear in the Journal of Aerospace Information Systems, 2021.

[44] H. Park, S. Di Cairano, and I. Kolmanovsky. Model Predictive Control of
Spacecraft Docking with a Non-rotating Platform. IFAC Proceedings Volumes,
44(1):8485–8490, 2011.

[45] H. Park, R. Zappulla, C. Zagaris, J. Virgili-Llop, and M. Romano. Nonlinear
Model Predictive Control for Spacecraft Rendezvous and Docking with a Rotat-
ing Target. Advances in the Astronautical Sciences, 160:1135–1148, 2017.

[46] G. Patterson, M. Sorge, and W. Ailor. Space Traffic Management in the Age of
New Space. Center for Space Policy and Strategy, the Aerospace Corporation,
2018.

[47] M. A. Patterson and A. V. Rao. GPOPS-II: A MATLAB Software for Solving
Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadra-
ture Collocation Methods and Sparse Nonlinear Programming. ACM Transac-
tions on Mathematical Software, 41(1):1–37, 2014.

[48] B. T. Polyak, A. V. Nazin, M. V. Topunov, and S. A. Nazin. Rejection of
Bounded Disturbances via Invariant Ellipsoids Technique. Proceedings of the
IEEE Conference on Decision and Control, pages 1429–1434, December 2006.

135

[49] C. M. Pong, A. Saenz-Otero, and D. W. Miller. Autonomous Thruster Failure
Recovery on Underactuated Spacecraft Using Model Predictive Control. Ad-
vances in the Astronautical Sciences, 141:107–126, 2011.

[50] S. V. Raković, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne. Invariant Ap-
proximations of the Minimal Robust Positively Invariant Set. IEEE Transactions
on Automatic Control, 50(3):406–410, 2005.

[51] N. T. Redd. Bringing satellites back from the dead: Mission Extension Vehicles
give defunct spacecraft a new lease on life. IEEE Spectrum, 57(8):6–7, 2020.

[52] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel. Trust Region Policy
Optimization. Proceedings of the 32nd International Conference on Machine
Learning, 37:1889–1897, July 2015.

[53] J. Schulman, F. Wolski, and P. Dhariwal. Proximal Policy Optimization Algo-
rithms. Computing Research Repository, 2017.

[54] A. Scorsoglio, R. Furfaro, R. Linares, and M. Massari. Actor-Critic Reinforce-
ment Learning Approach to Relative Motion Guidance in Near-Rectilinear Orbit.
Advances in the Astronautical Sciences, 168:1737–1756, 2019.

[55] T. P. Setterfield, D. W. Miller, A. Saenz-Otero, E. Frazzoli, and J. J. Leonard.
Inertial Properties Estimation of a Passive On-orbit Object Using Polhode Anal-
ysis. Journal of Guidance, Control, and Dynamics, 41(10):2214–2231, 2018.

[56] M. D. Shuster. A Survey of Attitude Representations. Journal of the Astronau-
tical Sciences, 41(4):439–517, 1993.

[57] J. A. Starek, B. Açıkmeşe, I. A. Nesnas, and M. Pavone. Spacecraft Autonomy
Challenges for Next-Generation Space Missions. Advances in Control System
Technology for Aerospace Applications, 460:1–48, 2016.

[58] S. Stoneman and R. Lampariello. A Nonlinear Optimization Method to Provide
Real-Time Feasible Reference Trajectories to Approach a Tumbling Target Satel-
lite. Proceedings of the 13th International Symposium on Artificial Intelligence,
Robotics and Automation in Space, May 2016.

[59] B. Sullivan, B. Kelm, G. Roesler, and C. G. Henshaw. Robotic Satellite Service
Concept: On-Demand Capabilities in GEO. Proceedings of the AIAA SPACE
Conference and Exposition, August 2015.

[60] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction (2nd
edition). MIT Press, Cambridge, MA, 2018.

[61] J. Telaar, W. Rackl, M. De Stefano, R. Lampariello, N. Santos, P. Serra,
M. Canetri, F. Ankersen, and J. Gil-fernandez. GNC architecture for the
e.Deorbit mission. Proceedings of the 7th European Conference for Aeronautics
and Space Sciences (EUCASS), 2017.

136

[62] B. E. Tweddle, A. Saenz-Otero, J. J. Leonard, and D. W. Miller. Factor Graph
Modeling of Rigid-body Dynamics for Localization, Mapping, and Parameter
Estimation of a Spinning Object in Space. Journal of Field Robotics, 32(6):897–
933, 2015.

[63] W. S. Widnall. Apollo Guidance Navigation and Control: Guidance System Op-
erations Plan for Manned CM Earth Orbital and Lunar Missions Using Program
COLOSSUS I and Program COLOSSUS IA. Technical Report R-577 Section 3,
MIT Instrumentation Laboratory, Cambridge, MA, December 1968.

[64] W. Xu, B. Liang, B. Li, and Y. Xu. A universal on-orbit servicing system used
in the geostationary orbit. Advances in Space Research, 48(1):95–119, 2011.

137

