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Abstract

Earth atmospheric remote sensing is an inverse problem that fits surface and at-
mospheric models to imaging spectrometer data and is critical to the analysis of
the composition and biodiversity of the Earth surface. Current methods for remote
sensing generally involve retrieving a point estimate of the surface reflectance and
atmospheric parameters.

This thesis presents a more robust Bayesian approach to quantify the uncertainty
of the retrieval, but this is computationally intractable given the high dimensionality
of the problem. In many Bayesian inverse problems, however, there exists a low-
dimensional likelihood-informed subspace that describes both optimal projections of
the data and directions in parameter space that are most informed by the data.

In the Bayesian approach, Markov chain Monte Carlo (MCMC) is implemented
within this low-dimensional subspace to increase sampling efficiency. For an example
retrieval, reducing the parameter dimension by a factor of 4 increased the effective
sample size of the MCMC chain by more than two orders of magnitude. This low-
dimensional subspace was shown to be able to capture the key features of the posterior
structure from a higher dimension. The posterior variance obtained through MCMC
was also shown to better represent the uncertainty of the problem over the existing
method.

Thesis Supervisor: Youssef Marzouk
Title: Professor, Aeronautics and Astronautics

3



4



Acknowledgments

This research is a collaborative project between MIT and NASA Jet Propulsion Lab-

oratory (JPL) through the SURP program. A big thank you to everyone on the JPL

team for your support and expertise throughout the past year, especially to David for

helping me get acquainted with everything I needed to know with regards to remote

sensing.

I also want to thank Jayanth for your continued support and flexibility for when-

ever I have technical questions or troubles. It has been tremendously helpful.

Last but not least, I would like to thank my advisor, Youssef, whom I got to know

while working as TA during my first semester of grad school, which ultimately led

me to join the group. I had very little background in this field, but I was able to get

caught up quickly in the first few months through your guidance, even during Covid

times.

5



6



Contents

1 Introduction 11

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Bayesian Inverse Problems . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . 14

1.2.3 Methods of Dimension Reduction . . . . . . . . . . . . . . . . 16

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 The Atmospheric Remote Sensing Problem 19

2.1 Parameters and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Forward Model . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.3 Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.4 Radiance Measurements . . . . . . . . . . . . . . . . . . . . . 22

2.2 Current Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Practical Considerations . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Improvements to Current Approach . . . . . . . . . . . . . . . 24

2.3 A Bayesian Approach to Remote Sensing . . . . . . . . . . . . . . . . 24

2.4 Linearization of the Forward Model . . . . . . . . . . . . . . . . . . . 25

2.4.1 LASSO Regression . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Tuning the Regularization Parameter . . . . . . . . . . . . . . 27

2.4.3 Linear Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7



3 Dimension reduction using the likelihood informed subspace 31

3.1 Parameter Space Dimension Reduction . . . . . . . . . . . . . . . . . 31

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Construction of the Subspace . . . . . . . . . . . . . . . . . . 33

3.1.3 MCMC Sampling in the Low Dimensional LIS . . . . . . . . . 34

3.2 LIS using the linearized model . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Evaluating the posterior from LIS . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Posterior covariance . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Posterior mean . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Data Space Dimension Reduction . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Evaluating the Posterior in the Low-Rank Data Space . . . . . 45

4 Numerical Results 47

4.1 MCMC Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2 Log Posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.3 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.4 Effective Sample Size . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Posterior comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Dimensions of LIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Conclusion 57

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Additional MCMC results 59

A.1 No LIS (rank 427), initialize chain at truth . . . . . . . . . . . . . . . 59

A.2 LIS rank 100, initialize chain at MAP estimate . . . . . . . . . . . . . 61

A.3 LIS rank 100, initialize chain at truth . . . . . . . . . . . . . . . . . . 62

A.4 LIS rank 175, initialize chain at MAP estimate . . . . . . . . . . . . . 64

A.5 LIS rank 175, initialize chain at truth . . . . . . . . . . . . . . . . . . 65

8



List of Figures

1-1 Example retrieval on a grass lawn . . . . . . . . . . . . . . . . . . . . 12

2-1 Retrievals with various AOD parameters . . . . . . . . . . . . . . . . 23

2-2 Remote sensing problem setup . . . . . . . . . . . . . . . . . . . . . . 25

2-3 Errors in LASSO regression . . . . . . . . . . . . . . . . . . . . . . . 28

2-4 Comparison of linear and nonlinear forward models . . . . . . . . . . 28

2-5 Sparsity plot of the linear operator . . . . . . . . . . . . . . . . . . . 30

3-1 Visualization of the likelihood informed subspace . . . . . . . . . . . 32

3-2 Eigenvalue decay for the LIS eigenvalue problem . . . . . . . . . . . . 37

3-3 Eigenvalue decay of the parameter space PCA problem . . . . . . . . 40

3-4 Forstner distance in posterior covariance for the parameter space . . . 41

3-5 Bayes risk in posterior mean for the parameter space . . . . . . . . . 42

3-6 Eigenvalue decay of the data space PCA problem . . . . . . . . . . . 44

3-7 Forstner distance in posterior covariance for the data space . . . . . . 45

3-8 Bayes risk in posterior mean for the data space . . . . . . . . . . . . 46

4-1 Trace plot of MCMC for LIS . . . . . . . . . . . . . . . . . . . . . . . 49

4-2 Log posterior plot of MCMC for LIS . . . . . . . . . . . . . . . . . . 49

4-3 Effect of LIS on MCMC autocorrelation . . . . . . . . . . . . . . . . 50

4-4 Comparison of posterior mean - surface reflectance . . . . . . . . . . . 52

4-5 Comparison of posterior mean - atmospheric parameters . . . . . . . 52

4-6 Comparison of posterior marginal variance - surface reflectance . . . . 53

4-7 Comparison of posterior marginal variance - atmospheric parameters . 54

9



4-8 2D marginal plots of the posterior samples . . . . . . . . . . . . . . . 54

4-9 Contour plot of posterior samples at 𝑟 = 100 . . . . . . . . . . . . . . 55

4-10 Contour plot of posterior samples at 𝑟 = 175 . . . . . . . . . . . . . . 56

4-11 Trace plot for MCMC using LIS, 𝑟 = 175 . . . . . . . . . . . . . . . . 56

10



Chapter 1

Introduction

1.1 Motivation

Earth atmospheric remote sensing is the acquisition of parameters on the Earth sur-

face from satellites. Remote Visible/ShortWave InfraRed (VSWIR) imaging spec-

troscopy is a common remote sensing tool used to analyze the composition and bio-

diversity of the Earth surface. In particular, this is used in the Surface Biology and

Geology (SBG) study initiated by the NASA Jet Propulsion Laboratory [10].

The goal of this remote sensing problem is to infer a set of parameters on Earth

given images taken by satellites. This process is known as a retrieval. Each pixel of

the image contains radiance data along a spectrum of wavelengths in the shortwave

infrared and visible range from 350 to 2500 nm. A set of Earth surface parameters are

inferred, with each surface parameter corresponding to the same spectrum of wave-

lengths as the radiance data. These parameters indicate the surface reflectance at the

specified wavelength. Additional parameters describing the atmospheric conditions

of the retrieval are also inferred.

Figure 1-1 shows a retrieval of a plain grass lawn at the California Institute of

Technology. The imaging spectrometer records a spectrum of radiances and the sur-

face reflectances across the same range of wavelengths is estimated.
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Figure 1-1: Example retrieval on a grass lawn

[13] outlines the current methodology used for remote sensing problems, referred

to as optimal estimation (OE). The parameters are inferred through an optimization

problem to obtain a maximum a posteriori (MAP) estimate. The covariance is es-

timated using the Laplace approximation as a function of the local Jacobian at the

MAP estimate.

The main motivation behind this research is to improve the uncertainty quan-

tification of the retrieval using a Bayesian approach. In the current approach, the

retrieval returns a point estimate and the uncertainty is approximated using a locally

linear gradient. Newer technologies being used in recent missions require exploiting as

much information as possible from the observed data. The Bayesian approach returns

a posterior distribution, an improvement upon a point estimate. For example, certain

applications of the remote sensing problem are expected to have a non-Gaussian and

multimodal posterior distribution, which cannot be characterized using the current

approach.
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However, the high dimensionality of this remote sensing problem poses a challenge

to this approach. The efficiency of sampling algorithms deteriorate quickly with

dimension, rendering this particular problem very computationally expensive. We

explore methods of dimension reduction to make this approach more tractable.

1.2 Literature Review

1.2.1 Bayesian Inverse Problems

The Bayesian approach to inverse problems returns a posterior distribution condi-

tioned on the observed data. Given radiance data collected from the imaging spec-

trometer, a posterior distribution of the inferred surface and atmospheric parameters

can be obtained instead of a point estimate of the posterior mode. Quantities of

interest such as posterior mean and posterior covariance can then be computed from

this distribution. These posterior expectations are typically computed using sampling

methods such as Markov chain Monte Carlo (MCMC).

Bayesian methods are based on Bayes rule, which relates the posterior distribution

to the prior 𝜋(𝑥) and likelihood 𝜋(𝑦|𝑥) distributions,

𝜋(𝑥|𝑦) =
𝜋(𝑦|𝑥)𝜋(𝑥)

𝜋(𝑦)
∝ 𝜋(𝑦|𝑥)𝜋(𝑥). (1.1)

The setup of an inverse problem is to infer a set of parameters 𝑥 given a set of

observed data 𝑦 modelled by

𝑦 = 𝑓(𝑥) + 𝜖, (1.2)

where 𝑓(𝑥) is the forward mapping from parameters to data and 𝜖 is a random variable

representing the noise and model error.

A simple but common version of this problem is when the prior and likelihood are

13



both Gaussian,

𝑥 ∼ 𝒩 (𝜇𝑝𝑟,Γ𝑝𝑟)

𝑦|𝑥 ∼ 𝒩 (0,Γ𝑜𝑏𝑠),

where 𝜇𝑝𝑟 and Γ𝑝𝑟 are the prior mean and covariance, and Γ𝑜𝑏𝑠 is the noise covari-

ance. For a linear inverse problem 𝑓(𝑥) = 𝐺𝑥, the posterior is also Gaussian with

distribution

𝑥|𝑦 ∼ 𝒩 (𝜇𝑝𝑜𝑠,Γ𝑝𝑜𝑠).

In this case, we can obtain closed form expressions for the posterior mean and covari-

ance,

𝜇𝑝𝑜𝑠(𝑦) = Γ𝑝𝑜𝑠(𝐺
⊤Γ−1

𝑜𝑏𝑠𝑦 + Γ−1
𝑝𝑟 𝜇𝑝𝑟) (1.3)

Γ𝑝𝑜𝑠 = (𝐻 + Γ−1
𝑝𝑟 )−1, (1.4)

where 𝐻 = 𝐺⊤Γ−1
𝑜𝑏𝑠𝐺 is the Hessian of the negative log likelihood, or data misfit

function.

When the forward model is nonlinear, the posterior distribution is generally not

normally distributed and there is no closed form expression for the mean and covari-

ance. In this case, methods such as MCMC can be used to characterize the posterior

by drawing samples from the distribution.

1.2.2 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is used to generate samples from a random

variable with an arbitrary target distribution known up to a normalizing constant

[5]. In the context of inverse problems, this target is the posterior distribution.

For the remote sensing problem, we consider the Metropolis-Hastings and Adaptive

Metropolis algorithms.

14



Metropolis-Hastings

Metropolis-Hastings is the most basic algorithm for MCMC. A Markov chain is con-

structed using a new proposal at every step and a mechanism that determines whether

to accept or reject the proposal. This is described in Algorithm 1.

Initializing the Markov chain at 𝑥(0), proposed samples are drawn according to

the proposal distribution 𝑞( · |𝑥(𝑖)) centered at the most recent sample 𝑥(𝑖). These

proposed samples are added to the chain with acceptance probability 𝛼, which is a

function of the posterior density 𝜋( · |𝑦). The normalizing constant is not required

since they would cancel in the numerator and denominator.

Algorithm 1: Metropolis-Hastings MCMC
Initialize 𝑥(0)

for 𝑖 = 1, . . . , 𝑁𝑠𝑎𝑚𝑝 do
Proposal sample 𝑧 ∼ 𝑞( · |𝑥(𝑖))

𝑥(𝑖+1) =

⎧⎪⎪⎨⎪⎪⎩
𝑧 with probability 𝛼(𝑥(𝑖), 𝑧) = min

(︂
1, 𝜋(𝑧|𝑦) 𝑞(𝑥(𝑖)|𝑧)

𝜋(𝑥(𝑖)|𝑦) 𝑞(𝑧|𝑥(𝑖))

)︂
𝑥(𝑖) otherwise

end

If the proposal distribution is Gaussian, 𝑞( · | · ) in the numerator and denominator

would cancel due to symmetry. The acceptance probability then becomes 𝛼(𝑥(𝑖), 𝑧) =

min
(︀
1, 𝜋(𝑧|𝑦)

𝜋(𝑥|𝑦)

)︀
.

Adaptive Metropolis

The Adaptive Metropolis algorithm [8] provides a way to determine the proposal

distribution as more samples are added. The proposal, 𝑞𝑖( · |𝑥(0), . . . , 𝑥(𝑖−1)), depends

on the covariance of the previously accepted samples to better adapt to the posterior

structure. This distribution is defined to be normally distributed with mean 𝑥(𝑖−1)

15



and covariance given by

𝐶𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝐶0 𝑖 < 𝑖0

𝑠𝑑 cov(𝑥(0), . . . , 𝑥(𝑖−1)) + 𝑠𝑑𝜖𝐼𝑑 𝑖 ≥ 𝑖0

(1.5)

where 𝐶0 is some initial proposal covariance defined for the first 𝑖0 samples, cov is

the sample covariance, 𝑠𝑑 is the scaling factor that depends on dimension 𝑑, and 𝜖 is

a small value to ensure that 𝐶𝑖 is positive definite.

The choice of 𝐶0 and 𝑠𝑑 affect how quickly the proposal distribution adapts to the

posterior structure and therefore the acceptance rate that leads to better mixing. As

a rule of thumb, 𝑠𝑑 = 2.382

𝑑
is sufficient for most implementations. From the properties

of sample covariance, the proposal covariance can be computed at low cost using the

update formula for 𝑖 ≥ 𝑖0,

𝐶𝑖+1 =
𝑖− 1

𝑖
𝐶𝑖 +

𝑠𝑑
𝑖

(︀
𝑖�̄�(𝑖−1)�̄�(𝑖−1)⊤ − (𝑖+ 1)�̄�(𝑖)�̄�(𝑖)⊤ + 𝑥(𝑖)𝑥(𝑖)⊤ + 𝜖𝐼𝑑

)︀
. (1.6)

1.2.3 Methods of Dimension Reduction

Many of the problems that occur in physical applications are high-dimensional, which

significantly impedes the performance of MCMC. Several methods of dimension re-

duction in the parameter space have been studied with the goal of accelerating MCMC

in these problems, including active subspaces, certified dimension reduction, and the

likelihood informed subspace.

These methods exploit problem structure to construct a low-dimensional data-

informed subspace. The directions of the parameter space are ranked based on how

informative the data are to the parameters. This is done using a function of the

likelihood integrated over either the prior or posterior distribution. These directions

are truncated at some threshold to form a basis for the low-dimensional subspace in

which MCMC can be executed.

In the method of active subspaces [2], the active subspace is defined by the eigen-

vectors of a matrix defined using the negative log-likelihood, or data misfit function,

16



and integrated over the prior. In certified dimension reduction [15], the data-informed

subspace is defined by the eigenvectors of a similar matrix but integrated over the

posterior distribution. The method of the likelihood informed subspace [3] determines

the low-dimensional subspace using a generalized eigenvalue problem involving the

prior covariance and the Hessian of the negative log-likelihood. The Hessian is com-

puted by integrating over the posterior. The likelihood informed subspace is used for

dimension reduction in this research and is described in detail in Chapter 3.

1.3 Research Objectives

There are two main objectives for this research.

1. Implement a Bayesian method to solve the remote sensing inverse problem. This

allows for an improved characterization of the posterior distribution. Markov

chain Monte Carlo (MCMC) is used as the posterior sampling algorithm.

2. Accelerate the Bayesian method to operational speeds. Implementing MCMC

on the full dimensional problem is computationally intractable. The likelihood

informed subspace (LIS) is used to reduce the dimension of the parameters to

increase sampling efficiency of MCMC.

1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 describes the remote sensing problem

in detail, including the parameters and models that are used. The current methodol-

ogy is presented along with the proposed Bayesian approach. The likelihood informed

subspace is introduced in Chapter 3. For dimension reduction in the parameter space,

a method of performing MCMC within the subspace is presented for this remote sens-

ing problem. Potential applications of the LIS are discussed for data space dimension

reduction. For both the parameter and data spaces, the performance of the LIS is

evaluated in the linear Gaussian case by comparing the posterior mean and covari-

ance determined from the low-dimensional subspace and the full-dimensional space.
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Chapter 4 presents the numerical results of the method of LIS in MCMC, includ-

ing diagnostics, comparisons of the posterior distribution, and comparisons across

different dimensions of the LIS.

18



Chapter 2

The Atmospheric Remote Sensing

Problem

In the remote sensing problem, the goal is to infer a set of parameters 𝑥 ∈ R𝑚, also

referred to as the state vector, given a set of observations 𝑦 ∈ R𝑛. Light reflected

off the Earth surface undergoes radiative transfer through the atmosphere, which

is modelled by a forward function. The satellite observes a radiance that is used to

infer the surface reflectance. The current methodology is known in the remote sensing

community as optimal estimation (OE). In the proposed approach, we use MCMC to

obtain a full posterior distribution. Dimension reduction is also implemented for this

Bayesian approach to make it computationally tractable.

Optimal estimation is implemented in the Imaging Spectrometer Optimal Fitting

(Isofit) software package on Github 1. Isofit provides a framework for fitting surface,

atmosphere, and instrument models for imaging spectrometer data with flexibility in

modelling choice. The parameters associated with the problem setup and the forward

function are extracted from Isofit for use in the new methodology. These include the

prior on the parameters, the observation noise model, and the forward model itself.

1https://github.com/isofit/isofit
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2.1 Parameters and Data

In this particular remote sensing problem, the imaging spectrometer on the satellite

observes 𝑛 = 425 radiance values corresponding to equally spaced wavelengths from

350 to 2500 nm. The 𝑚 = 427 parameters consist of 425 surface parameters corre-

sponding to the same wavelengths and two additional parameters that describe the

atmospheric conditions.

𝑥 = [𝑥𝑠𝑢𝑟𝑓 𝑥𝑎𝑡𝑚]⊤ ∈ R427, 𝑦 ∈ R425

The two atmospheric parameters are denoted as 𝑥𝑎𝑡𝑚 = [𝑥𝐴𝑂𝐷 𝑥𝐻2𝑂]. In practice,

there are many more variables in the atmosphere, but most of them can be predicted

using climatology. Aerosol Optical Depth (AOD) is the atmospheric concentration of

aerosols at 550 nm and is a measure of the scattering of radiation. This is also referred

to as the Aerosol Optical Thickness (AOT) [13]. The second atmospheric parameter

is the column precipitable water vapour (cm), which is a measure of the amount of

water in a vertical column of the atmosphere. These atmospheric parameters are

generally difficult to predict in practice and greatly influence the retrieved surface

reflectances.

2.1.1 Prior

The prior on the parameters has the following mean and covariance structure.

𝜇𝑝𝑟 =

⎡⎢⎣𝜇𝑠𝑢𝑟𝑓

𝜇𝑎𝑡𝑚

⎤⎥⎦ , Γ𝑝𝑟 =

⎡⎢⎣Γ𝑠𝑢𝑟𝑓 0

0 Γ𝑎𝑡𝑚

⎤⎥⎦ (2.1)

The prior on the two atmospheric parameters are independent. For this particular

problem, they are fixed. The AOD parameter has prior mean 0.05 with variance 0.04,

and the H2O parameter has prior mean 1.75 with variance 0.025.

The procedure that was used to determine the prior on the surface parameters

is as follows. Data from libraries of over 1400 historical reflectance spectra are clus-
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tered into 8 subpopulations, each represented by a multivariate Gaussian distribution.

These subpopulations correspond to different types of terrain on the Earth surface

that have similar characteristics, such as vegetation or aquatic environments. The

distribution with the least Mahalanobis distance from the state estimate is chosen as

the surface prior. This prior on the surface parameters is multivariate Gaussian of

dimension 𝑛 = 425 and is used for the retrieval and for the Bayesian approach to this

remote sensing problem.

2.1.2 Forward Model

The forward model approximates radiative transfer through the Earth atmosphere.

The MODTRAN 6.0 Radiative Transfer Model [1] is used to generate a lookup table

for a set of reference atmospheric conditions, varying the two atmospheric parameters.

The forward model then uses linear interpolation to approximate the radiative transfer

given a state vector. The prior on the atmospheric parameters have variances larger

than the lookup table range.

2.1.3 Noise Model

The observation uncertainty covariance is obtained using the Isofit code and accounts

for instrument noise and uncertainty due to unknown parameters. The covariance

matrix is the sum of these two contributions,

Γ𝑜𝑏𝑠 = Γ𝑦 +𝐾𝑏Γ𝑏𝐾
⊤
𝑏 , (2.2)

where Γ𝑦 represents randomness due to the instrument, such as photon and readout

noise, Γ𝑏 represents the uncertainty in the observation unknowns, and 𝐾𝑏 is the

Jacobian of the observations with respect to these unknowns. The instrument noise

covariance Γ𝑦 is generally a diagonal matrix with each entry having the same signal-

to-noise ratio. The second term has slight off-diagonal correlations.
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2.1.4 Radiance Measurements

The imaging spectrometer on the satellite observes a radiance spectrum for each pixel

in the image. This radiance is a function of the parameters with added noise, and is

modelled by

𝑦 = 𝑓(𝑥) + 𝜖, (2.3)

where 𝜖 ∼ 𝒩 (0,Γ𝑜𝑏𝑠) is drawn from the noise model.

2.2 Current Methodology

Optimal estimation is currently used in many remote sensing problems. In OE,

the posterior distribution is characterized by a Gaussian with mean computed using

MAP estimation and covariance computed using Laplace approximation at the MAP

estimate. The log prior and log likelihood are combined into the cost function

𝜒2(𝑥) =
1

2
(𝑥− 𝜇𝑝𝑟)

⊤Γ−1
𝑝𝑟 (𝑥− 𝜇𝑝𝑟) +

1

2
(𝑦 − 𝑓(𝑥))⊤Γ−1

𝑜𝑏𝑠(𝑦 − 𝑓(𝑥)), (2.4)

which is minimized using nonlinear least squares optimization to produce the MAP

estimate �̂�. The covariance is approximated using a local linearization,

Γ̂𝑝𝑜𝑠 = (𝐾⊤Γ−1
𝑜𝑏𝑠𝐾 + Γ−1

𝑝𝑟 )−1, (2.5)

where 𝐾 = ∇𝑓(�̂�) is the Jacobian of the forward model evaluated at the MAP

estimate.

2.2.1 Practical Considerations

There are certain issues in the remote sensing problem that arise in practice. We

start by examining the sample retrieval shown in Figure 1-1. The wavelengths cor-

responding to the breaks in the retrieved reflectances are known as the deep water
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Figure 2-1: Retrievals with various AOD parameters

spectra. For these sets of wavelengths, almost all of the radiation is absorbed by

water vapour, and light reflected off the Earth surface is therefore not able to reach

the satellite. Most of the radiance the instrument picks up in these regions would be

due to noise. In the remote sensing community, retrieved results in the deep water

spectra are generally ignored and not displayed. There are four such bands of varying

width present in our remote sensing problem setup: near 350 nm, 1300 nm, 1800 nm,

and 2500 nm.

For higher values of the atmospheric parameters, specifically the AOD parame-

ter, the retrieval becomes more difficult. Physically, an AOD parameter close to 0

corresponds to clear skies, and a higher AOD parameter of around 0.5 or higher cor-

responds to hazy skies. Haze contributes to the scattering of light in the atmosphere,

which adds noise to the radiance observations. In Figure 2-1, it is evident that the

retrieval is much worse with an AOD parameter equal to 0.5.
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2.2.2 Improvements to Current Approach

The main issue with the current methodology is that the retrieval returns a MAP

estimate, which is a point estimate rather than a full distribution. The uncertainty

is then approximated using the Laplace approximation at this point estimate. While

this approach would be a good estimate for a problem that is approximately linear

Gaussian, this is likely not the case for a nonlinear problem. The Laplace approxi-

mation only takes into account the local linearization of the forward model. If the

forward model exhibits strong nonlinearities around the MAP estimate, the Laplace

approximation would be extremely sensitive to small changes in the MAP estimate.

Without a proper estimate of the uncertainty, it is difficult to justify the validity of

the retrieval results. This is the main motivation for turning to a Bayesian approach

for this problem.

2.3 A Bayesian Approach to Remote Sensing

Instead of a point estimate, we are interested in obtaining the full posterior distribu-

tion of the retrieval. The Bayesian approach to remote sensing involves a sampling

algorithm, usually Markov chain Monte Carlo (MCMC), to produce posterior sam-

ples.

The high-level problem setup is depicted in Figure 2-2. The true state consists

of surface reflectances and atmospheric parameters and is endowed with a Gaus-

sian prior. The radiance observation is a result of the radiative transfer of surface

reflectances through the atmosphere with some added noise. The objective is to

determine the posterior distribution of the parameters.

Sampling from the posterior is generally much more computationally expensive

than obtaining the MAP estimate through optimization. Sampling methods such

as MCMC are sensitive to parameter dimension, and the main challenge of using a

Bayesian method for this high-dimensional problem is to enable tractable computa-

tion. We investigate a method of dimension reduction using the likelihood informed

subspace to increase the sampling efficiency of MCMC.
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Figure 2-2: Remote sensing problem setup

2.4 Linearization of the Forward Model

If the atmospheric parameters are fixed, the retrieval of the surface parameters is

mostly a linear problem. In other words, the two atmospheric parameters are the

main cause of nonlinearities in the forward model.

As a result, a linearized model was developed to approximate the nonlinear radia-

tive transfer forward model. In this research, it is used to simplify the method of the

likelihood informed subspace for this particular problem. This is described in detail

in Chapter 3. The linear model can also be applied in other ways. In a multifidelity

approach to MCMC, it is used as the first pass in a delayed acceptance scheme. It

can also be used to generate computationally efficient approximations of the forward

model in a general context.

It is important to note that this linearization is not used to replace the forward

model entirely. It is simply used to enhance parts of other methods using this ad-

ditional model of lower fidelity. We are still interested in implementing a Bayesian

algorithm for a nonlinear problem.

To create the linear model, regression with various forms of regularization were
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considered, including linear least squares, Ridge, and LASSO regression. LASSO

regression was chosen because the regularization term in the objective drives many

of the coefficients to zero, resulting in a sparse linear operator matrix [14].

2.4.1 LASSO Regression

To perform the regression, samples 𝑥(𝑖) are drawn from the prior distribution. The

corresponding samples 𝑦(𝑖) are generated by running the parameter samples through

the forward model and adding noise.

𝑦(𝑖) = 𝑓(𝑥(𝑖)) + 𝜖(𝑖), 𝑖 = 1 . . . 𝑁, (2.6)

where 𝜖(𝑖) ∼ 𝑁(0,Γ𝑜𝑏𝑠). These samples are divided into two random sets of 25000

training samples and 5000 test samples.

The samples are first scaled to zero mean and unit variance

�̃�(𝑖) =
𝑥(𝑖) − 𝜇𝑥

𝜎𝑥
, 𝑦(𝑖) =

𝑦(𝑖) − 𝜇𝑦

𝜎𝑦
(2.7)

where 𝜇𝑥 ∈ R𝑚 is the mean of the training samples, 𝜎𝑥 ∈ R𝑚 is the square root of the

variance, and 𝜇𝑦 ∈ R𝑛 and 𝜎𝑦 ∈ R𝑛 are the corresponding mean and variance for the

radiance training samples. In the remote sensing problem, the parameter dimension

is 𝑚 = 427 and the dimension of the data is 𝑛 = 425.

In a general sense, we seek a linear operator 𝐺 to approximate the forward model

𝑓(𝑥) ≈ 𝐺𝑥. Regression is performed separately for each of the 𝑛 radiances. Using

the scaled samples, the objective function for the scaled operator �̃� is given by

�̃�𝑖 = arg min
𝜑

⃦⃦⃦
𝑦(𝑖) − 𝜑⊤�̃�(𝑖)

⃦⃦⃦2

2
+ 𝜆‖𝜑‖1 , 𝑖 = 1 . . . 𝑛, (2.8)

where 𝜆 is the regularization parameter and �̃� = [�̃�1 . . . �̃�𝑛].

The linear operator �̃� is computed using these scaled samples and the scaled

predicted radiance is ˆ̃𝑦 = �̃��̃�. The predicted radiance in canonical units using this
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linear operator is

𝑦 = 𝜎𝑦�̃�𝜎
−1
𝑥 (𝑥− 𝜇𝑥) + 𝜇𝑦. (2.9)

2.4.2 Tuning the Regularization Parameter

The regularization parameter 𝜆 was tuned by analyzing the error from the regression.

The training error is defined to be the mean squared error of the training samples

and the predicted samples,

𝜖𝑡𝑟𝑎𝑖𝑛 =
1

𝑁𝑡𝑟𝑎𝑖𝑛

𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=0

⃦⃦⃦
𝑦(𝑖) − �̃��̃�(𝑖)

⃦⃦⃦2

. (2.10)

Similarly, the generalization error is defined using the test samples,

𝜖𝑔𝑒𝑛 =
1

𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡∑︁
𝑖=0

⃦⃦⃦
𝑦
(𝑖)
𝑡𝑒𝑠𝑡 − �̃��̃�

(𝑖)
𝑡𝑒𝑠𝑡

⃦⃦⃦2

. (2.11)

The regularization parameter was tuned by repeating the regression using sev-

eral parameters ranging from 10−5 to 100 and analyzing the generalization error. In

general, the generalization error was lowest for orders of magnitude around 10−3 and

10−2 for all 𝑛 radiances, with very little variation in this range of 𝜆. The value of

𝜆 = 10−3 was therefore chosen from this analysis.

The final values of training and generalization error are plotted in Figure 2-3. Since

the variables are scaled, the error can be interpreted as a percent. The generalization

error is below 10 percent for much of the radiances, which is acceptable. However,

there are regions where the error is more significant, such as around 1000 nm and

around the deep water spectra at 1500 and 2000 nm. This is expected to be caused

by the nonlinearities from the atmospheric parameters that are unable to be captured

by a linear model.

Figure 2-4 compares the linearized model with the nonlinear radiative transfer

model for a sample parameter "truth". For this particular example, the radiance

prediction is very close to the nonlinear model.
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Figure 2-3: Errors in LASSO regression

Figure 2-4: Comparison of linear and nonlinear forward models
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2.4.3 Linear Operator

The structure of the linear operator �̃� obtained from LASSO regression is significant

in understanding the remote sensing problem. The sparsity plot is shown in Figure 2-

5. The horizontal axis is the index of the 𝑚 = 427 parameters and the vertical axis

corresponds to the 𝑛 = 425 radiances. The points corresponding to the atmospheric

parameters and are circled in red.

The structure of �̃� is consistent with the qualitative features of the forward model

that are known. Except for the rows around index 200 and 300, which represent

the deep water spectra, the banded structure suggests that radiances are mainly

affected by parameters close in wavelength, which is consistent with the physical

interpretation. Apart from small scattering effects in the atmosphere, we would not

expect much mixing across wavelength channels, especially those that are far apart.

The two atmospheric parameters influence most of the radiances across the entire

spectrum, which also adheres to the physical interpretation of reflectances travelling

through the atmosphere to reach the instrument.

Analyzing the structure not only reinforces our understanding of the forward

model, but it also allows exploitation of the most prominent features. For exam-

ple, the sparse nature of the matrix allows for fast approximations of the forward

model when used in methods such as multifidelity MCMC while retaining the key

features of the forward model.
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Figure 2-5: Sparsity plot of the linear operator
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Chapter 3

Dimension reduction using the

likelihood informed subspace

The high dimensionality of the remote sensing problem poses a challenge for the

Bayesian approach. A reduction in the number of parameters can significantly in-

crease the sampling efficiency of MCMC. T. Cui et al [3] proposes a method for di-

mension reduction for such inverse problems using the likelihood informed subspace.

This subspace can be defined in either the parameter space or the data space [9] [6].

We focus mainly on parameter space dimension reduction so that we can sample the

posterior parameters using MCMC.

In this section, the likelihood informed subspace (LIS) is introduced along with its

integration with the MCMC algorithm. The performance of the LIS is evaluated using

metrics for both the posterior mean and covariance. Finally, dimension reduction in

the data space is discussed.

3.1 Parameter Space Dimension Reduction

We first present a conceptual overview of the likelihood informed subspace applied

to the parameter space. Then we describe the general methodology of parameter

space dimension reduction for nonlinear inverse problems, followed by a gradient-free

approach using a linearized forward model.
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3.1.1 Overview

The idea of the likelihood informed subspace is to determine a subspace in which the

data is more informed than the prior. This is most prominent when the prior-to-

posterior update has a low-rank structure. Generally, the variance of the posterior is

reduced with respect to the prior after the data is observed because the information

gained from the observation reduces the uncertainty in the parameters. However, the

amount of variance reduction differs in each direction of the parameter space. The

likelihood informed subspace captures the directions with the greatest reduction in

variance. This concept is visually depicted in Figure 3-1.

Figure 3-1: Visualization of the likelihood informed subspace

The parameter space can be split into the likelihood informed subspace, denoted

by 𝑋𝑟, and the complementary subspace, denoted by 𝑋⊥. The likelihood informed

subspace contains the directions that are most informed by the data. The low-rank

prior-to-posterior update affects the variance in these directions the most. In the

complementary subspace, the posterior remains largely unchanged from the prior.

When applied to a posterior sampling method, the idea is to divide the parameter

space in this way so that sampling only needs to be performed in the low-dimensional
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likelihood-informed subspace 𝑋𝑟. Since the posterior in the directions of the comple-

mentary subspace remain approximately equal to the prior, the samples for 𝑋⊥ can

simply be drawn from the prior distribution.

3.1.2 Construction of the Subspace

Consider the following Rayleigh ratio involving the Fisher information matrix 𝐻(𝑥) =

∇𝑓(𝑥)⊤Γ−1
𝑜𝑏𝑠∇𝑓(𝑥) and the prior precision matrix,

𝑅(𝑥) =
𝑥⊤𝐻(𝑥)𝑥

𝑥⊤Γ−1
𝑝𝑟 𝑥

. (3.1)

The numerator is a measure of information gained from the observation in the 𝑥 di-

rection of the parameter space. This Rayleigh ratio provides a quantitative valuation

of the information gained from the data relative to the prior. The likelihood informed

subspace aims to determine the directions in which this Rayleigh quotient is max-

imized, which maximizes the information gained through observing the data. This

concept arises in the form of a generalized eigenvalue problem that involves 𝐻(𝑥) and

Γ−1
𝑝𝑟 .

The likelihood informed subspace is constructed using the eigenvectors of a gener-

alized eigenvalue problem involving the prior and observation noise covariances. For

the nonlinear case, the local generalized eigenvalue problem is given by

𝐻(𝑥)𝜑𝑖 = 𝜆𝑖Γ
−1
𝑝𝑟 𝜑𝑖, (3.2)

where 𝐻(𝑥) is the Hessian of the data misfit function at 𝑥 and is equivalent to the

Fisher information matrix. The rank-𝑟 local LIS basis is defined using the first 𝑟

eigenvectors 𝑣𝑖.

The eigenvectors 𝑣𝑖 corresponding to the largest eigenvalues represent the direc-

tions of the parameters in which the data is most informative in determining the

parameters relative to the prior. In other words, most of the information from the

data is captured in the first 𝑟 directions of the parameter space.
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Since the Hessian varies over 𝑥, the average Hessian over the parameter space is

required to construct a global subspace. For this method, the average is computed

by taking the expectation of the Hessian over a set of posterior samples {𝑥(𝑘)}, 𝑘 =

1 . . .𝑀 . This is done by first approximating the local Hessian at each posterior sample

𝑥(𝑘) by writing it as an eigendecomposition truncated at some 𝐿(𝑘),

𝐻(𝑥(𝑘)) ≈
𝐿(𝑘)∑︁
𝑖=1

�̄�
(𝑘)
𝑖 𝑣

(𝑘)
𝑖 𝑣

(𝑘)
𝑖

⊤. (3.3)

The global Hessian is then computed using Monte Carlo over the approximate local

Hessian.

The eigenvalue problem for the global likelihood informed subspace becomes

(︂
1

𝑀

𝑀∑︁
𝑘=1

𝐿(𝑘)∑︁
𝑖=1

�̄�
(𝑘)
𝑖 𝑣

(𝑘)
𝑖 𝑣

(𝑘)
𝑖

⊤
)︂
𝜑𝑗 = 𝜆𝑗Γ

−1
𝑝𝑟 𝜑𝑗. (3.4)

The global LIS basis is given by Φ𝑟 = [𝜑1, . . . , 𝜑𝑟]. The complementary basis is given

by Φ⊥ = [𝜑𝑟+1, . . . , 𝜑𝑚]. We also define the matrices Θ𝑟 = Γ−1
𝑝𝑟 Φ𝑟 and Θ⊥ = Γ−1

𝑝𝑟 Φ⊥

that are used to transform the parameters from the canonical parameter space to the

respective subspaces.

3.1.3 MCMC Sampling in the Low Dimensional LIS

Given the basis for the likelihood informed subspace, the next step is to allow MCMC

to sample within this low-dimensional subspace of the parameter space. The param-

eters 𝑥 can be split into the LIS and complementary components using the projector

Π𝑟 = Φ𝑟Θ
⊤
𝑟 .

𝑥 = Π𝑟𝑥+ (𝐼 − Π𝑟)𝑥 (3.5)
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The matrices Θ𝑟 and Θ⊥ are used to represent 𝑥 in the lower-dimensional LIS and

complementary coordinates.

𝑥𝑟 = Θ⊤
𝑟 𝑥, 𝑥⊥ = Θ⊤

⊥𝑥 (3.6)

The matrices Φ𝑟 and Φ⊥ transform these parameters back to the original parameter

space. Equation 3.5 can also have the form

𝑥 = Φ𝑟𝑥𝑟 + Φ⊥𝑥⊥ (3.7)

The prior can be written as a product of the priors in the LIS and complementary

components.

𝜋(𝑥) = 𝜋𝑟(𝑥𝑟)𝜋⊥(𝑥⊥) (3.8)

The posterior distribution can be approximated using the likelihood conditioned on

the parameters in the low dimensional subspace instead of the full parameter space.

�̃�(𝑥|𝑦) ∝ 𝜋(𝑦|𝑥𝑟)𝜋(𝑥) = 𝜋(𝑦|𝑥𝑟)𝜋𝑟(𝑥𝑟)𝜋⊥(𝑥⊥) (3.9)

The LIS parameters 𝑥𝑟 can then be sampled from the low rank posterior, and the

parameters in the complementary subspace, 𝑥⊥ are sampled from the complement

prior.

𝑥𝑟 ∼ �̃�(𝑥𝑟|𝑦) ∝ 𝜋(𝑦|𝑥𝑟)𝜋𝑟(𝑥𝑟) (3.10)

𝑥⊥ ∼ 𝜋⊥(𝑥⊥). (3.11)

The full rank posterior samples are simply the sum of these two components trans-

formed back to the original parameter space, as written in Equation 3.8.

In this way, MCMC sampling is only performed on 𝑥𝑟, which has dimension 𝑟

instead of 𝑚. Depending on the choice of 𝑟, this can have a significant effect on the
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sampling efficiency.

The process of implementing MCMC using the likelihood informed subspace is

described in Algorithm 2. In practice, the samples are centered at the beginning of

each MCMC chain to be equal to zero in the parameter space.

Algorithm 2: MCMC in the likelihood informed subspace

Initialize posterior sample set 𝒳 (1)
𝑟 = {𝑥(0)}, 𝑥(0) = 𝑥𝑚𝑎𝑝

Initialize complementary sample set 𝒳 (1)
⊥

for 𝑗 = 1, . . . , 𝐽 do

Construct global LIS basis over 𝒳 (𝑗)
𝑟 and obtain Φ𝑟, Φ⊥, Θ𝑟

Run 𝐿(𝑗) samples of MCMC chain, {𝑥(1)𝑟 , . . . , 𝑥
(𝐿(𝑗))
𝑟 }

Update posterior sample set, 𝒳 (𝑗+1)
𝑟 = 𝒳 (𝑗)

𝑟 ∪ {Φ𝑟𝑥
(1)
𝑟 , . . . ,Φ𝑟𝑥

(𝐿(𝑗))
𝑟 }

Obtain 𝐿(𝑗) samples from the complement prior, {𝑥(1)⊥ , . . . , 𝑥
(𝐿(𝑗))
⊥ }

Update complementary sample set,

𝒳 (𝑗+1)
⊥ = 𝒳 (𝑗)

⊥ ∪ {Φ⊥𝑥
(1)
⊥ , . . . ,Φ⊥𝑥

(𝐿(𝑗))
⊥ }

The set of posterior samples in the original parameter space is the element-wise

sum of the sets 𝒳 (𝐽)
𝑟 and 𝒳 (𝐽)

⊥ .

3.2 LIS using the linearized model

The construction of the likelihood informed subspace can be simplified if the forward

model is linear. A linear model eliminates the need for local gradients of the forward

model. Furthermore, the process of MCMC sampling within the LIS can be simplified

since samples from the posterior are no longer required to determine the LIS basis.

This can be exploited in our remote sensing problem given the relatively good fit of

the linear model, as determined in Chapter 2.

If the forward model is linear, 𝑓(𝑥) = 𝐺𝑥, the Hessian simplifies to a constant for

all 𝑥,

𝐻 = 𝐺⊤Γ−1
𝑜𝑏𝑠𝐺. (3.12)
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Figure 3-2: Eigenvalue decay for the LIS eigenvalue problem

The generalized eigenvalue problem can then be written as

𝐺⊤Γ−1
𝑜𝑏𝑠𝐺𝜑𝑖 = 𝜆𝑖Γ

−1
𝑝𝑟 𝜑𝑖. (3.13)

Unlike for the general case, this eigenvalue problem only needs to be solved once since

it is not a function of 𝑥. The resulting basis given by Φ𝑟 = [𝜑1 . . . 𝜑𝑟] is the global LIS

basis. Figure 3-2 plots the eigenvalue decay for our remote sensing problem using the

linearized model.

Obtaining a global basis using the linearized model greatly simplifies the im-

plementation of MCMC in the likelihood informed subspace. This is described in

Algorithm 3.

37



Algorithm 3: MCMC in the LIS obtained from the linear model
1. Solve generalized eigenvalue problem, obtain matrices Φ𝑟, Φ⊥, Θ𝑟

2. Initialize MCMC chain 𝑥(0)𝑟 = Θ⊤
𝑟 𝑥𝑚𝑎𝑝

3. Run 𝑁𝑠𝑎𝑚𝑝 samples of the MCMC chain, {𝑥(1)𝑟 , . . . , 𝑥
(𝑁𝑠𝑎𝑚𝑝)
𝑟 }

4. Obtain 𝑁𝑠𝑎𝑚𝑝 samples from the complement prior, {𝑥(1)⊥ , . . . , 𝑥
(𝑁𝑠𝑎𝑚𝑝)
⊥ }

5. Project back to the full-dimensional parameter space

𝑥(𝑖) = Φ𝑟𝑥
(𝑖)
𝑟 + Φ⊥𝑥

(𝑖)
⊥ , 𝑖 = 1, . . . , 𝑁𝑠𝑎𝑚𝑝

For this problem, we exploit the property of the forward model that it is mostly

linear save for the two atmospheric parameters. Instead of computing local linear

approximations of the gradients of the forward model, we use the global linear ap-

proximation of the forward model gradient. There are two main benefits to doing

this.

• Since the eigenvalue problem produces a global basis for the likelihood informed

subspace, the construction of this basis can be treated as a preprocessing step.

Once the basis is computed, only one single MCMC chain is required to obtain

all posterior samples. The basis does not need to be reconstructed based on

newly obtained posterior samples.

• The resulting method for MCMC in the likelihood informed subspace is a

gradient-free method. This is useful when gradients of the forward model are

unavailable or expensive to compute.

3.3 Evaluating the posterior from LIS

The optimality of the likelihood informed subspace for the linear Gaussian case is

proven in [12]. Although the linear model in the remote sensing problem is only used

to determine the subspace and not directly used to determine the posterior, this sec-

tion investigates the case for which the posterior mean and covariance are computed

with the linear model using Equations 1.3 and 1.4. This is done to demonstrate

38



the improvement of the likelihood informed subspace over the common method of

principal component analysis (PCA). The linear Gaussian assumption does not apply

to remote sensing application because the nonlinear model leads to a non-Gaussian

posterior distribution.

For the linear Gaussian case, the posterior covariance can be computed as a low-

rank update to the prior. Using the notation in Equation 3.13, the analytical expres-

sion for the rank-𝑟 posterior covariance is

Γ𝐿𝐼𝑆
𝑝𝑜𝑠 = Γ𝑝𝑟 −

𝑟∑︁
𝑖=1

𝜆𝑖
𝜆𝑖 + 1

𝜑𝑖𝜑
⊤
𝑖 . (3.14)

For a rank-zero subspace, the posterior is equal to the prior. As more directions are

added in the subspace, the variance in those directions are reduced from prior to

posterior given the data.

We compare the performance of LIS and PCA for a sequence of subspace dimen-

sions with respect to the full dimensional posterior. The main difference between

PCA and LIS is that while PCA identifies the principal directions of the parameter

space, LIS identifies the directions in the parameter space that are most informed by

the data, which leads to an improved posterior. The eigenvalue problem for PCA is

set up such that the construction of the posterior covariance has the same form.

(︀
Γ𝑝𝑟 − Γ𝑝𝑜𝑠

)︀
𝑤𝑖 = 𝛾𝑖𝑤𝑖 (3.15)

The regular eigenvalue problem for PCA only involves the prior and posterior

covariances and does not include the observation noise covariance. The eigenvalues

are plotted in Figure 3-3.

Using PCA, the rank-𝑟 posterior covariance is

Γ𝑃𝐶𝐴
𝑝𝑜𝑠 = Γ𝑝𝑟 −

𝑟∑︁
𝑖=1

𝛾𝑖𝑤𝑖𝑤
⊤
𝑖 . (3.16)

The low-rank posterior covariance is then used to determine the posterior mean
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Figure 3-3: Eigenvalue decay of the parameter space PCA problem

given an instance of the data.

𝜇𝐿𝐼𝑆
𝑝𝑜𝑠 = Γ𝐿𝐼𝑆

𝑝𝑜𝑠 (𝐺⊤Γ−1
𝑜𝑏𝑠𝑦 + Γ−1

𝑝𝑟 𝜇𝑝𝑟) (3.17)

𝜇𝑃𝐶𝐴
𝑝𝑜𝑠 = Γ𝑃𝐶𝐴

𝑝𝑜𝑠 (𝐺⊤Γ−1
𝑜𝑏𝑠𝑦 + Γ−1

𝑝𝑟 𝜇𝑝𝑟) (3.18)

3.3.1 Posterior covariance

To demonstrate the improvement of LIS over PCA, we first compare the posterior

covariance computed using the both low-rank subspaces with the full-rank posterior

covariance as determined in Equation 1.4. We use the Forstner distance metric, which

is a measure of similarity in the class of symmetric positive definite matrices.

Given two covariance matrices Γ𝐴 and Γ𝐵, let (𝜎𝑖) be the sequence of eigenvalues

in the generalized eigenvalue problem

Γ𝐴𝑧𝑖 = 𝜎𝑖Γ𝐵𝑧𝑖. (3.19)
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Figure 3-4: Forstner distance in posterior covariance for the parameter space

The Forstner distance is defined to be

𝑑ℱ(Γ𝐴,Γ𝐵) =

√︃∑︁
𝑖

ln2(𝜎𝑖). (3.20)

The comparison of the posterior covariance determined from the low-dimensional

subspace and the full-dimensional posterior covariance is displayed in Figure 3-4 for

dimensions 5 to 250. The error in posterior covariance computed in the likelihood

informed subspace is consistently lower than in PCA.

3.3.2 Posterior mean

The performance of the low-rank posterior mean can be evaluated using the Bayes

risk, which is the expected value of some loss function over the posterior. In this

case, we define the loss function with respect to the true parameter 𝑥 weighted by

the posterior precision matrix. This is done so that a larger absolute difference in the

two posterior means does not indicate a larger error if the covariance is also large.
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Figure 3-5: Bayes risk in posterior mean for the parameter space

We use the following expression for Bayes risk,

𝑅(𝜇𝑟
𝑝𝑜𝑠, 𝑥) = E𝑦

[︀
(𝜇𝑟

𝑝𝑜𝑠(𝑦) − 𝑥)⊤Γ−1
𝑝𝑜𝑠(𝜇

𝑟
𝑝𝑜𝑠(𝑦) − 𝑥)

]︀
, (3.21)

where 𝜇𝑟
𝑝𝑜𝑠 is the low-rank posterior mean obtained from either LIS or PCA and 𝑥

is the true parameter used to generate the data 𝑦. The data points were generated

in the same way as the training and test samples in Chapter 2. The parameters 𝑥(𝑖)

are sampled from the prior, and the data 𝑦(𝑖) are obtained by running the parameters

through the forward model and adding noise.

The comparison of posterior means using Bayes risk is shown in Figure 3-5. Com-

puting the posterior in the LIS subspace results in lower error up to a dimension of

around 200. Note that since the posterior mean determined in the low-rank subspace

is being compared to the truth instead of the full-rank subspace, the error does not

approach zero as the dimension reaches full rank.

These plots demonstrate the effectiveness of the likelihood informed subspace

at capturing the important information pertaining to the posterior within a low-
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dimensional subspace. The LIS requires less dimensions, which is much more benefi-

cial in terms of sampling efficiency. Although this study was only done for the linear

Gaussian case, the idea can be extended to a nonlinear problem such as the remote

sensing problem.

3.4 Data Space Dimension Reduction

When applied to the parameter space, the likelihood informed subspace allows for

more efficient posterior sampling. This method can also be applied to the data space

for other applications such as data compression. In this section, we construct the

likelihood informed subspace in the data space and evaluate its performance when

used to calculate the posterior mean and covariance. For simplicity, this is done only

for the linear Gaussian case using the linearized forward model 𝐺.

In the data space, we solve a generalized eigenvalue problem that is the dual of the

parameter space problem [9] [6]. The eigenvalues are identical, but the eigenvectors

are the directions of the data space in which the data are most informative to the

parameters. The eigenvalue problem is given by

Γ𝑦𝜓𝑖 = 𝜆*𝑖 Γ𝑜𝑏𝑠𝜓𝑖, (3.22)

where Γ𝑦 = 𝐺Γ𝑝𝑟𝐺
⊤ + Γ𝑜𝑏𝑠 is the marginal covariance of the data. The rank-𝑟 LIS

basis for the data space is given by Ψ𝑟 = [𝜓1 . . . 𝜓𝑟]. Note that 𝜆*𝑖 = 𝜆𝑖 + 1 in

this particular problem setup. If we take the eigenvalue pencil (𝐺Γ𝑝𝑟𝐺
⊤,Γ𝑜𝑏𝑠), the

eigenvalues would be (𝜆𝑖).

We again compare the likelihood informed subspace to principal component anal-

ysis in the data space. PCA in the data space involves the regular eigenvalue problem

using the marginal covariance of the data

Γ𝑦�̄�𝑖 = 𝛾𝑖�̄�𝑖, (3.23)

where the bar denotes the data space as opposed to the parameter space. The PCA
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Figure 3-6: Eigenvalue decay of the data space PCA problem

basis in the data space is �̄�𝑟 = [�̄�1 . . . �̄�𝑟]. The eigenvalues are plotted in Figure 3-6.

Given the basis of the subspace, the rank-𝑛 model 𝑦 = 𝐺𝑥 + 𝜖 can be projected

onto the rank-𝑟 subspace. This is demonstrated using the LIS basis Ψ𝑟 and is repeated

for the PCA basis �̄�𝑟. The rank-𝑟 model is

𝑦𝑟 = 𝐺𝑟𝑥+ 𝜖𝑟, (3.24)

where 𝑦𝑟 = Ψ⊤
𝑟 𝑦, 𝐺𝑟 = Ψ⊤

𝑟 𝐺, and 𝜖𝑟 = Ψ⊤
𝑟 𝜖. Note that the forward model becomes

Ψ⊤
𝑟 𝐺 and the observation noise covariance becomes Γ𝑜𝑏𝑠,𝑟 = Ψ⊤

𝑟 Γ𝑜𝑏𝑠Ψ𝑟. The matrices

involving the parameters are unchanged. The posterior covariance obtained using LIS

is then

Γ𝐿𝐼𝑆
𝑝𝑜𝑠 =

(︀
𝐺𝑟Γ𝑜𝑏𝑠,𝑟𝐺

⊤
𝑟 + Γ−1

𝑝𝑟

)︀−1
=

[︀
(Ψ⊤

𝑟 𝐺) (Ψ⊤
𝑟 Γ𝑜𝑏𝑠Ψ𝑟) (Ψ⊤

𝑟 𝐺)⊤ + Γ−1
𝑝𝑟

]︀−1
. (3.25)

The posterior mean is computed using the posterior covariance as in the parameter,

but now with the low-rank forward model and observation noise covariance.

𝜇𝐿𝐼𝑆
𝑝𝑜𝑠 = Γ𝐿𝐼𝑆

𝑝𝑜𝑠 (𝐺⊤
𝑟 Γ−1

𝑜𝑏𝑠,𝑟𝑦 + Γ−1
𝑝𝑟 𝜇𝑝𝑟) (3.26)
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Figure 3-7: Forstner distance in posterior covariance for the data space

3.4.1 Evaluating the Posterior in the Low-Rank Data Space

A comparison of the posterior mean and covariance determined from the low-rank data

subspaces was performed in the same way as for the parameter space. The Forstner

distance is used to measure the error between the low-rank posterior covariance with

respect to the full-dimensional covariance. The Bayes risk is used to quantify the

error between the low-rank posterior mean and the true parameters used to generate

the data. These plots are shown for up to dimension 400 in Figures 3-7 and 3-8.

The error in posterior covariance obtained using the likelihood informed subspace

decreases much more rapidly than for PCA. In PCA, more of the information impor-

tant in determining the posterior covariance is concentrated in the later dimensions.

The Bayes risk in posterior mean from data space dimension reduction follows a

similar pattern to parameter space dimension reduction. For the data space, the red

LIS curve flattens out at rank 250, approaching a minimum error. The PCA curve

does not reach this point until rank 400.
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Figure 3-8: Bayes risk in posterior mean for the data space
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Chapter 4

Numerical Results

This chapter presents the results of implementing MCMC using the likelihood in-

formed subspace for the given remote sensing problem. The likelihood informed sub-

space was obtained using the linear model. MCMC was implemented in this subspace

using the nonlinear forward model.

Most of the results in this chapter are for one specific run of MCMC. The obser-

vation was generated by running a fixed "true" state through the forward model and

adding noise. This true state was defined to be the concatenation of the reflectance

spectrum of the Petunia flower, obtained from the USGS Spectral Library Version

71, and the atmospheric parameters 𝑥𝐴𝑂𝐷 = 0.05, and 𝑥𝐻2𝑂 = 2.5. The chain was

initialized at the true state, and the Adaptive Metropolis algorithm was executed for

𝑁 = 6×106 samples. The first 4 million samples were discarded as burn-in to account

for the non-stationarity of the first half of the chain. The dimension of the likelihood

informed subspace is 100 unless specified otherwise.

We highlight several key benefits of this method over existing methods. Overall,

the posterior mean is similar to those retrieved from existing remote sensing methods.

However, much more information about the posterior structure is obtained. Further-

more, by implementing MCMC using the LIS, sampling efficiency is significantly

increased.

1https://pubs.er.usgs.gov/publication/ds1035
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4.1 MCMC Diagnostics

It is crucial to first check the diagnostics of the MCMC algorithm before analyzing

the results. If MCMC does not mix well, for example, no conclusions can be made

from the posterior samples until enough samples are included in the chain. Note

that satisfactory diagnostics do not directly imply good mixing. They only indicate

whether the mixing is poor.

4.1.1 Trace

The 1D trace of the MCMC samples throughout the chain is a visual indicator of sta-

tionarity. The samples should only be extracted from the stationary region after the

transient part of the chain. For this multi-dimensional problem, the trace of several

parameters are plotted in Figure 4-1. The chain appears to become stationary after

approximately 1 million samples, so the burn-in of 4 million is more than sufficient

to account for the transient region.

4.1.2 Log Posterior

The log posterior serves the same purpose as the trace plots, but summarizes the

results of all parameters into a scalar value. Figure 4-2 plots the log posterior for

this MCMC chain. This further confirms that the chain becomes stationary after 1

million samples.

4.1.3 Autocorrelation

Samples in the MCMC chain are not completely independent from each other. The

autocorrelation quantifies the correlation of each parameter with itself at different

time lags as a measure of dependence. It is also an indicator of sampling efficiency.

An autocorrelation that decays slowly suggests poor mixing and many more samples

are required to achieve the same result as a chain with quick autocorrelation decay.
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Figure 4-1: Trace plot of MCMC for LIS

Figure 4-2: Log posterior plot of MCMC for LIS
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Figure 4-3: Effect of LIS on MCMC autocorrelation

Numerically, the autocorrelation of parameter 𝑋 at lag 𝑘 is given by

𝜌𝑘 =

∑︀𝑁−𝑘
𝑖=1 (𝑋𝑖 − �̄�)(𝑋𝑖+𝑘 − �̄�)∑︀𝑁

𝑖=1(𝑋𝑖 − �̄�)2
, (4.1)

where �̄� is the sample mean of 𝑋. The numerator is the covariance of the parameter

with itself at 𝑘 steps ahead in the chain. The denominator is the variance of the

parameter.

Autocorrelation of the parameters for three different wavelengths across the spec-

trum are plotted in Figure 4-3 for the case with a rank-100 LIS and with MCMC

in the full parameter space with no change of basis. There are two main takeaways

from this series of plots. The first is that for the LIS case with dimension 100, the

autocorrelation decays almost instantly, which is an indicator of satisfactory mixing

in a qualitative sense. The samples are able to cover more of the parameter space

throughout the chain and the results from the MCMC posterior can be trusted to a

higher degree.

The second takeaway is the difference in autocorrelation decay from sampling in

the low-dimensional subspace compared to sampling in the full-rank parameter space.

In the full-rank space, the autocorrelation does not decay until a lag greater than 2000.

This is a significant result because if a reduction in dimension from 427 to 100 leads

to such a great difference in autocorrelation decay, an originally non-tractable high-

dimensional problem can potentially be turned into a tractable one using this method

of dimension reduction.
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Table 4.1: Effective Sample Size
Wavelength LIS No LIS

977.9 nm 2274809 6776
1629.03 nm 269286 3521
2430.41 nm 2978107 5723

4.1.4 Effective Sample Size

Given the autocorrelation, we can compute the effective sample size (ESS), which

an estimate of the true number of samples as if they were independent. The ESS is

inversely proportional to the integral of autocorrelation over all lag,

𝐸𝑆𝑆 =
𝑁

1 + 2
∑︀∞

𝑘=1 𝜌𝑘
. (4.2)

For the three wavelengths in Figure 4-3, the effective sample sizes for the LIS and no

LIS cases are shown in Table 4.1.4. The number of independent samples is increased

by at least two orders of magnitude with LIS. Without LIS, less than 0.1% of the sam-

ples are independent. Many more samples would be required, which renders MCMC

computationally intractable in the canonical parameter space for this problem.

4.2 Posterior comparison

The ultimate goal of the remote sensing problem is to output a surface reflectance

that can then be analyzed for biological and geological purposes. Figure 4-4 plots

the surface reflectance component of the posterior mean obtained from the MAP

estimate through Isofit and from MCMC. The MCMC posterior mean is very close to

the MAP estimate and both are close to the truth with less than 10% error throughout

the spectrum.

Figure 4-5 plots the atmospheric component of the posterior mean. The MCMC

mean is close to the MAP estimate but both are far from the truth. The relative

error in the AOD parameter is around 100%. In the remote sensing community, this

difference is not considered too large.
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Figure 4-4: Comparison of posterior mean - surface reflectance

Figure 4-5: Comparison of posterior mean - atmospheric parameters
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Figure 4-6: Comparison of posterior marginal variance - surface reflectance

The marginal posterior variance is plotted in Figure 4-6 for the surface parameters

and in Figure 4-7 for the atmospheric parameters. The marginal prior variance is also

plotted to highlight the variance reduction from prior to posterior given the data.

For the surface reflectances, the Laplace approximation and the MCMC posterior

have marginal variances greatly reduced from the prior. They are approximately on

the same order of magnitude. The MCMC posterior has especially low variance in

the region just above 500 nm.

The atmospheric parameters demonstrate a greater difference between the Laplace

approximation and the MCMC posterior, specifically for the AOD parameter. From

experience with remote sensing problems, we know that the AOD parameter is difficult

to estimate in general. This large uncertainty is reflected in the MCMC posterior but

not in the Laplace approximation. While the Laplace approximation predicts a large

drop in variance from the prior, MCMC posterior variance is approximately equal to

the prior variance. This result highlights the benefit of using a Bayesian approach

for this problem. By locally linearizing the Jacobian at the MAP estimate, Laplace

approximation can significantly underestimate the variance. However, to understand

these plots further, we need to examine the structure of the posterior.

Figure 4-8 plots the samples obtained from MCMC as well as the sample mean
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Figure 4-7: Comparison of posterior marginal variance - atmospheric parameters

Figure 4-8: 2D marginal plots of the posterior samples

and covariance. This is compared with the MAP estimate and Laplace approximation

obtained from Isofit. A point of observation is that while the Laplace approximation

predicts correlations between parameters for all three cases, the parameters are only

correlated when the wavelengths are close together for the MCMC posterior. Al-

though this correlation structure is what is intuitively expected from the retrieval, no

conclusions can be drawn from this qualitative observation.
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Figure 4-9: Contour plot of posterior samples at 𝑟 = 100

4.3 Dimensions of LIS

To gain a better understanding of the importance of the dimension at which the like-

lihood informed subspace is truncated, the results using subspaces of two different

dimensions are compared. Contour plots of the posterior density are shown for sub-

spaces with ranks 100 and 175 in Figures 4-9 and 4-10. For both cases, the posterior

mean is located near the MAP estimate. Although the posterior mean is slightly

different, the covariance structure is very similar. This suggests that most of the

information is contained within the lower-dimensional subspace and that an extra 75

dimensions does not contribute much to the posterior result.

To compare the sample efficiency, the trace plot for MCMC using the rank-175

subspace in Figure 4-11 can be compared to the plot for the rank-100 in Figure 4-1.

An increase of 75 dimensions causes a sharp decrease in sampling efficiency. Although

some parameters stabilize after 1 million samples, others such as Index 260 are still

transient as the chain approaches 6 million samples. By sampling in a lower dimen-

sional subspace, we are able to increase sampling efficiency by at least sixfold while

retaining most of the important information in the posterior.
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Figure 4-10: Contour plot of posterior samples at 𝑟 = 175

Figure 4-11: Trace plot for MCMC using LIS, 𝑟 = 175

56



Chapter 5

Conclusion

In this thesis, our work on the Earth remote sensing problem is presented. Given

radiance data collected from imaging spectrometers on satellites, the objective of the

remote sensing problem is to infer a set of Earth surface and atmospheric parame-

ters. The current approach for this inverse problem is to perform MAP estimation

and quantify the uncertainty using a Laplace approximation. We improve upon this

method by using a Bayesian approach to better quantify the uncertainty of the re-

trieval and to reveal more of the posterior.

The Bayesian approach consists of performing MCMC in the likelihood informed

subspace. This subspace contains the directions of the parameters space that are

most informed by the data. The performance of this subspace compared to the PCA

benchmark was demonstrated using the Forstner distance and Bayes risk metrics

for posterior mean and covariance in the linear Gaussian case. To eliminate the

need for gradients of the forward model, the linearized radiative transfer model is

used to determine the subspace. The methodology consists of running MCMC in

this low-dimensional subspace and combining with samples from the prior in the

complementary subspace to create a Markov chain in the full parameter space.

Numerical results were obtained for a true state defined to be the reflectance spec-

trum of a Petunia flower with atmospheric parameters 𝑥𝐴𝑂𝐷 = 0.05 and 𝑥𝐻2𝑂 = 2.5.

Six million samples were obtained using the Adaptive Metropolis algorithm. Various

diagnostics were plotted for the implementation with LIS rank 100, with comparisons
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to LIS rank 175 and the case with no LIS. Some of the key results of this investigation

are as follows. Reducing the dimensions four-fold from 427 to 100 increases the ef-

fective sample size by more than two orders of magnitude. The covariance estimated

by MCMC describes the uncertainty of the problem much better than the Laplace

approximation, especially in the highly uncertain atmospheric parameters. When

compared to LIS rank 175, the rank-100 LIS has a noticeable increase in sampling

efficiency while maintaining a very similar posterior structure, which indicates that

most of the information is captured in just 100 dimensions.

5.1 Future Work

Given the current status of the research, future work can be categorized into three

stages. The first stage is to apply the current methodology to more scenarios in terms

of both surface reflectance and atmospheric parameters. The analysis so far has only

been done for the Petunia flower with relatively clear atmospheric conditions. Explor-

ing different surface types such as mineral or aquatic surfaces along with expanding

the range of atmospheric parameter "truths" would be of interest. Since the cur-

rent methodology is expected to perform poorly in these more difficult regions, the

Bayesian approach could be a more significant improvement and reveal even more

about the inferred parameters for such cases.

The second stage is to implement other MCMC algorithms for the same prob-

lem to validate and potentially improve upon the results of Adaptive Metropolis.

These include dimension-independent likelihood informed MCMC [4], gradient-based

MCMC such as MALA [7], and multifidelity approaches to MCMC [11]. The latter

approach involves a delayed acceptance scheme that exploits the computational speed

of the linearized forward model to improve sampling efficiency.

The third stage is to explore applications data compression. This could applied to

goal-oriented problems such as compressing radiance data from satellites when they

need to be transferred or stored in high volumes.
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Appendix A

Additional MCMC results

The figures in the appendix are the results of 5 runs of MCMC with varying rank and

starting point of the chain, using the same setup as described in Chapter 4.

A.1 No LIS (rank 427), initialize chain at truth
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A.2 LIS rank 100, initialize chain at MAP estimate
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A.3 LIS rank 100, initialize chain at truth
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A.4 LIS rank 175, initialize chain at MAP estimate
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A.5 LIS rank 175, initialize chain at truth
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