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Abstract

Asthma is an obstructive pulmonary disorder. It impacts the lives of over 24 mil-
lion individuals in the United States alone, a large segment of which are children.
We propose to investigate capnography as a viable diagnostic modality to guide the
treatment of asthma as an alternative to the gold standard, spirometry. Capnography
shows promise in the detection of similar pulmonary disorders, and would serve as a
noninvasive and effort-independent tool, providing critical information to clinicians
when patients are unable or unwilling to comply with spirometry testing. In this work,
we demonstrate the viability of using features extracted from time-based capnography
to determine underlying patient symptom severity, using logistic regression classifi-
cation models. Applications in both controlled, pulmonary function laboratories and
emergency department triage conditions are explored. We show that for an adult
population undergoing methacholine challenge pulmonary function testing, capnog-
raphy recordings from subjects with asthmatic exacerbation may be distinguished
from their normal/baseline recordings with an AUROC of 0.92 (0.84 – 1.00). Ad-
ditionally, using data from an acute pediatric setting we show that recordings from
subjects with severe asthmatic exacerbation may be distinguished from subjects with
mild or moderate asthma symptoms with an AUROC of 0.86 (0.72 – 1.00).

Thesis Supervisor: Professor Thomas Heldt
Title: Associate Professor of Electrical and Biomedical Engineering
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Chapter 1

Introduction

Asthma is an obstructive disorder of the upper respiratory system. It manifests as

wheezing, difficulty breathing, shortness of breath, and coughing – all symptoms

which may be exacerbated by increased physical activity [1]. As it is a chronic con-

dition, asthma may persist throughout the lifetime of an affected individual and as a

result can reduce the quality of life. Although rare, asthma can even result in death

[2]. In the United States, approximately 24.7 million individuals have asthma as of

2018 [1]. Asthma often manifests early in childhood, and affects some 5.5 million

children in the US [1].

A diagnosis of asthma is usually confirmed by spirometry, a pulmonary function

test that measures whether a patient’s lungs are partially obstructed [3]. This test

is labor-intensive on the part of the patient, and requires that they exhale forcibly

into a measurement device several times. In situations where a patient is unable

or unwilling to comply with the test, it can be difficult for clinicians to adequately

confirm a diagnosis and determine optimal treatment. Due to asthma’s prevalence in

children, pediatric patients are often asked to perform spirometry. When the patient

is in distress, or is simply too small or young to adequately perform the test, getting

a reliable reading can be nearly impossible [3]. This particular problem motivates

the development of diagnostic tools that provide an accurate, alternative method of

measuring lung performance that does not impose such a burden on the patient. A

passive, effort-independent method of determining pulmonary function in these cases
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would substantially increase the amount of information available to clinicians in these

circumstances.

1.1 Thesis Contributions

The goal of this work is to investigate the viability of using time-based capnography

as a diagnostic aid in certain clinical settings, as applied to asthma. We investigate

two clinical settings: a pulmonary function laboratory in which adult subjects are

undergoing methacholine challenge testing to determine whether they have asthma,

and a pediatric emergency department setting in which children are presenting with

asthma symptoms seeking emergent treatment. In both settings, we attempt to iden-

tify features of the time series of exhaled partial pressure of carbon dioxide, termed

the capnogram, taken at various points in testing and/or treatment that correlate

with the documented concurrent patient state.

In Chapters 4 and 5, we show that it is indeed possible to use the information

contained in these time-based capnography recordings to successfully differentiate

between subjects with more severe asthmatic exacerbation from those with no or

minimal symptoms. These investigations serve as confirmation of the viability of

using capnogram features in the development of effort-independent diagnostic tools

to augment the triage and diagnosis of asthma.

1.2 Thesis Structure

This work is divided into six Chapters. Chapter 2 is dedicated to the description

of capnography and its current use in clinical settings relevant to asthma treatment

and diagnosis. Chapter 3 describes the human subjects protocols and associated data

collection for this work, as well as the data preprocessing and annotation necessary

to perform the analysis. Chapter 4 explores three asthma severity classification tasks

using the methacholine challenge pulmonary function testing dataset. Chapter 5

explores classifying asthma symptom severity in a pediatric emergency department

16



triage setting. Finally, Chapter 6 summarizes the results of the classification tasks,

and discusses the challenges encountered over the course of this research. Further, we

speculate as to the next steps and future contributions that may follow this body of

work.
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Chapter 2

Background

2.1 Asthma

Asthma can present as a multitude of symptoms including difficulty breathing, chest

tightness, and coughing caused by airflow obstruction and inflammation [3, 4]. Around

the world, it affects approximately 339 million individuals globally, and more than

24.7 million individuals in the United States [1, 5]. It is estimated that the total cost

of asthma-related healthcare in the United States exceeds $62 billion every year [4].

The disease often presents for the first time in childhood, affecting as many as 1 in

12 children in the United States [1, 3, 4]. For many children diagnosed with asthma,

symptoms cease by early adulthood [6]. Industrialization is implicated in the increase

in prevalence of asthma around the world [6].

Environmental factors such as allergens, active respiratory infection, seasonal al-

lergies, exercise, and airborne contaminants such as tobacco smoke can trigger or

exacerbate symptoms [3]. The typical disease process is, at root, caused by inflam-

mation. In response to environmental stimulus, immune cells enter into the epithelium

of the upper respiratory tract. This infiltration causes inflammation and may cause

excessive mucus secretion, damage to the epithelium, and damage to smooth muscles

that line the airway [3]. These changes to the airway partially obstruct the flow of air

to and from the lungs, which then manifest as dyspnea, cough, wheezing, and tight-

ness in the chest [3, 6]. Over time, these processes can cause permanent remodeling
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or structural alteration of the airway, further worsening symptoms, and reducing the

effectiveness of treatment. [3, 6].

While the symptoms of chronic asthma are often mild, acute asthma can present

as severe bronchospasm that must be treated with bronchodilators [3]. During bron-

chospasm, the bronchi suddenly contract and significantly reduce airflow to the lungs.

Short-acting 𝛽2 agonists, such as albuterol, act as bronchodilators and are delivered

by inhaler, by nebulizer, orally, or intravenously to relieve the symptoms [3]. The

reversibility of airway obstruction/airway hyper-responsiveness with bronchodilators

is considered a distinct feature of asthma that distinguishes it from the symptoms

of other pulmonary disorders such as chronic obstructive pulmonary disease (COPD)

or congestive heart failure (CHF), which present with similar symptom complexes in

adults [3, 7]. As these and other respiratory diseases share symptoms with asthma,

pulmonary performance testing, such as with spirometry, may be used to confirm an

asthma diagnosis.

2.2 Spirometry

In the clinic, the extent to which respiratory performance is diminished is determined

through the use of pulmonary function tests. The test most commonly used, par-

ticularly in the context of asthma diagnosis, is spirometry [3, 7, 8]. Spirometry is

administered using a hand-held flow meter that quantifies the volume of air force-

fully exhaled over a period of time [8]. To appropriately administer spirometry, the

patient must force air out as hard and rapidly as possible, starting from the point

of maximum inhalation [8]. This can be strenuous, and must be repeated multiple

times before the measured value is considered reliable [8]. When a patient is suffering

from a major asthma attack, the test can be all but impossible to perform. Children

under five years of age in most cases cannot perform the test reliably [9, 10]. Spirom-

etry is also inappropriate or unusable for individuals that are unable to understand

or follow instructions [11]. However, the information that spirometry provides in

these circumstances, namely the ability to compare lung performance before and af-
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ter bronchodilator treatment, aids the clinician in determining whether the treatment

was successful and whether asthma was indeed the cause of the patient’s symptoms

and is considered the gold standard for diagnosing asthma [8, 12].

Spirometry measures the volume of air expired over time and a number of di-

agnostically useful parameters can be extracted from this time series. The specific

parameters that clinicians typically use are the forced vital capacity (FVC), the forced

expiratory volume expired in one second (FEV1), and the forced expiratory volume

expired in six seconds (FEV6) [8]. FVC measures the volume of air that is expired

over the course of a full exhalation, starting from a point of effort-induced maxi-

mal inhalation and ending at a maximally forced exhalation [8]. For the purposes

of spirometry, this represents the total volume of air that a patient can exhale. The

FEV1 and FEV6 measure the volume of air that may be exhaled, as rapidly as possi-

ble, by the patient in one or six seconds, respectively, as counted from the beginning of

exhalation [8]. These individual measures and the derived measure FEV1 / FVC are

determined for the patient’s pulmonary state before and after bronchodilator treat-

ment and compared. These measures are also referenced against known normal ranges

for a patient’s age. Again, as asthma is defined by the recovery of pulmonary perfor-

mance post-bronchodilator treatment, a significant improvement in these measures

implicates asthma as the likely underlying disease process.

2.3 Methacholine Challenge

When a clinician would like to definitively determine in a controlled setting whether

a patient has asthma, they may order a bronchial provocation test such as a metha-

choline challenge. This test is performed when the patient is at their baseline, with no

acute symptoms of asthma. During the methacholine challenge, the bronchoconstric-

tor methacholine chloride is used to stimulate a bronchial response and a tightening

of the airways [13].

To complete the methacholine challenge, spirometry is first performed prior to the

administration of the bronchoconstrictor in order to establish a baseline measurement
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of pulmonary performance [13]. Successively more concentrated doses of the bron-

choconstrictor are administered with a diluent (such as saline), up to a maximum

concentration of 16 mg/mL [13]. At each dosage step, the patient repeats the spirom-

etry test. If at any dosage, up to the maximum dose, the patient’s FEV1 volume drops

by more than 20% of their baseline, the patient is considered positive for asthma and

a bronchodilator may be administered to reverse the effects of the methacholine [13].

If the patient’s FEV1 is not diminished by at least 20% at the maximal dosage, they

are considered negative for airway hyper-responsiveness, and thus asthma is ruled out

from the differential diagnosis [13].

2.4 Capnography

Capnography is the measurement of carbon dioxide (CO2) content in the exhaled

breath of a subject [14]. It is expressed as a trace of the partial pressure of CO2

(PCO2), specifically the partial pressure of CO2 in exhaled air (PeCO2), and is con-

ventionally measured in millimeters of mercury (mmHg) [14]. Capnography is useful

for the passive monitoring of patient respiration, such as during surgery or when

a patient is intubated [14]. Modern capnographs use infrared light to measure the

amount of CO2 present by utilizing CO2’s partial absorption of infrared light cen-

tered about the wavelength 4,256 𝜇m [14]. This particular absorption peak is chosen

as water vapor’s absorption of infrared light interferes with that of CO2 at other

wavelengths [14].

Exhaled air is sampled using one of two methods, namely mainstream and sidestream

capnography [15]. Mainstream capnography measures the CO2 content of air directly

as it enters or exits a subject’s mouth or nose [15, 16]. By placing a sensor directly

inline with the airflow, it is also possible to measure the volume flow rate of air, and

thus the total volume of air inhaled and exhaled over a breathing cycle. A mainstream

capnograph’s sensor may be used connected to, or as a part of, a ventilator [15]. In

contrast with mainstream, sidestream capnography instead samples air from the pa-

tient’s breathing line or a nose/mouth cannula using a small pump with a constant
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flow rate [15]. This allows the capnograph’s infrared sensor to sit away from the

patient, connected to the cannula or breathing line by a long, flexible tube.

Figure 2-1: The capnogram of a single exhalation, with Phases I through IV anno-
tated.

Over the course of a single exhalation, the gas content of the exhaled air changes

as air from different parts of the respiratory system reach the point of measurement,

as indicated in Figure 2-1. From a normal physiological perspective, the ambient air

contains essentially no CO2. Hence, air from the oropharynx and conducting airways

where gas exchange with the blood does not occur has essentially no CO2 content [17].

This air corresponds to that which is measured by the sensor during Phase I in the

Figure. These anatomical structures are often called the anatomical deadspace of

the respiratory system [17]. PeCO2 rapidly rises as air from deeper within the lungs

mixes with air from the deadspace and passes through the sensor, corresponding to

Phase II [17]. The partial pressure of CO2 eventually plateaus at the highest level of

CO2 at Phase III, which provides a measure of the CO2 content of gas from alveoli

deep within the lungs [17]. The final (often also the maximum) value of the plateau

is called end-tidal CO2 (ETCO2) and is a closely-monitored vital sign in critical care

and surgical settings, as it provides information about ventilation performance [16].
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As inspiration begins, the sensor registers a rapid falloff in PCO2 as it is flushed with

inspired, atmospheric air that lacks physiologically significant levels of CO2, shown

during Phase IV in Figure 2-1 [17].

PeCO2 as measured by a capnograph is plotted as a function of time or as a

function of exhaled volume [16]. These traces, and the systems that generate them,

are therefore considered either time-capnography and volume-capnography. The term

capnogram usually refers to the time-based trace of PeCO2 [16]. Mainstream capnog-

raphy is capable of generating plots with respect to both time and volume, when a

flow sensor is present. As sidestream capnographs lack flow sensors, they can only

generate time-based capnograms [16].

2.5 Interpretations of Capnography

Early analysis of the capnogram generally considered the gross features of the shape,

such as the slope of the exhalation onset and the plateau, as well as the curvature

between these segments [17]. Most of the interpretation of the capnogram shape is

qualitative, often looking for intra-patient variations over the course of treatment, or

simply confirming the presence of normal respiration such as during endotracheal tube

placement [14]. Quantitative analysis beyond determining the respiratory rate and

ETCO2 was not commonly used in clinical practice [17]. More recently, work has been

undertaken to develop automated quantitative methods of capnogram interpretation

in the context of specific diseases [17]. These approaches can be divided into feature-

based and model-based techniques.

2.5.1 Feature-Based Approaches

Feature-based capnogram analysis enumerates several features of the capnogram shape

and investigates the correlation and classification of particular ranges of these indices

with a patient’s underlying disease or condition. The capnogram is typically divided

into three segments: the rising edge of the expiration’s onset when CO2 enriched

air reaches the airway opening, the plateau leading to the end of the expiration and
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subsequent initiation of inspiration, and the curved middle segment connecting these

two slopes [16, 17]. Each of these segments has an associated slope and duration.

Additional measures, such as area ratio of the middle capnogram segment, and the

ratio of the slopes of the first and third segment may also be considered [17]. You,

et al. established correlations between these indices and the results of spirometry in

asthmatic patients, suggesting that evidence of asthma is present in the capnogram

shape [17].

Mieloszyk, et al. developed classifiers that are capable of differentiating between

the capnograms of patients with COPD and patients with CHF, as well as between

patients with COPD and healthy adults [18]. In this study, the authors trained a se-

ries of classifiers based on quadratic discriminant analysis (QDA) for each task. The

features chosen were exhalation duration, end-exhalation slope, ETCO2, and the du-

ration the PeCO2 remains at the ETCO2 value of each exhalation. Multiple classifier

“voters” were trained on different, overlapping cuts of the training set. Based on the

results of these voting classifiers, decision thresholds were selected that provided ap-

proximately equal sensitivity and specificity on the test data. This approach resulted

in good performance of the COPD/CHF and COPD/normal classifiers, quantified

using the area under the receiver operating characteristic (ROC) curve. [18]. These

methods expanded significantly on earlier techniques by successfully implementing

automated preprocessing, artifact rejection, and feature extraction in conjunction

with powerful classification methods.

2.5.2 Model-Based Approaches

Model-based approaches to capnogram analysis apply mechanistic models to the

physiology of the respiratory system, and parameterize the underlying physiologi-

cal state [19, 20]. The general shape of the time-based capnogram may be derived

from such a model [19]. Abid et al. implemented a simple model of the lungs and

upper airways that accounts for the mixing of exhaled CO2 with air in the deadspace.

This model may be solved analytically for an expression for the partial pressure of

exhaled CO2, 𝑝𝐷, as a function of time:
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𝑝𝐷(𝑡) = 𝑝𝐴

(︁
1− 𝑒−𝛼𝑒𝛼𝑒

−𝑡/𝜏
)︁

where 𝑝𝐴, 𝜏 , and 𝛼 represent the constant (over an exhalation) CO2 gas concentration

in the alveoli, the pulmonary time constant associated with the expiration, and a

constant quantity that represents the ratio of tidal volume to deadspace volume in

the respiratory system, respectively. This function may then be fit to the capnograms

of individual exhalations to derive these parameters. The authors implemented a

classifier that was able to successfully discriminate between capnograms from patients

with COPD and healthy adults with good accuracy [19].
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Chapter 3

Clinical Data Collection and

Preprocessing

To pursue the development of an effort-independent, capnography-based diagnos-

tic aid for asthma, it is necessary to acquire representative data across patient de-

mographics and asthma severity. In principle, such an analysis requires recorded

capnograms describing subjects’ respiration over a period of time, and corresponding

asthma symptom severity labels. Our clinical collaborators undertook two studies

that attempt to capture these data elements: a methacholine challenge study, which

takes capnography measurements throughout the standard pulmonary function test,

and a pediatric asthma study that captures capnograms from pediatric patients pre-

senting to the emergency room with acute asthma symptom exacerbation.

For both of these studies, the Oridion Capnostream 20 was used as the capnograph.

It is a sidestream capnograph that samples a small amount of air at a constant rate

(approximately 50 mL/min) from a patient’s nasal cannula and measures the exhaled

CO2 as a function of time. The device is relatively small and portable, making it

ideal for use in diverse clinical settings. It is capable of sampling CO2 at 20 Hz with a

reported PeCO2 precision of 1 mmHg. For these studies, the waveform measurements

were recorded to directly attached USB flash storage directly from the Capnostream.

Measurement accuracy falls within ±2 mmHg between 0 – 38 mmHg PeCO2 and may

decrease slightly above from 38 mmHg.
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3.1 Methacholine Challenge Study

Studying patients undergoing a methacholine challenge offers the opportunity to col-

lect data on potential asthmatics under precise, controlled conditions. As described

previously, the methacholine challenge is performed when trying to confirm whether

a patient has asthma when they are not actively experiencing acute symptoms. From

2011 to 2012, an IRB-approved study was undertaken at the Beth Israel Deaconess

Medical Center with the aim of assessing how a patient’s capnogram changes under

different levels of airway obstruction. In this study, subjects were recruited from adult

patients already scheduled to undergo the methacholine challenge pulmonary func-

tion test. After consenting to participate in the study, the methacholine challenge

was conducted as normal with the addition of capnography recordings taken after

each spirometry test. The Oridion Capnostream was used to record the time-based

capnogram in this study.

The test proceeded as follows: first, baseline measurements of the subject’s FVC

and FEV1 were made with spirometry. After these usual measurements were taken,

the subject was connected to the capnograph via a nasal cannula and their capnogram

was recorded for approximately three minutes. Then, the subject was administered

pure diluent after which both the spirometry and capnography measurements were re-

peated. This pattern of drug administration followed by measurements was repeated

multiple times with increasingly larger doses of methacholine: 0.0625 mg/mL, 0.25

mg/mL, 1.0 mg/mL, 4.0 mg/mL, and 16 mg/mL. If after the administration of any

concentration of methacholine (or the pure diluent), the subject’s FEV1 were mea-

sured to have fallen below 80% of the baseline value, the subject would be considered

positive for airway hyper-responsiveness and asthma. After a positive measurement,

the subject would be administered a bronchodilator to ease their symptoms. Spirom-

etry and capnography measurements would be taken a final time some ten minutes

after the administration of the bronchodilator in order to confirm the recovery of pul-

monary performance. In the event that the subject’s FEV1 did not drop below 80%

of their baseline through the administration of the 16 mg/mL dose, the test would
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indicate a negative result for airway hyper-responsiveness and asthma.
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Figure 3-1: The distribution of age of subjects considered in the methacholine study.
Four subjects are missing demographics information, including their age.

Data on 26 subjects ranging in age from 25 to 79 were collected. Four of the

26 subjects are missing demographic data, including their age and sex. For the 22

patients with demographics information, a distribution of their ages are presented

in Figure 3-1. Sex and airway hyper-responsiveness/positivity to the methacholine

challenge test are reported in Table 3.1 for all subjects. To optimize data collec-

tion, often the capnography recordings were skipped for intermediate concentrations

of methacholine. In all subjects, the baseline and largest doses of methacholine had

corresponding capnography recordings, and most subjects that received bronchodila-

tor treatment also have a capnography recording 10 minutes post-bronchodilator

administration. Specifically, in the case a subject were negative for airway hyper-

responsiveness and received the 16 mg/mL methacholine dose, the subject’s capno-

gram would be retained at baseline and after the 16 mg/mL dose. If a subject tested

positive for airway hyper-responsiveness, the subject’s capnogram would be recorded
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Table 3.1: Subject characteristics in methacholine challenge study.

n (%)
Sex
Male 10 (39%)
Female 12 (46%)
Unknown 4 (15%)
Methacholine Challenge Result*

Negative 10 (38%)
Positive 16 (62%)

* Subject exhibits airway hyper-responsiveness to methacholine. See Chapter 2.3.

at baseline, after the methacholine dose that induced a drop in FEV1 below 80% of

their baseline FEV1, and additionally 10 minutes after the administration of a bron-

chodilator. These historical de-identified data, including the capnography recordings

and spirometry test results were made available for analysis.

3.2 Pediatric Asthma Study

In contrast to the well-controlled experimental conditions afforded by the metha-

choline challenge study, it is both necessary and useful to study patients who present

to an emergency department (ED) in asthmatic distress. Studying acute asthma in the

ED setting makes it possible to capture capnography recordings from a wide variety

of patients from different demographics and asthma symptom severity. Further, the

development of an effort-independent diagnostic aid for determining asthma severity

stands to benefit these patients the most, particularly when a patient is very young,

in distress, unable to perform spirometry, or otherwise unable to follow instructions.

In this study, pediatric and young-adult patients who were both being treated

for, and had a diagnosis of, asthma were asked to participate on presentation the

ED prior to treatment. After consenting to participate in the study (or in the case

of pediatric patients, after the healthcare proxy such as a parent consents to the

patient’s participation), the standard-of-care continued as usual with the addition

of capnography recording both before and after treatment. The study proceeded as
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Figure 3-2: The distribution of ages for all subjects with complete datasets in the
pediatric asthma study.

follows: subjects were first evaluated in accordance with standard facility procedure.

Demographic information, as well as a pre-treatment Hospital Asthma Severity Score

(HASS) were recorded in the study database. The subject then gave an approxi-

mately three-minute capnography recording using a nasal cannula with mouth scoop

to sample exhaled air from both the nose and mouth. Treatment with fast-acting

nebulized bronchodilator followed. After treatment, usually 1 to 2 hours later, an-

other capnography recording was taken and a clinician then assessed the subject’s

post-treatment HASS. De-identified capnography recordings and coded patient meta-

data from this study were made available for analysis. We received these de-identified

data from Dr. Baruch Krauss of Boston Children’s Hospital, who collected these data

with IRB approval and informed consent by the patient or legally authorized repre-

sentative. Data collection took place in three separate phases; Phase 1 took place

from December 2015 to May 2016, Phase 2 from October 2017 to February 2018, and

Phase 3 from August 2019 to March 2020.
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Given the dynamic and unpredictable environment presented by the ED, only

approximately 120 subjects of 213 initially-enrolled patients had complete datasets.

In this study cohort, the ages of subjects are distributed as shown in Figure 3-2,

ranging from 2 to 21 years. 63 of the 120 subjects were male and 57 were female.

Parameter 1 point 2 points 3 points
Pulse Oximetry > 94% 

on room air
90-94%

on room air
< 90% on room air, or 
requires supplemental 

O2 to maintain
O2 saturation > 94%*

Auscultation Clear or end 
expiratory 
wheezing

Expiratory 
wheeze

Inspiratory, expiratory 
wheezing, and/or 

diminished or no breath 
sounds

Retractions
(Muscle groups 
include:
intercostal, 
substernal,
supraclavicular)

None or 1
muscle group

2 muscle groups 3 muscle groups

Dyspnea Full sentences Partial sentences Single words or grunts
Respiratory Rate   2-5y: <30/min

6-12y: <25/min
 >12y: <20/min

  2-5y: 30-40/min
6-12y: 25-30/min
 >12y: 20-25/min

  2-5y: >40/min
6-12y: >30/min
 >12y: >25/min

TOTAL SCORE Mild (<7) Moderate (7-9) Severe (10-13)
*assign all patients on continuous nebs 3 points when scoring pulse oximetry

HASS: HOSPITAL ASTHMA SEVERITY SCORE TOOL

Figure 3-3: The HASS as implemented in the BCH ED and described in [21].

3.3 The Hospital Asthma Severity Score

The HASS, or Hospital Asthma Severity Score, is a metric used at BCH to assess the

overall intensity of asthma symptoms that a patient is experiencing. Five components

comprise the score: the oxygen saturation of the blood, auscultation of the airway, the

extent to which the patient’s muscles are visibly retracting to maintain adequate res-

piration, apparent dyspnea, and the patient’s respiratory rate (3-3). Each component

receives a score of 1 (normal or mild severity) to 3 (most severe). These components

are summed, and the resulting total of 5 – 15 is used as the value of the HASS, where

5 – 6 is considered “Mild,” 7 – 9 is considered “Moderate,” and 10 – 15 is considered

“Severe.” At BCH, Abecassis, et al. completed a study that suggests that the HASS

correlates with spirometry test results [21].
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For pediatric asthma study, the pre-treatment and post-treatment HASS distri-

butions are shown in Figure 3-4.
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Figure 3-4: The distribution of pre-treatment and post-treatment HASS for all 120
subjects with complete datasets in the pediatric asthma study.

3.4 Data Preprocessing and Record Annotation

As described in Chapter 2.5, capnography recording interpretation involves segment-

ing the capnogram into individual exhalations, and then quantifying the morphology

of those individual exhalations in terms of a choice of features, or by fitting a pa-

rameterized expiration model. For both the methacholine challenge study and the

pediatric asthma study, data were preprocessed to ensure only high quality exhala-

tion capnograms were considered for algorithm development. For all analysis based

on these studies, only subjects for whom we had complete data were considered. This

requirement often led to the exclusion of records in the pediatric asthma study, as a

complete dataset for a particular subject had four data elements that needed to be

collected with patient cooperation and clinician feedback at different times in their
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ED stay. In particular, these elements include the pre-treatment and post-treatment

HASS and the pre-treatment and post-treatment capnography recordings. Often, the

brief time between initial patient triage and the bronchodilator treatment left little

time for the pre-treatment recording for some potential subjects. On the other hand,

the methacholine challenge study had consistent, good data quality, due in part to

the non-emergent study conditions and a more cooperative adult subject population.

Prior work describes the development of automated expiration segmentation from

the capnography recordings of the Oridion Capnostream [18, 19]. Due to the extreme

variation in record quality, numerous artifacts, and limited number of “good” expi-

rations in the pediatric asthma data, we decided to annotate the records by hand

rather than using automated means. To implement a consistent preprocessing pro-

cedure, we applied the same annotation process to the methacholine study data and

the pediatric study data. For the pediatric study data, we prioritized annotating

records that covered the widest range of HASS values, particularly in the extremes.

Before deciding to include a study for analysis, and therefore annotation, we visually

inspected the all the recordings from the study, and elected to prefer records with

longer runs of clean exhalations. Only complete exhalations that were free of noise

were annotated.

The annotation process itself was carried out using a purpose-built graphical util-

ity, shown in Figure 3-5. The utility was written in Python 3, and utilizes the Mat-

plotlib plotting library and Qt5 graphical toolkit. For both the methacholine challenge

study and the pediatric asthma study, the annotation process proceeded as follows:

first, recordings were reviewed and selected, and all recordings for the corresponding

subjects were loaded into the annotator. Each of two reviewers ran a local copy of the

annotation software that tracked their individual annotation progress. All recordings

were presented with the same fixed scale. Each annotator used the keyboard to ad-

vance the recording, and used the mouse to add flags directly onto the recording to

indicate the beginning of Phase II and end of Phase III of the capnogram. For all

subjects included in analysis, two independent reviewers annotated the recordings.

For a small subset of recordings, each reviewer annotated each record twice. After
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Figure 3-5: The annotator, showing the beginning of a recording from the pediatric
asthma study, without annotations entered.

annotation, the exhalation Phase II start and Phase III end labels were compared for

inter-rater and intra-rater reliability assessment, and downstream analysis. A record

with annotations visible is shown in Figure 3-6, where the beginning of Phase II and

the end of Phase III of each valid exhalation are marked with red triangles. The

resulting exhalation trace between the endpoints is automatically highlighted in red.
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Figure 3-6: The annotator, showing the same record and time range as in Figure 3-5
after annotations have been entered by a reviewer.
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Chapter 4

Methacholine Challenge-Induced

Asthma Symptom Severity

Classification

4.1 Classification Objective

The main objective of this work is to develop a means of assessing the severity of

a subject’s asthma symptoms based solely on their capnogram. Prior contributions

describe successfully distinguishing between different disease processes using capno-

gram features [18] and provide a framework by which we may investigate more sub-

tle differences between classes of severity of the same disease. Using records from

the methacholine challenge dataset, we seek to develop a proof-of-concept for the

construction of a classifier that can distinguish between a normal and exacerbated

asthma symptom state.

The methacholine study data provide high quality capnogram recordings from a

controlled environment in which the subject is precisely administered an agent that

induces airway hyper-responsiveness, if the subject has asthma. As described in

Section 3.1, in subjects that exhibited no airway hyper-responsiveness to the metha-

choline challenge (the negative test result), the post-test capnography recordings are
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all taken at the maximum concentration of 16 mg/mL. For subjects that did ex-

hibit airway hyper-responsiveness, defined by a 20% or greater drop in FEV1 (the

positive test result), the post-test capnography recording is taken at whatever con-

centration produced this effect. In most cases for these positive subjects, there is an

additional capnography recording taken several minutes after the administration of a

bronchodilator that is intended to recover pulmonary function and that is typically a

successful asthma treatment.

4.2 Annotations and Record Preprocessing

For all 26 subjects in this dataset, there are 67 recordings – one baseline and one test

recording for each of the 26 subjects, plus one post-bronchodilator administration

recording for 15 out of 16 positive subjects (where one positive subject has a missing

post-bronchodilator recording). In total, these 236 minutes of capnography recordings

yield 3200 exhalations that were annotated as artifact-free and complete, with all

capnogram phases present as shown in Figure 2-1. Each of these 67 recordings was

annotated once by each annotator, and a selection of ten recordings were annotated

twice by each annotator as described in Section 3.4. For inclusion into the analysis, an

exhalation must have been annotated as valid by both annotators. It is not necessary

for both annotators to choose precisely the same Phase II start and Phase III end

for a particular exhalation, as the primary purpose of the annotation process was to

identify exhalations for inclusion in downstream analysis. If both annotators have

marked overlapping annotations in a particular region of a recording, the greatest

extent (earliest start time, latest end time) of the interval is taken as the exhalation

to capture Phases II and III entirely.

The inter-annotator contingency table across all methacholine study records, where

the binary classes are whether to include or exclude an individual exhalation, is shown

in Table 4.1. The annotators doubly-annotated ten recordings across the methacholine

dataset to provide a measure of the consistency of their inclusion/exclusion of exhala-

tions across multiple trials. The intra-annotator contingency table for each annotator
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Table 4.1: Inter-annotator contingency table for selecting valid exhalations across all
records from the methacholine challenge study.

Annotator 2 Annotator 2
Included Excluded

Annotator 1
Included 3200 72

Annotator 1
Excluded 92 N/A

Table 4.2: Intra-annotator contingency table for the same set of ten methacholine
challenge study recordings.

Annotator 1 Round 2 Round 2
Included Excluded

Round 1
Included 379 31
Round 1
Excluded 2 N/A

Annotator 2 Round 2 Round 2
Included Excluded

Round 1
Included 395 7
Round 1
Excluded 23 N/A

is presented in Table 4.2. Due to unclear exhalation waveform boundaries caused by

artifacts, we do not quantify the total number of potential exhalations. Therefore,

the count of potential exhalations that correspond to the contingency in which both

annotators, or each annotator across both rounds, did not annotate a region of the

recording as an exhalation is not reported, and is indicated by ‘N/A’ in these tables.

Across all recordings the annotators perform comparably, both including an addi-

tional 2%–3% exhalations that the other did not consider valid. For intra-rater per-

formance, the ten recordings were selected from among the more noise-laden records,

and this is reflected by the 7%–8% difference in number of exhalations annotated be-

tween rounds for both annotators. As expressed in Table 4.2, Annotator 1 included

more exhalations in their first round, whereas Annotator 2 included more annotations

in their second.
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4.3 Features
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Figure 4-1: Visual representation of the four figures used in this work are shown on
a single, prototypical exhalation. The values of the features are given in the titles of
the individual subplots, and for time-based features both the extent of the exhalation
itself and the corresponding projection onto the horizontal axis is highlighted for
clarity.

As a natural starting point, we adopt the features used in [18]: exhalation du-

ration, end-exhalation slope, ETCO2, and the duration of PeCO2 at its maximum

value. Exhalation duration is defined as the duration bounded between the begin-

ning of the capnogram’s Phase II and the end of its Phase III. The end-exhalation

slope is determined by taking the last five points in an exhalation and computing the

slope with respect to time using a linear least squares fit. ETCO2 is calculated as

the maximum value of the exhalation, which typically occurs at the end of Phase III.

Duration of PeCO2 at its maximum value is the duration that the exhalation’s PeCO2
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Figure 4-2: The distributions of capnogram feature values across all exhalations in
the methacholine dataset.
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is at it’s greatest value (equivalent to ETCO2 in the absence of artifacts), and ideally

represents the duration of the plateau. We tolerate 1 mmHg PeCO2 lower than the

maximum value to account for quantization artifacts. These features are shown on a

prototypical exhalation in Figure 4-1. The distributions of these features across all

recordings in the methacholine study are shown in Figure 4-2.

4.4 Classification Tasks

The methacholine data contain recordings from a variety of different physiological

states that support multiple classification tasks. The capnography recordings may

be divided into five categories: baseline recordings from subjects that eventually

test positive, baseline recordings from subjects that eventually test negative, test

recordings (at the patient-dependent maximum concentration of methacholine) from

subjects that test positive, test recordings from subjects that test negative, and finally

post-bronchodilator administration recordings from subjects that tested positive for

airway hyper-responsiveness.

From these data, we implemented three different classification tasks: differen-

tiation of exhalations from the baseline recordings and test recordings in positive

subjects, the differentiation of exhalations from all subjects at baseline versus exhala-

tions from positive subjects’ test recordings, and finally the differentiation of positive

subjects’ exhalations at test and those after the administration of a bronchodilator.

The tasks are enumerated below in terms of the negative class versus the positive

class.

Task 1 Negative: Baseline (eventually) positive subject exhalations

Positive: Positive test exhalations

Task 2 Negative: All baseline recording exhalations

Positive: Positive test exhalations

Task 3 Negative: Positive subjects’ post-bronchodilator exhalations

Positive: Positive test exhalations
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4.5 Classification Model

To complete these three classification tasks, we implemented a logistic regression. A

logistic regression is a statistical model that models binary outcome variables with

respect to any number of continuous or discrete input variables. The PDF of the

logistic regression assumes a characteristic sigmoidal shape, representing probabilis-

tic regimes near each binary class (close to zero or one), and the boundary between

them. The output of a trained logistic regression model is a value representing the

probability that a particular vector of input variables belong to the positive class. An

arbitrary threshold may then be applied to these probabilities to reduce the contin-

uous probability value to a classification prediction. Different threshold levels trade

between higher false positive or false negative rates: a higher threshold will generally

result in false positives but will cause more false negatives, and a lower threshold will

produce more false positives but fewer false negatives. Therefore, the determination

of the appropriate threshold value is dependent on the nature of the classification task

itself. For example, if for a particular health condition it is more desirable to catch

as many true positive cases as possible to prevent untreated illness, it is better to

use a lower testing threshold. In this case, a higher number of false positives may be

acceptable if the burden of additional, more accurate testing is low in those patients

that receive false positives as a result of this threshold choice.

All of the logistic regressions used in this work were implemented in Python using

the Scikit-learn software package [22]. We used the default L-BFGS solver, and in-

cluded an L2 regularization penalty for all fits of the model. We selected six subjects

(three positive, three negative) to serve as hold-out records to validate the final im-

plementation of each classifier. For each classification task, the remaining recordings

from the relevant categories as described above were randomly divided into four folds,

as indicated in Tables 4.3 and 4.4. The input features fed to the logistic regression are

not normalized in these implementations. Each individual annotated exhalation was

assigned a label of 0 or 1, depending on whether its source recording was a member of

the positive or negative class for a particular classification task. Four logistic regres-
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sions were then trained per classification task, each using a different fold as the test

set and the remaining three folds as the training data. Finally, each logistic regression

model was evaluated using the test fold data, invoking receiver operating character-

istic analysis as the basis for comparison. The results report the classification results

of individual exhalations from the training and test folds.
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Table 4.3: Record and exhalation counts for each classification task’s folds, as well as
the hold-out data.

Task 1 Training Test
Fold N Records N Exhalations N Records N Exhalations

1 19 904 7 252
2 19 880 7 276
3 20 835 6 321
4 20 849 6 307

Hold-Out N/A N/A 6 364

Task 2 Training Test
Fold N Records N Exhalations N Records N Exhalations

1 24 1152 9 392
2 25 1198 8 346
3 25 1092 8 452
4 25 1190 8 354

Hold-Out N/A N/A 9 542

Task 3 Training Test
Fold N Records N Exhalations N Records N Exhalations

1 18 888 7 236
2 19 855 6 269
3 19 803 6 321
4 19 826 6 298

Hold-Out N/A N/A 6 294
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Table 4.4: Positive/negative class balance for each task fold.

Task 1 Training Test
Fold Negative Positive Negative Positive

1 485 419 111 141
2 424 456 172 104
3 466 369 130 191
4 413 436 183 124

Hold-Out N/A N/A 147 217

Task 2 Training Test
Fold Negative Positive Negative Positive

1 733 419 251 141
2 742 456 242 104
3 723 369 261 191
4 754 436 230 124

Hold-Out N/A N/A 325 217

Task 3 Training Test
Fold Negative Positive Negative Positive

1 469 419 95 141
2 399 456 165 104
3 434 369 130 191
4 390 436 174 124

Hold-Out N/A N/A 77 217
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4.6 By-Exhalation Performance

These by-exhalation classification results report the aggregate training and test per-

formance of multiple logistic regression models: four univariate implementations with

a single feature each per classification task, and a multivariate implementation using

all four features per classification task. For each task, the same fold selection and

exhalation class balance were used between univariate and multivariate implementa-

tions. The training/test balance of records and exhalations across each classification

task and fold is given in Table 4.3, and the positive/negative class balance across each

task and fold is given in Table 4.4.

The area under the receiver operating characteristic (AUROC) curve is the prin-

cipal metric used to describe the performance of the logistic regression classifier

throughout this work. The receiver operating characteristic (ROC) curve is graph-

ical representation of the performance of any classifier that may operate with arbi-

trary decision thresholds. The curve itself indicates the classifier’s sensitivity against

1 − specificity, that is, the trend of the true positive rate as the false positive rate

increases (and, as the decision threshold is lowered) [23]. The AUROC is calculated

as the integral of the ROC, and takes a value between 0 and 1, where an area of 1

represents an ideal classifier capable of perfect sensitivity with zero false positives. A

perfectly random classifier has an AUROC of 0.5, and the corresponding ROC curve

would be rendered as a straight line from (0.0, 0.0) to (1.0, 1.0) in ROC space [23]. In

the following results, the average AUROC calculated across all folds is given with the

corresponding 95% error bounds for the implementation of each logistic regression

model.

4.6.1 Univariate Regression

To determine the predictive value of each individual feature, we first trained the lo-

gistic regression classifier using a single feature at a time. The resulting performance

of each implementation is given in terms of the AUROC in Table 4.5 along with es-

timates of the confidence bounds computed through four-fold cross validation. This
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table shows the calculated AUROC measures for twelve univariate logistic regression

models implemented in the methacholine dataset, one for each feature and task com-

bination. Both the training and test results are given in terms of the average area

(95% confidence interval) as calculated across the four training/test folds.

As one would expect, the training performance is marginally higher on average

for each task and feature given that the model is directly trained on these data.

Overall, the univariate test set performance is rather low across all classification

tasks and features with the exception of ETCO2, particularly in Task 3 for which the

test AUROC is 0.77 (0.68 – 0.86). This might suggest that across otherwise healthy

adults, there is a notable change in ETCO2 during the methacholine challenge.

Table 4.5: Mean AUROC and 95% confidence intervals for each of the univariate
classification tasks, implemented by-exhalation and calculated using four fold cross
validation.

Task 1 AUROC (95% CI)
Feature Training Test

Exhalation Duration 0.55 (0.46 – 0.64) 0.25 (0.14 – 0.36)
ETCO2 0.74 (0.69 – 0.79) 0.69 (0.56 – 0.82)

Duration at Max PeCO2 0.72 (0.65 – 0.79) 0.72 (0.56 – 0.88)
End-Tidal Slope 0.61 (0.57 – 0.65) 0.60 (0.52 – 0.68)

Task 2 AUROC (95% CI)
Feature Training Test

Exhalation Duration 0.55 (0.48 – 0.62) 0.41 (0.21 – 0.61)
ETCO2 0.77 (0.71 – 0.83) 0.76 (0.51 – 1.00)

Duration at Max PeCO2 0.67 (0.61 – 0.73) 0.66 (0.51 – 0.81)
End-Tidal Slope 0.59 (0.56 – 0.61) 0.58 (0.52 – 0.64)

Task 3 AUROC (95% CI)
Feature Training Test

Exhalation Duration 0.58 (0.50 – 0.66) 0.28 (0.13 – 0.43)
ETCO2 0.80 (0.77 – 0.83) 0.77 (0.68 – 0.86)

Duration at Max PeCO2 0.63 (0.56 – 0.70) 0.42 (0.21 – 0.63)
End-Tidal Slope 0.56 (0.52 – 0.60) 0.56 (0.48 – 0.64)

48



4.6.2 Multivariate Regression

The multivariate logistic regression model uses all four features to implement a classi-

fier for the three classification tasks. The same training method that was used for the

univariate models was used to train the multivariate models; for each task, record-

ings from the appropriate positive and negative recording categories were divided into

four approximately equally-sized folds, the same folds that were used in the univari-

ate regression (Table 4.3). Each fold was used once as a test set, and the remaining

three folds were used to train the multivariate logistic regression model. The result-

ing trained model’s performance was evaluated in terms of ROC curve generated by

varying the decision threshold. These results report the classification performance of

individual exhalations from the training and test folds of each classification task.

Fitting the logistic regression to the training data using all four features, the per-

formance improves to an average AUROC greater than 0.80 across all tasks, as shown

in Table 4.6. There is considerable variance in the performance of the second task

across the test AUROC of the models. The second task represents a slightly more dif-

ficult classification task than Task 1 as the Task’s negative class additionally includes

exhalations from baseline recordings of subjects that (eventually) tested negative for

airway hyper-responsiveness. That said, the mean performance of Tasks 1 and 2 are

nearly identical by the AUROC metric.

The ROC curves for Tasks 1, 2, and 3 are rendered in Figures 4-3, 4-4, and 4-5,

respectively. These plots are generated by varying the classification cutoff threshold

from 0.0 to 1.0. 95% error bars are shown at select points along these curves. As

the threshold decreases (from the top right of ROC space), fewer exhalations are

included in the positive class, and the number of true positive exhalations and false

positive exhalations drop. The red dot in each plot indicates the point along the

ROC curve where the sensitivity (the true positive rate) equals the specificity (1 −

the false positive rate). This point represents an even balance between the number of

true positives, among all exhalations from each classification task’s positive class, and

the number of true negatives, among all exhalations from each classification task’s
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negative class. The probability threshold value for this labeled operating point is

given in the legend of each ROC curve plot.

Classification Tasks 1 and 3 aim to serve as relatively straightforward tests of the

discriminatory capability of a logistic regression-based model to determine whether

a subject with asthma is undergoing asthmatic exacerbation. Task 1 represents the

forward process, where a subject starts with a baseline “negative” respiration, and ex-

periences a specific drop in pulmonary performance to a “positive” respiration. Task

3 represents the reverse process, where a subject starts with the same “positive” res-

piration and is brought back towards their baseline (but may not completely recovery

their baseline pulmonary performance by the time the post-bronchodilator capnog-

raphy recording is taken). These are the specific transitions in severity that are the

subject of our investigation, in which it is known or highly suspected that the patient

has asthma, and the aim of testing is to determine whether the patient is experiencing

extreme distress or mild respiratory discomfort in order for clinicians to triage them

appropriately.

Table 4.6: Mean AUROC and 95% confidence intervals for each of the multivariate
classification tasks, implemented by-exhalation and calculated using four fold cross
validation.

AUROC (95% CI)
Classification Task Training Test

Task 1 0.87 (0.83 – 0.91) 0.82 (0.71 – 0.93)
Task 2 0.88 (0.83 – 0.93) 0.82 (0.59 – 1.00)
Task 3 0.88 (0.85 – 0.91) 0.84 (0.72 – 0.96)
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Figure 4-3: Mean ROC curves and selected 95% confidence intervals for the Task 1
multivariate logistic regression classification results. The selected operating point, at
which sensitivity equals specificity, is marked in red. Sensitivity = specificity = 0.74.
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Figure 4-4: Mean ROC curves and selected 95% confidence intervals for the Task 2
multivariate logistic regression classification results. The selected operating point, at
which sensitivity equals specificity, is marked in red. Sensitivity = specificity = 0.76.
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Figure 4-5: Mean ROC curves and selected 95% confidence intervals for the Task 3
multivariate logistic regression classification results. The selected operating point, at
which sensitivity equals specificity, is marked in red. Sensitivity = specificity = 0.76.
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4.6.3 By-Record Performance

Beyond classifying individual exhalations, a meaningful diagnostic tool would need

to make a determination on whether the record of a subject should be considered

positive. The exhalations from each Task’s test folds were first classified individually

using the previously trained four-feature, multivariate logistic regression models de-

scribed in Section 4.6.2. The optimal probability thresholds, determined by finding

the threshold at which the classifier sensitivity is equivalent to its specificity, were then

applied to the predicted probabilities of the individual exhalations from the training

folds for each Task. The training and test performance of the by-record classification

are given in terms of the AUROC for each classification task in Table 4.7, as calcu-

lated across the same four folds used previously. The threshold varied along these

ROC curves is the fraction of the total number of exhalations in a record that need

to be individually classified as positive before an entire record is considered positive.

Table 4.7: Mean AUROC and 95% confidence intervals for each of the multivariate
classification tasks, implemented by-record using the operating points described in
Section 4.6.2, and calculated using four fold cross validation.

AUROC (95% CI)
Classification Task Training Test

Task 1 0.91 (0.88 – 0.94) 0.92 (0.84 – 1.00)
Task 2 0.91 (0.87 – 0.95) 0.84 (0.59 – 1.00)
Task 3 0.89 (0.85 – 0.93) 0.93 (0.86 – 1.00)

By-record ROC curves are given for the three classification tasks in Figures 4-6,

4-7, and 4-8. Overall, the performance of logistic regression classifier works well when

applied across whole records. Task 2 has marginally weaker performance with a wider

variance in terms of classification error across the four folds.
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Figure 4-6: Mean ROC curves and selected 95% confidence intervals for the Task 1
by-record multivariate logistic regression classification results. The selected operating
point, at which sensitivity equals specificity, is marked in red. Sensitivity = specificity
= 0.76.
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Figure 4-7: Mean ROC curves and selected 95% confidence intervals for the Task 2
by-record multivariate logistic regression classification results. The selected operating
point, at which sensitivity equals specificity, is marked in red. Sensitivity = specificity
= 0.78.
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Figure 4-8: Mean ROC curves and selected 95% confidence intervals for the Task 3
by-record multivariate logistic regression classification results. The selected operating
point, at which sensitivity equals specificity, is marked in red. Sensitivity = specificity
= 0.76.
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4.7 Hold-Out Validation

4.7.1 Hold-Out Test Performance

To validate the multivariate results, we use the hold-out dataset as a test set and

incorporate all non hold-out records (Folds 1 through 4 from Table 4.3 and Table 4.4)

into the training set for the logistic regression model. The hold-out set performs

extremely well in Tasks 1 and 2 when the classifier is trained on the remaining exha-

lation. This might suggest there are records among those used for the training dataset

for which the exhalations are misclassified more than those from other records. For a

subset of all of the methacholine subjects, there are detailed spirometry reports that

show the reduction in pulmonary performance at each methacholine concentration

during the challenge. Some subjects approach the 80% reduction in FEV1 threshold

very closely, but do not quite meet the requirements to be considered “positive” for

the test. As such, the use of a particular threshold used by the methacholine challenge

may cause a greater number of exhalation misclassifications for subjects whose final

reduction in FEV1 falls near the methacholine challenge decision threshold value.

The ROC curves capture the high performance of Task 1 and Task 2, in Figures 4-9

and 4-10, respectively. The relatively poorer performance of Task 3 may be explained

by the greater variability in underlying physiological state associated with the post-

bronchodilator capnography recordings. Subjects recover to different relative FEV1

levels after the administration of the bronchodilator, some falling short near around

90% of their baseline value, but all positive subjects have approximately the same

value of FEV1 relative to their baseline when the test capnography recording is taken.

Controlling for this variability may improve the performance of the logistic regression

model for this particular classification task as-framed.
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Table 4.8: AUROC for each of the by-exhalation multivariate classification tasks using
the hold-out dataset as the test set, and all remaining records as the training set.

AUROC
Classification Task Training Test (Hold-Out Set)

Task 1 0.87 0.94
Task 2 0.88 0.95
Task 3 0.88 0.70

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC
Selected Operating Point: 0.51; Sensitivity == Specificity

Figure 4-9: ROC curve for the Task 1 hold-out dataset. The selected operating point,
at which sensitivity equals specificity, is marked in red. Sensitivity = specificity =
0.87.
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Figure 4-10: ROC curve for the Task 2 hold-out dataset. The selected operating point,
at which sensitivity equals specificity, is marked in red. Sensitivity = specificity =
0.88.
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Figure 4-11: ROC curve for the Task 3 hold-out dataset. The selected operating point,
at which sensitivity equals specificity, is marked in red. Sensitivity = specificity =
0.62.
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4.7.2 Hold-Out By-Record Performance

We also evaluated the by-record performance of the hold-out set. The exhalations

from the hold-out records were first classified individually using the trained logistic re-

gression models from Section 4.7.1, for which all non hold-out records were considered

as training data. The optimal probability thresholds, shown in the ROC plots above,

were then applied to the predicted probabilities of the individual exhalations from

the hold-out records. We used the optimal fraction of positive exhalation thresholds

as calculated in Section 4.6.3 to determine the predicted class of each of the hold-out

records for each Task: 0.51, 0.36, and 0.73, respectively.

For Task 1, all three (eventually) positive baseline recordings and all three positive

test recordings are classified correctly. For Task 2, all three test positive recordings are

properly classified, but only five of six (eventually) positive or (eventually) negative

baseline recordings are correctly classified (that is, there is one false positive). For

Task 3, only two out of three positive test recordings are correctly classified (there

is one false negative), but all three post-bronchodilator administration recordings are

properly classified.

4.8 Summary

In this Chapter, we investigated three classification tasks based on the methacholine

pulmonary function dataset. Starting with a by-exhalation logisitic regression classi-

fier model, we build up to classifying entire subject’s capnography recordings across

these three classification tasks, incorporating decision thresholds determined using

ROC analysis. With these clean, largely artifact-free recordings taken in ideal lab-

oratory conditions, the performance of the logistic regression classification models

perform well in both the by-exhalation and by-record implementations.

Task 3 did suffer a drop in by-exhalation classification performance, suggesting

there may be subtle differences in how the reversal of asthma symptoms manifest

in the exhalation features versus the forward, methacholine-induced exacerbation of

asthma symptoms. For Tasks 1 and 2, however, the test performance in both the
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four-fold implmentation and hold-out validation consistently realize greater than an

AUROC of 0.80, suggesting good classifier viability.
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Chapter 5

Acute ED Asthma Symptom Severity

Classification

Following the asthma severity classification implemented on the methacholine chal-

lenge study data, we sought to apply the same technique to the pediatric emergency

department dataset. As described in Section 3.2, this dataset includes patients that

present to the BCH ED due to suspected symptoms of asthmatic exacerbation. Once

diagnosis is confirmed, they are typically administered bronchodilator treatment. The

triage and diagnosis process involves scoring patients with a HASS to determine over-

all severity of the presenting symptoms. An automated, patient effort-independent

diagnostic aid to provide additional information to clinicians triaging these young

patients would help improve this process.

5.1 Classification Objective

The objective of this work is to investigate the viability of identifying capnography

recordings, taken before any treatment (the pre-treatment recordings), from subjects

that present with a low HASS and from those that present with a high HASS (as

determined by a clinician) using a feature-based logistic regression model.
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5.2 Subject Population

The overall subject population is described in Section 3.2. Of all 120 subjects with

complete datasets, 39 were selected for exhalation annotation by two reviewers for

downstream analysis. Subjects were largely selected at random, but we ensured the

smaller number of subjects with a high pre-treatment HASS were included (omitting

those subjects with recordings that had a large number of artifacts) in order to cover

a suitable pre-treatment HASS range. The distribution of these selected subjects’

pre-treatment HASS is given in Figure 5-1. The distribution of these subjects’ ages

is shown in Figure 5-2. All of these subjects underwent treatment for asthma with

nebulized bronchodilator after the pre-treatment recordings were taken.
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Figure 5-1: The distribution of pre-treatment HASS for subjects in the pediatric
asthma dataset that were included in analysis.
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Figure 5-2: The distribution of ages for subjects in the pediatric asthma dataset that
were included in analysis.

5.3 Exhalation Annotation

The pre-treatment recordings from the selected 39 subjects were annotated following

the procedure described in in a manner identical to the process described in Sec-

tions 3.4 and 4.2. Annotating a particular exhalation indicates that it should be

included in analysis: that the included segment of the recording includes Phases II

and III of the exhalation and that it is uninterrupted by any artifacts.

In addition to annotating all 39 pre-treatment recordings once, the two annota-

tors doubly-annotated five subjects’ pre-treatment recordings in order to provide a

measure of intra-rater consistency. The inter-rater and intra-rater contingency ta-

bles for the exhalation annotations for the two annotators are given in Table 5.1.

In total, the two annotators agreed on 2219 out of 2535 total annotated exhalations

across 99 minutes of recordings. In order for a particular exhalation to be included in

downstream feature extraction and classification analysis, the exhalation needed to

be annotated by both annotators. Minor disagreements as to the endpoints of a par-
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ticular exhalation on the order of a few sample points did not disqualify the inclusion

of a particular exhalation. The raters’ agreement on whether to include a particular

exhalation was approximately consistent with the methacholine results. Annotator 1

was slightly more consistent between annotation rounds.

Table 5.1: Inter- and intra-annotator contingency tables for the same set of five pre-
treatment recordings, corresponding to five subjects from the pediatric asthma study.

Annotator 2 Annotator 2
Included Excluded

Annotator 1
Included 2219 74

Annotator 1
Excluded 242 N/A

Annotator 1 Round 2 Round 2
Included Excluded

Round 1
Included 291 8
Round 1
Excluded 7 N/A

Annotator 2 Round 2 Round 2
Included Excluded

Round 1
Included 255 4
Round 1
Excluded 28 N/A

The four exhalation features used in classification, described in Section 4.3, were

extracted from the annotated exhalations. Distributions of these features across all 39

pre-treatment recordings are given in Figure 5-3. Versus the feature distributions in

the methacholine dataset, the two duration features in the pediatric dataset, namely

Exhalation Duration (top left) and Duration at Maximum PeCO2 (bottom left), have

considerably lower means. This is supported by the demographics of each population;

children, particularly those under 12 have higher respiratory rates than adults. Age

differences in normal and abnormal respiratory rate ranges are referenced in the HASS

rubric, Figure 3-3.
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Figure 5-3: The distributions of capnogram feature values across all annotated exha-
lations in the pre-treatment recordings from selected subjects in the pediatric dataset.
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5.4 Classification

A simple classification implementation that identifies the subjects most severely suf-

fering from asthmatic exacerbation is a suitable starting point for the development

of a diagnostic aid. We selected a pre-treatment HASS cutoff of 9 above which we

consider a subject to have severe asthma symptoms. This is consistent with the Se-

vere HASS category, which constitutes the “positive” class in our classification task.

The remaining subjects, falling into the Mild or Moderate HASS category form the

“negative” class in our classification task. Under this scheme, 25 subjects fall into the

negative class, and 14 fall into the positive, Severe class.

To implement a classifier, we followed an approach similar to that explored in

Section 4.5. We first identified four records, two “positive” and two “negative,” to hold

out of the classifier training and testing (the hold-out set), then divided the remaining

35 remaining pre-treatment recordings (23 negative, 12 positive) into three folds for

training and testing. Subjects were randomly divided into these three folds, as given

in Tables 5.2 and 5.3. Each subject/pre-treatment recording, and corresponding

annotated exhalations, appears in the test set of one fold, and the training set in the

remaining two folds. For each individual feature and for the multivariate four-feature

implementation we trained three logistic regression models, each using a particular

fold as the source of test exhalations and using the remaining two folds as sources of

the training exhalations.
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Table 5.2: The training and test counts for the subjects/records and corresponding
annotated exhalations are given below for the three folds. The folds 1, 2, and 3 refer
to the unique test records and test exhalations in a particular row, which appear in
the training sets in other two folds. Record and exhalation counts are also given for
the hold-out set.

Training Test
Fold N Records N Exhalations N Records N Exhalations

1 23 1382 12 636
2 23 1271 12 747
3 24 1383 11 635

Hold-Out N/A N/A 4 201

Table 5.3: Positive/negative class exhalation balance for each classification fold, and
the four hold-out records.

Training Test
Fold Negative Positive Negative Positive

1 749 633 335 301
2 661 610 423 324
3 758 625 326 309

Hold-Out N/A N/A 99 102
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5.5 By-Exhalation Performance

After training the logistic regression models, two implementations emerged as hav-

ing reasonable by-exhalation performance in terms of the AUROC of the resulting

classifier. The by-exhalation performance of all four univariate and one multivariate

logistic regression models across the three folds is given in Table 5.4. This table re-

ports the average AUROC across all three folds, as well as the 95% confidence interval

about the mean value.

The univariate model that uses the Duration at Maximum PeCO2 feature per-

forms comparably to the multivariate model, both performing rather well with mean

AUROC greater than 0.80. Plots of the corresponding by-exhalation ROC curves for

these selected implementations, the univariate Duration at Maximum PeCO2 logistic

regression model, and the multivariate four-feature model are given in Figure 5-4 and

Figure 5-5, respectively. These by-exhalation ROC curves were generated by varying

the classification probability threshold between 0 and 1, and calculating the mean

TPR and FPR across the corresponding three logistic regressions. The chosen by-

exhalation operating point to be used for the by-record classification in the following

section is indicated in each plot by a red dot. At this probability threshold, the speci-

ficity of the model is equivalent to the sensitivity (the true positive rate is equal to

1− false positive rate).

Table 5.4: Mean AUROC and 95% confidence intervals for the four, single-feature uni-
variate implementations, and the multivariate implementation of the pre-treatment
severity classifier, implemented by-exhalation and calculated using three fold cross
validation.

AUROC (95% CI)
Training Test

Exhalation Duration 0.78 (0.71 – 0.85) 0.78 (0.65 – 0.91)
ETCO2 0.66 (0.65 – 0.67) 0.67 (0.65 – 0.69)

Duration at Max PeCO2 0.81 (0.76 – 0.86) 0.82 (0.72 – 0.92)
End-Tidal Slope 0.74 (0.70 – 0.78) 0.74 (0.66 – 0.82)

Multivariate 0.82 (0.76 – 0.88) 0.81 (0.69 – 0.93)
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Figure 5-4: The ROC curve and with 95% CI bounds at select thresholds for the Du-
ration at Maximum PeCO2 univariate logistic regression model implementation. The
red dot indicates the probability threshold at which the sensitivity equals the speci-
ficity for the model, and the value of this threshold is given in the legend. Sensitivity
= specificity = 0.74.
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Figure 5-5: The ROC curve and with 95% CI bounds at select thresholds for the four-
feature multivariate logistic regression model implementation. The red dot indicates
the probability threshold at which the sensitivity equals the specificity for the model,
and the value of this threshold is given in the legend. Sensitivity = specificity = 0.72.
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5.6 By-Record Performance

Taking the Duration at Maximum PeCO2 univariate model and the four-feature lo-

gistic regression model implementations, the two best-performing model implementa-

tions in the by-exhalation classification, we built by-record classifiers from the trained

logistic regressions. Each test fold’s exhalations were classified using the logistic re-

gression corresponding to that fold, and the selected operating point was applied

as cutoff. The by-exhalation classification results were then aggregated by source

recording, and the fraction of exhalations classified as positive were calculated. In-

terpreting this by-record fraction as a probability, we calculated the AUROC and

95% CI across all three folds for both the Duration at Maximum PeCO2 univariate

model and the four-feature logistic regression model. These measures are reported

in Table 5.5. Again, both the multivariate model and the univariate Duration at

Maximum PeCO2 model perform comparably. At the operating point, this yields ap-

proximately a by-record classification accuracy of 80% for the Duration at Maximum

PeCO2 univariate model, and 77% for the four-feature multivariate model.

The ROC curves with 95% CI bars corresponding to the univariate Duration at

Max PeCO2 and the multivariate logistic regression classifier are given in Figures 5-

6 and 5-7, respectively. The indicated operating point represents the by-recording

positive exhalation ratio threshold at which specificity equals sensitivity for by-record

classification.

Table 5.5: By-record AUROC and 95% CI of the Duration at Max PeCO2 univari-
ate logistic regression model implementation, and the four-feature multivariate im-
plementation across all three folds, using the specified classification operating point
thresholds.

AUROC (95% CI)
Training Test

Univariate, Duration at Max PeCO2 0.86 (0.79 – 0.93) 0.86 (0.72 – 1.00)
Multivariate, all 4 features 0.87 (0.80 – 0.94) 0.85 (0.73 – 0.97)

75



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC
Selected Operating Point: 0.74; Sensitivity == Specificity

Figure 5-6: By-record performance of the univariate Duration at Maximum PeCO2

logistic regression model. The operating point at which specificity equals sensitiv-
ity for the by-record classification task is indicated by the red dot. Sensitivity =
specificity = 0.77.
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Figure 5-7: By-record performance of the four-feature multivariate logistic regression
model. The operating point at which specificity equals sensitivity for the by-record
classification task is indicated by the red dot. Sensitivity = specificity = 0.76.
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5.7 Hold-Out Validation

5.7.1 Hold-Out Test Performance

To validate the previous results, we trained the two implementations of the logistic

regression classifier on all 35 non-hold-out records, and applied the resulting models

to the four hold-out records. The by-exhalation results are provided in Table 5.6 for

the two models. By exhalation, the two models again performed comparably, both

having AUROCs of approximately 0.88. The by-exhalation ROC curves are shown in

Figures 5-8 and 5-9. Using the thresholds determined in the previous section, we can

apply these models to the hold-out data to evaluate their by-record performance.

Table 5.6: By-exhalation AUROCs of the two logistic regression models, trained on
all non hold-out data and applied to the four hold-out recordings.

AUROC
Training Test (Hold-Out Set)

Univariate, Duration at Max PeCO2 0.81 0.88
Multivariate, all 4 features 0.82 0.88

For the Duration at Maximum PeCO2 univariate logistic regression model, using

a positive exhalation fraction of 0.74, and a by-exhalation threshold of 0.54, the

model correctly predicts the class of three out of four records (one false negative). In

comparison, the four-feature multivariate model using a positive exhalation fraction

of 0.49 and a by-exhalation threshold of 0.5, classifies all four hold-out pre-treatment

recordings correctly.

78



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC
Selected Operating Point: 0.44; Sensitivity == Specificity

Figure 5-8: By-exhalation ROC curve of the Duration at Maximum PeCO2 univariate
model, as trained on all non hold-out records and applied to the four hold-out pre-
treatment recordings. Sensitivity = specificity = 0.76.
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Figure 5-9: By-exhalation ROC curve of the four-feature multivariate model, as
trained on all non hold-out records and applied to the four hold-out pre-treatment
recordings. Sensitivity = specificity = 0.75.
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5.8 Summary

In this Chapter we show the viability of implementing two variations of a feature-based

asthma severity classifier. It is capable of distinguishing between the individual exha-

lations of pediatric subjects with severe asthmatic exacerbation and those with only

mild or moderate symptoms. Both implementations perform above 0.80 AUROC,

both in terms of the performance on pooled exhalations as well as by-record/subject.

This performance is consistent when applied to a randomly selected hold-out selection

of records.

The univariate model that uses only the Duration at Maximum PeCO2 is a

straightforward extension of the more qualitative, descriptive assessment of the time-

based capnogram in patients with asthmatic exacerbation. In severe cases, subjects

breathe in short, rapid breaths. In very this rapid breathing, the plateau/Phase III

duration visibly shortens on the capnograph readout. The capacity of this individual

feature to relate to overall asthma symptom severity as it does in this dataset suggests

that it may be used as a simple and intuitive measure of severity.

Due to the fact that many of the subjects in the pediatric asthma dataset are in

distress, the overall quality of the recordings is poorer than that of the methacholine

dataset. There is a much higher incidence of artifacts in the capnography recordings

caused by vocalizations such as talking and crying, as well as movement and partial

connection of the nasal cannula. This necessitated the use of manual annotation

versus any automated tools, and thus severely limited the number of records available

for analysis. As asthma severity increased, the quality of the records decreased, an

effect that limited the review of many recordings from subjects with severe asthma

exacerbation.
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Chapter 6

Summary of Contributions and

Future Work

Capnography provides an appealing avenue of research in the development of an

effort-independent diagnostic aid for asthma severity due to the physically demanding

requirements of current standard diagnostic tools. By using the shape of the capno-

gram waveform, it is possible to derive information that describes the physiological

state of the subject, particularly features such as those explored in this work such

as duration, plateau slope and duration, and ETCO2, and interpret this information

with the use of a trained classifier.

6.1 Classification Results

We lay the groundwork for developing such a diagnostic aid through the implemen-

tation of several variations of a simple, logistic regression-based classification model.

This model is capable of distinguishing between subjects with no, or only mild asthma

symptoms, and those with severe asthmatic exacerbation.

Using data from a pulmonary function laboratory in which subjects are under-

going metered bronchial provocation, it is possible to distinguish whether individual

exhalations, as measured by capnography, are produced by a subject under baseline

or normal/healthy conditions, and those from a subject experiencing significant asth-
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matic exacerbation and bronchoconstriction. Even in a carefully controlled diagnostic

environment such as a pulmonary function laboratory, having an effort-independent,

passive method of flagging periods of respiration as potentially exhibiting asthmatic

exacerbation would be useful to the clinician. Naturally, the utility of such a diag-

nostic tool is greater in more challenging clinical environments or triage conditions,

particularly when the patient cannot endure or cooperate with spirometry testing.

With the addition of automatic exhalation segmentation and extraction, the clas-

sification methods described in this work could be made real-time and completely

autonomous.

While marginally less performant, this logistic regression-based classification model

is also able to capture differences in asthma severity in subjects in a pediatric emer-

gency department. This environment poses a number of challenges as patients often

present in physical and/or emotional distress, and cooperation with clinicians (and

study staff) is often not guaranteed. Even with the increased number of artifacts

present in this dataset, manual exhalation annotation and careful feature extraction

was able to result in acceptable by-exhalation and by-record classification perfor-

mance. Indeed, it is the very challenges imposed by data collection in this environ-

ment that makes an effort-independent, passive asthma severity monitoring tool an

attractive prospect.

6.2 Challenges Presented

The development of the classification methods described in this work presented a

number of challenges. Larger-scale data analysis of the pediatric emergency depart-

ment dataset was impeded due to a large number of artifacts among the capnography

recordings. Such artifacts appeared to include vocalizations and crying. In younger

children, there were often artifacts present due to motion or attempted removal of

the capnograph nasal cannula. Often these artifacts were present in subjects with

higher triage asthma symptom severity, and therefore severely limited the amount of

data available from this subpopulation. Previously developed automatic exhalation
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extraction that was able to work well with adult patients was not able to properly

extract the shorter, more frequent and artifact-laden exhalations present in the pedi-

atric dataset. Manual annotation of these recordings were time-intensive and required

careful multi-party review to minimize the introduction of bias or error, and restricted

the overall feasible number of records available for analysis.

Additional challenges posed by both the methacholine challenge/pulmonary func-

tion testing dataset and the pediatric asthma dataset include metadata reconciliation.

Both studies took place over the course of multiple calendar years, and as such, data

collection methods changed and often useful contextual notes were missing (such as

subjects’ HASS). Consequently, some otherwise high quality recordings were unusable

in analysis. In both clinical environments, the priority is to the patient’s evaluation

and treatment. Automation of the data collection process for any future data acqui-

sition will help promote consistent data acquisition and the completeness of records

without putting undue burden on assisting clinical staff.

6.3 Future Work

The development of a database of capnography recording from different clinical set-

tings will be instrumental to future work in the development of an effort-independent

diagnostic tool for asthma. The current datasets, while having useful measures of

underlying symptom severity, are limited in the descriptive power of the labels as-

sociated with a subject or recording. In particular, spirometry measurements taken

near in time to the capnography recordings would provide detailed, objective mea-

sures of asthma symptom severity. The HASS has an element of subjectivity in

rubric categories such as auscultation and muscle retractions, as these require quali-

tative assessment of the patient. Evaluating specific, quantitative spirometry perfor-

mance measures against exhalation features would serve to improve understanding the

“ground truth” underpinning the physiological state behind a capnography recording.

Modifications to the logistic regression model may be made to improve the classi-

fication performance. The inclusion of record-wide respiratory rate as an additional

85



feature in by-record classification may improve performance, when accounting for the

age-dependence of normal respiratory rate range. Further, implementing systematic

up-selection of up to two or three features, rather than strictly implmenting univariate

or four-feature multivariate models, may improve performance in some cases.

More sophisticated classification techniques pose a compelling follow-up of this

work that would serve to improve and refine classification accuracy. Expanding into

the physiological model-based approach such as that described in [19] would provide

additional insight into the underlying disease process, and would compliment this

feature-based approach.
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