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Chapter 1

Introduction

This thesis considers the use of computer-controlled illumination for computational

photography and inverse graphics problems. In particular, we will introduce solutions

to

• image relighting, lighting estimation, and mixed white balance

• photography at very low light levels

• shape and material reconstruction

.

The above problems are known to be very challenging and in general require

both a large number of observations and simplifying assumptions to solve [2, 8, 12,

5]. Simplifying assumptions might appear both in a constrained solution space, for

example restricting recovered materials to a small family of parametric models, or in

a simplified image formation model, for example one that ignores shadows and global

illumination.

The work presented in this thesis presents two approaches to tackle these chal-

lenging problems.
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Figure 1-1: Supervised learning is a powerful technique for approximating functions
that do not have a known closed form solution, but for which paired input/target
training pairs can be collected. In the above example, we train a convolutional net-
work to relight the input image to another fixed light direction. Given a sufficiently
large dataset, the network learns to synthesize plausible images without the need for
the programmer to explicitly encode domain knowlege.

1.1 Supervised learning for computational photogra-

phy: Learning image formation and priors from

data

This thesis proposes using supervised training of feed-forward convolutional models

for computational photography applications. Supervised training removes the need to

explicitly encode assumptions about the image formation model, or the need to specify

a-priori heuristics about the distribution of output images. Instead, a deep network is

trained from labeled data pairs, and learns the distribution of output images from that

dataset. Similarly, the network is trained to approximate the image formation model,

without explicit assumptions about light transport or imaging hardware. Figure 1-1

shows an example of traning a deep convolutional network for image relighting.

The primary challenge in the supervised learning approach is the need to collect

a dataset that (a) is sufficiently large to allow a high-capacity network to be trained

without overfitting and (b) comes from the same distribution as the data that is ex-

pected at test time. It is difficult to satisfy both of these properties for many relevant
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computational photography tasks, including relighting based on multi-illumination

image sets.

Multi-illumination image sets are a collection of pictures of a static scene observed

under varying lighting conditions. Such image sets are useful for training or validat-

ing illumination-related problems, for example image relighting or lighting estimation.

Researchers in the computer graphics community have proposed light stages [6] to col-

lect this data, but publicly available datasets are relatively small in size and restricted

to subjects that fit into the light stage capture volume.

These limitations, along with the cost of expensive multi-light capture stages

has led others to explore using synthetic training data for multi-illumination prob-

lems [14]. Large-scale geometry databases [4] and physically-based materials and

lighting hold the promise to be indistinguishable from real data, when rendered using

high-quality offline rendering algorithms [10]. While this approach offers a promising

direction for future research, with current datasets there is a notable domain gap

between large synthetic data sets and real data [11]. Beyond image quality, synthetic

assets need to be arranged into scenes that contain plausible co-occurrences of indi-

vidual objects. At present, automatically generating plausible scene layouts remains

an active area of research [13].

In chapters 2 and 3, we introduce hardware prototypes that use computer-controlled

light sources in portable form factors to collect real-world data sets for supervised

learning of computational photography problems. The data collected using these

cameras allows us to train deep convolutional networks from scratch. During this

process, the networks learn relevant priors about the target distribution from data,

rather than encoded as ad-hoc heuristics. Since the data was captured in real scenes,

we avoid the domain gap found when training on synthetic data [11]. In the multi-

illumination case (Chapter 2), the collected dataset is larger than previously published

datasets, and allows us to train state-of-the-art models for several problems. For low-

light imaging using near-infrared dark flash (Chapter 3), we are able to collect a

unique data set of NIR dark flash pictures in challenging dynamic scenes that allows

us to address the problem with a novel “near-infrared colorization” approach.

11
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Figure 1-2: Inverse graphics is the problem of reconstructing a 3D representation
of a scene (shapes, materials, light sources) from one or more observations of the
scene. When solving inverse graphics problems, we can leverage our knowledge of the
forward graphics problem in an analysis-by-synthesis setting, where an initial guess
of the scene state (left) is rendered using the forward path and compared to the
observation (right). A differentiable renderer lets us propagate image-space gradients
back to the scene (orange backward path). Scene space gradients are then applied to
the current parameter estimate using gradient descent optimization.

1.2 Differentiable rendering for inverse graphics: Us-

ing well-understood forward models for inverse

problems

For inverse graphics problem (see Figure 1-2), we benefit from a deep understanding of

the forward problem, which can be implemented either as offline [10] or real-time [1]

rendering algorithms. Forward light transport algorithms are capable of rendering

photorealistic images, and the scene parameterizations common in computer graph-

ics are compact and interpretable. Examples for interpretable computer graphics

representations include meshes, SDFs, or volumetric occupancy grids for geometry,

(SV)BRDFs for materials, and environment lighting or discrete light sources for scene

illumination.

Forward rendering can be applied to the inverse problem in an analysis-by-synthesis

setting, where the current guess of the scene is rendered using the forward model, after

which the rendered image is compared to the known observation. When the renderer

is implemented using differentiable programming, image-space gradients can be prop-
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agated backwards from the output image to the interpretable scene representation.

This makes it possible to minimize the error between synthetic image and observation

using gradient descent.

Chapter 4 of this thesis presents an efficient differentiable real-time rendering sys-

tem. The fundamental difficulty of differentiable rendering, computing the impulse-

shaped derivatives that occur along visibility discontinuities [9], is solved through

per-pixel visibility analysis that integrates with analytic anti-aliasing of a box-shaped

pixel reconstruction filter. The resulting renderer is several times faster than most

other differentiable rendering systems and computes gradients that are more accurate

than those computed by other differentiable rasterizers. The renderer also supports

an arbitrary number of fragments per pixel [3], which makes it an efficient renderer

for multi-plane images in inverse problems [7].

Chapters 2 through 4 cover a range of challenging computational photography

and inverse graphics problems. The solutions to these problems include both super-

vised learning using novel datasets, and analysis-by-synthesis through differentiable

programming. In the conclusion of this thesis (Chapter 5), we discuss the continuum

that exists between these two techniques, and point to future research directions into

practical inverse graphics systems that fully utilize both training data and explicitly

programmed domain knowledge.
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Chapter 2

A Dataset of Multi-Illumination

Images in the Wild

published as

Lukas Murmann, Michael Gharbi, Miika Aittala, and Fredo Durand. A multi-

illumination dataset of indoor object appearance. In 2019 IEEE International Con-

ference on Computer Vision (ICCV), Oct 2019.

Abstract: Collections of images under a single, uncontrolled illumination [44] have

enabled the rapid advancement of core computer vision tasks like classification, detec-

tion, and segmentation [27, 45, 19]. But even with modern learning techniques, many

inverse problems involving lighting and material understanding remain too severely

ill-posed to be solved with single-illumination datasets. The data simply does not

contain the necessary supervisory signals. Multi-illumination datasets are notori-

ously hard to capture, so the data is typically collected at small scale, in controlled

environments, either using multiple light sources [10, 55], or robotic gantries [8, 21].

This leads to image collections that are not representative of the variety and com-

plexity of real-world scenes. We introduce a new multi-illumination dataset of more

than 1000 real scenes, each captured in high dynamic range and high resolution, un-

der 25 lighting conditions. We demonstrate the richness of this dataset by training

state-of-the-art models for three challenging applications: single-image illumination
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input ours GT

Figure 2-1: Using our multi-illumination image dataset of over 1000 scenes, we can
train neural networks to solve challenging vision tasks. For instance, one of our
models can relight an input image to a novel light direction. Specular highlights pose
a significant challenge for many relighting algorithms, but are handled gracefully by
our network. Further analysis is presented in Section 2.4.2.

estimation, image relighting, and mixed-illuminant white balance.

2.1 Introduction

The complex interplay of materials and light is central to the appearance of objects

and to many areas of computer vision, such as inverse problems and relighting. We

argue that research in this area is limited by the scarcity of datasets — the current

data is often limited to individual samples captured in a lab setting, e.g. [8, 21], or

to 2D photographs that do not encode the variation of appearance with respect to

light [44]. While setups such as light stages, e.g. [10], can capture objects under

varying illumination, they are hard to move and require the acquired object to be

fully enclosed within the stage. This makes it difficult to capture everyday objects in

their real environment.

In this paper, we introduce a new dataset of photographs of indoor surfaces under

varying illumination. Our goal was to capture small scenes at scale (at least 1,000

scenes). We wanted to be able to bring the capture equipment to any house, apart-

ment or office and record a scene in minutes. For this, we needed a compact setup.

This appears to be at odds with the requirement that scenes be illuminated from

different directions, since designs such as the light stage [10] have required a large

number of individual lights placed around the scene. We resolved this dilemma by

using indirect illumination and an electronic flash mounted on servos so that we can

16



control its direction. As the flash gets rotated, it points to a wall or ceiling near the

scene, which forms an indirect “bounce” light source. The reflected light becomes the

primary illumination for the scene. We also place a chrome and a gray sphere in the

scene as ground truth measurements of the incoming illumination.

Our capture process takes about five minutes per scene and is fully automatic.

We have captured over a thousand scenes, each under 25 different illuminations for a

total of 25,000 HDR images. Each picture comes segmented and labeled according to

material. To the best of our knowledge, this is the first dataset of its kind: offering

both everyday objects in context and lighting variations.

In Section 2.4, we demonstrate the generality and usefulness of our dataset with

three learning-based applications: predicting the environment illumination, relighting

single images, and correcting inconsistent white balance in photographs lit by multiple

colored light sources.

We release the full dataset, along with our set of tools for processing and browsing

the data, as well as training code and models.

2.2 Related Work

2.2.1 Multi-Illumination Image Sets

Outdoors, the sky and sun are natural sources of illumination varying over time.

Timelapse datasets have been harvested both “in the wild” from web cameras [52, 48]

or video collections [46], or using controlled camera setups [47, 30, 28].

Indoor scenes generally lack readily-available sources of illumination that exhibit

significant variations. Some of the most common multi-illumination image sets are

collections of flash/no-flash pairs [41, 12, 2]. These image pairs can be captured rela-

tively easily in a brief two-image burst and enable useful applications like denoising,

mixed-lighting white balance [23], or even BRDF capture [1]. Other applications,

such as photometric stereo [53] or image relighting [10, 55], require more than two

images for reliable results.
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Datasets with more than two light directions are often acquired using complex

hardware setups and multiple light sources [10, 21]. A notable exception, Mohan et al. [36]

proposed a user-guided lighting design system that combines several illuminations of a

single object. Like us, they acquire their images using a stationary motor-controlled

light source and indirect bounce illumination, although within a more restrictive

setup, and at a much smaller scale. For their work on user-assisted image com-

positing Boyadzhiev et al. [7] use a remote-controlled camera and manually shine a

hand-held flash at the scene. This approach ties down the operator and makes ac-

quisition times prohibitive (they report 20 minutes per scene). Further, hand-holding

the light source makes multi-exposure HDR capture difficult. In contrast, our sys-

tem, inspired by work of Murmann et al. [37], uses a motor-controlled bounce flash,

which automates the sampling of lighting directions and makes multi-exposure HDR

capture straightforward.

2.2.2 Material Databases

To faithfully acquire the reflectance of a real-world surface, one typically needs to

observe the surface under multiple lighting conditions. The gold standard in ap-

pearance capture for materials is to exhaustively illuminate the material sample and

photograph it under every pair of viewpoint and light direction, tabulating the result

in a Bidirectional Texture Function (BTF). The reflectance values can then be read

off this large table at render-time [8].

A variety of BTF datasets have been published [8, 31, 50], but the total number

of samples falls far short of what is typically required by contemporary learning-

based algorithms. A rich literature exists on simple, light-weight hardware capture

systems [18], but the corresponding public datasets also typically contain less than a

few dozen examples. Additionally, the scope, quality and format of these scattered

and small datasets varies wildly, making it difficult to use them in a unified manner.

Our portable capture device enables us to capture orders of magnitude more surfaces

than existing databases and we record entire scenes at once —rather than single

objects— “in the wild”, outside the laboratory.
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Bell et al. [5, 6] collected a large dataset of very loosely controlled photographs

of materials from the Internet, enriched with crowd-sourced annotations on mate-

rial class, estimated reflectance, planarity and other properties. Inspired by their

approach, we collect semantic material class segmentations for our data, which we

detail in section 2.3.3. Unlike ours, their dataset does not contain lighting variations.

Previous works have investigated the use of synthetic image datasets for material

estimation [39, 51]. But even carefully crafted synthetic datasets typically do not

transfer well to real scenes due remaining differences in scene complexity, object

appearance, and image formation [42].

2.3 Dataset

Our dataset consists of 1016 interior scenes, each photographed under 25 predeter-

mined lighting directions, sampled over the upper hemisphere relative to the camera.

The scenes depict typical domestic and office environments. To maximize surface and

material diversity, we fill the scenes with miscellaneous objects and clutter found in

our capture locations. A selection of scenes is presented in Figure 2-2.

In the spirit of previous works [36, 37], our lighting variations are achieved by

directing a concentrated flash beam towards the walls and ceiling of the room. The

bright spot of light that bounces off the wall becomes a virtual light source that is

the dominant source of illumination for the scene in front of the camera.

We can rapidly and automatically control the approximate position of the bounce

light simply by rotating the flash head over a standardized set of directions (Figure 2-

3). This alleviates the need to re-position a physical light source manually between

each exposure [7, 34]. Our camera and flash system is more portable than dedicated

light sources, which simplifies its deployment “in the wild”.

The precise intensity, sharpness and direction of the illumination resulting from

the bounced flash depends on the room geometry and its materials. We record these

lighting conditions by inserting a pair of light probes, a reflective chrome sphere and

a plastic gray sphere, at the bottom edge of every image [9]. In order to preserve the
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Figure 2-2: Eight representative scenes from our dataset. Each scene is captured
under 25 unique light directions, 4 of which are shown in the figure. We strived
to include a variety of room and material types in the dataset. Material types are
annotated using dense segmentation masks which we show on the right.
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a)

b)

(c)

Figure 2-3: a) Most of our photographs are lit by pointing a flash unit towards
the walls and the ceiling, creating a virtual bounce light source that illuminates
the scene directionally. b) Some of the photographs are captured under direct flash
illumination, where the beam of light intersects the field of view of the camera. c)
The flash directions used in our dataset, relative to the camera viewing direction and
frustum (black). The directions where direct flash illumination is seen in the view are
shown in red, and the fully indirect ones in blue.

full dynamic range of the light probes and the viewed scene, all our photographs are

taken with bracketed exposures.

As a post-process, we annotate the light probes, and collect dense material labels

for every scene using crowd-sourcing, as described in Section 2.3.3.

2.3.1 Image Capture

Our capture device consists of a mirrorless camera (Sony 𝛼6500 ), and an external

flash unit (Sony HVL-F60M ) which we equipped with two servo motors. The servos

and camera are connected to a laptop, which automatically aims the flash and fires the

exposures in a pre-programmed sequence. The 24mm lens provides a 52∘ horizontal

and 36∘ vertical field of view.

At capture time, we rotate the flash in the 25 directions depicted in Figure 2-3,

and capture a 3-image exposure stack for each flash direction. We switch off any room

lights and shut window blinds, which brings the average intensity of the ambient light

to less than 1% of the intensity of the flash illumination. For completeness, we capture

an extra, ambient-only, exposure stack with the flash turned off.

The 25 flash directions are evenly spaced over the upper hemisphere. In 18 of

these directions, the cone of the flash beam falls outside the view of the camera, and
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consequently, the image is only lit by the secondary illumination from the bounce.

In the remaining 7 directions, part or all of the image is lit by the flash directly. In

particular, one of the directions corresponds to a typical frontal flash illumination

condition.

Capturing a single set (78 exposures) takes about five minutes with our current

setup. The capture speed is mostly constrained by the flash’s recycling time (around

3.5 seconds at full power). Additional battery extender packs or high-voltage batteries

can reduce this delay for short bursts. We found them less useful when capturing many

image sets in a single session, where heat dissipation becomes the limiting factor.

2.3.2 HDR processing

The three exposures for each light direction are bracketed in 5-stops increments to

avoid clipped highlights and excessive noise in the shadows. The darkest frame is

exposed at 𝑓/22 ISO100, the middle exposure is 𝑓/5.6 ISO200, and the brightest

image is recorded at 𝑓/5.6 ISO6400. The shutter speed is kept at the camera’s fastest

flash sync time, 1/160th second to minimize ambient light. The camera sensor has

13 bits of useful dynamic range at ISO100 (9 bits at ISO6400). Overall, our capture

strategy allows us to reconstruct HDR images with at least 20 bits of dynamic range.

Using the aperture setting to control exposure bracketing could lead to artifacts

from varying defocus blur. We limit this effect by manually focusing the camera to

the optimal depth, and by avoiding viewpoints with depth complexity beyond the

depth-of-field that is achieved at 𝑓/5.6.

After merging exposures, we normalize the brightness of the HDR image by match-

ing the intensity of the diffuse gray sphere. The gray sphere also serves as a reference

point for white balance. This is especially useful in brightly-colored rooms that could

otherwise cause color shifts.
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Figure 2-4: Crowd-sourced material annotations show that painted surfaces, fabrics,
wood, and metal are the most frequently occurring materials in our dataset, cover-
ing more than 60% of all pixels. For some room types, the material distribution is
markedly different from the average. For example, in kitchens we frequently encounter
wood (shelves) and metal (appliances), bedroom scenes show a high frequency of fab-
rics, and the material distribution of bathrooms is skewed towards tiles and ceramics.

2.3.3 Dataset Statistics

To ensure our data is representative of many real-world scenes, we collected images

in 95 different rooms throughout 12 residential and office buildings, which allowed us

to capture a variety of materials and room shapes.

In order to analyze the materials found throughout our dataset, we obtain dense

material labels segmented by crowd workers, as shown in Figure 2-2 and 2-4. These

annotations are inspired by the material annotations collected by Bell et al. [5], whose

publicly available source code forms the basis of our annotation pipeline.

Figure 2-4 shows the distribution of materials in our data set. Specific room types

have material distributions that differ markedly from the unconditioned distribution.

For example, in kitchens we frequently find metal and wooden surfaces, but few fabrics

(less than 5% of pixels). Bedrooms scenes on the other hand show fabrics in 38% of

the pixels, but contain almost no metal surfaces (less than 4%).
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2.4 Applications

In this section we present learning-based solutions to three long-standing vision prob-

lems: single-image lighting estimation, single-image relighting and mixed-illuminant

white-balance. Our models are based on standard convolutional architectures, such

as the U-net [43]. For all experiments, we normalize the exposure and white balance

of our input images with respect to the gray sphere. We also mask out the chrome

and gray spheres with black squares both at training and test time to prevent the

networks from using this information directly.

2.4.1 Predicting Illumination from a Single Image

Single-frame illumination estimation is a challenging problem that arises e.g. when

one wishes to composite a computer-generated object into a real-world image [9].

Given sufficient planning (as is common for visual effects in movies), illumination can

be recorded at the same time the backdrop is photographed (e.g. by using a light

probe). This is rarely the case for a posteriori applications. In particular, with the

growing interest in augmented reality and mixed reality, the problem of estimating

the illumination in uncontrolled scenes has received increased attention.

Several methods have explored this problem for outdoor images [29, 15, 16, 20, 33]

as well as indoor environments [14]. Noting the lack of viable training data for indoor

scenes, Gardner et al. explicitly detect light sources in LDR panoramas [54]. Our

proposed dataset includes HDR light probes in every scene which makes it uniquely

suitable for illumination prediction and other inverse rendering tasks [4] in indoor

environments.

Model

We approach the single image illumination prediction problem by training a convo-

lutional network on 256× 256 image crops from our dataset. We ask the network to

predict a 16×16 RGB chrome sphere, that we compare to our ground truth probe us-

ing an 𝐿2 loss. The 256× 256 input patch is processed by a sequence of convolution,

24



ReLU, and Max-pooling layers, where we halve the spatial resolution and double the

number of feature maps after each convolution. When the spatial resolution reaches

1× 1 pixel, we apply a final, fully-connected layer to predict 768 numbers: these are

reshaped into a 16×16 RGB light probe image. Exponentiating this images yields the

final, predicted environment map. We provide the network details in supplemental

material.

Compositing synthetic objects

Figure 2-5 shows some compositing results on a held-out test set. While our model

does not always capture the finer color variations of the diffuse global illumination,

its prediction of the dominant light source is accurate. Figure 2-7 shows one of the

test scenes, with synthetic objects composited. The synthetic geometry is illuminated

by our predicted environment maps and rendered with a path-tracer. Note that the

ground truth light probes visible in the figure were masked during inference, and

therefore not seen by our network.

Evaluation

We evaluated our model on a held-out test subset of our data and compared it to a

state-of-the-art illumination prediction algorithm by Gardner et al. [14]. Compared

to their technique, our model more accurately predicts the direction of the bounce

light source (see Figure 2-5). In comparison, Gardner et al. ’s model favors smoother

environment maps and is less likely to predict the directional component of the il-

lumination. For visual comparison, we warp the 360∘ panoramas produced by their

technique to the chrome sphere parameterization that is used throughout our paper.

In order to quantify the performance of the chrome sphere predictor, we analyzed

the angular distance between the predicted and true center of the light source for 30

test scenes. Our technique achieves a mean angular error of 26.6∘ (std. dev. 10.8∘),

significantly outperforming Gardner et al. ’s method, which achieves a mean error of

68.5∘ (std. dev. 38.4∘). Visual inspection suggests that the remaining failure cases

of our technique are due to left/right symmetry of the scene geometry, mirrors, or
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Figure 2-5: As the first application of our dataset, we train a deep network to predict
environment maps from single input images. Our model consistently predicts the
dominant light direction of the ground truth environment map. The model success-
fully estimates illumination based on shiny objects (a and g) and diffuse reflectors (e.g.
row f). Rows h) and i) show failure cases where the network predicts low-confidence
outputs close to the mean direction. We compare to Gardner et al. ’s algorithm [14]
which, while predicting visually plausible environment maps, lacks the precise lo-
calization of highlights shown by our technique. (Please ignore the vertical seam in
Gardner et al. ’s result. Their model uses a differing spherical parametrization, which
we remap to our coordinate system for display.)
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input ours GT Gardner et al.

Figure 2-6: We validate our model’s ability to generalize beyond bounce flash illu-
mination. The top row show an office scene with regular room lights. The bottom
two rows show a scene illuminated by softboxes, first lit from the right and then from
the left. The second set of results suggests that our model can aggregate information
from shadows to infer the light source position.

Figure 2-7: We use the environment maps predicted by our model to illuminate
virtual objects and composite them onto one of our test scenes. The light probe in
the bottom of the frame shows the ground truth lighting. (Note that these probes
are masked out before feeding the image to the network).

simply lack of context in the randomly chosen input crops (see Figure 2-5 bottom).

We verified that our model generalizes beyond bounce flash light sources using

a small test set of pictures taken under general non-bounce flash illumination. The

results of this experiment are presented in Figure 2-6.
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2.4.2 Relighting

A robust and straightforward method to obtain a relightable model of a scene is

to capture a large number of basis images under varying illumination, and render

new images as linear combinations of the basis elements. Light stages [10] work ac-

cording to this principle. With finitely many basis images, representing the high

frequency content of a scene’s light transport operator (specular highlights, sharp

shadow boundaries, etc.) is difficult. Despite this fundamental challenge, prior work

has successfully exploited the regularity of light transport in natural scenes to es-

timate the transport operator from sparse samples [38, 40, 49]. Recent approaches

have employed convolutional neural networks for the task, effectively learning the

regularities of light transport from synthetic training data and reducing the number

of images required for relighting to just a handful [55].

In our work, we demonstrate relighting results from a single input image on real-

world scenes that exhibit challenging phenomena, such as specular highlights, self-

shadowing, and interreflections.

Model

We cast single-image relighting as an image-to-image translation problem. We use

a convolutional neural network based on the U-net [43] architecture to map from

images illuminated from the left side of the camera, to images lit from the right (see

supplemental material for details). Like in Section 2.4.1, we work in the log-domain

to limit the dynamic range of the network’s internal activations. We use an 𝐿1 loss

to compare the spatial gradients of our relit output to those of the reference image,

lit from the right. We found this gradient-domain loss to yield sharper results. It

also allows the network to focus more on fine details without being overly penalized

for low-frequency shifts due to the global intensity scaling ambiguity (the left- and

right-lit images might not have the same average brightness, depending on room

geometry).
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Figure 2-8: The second application of our data is learning image relighting using a
single input image. The trained model synthesizes moving specular highlights (a, b,
c) and diffuse shading (b, d), and correctly renders shadows behind occluders (d).
For the baseline result, we first estimate normals and diffuse albedo using published
models, and then re-render the image as lit by the target environment map.
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Evaluation

Our model faithfully synthesizes specular highlights, self- and cast-shadows, as well

as plausible shading variations. Without a large-scale training dataset for an end-

to-end solution, a valid straw man approach would be to use existing techniques

and decompose the input into components that can be manipulated for relighting

(e.g. normals and albedo). We provide such a baseline for comparison. It uses a

combination of deep single-image normal estimation [56] and learned intrinsic image

decomposition [25] (see Figure 2-8). Both components are state-of-the-art in their

respective fields and have source code and trained models publicly available.

This baseline illustrates the challenges in decomposing the single-image relighting

problem into separate inverse rendering sub-problems. Specifically, major sources

of artifacts include: incorrect or blurry normals, and incorrect surface albedo due

to the overly simplistic Lambertian shading model. The normals and reflectance

estimation networks were independently trained to solve two very difficult problems.

This is a arguably more challenging than our end-to-end relighting application and,

also unnecessary for plausible relighting.

Our end-to-end solution does not enforce this explicit geometry/material decom-

position and yields far superior results. More relighting outputs produced by our

model are shown in Figure 2-1 and in the supplemental material.

2.4.3 Mixed-Illumination White-Balance

White-balancing an image consists in neutralizing the color cast caused by non-

standard illuminants, so that the photograph appears lit by a standardized (typically

white) light source. White-balance is under-constrained, and is often solved by mod-

eling and exploiting the statistical regularities in the colors of lights and objects. The

most common automatic white balance algorithms make the simplifying assumption

that the entire scene is lit by a single illuminant. See [17] for a survey. This assump-

tion rarely holds in practice. For instance, an interior scene might exhibit a mix of

bluish light (e.g. from sky illuminating the scene through a window) and warmer tones
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(e.g. from the room’s artificial tungsten light bulbs). Prior work has formulated a lo-

cal gray-world assumption to generalize white balance to the mixed-lighting case [11],

exploiting the difference in light colors in shadowed vs. sunlit areas for outdoor scenes

[26], or flash/no-flash image pairs [35, 22, 24].

Here again, we approach white-balancing as a supervised learning problem. Be-

cause our dataset contains high-dynamic range linear images with multiple lighting

conditions, it can be used to simulate a wide range of new mixed-color illumina-

tions by linear combinations. We exploit this property to generate a training dataset

for a neural network that removes inconsistent color casts from mixed-illumination

photographs.

Mixed-illuminant data generation

To create a training set of input/output pairs, we extract 256× 256 patches from our

scenes at multiple scales. For each patch, we choose a random number of light sources

𝑛 ∈ {1, . . . , 4}. Each light index corresponds to one of 25 available flash directions,

selected uniformly at random without replacement. We denote by 𝐼1, . . . , 𝐼𝑛 the

corresponding images.

For each light 𝑖, we sample its color with hue in [0, 360], and saturation in [0.5, 1],

represented as a positive RGB gain vector 𝛼𝑖, normalized such that ||𝛼𝑖||1 = 1. We

randomize the relative power of the light sources by sampling a scalar exposure gain

𝑔𝑖 uniformly (in the log domain) between −3 and +2 stops. We finally assemble our

mixed-colored input patch as the linear combination: 𝐼 = 1
𝑛

∑︀𝑛
𝑖=1 𝛼𝑖𝑔𝑖𝐼𝑖.

We define the color-corrected target similarly, but without the color gains: 𝑂 =

1
𝑛

∑︀𝑛
𝑖=1 𝑔𝑖𝐼𝑖.

Model

Like for the relighting problem, we use a simple convolutional network based on a

U-net [43] to predict white-balanced images from mixed-lighting inputs (details in the

supplemental).

To reduce the number of unknowns and alleviate the global scale ambiguity, we
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Figure 2-9: The first row shows a mixed white-balance result on an image from a held-
out test set. The input (left) is a linear combination of several (two here) illuminations
of the same scene under varied color and intensity. The reference image (right) has
the same energy but no color cast. Our output (middle) successfully removes the
green and magenta shifts. The simple model we trained on our dataset, generalizes
well to unseen, real RAW images (second row). The most noticeable failure case are
skin tones (third row), which are entirely absent from our data set of static scenes.

take the log transform of the input and target images, and decompose them in 2
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chrominance 𝑢, 𝑣, and a luminance component 𝑙 [3]:

𝑢 = log(𝐼𝑟 + 𝜖)− log(𝐼𝑔 + 𝜖), (2.1)

𝑣 = log(𝐼𝑏 + 𝜖)− log(𝐼𝑔 + 𝜖), (2.2)

𝑙 = log(𝐼𝑔 + 𝜖), (2.3)

where 𝜖 = 10−4, and the superscripts stand for the RGB color channels.

Our network takes as input 𝑢, 𝑣, 𝑙 and outputs two correctly white-balanced chroma

components. We assemble the final RGB output from 𝑙 and the predicted chroma,

using the reverse transform. Our model is trained to minimize an 𝐿2 loss over the

chroma difference.

Results

Our model successfully removes the mixed color cast on our test set and generalizes

beyond, to real-world images. The main limitation of our technique is its poor gen-

eralization to skin tones, to which the human eye is particularly sensitive, but which

are absent from our dataset of static indoor scenes. We present qualitative results in

Figure 2-9 and in the supplemental video.

2.5 Crowd-sourced data annotation

For each scene, we include dense material labels, segmented by crowd workers. These

annotations are inspired by the material annotations collected by Bell et al. [5],

whose publicly available source code forms the basis for our data annotation system.

Departing from Bell et al. , we strive to densely label each scene with at least 95%

coverage. In comparison, the images published by Bell et al. have an average coverage

of 20%.

Annotations with above 95% coverage also set our dataset apart from semantic

segmentation datasets such as Coco [32] and Pascal [13], which generally exhibit many

unlabeled background pixels. In particular, the Coco 2014 training set has an average
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pixel-level coverage of 29.6%, while Pascal VOC2012 includes annotations for 25.5%

of the pixels.

In early crowd sourcing experiments, we found it difficult to achieve high annota-

tion coverage using the polygon-based segmentation user interface from Bell et al. [5],

which also forms the backbone of the Coco annotations [32]. While segmentation us-

ing a single polyline is an effective solution for foreground objects without holes,

encouraging a thorough labeling of the background turned out more difficult. We

found that background regions must frequently be split into several polygons to avoid

accidentally including foreground objects. Further, we observed that labeling both

foreground and background would almost double the work required, as each occluding

contour must be traced twice.

We overcome these limitations by segmenting objects in order, from front to back.

In a typical segmentation session, a worker starts by labeling foreground objects that

are not occluded (i.e. objects closest to the camera). Once these occluding objects are

labeled, the worker can “extract” them from the image. As background polygons are

automatically masked by extracted foreground shapes, the worker can then segment

the “second layer” without worrying that their newest polygon might overlap pre-

viously segmented areas. Our front-to-back segmentation interface is efficient since

occluding contours only have to be traced once, background objects are segmented

into a single contiguous polygon, and the front-to-back logic ensures there are neither

gaps nor overlap between foreground and background annotations.

We found that crowd workers on Amazon Mechanical Turk were able to reliably

segment scenes in front-to-back order after viewing a short tutorial video that intro-

duces our user interface and demonstrates the semantics of front-to-back ordering.

After the segmented shapes are submitted to our server, we add them to a work

queue where workers are asked to choose the material for each segment. The choice

of material categories and annotation interface follows Bell et al. [5]. Each shape is

presented to five workers and materials are determined by a simple majority vote. In

cases where no material receives a majority, we resolve ties manually. Figure 2-10

compares the segmentations obtained using our technique with thouse obtained using
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Not segmented More than 
one material

I can’t tell Split vote

Input [Bell et al. 2013] Crowd only Ties resolved

Figure 2-10: Obtaining full-image annotations using an unmodified version of [5] is
challenging (column 2). Our modified version of their UI lets workers segment images
front-to-back, which allows background objects to be captured in a single contiguous
shape (column 3). In some cased (see wooden floor in bottom row), crowd-sourced
votes are split, which we resolve manually for the final result (column 4).

the original user interface.

2.6 Network architectures

Let 𝐶𝑘 denote a Conv–ReLU layer with 𝑘 3 × 3 kernels. 𝑃𝑘 is a 𝑘 × 𝑘 max-pooling

operator, and 𝐿𝑘 is a 1× 1 convolution with 𝑘 linear outputs (no activation). 𝑈𝑘 is a

𝑘 × 𝑘 bilinear upsampling layer.

Illumination prediction Our fully convolutional illumination prediction network

takes 256× 256 color images as input and produces 16× 16 RGB light probe images

(i.e. 768 output floats). Its architecture is given by:

𝐶32𝑃2𝐶64𝑃2𝐶128𝑃2𝐶256𝑃2𝐶512𝑃4𝐷𝐶512𝑃4𝐶512𝐿768.

Relighting and white-balance Both the relighting and white-balance application

use a U-net with 7 downsampling stages and take 3-channel images as input. The

relighting output is a color image (3 channels), but the white-balance model produces

only the chroma components (2 channels), which are then combined with the input

35



luminance. The U-net encoder can be described as:

(𝐶64)
2𝑃2(𝐶128)

2𝑃2(𝐶256)
2𝑃2(𝐶512)

2𝑃2(𝐶512)
2𝑃2

(𝐶512)
2𝑃2(𝐶512)

2𝑃2(𝐶512)
2.

And the decoder is given by:

𝑈2(𝐶64)
2𝑈2(𝐶128)

2𝑈2(𝐶256)
2𝑈2(𝐶512)

2𝑈2(𝐶512)
2𝑈2(𝐶512)

2𝑈2(𝐶512)
2𝐿2or3,

with additive skip-connections between matching resolutions.

2.7 Limitations

A limitation of our capture methodology is that it requires good bounce surfaces

placed not too far from the scene. This precludes most outdoor scenes and large

indoor rooms like auditoriums. Our capture process requires the scene to remain

static for several minutes, which keeps us from capturing human subjects. Compared

to light stages or robotic gantries, the placement of our bounce light sources has more

variability due to room geometry, and the bounce light is softer than hard lighting

from point light sources. Finally, we only capture 25 different illuminations, which is

sufficient for diffuse materials but under-samples highly specular ones.

2.8 Conclusions

We have introduced a new dataset of indoor object appearance under varying il-

lumination. We have described a novel capture methodology based on an indi-

rect bounce flash which enables, in a compact setup, the creation of virtual light

sources. Our automated capture protocol allowed us to acquire over a thousand

scenes, each under 25 different illuminations. We presented applications in envi-

ronment map estimation, single-image relighting, and mixed white balance that can

be trained from scratch using our dataset. Code and data are available online at

https://projects.csail.mit.edu/illumination/.
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Abstract: We present an algorithm for capturing portraits in low-light environ-

ments that is robust to scene motion and does not require a visible flash. Our system

can readily be integrated into modern smartphones, requiring only an unmodified

RGB camera, a near-infrared camera, and a wavelength-matched LED flash that is

invisible to the human eye. Capturing a time-synchronized “dark flash” pair with

our system yields a sharp NIR image lit by the flash and a longer-exposure RGB

image illuminated by the ambient environment but with significant blur and noise
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and captured from an offset viewpoint. We propose a deep learning algorithm that

spectrally transforms the NIR image into the visible range, using the blurry and offset

RGB exposure as a guide for visible appearance. By predicting visible-light intensity

in addition to chrominance, this formulation generalizes grayscale-to-RGB coloriza-

tion. The task is challenging because material appearance differ dramatically between

near-IR and the visible spectrum. To validate our approach, we develop a hardware

prototype and collect a new set of images for training. Unlike previous dark flash ap-

proaches, we do not require any modifications to the RGB camera, nor do we impose

additional restrictions between the NIR and RGB cameras. We demonstrate the ef-

fectiveness of our technique with comparisons to state-of-the-art algorithms and show

that it outperforms even commercial solutions under challenging low-light conditions.

Finally, we show the applicability of our technique to video inputs.

Input stereoscopic dark flash image pair

(a) Near-infrared (b) RGB guide (c) Frontal flash (target) (d) Colorized NIR (out result) (e) SOTA multi-frame denoising

Huawei P30 Pro Night Mode

Google Pixel 4 Night Sight

Figure 3-1: Our method captures a synchronized near-infrared (NIR) and RGB image
pair from two close viewpoints (a-b), and fuses them to produce a clean RGB image
(d) that resembles one captured with visible, frontal flash (c). It uses a novel deep
network to predict both intensity and chrominance of the NIR image using the noisy
or blurry RGB image as guide. We specifically target portrait photography (non-
static scenes, where people might be moving) at very low lux levels—scenarios that
pose challenges for state-of-the-art multi-frame denoising algorithms such as Pixel’s
Night Sight [21] and Huawei’s Night Mode (e).
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3.1 Introduction

Recent advances in computational techniques have dramatically improved the qual-

ity of photographs captured using mobile phone cameras. However, photographing

moving subjects in low light remains challenging due to the devices’ small lens aper-

tures and sensors, and the resulting images contain significant noise or motion blur

(Fig. 3-1). The classical solution employed on today’s smartphone cameras is to use

an LED flash for additional illumination. However, the bright visible flash dazzles

the subject and may be socially unacceptable.

Dark flash photography [16, 34] is a promising alternative because the illumination

is not visible to the human eye. Limitations of existing dark flash approaches include

impractical restrictions on the hardware configuration (e.g., requiring modifications to

the main RGB camera) and their inability to handle motion. We propose a camera

configuration where we augment the standard RGB camera with a full-resolution

sensor sensitive to near-infrared light and a wavelength-matched LED flash. These

components are already present in modern smartphones for facial authentication and

depth sensing, and it would be straightforward to replace the NIR sensor with one

that has higher resolution to support our technique.

Our proposed setup and capture strategy overcomes the major limitations of pre-

vious dark flash approaches. In particular:

• It tolerates camera and scene motion, capturing two images simultaneously with

parallax, enabling both still and video capture.

• The cameras need not be geometrically identical, enabling a more flexible choice

of sensors and lenses.

• It augments existing well-engineered configurations and does not require modi-

fications in any way.

Our goal is to make it practical to photograph people in low light environments

such as a romantic restaurant or a concert using a smartphone—at ranges where a

dark flash provides a useful amount of illumination. Our camera captures a pair of
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Dark flash

RGB-IR sensor

RGB sensorController

Figure 3-2: Our camera prototype. Notice that when capturing data for training,
we remove the flash IR-pass filter (shown mounted in this picture) to permit the
capture of full four-channel RGB-NIR images. While we use an RGB-NIR sensor for
capturing training data, a monochromatic NIR sensor (augmenting a conventional
RGB camera) is all that is required at test time. Similar components already exist
in modern smartphones for purposes such as facial authentication.

synchronized images, illuminated by the ambient environment in visible wavelengths

but brightly lit by our dark flash in near-IR (NIR) wavelengths. The captured NIR

image is sharp with low noise, but also has a characteristic “waxy appearance” on

skin tones. In contrast, the RGB image, taken with a longer exposure time, has the

right chrominance information but is blurry or noisy. We formulate the combination

of sharp near-IR with blurry RGB as an extension to guided image colorization,

which we solve using a generative adversarial network (GAN) trained on a synthetic

dataset and moderately-sized corpus of ground truth images collected with a hardware

prototype.
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3.2 Related Work

Imaging in low light has been the subject of significant research. Here we provide a

short summary of recent literature.

Image Denoising and Deblurring Capturing images in dim environments re-

quires a fundamental tradeoff. Short exposure times capture sharp images that freeze

motion but suffer from unavoidable shot and read noise. Integrating over a longer

exposure time reduces that noise, but the captured images contain spatially vary-

ing blur due to scene motion and hand shake. There are numerous approaches that

attempt to remove the corrupting noise or blur post-capture. Traditional denoising

techniques like BM3D [5] and Non-Local Means [3] are based on image priors such as

sparsity (in a transform domain) and self-similarity. More recently, techniques based

on deep learning (e.g., FFDNet [38]) and hybrid approaches (e.g., N3Net [25]) show

impressive results on sRGB images. Recent work applies CNNs to directly to RAW

images, denoising images [4] and videos [12] shot in very low light.

The alternative approach of deblurring longer-exposure images is in general a

harder problem. Unlike noise, which is a physical process that can be modeled ac-

curately using a small number of parameters, what is observed as blur in an image

comes from several spatially-varying, scene-dependent sources. Moreover, the source

signal is corrupted by noise prior to integration, and is further processed by a non-

linear camera pipeline. Recent techniques [32, 17] have made some progress; however,

fully-automatic deblurring remains impractical for consumer applications.

Visible and Dark Flash Photography Our work is not the first to observe that

one can enhance images captured in dark environments by combining the sharp de-

tails of a flash image with the color and tone of an “ambient” (no-flash) image. Early

work [7, 24] captures two images in rapid succession from the same viewpoint, where

the flash image is lit by a visible xenon source. Followup work in Dark Flash Pho-

tography [16] uses the same capture protocol but leverages IR and UV illumination

and a modified camera to avoid dazzling the subject. While these techniques produce
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high-quality results, they both require a static scene and either dazzles the subject,

or requires modifying the camera hardware to be sensitive to IR and UV.

Previous work on dark flash for video sequences [1] uses NIR frames to aid in

RGB denoising through a variety of filtering operations. A specialized hardware

configuration is required to ensure the cameras share the same optical path.

Recent work [34] alleviates many of these problems by using a stereo configura-

tion, but the approach imposes other requirements. In particular, the two cameras

must be geometrically identical and use sensors that share a green channel but differ

in their long (red/IR) and short (blue/UV) wavelengths, making it somewhat imprac-

tical. Moreover, their capture protocol requires that the two cameras have identical

exposure times for explicit stereo matching, limiting the amount of color information

that can be gathered from the RGB camera due to the substantial noise introduced by

the short exposure. Our work lifts these restrictions, allowing the use of off-the-shelf

components and a more flexible capture protocol.

Recent work in multi-view image fusion [33] may also be applicable to the dark

flash setting. The approach features a novel method for computing optical flow with

a deep neural network specifically tailored for the applications of color transfer, HDR

fusion, and detail transfer. However, it is not trained for our task of RGB-guided

NIR colorization and it is unclear how well their formulation of optical flow will work

in the presence of cross-modal variations, motion blur, and noise.

Finally, there exists prior research in the area of cross-modal image alignment [28].

This method is hand-tuned to be robust to certain features of NIR images such as

gradient reversals. Such alignment techniques could be combined with cross-modal

denoising [36] for dark flash imaging. This is analogous to the approach of [34].

Image Colorization Fully-automatic grayscale image colorization is a topic that

has received much recent attention [39, 11, 19]. By using an RGB guide image, our

work is similar to guided colorization techniques that use sparse annotations [20, 41]

or exemplar images [8, 37]. However, these techniques work poorly when directly

applied to NIR images because NIR images are not grayscale images—they do not

48



feature many of the properties shared by visible-spectrum grayscale and color images,

and they are certainly not in the linear subspace of RGB channels [2]. Materials that

appear dark at visible wavelengths may be vibrant in NIR, while visible textures can

disappear entirely in the infrared (Figure 3-10).

Recent work in colorizing NIR images [22, 30] focus on well-lit outdoor scenes

where the infrared signal comes from the sun. These techniques are trained on RGB-

NIR datasets which have per-pixel registration captured using specialized cameras.

While these techniques also use modern deep convolutional networks, at test time the

NIR image is the only input to colorization. This works well for outdoor environments

where scene semantics can be easily inferred from the image but does not consider

human subjects in low-light indoor environments.

There are also recent papers based on CycleGAN, which use unpaired training

data to learn to colorize NIR images [6, 31]. Like other approaches that colorize only

based on NIR, these must cope with the inherent color ambiguities described above.

Our setup removes such ambiguities by the acquisition of a (degraded) RGB guide

image.

3.3 Proposed Setup

Our method takes as input two images: one reference near-IR (NIR) image illuminated

by a dark flash and one noisy and/or blurry RGB image from an offset viewpoint that

will act as a color guide. Our goal is to output a sharp RGB image from the viewpoint

of the NIR camera. We choose the NIR viewpoint because this is the one where we

have sharp information, albeit with an intensity that is very different from grayscale

obtained from RGB, which makes our problem harder than traditional colorization.

On the other hand, we have some information about color in the guide RGB image,

but it has parallax and is blurry, noisy, or both. We seek to train a neural network

that combines these two inputs into a sharp RGB image.

We reproduce the illumination conditions of the NIR image because it facilitates

the task of the network (no relighting needed), although only up to a point because
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near-IR and visible-wavelength reflectance properties can be starkly different. Cap-

turing large amounts of training data with a prototype rig is cumbersome, so we opt

instead for a hybrid solution. We first pretrain the network using synthetic data gen-

erated from single RGB images, simulating the appearance of NIR intensity, and the

degradation of the RGB guide image. We then fine-tune the network with real data

obtained from an imaging setup we create. Due to the limited amount of real training

data, we have chosen to focus on portraits, as they present a common use-case.

Our proposed camera configuration consists of a conventional RGB camera, aug-

mented by a monochromatic near-infrared camera and a wavelength-matched near-

infrared flash (Figure 3-2) whose spectrum is invisible to the human eye. The RGB

camera, NIR camera, and flash are offset by a small baseline. The RGB camera has

a slightly wider field of view, so that it covers the entire NIR image. At test time,

this simple configuration is all that is required. However, to collect a dataset suitable

for training an NIR colorization algorithm based on modern deep learning, we need

a prototype that can also collect “ground truth”.

3.3.1 Prototype camera

For our prototype, we use as the NIR camera a Spectral Devices MSC-RGBN-1-A,

which features an RGB-NIR color filter array, enabling us to collect pixel-registered

ground truth data. Our RGB camera is a conventional FLIR Grasshopper3 23S6C.

As our hardware is a proof of concept designed for gathering training data, we elect

to use a standard xenon speedlight for our flash, which emits light in both NIR and

visible wavelengths. Although this configuration dazzles the subject, it lets us capture

NIR and ground truth RGB from the same viewpoint in a single exposure. The timing

of both cameras and the flash is synchronized using a microcontroller.

We also built a second variant for capturing video, replacing the xenon speedlight

with an NIR LED array (see Figure 3-8). We use an off-the-shelf assembly of four

bright LEDs that is a common accessory for NIR surveillance cameras. Unlike the

speedlight, the LEDs emit light continuously, which allows us to capture NIR images

at video rate (30 fps). However, since the LED array only emits NIR light, this
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configuration does not let us capture ground truth RGB video.

3.3.2 Dataset

Using our camera prototype, we capture low-light portrait photographs of a number

of subjects with a diversity of skin color, facial hair, hair style, age, and the presence

of accessories such as glasses, earrings, and headphones. During dataset acquisition,

subjects naturally vary their amounts of body motion, ranging from “holding still” to

rapid movements.

For each scene, we collect four images, with images (1) and (2) acquired concur-

rently.

1. Input NIR with flash on.

2. Ground truth RGB with flash on.

3. Guide RGB with flash off (blurry long exposure).

4. Guide RGB with flash off (noisy short exposure).

Capture Protocol During a capture session, we continuously present a viewfinder

image of the RGB camera, which the operator uses for composition. While in this

mode, the shutter time for the long RGB exposure is determined via auto-exposure

(AE). We implement AE in software as a PD controller that targets the 90th percentile

of the image to be at 60% of the raw range. At our target light levels of 0.1 to 1 lux,

the resulting exposure times fall between 100 and 1000 ms.

After shutter release, the RGB exposure time is locked and both cameras wait

for a trigger signal from the microcontroller. We first acquire the flash-on NIR and

ground truth RGB images in a single exposure with fixed 5 ms exposure time. One

millisecond into the exposure, a 5 ms duration flash is triggered via microcontroller.

At t = 6 ms, we trigger the RGB long exposure, which guarantees that the flash is

no longer illuminating the scene. After the long exposure is completed, we reduce
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the exposure time to one tenth of the AE solution and capture another RGB image

which trades more noise for reduced blur.

In video mode, the NIR camera is clocked at a constant rate of 30 fps (33 ms

duration), leaving 30 ms for exposure and 3 ms for readout. We choose a longer

NIR exposure in video mode to compensate for the reduced brightness of the LED

compared to the flash. The RGB camera runs at 5 fps (200 ms duration) with a 180

ms exposure time. In video mode, NIR and RGB exposures overlap, with the NIR

camera capturing 6 images for every RGB image.

Dataset Details Our full dataset includes 1330 distinct scenes. The RGB-NIR

camera has a native raw resolution of 2048x2048 pixels with 12-bit depth. Due to

manufacturing tolerances of the RGB-NIR color filter array, only 1024x1024 pixels

have well-defined spectral responses. This implicit subsampling introduces aliasing

in both NIR and ground truth RGB images. We demosaic the 1024x1024 image

into red, green, blue, and NIR channels of size 1024x1024. After this, we run the

images through a standard camera pipeline of white balance, exposure, contrast, and

saturation adjustment [26], and store the outputs as gamma-encoded 8-bit sRGB

images for downstream training and evaluation.

In addition to the still-image dataset above, we also collect two others for eval-

uation: 21 video sequences, in which we replace the flash with IR LEDs capable of

continuous illumination (see Figure 3-8) and low-light images captured by Google

Pixel 4 (60 images) and Huawei P30 Pro (38 images) smartphones, which serve as

baselines for commercial burst denoising algorithms.

3.4 Method

Our method relies on a deep neural network to reconstruct a sharp RGB image given

a near-IR image, using information present in the offset and potentially blurry longer-

exposure RGB guide. Modern deep networks require large amounts of representative

data to train; yet with only thousands of images collected over a period of months
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with our prototype, we need to overcome this data deficit.

Our strategy is to pretrain the network on synthetic data generated from a large

public RGB portrait dataset. By randomly degrading these images, we can steer the

network towards predicting satisfactory results from a “generic” low-quality camera

and a grayscale channel that is only loosely correlated with the desired output. In

short, the two features we need to replicate in our synthetic data are 1) limited corre-

lation between near-IR and RGB grayscale, and 2) motion blur, noise, and parallax

of the RGB guide. Our strategy is not to model these effects accurately (which may

overfit a model to a specific setup and calibration), but to instead start from a coarse

model using pretraining.

We then fine-tune the pretrained network on actual images from our prototype,

adapting it to handle its distinct characteristics.

3.4.1 Synthetic data and pretraining

An appealing aspect of traditional grayscale colorization is the abundance of training

data for the problem, as every RGB image can simply be turned into a lightness

(input) and two chrominance (output) components. Synthesizing an accurate NIR

image using a RGB image is a challenging task since different materials with the

same color can produce very different responses in the NIR domain (see Figure 3-

9). For pretraining a NIR colorization network, simply using the lightness channel

as input is insufficient: the network will quickly learn to pass through the lightness

channel to the output feature maps. If we were to apply such a network to actual

NIR images, the results will look unnatural due to the aforementioned differences

in appearance between NIR and visible intensity images. We narrow this domain

gap by approximating the NIR image as semantically weighted averages of the RGB

channels.

We use the CelebAHD dataset [14] containing 30, 000 images of faces to curate our

synthetic dataset of NIR images, RGB guide images, and target images. To synthesize

the NIR image, we semantically blend the color channels. Since different materials

have a different response in the NIR modality, we use the semantic maps provided
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in the CelebAHD dataset to generate a blending mask where each semantic region

has the same blending coefficients. We combine the semantic regions by material

(i.e. hair, eyebrows, and facial hair have the same coefficients) to have consistency

between same materials. We find this to be a good approximation for a synthetic

pretraining task. For the synthetic RGB guide image, we apply motion blur and

Gaussian noise with different standard deviation for each of the color channels. We

generate a blur kernel of size 101 × 101 by generating a uniform random walk by

integrating a random number of velocities and positions where magnitude and angle

of each is uniformly sampled. Motion blur version of the image is generated by

convolving the ground truth RGB image with the generated kernel. For the per-

channel noise, the standard deviations are sampled from uniform distributions with

ranges (0.003, 0.55) for red, (0.003, 0.27) for green, and (0.003, 1.17) for blue. The

large range of standard deviations for the blue channel models the comparatively

poor SNR of the blue channel in the captured data. Further details and samples of

the synthetic dataset are included in the supplementary material and described in

Figure 3-3.

3.4.2 Network architecture

We take an image-to-image translation approach to the problem using a conditional

GAN model inspired by Pix2Pix and Pix2PixHD [11, 35]. The generator is condi-

tioned on the concatenated input of the NIR and RGB guide image and outputs the

sharp RGB image.

Our generator follows a UNet-like architecture as proposed in Pix2Pix [11]. The

encoder and decoder have 6 downsampling and upsampling convolutional blocks as

shown in Figure 3-4. Each downsampling block increases the number of feature maps

by a factor of 2 while reducing the spatial dimension by 2 along each axis. The skip

connections concatenate the features from the downsampling blocks in the encoder to

the upsampling blocks in the decoder. The upsampling blocks in the decoder reduce

the number of input feature maps by a factor of 2 and increase the spatial dimension

by a factor of 2 along each axis using a bilinear upsampling layer. As the generator
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is fully-convolutional, it suffices to train it at reduced 320× 320 resolution.

We use a multi-scale discriminator as proposed in Pix2PixHD [35]. It consists of

three discriminators, each with three convolutional blocks. Each of these discrimina-

tors are provided with inputs at different scales, specifically 1×, 0.5×, and 0.25× the

original resolution.

We train the proposed model using a weighted combination of L1-loss, least-

squares adversarial loss [23], feature matching loss [35], and perceptual loss based

on VGG-19 [13, 29]. Following the two time-scale update rule [9], we optimize the

generator and discriminator using Adam optimizer [15] with learning rate of 1e-4

and 4e-4 respectively. As an ablation, we train just the generator model using L1,

and also L1+LPIPS loss [40]. We observe more realism and contrast in skin tones and

hair color when the model was trained with the GAN loss (see Figure 3-5). Please

refer to the supplementary material for implementation details.

3.4.3 Training

We first train the model with a batch size of 8 on the synthetic dataset for 16000

steps. The trained model is then finetuned for 2500 steps using our real dataset with

∼ 900 samples collected using our proposed camera setup. The training of our model

takes approximately 8 hours on a single Titan RTX.

3.5 Results

3.5.1 Low-light portrait photography and comparisons with

baselines

Figure 3-6 compares our algorithm to multiple baselines. For all examples, we provide

the output of a recent image colorization system [41]. To give the colorization baseline

the best chance of succeeding, we chose a method that accepts additional guidance

from a color histogram of the guide image.

It is clear from the results that even with additional hints, grayscale colorization
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does not generalize well to NIR. Compared to colorization, our algorithm produces

more accurate colors, especially when NIR intensity differs substantially from the

ground truth grayscale intensity.

We also compare to BM3D [5] for RGB denoising and DeblurGANv2 [17] for RGB

deblurring. Since our dataset contains RGB guide images with a range of exposure

times, there is a corresponding tradeoff between noise and motion blur.

Figure 3-6 compares our technique to the baselines on images in both regimes,

applying denoising where noise is dominant (short exposures) and deblurring where

blur is dominant (long exposures). For BM3D we use an empirically determined

optimal 𝜎 value of 0.03. Neither denoising nor deblurring is able to effectively handle

the challenging capture conditions and noise or blur remains visible in the output. In

contrast, our results exhibit neither the noise nor the blur of the guide images.

In general we observe that our algorithm performs better with longer exposure

guide images than shorter exposure. We hypothesize that this is due to the more

reliable color information. Additionally, since chrominance is often low-frequency

and we do not rely on precise alignment, they mitigate the negative effects of motion

blur on the guide image.

Comparison with burst denoising Modern smartphones use burst denoising

techniques to take still photographs in low-light without a flash. Accumulating across

a burst of frames allows such algorithms to get similar benefit to long exposures, while

also allowing inter-frame alignment to reduce effects of motion blur.

We compare against two such systems: Huawei P30 Pro, running proprietary

software, and with Google Pixel 4, running Night Sight [21]. We mount each phone

in turn next to the NIR sensor in our rig and place the rig on a tripod. This way the

comparison is fair (blur is only caused by scene motion, not by camera shake), and

the viewpoint is similar to the one in our result. The phone pictures were each taken

within a few seconds of ours. For both phones, capture took around 10 seconds.

A few such results are shown in 3-7 with a larger selection in the supplementary

material. These burst denoising algorithms perform poorly in the presence of scene
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motion. They also frequently struggle with auto-focus in very low light (Figure 3-1,

bottom row), a limitation we sidestep by invisibly illuminating the subject in NIR

while being tolerant to a blurry RGB guide.

Finally, it is worth noting that techniques such as burst denoising are comple-

mentary to our approach. To the extent that they can improve RGB images in dark

conditions, they could be used to improve the quality of guide images for our algo-

rithm.

3.5.2 Low-light video

Our method can also be applied to low-light videos. As shown in Figure 3-8, by re-

placing the flash in our camera with NIR LEDs that provide continuous illumination.

In Figure 3-8 we show this modified camera configuration, along with frames from a

representative result.

RGB frames are collected at a lower frame rate to better handle dark conditions,

and guide images are selected as the temporally closest RGB frame to each NIR

frame. For temporal consistency, we apply the method of [18]. See the supplementary

material for the videos.

3.6 Limitations and future work

Our prototype camera is a proof of concept, and image quality falls short of recent

smartphone cameras except in extremely dark environments. The biggest limitation

to our image quality is the RGB-NIR sensor, which exhibits artifacts stemming from

the RGB-NIR color filter array: First, the application of the filter forces a 2x sub-

sampling, causing aliasing. The sensor also shows significant amounts of light leaking

between neighboring subpixels, causing desaturated colors even after digital enhance-

ment. As a machine-vision camera, its ISP lacks many modern features (e.g., local

tone mapping, edge-enhancement, sharpening) that we have come to expect from

well-tuned smartphone camera pipelines or raw workflows .

More fundamentally, there are limitations on how much texture and high-frequency
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detail we can recover when it is not visible in infrared. Especially on clothing, pat-

terns may disappear entirely in the NIR image. In this case, blur or noise in RGB

guide images can prohibit recovering such details. Figure 3-10 shows a particularly

difficult case.

Finally, targeting frontal-flash RGB as the output of our algorithm is not ideal—

ambient illumination would be preferable. However, our training set is simply not

large enough to learn relighting (a challenging task on its own) in addition to changing

the spectral appearance of the NIR image, and extracting color information from the

RGB guide. We hope that our work will inspire future progress in this direction.

3.7 Conclusion

We present a dark flash algorithm tailored for portrait photography that overcomes

the hardware limitations of previous work [16, 34], making it practical to incorporate

into modern smartphones. Our learning-based algorithm requires no modifications

to phone RGB cameras, adding only one NIR camera and wavelength-matched LED,

and is tolerant to scene and camera motion. We demonstrate the feasibility of our

approach with two prototype camera variants compare our results to burst denois-

ing methods used in state-of-the-art smartphones as well as several other relevant

baselines.
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Figure 3-3: a) We generate synthetic NIR/RGB training triplets from a single CelebA-
HD input image and segmentation mask. For NIR, the RGB color channels of the
original are randomly weighted within each segment of the mask and then averaged.
For RGB, we first model motion blur using a randomly sampled library of blur ker-
nels. Second, we add Gaussian noise resembling the readout noise of the real data.
b) We validate the effectiveness of these data augmentations by pretraining a family
of models and fine-tuning on real data. We find NIR augmentations to be the most
important, as they keep the model from assuming strong correlations between visible
and NIR intensity. Synthetic blur and synthetic noise give modest quantitative im-
provements and perceptually reduce color bleeding.
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Figure 3-4: Our generator follows an encoder-decoder with skip connections architec-
ture inspired by UNet [27]. At each step in the encoder, the spatial size is halved
and the number of feature maps doubled. At 5x5 spatial resolution, we use a 5x5
kernel to compression into a bottleneck with 2048 features. Each encoder block (top)
alternates size-preserving 3x3 convolutions with batch normalization [10], and size-
reducing strided convolutions. In each decoder block, we first halve the number of
feature maps with a 1x1 convolution before upsampling and concatenation with the
corresponding skip connection. After concatenation, we compress the feature maps
and then use a 3x3 convolution that mirrors the corresponding encoder block.
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Figure 3-5: Trained with L1 loss, the network fails to output saturated colors [39].
Adding LPIPS gives significant improvements. We achieve the best results with
a trained least-squares GAN loss [23] and feature matching loss as proposed in
Pix2PixHD [35].

65
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Short exposure RGB guide 
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NIR RGB (guide) Frontal flash (target) Colorized NIR (ours) Image colorization Deblurring

Figure 3-6: More results and comparisons with baselines. While in general we observe
better quality results with longer exposures for the RGB guide, we show results for
both longer (top) and shorter (bottom) RGB exposures to demonstrate the range
of operation of our method. Different scenes may benefit from different exposure
times for the RGB guide (e.g., for scenes with large motions, a long exposure RGB
guide may be too blurry). The two left-most columns depict the captured NIR and
RGB image pair. The exposure time is superimposed on the RGB guide image at
the top right corner and determined by AE. The third and fourth columns contain
the ground truth and our colorized NIR result, respectively. The fifth column shows
the result of state-of-the-art histogram-guided image colorization using the captured
RGB image as guide [41] (an upper bound on image colorization). The colorization
technique correctly estimates the chrominance of the scene, but is not able to convert
NIR intensity to luminance. The sixth column shows: for the long exposure guide:
the result of deblurring the RGB image using DeblurGANv2 [17]; and for the short
exposure guide, the result of denoising the RGB guide image using BM3D [5]. For all
test results, we made sure that no pictures of a given test subject are present in the
training set.
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Pixel Night SightHuawei Night ModeOur resultRGB guideNIR

Figure 3-7: Comparisons with state-of-the-art multi-frame denoising methods on mo-
bile phones – Huawei P30 Pro’s Night Mode and with Google Pixel 4’s Night Sight [21].
More such comparisons can be found it the supplementary material.
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Figure 3-8: Top: Camera configuration for video capture. The flash from Figure 3-2
is replaced with NIR LEDs for continuous illumination. Bottom: One input pair and
output frame.
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RGB RGB Intensity NIR Intensity

Figure 3-9: Visible surface reflectance and NIR reflectance can differ drastically.
Shown in the top (left) is an example of dark blue sweatshirt with correspondingly low
intensity in the visible image (center). In NIR, the relative reflectance of this kind of
fabric is much higher. However, fabrics are not always brighter in NIR. The zippered
vest shown in the bottom is made of a functional fabric with high NIR absorption,
leading to a remarkable reversal of relative brightness of shirt and vest.

RGBNIR Ground Truth

Figure 3-10: Some materials have visible patterns but uniform NIR reflectance. For
these materials, the reconstruction problem is equivalent to plain de-noising or de-
blurring. Since our network is trained to extract high frequency information from the
NIR image, it is not able to reconstruct textures that are neither visible in the NIR
nor the RGB image. 69
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Abstract: We propose a new real-time differentiable rendering method that is both

more accurate and more efficient than previous rasterization-based methods. Instead

of blurring the forward rendering process or using stochastic ray tracing, we closely

follow the semantics of conventional real-time renderers and efficiently leverage the

rasterization hardware. We use analytic anti-aliasing to ensure that the rasterization

step is differentiable. We construct a dynamic deep framebuffer using rasterization

hardware to store a per-pixel list of triangles overlapping the pixel filter. We then

blend over the triangles using alpha compositing. Our formulation is differentiable,
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maps efficiently to the hardware graphics pipeline, and renders high-quality images.

We implement our method using modern graphics APIs and provide a PyTorch

interface. Our experiments show that our method is an order of magnitude faster than

previous state-of-the-art differentiable rendering methods, achieves high accuracy in

various inverse rendering tasks, and is more general than previous rasterization-based

methods.

4.1 Introduction

Differentiable rendering is becoming increasingly important in computer vision and

machine learning, for both training 3D neural networks and inverse rendering. A cen-

tral challenge of differentiating rendering is differentiating through the discontinuous

visibility function, while maintaining high efficiency of the rendering pipeline. We

develop a real-time differentiable rendering pipeline that can correctly differentiate

visibility, while generating high-resolution and artifact-free images in milliseconds by

utilizing the rasterization hardware.

Current differentiable rendering approaches trade off between accuracy and perfor-

mance. On the one hand, rasterization-based approaches usually approximate the ren-

dering pipeline, either by softening the forward rendering operator [13, 44, 30, 12, 43]

or approximating the gradients [32, 23]. This leads to inferior image or gradient qual-

ity, and does not necessarily lead to efficient rendering pipelines. On the other hand,

stochastic ray tracing approaches compute accurate gradients by applying Monte

Carlo sampling [26, 54, 33, 3]. This allows them to compute high-quality anti-aliased

images along with distributed effects and global illumination. However, ray tracing

methods require rebuilding acceleration data structures for each gradient iteration,

and they are often more computationally expensive. The inherent stochasticity of

these techniques also complicates neural network training.

We propose a new differentiable renderer that is both significantly faster than prior

systems, and more accurate than previous rasterization-based approaches (Figure 4-

1). We achieve this by closely following the rendering model of conventional real-
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time renderers, while extending it to be differentiable without sacrificing accuracy

or hardware acceleration. Instead of blurring the rendering process or stochastically

evaluating gradients, we employ a differentiable analytical anti-aliasing technique.

During hardware-accelerated rasterization, we efficiently construct a deep framebuffer

— a dynamic data structure that stores the list of triangles overlapping each pixel.

For each pixel, we then blend all the overlapping triangles using alpha compositing,

where the opacity is computed by analytically integrating a triangle with the pixel

filter kernel.

Our method is deterministic and parameter-free, produces high-quality images,

and can be efficiently implemented on modern graphics APIs. Our method is more

flexible and general than previous rasterization-based renderers. It supports com-

mon real-time rendering primitives including triangle meshes, transparent billboards,

mipmapped textures, and alpha maps. We implement our method in DirectX 12 and

provide a PyTorch interface. We experiment with various inverse rendering tasks,

and show that our differentiable renderer achieves lower error in significantly shorter

time, compared to previous state-of-the-arts.

4.2 Related work

Differentiable rendering. Early computer vision and graphics works developed

specialized differentiable renderers that ignore visibility gradients [6, 40, 18, 17, 28,

29, 2]. More recently, general differentiable renderers were developed. To differentiate

the discontinuous visibility, some approaches approximate the gradients using post-

processing [32] or edge rasterization [23]. Other approaches instead soften the forward

rendering process to make it differentiable [44, 30, 43, 12].

In contrast to approximated methods, we develop a differentiable rendering pipeline

that fits well with the rasterization hardware, is capable of producing high-quality

images, while being directly differentiable. We employ a differentiable anti-aliasing

technique based on analytical coverage. Anti-aliasing has been used in differentiable

rendering methods before. however, previous methods either ignore occlusion [46, 20],
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or assume that we are rendering a single, closed object [13]. Instead, we efficiently

blend over multiple primitives in a pixel using a visibility-aware alpha compositing,

in an order-independent way [50].

Ray tracing based methods [26, 33, 54, 53, 3] compute accurate gradients and

high-quality rendering using stochastic sampling. However, they require expensive

ray tracing acceleration structures construction. For local shading and 3D scenes

with moderate complexity, rasterization is more efficient than ray tracing thanks to

the streamlined access to the scene data. In contrast, our method is deterministic

and leverage the rasterization hardware.

Other differentiable rendering works target for point clouds [52, 43] or implicit

functions [39, 45, 21]. Instead, we focus on primitives that are common in real-time

graphics pipelines, including textured meshes and billboards.

Concurrent to our work, Laine et al. [25] developed an efficient differentiable

rasterizer. Instead of our analytical anti-aliasing method, which corresponds to a

box-shaped reconstruction filter, they approximate box filtering with an edge-aware

image-based anti-aliasing method [34, 22]. Their method is efficient thanks to the

Z-buffer and hardware occlusion culling. However, their method considers only a

single fragment per pixel, which sacrifices silhouette gradient quality (see Figure 4-

13), limits gradient propagation to a single triangle per pixel, and does not support

order-independent drawing of transparent surfaces.

Real-time rendering and 2D graphics. Analytical integration has been used

for solving anti-aliasing since the emergence of computer graphics [10, 15, 35, 1].

Instead of the expensive operations of clipping polygons against each other these

methods used, we use a coverage-based blending method that produces high-quality

images while avoiding clipping. Our blending method is related to some 2D vector

graphics rasterization anti-aliasing approaches [38, 4, 27], but 3D rendering requires

per-pixel triangle sorting. Our deep framebuffer is related to the A-buffer [9], deep

shadow maps [31], deep compositing in visual effects [16] and order-independent trans-

parency [5, 51, 50].
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4.3 Method

Our differentiable rasterizer design is mainly driven by three goals. First, our raster-

izer should produce high-quality, anti-aliased, artifact-free images for a well-defined

pixel reconstruction filter (box filter). Second, our rasterizer should efficiently lever-

age the rasterization hardware. Third, our rasterizer should be deterministic and

directly differentiable using analytical or automatic differentiation. We focus on lo-

cal shading and do not specially handle shadows, global illumination, or distributed

effects. We make the following design choices:

• To address the discontinuous visibility, we analytically compute the coverage of

each triangle, and multiply the coverage with the shading color (Figure 4-3).

• To efficiently rasterize the triangles, we use a deep framebuffer to sort the ras-

terized triangles (Figure 4-5). This allows us to rasterize the triangles in an

order independent way, where each pixel efficiently sort the triangles locally.

• We composite multiple triangles using alpha blending [41], where the opacity of

the triangles are determined by their coverage (Figure 4-6).

As a consequence of the analytical coverage computation, our forward model is

directly differentiable and can be implemented using rasterization passes and com-

pute shaders (Figure 4-2). We can then efficiently backpropagate the gradients with

respect to all the scene parameters. Furthermore, our rendering pipeline allows us to

apply flexible shading models, including UV-mapped textures lookup, mip-mapping,

alpha maps and transparent objects. In particular, transparency is not allowed in

differentiable rendering methods that employ deferred shading [25] with only a single

fragment per pixel.

In the following we describe our rendering model and how we efficiently implement

both the forward and backpropagation passes.
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4.3.1 Computing Fractional Visibility using Analytical Cover-

age

A key challenge of inverse rendering is to differentiate the discontinuous visibility. In

both ray tracing and conventional rasterization, the visibility of surfaces along cam-

era rays is tested only for discrete point samples. The pixel center either intersects

the tested geometry (visible) or it doesn’t (invisible). While this discontinuous for-

mulation is acceptable for forward rendering, it makes backpropagation infeasible, as

visibility gradients are nonzero only along an infinitesimally narrow band along the

silhouette of the geometry. Although prior work showed how to estimate high-quality

visibility gradients by explicitly sampling the silhouette [26] with ray tracing, it is not

applicable to rasterization, where camera rays are constrained to a fixed grid pattern.

We propose a differentiable formulation of rasterization that evaluates fractional

visibility within the footprint of a single pixel, rather than binary visibility at just the

pixel center (Figure 4-3). We follow the insights of previous work that anti-aliasing

makes rendering differentiable, as the pixel color changes smoothly with respect to

scene parameters after the anti-aliasing integral [13, 26]. However, solving the full

anti-aliasing integral turns out to be intractable, as it requires inter-triangles clipping

that is both time-consuming and numerically unstable [10, 48]. Instead, we approx-

imate the anti-aliasing integral in three ways. First, we assume the anti-aliasing

filter to be a box filter. Second, we avoid inter-triangles clipping by only clipping

triangles against the pixel boundary. Third, we enable complex shading models by

decoupling the coverage and shading. Specifically, given a triangle, we write down

our anti-aliasing integral as an integral over the visibility 𝑉 and shading:∫︁
𝐴

𝑉 (𝑥) · shading(𝑥)𝑑𝑥 ≈
∫︁
𝐴

𝑉 (𝑥)𝑑𝑥 · shading(𝑥𝑠)

= coverage · shading(𝑥𝑠),

(4.1)

where 𝐴 is the pixel filter support, and we compute the coverage =
∫︀
𝐴
𝑉 (𝑥)𝑑𝑥 using

analytical integration, and approximate the shading integral using a point sample on

the triangle 𝑥𝑠. In our implementation, we choose 𝑥𝑠 as the point on the triangle that
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is closest to the pixel center.

We process triangles overlapping with the pixel from front to back and blend the

contribution using the coverage (Figure 4-3, right). The current triangle is treated as

the foreground, and the triangles behind are treated as the background. To compute

the analytical coverage, given a triangle, we first clip the triangle against the pixel

filter support. The coverage can then be computed as the area of the polygon. In the

subsequent subsections, we will discuss how we efficiently enumerate, sort and blend

contributions from multiple triangles.

Our analytical anti-aliasing enables high-quality images and gradients compared to

the pixel-center sampling or blurring scheme used for previous differentiable rendering

works (Figure 4-4), and is completely parameter free. In the Appendix, we show

that, in 1D, the spatial smoothing of soft rasterization method [30, 43] can be seen

as an analytical integral approximation, with a rather uncommon pixel filter kernel

𝑘(𝑥) = 2𝑒−𝑥2 |𝑥|

(1−𝑒−𝑥2)
2 (note that 𝑘(0) = 0). Furthermore, as shown in Figure 4-4, their

depth compositing causes undesired cracking artifacts. Importantly, the same depth

compositing strategy is used by many other differentiable rasterizers [12, 43]. Our

formulation allows us to better analyze and compute the integrals, enabling higher

image quality. Compared to ray tracing approaches, our method is more efficient and

deterministic.

4.3.2 Handling Geometric Complexity with a Deep Frame-

buffer

Rasterization methods using Z-buffering find the triangle that is closest to the camera

for each pixel, which is then shaded and blended into the color buffer. Alternatively,

shading may be deferred, by writing the closest triangle id and barycentric coordinates

to a Geometry-Buffer. In a second render pass, the samples in the geometry buffer

are shaded and written to a color buffer. Either approach only stores one sample per

pixel, even if multiple triangles overlap that pixel, as shown in Figure 4-5.1

1Multi-sample or temporal anti-aliasing capture multiple triangles in a pixel by averaging contri-
bution, but are not directly differentiable.
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Rendering with one sample per pixel comes with significant drawbacks for inverse

rendering: If only a single triangle contributes to the color of each output pixel, then

back-propagation can only yield non-zero gradients for that single triangle. Storing

only one sample per pixel is particularly limiting when triangles are small, such as

for high-resolution geometry, or along the silhouette boundaries that are crucial for

visibility gradients [25].

Our renderer stores all triangles that contribute to a pixel in an irregular deep

framebuffer. We store the number of overlapping triangles and a pointer to a list for

each pixel, where the list stores the ID of the triangles overlapping with the pixel

filter. Figure 4-5 shows an example for a simple scene with a tessellated triangle.

The deep framebuffer lets us correctly anti-alias fractionally visible geometry, and

also allows us to render advanced effects such as transparency. To efficiently leverage

the rasterization hardware, we construct the deep framebuffer in a two-pass process,

rasterizing the scene twice. In the first pass, we count the number of overlapping

triangles per-pixel without storing them. In the second pass, we allocate the buffers

based on the counts, and append the triangle IDs and barycentric coordinates into

the lists. We use the conservative rasterization feature in modern graphics hardware

to include triangles not overlapping the pixel center. Our efficient implementation

of the deep framebuffer is inspired by earlier works on A-buffering [9], deep shadow

mapping [31], and order-independent transparency [5].

4.3.3 Deep Pixel Compositing Enables High-Quality Anti-Aliasing

and Transparent Surfaces

After triangle samples are stored in the deep framebuffer, we independently compute

the blended output color of each pixel, using the over compositing (or alpha blending)

operation [41]. To handle both transparency and coverage-based anti-aliasing, we keep

track of two quantities per sample during the traversal: alpha and visibility. alpha

represents the fraction of light or color reflected by a potentially transparent triangle

sample in a pixel, where visibility represents the fraction of the pixel covered by the
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triangle, while taking other triangles’ occlusion into account. visibility is different

from the analytical coverage in Equation 4.1, which is the coverage of the individual

clipped triangle without taking other triangles into account.

To compute the two quantities, first, we sort a pixel’s samples in a front-to-back

order. Next, we loop through the fragments front-to-back. The fraction of transmitted

light alpha by each triangle sample 𝑖 is computed as the product of the visibility and

the opacity of the sample 𝑖:

alpha𝑖 = visibility𝑖 · opacity𝑖. (4.2)

Computing the exact fractional visibility for a sample can be prohibitively expen-

sive, as it requires inter-triangles clipping. Instead, we make the assumption that

background triangles are as-visible-as-possible, contributing visibility until a total of

100% visibility is reached for the current pixel. Our approximation allows us to

include as many triangles as possible, thus efficiently distributing the gradients:

visibility𝑖 = min(1−
𝑖−1∑︁
𝑗=0

alpha𝑗, coverage𝑖), (4.3)

where coverage𝑖 is the analytical coverage of sample 𝑖 (Equation 4.1).

The front-to-back traversal ends once the sum of alpha reaches 1.0, which marks

the point at which background fragments become fully occluded. If all fragments sum

to alpha less than one (either due to partial coverage, or due to transparency), we

assign the remaining alpha to the background color. Figure 4-6 shows a visualization

of an example.

Finally, we compute the blended pixel output I as the weighted sum of the shading

evaluation and per-sample alpha:

I =
num_samples∑︁

𝑖=0

alpha𝑖 · shading𝑖, (4.4)

. All of the sorting and compositing is done in a single compute shader (Figure 4-2),
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efficiently caching the intermediate results into registers instead of global memory.

Shading. In principle, our method supports arbitrary differentiable shading, includ-

ing physics-based bidirectional reflectance distributions [8], convolution of spherical

harmonics coefficients between reflectance and environment map interpolated from

triangle vertices [42], or neural-network-based reflectance models [37].

Our current implementation includes Lambertian shading with ambient, direc-

tional, and point light sources. Surface reflectance and alpha is specified either per-

vertex or in mipmapped [49] texture maps. We reconstruct the texture values using

the nearest mipmap level with bilinear interpolation.

4.3.4 Differentiating our rendering pipeline

Our forward rendering model is fully differentiable, therefore, in principle, it can be

directly differentiated with automatic differentiation [19]. In practice, to better fuse

the computation in shaders and reduce global memory usage, we manually implement

the gradient passes.

As shown in Figure 4-2, after the forward pass has finished, We hand the compu-

tation to PyTorch where the user computes the loss and initiates the backward pass.

The goal of the backward pass is to compute the derivatives 𝜕𝐸
𝜕𝜃

of loss 𝐸 w.r.t. scene

parameters 𝜃. These derivatives factor as 𝜕𝐸
𝜕𝜃

=
∑︀

𝜕𝐸
𝜕𝐼

𝜕𝐼
𝜕𝜃

where 𝐼 is the pixel color.

PyTorch provides us with 𝜕𝐸
𝜕𝐼

. We need to backpropagate through our renderer to

compute 𝜕𝐼
𝜕𝜃

and accumulate the gradients 𝜕𝐸
𝜕𝜃

to the corresponding scene parameters.

Backward shading. Backpropagation of the alpha compositing process (Equa-

tion 4.4) involves traversing the samples in the deep framebuffer in the back-to-front

order. The main non-trivial derivative is the pixel coverage derivative 𝜕coverage𝑖
𝜕𝑇𝑖

, where

𝑇𝑖 is the position of the triangle vertices, since our forward model clips the triangle and

introduces dependencies with sparse structure between the clipped polygon vertices

and the original triangle vertices. We can exploit the sparse dependency to make the

derivative computation efficient. We first compute the derivative of the coverage with
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respect to the clipped polygon vertices 𝑃𝑗 to compute 𝜕coverage𝑖
𝜕𝑃𝑗

, then compute the

Jacobian 𝜕𝑃𝑗

𝜕𝑇𝑖
between the the clipped polygons 𝑃𝑗 and the original triangle 𝑇𝑖. The

Jacobian for the partial derivatives 𝜕𝑃𝑗

𝜕𝑇𝑖
has a particular sparsity structure that makes

evaluating the derivative efficient (Figure 4-7). We can then combine the derivative

using standard chain rule: 𝜕coverage𝑖
𝜕𝑇𝑖

= 𝜕coverage𝑖
𝜕𝑃𝑗

𝜕𝑃𝑗

𝜕𝑇𝑖
. A sufficiently sophisticated au-

tomatic differentiation compiler should be able to efficiently compute the derivatives

above, but we leave such compiler as future work.

Gradient Accumulation. To efficiently accumulate the gradients into the corre-

sponding scene parameters, for each triangle sample 𝑖, we compute gradients for the

three vertices, and write them to per-vertex lists in GPU memory. Similarly, we write

four texture gradients to per-texel lists of the active MIP level. After vertex gradient

accumulation, we compute the gradients of camera intrinsics and object transforms.

For the mipmapping gradients, we backpropagate through the mipmap construction

process by upsampling the coarse-level gradients to the fine-levels. All our operations

involve minimal atomics and can be efficiently parallelized on modern GPUs.

Mipmapping We show that mipmapping [49] is crucial for high-resolution texture

reconstruction. In Figure 4-8, a scene with a texture that has higher-resolution than

the rendering resolution is shown. Without mipmapping, only a subset of texels is

observed, and even minimal changes of the camera pose reveal cracks in the recon-

struction. With mipmaping, the texture receive gradients at the appropriate scale,

which are then propagated to the highest resolution layer. This results in artifact-free

inverse texturing. See Figure 4-8.

4.4 Results

We implement our differentiable renderer using DirectX 12, and provide a PyTorch

interface. Our renderer is capable of rendering 1k resolution images with thousands

of triangles in 10 to 20 milliseconds, around 5 to 10 times faster than previous
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rasterization-based methods [30] and more than 15 times faster than previous ray-

tracing-based methods [26]. Across scenes with different complexities, our renderer

typically spends around 60% to 70% of time in the forward pass, which includes set-

ting up the deep framebuffer using rasterization, computing coverage, and blending

the contribution, and the rest in the backward pass. We provide a timing breakdown

of our method in Figure 4-9.

Inverse rendering. To show the better accuracy and efficiency of our method, we

compare it to previous methods in inverse rendering tasks. Figure 4-1 and Figure 4-10

show comparisons between our method, the ray-tracing based differentiable renderer

redner [26], the rasterization based differentiable renderers SoftRas [30] and Py-

Torch3D [43]. We optimize for the target poses from an initial guess using Adam [24]

with learning rate 0.02 for all methods. For Figure 4-1 we render the target with

the corresponding renderers. For Figure 4-10 we use Blender as the reference. Our

method converges to the lowest error for both cases in significantly shorter amount

of time. Compared to redner, our deterministic gradient leads to slightly better

convergence in equal-step-comparison. Compared to SoftRas and PyTorch3D, our

gradients are less affected by the artifacts generated in the forward pass (Figure 4-4).

For example, at the top region of the can in Figure 4-1, SoftRas generates high-

frequency artifacts that hurt convergence. Similarly, both SoftRas and PyTorch3D

generate artifacts for the smooth regions in Figure 4-10. We further compare the

gradients in Figure 4-11. Our renderer is significantly faster than all three previous

methods since we better leverage rasterization hardware. We are capable of rendering

and differentiating 1024× 1024 images in 21 and 16 milliseconds respectively for the

two scenes with thousands of triangles, which is 5 to 8 times faster than SoftRas and

more than 15 times faster than both redner and PyTorch3D. All the results in the

paper were run on a RTX 2060 Super for our method and redner, and were run on

a Tesla P100 for SoftRas and PyTorch3D.

The tightly packed deep framebuffer allows us to compactly store information. For

the scene in Figure 4-10, our method’s memory consumption peaks at around 970MB,
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while SoftRas takes at around 993MB, and PyTorch3D takes around 11997MB (for

PyTorch, we set a maximum of 32 faces per pixel to limit GPU memory consumption).

Pose estimation. Our renderer achieves high performance even for complex mod-

els. In this example, we shown an optimization of a model with over 20.000 triangles

and significant depth complexity at 512x512 pixel resolution. We use stochastic gra-

dient descent (step size 0.02) for 400 steps (12.5ms per step for a total of 5s until

convergence). See Figure 4-16.

Comparison to Laine et al. [25]. Our analytical anti-aliasing and compositing

allows us to better sample the silhouette contribution of the visibility gradients. We

compare to Laine et al.’s differentiable rendering method [25] based on image-space

anti-aliasing in Figure 4-13. Laine et al. only sample a single triangle per-pixel, which

misses the boundary gradients for pixels containing small triangles or when rendering

low-resolution images, which are important for coarse-to-fine optimization.

Transparency. Our renderer naturally supports rendering with transparency (Fig-

ure 4-12). This allows us to optimize over scene representations popular in image

based rendering, such as multiplane images [47, 55] or billboards/impostors [14].

Differentiable renderers that use Z-buffering or deferred shading [32, 25] are lim-

ited in their support for transparent surfaces, as they assume the closest triangle is

the only contributing source and cull all but front-most triangle. SoftRas does not

include transparency in their rendering model, instead blending contribution using

depth [36]. In contrast, our method supports both opaque and transparent surfaces,

including surfaces defined through alpha texture mapping.

Extending multi-plane images with different geometries. The ability to dif-

ferentiate transparent object rendering allows us to generalize multi-plane images [55]

to use different proxy geometry for image-based rendering. In multi-plane images, ge-

ometry and shading is represented by layers of alpha-blended planes. This represen-

tation, however, cannot effectively reconstruct the viewing directions parallel to the
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planes. Using our renderer, we can render Grid MPI s (a stack of planes along each

of the three axes) and Sphere MPI s (concentric spheres) as our proxy geometries. In

Figure 4-17, we show results of fitting traditional multi-plane images (Quad MPI ), as

well as the other two types of geometry. Compared to the quad geometry, both the

grid and the sphere representations improve the reconstruction quality and generate

artifact-free 360 degree views of the scene.

We show results of fitting the renderings of 20 semi-transparent parallel planes

(Quad MPI ), a 10× 20× 8 grid (Grid MPI ), and 16 concentric icosahedrons (Sphere

MPI, which is subdivided twice and represented with 120 triangles) to 120 views. We

map a 256×256 texture onto the parallel plane, three 256×256 textures onto the grid,

and 1024× 1024 onto the sphere using latitude-longtitude coordinates. Compared to

the plane geometry, both the grids and the sphere representations improve the recon-

struction quality and generate artifact-free 360 degree views of the scene. For all three

setups we run Adam [24] for 50 steps using a learning rate of 0.1, where each step in-

volves rendering and differentiating all 120 views. For the parallel planes optimization

takes around 30 seconds, and for the grid and the spheres it takes around 3 minutes.

Both the grid and the concentric sphere geometries show significant improvement over

the original plane geometry in terms of the reconstruction error.

Non-rigid shape alignment. In Figure 4-15, use our renderer to fit a non-rigid

body to a target pose from the FAUST dataset [7].

Photometric object tracking. In Figure 4-14, we show the result of optimizing

for the pose and reflectance of a simple object in a photograph. Figure 4-18 shows

a result of us tracking the 3D position of a basketball, and that of a cardboard

box over multiple frames. At each frame, we run 50 iterations of Adam (lr=0.02,

10ms runtime per step) which is a sufficient number of steps to solve the incremental

tracking problem between pose 𝑖 and pose 𝑖+ 1.

Limitations. While our method can efficiently leverage rasterization hardware, we

do not use the Z-buffer for culling occluded triangles. This can lead to inferior per-
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formance when the depth complexity of the 3D scenes is high. On the other hand, it

is necessary to turn off Z-buffer and occlusion culling for supporting transparency in

rasterization. For meshes with hundreds to thousands of triangles, such as the ones

in the ShapeNet database [11], our method is very efficient.

4.5 Conclusion

We introduce a new rasterization-based differentiable renderer that is both more

accurate and faster than previous methods. We achieve this using a differentiable an-

alytical antialiasing technique, which integrates over triangle area to compute cover-

age, and blend contributions using a visibility-aware alpha compositing. We leverage

rasterization hardware to construct a deep framebuffer data structure for collecting

triangles for each pixel. Unlike other rasterization-based differentiable renderers, our

renderer has robust support for texture mapping, generates gradients for all trian-

gles overlapping a pixel, and implements efficient support for full order-independent

transparency.
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Figure 4-1: We compare our rasterization-based differentiable renderer with previ-
ous methods on a pose estimation task with a textured mesh (1432 triangles) on a
1024×1024 image. Our method generates higher-quality gradients while being signif-
icantly faster than previous approaches. Our renderer converges within two seconds,
compared to 9 seconds for SoftRas [30] and 30 seconds for redner [26]. We normal-
ize the mean square errors (MSE) relative to the first frame. SoftRas renders blurry
textures due to the lack of UV-mapped texture support. More importantly, it suffers
from compositing artifacts on the top of the can, due to its depth-based weighting.
Our method is parameter-free and achieves lower error thanks to our high-quality
and deterministic gradients, in contrast to the stochastic gradients of the ray tracing
methods or the approximated rendering.
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Figure 4-2: Our renderer leverages hardware-accelerated rasterization for the forward
pass. The rasterized triangle samples are first written to a dynamically-sized “deep”
framebuffer. After all triangle samples are collected, they are sorted by depth and
shaded. Multi-sample deferred shading as presented here produces high-quality, differ-
entiable, anti-aliased images and renders advanced effects such as order-independent
transparency that are not supported by previous differentiable rasterizers. The back-
ward pass is split between PyTorch and custom ops implemented using the graphics
API.
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Blend FG if covered
BG otherwise
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Figure 4-3: Instead of testing the visibility of a triangle at the pixel center (left), our
method (right) computes the fractional coverage of a triangle using analytical inte-
gration, and blends the contribution between the foreground triangle and background
color using the analytical coverage for anti-aliasing. Multiple triangles are blended
from front to back, where the current triangle is treated as the foreground, and the un-
blended triangles are treated as the background. Our analytical anti-aliasing enables
high-quality anti-aliasing and makes visibility differentiable with respect to triangle
vertices.
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Blur-based
anti-aliasing

Our coverage-based
anti-alising

Figure 4-4: Blur-based anti-aliasing [30, 43] is prone to cracking artifacts at polygon
edges. The artifacts in this particular figure come from the improper composition of
the background color with the foreground triangles. In SoftRas [30], the background
is blended with the foreground using softmax with a small fixed weight. Therefore
the background would have different weighting for pixels hitting two triangles versus
pixels hitting only one triangle. The same depth compositing strategy is used by
many other differentiable rasterizers [12, 43]. In contrast, our analytical coverage
computation, along with our alpha compositing, produces artifact-free images, and is
completely parameter free.
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Figure 4-5: In order to efficiently rasterize multiple triangles per pixel, we use a
deep framebuffer data structures that store a list of triangles overlapping the pixel’s
reconstruction filter. For each pixel, we store a pointer to a list of triangle IDs and
barycentric coordinates, and the count of triangles. We build the list with two passes:
the first pass counts the number of triangles and allocate memory, and the second
pass appends the IDs and coordinates into the list. Our deep framebuffer is efficiently
implemented using rasterization hardware.
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background color: (1,0,0)
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Figure 4-6: We blend multiple samples in a pixel together using a visibility-aware
alpha blending. Here we show an example of a pixel with a transparent sample, a
opaque but partially visible sample, and a background. We process the samples in a
front-to-back order (top-to-down in the figure), tracking the visible portion (visibility)
and the fraction of reflected color (alpha) for each sample. The final color is computed
by a sum of the shading color of each segment weighted by their alpha.
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Figure 4-7: To compute the coverage for differentiable anti-aliasing, we clip the tri-
angle 𝑇 to the pixel filter kernel and compute the area of the clipped polygon 𝑃 . The
figure shows the coverage gradient for vertices of both the clipped polygon and of
the original triangle. To compute triangle gradients, we backpropagate through the
clipped vertices. The resulting Jacobian 𝜕𝑃𝑗/𝜕𝑇𝑖 is usually sparse, since clipped ver-
tices either contribute no gradients (clipped to pixel corner like 𝑃2) or only contribute
gradients along one axis (clipped to pixel edge, e.g. 𝑃1 and 𝑃3). There are three cases
of non-zero entries in the Jacobian: For vertices inside the pixel (𝑃4), original and
clipped vertices are identical and the partial derivatives evaluate to 1. We also list
the partial derivatives for vertex motion parallel to and edge, and perpendicular to
an edge.
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Geometry Target

Reconstructed texture
(no MIP)

Reconstructed texture
(with MIP)

Render with small
pose perturbation (no MIP)

Render with small
pose perturbation (with MIP)

Reconstruction
(perfect for both MIP/ no MIP)

Figure 4-8: Mipmapping [49] is essential for inverse texturing optimizations. Given
sufficient texture resolution, we can easily reconstruct a single target image (top
row). However, when the camera rays undersample the high-resolution textures,
lack of mipmapping leads to a sparse reconstruction. With mipmapping, gradients
are written to scale-appropriate MIP levels, leading to dense reconstructions (second
row). The difference becomes obvious when we re-render the reconstructed scene from
a slightly altered viewpoint (third row).
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Total frame time @1024px:  21ms
Total Count Pass:    3.0ms
  Count pass rasterization:  2.1ms
  Count pass count accumulation: 0.7ms
  Check deep framebuffer size: 0.2ms

Total Forward Rendering:  9.0ms
  Write samples to deep framebuffer: 2.3ms
  Forward shading:   6.7ms

Total Backward Pass:  6.1ms
  Backward shading   5.0ms
  Backward vertex transform  0.9ms

Loss, step, synchronization:   2-3ms

Figure 4-9: We break down the frame time of our renderer using the inverse ren-
dering benchmark in Figure 4-1. Our rasterizer spends roughly 57% of time in the
forward pass, which includes the rasterization passes and coverage computation. The
backward pass takes around 29%, and the remaining 14% is spent in PyTorch or on
communication overhead.
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Figure 4-10: We compare our differentiable renderer with SoftRas [30] and Py-
Torch3D [43] with a 6 degree-of-freedom pose optimization task on a textured mesh
(5856 triangles). For PyTorch3D, we set the maximum number of faces per pixel to
32 (setting it to a higher number requires more than 12GB of memory, exceeding
our GPU memory). Our method renders and computes gradients more than 8 times
faster than SoftRas, and more than 15 times faster than PyTorch3D. Both SoftRas
and PyTorch3D show the cracking artifacts similar to the one in Figure 4-4 in the
smooth region of the mesh (zoom in for inspection).
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ours SoftRas PyTorch3D

Figure 4-11: We visualize the gradients with respect to 3D translation generated by
our method with SoftRas [30] and PyTorch3D [30]. Both SoftRas and PyTorch3D
shows spurious gradients at the smooth region of the mesh due to their the depth-
based composition. Our visibility-aware alpha blending avoids the issue and generate
high-quality gradients.

Optimizing multi-plane images with grid arrangement

Impostors rendered
without transparency

[SoftRas]

rendered with 
order-independent 
transparency (ours)

Impostors used for
6-DoF pose 
optimization

Figure 4-12: Our rendering model enables using transparent surfaces for inverse
problems. Top: Per-pixel sorting allows our renderer to optimize multiplane im-
ages [47, 55] with arbitrary self-intersecting proxy geometry. Bottom: Impostors,
or billboards are a classic technique to reduce geometric complexity of meshes by
encoding geometric detail a texture’s alpha channel.
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Figure 4-13: Differentiable renderers that rely on image-based anti-aliasing [25] suffer
from undersampling of silhouette gradients, when rendering detailed geometry to low-
resolution images. We show the non-zero silhouette gradients of Laine et al.’s method,
compared to ours. Our multi-sample approach results in higher-quality gradients even
at low framebuffer resolutions. This also results in higher anti-aliasing quality from
our approach.

Target Photo Background Initial guess Optimization in progress Overlay of final
pose / focal length

Figure 4-14: 6 degree-of-freedom pose estimation and camera calibration in real pho-
tographs. Shown in the left is the target picture of a cardboard box. We take a
picture as background for compositing, and initialize the optimization with the mea-
sured dimensions of the box, approximate albedo, focal length and guessed position
and translation.
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Figure 4-15: We show an application of our renderer optimizing the parameters non-
rigid body from the FAUST dataset [7].
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Figure 4-16: 6 DoF pose estimation for a scene with high triangle count and significant
depth complexity. A combined forward/backward pass for this model with more than
20,000 triangles takes less than 13ms.
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Figure 4-17: Multi-plane images [55] use an alpha-blended stack of quads as a scene
representation. They are well-suited for reconstructing and rendering frontal viewing
directions. However, they break down for grazing viewing directions that are parallel
to the planes, which we show qualitatively on top, and quantitatively in terms of
reconstruction mean square error (MSE) below. Since our renderer sorts and blends
samples on a per-pixel basis, it enables the use of more general proxy geometry.
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Figure 4-18: We use our renderer to implement a photometric object tracker. Top
row is the target and bottom row is our rendering. For the cardboard box scene, we
jointly optimize for both pose and surface albedo, which helps track through changes
in observed surface brightness.
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Chapter 5

Conclusion and Discussion

The preceding chapters presented two distinct approaches for solving computational

photography and inverse graphics problems: a feed-forward discriminative approach

using supervised learning, and a generative approach based on differentiable program-

ming of a well-understood forward model. We have shown how state-of-the-art results

in computational photography can be achieved through targeted collection of training

data using custom prototypes. In Chapter 4, we have shown how to use differentiable

programming to encode detailed domain knowledge into solvers for inverse problems.

In the presented case of differentiable rendering, we showed how to efficiently imple-

ment a real-time rasterizer that produces more complete and accurate gradients than

other differentiable rasterizers.

5.1 Discussion image-to-image translation using paired

training data

In chapters 2 and 3 we implemented supervised learning systems to solve problems

ranging from image relighting to low-light photography. Supervised learning relies

on large datasets of labeled training pairs and is known to yield poor test result

whenever the training and test distributions differ, or when the number of samples

in the training set is too small. This thesis proposes portable camera prototypes
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with computer-controlled light sources as a means to collect ample high quality train-

ing data, and demonstrates the success of such data collection with state-of-the-art

results.

Compared to data sourced from consumer internet platforms like photo collections

with millions of samples [3], scalable data collection with custom hardware remains

a challenging problem. The cameras used in chapters 2 and 3 are unique prototypes,

which limits the scalability of capture. For example, with a single, multi-illumination

camera, a skilled operator is able to collect around 50 image bursts per day. This

number is mostly limited by non-technical factors, such as the need for the operator

to ensure access to unique capture locations.

Scaling beyond the amount of data that can reasonably be captured by an individ-

ual operator will require a small-scale production run of cameras and a team of hired

operators who would capture in a large number of locations. In order to increase the

diversity of the data, capture equipment should be shipped to a geographically diverse

set of locations. In addition, our experience with a single prototype suggests that en-

suring high quality and reliable data capture will require emphasis on the training

of operators, as well as improvements to the usability and reliability of the cameras.

Despite these operational challenges, the relative affordability of our cameras puts

the production of tens to hundreds of cameras within reach of many academic and

industrial labs, which would allow them to collect datasets with hundreds of thou-

sands of samples, which can be expected to be a sufficient amount of data for many

relevant applications.

Another challenge that arises when capturing with custom prototypes is that of

transferability of the trained model to different hardware at test time. A model

trained entirely with data from a single camera might be specialized to a single tone

curve, lens distortion, or other imaging characteristics. In this case, transferring to

a different kind of camera at test time might lead to a drop in test performance.

Similarly for computer-controlled illumination, the trained model might specialize to

the particular light source beam or emission spectrum of the training rig.

Potential mitigations to these problems include simple data augmentations, such
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as additive noise or randomized image warps, or more principled domain adapta-

tion techniques [11]. For applications with known deployment scenarios, for example

known cameras and light sources inside a particular smart phone model, a valid strat-

egy might be to build capture hardware with matching components to minimize any

domain gap. For scenarios where domain adaptation is insufficient and a large amount

of data is captured, a valid strategy might be to manufacture a heterogeneous collec-

tion of capture hardware that is more likely to include the sensor types and lighting

geometries found at test time.

For problems where a single input image matches to a distribution of outputs,

feed forward training only provides us with a single answer, rather than allowing us

to predict the entire output distribution. This becomes a deficiency in particular

for multi-modal output distributions (for example in image colorization [13]), where

shallow image losses steer the network towards predicting mean (L2) or median (L1)

estimates of the distribution, which might not at all be representative of any of the

distribution’s modes. We notice a similar effect in the illumination estimation task of

Chapter 2, where these loss functions lead to predicted environment maps that lack

high frequencies that are found in the real data. A first approach to overcome these

limitations is to use perceptual loss functions [13] which steer the network’s prediction

away from conservative mean/median estimates. Second, we might use randomized

auxiliary inputs which disambiguate the input/output mapping, and provide for an

explicit way to draw samples from the output distribution [7]. Finally, we can go

beyond point samples by randomizing the initialization of gradient-based search using

generative models, as discussed in the next section.

5.2 Discussion of inverse graphics using differentiable

programming

Supervised learning as presented in the previous section requires significant amounts

of training data, since model behavior or data priors are not explicitly specified by
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the researcher, but instead must be learned from data. Differentiable rendering as

presented in Chapter 4 is an example of a larger class of systems based on differen-

tiable programming that allow a known forward model (e.g. image processing [8] or

physical simulation [6]) to be written by the programmer, while a compiler automati-

cally generates code that propagates gradients through the system [5] back to system

parameters or inputs. A forward model implemented in a differentiable framework

allows for the inverse problem to be solved by gradient-based search in the input

space. For parameter-free models, there is need for training data, since all system

behavior is written by the researcher.

In addition to their efficient use of training data, generative models based on dif-

ferentiable programming also naturally allow for inference of interpretable models of

the scene. During the optimization process, gradients are applied to the inputs of

the renderer, which usually are vertex attributes, transform matrices, texture maps,

light source parameters, and environment maps. All the input have meanings that

are well-understood by programmers and existing software systems, and the inferred

representations can be transferred to other renderers or content creation tools. This

stands in contrast to Neural Rendering [12], where the rendering algorithm itself is

learned, and the inferred “neural” representations are not interpretable using conven-

tional tools.

While interpretability is a desirable property for inferred representations, the raw

inputs to the renderer, for example raw vertex positions, present a highly non-convex,

high-dimensional optimization landscape, where the optimization procedure easily

gets trapped in local minima. Because of this, practical inverse rendering systems

generally perform optimization in a lower-dimensional parametrization of the shape

(e.g. the truncated PCA basis of Blanz and Vetter [2]). We consider the identification

of representations that are simultaneously interpretable, sufficiently expressive, and

also amenable to optimization, an important future research direction for inverse

graphics based on differentiable rendering.

If the loss landscape of the chosen scene representation is sufficiently convex,

gradient-based optimization can succeed from a generic initial state. This is the
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case with highly constrained scenes based on morphable models [2], and for very soft

visibility models based on volumetric rendering [9].

For problems with high-dimensional scene representations or a limited number of

observations, a generic starting point might not allow the optimization to converge

to a satisfying solution. In these cases, it is possible to leverage a larger corpus of

scenes, by training a feed-forward network to predict the initial scene state, which is

then refined by gradient-based optimization [4].

5.3 Summary

Supervised learning of computational photography and inverse graphics problems is

particularly suitable when the forward model is poorly understood or ambiguous, such

as the mapping of near-infrared images to the visible spectrum. The key challenge

then becomes collecting sufficient amounts of labeled training data, and minimiz-

ing the domain gap between training and test sets. This thesis presented several

hardware prototypes that were used to collect datasets, which led to state of the

art results in image relighting, lighting estimation, and mixed white balance (Chap-

ter 2), as well as a novel approach to low-light photography based on near-infrared

colorization (Chapter 3). Computational illumination also allowed us to propose a

automated approach to bounce flash photography [10], and achieve remarkable recon-

struction quality in non-line-of-sight imaging [1]. These results suggest that efforts to

collect novel, problem-specific datasets will be a fruitful area for future research. In

particular, our research suggests that light-weight capture devices using off-the-shelf

components will allow for scalable data collection within an affordable budget.

For applications with a well-understood forward model like graphics pipelines

(Chapter 4), a differentiable implementation of the forward model imposes structure

and reduces the amount of training data required to solve the inverse problem. The

search space of probable solutions can be further narrowed by learned priors, for

example natural image priors for computational photography problems, or shape,

material, and illumination priors over scenes in inverse graphics problems.
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The introduction of learned representations into differentiable programming-based

solvers points to an exciting direction for future research that incorporates both major

topics of this thesis into practical inverse graphics systems. We believe that hard-

ware prototypes similar to the ones presented in this thesis could be constructed to

collect large repositories of real-world shapes, materials, light environments, or even

entire scene layouts. Scene priors derived from this data would provide an important

data-driven foundation for inverse graphics systems. On top of this foundation, differ-

entiable rendering is a crucial building block that contributes both domain knowledge

and interpretability. The combined approaches promise to optimally utilize both real-

world data and programmer-specified domain knowledge, and together hold significant

promise as a future resarch direction for computer vision and inverse graphics.
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