
Towards Understanding Human-aligned Neural
Representation in the Presence of Confounding

Variables

by

Sanja Simonovikj

B.S. Computer Science and Engineering
Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 18, 2021

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pulkit Agrawal

Assistant Professor
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee



2



Towards Understanding Human-aligned Neural

Representation in the Presence of Confounding Variables

by

Sanja Simonovikj

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Deep Neural Networks (DNNs) find one out of many possible solutions to a given task
such as classification. This solution is more likely to pick up on spurious features and
low-level statistical patterns in the train data rather than semantic features and high-
level abstractions, resulting in poor Out-of-Distribution (OOD) performance. In this
project we aim to broaden the current knowledge surrounding spurious correlations
as they relate to DNNs. We do this by measuring their effect on generalization under
various settings, determining the existence of subnetworks in a DNN that capture
the core features and examine potential mitigation strategies. Finally, we discuss
alternative approaches that are reserved for future work.
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Introduction

Deep Neural Networks (DNNs) have shown superior generalization ability despite

their capacity to fit random data [30]. However, many works have pointed out the

brittleness of DNNs in light of adversarial examples [24] and out-of-distribution exam-

ples [18] [16]. In practice, DNNs tend to pick up on spurious features and low-level

statistical patterns in the train data rather than semantic features and high-level

abstractions, resulting in poor Out-of-Distribution (OOD) performance.

As an example, consider the task of classifying images into two classes: digits two

and six. Suppose the training set is biased so that background of images of digits

two and six are colored in red and blue respectively. There are at least two distinct

features that can be employed to classify these images: color or shape. If a DNN

is trained on this biased data and tested on a dataset that lacked any correlation

between the digit class and the background color, one would notice that DNN is

perfect at the training task, but performs at chance on the testing task. This clearly

shows that the DNN captures color, but fails to capture shape. Has the DNN learned

the “right“ feature? In some scenarios, where the data is generated from an underlying

causal model, such as physics describing the motion of a ball, it is straightforward to

distinguish the right feature (e.g., mass) from a spurious feature (e.g., color).

However, for many problems of interest such as object identification, speech recog-

nition or machine translation the target labels are human defined (i.e., subjective)

and there exists no causal model. For these problems, if a DNN learns features that

are different from humans, then to a human, the DNN’s performance on new data is

likely to be counter-intuitive. The DNN would be said to have learned “spurious“ fea-

tures. E.g., in the digit classification example “shape“ is the true underlying feature
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whereas “color“ is the spurious feature.

This study aims to further the current knowledge of deep learning phenomena

related to learning reliable and robust features. It also presents a new approach

to analyze and compare the types of solutions learned by a DNN and it provides

an overview of a preliminary attempt to learn reliable solutions that overcome the

undesirable inductive biases in DNNs. Finally, it recommends directions for future

research.

This paper is organized as follows. In chapter 1 we begin by giving a background

on the problem of poor OOD performance and examining the existing literature on

learning core features. The next chapter describes the setup and data used throughout

the paper and demonstrates the reliance of DNNs on spurious features. In the third

chapter we analyze the effect of NN depth on generalization across biased datasets

and degree of bias and we look at the correlation between the simplicity of a solution

and distance to initialization. In chapter 4 we give a formal definition of simplicity

leveraging the Lottery Ticket Hypothesis (LTH) as well as investigate the existence of

subnetworks in a DNN that capture the core features. In chapter 5 we propose a new

evolutionary training strategy to mitigate the issues outlined in the earlier chapters.

Finally, we provide a summary, address limitations and we propose areas of further

research in chapter 6.
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Chapter 1

Background and related work on

learning core features

1.1 Background

In the past few years the field of deep learning has seen a significant progress. A

remarkable success has been achieved in the large-scale image classification on the

challenging ImageNet benchmark [19], as well as smaller standard datasets such as

CIFAR-10 [13] and MNIST [14]. Beyond achieving high accuracy in these kinds

of tasks, a major appeal of deep learning is the ability to learn effective feature

representations of data (also known as embeddings). A major goal in representation

learning is to obtain embeddings that encode high-level, more interpretable and more

human-aligned features (HAF). Indeed, the learned feature representations turn out

to be quite versatile - in the field of computer vision for example, they are the driving

force behind transfer learning and image-similarity metrics such as VGG [12].

While the utility of learned representations is clear, the inductive biases in model

class and training algorithms for Deep Neural Networks (DNNs) exhibit some short-

comings. The presence of adversarial examples, where an input perturbed in a way

imperceptible to the human eye causes the model to predict a wrong output, sug-

gests that DNNs make predictions based on features that are vastly different from

what humans use. This same conclusion can be derived when looking at the failure
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of DNNs to generalize on out-of-distribution examples, something a typical human

would normally have no trouble with. Further empirical studies done in this project

and others illustrate that DNNs often rely on features, such as the background, that

may be spuriously correlated with the label during training time, resulting in poor

accuracy during test-time.

The issue of DNNs and humans using different features to solve the same task

is widespread. E.g., [7] find that ImageNet-trained CNNs are strongly biased to-

wards recognising textures rather than shapes, which is in stark contrast to human

behavioural evidence and reveals fundamentally different classification strategies; [29]

find that despite training on video data, neural networks prefer static cues over tem-

poral ones. While learning of some spurious features can be attributed to biases in

the training data, [28] report that balanced datasets by themselves do not mitigate

this issue. Learning of such spurious features can be seen as the root cause of the

aforementioned challenges that DNNs are faced with: poor true generalization, lack

of robustness and interpretability [11]. We therefore believe that these problems can

be mitigated by making DNNs learn human-aligned features (HAF).

The main deterrent in learning HAFs is that just given a training set and a pow-

erful learner, there are multiple possible solutions and without priors it is impossible

to decide the correct one. Humans possess background knowledge that guides this

selection. In machine learning, the role of feature selection has been relegated to

regularization. Widely used regularization penalties are based on the occam’s razor,

a heuristic, that encourages the determination of simpler solutions. However, these

heuristics have proven insufficient at explaining the success of deep learning. For

instance, deeper neural networks with more parameters generalize better than (sim-

pler) DNNs with fewer parameters. Data augmentation/adversarial training [9] are

other popular ways of regularizing training. Learning features that can quickly adapt

to a new problem [27, 5] or find the causal structure [3] can be seen as yet another

form of regularization. However, these mechanisms do-not fundamentally address the

problem as they optimize features for transfer to hand-chosen datasets.

The aim of our work is to broaden the current knowledge surrounding spuriously
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correlated features present in training data. This involves exposing the problem

with spurious correlations and DNNs, measuring their effect on generalization un-

der various settings, determining the existence of subnetworks that capture the core

features (as opposed to the spuriously correlated ones) and examine potential mitiga-

tion strategies. Finally, we discuss alternative approaches that are reserved for future

work.

1.2 Related work

1.2.1 Spurious correlations

An increasing number of studies investigate the reliance on spurious features such as

background in an image to make a prediction. In [21] the authors find that of all

overparameterized models that achieve zero training error, the inductive bias of the

model class and training algorithm favors models that use spurious features which

generalize only for the majority groups, instead of learning to use core features that

also generalize well on the minority groups. This inductive bias favors memorization

of as few points as possible. A related work looks at increased regularization as

a successful mitigation strategy [20], suggesting that increasing model capacity by

reducing regularization and perhaps by increasing overparameterization as well can

exacerbate spurious correlations.

1.2.2 Simplicity bias in neural networks

A growing body of literature has studied the simplicity bias (SB) in neural networks

- the tendency of standard training procedures such as Stochastic Gradient Descent

(SGD) to find simple models [1], [26]. In particular, [23] find that neural networks

can exclusively rely on the simplest feature and remain invariant to all predictive

complex features. Contrary to conventional wisdom, SB can also hurt generalization

on the same data distribution as SB persists even when the simplest feature has

less predictive power than the more complex features. The authors also find that
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the common approaches to improve generalization and robustness — ensembles and

adversarial training — can fail in mitigating SB and its pitfalls.

1.2.3 Data augmentation

Data augmentation is a commonly used technique for increasing both the size and

the diversity of labeled training sets by leveraging input transformations that preserve

corresponding output labels. In computer vision, image augmentations have become

a common regularization technique to combat overfitting in deep convolutional neu-

ral networks and are ubiquitously used to improve performance on various tasks [17].

Image augmentations have also been shown to improve convergence [15], generaliza-

tion and robustness on out-of-distribution samples [2] [10], and to overall have more

advantages compared to other regularization techniques.

1.2.4 Adversarial robustness

Other related work looks at adversarial robustness as a prior towards learning better

representations. From a transfer-learning perspective, the work done in [22] indicates

that adversarially trained models achieve better transfer accuracy than their standard

counterparts. From a feature learning perspective, [4] claim that robust optimization

can be used as a regularizer for learning representations by neural networks, result-

ing e.g. in more semantically meaningful representations, which are approximately

invertible, while allowing for direct visualization and manipulation of salient input

features. While adversarial robustness seems to be a useful prior for learning more se-

mantically meaningful features, it comes at a cost: [25] discover that there a may exist

an inherent tension between the goal of adversarial robustness and that of standard

generalization. Specifically, training robust models may not only be more resource-

consuming, but also lead to a reduction of standard accuracy, and that this can be

attributed to the fact that robust models and standard models might depend on a

very different set of features.
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Chapter 2

DNN performance in the presence of

spurious correlations

In this chapter we will first go over the definition of spurious correlations and provide

a general setup and then we will demonstrate the issue of spurious correlations and

generalization.

2.1 Spuriously correlated and core features

2.1.1 Definition and example

In statistics, a spurious relationship or spurious correlation is a mathematical rela-

tionship in which two or more events or variables are associated but not causally

related, due to either coincidence or the presence of a certain third, unseen factor

(referred to as a "common response variable", "confounding factor").

An example which will be relevant for this work is shown in figure 2-1, where

we have images of the digits two and six with colored background, labeled 0 and 1

respectively. In this case, the background color (red or blue) is spuriously correlated

with the label (0 or 1 respectively) in the task of digit classification. A neural network

model trained with such data might infer that a red background implies a label 0 and

blue background implies a label 1. In reality, there is a third variable that affects
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both the background and label. In particular, the shape of the digit, two or six,

determines whether the label is 0 or 1 respectively, and is also correlated with the

background color, either by design or by chance. In this example, the shape of the

digit is the confounding variable. We will refer to the shape as a core feature,

and to the background color as spurious feature. Throughout our work we will

use the words spurious feature and bias interchangeably, in accordance to using the

term bias to indicate the systematic error arising from incorrect assumptions in the

training process.

Figure 2-1: Example of spurious relationship: the background color (red or blue) is
spuriously correlated with the label (0 or 1 respectively) in the task of digit classifi-
cation. The shape of the digit (2 or 6) is the confounding variable.

2.1.2 Setup

We consider the simplified setup where each datapoint 𝑥 with label 𝑦 ∈ 𝒴 contains

some spurious feature or attribute 𝑎 ∈ 𝒜 in addition to the core features. Each

example belongs to a group 𝑔 ∈ 𝒢 = 𝒴 × 𝒜, where 𝑔 = (𝑦, 𝑎). Importantly, the

spurious feature 𝑎 is correlated with the label 𝑦 in the training data, but it is not

correlated in the test data. In the instance above we have the binary setting where

𝒴 = {0, 1} and 𝒜 = {𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒}.

2.2 Datasets with spurious correlations

We curated multiple balanced binary classification datasets where there is a spuri-

ous relationship between the variables in the training set but not in the testing set.

20



Note that the testing set is perfectly balanced, therefore the spurious feature appears

equally in each class i.e. |𝐷𝑦1𝑎1| = |𝐷𝑦1𝑎2| = |𝐷𝑦2𝑎1| = |𝐷𝑦2𝑎2|, where 𝐷𝑦𝑎 is the

dataset of images with spurious feature 𝑎 and label 𝑦. In some experiments we will

want to compare performance of a network trained with biased set with that of a

network trained with an unbiased set. In that case, both the training and test set are

unbiased and perfectly balanced across classes.

2.2.1 Biased Color MNIST dataset

We create the Biased Color MNIST Dataset by taking the digits two and six of the

MNIST dataset [14], and coloring the backgrounds with the colors red and blue.

Specifically, the train set consists of instances such as (0, 𝑟𝑒𝑑) and (1, 𝑏𝑙𝑢𝑒), while

the test set has all four groups, corresponding of the combination of the labels 𝑦

and spurious feature 𝑎. Note that in this case the background color is spuriously

correlated with the label. We have 5938 training images, and 1990 testing images.

(a) Test set samples (b) Train set samples

Figure 2-2: Biased Color MNIST dataset; the background color is spuriously corre-
lated with the label in the train set

2.2.2 Biased Two-bin MNIST

The Biased Two-bin MNIST dataset consists of the 10 digits of MNIST where the

digits 0-4 get one label (0) and the digits 5-9 get another label (1). We have train set

where the backgrounds associated with labels 0 and 1 are red and blue respectively,
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while in the test set there is no such correlation. Note that this dataset, although

similar to the biased color MNIST dataset in 2.2, is more challenging due to the

presence of all 10 digits. We have 30000 training images, and 10000 testing images.

(a) Test set samples (b) Train set samples

Figure 2-3: Biased Two-bin MNIST dataset consists of all 10 digits and 2 background
colors; the bias element is the background color associated with the label

2.2.3 Biased Cats and Dogs

The Biased Cats and Dogs dataset consists of images of cats and dogs with different

types of background: outdoors vs indoors (Figure 2-4a). To get images with outdoors

background we use an HSV (Hue, Saturation, Value) representation and we get the top

"greenest" images based on the percentage of green pixels, where a pixel is considered

green if its Hue channel is between 80 and 110. The type of background is spuriously

correlated with the labels in the train set (Fig. 2-4b). We note that this dataset

contains real images of cats and dogs, which differs from our other datasets which are

synthetically constructed. We have 140 training images, and 120 testing images.

2.3 Experiment: Simplicity bias and generalization

Simplicity bias (SB) in neural networks refers to the tendency of standard training

procedures such as Stochastic Gradient Descent (SGD) to find simple models. Previ-

ous work has found that neural networks can exclusively rely on the simplest feature
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(a) Test set samples (b) Train set samples

Figure 2-4: Biased Cats and Dogs dataset; the type of background (outdoors vs
indoors) is spuriously correlated with labels in the train set

and remain invariant to all predictive complex features [23].

Using our Biased MNIST dataset (2.2.1) as an example and using the notion

of simplicity as defined by [23], we can consider the background color of the image

to be a simple feature, and the shape of the digit to be a more complex feature.

We also provide a more precise definition of simplicity in chapter 4 . If we train a

standard Convolutional Neural Network (CNN) with SGD using our biased train set,

and evaluate the trained model on an unbiased test set, we notice that while the

CNN perfectly fits the training data, it performs at chance in the testing data. This

indicates that the NN learns to use color instead of the shape of the digits as the

dominant feature for making classification decisions (Fig. 2-5), demonstrating the

simplicity bias. These results hold across all of our biased datasets in section 2.2, as

well as others not shown in this work that contain spurious correlations in the same

fashion.
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(a) biased train set (b) unbiased test set (c) Train/test accuracy

Figure 2-5: (a) A neural network (NN) is trained on a dataset in which all images of
digits two and six have been colored in red and blue respectively. (b) The performance
of this network is evaluated on an unbiased dataset where color and digit class have no
correlation; (c) Classification accuracy on training and test sets indicates that while
the NN perfectly fits the training data, it is at chance performance on the testing set.
This result indicates that the NN learns to use color instead of the shape of the digits
as the dominant feature for making classification decisions.
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Chapter 3

Investigation of the effect of NN

depth and distance to initialization

on the type of learned solution

3.1 Effect of NN depth on generalization across bi-

ased datasets and degree of bias

In section 2.3 we found that a standard high-capacity and deep NN performs at chance

on an unbiased test set when trained on a biased set. However, would this still be the

case if the network were shallower? In particular, are shallower networks more likely

to capture the core features in the train set that generalize better?

We want to investigate the effect of the depth of a Deep Neural Network on the

generalization performance when there are spurious correlations in the training data.

To this end we explore four CNNs (Convolutional Neural Networks) of varying depth,

that is CNNs containing 1, 2, 3 and 4 convolutional layers. In addition, we vary the

type of bias and the degree of the bias. We curate three simple datasets with three

biases: background color, shape and texture (Figure 3-1). We also vary the bias

degree/intensity in the training set, denoted by 𝛼, where 𝛼 = 1 indicates full bias,

and 𝛼 = 0 indicates no bias. To be precise, given bias degree 𝛼, bias_mask, and
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digit, the final image is obtained as: 𝑖𝑚𝑔 = (1− 𝛼) · 𝑑𝑖𝑔𝑖𝑡+ 𝛼 · 𝑏𝑖𝑎𝑠_𝑚𝑎𝑠𝑘.

(a) color_mnist (b) shape_mnist (c) texture_mnist

Figure 3-1: Samples from datasets with spurious feature 𝑎, where 𝑎 is the background
color in (a), the small symbol (shape) in the top left corner of an image (b) and the
background texture (c). The bias degree in this case is 1 (full bias)

We run 10 experiments with different random seeds for each (model, dataset,

bias degree) configuration. In each experiment, we train with a biased version of

the dataset, and evaluate on the unbiased test set. The test accuracy curves across

different models (varying depth) and datasets for a fixed small bias degree of 𝛼 = 0.01

are given in Figure 3-2. We mark in red the average test curve across different trials

(one for each random seed). We notice that on average, for a small bias degree,

shallower networks are more likely to capture the core digit shape features as opposed

to the bias (Figure 3-2).

The complete results are shown in Figure 3-3. As an evaluation metric we use

Area Under the Curve (AUC), computed using the trapezoidal rule, of the average

test accuracies curve across trials. We use the test accuracy on the unbiased set

because that is indicative of whether we have learned the right features. We use AUC

as a metric as opposed to only the final test accuracy in order to capture cases where

the test accuracy drops over epochs. For each of the four models of varying depth,

we explore the performance when the model is trained with biased data with bias

𝑎 ∈ {𝑐𝑜𝑙𝑜𝑟, 𝑠ℎ𝑎𝑝𝑒, 𝑡𝑒𝑥𝑡𝑢𝑟𝑒} and bias degree 𝛼 ∈ {0.01, 0.05, 0.5, 1}.

Based on the results in Figure 3-3, if the bias degree is not low/high enough to

26



Figure 3-2: Test accuracy curves across 10 trials for models of varying depth and
varying biased datasets for a fixed small bias degree of 𝛼 = 0.01. The average curves
are marked in red.

Figure 3-3: The Area Under the Curve (AUC) of the average unbiased test accuracies
curve across trials for each (model, dataset, bias degree). Shallower networks are more
likely to capture the core digit shape feature.

make models of all depths generalize or not generalize well respectively, then it is

the shallower networks that are more likely to capture the right feature (the digit

shape) initially. We do notice though that in the case of color_mnist dataset the

test accuracy drops to random the more we train, demonstrating the preference for

"simpler" solutions which can fit the train data but do not generalize well.

27



3.2 Correlation between simplicity of a solution and

distance to initialization

Previously we found that DNNs tend to use the spurious features in a biased training

dataset and not the desired core features as a predictive signal. In this section we want

to investigate if the biased solutions are closer to initialization than the unbiased ones.

The distance to initialization is measured as the sum of the L2 distances between the

final weights 𝑊𝑓𝑖𝑛𝑎𝑙 and initial weights 𝑊𝑖𝑛𝑖𝑡 of the NN:

𝑑 (𝑊𝑓𝑖𝑛𝑎𝑙,𝑊𝑖𝑛𝑖𝑡) =

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

𝑛𝑚∑︁
𝑗=1

(𝑊𝑓𝑖𝑛𝑎𝑙,𝑖,𝑗 −𝑊𝑖𝑛𝑖𝑡,𝑖,𝑗)
2

where 𝑚 is the number of weight matrices in the NN and 𝑛𝑚 is the number of weights

in matrix 𝑚. As we use SGD to train the network, we use this metric as a proxy of

the amount of "work" that SGD does to learn the predictive signals.

3.2.1 Biased and unbiased solutions

A biased solution is one obtained by training a network with a biased dataset. In

this set of experiments we want to see if biased solutions are closer to initialization

than their non-biased counterparts. To this end we train CNNs of varying depth and

complexity while ensuring the starting initialization is the same for the biased and

unbiased solutions. We use the same three simple datasets with background color,

shape and texture biases shown in Figure 3-1. Note that the biased and unbiased

datasets are the same size, and they are perfectly balanced across classes and biases.

We run five trials of each experiment and we show the means and the average of the L2

distance across trials in Table 3.1. We notice that in most cases the solution obtained

by training with biased dataset (one that learns the bias) is closer to initialization

than the one obtained by training with unbiased data. However, this is not necessarily

the case with very large models such as ResNets [8]. Further studies will need to be

undertaken to explain this correlation and whether the distance to initialization is

indicative on the type of solution (biased or non-biased) learned.
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Dataset Model Biased Unbiased
mean stdev mean stdev

conv-1 4.26 0.39 8.31 2.13
conv-2 3.92 0.32 8.79 0.13
conv-3 4.04 0.27 11.31 0.75
conv-4 3.94 0.25 14.88 4.21
ResNet-18 53.9 21.77 53.22 20.17

Color
MNIST

ResNet-34 161.94 177.01 147.76 99.78
conv-1 9.21 0.19 8.49 0.19
conv-2 8.16 1.14 8.44 0.05
conv-3 7.87 4.74 9.89 1.65
conv-4 5.36 0.53 10.85 4.05
ResNet-18 29.03 10.91 33.05 4.75

Shape
MNIST

ResNet-34 78.12 37.85 75.81 23.4
conv-1 4.31 0.07 6.86 0.33
conv-2 4.03 0.19 8.71 0.11
conv-3 3.92 0.07 11.3 0.12
conv-4 3.87 0.1 13.3 2.46
ResNet-18 102.16 55.28 40.61 11.88

Texture
MNIST

ResNet-34 105.12 106.73 71.13 5.89

Table 3.1: L2 distance 𝑑 (𝑊𝑓𝑖𝑛𝑎𝑙,𝑊𝑖𝑛𝑖𝑡) from final to initial weights for model trained
with biased data and unbiased data. In most cases the solution obtained by training
with biased dataset (one that learns the bias) is closer to initialization (bolded) than
the one obtained by training with unbiased data.
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Chapter 4

Existence of Lottery Subnetworks

that Capture Core Features

In this chapter we will provide a formal definition of a simplicity of a solution. We

will also investigate the hypothesis that larger deep neural networks contain within

themselves smaller subnetworks which can extract different high-level features, such

as shape and color. To achieve this we will use our curated datasets from section 2.2

and leverage the Lottery Ticket Hypothesis (LTH) [6].

4.1 Motivation

The empirical studies in section 3.1 suggest that deeper and higher-capacity neural

networks are more likely than their shallower counterparts to use the spurious features

as a predictive signal in a biased training dataset. In this section we investigate

whether we can find lower-capacity (smaller) subnetworks in a large DNN that are

able to use the core features as a predictive signal. If we can empirically prove the

existence of such networks, we can look for ways to uncover these subnetworks during

training with only biased data. We attempt the former in this section and the latter

in section 5.1.
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4.2 Background on Lottery Ticket Hypothesis (LTH)

The Lottery Ticket Hypothesis [6] states that dense, randomly-initialized, feed-forward

networks contain subnetworks ("winning tickets") that - when trained in isolation -

reach test accuracy comparable to the original network in a similar number of iter-

ations. To uncover such subnetworks one can use a standard pruning technique of

removing a percentage of the largest weights in the network for the current pruning

level and that would naturally uncover subnetworks whose initializations made them

capable of training effectively.

The lottery subnetwork can be uncovered by a method called iterative magnitude

pruning (IMP): Starting from a dense initialization we train our network until conver-

gence. Afterwards, we prune 𝑝 · 100% smallest magnitude weights, where 0 < 𝑝 < 1

is the pruning factor. We then retrain the sparsified network with its original ini-

tialization. After convergence we repeat the pruning process and reset to the initial

weights. We iterate this process (𝑠 pruning levels in total) until we reach the desired

level of sparsity or the test accuracy drops significantly. For more details please refer

to [6] .

4.2.1 Definition of Simplicity using LTH

Now that we have the necessary apparatus, we can provide a precise definition of

simplicity leveraging the LTH idea of iterative pruning and retraining. This will

allow us to characterize solutions learned with biased datasets as simpler than those

learned with unbiased datasets.

Definition 1 (Simplicity of a Solution). Given a Deep Neural Network (DNN) and

two datasets 𝐴 and 𝐵, we say that the solution the DNN learns while being trained

with dataset 𝐴 is simpler than the solution learned while being trained with dataset

𝐵 if, for a given pruning factor 𝑝, we can iteratively prune the DNN trained with 𝐴

for at least as large number of levels 𝑠𝐴 ≥ 𝑠𝐵 than the one trained with 𝐵 before the

DNN converges at any threshold difference 𝛿% (0 < 𝛿 < 50) lower training accuracy

than when trained to convergence before any pruning.
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Dataset A Dataset B 𝑝 𝛿 𝑠𝐴 𝑠𝐵

biased Color MNIST unbiased Color MNIST 0.5 1% 7 5
biased Two-Bin MNIST unbiased Two-Bin MNIST 0.5 1% 7 6

biased Cats and Dogs unbiased Cats and Dogs 0.5 15% 3 3

Table 4.1: Simplicity of DNN solutions obtained through biased and unbiased datasets
based on Definition 1 for a given pruning factor 𝑝 and threshold difference 𝛿. We note
that 𝑠𝐴 ≤ 𝑠𝐵 i.e. biased solutions are "simpler" than unbiased ones.

In Table 4.1 we demonstrate the simplicity of the biased solutions in comparison

to the unbiased solutions using definition 1 for our three datasets described in section

2.2. We see that for 𝑝 = 0.5 and an arbitrary 𝛿, 𝑠𝐴 ≥ 𝑠𝐵, where 𝑠𝐴 is the number

of pruning levels for the solutions obtained with a biased dataset, and 𝑠𝐵 for the

unbiased dataset.

4.3 Experiment setup

We want to know if is there a subnetwork in a larger network that can capture the

core features in a biased dataset. To answer this question we design an experiment

described below.

Similar to other experiments in this work, we have biased and unbiased set of

multiple datasets. In this case we use the Color MNIST Biased dataset (2.2.1) and

Two-bin biased MNIST dataset (2.2.2). Our experiments consist of first performing

the routine described in Section 4.2 to obtain a lottery subnetwork from a larger

network by training on unbiased data. This subnetwork is presumed to be able to

capture the core features as it has access to unbiased data. Let us call this subnetwork

"shape" subnetwork as it has learned the digit shapes as opposed to spurious features

such as the background color. The next part of the experiment is to take the shape

subnetwork, reinitialize it with the fortuitous initialization of the starting network

and train it only with biased data. We want to see whether we can still reach good

performance on an unbiased test data even though we are training only with biased

set. A positive answer to this question would mean that the subnetwork we found has
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such an initialization and architectural structure that allows for capturing the correct

prediction signals. We compare performance by looking at an unbiased test set.

The experiment setup can be summarized as follows:

1. Train on unbiased data and perform iterative pruning for 𝑠 levels with a pruning

factor 𝑝 per level

2. According to LTH there is a subnetwork with similar performance to the starting

network. We can say that this subnetwork captures the digit shape features

3. Take the subnetwork from 2), initialize it with the same fortuitous initialization

and train it on biased data

4. Evaluate the network from 3) on unbiased data

5. If good performance on unbiased data in 4) (even though trained with biased

data only), it means the subnetwork had the right initialization/architecture to

capture the shape.

6. If 5) is true, it means there is a subnetwork that could capture the shape, and we

should find ways to preserve that subnetwork when training the initial network,

i.e. do not allow the network that finds the spurious features solution to prevail

We run multiple versions of this experiment where we vary the datasets and pruning

levels and percentage.

4.4 Results

The results are shown in figure 4-1. On the left plot we show the unbiased test learning

curve over epochs for the Biased Color MNIST dataset 2.2.1, while on the right we

show the same for Biased Two-bin MNIST dataset 2.2.2. Each curve corresponds to

a different pruning amount where the label 𝑠/𝑝 means pruning 𝑝 · 100 % of weights

per level for 𝑠 levels. For both datasets we observe the presence of a peak in the

(unbiased) test accuracy learning curve early in the training process (with biased

data). While the amount of pruning seems to have an effect on the outcome, in most

34



cases the peak is sharp (short-lasted) and then it flattens around random accuracy.

From this we can conclude that the "lottery" subnetwork is learning the core features

initially, but then it resorts to learning the spurious features, again demonstrating

simplicity bias.

(a) Biased Color MNIST dataset (2.2.1) (b) Biased Two-bin MNIST dataset (2.2.2)

Figure 4-1: Test accuracy learning curves for two datasets; each line corresponds to
the test curve for different pruning amount where 𝑠/𝑝 means pruning 𝑝 · 100 % of
weights per level for 𝑠 levels. In most cases we notice a peak in the learning curve
which then flattens out to random accuracy.
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Chapter 5

Explored Mitigation Strategies

In this chapter we look at one potential mitigation strategy with the goal of learning

the core features in the presence of spurious correlations in the data. In our discussion

we focus on techniques that modify the learning process as opposed ones that modify

the training data.

5.1 Diverse Hypotheses through Evolutionary Train-

ing Strategies

In chapter 4 we looked at subnetworks of a DNN and we experimentally verified that

some of them have certain properties (including initialization and architecture) that

allow them to capture the correct predictive signals in the early epochs of training with

a biased dataset. Each of these subnetworks can be considered to be a hypothesis, or a

potential solution to the problem. Since there are many subnetworks in a DNN, we can

say the DNN contains within itself many different hypotheses. This raises the question

of how to uncover the desirable subnetworks (ones that capture the core features in

a biased data) if we do not have access to large amounts of unbiased data. We draw

inspiration from this open question as well as evolutionary algorithms to formulate one

mitigation strategy, which we call Diverse Hypotheses through Evolutionary Training

Strategies.
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5.1.1 Architecture and Setup

For simplicity assume we have a binary classification problem. Let us consider an

architecture where instead of having one output classifier we have 𝑘 such classifiers,

or heads of the DNN. Each of these 𝑘 classifiers is obtained as a matrix product of

a matrix 𝑊 with a matrix 𝐶𝑖, ∀𝑖 s.t. 1 ≤ 𝑖 ≤ 𝑘, as shown on figure 5-1. For the

purposes of this experiment we keep the 𝑘 heads fixed, i.e. we do not update their

weights during training. The dataset used is Biased Color MNIST dataset 2.2.1. We

train with a biased dataset 𝒟𝑏
𝑡𝑟𝑎𝑖𝑛 and test on an unbiased set 𝒟𝑢

𝑡𝑒𝑠𝑡. Importantly, we

also assume we have access to small balanced unbiased validation set 𝒟𝑢
𝑣𝑎𝑙.

Figure 5-1: Architecture of a 𝑘-classifier neural network, where the matrix 𝑊 is
transformed 𝑘 times to obtain 𝑘 predictions.

The training approach is based on a classifier rejuvenation strategy, where after

every training epoch we remove the worst performant classifiers and sample the re-

maining ones with replacement based on their performance on the unbiased validation

set 𝒟𝑢
𝑣𝑎𝑙. Note that after every epoch we still have 𝑘 classifiers. The procedure is as

follows:

1. Train the DNN for one epoch using mean Binary Cross-Entropy (BCE) loss

across the 𝑘 classifiers

2. Compute the accuracy on 𝒟𝑢
𝑣𝑎𝑙 for each of the 𝑘 classifiers

3. Take Softmax of the 𝑘 accuracies from (2) to get a probability distribution 𝒫

4. Remove the least probable 𝑝% percent of values in 𝒫
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5. Softmax the remaining probabilities so that again they sum to 1

6. Sample new 𝑘 classifiers with replacement based on the new probabilities in 𝒫 .

The value at the 𝑖-th element of𝒫 , that is 𝒫𝑖 for 1 ≤ 𝑖 ≤ 𝑘, can be interpreted

as the probability that the 𝑖-th classifier is sampled

7. Add small Gaussian noise 𝜖 to the weights of each sampled classifier, where

𝜖 ∼ 𝒩 (𝜇, 𝜎2)

8. Repeat process from step 1 until a desired number of epochs

After the model is trained we can perform inference by gathering the predictions from

all 𝑘 classifiers and taking the majority predicted class. An alternative strategy is to

take the average of all predicted probabilities per class and use that to predict the

final class. Note that for the purposes of analyzing our results in the next section,

we do not need to choose an aggregation strategy as we consider the performance of

each classifier separately.

To obtain the results below, we trained a CNN with three convolutional layers, for

500 epochs, using Adam optimizer with a starting learning rate of 1e-6. We vary the

value of 𝑘. At each rejuvenation step we remove the lowest performant 𝑝 = 80% of

classifiers. We assume the noise 𝜖 is Gaussian with mean 𝜇 = 0 and variance 𝜎2 = 0.2

i.e. 𝜖 ∼ 𝒩 (0, 0.2). Furthermore, the sizes of the train, validation and test sets are as

follows: |𝒟𝑏
𝑡𝑟𝑎𝑖𝑛| = 5938, |𝒟𝑢

𝑡𝑒𝑠𝑡| = 1791, |𝒟𝑢
𝑣𝑎𝑙| = 199.

5.1.2 Results

The results for 𝑘 = 10 and 𝑘 = 500 are given in figure 5-2. The 𝑥-axis denotes the

epoch and ranges from 0 to 500, and the y axis is the accuracy (train or test). On

the left side of the plots we show the 𝑘 train curves for each classifier, whereas on

the right plots we show the test curves in the same fashion. We notice that there

is not much diversity in the hypotheses, which is expected in the current setup, but

the peak test performance reaches around 75% which is significantly higher than the

baseline of 50% using standard training techniques when we are training with only
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biased data. Different hyperparameter settings would yield slightly different results,

but we found the given setting to be representative.

5.1.3 Analysis and Discussion

In this section we looked at one possible approach towards finding a hypothesis i.e.

a solution learned by a neural network, that captures the predictive signals that

generalize well on our validation and test data. This approach can be useful when

we cannot curate a large unbiased balanced training set, but we can curate and use

a smaller validation set that can directly guide our training process. Note that the

validation set in our approach plays a more powerful role than merely choosing the

best intermediate checkpoint during in the training phase: it helps us eliminate the

unpromising solutions early in the process. A further investigation can probe the

benefits of this method in comparison to one where we train the model with the

combination of the validation and training set.
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(a) k=10 classifiers

(b) k=100 classifiers

(c) k=500 classifiers

Figure 5-2: Evolutionary training approach - Train (left subplots) and test (right
subplots) learning curves for each of the 𝑘 classifiers
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Chapter 6

Conclusion

6.1 Summary

The aim of our work was to broaden the current knowledge of the behavior of

neural networks (NNs) under spurious correlations in the data using synthetic and

image-based datasets that (a) incorporate well-defined spurious correlations, (b) are

amenable to experimental analysis, and (c) capture the non-robustness of NNs ob-

served in practice.

We first demonstrated the reliance of NNs on spurious features as a predictive

signal in a biased data, which results in at-chance out-of-distribution performance.

Then, we analyzed the effect of the NN depth and the strength of the spurious correla-

tion to empirically demonstrate that deeper over-parametrized models are more likely

to miss out the core features and rely exclusively on the spurious features. Further

empirical analysis showed that there is a correlation between the L2 distance from

initialization and the type of solution. Then we introduced a simplicity metric to

compare NN solutions and demonstrated that the solutions learned with biased data

are simpler under this metric. We proceeded to show that NNs contain within them-

selves subnetworks whose initialization and architectural structure make them more

likely to capture the core features in the early stages of training. Finally, we proposed

an evolutionary training strategy that shows promising results towards learning the

core features from biased data by having access to a smaller unbiased validation set.
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6.2 Limitations

While a lot of our findings are as anticipated and appear to be well substantiated by

previous work, others are based on a limited set of experiments and therefore should

be treated with considerable caution. It is plausible that a number of limitations

could have influenced the results obtained. First, the experiments are performed

with well-curated synthetic datasets where the biases are well-defined and amenable to

empirical analysis. This differs significantly from the nature of real-world data where

quantifying the biases is hard to impossible. Therefore it is not inconceivable that the

effectiveness of our proposed techniques or the strength of certain observations and

conclusions would have diminished if the data had come from a real source. Second,

the NNs, training techniques and hyperparameters used in the experiments, unless

otherwise specified, have meant to be representative and "typical" in the task of

image-based digit classification, but it might have been the case that different results

were observed had these been different. Additionally, for certain experiments, such as

the ones in section 3, further analysis would be needed to determine exactly how the

depth affects the solution learned or whether there is any causal relationship between

the distance to initialization and the type of solution learned.

6.3 Future Work

There are many avenues for future work, as building reliable deep learning systems is

an active area of research. These avenues can be divided into three main categories

depending on whether we modify the training data, learning algorithm or the architec-

ture. Modifying the training data can be expensive, not scalable and would provide

only a short-term solution which would be dataset-specific. A direction which we

partially explored in section 5.1 was a combination of modifying the learning process

and the architecture, by training in an evolutionary way and introducing multi-head

classifiers. A different direction of study can take our findings in section 4 and look

into how can we discover the core-feature lottery subnetworks if we do not have access
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to (a lot of) unbiased data, and maybe more importantly, how can we encourage these

subnetworks to avoid reliance on the spurious features later in the training. A related

line of work can investigate whether the architecture can have a significant impact

on the types of predictive signals learned. A positive answer to this question can

motivate more work that relates Neural Architecture Search (NAS) with robust and

reliable deep learning. On a wider level, research is also needed to apply the existing

findings for real-world datasets and under the computational constraints often faced

in practical applications.

6.4 Ending Notes

This work is foundational in nature and seeks to improve our understanding of neural

networks, in particular in relation to uncurated datasets which are likely to contain

biases of various types. We believe that, in the long term, a concrete understanding

of deep learning phenomena is essential to develop reliable deep learning systems for

practical applications that have societal impact and we hope that our research will

be beneficial in solving the difficulties with these phenomena.
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