
 1 

Designing Next Generation Nucleic Acid Diagnostics Using 

Synthetic Biology and Artificial Intelligence 

 
by 

 

Nicolaas Manuel Angenent-Mari 

 

B.S, University of Wisconsin-Madison (2016) 
 

Submitted to the Department of Biological Engineering in partial fulfillment of the 

requirements for the degree of 
 

Doctor of Philosophy in Biological Engineering 

 

at the 

 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

 

June 2021 

 

© Massachusetts Institute of Technology 2021. All rights reserved 

 

 

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Department of Biological Engineering  

May 24, 2021  

 

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

James J. Collins  

Professor of Biological Engineering  

Thesis Supervisor  

 

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Feng Zhang 

Professor of Biological Engineering 

 

 

 

 

 

 

 

 

 



 2 

Designing Next Generation Nucleic Acid Diagnostics Using Synthetic 

Biology and Artificial Intelligence 
 

by 

 

Nicolaas Manuel Angenent-Mari 

 

Submitted to the Department of Biological Engineering in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in Biological Engineering 

 

 

Abstract. 

 Nucleic Acid Testing (NAT) is an indispensable tool for effective disease diagnosis. 

Analyzing pathogen and host RNA or DNA often provides otherwise unobtainable information 

necessary for proper patient treatment. Unfortunately, a number of technical barriers prevent the 

expansion of NAT technology into novel application spheres, such as wearable, digital, and direct-

to-consumer or point-of care diagnostic testing. These limitations include the cost of NAT, the 

equipment needed to perform it, and assay sensitivity. No available technologies have 

simultaneously achieved the combination of a consumer-tolerable cost, equipment-free passive 

operation, and gold standard sensitivity. The design of novel assays that overcoming all such 

limitations in concert would allow for the deployment of NAT in previously unprecedented 

environments, improving the range and accessibility of crucial disease monitoring.  

In this thesis I outline four efforts to expand the capacity of NAT in this direction. First, I 

describe the design of a novel CRISPR-Cas13 activated riboswitch which demonstrates the 

potential of synthetic biology tools for nucleic acid detection. Second, I describe the prototyping 

of a platform for the deployment of freeze-dried synthetic biology-based diagnostic assays in 

wearable formats, including examples of NAT assays and also assays for small molecule analytes. 

Third, I describe the synthesis and subsequent analysis using deep learning of a toehold switch 

library, demonstrating the potential for high-throughput AI-guided design of diagnostic tools. 

Fourth, I describe the design of a novel isothermal nucleic acid amplification method that functions 

at low temperatures. I conclude by discussing the future direction of NAT technologies, and 

describe new opportunities for improved health outcomes that could arise from a new generation 

of diagnostic tools.   
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Chapter 1  

1.1 Background and Motivation for Next-Generation Nucleic Acid Testing. 

Nucleic Acid Testing (NAT) is an indispensable tool for effective disease diagnosis. 

Analyzing pathogenic RNA or DNA often provides otherwise unobtainable information necessary 

for proper patient treatment 1,2. Compared with assays for other relevant analytes such as proteins 

and small molecules, NAT assays have the potential for orders of magnitude greater sensitivity 3,4, 

and frequently encode strain-type information with greater specificity 4. Unfortunately, compared 

to other types of diagnostics like antigen-based tests, greater hurdles exist for deploying NAT in 

low-resource settings (Figure 1-1). These barriers include high per-test costs due to expensive 

materials, complex and expensive equipment needs, and variable robustness, among other 

limitations 1,2,3. A “next-generation” NAT technology circumventing these limitations could 

dramatically expand the range of applications suitable for nucleic acid diagnostics, improving 

accessibility in medical clinics, bringing NAT to the consumer home, and allowing for deployment 

in a number of passive surveillance capacities such as wearable and wireless assays. 

In the last decade, a concerted push to solve this problem has produced many technologies 

that attempt to address NAT’s inherent drawbacks. In particular, there has been an emphasis on 

point-of-care (POC) technologies. Such “sample-in, results-out” testing platforms have focused on 

infectious diseases and try to satisfy the WHO’s ASSURED criteria: affordable, sensitive, specific, 

user-friendly, rapid and robust, equipment-free, and deliverable to end-users 1,2,3. A combination 

of simplified temperature control equipment, improved biochemistry, and microfluidics have 

allowed for significant progress. Their use precludes the need for transporting patient samples to 

faraway diagnostic labs, reducing diagnosis time and bringing NAT to clinics in communities 
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otherwise unable to perform NAT testing. However, despite progress with POC testing, many 

hurdles remain for bringing NAT to emerging economies.  

 

Figure 1-1. Complexity of protein and nucleic acid assays. Available diagnostic technologies 

are compared for nucleic acid based and antigen (protein) based assays. While tests for protein 

analytes are available at a range of complexities allowing for useful clinical information to be 

diagnosed at hospitals, smaller clinics, or at the home, tests for nucleic acid analytes tend to be 

more complex and expensive such that at-home tests have not properly been marketed and 

diagnostic availability is limited for smaller clinics. In particular this thesis aims to fill the missing 

gap of an at-home nucleic acid test. 

 

1.2 Summary of Unresolved Barriers for Point-of-Care NAT Diagnostics  

Unfortunately, point-of-care rarely equates with reduced per-test costs compared to 

laboratory-based testing, and equipment is still always required. Currently the per-test cost for a 

POC NAT is $10-50, and the equipment cost is $1,000-10,000 4,5,6. By contrast, lab-based testing 

at centralized facilities requires more expensive equipment, but once sample transport chains are 

established, it is cheaper for the patient on a per-test basis (material costs can be as low as $1). 

Therefore, local clinics often prefer to send samples to a centralized lab. This saves their patients 
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money, and also spares the local clinic the expense of having to purchase any equipment 2,3,5,6. 

POC platforms hence reduce the incentive to expand diagnostics closer to the patient due to 

uncompetitive per-test and equipment costs, defeating their purpose. 

Additionally, while $10-50 is cheaper than previous platforms, hundreds of millions still 

live below the global poverty line of $1.90/day 7. For comparison, a test purchased at that income 

level equates to $160-800 per test in the US based on a $30/day poverty line. One can see 

significant room for price reduction, as many cannot afford even this reduced-cost testing. 

Lastly and most importantly, cost aside, the needs for NAT diagnostics have moved beyond 

single-plex sequence detection (which is what most POC platforms have focused on). When 

combating both infectious and non-infectious illnesses, more in-depth sequence information on 

multiple targets is often necessary for proper treatment decisions and disease monitoring. Hence 

significant need exists for tests capable of higher-throughput screening of dozens of nucleic acid 

sequences and single-nucleotide polymorphisms (SNP’s), while still reducing costs and 

maintaining point-of-care utility.  

To highlight the magnitude of the challenges to be overcome, I will discuss in more detail 

current gold-standard POC NAT technologies using isothermal amplification, as well as the needs 

for more multiplexed and sequence-specific nucleic acid testing. 

 

1.3 Equipment vs Price Tradeoffs for Isothermal Amplification Technologies 

By far the closest competitors for an all-purpose “next generation” POC NAT technology 

are those that utilize isothermal amplification as their core detection mechanism. I will outline 

their benefits as well as how they remain limited as per the previously stated hurdles. 
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The main advance of isothermal amplification techniques (the most commonly used being 

Recombinase Polymerase Amplification or RPA, Loop-Mediated Isothermal Amplification or 

LAMP, Nucleic Acid Sequence Based Amplification or NASBA, and Strand Displacement 

Amplification or SDA) is to remove the requirement for temperature cycling inherent to the 

previous gold-standard technology qPCR 4,8,9,10,11. These amplification detection schemes all 

function at either a single temperature in the case of NASBA and LAMP (41C and 65C, 

respectively), or at a narrow range of temperatures in the case of RPA and SDA (37C-48C), which 

significantly simplifies the technology needed to produce temperature control 4,10,11. Unfortunately 

however, this does not eliminate the need for equipment, as even isothermal temperature control 

still requires electricity-driven devices, often with precise and robust control needed (especially 

with 65C incubation for LAMP and 41C for NASBA). A case has been made for equipment-free 

RPA amplification: since the assay functions at body temperature for example, it can sometimes 

be run simply by holding it close enough to a person 10. In chapter two of this thesis I outline a 

wearable NAT assay we developed taking advantage of this. However, there are many situations 

where body heat is not available (ie, remotely placed digital and wireless diagnostics), and in 

addition not all humans produce enough body heat to reliably keep a skin-surface reaction at 37C 

and layers of clothing may separate the diagnostic from the skin of the user 12. Because the function 

of RPA declines between 37C and 25C, this significantly limits the range of applications for which 

RPA can be applied without the use of external equipment, leaving further room for improvement. 

Even when not considering equipment, isothermal amplification methods also have 

significant limitations in terms of price and sensitivity. The cost of isothermal amplification 

reagents is not significantly cheaper than that of previously available qPCR reagents, and the 

cartridge materials needed to carry out a POC assay using them can be more expensive than the 
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reagents used in qPCR assays 13. In addition, isothermal amplification methods often suffer from 

reduced sensitivity compared to qPCR by up to several orders of magnitude 14,15,16. 

Nonetheless despite these drawbacks, many POC nucleic acid diagnostic platforms 

currently exist, able to employ both conventional qPCR and isothermal amplification. These 

mostly include products that still require equipment in addition to a disposable assay cartridge, 

such as the Cepheid GeneXpert Omni, Lumora BART, Alere Q HIV, DRW SAMBA II, and Iquum 

Liat (Figure 1-2) 1,2,3,4,5,6. Such products are portable, room-temperature storable, operate on 

battery power, and are relatively simple to use. However, the need to purchase equipment 

precludes at-home use and limits deployment for next-generation applications such as clothing-

embedded sensors and remote digital sensors. 

  

Figure 1-2. Example point-of-care NAT technologies. Two technologies for “sample-in, results-

out” nucleic acid testing are shown, both of which are at present commercially available. The 

Cepheid Omni relies on qPCR assays and miniaturized thermocycling technology, while the 

SAMBA II uses isothermal amplification and a single-temperature heating step. Both have 

equipment costs on the order of ~$2-10k, and cartridge costs on the order of $20-50. 

 



 12 

Other products where the equipment has been miniaturized sufficiently to be incorporated 

directly into an assay cartridge will soon reach the market, including at-home SARS-Cov2 tests 

from Sense and Lucira 25,26. These do eliminate the equipment cost, but at the price of increasing 

the cartridge expense from $10-20 to $50-100, making it more of a luxury product than a broadly 

accessible health care device. This added cost arises from the continued need to heat the reaction, 

actuate liquid transfer, and purify the sample on-chip. Aside from price, these same limitations 

also preclude the deployment of such assays in clothing-embedded sensors and remote digital 

sensors. 

In short, based on the previously outlined criteria, isothermal amplification methods have 

significant limitations in deployment as a “next-generation” NAT. 

 

1.4 Screening for Drug Resistance and Viral Escape Mutations 

One of the most challenging and largely unresolved issues in global health is the rise of 

drug resistant and viral escape pathogens.  

Major diseases affected by drug resistance include HIV, HCV, TB, and malaria 17,18,19. For 

many such diseases new treatments remain in the early stages of testing or are entirely absent, 

meaning that the need to contain their spread through careful monitoring is urgent. While most 

drug-resistance assays culture the pathogen to directly asses the organism’s drug resistance, this is 

a costly process and can take weeks before diagnosis, limiting throughput and accessibility 21. 

However, another way to asses a pathogen’s drug resistance potential is through a mutation screen 

for single nucleotide polymorphisms (SNP’s) known to confer drug resistance 20,21,22. This assay 

type has the potential to be significantly faster in turnaround time.  
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Viral escape has been a similarly challenging health issue, most notably during the ongoing 

SARS-Cov2 pandemic, and the diagnosis of evolving viral strains potentially able to evade 

vaccine-conferred immunity can also require sequence-level nucleic acid information 23,24. 

However even prior to the SARS-Cov2 pandemic, the monitoring of other viral diseases like 

Flavivirus infection was of significant concern (ie, Zika, Dengue, Chikungunya, West Nile, Yellow 

Fever). The ranges of these viruses often change rapidly and overlap, present with similar disease 

symptoms, and antibody-based assays can fail to distinguish them 23,24. For example, antibodies 

against Zika, Dengue, and Chikungunya often give identical results. Additionally, unique strains 

of each virus can be difficult to distinguish by antibody, which complicates monitoring the spread 

of the pathogen as it evolves.  

More recently, a number of SARS-CoV-2 strains of concern have emerged 27. These new 

variants may affect transmissibility, treatment efficacy, and the degree of immunity that is 

generated by both natural infection and immunization 28. Of particular concern are variants B.1.1.7 

(originally discovered in the United Kingdom), B.1.351 (originally discovered in South Africa), 

and P.1 / B.1.1.28.1 (originally discovered in Brazil / Japan) 29,30,31. The N501Y spike mutation 

(common to all three variants) has 4-10x increased affinity to the human ACE2 receptor for SARS-

CoV-2 32, which is hypothesized to contribute to the observed increase in transmissibility of 

B.1.1.7. The B.1.351 and P.1 variants have additional receptor binding domain (RBD) mutations 

such as E484K that show significantly reduced neutralization by antibodies generated by current 

vaccines and by prior natural infection presumably from non-variant SARS-CoV-2 strains 

31,33,34,35,36. These variants also have additional mutations in the spike N-terminal domain and 

appear to be resistant to several mAbs targeting that region 31. 
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These are all examples of highly relevant nucleotide-level information that a sequence-

specific POC NAT could provide, where other POC assays such as a rapid antigen test might fail. 

There is therefore great potential to improve outcomes through increased multiplex and SNP-level 

sequence discrimination capability in POC NAT technologies. 

However, very few POC tests exist for detecting drug-resistance SNP’s and none for 

distinguishing viral strains (either for SARS-Cov2, or otherwise). Presently for HIV, HCV, and 

malaria there is no such commercially available POC drug resistance test, while for TB one test 

exists (GeneXpert MTB/RIF), but it can only detect resistance to a single drug out of the many for 

which resistance has been observed 20. Research shows that for accurate drug resistance diagnoses 

in TB, screening of up to dozens of SNP’s is necessary 18,19,21. 

There is hence a need for broad POC screens of emerging and drug-resistant pathogens, 

able to distinguish viral species and strains, and able to detect drug-resistance mutations, in order 

to help monitor rapid outbreaks as they occur. Equally important, this can help determine proper 

treatment for patients. 

 

1.5 Concluding Thoughts on the Limitations of NAT Testing 

Significant progress has been made towards reducing the cost and equipment burden of 

NAT technologies without compromising their sensitivity. In many cases this has enabled their 

deployment further out from centralized hospitals to more local clinics and doctor’s offices. 

However, the potential for further improvement and expansion into as-yet untapped markets is 

great, with at-home consumer NAT diagnostics and passive forms of NAT testing such as wearable 

and wireless/digital assays being key examples.  
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Chapter 2 

2.1 Background and Motivation for Synthetic Biology Diagnostics 

In response to the need for new classes of diagnostics, the Collins lab has been involved in 

the development of two new NAT technologies that leverage advances in the modularity, 

specificity, and sensitivity of technologies available in the synthetic biology toolkit: the toehold 

switch 38,39,40, and SHERLOCK 37,42,43,44. These technologies are examples of cell-free synthetic 

biology. In the last two decades a plethora of genetic actuators, logic gates, and biosensors have 

been designed to modularly control the cellular environment of bacterial, fungal, mammalian, and 

other organisms.  

 

Figure 2-1. Adaptation of cellular synthetic biology to a cell-free environment. One 

method of reproducing synthetic biology tools that rely on both transcription and translation is to 

lyse the organism that originally hosted the synthetic biology tool, and to suspend the lysate in an 

energy buffer containing all the necessary small molecule components for desired reactions to 

proceed (transcription, translation, or other enzymatic reactions). 
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These efforts have been conceptually analogous to the control and actuation of electronic 

circuits. However, in order to expand their use, many of these synthetic biology components have 

been engineered for function outside of the cellular environment. Such cell-free reactions are self-

contained, abiotic, aqueous chemical systems. They can be as simple as one or more purified 

enzymes interacting, or as complex as a cell-free protein synthesis system (CFPS) which contains 

all the biomolecular components required for efficient transcription and translation (Figure 2-1). 

Such systems can also be freeze-dried into shelf-stable formats in porous substrates, which allow 

for robust distribution, storage and use without specialized environmental requirements 38,40,41.  

The toehold switch and SHERLOCK are both examples of cell-free synthetic biology 

reactions that are highly amenable to being freeze-dried 37,40. As NAT diagnostics, they both build 

on existing isothermal amplification techniques, improving their sensitivity and specificity as a 

post-amplification amplicon-detection mechanism, whereby the amplified DNA or RNA is 

positively identified with a sequence-specific signal generation mechanism (to distinguish it from 

nonspecific amplification products). These approaches allow for more robust detection, but due to 

the reliance on isothermal pre-amplification, still suffer from said technology’s limitations. I will 

describe them both, and then describe the design of a novel Cas13-activated riboswitch that 

combines elements of both in an attempt to circumvent the need for isothermal amplification. 

 

2.2 The Toehold Switch: Riboregulator-Based RNA Detection 

The first Collins lab diagnostic tool taking advantage of advances in synthetic biology that 

I will describe is the toehold switch (THS), a class of RNA responsive riboregulators that can be 

used in cell-free protein synthesis systems (CFPS) (Figure 2-2) 38,39,40.  
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Figure 2-2. Illustrating toehold switch architecture. In its off state (top left), the closed switch 

RNA has its translation repressed by the presence of a hairpin stem, sterically hindering RBS 

access. Any trigger RNA (top right) to be detected can be specified by making the switch RNA 

complementary in regions a and b, to a* and b*. In the presence of trigger RNA, the switch RNA 

undergoes toehold-mediated strand displacement, making it competent for translation (bottom). 

Figure adapted from Green et al 39. 

 

These mRNA switches repress translation by the e. coli ribosome in their off state by virtue 

of a hairpin secondary structure that reduces access to the Shine-Delgarno (SD) sequence of the 

ribosome binding site (RBS). However in the presence of a fully programmable activator RNA 

(‘trigger RNA’), the hairpin stem is melted by toehold-mediated strand displacement, allowing for 

the SD sequence to be accessed and resulting in a more translationally active mRNA (Figure 2-2). 

The end effect is that specific RNA sequences of 30-40nt can be detected, with a programmable 

protein being produced as the sensor output. There are a number of advantages to the THS. The 

most notable advantage is its incredibly low cost: when produced at scale, the main reagent CFE 

can cost as little as a single cent per reaction, which allows the price of reagents to be essentially 

negligible 41. Another essential advantage is the robustness to temperature variance, with the 

expression of many proteins varying little across a wide range of ambient temperatures 16C-37C 
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(based on our own unpublished data, and in particular for luciferases as luminescent output rather 

than fluorescent proteins). These properties are notably lacking for competing isothermal 

amplification technologies and allow the THS to operate without equipment and at low cost.  

Unfortunately however, the THS suffers from one key and intractable limitation, which is 

its poor sensitivity. A typical LOD for Toehold Switches is in the low nanomolar range 38,39,40, 

which makes them entirely unsuitable for direct clinical use. Published and unpublished work in 

the Collins lab has attempted to ameliorate this, but the only successful approach has been to use 

an isothermal NASBA or RPA pre-amplification step 38. Such a solution abolishes the THS’s main 

advantages and replaces them with isothermal amplification’s cost and temperature control 

limitations, relegating the THS to an amplicon detection role. Although the use of THS in concert 

with isothermal amplification can improve the sensitivity and specificity of the assay compared to 

isothermal amplification alone (by discriminating non-specific byproducts from true amplicon), it 

also adds an extra step to the diagnostic workflow because isothermal amplification methods tend 

to be incompatible with the buffer and enzyme mixes that most CFPS systems contain, requiring 

a two-pot assay. 

 

2.3 SHERLOCK: CRISPR-Based RNA and DNA Detection 

The second notable synthetic biology diagnostic tool that the Collins lab has been involved 

in developing in collaboration with the Zhang lab, is SHERLOCK (specific high-sensitivity 

enzymatic reporter unlocking) 37. This platform leverages the versatile function of a class of Type-

VI CRISPR-Cas effectors called Cas13 (also previously known as C2C2) 43,44. Like many 

CRISPR-Cas effectors, these enzymes can be programmed with an RNA guide known as the 

crRNA. For Cas13, the crRNA targets the enzyme-guide complex to bind to a complementary 
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ssRNA target. Upon binding to the correct complementary sequence, the enzyme activates a 

nonspecific collateral RNAse activity that degrades any RNAs in the surrounding solution 37,42,43,44 

(Figure 2-3). This function can be leveraged to detect specific ssRNA targets by including 

fluoresent reporters: these molecules consist of a fluorophore and quencher chemically synthesized 

at either end of an unstructured ssRNA molecule. When Cas13 encounters an RNA target 

previously specified by the complexed crRNA, the binding event can be detected by the cleavage 

of the fluorescent reporter, which produces a fluorescent signal when the quencher is physically 

separated from the fluorophore.  

 

 

Figure 2-3. Workflow of a SHERLOCK assay. A) First an RNA or DNA target is amplified 

using RT-RPA or RPA, an isothermal amplification technique. The amplicon is then transcribed 

using a T7 polymerase, and finally the transcribed RNA is detected by Cas13 cleavage assay. The 

cleavage assay proceeds as follows: B) The Cas13a enzyme-crRNA complex identifies an ssRNA 

target complementary to the crRNA, and upon binding, a nonspecific collateral RNAse activity is 

generated, resulting in a quenched-fluorophore reporter being cleaved and generating signal. 

Figure adapted from Gootenberg et al. 42 
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Alone, most CRISPR-Cas13 orthologs show only modest sensitivity for detecting target 

RNA’s (at best reaching low-pM concentrations for the ortholog from Leptotrichia wadei 

bacterium LwaCas13a), and so the enzymes were combined with an RPA pre-amplification step 

37,42. The combination of an RPA amplification step, followed by T7 transcription of the resulting 

amplicon, and finally followed by Cas13 enzyme detection of the transcribed RNA, has been 

dubbed SHERLOCK (Figure 2-3). The platform has been expanded with up to four orthogonal 

Cas13 orthologs allowing for multiplexing (LwaCas13a, CcaCas13b, LbaCas13a, and 

PsmCas13b) 42. In addition a similar and in some ways orthogonal system called DETECTR 

operates almost identically but leverages a different class of gRNA-guided CRISPR enzymes 

called Cas12, which bind to and recognize dsDNA and occasionally ssDNA, and produce 

ssDNAse cleavage activity in response to target activation 45. 

The main benefit of SHERLOCK/DETECTR is unparalleled accuracy and sensitivity, 

matching and often surpassing the previous gold-standard qPCR 37,45. These methods can achieve 

single-copy detection in volumes up to hundreds of microliters, and with single nucleotide 

discrimination capabilities 37,42,45. In this fashion it is superior to most isothermal amplification 

schemes that operate on their own without an amplicon-detection step. 

Unfortunately, because SHERLOCK uses RPA isothermal amplification, it still suffers 

from the same limitations that isothermal amplification methods do. SHERLOCK is as expensive 

if not more so than RPA by itself, and has the same temperature dependency issues as RPA. While 

by far one of the best candidates for a general purpose “next generation” NAT (in chapter three 

we use it in limited capacity for a wearable nucleic acid sensor), it still can only perform optimally 

and robustly with some form of temperature-control equipment. In summary the ideal confluence 
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of ambient-temperature robustness for equipment-free use, high sensitivity, and low cost are still 

not fully realized with SHERLOCK. 

 

2.4 Leaderless Riboswitch: CRISPR-Cas13-Activated Translational Regulator 

Interestingly, Cas13 alone (without using pre-amplification) nearly achieves the main aims 

of a “next generation” POC NAT diagnostic, its main limitation being sensitivity. LwaCas13a is a 

Cas13 ortholog that demonstrates some of the best on/off behavior compared to other known 

Cas13 orthologs 37,43,44, and it demonstrates other desirable properties such as a well-characterized 

nucleotide cutting preference 42. Without pre-amplification with RPA, the enzyme demonstrates 

detection sensitivity in the low pM range when using a visual lateral-flow based output 37. This is 

insufficient to be considered gold-standard, but is still significantly better than the sensitivity of 

toehold switches by at least 1000-fold. Its function is also relatively invariant across a range of 

ambient temperatures from 20C-37C (unpublished data), and the materials and manufacturing cost 

to produce the enzyme itself and its crRNA guide could be quite low at scale 41. 

One path to a “next generation” diagnostic would hence be to simply improve the 

sensitivity of the LwaCas13a enzyme. The approach described in this chapter that I took to achieve 

this goal was to create a reporter for LwaCas13a that, rather than producing a fluorescent output 

based on a fluorophore-quencher system, would generate a protein expression signal analogous to 

the output of a toehold switch. Due to the high dynamic range that can be achieved by modifying 

ribosome translation initiation rates with riboregulators 46,51,52,53 compared with the dynamic range 

of fluorophore-quencher reporters, I hypothesized that such a reporter would improve the 

sensitivity of LwaCas13a detection. This could occur without any compromise in temperature-

invariance, and could actually result in a reduction in cost. A cell-free riboswitch reporter would 



 22 

also present a number of other advantages over fluorescence-based reporters, including improved 

robustness against contaminating RNAses in samples, and a longer shelf-life due to being storable 

in a DNA-encoded format. 

A cell-free expression reporter system made to interact with LwaCas13a’s RNAse activity 

would need to generate a significant change in translation initiation rate based on a single cleavage 

event. Based on this criterion, designs similar to the THS were discarded as they relied mainly on 

changes in secondary structure, not primary structure 39,51,52,53. Instead a novel class of mRNA’s 

was investigated, known as Leaderless mRNA’s (LL-mRNA). These mRNA’s use a unique and 

relatively understudied pathway for translation initiation that does not rely on a Shine-Delgarno or 

other ribosomal recognition sequence. Instead these mRNA’s have only an AUG start codon at 

their 5’ end, with no upstream sequence attached 47,48,49,50. After screening many LL-mRNA leader 

sequences (Figure 2-4), a particularly active leaderless sequence from the naturally leaderless cI 

gene of lambda bacteriophage was used 50, with the first 20-36nt of the gene placed in front of an 

open reading frame (ORF) to generate leaderless translation in e. coli cell-free protein expression 

systems (with or without an amino acid linker as needed). 

Expression from LL-mRNA is strongly inhibited by both secondary structure, as well as 

additional sequence added upstream of the start codon 48,49,50. As a result, an exceptionally tight 

Riboswitch can be designed that relies on the removal of a sequence 5’ to the start codon which 

blocks the start codon with secondary structure (Figure 2-5). This data represents to my knowledge 

the first instance of the use of LL-mRNA for bioengineering purposes. The resulting difference in 

expression of the repressed and unrepressed LL-mRNA has an exceptionally wide dynamic range 

of up to 104, likely due to the lack of an SD sequence, which is known to assist the ribosome in 

the unwinding of mRNA secondary structure 46,51,52,53. The difference in expression between the 
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on and off states of the LL-Riboswitch approaches the biological limit for the e. coli ribosome 46, 

and to my knowledge, this potential dynamic range is greater than that of most published 

riboregulators (Figure 2-5).  

 

Figure 2-4. Panel of Leaderless mRNA Candidates. A series of 48 leader sequences were cloned 

upstream of a NanoLuc gene and allowed to express at 23C (left) or 37C (right) in a cell-free 

protein expression system. Of these sequences, 12 were naturally occurring LL-mRNA’s, and 36 

were artificially designed with low secondary structure. Mean of two replicates (n=2). 

 

Figure 2-5. Maximum repression of LL-mRNA. A LL-mRNA consisting of a cI leader upstream 

of a Nano-Luciferase gene was expressed at room temperature in a cell-free protein expression 

system. Blocked LL-mRNA had an inhibitory secondary structure upstream of the cI leader. Mean 

and SD of two replicates (n=2). 
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Figure 2-6. Leaderless Riboswitch mechanism of activation. The final LL-Riboswitch design 

consists of a cI leader sequence upstream of a coding sequence (unless specified, the P86 Nano-

BiT split-luciferase peptide), with inhibitory secondary structures blocking ribosome access to the 

start codon. RNAse cleavage activity of LwaCas13a is directed to a location immediately 5’ to the 

start codon by the presence of a series of U’s, and blocked elsewhere by tiled ssDNA oligos. 

 

 

Figure 2-7. Maximum repression of LL-mRNA. Three Leaderless Riboswitches with tunable 

levels of protein expression (weak, medium, and strong) were compared with a riboswitch that 

utilized a Shine-Delgarno leader (SD-Riboswitch). Their expression at 23C in a CFPS was 

measured alone, with Cas13a, with Cas13a and a crRNA guide, or with Cas13a-crRNA and 10pM 

of complementary RNA trigger. Mean and SD of two replicates (n=2). 
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In order to direct LwaCas13a to activate this LL-Riboswitch, the two main constraints on 

its RNAse activity were leveraged: 1) LwaCas13a can only cleave at U residues, and 2) 

LwaCas13a can only cleave ssRNA and not dsRNA. All regions on the repressed LL-Riboswitch 

were hence protected by secondary structure in the form of tiled ssDNA oligomers or hairpin 

structures, save for a target loop immediately 5’ to the AUG start codon and the cI leaderless 

sequence. To protect the single-stranded cI leader sequence, all U’s were removed from it, while 

a range of U residues were placed in the target loop to facilitate cleavage at that location (Figure 

2-6). The resulting LL-mRNA is readily activated by LwaCas13a’s RNAse activity, with tunable 

levels of leakage and signal based on the strength of repressive secondary structures (Figure 2-7). 

The length and position of the repressive hairpin, and number of U residues upstream of the start 

codon were all optimized for maximal fold-change, with 5xU being optimal (data not shown).  

Interestingly, when the same style of Riboswitch is attempted with an SD-driven mRNA 

(with both the SD and AUG codon repressed by the hairpin secondary structure), only very little 

induction can be achieved (Figure 2-7). This is likely due to the higher leakage in the inactivated 

state that occurs when the ribosome can bind an SD sequence, and the larger secondary structure 

that the ribosome must overcome in the activated state when both the start codon and SD are 

blocked, as opposed to only the start codon.  

As a reporter, the LL-Riboswitch signal allows for between 10x and 100x improved 

sensitivity over fluorescent reporters depending on the concentration of background RNA (Figure 

2-8). The final limit of detection using this system is in the mid-fM range when expressing a short 

split-luciferase peptide as the output gene (from the NanoBiT system, peptide P86 complementing 

with pre-expressed 11S NanoLuc)54. While a plate reader instrument was used for these 

experiments, a low-cost colorimetric output solution could be to capture the luciferase’s 



 26 

chemiluminescent light on instant film similar to that used in kodak cameras. This passive readout 

is possible since no excitation light is required, as in the case of a fluorescence reporter. 

Importantly, the assay was carried out at room temperature. 

 

 

Figure 2-8. Cas13a cleavage signal comparison for LL-Riboswitch and fluorescence-

quencher reporter. The collateral cleavage activity for LwaCas13a was measured when detecting 

varying concentrations of trigger RNA (125fM-125pM) using either an optimized LL-Riboswitch 

or a fluorescence-quencher (FQ) reporter. Cleavage was carried out for one hour. Mean and SD of 

three replicates (n=3). 

 

2.5 Flexible Protein Outputs from a LL-Riboswitch Diagnostic 

In addition to improving the sensitivity of RNA detection by Cas13, the use of LL-

Riboswitches allows for increased flexibility in the output of the detection reaction. Whereas 

previously only behaviors induced by the physical separation of molecules joined by RNA could 

be induced (mostly fluorescence signal), with a LL-Riboswitch the bioactive enzymatic or 

structural behavior of an arbitrary protein can be leveraged as a diagnostic output. However, for 
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large ORFs, it became intractable to tile their entire length with ssDNA oligomers, as the efficiency 

of translation was impeded and the effective protection from cleavage by Cas13 was diminished. 

In my hands, only ORFs shorter than what can be covered by about three ssDNA oligomers were 

inducible by Cas13a – if more than that many oligomers were required, then the RNAse activity 

of Cas13a would destroy the ORF more rapidly than the ribosome could generate protein 

expression from it (data not shown). Hence an intermediary solution was necessary if larger 

proteins were to be expressed from LL-Riboswitches. To facilitate this process, a more orthogonal 

system was created where rather than directly express a protein that would need to be tiled by 

ssDNA oligomers, a smaller peptide was designed as an output that could induce transcription and 

expression of the intended full-length output protein. This was achieved using a split-intein system, 

with an output peptide engineered to drive the transcription of arbitrary ORFs by activating T7 

RNA polymerase (RNAP). First, the C-terminal five amino acids of T7 RNAP were removed, 

leaving a catalytically dead protein with fully abolished transcriptional activity. Second, a peptide 

consisting of those missing five amino acids of T7 RNAP and the CfaGEP intein 55 was designed 

that upon being expressed in the presence of the catalytically dead T7 RNAP, could covalently re-

attach the missing amino acids to T7 RNAP, and thereby fully restore transcriptional activity. 

When used as the output of a LL-Riboswitch in the presence of the split/deficient T7 RNAP, this 

short intein peptide could induce downstream transcription of a larger full-length gene such as 

GFP or NanoLuciferase 73 (Figures 2-9, 2-10). Because unprotected mRNAs produced by T7 

RNAP were being continually transcribed and replenished upon induction, protein expression from 

this two-step system was much more robust to the RNAse activity of Cas13 than a one-step system 

that directly expressed protein from the finite quantitiy of LL-Riboswitch. 
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Figure 2-9. A split-intein T7 RNAP induction system for more general LL-Riboswitch 

expression. An engineered output peptide produced from a LL-Riboswitch induces transcription 

of an arbitrary ORF by 1) binding to a C-terminally deficient T7 RNAP, then 2) using a split-intein 

to splice five missing amino acid residues to its C-terminus, and 3) induce transcription of the 

desired ORF from a dsDNA template with an upstream T7 promoter. 

 

Figure 2-10. Cas13a cleavage signal comparison for LL-Riboswitch and fluorescence-

quencher reporter. The collateral cleavage activity of LwaCas13a was used to drive expression 

of two full-length ORFs, superfolder-GFP and NanoLuciferase, using the split-intein LL-

Riboswitch reporter system outlined in Figure 2-9. Mean and SD of two replicates (n=2). 
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2.6 Improved Limit of Detection for LL-Riboswitches with Gated-crRNA  

While the limit of detection of the Cas13 LL-Riboswitch diagnostic thus far has been 

improved to the mid-fM range, in order to truly achieve useful detection performance the 

sensitivity will need to be further improved by at least an order of magnitude, if not more. 

The greatest current limitation to the LL-Riboswitch diagnostic is the off-state untriggered 

RNAse activity generated by the LwaCas13a-crRNA complex itself. In the presence of crRNA 

guide but in the absence of any trigger RNA, LwaCas13a displays background RNAse activity 

that is equivalent to roughly 10-100x the background signal of the LL-Reporter alone (Figure 2-

11). Hence any attempt to improve the sensitivity of the LL-Riboswitch diagnostic platform will 

need to first reduce the background produced by this leakage RNAse activity, until it is of the same 

level of signal as the LL-Riboswitch reporter on its own. This could be accomplished in a variety 

of ways, but the design path I chose attempted to maintain separation between the crRNA and the 

LwaCas13a enzyme except in the presence of the desired activator RNA. By preventing the 

LwaCas13a:crRNA complex from forming, the leakage produced by it should be reduced, but 

without affecting the on state signal as the presence of an activator RNA will enable the guide to 

complex with the LwaCas13a enzyme (Figure 2-12). It leverages a similar approach to strand-

separation seen in molecular beacons.  
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Figure 2-11. Background leakage of LwaCas13a complexed with different crRNA guides. 

The signal produced from cleavage of a LL-Riboswitch reporter by LwaCas13a in the absence of 

trigger RNA for one hour was measured at 23C. The different crRNAs tested targeted either a 

synthetic sequence (crRNA1, dark purple), a sequence from the mecA gene of Methicillin-resistant 

Staphylococcus aureus (MRSA, pink), or a sequence from Plasmodium falciparum (P. falc, blue). 

Mean and SD of three replicates (n=3). 

 

Figure 2-12. Architecture of a Gated-crRNA for Cas13a. In the repressed inactive state, a 5’-

appended sequence complementary to the handle of the crRNA forms an inhibitory hairpin 

structure that prevents the crRNA from being recognized by Cas13a. However, in the presence of 

an activator (trigger) RNA with sequences complementary to both the crRNA spacer and the gate 

region, the crRNA handle is freed and the crRNA-trigger complex can bind to Cas13a. 
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Figure 2-13. Background Cas13a RNAse activity is repressed by a gated handle. Signal from 

a Cas13a-induced LL-Riboswitch in the presence of 0pM or 20pM of a Trigger RNA is shown 

using four gated crRNA with repressive hairpins of varying strength (MFE values calculated by 

NUPACK). The trigger RNA sequence was designed to bind to the crRNA spacer and sterically 

unwind the gate region. Mean and SD of two replicates (n=2). 

 

A number of preliminary attempts to prevent the LwaCas13a:crRNA complex from 

forming relied on designing secondary structures in the crRNA guide itself, including blocking the 

guide handle with complementary ssDNA oligos or extensions of the guide from the 5’ and 3’ 

directions. These could then hypothetically be melted after binding of the trigger RNA to the spacer 

region of the crRNA, by binding of a second region on the trigger RNA to a “gate” region, allowing 

for trigger-induced on-state RNAse signal to be unaffected while the off-state RNAse signal is 

eliminated. 

Of the attempted designs, only one succeeded and is shown here. The most effective 

“gating” process functioned conceptually like a molecular beacon, where the blocking hairpin stem 

is unwound by steric hindrance rather than toehold-mediated strand displacement. While not as 
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efficient a method of changing RNA secondary structure conformation, it allows for the activator 

RNA sequence to be fully unconstrained. 

This modified crRNA handle significantly repressed background leakage, and the presence 

of ssRNA and/or dsRNA at the 5’ end of the crRNA handle did not effect on-state RNAse activity 

(Figure 2-13). Furthermore, the on-state activity with activator present was reduced by the need to 

de-repress the crRNA guide to a lesser extent than the degree of background reduction, improving 

the overall on/off behavior. This resulted in a subsequent improvement in limit of detection of five 

to ten-fold over the standard crRNA design for the same spacer sequence (Figure 2-8 and Figure 

2-14). 

 

Figure 2-14. Limit of detection for a crRNA design with a gated handle. An LOD curve for an 

optimized gated-crRNA architecture for LwaCas13a is shown against a trigger RNA that both 

unwinds the gate region and binds the spacer of the crRNA. An optimized LL-Riboswitch was 

used to generate signal. Mean and SD of three replicates (n=3). 
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Unfortunately, while the design of a two-trigger “gated” crRNA was largely successful and 

can serve to provide greater specificity for larger RNA targets, the improvement in sensitivity was 

not sufficient for the LL-Riboswitch to reach a limit of detection that would make it suitable as a 

replacement for isothermal amplification based techniques like SHERLOCK.  

 

2.7 Concluding thoughts on Cell-Free Expression Reporters for CRISPR-Cas13 

Although the creation of a CRISPR-Cas13 actuatable riboswitch in conjunction with a 

gated Cas13 crRNA design improved the sensitivity of direct RNA detection using Cas13, the 

optimized limit of detection did not surpass the femtomolar range. For a gold-standard NAT 

diagnostic to have clinical utility, it should be able to robustly generate a high fold-change signal 

when detecting analytes well into the attomolar range 1,2,3,4,5,6. Indeed, since the completion of this 

work, another group has published on efforts to directly detect RNA samples including SARS-

Cov2 using the collateral activity of Cas13 (notably improving the sensitivity by using LbuCas13 

instead of LwaCas13) 56. However, that work did not robustly achieve attomolar limits of detection 

and relied on relatively small changes in fluorescent signal over time using a form of fluorescence 

measurement equipment. In addition, they required a temperature incubation at 37C to achieve 

optimal Cas13 cleavage activity. The necessity to track kinetic behavior of a fluorescence signal, 

and the requirement of a 37C incubation step, obviates the advantage of using Cas13 alone in 

comparison to approaches melding Cas13 with an isothermal amplification tool such as 

SHERLOCK.  

In the end, a different approach to improving the limitations inherent in isothermal 

amplification had to be taken, other than to try to circumvent it entirely. Rather than improve the 

sensitivity of a synthetic biology tool that operated well at low temperatures but was insufficiently 
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sensitive, in Chapter Five I describe an effort to improve the low-temperature robustness of an 

existing isothermal amplification method that was already sufficiently sensitive at higher 

temperatures. This proved to be a more amenable design challenge and brought us much closer to 

an ideal POC NAT technology suitable for next-generation applications. The old maxim held true 

that, “if you can’t beat them, join them”. 
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Chapter 3  

3.1 Deploying freeze-dried synthetic biology diagnostics in wearable format 

While the diversity of modular biosensors, genetic logic gates, and output effectors in the 

synthetic biology design toolkit have been increasingly validated in benchtop assays for the 

purposes of NAT and other diagnostic assays59,60, recent developments in wireless technology, 

wearable electronics, smart materials, and functional fibers with novel mechanical, electrical and 

optical properties have marked the dawn of next-generation biosensing systems61. To date, 

practical examples of devices that enable the wearable deployment of these tools are limited. For 

the most part only a few demonstrations of hygroscopically actuated vents and response signals to 

induction molecules have been achieved using living engineered bacteria encapsulated in flexible 

substrates and hydrogels (notably PDMS) in a wearable format (Figure 3-1) 58,62,63,65.  

  

Figure 3-1. Examples of wearable synthetic biology using living cells. Two examples from the 

literature are shown for wearable deployment of living synthetic biology systems. On the left is a 

PDMS patch containing live E. coli cells able to produce GFP in response to small molecule 

inducers that have been smeared onto the skin 57. On the right is a fabric that allows for live 

engineered E. coli to adhere in a biofilm only upon exposure to blue light, and are in this case also 

constitutively expressing GFP for visualization purposes 58. 
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While seminal, such examples encounter several limitations. In particular, sustaining living 

organisms within these devices for extended periods of time is an as-yet unsolved and seemingly 

intractable obstacle, as retaining the viability and function of wearable sensing systems based on 

living cells requires nutrient delivery, waste extraction, as well as temperature and gas regulation, 

all of which involve numerous technological apparatus. Genetically engineered cells can also pose 

biocontainment or biohazard concerns, particularly if integrated into consumer-level garments, 

leading to stringent regulatory pathways in many critical applications. Moreover, such genetically 

engineered cell populations will continually evolve and suffer mutational pressures over time, 

potentially resulting in loss of the genetic phenotype and function 63,64. Thus, a new approach in 

synthetic biology is needed to resolve the mismatch between practical requirements of wearable 

synthetic biology use and the operational limitations of available biomolecular circuits for sensing 

and response, allowing their utilization ideally in a wide range of wearable substrates (e.g., 

functional fibers or fabrics) to assess molecular targets in a manner that is passive and fully field-

deployable for consumers or professionals 65. 

 

Figure 3-2. Freeze-dried cell-free synthetic biology. Schematic shows cell-free reaction 

components inertly stored at ambient temperature until rehydration with an analyte. 
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As mentioned at the start of chapter two, cell-free synthetic biology reactions are self-

contained abiotic chemical systems that can carry out the function of a synthetic biology tool in 

the absence of a living cell, and can be complex enough to contain all the biomolecular components 

required for efficient transcription and translation (Figure 3-2). Genetically engineered circuits, 

encoded in DNA or RNA, can be added to such freeze-dryable, cell-free (FDCF) reactions for 

activation by simple rehydration. Robust FDCF systems have already been developed for 

inexpensive paper-based nucleic acid diagnostics using the toehold switch 39 and highly sensitive 

programmable CRISPR-based nucleic acid sensors using Cas13/Cas12 37,42,45,66 (as described in 

chapter two), in addition to other functions such as on-demand production of antimicrobials, 

antibodies, and enzymes 67, and low-cost educational kits for teaching 68,69,70. The ability for such 

systems to be freeze-dried into shelf-stable formats allows for robust distribution and storage in a 

way that circumvents the limitations of cellular synthetic biology systems 67.  

Interestingly, we found that cell-free protein expression reactions (among other cell-free 

reaction types) were amenable to many different textile and paper substrates (Figure 3-3). Hence, 

we chose to use freeze-dried, cell-free genetic circuits in combination with specifically designed 

flexible and textile substrates as a new direction towards practical wearable biosensors. In this 

chapter I will describe the design and validation of a number of wearable freeze-dried, cell-free 

synthetic biology (wFDCF) sensors not just for NAT diagnostics, but also for small molecule and 

toxin detection. These sensors are integrated into flexible multi-material substrates (e.g., silicone 

elastomers and textiles) and use genetically engineered components including toehold switches, 

transcriptional factors, riboswitches, fluorescent aptamers, and SHERLOCK/DETECTR 

(CRISPR-Cas13a/Cas12a). 
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Figure 3-3. Textile and paper embedding of freeze dried cell-free protein synthesis. Figure 

shows fluorescence microscopy images of cell-free protein synthesis reactions expressing GFP 

from a toehold switch sensor, when wicked either into a filter paper disc or a cotton thread and 

then freeze-dried. In sensor-added conditions 33nM of Zika-targeting toehold DNA were added, 

and in trigger-added conditions, 12uM of Zika RNA was added. 

 

3.2 Wearable Diagnostics using a Colorimetric Synthetic Biology Platform 

For our first wFDCF demonstration, we embedded colorimetric genetic circuits into 

cellulose substrates surrounded by a fluid wicking and containment assembly made of flexible 

elastomers (Figure 3-4, top left). These prototypes were assembled layer-by-layer to form reaction 

chambers fluidically connected to top sample portals. The devices are flexible, elastic, and can 

rapidly wick in splashed fluids through capillary action (Figure 3-4, top right). Pinning geometries 

throughout the device direct sample fluids towards enclosed hydrophilic paper networks allowing 
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for reaction rehydration. Using a lacZ β-galactosidase operon as the circuit output to hydrolyze 

chlorophenol red-β-Dgalactopyranoside (CPRG), a yellow to purple color change develops upon 

exposure to a target (Figure 3-4, bottom). 

           

Figure 3-4. Wearable colorimetric reaction patch design. Top left: overview schematic of 

three-layered reaction patches with two opaque and one transparent silicone layer bonded to 

surround paper disks containing FDCF reactions. Top right: wFDCF reaction patches can resist 

axial and torsional strain, and allow for rapid passive wicking from environmental splashes 

through entry ports. Bottom: images were taken every five minutes of CFPS reactions in triplicate 

constitutively expressing LacZ at 30C. Signal was visible within 20-30 minutes. 
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Key environmental factors were considered for the design of these prototypes. For instance, 

sample exposure in the field could occur with variable splash volumes (we assumed a reasonable 

range to be between 50-100uL), relative humidity (RH, 20-40%), and temperature (20-37C). Thus, 

we optimized our design to reduce inhibition of genetic circuit operation caused either by 

evaporative water loss to the environment (resulting in reaction concentration), or by excessive 

water gain from large environmental sample splashes (resulting in reaction dilution). In particular, 

our devices use impermeable chambers exhibiting low evaporation rates (<20% volume/hour at 

room temperature), and which also constrain the rehydration volume to ~50 uL per sensor. In 

addition, the wFDCF reactions were optimized to generate a higher concentrated reaction upon 

rehydration. We found that cell-free reactions (in this case using the PURE system, obtained from 

NEB) when concentrated 1.5x by rehydration at a lower volume after freeze-drying, displayed 

increased reaction kinetics, enabling signal output at least 10 min faster and ensuring that the 

desired circuit is completed before eventual evaporation in the device terminates the reaction 

(Figure 3-5). The resulting stand-alone colorimetric system is modular and can be used in garments 

such as patches or bracelets. 

 

Figure 3-5. Cell-free protein synthesis reactions at varying rehydration volumes. Freeze-dried 

CFPS reactions containing constitutively expressed LacZ were rehydrated at various 

concentrations. Mean and SD of three replicates (n=3). 
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Functional testing of this colorimetric wearable platform was performed utilizing four 

different synthetic biology biosensors with lacZ as the output (Figure 3-6). These various 

demonstrations include a constitutive lacZ expression reaction (Figure 3-6, top left), a transcription 

factor-regulated circuit using the tetracycline repressor (TetR) (Figure 3-6, top right), a toehold 

switch for Ebola virus RNA detection (Figure 3-6, bottom left), and a theophylline riboswitch for 

small-molecule sensing (Figure 3-6, bottom right). Genetic circuits using transcriptional regulators 

are among some of the most common elements used in synthetic biology. The wFDCF TetR sensor 

demonstrates the capacity of the colorimetric platform for facile integration of well-established 

genetic modules into a wearable format. Furthermore, a functional theophylline riboswitch 

wFDCF circuit is functionally validated in our platform for the environmental detection of small 

molecules via engineered cis-regulated RNA circuits. This specific riboswitch was selected as a 

model test case, although a plethora of similar riboswitches for various targets have been reported 

and could be used in a modular fashion. All of the colorimetric wFDCF sensors reported here 

exhibited visible changes within ~40-60 min after exposure to the respective trigger molecules or 

inducer, and were performed at ambient conditions of 30-40% RH and 30ºC to simulate the 

average skin surface temperature71 .  
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Figure 3-6. Colorimetric cell-free synthetic biology implementations in wearable patches. 

Various synthetic biology circuits were freeze-dried in wearable patches, including constitutively 

expressed outputs (top left), transcription factor-regulated circuits for small molecule detection 

(top right), toehold switches for nucleic acid-sensing (bottom left), and riboswitches to detect small 

molecules (bottom right). Each graph shows color deconvoluted values, n=3. Statistical 

significance is indicated for specific time points (*P ≤ 0.05 and **P ≤ 0.01). Bottom images are 

representative images. 
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Importantly for the purposes of developing this technology towards a wearable platform 

for NAT diagnostics, we show that a wFDCF Ebola virus RNA toehold switch sensor is capable 

of rapid and sensitive detection of an RNA sequence originating from Ebola virus. Though the 

sensitivity of the toehold switch makes it an unsuitable tool for detection of RNA analytes in true 

clinical samples (as previously explained), this example paves the way for the development of 

similar viral or bacterial wearable nucleic acid sensors which will be discussed further in this 

chapter. Similarly for these demonstrations a mild 30C temperature incubation from close contact 

with human skin was assumed to be present, and allowed for enhanced detection. Though non-

ideal for reasons previously discussed in chapter one, in further iterations of our design the need 

for temperature incubation was reduced and will be covered further in this chapter. 

 

3.3 Wearable Diagnostics using a Fluorescent Synthetic Biology Platform 

Though our demonstrations with colorimetric wFDCF reaction patches showed great 

potential, our prototypes continued to have limited sensitivity for NAT diagnostic use, as well as 

a reliance on low-level temperature incubation at 30C. In order to expand on the attractiveness and 

versatility of textiles as ubiquitous wearable substrates, we attempted to broaden the signal types 

detectable by our prototypes to include those reliant on light emission (as opposed to light 

absorbance for colorimetric systems). Figure 3-7 shows a highly sensitive, textile based system 

capable of containing and monitoring the activation of wFDCF reactions with fluorescent or 

luminescent outputs. To achieve this, we fabricated a second wearable platform that integrates: (a) 

hydrophilic threads (85% polyester / 15% polyamide) for cell-free reagent immobilization, (b) 

patterns of skin-safe hydrophobic silicone elastomers for reaction containment, and (c) inter-

weaved polymeric optic fibers (POFs) for signal interrogation (Figure 3-8). This fabric was chosen 
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as our main immobilization substrate after conducting a compatibility screening of over 100 

textiles (e.g., silks, cotton, rayon, linen, hemp bamboo, wool, polyester, polyamide, nylon, and 

combination materials) using a lyophilized constitutive lacZ cell-free reaction, though we found 

that a variety of substrates were amenable to the cell-free reaction. The analysis of sensor outputs 

was done using a custom-built wearable POF spectrometer that allowed for monitoring with a 

mobile phone application (Figure 3-9). This is achieved by illuminating the wFDCF textile 

reaction with blue light (447 nm) via etched excitation POFs (Figure 3-8). The light emitted from 

the activated system is then collected by the second set of emission POFs (Figure 3-8), which exit 

the fabric weave and bundle into a connection to the optical sensor (Figure 3-7) of our wearable 

spectrometer (Figure 3-9). Signals coming from each of the devices are filtered and processed to 

generate temporally and spatially resolved fluorescence images of the POF bundle-ends (510 nm) 

and averaged pixel intensity traces per channel for quantitative analysis (Figure 3-9). In the case 

of luminescence demonstrations, all POFs bundles are treated as signal inputs, without the need 

for sample illumination. All reported wFDCF fluorescence and luminescence sensor replicates 

(n=3) exhibited visible fluorescence or luminescence within 5-20 min after exposure to relevant 

trigger conditions, at 30-40% RH and 30ºC (or lower if indicated). 
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Figure 3-7. Fluorescent wearable patch design and operation. Top: Details of fiber-optic based 

wFDCF module for fluorescence/luminescence outputs. Fiber-optic embedded textiles allow 

excitation of the samples and detection by sensing emission light. A layers of blackout cover made 

of polyester fabric prevent the entry of environmental light. Rehydration ports over the device 

allow aqueous sample to be wicked into internal reaction wells. Bottom: A cross-sectional view of 

the interior of the device, where two layers of hydrophobically patterned fabric inter-woven with 

polymeric optic fibers allow for rehydration of freeze-dried cell-free reaction components as well 

as to provide light input/output for excitation and emission signals.  
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Figure 3-8. Fluorescent wearable patch materials and fabrication. Left: A cut strip of 

hydrophilic POF fabric was laser-etched (5 mm) to disrupt the POF outer cladding in the POFs 

sections closest to the reaction zone. Right: Examples of prepared wFDCF fabric-elastomer layers 

and final assembly 5 into a three-well sensor for garment integration. POFs in these devices were 

covered with black heat shrink tubing (6 mm). Top elastomer cover features two 5.19 x 1.85 mm 

curved sample ports instead of three as in the colorimetric prototypes to reduce direct light leakage 

on top of the POFs that may cause background light detection. 

 

Figure 3-9. Integration of fluorescent wearable patches into wireless digital sensing platform. 

Left: Distributed continuous sensing of garment sensors can be achieved through multi-bundle 

imaging. Right: Connection of wearable POF spectrometer to digital wireless  module. The 

spectrometer electronics consist of a Raspberry Pi Zero with a camera module as well as LED 

illumination, environmental sensing, and custom-fabricated shields for battery power. Smartphone 

application for visualization and alarm of wFDCF sensor activation was based on the blynk.io 

platform. This application allows for wireless recording of experiments, control of device 

parameters, as well as environmental and geolocation information. 
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Using this integrated platform, we performed distributed on-body sensing of various target 

exposures. A sample activation through fluid splashing can be seen in Figure 3-7 (top panel), where 

the sample wicks through the entry ports with blackout fabrics to rehydrate the freeze-dried, cell-

free synthetic biology reactions immobilized within the hydrophilic textile fibers. These fibers are 

located within the excitation and emission layers of the device as shown in Figure 3-7 (bottom 

panel) and 3-8. Trigger presence in the splash fluid leads to activation of the sensor circuits, which 

produce fluorescent or luminescent reporters. 

The versatility of this textile platform in fluorescence mode was first verified using two 

independent synthetic biology modules upstream of a superfolder green fluorescent protein 

(sfGFP) operon. These demonstrations included the activation of constitutive sfGFP expression 

and sensing of theophylline using an inducible riboswitch (Figure 3-10, top and bottom left). 

Although the detection of theophylline on its own is not of direct clinical relevance, as stated 

previously it is an important model test case for the use of a plethora of other small-molecule 

sensing riboswitches. A third fluorescence demonstration was done via activation of a 49-

nucleotide Broccoli aptamer (Figure 3-10, top right) with substrate-specificity to (Z)-4-(3,5-

difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1Himidazol-5(4H)-one (DFHBI-1T), evincing 

functionality of this emerging class of fluorescent sensors in synthetic biology 72. Furthermore, 

demonstrations utilizing luminescence outputs were conducted using a nanoLuciferase 73 operon 

downstream of an HIV RNA toehold switch (Figure 3-10, bottom right), as well as a B. burgdorferi 

RNA toehold switch for the wearable detection of Lyme disease (not shown). As previously stated 

the toehold switch is on its own not capable of sufficiently sensitive detection as to be deployed 

for clinical utility, but it nonetheless serves as an encouraging test case. 
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Figure 3-10. Integration of fluorescent wearable patches into wireless digital sensing 

platform. Top left: Rapid fluorescent signal after rehydration of wFDCF constitutive sfGFP 

template as compared to control. Fluorescent signal in-device is statistically distinguishable from 

the control after 11 min (P<0.05). Bottom left: Activation of FDCF riboswitch with 1 mM 

theophylline in a wearable device as compared to 0 mM theophylline control. Fluorescent signal 

in-device is statistically distinguishable from the control after 19.5 min (P<0.05). Top right: 

Wearable demonstration of fluorescent Broccoli aptamer being activated by the presence of 50 µM 

DFHBI-1T substrate as compared to 0 µM DFHBI-1T control. Fluorescent signal in-device is 

statistically distinguishable from the control after 24.5 min (P<0.05). Bottom right: Luminescence 

output detected from an HIV toehold sensor with NanoLuciferase operon. HIV RNA trigger was 

added at 10 µM and was statistically distinguishable from the control after 6 min (P<0.05) post-

rehydration. All images above graphs correspond to time sequences of the recorded POF images 

in each sensor demonstration with bundle pictures synchronized with reaction profiles. Each 

experiment is from three independent wells, each having three fiber optic sensors for a total of 9 

fiber optic outputs. Scale bar in brightfield images is 250 microns. 
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While improving on the sensitivity of the NAT assays in our colorimetric prototypes 

proved intractable, with a fluorescence readout we were able to deploy a CRISPR-based 

DETECTR/SHERLOCK assay that relies on quenched-fluorophore reporters for signal 

generation. As mentioned in chapter two, the advantages of CRISPR-based systems over existing 

biosensors include high sensitivity, specificity, freeze-drying compatibility, and the notable 

programmability to target any DNA or RNA sequence through interchangeable guide RNAs 

(gRNAs). Thus, we integrated CRISPR-based sensors into our fluorescence wFDCD platform to 

demonstrate this detection technique in wearable applications. We used Cas13a and Cas12a for 

the detection of RNA and DNA, respectively. For DNA detection, we used a Cas12a ortholog from 

Lachnospiraceae bacterium (LbaCas12a)74,75 that displays a non-specific collateral cleavage 

activity towards single-stranded DNA (ssDNA) after detection of a gRNA-defined double-

stranded DNA (dsDNA) target. This Cas12a-based sensor was paired with recombinase 

polymerase amplification (RPA)76 and freeze-dried into a one-pot reaction to demonstrate state-

of-the-art detection limits for wearable clinical applications. In the presence of a target dsDNA 

sequence, isothermally generated RPA amplicons activate Cas12a-gRNA complexes. Then, active 

Cas12a engages in trans-ssDNase activity and cleaves quenched ssDNA fluorophore probes, 

resulting in a fluorescence output (see chapter two). For our wearable CRISPR-based 

demonstrations, we designed gRNAs against three common resistance markers in Staphylococcus 

aureus: specifically, the mecA gene common in methicillin-resistant S. aureus (MRSA) 77, the spa 

gene which encodes the protein A virulence factor78, and the ermA gene conferring macrolide 

resistance79. When tested in wFDCF format, our RPA-Cas12a sensors displayed detectable signals 

within 56-78 min (P<0.05) with femtomolar limits of detection (Figure 3-11). Moreover, using our 

mecA wFDCF sensor (Figure 3-11), we were able to confirm single-digit femtomolar sensitivity 
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of 2.7 fM. Compatibility with RNA inputs and other CRISPR enzymes such as Cas13a, the 

ortholog from Leptotrichia wadei bacterium (LwaCas13a) was also confirmed (data not shown), 

exhibiting similar in-device activation dynamics as that of cell-free reactions conducted in a plate 

reader. These results suggest that our wearable textile platform could be adapted to achieve 

sensitivities rivaling that of current laboratory diagnostic tests such as qPCR for monitoring 

contamination or spread of bacteria and viruses. 

 

Figure 3-11. Validation of SHERLOCK detection assays in wearable platform. Top left: 

Freeze-dried mecA CRISPR-based sensor exposed to sample containing 100 fM mecA trigger or 

water. Top right: Freeze-dried spa CRISPR-based sensor exposed to 100 fM spa trigger or water. 

Bottom left: ermA CRISPR-based sensor exposed to 100 fM ermA trigger or water. Statistically 

distinguishable signals (P<0.05) were observed after 72, 56 and 78 min for mecA, spa and ermA 

sensors respectively. Bottom right: Detection of mecA CRISPR-based sensor at 2.7 fM trigger was 

statistically distinguishable after 75 min (P<0.05), corresponding to ~10,000 copies/µL. Each 

experiment is from three independent wells, each having three fiber optic sensors, for a total of 9 

fiber optic outputs. Statistical significance is indicated for specific time points (*P ≤ 0.05 and **P 

≤ 0.01). 
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To further demonstrate the modularity of our CRISPR-Cas12a wearable sensors, we tested 

wFDCF devices containing three orthogonal Cas12a-gRNA complexes in isolated reaction wells 

(Figure 3-12). In this experiment, each device was splashed with dd-H2O containing different 

targets, each specific to only one Cas12a-gRNA complex. The orthogonal behavior of our 

CRISPR-based wearable sensors is robust, where higher fluorescence was observed only for the 

cases in which the dsDNA trigger matched the pre-defined Cas12a-gRNA complex at each sensor 

location. These results suggest the broad applicability of CRISPR-based synthetic biology sensors 

for multiplexing or logic-gating in wearable synthetic biology applications. 

 

 

Figure 3-12. Three-fold multiplexed SHERLOCK detection assays. Top: The orthogonality of 

SHERLOCK assays is demonstrated for three targets with a mecA/spa /ermA CRISPR-based 

multi-sensor wearable. Rehydration only yielded activation of sensors when the Cas12a-gRNA 

sensor was in the presence of its programmed trigger dsDNA. Bottom: Activation of each 

individual sensor was distinguishable by assessing the corresponding bundle fibers. Scale bars in 

brightfield images are 250 µm. 



 52 

In addition, the fluorescence optical sensor allows for facile fluorescent output 

multiplexing simply by using fluorescent proteins with orthogonal emission profiles (Figure 3-13). 

In this example, wFDCF reactions for three constitutively expressed fluorescent output proteins 

(eforRed30 , dTomato31, and sfGFP32) 80,81,82 were used to demonstrate detection of 

distinguishable output signals in a single bundle. We also found that the wFDCF POF system is 

fully compatible with an integrated lyophilized lysis components, allowing for release and 

detection of a plasmidborne mecA gene when challenged with intact bacterial cells (data not 

shown). Finally, to develop a complete data feedback cycle between the platform and the user, we 

integrated the detector system with a custom wireless mobile application that enables continuous 

cloud-based data logging, signal processing, geolocation tracking, and on-the-fly control of 

various detector components through a smart phone or other networked digital device (Figure 3-

9). All images and spectral data presented were collected and processed using wFDCF devices 

fully integrated with our wearable spectrometer and mobile phone application.  

 

Figure 3-13. Sensor multiplexing using fluorescent proteins. Top row, cell-free reactions 

demonstrating different fluorescent proteins synthesized after 30 min at 30C. Bottom row, sensor 

images of fiber topic bundles in (1) brightfield (2) excitation when the sensor is dry, (3) rehydrated 

reactions without plasmid, and (4) rehydrated cell-free reactions with fluorescent protein plasmids 

(30 min incubation at 30C). 
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Lastly, though not a NAT diagnostic application, we tested the operation of our fluorescent 

wearable diagnostic platform for the detection of chemical threats such as organophosphate nerve 

agents used in chemical warfare and the pesticide industry, both of which constitute prime targets 

for wearable detection. To achieve this, we modified our POF platform optics for excitation and 

detection at near-infrared (NIR) fluorescence, generated from a lyophilized acetylcholinesterase 

(AChE)-choline oxidase (ChOx)-HRP coupled enzyme reaction (Figure 3-14). In the presence of 

acetylcholine, this reaction can produce NIR fluoresence that is readily detectable with our 

wearable prototype. When exposed to an organophosphate AChE inhibitor, the sensor fluorescence 

is ameliorated as compared to unexposed controls. Our wearable nerve agent sensor was validated 

using paraoxon-ethyl as a nerve agent simulant at levels that are four orders of magnitude lower 

than the reported lethal dose (LD50) by dermal absorption in mammals 83. 

 

 

Figure 3-14. Wearable detection of organophosphate nerve agents. A lyophilized HRP-

coupled enzyme sensor was rehydrated with 3.7 mg/mL paraoxon-ethyl (acetylcholinesterase 

inhibitor). An Amplite IR substrate is oxidized to generate near-IR fluorescence emission. Each 

experiment is from three independent wells, each having three fiber optic sensors, for a total of 9 

fiber optic outputs.  
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3.4 A Face Mask-Embedded Wearable Sensor for SARS-Cov2 

The wearable freeze-dried synthetic biology sensors demonstrated here thus imbue 

programmable and highly sensitive diagnostic sensing to general apparel. With the current SARS-

CoV-2 pandemic that has led to significant strain on the medical system of all impacted countries 

and considerable delays in diagnostic testing, we explored whether our wFDCF system could be 

adapted to a key wearable gear, face masks, that has been shown to be critical in reducing the 

transmission of this highly infectious virus 84,85. Although face masks are placed on all incoming 

patients that are presumptive SARS-CoV-2 carriers, confirmation through burdened laboratory 

diagnostics may result in delays that could negatively impact rapid triaging or effective contact 

tracing of patients 86,87,88. Here, we demonstrate that our freeze-dried synthetic biology sensors can 

be adapted for a rapid point-of-care diagnostic integrated into a face mask, which may take 

advantage of the accumulation of SARS-CoV-2 virus on the inside of the mask as a result of 

coughing, talking and normal respiration, as demonstrated in numerous studies 89-99. A large 

surface area (1.3 in2) collection sample pad is positioned inside of the mask in front of the mouth 

and nose area (Figures 3-15, 3-16). Unlike other current SARS-CoV-2 NATs (chiefly qPCR 

assays) that require laboratory equipment and trained technicians 84, 85-88, all of the steps in our face 

mask NAT sensor are freeze-dried, shelf-stable, and passively actuated – all the user has to do is 

press a button on the outside of the mask, which pierces a plastic blister containing nuclease-free 

water. Capillary action then wicks fluid and viral particles through a folded wax-printed µPAD 

(microfluidic paper-based analytical device) arrangement containing various reaction zones with 

freeze-dried lysis and detection components (Figure 3-15). Between each of the reaction zones are 

polyvinyl alcohol (PVA) time delays that enable tunable incubation times between each reaction, 

greatly improving the efficiency of the sensor. Lysis reagents, similar in composition to those 
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previously used by others to lyse viral membranes, release the viral genome 100,101,102. Next, the 

sample moves to an RT-RPA reaction zone containing an optimized isothermal amplification 

reaction developed to target a non-overlapping region of the SARS-CoV-2 S gene. The final 

reaction zone contains a Cas12a SHERLOCK/DETECTR sensor with an optimized gRNA for 

detection of the amplified dsDNA amplicon. In the presence of SARS-CoV-2 derived amplicons, 

the activated Cas12a enables trans-cleavage of a 6-FAM-(TTATTATT)-Biotin ssDNA probe, 

which is detected using an integrated lateral flow assay (LFA) strip threaded to the outside of the 

mask for a simple visual readout. The output strip is positioned to preserve patient confidentiality 

(Figures 3-15, 3-16). 

 

Figure 3-15. Schematic of SARS-Cov2 mask assay. Top: Puncture of the water blister reservoir 

results in flow through wicking material, moving viral particles collected from the wearer’s 

respiration from the sample collection zone  to downstream freeze-dried reactions integrated into 

a µPAD device. Bottom: Lysis releases SARS-CoV-2 vRNA, RT-RPA amplification proceeds at 

room temperature, and finally Cas12a detection results in collateral cleavage of FAM-Biotin 

ssDNA probes visualized on an LFA strip. 
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The total reaction time from activation of the face mask sensor to a final readout only takes 

~30-40 min. The limit of detection observed for our sensors is 500 copies of SARS-CoV-2 in vitro 

transcribed (IVT) RNA, which is comparable to other laboratory-based diagnostics 85,86,87,88 

(Figure 3-17, left panel). The sensors also do not cross react to RNA from other commonly 

circulating human coronavirus strains (HCoV) (Figure 3-17, right panel).  

 

 

Figure 3-16. Photographs of the SARS-CoV-2 sensor integrated into a face mask. Shown from 

the exterior angle (left) and the interior angle (right). Details of device function can be seen in 

Figure 3-15. 

 

Most critically as compared to the other prototypes of a wearable freeze-dried synthetic 

biology diagnostic presented in this thesis, the hands-off diagnostic reaction proceeds to 

completion at room temperature, which to our knowledge is the first SARS-CoV-2 NAT that is 

able to achieve high sensitivity and specificity at ambient temperatures. This crucial ability 

obviates the need for any heating instruments and reduces evaporative loss, which ultimately 

allows for significantly improved integration into a wearable format. However, it should be noted 

that this ability was largely achieved through brute force screening of RPA primer pairs 
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(unpublished data). As described previously, most isothermal amplification methods generally do 

not perform well at ambient temperatures. Although the Cas12a used in DETECTR/SHERLOCK 

operates well at ambient temperature, RPA operates robustly only at elevated temperatures of 30-

37C. At lower temperatures of 20-25C, only a very small fraction of RPA primer pairs will give 

efficient enough amplification to achieve clinical sensitivity. In our hands this was a nearly 

intractable challenge, and it is likely that for many pathogenic targets, it may not be possible to 

find a primer pair that performs acceptably at room temperature. In addition to posing a significant 

design obstacle (reducing the modular plug-and-play nature of the platform), robustness in terms 

of day-to-day reproducibility was also adversely impacted by attempting to use RPA at ambient 

temperature, posing a significant obstacle for product development. Nonetheless, we were able to 

obtain impressive data from the optimized prototype. 

 

 

Figure 3-17. Limit of detection and cross-viral-strain specificity of SARS-Cov2 facemask. 

Left: Sensitivity of the face mask sensors at various inputs on the sensor zone of synthetic SARS-

CoV-2 S-gene RNA. The limit of detection threshold, +3 S.D. of the no-template control (NTC), 

is shown as a red dotted line. Right: Specificity demonstration of face mask sensors shows no 

cross-reactivity with synthetic RNA from other commonly circulating human coronaviruses. 

SARS-CoV-2 RNA was added at 100,000 copies. All other HCoV RNAs were tested at 1,000,000 

copies. Representative images of LFA outputs from the sensitivity measurements are shown for 

both sets of summarized data. 
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It is possible that, despite questions of robustness and scalability, a rapid face mask-

integrated SARS-CoV-2 diagnostic as presented here could relieve saturated medical systems by 

combining protection and sensing into a simple and easy-to-deploy wearable system, greatly 

improving patient outcomes. Our face mask system could also potentially be further developed to 

discriminate between SARS-CoV-2 and other respiratory viruses, such as influenza, for rapid 

triaging of patient populations.  

 

3.5 Concluding thoughts on Wearable Cell-Free Synthetic Biology Diagnostics 

In summary, cell-free synthetic biology systems can be used to build practical wearable 

biosensors that are shelf-stable, genetically programmable, and highly sensitive. We designed and 

validated wFDCF sensors that are responsive to external rehydration events, such as splashes with 

contaminated fluids, and that withstand inhibitory evaporative and dilutive effects in open-

environment conditions (30-40% RH and ~25-30C). We showed that these freeze-dried systems 

generate measurable colorimetric, fluorescence, or luminescence outputs upon exposure to 

relevant real-world targets such as SARS-CoV-2. We also demonstrated the integration of our 

device designs into garments that are compatible with wireless sensor networks to provide real-

time dynamic monitoring of exposure using custom smartphone applications. 

To our knowledge, the presented platform is the first wearable technology demonstrated to 

detect nucleic acids from potential viral or bacterial pathogens in contaminant fluid samples with 

sensitivities rivaling those of traditional laboratory tests at ambient temperatures. Our wFDCF 

platform evinces a number of distinct advantages over existing POC diagnostics, which similarly 

attempt to eliminate the need for time-consuming laboratory tests. Current field-portable POC 

systems typically use a swabbed or directly applied sample to provide a readout. Our wearable 
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platform accomplishes field sensing in one of the most critical environmental spaces for testing – 

that is, the surface of the user or areas that collect patient samples, such as the inside of a face 

mask. Moreover, in contrast to a batch-mode POC sensor, our wFDCF synthetic biology sensors 

can be networked to provide sensing arrays of lyophilized reactions and lightweight polymer 

fabrics, thus cloaking the user and continuously generating high-density, real-time outputs without 

sacrificing comfort or agility in the field. Our platform is also designed to operate autonomously, 

unlike most current POC instruments that require training for use and multiple operations by the 

user to acquire the final results. This feature removes the need to perform regular exposure checks, 

freeing those in the field to focus on their core tasks. Finally, the wFDCF components and optical 

fiber textiles are inexpensive, allowing the wearables to be utilized as disposable protective 

garments with advanced sensing technology.  

Field applications that would greatly benefit from our wFDCF synthetic biology platform 

include warfighters and first-responders operating in environments where a specific chemical or 

biological threat is suspected. In this situation, our apparel of disposable wFDCF sensors could be 

used to maintain situational awareness, with continuous spatio-temporal monitoring of exposure 

and bodily resolution down to centimeters. Another set of potential uses for our platform involves 

the environmental awareness of clinicians, health workers, and researchers working in high-risk 

areas. Our wearable sensing platforms could enable rapid responses to contagion so that any 

exposed users could begin decontamination and neutralization procedures immediately. Similarly, 

wFDCF-enabled coats and gowns in hospitals could provide alerts to prevent the spread of 

nosocomial infections to vulnerable populations, such as immune-compromised patients or 

newborns. An additional promising application is patient-worn sensor-enabled wearables that can 

provide inexpensive, shelf-stable, and labor saving POC diagnostics to rapidly inform clinicians 
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in outbreak events, such as the current COVID-19 pandemic that has rapidly overwhelmed the 

resources of our medical infrastructure. 

On a final note, there remains room for improvement in the freeze-dried isothermal 

amplification reaction itself. As mentioned, the ease of design and robustness of the RT-RPA 

reaction used in the face mask was adversely affected by operation at room temperature, and to 

address this in chapter five I will highlight efforts to advance the efficiency of isothermal 

amplification methods at low ambient temperatures. 
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Chapter 4  

4.1 A deep learning approach to designing programmable RNA switches 

 Thus far in this thesis I have described the design and implementation of several engineered 

RNA-based synthetic biology tools, including the toehold switch, leaderless riboswitch (LL-

Riboswitch), and gated Cas13 crRNA. More broadly, RNA-based tools have shown promise in 

recent years as programmable response elements that can be induced by small molecules, proteins, 

and nucleic acids, many of which hold great promise for a variety of in vitro and in vivo 

applications, including potential use in NAT diagnostics 39,103.  

Unfortunately, despite their appeal the design and validation of this emerging class of 

synthetic biology modules have proven challenging due to variability in function that remains 

difficult to predict 38,39,104,105,106,107,108,109. Notable thus far throughout this thesis is a focus on low-

throughput experimentation in the design process, with rational design rules used as primary guide. 

Current efforts that aim to unveil fundamental relationships between RNA sequence, structure, 

and behavior have focused on mechanistic thermodynamic modeling and low-throughput 

experimentation (Figure 4-1). However, these often fail to deliver sufficiently predictive 

information to aid in the design of complex RNA tools, and in general designs that would be 

predicted to function based on rational thermodynamic modeling often fail to perform as expected 

104,105,106,107,108,109. Deep learning, by contrast, constitutes a set of computational techniques well 

suited for feature recognition in complex and highly combinatorial biological problems 

110,111,112,113,114, such as the sequence design space of synthetic RNA tools. However, the 

application of deep learning to predicting function in RNA synthetic biology has been limited by 

a notable scarcity of datasets large enough to effectively train deep neural networks (DNN). 

Toehold switches, in particular, represent a benchmark RNA element in synthetic biology that 
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could greatly benefit from deep-learning approaches to better predict function and elucidate useful 

design rules 38,39. 

 

 

Figure 4-1. A low-throughput computational design paradigm for RNA synthetic biology. A 

representative scheme for common design efforts in RNA synthetic biology. 1) Novel RNA 

structures are designed based on rational design rules, 2) are synthesized and assayed in low 

throughput with typically fewer than dozens of variants, and 3) computational models based on 

rational biological insight are built to predict new variants. Figure from Chappel et al, 2015. 

 

As described in chapter two, toehold switches are a class of versatile prokaryotic 

riboregulators inducible by the presence of a fully programmable trans-RNA trigger sequence 

(Figure 2-2) 38,39,40,104,105,106,115. These RNA synthetic biology modules have displayed impressive 

dynamic range and orthogonality when used both in vivo as genetic circuit components 39,105,106, 
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and in vitro as nucleic acid diagnostic tools utilizing cell-free protein synthesis (CFPS) systems 

103,104,115. Similar to other RNA synthetic biology tools, a substantial fraction of toehold switches 

show poor to no measurable function when tested experimentally, and while efforts have been 

made to establish rational, mechanistic rules for improved performance based on low-throughput 

datasets 39,40,104-109,115, the practical utility of these approaches remains inconclusive. Thus, 

considering the wide applicability and general challenges of toehold-switch design, we chose to 

develop a deep-learning platform to predict toehold-switch function as a canonical RNA switch 

model in synthetic biology. 

To achieve this goal, we first expanded the size of available toehold datasets using a high-

throughput DNA synthesis and sequencing pipeline to characterize over 105 toehold switches. We 

then used this comprehensive dataset to demonstrate that deep neural networks trained directly on 

switch RNA sequences can outperform rational thermodynamic and kinetic analyses to predict 

toehold-switch function. Furthermore, we enhanced the transparency of our deep-learning 

approach by utilizing a nucleotide complementarity matrix input representation to visualize 

important learned secondary-structure patterns in selected models. This attention-visualization 

technique, which we termed VIS4Map (Visualizing Secondary Structure Saliency Maps), allowed 

us to identify RNA module success and failure modes by discovering secondary structures that our 

deep-learning model uses to accurately predict toehold-switch function. The resulting dataset, 

models, and visualization analysis represent a substantial step forward for the validation and 

interpretability of high-throughput approaches to designing RNA synthetic biology tools, 

surpassing the limits of current mechanistic RNA secondary-structure modeling. 
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Figure 4-2. Summary of flow-seq assay pipeline. A flow-sequence (seq) pipeline was used to 

characterize the fluorescence signal of individual toehold switches in a pooled sequential assay. 

Pooled induction of a library of variants was followed by fluorescence-activated cell sorter (FACS) 

sorting, and then next-generation sequencing (NGS). Count frequency analysis of the resulting 

NGS dataset was used to recover the original fluorescence distributions of the data. Figure adapted 

from Peterman et al. 122. 

 

4.2 Synthesis and Validation of a Toehold Switch Library 

A fundamental hurdle in applying deep-learning techniques to RNA synthetic biology 

systems is the limited size of currently published datasets, which are notably smaller than typical 

dataset sizes required for the training of deep network architectures in other fields 110,116-119. For 

example, to date, <1000 total toehold switches have been designed and tested 38,39,40,103-105,115. 

While a recent attempt was made to apply deep learning to a bacterial riboswitch dataset with 263 
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variants 120, the lack of high-throughput datasets has generally limited the synthetic biology 

community’s ability to analyze this type of response molecule using deep-learning techniques. 

High-throughput assays that utilize deep sequencing to analyze fluorescence-sorted bacteria have 

previously been used to characterize the translation of Escherichia coli mRNA 121-125; in this part 

of the thesis, in order to improve our understanding and ability to predict new functional RNA-

based response elements, we synthesized and characterized an extensive in vivo library of toehold 

switches using a high-throughput flow-seq (also known as sort-seq)121,122 pipeline for subsequent 

exploration using various machine-learning and deep-learning architectures. 

 

 

Figure 4-3. Modified library-compatible toehold switch design. Left: While the original 

toehold-switch architecture from Green et al.39 was used, containing a 12-nucleotide toehold (a/a′) 

and an 18-nucleotide stem (b/b′) fully unwound by the trigger, it needed to be modified to be 

compatible with high-throughput DNA synthesis. Right: We selected to fuse the RNA trigger to 

the 5′ end of the switch by an unstructured linker to facilitate this. 

 

Our toehold-switch library was designed and synthesized based on a large collection 

(244,000) of putative trigger sequences, spanning the complete genomes of 23 pathogenic viruses, 

the entire coding regions of 906 human transcription factors, and ~10,000 random sequences. From 

a synthesized oligo pool, we generated two construct libraries, for ON and OFF states, which were 

subsequently transformed into BL21 E. coli (Figure 4-2). The first library contained OFF toehold-
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switch constructs that lacked a trigger, while the second library of ON constructs contained the 

same toeholds with complementary triggers fused to their corresponding switches (Figure 4-3). 

The two libraries were then sorted on a fluorescence-activated cell sorter (FACS) using four bins 

(Figure 4-4), and the toehold-switch variants contained in each bin were quantified using next-

generation sequencing (NGS) to recover their individual fluorescence distributions from raw read 

counts. To accomplish this, frequencies of each variant were tabulated for each cell-sorted bin and 

normalized to the total reads per bin. Each variant’s functional value was computed as the weighted 

mean of its normalized frequencies across all bins. Because each library was sorted using the same 

gates, and since each library spanned a remarkably similar range of minimum and maximum GFP 

intensity (Figure 4-4), we scaled the ON and OFF values for each variant to fall between [0, 1]. A 

value of 0 was given to a variant if all corresponding reads were found only in the lowest bin and 

a value of 1 if all corresponding reads were found only in the highest bin. An ON/OFF metric was 

calculated by subtracting these individuals ON and OFF signal metrics (Fig. 1), which resulted in 

values between [−1, 1] (to clarify to the reader, this was done because fluorescence measurements 

taken by the FACS sorting instrument were on a log scale and log-ratios are calculated by 

subtracting differences) (Figure 4-4). 
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Figure 4-4. Library FACS cell population distributions and their empirically-derived sorting 

gates. Top: The gating strategy for sorting IPTG-induced E. coli BL21-star cells by GFP 

fluorescence is shown. Bottom: FITC distribution plots from the three control conditions, the 

complete ON and OFF libraries, and the pooled panel of twenty switches from Green et al. 39, with 

the boundaries of the four final sorting bins shown as dotted lines. The resulting measurements 

obtained for ON, OFF, and ON/OFF using our flow-seq pipeline are shown as raw fluorescence 

values or raw fold change, rather than normalized to the range of [0,1] or [-1, 1]. To determine the 

boundaries of the sorting gates for our high-throughput toehold switch pipeline, we used Switch 

#4 from Green et al. 39 in ON and OFF conformations as a positive control, and a pUC19 plasmid 

lacking a GFP gene as a negative control.  
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Interestingly, the distribution of GFP signal in the flow-sorting data displayed in Figure 4-

4 is highly imbalanced for both the ON and OFF libraries. Frustratingly, a large fraction of the 

oligo library pool contained incorrectly synthesized oligomers. These were largely truncated 

products lacking a start codon, lacking an SD sequence, or containing a frameshift that we would 

expect to lead to low GFP signal. We estimate that at least 50% of the cells that we sorted contained 

such a truncated variant, and most of these ended up in the lowest bin. Thus, only sequences 

matching our intended designs were retained for further analysis. For the ON and OFF libraries, 

respectively, 10,390,207 reads and 20,788,966 reads were mapped to a correct switch sequence. 

After quality control, the toehold-switch library contained 109,067 ON-state measurements, 

163,967 OFF-state measurements, and 91,534 ON/OFF paired ratios, where both ON and OFF 

states were characterized for a given switch (Figure 4-5). These switches were representative of 

all of the in silico designed categories of trigger RNA targets including human transcriptome and 

viral genome targets (Figure 4-6). Both ON and OFF data spanned the full range of measured GFP 

signals, meaning that some ON switches failed to induce and expressed no measurable GFP signal, 

while some OFF switches failed to repress ribosome binding and leaked the maximum measurable 

GFP signal. The final ON and OFF datasets seen in Figure 4-5 are notably less skewed than the 

flow-sorting data seen in Figure 4-4, thanks to the exclusion of reads corresponding to incorrectly 

synthesized switches, but it should be noted that OFF data still remained skewed towards low-

signal variants. 
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Figure 4-5. Quality-controlled toehold switch library distributions. The distribution of 

recovered toeholds for ON-state signals (top left), OFF-state signals (top right), and calculated 

ON/OFF ratios (bottom left) are shown. In the bottom right, validation results are shown for 

toehold switches expressed in a PURExpress cell-free system with un-fused-trigger RNA, 

including eight low-performing (poor, ON/OFF < 0.05) and eight high-performing (good, 

ON/OFF > 0.97) samples. This obtained in vivo flow-seq data shows competency in classifying 

switch performance for this in vitro cell-free biological context (P < 0.0001 between high and low 

switches, two-tailed t test) with n = 3 biologically independent samples each for both ON and OFF 

measurements. 

 

Moving on after assaying our switch library, we wanted to validate our in vivo ON/OFF 

measurements in an in vitro setting to ensure they were reasonable indicators of switch 

performance in a CFPS system, since as seen in much of this thesis RNA synthetic biology tools 

are often used within in vitro cell-free systems 40,103,104,115. To achieve this, we selected eight high-

performance switches and eight low-performance switches, and individually cloned and 
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characterized each one in a CFPS (Figure 4-5). All low-performance switches showed no 

induction, while the high-performance switches showed a spread of ON/OFF ratios between 2 and 

13 (P < 0.0001 between high and low switches, two-tailed t test). The wide range of GFP 

expression seen from the high-performance switches results from a relatively weak rank-order 

correlation we have observed between the performance of our toeholds in vivo and in vitro, which 

differs from other work comparing RNA actuators in living cells and cell-free systems 126. The 

effect may stem from differences in trigger-toehold interactions between the in vivo cellular 

environment and the in vitro cell-free environment. Nonetheless, these results indicate that while 

the performance of toehold switches in vivo and in vitro may differ, in vivo measurements can still 

be used to classify categorically whether a switch will function in vitro. 

 

 

Figure 4-6. Quality-controlled toehold switch library representation. After quality control, 

tested switch/trigger variants were representative of each in-silico designed origin category, 

including randomly generated sequences, from 906 human transcription factor transcripts, and 

from 23 pathogenic viral genomes. The number of variants contained in each category is shown. 
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4.3 Rational Analysis of Library Data using RNA Secondary-Structure Models 

Before initiating the exploration of deep-learning models to predict function in our large-

scale toehold-switch library, we sought to determine whether traditional tools for analyzing 

synthetic RNA modules could be used to accurately predict toehold-switch behavior, including k-

mer searches and mechanistic modeling utilizing thermodynamic and kinetic parameters. K-mer 

searches of biological sequence data are often used to discover motifs, but while certain 

overrepresented motifs were found in our dataset (Figure 4-7), methods for utilizing these did not 

readily facilitate functional predictions of switch behavior 127.  

 

Figure 4-7. K-mer search for overrepresented sequence motifs. Sequence logos for k-mer 

motifs discovered to be disproportionately represented in weakly induced switches (low ON, top 

panel) and leaky switches (high OFF, bottom panel) are shown. In both cases the rest of the dataset 

was used as a background. Shown are functional proportions (percentage frequency of target group 

compared to background group), and the E-value of the finding. 

 

Other current state-of-the-art approaches for designing RNA synthetic biology tools 

primarily analyze secondary structure using thermodynamic principles 128,129,130. Following such 

prior works, we used NUPACK128 and ViennaRNA130 software packages to calculate a total of 30 

rational features for our entire library, including the minimum free energy (MFE), ideal ensemble 
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defect (IED), and native ensemble defect (NED) of the entire toehold-switch library as well as 

various sub-segments in each sequence. A number of these parameters had previously been 

reported to correlate with experimental toehold-switch ON/OFF measurements for smaller 

datasets2, and NUPACK’s design algorithm, in particular, is set to optimize IED when proposing 

target RNA secondary structures and is by far the most commonly used tool in our lab to predict 

RNA secondary structure during day-to-day tool design 103,104,115,128. However, when analyzing 

these rational features with our larger dataset, we found them to be poor predictors of toehold-

switch function (Figure 4-8). In modest agreement with the findings of Green et al.39, the MFE of 

the RBS-linker region showed the highest correlation of this feature set for ON/OFF (R2: 

ON = 0.14, OFF = 0.06, ON/OFF = 0.04), with NUPACK’s IED also showing above-average 

correlation (R2: ON = 0.07, OFF = 0.02, ON/OFF = 0.03). While measurable, these correlation 

metrics were too weak for practical use in computer-aided design of this specific RNA synthetic 

biology tool 103,104,115,128. Based on unpublished negative data in the lab, this was not a surprising 

result. Most often we find that, at a typical low-throughput scale of design iteration, using 

NUPACK and similar tools to design optimal versions of a desired RNA secondary structure or 

folding mechanism is not sufficiently better than random guesses that we notice a distinct benefit 

over time. Nonetheless these tools have continued to be used for years out of inertia and familiarity. 

In addition to NUPACK and ViennaRNA, we next explored the use of more complex 

thermodynamic models that take into account well-established hypotheses for translation initiation 

and the ribosome docking mechanism in combination with multiple thermodynamic features to 

improve their predictions 131-137. One of the most developed of these models is the ribosome-

binding site (RBS) calculator (v2.1; Salis Lab), which is a comprehensive regression model 

parameterized on thousands of curated RBS variants 131, 134. We used the RBS calculator to predict 
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the ON and OFF translation initiation rates for our toehold switches, but also found low predictive 

performance comparable to other rational features (Figure 4-8) when tested on our database (R2: 

ON = 0.09, OFF = 0.05, ON/OFF = 0.0001). 

 

Figure 4-8. Analysis of toehold switch dataset using rational thermodynamic modeling. The 

Pearson correlation (left, |max| = 0.4) and R2 metric (right, |max| = 0.16) are shown for 30 state-

of-the-art thermodynamic features and obtained RBS Calculator v2.1 outputs when used to predict 

either the ON/OFF, OFF, or ON of our toehold switch dataset. 
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One potential explanation for the limited predictive power of current thermodynamic 

models for RNA folding tasks concerns the influence of kinetically stable secondary-structure 

intermediates that may compete with thermodynamic equilibrium states 134,137,138. To determine 

whether a kinetic analysis of toehold-switch folding dynamics could help explain our experimental 

results, we calculated four additional features based on kinetic trajectories using the Kinfold 

package 39 (Figure 4-9). Folding trajectories were run using the Kinfold package for the OFF-state 

switch sequence. Most trajectories took longer than 103 au, compared to the Kinfold analyses in 

Borujeni et al. 134 where average trajectory times fell in the range of 101 -103 au, and 104 au was 

the longest allowed trajectory time. For each switch in a higher-quality dataset (total 19,983 

variants), 100 trajectories were run and the following measurements taken: the mean and negative 

standard deviation of the trajectories’ average energy during the first 103 au, the fraction of 

trajectories that completed folding of the MFE structure before 103 au, and the ratio of average 

trajectory energy to the minimum possible MFE energy. As with predictions obtained using other 

thermodynamic models, these kinetic features showed poor correlations (R2: ON = 0.04, 

OFF = 0.04, ON/OFF = 0.001 for the best feature) to our empirical dataset (Figure 4-9). This 

suggested that models taking into account local energy minima calculated by rational mechanistic 

models did not perform better than similar models which only seek to predict the global energy 

minimum. 
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Figure 4-9. Kinetic toehold switch folding analysis using Kinfold. Folding trajectories were run 

using the Kinfold package 134 for the OFF-state switch sequence. (A) For a single representative 

toehold switch, six example trajectories are shown. Trajectories in green reached the MFE 

structure within 103 arbitrary time units (au), while those in blue did not. (B) For two representative 

toehold switches, 100 trajectories were run for a maximum time of 106 au. Histograms of the time 

required for a trajectory to reach the MFE structure are shown. (C) histograms of the mean and 

negative standard deviation of the trajectories’ average energy during the first 103 au, (D) the 

fraction of trajectories that completed folding of the MFE structure before 103 au, (E) the ratio of 

average trajectory energy to the minimum possible MFE energy, and (F) the R2 correlation 

between the metrics in C,D,E and the empirical measurements in our toehold switch dataset. For 

comparison with previous rational features the heatmap axis is set similarly to Figure 4-8.  
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Considering these results, the cause of limited functional predictions from thermodynamic 

and kinetic RNA secondary-structure models remains unclear but may stem from the use of 

potentially incomplete energetic models, incorrect mechanistic hypotheses, or interference from 

the in vivo context of the bacterial cell. Regardless of the source of error, we next sought to explore 

deep learning as a machine-learning paradigm to develop models with higher predictive abilities 

than previously reported, with the hope of allowing useful computer-aided systems for the design 

of RNA synthetic biology tools. 

 

4.4 Improved Prediction using Multilayer Perceptron Models 

Given that simple regression models based on previous state-of-the-art RNA 

thermodynamic and kinetic calculations were ineffective at predicting toehold-switch 

performance, we next tested the use of feed-forward neural networks, also known as multilayer 

perceptron (MLP) models, as a baseline architecture for our investigation (Figure 4-10). We first 

trained a three-layer MLP model on our dataset with an input consisting of the 30 previously 

calculated thermodynamic rational features (see Figure 4-8). When trained in regression mode, 

this MLP model was able to deliver better predictions than any of the individual rational features 

or the RBS calculator based on R2 and mean absolute error (MAE) (R2: ON = 0.35, OFF = 0.25, 

ON/OFF = 0.20) (Figure 4-11). Similarly, when this model was trained in classification mode 

(ON/OFF: binarized at +/− 0.7), it achieved a 0.76 area under the receiver–operator curve 

(AUROC) and 0.18 area under the precision-recall curve (AUPRC), as seen in Figure 4-12. The 

MLP model slightly outperformed a logistic regressor trained on the same rational features 

(Figures 4-11 and 4-12), suggesting that the MLP architecture was able to abstract higher-order 

patterns from these features as compared to simpler non-hierarchical models. 
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Figure 4-10. Multilayer perceptron model architecture. Base architecture of our MLP models, 

featuring three fully connected layers and an input consisting of thirty calculated rational features, 

a one-hot encoding of the switch sequence, or a concatenation of both. For training in regression 

mode, three different outputs were predicted (ON, OFF, ON/OFF), whereas for classification 

training, only a single binary output based on ON/OFF (threshold at 0.7) was predicted. 

 

While these results already constitute an improvement compared to the current state-of-

the-art analysis of RNA synthetic biology tools, we hypothesized that the use of pre-computed 

rational features as network input led to information loss that could inherently limit the predictive 

power of these models. Considering that possibility, we trained an MLP model solely on one-hot 

encoded sequence representations of our toehold switches, eliminating potential bias introduced 

by a priori mechanistic modeling. We found that this sequence-based MLP delivered improved 

functional predictions based on R2 and MAE metrics (R2: ON = 0.70, OFF = 0.53, ON/OFF = 0.43) 

(Figure 4-11). These values represent a doubling of R2 performance as compared to the MLP 

trained on rational features and a tenfold improvement in ON/OFF R2 over the best individual 

rational feature used for previous linear models. When training for classification, our one-hot 

sequence MLP produced similarly improved AUROCs and AUPRCs of 0.87 and 0.36, respectively 

(Figure 4-12). 
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Figure 4-11. Multilayer perceptron model performs better than simpler models with 

regression tasks. Top: Box-and-whisker plots for R2 accuracy between experimental and 

regression-based predictions for best-performing rational features, logistic regression models and 

MLPs using tenfold cross-validation (dotted line shows the best individual rational feature). 

Bottom: Box-and-whisker- plots for mean absolute error (MAE) between experimental and 

predicted values for these same models. Model inputs were either thirty calculated rational 

features, a one-hot encoding of the switch sequence, or a concatenation of both. 
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Figure 4-12 Multilayer perceptron model performs better than simpler models with 

classification tasks. Box- and-whisker plots for the area under the curve (AUC) of the receiver–

operator curve (ROC) and the precision-recall curve (P–R) in classification-mode predictions 

compared to experimental values using threefold cross-validation. Model inputs were either thirty 

calculated rational features, a one-hot encoding of the switch sequence, or a concatenation of both. 

 

The improvement in performance when training on sequence-only inputs compared to 

rational features suggests that significant information loss occurs when performing 

thermodynamic calculations on toehold-switch sequences, a problem that may extend to other 

RNA synthetic biology tools in use today. The sequence-only MLP model dramatically 

outperformed a logistic regressor model trained on the same one-hot sequence input (Figures 4-11 

and 4-12), further supporting the hypothesis that improved accuracy of our sequence-based MLP 

arises from learned hierarchical nonlinear features extracted directly from RNA sequences. 

Concatenating both the rational features and the one-hot representation into a combined input gave 

a small but significant improvement in regression mode (ΔR2 ≈ 0.025 and ΔMAE ≈−0.0025, 
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P < 0.05 for all six comparisons, two-tailed t test), but no significant improvement for AUROC or 

AUPRC when in classification mode (Figures 4-11 and 4-12). These results suggest that while the 

use of rational features may facilitate the abstraction of potentially relevant information of toehold-

switch function, the one-hot sequence-only MLP model can recover such information without a 

priori hypothesis-driven assumptions built into the model if given a sufficiently large training 

dataset. 

In order to evaluate the degree of biological generalization in our sequence-only MLP 

model, we performed two additional rounds of validation. First, we iteratively withheld each of 

the 23 tiled viral genomes in the dataset during training and predicted their function as test sets, 

resulting in a 0.82–0.98 AUROC range (Figure 4-13), similar to previous results from our 

sequence-only MLP. We then carried out an external validation on unseen data from a previously 

published dataset of 168 characterized toehold switches2 that had been collected under different 

experimental conditions. Our MLP models achieved an AUROC of 0.70, 0.81, and 0.79, when 

trained on rational features, one-hot sequence, and concatenated inputs, respectively (Figure 4-14). 

The improved performance observed when training the models directly on nucleotide sequence 

rather than thermodynamic features, even for an external dataset, suggest a competent degree of 

biological generalization and supports the value of modeling RNA synthetic biology tools using 

deep-learning and high-throughput datasets, removing the current assumptions of mechanistic 

rational parameters. 
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Figure 4-13. Multilayer perceptron model performance on withheld data. For each virus in 

our toehold switch dataset, variants targeting it were withheld, and an MLP model was trained 

with the remaining sequences classifying for ON/OFF ratio from a one-hot sequence input. The 

model performance was then evaluated on the switches of the withheld viral genome as a test set. 

 

Figure 4-14. Multilayer perceptron model generalization on unseen data. ROC curves are 

plotted of pre-trained MLP classification models validated with an unseen external dataset from 

Green et al. 39 containing 168 switch variants. 
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4.5 Predictive Performance of Higher-Capacity Models 

Having explored a baseline deep-learning architecture, we next sought to determine 

whether training our dataset on higher-capacity convolutional neural networks (CNN) and long 

short-term memory (LSTM) recurrent neural networks could increase our predictive ability. CNN 

and LSTM models have been applied to a variety of biological datasets in recent years, and have 

been cited as being particularly adept at recognizing motifs and long-range interactions in 

nucleotide sequence data 110,115-119,139-143. We trained a CNN on a one-hot sequence input, an LSTM 

on a one-hot sequence input, and a CNN on a two-dimensional, one-hot complementarity map 

representation input (see the section below on VIS4Map for a description of the complementarity 

map). Upon evaluating both the R2 and MAE in regression mode and the AUROC and AUPRC in 

classification mode for these models (Figures 4-15 and 4-16), we concluded that these neural 

network architectures did not lead to superior predictive models, as compared to the sequence-

based, three-layer MLP described previously. In these cases, increased model capacity led to 

under- or over-fitting, potentially requiring additional training examples or improved fine-tuning 

to allow for effective trainings. This result is notable because many applications of deep learning 

to biological datasets report the performance of such more complex architectures as CNN or LSTM 

models, without first comparing them to simpler models such as the MLP 110,139-143. It is therefore 

possible that in many such cases the deep learning approach taken is unnecessarily costly in terms 

of computation time, and likely serves simply to increase the impact of a publication rather than 

to provide actual improvements performance. 
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Figure 4-15. Multilayer perceptron model performs better than more complex model 

architectures with regression tasks. Performance metrics for convolutional neural networks 

(CNN) and long short-term memory (LSTM) networks trained on one-hot encoded toehold 

sequences, as well as a CNN trained on a two-dimensional, one-hot encoded sequence 

complementarity map. All models are compared to the previously reported MLPs trained on the 

30 pre-calculated thermodynamic features and one-hot toehold sequences. Top: Box-and-whisker 

plots for R2 accuracy between experimental and regression-based predictions (dotted line shows 

the best individual rational feature). Bottom: Box-and-whisker- plots for mean absolute error 

(MAE) between experimental and predicted values for these same models.  
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Figure 4-16. Multilayer perceptron model performs better than more complex model 

architectures with classification tasks. Performance metrics for convolutional neural networks 

(CNN) and long short-term memory (LSTM) networks trained on one-hot encoded toehold 

sequences, as well as a CNN trained on a two-dimensional, one-hot encoded sequence 

complementarity map. All models are compared to the previously reported MLPs trained on the 

30 pre-calculated thermodynamic features and one-hot toehold sequences. Box- and-whisker plots 

for the area under the curve (AUC) of the receiver–operator curve (ROC) and the precision-recall 

curve (P–R) in classification-mode (using threefold cross-validation).  

 

4.6 Improving Model Transparency by Visualizing RNA Secondary Structures 

One significant challenge of using deep learning to predict biological function is the 

inherent difficulty in understanding learned patterns in a way that helps researchers to elucidate 

biological mechanisms underlying model predictions. Recent work has been developed to 

visualize sequence features by mapping learned convolutional filters to biologically relevant 

sequence motifs 144,145. Additional methods have been established to address how models link 
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biological theory, including alternative network architectures 146, and the use of saliency maps 

147,148, which reveal the regions of input that deep-learning models weigh most heavily and 

therefore pay the most attention to when making predictions. While saliency maps have been 

previously used to visualize model attention in one-hot representations of sequence data 110,115,147, 

such implementations focus only on the primary sequence and have not been developed to identify 

salient secondary-structure interactions. When used, we found that one-hot saliency maps gave 

only high-level information, for example that the higher region of the toehold stem had more 

impact than the bottom (Figure 4-17). Furthermore, prior work related to RNA secondary structure 

prediction using deep learning 149 has not utilized saliency techniques to highlight relevant 

secondary-structure regions that lead to improved function in RNA sensors. Instead, visualized 

representations have been constrained to predetermined structures based on thermodynamic model 

predictions 142,143, whose abstractions we have found cause significant information loss. 

 

Figure 4-17. Saliency maps of one-hot encoded sequence inputs. An MLP model was trained 

on a one-hot sequence input representation of the toehold switch from the toehold to the bottom 

of the stem. A gradient-weighted activation mapping is performed to visualize saliency for high 

and low predicted ON and OFF values, respectively. 
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We sought to visualize important RNA secondary structures learned by our neural 

networks as it relates to biological function. To achieve this visualization, we trained a CNN on a 

two-dimensional nucleotide complementarity map representation (Figure 4-18) to allow for 

attention pattern visualization in this secondary-structure space. Each position in this 

complementarity map corresponds to the potential pair between two nucleotides, indicating its 

identity with a one-hot encoding (G–C, C–G, A–U, U–A, G–U, U–G, or a canonically 

unproductive pair). We hypothesized that by training deep networks on such a representation of 

RNA sequences, it would be possible to generate saliency maps revealing learned secondary 

structures as visually intuitive diagonal features. Importantly, because the complementarity map 

is unconstrained by a priori hypotheses of RNA folding (similar to our sequence-based MLP 

models), we anticipated this approach to be able to identify secondary structures that might be 

overlooked by commonly used thermodynamic and kinetic algorithms, such as NUPACK and 

Kinfold.  

To first validate whether our visualization approach could capture any meaningful RNA 

structure features, we trained a CNN to predict NUPACK MFE values from a complementarity 

map representation of a randomly selected in silico RNA sequence dataset. Because NUPACK’s 

calculated MFE is directly determined by a predicted RNA secondary structure, we anticipated 

that a CNN undergoing this training would likely pay attention to secondary-structure features, a 

situation that was confirmed through visualization of individual attention maps (Figure 4-19). 

Indeed, the saliency maps generated from a CNN trained on a complementarity map input 

contained primarily diagonal features that showed a statistically significant degree of agreement 

with the predicted MFE structures from which NUPACK based its MFE calculations (Figure 4-

19). Additionally, we found that the use of a complementarity map input improved the CNN’s 
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predictions of MFE from R2 = 0.6 to R2 = 0.74 compared with a one-hot sequence input (Figure 4-

20). Hence, without prior knowledge of the algorithm or parameters NUPACK uses to calculate 

MFE, our CNN was able to learn similar abstractions as NUPACK, which we then used to 

intuitively visualize underlying relevant RNA secondary structures utilizing our complementarity 

map input representation. We named this approach for interpreting RNA deep-learning models 

Visualizing Secondary Structure Saliency Maps or VIS4Map. 

 

Figure 4-18. Summary of 2D base-complementarity maps and VIS4Map technique. A 

simplified schematic of the convolutional neural networks (CNN)-based architecture used to 

generate toehold functional predictions with network attention visualizations is shown. The system 

receives a one-hot encoded, two-dimensional (2D) sequence complementarity map as input. This 

matrix enumerates with a seven-dimensional vector at each position i,j the type of base pair that 

can be formed between nucleotides i and j in an RNA sequence. This input is fed into three 2D 

convolutional/max-pooling layers, a flattening step, and finally a set of dense layers for regression 

tasks. After output generation (e.g., OFF), a gradient-weighted activation mapping is performed to 

visualize activation maximization regions responsible for delivered predictions (VIS4Map). 
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Figure 4-19. VIS4Map validation on in silico NUPACK-generated data. Left: Histograms of 

overlap between VIS4Maps generated by a CNN and MFE maps generated by NUPACK. When 

analyzed using 500 random test-set sequences, the distributions of correctly matched and randomly 

assigned maps are distinct with increased percentage overlap from matched samples as compared 

to unmatched. Right: Examples of saliency VIS4Maps compared with their corresponding MFE 

structures as predicted by NUPACK for three randomly selected 60-nt RNA sequences. 

 

Figure 4-20. VIS4Map improves prediction accuracy on silico NUPACK-generated data. R2 

coefficients between NUPACK-calculated MFE values and the predictions of a CNN model 

trained either on a one-hot representation or a complementarity matrix representation of RNA 

sequences. Box and whisker plots summarize n=5 shuffled test sets. 
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Encouraged by our CNN’s ability to elucidate putative RNA secondary-structure features 

directly from in silico-generated training data, we applied VIS4Map to our entire experimental 

toehold-switch function dataset. When trained on a complementarity map representation both in 

regression mode and classification mode (Figures 4-15 and 4-16), VIS4Map significantly 

outperformed an MLP trained on rational thermodynamic features. However, VIS4Map did not 

significantly outperform an MLP trained on a one-hot sequence input (as was the case when 

predicting NUPACK MFE). The failure of VIS4Map to improve predictions compared with a 

simpler three-layer MLP model likely results from over- or under-fitting of the higher-dimensional 

input, similar to the case of our other higher-capacity models (Figures 4-15 and 4-16). 

Encouragingly, nonetheless, we found that saliency maps produced by this CNN model displayed 

clear diagonal secondary-structure features (Figure 4-21). These structures appear to span from 

hybridization between the toehold and the ascending stem, to hybridization between the 

descending stem and the downstream linker. We confirmed the biological relevance of these 

features by averaging saliency maps and finding that the shared structures corresponded to the 

designed on-target structure of the switch hairpin (Figure 4-22). We further analyzed learned 

features outside of the designed equilibrium structure by sorting saliency maps using the toehold-

switch OFF signal (Figure 4-23). We found that for leakier (high OFF) switches, the CNN 

identified a high degree of salient off-target secondary structures that could compete with the main 

hairpin stem and thereby expose the RBS, whereas for tight (low OFF) switches, the CNN 

identified fewer competing off-target secondary structures. In the context of general riboregulator 

behavior, these findings support the hypothesis that leaky expression from an RBS repressed by 

secondary structures can be caused by the misfolding of the repressive structure into less stable 

kinetic intermediate conformations 137,138 (Figure 4-23). 
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Figure 4-21. VIS4Map visualizes a diversity of learned secondary structure features from 

empirical toehold switch data. Four representative VIS4Map examples of randomly selected 

118-nt RNA toehold-switch sequences from an OFF-predictive CNN model. Structures span 

interactions between the hairpin and non-hairpin regions, as well as on-target hairpin structures. 

 

 

Figure 4-22. VIS4Map confirms model learning of on-target designed secondary structure.  

Averaged VIS4Maps of 10,125 randomly selected toehold-switch RNA sequences from our library 

test set processed with our OFF-predicting CNN model (left) and compared their corresponding 

averaged MFE maps obtained using NUPACK (right). 
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The fact that VIS4Map was able to identify both equilibrium and kinetically stable RNA 

secondary structures indicates a remarkable ability to uncover biologically relevant information, 

which in this case supports currently postulated hypotheses on prokaryotic translation initiation. 

Importantly, the identified secondary-structure features could not have been visualized using the 

one-hot sequence representation commonly associated with saliency maps 110,115. These findings 

compound to the advantage of using sequence-only deep-learning approaches for analyzing RNA 

synthetic biology tools. Outside of toehold switches and other synthetic RNA systems, we 

anticipate VIS4Map will be broadly useful for the discovery of previously unknown equilibrium 

or kinetically stable structures contributing to RNA biology that are not predicted by current 

mechanistic RNA structure models. 

 

 

Figure 4-23. Averaged VIS4Maps sorted by quartile from lowest OFF to highest OFF. A 

noticeable increase in structures outside of the prominent equilibrium-designed switch hairpin 

structure appears to correlate with increased toehold leakiness. A toehold-switch schematic 

(bottom) is shown to denote how incorrectly folded and potentially weaker kinetically stable 

intermediate structures might compete with the correctly folded structure that is designed to be 

reached at equilibrium. 
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4.7 Concluding Thoughts on Deep Learning for RNA Synthetic Biology Design  

 Having produced a toehold-switch dataset ~100-fold larger than previously published as a 

model system for investigating synthetic RNA response elements 38,39,40,103-105, were able to 

conclusively demonstrate the benefits of using deep-learning methods that directly analyze 

sequence rather than relying on calculations from mechanistic thermodynamic and kinetic models. 

This approach resulted in a tenfold improvement in functional prediction R2 over an ensemble of 

commonly used thermodynamic and kinetic features, and demonstrated robust biological 

generalization.  

As with most work in RNA synthetic biology, all previous attempts to improve toehold-

switch functionality had relied on the guidance of mechanistic thermodynamic modeling and low-

throughput datasets 38,39,40,103-105,115. Too frequently, rational design rules fail to give meaningful 

predictions of function for RNA-based synthetic systems. The results presented here suggest that 

the biological processes underlying RNA biology may be more complex than current state-of-the-

art analyses take into account and that high-throughput DNA synthesis, sequencing, and deep-

learning pipelines can be more effective for modeling said complexity. Combining improved 

predictions with enhanced understanding, our VIS4Map method further allowed us to visualize the 

equilibrium and kinetic secondary-structure features that our deep-learning models identified as 

important to the leakage of the switch OFF state. While secondary structures identified by 

NUPACK, Kinfold, and other rational mechanistic models are limited by predefined abstractions, 

which may cause significant information loss, our approach explored sequence space in an 

unrestricted manner and analyzed all possible RNA secondary structures. VIS4Map could prove 

useful for identifying complex secondary-structure information that might otherwise be ignored 

by simplified physical energetic models of RNA folding.  
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The dataset reported here also represents an extensive repository of characterized toehold 

switches, tiling the entire genomes of 23 pathogenic viruses of high clinical importance, as well as 

hundreds of human transcripts, including many that are differentially expressed in cancerous 

phenotypes 150. The total cost of our flow-seq pipeline equated to ~$0.08 per measurement, 

suggesting that the benefits of high-throughput design and assaying of RNA synthetic biology 

tools could be made widely accessible. We hope that this work will encourage the use of high-

throughput data collection for the training of deep-learning systems, paired with more interpretable 

neural network architectures unrestricted by thermodynamic or kinetic secondary-structure models 

for improved prediction and insight generation in RNA synthetic biology. 
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Chapter 5  

5.1 Motivating a Cold-Temperature Robust Isothermal Amplification Method  

 Among various discussed applications for so-called “next generation” NAT diagnostic 

technologies, the need for at-home point-of-care tests that can be marketed directly to consumers 

has become increasingly apparent due to the ongoing SARS-Cov2 pandemic 29,100,101,102. While a 

handful of such products will soon reach the market at varying degrees of scale 25,26, significant 

room for improvement over available underlying technologies remains. Some of the major outlined 

challenges to creating an at-home POC NAT test have been addressed by others as well as by work 

presented in this thesis. 

First, the need for expensive equipment has in part been alleviated by the simplification of 

heating devices thanks to isothermal amplification, the simplification or elimination of sample 

purification workflows, and the adoption of low-cost fluorescence readers or visual colorimetric 

outputs 2,3,4,9,10,11,16. Second, the manufacturing cost of enzymatic and chemical reagents has 

continued to fall as scalability issues are addressed in industry, to the point where in most cases 

the major price components are device cost and overhead 13. Third, the high sensitivity of NAT 

assays has been maintained as technology has shifted from cycling-based qPCR to isothermal 

amplification, with typical LOD’s in the range of 1-10cp/uL 4,9,10,11,16,39,40. The stringent 

requirement of sensitivity and specificity for many applications has been particularly apparent 

during the ongoing pandemic, as the false negative rate for detection of SARS-Cov2 infections can 

rise dramatically even with small loses in sensitivity (a 10-fold loss in sensitivity results in a ~12% 

loss in coverage due to low-viral load infections) (Figure 5-1). Fourth and lastly, while the 

turnaround time for NAT assays has broadly continued to fall, the need for rapid turnaround in an 

at-home POC NAT may not be as essential as previously considered. Compared to tests intended 
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to be used in a doctor’s office or a clinic where long wait times can compromise patient outcomes 

86,87,88, a test purchased and operated directly by the consumer can be used at a location and time 

of the user’s choosing, meaning that longer turnaround times (potentially 1-2 hours) are less 

problematic, as long as device operation remains convenient.  

 

Figure 5-1. Viral load distribution and LoD. Cumulative histogram distribution of viral loads 

showing percent detected as a function of limit of detection - actual, solid line, and trend-line, 

dotted line. Slope of fitted line is approximately 12.5% loss in detected cases for every order of 

magnitude decrease in LOD. Figure from Arnaout et al. 151. 

  

 Nonetheless despite the aforementioned technological advancements, POC NAT 

technologies have not found widespread use in consumer homes in the same way that antigen-

based rapid tests have. While some of this may be a result of the shorter timeframe during which 

such devices have been on the market, a larger obstacle is likely to be their continued high price 

tag 25,26. While reagent costs for isothermal amplification have fallen to the range of $1-4, the total 

price tag for available at-home NAT diagnostics continues to fall in the range of $50-100, even 
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requiring a doctor’s prescription in the case of the Lucira diagnostic, making them more a luxury 

item and precluding widespread use. The larger part of this price tag comes from the continued 

need for instrumentation, even if it has been minimized. This minimal instrumentation can be 

broken down into three components: i) Isothermal amplification typically requires a heating 

element with temperature control in the range of 37-65C, ii) most assay workflows require multiple 

liquid handling steps that must be automated within the device cartridge, and iii) many 

technologies require a fluorescent readout with a simplified fluorescence detector.  

 

5.2 Prior art for Ambient Temperature Isothermal Amplification 

 In order to facilitate lowering assay costs by further simplifying instrumentation, I sought 

to develop a method for isothermal amplification of nucleic acid targets that could be robust to low 

temperatures. Whereas SHERLOCK/DETECTR has helped to partially address the second and 

third problems by extreme simplification of lysis steps with one-pot compatibility of all reaction 

components and the use of colorimetric LFA-based outputs 42,100,101,102, the first problem of 

eliminating the high-temperature incubation step has largely been unsolved. To my knowledge 

only two works have cited attomolar-level sensitivity of nucleic acid detection using isothermal 

amplification at ambient temperature: our own work detecting SARS-Cov2 with RPA in the 

wearable facemask (see chapter 3), and a CRISPR-Cas9 nickase enhanced strand-displacement 

amplification (SDA) scheme known as CRISDA 152. 

 In the case of our own wearable facemask, though we were able to detect a total of 500 

copies of RNA (~mid-attomolar depending on input volume), the design process was challenging 

and in general the performance of RPA at room temperature in our hands fell far short of reaching 
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gold-standard sensitivity for most primer pairs. Robustness of RPA was similarly an issue, with 

day-to-day variability leaving significant room for improvement. 

 In the case of the CRISDA platform 152, only a single reaction is shown in the publication’s 

supplementary information indicating the amplification of 220aM of dsDNA target at 25C 

(Supplementary Figure 4). The rest of the work describes reactions carried out at 37C, similar to 

the temperature optimum of RPA. The work also only describes a method for the amplification of 

dsDNA or ssDNA, not RNA targets. Furthermore, when we attempted to replicate this single 

experiment, the effective limit of detection in our hands of a ssDNA target turned out to be 

approximately three orders of magnitude worse than claimed, despite optimization of both primer 

concentration and single-stranded binding protein concentration (Figure 5-2). Although it is 

possible the discrepancy in results is due to our own error, we did not generally find SDA as 

described in the CRISDA paper to be robust at lower temperatures, faring similarly to RPA. 

 

Figure 5-2. Room temperature SDA amplification using canonical primer design. 

Amplification reactions identical to those described in Zhou et al. 152 were caried out with primer 

length, primer concentration, and single-strand binding protein (T4gp32) concentration varied as 

indicated. Fold-change in signal from a second-step Cas12a detection reaction is shown at different 

concentrations of an input ssDNA trigger (0aM, 20aM, 2fM, 200fM). 
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5.3 Optimizing Strand Displacement Amplification for Low-Temperature Use 

 The strand-displacement amplification reaction relies on a three step process starting from 

a dsDNA product containing opposing nickase sites (Figure 5-3). First a nickase cleaves at a target 

site, leaving a free 3’ OH end available. Second, a strand-displacing DNA polymerase initiates 

polymerization from the freed 3’ OH and displaces the top strand of the dsDNA duplex from the 

nicked site onward. Third, a primer binds in the reverse complementary direction to the opposing 

nickase target site, and the DNA polymerase extends it, producing a copy of the initial dsDNA. In 

this fashion the dsDNA is exponentially amplified, with each nicking and extension event 

producing a ssDNA copy that can then be made double-stranded again.  

 

Figure 5-3. Strand displacement amplification reaction scheme. Starting at the top left from an 

initial target nucleic acid lacking nickase sites (dsDNA in this case, but ssDNA for most of this 

work and ideally also RNA), nickase sites in red are added to the target by the use of forwards and 

reverse bump primers. For non-dsDNA targets, different methods can be used to facilitate addition 

of nickase sites. Following through at the top right, a nickase site is cleaved by the nickase, and a 

DNA polymerase then extends and displaces the top strand of the duplex from the nick site. A 

reverse primer then binds to the opposing nickase site, producing again a dsDNA product 

containing two nickase sites (one that is partial but can still bind to a primer after being displaced). 

Figure is adapted from [153]. 
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The failure mode of SDA reactions at lower temperatures was not immediately apparent. 

We initially suspected that the reaction speeds of the two enzymes involved had slowed too much 

to provide efficient amplification (a nickase and a strand-displacing polymerase, Nb.BbvCI and 

Klenow LF, respectively). However upon assessing the rate of nicking and strand displacement 

carried out at room temperature compared with higher temperatures, we did not believe this alone 

could explain the dramatic reduction in sensitivity observed (data not shown). Instead it became 

clear rather that somewhat reduced reaction kinetics were exacerbating the degree to which primer 

dimer products would form before sufficient levels of amplicon could be generated (Figure 5-4). 

While in theory the single-stranded binding protein (SSB, T4gp32) in the reaction is meant to 

prevent this by artificially raising the melting temperature of nucleic acids, we had observed that 

higher concentrations of SSB protein did not seem to improve the limit of detection (Figure 5-2). 

 

Figure 5-4. Timecourse of SDA primer dimer formation at room temperature. Agarose gels 

(4%) of SDA reactions stopped at indicated timepoints (by heat killing at 80C) are shown for three 

pairs of primers of varying length. Red arrows and red text indicate the timing of formation of 

nickase-extended products smaller than the initial starting primers. 
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 To our knowledge, this issue inherent in the SDA reaction has not been overcome, and 

while at higher temperatures (typically 37-55C 152,153) primer dimer formation is of lesser 

consequence, it seemed likely to be the key bottleneck to lower-temperature performance of the 

reaction. In particular I hypothesized that shortening the primer length would reduce or eliminate 

the fraction of the primer dimer pool containing correctly paired nickase sites that might induce 

exponential amplification of the dimer. The standard design for an SDA primer necessitates their 

length being in excess of 14nt, and typically in the range of 20-40nt (Figure 5-5) 152,153,154. Instead 

a novel design that only has 9nt of hybridization region was found to produce only linear and no 

exponential primer dimer, ultimately taking much longer to be consumed (Figure 5-6). 

 

Figure 5-5. Novel SDA primer design. Top: Previous designs for strand displacement 

amplification described in the literature employ two primers with target-specific regions (black) 

as well as nickase sites (green) and stabilization regions (pink). Bottom: The novel primer design 

described in this work uses a single primer for both forwards and reverse directions. This is made 

possible by incorporating an identical primer-hybridization sequence (blue) when the nickase site 

(green) is added to the target by a variety of means, including the use of bump primers, ligase 

splints, etc. The removal of the target-specific region and the consolidation of two primers into 

one allows for very short primers to be used. 
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Figure 5-6. Timecourse of reduced-length SDA primer dimer formation at room 

temperature. Agarose gels (4%) of SDA reactions stopped at indicated timepoints (by heat killing 

at 80C) are shown for a single shortened 9nt forwards primer. Red text indicate the timing of 

formation of primer-dimer, which is notably never nickase-generated (as those are smaller).  

 

 

Figure 5-7. Ambient-temperature detection of ssDNA targets using Cas12a and dimer-

resistant primers. An ssDNA target was amplified for two hours at room temperature using novel 

SDA primer design and optimized reaction conditions. After amplification, a gRNA:Cas12a 

complex targeting a PAM-containing site on the amplicon was added to the reactions and allowed 

to cleave a fluorophore-quencher reporter for thirty minutes. Individual values and mean of six 

replicates are shown (n=6). 
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Using this optimized reaction condition, up to single-digit copies of a ssDNA target were 

detectable within a two hour reaction time using Cas12a as an amplicon detector. This low-

attomolar LOD (~5aM) surpassed even the sensitivity of the covid facemask described previously 

in this work, and was a significant improvement over the CRISDA platform 152 both as the authors 

originally reported and particularly as carried out in our hands. 

 

5.4 Concluding Thoughts on Low-Temperature SDA for POC NAT Diagnostics 

 The challenge of adapting isothermal amplification technologies to lower ambient 

temperatures has largely gone unaddressed since their first design iterations two decades ago. Here 

I have shown that while lower catalytic activity of enzymes at ambient temperature compared to 

37-55C temperature range may have a deleterious effect on amplification, the true bottleneck for 

sustaining amplification at such temperatures is the production of primer dimer. If this can be 

avoided through modification of primer design, then I have shown here amplification can be 

sustained even at low temperatures with limits of detection approaching single-digit copy number. 

Such gold-standard sensitivity is comparable to qPCR and has, to my knowledge, not been shown 

for an ambient-temperature isothermal amplification technique. 

 Looking forward, further innovations must be incorporated for this low-temperature SDA 

approach to have widespread utility. Importantly, the analyte I have detected is an ssDNA target, 

and in most cases of clinical diagnosis the target of interest will be dsDNA or RNA. Of particular 

interest due to the ongoing pandemic is the detection of RNA to diagnose the presence of the RNA-

genome virus SARS-Cov2. In order to convert an RNA target into an amplifiable ssDNA 

molecule, a pair of RT primers with appropriate partial nickase sites as tails would need to be used 

along with bump primers, as outlined in Figure 5-3. Another key innovation would be the collapse 
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of the current two-pot system into a one-pot system, such that the Cas12a detection and SDA 

amplification steps can function in the same solution 42. This crucial improvement would simplify 

liquid-handling on board the eventual diagnostic cartridge, increasing robustness, speed, and ease-

of-use. Combined with existing LFA-based colorimetric outputs for Cas12 detection 42 and 

simplified sample processing techniques outlined in this work and elsewhere 100,101,102 (particularly 

for the covid facemask in chapter three) a fully instrument-free “sample-in-results-out” device 

could be constructed that would require no electronics. To our knowledge, no such product is 

currently on the market or in preparations to be launched.  

 An affordable, user-friendly, gold-standard POC NAT technology would dramatically 

expand access to informative clinical diagnosis. The ongoing SARS-Cov2 pandemic has made 

clear the need for rapid turnaround in testing, and while reducing the time a test takes to complete 

can aid in this goal, bringing testing directly to the consumer in order to facilitate the integration 

of testing into varied personal schedules may arguably have a greater impact 84-88. I am therefore 

optimistic that with the aid of synthetic biology techniques and advanced high-throughput 

prototyping as described in this thesis, a variety of next-generation nucleic acid diagnostic tools 

will become available on the market in the coming decade. 
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