
Graph factorization and pseudofactorization with
applications to hypercube embeddings

by

Kristin Sheridan
S.B., Electrical Engineering and Computer Science, Massachusetts

Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 26, 2021
Certified by. .

Virginia Vassilevska Williams
Steven and Renee Finn Career Development Associate Professor

Thesis Supervisor
Certified by. .

Mark Bathe
Professor of Biological Engineering

Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Graph factorization and pseudofactorization with applications

to hypercube embeddings

by

Kristin Sheridan

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In many contexts, it is useful to determine if a particular distance metric can be broken
down into other metrics about which more is known. In particular, if a metric can be
embedded into a hypercube, the plethora of preexisting knowledge about the structure
of a hypercube can provide knowledge about the structure in question. In this paper,
we examine the concepts of graph factorization and pseudofactorization, in which
a graph is broken up into smaller graphs whose Cartesian product it is isomorphic
to or is an isometric subgraph of, respectively. We show that the same or slightly
modified versions of the techniques used for this process in the context of unweighted
graphs also work for weighted graphs. While it is NP-hard to decide if a general
distance metric is hypercube embeddable, we also discuss how these results expand
the number of known types of graphs and distance metrics for which this problem is
polynomial time decidable. We also discuss why this kind of decomposition of graphs
and distance metrics may be of interest in a variety of fields.

Thesis Supervisor: Virginia Vassilevska Williams
Title: Steven and Renee Finn Career Development Associate Professor

Thesis Supervisor: Mark Bathe
Title: Professor of Biological Engineering

3

4

Acknowledgments

This thesis would not have been possible without the help and support of many

people.

I would like to give a huge thank you to Professor Virginia Williams and Professor

Mark Bathe, my thesis advisors. They have both been super supportive and helpful

throughout my time working on this project. I was working in Professor Bathe’s

lab during my junior year of undergrad at the time that I began switching my focus

towards computer science, and he was very supportive of me finding projects that

fit my interests and helped me figure out what it was that I wanted to study and

research. He has also continued to be a supportive mentor over the last year as we

began working remotely due to the pandemic.

I began working with Professor Williams last summer, and I have been so grateful

to her for her advice on directions to take the project and the current state of various

aspects of research in the field. She has been a wonderful mentor and has been

especially helpful at all the points where I found myself stuck and was unsure of the

direction to take the project.

I would also like to thank Joseph Berleant from Professor Bathe’s lab, who orig-

inally acted as my undergraduate research mentor. He introduced me to a lot of

fundamental papers in this area and has been a great collaborator over the last year

and is responsible for an important part of the work tying graph pseudofactorization

to hypercube embeddings. I wouldn’t even know about this topic if it wasn’t for

Joseph and certainly wouldn’t have all the results I do today.

I’d also like to thank Professor Anne Condon from the University of British

Columbia for her support for and contributions to this project. Professor Condon

provided great feedback and support throughout the process and I’m very grateful

for her help.

Finally, I’d like to thank my family: Mom, Dad, Michael, and Ryan who were

very supportive throughout the time I wrote this. I would also like to thank Liz

Murray and David Mejorado for keeping me on track and organized throughout the

5

project and my amazing roommate Ally Geary who heard all my worries throughout

the course of the year.

6

Contents

1 Introduction 11

1.1 Types of graphs . 13

1.2 Cartesian products and factorization 14

1.3 Hypercube and Hamming embeddings 16

2 Factorization and pseudofactorization 19

2.1 Background and definitions . 19

2.2 Pseudofactorization . 23

2.2.1 Testing irreducibility . 26

2.2.2 An algorithm for pseudofactorization 27

2.3 Factorization . 38

2.3.1 A modified equivalence relation 38

2.3.2 Testing primality . 39

2.3.3 An algorithm for factorization 41

2.3.4 Uniqueness of prime factorization 45

2.4 Computing the transitive closure of a relation 46

2.4.1 Runtime for pseudofactorization 48

2.4.2 Runtime for factorization . 48

2.5 Improved runtime for pseudofactorization 49

2.5.1 Correctness of Algorithm 2 . 52

2.5.2 Runtime of Algorithm 2 . 57

7

3 Hypercube embeddings and general distance metrics 61

3.1 Background and notation for hypercube embeddings 61

3.2 Hypercube embeddings and pseudofactorization 63

3.3 Minimum graphs and general distance metrics 67

4 Conclusion and open questions 73

8

List of Figures

1-1 Schematic of binding between sets of DNA sequences 12

1-2 Schematic of the relationship between hypercube embeddability and

DNA sequence design . 12

1-3 An example of a Cartesian product 15

2-1 An example of factorization and pseudofactorization 22

2-2 An example of the pseudofactorization process 24

2-3 An illustration of the paths in Lemma 2.2.2 30

2-4 A visualization of the path constructed in Theorem 2.2.6 36

2-5 A visual representation of the square property 39

2-6 An example of how to construct 𝐺𝜃 47

2-7 An visualization of the relationship between 𝐺𝜃 and 𝐺𝜃𝑇 53

3-1 An example of a minimum graph whose irreducible pseudofactors are

not all minimum . 71

3-2 An example of a minimum irreducible graph that is hypercube embed-

dable . 72

9

10

Chapter 1

Introduction

In fields like biology, models are commonly used to represent physical or theoretical

concepts. In many cases those models include their own systems of measurement,

and we often try to make this system of measurement such that it has properties of

systems we already understand. For example, we can describe a model for measuring

similarity between short DNA sequences. DNA is a molecular compound made up of

smaller molecular components, known as bases. The four types of such components

are A, T, C, and G, and two DNA strands may bind to each other, or stick together

in a way that results in a lower energy state. When two DNA strands bind to each

other, generally A pairs with T and G pairs with C. However, if two strands are

closely matched, they may bind with each other even if it is not possible to make

these perfect matches at every position, as represented in Figure 1-1. Under certain

energy models, we may treat certain mismatches as having a similar “energy penalty”

[21]. We can now re-frame our theoretical set of DNA strands by considering one

strand to be the “starting” strand and characterizing all other strands based on the

number of positions at which their sequences differ. At this point, we can abstract

away further and view the DNA sequences as binary strings in which the starting

strand is a string of 0s and each other strand has a zero at a given index if it matches

the starting sequence’s base on that index and a 1 otherwise. We can additionally

simplify this model by taking the substrings that exclude indices where all strings

have the same value. This kind of relationship is shown in Figure 1-2, subfigures (b)

11

Figure 1-1: (a) An example of a set of three DNA sequences and their complements
(the strand a sequence binds to perfectly) (b) A comparison of the binding energy of
the pairs presented in (a)

Figure 1-2: A schematic showing how hypercube embeddings can be used to construct
a set of DNA sequences with a particular relationship

and (c).

Notably, in the previously described example, we have transformed a complex

system of DNA molecules into a model in which to compare two molecules, we only

have to compare the number of indices on which two strings differ. This method of

measuring difference, known as Hamming distance, is very well-characterized, and we

can use that to our advantage when working with these kinds of sets. In particular,

as we will describe later, it is sometimes interesting to ask to design a set of DNA

sequences with relative similarity defined by a given distance metric or graph. In this

case, one can look for an assignment of binary strings to every point in that metric

such that the number of indices on which two strings differ is equal to their points’

distance in the metric or graph. In Figure 1-2, we see this through subfigure (a), which

12

is a cyclic graph for which we can find such an assignment of binary strings. From

there, we can use the given energy model to construct DNA sequences with the desired

similarity levels, as shown in the other subfigures. Finding a set of binary strings with

the described properties for a given graph is known as a hypercube embedding, which

as the name suggests is the same as directly embedding the graph into a hypercube.

The ability to find hypercube embeddings for graphs is useful in a variety of fields

including linguistic theory [12] and molecular computing. Our DNA design example

has potential applications in the field of molecular computation. For example, there

has been recent interest in DNA-based neural networks for diagnostic tests. Cur-

rent formulations rely on the use of non-interacting DNA strands and use different

concentrations of particular strands to fill the role of weights [19, 3]. DNA strands

with specific relative binding energies may be useful for improving such processes or

reducing the number of required molecules, making the process of finding hypercube

embeddings relevant to the design of certain molecular circuits. The particular model

of DNA sequence design presented as part of the motivation here is due to the work

of Joseph Berleant [2].

Throughout this paper, we will explore different methods of isometrically embed-

ding one graph into another, that is, mapping the vertices of one graph to another such

that distance is preserved. In particular, in Chapter 2, we will discuss the concepts

of factorization and pseudofactorization, in which graphs are broken up into smaller

graphs into whose Cartesian products they are isometrically embeddable. Then, in

Chapter 3, we will discuss some of the implications of this work for hypercube and

Hamming embeddings of graphs, as well as their relationship to decomposing general

distance metrics. We finish this section by defining some of the terminology used

throughout the paper.

1.1 Types of graphs

Throughout this paper, we will consider unweighted and weighted graphs. An un-

weighted graph 𝐺 = (𝑉,𝐸) consists of a set of vertices 𝑉 and a set of edges 𝐸. We will

13

also use 𝑉 (𝐺) and 𝐸(𝐺) to denote the vertices and edges of a graph 𝐺, respectively.

We will generally denote vertices using a letter or a tuple. For the purposes of this

paper, all graphs will be assumed to be undirected, meaning that the edges in the

graph have no direction and the distance between any pair of nodes is the same in

either direction. We will denote an edge between two vertices 𝑢 and 𝑣 as {𝑢, 𝑣}, 𝑢𝑣,

or 𝑣𝑢. In the case of weighted graphs, we also have a weight function on the edges

which assigns a positive number to each edge in the graph. For these graphs, we

will generally write 𝐺 = (𝑉,𝐸,𝑤) where 𝑤 is the weight function in question. For a

general weighted graph 𝐺, we may also write 𝑤𝐺 to denote the weight function of 𝐺.

We will denote the shortest path distance function associated with a graph as

𝑑𝐺(·, ·) (or just 𝑑(·, ·) if the graph in question is implicit). We will also work with graph

embeddings, namely isometric graph embeddings. Informally, an isometric embedding

from one graph into another is a map from the vertices of the first graph to the

second such that the distance between vertices in the first graph is preserved under

the mapping to the second graph. Formally, an isometric embedding of a graph 𝐺

into a graph 𝐺′ is a mapping 𝜋 : 𝑉 (𝐺) → 𝑉 (𝐺′) such that for each 𝑢, 𝑣 ∈ 𝑉 (𝐺),

𝑑𝐺(𝑢, 𝑣) = 𝑑𝐺′(𝜋(𝑢), 𝜋(𝑣)).

1.2 Cartesian products and factorization

In order to discuss graph embeddings, we will first discuss Cartesian products of

graphs, which we define formally with Definitions 1.2.1 and 1.2.3.

Definition 1.2.1. For two unweighted graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2), the

Cartesian product of the graphs, 𝐺1 × 𝐺2 is a graph 𝐺 = (𝑉,𝐸) with vertex and

edge sets defined as:

𝑉 = {(𝑢1, 𝑢2) | 𝑢1 ∈ 𝑉1, 𝑢2 ∈ 𝑉2}

𝐸 = {(𝑢1, 𝑢2)(𝑣1, 𝑣2) | either 𝑢1 = 𝑣1 and 𝑢2𝑣2 ∈ 𝐸2 or 𝑢2 = 𝑣2 and 𝑢1𝑣1 ∈ 𝐸1}.

We will denote the Cartesian product of 𝑚 graphs as 𝐺1×𝐺2×. . .×𝐺𝑚 or Π𝑚
𝑖=1𝐺𝑖.

14

Figure 1-3: The graph on the right is the Cartesian product of the graphs on the left.
The parent edge of a given edge in the product graph is the edge in a factor that has
the same color as it. For example, edges (𝑎, 𝑥)(𝑎, 𝑦), (𝑏, 𝑥)(𝑏, 𝑦), and (𝑐, 𝑥)(𝑐, 𝑦) in the
product graph all have edge 𝑥𝑦 in the second factor as their parent edge.

Using Definition 1.2.1, we can see that for a graph 𝐺 = (𝑉,𝐸) = Π𝑚
𝑖=1𝐺𝑖, the vertex

and edge sets are defined as:

𝑉 = {(𝑢1, 𝑢2, ..., 𝑢𝑚) | 𝑢1 ∈ 𝑉1, 𝑢2 ∈ 𝑉2, . . . , 𝑢𝑘 ∈ 𝑉𝑚} (1.1)

= 𝑉1 × 𝑉2 × . . .× 𝑉𝑚 (1.2)

𝐸 = {(𝑢1, 𝑢2, ..., 𝑢𝑚)(𝑣1, 𝑣2, ..., 𝑣𝑚) | ∃ exactly one ℓ such that 𝑢ℓ𝑣ℓ ∈ 𝐸ℓ and for all 𝑖 ̸= ℓ, 𝑢𝑖 = 𝑣𝑖}.

(1.3)

Figure 1-3 shows an example of a Cartesian product of two graphs. We call 𝐺1, 𝐺2, . . . , 𝐺𝑚

factors of 𝐺 because for each 𝐺𝑖 there exists a graph such that the Cartesian product

of that graph with 𝐺𝑖 produces a graph isomorphic to 𝐺. If a graph 𝐺 is such that

its only factors are itself and 𝐾1, we call that graph prime. A set of prime graphs

{𝐺1, 𝐺2, ..., 𝐺𝑚} such that Π𝑚
𝑖=1𝐺𝑖 is isomorphic to 𝐺 is a prime factorization of 𝐺.

Looking at equation (1.3), we see that every edge in a product graph “corresponds”

to an edge in exactly one factor graph. We formalize this intuition in Definition 1.2.2.

Definition 1.2.2. Consider a graph 𝐺 = (𝑉,𝐸) with a factorization {𝐺1, 𝐺2, ..., 𝐺𝑚}

and an edge 𝑢𝑣 ∈ 𝐸. We will take 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑚) and 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) where

𝑢𝑖, 𝑣𝑖 ∈ 𝑉𝑖. By the definition of the edge set of a Cartesian product, there exists exactly

one ℓ such that 𝑢ℓ ̸= 𝑣ℓ, and we must have 𝑢ℓ𝑣ℓ ∈ 𝐸ℓ. We consider 𝑢ℓ𝑣ℓ (an edge in

𝐺ℓ) to be the parent edge of edge 𝑢𝑣 in 𝐺 for the given factorization.

Using the notion of a parent edge, we will extend our definition in 1.2.1 to apply

to weighted graphs as well.

15

Definition 1.2.3. For two graphs 𝐺1 = (𝑉1, 𝐸1, 𝑤1) and 𝐺2 = (𝑉2, 𝐸2, 𝑤2), we take

the Cartesian product 𝐺1 ×𝐺2 to be 𝐺 = (𝑉,𝐸,𝑤) where 𝑉 and 𝐸 are exactly as

defined in Definition 1.2.1. Additionally, for (𝑢1, 𝑢2)(𝑣1, 𝑣2) = 𝑢𝑣 ∈ 𝐸, 𝑤(𝑢𝑣) equals

𝑤𝑖(𝑢𝑖𝑣𝑖) where 𝑢𝑖𝑣𝑖 is the parent edge of 𝑢𝑣 in the given factorization of 𝐺.

The Cartesian product of graphs has an important property about its distance

metric. For two nodes (𝑢1, 𝑢2), (𝑣1, 𝑣2) in a Cartesian product 𝐺1 ×𝐺2, we can write

𝑑𝐺1×𝐺2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) =
∑︀2

𝑖=1 𝑑𝐺𝑖
(𝑢𝑖, 𝑣𝑖). To see that 𝑑𝐺1×𝐺2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) ≤∑︀2

𝑖=1 𝑑𝐺𝑖
(𝑢𝑖, 𝑣𝑖), we can consider a path composed of a shortest path from (𝑢1, 𝑢2) to

(𝑣1, 𝑢2) ∈ 𝑉 (𝐺1×𝐺2) and a shortest path from (𝑣1, 𝑢2) to (𝑣1, 𝑣2). We see that to get

this path we can follow a path of edges whose parents form a shortest path from 𝑢1 to

𝑣1 in 𝐺1 and then a path of edges whose parents form a shortest path from 𝑢2 to 𝑣2 in

𝐺2. To see 𝑑𝐺1×𝐺2((𝑢1, 𝑢2), (𝑣1, 𝑣2)) ≥
∑︀2

𝑖=1 𝑑𝐺𝑖
(𝑢𝑖, 𝑣𝑖), we take a path from (𝑢1, 𝑢2)

to (𝑣1, 𝑣2) in 𝐺1×𝐺2 and we see that the path formed in 𝐺1 (respectively 𝐺2) by the

edge parents in 𝐺1 (respectively 𝐺2) is a path from 𝑢1 to 𝑣1 in 𝐺1 (respectively 𝑢2 to

𝑣2 in 𝐺2). This relationship between the distance metric of a Cartesian product and

its factors extends to larger products, so that we have:

𝑑Π𝑚
𝑖=1𝐺𝑖

((𝑢1, . . . , 𝑢𝑚)(𝑣1, . . . , 𝑣𝑚)) =
𝑚∑︁
𝑖=1

𝑑𝐺𝑖
(𝑢𝑖, 𝑣𝑖).

These definitions will help us in defining factorization and pseudofactorization in

Chapter 2 and in gaining a more complete understanding of hypercube embeddings

in Chapter 3.

1.3 Hypercube and Hamming embeddings

Finally, we will also discuss hypercube and Hamming embeddings. For a given graph

𝐺, a Hamming embedding is a map 𝜂 : 𝑉 (𝐺)→ Σ𝑡 for a finite alphabet Σ and integer

𝑡 such that distance in the graph corresponds to Hamming distance between the

strings. Formally, let 𝑑𝐻(·, ·) be the Hamming distance function, or the function that

outputs the number of indices on which two strings differ. Then for any 𝑢, 𝑣 ∈ 𝑉 (𝐺),

16

𝑑𝐺(𝑢, 𝑣) = 𝑑𝐻(𝜂(𝑢), 𝜂(𝑣)). Additionally, for such a mapping 𝜂𝑖(𝑢) will be the 𝑖𝑡ℎ value

in the string 𝜂(𝑢). Finally, a hypercube embedding is a Hamming embedding with

|Σ| = 2. We will deal mainly with hypercube embeddings and will generally use

binary strings, or Σ = {0, 1}.

These definitions and concepts will be expanded upon further in the relevant

sections, as we discuss their usefulness and calculations of certain properties.

17

18

Chapter 2

Factorization and pseudofactorization

In this chapter, we discuss factorization and pseudofactorization, which embody the

idea of going “backwards” from a Cartesian product. At a high level, factoring a

graph seeks to find smaller graphs that can be used to compose the original graph via

Cartesian products. Pseudofactorization seeks to find smaller graphs such that the

original graph makes up a part of the graph composed by the Cartesian product of

those graphs. These concepts, particularly pseudofactorization, are useful for deter-

mining the existence of hypercube and Hamming embeddings, as we will discuss in

Chapter 3, but they are also interesting in their own right, in that they tell us some-

thing about how one structure may be built up from smaller structures. In Chapter

3, we will also elaborate on some of the implications of this for trying to decompose

distance metrics.

2.1 Background and definitions

In this section, we will discuss the work of previous authors on the topics of fac-

torization and pseudofactorization. These concepts are very well-characterized for

unweighted graphs and even for graphs of uniform weight. The algorithms and con-

cepts used in this unweighted context are highly applicable to the weighted context

and in many cases the same theorems and algorithms apply, though the correctness

must be re-proven to show they work for weighted graphs.

19

Because certain concepts are essential to this section, we reiterate some of the

definitions given in Chapter 1. In particular, the Cartesian product of two graphs,

𝐺1, 𝐺2, is the graph 𝐺 = 𝐺1×𝐺2 where:

𝑉 (𝐺) = {(𝑢1, 𝑢2) |𝑢1 ∈ 𝑉 (𝐺1), 𝑢2 ∈ 𝑉 (𝐺2)}

𝐸(𝐺) = {(𝑢1, 𝑢2)(𝑣1, 𝑣2) |(𝑢1 = 𝑣1 and 𝑢2𝑣2 ∈ 𝐸(𝐺2)) or (𝑢2 = 𝑣2 and 𝑢1𝑣1 ∈ 𝐸(𝐺1))}

For a product of 𝑚 graphs 𝐺 = 𝐺1×𝐺2×...×𝐺𝑚 = Π𝑚
𝑖=1𝐺𝑖, we have:

𝑉 (𝐺) = {(𝑢1, 𝑢2, ..., 𝑢𝑚) | ∀𝑖, 𝑢𝑖 ∈ 𝑉 (𝐺𝑖)}

𝐸(𝐺) = {(𝑢1, 𝑢2, ..., 𝑢𝑚)(𝑣1, 𝑣2, ..., 𝑣𝑚) | ∃𝑖 such that 𝑢𝑖𝑣𝑖 ∈ 𝐸(𝐺𝑖) and ∀𝑗 ̸= 𝑖, 𝑢𝑗 = 𝑣𝑗}

In Figure 2-1, we have that subfigure (a) is the Cartesian product of the graphs

in subfigure (b). The Cartesian product of 𝑚 graphs can be found in polynomial

time in the size of the product graph (although the size of the product graph may

be exponential in the size of the factor graphs). A factorization of a graph 𝐺 is a

set of factor graphs 𝐺𝑖 such that Π𝑖𝐺𝑖 is isomorphic to 𝐺. 𝐺 is prime if its only

factorizations consist of 𝐺 itself and 𝐾1. A prime factorization is a factorization of

𝐺 such that all of the factors are prime. We will assume that a factorization never

includes 𝐾1 unless the graph being factored is 𝐾1 (so a factorization of a prime graph

would only include itself). Imrich and Klavžar [14] showed that deciding if a graph’s

prime factorization consists entirely of complete graphs can be done in as little as

𝑂(|𝐸|) time. More recently, Imrich and Peterin [15] showed that finding the prime

factorization of an arbitrary unweighted, connected graphs can also be done in as

little as 𝑂(|𝐸|) time. However, if the input graph is not connected, this problem is at

least as hard as graph isomorphism, which is not known to be in P. We can see this

by considering two connected graphs 𝐺,𝐻, and noting that 𝐺 ∪𝐻 has the graph of

two unconnected nodes as a factor if and only if 𝐺 and 𝐻 are isomorphic [9].

The concept of graph factorization can be extended by considering isometric em-

beddings of graphs into the Cartesian products of other graphs, forming a concept we

20

call pseudofactorizations. In [13], Graham and Winkler define this concept. (Notably,

they refer to this process as factorization, but I have changed the name in order to dis-

tinguish from the concept of factorization used by other authors and addressed here.)

Definition 2.1.1 defines pseudofactorization for unweighted graphs in the sense used

by Graham and Winkler. In order to use the definition, we further extend our nota-

tion for isometric embeddings. Consider an isometric embedding of a graph 𝐺 into a

product of 𝑚 graphs, 𝜋 : 𝐺→ Π𝑚
𝑖=1𝐺𝑖. For each 𝑢 ∈ 𝑉 (𝐺), if 𝜋(𝑢) = (𝑢1, 𝑢2, . . . , 𝑢𝑚),

we let 𝜋𝑖(𝑢) = 𝑢𝑖, or the node in position 𝑖 of the tuple that 𝑢 maps to under 𝜋. We

additionally let “ →˓” mean “can be isometrically embedded into.”

Definition 2.1.1. For a graph 𝐺, a pseudofactorization of 𝐺 is a set of graphs

{𝐺1, 𝐺2, . . . , 𝐺𝑚} such that 𝐺 →˓ Π𝑚
𝑖=1𝐺𝑖. Additionally, to avoid “extraneous” nodes

in the product graph, we let 𝜋 be an isometric embedding of 𝐺 into Π𝑚
𝑖=1𝐺𝑖 and require

that for each 𝑢𝑖 in each 𝐺𝑖, there exists some 𝑢 ∈ 𝑉 such that 𝜋𝑖(𝑢) = 𝑢𝑖.

We additionally consider an analog to prime graphs for pseudofactorization, which

we call irreducible graphs, defined in Definition 2.1.2.

Definition 2.1.2. A graph 𝐺 is irreducible if all pseudofactorizations of 𝐺 consist

of 𝐾1 and 𝐺 itself.

Analogously to a prime factorization, we let an irreducible pseudofactorization be

a pseudofactorization in which all pseudofactors are irreducible. Graham and Win-

kler showed that for each connected unweighted 𝐺 there is in fact a single irreducible

pseudofactorization and thus we can call such a set of graphs the canonical pseudo-

factor graphs or the canonical pseudofactorization and the isometric embedding of 𝐺

into their Cartesian product the canonical embedding of 𝐺 [13, 23].

We note that in the case of weighted graphs, the previous definition of pseudo-

factorization implies the non-existence of irreducible pseudofactorizations for many

graphs. (An example would be 𝐾2, which is isometrically embeddable in the Carte-

sian product of 𝑥 copies of 𝐾2 scaled by 1/𝑥 for any integer 𝑥.) Because of this, we

slightly alter the definition of pseudofactorization in a way that is consistent with

21

Figure 2-1: Subfigure (a) shows a non-prime, non-irreducible graph. Subfigure (b)
shows the prime factorization of the graph in (a). Subfigure (c) shows the canonical
pseudofactorization of the graph in (a).

the definition for unweighted graphs but admits irreducible pseudofactorizations for

weighted graphs as well. This definition is presented in Definition 2.1.3.

Definition 2.1.3. A pseudofactorization of a graph 𝐺 = (𝑉,𝐸,𝑤) is a set of

graphs {𝐺1, 𝐺2, . . . , 𝐺𝑚} such that 𝐺 is an isometric subgraph of Π𝑚
𝑖=1𝐺𝑖.

Any 𝐻 that is a member of some pseudofactorization of 𝐺 is a pseudofactor of 𝐺.

We note that if the original graph and the pseudofactor graphs are restricted to all

have all edge weights 1, this definition is identical to Definition 2.1.1 and we also note

that every factor of 𝐺 is a pseudofactor but the converse is not necessarily true.

Two interesting problems emerge related to the concept of graph pseudofactor-

ization: that of determining if a given graph 𝐺 is irreducible and that of finding the

canonical pseudofactorization of 𝐺. It turns out that in the case of connected un-

weighted graphs both of these questions can be answered in as little as 𝑂(|𝑉 ||𝐸|) time

[11] but that finding an irreducible pseudofactorization for an unconnected graph is

hard for the same reasons that factorization is. Figure 2-1(c) shows the canonical

pseudofactorization of Figure 2-1(a).

22

2.2 Pseudofactorization

In this section, we will discuss a method for pseudofactoring weighted grahs in poly-

nomial time. To begin, we discuss the current state of the field in terms of pseudo-

factoring unweighted graphs, and we then show that one of the techniques used for

this process can also be used to pseudofactor weighted graphs.

Graham and Winkler [13] showed that all unweighted graphs have a unique pseud-

ofactorization under the definition given in 2.1.1. They additionally gave an 𝑂(|𝐸|2)

time algorithm to find such a pseudofactorization. To do so, they defined the 𝜃

relation on the edges of a graph as follows.

Definition 2.2.1. For a graph 𝐺 = (𝑉,𝐸), two edges in the graph, 𝑢𝑣, 𝑎𝑏 ∈ 𝐸 are

related by 𝜃 if and only if:

[𝑑𝐺(𝑢, 𝑎)− 𝑑𝐺(𝑢, 𝑏)]− [𝑑𝐺(𝑣, 𝑎)− 𝑑𝐺(𝑣, 𝑏)] ̸= 0. (2.1)

We note that this relation is symmetric and reflexive. We also let the equivalence

relation 𝜃 be the transitive closure of 𝜃.

We call equation 2.1 the theta-difference for edges 𝑢𝑣 and 𝑎𝑏, and we denote this

difference by 𝛿(𝑢𝑣, 𝑎𝑏).

Algorithm 1 is a generalized version of the algorithm presented by Graham and

Winkler. Its inputs are a graph and an equivalence relation on the edges of the graph,

and it outputs a set of graphs. Graham and Winkler showed that when the input is

(𝐺, 𝜃) for an unweighted graph 𝐺, the output is an irreducible pseudofactorization

of 𝐺. Figure 2-2 shows an example of an application of this algorithm to a weighted

graph when the input relation is 𝜃.

Informally, the algorithm finds the equivalence classes of the graph edges. For each

equivalence class 𝐸𝑘, it then looks at a version of 𝐺 with all edges in 𝐸𝑘 removed. The

graph is now disconnected, and it is able to use this disconnected graph to construct

the output graphs. In this paper, we will expand on this to show that the same

algorithm works for weighted graphs.

23

Figure 2-2: Subfigure (a) shows that, given an input graph, Algorithm 1 first finds
the equivalence classes of 𝜃 on the graph edges. The green, purple, and blue edges
are each an equivalence class. The algorithm then removes each equivalence class
individually and creates a graph from the connected components of the resulting
graph. Subfigure (b) shows the irreducible pseudofactorization of an example graph,
as well as the Cartesian product of the pseudofactors, of which the input graph is an
isometric subgraph.

24

Algorithm 1 Algorithm for breaking up a graph over a relation
Input: A weighted graph 𝐺 = (𝑉,𝐸,𝑤𝐺) and an equivalence relation 𝑅 on the edges
of 𝐺.
Output: A set G={𝐺*

1, 𝐺
*
2, ..., 𝐺

*
𝑚}

Set G ← ∅
Find the set of equivalence classes of 𝑅, {𝐸1, 𝐸2, ..., 𝐸𝑚}
Set E ← {𝐸1, 𝐸2, ..., 𝐸𝑚}
for 𝐸𝑘 ∈E do

Let 𝑤𝐺′
𝑘

be 𝑤𝐺 restricted to the edges in 𝐸(𝐺)∖𝐸𝑘

Find 𝐺′
𝑘 = (𝑉 (𝐺), 𝐸(𝐺)∖𝐸𝑘, 𝑤𝐺′

𝑘
)

Set C ← the set of connected components of 𝐺′
𝑘

Create a new graph 𝐺*
𝑘

Set 𝑉 (𝐺*
𝑘)← {𝑎 |𝐶𝑎 is a connected component of 𝐺′

𝑘}
Set 𝐸(𝐺*

𝑘)← {𝑎𝑏 | there is an edge in 𝐸𝑘 between 𝐶𝑎 and 𝐶𝑏}
for 𝐶𝑎, 𝐶𝑏 ∈C do

if All edges between 𝐶𝑎 and 𝐶𝑏 the same weight, 𝑤𝑎𝑏 then
Set 𝑤𝐺*

𝑘
(𝑎, 𝑏)← 𝑤𝑎𝑏

else
Reject.

Set G→ G∪{𝐺*
𝑘}

Return G.

Graham and Winkler further showed that an unweighted pseudofactorization is

unique. Additionally, 𝜃 is not the only relation that can be used with this algorithm

to produce this pseudofactorization. In particular, Feder [11] expanded on this work

by defining a new relation, 𝜃𝑇 on the edges of a graph 𝐺, given a spanning tree 𝑇 of 𝐺.

In particular, he defined 𝜃𝑇 such that 𝑢𝑣 𝜃𝑇 𝑎𝑏 if and only if 𝛿(𝑢𝑣, 𝑎𝑏)̸= 0 and at least

one of 𝑢𝑣 and 𝑎𝑏 is in 𝑇 . Letting 𝜃𝑇 be the transitive closure of 𝜃𝑇 , he showed that

Algorithm 1 on input (𝐺, 𝜃𝑇) for an unweighted graph 𝐺 also produces the irreducible

pseudofactorization of 𝐺, noting that for this relation Algorithm 1 runs in 𝑂(|𝑉 ||𝐸|)

time due to the smaller time needed to find the equivalence classes. In a later section,

we will discuss how Feder’s algorithm may be modified to improve the runtime of

pseudofactorization, but in this section we will focus on the application of Graham

and Winkler’s algorithm to weighted graphs.

In this section, we consider how to pseudofactor graphs. In order to do so, we

actually restrict our attention to a certain subset of weighted graphs, which we deem

25

minimal graphs. This is formally defined in Definition 2.2.2, but informally a minimal

graph is a graph without “extraneous edges,” or edges that do not appear on shortest

paths.

Definition 2.2.2. A graph 𝐺 is a minimal graph if and only if every edge in 𝐸(𝐺)

forms a shortest path between its endpoints.

We also note that for any graph, it is easy to find a minimal graph with the same

distance metric by simply checking if the weight of an edge is equal to the distance

between its endpoints. For this section, we assume that all graphs are minimal.

In this section, the overall goal is to prove that when the input to Algorithm

1 is a minimal weighted graph 𝐺 and the relation 𝜃, the output is an irreducible

pseudofactorization of 𝐺. We note that our definition of pseudofactorization for

weighted graphs actually came from looking at the kinds of outputs that came from

the application of Graham and Winker’s algorithm to weighted graphs. We found

that the input graph was always an isometric subgraph of the Cartesian product of

the output graphs and given the consistency of this fact with the original definition

of pseudofactorization, we chose to use this as the definition for weighted graphs.

2.2.1 Testing irreducibility

We first show that if all edges in a graph are in the same equivalence class of 𝜃, then

the graph is irreducible. In the following section, we will show that Algorithm 1 with

this relation as an input produces a pseudofactorization of the graph. Because this

algorithm produces more than one graph (neither of which is 𝐾1) if there is more

than one equivalence class on the edges, we can use the results in this section and the

next to conclude that checking the number of equivalence classes of 𝜃 is a definitive

check of irreducibility.

Lemma 2.2.1. For 𝑢𝑣, 𝑥𝑦 ∈ 𝐸(𝐺), if 𝑢𝑣 𝜃 𝑥𝑦, then for any pseudofactorization

{𝐺1, . . . , 𝐺𝑚} of 𝐺 with isometric embedding 𝜋 : 𝑉 (𝐺) → 𝑉 (Π𝑚
𝑖=1𝐺𝑖) of 𝐺 into an

isometric subgraph of the product of the pseudofactors, 𝜋(𝑢)𝜋(𝑣) and 𝜋(𝑥)𝜋(𝑦) must

have parent edges in the same pseudofactor.

26

Proof. Throughout this proof, we let 𝑑 := 𝑑𝐺 and 𝑑𝑖 := 𝑑𝐺𝑖
. Say there exists a

pseudofactorization {𝐺1, 𝐺2, ..., 𝐺𝑚} of 𝐺 with such an embedding 𝜋 such that 𝜋(𝑎) =

(𝜋1(𝑎), 𝜋2(𝑎), ..., 𝜋𝑚(𝑎)) for 𝑎 ∈ 𝑉 (𝐺). For simplicity, we let 𝜋𝑖(𝑎) = 𝑎𝑖.

Assume for contradiction that this pseudofactorization is a pseudofactorization of

𝐺 in which 𝜋(𝑥)𝜋(𝑦) and 𝜋(𝑢)𝜋(𝑣) have parent edges in different pseudofactors. Since

𝑥𝑦 and 𝑢𝑣 are edges, by the definition of the Cartesian product, we get that there is

exactly one 𝑙 such that 𝑢𝑙 ̸= 𝑣𝑙 and one 𝑗 such that 𝑥𝑗 ̸= 𝑦𝑗. Since the two edges have

parent edges in different pseudofactor graphs, we also get that 𝑙 ̸= 𝑗. (See Definition

1.2.2.)

Now we consider [𝑑(𝑥, 𝑢) − 𝑑(𝑥, 𝑣)] − [𝑑(𝑦, 𝑢) − 𝑑(𝑦, 𝑣)]. Since 𝜋 is an isometric

embedding with 𝜋𝑖(𝑥) = 𝑥𝑖, we can rewrite this using the distance metric for Π𝑖𝐺
*
𝑖 ,

which means it can be written as:

𝑚∑︁
𝑖=1

[𝑑𝑖(𝑥𝑖, 𝑢𝑖)− 𝑑𝑖(𝑥𝑖, 𝑣𝑖)]− [𝑑𝑖(𝑦𝑖, 𝑢𝑖)− 𝑑𝑖(𝑦𝑖, 𝑣𝑖)].

Term 𝑖 in this sum is 0 if 𝑢𝑖 = 𝑣𝑖 or if 𝑥𝑖 = 𝑦𝑖. However, since 𝑙 ̸= 𝑗, this means at

least one of these equalities is true for every term in the sum, so 𝑥𝑦 and 𝑢𝑣 are not

related by 𝜃. From this, we get that if 𝑥𝑦 𝜃 𝑢𝑣, then 𝑙 = 𝑗 and 𝜋(𝑥)𝜋(𝑦) and 𝜋(𝑢)𝜋(𝑣)

must have parent edges in the same pseudofactor graph.

We know that Algorithm 1 outputs one graph for each equivalence class of 𝜃.

Thus, from the preceding lemma, we get that if Algorithm 1 outputs a single graph,

the input graph must be irreducible. In the following section, we will show that the

output of this algorithm is necessarily a pseudofactorization of the input graph, which

together with this proof implies that a graph is irreducible if and only if there is one

equivalence class of 𝜃 on its edges.

2.2.2 An algorithm for pseudofactorization

In this section, we will show that Algorithm 1 with 𝜃 as the input relation can be

used to pseudofactor a minimal weighted graph. In order to prove this fact, we divide

27

the proof into a series of lemmas, many of which have parallels to those we will use

to prove factorization. Now, we have to show that this algorithm is well-defined for

the inputs we are considering (a minimal graph and the relation 𝜃), which we do with

Lemma 2.2.2. Throughout this section, we assume the input graph is 𝐺 and notation

is used as it is in Algorithm 1.

Lemma 2.2.2. If 𝐶𝑎, 𝐶𝑏 are connected components in 𝐺′
𝑘 and there exists 𝑥 ∈ 𝐶𝑎, 𝑦 ∈

𝐶𝑏 such that 𝑥𝑦 is an edge with weight 𝑤𝑎𝑏, then for each 𝑢 ∈ 𝐶𝑎, there exists at most

one 𝑣 ∈ 𝐶𝑏 such that 𝑢𝑣 forms an edge, and if it exists, the edge has weight 𝑤𝑎𝑏.

Proof. Throughout this proof, we take 𝑑(·, ·) to be the distance function on 𝐺. First,

we show that if 𝑢𝑣 is an edge between 𝐶𝑎, 𝐶𝑏, then there cannot exist a distinct 𝑣′ ∈ 𝐶𝑏

such that 𝑢𝑣′ is an edge. We will show this by contradiction. Assume that such a 𝑣′

exists. Since 𝑣 and 𝑣′ are in the same connected component of 𝐺′
𝑘, there is a path

𝑄 = (𝑣 = 𝑞0, 𝑞1 . . . , 𝑞𝑛 = 𝑣′) (represented in Figure 2-3(a)) consisting entirely of edges

not in 𝐸𝑘 (and thus not related to 𝑢𝑣 by 𝜃), and we consider the sum

𝑛∑︁
𝑖=1

[𝑑(𝑢, 𝑞𝑖−1)− 𝑑(𝑢, 𝑞𝑖)]− [𝑑(𝑣, 𝑞𝑖−1)− 𝑑(𝑣, 𝑞𝑖)] = 0.

By telescoping, this implies that:

[𝑑(𝑢, 𝑣)− 𝑑(𝑢, 𝑣′)]− [𝑑(𝑣, 𝑣)− 𝑑(𝑣, 𝑣′)] = 𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑣′)− 𝑑(𝑢, 𝑣′) = 0.

Since for 𝑣 ̸= 𝑣′, 𝑑(𝑣, 𝑣′) > 0, this gives us 𝑑(𝑢, 𝑣) < 𝑑(𝑢, 𝑣′). However, a symmetric

analysis says 𝑑(𝑢, 𝑣′) < 𝑑(𝑢, 𝑣), so it’s impossible that 𝑢 has an edge to 𝑣 and 𝑣′. This

shows the first part of the lemma.

Now, we show that if 𝑢𝑣 is an edge from 𝐶𝑎 to 𝐶𝑏, then it has weight 𝑤𝑎𝑏, which

will rely on the assumption that the graph in question is minimal. First, we define

two paths. The first is 𝑄𝑎 = (𝑢 = 𝑞𝑎0 , 𝑞
𝑎
1 , . . . , 𝑞

𝑎
𝑛 = 𝑥), which is a path of edges entirely

in 𝐶𝑎. We will also have a path 𝑄𝑏 = (𝑣 = 𝑞𝑏0, 𝑞
𝑏
1, . . . , 𝑞

𝑏
𝑡 = 𝑦), which will consist

entirely of edges in 𝐶𝑏 (represented in Figure 2-3(b)). We note that no pair of edges

on either of these paths can be related to 𝑢𝑣 or to 𝑥𝑦 by 𝜃, since the edges are not in

28

𝐸𝑘. Using this fact, we get the following four sums.

𝑡∑︁
𝑙=1

[𝑑(𝑢, 𝑞𝑏𝑙−1)− 𝑑(𝑢, 𝑞𝑏𝑙)]− [𝑑(𝑣, 𝑞𝑏𝑙−1)− 𝑑(𝑣, 𝑞𝑏𝑙)] = 0

= [𝑑(𝑢, 𝑣)− 𝑑(𝑢, 𝑦)]− [𝑑(𝑣, 𝑣)− 𝑑(𝑣, 𝑦)]

= 𝑑(𝑢, 𝑣)− 𝑑(𝑢, 𝑦) + 𝑑(𝑣, 𝑦)

= 𝑤𝐺(𝑢𝑣) + 𝑑(𝑣, 𝑦)− 𝑑(𝑢, 𝑦).

𝑛∑︁
𝑙=1

[𝑑(𝑢, 𝑞𝑎𝑙)− 𝑑(𝑢, 𝑞𝑎𝑙−1)]− [𝑑(𝑣, 𝑞𝑎𝑙), 𝑑(𝑣, 𝑞𝑎𝑙−1)] = 0

= [𝑑(𝑢, 𝑥)− 𝑑(𝑢, 𝑢)]− [𝑑(𝑣, 𝑥)− 𝑑(𝑣, 𝑢)]

= 𝑑(𝑢, 𝑥) + 𝑑(𝑣, 𝑢)− 𝑑(𝑣, 𝑥)

= 𝑤𝐺(𝑢𝑣) + 𝑑(𝑢, 𝑥)− 𝑑(𝑣, 𝑥).

𝑛∑︁
𝑙=1

[𝑑(𝑥, 𝑞𝑎𝑙−1)− 𝑑(𝑥, 𝑞𝑎𝑙)]− [𝑑(𝑦, 𝑞𝑎𝑙−1), 𝑑(𝑦, 𝑞𝑎𝑙)] = 0

= [𝑑(𝑥, 𝑢)− 𝑑(𝑥, 𝑥)]− [𝑑(𝑦, 𝑢)− 𝑑(𝑦, 𝑥)]

= 𝑑(𝑢, 𝑥)− 𝑑(𝑦, 𝑢) + 𝑑(𝑦, 𝑥)

= 𝑤𝐺(𝑢𝑣) + 𝑑(𝑦, 𝑥)− 𝑑(𝑦, 𝑢).

𝑡∑︁
𝑙=1

[𝑑(𝑥, 𝑞𝑏𝑙)− 𝑑(𝑥, 𝑞𝑏𝑙−1)]− [𝑑(𝑦, 𝑞𝑏𝑙)− 𝑑(𝑦, 𝑞𝑏𝑙−1)] = 0

= [𝑑(𝑥, 𝑦)− 𝑑(𝑥, 𝑣)]− [𝑑(𝑦, 𝑦)− 𝑑(𝑦, 𝑣)]

= 𝑑(𝑥, 𝑦)− 𝑑(𝑥, 𝑣) + 𝑑(𝑣, 𝑦)

= 𝑤𝐺(𝑢𝑣) + 𝑑(𝑣, 𝑦)− 𝑑(𝑥, 𝑣).

From these equations, we get:

𝑤𝐺(𝑢𝑣) = 𝑑(𝑢, 𝑦)− 𝑑(𝑣, 𝑦)

𝑤𝐺(𝑢𝑣) = 𝑑(𝑣, 𝑥)− 𝑑(𝑢, 𝑥)

𝑤𝐺(𝑥𝑦) = 𝑑(𝑢, 𝑦)− 𝑑(𝑢, 𝑥)

𝑤𝐺(𝑥𝑦) = 𝑑(𝑣, 𝑥)− 𝑑(𝑣, 𝑦).

29

Figure 2-3: This figure gives illustrations of the paths described in the proof of Lemma
2.2.2. In particular, subfigure (a) shows a graph in which 𝑢 ∈ 𝐶𝑎 has an edge to
distinct 𝑣, 𝑣′ ∈ 𝐶𝑏, which the proof of Lemma 2.2.2 shows is impossible. Subfigure
(b) shows how 𝑄𝑎 and 𝑄𝑏 are defined in the proof when discussing 𝑢 ∈ 𝐶𝑎, 𝑣 ∈ 𝐶𝑏.

Subtracting the first and last of these equations gives us 𝑤𝐺(𝑢𝑣)−𝑤(𝑥𝑦) = 𝑑(𝑢, 𝑦)−

𝑑(𝑣, 𝑥) and subtracting the second and third equations gives 𝑤𝐺(𝑢𝑣) − 𝑤𝐺(𝑥𝑦) =

−[𝑑(𝑢, 𝑦) − 𝑑(𝑣, 𝑥)]. This gives us that 𝑤𝐺(𝑢𝑣) − 𝑤𝐺(𝑥𝑦) = −[𝑤𝐺(𝑢𝑣) − 𝑤𝐺(𝑥𝑦)], so

the difference between these two weights is 0 and thus the weights are equal. This

implies the lemma.

With the next lemma, we introduce two general facts about the relationship be-

tween paths and equivalence classes of 𝜃 that will be used in later claims.

Lemma 2.2.3. The following hold:

1. If 𝑢𝑣 forms an edge and is in equivalence class 𝐸𝑘, then for any path 𝑄 = (𝑢 =

𝑞0, 𝑞1, . . . , 𝑞𝑡 = 𝑣) between the two nodes, there is at least one edge from 𝐸𝑘.

2. Let 𝑃 = (𝑢 = 𝑝0, 𝑝1, . . . , 𝑝𝑛 = 𝑣) be a shortest path from 𝑢 to 𝑣. If 𝑃 contains an

edge in the equivalence class 𝐸𝑘, then for any path 𝑄 = (𝑢 = 𝑞0, 𝑞1, . . . , 𝑞𝑡 = 𝑣)

there is at least one edge from 𝐸𝑘.

Proof. First, we note that the second bullet implies the first in the case of unweighted

and minimal graphs, since in those cases 𝑢𝑣 is a shortest path between 𝑢 and 𝑣 it is

is an edge. However, this is not the case of general weighted graphs and we will use

30

this lemma when we discuss factorization of weighted graphs as well. Thus, we prove

this lemma in two parts.

1. First, we consider the following sum.

𝑡∑︁
𝑖=1

[𝑑(𝑢, 𝑞𝑖−1)− 𝑑(𝑢, 𝑞𝑖)]− [𝑑(𝑣, 𝑞𝑖−1)− 𝑑(𝑣, 𝑞𝑖)] = [𝑑(𝑢, 𝑢)− 𝑑(𝑢, 𝑣)]− [𝑑(𝑣, 𝑢)− 𝑑(𝑣, 𝑣)]

= −2𝑑(𝑢, 𝑣)

̸= 0

The last inequality comes from the fact that 𝑢 ̸= 𝑣 and the assumption that the

graph has only positive weight edges. However, we note that this sum is only

non-zero if at least one term in the sum is non-zero. If term 𝑖 is non-zero, then

𝑢𝑣 and 𝑞𝑖−1𝑞𝑖 are related by 𝜃 and is thus in 𝐸𝑘. Thus, we prove the first part

of the lemma.

2. Fix an edge 𝑝ℓ−1𝑝ℓ in 𝑃 and consider the following sum.

𝑡∑︁
𝑖=1

[𝑑(𝑝ℓ−1, 𝑞𝑖−1)− 𝑑(𝑝ℓ−1, 𝑞𝑖)]− [𝑑(𝑝ℓ, 𝑝𝑖−1)− 𝑑(𝑝ℓ, 𝑞𝑖)]

= [𝑑(𝑝ℓ−1, 𝑢)− 𝑑(𝑝ℓ−1, 𝑣)]− [𝑑(𝑝ℓ, 𝑢)− 𝑑(𝑝ℓ, 𝑣)]

We know that because 𝑃 is a shortest path, 𝑑(𝑢, 𝑣) = 𝑑(𝑢, 𝑝ℓ−1)+𝑑(𝑣, 𝑝ℓ−1) and

𝑑(𝑢, 𝑣) = 𝑑(𝑢, 𝑝ℓ) + 𝑑(𝑣, 𝑝ℓ). Substituting, this makes the sum into:

𝑑(𝑢, 𝑣)− 2𝑑(𝑝ℓ−1, 𝑣)− 𝑑(𝑢, 𝑣) + 2𝑑(𝑝ℓ, 𝑣) = 2[𝑑(𝑝ℓ, 𝑣)− 𝑑(𝑝ℓ−1, 𝑣)].

This value is only 0 if 𝑣 is equidistant from 𝑝ℓ and 𝑝ℓ−1, but since they form

an edge on the shortest path between 𝑢 and 𝑣, this is not possible and thus at

least one edge on 𝑄 is related to 𝑝ℓ−1𝑝ℓ by 𝜃 and thus at least one edge in 𝑄 is

in its equivalence class.

31

Now, we move on to the goal of showing that 𝐺 is isomorphic to an isometric

subgraph of Π𝑖𝐺
*
𝑖 . To do so, we define a mapping 𝜋 from 𝐺 to Π𝑖𝐺

*
𝑖 with the goal to

show that 𝜋 is an injection and that shortest paths in 𝐺 correspond to shortest paths

under 𝜋. This will help us show our target property about isometric subgraphs.

First we will define 𝜋 more formally. We will let 𝜋 : 𝑉 (𝐺) → 𝑉 (Π𝑖𝐺
*
𝑖) and will

define 𝜋 as: 𝜋(𝑢) = (𝜋1(𝑢), 𝜋2(𝑢), . . . , 𝜋𝑚(𝑢)). We then must define each 𝜋𝑖, so we let

𝜋𝑖(𝑢) be the node in 𝐺*
𝑖 that corresponds to the connected component of 𝐺′

𝑖 that 𝑢

is a member of. We begin by showing that 𝜋 is an injection.

Claim 2.2.4. As defined in this section, 𝜋 is an injection.

Proof. We show that 𝜋(𝑢) ̸= 𝜋(𝑣) for all 𝑢, 𝑣 ∈ 𝑉 (𝐺). To do so, let 𝑃 be a shortest

path between 𝑢 and 𝑣. We know that if one of the edges is in 𝐸𝑘, then 𝑢 and 𝑣 are

in different connected components of 𝐺′
𝑘 because Lemma 2.2.3 says that all paths

between the two nodes have an edge in 𝐸𝑘. We know that if 𝑢 ̸= 𝑣 then there is at

least one edge in 𝑃 and thus there is at least one index 𝑘 on which 𝜋𝑘(𝑢) ̸= 𝜋𝑘(𝑣).

In many of our proofs, manipulation of the sum of theta-differences over a path

(which we will call a theta-sum) is essential. We will now show an important property

of that sum that we will use in our final proof. Informally, it says that for the theta-

sum along a path, the contribution from the edges in each equivalence class does not

depend on the path taken.

Lemma 2.2.5. Let 𝑃 = (𝑢 = 𝑝0, 𝑝1, . . . , 𝑝𝑛 = 𝑣) and 𝑄 = (𝑢 = 𝑞0, 𝑞1, . . . , 𝑞𝑡 = 𝑣) be

two paths in 𝐺 from 𝑢 to 𝑣. Let 𝑃𝑘 be the set of edges in 𝑃 that are also in 𝐸𝑘 and

let 𝑄𝑘 be the same for 𝑄. Define 𝑇 𝑃
𝑘 :=

∑︀
(𝑝𝑖,𝑝𝑖+1)∈𝑃𝑘

[𝑑(𝑢, 𝑝𝑖)−𝑑(𝑢, 𝑝𝑖+1)]− [𝑑(𝑣, 𝑝𝑖)−

𝑑(𝑣, 𝑝𝑖+1)]. Define 𝑇𝑄
𝑘 the same way for 𝑄𝑘. Then, we claim that 𝑇 𝑃

𝑘 = 𝑇𝑄
𝑘 .

32

Proof. We consider the following equations.

𝑇 𝑃
𝑘 =

∑︁
𝑝𝑖𝑝𝑖+1∈𝑃𝑘

[𝑑(𝑢, 𝑝𝑖)− 𝑑(𝑣, 𝑝𝑖)]− [𝑑(𝑢, 𝑝𝑖+1)− 𝑑(𝑣, 𝑝𝑖+1)]

=
∑︁

𝑝𝑖𝑝𝑖+1∈𝑃𝑘

∑︁
𝑞𝑗𝑞𝑗+1∈𝑄

[𝑑(𝑞𝑗, 𝑝𝑖)− 𝑑(𝑞𝑗+1, 𝑝𝑖)]− [𝑑(𝑞𝑗, 𝑝𝑖+1)− 𝑑(𝑞𝑗+1, 𝑝𝑖+1)]

=
∑︁

𝑝𝑖𝑝𝑖+1∈𝑃𝑘

∑︁
𝑞𝑗𝑞𝑗+1∈𝑄𝑘

[𝑑(𝑞𝑗, 𝑝𝑖)− 𝑑(𝑞𝑗+1, 𝑝𝑖)]− [𝑑(𝑞𝑗, 𝑝𝑖+1)− 𝑑(𝑞𝑗+1, 𝑝𝑖+1)]

=
∑︁

𝑞𝑗𝑞𝑗+1∈𝑄𝑘

∑︁
𝑝𝑖𝑝𝑖+1∈𝑃𝑘

[𝑑(𝑞𝑗, 𝑝𝑖)− 𝑑(𝑞𝑗+1, 𝑝𝑖)]− [𝑑(𝑞𝑗, 𝑝𝑖+1)− 𝑑(𝑞𝑗+1, 𝑝𝑖+1)]

=
∑︁

𝑞𝑗𝑞𝑗+1∈𝑄𝑘

∑︁
𝑝𝑖𝑝𝑖+1∈𝑃𝑘

[𝑑(𝑞𝑗, 𝑝𝑖)− 𝑑(𝑞𝑗, 𝑝𝑖+1)]− [𝑑(𝑞𝑗+1, 𝑝𝑖)− 𝑑(𝑞𝑗+1, 𝑝𝑖+1)]

=
∑︁

𝑞𝑗𝑞𝑗+1∈𝑄𝑘

∑︁
𝑝𝑖𝑝𝑖+1∈𝑃

[𝑑(𝑞𝑗, 𝑝𝑖)− 𝑑(𝑞𝑗, 𝑝𝑖+1)]− [𝑑(𝑞𝑗+1, 𝑝𝑖)− 𝑑(𝑞𝑗+1, 𝑝𝑖+1)]

=
∑︁

𝑞𝑗𝑞𝑗+1∈𝑄𝑘

[𝑑(𝑞𝑗, 𝑢)− 𝑑(𝑞𝑗, 𝑣)]− [𝑑(𝑞𝑗+1, 𝑢)− 𝑑(𝑞𝑗+1, 𝑣)]

= 𝑇𝑄
𝑘

The first equality comes from telescoping the inner sum, the second comes from the

fact that only edges related by 𝜃 can contribute to the sum, so the only edges that

might contribute are those in 𝐸𝑘. The third equality comes from switching the order

of the sums, the fourth comes from switching the order of the terms in the summand,

and the fifth again from the fact that only edges in 𝐸𝑘 contribute. The sixth equality

is by telescoping, and the last equality is by definition of 𝑇𝑄
𝑘 .

From here, we are able to prove our overall goal using Theorem 2.2.6

Theorem 2.2.6. For any two nodes 𝑢, 𝑣 ∈ 𝑉 (𝐺), there is a shortest path between

them in 𝐺 that under 𝜋 is a shortest path in Π𝑖𝐺
*
𝑖 . Because 𝐺 is minimal, this implies

that 𝜋 maps 𝐺 to a subgraph of Π𝑖𝐺
*
𝑖 in which all edges in 𝐸(𝐺) are preserved under

the map and the distance metric is preserved in the subgraph. Thus, for an input

(𝐺, 𝜃), Algorithm 1 produces a pseudofactorization of 𝐺.

Proof. First, we show that if 𝑃 is a shortest path in 𝐺 then the sequence of nodes in

𝑃 under 𝜋 does in fact form a path in Π𝑖𝐺
*
𝑖 . We do so by showing that if there is

33

an edge 𝑎𝑏 ∈ 𝐸(𝐺), then there is an edge 𝜋(𝑎)𝜋(𝑏) ∈ 𝐸(Π𝑖𝐺
*
𝑖) and the edge has the

same weight.

Assume 𝑎𝑏 ∈ 𝐸𝑗. First, let 𝐶𝜋𝑗(𝑎) and 𝐶𝜋𝑗(𝑏) be the connected components of

𝐺′
𝑗 corresponding to nodes 𝜋𝑗(𝑎) and 𝜋𝑗(𝑏) in 𝐺*

𝑗 . We know that 𝐸(𝐺) has an edge

between a node in 𝐶𝜋𝑗(𝑎) and a node in 𝐶𝜋𝑗(𝑏) of weight 𝑤𝐺(𝑎𝑏) (by Lemma 2.2.2). By

the same lemma, this means that all edges between nodes in 𝐶𝜋𝑗(𝑎) and nodes in 𝐶𝜋𝑗(𝑏)

have the same weight and by the definition of 𝐺*
𝑗 , there is an edge between 𝜋𝑗(𝑎) and

𝜋𝑗(𝑏) of that weight. This holds for all edges, which means that any path in 𝐺 still

exists in the image of 𝜋 in Π𝑖𝐺
*
𝑖 , so for any pair 𝑢, 𝑣 ∈ 𝑉 (𝐺), 𝑑(𝑢, 𝑣) ≥ 𝑑*(𝑢, 𝑣), where

𝑑*(·, ·) is the distance metric for Π𝑖𝐺
*
𝑖 .

Now, assume the overall theorem does not hold. Let 𝑢, 𝑣 ∈ 𝑉 (𝐺) be the pair

of nodes with the smallest value of 𝑑*(𝑢, 𝑣) such that 𝑑*(𝜋(𝑢), 𝜋(𝑣)) < 𝑑(𝑢, 𝑣). (We

know that such a pair must exist, by the fact that there must be some pair for which

this distance differs and we know from the previous paragraph that we cannot have

the distance be larger in the product than in the original graph.)

First, we show that any node on a shortest path from 𝜋(𝑢) to 𝜋(𝑣) in the prod-

uct graph cannot be in the image of 𝜋. Consider a node 𝜋(𝑢′) that is in the image

of 𝜋 and on such a shortest path. By the definition of shortest path, we get that

𝑑*(𝜋(𝑢), 𝜋(𝑢′))+𝑑*(𝜋(𝑢′), 𝜋(𝑣)) = 𝑑*(𝜋(𝑢), 𝜋(𝑣)). Additionally, we have 𝑑*(𝜋(𝑢), 𝜋(𝑢′)) =

𝑑(𝑢, 𝑢′) because 𝑑*(𝜋(𝑢), 𝜋(𝑢′)) < 𝑑*(𝜋(𝑢), 𝜋(𝑣)) and we get 𝑑*(𝜋(𝑢′), 𝜋(𝑣)) = 𝑑(𝑢′, 𝑣)

for parallel reasons. Then we get a contradiction:

𝑑(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑢′) + 𝑑(𝑢′, 𝑣)

= 𝑑*(𝜋(𝑢), 𝜋(𝑢′)) + 𝑑*(𝜋(𝑢′), 𝜋(𝑣))

= 𝑑*(𝜋(𝑢), 𝜋(𝑣))

< 𝑑(𝑢, 𝑣).

The first inequality is the triangle inequality and the last line is by the assumption.

Since we have reached a contradiction, we know such a 𝑢′ cannot exist and thus no

node in the image of 𝜋 can be on the shortest path between 𝜋(𝑢) and 𝜋(𝑣) in 𝐺*.

34

We have shown that no node in the image of 𝜋 can be on the shortest path between

𝜋(𝑢) and 𝜋(𝑣), but to get a contradiction, we will now show that such a node must

exist.

Let 𝑢𝑢′ be the first edge on a shortest path from 𝑢 to 𝑣 and let the edge be in

𝐸𝑘. If 𝑃 is the path in question, we show that 𝑃𝑘 is a shortest path in 𝐺*
𝑘. As

discussed in Section 1.2, this implies that 𝑢𝑢′ is an edge on a shortest path from 𝑢 to

𝑣 in Π𝑖𝐺
*
𝑖 . Consider a path 𝑄* = (𝜋𝑘(𝑢) = 𝑞0, 𝑞1, . . . , 𝑞𝑛 = 𝜋𝑘(𝑣)) between 𝜋𝑘(𝑢) and

𝜋𝑘(𝑣). Since the nodes in 𝐺*
𝑘 are defined to be the labels of connected components in

𝐺′
𝑘 containing at least one node in 𝐺, for each 𝑗, there exists 𝑣𝑗 such that 𝜋𝑘(𝑣𝑗) = 𝑞𝑗

(i.e. there is a node in 𝐶𝑞𝑗 in 𝐺′
𝑘). We also have that because 𝑞𝑗𝑞𝑗+1 forms an edge,

there is a pair of nodes in 𝐺 that has an edge between 𝐶𝑞𝑗 and 𝐶𝑞𝑗+1
. Let (𝑥𝑗

𝑗, 𝑥
𝑗
𝑗+1)

be this pair. We have as a superscript the number of the edge we’re considering and

as a subscript the number of the connected component in 𝐺′
𝑘.

We will construct the path 𝑄 from 𝑢 to 𝑣 in 𝐺 shown in Figure 2-4(a). Let 𝑄𝑗 be

a path from 𝑥𝑗
𝑗 to 𝑥𝑗

𝑗+1 that does not include any edges in 𝐸𝑘 and let 𝑄0 be a path

from 𝑢 to 𝑥1
0 and 𝑄𝑛 be a path from 𝑥𝑛

𝑛 to 𝑣. (Since each of the pairs is in the same

connected component of 𝐺′
𝑘, these paths must exist.) Construct the path 𝑄 from 𝑢

to 𝑣 in 𝐺 such that 𝑄 := 𝑄0 + 𝑄1 + 𝑄2 + · · · + 𝑄𝑛 = (𝑢 = 𝑓0, 𝑓1, . . . , 𝑓𝑚 = 𝑣). A

visualization of this construction is given in Figure 2-4. This is a path from 𝑢 to 𝑣 and

we consider the sum 𝑇𝑄
𝑘 =

∑︀
𝑓𝑗𝑓𝑗+1∈𝑄𝑘

[𝑑(𝑣, 𝑓𝑗)− 𝑑(𝑣, 𝑓𝑗+1)]− [𝑑(𝑢, 𝑓𝑗)− 𝑑(𝑢, 𝑓𝑗+1)].

We know from Lemma 2.2.5 that 𝑇 𝑃
𝑘 = 𝑇𝑄

𝑘 . We use this to get

𝑇 𝑃
𝑘 = 𝑇𝑄

𝑘

=
∑︁

𝑞𝑖𝑞𝑖+1∈𝑄𝑘

[𝑑(𝑣, 𝑞𝑖)− 𝑑(𝑣, 𝑞𝑖+1)]− [𝑑(𝑢, 𝑞𝑖)− 𝑑(𝑢, 𝑞𝑖+1)]

≤
∑︁

𝑞𝑖𝑞𝑖+1∈𝑄𝑘

2𝑤(𝑞𝑖𝑞𝑖+1).

Since 𝑃 is a shortest path, every edge must contribute 2 times its weight to the

overall theta-sum (or else we would not be able to get to the total) so we get 𝑇 𝑃
𝑘 =∑︀

𝑝𝑖𝑝𝑖+1∈𝑃𝑘
2𝑤(𝑝𝑖𝑝𝑖+1) ≤

∑︀
𝑞𝑖𝑞𝑖+1∈𝑄𝑘

2𝑤(𝑞𝑖𝑞𝑖+1). Thus, the path 𝑃𝑘 from 𝑢𝑘 to 𝑣𝑘 is a

35

Figure 2-4: We have a visualization of the path constructed in the proof of Theorem
2.2.6.
In subfigure (a), each 𝐶𝑖 represents a connected component in 𝐺′

𝑘, where 𝐸𝑘 is the
equivalence class we’re considering as in the theorem. Starting at 𝑢, we look for a
path 𝑄0 through edges in 𝐶0 to 𝑥1

0, which is any node in 𝐶0 with an edge to 𝐶1. We
then do the same process to find 𝑄1 from 𝑥1

1 to 𝑥2
1 and so on. The dotted line here

represents an arbitrary length path that is not shown.
Subfigure (b) shows part of 𝐺*

𝑘 for the graph in subfigure (a). We have 𝜋𝑘(𝑢) = 𝑞0
and 𝜋𝑘(𝑣) = 𝑞𝑛, and the path 𝑄* = (𝑞0, 𝑞1, . . . , 𝑞𝑛) is an arbitrary path from 𝜋𝑘(𝑢) to
𝜋𝑘(𝑣) through 𝐺*

𝑘. The theorem shows that because of how 𝐺*
𝑘 is constructed, there

must exist a path in 𝐺 like the one shown in subfigure (a), where the only edges in
𝐸𝑘 are the 𝑥𝑗

𝑗−1𝑥
𝑗
𝑗 and the weight of each 𝑥𝑗

𝑗−1𝑥
𝑗
𝑗 in 𝐺 is the same weight as 𝑞𝑗−1𝑞𝑗 in

𝐺*
𝑘.

Subfigure (c) shows an example of this process in the graph from Figure 2-2. In
particular, we consider the pseudofactor shown on the right. When the graph on the
left is isometrically embedded into the product of its pseudofactors (which is shown
in Figure 2-2) with isometric embedding 𝜋, 𝜋𝑘(𝑢) = 𝑞0 and 𝜋𝑘(𝑣) = 𝑞1. We let
𝑄* = (𝑞0, 𝑞1). When constructing 𝑄, we can select 𝑄0 to be (𝑢) (so 𝑥1

0 = 𝑢) and 𝑄1

to be (𝑥1
1, 𝑣). Alternatively, we could select 𝑄0 to be (𝑢, 𝑦10) and 𝑄1 to be (𝑣) (so

𝑣 = 𝑦11). Thus, we see that while the path we construct in this theorem exists, it is
not necessarily unique.

36

shortest path in 𝐺*
𝑘. This means 𝑢𝑘𝑢

′
𝑘 is a first edge on a shortest path in 𝐺*

𝑘, which

means 𝜋(𝑢)𝜋(𝑢′) is a first edge on a shortest path in Π𝑖𝐺
*
𝑖 - a contradiction.

Thus, we can conclude 𝑑(𝑢, 𝑣) = 𝑑*(𝜋(𝑢), 𝜋(𝑣)) and we already showed all edges

are preserved, so 𝐺 is an isometric subgraph of Π𝑖𝐺
*
𝑖 .

Using the previous theorem, we conclude that the proposed process does in fact

produce graphs whose Cartesian product the original graph is an isometric subgraph

of. Additionally, we can show that this is actually an irreducible pseudofactorization

by showing that all of the produced pseudofactors are irreducible.

Lemma 2.2.7. If a minimal graph 𝐺 is the input graph to Algorithm 1 and 𝜃 is the

input relation, the output graphs are all irreducible.

Proof. Using Lemma 2.2.1, we only have to show that the edges in each factor are

all related by 𝜃 (when evaluated on the factor itself). Assume we have two edges,

𝑢𝑗𝑣𝑗 and 𝑥𝑗𝑦𝑗 in 𝐺*
𝑗 for some 𝑗 that are not related by 𝜃 in that graph. Then any

edges in Π𝑖𝐺
*
𝑖 that have this edge as a parent edge are not related by 𝜃. However,

we know that there is an edge 𝑥𝑦 in 𝐺 (and thus in Π𝑖𝐺
*
𝑖) from a node in 𝐶𝑥𝑗

to a

node in 𝐶𝑦𝑗 and an edge 𝑢𝑣 from a node in 𝐶𝑢𝑗
to one in 𝐶𝑣𝑗 where 𝑢𝑣 𝜃 𝑥𝑦. Since 𝜋

is an isometric embedding, 𝜋(𝑥)𝜋(𝑦) 𝜃 𝜋(𝑢)𝜋(𝑣) and these edges have 𝑥𝑗𝑦𝑗 and 𝑢𝑗𝑣𝑗

as their respective parent edges in 𝐺*
𝑗 . However, if 𝑑* is the distance metric for Π𝑖𝐺

*
𝑖

and 𝑑𝑖 is the metric for 𝐺*
𝑖 , we know that:

[𝑑*(𝜋(𝑥), 𝜋(𝑢))− 𝑑*(𝜋(𝑥), 𝜋(𝑣))]− [𝑑*(𝜋(𝑦), 𝜋(𝑢))− 𝑑*(𝜋(𝑢), 𝜋(𝑣))]

=
𝑚∑︁
𝑖=1

[𝑑𝑖(𝜋𝑖(𝑥), 𝜋𝑖(𝑢))− 𝑑𝑖(𝜋𝑖(𝑥), 𝜋𝑖(𝑣))]− [𝑑𝑖(𝜋𝑖(𝑦), 𝜋𝑖(𝑢))− 𝑑𝑖(𝜋𝑖(𝑦), 𝜋𝑖(𝑣))]

= [𝑑𝑗(𝜋𝑗(𝑥), 𝜋𝑗(𝑢))− 𝑑𝑗(𝜋𝑗(𝑥), 𝜋𝑗(𝑣))]− [𝑑𝑗(𝜋𝑗(𝑦), 𝜋𝑗(𝑢))− 𝑑𝑗(𝜋𝑗(𝑦), 𝜋𝑗(𝑣))]

= [𝑑𝑗(𝑥𝑗, 𝑢𝑗)− 𝑑𝑗(𝑥𝑗, 𝑣𝑗)]− [𝑑𝑗(𝑦𝑗, 𝑢𝑗)− 𝑑𝑗(𝑦𝑗, 𝑣𝑗)],

where the second to last equality is due to the fact that 𝜋(𝑥)𝜋(𝑦) is an edge with a

parent in 𝑗 and the last equality is due to how we defined 𝑥, 𝑦, 𝑢, 𝑣. Thus, we get that

any pair of edges in 𝐺*
𝑗 is related by 𝜃.

37

Thus, from Theorem 2.2.6 and Lemma 2.2.7, we conclude that Algorithm 1 with

the input (𝐺, 𝜃) for a minimal weighted 𝐺 produces an irreducible pseudofactorization

of 𝐺.

2.3 Factorization

Feder [11] showed that Algorithm 1 could also be used to find the factorization of a

graph. To do so, he defined a new relation, 𝜏1. For edges 𝑢𝑣, 𝑢𝑣′ ∈ 𝐸(𝐺), 𝑢𝑣 𝜏1 𝑢𝑣′

if and only if there does not exist a 4-cycle containing edges 𝑢𝑣 and 𝑢𝑣′. He further

defined (𝜃 ∪ 𝜏1)
* to be the transitive closure of (𝜃 ∪ 𝜏1) and showed that for an

unweighted graph 𝐺, Algorithm 1 on the input (𝐺, (𝜃 ∪ 𝜏1)
*) produces the prime

factorization of 𝐺. We note that in this section, we are discussing a general weighted

graph, not necessarily a minimal one.

2.3.1 A modified equivalence relation

For the purpose of graph factorization, we first define a property which we call the

square property and which will be useful for factorization.

Definition 2.3.1. Edges 𝑢𝑣, 𝑢𝑣′ ∈ 𝐸(𝐺) satisfy the square property if there ex-

ists a vertex 𝑥 such that 𝑢𝑣𝑥𝑣′ forms a square (four-cycle) with 𝑤𝐺(𝑢𝑣) = 𝑤𝐺(𝑥𝑣′),

𝑤𝐺(𝑢𝑣′) = 𝑤𝐺(𝑥𝑣), 𝑢𝑣 𝜃 𝑥𝑣′, and 𝑢𝑣′ 𝜃 𝑥𝑣. In other words, the two edges must make

up two of the adjacent edges of at least one four-cycle in which the opposite edges

have the same weight and are related by 𝜃. This is depicted visually in Figure 2-5

We now define two relations 𝜃 and 𝜏 as follows:

1. As before, two edges, 𝑥𝑦, 𝑢𝑣 ∈ 𝐸(𝐺) are related by 𝜃 if and only if [𝑑𝐺(𝑥, 𝑢)−

𝑑𝐺(𝑥, 𝑣)]− [𝑑𝐺(𝑦, 𝑢)− 𝑑𝐺(𝑦, 𝑣)] ̸= 0.

2. Two edges 𝑢𝑣, 𝑢𝑣′ ∈ 𝐸(𝐺) are related by 𝜏 if and only if they do not satisfy the

square property. If two edges do not share a common endpoint, they are not

related by 𝜏 .

38

Figure 2-5: If 𝑢𝑣′ 𝜃 𝑣𝑥 and 𝑢𝑣 𝜃 𝑣′𝑥, then existence of the subgraph depicted here
implies that 𝑢𝑣 and 𝑢𝑣′ satisfy the square property.

We note that the 𝜃 relation used here is the same as that used by Graham and

Winkler [13] and the 𝜏 relation is inspired by that used by Feder for factorization of

unweighted graphs [11]. We also let 𝜃 be the transitive closure of 𝜃 and (𝜃 ∪ 𝜏)* be

the transitive closure of (𝜃 ∪ 𝜏). Using these definitions, we prove that we can factor

graphs using Algorithm 1.

2.3.2 Testing primality

Analogously to showing irreducibility with respect to pseudofactorization, in this

section, we show that a graph is prime if its edges are in the same (𝜃∪𝜏)* equivalence

class. In particular, Lemma 2.3.1 proves this fact.

Lemma 2.3.1. For 𝑢𝑣, 𝑥𝑦 ∈ 𝐸(𝐺), if 𝑢𝑣 𝜃 𝑥𝑦 or 𝑢𝑣 𝜏 𝑥𝑦, then for any factorization

of 𝐺, 𝑢𝑣 and 𝑥𝑦 must correspond to edges in the same factor. In other words, if 𝛼

is an isomorphism from 𝐺 to the product of the factors, 𝛼(𝑢)𝛼(𝑣) and 𝛼(𝑥)𝛼(𝑦) have

parent edges in the same factor. From this, we get that if 𝑢𝑣 (𝜃 ∪ 𝜏)* 𝑥𝑦 then 𝑢𝑣 and

𝑥𝑦 correspond to edges in the same factor.

Proof. We will prove the lemma first for the 𝜃 relation and then for the 𝜏 relation.

Throughout the proof of this lemma, we let 𝑑 := 𝑑𝐺 and 𝑑𝑖 := 𝑑𝐺𝑖
. Say there

exists a factorization {𝐺1, 𝐺2, ..., 𝐺𝑚} of 𝐺 with isomorphism 𝛼 such that 𝛼(𝑎) =

39

(𝛼1(𝑎), 𝛼2(𝑎), ..., 𝛼𝑚(𝑎)) for 𝑎 ∈ 𝑉 (𝐺). For simplicity, we let 𝛼𝑖(𝑎) = 𝑎𝑖.

1. Consider 𝑢𝑣 𝜃 𝑥𝑦. Then by Lemma 2.2.1, we get that in any embedding into an

isometric subgraph of the product graph, the images of these two edges have

parents in the same factor. Since 𝛼 is an isomorphism and thus is an isometric

embedding into a subgraph of the product, this claim applies and we get that

the parent edges of 𝛼(𝑢)𝛼(𝑣) and 𝛼(𝑥)𝛼(𝑦) must be in the same factor.

2. Without loss of generality, assume 𝑗 < 𝑙 and consider 𝑢𝑣 𝜏 𝑢𝑣′, and we assume

for contradiction that the above factorization of 𝐺 is one in which 𝛼(𝑢)𝛼(𝑣) and

𝛼(𝑢)𝛼(𝑣′) have parent edges in different factors. We get that there is exactly

one 𝑙 such that 𝑢𝑙 ̸= 𝑣′𝑙 and exactly one 𝑗 such that 𝑢𝑗 ̸= 𝑣𝑗. Since they belong

to different factor graphs, we have 𝑙 ̸= 𝑗.

Now, consider the node (𝑢1, . . . , 𝑢𝑗−1, 𝑣𝑗, 𝑢𝑗+1, . . . , 𝑢𝑙−1, 𝑣
′
𝑙, 𝑢𝑙+1, . . . , 𝑢𝑚) in Π𝑖𝐺𝑖.

Since the vertex set of Π𝑖𝐺𝑖 is the Cartesian product of the 𝑉 (𝐺𝑖), this node

must be in Π𝑖𝐺𝑖 and since 𝛼 is a bijection, there must exist 𝑥 ∈ 𝑉 (𝐺) such

that 𝛼(𝑥) equals this node. We also know that 𝑥 must have an edge to 𝑣 since

𝑥𝑖 = 𝑣𝑖 for all 𝑖 ̸= 𝑙 and 𝑣′𝑙𝑣𝑙 ∈ 𝐸(𝐺𝑙). It also has an edge to 𝑣′ since 𝑥𝑖 = 𝑣′𝑖 for

all 𝑖 ̸= 𝑗 and 𝑣𝑗𝑣
′
𝑗 ∈ 𝐸(𝐺𝑗).

Thus, 𝑢𝑣𝑥𝑣′ is a square. Additionally, we know that weights on opposite sides

of the square are equal because they correspond to the same edge in the same

factor graph. We can also show that opposite edges are related by 𝜃. We will

only show this for 𝑢𝑣 𝜃 𝑥𝑣′ and appeal to symmetry for the other argument. As

before, we can rewrite [𝑑𝐺(𝑢, 𝑥)− 𝑑𝐺(𝑢, 𝑣′)]− [𝑑𝐺(𝑣, 𝑥)− 𝑑𝐺(𝑣, 𝑣′)] as the sum:

𝑚∑︁
𝑖=1

[𝑑𝐺𝑖
(𝑢𝑖, 𝑥𝑖)− 𝑑𝐺𝑖

(𝑢𝑖, 𝑣
′
𝑖)]− [𝑑𝐺𝑖

(𝑣𝑖, 𝑥𝑖)− 𝑑𝐺𝑖
(𝑣𝑖, 𝑣

′
𝑖)]

Since 𝑢 and 𝑣 only differ on coordinate 𝑗, this becomes:

[𝑑𝑗(𝑢𝑗, 𝑥𝑗 = 𝑣𝑗)− 𝑑𝑗(𝑢𝑗, 𝑣
′
𝑗 = 𝑢𝑗)]− [𝑑𝑗(𝑣𝑗, 𝑥𝑗 = 𝑣𝑗)− 𝑑𝑗(𝑣𝑗, 𝑣

′
𝑗 = 𝑢𝑗)] = 2𝑑𝑗(𝑢𝑗, 𝑣𝑗)

̸= 0.

40

The last inequality comes from the fact that 𝑣𝑗 ̸= 𝑢𝑗 and we assume that all

distances are non-zero. Thus, 𝑢𝑣 𝜃 𝑥𝑣′ and by a symmetric argument 𝑢𝑣′ 𝜃 𝑥𝑣.

This means 𝑥 is such that 𝑢𝑣 and 𝑢𝑣′ satisfy the square property, which means

they cannot be related by 𝜏 .

Thus, if two edges are related by 𝜃 or by 𝜏 , then they correspond to edges in the

same factor for any factorization of 𝐺. This property is preserved under the transitive

closure, so if two edges are related by (𝜃 ∪ 𝜏)* then they must correspond to edges in

the same factor.

In the following section, we will show that Algorithm 1 with (𝜃 ∪ 𝜏)* as the input

relation gives a prime factorization of the input graph. Since the algorithm outputs

one graph for each equivalence class of the given relation, combined with Lemma

2.3.1, this tells us that a graph is prime if and only if all of its edges are in the same

equivalence class of (𝜃 ∪ 𝜏)*.

2.3.3 An algorithm for factorization

In this section, we show that Algorithm 1 with inputs 𝐺 and (𝜃∪𝜏)* produces a prime

factorization of 𝐺. To do so, we will prove a series of lemmas. Our first goal is to

show that the algorithm in question is well-defined for general weighted graphs and

with the input relation (𝜃∪𝜏)*. We use Lemma 2.3.2 to show this, and we note that it

actually proves a stronger statement that we will continue to use later. Additionally,

we note that throughout this section, we will refer to 𝐺′
𝑘 and 𝐺*

𝑘 as they are used in

the algorithm itself.

Lemma 2.3.2. If 𝐶𝑎, 𝐶𝑏 are connected components in 𝐺′
𝑘 and there exists 𝑥 ∈ 𝐶𝑎, 𝑦 ∈

𝐶𝑏 such that 𝑥𝑦 is an edge with weight 𝑤𝑎𝑏, then for each 𝑢 ∈ 𝐶𝑎 there exists exactly

one 𝑣 ∈ 𝐶𝑏 such that 𝑢𝑣 forms an edge and that edge has weight 𝑤𝑎𝑏.

Proof. Throughout this proof, we take 𝑑(·, ·) to be the distance function on 𝐺. First,

we have that if 𝑢𝑣 is an edge between 𝐶𝑎, 𝐶𝑏, then there cannot exist a distinct 𝑣′ ∈ 𝐶𝑏

41

such that 𝑢𝑣′ is an edge. This proof is identical to that of Lemma 2.2.2 so we do not

repeat it here.

Now we have that a node in 𝐶𝑎 cannot have edges to more than one node in 𝐶𝑏,

and we expand on that to show that each 𝑢 ∈ 𝐶𝑎 has an edge to at least one node

in 𝐶𝑏 and that that edge has weight 𝑤𝑎𝑏. Let 𝑃 (𝑢) be a path from 𝑢 to 𝑥 that does

not include any edges in 𝐸𝑘 and has the smallest number of edges of all such paths.

(Such a path must exist because 𝑢 and 𝑥 are in the same connected component of

𝐺′
𝑘.)

In the base case, there are zero edges in 𝑃 . In this case, we must have 𝑢 = 𝑥.

By the premise of the lemma, 𝑥 has an edge of weight 𝑤𝑎𝑏 to 𝑦 ∈ 𝐶𝑏, proving the

inductive hypothesis.

Now, we assume that for all nodes in 𝐶𝑎 with such a path 𝑃 of 𝑛 edges, the lemma

holds. We let 𝑢 be a node such that 𝑃 (𝑢) has 𝑛 + 1 edges and let 𝑢′ be the second

node on this path. By definition, we know that 𝑃 (𝑢′) has 𝑛 edges. By the inductive

assumption, there exists 𝑣′ ∈ 𝐶𝑏 such that 𝑢′𝑣′ ∈ 𝐸(𝐺) and with 𝑤(𝑢′𝑣′) = 𝑤𝑎𝑏. We

know that 𝑢𝑢′ and 𝑢′𝑣′ are not related by 𝜏 (or else 𝑢𝑢′ would be in 𝐸𝑘), so they

must fulfill the square property. Let 𝑣 be the node such that 𝑢𝑢′𝑣′𝑣 is a square with

opposite edges of equal weight and relatd by 𝜃. Because 𝑢𝑢′ ̸∈ 𝐸𝑘, we get 𝑣𝑣′ /∈ 𝐸𝑘

and since 𝑣′ ∈ 𝐶𝑏, we get that 𝑣 ∈ 𝐶𝑏. This means 𝑢𝑣 is an edge between 𝐶𝑎 and 𝐶𝑏

with weight 𝑤𝑎𝑏, proving the lemma.

We now write Lemma 2.3.3, which is identical to Lemma 2.2.3, but now refers to

the equivalence classes of our new relation. We note that the proof of this claim is

identical to that of the original claim, so we do not repeat it here.

Lemma 2.3.3. We have the following two facts about the equivalence classes of (𝜃 ∪

𝜏)*.

1. If 𝑢𝑣 forms an edge and is in equivalence class 𝐸𝑘, then for any path 𝑄 = (𝑢 =

𝑞0, 𝑞1, . . . , 𝑞𝑡 = 𝑣) between the two nodes, there is at least one edge from 𝐸𝑘.

2. Let 𝑃 = (𝑢 = 𝑝0, 𝑝1, . . . , 𝑝𝑛 = 𝑣) be a shortest path from 𝑢 to 𝑣. If 𝑃 contains an

42

edge in the equivalence class 𝐸𝑘, then for any path 𝑄 = (𝑢 = 𝑞0, 𝑞1, . . . , 𝑞𝑡 = 𝑣)

there is at least one edge from 𝐸𝑘.

We now want to show that 𝐺 is ismorphic to Π𝑖𝐺
*
𝑖 , so we define an isomorphism

𝛼 : 𝑉 (𝐺)→ 𝑉 (Π𝑖𝐺
*
𝑖). For ease of notation, we let 𝛼(𝑢) = (𝛼1(𝑢), 𝛼2(𝑢), . . . , 𝛼𝑚(𝑢)) =

(𝑢1, 𝑢2, . . . , 𝑢𝑚). We define the function such that 𝛼𝑖(𝑢) is the name of the connected

component of 𝐺′
𝑖 that 𝑢 is a member of. This is the same way we defined 𝜋 in the

previous section, but because we are using a new equivalence relation, we show that

we now have an isomorphism. We now want to show that 𝛼 is a bijection and that

𝑢𝑣 is an edge if and only if 𝛼(𝑢)𝛼(𝑣) is an edge (and that they have the same weight

if so), which will show that 𝛼 is an isomorphism. We use Lemma 2.3.4 to show the

first part of this fact.

Lemma 2.3.4. As defined in the preceding paragraph, 𝛼 is a bijection.

Proof. First, we show that 𝛼 is an injection (i.e. 𝛼(𝑢) ̸= 𝛼(𝑣) for all 𝑢, 𝑣 ∈ 𝑉 (𝐺)).

This is identical to the proof that 𝜋 is an injection in Lemma 2.2.4, but we reiterate

it here using the terminology in this section. To show 𝛼 is an injection, let 𝑃 be a

shortest path between 𝑢 and 𝑣. We know that if one of the edges is in 𝐸𝑘, then 𝑢

and 𝑣 are in different connected components of 𝐺′
𝑘 because Lemma 2.3.3 says that all

paths between the two nodes have an edge in 𝐸𝑘. We know that if 𝑢 ̸= 𝑣 then there is

at least one edge in 𝑃 and thus there is at least one index 𝑘 on which 𝛼𝑘(𝑢) ̸= 𝛼𝑘(𝑣).

Now, we show that 𝛼 is a surjection by showing that all nodes in Π𝑖𝐺𝑖 are in the

image of 𝛼. Assume for contradiction that there is at least one node in the product

not in the image of 𝛼. Let (𝑢1, 𝑢2, . . . , 𝑢𝑚) be one such node with an edge to a node

(𝑢1, . . . , 𝑥𝑘, . . . , 𝑢𝑚) in the image of 𝛼 whose pre-image is 𝑥. Since the two nodes have

an edge of some weight 𝑤𝑥𝑢 between them, we know that there is an edge between 𝐶𝑢𝑘

and 𝐶𝑥𝑘
of weight 𝑤𝑥𝑢 and Lemma 2.3.2 tells us that every node in 𝐶𝑥𝑘

has an edge

of that weight to exactly one node in 𝐶𝑢𝑘
. Let 𝑢′ be the node in 𝐶𝑢𝑘

that 𝑥 has an

edge to in 𝐺. Because there is an edge between 𝑢′ and 𝑥, we know that they appear

in the same connected component for all 𝐺′
𝑖 with 𝑖 ̸= 𝑘. This tells us 𝛼𝑖(𝑥) = 𝛼𝑖(𝑢

′)

43

for all 𝑖 ̸= 𝑘 and thus 𝛼(𝑢′) = (𝑢1, 𝑢2, . . . , 𝑢𝑚), which means (𝑢1, 𝑢2, . . . , 𝑢𝑚) is in the

image of 𝛼.

Finally, we use the next theorem to show that 𝛼 is an isomorphism.

Theorem 2.3.5. For 𝑢, 𝑣 ∈ 𝑉 (𝐺), 𝑢𝑣 ∈ 𝐸(𝐺) ⇐⇒ 𝛼(𝑢)𝛼(𝑣) ∈ 𝐸(Π𝑖𝐺
*
𝑖). If they

do form edges, they have the same weight. Thus, Algorithm 1 on an input (𝐺, (𝜃∪𝜏)*)

outputs a factorization of 𝐺.

Proof. We divide this proof into two cases based on the number of indices 𝑖 on which

𝛼𝑖(𝑢) ̸= 𝛼𝑖(𝑣). We note that there must be at least one such index, as 𝛼 is a bijection.

1. Case 1: There is more than one index on which 𝛼𝑖(𝑢) ̸= 𝛼𝑖(𝑣). We know that

there is no edge between 𝛼(𝑢) and 𝛼(𝑣) in this case, by definition of the Cartesian

product. We also know that there are two 𝐺′
𝑖 in which 𝑢 and 𝑣 are in different

connected components, which is impossible if there is an edge between them,

as that edge is a path between them and it can only belong to one equivalence

class. Thus, there is no edge between 𝑢 and 𝑣 either.

2. Case 2: There is exactly one 𝑘 on which 𝛼𝑘(𝑢) ̸= 𝛼𝑘(𝑣). If there is no edge

between 𝛼𝑘(𝑢) and 𝛼𝑘(𝑣) in 𝐺*
𝑘, then we know that there is no edge in 𝐺′

𝑘

between 𝐶𝛼𝑘(𝑢) and 𝐶𝛼𝑘(𝑣) so we can’t have an edge between 𝑢 and 𝑣 (as that

would create such an edge). If there is any edge between 𝛼𝑘(𝑢) and 𝛼𝑘(𝑣) in

𝐺*
𝑘 of weight 𝑤𝑢𝑣 and by Lemma 2.3.2, we have that all nodes in 𝐶𝛼𝑘(𝑢) have

an edge to exactly one node in 𝐶𝛼𝑘(𝑣). Let 𝑣′ ∈ 𝐶𝛼𝑘(𝑣) be the node that 𝑢 has

an edge to. Because they share an edge, 𝛼𝑖(𝑣) = 𝛼𝑖(𝑢) = 𝛼𝑖(𝑣
′) for all 𝑖 ̸= 𝑘 so

𝛼(𝑣) = 𝛼(𝑣′). Since 𝛼 is a bijection, this means 𝑣 = 𝑣′ and thus 𝑢𝑣 is an edge

of the same weight as 𝛼(𝑢)𝛼(𝑣).

The two parts of the proof together show the theorem.

Theorem 2.3.5 shows that there is an isomorphism between the input graph to

Algorithm 1 and the Cartesian product of the output graphs when the input relation

is (𝜃 ∪ 𝜏)*, implying an 𝑂(|𝐸|2) time factorization of 𝐺. We can also show that the

output graphs themselves are prime. We do so using the following lemma.

44

Lemma 2.3.6. If 𝐺 is the input graph to Algorithm 1 with (𝜃∪𝜏)*, the output graphs

are all prime.

Proof. Using Lemma 2.3.1, we only have to show that the edges in each factor are

all related by (𝜃 ∪ 𝜏)* (when evaluated on the factor itself). We know that a factor

𝐺*
𝑖 appears as an isometric subgraph of Π𝑖𝐺

*
𝑖 (and thus as an isometric subgraph of

𝐺) by definition of the Cartesian product. We know that all edges in this isometric

subgraph are in the same equivalence class of (𝜃∪ 𝜏)* because their pre-images under

𝛼 are and 𝛼 is an isomorphism. This implies their parent edges are all related by

(𝜃 ∪ 𝜏)* so 𝐺*
𝑖 is prime.

Using the above lemma and theorem, we see that the algorithm in question pro-

duces a prime factorization of the input graph.

2.3.4 Uniqueness of prime factorization

We additionally claim that for any graph 𝐺, there is at most one set {𝐺1, 𝐺2, . . . , 𝐺𝑚}

(up to graph isomorphisms) of graphs that form a prime factorization of 𝐺.

Theorem 2.3.7. For a given weighted graph 𝐺, there is at most one set of weighted

graphs {𝐺1, 𝐺2, . . . , 𝐺𝑚} for which no graph is isomorphic to 𝐾1 and the set forms a

factorization of 𝐺.

Proof. For contradiction, assume that there are two such sets, 𝒢 = {𝐺1, 𝐺2, . . . , 𝐺𝑚}

and 𝒢 ′ = {𝐺′
1, 𝐺

′
2, . . . , 𝐺

′
𝑚′}. Let 𝛼 and 𝛽 be isomorphisms from 𝐺 to the product

of the graphs in 𝒢 and 𝒢 ′, respectively. We will define a mapping 𝑓 : 𝒢 → 𝒢 ′ as

follows. If there exists an edge 𝑢𝑣 ∈ 𝐸(𝐺) with 𝛼𝑖(𝑢) ̸= 𝛼𝑖(𝑣) and 𝛽𝑗(𝑢) ̸= 𝛽𝑗(𝑣),

then 𝑓(𝐺𝑖) = 𝐺′
𝑗. We can now show that 𝑓 is a well-defined bijection. First, we

note that by Lemma 2.3.2, if two edges are related by (𝜃 ∪ 𝜏)*, then they must map

to edges corresponding to the same factor in the factorization. Thus, if there exists

𝑢𝑣, 𝑥𝑦 ∈ 𝐸(𝐺) such that 𝑢𝑣 and 𝑥𝑦 have their parent edges in factor 𝑖 in 𝒢, then

those edges must also have their parent edges in the same factor in 𝒢 ′, meaning 𝐺𝑖 is

45

mapped to exactly one 𝐺′
𝑗. The reverse reasoning also shows that each graph in 𝒢 ′ is

mapped to by exactly one graph in 𝒢.

Now, we must show that for each 𝐺𝑖 ∈ 𝒢, 𝑓(𝐺𝑖) is isomorphic to 𝐺𝑖. We know

that 𝐺𝑖 appears as a subgraph of 𝐺, with all edges related by (𝜃 ∪ 𝜏)*. Because this

subgraph must appear in any Cartesian product and all edges must be related by this

relation, we know that it must appear as a subgraph of 𝑓(𝐺𝑖). The reverse reasoning

implies that 𝑓(𝐺𝑖) and 𝐺𝑖 are isomorphic.

Thus, from this we get that Algorithm 1 with input (𝐺, (𝜃 ∪ 𝜏)*) for a general

graph 𝐺 produces a prime factorization of 𝐺.

2.4 Computing the transitive closure of a relation

In order to address runtime and prepare for the following section, we will discuss

another view on how to compute the equivalence classes of the transitive closure of

a relation 𝑅 on the edges of a graph 𝐺 = (𝑉,𝐸) whose transitive closure is also

symmetric and reflexive. To do this, we define a new graph 𝐺𝑅 = (𝑉𝑅, 𝐸𝑅). The

vertices of this graph are the edges of the original graph and there is an edge between

two vertices if and only if the corresponding edges in the original graph are related

by 𝑅. The connected components of the graph are then the equivalence classes of the

original graph under the transitive closure of 𝑅. The time to compute the connected

components can be found using BFS in 𝑂(|𝑉𝑅|+ |𝐸𝑅|) time. As an upper bound, we

know that once this graph is computed, |𝑉𝑅| = |𝐸| and |𝐸𝑅| = 𝑂(|𝑉𝑅|2) = 𝑂(|𝐸|2).

Thus, computing the connected components with BFS takes at most 𝑂(|𝐸|2) time.

If further bounds can be placed on the number of edges in 𝐺𝑅, this time can be

decreased further. Figure 2-6 shows an example of how 𝐺𝜃 is constructed for a given

input graph.

46

Figure 2-6: Subfigure (b) shows 𝐺𝜃 when when 𝐺 is equal to the graph in subfigure
(a). Subfigure (c) shows how 𝐺𝜃 determines the equivalence classes of the edges in 𝐺
under 𝜃, where edges of the same color are in the same equivalence class. Subfigure
(e) shows 𝐺𝜃 when the input graph is that in subfigure (d) and subfigure (f) shows
the equivalence classes of the edges in subfigure (d).

47

2.4.1 Runtime for pseudofactorization

To perform Graham and Winkler’s algorithm, we compute the equivalence classes of

𝜃, then for each equivalence class we perform linear time work by removing all edges

in the equivalence class, computing the condensed graph, and checking which nodes

in the new graph should have edges between them. In the worst case, each edge is in

its own equivalence class, so we do 𝑂(|𝑉 ||𝐸|+ |𝐸|2) = 𝑂(|𝐸|2) work since the graph

is connected. We additionally have to compute the equivalence classes of 𝜃, which

we can do by computing 𝐺𝜃 and finding the connected components. If we first find

all pairs shortest path (APSP) distances, we can check if any pair of edges 𝑎𝑏, 𝑥𝑦 is

related by 𝜃 in 𝑂(1) time. Thus, once we have found all of these distances, we can

compute all edges from a given node in 𝑂(|𝑉𝜃|) = 𝑂(|𝐸|) time, for a total of 𝑂(|𝐸|2)

time and then we take 𝑂(|𝐸|2) time to compute the connected components. Thus,

total runtime is 𝑂(|𝐸|2) plus APSP computation time, which is currently known to be

𝑂(|𝑉 |2 log log |𝑉 |+|𝑉 ||𝐸|) [18] and thus gives us a runtime of 𝑂(|𝑉 |2 log log |𝑉 |+|𝐸|2)

overall.

2.4.2 Runtime for factorization

For factorization using Algorithm 1, we can again bound the runtime of the main loop

by 𝑂(|𝐸|2) and thus just have to consider the time needed to compute the equivalence

classes of (𝜃∪𝜏)*. We can first compute all distances using a known APSP algorithm.

From here, we can determine all edges in 𝐺𝜃∪𝜏 that occur as a result of 𝜃 relations,

and thus we only have to add in edges that occur as a result of 𝜏 relations. To do

this, we can compare each pair of edges related by 𝜃. If we have two edges of the

format 𝑎𝑏 and 𝑐𝑑 that are related by 𝜃 and have the same edge weight, we can check

if 𝑎𝑐 and 𝑏𝑑 exist as edges and have equal weights and an edge between them in 𝐺𝜃.

If so, we have that adjacent edges in this 4-cycle are not related by 𝜏 . From this,

we can construct a graph on the edges in which there is an edge between every pair

of edges that are not related by 𝜏 . To get the edges of 𝐺𝜃∪𝜏 , then we simply have

to add all edges from 𝐺𝜃 and edges between all pairs of vertices that do not have

48

an edge between them in this new graph. For a given pair of edges, this is constant

time lookup in the graph 𝐺𝜃, so it is 𝑂(|𝐸|2) time to construct the new graph. Thus,

it is 𝑂(|𝐸|2) total time to construct 𝐺𝜃∪𝜏 and another 𝑂(|𝐸|2) to get its connected

components. This brings our total runtime for graph factorization up to 𝑂(|𝐸|2) plus

APSP time, which at the moment is 𝑂(|𝑉 |2 log log |𝑉 |+ |𝐸|2) total.

2.5 Improved runtime for pseudofactorization

In the section on pseudofactorization, we showed that Graham and Winkler’s algo-

rithm on a weighted graph can be used to pseudofactor a minimal weighted graph.

For a weighted graph, this algorithm takes 𝑂(|𝐸|2) time plus the time to compute all

pairs shortest paths, which at the moment is 𝑂(|𝑉 |2 log log |𝑉 |+ |𝑉 ||𝐸|) [18]. Thus,

this algorithm takes 𝑂(|𝑉 |2 log log |𝑉 |+ |𝐸|2) time. For unweighted graphs, this time

is just 𝑂(|𝐸|2). Feder [11] showed that for unweighted graphs, rather than using

the equivalence classes of 𝜃, the same algorithm could use an alternative equivalence

relation 𝜃𝑇 , which has the same equivalence classes but whose classes are faster to

compute. In particular, 𝜃𝑇 is defined for a particular spanning tree 𝑇 of the graph.

Two edges 𝑎𝑏, 𝑥𝑦 are related by 𝜃𝑇 if and only if 𝑎𝑏 𝜃 𝑥𝑦 and at least one of 𝑎𝑏, 𝑥𝑦 is

in the spanning tree 𝑇 . As before, 𝜃𝑇 is the transitive closure of 𝜃𝑇 . Feder showed

that for an arbitrary tree 𝑇 , this equivalence relation could be used in Graham and

Winkler’s algorithm to produce a psuedofactorization of an unweighted input graph.

Because 𝐺𝜃𝑇 can be computed in 𝑂(|𝑉 ||𝐸|) time and 𝜃𝑇 can only have up to |𝑉 | − 1

equivalence classes, this brings the total time for computing the pseudofactorization

of an unweighted graph down to 𝑂(|𝑉 ||𝐸|).

In the case of weighted graphs, we will show that we can find a tree 𝑇 * such that

𝜃𝑇 * has the same equivalence classes as 𝜃. First, we reiterate proof that 𝜃𝑇 * is an

equivalence relation by showing that 𝜃𝑇 is an equivalence relation on the edges of

𝐺 for any spanning tree 𝑇 of 𝐺. (This is no different than for unweighted graphs,

a proof of which can be found in [11], but we reiterate it here to emphasize that it

still holds for weighted graphs.) First, since 𝜃𝑇 is by definition transitive, we only

49

need to show reflexivity and symmetry. The relation is clearly symmetric because 𝜃

is symmetric. Take 𝑎𝑏 ∈ 𝐸(𝐺). Because 𝑇 is a spanning tree, we know there is a

path 𝑃 = (𝑎 = 𝑝0, 𝑝1, . . . , 𝑝𝑛 = 𝑏) from 𝑎 to 𝑏 that uses only edges in 𝑇 . We get that∑︀
𝑖[𝑑(𝑎, 𝑝𝑖)−𝑑(𝑎, 𝑝𝑖−1)]− [𝑑(𝑏, 𝑝𝑖)−𝑑(𝑏, 𝑝𝑖−1)] = [𝑑(𝑎, 𝑏)−𝑑(𝑎, 𝑎)]− [𝑑(𝑏, 𝑏)−𝑑(𝑏, 𝑎)] =

2𝑑(𝑎, 𝑏) ̸= 0, so there must exist 𝑝𝑗𝑝𝑗−1 such that 𝑎𝑏 𝜃 𝑝𝑗𝑝𝑗−1, and since 𝑝𝑗𝑝𝑗−1 ∈ 𝑇 ,

this means that 𝑎𝑏 𝜃𝑇 𝑝𝑗𝑝𝑗−1 𝜃𝑇 𝑎𝑏 (where the last step is by symmetry). This means

that 𝑎𝑏 𝜃𝑇 𝑎𝑏 and thus the relation is reflexive as well. Thus, 𝜃𝑇 is an equivalence

relation for any 𝑇 and we can discuss finding its equivalence classes. We also make

the following claim about the equivalence classes:

Claim 2.5.1. Let 𝐺 be a graph with a spanning tree 𝑇 and let 𝑢𝑣 ∈ 𝐸(𝐺) be such

that [𝑢𝑣]𝜃𝑇 is 𝑢𝑣’s equivalence class under 𝜃𝑇 and [𝑢𝑣]𝜃 is 𝑢𝑣’s equivalence class under

𝜃. Then [𝑢𝑣]𝜃𝑇 ⊆ [𝑢𝑣]𝜃.

Proof. Take 𝑥𝑦 ∈ [𝑢𝑣]𝜃𝑇 . Since 𝑢𝑣 𝜃𝑇 𝑥𝑦, there must exist a sequence of edges

such that 𝑢𝑣 = 𝑢0𝑣0 𝜃𝑇 𝑢1𝑣1 𝜃𝑇 · · · 𝜃𝑇 𝑢𝑛𝑣𝑛 = 𝑥𝑦. We have that 𝑢𝑖𝑣𝑖 𝜃𝑇 𝑢𝑖+1𝑣𝑖+1 if

and only if 𝑢𝑖𝑣𝑖 𝜃 𝑢𝑖+1𝑣𝑖+1 and at least one edge is in the tree. Thus, we know that

𝑢𝑣 = 𝑢0𝑣0 𝜃 𝑢1𝑣1 𝜃 · · · 𝜃 𝑢𝑛𝑣𝑛 = 𝑥𝑦, which means 𝑢𝑣 𝜃 𝑥𝑦. Thus 𝑥𝑦 ∈ [𝑢𝑣]𝜃.

To find these equivalence classes, we will use Algorithm 2 to compute an appropri-

ate tree 𝑇 *. Once we have such a tree and we have computed APSP, we can compute

the equivalence classes of 𝜃𝑇 * in 𝑂(|𝑉 ||𝐸|) time, as this only requires comparing each

edge in 𝑇 * to each edge in the graph and computing if the two edges are related by

𝜃, which can be done in constant time for each pair.

Informally, Algorithm 2 works by getting any spanning tree to start out and

repeatedly modifying it to make the equivalence classes under the relation for the

new spanning tree look more like the equivalence classes under 𝜃. It does so by

looking at a particular equivalence class for 𝜃𝑇 and for each edge in that equivalence

class, checking that every edge in the tree is in the current equivalence class or an

already processed one, and swapping the edge into the tree if this does not hold. The

idea behind this process is to try to grow the equivalence class we’re working on as

much as possible until it is the same as the equivalence class under 𝜃.

50

Algorithm 2 Algorithm for breaking up a graph over a relation
Input: A weighted graph 𝐺 = (𝑉,𝐸,𝑤𝐺) and all pairs of distances between nodes.
Output: A tree 𝑇 * such that the equivalence classes of 𝜃 are the same as those of
𝜃𝑇 * on 𝐺.

Using BFS or DFS, find any spanning tree of 𝐺, which we will call 𝑇 .
Compute 𝐺𝜃𝑇

Set 𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑← 𝑉
Set current-class ← 0
while 𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 is not empty do

Pick 𝑥𝑦 ∈ 𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑
Run BFS to find all nodes reachable from 𝑥𝑦 in 𝐺𝜃𝑇

Mark all newly discovered edges with the number current-class in 𝐺
Set 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒← all nodes reachable from 𝑥𝑦 in 𝐺𝜃𝑇

while 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 is not empty do
Pick 𝑎𝑏 ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒
Find the path 𝑃 from 𝑎 to 𝑏 in the tree 𝑇
if there is an edge 𝑢𝑣 ∈ 𝑃 that is not marked with a class number then

Create a new spanning tree 𝑇 ′ from 𝑇 by adding 𝑎𝑏 and removing 𝑢𝑣
Set 𝑇 ← 𝑇 ′

Update 𝐺𝜃𝑇 based on the new 𝑇
Update 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 to add any newly reachable nodes from 𝑥𝑦 in 𝐺𝜃𝑇

Mark any newly reachable edges with current-class
Remove 𝑎𝑏 from 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 and from 𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑

current-class ← current-class +1

return 𝑇

51

We will first justify that this algorithm works correctly and then that it runs in

𝑂(|𝑉 ||𝐸|) time. In particular, during the runtime section, we will go into more detail

about how to update 𝐺𝜃𝑇 efficiently, but for now we take for granted that we update

the graph correctly whenever needed.

2.5.1 Correctness of Algorithm 2

To prove that Algorithm 2 works correctly, we will show an invariant for the outer

while loop.

Invariant: If at the top of the while loop, if an edge 𝑥𝑦 is not in the set

𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑, then for the current tree 𝑇 , [𝑥𝑦]𝜃𝑇 = [𝑥𝑦]𝜃 where [𝑥𝑦]𝑅 is the equiva-

lence class of 𝑥𝑦 over the equivalence relation 𝑅.

This invariant clearly holds in the base case, as in the first round of the while

loop, all edges are in 𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 and thus this is vacuously true.

Note that [𝑥𝑦]𝜃𝑇 = [𝑥𝑦]𝜃 if and only if 𝑥𝑦’s connected component in 𝐺𝜃𝑇 includes

the same nodes as that in 𝐺𝜃. Thus, another way of phrasing the invariant is by saying

that for any 𝑥𝑦 ∈ 𝑉 (𝐺𝜃𝑇) such that 𝑥𝑦 /∈ 𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑, 𝐶𝜃𝑇 (𝑥𝑦) (𝑥𝑦’s connected

component in 𝐺𝜃𝑇) has the same nodes as 𝐶𝜃(𝑥𝑦) (𝑥𝑦’s connected component in 𝐺𝜃).

Consider a particular round of the while loop in which the edge we select from

𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 is 𝑥𝑦. Throughout the loop, we add and remove some edges from 𝐺𝜃𝑇

as we alter the tree. In particular, when we remove an edge 𝑢𝑣, from 𝑇 we may

remove some edges that are adjacent to the node 𝑢𝑣 in 𝐺𝜃𝑇 . Removing edges from

the tree 𝑇 to create a new tree 𝑇 ′ can potentially cause two edges, 𝑢1𝑣1 and 𝑢2𝑣2 that

were related by 𝜃𝑇 not to be related by 𝜃𝑇 ′ , but in the following lemma we restrict

the kind of edges for which this may be true.

Lemma 2.5.2. If an edge 𝑢𝑣 is removed from a spanning tree 𝑇 and replaced with a

new edge 𝑎𝑏 to create a new spanning tree 𝑇 ′ and we have edges 𝑢1𝑣1, 𝑢2𝑣2 such that

𝑢1𝑣1 𝜃𝑇 𝑢2𝑣2 but 𝑢1𝑣1 ̸ 𝜃𝑇 ′ 𝑢2𝑣2, then one of 𝑢1𝑣1 and 𝑢2𝑣2 is equal to 𝑢𝑣.

Proof. We know that 𝐺𝜃𝑇 and 𝐺𝜃𝑇 ′ are identical to 𝐺𝜃, but restricted to only keep

edges adjacent to nodes that correspond to edges in 𝑇 and 𝑇 ′, respectively. Thus,

52

Figure 2-7: Subfigure (a) depicts an input graph 𝐺, and subfigure (b) shows 𝐺𝜃.
Subfigure (c) shows 𝐺 with a spanning tree 𝑇 (edges highlighted in red) and subfigure
(d) shows 𝐺𝜃𝑇 . In particular, the nodes in subfigure (d) whose names are highlighted
in red correspond to edges in 𝐺 that exist in the spanning tree, and the graph is
identical to that in 𝐺𝜃 but with edges that are not adjacent to a red node removed.
Subfigure (e) shows that 𝐺𝜃 and 𝐺𝜃𝑇 produce the same equivalence classes for the
edges of 𝐺.

by swapping out 𝑢𝑣 for 𝑎𝑏, the only edges that may have been deleted from 𝐺𝜃𝑇 to

form 𝐺𝜃𝑇 ′ are those adjacent to 𝑢𝑣. Since edges between nodes in 𝐺𝜃𝑇 correspond to

exactly the items that are related by 𝜃𝑇 , this means that the only way two edges can

be related by 𝜃𝑇 but not by 𝜃𝑇 ′ is if one of them is 𝑢𝑣.

To follow up on the proof of Lemma 2.5.2, we can introduce a new picture of

what 𝐺𝜃𝑇 looks like relative to 𝐺𝜃, represented in Figure 2-7. In particular, if we

take 𝐺𝜃 and color red all the nodes corresponding to edges in 𝑇 , deleting the edges

not adjacent to at least one red node produces 𝐺𝜃𝑇 . This helps provide a visual

representation for the relationship between 𝜃 and 𝜃𝑇 .

53

By the invariant, at the beginning of a particular iteration of the while loop, we

assume that for all 𝑢𝑣 /∈ 𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑, we have 𝐶𝜃𝑇 (𝑢𝑣) = 𝐶𝜃(𝑢𝑣). In the following

lemma, we assert that at the end of the given iteration of the while loop, this will

remain true for all edges that were discovered prior to this iteration.

Lemma 2.5.3. If 𝑠𝑡 is an node in 𝐺𝜃𝑇 that has been discovered when the spanning

tree 𝑇 is updated to a new tree 𝑇 ′ by removing an edge 𝑢𝑣 and adding an edge 𝑎𝑏,

then 𝐶𝜃𝑇 (𝑠𝑡) ⊆ 𝐶𝜃𝑇 ′ (𝑠𝑡)

Proof. By Lemma 2.5.2, when this update is done, the only edges that are removed

from 𝐺𝜃𝑇 to create 𝐺𝜃𝑇 ′ are those that are adjacent to the node corresponding to 𝑢𝑣.

However, since 𝑠𝑡 is discovered at this point, we know that all nodes reachable from

𝑠𝑡 have also been discovered, as the algorithm updates knowledge about explored

connected components every time it updates the graph. Since we never remove dis-

covered edges from the tree, we know that 𝑢𝑣 is undiscovered, and thus the edges

we removed in 𝐺𝜃𝑇 are not adjacent to anything in 𝑠𝑡’s connected component, mean-

ing that 𝑠𝑡’s connected component in 𝐺𝜃𝑇 is a subset of that in 𝐺𝜃𝑇 ′ and we have

𝐶𝜃𝑇 (𝑠𝑡) ⊆ 𝐶𝜃𝑇 ′ (𝑠𝑡).

From the above lemma, we get the following.

Lemma 2.5.4. If at any point in the algorithm we have a tree 𝑇 such that 𝐶𝜃𝑇 (𝑢𝑣) =

𝐶𝜃(𝑢𝑣) for some edge 𝑢𝑣, then we have 𝐶𝜃𝑇* (𝑢𝑣) = 𝐶𝜃(𝑢𝑣) where 𝑇 * is the final output

tree.

Proof. By contradiction. If 𝐶𝜃𝑇* (𝑢𝑣) ̸= 𝐶𝜃(𝑢𝑣), then at some point after constructing

𝑇 , the algorithm constructs a tree for which the equivalence class is not the same

as under 𝜃. Let the 𝑇 ′ be the first tree the algorithm constructs after 𝑇 for which

𝐶𝜃𝑇 ′ (𝑢𝑣) ̸= 𝐶𝜃(𝑢𝑣). We know from Claim 2.5.1 𝐶𝜃𝑇 ′ (𝑢𝑣) ⊆ 𝐶𝜃(𝑢𝑣). Let 𝑇 ′′ be the tree

constructed by the algorithm directly before 𝑇 ′, so 𝐶𝜃𝑇 ′′ (𝑢𝑣) = 𝐶𝜃(𝑢𝑣). By Lemma

2.5.3, we get that 𝐶𝜃𝑇 ′′ (𝑢𝑣) ⊆ 𝐶𝜃𝑇 ′ (𝑢𝑣). Thus, we have 𝐶𝜃(𝑢𝑣) ⊆ 𝐶𝜃𝑇 ′ (𝑢𝑣) and this

gives us 𝐶𝜃𝑇 ′ (𝑢𝑣) = 𝐶𝜃(𝑢𝑣).

54

Given Lemma 2.5.4, in order to show that every edge has the correct equivalence

class under 𝜃𝑇 * , we only need to show for each edge that at some point the algorithm

constructs a tree 𝑇 in which that edge has the correct equivalence class under 𝜃𝑇 .

We will show that for a given 𝑢𝑣, this occurs on an iteration of the while loop in

which an edge 𝑥𝑦 ∈ [𝑢𝑣]𝜃 is discovered. In particular, consider the first round of the

while loop in which some 𝑥𝑦 ∈ [𝑢𝑣]𝜃 is discovered. Because every node discovered in a

given round of the while loop is related to the first discovered node by 𝜃, We take 𝑥𝑦

to be the first edge discovered on this round of the while loop and show that at the

end of the loop, if the tree held by the algorithm is 𝑇 , then [𝑥𝑦]𝜃𝑇 = [𝑥𝑦]𝜃. Because

𝑢𝑣 ∈ [𝑥𝑦]𝜃, this implies [𝑢𝑣]𝜃𝑇 = [𝑢𝑣]𝜃.

Thus, our current goal rests on showing that for each 𝑥𝑦 discovered at the begin-

ning of an iteration of the outer while loop, if 𝑇 is the tree at the end of that iteration

of the while loop, [𝑥𝑦]𝜃𝑇 = [𝑥𝑦]𝜃. We begin by considering an edge as “processed” after

we have first discovered it and examined the path between its endpoints in the tree.

We are able to make the following observation about the path between the endpoints

of each processed edge.

Lemma 2.5.5. If tree 𝑇 is updated to tree 𝑇 ′ by removing an edge 𝑢𝑣 from the graph

and adding a new edge 𝑎𝑏 to the graph, then for any processed edge 𝑎′𝑏′, the path from

𝑎′ to 𝑏′ through 𝑇 ′ consists only of edges that we have already discovered/marked in

the 𝜃 graph.

Proof. We know that immediately after processing an edge 𝑎′𝑏′, we updated the tree

such that this lemma held. Since we never remove marked/discovered edges from the

tree, this means that this path from 𝑎′ to 𝑏′ consisting of only marked edges still exists

in the tree and since there is only one path from 𝑎′ to 𝑏′ through the tree, the lemma

holds.

Finally, using this lemma we are able to reach our final conclusion about 𝑥𝑦’s

equivalence class, which by our earlier analysis tells us that at the end of the algorithm,

the equivalence classes of 𝜃𝑇 * are those of 𝜃, as desired.

55

Lemma 2.5.6. If 𝑥𝑦 is an edge discovered at the beginning of a particular iteration

of the outer while loop and 𝑇 is the tree at the end of that iteration of the while loop,

then [𝑥𝑦]𝜃𝑇 = [𝑥𝑦]𝜃.

Proof. From Lemma 2.5.5 and the fact that we process every edge in 𝑥𝑦’s connected

component of 𝐺𝜃𝑇 , we know that at the end an iteration of the outer while loop, all

edges in 𝐶𝜃𝑇 (𝑥𝑦) have paths through 𝑇 that include only marked edges, which are

edges that are in this connected component or some previously processed connected

component in 𝐺𝜃𝑇 . Now, assume [𝑥𝑦]𝜃𝑇 ̸= [𝑥𝑦]𝜃. Since we know that [𝑥𝑦]𝜃𝑇 ⊆ [𝑥𝑦]𝜃,

this means that [𝑥𝑦]𝜃𝑇 ⊂ [𝑥𝑦]𝜃. Pick 𝑢𝑣 ∈ [𝑥𝑦]𝜃, 𝑢𝑣 /∈ [𝑥𝑦]𝜃𝑇 . We know that because

they’re in the same 𝜃 equivalence class, there is a sequence of edges such that 𝑥𝑦 =

𝑢1𝑣1 𝜃 𝑢2𝑣2 𝜃 · · · 𝜃 𝑢𝑘𝑣𝑘 = 𝑢𝑣. If 𝑢𝑖𝑣𝑖 𝜃𝑇 𝑢𝑖+1𝑣𝑖+1 for each 𝑖, then by transitivity we

would have 𝑥𝑦 𝜃𝑇 𝑢𝑣 and thus they’d be in the same equivalence class under 𝜃𝑇 . This

means we can assume there exists 𝑗 such that 𝑢𝑗𝑣𝑗 and 𝑢𝑗+1𝑣𝑗+1 are not related by

𝜃𝑇 but 𝑢𝑗𝑣𝑗 ∈ [𝑥𝑦]𝜃𝑇 . To simplify notation, we will call these two edges 𝑎𝑏 and 𝑠𝑡

respectively. We have 𝑎𝑏 𝜃 𝑠𝑡, but 𝑎𝑏 ∈ [𝑥𝑦]𝜃𝑇 and 𝑠𝑡 /∈ [𝑥𝑦]𝜃𝑇 .

Consider the path 𝑄 = (𝑎 = 𝑞0, 𝑞1, . . . , 𝑞𝑛 = 𝑏) from 𝑎 to 𝑏 through 𝑇 . We get:

∑︁
𝑖

[𝑑(𝑠, 𝑞𝑖)− 𝑑(𝑠, 𝑞𝑖+1)]− [𝑑(𝑡, 𝑞𝑖)− 𝑑(𝑡, 𝑞𝑖+1)] = [𝑑(𝑠, 𝑎)− 𝑑(𝑠, 𝑏)]− [𝑑(𝑡, 𝑎)− 𝑑(𝑡, 𝑏)]

̸= 0,

where the equality is by telescoping and the inequality is by the fact that 𝑎𝑏 𝜃 𝑠𝑡. We

know that this means 𝑠𝑡 𝜃 𝑠*𝑡* for some 𝑠*𝑡* ∈ 𝑄. Since 𝑠*𝑡* ∈ 𝑇 and 𝑠𝑡 𝜃 𝑠*𝑡*, we get

𝑠*𝑡* ∈ [𝑠𝑡]𝜃𝑇 . Thus, on this path there exists 𝑠*𝑡* ∈ [𝑠𝑡]𝜃𝑇 ̸= [𝑥𝑦]𝜃𝑇 .

By our earlier lemma, we know that 𝑠*𝑡* is marked and that every marked edge

is either in 𝑥𝑦’s equivalence class or an equivalence class processed on a previous

iteration of the while loop. Since we know 𝑠*𝑡* is not in 𝑥𝑦’s equivalence class, it

must be in an equivalence class we processed on a previous iteration of the while

loop. However, our invariant tells us that this means [𝑠*𝑡*]𝜃𝑇 = [𝑠*𝑡*]𝜃 = [𝑥𝑦]𝜃 (since

𝑥𝑦 𝜃 𝑠*𝑡*). However, since this equivalence class did not change over the course of this

56

iteration of the while loop, this means that 𝑥𝑦 was in an equivalence class we already

processed before this iteration and thus it was marked, so it was not in 𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑,

a contradiction.

Thus, we know that at the end of the round, every edge not in 𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 has

[𝑥𝑦]𝜃𝑇 = [𝑥𝑦]𝜃. Since we remove at least one edge from 𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 in each iteration

of the while loop, the loop terminates with everything popped and we get that all

equivalence classes of 𝜃𝑇 are the same as those of 𝜃. Thus, we have shown that if the

invariant holds at the beginning of an iteration of the outer while loop, it holds at

the end.

From here, we analyze the runtime of Algorithm 2 to determine if using it to find

a new equivalence relation on the edges of the graph actually improves our runtime.

2.5.2 Runtime of Algorithm 2

For a graph 𝐺 = (𝑉,𝐸,𝑤𝐺), finding some spanning tree 𝑇 takes 𝑂(|𝑉 | + |𝐸|) time.

When we compute 𝐺𝜃𝑇 , we know that every edge must be adjacent to some 𝑢𝑣 ∈ 𝑇 ,

as if two edges in 𝐺 are related by 𝜃𝑇 , then at least one of them must be in 𝑇 . Thus,

if we already have the APSP distances and can thus check if two edges are related by

𝜃 in constant time, it takes us 𝑂(|𝑉 ||𝐸|) time to construct 𝐺𝜃𝑇 , as we compare each

edge in 𝑇 to every other edge in order to compute the edges of 𝐺𝜃𝑇 .

We notice that each time we look for the path from 𝑎 to 𝑏 in the tree, we pop 𝑎𝑏

from 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒, and we never do this for a node not in 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒, so we do this

once for each edge. As it takes 𝑂(|𝑉 |) time to find this path and we do it for |𝐸|

edges, this is 𝑂(|𝑉 ||𝐸|) total time for examining the paths in the tree. Because each

edge is marked in the tree when it is discovered in 𝐺𝜃𝑇 , we can immediately check

if any edge is marked since we mark it in the original graph when it is discovered in

𝐺𝜃𝑇 which we can do by adding pointers from one graph to the other. This leaves us

just considering the total BFS time for all of the updates.

Consider a single iteration of the outer while loop, in which we pop edge 𝑥𝑦.

We begin by discovering all edges that 𝑥𝑦 can reach, each of which is popped from

57

𝑢𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑. At this point, if we add a new edge 𝑎𝑏 to the tree, we need to update

𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒, as we have potentially added new edges adjacent to 𝑎𝑏 and thus potentially

added new nodes to 𝑥𝑦’s connected component. At this point, we can resume BFS

beginning at 𝑎𝑏, visiting only nodes that we have not seen before. We note that this

means we may consider the edges adjacent to 𝑎𝑏 a second time, but all other edges we

traverse on this BFS run are new edges, as the origin of each edge must be a newly

discovered node.

When we add a new edge 𝑎𝑏 into the tree, we must determine all edges out of 𝑎𝑏

in the new 𝐺𝜃𝑇 , which requires checking if 𝑎𝑏 is related by 𝜃 to all other edges in the

graph. We also remove an edge from the tree, which means we must remove all of its

edges to other edges not in the tree in 𝐺𝜃𝑇 . Each of these updates takes 𝑂(|𝐸|) time,

so we must limit the number of times we do this. We note that no edge discovered

in 𝐺𝜃𝑇 is ever removed from the graph, and at the point an edge 𝑎𝑏 is added to the

tree, it has been discovered in 𝐺𝜃𝑇 and thus will never be removed. This means that

we can add at most |𝑉 | − 1 edges to the tree. This means the updates to 𝐺𝜃𝑇 take

at most 𝑂(|𝑉 ||𝐸|) time total across all updates.

We know from our earlier analysis that when a new edge is added to the tree, we

end up re-traversing at most 𝑂(|𝐸|) edges, and since this happens at most |𝑉 | − 1

times, re-traversing edges in 𝐺𝜃𝑇 happens at most 𝑂(|𝑉 ||𝐸|) times. Aside from that,

we do a full BFS search of the graph 𝐺𝜃𝑇 , which does have edges added and removed

as we go along. However, we note that it has only 𝑂(|𝑉 ||𝐸|) edges at the beginning

and as we have just argued, only 𝑂(|𝑉 ||𝐸|) new edges are added, so even if we

manage to traverse every edge that appeared in any iteration of the graph (which

actually doesn’t happen since removed edges are connected to undiscovered nodes,

which means they haven’t been traversed), we take only 𝑂(|𝑉 ||𝐸|) time to do so.

Thus, the total time for this algorithm is 𝑂(|𝑉 ||𝐸|). We also note that because

every equivalence class must contain an edge from 𝑇 *, there are most |𝑉 | − 1 equiva-

lence classes for this relation. Thus, using this relation with Algorithm 1, the primary

for loop is only traversed 𝑂(|𝑉 |) times. Since Algorithm 2 both provides a tree to 𝑇 *

to use for 𝜃𝑇 * and computes the relation’s equivalence classes in 𝑂(|𝑉 ||𝐸|) time given

58

the APSP distances, total time for pseudofactoring a graph using the equivalence

relation 𝜃𝑇 for 𝑇 produced by Algorithm 2 takes only 𝑂(|𝑉 ||𝐸|) plus APSP time, as

opposed to 𝑂(|𝐸|2) plus APSP time for the same algorithm with 𝜃 as the input rela-

tion. Using current APSP algorithms, this is a speedup from 𝑂(|𝑉 |2 log log |𝑉 |+ |𝐸|2)

to 𝑂(|𝑉 |2 log log |𝑉 |+ |𝑉 ||𝐸|) for overall runtime.

59

60

Chapter 3

Hypercube embeddings and general

distance metrics

In this chapter, we discuss some applications and extensions of graph pseudofactor-

ization. In particular, we will discuss when pseudofactoring a graph may inform us

about its hypercube or Hamming embeddability and ways in which the concepts may

be extended to certain types of decompositions of general distance metrics.

3.1 Background and notation for hypercube embed-

dings

Given a graph 𝐺, a Hamming embedding 𝜂 : 𝑉 (𝐺) → Σ𝑡 for some positive integer 𝑡

and alphabet Σ is a mapping of the vertices of the graph to strings of fixed length

such that the Hamming distance between two strings is the graph distance between

the corresponding nodes. In other words, 𝑑𝐻(𝜂(𝑢), 𝜂(𝑣)) = 𝑑𝐺(𝑢, 𝑣), where 𝜂(𝑢) =

𝜂1(𝑢)𝜂2(𝑢)...𝜂𝑡(𝑢) is a string over the alphabet Σ and 𝑑𝐻 is Hamming distance. A

hypercube embedding is exactly a Hamming embedding with Σ = {0, 1}. Djoković

showed that deciding whether or not a hypercube embedding exists for an unweighted

graph can be done in polynomial time [10] and Winkler showed that deciding if an

unweighted graph has a Hamming embedding can also be done in polynomial time

61

[24]. In fact, a Hamming embedding exists for an unweighted graph 𝐺 if and only if

its canonical pseudofactors are all complete graphs, and it is hypercube embeddable

if and only if they are all isomorphic to 𝐾2.

In some cases, it is useful to generalize the notion of hypercube embeddings to

the more general concepts of scaled hypercube embeddings and ℓ1 embeddings. To

do so, we first define scaled hypercube embeddings. A scale-𝑘 hypercube embedding

of an unweighted graph 𝐺 is a hypercube embedding of 𝑘𝐺, where 𝑘𝐺 is a version of

𝐺 in which all edges have weight 𝑘. From there, we can consider the idea of an ℓ1

metric. For a given dimension 𝑡, define 𝑑ℓ1 : R𝑡 × R𝑡 → R≥0 such that for 𝑥, 𝑦 ∈ R𝑡,

𝑑ℓ1(𝑥, 𝑦) =
∑︀𝑡

𝑖=1 |𝑥𝑖 − 𝑦𝑖|. A graph 𝐺 has an ℓ1 metric if and only if there is a

map 𝛼 : 𝑉 (𝐺) → R𝑡 such that 𝑑𝐺(𝑢, 𝑣) = 𝑑ℓ1(𝛼(𝑢), 𝛼(𝑣)). Such an embedding is

an ℓ1 embedding, and a graph 𝐺 has one if and only if there is a 𝑘 such that 𝑘𝐺 is

hypercube embeddable [7]. Thus, deciding if a graph 𝐺 has an ℓ1 metric is equivalent

to deciding if there exists an integer 𝑘 such that 𝑘𝐺 is hypercube embeddable. In

the case of bipartite graphs, a graph has ℓ1 embedding if and only if it is hypercube

embeddable at scale 1 [10, 20]. Firsov was the first to show that there exists a graph

𝐺 for which 𝑘𝐺 is never hypercube embeddable [12]. This is equivalent to saying that

some unweighted graphs do not have ℓ1 metrics.

Shpectorov showed that for a graph with uniform weights, it can be decided in

polynomial time if the graph is hypercube embeddable [22]. With Deza, he showed

that this determination could be made in as little as 𝑂(|𝑉 ||𝐸|) time [6]. Shpectorov

additionally showed that if an unweighted graph 𝐺 is an ℓ1 metric, there is a scaled

hypercube embedding whose image has size polynomial in the size of 𝐺 [22]. However,

while it takes only polynomial time to decide if an unweighted (or uniformly weighted

graph) is an ℓ1 metric, the same decision for a weighted graph is NP-hard, even when

the edge weights are restricted to positive integers [16, 1]. It is additionally NP-hard

to decide if an undirected graph with integer weights is hypercube embeddable [4, 7],

although under particular restrictions on distances, it can be decided in polynomial

time [17]. We mention these concepts of ℓ1 embeddability and scaled hypercube

embeddability in order to provide context as we discuss the relationship between

62

hypercube embeddings and pseudofactorization.

3.2 Hypercube embeddings and pseudofactorization

In this section, we will show that a graph has a hypercube embedding if and only

if every one of its pseudofactors has a hypercube embedding. Much of this is the

direct result of Lemma 3.2.1, and in this section we seek to elaborate on why this is

interesting and how we come to this conclusion. The following lemma is the result of

a personal communication by Joseph Berleant [2].

Lemma 3.2.1. Given a graph 𝐺 = (𝑉,𝐸,𝑤𝐺) and a hypercube embedding 𝜂 : 𝑉 →

{0, 1}𝑠, define 𝐷𝜂 on 𝑉 × 𝑉 such that 𝐷𝜂(𝑢, 𝑣) = {𝑖 | 𝜂𝑖(𝑢) ̸= 𝜂𝑖(𝑣)}. Define a

relation 𝛾 on the integers from 0 to 𝑡− 1 such that 𝑖 𝛾 𝑗 if there exist 𝑢, 𝑣 ∈ 𝑉 such

that 𝑖, 𝑗 ∈ 𝐷𝜂(𝑢, 𝑣). Let 𝛾 be the transitive closure of 𝛾.

Then for 𝑢𝑣, 𝑢′𝑣′ ∈ 𝐸 and 𝑗 ∈ 𝐷𝜂(𝑢, 𝑣), 𝑗′ ∈ 𝐷𝜂(𝑢
′, 𝑣′), we have 𝑗 𝛾 𝑗′ if and only

if 𝑢𝑣 𝜃 𝑢′𝑣′.

From the given lemma, we can see that for a given hypercube embedding 𝜂 :

𝑉 → {0, 1}𝑠 of a graph 𝐺 = (𝑉,𝐸,𝑤𝐺), the equivalence classes of 𝜃 are in one-to-one

correspondence with the equivalence classes of 𝛾. In particular, if [𝑗]𝛾 is equivalence

class of index 𝑗 under 𝛾 and [𝑢𝑣]𝜃 is the equivalence class of 𝑢𝑣 under 𝜃, we can define

a bijection 𝛽 such 𝛽 : [𝑗]𝛾 ↦→ [𝑢𝑣]𝜃 where 𝑗 ∈ 𝐷𝜂(𝑢, 𝑣). First we show that this is a

bijection.

Lemma 3.2.2. As defined in this section, 𝛽 is a well-defined bijection.

Proof. This follows directly form Lemma 3.2.1. To see that it is well-defined, we see

that if 𝑗′ ∈ [𝑗]𝛾 and 𝑗 ∈ 𝐷𝜂(𝑢, 𝑣), then for any 𝑥𝑦 ∈ 𝐸 such that 𝑗′ ∈ 𝐷𝜂(𝑥, 𝑦), we

have 𝑥𝑦 𝜃 𝑢𝑣 and thus [𝑥𝑦]𝜃 = [𝑢𝑣]𝜃.

To see that 𝛽 is surjective, we see that for any 𝑢𝑣 ∈ 𝐸, there must be at least one

index 𝑗 on which 𝛼𝑗(𝑢) ̸= 𝛼𝑗(𝑣), so [𝑢𝑣]𝜃 is mapped to by some equivalence class of

𝛾. To see that it is injective, we consider 𝑗, 𝑗′ such that 𝑗 ̸ 𝛾 𝑗′. If 𝛽([𝑗]𝛾) = [𝑢𝑣]𝜃 =

𝛽([𝑗′]𝛾), then we must have 𝑢𝑣, 𝑥𝑦 ∈ [𝑢𝑣]𝜃 such that 𝑗 ∈ 𝐷𝜂(𝑢, 𝑣) and 𝑗′ ∈ 𝐷𝜂(𝑥, 𝑦),

63

but by Lemma 3.2.1, this implies 𝑗 𝛾 𝑗′ so this is impossible and the function is

bijective.

To prepare for our overall claim about the relationship between pseudofactoriza-

tion and hypercube embeddings, we first prove the following.

Claim 3.2.3. Let 𝑃 = (𝑝0, 𝑝1, . . . , 𝑝𝑛) be a shortest path in a product graph Π𝑚
𝑖=1𝐺𝑖,

where 𝑝𝑗 = (𝑝𝑗1, 𝑝
𝑗
2, . . . , 𝑝

𝑛
𝑚). Then let the “projection" of 𝑃 onto 𝐺𝑖 be (𝑝0𝑖 , 𝑝

1
𝑖 , . . . , 𝑝

𝑛
𝑖).

The projection of 𝑃 onto 𝐺𝑖 is a shortest path from 𝑝1 in 𝐺𝑖.

Proof. First, we note that the projection (𝑝0𝑖 , 𝑝
1
𝑖 , . . . , 𝑝

𝑛
𝑖) of 𝑃 onto 𝐺𝑖 may have ad-

jacent vertices that are the same, in which case the path is the same if we remove

these adjacent repeats (as the total weight of the path is the sum of the edge weights

and there is no edge traversed to get from a node to itself). Clearly, this path is no

shorter than a shortest path in the factor graph. Say this is not a shortest path. We

use it to construct a shorter path in Π𝑚
𝑙=1𝐺𝑙. In particular, we know that by how the

Cartesian product is constructed, there is a path from 𝑝0 to 𝑝𝑛 whose weight is equal

to
∑︀𝑚

𝑙=1 𝑑𝐺𝑙
(𝑢𝑙, 𝑣𝑙). We know that this means 𝑤(𝑃) =

∑︀
𝑖𝑤(𝑃𝑖) =

∑︀𝑚
𝑙=1 𝑑𝐺𝑙

(𝑢𝑙, 𝑣𝑙)

where 𝑤(𝑃𝑖) is the weight of the projection onto 𝐺𝑖. Since 𝑤(𝑃𝑖) ≥ 𝑑𝐺𝑖
(𝑢𝑖, 𝑣𝑖), in

order to get equality here we must have 𝑤(𝑃𝑖) = 𝑑𝐺𝑖
(𝑢𝑖, 𝑣𝑖) for all 𝑖.

Using this fact, we prove the following theorem.

Theorem 3.2.4. A graph 𝐺 = (𝑉,𝐸,𝑤𝐺) is hypercube embeddable if and only if all

of its pseudofactors are hypercube embeddable.

Proof. First, we show that if all pseudofactors {𝐺1, . . . , 𝐺𝑚} of a graph 𝐺 are hy-

percube embeddable, then 𝐺 is hypercube embeddable. We know that there must

exist an isometric embedding 𝜋 : 𝑉 (𝐺) → 𝑉 (Π𝑚
𝑖=1𝐺𝑖) such that 𝜋(𝑢) = (𝑢1, . . . , 𝑢𝑚)

for 𝑢 ∈ 𝑉 (𝐺), 𝑢𝑖 ∈ 𝑉 (𝐺𝑖) for 1 ≤ 𝑖 ≤ 𝑚. Let 𝜂𝑖 : 𝑉 (𝐺𝑖) → {0, 1}𝑠𝑖 be a hypercube

embedding for 𝐺𝑖. Define a hypercube embedding 𝜂 for 𝐺 such that 𝜂(𝑢) is the con-

catenation of the embeddings for each of the 𝑢𝑖, or 𝜂(𝑢) = 𝜂1(𝑢1)𝜂
2(𝑢2) . . . 𝜂

𝑚(𝑢𝑚).

64

Then for 𝑢, 𝑣 ∈ 𝑉 (𝐺), we have

𝑑𝐻(𝜂(𝑢), 𝜂(𝑣)) =
𝑚∑︁
𝑖=1

𝑑𝐻(𝜂𝑖(𝑢𝑖), 𝜂
𝑖(𝑣𝑖))

=
𝑚∑︁
𝑖=1

𝑑𝐺𝑖
(𝑢𝑖, 𝑣𝑖)

= 𝑑𝐺(𝑢, 𝑣),

where the second equality is from the fact that 𝜂𝑖 is a hypercube embedding of 𝐺𝑖

and the third equality is from the fact that distance between 𝜋(𝑢) and 𝜋(𝑣) in Π𝑚
𝑖=1𝐺𝑖

is equal to the sum of the distances between each 𝑢𝑖 and 𝑣𝑖 in 𝐺𝑖 and the fact

that 𝛼 is an isometric embedding, so 𝑑𝐺 = 𝑑Π𝑚
𝑖=1𝐺𝑖

. Thus, the 𝜂 defined here is

a hypercube embedding for 𝐺 and we have that if a graph’s pseudofactors are all

hypercube embeddable, then so is the graph as whole.

Now we consider a graph 𝐺 = (𝑉,𝐸,𝑤𝐺) with hypercube embedding 𝜂 and

pseudofactors {𝐺1, 𝐺2, . . . , 𝐺𝑚}. First, by the definition of pseudofactorization, we

know there must exist an isometric embedding 𝜋 : 𝑉 (𝐺) → 𝑉 (Π𝑚
𝑖=1𝐺𝑖) such that

𝜋(𝑢) = (𝑢1, 𝑢2, . . . , 𝑢𝑘) and for each 𝑥 ∈ 𝑉 (𝐺𝑖), there exists 𝑢 such that 𝑢𝑖 = 𝑥. For

a given pseudofactor 𝐺𝑖, we define a hypercube embedding 𝜂𝑖. For 𝑢𝑖 ∈ 𝑉 (𝐺𝑖), select

a node 𝑢 such that 𝛼𝑖(𝑢) = 𝑢𝑖, and we define 𝜂𝑖(𝑢𝑖) to be equal to 𝜂(𝑢) restricted to

the indices in 𝛽−1([𝑥𝑦]𝜃) where 𝑥𝑦 is an edge with a parent in 𝐺𝑖.

We must show that 𝜂𝑖 is in fact a hypercube embedding for 𝐺𝑖 and that it is well-

defined. In order to show this, we consider 𝑢𝑖, 𝑣𝑖 ∈ 𝑉 (𝐺𝑖) such that we define 𝜂𝑖(𝑢𝑖)

and 𝜂𝑖(𝑣𝑖) based on 𝜂(𝑢) and 𝜂(𝑣) for 𝑢, 𝑣 ∈ 𝑉 (𝐺), respectively. Let 𝑃𝑖 a shortest

path from 𝑢𝑖 to 𝑣𝑖 in 𝐺𝑖. We show that 𝑑𝐻(𝜂𝑖(𝑢𝑖), 𝜂
𝑖(𝑣𝑖)) = 𝑑𝐺𝑖

(𝑢𝑖, 𝑣𝑖).

Pick a shortest path from 𝑢 to 𝑣 in 𝐺, 𝑃 = (𝑢 = 𝑝0, 𝑝1, . . . , 𝑝𝑛 = 𝑣) and let 𝑃𝑖 be

the set of edges in 𝑃𝑖 that are in 𝐸𝑖. We know that 𝜂(𝑝𝑖) and 𝜂(𝑝𝑖+1) differ on exactly

𝑤(𝑝𝑖𝑝𝑖+1) indices because this edge is a shortest path between them. Take an index 𝑗

such that 𝑗 /∈ 𝐷𝜂(𝑝𝑖, 𝑝𝑖+1) for each 𝑖. Then we claim that 𝑗 /∈ 𝐷𝜂(𝑢, 𝑣). In particular,

this means that for each 𝑖, 𝜂𝑗(𝑝𝑖) = 𝜂𝑗(𝑝𝑖+1), which transitively means 𝜂(𝑢) = 𝜂(𝑣).

Thus, we know that 𝜂(𝑢) and 𝜂(𝑣) can only differ on indices in ∪𝑖𝐷𝜂(𝑝𝑖, 𝑝𝑖+1), but we

65

also see that
∑︀𝑛−1

𝑖=0 |𝐷𝜂(𝑝𝑖, 𝑝𝑖+1)| =
∑︀𝑛−1

𝑖=0 𝑤(𝑝𝑖𝑝𝑖+1) = 𝑤(𝑃) = 𝑑𝐺(𝑢, 𝑣), so 𝜂(𝑢), 𝜂(𝑣)

must differ exactly the indices in ∪𝑖𝐷𝜂(𝑝𝑖, 𝑝𝑖+1) (and we get that they must all be

disjoint). When we define 𝜂𝑖(𝑢𝑖) and 𝜂𝑖(𝑣𝑖), we restrict 𝜂(𝑢) and 𝜂(𝑣) to the indices

𝑗 on which some edge 𝑥𝑦 in 𝜃 equivalence class 𝑖 has 𝜂𝑗(𝑥) ̸= 𝜂𝑗(𝑦). This means that

𝜂𝑖(𝑢𝑖) and 𝜂𝑖(𝑣𝑖) differ on exactly the indices in ∪𝑝𝑙𝑝𝑙+1∈[𝑥𝑦]𝜃𝐷𝜂(𝑝𝑙, 𝑝𝑙+1), which implies

that they differ on 𝑤(𝑃𝑖) indices and we have 𝑑𝐻(𝜂𝑖(𝑢𝑖), 𝜂
𝑖(𝑣𝑖)) = 𝑤(𝑃𝑖).

We now show that 𝑤(𝑃𝑖) equals 𝑑𝐺𝑖
(𝑢𝑖, 𝑣𝑖). We note that because of how 𝜋 is

defined, 𝜋(𝑃) = (𝜋(𝑢) = 𝜋(𝑝0), 𝜋(𝑝1), . . . , 𝜋(𝑝𝑛) = 𝜋(𝑣)) is a shortest path in Π𝑚
𝑖=1𝐺𝑖,

each edge with the same weight as in 𝑃 . From Claim 3.2.3, we know that if 𝜋(𝑃)𝑖

is the set of edges in equivalence class 𝑖 of 𝜃 of 𝜋(𝑃), then the weight of this path is

equal to the weight of a shortest path from 𝜋𝑖(𝑝0) = 𝑢𝑖 to 𝜋𝑖(𝑝𝑛) = 𝑣𝑖 in 𝐺𝑖. Thus,

we get that 𝑤(𝑃𝑖) = 𝑤(𝜋(𝑃)𝑖) = 𝑑𝐺𝑖
(𝑢𝑖, 𝑣𝑖) and tying it into the previous paragraph,

we get that 𝑑𝐻(𝜂𝑖(𝑢𝑖), 𝜂
𝑖(𝑣𝑖)) = 𝑑𝐺𝑖

(𝑢𝑖, 𝑣𝑖). This was independent of the choice of 𝑢, 𝑣

such that 𝜋𝑖(𝑢) = 𝑢𝑖 and 𝜋𝑖(𝑣) = 𝑣𝑖. Thus, we have found that if 𝐺 is hypercube

embeddable, its pseudofactors are and this completes the proof.

I additionally note, that in the personal communication [2], I was also informed

that Lemma 3.2.1 can be extended to replace hypercube embedding with Hamming

embedding at every point. The proofs given here can also be extended to replace

hypercube embedding with Hamming embedding at every point, so we also get the

following lemma:

Lemma 3.2.5. A graph 𝐺 = (𝑉,𝐸,𝑤𝐺) is Hamming embeddable if and only if all of

its pseudofactors are Hamming embeddable.

While it is NP-hard to decide if general weighted graphs are hypercube embed-

dable, some authors have shown that this can be decided in polynomial time for

certain classes of weighted graphs. In particular, if a graph is a line graph or a cycle

graph [5] or if a graph’s distances are all in {𝑥, 𝑦, 𝑥+ 𝑦} for integers 𝑥, 𝑦, at least one

of which is odd [17], it is polynomial time decidable. Shpectorov’s results also tell

us that for graphs with uniform weights, we can decide this in polynomial time [22].

This result extends these results by showing that it also takes only polynomial time to

66

decide if isometric subgraphs of the Cartesian products of such graphs are hypercube

embeddable (i.e. it is polynomial time to decide for graphs whose pseudofactors fit

into one of these categories). The number of graphs that fit into these categories is

very restricted, but if future categories of graphs are found to have polynomial time

decidability for this property, this result will apply to extend such a result to the

isometric subgraphs of Cartesian product of such graphs with each other and with

other graphs in this category.

3.3 Minimum graphs and general distance metrics

In the previous sections, we have discussed weighted graphs and their relationships

to each other. In this section, we shift focus somewhat to consider general distance

metrics and their relationship to the concepts we have already seen.

To introduce this section, we begin by giving some definitions for distance metrics

and distance semimetrics. A distance metric on a set of points 𝑆 is a function 𝑑 :

𝑆 × 𝑆 → N such that the following criteria hold:

1. For 𝑥, 𝑦 ∈ 𝑆, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

2. For 𝑥 ̸= 𝑦 ∈ 𝑆:

(a) 𝑑(𝑥, 𝑥) = 0

(b) 𝑑(𝑥, 𝑦) ̸= 0

3. For 𝑥, 𝑦, 𝑧 ∈ 𝑆: 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≤ 𝑑(𝑥, 𝑧) (triangle inequality)

A distance semimetric relaxes the definition of a distance metric by dropping

requirement 2(b) [8]. In some cases, a distance metric can be written as the sum

of distance semimetrics on the same set of points. In particular, consider the ℓ1

metric on R2, which is defined such that 𝑑ℓ1((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = |𝑥1 − 𝑦1|+ |𝑥2 − 𝑦2|.

This can be written as the sum of two distance semimetrics, 𝑑1, 𝑑2 on R2 such that

𝑑1((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = |𝑥1 − 𝑦1| and 𝑑2((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = |𝑥2 − 𝑦2|. As we defined

them here, 𝑑1 and 𝑑2 essentially project the two input points down onto R and then

67

apply an ℓ1 distance metric. However, distinct points may be projected onto the same

point in R, so distance between two distinct points may be non-zero and thus these

are semimetrics but not metrics.

Questions about distance metrics are highly related to questions about hypercube

embeddings. In particular, if 𝑆 ′ is a subset of 𝑆, then define 𝛿(𝑆 ′)(·, ·) to be a distance

semimetric such that for 𝑥, 𝑦 ∈ 𝑆:

𝛿(𝑆 ′)(𝑥, 𝑦) =

⎧⎪⎨⎪⎩1 𝑥 ∈ 𝑆 ′, 𝑦 /∈ 𝑆 ′ or 𝑥 /∈ 𝑆 ′, 𝑦 ∈ 𝑆 ′

0 𝑥, 𝑦 ∈ 𝑆 or 𝑥, 𝑦 /∈ 𝑆 ′

If 𝑑(·, ·) is the distance metric that corresponds to graph distance on a particular

graph 𝐺, then that graph has a hypercube embedding if and only if 𝑑(·, ·) can be

written as the sum
∑︀𝑠

𝑖=1 𝛿(𝑆𝑖)(·, ·) for some integer 𝑠 and subsets 𝑆𝑖 of 𝑉 (𝐺) [7]. In

this section, we will discuss the relationship between pseudofactoring a graph and

writing its corresponding distance metric as the sum of distance semimetrics.

In the previous sections, we discussed factorization, pseudofactorization, and hy-

percube embeddings for weighted graphs. However, in many cases we actually have

questions about how distance metrics can be embedded into each other rather than

graphs. In particular, given a particular distance metric, we may want to know if it

can be embedded into a hypercube. Going back to the example from the introduction,

if we want to design DNA sequences with a given relationship, it is more likely that

we are given a list of points and desired distances than a graph representation. The

overall problem is NP-hard, but we can use the relationship between distance metrics

and graphs to make conclusions about hypercube embeddability in some cases. In

particular, we will discuss the concept of a minimum graph, which will be analogous

to a minimal graph, except that we require each edge be the unique shortest path

between its end points. While there is up to an exponential number of minimal graphs

representing a given distance metric, there is only one such minimum graph, and this

graph has the handy property that if it is irreducible, then any graph with the same

distance metric is also irreducible, as expressed in Lemma 3.3.1.

68

Lemma 3.3.1. If a minimum graph 𝐺 is irreducible, then any graph 𝐺′ with the

same distance metric as 𝐺 is also irreducible.

Proof. We have that 𝐺 is an isometric subgraph of 𝐺′. Because they have the same

distance metric, clearly there is an isometric embedding 𝜋 : 𝑉 (𝐺) → 𝑉 (𝐺′), so we

only have to show that if 𝑢𝑣 ∈ 𝐸(𝐺), then 𝜋(𝑢)𝜋(𝑣) ∈ 𝐸(𝐺′). However, we know

that 𝑢𝑣 is the unique shortest path from 𝑢 to 𝑣 in 𝐺, which means that there is no

path from 𝑢 to 𝑣 that goes through another intermediate node and thus in order to

preserve the distance metric, 𝐺′ must have edge 𝜋(𝑢)𝜋(𝑣) with the same weight as

𝑢𝑣.

Say 𝐺′ has pseudofactors {𝐺1, . . . 𝐺𝑚} for 𝑚 > 1. Then 𝐺′ is an isometric sub-

graph of Π𝑚
𝑖=1𝐺𝑖. Because 𝐺 is an isometric subgraph of 𝐺′, it is also an isometric

subgraph of Π𝑚
𝑖=1𝐺𝑖 and thus is not irreducible.

Given a distance metric, we can create a minimum graph that has the same metric

by first creating an edge between every pair of nodes whose weight is their distance

and then removing all edges that do not form unique shortest paths. If we then

pseudofactor this graph 𝐺, we find that it is an isometric subgraph of Π𝑚
𝑖=1𝐺𝑖 for

some integer 𝑚 and graphs 𝐺𝑖. This means 𝑑Π𝑖𝐺𝑖
(·, ·) restricted to the nodes in 𝐺 is

the same distance metric as 𝑑𝐺(·, ·). We can further see that for 𝑢 = (𝑢1, . . . , 𝑢𝑚) and

𝑣 = (𝑣1, . . . , 𝑣𝑚), 𝑢𝑖, 𝑣𝑖 ∈ 𝐺𝑖, 𝑑Π𝑖𝐺𝑖
(𝑢, 𝑣) =

∑︀𝑚
𝑖=1 𝑑𝐺𝑖

(𝑢𝑖, 𝑣𝑖), which has a structure very

reminiscent of decomposing a distance metric into the sum of distance semimetrics.

In fact, similarly to the concept of “projecting” a point in R2 down onto a point in R

in the opening example for this section, we can consider the idea of projecting a node

𝑢 in Π𝑖𝐺𝑖 down onto a node in 𝐺𝑗 for some 𝑗 and then taking the distance in that

graph.

Thus, if we have a graph Π𝑖𝐺𝑖, we can write the distance metric 𝑑Π𝑖𝐺𝑖
(·, ·) as

the sum of distance semimetrics 𝑑𝑖(·, ·) such that 𝑑𝑖(𝑢, 𝑣) = 𝑑𝐺𝑖
(𝑢𝑖, 𝑣𝑖). Because

we have an isometric embedding 𝜋 of 𝐺 into Π𝑖𝐺𝑖, we can write its own distance

metric 𝑑𝐺(·, ·) as
∑︀𝑚

𝑖=1 𝑑𝜋𝑖
(·, ·) such that 𝑑𝜋𝑖

(𝑢, 𝑣) = 𝑑𝑖(𝜋(𝑢), 𝜋(𝑣)). If a graph 𝐺 is

hypercube embeddable, then there is an isometric embedding into a hypercube, which

69

is a product of 𝐾2. If 𝐺𝑖 = 𝐾2, then 𝑑𝛼𝑖
(𝑢, 𝑣) is 1 if 𝑢 and 𝑣 are projected down

onto different nodes in 𝐾1 and 0 otherwise, showing again that the definition given

by Deza and Laurent holds [7].

Because the pseudofactorization of a graph leads to a decomposition of its distance

metric into the sum of distance semimetrics, a natural question to ask is what kind

of decomposition we get from pseudofactoring the minimal graph for a given metric.

Because it is NP-hard to decide if a given distance metric is hypercube embeddable,

we know this will not necessarily tell us if we can decompose it into the sum of

𝛿(𝑆 ′)(·, ·) semimetrics. In fact, going off of the definition of pseudofactorization, we

see that if 𝐺 decomposes into pseudofactors {𝐺1, . . . , 𝐺𝑚}, then there must be an

isometric embedding 𝜋 : 𝑉 (𝐺)→ 𝑉 (Π𝑖𝐺𝑖) such that for each 𝑢𝑣 ∈ 𝐸(𝐺), 𝜋(𝑢)𝜋(𝑣) ∈

𝐸(Π𝑖𝐺𝑖). Because 𝜋(𝑢)𝜋(𝑣) ∈ 𝐸(Π𝑖𝐺𝑖) implies that there exists exactly one 𝑗 on

which 𝜋𝑗(𝑢) ̸= 𝜋𝑗(𝑣), we get that there is only one factor graph on which 𝜋(𝑢) and

𝜋(𝑣) are projected onto different nodes and because all edges have positive weight (and

the graph metric is a distance metric), this means that there is only one semimetric

in this decomposition on which 𝑢, 𝑣 have non-zero distance. The 𝑢, 𝑣 that have edges

between them in a minimum graph 𝐺 are the points in the distance metric for which

there does not exist a third point 𝑤 with 𝑑(𝑢,𝑤) + 𝑑(𝑤, 𝑣) = 𝑑(𝑢, 𝑣). We will call

such points adjacent. Thus, decomposing a distance metric into semimetrics in this

way comes with the restriction that any adjacent points have non-zero distance in

exactly one of these semimetrics. Such a decomposition seems more intuitive in a

graph setting where we want to preserve the existence of certain edges, so it’s unclear

if this is useful in the context of distance metrics, but it is interesting to apply the

definition to this context.

As pointed out to me by Joseph Berleant, [2], the following lemma holds:

Lemma 3.3.2. A minimum graph may have pseudofactors that are not minimum.

Proof. Consider the minimum graph shown in Figure 3-1(a). Its pseudofactorization

is in Figure 3-1(b), but the leftmost graph in this pseudofactorization is not minimum,

as the edge with weight 2 is extraneous, since there is already an alternative shortest

70

Figure 3-1: The graph in subfigure (a) is minimum. Green and blue edges correspond
to edges in different equivalence classes. The irreducible pseudofactorization of the
graph in subfigure (a) is the two upper graphs in subfigure (b), whose Cartesian
product is the lower graph in subfigure (b). Subfigure (c) shows how the graph in
subfigure (a) can be isometrically embedded into the 3D hypercube, where the red
nodes are the nodes that would be in the image of such an embedding.

path between its endpoints that does not go through this edge.

Because minimum graphs may not produce minimum pseudofactors, it is natural

to continue to take the minimum graph corresponding to the distance metric for each

pseudofactor produced and continue to find its pseudofactorization until the graph can

no longer be pseudofactored. This essentially just decomposes the semimetrics further

into sums of other semimetrics, which means that the original metric is still equal to

the sum of these new semimetrics. In the case of the graph in Figure 3-1(a), doing

this actually produces copies of 𝐾2, which tells us that the overall distance metric

is hypercube embeddable. In particular, we see that if we take the minimum graphs

with the same distance metrics as those given by the pseudofactors in Figure 3-1(b),

we end up with two line graphs, whose pseudofactors are all 𝐾2. Thus Figure 3-1(c)

gives us the pseudofactorization of these new graphs and tells us that the original

graph was hypercube embeddable. However, following this procedure of taking the

minimum graph for each distance metric output by a pseudofactorization will not

always tell us if a graph is hypercube embeddable, as shown by the existence of a

minimum irreducible graph that is hypercube embeddable but is not 𝐾2 in Figure 3-2.

71

Figure 3-2: An example of a minimum irreducible graph that is hypercube embeddable
and is not 𝐾2

An interesting future direction for this work would be a further characterization of the

kind of metric decompositions that can be gotten by pseudofactoring the minimum

graph for a given metric.

72

Chapter 4

Conclusion and open questions

In this thesis, we discussed the extension of current methods for factoring and pseud-

ofactoring unweighted graphs to use for weighted graphs. In fact, we saw that

for any minimal weighted graph, a pseudofactorization can be found in as little

as 𝑂(|𝑉 |2 log log |𝑉 | + |𝑉 ||𝐸|) time and a factorization can be found in as little as

𝑂(|𝑉 |2 log log |𝑉 |+ |𝐸|2) time. In the context of unweighted graphs, determining the

factors and pseudofactors of a graph determines hypercube and Hamming embed-

dability of the graph as a whole. While this is not the case in weighted graphs, and

in fact a polynomial time algorithm for deciding hypercube embeddability is unlikely

to exist, we do find that these processes help extend the number of graphs for which

we can decide hypercube embeddability in polynomial time. From this work though

several open questions remain. In particular, we ask each of the following as open

questions to explore in the future:

• Can we use a similar method to that described in chapter 2.5 for speeding up

graph pseudofactorization to speed up graph factorization as well?

• Can we place lower bounds on the time needed to find a graph’s factorization

or pseudofactorization? In particular, can we lower bound these processes by

𝑂(|𝑉 ||𝐸|) time?

• In what other contexts might decomposing distance metrics by the method

described in chapter 3 find applications?

73

• Are there further characterizations of the kind of graphs we can decide hyper-

cube embeddability for in polynomial time?

In partial response to the first question, we can see by the proofs given in chapter

2.5 that a modification of Algorithm 2 can be used to find a tree 𝑇 such that (𝜃𝑇 ∪𝜏)*

has the same equivalence classes as (𝜃∪𝜏)*, but at the moment it is unclear if the time

determining all pairs of edges related by 𝜏 can be bounded or if 𝜏 can be modified in

a way that makes these relations faster to compute. An interesting direction to take

this project in the future would be to examine if this is the case.

74

Bibliography

[1] David Avis and Michel Deza. The cut cone, 𝑙1 embeddability, complexity, and
multicommodity flows. Networks, 21:6:183–198, 10 1991.

[2] John Berleant. personal communication, 2021.

[3] Kevin M. Cherry and Lulu Qian. Scaling up molecular pattern recognition with
DNA-based winner-take-all neural networks. Nature, 559:370–376, 2018.

[4] V. Chvatal. Recognizing intersection patterns. Annals of Discrete Mathematics,
8:249–252, 1980.

[5] M. Deza and M. Laurent. ℓ1-rigid graphs. Journal of Algebraic Combinatorics,
3:153–175, 1994.

[6] M. Deza and S. Shpectorov. Recognition of the ℓ1-graphs with complexity O(nm),
or football in a hypercube. European Journal of Combinatorics, 17:2-3:279–289,
1996.

[7] Michel Deza and Monique Laurent. The cut cone and ℓ1 metrics. In R. L.
Graham, B. Korte, Bonn L. Lovasz, A.Wigderson, and G.M. Ziegler, editors,
Geometry of Cuts and Metrics, chapter 4, pages 37–52. Springer, 1997.

[8] Michel Deza and Monique Laurent. Hypercube embeddings of the equidis-
tant metric. In R. L. Graham, B. Korte, Bonn L. Lovasz, A.Wigderson, and
G.M. Ziegler, editors, Geometry of Cuts and Metrics, chapter 23, pages 341–352.
Springer, 1997.

[9] Michel Deza and Monique Laurent. The prime factorization of a graph. In R. L.
Graham, B. Korte, Bonn L. Lovasz, A.Wigderson, and G.M. Ziegler, editors,
Geometry of Cuts and Metrics, chapter 20.2, pages 305–306. Springer, 1997.

[10] D Ž Djoković. Distance-preserving subgraphs of hypercubes. Journal of Combi-
natorial Theory, Series B, 14(3):263–267, 1973.

[11] Tomàs Feder. Product graph representations. Journal of Graph Theory,
16:5:467–488, 1992.

[12] VV Firsov. Isometric embedding of a graph in a boolean cube. Cybernetics,
1(6):112–113, 1965.

75

[13] Ronald L Graham and Peter M Winkler. On isometric embeddings of graphs.
Transactions of the American Mathematical Society, 288(2):527–536, 1985.

[14] Wilfried Imrich and Sandi Klavžar. On the complexity of recognizing Hamming
graphs and related classes of graphs. European Journal of Combinatorics, 17:209–
221, 1996.

[15] Wilfried Imrich and Iztok Peterin. Recognizing Cartesian products in linear time.
Discrete Mathematics, 307:472–483, 02 2007.

[16] Alexander Karzanov. Metrics and undirected cuts. Mathematical Programming,
32:183–198, 02 1985.

[17] Monique Laurent. Hypercube embedding of distances with few values. In He-
lene Barcelo and Gil Kalai, editors, Contemporary Mathematics, volume 178,
pages 179–207, Providence, Rhode Island, 7 1993. Jerusalem Combinatorics ’93,
American Mathematical Society.

[18] Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs.
Theoretical Computer Science, 312(1):47–74, 2004. Automata, Languages and
Programming.

[19] Lulu Qian, Erik Winfree, and Jehoshua Bruck. Neural network computation
with DNA strand displacement cascades. Nature, 475:368–72, 07 2011.

[20] R. L. Roth and P.M. Winkler. Collapse of the metric hierarchy for bipartite
graphs. European Journal of Combinatorics, 7:371–375, 1986.

[21] John Santalucia and Donald Hicks. The thermodynamics of dna structural mo-
tifs. Annual Review of Biophysics and Biomolecular Structure, 33(1):415–440.

[22] S. V. Shpectorov. On scale embeddings of graphs into hypercubes. Eur. J.
Comb., 14(2):117–130, March 1993.

[23] Peter Winkler. The metric structure of graphs: theory and applications. Surveys
in Combinatorics, 123:197–221, 1987.

[24] Peter M Winkler. Isometric embedding in products of complete graphs. Discrete
Applied Mathematics, 7(2):221–225, 1984.

76

