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Abstract

Rapid development of data science technologies have enabled data-driven algorithms for
many important operational problems. Existing data-driven solutions often requires the
operational environments being stationary. However, recent examples have shown that the
operational environments can change dynamically. It is thus imperative to design data-
driven algorithms that is capable of working in time-varying environments.

We first introduce data-driven decision-making algorithms that achieve state-of-the-
art dynamic regret bounds for non-stationary bandit and reinforcement learning settings.
These settings capture applications such as advertisement allocation, dynamic pricing, and
inventory control in changing environments. Our main contribution is a general algorithmic
recipe for a wide variety of non-stationary bandit and reinforcement learning problems
without any knowledge about the environments in advance.

Next, we study the problem of learning shared structure across a sequence of dynamic
pricing experiments for related products. We consider a practical formulation where the
unknown demand parameters for each product come from an unknown prior that is shared
across products. We then propose a meta dynamic pricing algorithm that learns this prior
online while solving a Thompson sampling pricing experiments for each product.

Finally, motivated by our collaboration with AB InBev, a consumer packaged goods
(CPG) company, we consider the problem of forecasting sales under the coronavirus dis-
ease 2019 (COVID-19) pandemic. Our approach combines online learning and pandemic
modeling to develop a data-driven online non-parametric regression method. Numerical
experiments show that our method is capable of reducing the forecasting error in terms
of WMAPE (i.e., weighted mean absolute percentage error) and MSE (i.e., mean squared
error) by more than 50% for AB InBev.
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Chapter 1

Introduction

Recent advances in data science technologies have enabled big-data analytics for operations

management. Currently, most existing works in this field critically assume the operational

environments remain unchanged throughout. However, real-world operational environ-

ments are often time-varying and dynamically evolving. In this thesis, we consider three

different scenarios of operations management in changing environments.

In Chapters 2 and 3, we first consider non-stationary sequential decision-making, re-

flecting the fact that the environment where the decision-maker operates is often dynami-

cally changing. We develop bandit optimization and reinforcement learning algorithms for

various sequential decision-making problems, and apply some of our developed methods

to the context of online recommendation, dynamic pricing, and inventory control.

In Chapter 4, motivated by the fact that companies sequentially launch new products.

We ask the question: when a company is making decisions, such as pricing decisions, for

a new product, should it always start from scratch? Or could it leverage experience gained

from past products? We develop learning algorithms that can not only learn within a single

product but also learn across products to accelerate decision-making.

In Chapter 5, motivated by our collaboration with AB InBev, a large CPG company that

is facing a dramatically changing demand environment due to the COVID-19 pandemic, we

develop a novel online non-parametric regression method to help the company to adjust its

demand forecast.
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1.1 Non-Stationary Bandit Optimization

Consider the following general decision-making framework: a decision-maker (DM) inter-

acts with a multi-armed bandit (MAB) system by picking actions one at a time sequentially.

Upon selecting an action, she instantly receives a reward drawn randomly from a proba-

bility distribution tied to this action. The goal of the DM is to maximize her cumulative

rewards. However, she faces the following challenges:

∙ Uncertainty: the reward distribution of each action is initially not known to the DM.

She has to estimate the underlying reward distributions via interacting with the envi-

ronment.

∙ Non-Stationarity: the reward distributions can evolve over time.

∙ Partial/Bandit Feedback: the DM can only observe the random reward of the selected

action each time, while the rewards of the unchosen actions are not observed.

Many applications naturally fall into this MAB framework. For instance, assuming linear

models for the reward distributions, we can cast the problems of advertisement allocation

[127, 62], dynamic pricing [116, 40, 115, 27], and traffic network routing [88, 123] into the

above decision-making skeleton.

∙ Advertisement Allocation: An online platform allocates advertisements (ads) to a

sequence of users. For each arriving user, the platform has to deliver an ad to her, and

only observes each user’s response to her displayed ad. The platform has full access

to the features of the ads and the users. Following [127, 62], we could assume that

a user’s click behavior towards an ad, or simply the click through rate (CTR) of this

ad by a particular user, follows a probability distribution governed by a common,

but initially unknown response function of the features. The platform’s goal is to

maximize the total number of clicks. However, the unknown response function can

change over time. For instance, if it is around the time that Apple releases a new

iPhone, one can expect that the popularity of an Apple’s ad grows.

18



∙ Dynamic Pricing: A seller decides the (personalized) price dynamically [116, 115,

40, 27] for each of the incoming customers with the hope to maximize sales profit.

Beginning with an unknown demand function, the DM only observes the purchase

decision of a customer under the posted price, but not any other price. In addition, the

customers’ reaction towards the same price can vary across time due to the product

reviews, the emergence of competitive products, etc.

∙ Traffic Network Routing: A navigation service provider has to iteratively offer

route planning services to drivers from an origin to a destination through a traffic

network with initially unknown random delay on each road. For each driver, the

provider could only see the delays of the roads traversed by this driver, but not the

other roads’. Moreover, the delay distributions could change over time as the roads

are also shared by other traffics (i.e., those not using this navigation service). The

provider wants to minimize the cumulative delays throughout the course of vehicle

routing.

Evidently, the DM faces a trilemma among exploration, exploitation as well as adap-

tation to changes. On one hand, the DM wishes to exploit, and to select the action with

the best historical performances to earn as much reward as possible. On the other hand,

she wants to explore other actions to get a more accurate estimation of the reward distribu-

tions. The changing environment makes the exploration-exploitation trade-off even more

delicate. Indeed, past observations could become obsolete due to the changes in the en-

vironment, and the DM needs to explore for changes and refrain from exploiting possibly

outdated observations.

We focus on resolving this trilemma in various MAB problems. Traditionally, most

MAB problems are studied in the stochastic [21] and adversarial [18] environments. In

the former, the uncertain model is static, and each feedback is corrupted by a mean zero

random noise. The DM aims at estimating the latent static environment using historical

data and converging to the optimum, which is achieved by a static strategy that selects a

single action throughout. In the latter, the model is not only uncertain, but also dynamically

changed by an adversary. While the DM strives to hedge against the changes, it is generally
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impossible to achieve the optimum. Hence, existing research also focuses on competing

favorably in comparison to a static strategy.

Unfortunately, strategies for the stochastic environments can quickly deteriorate under

non-stationarity as historical data might “expire"; while the permission of a confronting ad-

versary in the adversarial settings could be too pessimistic. Starting from [36, 37], a stream

of research works (see Section 1.1.1) focuses on MAB problems in a drifting environment,

which is a hybrid of a stochastic and an adversarial environment. Although the environment

can be dynamically and adversarially changed, the total changes (quantified by a suitable

metric) in a T -round problem is upper bounded by BT (= Θ(T ρ) for some ρ ∈ (0,1)), the

variation budget [36, 37], and the feedback is corrupted by a mean zero random noise.

The aim is to minimize the dynamic regret [36], which is the optimality gap compared

to the sequence of (possibly dynamically changing) optimal decisions, by simultaneously

estimating the current environment and hedging against future changes every round. The

framework of [36, 37] enable us to compete against the so-called dynamic comparator.

Most of the existing works for non-stationary bandits have focused on the the relatively

ideal case in which BT is known. In practice, however, BT is often not available ahead as

it is a quantity that requires knowledge of future information. Though some efforts have

been made towards this direction [113, 134], how to design algorithms with low dynamic

regret when BT is unknown remains largely as a challenging problem.

1.1.1 Related Works

Stationary and Adversarial Bandits MAB problems with stochastic and adversarial

environments are extensively studied, as surveyed in [46, 125]. To model inter-dependence

relationships among different arms, models for linear bandits in stochastic environments

have been studied. In [19, 68, 160, 62, 3], UCB type algorithms for stochastic linear bandits

were studied, and the authors of [3] provided the tightest regret analysis for algorithms of

this kind. The authors of [162, 9, 4] also proposed Thompson sampling algorithms for this

setting to bypass the high computational complexity of the UCB type algorithms..
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Bandits in Drifting Environments Departing from purely stochastic or adversarial set-

tings, Besbes et al. [36, 37] laid down the foundation of bandit in drifting environments,

and considered the K-armed bandit setting. They achieved the tight dynamic regret bound

Õ((KBT )
1/3T 2/3) by restarting the EXP3 algorithm [18] periodically when BT is known.

Wei et al. [174] provided refined regret bounds based on empirical variance estimation,

assuming the knowledge of BT . Wei and Srivastava [177] analyzed the sliding window

upper confidence bound algorithm for the K-armed MAB with known BT setting. Subse-

quently, Karnin and Anava [113] considered the setting without knowing BT and K = 2,

and achieved a dynamic regret bound of Õ(B9/50
T T 41/50 +T 77/100) with a change point de-

tection type technique. In a recent work, Luo et al. [134] generalized this change point

detection type technique to the K-armed contextual bandits in drifting environments, and

in particular demonstrated an improved bound Õ(KB1/5
T T 4/5) for the K-armed bandit prob-

lem in drifting environments when BT is not known. Keskin and Zeevi [115] considered

a dynamic pricing problem in a drifting environment with 2-dimensional linear demands.

Assuming a known variation budget BT , they proved an Ω(B1/3
T T 2/3) dynamic regret lower

bound and proposed a matching algorithm by properly discounting historical observations

(this includes sliding-window estimation as a special case). When BT is not known, their

algorithm achieves Õ(BT T 2/3) dynamic regret bound. There also exist some heuristic ap-

proaches for this (or similar) setting [96, 150]. Finally, various online problems with full

information feedback and drifting environments were studied in the literature [61, 37, 107].

Known BT Unknown BT

[37] Õ
(

B1/3
T T 2/3

)
Õ
(

BT T 2/3
)

[113] Õ
(

B9/50
T T 41/50 +T 77/100

)
Õ
(

B9/50
T T 41/50 +T 77/100

)
[134] Õ

(
B1/3

T T 2/3
)

Õ
(

B1/5
T T 4/5

)
The current thesis Õ

(
B1/3

T T 2/3
)

Õ
(

B1/3
T T 2/3 +T 3/4

)
Table 1.1: Comparisons between our results and prior works. Here, the dynamic regret
bounds only show dependence on BT and T. Õ(·) denotes the function growth, and omits
the logarithmic factors.
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Bandits in Piecewise Stationary/Switching Environments Apart from drifting environ-

ments, numerous research works consider the piecewise stationary/switching environment,

where the time horizon is partitioned into at most S intervals, and the optimal action(s)

can switch from one to another across different intervals. The partition is not known

to the DM. Algorithms are designed for various bandit settings, assuming a known S

[18, 91, 13, 133, 134, 50], or without knowing S [113, 134]. Notably, the Sliding Window-

UCB and the “forgetting principle" was first proposed by Garivier and Moulines [91], while

it is only analyzed under K-armed switching environments. But we also have to emphasize

that the S is a looser measure of non-stationarity in the sense that every tiny change in the

environment could be counted towards the total number of switches. In other words, even

if there are a total of T switches, the total variation budget BT could still be far less than T.

Hence, the drifting environment serves as a better proxy for non-stationarity.

Further Contrasts to Existing Works The main idea underpinning our Bandit-over-

Bandit framework is to use a learning algorithm to tune the underlying learning algorithm’s

parameters. While this shares similar spirit to several existing works, such as the heuristic

meta bandit [101], the heuristic envelop policy [38], as well as algorithms for bandit cor-

ralling (see [7, 134] and references therein), our design is different in the sense that rather

than simultaneously maintaining multiple copies of the SW-UCB algorithm (similar to [101,

7, 134, 38]), we treat the problem of selecting window size for the SW-UCB algorithm as

another independent adversarial bandit learning instance. To achieve this, we divide the

time horizon into epochs, and force the SW-UCB algorithm to restart at the beginning of

each epoch. This critical difference allow us to establish (nearly) optimal dynamic regret

bound of the BOB algorithm while prior works cannot.

Follow-Up Works The results presented in [134] were further improved to the optimal

Õ(K1/3B1/3
T T 2/3) dynamic regret bound in [57], but it is unclear how to generalize the tech-

niques in [57] beyond the K-armed bandit setting. In [41, 23], the authors presented optimal

learning algorithms for the switching setting without knowing the number of switches. The

design of parameter-free online learning algorithms are also considered in other online
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learning scenarios, such as bandit convex optimization [188], bandit non-convex optimiza-

tion [159], and reinforcement learning [60].

1.1.2 Summary of Main Contributions for Chapter 2

We design and analyze a novel algorithmic framework for bandit problems in drifting en-

vironments. We begin by demonstrating our results via the lens of the linear model class.

However, we emphasize the choice of linear model is by no mean a restriction, and indeed,

we demonstrate the generality of our framework to a variety of bandit learning models. Our

main contributions can be summarized as follows.

∙ When the variation budget BT is known, we characterize the lower bound of dynamic

regret, and develop a tuned Sliding Window Upper-Confidence-Bound (SW-UCB) al-

gorithm with matching dynamic regret upper bound up to logarithmic factors.

∙ When BT is unknown, we propose a novel Bandit-over-Bandit (BOB) framework that

tunes the window size of the SW-UCB algorithm adaptively. When the amount of non-

stationarity is moderate to large, the BOB algorithm recovers the optimal dynamic

regret bound; otherwise, it obtains a dynamic regret bound with best dependence on

T compared to prior literature.

∙ Our algorithm design and analysis shed light on the fine balance between explo-

ration, exploitation and adaptation to changes in dynamic learning environments.

We rigorously incorporate the “forgetting principle” [91] into the Optimism-in-Face-

of-Uncertainty principle [21, 3], by demonstrating that the DM can enjoy an optimal

dynamic regret bound if she keeps disposing of sufficiently old observations. We

provide the precise rate of disposal, and rigorously show its convergence to optimal-

ity.

1.2 Non-Stationary Reinforcement Learning

Note that in bandit optimization, we assume that the environment’s change is unrelated to

the DM’s action. However, this assumption can be violated in many important operational
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problems.

To remove this assumption, we consider a general sequential decision-making frame-

work, where a DM interacts with an initially unknown environment iteratively. At each

time step, the DM first observes the current state of the environment, and then chooses

an available action. After that, she receives an instantaneous random reward, and the en-

vironment transitions to the next state. The reward follows a reward distribution, and the

subsequent state follows a state transition distribution. Both distributions depend (solely)

on the current state and action. Hence, the environment can be fully characterized by a dis-

crete time MDP. The DM aims to design a policy that maximizes her cumulative rewards,

while facing the following challenges:

∙ Endogenous Dynamics: The rewards and state transitions (and hence, future re-

wards) are influenced by the DM’s policy.

∙ Non-Stationarity: The reward and state transition distributions vary (independently

of the DM’s policy) across time steps.

∙ Uncertainty: Both the reward and state transition distributions are initially unknown

to the DM.

∙ Bandit/Partial Feedback: The DM can only observe the reward and state transition

resulted by the current state and the action she picks in each time step.

It turns out that many applications can be captured by this framework:

Example 1 (Inventory Control). In inventory control with lost-sales, zero-lead time, and

possibly fixed cost [106, 34, 186, 56], a seller repeatedly observes her current stock level

(i.e., state) and decides the quantity to order (i.e., action). The ordered quantity then ar-

rives instantaneously. Afterwards, a demand sampled from an initially unknown demand

distribution is realized and the seller observes the censored demand. Finally, the seller

pays the ordering cost, fixed cost, and lost-sales/holding cost. The goal of the seller is to

minimize the cumulative cost. Here, due to the emergence of competing products or other

supply chain disruption events, the demand distributions can be time varying.
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Example 2 (Real-Time Bidding in Ads Auctions). Advertisers repeatedly competes for

ad display impressions via real-time online auctions [93, 49, 83, 25, 94, 98]. Each adver-

tiser begins with a budget. Upon the arrival of a user, an impression is generated, and the

advertisers submit bids (i.e., action) for it subject to her remaining budget. The winning ad-

vertiser acquires the impression to display her ad to the user, and observes the user click or

no-click behavior (i.e., reward). For each slot won, the advertiser has to make the payment

(determined by the auction mechanism) using her remaining budget, and the budget is pe-

riodically refilled (i.e., state transition). Each advertiser wants to maximize the number of

clicks on her advertisement subject to her own (continuously evolving) budget constraint.

Nevertheless, the competitiveness of each auction exhibits non-stationarity as the partic-

ipating advertisers and the arriving users are different from time to time. Moreover, the

popularity of an ad can change due to endogenous reasons. For instance, displaying the

same ad too frequently in a short period of time might reduce its freshness, and results in a

tentatively low number of clicks (i.e., we can use both the remaining budget and the number

of times that the ad is shown within a given window size to model the state of the MDP).

Motivated by these applications, we consider RL in non-stationary MDPs where both

the reward and state transition distributions can change over time, but the total changes

(quantified by suitable metrics) are upper bounded by the respective variation budgets [36,

38]. Designing algorithms for RL in non-stationary MDPs can be extremely challenging.

This is because, under non-stationarity, historical data samples might incorrectly indicate

that state transition rarely happens.

Example 3 (Perils of Drift). Under non-stationarity, the DM can be interacting with dif-

ferent MDPs over time. Consider two different 2-state-2-action MDPs, p1 and p2 (as shown

in Fig 1-1): under p1, the blue action always transitions to state 2 and the green action

always transitions to state 1; while p2 is exactly to the opposite. Then it is possible that

whenever the DM chooses the green action in state 1 (or 2), the underlying MDP is p1 (p2,

respectively); when she chooses the blue action in state 1 (or 2), the underlying MDP is

p2 (p1, respectively). Moreover, due to the bandit feedback, she cannot observe the entire

p1 and p2. Hence, the collected data would draw the wrong conclusion that neither action
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can result in state transition! We formalize this in Section 3.3.3.

Figure 1-1: Under non-stationary, historical data can falsely indicate that state transition
rarely happens.

This challenge is uniquely associated with RL in non-stationary MDPs and does not

show up (or can be easily bypassed) in other related but different non-stationary sequential

decision-making settings. For example, in non-stationary multi-armed bandits (MAB) [92,

36, 58], there is only one state and the DM does not need to worry about transitions between

states; while in RL in piecewise stationary MDPs [108], the DM can leverage the fact that

the underlying MDP only changes once in a while to bypass this difficulty.

1.2.1 Summary of Main Contributions for Chapter 3

We set forth to address the above challenges. Assuming that, during the T time steps, the

total variations of the reward and state transition distributions are bounded (under suitable

metrics) by the variation budgets Br (> 0) and Bp (> 0), respectively, we design and ana-

lyze novel algorithms for RL in non-stationary MDPs. Let Dmax, S, and A be respectively

the (unknown a priori) maximum diameter (measures the hardness of state transition, for-

mally defined in Section 3.1), number of states, and number of actions in the MDP. Our

main contributions are:

∙ We formally delineate the challenge of RL in non-stationary MDPs: existing algo-

rithms for non-stationary sequential decision-makings [108, 92] typically follows the
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Optimism in the Face of Uncertainty (OFU) + forgetting principles as follows:

1. estimate unknown parameters with most recently observed data, and construct

the tightest possible confidence regions accordingly;

2. optimistically search for the most favorable model within the confidence re-

gions and computes the optimistic policy, which is the optimal policy w.r.t. this

most favorable model;

3. execute this optimistic policy.

In RL, step 2 is achieved by the Extended Value Iteration (EVI) [108] and the loss

of using this optimistic policy is proportional to the least diameter induced by any

MDP in the confidence regions. However, we demonstrate in Section 3.3.3 that in

RL in non-stationary MDPs, it is possible that the diameter induced by any MDP in

the confidence regions constructed according to step 1 can grow wildly, and may thus

result in unfavorable dynamic regret bound.

∙ We develop the Sliding Window UCRL2 with Confidence Widening (SWUCRL2-CW)

algorithm. When the variation budgets are known, we prove it attains a

Õ
(

Dmax(Br +Bp)
1/4S2/3A1/2T 3/4

)
dynamic regret bound. In a nutshell, the confidence widening technique injects extra

optimism in the learning algorithm and ensures that either the diameter induced by

some MDP in the confidence region is bounded by Dmax or a non-negligible amount

of variation budget is consumed.

∙ We propose the Bandit-over-Reinforcement Learning (BORL) algorithm that tunes the

SWUCRL2-CW algorithm adaptively, and retains the same Õ
(

Dmax(Br +Bp)
1/4S2/3A1/2T 3/4

)
dynamic regret bound without knowing the variation budgets.

∙ As a complement, we show that if for any pair of initial state and target state, there

always exists an action such that the probability of transiting from the initial state to

the target state by taking this action is lower bounded uniformly over the entire time
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horizon, the DM can attain low dynamic regret without widening the confidence

regions. We demonstrate that in the context of single item inventory control with

fixed cost [183], a mild condition on the demand distribution is sufficient for this

extra assumption to hold.

1.3 Meta Dynamic Pricing

Experimentation is popular on online platforms to optimize a wide variety of elements such

as search engine design, homepage promotions, and product pricing. This has led firms to

perform an increasing number of experiments, and several platforms have emerged to pro-

vide the infrastructure for these firms to perform experiments at scale (see, e.g., [143]).

State-of-the-art techniques in these settings employ bandit algorithms (e.g., Thompson

sampling), which seek to adaptively learn treatment effects while optimizing performance

within each experiment [168, 164]. However, the large number of related experiments begs

the question: can we transfer knowledge across experiments?

We study this question for Thompson sampling algorithms in dynamic pricing applica-

tions that involve a large number of related products. Dynamic pricing algorithms enable

retailers to optimize profits by sequentially experimenting with product prices, and learn-

ing the resulting customer demand [120, 39]. Such algorithms have been shown to be

especially useful for products that exhibit relatively short life cycles [78], stringent inven-

tory constraints [179], strong competitive effects [82], or the ability to offer personalized

coupons/pricing [185, 26]. In all these cases, the demand of a product is estimated as a func-

tion of the product’s price (chosen by the decision-maker) and a combination of exogenous

features as well as product-specific and customer-specific features. Through carefully cho-

sen price experimentation, the decision-maker can learn the price-dependent demand func-

tion for a given product, and choose an optimal price to maximize profits [148, 63, 109].

Dynamic pricing algorithms based on Thompson sampling have been shown to be particu-

larly successful in striking the right balance between exploring (learning the demand) and

exploiting (offering the estimated optimal price), and are widely considered to be state-of-

the-art [168, 10, 162, 77].
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The decision-maker typically runs a separate pricing experiment (i.e., dynamic pric-

ing algorithm) for each product (or for a set of simultaneously-offered products). How-

ever, this approach can waste valuable samples re-discovering information that could have

been learned from previously-offered related products. For example, students may be more

price-sensitive than general customers; as a result, many firms such as restaurants, retailers

and movie theaters offer student discounts. This implies that the coefficient of student-

specific price elasticity in the demand function is positive for many products (although the

specific value of the coefficient likely varies across products). Similarly, winter clothing

may have higher demand in the fall and lower demand at the end of winter. This implies

that the demand functions of winter clothing may have similar coefficients for the fea-

tures indicating time of year. In general, there may even be complex correlations between

coefficients of the demand functions of products that are shared. For example, the price-

elasticities of products are often negatively correlated with their demands, i.e., customers

are willing to pay higher prices when the demand for a product is high. When offering

multiple products simultaneously, one must additionally learn cross-product price elastici-

ties in the demand function (to model substitution effects), which may also exhibit patterns

that can be learned from substitution patterns of related products in historical data. For

example, substitution effects may be stronger between more similar products, or among

more price-sensitive customers like students.

Thus, one may expect that the demand functions for related products may share some

(a priori unknown) common structure, which can be learned across products. Note that the

demand functions are unlikely to be exactly the same, so a decision-maker would still need

to conduct separate pricing experiments for each product. However, accounting for shared

structure during these experiments may significantly speed up learning per product (or per

set of products, if offering multiple products simultaneously), thereby improving profits.

In Chapter 4, we propose an approach to learn shared structure across pricing experi-

ments. We begin by noting that the key (and only) design decision in Thompson sampling

methods is the Bayesian prior over the unknown parameters. This prior captures shared

structure of the kind we described above — e.g., the mean of the prior on the student-

specific price-elasticity coefficient may be positive with a small standard deviation. It is
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well known that choosing a good (bad) prior significantly improves (hurts) the empirical

performance of the algorithm [55, 105, 132, 163]. However, the prior is typically unknown

in practice, particularly when the decision-maker faces a cold start. While the decision-

maker can use a prior-independent algorithm [10], such an approach achieves poor em-

pirical performance due to over-exploration; we demonstrate a substantial gap between the

prior-independent and prior-dependent approaches in our experiments on synthetic and real

data. In particular, knowledge of the correct prior enables Thompson sampling to appropri-

ately balance exploration and exploitation [162]. Thus, the decision-maker needs to learn

the true prior (i.e., shared structure) across products to achieve good performance. We

propose a meta dynamic pricing algorithm that efficiently achieves this goal.

We first formulate the problem of learning the true prior online while solving a se-

quence of pricing experiments for different products. Our meta dynamic pricing algorithm

requires two key ingredients. First, for each product, we must balance the need to learn

about the prior (“meta-exploration”) with the need to leverage the prior to achieve strong

performance for the current product (“meta-exploitation”). In other words, our algorithm

balances an additional exploration-exploitation tradeoff across price experiments. Second,

a key technical challenge is that finite-sample estimation errors of the prior may signifi-

cantly impact the performance of Thompson sampling for any given product. In particular,

vanilla Thompson sampling may fail to converge with an incorrect prior; as a result, di-

rectly using the estimated prior across products can result in poor performance. To this

end, we introduce a novel “prior alignment" technique to analyze the regret of Thompson

sampling with a mis-specified prior, which may be of independent interest.

Using our alignment technique, we show surprisingly that despite prior mis-specification,

greedy updating of the prior is sufficient to learn effectively across pricing experiments

when the prior covariance is known. However, when the prior has an unknown covariance

matrix, it is beneficial to widen the estimated prior covariance by a term that is a function

of the prior’s estimated finite-sample error. Thus, we use a more conservative approach (a

wide prior) for earlier products when the prior is uncertain; over time, we gain a better es-

timate of the prior, and can leverage this knowledge for better empirical performance. Our

algorithm provides an exact prior correction path over time to achieve strong performance
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guarantees across all pricing problems. We prove that, when using our algorithm, the price

of an unknown prior for Thompson sampling is negligible in experiment-rich environments

(i.e., as the number of products grows large).

1.3.1 Related Works

Experimentation is widely used to optimize decisions in a data-driven manner. This has led

to a rich literature on bandits and A/B testing [124, 20, 69, 161, 35, 112, 42]. This literature

primarily proposes learning algorithms for a single experiment, while our focus is on meta-

learning across experiments. Meta-learning can take the form of constructing an empirical

Bayesian prior [149, 14], or leveraging low-dimensional structure between problems [30].

We take an empirical Bayesian approach to sequential decision-making. While there has

been some prior work on meta-learning in bandits [102, 136, 173, 165] and more generally

in reinforcement learning [80, 81, 180], these papers only provide heuristics for learning

exploration strategies given a fixed set of past problem instances. They do not prove any

theoretical guarantees on the performance or regret of the meta-learning algorithm. To the

best of our knowledge, our work is the first to propose a meta-learning algorithm in a bandit

setting with provable regret guarantees.

We study the specific case of dynamic pricing, which aims to learn an unknown demand

curve in order to optimize profits. We focus on dynamic pricing because meta-learning is

particularly important in this application, e.g., online retailers such as Rue La La may

run numerous pricing experiments for related fashion products. We believe that a similar

approach could be applied to multi-armed or contextual bandit problems, in order to inform

the prior for Thompson sampling across a sequence of related bandit problems.

Dynamic pricing has been found to be especially useful in settings with short life cycles

or limited inventory, e.g., fast fashion or concert tickets [78, 179], among online retailers

that constantly monitor competitor prices and adjust their own prices in response [82], or

when prices can be personalized based on customer-specific price elasticities, e.g., through

personalized coupons [185]. Several papers have designed near-optimal dynamic pricing

algorithms for pricing a product by balancing the resulting exploration-exploitation trade-

off [120, 39, 15, 74, 99, 44, 71, 117]. Recently, this literature has shifted focus to pricing
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policies that dynamically optimize the offered price with respect to exogenous features

[148, 63, 109] and customer-specific price elasticity [26]. We adopt the linear demand

model proposed by [26], which allows for feature-dependent heterogeneous price elastici-

ties.

When sellers offer multiple products simultaneously, one may wish to perform price

experiments jointly on a set of products to capture substitution effects or overlapping in-

ventory constraints [117, 8, 77]. However, in these papers, price experimentation is still

performed independently on the current set of products, and any learned parameter knowl-

edge is not shared across future sets of products to inform future demand learning. In

contrast, we propose a meta dynamic pricing algorithm that learns the distribution of un-

known parameters of the demand function across products. While we focus largely on the

single-product setting for ease of exposition, we show how our algorithm and theoretical

results carry over straightforwardly for multi-product settings with substitution effects; in

fact, transfer learning from historical data may be even more valuable in these settings since

the number of parameters (e.g., cross-product elasticities) to learn is much larger.

Our learning strategy is based on Thompson sampling, which is widely considered to

be state-of-the-art for balancing the exploration-exploitation tradeoff [168]. Several papers

have studied the sensitivity of Thompson sampling to prior misspecification. For example,

[105] show that Thompson sampling still achieves the optimal theoretical guarantee with

an incorrect but uninformative prior, but can fail to converge if the prior is not sufficiently

conservative. [132] provide further support for this finding by showing that the perfor-

mance of Thompson sampling for any given problem instance depends on the probability

mass (under the provided prior) placed on the underlying parameter; thus, one may expect

that Thompson sampling with a more conservative prior (i.e., one that places nontrivial

probability mass on a wider range of parameters) is more likely to converge when the true

prior is unknown. It is worth noting that [10] and [47] propose a prior-independent form

of Thompson sampling, which is guaranteed to converge to the optimal policy even when

the prior is unknown by conservatively increasing the variance of the posterior over time.

However, the use of a more conservative prior creates a significant cost in empirical perfor-

mance [55]. For instance, [31] empirically find through simulations that the conservative
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prior-independent Thompson sampling is significantly outperformed by vanilla Thompson

sampling even when the prior is misspecified.1 We empirically find, through experiments

on synthetic and real datasets, that learning and leveraging the prior can yield much bet-

ter performance compared to a prior-independent approach. As such, the choice of prior

remains an important design choice in the implementation of Thompson sampling [163].

We propose a meta-learning algorithm that learns the prior across pricing experiments on

related products to attain better performance. We also empirically demonstrate that a naive

approach of greedily using the updated prior performs poorly when the prior covariance is

unknown, since it may cause Thompson sampling to fail to converge to the optimal policy

for some products. Instead, our algorithm gracefully tunes the width of the estimated prior

as a function of the uncertainty in the estimate over time.

1.3.2 Summary of Main Contributions for Chapter 4

We highlight our main contributions below:

1. Model: We formulate our problem as a sequence of N different dynamic pricing

problems, each with horizon T . Importantly, the unknown parameters of the demand

function for each product are drawn i.i.d. from a shared (unknown) multivariate

Gaussian prior.

2. Algorithm: We propose two meta-learning pricing policies, Meta-DP and Meta-DP++.

The former learns only the mean of the prior, while the latter learns both the mean

and the covariance of the prior across products. Both algorithms balance the need to

learn the prior (meta-exploration) with the need to leverage the current estimate of

the prior to achieve good performance (meta-exploitation). Meta-DP++ additionally

accounts for uncertainty in the estimated prior by conservatively widening the prior

as a function of its estimation error.

3. Theory: Unlike standard approaches, our algorithm can leverage shared structure

across products to achieve regret that scales sublinearly in the number of products

1We provide some theoretical support for this finding, since we show that limited prior mis-specification
does not affect the rate of convergence (e.g., when the prior covariance is known but the mean is unknown).
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N. We prove upper bounds Õ(d2
√

NT + d3
√

T ) and Õ(min{d2NT
1
2 , d4N

1
2 T

3
2}) =

Õ(d3(NT )
5
6 ) on the meta regret of Meta-DP and Meta-DP++ respectively. In both

cases, our meta-learning approach matches the performance of prior-independent al-

gorithms for small N, and outperforms them in experiment-rich experiments (i.e.,

when N = Ω̃(d) and N = Ω̃(d4T 2) respectively). A key ingredient of our analysis is

a “prior alignment" proof technique that may be of general interest for analyzing the

regret of mis-specified Thompson Sampling instances.

4. Numerical Experiments: We demonstrate on both synthetic and real auto loan data

that our approach significantly speeds up learning compared to ignoring shared struc-

ture (i.e., using prior-independent Thompson sampling).

1.4 Calibrating Sales Forecast in a Pandemic

This work is motivated by our collaboration with Anheuser-Busch InBev (AB InBev), a

multi-national drink and brewing company in the consumer packaged goods (CPG) sector.

In 2019, AB InBev’s annual sales were 52.3 billion USD as stated in its annual report [1].

According to [45], the company was expected to have a 28% market share of global volume

beer sales in 2017, which makes it the largest beer company worldwide.

To improve operational efficiency, AB InBev maintains a baseline sales forecast for its

products in each geographical region of interest. The baseline sales forecast is important

for many operational decisions such as inventory management, promotion campaigns, and

financial planning. The baseline sales forecast is trained by an offline statistical learning

algorithm with historical sales data as well as social & economic data, and it can accommo-

date different update frequencies (e.g., weekly or monthly) to make predictions for different

business applications.

As an example, Fig. 1-2(a) displays the weekly baseline forecast sales volumes and

the actual sales volumes in a certain geographical region before and after the beginning

of the COVID-19 pandemic [178]. Evidently, the baseline sales forecast enjoys a high

prediction accuracy and is capable of adapting to the seasonality patterns of the actual sales

volumes during normal times. However, since the emergence of the COVID-19 pandemic,
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the accuracy of the forecast plummeted drastically. This has thus placed a hurdle for AB

InBev since it relies heavily on the baseline sales forecast to make operational decisions.

Hence, it is of great importance for the company to incorporate the impact of the pandemic

into its sales forecast.
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Figure 1-2

Given the incredible performance of the baseline sales forecast in normal times, we

decided to follow an add-on procedure that iterates between the following two steps over

time:

1. Predict the offset, i.e., the difference between baseline sales forecast and actual sales

volumes, caused by the COVID-19 pandemic.

2. Generate a calibrated sales forecast by subtracting the predicted offset from the

baseline sales forecast, i.e., Calibrated sales forecast = Baseline sales forecast −

Predicted offset.

Since the baseline sales forecast is available through AB InBev’s offline learning algorithm,

we focus on forecasting the offset, i.e., step 1. As suggested by [142], during this pandemic,

customer behavior is driven almost solely by the dynamics of the pandemic. Therefore,

for each region, we propose to use its number of active COVID-19 cases, i.e., a proxy

of the dynamics of the COVID-19 pandemic, to predict the offset. We thus visualize the

relationship between the weekly averaged active COVID-19 case numbers and the weekly
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averaged offsets during the pandemic in Fig. 1-2(b). From the plot, we observe that a

higher number of active COVID-19 cases is more likely to result in larger offset. Note

that the future active COVID-19 case numbers can be simulated by existing pandemic

modeling techniques, such as the Susceptible-Infectious-Removed (SIR) epidemic model

[114]. These observations immediately suggest a greedy least squares (GLS) policy that

sequentially fits (e.g., via least squares method) the best isotonic (non-decreasing) function

[24, 156, 184] over all historical (active COVID-19 cases, offset) observations, and predict

the future offsets by applying the outputs of the SIR epidemic model to the fitted isotonic

function.

Unfortunately, the GLS policy suffers from some critical limitations. The GLS policy

implicitly assumes that there exists an isotonic function f * such that the statistical relation-

ship between the active COVID-19 cases and the offset is governed by f *, i.e.,

offset = f *(active COVID-19 cases)+ independent zero-mean noise term. (1.1)

This is a commonly made assumption in existing non-parametric regression literature.

Nonetheless, this is a strong assumption which makes the GLS policy susceptible. For

example, the noise terms can be correlated over time (i.e., temporal correlations) and could

also exhibit correlations across different geographical locations (i.e., spatial correlations):

∙ Temporal Correlations: suppose we use the noise terms to model the customer’s

(possibly random) vigilance about COVID-19 pandemic. Then, it is possible that

when the first COVID-19 case occurs or the rapidly increasing active COVID-19

cases would lead to temporarily higher vigilance; while a decreasing active cases

and the deployment of vaccination would lead to temporarily lower vigilance. One

can also expect that as time elapses, customers might gradually adapt to the COVID-

19 pandemic with better understanding of the pandemic.

∙ Spatial Correlations: since the changing sales volumes in many regions are caused

by the same key drivers (e.g., the COVID-19 pandemic, governments’ mitigation

policy), the customers’ behavior can be very closed to each other in different geo-

graphical regions. That means, the relationship between active COVID-19 cases and
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offset might share similar patterns across different geographical regions.

We show in Proposition 33 of Section 5.1.4 that if the noise terms are allowed to be non-

independent (i.e., there exist temporal correlations), the performance of the GLS policy can

be ungrounded even if

1. The noise terms have almost zero-mean;

2. f *(·) can fit the (active COVID-19 cases, offset) observations as well as if the obser-

vations are generated according to Eq. (1.1).

Even worse, the GLS policy might continue to perform poorly if the noise terms of all the

geographical regions are similar to the ones in Proposition 33 due to spatial correlations.

In fact, this is a common caveat with classical statistical theory. In the classical sta-

tistical theory of prediction, data is assumed to be a realization of a stationary stochastic

process and the effectiveness of a forecasting policy is provided in an expectation sense,

which means the forecasting policy can perform poorly w.r.t. certain realization of the data

as long as its performance on other realizations could compensate this deficit. However, in

our problem, due to different kinds of correlations, we might repeatedly encounter the un-

favorable data sequence and the performance guarantee of classical statistical theory based

forecasting policy no longer holds. With these, we ask the following question:

Can we design sales forecast policy that does not rely on any statistical assumptions?

1.4.1 Modeling Approach: Combining Non-Parametric Regression,

Game Theory, and Pandemic Modeling

To address the above question, we consider the competitive online non-parametric regres-

sion setup: in each time step, a decision-maker (DM) predicts the label (i.e., offset in sales

volumes) of a covariate (i.e., current active COVID-19 case numbers) given past (covariate,

label) observations. Each covariate is generated by a simulatable (e.g., via the SIR epidemic

model) generative process. We are looking for a computationally-efficient algorithm that

minimizes regret, which is the difference between the squared `2-norm associated with
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labels generated by the algorithm and labels generated by an adversary and the squared

`2-norm associated with labels generated by the best isotonic (non-decreasing) function

in hindsight, i.e., oracle, and the adversarial labels. In this setup, the adversary seeks to

maximize the regret.

Our notion of regret follows [152] and the connections between learning and repeated

games [53]. Specifically, we make no statistical assumption (e.g., eq. (1.1)) on the la-

bel’s generative process, but in order to maximize the regret, the adversary would try to

maximize our loss while minizing the loss of the best isotonic function/oracle. That is, we

encode our prior belief that the family of isotonic functions is expected to perform well into

the definition of oracle without enforcing eq. (1.1). This ensures our model and the forth-

coming solution are going to provide performance guarantee for all possible (covariate,

label) observations.

1.4.2 Related Works

[152, 89] have studied the online non-parametric regression problem with a general bench-

mark. However, their algorithms are often computationally inefficient for our problem (see

Section 1.1 of [121]).

When the benchmark is an isotonic function and all the covariates are known before-

hand, i.e., the fixed-design setting, [121] first shown that many existing online learning

algorithms, e.g., online gradient descent [193], exponential gradient descent [119], and

follow the leader [103], could only ensure sub-optimal regret upper bounds, and they fur-

ther developed a computationally-efficient exponential weights algorithm [131] to attain

the minimax-optimal regret bound Θ(T 1/3). [121] has also demonstrated that the DM has

to suffer Θ(T ) regret if the covariates are chosen by an adversary without revealing them at

the beginning. The fixed-design setting corresponds to knowing exactly the active COVID-

19 case numbers over the entire time horizon in AB InBev’s case, and it is thus impractical.

Later on, [122] studied the case where the (unknown a priori) covariates arrives in random

permutation order, and they shown that the regret bound of this problem is also Õ(T 1/3).

Unfortunately, this covariate generative process is still too restrictive for our application.

Isotonic functions have found numerous applications in statistics (see [156] and refer-
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ences therein). More recently, [100, 27, 70] have used (known a priori) isotonic functions

to model non-linearity in customer behaviors, i.e., purchasing probability, in the context of

dynamic pricing. Isotonic functions have also been used to model the reward distributions

in bandit optimization [79, 58, 191, 190].

Big-data anlalytics and machine learning techniques have recently emerged as a popular

tool to perform sales prediction and related problems [76, 52]. For example, [66] investi-

gated the benefits of information sharing in improving sales forecast accuracy. [28] pro-

posed to solve the sales forecast and order optimization problem with singlestep machine-

learning algorithms. [67] conducted empirical studies on how inventory availability infor-

mation can affect sales. [129] also considered the joint sales prediction, product shipping

and allocation problem using data-driven approaches. Our work contributes to this line of

works by demonstrating how one can combine online learning and pandemic modeling to

perform sales forecast calibration.

1.4.3 Summary of Main Contributions for Chapter 5

We develop a data-driven online non-parametric regression method that sequentially takes

the (past and simulated future) active COVID-19 case numbers as input, and then outputs

the level of calibration of AB InBev’s baseline sales forecast. Specifically, for a T time

steps online non-parametric regression problem, our contributions can be summarized as

follows:

∙ Rate-optimal learning policy: We develop a computationally-efficient Simulat-

ing Exponential Weights (SEW) policy that applies the simulated future covariates

as an extra (in addition to past covariate, label observations) input to the exponen-

tial weights algorithm [131]. Different than conventional online learning algorithms

[53, 46], which make predictions based only on historical observations, the SEW pol-

icy additionally makes use of the simulated future covariates, and this makes its regret

analysis challenging. We bypass this difficulty by exploiting the generative process

of the covariates and the relaxation framework (see Section D.2 of the appendix for

more details) from sequential complexity theory of online learning [152], and show
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that the SEW policy achieves a regret bound of order Õ(T 1/3). Comparing this regret

upper bound with the regret lower bound established in Theorem 5 of [121], we know

that it is minimax-optimal.

∙ Numerical experiments: We evaluate the SEW policy on both synthetic and AB

InBev’s datasets. With the synthetic datasets, we compare the performance of the

SEW policy against the exponential weights (EW) algorithm for fixed-design online

isotonic regression [121] and the online linear regression (OLR) algorithm [170].

The results show that by using the SEW policy, the cost of not knowing the covariates

in advance is small, and the prediction accuracy is significantly higher than that of the

OLR algorithm in various cases. With the AB InBev’s dataset, we compare the per-

formance of the SEW policy calibrated sales forecast with two benchmark methods—

the OLR calibrated sales forecast and the baseline sales forecast. We study both the

weekly and the monthly update scenarios. The results demonstrate that our method

outperforms the competing methods by more than 20% in terms of WMAPE (i.e.,

weighted mean absolute percentage error) and MSE (i.e., mean squared error) by

more than 50% in the monthly forecast (AB InBev’s main focus) and 15% in the

weekly forecast.
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Chapter 2

Non-Stationary Bandit Optimization

2.1 Problem Formulation for Drifting Linear Bandits

We start by introducing the notations to be used and the model formulation. From the

current section to Section 2.5, we focus on the drifting linear bandit problem, which serves

to illustrate our algorithmic framework. After that, we provide generalizations to a wide

variety of bandit problems in drifting environments in Section 2.6.

2.1.1 Notation

Throughout this chapter, all vectors are column vectors, unless specified otherwise. We

define [n] to be the set {1,2, . . . ,n} for any positive integer n. We denote ⟨x,y⟩ = x⊤y as

the inner product between x,y ∈ Rd . For p ∈ [1,∞], we use ‖𝑥‖p to denote the p-norm of

a vector 𝑥 ∈ Rd. For a positive definite matrix A ∈ Rd×d , we use ‖𝑥‖A to denote
√
𝑥⊤A𝑥

of a vector 𝑥 ∈ Rd. We denote x∨ y and x∧ y as the maximum and minimum between

x,y ∈ R, respectively. We adopt the asymptotic notations O(·),Ω(·), and Θ(·) [65]. When

logarithmic factors are omitted, we use Õ(·),Ω̃(·), Θ̃(·), respectively. With some abuse,

these notations are used when we try to avoid the clutter of writing out constants explicitly.
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2.1.2 Learning Protocol

In each round t ∈ [T ], a decision set Dt ⊆Rd is presented to the DM. Then, the DM chooses

an action Xt ∈ Dt . Afterwards, the reward

Yt = ⟨Xt ,θt⟩+ηt

is revealed to the DM as a whole. We allow Dt to be chosen by an oblivious adversary,

who chooses the decision sets {Dt}T
t=1 before the protocol starts [54]. The parameter vector

θt ∈Rd is an unknown d-dimensional vector, and ηt is a random noise drawn i.i.d. from an

unknown sub-Gaussian distribution [154] with variance proxy R. By definition, this means

E [ηt ] = 0, and ∀λ ∈ R we have E [exp(ληt)] ≤ exp(λ 2R2/2). Following the convention

of the existing linear bandit literature [3, 9], we assume there are positive constants L and

S, such that ‖X‖2 ≤ L for all X ∈ Dt and all t ∈ [T ], and ‖θt‖2 ≤ S holds for all t ∈ [T ].

In addition, the instance is normalized so that |⟨X ,θt⟩| ≤ 1 for all X ∈ Dt and t ∈ [T ]. The

constants L,S are known to the DM.

We consider the drifting environment [36], where θt can change over different t, with

the constraint that the sum of the Euclidean distances between consecutive θt’s is bounded

from above by the variation budget BT = Θ(T ρ) for some ρ ∈ (0,1), i.e.,

T−1

∑
t=1
‖θt+1−θt‖2 ≤ BT . (2.1)

We allow θt’s to be chosen by an oblivious adversary. It is worth pointing out that the

concepts of a drift environment and variation budget were originally introduced in [37] and

[36, 38] for the full information setting and the partial/bandit feedback setting, respectively.

We define Ht = {Ds,Xs,Ys}t−1
s=1 ∪ {Dt} as the available history information at round

t ∈ [T ]. The DM’s goal is to design a non-anticipatory policy π, which only uses the

information Ht in each round t, to maximize the cumulative reward. Equivalently, the goal

is to minimize the dynamic regret, which is the worst case cumulative regret against the

optimal policy π*, that has full knowledge of θt’s. Denoting x*t = argmaxx∈Dt
⟨x,θt⟩, the
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dynamic regret of a non-anticipatory policy π is mathematically expressed as

RT (π) =E [RegretT (π)] = E

[
T

∑
t=1
⟨x*t −Xt ,θt⟩

]
,

where the expectation is taken with respect to the randomness of Xt and Ht as well as the

(possible) randomness of the policy.

Remark 1. A related non-stationary environment is the piecewise stationary environment

[91], which allows θt’s to change at most S times throughout the time horizon. However, as

discussed in Section 1.1.1, this can be a looser measure of non-stationarity as a very tiny

change in the environment is still counted towards the total number of switches. That is to

say, even if there are a total of T switches, the total variation could still be far less than T.

2.2 Lower Bound for Drifting Linear Bandits

We first provide a lower bound on the the dynamic regret for the linear model.

Theorem 1. In the drifting linear bandit setting, for any T ≥ d and BT ∈ [dT−1/2,8d−2T ],

there exists decision sets {Dt}T
t=1 and reward vectors {θt}T

t=1, such that for all t ∈ [T ] and

all x ∈ Dt , we have ‖x‖ ≤ 1, ‖θt‖ ≤ 1, and ‖⟨x,θt⟩‖ ≤ 1, and the dynamic regret for any

non-anticipatory policy π satisfies RT (π) = Ω

(
d2/3B1/3

T T 2/3
)
.

Poof Sketch. The complete proof is presented in Section A.1 of the appendix. The con-

struction of the lower bound instance is similar to the approach of [36]. The nature divides

the whole time horizon into ⌈T/H⌉ blocks of equal length H = ⌈(dT )2/3B−2/3
T ⌉ (≤ T )

rounds, and the last block can possibly have less than H rounds. In each block, the na-

ture initiates a new stationary linear bandit instance with parameter vectors from the set

{±
√

d/4H}d . We set up the instance so that the parameter vector of a block cannot be

learned using the observations from the previous blocks. Consequently, every online pol-

icy must incur a regret of Ω(d
√

H) in each block, by applying the regret lower bound for

stationary linear bandits (for example, see [125]) on each block. Since there are at least

⌊T/H⌋ blocks, the total dynamic regret is Ω(dT/
√

H) = Ω(d2/3B1/3
T T 2/3).
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2.3 Sliding Window Regularized Least Squares Estima-

tor

As a preliminary, we introduce the sliding window regularized least squares estimator (SW-

RLSE), which is the key tool in estimating the unknown parameters {θt}T
t=1 online. The

SW-RLSE generalizes the sliding window sample estimator proposed by [91] for the K-

armed bandits in piecewise stationary environments. In addition, our SW-RLSE can be

constructed for any sequence of arm pulls, which is different from [115], who require each

arm (in their setting a posted price) to be pulled equally often. Despite the underlying

non-stationarity in our model, we show that the estimation error of our SW-RLSE scales

gracefully with the variation of θt’s across time.

To motivate SW-RLSE, consider a round t, where the DM aims to estimate θt based

on the historical observation {(Xs,Ys)}t−1
s=1. The design of SW-RLSE is based on the for-

getting principle [91], which argues the following: the DM could estimate θt using only

{(Xs,Ys)}t−1
s=1∨(t−w), the observation history during the time window (1∨ (t−w)) to (t−1),

instead of all prior observations. The rationale is that, under non-stationarity, the obser-

vations far in the past are obsolete, and they are not as informative for regressing θt . The

principle crucially hinges on w, which is a positive integer called the window size. Intu-

itively, when the variation across θ1, . . . ,θT increases, the window size w should be smaller,

since the past observations become obsolete at a faster rate. We treat w as a fixed parameter

in this section, and then shine lights on choosing w in subsequent sections.

The SW-RLSE θ̂t is the optimal solution to the following ridge regression problem with

regularization parameter λ > 0:

min
θ :θ∈Rd

λ ‖θ‖2
2 +

t−1

∑
s=1∨(t−w)

(X⊤s θ −Ys)
2.

Define matrix Vt−1 := λ I+∑
t−1
s=1∨(t−w)XsX⊤s . The SW-RLSE θ̂t can be explicitly expressed
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as

θ̂t =V−1
t−1

(
t−1

∑
s=1∨(t−w)

XsYs

)
=V−1

t−1

t−1

∑
s=1∨(t−w)

XsX⊤s θs +V−1
t−1

t−1

∑
s=1∨(t−w)

ηsXs. (2.2)

Next, we demonstrate the accuracy of the SW-RLSE. Denoting

β := R

√
d ln
(

1+wL2/λ

δ

)
+
√

λS, (2.3)

we provide an error bound on estimating the latent reward, i.e., the confidence radius, of

any action x ∈Dt in a round t, under the following regularity assumption made in [75] over

the decision sets Dt’s.

Assumption 1. There exists an orthonormal basis Ψ = (ψ1, . . . ,ψd) such that for any t ∈

[T ] and any X ∈ Dt , there exists a number z ∈ R and an i ∈ [d] such that X = z ·ψi.

Remark 2. One can easily verify that this assumption holds in the multi-armed bandits

case. Of course, this assumption allows for more general models than the multi-armed

bandits setting as it still allows each of the time-varying Dt’s to have arbitrarily large

number of actions.

In what follows, we analyze the linear bandit setting under Assumption 1. We also

discuss how to remove this assumption in Remark 4 of the forthcoming Section 2.5.

Theorem 2. For any t ∈ [T ] and any δ ∈ [0,1], we have with probability at least 1−δ ,

∣∣∣x⊤(θ̂t−θt)
∣∣∣≤ L

t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 +β ‖x‖V−1
t−1

holds for all x ∈ Dt .

Proof Sketch. The complete proof is in Section A.2 of the appendix. Note that

θ̂t−θt =V−1
t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)+V−1
t−1

(
t−1

∑
s=1∨(t−w)

ηsXs−λθt

)
,
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we first upper bound the first term as
∥∥∥V−1

t−1 ∑
t−1
s=1∨(t−w)XsX⊤s (θs−θt)

∥∥∥
2
≤∑

t−1
s=1∨(t−w) ‖θs−θs+1‖2 ,

and then adopts Theorem 2 from [3] for the second term, i.e., with probability at least

1− δ ,
∥∥∥∑

t−1
s=1∨(t−w)ηsXs−λθt

∥∥∥
V−1

t−1

≤ β . Therefore, fixed any δ ∈ [0,1], we have that for

any t ∈ [T ] and any x ∈ Dt ,

∣∣∣x⊤(θ̂t−θt)
∣∣∣= ∣∣∣∣∣x⊤

(
V−1

t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)

)
+ x⊤V−1

t−1

(
t−1

∑
s=1∨(t−w)

ηsXs−λθt

)∣∣∣∣∣
≤‖x‖2 ·

∥∥∥∥∥V−1
t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)

∥∥∥∥∥
2

+‖x‖V−1
t−1

∥∥∥∥∥ t−1

∑
s=1∨(t−w)

ηsXs−λθt

∥∥∥∥∥
V−1

t−1

(2.4)

≤L
t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 +β ‖x‖V−1
t−1

,

where we have applied the triangle inequality and the Cauchy-Schwarz inequality succes-

sively in inequality (2.4).

2.4 Sliding Window-Upper Confidence Bound (SW-UCB)

Algorithm: An Optimal Strategy

In this section, we describe the Sliding Window Upper Confidence Bound (SW-UCB) al-

gorithm for the linear model. When the variation budget BT is known, we show that

SW-UCB algorithm with a tuned window size achieves a dynamic regret bound which is

optimal up to a multiplicative logarithmic factor. When the variation budget BT is un-

known, we show that SW-UCB algorithm can still be implemented with a suitably chosen

window size so that the regret dependency on T is optimal, akin to that of [115].

2.4.1 Design Intuition

In the stochastic environment where the reward function is stationary, the well known UCB

algorithm follows the principle of optimism in face of uncertainty [21, 3]. Under this

principle, the DM selects an action that maximizes the UCB, which is the value of “mean
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plus confidence radius" [21]. To follow the principle, we first construct an UCB on the

latent mean reward ⟨x,θt⟩ for each x ∈ Dt in each round t ∈ [T ]. By Theorem 2, the UCB

of x ∈ Dt in each round t ∈ [T ] is ⟨x, θ̂t⟩+L∑
t−1
s=1∨(t−w) ‖θs−θs+1‖+β ‖x‖V−1

t−1
. We then

choose the action Xt with the highest UCB, i.e.,

Xt =argmax
x∈Dt

{
⟨x, θ̂t⟩+L

t−1

∑
s=1∨(t−w)

‖θs−θs+1‖+β ‖x‖V−1
t−1

}
= argmax

x∈Dt

{
⟨x, θ̂t⟩+β ‖x‖V−1

t−1

}
.

(2.5)

Upon selecting Xt , we have

⟨x*t , θ̂t⟩+L
t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 +β ‖x*t ‖V−1
t−1
≤⟨Xt , θ̂t⟩+L

t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 +β ‖Xt‖V−1
t−1

(2.6)

by virtue of the UCB action selection rule. From Theorem 2, we further have with proba-

bility at least 1−δ ,

⟨x*t ,θt⟩ ≤ ⟨x*t , θ̂t⟩+L
t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 +β ‖x*t ‖V−1
t−1

(2.7)

and

⟨Xt , θ̂t⟩+L
t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 +β ‖Xt‖V−1
t−1
≤ ⟨Xt ,θt⟩+2L

t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 +2β ‖Xt‖V−1
t−1

.

(2.8)

Combining inequalities (2.6), (2.7), and (2.8), we establish the following high probability

upper bound for the expected per round regret, i.e., with probability 1−δ ,

⟨x*t −Xt ,θt⟩ ≤ 2L
t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 +2β ‖Xt‖V−1
t−1

. (2.9)
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The regret upper bound of the SW-UCB algorithm (to be formalized in Theorem 3) is thus

2 ∑
t∈[T ]

L
t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 +β ‖Xt‖V−1
t−1

= Õ
(

wBT +
dT√

w

)
. (2.10)

2.4.2 Design Details

In this section, we describe the details of the SW-UCB algorithm following the discussions

above. The SW-UCB algorithm selects a regularization parameter λ (> 0), and initializes

V0 = λ I. In each round t, the SW-UCB algorithm first computes the estimate θ̂t for θt accord-

ing to eq. (2.2), and then finds the action Xt with largest UCB by solving the optimization

problem (2.5). Afterwards, the corresponding reward Yt is observed. The pseudo-code of

the SW-UCB algorithm is shown in Algorithm 1.

Algorithm 1 SW-UCB algorithm for drifting linear bandits
1: Input: Sliding window size w, dimension d, variance proxy of the noise terms R, upper

bound of all the actions’ Euclidean norms L, upper bound of all the θt’s Euclidean
norms S, and regularization constant λ .

2: Initialization: V0← λ I.
3: for t = 1, . . . ,T do
4: Update θ̂t ←V−1

t−1

(
∑

t−1
s=1∨(t−w)XsYs

)
.

5: Xt ← argmaxx∈Dt

{
x⊤θ̂t +β ‖x‖V−1

t−1

}
, where β is defined in (2.3).

6: Observe Yt = ⟨Xt ,θt⟩+ηt .
7: Update Vt ← λ I +∑

t
s=1∨(t−w+1)XsX⊤s .

8: end for

2.4.3 Dynamic Regret Analysis

We are now ready to formally state a dynamic regret upper bound of the SW-UCB algorithm for

drifting linear bandits.

Theorem 3. For the drifting linear bandit setting, the dynamic regret of the SW-UCB algorithm is

upper bounded as RT (SW-UCB algorithm) = Õ(wBT +dT/
√

w) . When BT is known, by
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taking w = Θ

(
(dT )2/3B−2/3

T

)
, the dynamic regret of the SW-UCB algorithm is

RT (SW-UCB algorithm) = Õ
(

d
2
3 B

1
3
T T

2
3

)
.

When BT is unknown, by taking w=Θ

(
(dT )2/3

)
, the dynamic regret of the SW-UCB algorithm is

RT (SW-UCB algorithm) = Õ
(

d
2
3 BT T

2
3

)
.

Poof Sketch. The complete proof is in Section A.3 of the appendix. The proof involves

upper bounding the two terms on the L.H.S. of eq. (2.10). The first term can be upper

bounded by a intuitive telescoping sum. For the second term, we first remark a similar

quantity is analyzed in [3], which involves a matrix telescoping technique under station-

arity. Nevertheless, due to the “forgetting principle" of the SW-UCB algorithm, we cannot

directly adopt this. Instead, we make use of the Sherman-Morrison formula to overcome

the barrier.

Remark 3. When the variation budget BT is known, Theorem 3 recommends choosing the

size w of the sliding window to be decreasing with BT . The recommendation is in agree-

ment with the intuition that, when the learning environment becomes more volatile, the

DM should focus on more recent observations. Indeed, if the underlying learning envi-

ronment is changing at a higher rate, then the DM’s past observations become obsolete

faster. Theorem 3 pins down the intuition of forgetting past observation in face of drifting

environments, by providing the mathematical definition of the sliding window size w that

yields the optimal dynamic regret bound.

2.5 Bandit-over-Bandit (BOB) Algorithm: Adapting to the

Unknown Variation Budget

When BT is not known, the DM can achieve the dynamic regret bound Õ
(

d2/3(BT +1)T 2/3
)

for the drifting linear bandit problem, by setting w = Θ((dT )2/3) (see Section 2.4). While
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the bound is optimal in terms of T by Theorem 1, it becomes meaningless when BT =

Ω(T 1/3), since then the resulting dynamic regret bound is linear in T .

To overcome this limitation, in this section we design an online algorithm whose dy-

namic regret grows sub-linearly in T , even when BT = o(T ) is not known. Similar to the

style of previous sections, the discussion in this section focuses on linear model. Neverthe-

less, we emphasize that the proposed framework applies to a variety of bandit models (see

the forthcoming Section 2.6).

2.5.1 Design Challenges

Theorem 3 shows that running the SW-UCB algorithm for T with window size

w* =
⌊
(dT )2/3B−2/3

T

⌋
(2.11)

leads to an optimal dynamic regret. However, the choice of the window size w* in (2.11)

requires the crucial knowledge of BT , which is not available to the DM. A natural attempt

would be to “learn" the unknown BT in order to properly tune the window size w. In

a more restrictive setting in which the differences between consecutive θt’s follow some

underlying stochastic process, one possible approach is to apply a suitable machine learning

technique to learn the underlying stochastic process and tune the parameter w accordingly.

However, under the general setting of drifting environments (2.1), the differences between

consecutive θt’s need not follow any pattern, which challenges the use of statistical machine

learning algorithms for identifying the patterns on the underlying changes.

2.5.2 Algorithm

The above mentioned observations as well as the established results motivate us to make

use of the SW-UCB algorithm as a sub-routine, and “hedge" [18, 17] against the (possibly

adversarial) changes of θt’s to identify a reasonable fixed window size. Inspired by the

heuristic envelop policy [38] and the bandit corralling technique [7, 134], we develop a

novel Bandit-over-Bandit (BOB) algorithm that achieves a nearly optimal dynamic regret

bound for drifting linear bandits. Specifically, we show In Section 2.5.4 that the BOB algo-
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rithm has a dynamic regret sub-linear in T even when BT = o(T ) is not known, unlike the

SW-UCB algorithm.

As illustrated in Fig. 2-1, the BOB algorithm divides the whole time horizon into ⌈T/H⌉

blocks of equal length H rounds (the last block can possibly have less than H rounds).

In addition, the algorithm specifies a set of candidate window sizes J. For each block

i ∈ [⌈T/H⌉], the BOB algorithm first selects a window size wi ∈ J. Then, the BOB algo-

rithm restarts the SW-UCB algorithm from scratch (see Remark 6 for a discussion on the

design of restarting) with the selected window size wi for H rounds. On top of this, the

BOB algorithm also maintains a separate bandit algorithm to determine each window size

wi based on the observed history in the previous i− 1 blocks, and thus the name Bandit-

over-Bandit. The choice of wi is based on the EXP3 algorithm [18], which allows us to

compete with the best window size in J (in the sense of minimizing dynamic regret), even

when the θt’s variation does not follow any pattern. The EXP3 algorithm is designed for

adversarial multi-armed bandits, where the underlying reward function is designed by an

oblivious adversary [18, 17]. Finally, to properly apply the EXP3 algorithm, we note that

the total reward during each block is normalized so that the normalized reward lies in [0,1]

with high probability.

Figure 2-1: Structure of the BOB algorithm

To this end, we describe the details of the BOB algorithm for the linear model. Defining

the parameters (we justify these choices in Section 3.4.1)

H =
⌊

dT
1
2

⌋
,∆ = ⌈lnH⌉,J =

{
H0,

⌊
H

1
∆

⌋
, . . . ,H

}
,Q = 2H +4R

√
H ln(T/

√
H), (2.12)

The BOB algorithm first divides the time horizon T into ⌈T/H⌉ blocks of length H rounds
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(except for the last block, which can be less than H rounds), and then initiates the parame-

ters

γ = min

{
1,

√
(∆+1) ln(∆+1)
(e−1)⌈T/H⌉

}
,s j,1 = 1 ∀ j = 0,1, . . . ,∆. (2.13)

for the EXP3 algorithm [18]. At the beginning of each block i∈ [⌈T/H⌉] , the BOB algorithm first

sets

p j,i = (1− γ)
s j,i

∑
∆
u=0 su,i

+
γ

∆+1
∀ j = 0,1, . . . ,∆, (2.14)

and then sets ji = j with probability p j,i for each j = 0,1, . . . ,∆. The selected window

size is then wi =
⌊

H ji/∆

⌋
. Afterwards, the BOB algorithm selects actions Xt by running the

SW-UCB algorithm with window size wi for each round t in block i, and the total collected

reward is
i·H∧T

∑
t=(i−1)H+1

Yt =
i·H∧T

∑
t=(i−1)H+1

⟨Xt ,θt⟩+ηt .

Finally, the total rewards is normalized by first dividing Q, and then added by 1/2 so that

it lies within [0,1] with high probability. The parameter s ji,i+1 is set to

s ji,i · exp

(
γ

(∆+1)p ji,i

(
1
2
+

∑
i·H∧T
t=(i−1)H+1Yt

Q

))
; (2.15)

while su,i+1 is the same as su,i for all u ̸= ji. The pseudo-code of the BOB algorithm is shown

in Algorithm 2.

Algorithm 2 BOB algorithm for drifting linear bandits
1: Input: Time horizon T , the SW-UCB algorithm, parameters H,∆,J,Q (as defined in

2.12).
2: Initialize parameters γ,{s j,1}∆

j=0 by eq. (2.13).
3: for i = 1,2, . . . ,⌈T/H⌉ do
4: Define distribution (p j,i)

∆
j=0 by eq. (2.14), and set jt ← j with probability p j,i.

5: Set the window size wi←
⌊

H jt/∆

⌋
.

6: Restart the SW-UCB algorithm for H rounds with window size wi.
7: Update s ji,i+1 according to eq. (2.15), and su,i+1← su,i ∀u ̸= ji
8: end for

52



2.5.3 Choice of Parameters

We first justify the choice of Q. Note that Q is used to perform normalization, we thus

prove high probability upper and lower bounds for the total rewards of each block (here,

we prove a slightly more general result by allowing maxt∈[T ],x∈Dt |⟨x,θt⟩| to be in [−ν ,ν ]

for some ν > 0).

Lemma 4. Suppose maxt∈[T ],x∈Dt |⟨x,θt⟩| ∈ [−ν ,ν ] for some ν > 0 and denote Mi as the

absolute value of cumulative rewards for block i, then with probability at least 1−2/T, Mi

does not exceed Hν +2R
√

H ln(T/
√

H) for all i, i.e.,

Pr

(
∀i ∈ ⌈T/H⌉ Mi ≤ Hν +2R

√
H ln

T√
H

)
≥ 1− 2

T
.

The complete proof of Lemma 4 is in Section A.4 of the appendix. With Lemma 4

and the choice of Q = 2H +4R
√

H ln(T/
√

H) (note that ν = 1 by our model assumption

in Section 2.1), it is evident that ∑
i·H∧T
t=(i−1)H+1Yt/Q in eq. (2.15) lies in [−1/2,1/2] with

probability at least 1− 2/T. Adding this by 1/2, we normalize the total rewards of each

block to [0,1] with probability at least 1−2/T for all the blocks.

To determine H,∆, and J, we first consider the dynamic regret of the BOB algorithm.

Here, we point out due to the design of restarting, any instance of the SW-UCB algorithm can-

not last for more than H rounds. As a consequence, even if the EXP3 selects a window size

wi > H for some block i, the effective window size is H. In other words, w* is not necessar-

ily attainable, i.e., by definition in eq. (2.11), w* =
⌊
(dT )2/3B−2/3

T

⌋
might be larger than

H when BT is small. We thus have to denote the optimally (over J) tuned window size as

w†, and derive the following result.

Proposition 5. For the drifting linear bandit setting, the dynamic regret of the BOB algorithm is

RT (BOB algorithm) = Õ

(
w†BT +

dT√
w†

+Q

√
|J|T
H

)
. (2.16)

Proof Sketch. The complete proof is presented in Section A.5 of the appendix. The dy-
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namic regret bound (2.16) can be decomposed as

Õ
(

w†BT +
dT√
w†

)
︸ ︷︷ ︸

RT (SW-UCB algorithm) with w†

+ Õ

(
Q

√
|J|T
H

)
︸ ︷︷ ︸
Loss in learning w†

. (2.17)

The first term in (2.17) is due to the dynamic regret of the underlying SW-UCB algorithm un-

der the optimally tuned window size w†. More precisely, we can view each block as a new

non-stationary linear bandit instance, and the dynamic regret is due to the application of

SW-UCB algorithm with window size w† on each block. The second term is due to the loss

by the EXP3 algorithm, which essentially treat each of the window size in J as an expert,

and compete with the best expert.

Eq. (2.16) exhibits a similar structure to the regret of the SW-UCB algorithm as stated

in Theorem 3, and this immediately indicates a clear trade-off in the design of the block

length H :

∙ On one hand, H should be small to control the regret incurred by the EXP3 algorithm

in identifying w†, i.e., the third term in eq. (2.16).

∙ On the others, H should also be large enough to allow w† to get close to w* =

⌊(dT )2/3B−2/3
T ⌋ so that the sum of the first two terms in eq. (2.16) is minimized.

A more careful inspection also reveals the tension in the design of J. Obviously, we hope

that |J| is small to minimize the third term in eq. (2.16), but we also wish J to be dense

enough so that it forms a cover to the set [H]. Otherwise, even if H is large enough that w†

can approach w*, approximating w* with any element in J can cause a major loss.

These observations suggest the following choice of J.

J =
{

H0,
⌊

H
1
∆

⌋
, . . . ,H

}
(2.18)

for some positive integer ∆, and since the choice of H should not depend on BT , we can

set H = ⌊dεT α⌋ with some α ∈ [0,1] and ε > 0 to be determined. We then distinguish two
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cases depending on whether w* is smaller than H or not (or alternatively, whether BT is

larger than d(2−3ε)/2T (2−3α)/2 or not).

Case 1: w* ≤ H or BT ≥ d(2−3ε)/2T (2−3α)/2. Under this situation, w† can automati-

cally adapt to the nearly optimal window size clipJ (w
*) , where clipJ(x) finds the largest

element in J that does not exceed x. Notice that |J| = ∆+ 1, the dynamic regret of the

BOB algorithm then becomes

RT (BOB algorithm) =Õ
(

w†BT +
dT√
w†

+
√

H|J|T
)

=Õ
(

w*H
1
∆ BT +

dT√
w*H−1/∆

+
√

dεT α+1∆

)
=Õ

(
d

2
3 (BT +1)

1
3 T

2
3 H

1
∆ +d

ε

2 T
α+1

2 ∆
1
2

)
. (2.19)

Case 2: w* > H or BT < d(2−3ε)/2T (2−3α)/2. Under this situation, w† equals to H, which

is the window size closest to w*, the regret of the BOB algorithm then becomes

RT (BOB algorithm) =Õ
(

w†BT +
dT√
w†

+
√

H|J|T
)

=Õ
(

HBT +
dT√

H
+
√

H|J|T
)

=Õ
(

dε (BT +1)T α +d1− ε

2 T
2−α

2 ++d
ε

2 T
α+1

2 ∆
1
2

)
=Õ

(
d1− ε

2 T
2−α

2 +d
ε

2 T
α+1

2 ∆
1
2

)
, (2.20)

where we have make use of the fact that BT < d(2−3ε)/2T (2−3α)/2 in the last step.

Now both eq. (2.19) and eq. (2.20) suggests that we should set ∆ = ⌈lnH⌉, and eq.

(2.20) further reveals that we should take α = 1/2 and ε = 1. These then lead to the choice

of parameters presented in eq. (2.12), i.e., H =
⌊

dT
1
2

⌋
,∆= ⌈lnH⌉,J =

{
H0,

⌊
H

1
∆

⌋
, . . . ,H

}
.

Here we have to emphasize that w†,α, and ε are used only in the analysis, while the only

parameters that we need to decide are H,∆,J, and Q, which clearly do not depend on BT .
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2.5.4 Dynamic Regret Analysis

We are now ready to present the dynamic regret analysis of the BOB algorithm for the drift-

ing linear bandits.

Theorem 6. The dynamic regret of the BOB algorithm for drifting linear bandit is

RT (BOB algorithm) = Õ
(

d
2
3 B

1
3
T T

2
3 +d

1
2 T

3
4

)
.

Proof Sketch. The proof of the theorem essentially follows from substituting the choice of

H and J into the dynamic regret bound in Proposition 5, and the complete proof is presented

in Section A.6 of the appendix.

Remark 4 (Removing Assumption 1). To remove Assumption 1, one can apply a restarting

strategy [38] together with an algorithm for adversarial linear bandit, e.g., Algorithm 15

of [125]. When BT is known and Dt’s are fixed, by an argument similar to Theorem 2 of

[38], one can show that this restarting strategy can achieve the minimax-optimal dynamic

regret bound Õ(d2/3B1/3
T T 2/3); when BT is unknown, we can apply the BOB algorithm to

adaptively tune the restarting rate to achieve the dynamic regret bound Õ(d2/3B1/3
T T 2/3 +

d1/2T 3/4).

Remark 5. Compared to the lower bound in Theorem 1, the dynamic regret bound pre-

sented in Theorem 6 is optimal when BT ≥ d−1/2T 1/4; while it also leaves a small O(T 1/12)

gap in the worst case i.e., when BT =Θ(1). This is because the smaller the non-stationarity,

the harder the detection, and hence a worse dynamic regret bound.

Remark 6. The block structure and restarting the SW-UCB algorithm with a single window

size for each block are essential for the correctness of the BOB algorithm. Otherwise, sup-

pose the DM utilizes the EXP3 algorithm to select the window size wt for each round t, and

implements the SW-UCB algorithm with the selected window size without ever restarting it.

Instead of eq. (A.33), the regret of the BOB algorithm is then decomposed as

T

∑
t=1

(
Reward of SW-UCB

({
w†
}t

τ=1

)
in round t−Reward of SW-UCB

(
{wτ}tτ=1

)
in round t

)
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+
T

∑
t=1

(
Optimal reward in round t−Reward of SW-UCB

({
w†
}t

τ=1

)
in round t

)
(2.21)

Here, with some abuse of notations, SW-UCB({w†}t
τ=1) (respectively (SW-UCB({wτ}tτ=1))

refers to in round t, the DM runs the SW-UCB algorithm with window size w† (respectively

wt) and historical data, e.g., (action, reward) pairs, generated by running the SW-UCB algorithm

with window size w† (respectively wτ ) for rounds τ = 1, . . . , t−1. Same as before, the sec-

ond term of eq. (2.21) can be upper bounded as a result of Theorem 3. It is also tempting

to apply results from the EXP3 algorithm to upper bound the first term. Unfortunately, this

is incorrect as it is required by the adversarial bandits protocol [18] that the DM and its

competitor should receive the same reward if they select the same action, i.e., the reward

of SW-UCB
({

w†}t−1
τ=1 ,wt = w

)
in round t and the reward of SW-UCB

(
{wτ}t−1

τ=1 ,wt = w†
)

in round t should be the same for every w. Nevertheless, this is violated as running the

SW-UCB algorithm with different window sizes for previous rounds can generate differ-

ent (action,reward) pairs, and this results in possibly different estimated θ̂t’s for the two

SW-UCB algorithms even if both of them use the same window size in round t. Hence, the

selected actions and the corresponding reward by these two instances might also be differ-

ent. By the careful design of blocks as well as the restarting scheme, the BOB algorithm de-

couples the SW-UCB algorithm for a block from previous blocks, and thus fixes the above

mentioned problem, i.e., the regret of the BOB algorithm is decomposed as eq. (A.33).

Remark 7. The bandit-over-bandit framework can go beyond the problem of non-stationary

bandit optimization. In a high level, it provides us a viable approach to automatically op-

timize the performances of data-driven sequential decision-making algorithms. Although

not always optimal, it can be applied to bandit model selection [84] as well as online meta-

learning [32], in which the DM is trying to optimize the performances of her algorithms

by selecting a correct model class or a set of proper parameters. Both of these are of great

importance in the operations of data-driven decision-making algorithms.
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2.6 Applications to Other Bandit Settings

In this section, we demonstrate the generality of our established results. As illustrative

examples, we apply our technique to several bandit settings, including multi-armed bandits

[21], the generalized linear bandits [79, 128], and the combinatorial semi-bandits [88, 123].

Note that for generalized linear bandits, we need to impose Assumption 1. On the other

hand, for multi-armed bandits, this assumption is always valid while for combinatorial

semi-bandits, this assumption is not required. A preview of the results is shown in Table

2.1.

Known BT Unknown BT

d-armed bandit Õ
(

d1/3B1/3
T T 2/3

)
Õ
(

d1/3B1/3
T T 2/3 +d1/4T 3/4

)
Generalized linear bandit Õ

(
d2/3B1/3

T T 2/3
)

Õ
(

d2/3B1/3
T T 2/3 +d1/2T 3/4

)
Combinatorial semi-bandit Õ

(
d1/3m2/3B1/3

T T 2/3
)

Õ
(

d1/3m2/3B1/3
T T 2/3 +d1/4m3/4T 3/4

)
Table 2.1: Dynamic regret bounds of the SW-UCB algorithm and the BOB algorithm for
different settings. Here m is an upper bound for the 1-norm of all the actions in the combi-
natorial semi-bandit problem.

2.6.1 An Algorithmic Template

The SW-UCB algorithm and the BOB algorithm developed in the previous sections can be

viewed as an algorithmic template that allows us to extend the results from linear bandits to

other bandit settings. Given a bandit setting A, we leverage the forgetting principle (similar

to Section 2.3), and first modify the reward estimator used in the stationary setting to a

sliding-window estimator. We then incorporate it into the UCB algorithm to arrive at the

corresponding SW-UCB algorithm for the drifting environments. When the variation budget

is known, we could optimally tune the window size to enjoy an optimal dynamic regret

bound. To achieve low dynamic regret when the variation budget is unknown, we can

proceed by plugging the SW-UCB algorithm for A into the BOB algorithm, i.e., line 6 of Al-

gorithm 2, and custom-tailor the parameters (as those listed in eq. (2.12)) to accommodate

the need of A.
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We note that the power of this algorithmic template is indeed entailed by a salient

property, i.e., the dynamic regret of the SW-UCB algorithm can be decomposed as “dynamic

regret of drift" + “dynamic regret of uncertainty" (or eq. (2.10)), that actually holds for a

variety of bandit learning models in addition to linear models. In what follows, we shall

derive the SW-UCB algorithm as well as the parameters required by the BOB algorithm, i.e.,

similar to those defined in eq. (2.12), for each of the above mentioned settings.

2.6.2 d-Armed Bandits

The d-armed bandit problem in drifting environments was first studied by [37], who pro-

posed Rexp3, an innovative and interesting variant of the EXP3 algorithm [22]. When the

underlying variation budget is known, their algorithm achieves the optimal dynamic regret

bound. In this subsection, we provide an alternative derivation of the dynamic regret bound

by our framework.

In the d-armed bandits setting, every action set Dt is comprised of d actions e1, . . . ,ed.

The ith action ei has coordinate i equals to 1 and all other coordinates equal to 0. Therefore,

the reward of choosing action Xt = eIt in round t is Yt = ⟨Xt ,θt⟩+ηt = θt(It)+ηt , where

θt(It) is the Ith
t coordinate of θt . We again assume |⟨x,θt⟩| ∈ [−1,1] for all x ∈ Dt and all

t ∈ [T ]. Different than the linear bandit setting, we follow [37, 38] to define the tighter

variation budget with the infinity norm, i.e., ∑
T−1
t=1 ‖θt+1−θt‖∞

≤ BT . For a window size

w, we also define Nt−1(i) as the number of times that action i is chosen within rounds (t−

w), . . . ,(t−1), i.e., for all i ∈ [d], Nt−1(i) = ∑
t−1
s=1∧(t−w)1[Xt = ei]. Here 1[·] is the indicator

function. Similar to the procedure in Section 2.3, we set the regularization parameter λ = 0,

and compute the sliding window least squares estimate θ̂t for θt in each round, i.e.,

θ̂t =V *t−1

(
t−1

∑
s=1∨(t−w)

XsYs

)
, (2.22)

where V *t−1 is Moore-Penrose pseudo-inverse of Vt−1. We can also derive the error bound

for the latent expected reward of every action x ∈ Dt in any round t.
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Theorem 7. For any t ∈ [T ] and any i ∈ [d], we have with probability at least 1−1/T,

∣∣∣e⊤i (θ̂t−θt)
∣∣∣≤ t−1

∑
s=1∨(t−w)

‖θs−θs+1‖∞
+R
√

2ln(2dT 2)‖ei‖V *t−1
.

holds for all x ∈ Dt .

The complete proof is provided in Section A.7 of the appendix. We can now follow

the same principle in Section 2.4 by choosing in each round the action Xt with the highest

UCB, i.e.,

Xt =argmax
x∈Dt

{
⟨x, θ̂t⟩+R

√
2ln(2dT 2)‖x‖V *t−1

}
, (2.23)

and arrive at the following regret upper bound for the SW-UCB algorithm.

Theorem 8. For the d-armed bandit setting, the dynamic regret of the SW-UCB algorithm is

upper bounded as RT (SW-UCB algorithm) = Õ
(

wBT +
√

dT/
√

w
)
. When BT (> 0) is

known, by taking w = Θ

(
d1/3T 2/3B−2/3

T

)
, the dynamic regret of the SW-UCB algorithm is

RT (SW-UCB algorithm)= Õ
(

d1/3B1/3
T T 2/3

)
. When BT is unknown, by taking w=Θ

(
d1/3T 2/3

)
,

the dynamic regret of the SW-UCB algorithm is RT (SW-UCB algorithm)= Õ
(

d1/3BT T 2/3
)
.

Proof Sketch. The proof of this theorem is very similar to that of Theorem 3, and is thus

omitted. The key difference is that β (defined in eq. (2.3) for the linear bandit setting)

is now set to R
√

2ln(2dT 2), and this saves the extra
√

d factor presented in eq. (A.29).

Hence the dynamic regret bound can be obtained accordingly.

Comparing the results obtained in Theorem 8 to the lower bound presented in [37], we

can easily see that the dynamic regret bound is optimal when BT is known. When BT is

unknown, we can implement the BOB algorithm with the following parameters:

H =
⌊
(dT )

1
2

⌋
,∆ = ⌈lnH⌉,J =

{
H0,

⌊
H

1
∆

⌋
, . . . ,H

}
,Q = 2H +4R

√
H ln(T/

√
H).

(2.24)

The regret of the BOB algorithm for the MAB setting is characterized as follows.
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Theorem 9. The dynamic regret of the BOB algorithm for the d-armed bandit setting is

RT (BOB algorithm) = Õ
(

d1/3B1/3
T T 2/3 +d1/4T 3/4

)
.

The proof of the theorem is very similar to Theorem 6’s, and it is thus omitted.

2.6.3 Generalized Linear Bandits

For the generalized linear bandits model, we adopt the setup in [79, 128]: it is essentially

the same as the linear bandit setting except that the decision set is time invariant, i.e., Dt =D

for all t ∈ [T ], and the reward of choosing action Xt ∈ D is Yt = µ (⟨Xt ,θt⟩)+ηt .

Let µ̇(·) and µ̈(·) denote the first derivative and second derivative of µ(·), respectively,

we follow [79] to make the following assumptions.

Assumption 2. There exists a set of d actions a1, . . . ,ad ∈ D such that the minimal eigen-

value of ∑
d
i=1 aia⊤i is λ0 (> 0).

Assumption 3. The link function µ(·) : R→ R is strictly increasing, continuously differ-

entiable, Lipschitz with constant kµ , and we define cµ = infx∈D,θ∈Rd :‖θ‖≤S µ̇ (⟨x,θ⟩) .

Assumption 4. There exists Ymax > 0 such that for any t ∈ [T ], Yt ∈ [0,Ymax] .

Similar to the procedure in Section 2.3, we compute the maximum quasi-likelihood

estimate θ̂t for θt in each round t ∈ [T ] by solving the equation

t−1

∑
s=1∨(t−w)

(
Ys−µ

(〈
Xs, θ̂t

〉))
Xs = 0. (2.25)

Defining β = 2kµYmax
√

2d ln(w) ln(2dT 2)(3+2ln(1+2L2/λ0))/cµ , we can also derive

the deviation inequality type bound for the latent expected reward of every action x ∈Dt in

any round t.

Theorem 10. For any t ∈ [T ], we have with probability at least 1−1/T,

∣∣∣µ (x⊤θ̂t

)
−µ

(
x⊤θt

)∣∣∣≤ k2
µL
cµ

t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 +β ‖x‖V−1
t−1

holds for all x ∈ Dt .
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Proof Sketch. The proof is a consequence of Proposition 1 of [79] and Theorem 2. Please

refer to Section A.8 of the appendix for the complete proof.

We can now follow the same principle in Section 2.4 to design the SW-UCB algorithm.

Note that in order for Vt−1 to be invertible for all t, our algorithm should select the actions

a1, . . . ,ad every w rounds for some window size w. For each of the remaining round t, it

chooses the action Xt with the highest UCB, i.e.,

Xt =argmax
x∈Dt

{
⟨x, θ̂t⟩+β ‖x‖V *t−1

}
, (2.26)

and arrive at the following regret upper bound.

Theorem 11. For the drifting generalized linear bandit setting, the dynamic regret of

the SW-UCB algorithm is upper bounded as RT (SW-UCB algorithm) = Õ(wBT +dT/
√

w) .

When BT (> 0) is known, by taking w = Θ

(
(dT )2/3B−2/3

T

)
, the dynamic regret of the

SW-UCB algorithm is RT (SW-UCB algorithm) = Õ
(

d2/3B1/3
T T 2/3

)
. When BT is unknown,

by taking w = Θ

(
(dT )2/3

)
, the dynamic regret of the SW-UCB algorithm is

RT (SW-UCB algorithm) = Õ
(

d2/3BT T 2/3
)
.

Proof Sketch. The proof of this theorem is similar to that of Theorem 3, and is thus omit-

ted. The only difference is that we need to include the regret contributed by selecting

actions a1, . . . ,ad every w rounds. But these sums to Õ(dT/w) , which is dominated by the

term Õ(dT/
√

w) . Hence the dynamic regret bounds can be obtained similarly as the linear

bandit setting.

We can now implement the BOB algorithm with the same set of parameters as eq. (2.12),

except that Q is set to H ·Ymax, i.e.,

H =
⌊
(dT )

1
2

⌋
,∆ = ⌈lnH⌉,J =

{
H0,

⌊
H

1
∆

⌋
, . . . ,H

}
,Q = 2H ·Ymax. (2.27)

This is because the total rewards of each block is deterministically bounded by [−H ·

Ymax,H ·Ymax]. The dynamic regret bound when BT is unknown thus follows.
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Theorem 12. The dynamic regret bound of the BOB algorithm for the drifting generalized

linear bandit setting is RT (BOB algorithm) = Õ
(

d2/3B1/3
T T 2/3 +d1/2T 3/4

)
.

The proof of the theorem is similar to Theorem 6’s, and it is thus omitted.

2.6.4 Combinatorial Semi-Bandits

Finally, we consider the drifting combinatorial semi-bandit problem. For ease of pre-

sentation, we use X(i) to denote the ith coordinate of a vector X . Following the setup

in Kveton et al. [123], an instance of combinatorial semi-bandit is represented by the

tuple (E,E ,{Pt}T
t=1), where the ground set E consist of d items, and E is a family of

indicator vectors of subsets of E. Each Pt is a latent distribution on the reward vector

Wt = (Wt(1), . . .Wt(d)) on each and every item i ∈ E in round t ∈ [T ]. The DM only knows

that Wt(i) belongs to [0,1] for each i∈ [d] and t ∈ [T ], but she does not know θt(i)=E[Wt(i)]

for any i ∈ [d] and t ∈ [T ]. We can thus know from Lemma 1.8 of Rigollet and Hütter [154]

that Wt(i)−θt(i) is R = 1/2 sub-Gaussian for all t ∈ [T ] and i ∈ [d]. The sequence {Pt}T
t=1

are generated by an oblivious adversary before the online process begins.

In each round t, a reward vector Wt is sampled according to the latent distribution Pt .

Then, the DM pulls an action Xt ∈ Et , and earns a reward Yt = ⟨Xt ,Wt⟩ = ∑i∈E Xt(i)Wt(i)

that corresponds to the items indicated by Xt . Under the semi-bandit feedback model,

the DM observes the realized rewards {Wt(i) : Xt(i) = 1} for the indicated items, but she

does not observe Wt(i) for Xt(i) = 0. The DM desires to minimize the dynamic regret

E
[
∑

T
t=1 maxx*t ∈E ⟨x

*
t −Xt ,θt⟩

]
. Similar to the d-armed bandit setting, we define the varia-

tion budget BT with the infinity norm: ∑
T−1
t=1 ‖θt+1− θt‖∞ ≤ BT . For the subsequent dis-

cussion, we denote m = maxX∈E ∑i∈E X(i) as the maximum arm size of the underlying

instance.

We first show a lower bound for this setting.

Theorem 13. Let (d,m,T,BT ) be a tuple that satisfies inequalities d ≥ 2m ≥ 2, T ≥ 1,

m/d ≤ BT ≤ T m/d. For any non-anticipatory policy, there exists a drifting combinatorial

bandit instance (E,E ,{Pt}T
t=1), with d items, maximum arm size m, and variation budget

BT such that the dynamic regret in T rounds is Ω(d1/3m2/3B1/3
T T 2/3).
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The complete proof is presented in Section A.9 of the appendix. For a window size w,

we define Nt−1(i) as the number of times that coordinate i of the chosen action is set to 1

within rounds (t−w), . . . ,(t−1), i.e., for all i∈ [d], Nt−1(i)=∑
t−1
s=1∨(t−w) 1[Xs(i)= 1]. Here

1[·] is the indicator function. In each round t, the DM also maintains the sliding-window

estimates for each coordinate i ∈ [d] of θt :

θ̂t(i) =
∑

t−1
s=1∨(t−w)Ws(i) ·1[Xs(i) = 1]

max{Ni,t−1,1}
.

Thanks to the semi-bandit feedback, the outcome Ws(i) is observed when Xs(i) = 1, so θ̂t,i

can be constructed from the observations in the previous w rounds. We can thus reuse the

Theorem 7 derived for the d-armed bandit case:

Theorem 14. For all t ∈ [T ] and all i ∈ [d], we have with probability at least 1−1/T,

∣∣θ̂t(i)−θt(i)
∣∣≤ t−1

∑
s=1∨(t−w)

‖θs−θs+1‖∞
+4R

√
ln(2dT 2)

Nt−1(i)+1
,

holds for all x ∈ Dt .

The complete proof is presented in Section A.10. Following the rationale of UCB

algorithm for stochastic combinatorial semi-bandit [123] as well as that of Section 2.4, we

consider the SW-UCB algorithm which selects a combinatorial action Xt with highest UCB

in each round t, i.e.,

max
X∈Et

{
∑
i∈E

X(i) ·

[
θ̂t,i +4R

√
ln(2dT 2)

Nt−1(i)+1

]}
.

Denoting m := maxt∈[T ],X∈Et ‖X‖1, we can now arrive at the following regret upper bound.

Theorem 15. For any window size w≥ d/m, the dynamic regret of the SW-UCB algorithm for

the drifting combinatorial semi-bandit setting is upper bounded as RT (SW-UCB algorithm)=

Õ
(

wmBT +
√

dmT/
√

w
)
. When BT <mT/d, is known, by taking w=Θ

(
d1/3m−1/3T 2/3B−2/3

T

)
,

the dynamic regret of the SW-UCB algorithm is RT (SW-UCB algorithm)= Õ
(

d1/3m2/3B1/3
T T 2/3

)
.

When BT is unknown, by taking w=Θ

(
d1/3m−1/3T 2/3

)
, the dynamic regret of the SW-UCB algorithm
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is

RT (SW-UCB algorithm) = Õ
(

d1/3m2/3BT T 2/3
)
.

The complete proof is presented in Section A.11 of the appendix. When BT is unknown,

we can implement the BOB algorithm with the following parameters:

H =
⌊
(dT )

1
2 m−

1
2

⌋
,∆ = ⌈lnH⌉,J =

{
H0,

⌊
H

1
∆

⌋
, . . . ,H

}
,Q = 2H ·m (2.28)

This is because the total rewards of each block is deterministically bounded by [−H ·m,H ·

m]. The dynamic regret bound of the BOB algorithm for the combinatorial semi-bandit set-

ting is characterized as follows.

Theorem 16. The dynamic regret of the BOB algorithm for the drifting combinatorial semi-

bandit setting is RT (BOB algorithm) = Õ
(

d1/3m2/3B1/3
T T 2/3 +d1/4m3/4T 3/4

)
.

The complete proof is presented in Section A.12.

2.7 Numerical Experiments

As a complement to our theoretical results, we conduct numerical experiments on synthetic

datasets and the CPRM-12-001: On-Line Auto Lending dataset provided by the Center for

Pricing and Revenue Management at Columbia University to compare the dynamic regret

performances of the SW-UCB algorithm and the BOB algorithm with several existing non-

stationary bandit algorithms.

2.7.1 Experiments on Synthetic Dataset

For synthetic dataset, in Section 2.7.1, we first evaluate the growth of dynamic regret when

T increases. We follow the setup of [38] for fair comparisons. Then, in Section 2.7.1, we

fix T = 105, and evaluate the behavior of the algorithms across rounds.
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The Trend of Dynamic Regret with Varying T

We consider a 2-armed bandit setting, and we vary T from 3× 104 to 2.4× 105 with

a step size of 3× 104. We set θt to be the following sinusoidal process, i.e., ∀t ∈ [T ],

θt =
(

0.5+0.3sin(5BT πt/T ) ,0.5+0.3sin(π +5BT πt/T )
)⊤

. The total variation of the

θt’s across the whole time horizon is upper bounded by
√

2BT . We also use i.i.d. normal

distribution with R = 0.1 for the noise terms.

Known Constant Variation Budget. We start from the known constant variation budget

case, i.e., BT = 1, to measure the regret growth of the two optimal algorithms, i.e., the

optimally tuned (i.e., knowing BT ) SW-UCB algorithm and the modified EXP3.S algorithm

[37], with respect to the total number of rounds. The log-log plot is shown in Fig. 2-2(a).

From the plot, we can see that the regret of SW-UCB algorithm is only about 20% of the

regret of EXP3.S algorithm.

Unknown Time-Dependent Variation Budget. We then turn to the more realistic time-

dependent variation budget case, i.e., BT = T 1/3. As the modified EXP3.S algorithm does

not apply to this setting, we compare the performances of the obliviously tuned (i.e., not

knowing BT ) SW-UCB algorithm and the BOB algorithm. The log-log plot is shown in Fig.

2-2(b). From the results, we verify that the slope of the regret growth of both algorithms

roughly match the established results, and the regret of BOB algorithm’s is much smaller

than that of the SW-UCB algorithm’s.

A Further Study on the Algorithms’ Behavior

We provide additional numerical evaluation, by considering piecewise linear instances,

where the reward vector θt ∈Rd is a randomly generated piecewise linear function of t. To

generate such an instance, we first set T = 105, and then we randomly sample 30 time points

in τ1,τ2, . . . ,τ30 ∈ {2, . . . ,T −1} without replacement. We further denote τ0 = 1,τ31 = T .

After that, we randomly sample 32 random unit length vectors v0, . . . ,v31 ∈ Rd . Finally,

for each t ∈ [T ], we define θt as the linear interpolation between vs,vs+1, where τs ≤ tτs+1.
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Figure 2-2: Results for gradually change environment with 2 arms

More precisely, we have θt =((τs+1−t)vs+(t−τs)vs+1)/(τs+1−τs). Note that the random

reward in each period can be negative.

In what follows, we first evaluate the performance of the algorithms by [38] as well

as our algorithms in a 2-armed bandit piece-wise linear instance. Then, we evaluate the

performance of our algorithms in a linear bandit piece-wise linear instance, where d = 5,

and each Dt is a random subset of 40 unit length vectors in Rd . We do not evaluate the

algorithms by [38] in the second instance, since the algorithms by [38] are only designed for

the non-stationary K-armed bandit setting. For each instance, each algorithm is evaluated

50 times.

Two armed bandits. We first evaluate the performance of the modified EXP.3S in [38]

as well as the performance of the SW-UCB algorithm, BOB algorithmin a randomly gener-

ated 2-armed bandit instance. Fig 2-3(a) illustrates the average cumulative reward earned

by each algorithm in the 50 trials, and Fig 2-3(b) depicts the average dynamic regret in-

curred by each algorithm in the 50 trials. In Figs 2-3(a), 2-3(b), shorthand SW-UCB-opt

is the SW-UCB algorithm, where BT is known and w = wopt is set to further optimized the

log factors of the dynamic regret bound (see Appendix A.13 for the expression of wopt).

Shorthand EXP3.S stands for the modified EXP3.S algorithm by [38], where BT is known

and the window size is set to optimized the dynamic regret bound. Shorthand BOB stands
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for the BOB algorithm. Shorthand SW-UCB-obl is the SW-UCB algorithm, where BT is not

known, and w = wobl is obliviously set (see Appendix A.13 for the expression of wobl).

Finally, shorthand UCB stands for the UCB algorithm by [3], which is applicable to the

stationary K-armed bandit problem. Note that BT is known to SW-UCB-opt, EXP3.S, but

not to BOB, SW-UCB-obl, UCB.

Overall, we observe that SW-UCB-opt is the better performing algorithm when BT is

known, and BOB is the best performing when BT is not known. It is evident from Fig 2-3(a)

that SW-UCB-opt, EXP3.S and BOB are able to adapt to the change in the reward vector

θt across time t. We remark that BOB, which does not know BT , achieves a comparable

amount of cumulative reward to EXP3.S, which does know BT , across time. It is also

interesting to note that UCB, which is designed for the stationary setting, fails to converge

(or even to achieve a non-negative total reward) in the long run, signifying the need of an

adaptive UCB algorithm in a non-stationary setting.
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Figure 2-3: Results for piecewise linear environment with 2 arms

Linear bandits. Next, we move to the linear bandit case, and we consider the perfor-

mance of SW-UCB-opt, SW-UCB-obl, BOB and UCB, as illustrated in Figs 2-4(a), 2-4(b).

While the performance of the algorithms ranks similarly to the previous 2-armed bandit

case, we witness that UCB, which is designed for the stationary setting, has a much better

performance in the current case than the 2-armed case. We surmise that the relatively larger

size of the action space Dt here allows UCB to choose an action that performs well even
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when the reward vector is changing.
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Figure 2-4: Results for piecewise linear environment with linear action set.

2.7.2 Experiments on Online Auto-Lending Dataset

We now conduct experiments on the on-line auto lending dataset, which was first studied by

[145], and subsequently used to evaluate dynamic pricing algorithms by [27]. The dataset

records all auto loan applications received by a major online lender in the United States

from July 2002 through November 2004. For each piece of data, it presents the borrower’s

feature (e.g., date of an application, the term and amount of loan requested, and some per-

sonal information), the lender’s decision (e.g., the monthly payment for the borrower), and

whether or not this offer is accepted by the borrower. Please refer to Columbia University

Center for Pricing and Revenue Management [64] for a detailed description of the dataset.

Similar to [27], we use the first T = 5×104 arrivals that span 276 days for this exper-

iment. We adopt the commonly used [127, 40] linear model to interpolate the response of

each customer: for the t th customer with feature xt , if price pt is offered, she accepts the

offer with “probability" ⟨θt , [xt ; ptxt ]⟩. Although the customers’ responses are binary, i.e.,

whether or not she accepts the loan, [40] theoretically justified that the revenue loss caused

by using this misspecified model is negligible. For the changing environment, we assume

that the θt’s remain stationary in a single day period, but can change across days. We also

use the feature selection results in [27] to pick FICO score, the term of contract, the loan
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amount approved, prime rate, the type of car, and the competitor’s rate as the feature vector

for each customer.

As a first step, we recover the unknown θt’s from the dataset with linear regression

method. But since the lender’s decisions, i.e., the price for each customer, is not presented

in the dataset, we impute the price of a loan as the net present value of future payments

(a function of the monthly payment, customer rate, and term approved, please refer to the

cited references for more details). The resulted BT is 1.9× 102 (≈ T 0.48) , which means

we are in the moderately non-stationary environment. Since the maximum of the imputed

prices is ≈ 400, the range of price in our experiment is thus set to [0,500] with a step size

of 10.
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Figure 2-5: Results for the on-line auto lending dataset.

We then run the experiment with the recovered parameters, and measure the dynamic

regrets of the SW-UCB algorithm (known BT and unknown BT ), the BOB algorithm, the UCB

algorithm, the Moving Window (MW) algorithm [115] without knowing BT , as well as

the company’s original decisions. Here, we note that the MW algorithm does not permit

customer features, and hence its dynamic regret should scale linearly in T . The results

are shown in Fig. 4-4. The plot shows that the SW-UCB algorithm with known BT (SW-

UCB-opt) and the BOB algorithm have the lowest dynamic regrets. Besides, the dynamic

regret of the parameter-free BOB algorithm is≥ 24% less than those of the obliviously tuned

SW-UCB algorithm (SW-UCB-obl) and the UCB algorithm. It also saves ≥ 32% dynamic
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regret when compared to the MW algorithm and the company’s original decisions. The

results clearly indicate that the SW-UCB algorithm and the BOB algorithm can deal with the

drift while the UCB algorithm fails to keep track of the dynamic environment. More impor-

tantly, the results validate our theoretical findings regarding the parameter-free adaptation

of the BOB algorithm.
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Chapter 3

Non-Stationary Reinforcement Learning

3.1 Problem Formulation

In this section, we introduce the notations to be used and introduce the learning protocol.

3.1.1 Notation

Throughout this chapter, all vectors are column vectors, unless specified otherwise. We

define [n] to be the set {1,2, . . . ,n} for any positive integer n. We denote 1[·] as the indicator

function. For p ∈ [1,∞], we use ‖x‖p to denote the p-norm of a vector x ∈ Rd. We denote

x∨y and x∧y as the maximum and minimum between x,y ∈R, respectively. We adopt the

asymptotic notations O(·),Ω(·), and Θ(·) [65]. When logarithmic factors are omitted, we

use Õ(·),Ω̃(·), Θ̃(·), respectively. With some abuse, these notations are used when we try

to avoid the clutter of writing out constants explicitly.

3.1.2 Learning Protocol

Model Primitives: An instance of non-stationary MDP is specified by the tuple (S ,A ,T,r, p).

The set S is a finite set of states. The collection A = {As}s∈S contains a finite action

set As for each state s ∈S . We say that (s,a) is a state-action pair if s ∈S ,a ∈As. We

denote S = |S |, A = (∑s∈S |As|)/S. We denote T as the total number of time steps, and

r = {rt}T
t=1 as the sequence of mean rewards. For each t, we have rt = {rt(s,a)}s∈S ,a∈As ,
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and rt(s,a) ∈ [0,1] for each state-action pair (s,a). In addition, we denote p = {pt}T
t=1 as

the sequence of state transition distributions. For each t, we have pt = {pt(·|s,a)}s∈S ,a∈As ,

where pt(·|s,a) is a probability distribution over S for each state-action pair (s,a).

Non-Stationarity: The quantities rt’s and pt’s vary across different t’s in general. Follow-

ing [36], we quantify the variations on rt’s and pt’s in terms of their respective variation

budgets Br,Bp (> 0):

Br =
T−1

∑
t=1

Br,t , where Br,t = max
s∈S ,a∈As

|rt+1(s,a)− rt(s,a)| ,

Bp =
T−1

∑
t=1

Bp,t , where Bp,t = max
s∈S ,a∈As

‖pt+1(·|s,a)− pt(·|s,a)‖1 . (3.1)

We emphasize although Br and Bp might be used as inputs by the DM, individual Br,t’s and

Bp,t’s are unknown to the DM throughout.

Remark 8 (Definition of Variation Budgets). For brevity of exposition, we choose to

define the variation budgets (see eqn. (3.1)) for reward and state transition distributions

with the infinity norm and 1-norm, respectively. One can also define them with respect

to other commonly used metrics, such as the 2-norm [59], and the this would only affect

the dependence on S and A for the established dynamic regret bounds in the subsequent

sections.

Model Dynamics: The DM faces a non-stationary MDP instance (S ,A ,T,r, p). She

knows S ,A ,T , but not r, p. The DM starts at an arbitrary state s1 ∈S . At time t, three

events happen. First, the DM observes her current state st . Second, she takes an action

at ∈Ast . Third, given st ,at , she stochastically transitions to another state st+1 ∼ pt(·|st ,at),

and receives a stochastic reward Rt(st ,at), which is 1-sub-Gaussian with mean rt(st ,at).

In the second event, the choice of at is based on a non-anticipatory policy Πt . That is,

the choice only depends on the current state st and the previous observations Ht−1 :=

{sq,aq,Rq(sq,aq)}t−1
q=1. We denote Π = {Π1, . . . ,ΠT} as the policy of the DM throughout

the entire time horizon.

Dynamic Regret: The DM aims to maximize the cumulative expected reward E[∑T
t=1 rt(st ,at)].

To measure the her performance, we consider an equivalent objective of minimizing the dy-
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namic regret [36, 108]. Formally, the dynamic regret of a policy Π is defined as

Dyn-RegT (Π) =
T

∑
t=1

{
E[rt(sΠ*

t ,aΠ*
t )−E[rt(sΠ

t ,a
Π
t )]
}
, (3.2)

which is the difference between the optimal policy Π* (that knows all the r and p) and Π in

terms of cumulative expected reward. Here, we denote {(sΠ*
t ,aΠ*

t )}T
t=1 and {(sΠ

t ,a
Π
t )}T

t=1

as the trajectory under policy Π* and Π, respectively.

Alternative Oracle: Note that in the optimal policy, the expected cumulative reward are

intertwined due to endogenous dynamics, i.e., sΠ
t+1 ∼ pt(·|sΠ

t ,a
Π
t ). To ease our analysis, we

introduce an intermediate oracle ∑
T
t=1 ρ*t , where the summand ρ*t is the optimal long-term

average reward of the stationary MDP with state transition distribution pt and mean reward

rt . The optimum ρ*t can be computed by solving linear program (B.1) provided in Section

B.1.1 of the appendix. Since the quantity ∑
T
t=1 ρ*t can be decomposed to summations across

different intervals, it is more convenient for analysis than the expected cumulative reward

of the optimal policy. We point out that the same oracle is used for RL in piecewise-

stationary MDPs [108]. To understand the difference between the two oracles (and to

ensure learnability), we begin by reviewing the concept of diameter of a MDP.

Definition 17 (Communicating MDPs and Diameter [108]). Consider a set of states

S , a collection A = {As}s∈S of action sets, and a state transition distribution p̄ =

{p̄(·|s,a)}s∈S ,a∈As . For any s,s′ ∈S and stationary policy π , the hitting time from s to s′

under π is the random variable Λ(s′|π,s) :=min{t : st+1 = s′,s1 = s,sτ+1 ∼ p̄(·|sτ ,π(sτ)) ∀τ} ,

which can be infinite. We say that (S ,A , p̄) is a communicating MDP iff

D := max
s,s′∈S

min
stationary π

E
[
Λ(s′|π,s)

]
is finite. The quantity D is the diameter associated with (S ,A , p̄).

As shown in [108], the concept of diameter plays a fundamental role in characterizing

the complexity of RL in MDPs because it captures the “hardness" of transitioning between

states in this MDP.

Remark 9 (Diameter and RL in MDPs). In order to make informative decisions, the DM
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has to have accurate estimates of the quantities rt(s,a)’s and pt(·|s,a).’s. In other words,

she must visit every state s ∈S and choose each of its available actions a ∈As frequently

enough to collect relevant samples. Consequently, the harder to transition from a state s to

another state s′ (i.e., the diameter is larger), the more the DM would pay for learning.

With the above remark, we assume that the diameter induced by each (S ,A , pt) is

bounded to enable learning.

Assumption 5 (Bounded Diameters). For each t ∈ [T ], the tuple (S ,A , pt) constitutes

a communicating MDP with diameter at most Dt . We denote the maximum diameter as

Dmax = maxt∈{1,...,T}Dt . Here, Dmax is unknown ahead.

With these, the following proposition upper bounds the difference between the optimal

expected cumulative reward and ∑
T
t=1 ρ*t .

Proposition 18. Consider an instance (S ,A ,T, p,r) that satisfies Assumption 5 with max-

imum diameter Dmax, and has variation budgets Br,Bp for the rewards and transition dis-

tributions respectively. Then, it holds

E

[
T

∑
t=1

rt(sΠ*
t ,aΠ*

t )

]
−

T

∑
t=1

ρ
*
t ≤ 4

√
Dmax(Br +2DmaxBp)T +(Br +2Bp).

The Proposition is proved in section B.1.2 of the appendix. With Proposition 18, we

can focus on comparing the performance of the SWUCRL2-CW algorithm against the quantity

∑
T
t=1 ρ*t .

Lower Bound: Before proceeding, we also characterize the minimax lower bound of our

problem to understand the limit of this setting.

Proposition 19. For any natural numbers S,A ≥ 10, Dmax ≥ logA S, T ≥ DmaxSA, Br ∈

[S−1A−1,S−1A−1T ], and Bp ∈ [D−1/2S1/2A1/2T−1/2,D−2
maxS−1A−1T ], there exists an non-

stationary MDP instance (S ,A ,T,r, p) such that the dynamic regret of any non-anticipatory

policy Π satisfies Dyn-RegT (Π) = Ω(D2/3
maxB1/3

p S1/3A1/3T 2/3 +B1/3
r S1/3A1/3T 2/3).

The proof is provided in Section B.2 of the appendix.
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3.2 Related Works

3.2.1 RL in Stationary MDPs

RL in stationary (discounted and un-discounted reward) MDPs has been widely stud-

ied in [48, 29, 108, 11, 85, 87, 167, 166, 172, 187, 86, 175]. For the discounted re-

ward setting, [167, 172, 166] proposed (nearly) optimal algorithms in terms of sample

complexity. For the un-discounted reward setting, [108] established a minimax lower

bound Ω(
√

DmaxSAT ) on the regret when both the reward and state transition distributions

are time-invariant. They also designed the UCRL2 algorithm and showed that it attains

a regret bound Õ(DmaxS
√

AT ). [86] proposed the UCRL2B algorithm, which is an im-

proved version of the UCRL2 algorithm. The regret bound of the UCRL2B algorithm is

Õ(S
√

DmaxAT +D2
maxS2A). The minimax optimal algorithm is provided in [187] although

it is not computationally efficient.

3.2.2 RL in Non-Stationary MDPs

In a parallel work [144], the authors considered a similar setting to ours by applying the

“forgetting principle" from non-stationary bandit settings [92, 58] to design a learning al-

gorithm. To achieve its dynamic regret bound, the algorithm by [144] partitions the en-

tire time horizon [T ] into time intervals I = {Ik}K
k=1, and crucially requires the access to

∑
max Ik−1
t=min Ik

Br,t and ∑
max Ik−1
t=min Ik

Bp,t , i.e., the variations in both reward and state transition dis-

tributions of each interval Ik ∈ I (see Theorem 3 in [144]). In contrast, the SWUCRL2-CW

algorithm and the BORL algorithm require significantly less information on the variations.

Specifically, the SWUCRL2-CW algorithm does not need any additional knowledge on the

variations except for Br and Bp, i.e., the variation budgets over the entire time horizon as

defined in eqn. (3.1), to achieve its dynamic regret bound (see Theorem 21). This is similar

to algorithms for the non-stationary bandit settings, which only require the access to Br

[36]. More importantly, the BORL algorithm (built upon the SWUCRL2-CW algorithm) enjoys

the same dynamic regret bound even without knowing either of Br or Bp (see Theorem 22).

There also exists some settings that are closely related to, but different than our set-
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ting (in terms of exogeneity and feedback). [108, 90] proposed solutions for the RL in

piecewise-stationary MDPs setting. But as discussed in Section 1.2, simply applying their

techniques to the general RL in non-stationary MDPs may result in undesirable dynamic

regret bounds (see Section 3.3.3 for more details). In [182, 139, 16, 72, 110, 51], the

authors considered RL in MDPs with changing reward distributions but fixed transition

distributions. [73, 181, 140, 2, 157, 130] considered RL in non-stationary MDPs with full

information feedback.

3.2.3 Non-Stationary Multi-Armed Bandits (MAB)

For online learning and bandit problems where there is only one state, the works by [18, 92,

36, 115] proposed several “forgetting" strategies for different non-stationary MAB settings.

More recently, the works by [113, 134, 59, 58, 57] designed parameter-free algorithms for

non-stationary MAB problems. Another related but different setting is the Markovian ban-

dit [118, 135], in which the state of the chosen action evolve according to an independent

time-invariant Markov chain while the states of the remaining actions stay unchanged. In

[189], the authors also considered the case when the states of all the actions are governed

by the same (uncontrollable) Markov chain.

3.3 Sliding Window UCRL2 with Confidence Widening

Algorithm

In this section, we first present the SWUCRL2-CW algorithm, which incorporates our novel

confidence widening technique and sliding window estimates [92] into UCRL2 [108], and

motivate this design by formally present the unique challenge of RL in non-stationary MDP.

3.3.1 Design Overview

The SWUCRL2-CW algorithm first specifies a pair of sliding window parameters W ∈ N and

a confidence widening parameter η ≥ 0. Parameter W specifies the number of previous

time steps to look at when estimating the reward and state transition distributions, respec-
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tively. Parameter η quantifies the amount of additional optimistic exploration, on top of the

conventional optimistic exploration using upper confidence bounds. The latter turns out to

be helpful for handling the temporal drifts in the state transition distributions (see Section

3.3.3) and is capable of ensuring the MDP output by the EVI has a bounded diameter most

of the time.

The algorithm runs in a sequence of episodes that partitions the T time steps. Episode

m starts at time τ(m) (in particular τ(1) = 1), and ends at the end of time step τ(m+1)−1.

Throughout an episode m, the DM follows a certain stationary policy π̃τ(m). The DM ceases

the mth episode if at least one of the following two criteria is met:

∙ The time index t is a multiple of W. Consequently, each episode last for at most W

time steps. The criterion ensures that the DM switches the stationary policy π̃τ(m)

frequently enough, in order to adapt to the exogenous dynamics.

∙ There exists some state-action pair (s,a) such that ντ(m)(s,a), the number of time

step t’s with (st ,at) = (s,a) within episode m, is at least as many as the total number

of counts for it within the W time steps prior to τ(m), i.e., from (τ(m)−W )∨ 1 to

(τ(m)−1). This is similar to the doubling criterion in [108], which ensures that each

episode is sufficiently long so that the DM can focus on learning.

The combined effect of these two criteria allows the DM to learn a low dynamic regret pol-

icy with historical data from an appropriately sized time window and confidence widening

parameter.

3.3.2 Policy Construction

To describe SWUCRL2-CW algorithm, we first define for each state-action pair (s,a) and each

time t in episode m,

Nt(s,a) =
t−1

∑
q=(τ(m)−W )∨1

1((sq,aq) = (s,a)), N+
t (s,a) = max{1,Nt(s,a)}. (3.3)
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Confidence Region for Rewards

For each state-action pair (s,a) and each time t in episode m, we consider the empirical

mean estimator

r̂t(s,a) =
1

N+
t (s,a)

(
t−1

∑
q=(τ(m)−W )∨1

Rq (s,a)1(sq = s,aq = a)

)
,

which serves to estimate the average reward

r̄t(s,a) =
1

N+
t (s,a)

(
t−1

∑
q=(τ(m)−W )∨1

rq(s,a)1(sq = s,aq = a)

)
.

The confidence region Hr,t = {Hr,t(s,a)}s∈S ,a∈As is defined as

Hr,t(s,a) = {ṙ ∈ [0,1] : |ṙ− r̂t(s,a)| ≤ rad-r,t(s,a)} , (3.4)

with confidence radius rad-r,t(s,a) = 2
√

2log(SAT/δ )/N+
t (s,a). Here, δ is an input pa-

rameter (to be set to 1/T in the subsequent results).

Confidence Widening for State Transition Distributions.

For each state-action pair s,a and each time step t in episode m, we consider the empirical

mean estimator

p̂t(s′|s,a) =
1

N+
t (s,a)

(
t−1

∑
q=(τ(m)−W )∨1

1(sq = s,aq = a,sq+1 = s′)

)
,

which serves to estimate the average transition probability

p̄t(s′|s,a) =
1

N+
t (s,a)

t−1

∑
q=(τ(m)−W )∨1

pq(s′|s,a)1(sq = s,aq = a). (3.5)

Different from the case of estimating reward, the confidence region

Hp,t(η) = {Hp,t(s,a;η)}s∈S ,a∈As
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Algorithm 3 SWUCRL2-CW algorithm
1: Input: Time horizon T , state space S , and action space A , window size W , confi-

dence widening parameter η ,δ ← 1/T
2: Initialize t← 1, initial state s1.
3: for episode m = 1,2, . . . do
4: Set τ(m)← t, ντ(m)(s,a)← 0, and Nτ(m)(s,a) according to eqn (3.3), for all s,a.
5: Compute the confidence regions Hr,τ(m), Hp,τ(m)(η) according to eqns (3.4, 3.6).
6: Compute a (1/

√
τ(m))-optimal optimistic policy π̃τ(m):

EVI(Hr,τ(m),Hp,τ(m)(η);1/
√

τ(m))→ (π̃τ(m), r̃τ(m), p̃τ(m), ρ̃τ(m), γ̃τ(m)).

7: while t is not a multiple of W and νm(st , π̃τ(m)(st))< N+
τ(m)

(st , π̃τ(m)(st)) do
8: Choose action at = π̃τ(m)(st), observe reward Rt(st ,at) and the next state st+1.

9: Update ντ(m)(st ,at)← ντ(m)(st ,at)+1, t← t +1.
10: if t > T then
11: The algorithm is terminated.
12: end if
13: end while
14: end for

for the transition probability involves a widening parameter η ≥ 0:

Hp,t(s,a;η) =
{

ṗ ∈ ∆
S : ‖ṗ(·|s,a)− p̂t(·|s,a)‖1 ≤ rad-p,t(s,a)+η

}
, (3.6)

with confidence radius rad-p,t(s,a) = 2
√

2S log(SAT/δ )/N+
t (s,a). We shall provide a

suitable choice of η when we discuss our main results (see Theorem 21).

Extended Value Iteration (EVI) [108].

The SWUCRL2-CW algorithm relies on the EVI, which solves MDPs using the OFU principle

to near-optimality. We extract and rephrase a description of EVI in Section B.1.3 of the

appendix. EVI inputs the confidence regions Hr,Hp for the rewards and the state transition

distributions. The algorithm outputs an “optimistic MDP model”, which consists of reward

vector r̃ and state transition distribution p̃ under which the optimal average gain ρ̃ is the

largest among all ṙ ∈ Hr, ṗ ∈ Hp:

∙ Input: Confidence regions Hr for r, Hp for p, and an error parameter ε > 0.
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∙ Output: The returned policy π̃ and the auxiliary output (r̃, p̃, ρ̃, γ̃). In the latter, r̃, p̃,

and ρ̃ are the selected optimistic reward vector, state transition distribution, and the

corresponding long term average reward. The output γ̃ ∈ RS
+ is a bias vector [108].

For each s∈S , the quantity γ̃(s) is indicative of the short term reward when the DM

starts at state s and follows the optimal policy. By the design of EVI, for the output

γ̃ , there exists s ∈S such that γ̃(s) = 0. Altogether, we express

EVI(Hr,Hp;ε)→ (π̃, r̃, p̃, ρ̃, γ̃).

Combining these components, a formal description of the SWUCRL2-CW algorithm is shown

in Algorithm 3.

3.3.3 The Perils of Drift in Learning Markov Decision Processes

Before analyzing the performance of the SWUCRL2-CW algorithm, we first take a detour to

provide a formal justification for why we need to widen the confidence regions. To analyze

the loss due to using EVI, existing works (see e.g., Section 4.3 of [108] or Section 4.1

of [86]) typically argue that there exists a state transition distribution p̊ in the confidence

region such that the diameter of (S ,A , p̊) is small (i.e., ≤ Dmax) and then show that the

loss scales with the diameter of (S ,A , p̊) (as well as other instance dependent parameters).

In the case of stationary MDPs, where ∀ t ∈ [T ] pt = p0, one can easily show that the

un-widened confidence region Hp,t(0) contains p0 with high probability (see Section 4.2 of

[108]). Leveraging the fact that the underlying MDP remains stationary between changes,

this type of argument was further extended to RL in piecewise-stationary MDPs by [108],

However, simply inputting Hp,t(0) to EVI might lead to unfavorable dynamic regret

bound in general non-stationary MDPs. In the non-stationary environment where pt−W , . . . , pt−1

are generally distinct, we show in the proposition below that the diameter of any p̃∈Hp,t(0)

can grow as large as Ω(
√

W/ logW ) despite each of pt−W , . . . , pt−1’s diameters are just 1.

To ease the notation, we put t =W +1 without loss of generality.

Proposition 20. There exists a sequence of non-stationary MDP transition distributions

p1, . . . , pW such that 1) The diameter of (S ,A , pn) is 1 for each n ∈ [W ]; 2) The total
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variations in state transition distributions is O(1). Nevertheless, there exists a policy such

that if the DM follows this policy to act,

1. The empirical MDP (S ,A , p̂W+1) has diameter Θ(W )

2. Further, for every p̃∈Hp,W+1(0), the MDP (S ,A , p̃) has diameter Ω(
√

W/ logW )

The proof of Proposition 20 is provided in Section B.3 of the appendix.

3.3.4 Performance Analysis: The Blessing of More Optimism

We are now ready to analyze the performance of the SWUCRL2-CW algorithm assuming the

knowledge of Br,Bp to set W,η .

Theorem 21. Assuming S > 1, the SWUCRL2-CW algorithm with window size W, confidence

widening parameter η > 0, and δ = T−1 enjoys a dynamic regret (as defined in (3.2)) of

order

Õ

(
BpW

η
+BrW +

√
SAT√
W

+Dmax

[
BpW +

S
√

AT√
W

+T η +
SAT
W

+
√

T

]
+
√

Dmax(Br +2DmaxBp)T

)
.

If we further put W =W * = S2/3A1/2T 1/2(Br +Bp)
−1/2 and η = η* :=

√
BpW *T−1, this

is Õ
(

Dmax(Br +Bp)
1/4S2/3A1/2T 3/4

)
.

Proof. Proof Sketch. The complete proof of Theorem 21 is provided in Section B.4 of the

appendix. We begin by introducing two events Er,Ep, which state that r̄t’s and p̄t’s lie in

the respective (un-widened) confidence regions, i.e.,

Er = {r̄t(s,a) ∈ Hr,t(s,a) ∀s,a, t}, Ep = { p̄t(·|s,a) ∈ Hp,t(s,a;0) ∀s,a, t}.

We prove that Er,Ep hold with probability at least 1−δ (see Lemma 43 in Section B.4 of

the appendix). Conditioned on Er and Ep, we distinguish two cases for each episode m (as

shown in Fig. 3-1):

Case 1. pτ(m) ∈Hp,τ(m)(η) (left panel of Fig. 3-1): In this case, we can show the difference

between ρ*t and SWUCRL2-CW algorithm’s reward for any time step t of episode m scales
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with Dmax (see Proposition 44 in Section B.4 of the appendix) and the price we are paying

is a confidence region widened by η per time step.

Case 2. pτ(m) /∈ Hp,τ(m)(η) (right panel of Fig. 3-1): In this case, note that event Ep

assures us that p̄τ(m) ∈ Hp,τ(m)(0). Hence, by virtue of confidence widening, we have that

there must exists a state-action pair s,a such that ‖p̄τ(m)(·|s,a)− pτ(m)(·|s,a)‖1≥ η . Recall

from eqn. (3.5) that p̄τ(m)(·|s,a) is the average of several pt ′(·|s,a) for t ′ ∈ [1∨ (t−W ), t−

1], which implies there exists at least one t ′ ∈ [1∨ (t −W ), t − 1] such that ‖pt ′(·|s,a)−

pτ(m)(·|s,a)‖1 ≥ η . Through a triangle inequality, we have

τ(m)−1

∑
t=t ′
‖pt(·|s,a)− pt+1(·|s,a)‖1 ≥ η

In other words, the variation budget Bp is consumed by η .

Figure 3-1: In the case of pτ(m) /∈ Hp,τ(m)(η), the widened confidence regions forces an η

consumption of the variation budget Bp.

Remark 10 (Importance of Confidence Widening). Similar to the regret analysis of the

UCRL2 algorithm (Section 4 of [108]) and the UCRL2B algorithm (Section 4 of [86]), case

1 in the proof of Theorem 21 states that, if the confidence region Hp,τ(m)(η) contains a state

transition distribution with diameter at most D, then the EVI provided with Hp,τ(m)(η) re-

turns a policy with dynamic regret bound that scales at most linearly with D during episode

m. Without the widened confidence region, the smallest upper bound we can get for D is

Ω(
√

W/ logW ) (as shown in Proposition 20), which would result in linear in T dynamic

regret bound. In contrast, although the confidence widening technique cannot guarantee
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that all Hp,τ(m)(η) contains a MDP with small diameter, it enforces that the underlying

environment has to consume at least η variation budget whenever this is violated (case 2)

and thus makes sure that such violation could happen with limited number of times.

Remark 11 (Comparison with Conventional Optimistic Exploration). Inspecting the

prevalent OFU guided approach for stochastic MAB and RL in MDPs settings [21, 3, 108,

46, 125], one usually concludes that a tighter design of confidence region can result in a

lower (dynamic) regret bound. In [6], this insights has been formalized in stochastic K-

armed bandit settings via a potential function type argument. Nevertheless, Proposition

20 (together with Theorem 21) demonstrates that using the tightest confidence region may

not be enough to ensure low dynamic regret bound for RL in non-stationary MDPs. This

demonstrates the critical difference between RL in non-stationary MDPs and prior settings.

Remark 12 (Improved Dynamic Regret Bound). In [176], the authors extends our fixed

confidence widening technique to an adaptive confidence widening schedule that tunes η

adaptively based on historical observations to achieve an improved upper bound of or-

der O(Dmax(Bp +Br)
1/3S2/3A1/3T 2/3 +DmaxSA1/2T 1/2) when both Bp and Br are known

ahead.

3.4 Bandit-over-Reinforcement Learning Algorithm: To-

wards Parameter-Free

Similar to [59, 58], if Bp,Br are not known, we can set W and η obliviously as W =

S
2
3 A

1
2 T

1
2 , η =

√
W/T = S

2
3 A

1
2 T−

1
2 to obtain a dynamic regret bound

Õ
(

Dmax(Br +Bp +1)S2/3A1/2T 3/4
)

for the SWUCRL2-CW algorithm. This means, in the case of unknown Br and Bp, the dy-

namic regret of SWUCRL2-CW algorithm scales linearly in Br and Bp. However, by The-

orem 21, we are assured a fixed pair of parameters (W *,η*) can ensure low dynamic re-

gret. For the bandit setting, [58, 59] propose the Bandit-over-Bandit (BOB) framework that
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uses a separate copy of EXP3 algorithm to tune the window size. Inspired by it, we de-

velop a novel Bandit-over-Reinforcement Learning (BORL) algorithm with parameter-free

Õ
(

Dmax(Br +Bp +1)1/4S2/3A1/2T 3/4
)

dynamic regret here.

3.4.1 Design Overview

Similar to the BOB framework developed in [58], we make use of the SWUCRL2-CW algo-

rithm as a sub-routine, and “hedge" [46] against the (possibly adversarial) changes of rt’s

and pt’s to identify a reasonable fixed window size and confidence widening parameter.

Figure 3-2: Structure of the BORL algorithm

As illustrated in Fig. 3-2, the BORL algorithm divides the whole time horizon into

⌈T/H⌉ blocks of equal length H rounds (the length of the last block can ≤ H), and spec-

ifies a set J from which each pair of (window size, confidence widening) parameter are

drawn from. For each block i ∈ [⌈T/H⌉], the BORL algorithm first calls the master algo-

rithm to select a pair of (window size, confidence widening) parameters (Wi,ηi) (∈ J), and

restarts the SWUCRL2-CW algorithm with the selected parameters as a sub-routine to choose

actions for this block. Afterwards, the total reward of block i is fed back to the master

algorithm, and the “posterior" of these parameters are updated accordingly. Here, we use

the EXP3.P algorithm (see Section 3.2 of [46]), which is an adversarial bandit algorithm

against adaptive adversaries, as the master algorithm.

Remark 13 (Comparison with the Bandit-over-Bandit Framework). Even though the

BORL algorithm is heavily inspired by the BOB algorithm [58], its master algorithm is

critically different than the BOB algorithm’s. In the BOB algorithm, the EXP3 algorithm
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[18] against oblivious adversaries is used as the master algorithm (while the BORL al-

gorithm uses the EXP3.P algorithm against adaptive adversaries). This is because the

starting state of each block is determined by previous actions of the DM. Hence, the master

algorithm is not facing a simple oblivious environment as the case of MAB [59], and we

cannot use the EXP3 [18] algorithm as the master. Fortunately, the starting state of each

block is observed before this block begins. Therefore, the regret guarantee of the EXP3.P

algorithm can be leveraged here.

3.4.2 Design Details

Algorithm 4 BORL algorithm
1: Input: Time horizon T , state space S , and action space A , initial state s1.
2: Initialize H,Φ,∆W ,∆η ,∆,JW ,Jη according to eqn. (3.7), and α,β ,γ according to eqn.

(3.8).
3: M←{( j′,k′) : j′ ∈ {0,1, . . . ,∆W},k′ ∈ {0,1, . . . ,∆η}},q( j,k),1← 0 ∀( j,k) ∈M.
4: for i = 1,2, . . . ,⌈T/H⌉ do
5: Define distribution (u( j,k),i)( j,k)∈M according to eqn. (3.9), and set ( ji,ki)← ( j,k)

with probability u( j,k),i.

6: Wi←
⌊

H ji/∆W
⌋
,ηi←

⌊
Φki/∆η

⌋
.

7: for t = (i−1)H +1, . . . , i ·H ∧T do
8: Run the SWUCRL2-CW algorithm with window size Wi, δ = T−1, and confidence

widening parameter ηi, and observe the total rewards R
(
Wi,ηi,s(i−1)H+1

)
.

9: end for
10: Update q( j,k),i+1 according to eqn. (3.10).
11: end for

We are now ready to state the details of the BORL algorithm. For some fixed choice of

block length H (to be determined later), we first define a couple of additional notations:

H = ⌊3S
2
3 A

1
2 T

1
2 ⌋,Φ =

1

2T
1
2
,∆W = ⌊lnH⌋ ,∆η =

⌊
lnΦ

−1⌋ ,∆ = (∆W +1)(∆η +1), (3.7)

JW =
{

H0,
⌊

H
1

∆W

⌋
, . . . ,H

}
,Jη = S

1
3 A

1
4 ×
{

Φ
0,Φ

1
∆η , . . . ,Φ

}
,J =

{
(W,η) : W ∈ JW ,η ∈ Jη

}
.

Here, JW and Jη are all possible choices of window size and confidence widening parame-

ter, respectively, and J is the Cartesian product of them with |J|= ∆. We also let Ri(W,η ,s)
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be the total rewards for running the SWUCRL2-CW algorithm with window size W and confi-

dence widening parameter η for block i starting from state s,

The EXP3.P algorithm treats each element of J as an arm. It begins by initializing

α = 0.95

√
ln∆

∆⌈T/H⌉
,β =

√
ln∆

∆⌈T/H⌉
,γ = 1.05

√
∆ ln∆

⌈T/H⌉
,q( j,k),1 = 0 ∀ ( j,k) ∈M,

(3.8)

where M = {( j′,k′) : j′ ∈ {0,1, . . . ,∆W},k′ ∈ {0,1, . . . ,∆η}}. At the beginning of each

block i ∈ [⌈T/H⌉] , the BORL algorithm first sees the state s(i−1)H+1, and computes

∀ ( j,k) ∈M, u( j,k),i = (1− γ)
exp(αq( j,k),i)

∑( j′,k′)∈M exp(αq( j′,k′),i)
+

γ

∆
. (3.9)

Then it sets ( ji,ki) = ( j,k) with probability u( j,k),i ∀ ( j,k) ∈ M. The selected pair of pa-

rameters are thus Wi =
⌊

H ji/∆W
⌋

and ηi =
⌊

Φki/∆η

⌋
. Afterwards, the BORL algorithm starts

from state s(i−1)H+1, selects actions by running the SWUCRL2-CW algorithm with window

size Wi and confidence widening parameter ηi for each round t in block i. At the end of the

block, the BORL algorithm observes the total rewards R
(
Wi,ηi,s(i−1)H+1

)
. As a last step, it

rescales R
(
Wi,ηi,s(i−1)H+1

)
by dividing it by H so that it is within [0,1], and updates

∀ ( j,k) ∈M q( j,k),i+1 = q( j,k),i +
β +1( j,k)=( ji,ki) ·Ri

(
Wi,ηi,s(i−1)H+1

)
/H

u( j,k),i
. (3.10)

The formal description of the BORL algorithm (with H defined in the next subsection) is

shown in Algorithm 4.

3.4.3 Performance Analysis

The dynamic regret guarantee of the BORL algorithm can be presented as follows

Theorem 22. Assume S > 1, the dynamic regret bound of the BORL algorithm is

Õ
(

Dmax(Br +Bp +1)1/4S2/3A1/2T 3/4
)
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3.5 Alternative for Confidence Widening with Applica-

tion in Inventory Control

As demonstrated in previous sections, running the proposed algorithms with the widened

confidence regions can help the DM to attain provably low dynamic regret in general RL

in non-stationary MDPs. Nevertheless, confidence widening is not always necessary if

the state transition distributions bear a special structure. In particular, we consider the

following assumption on the state transition distributions p1, . . . , pT .

Assumption 6. There exists a positive quantity (not necessarily known to the DM) ζ ∈

R+, such that for any pair of states s,s′ ∈S , there is an action a(s,s′) ∈ As that satisfies

pt
(
s′|s,a(s,s′)

)
≥ ζ for all t ∈ [T ].

We can now analyze the dynamic regret bound of the SWUCRL2-CW algorithm under

Assumption 6. Here, we follow the notations introduced in Section 3.1 for consistency. In

general, Assumption 6 ensures that for every time step t ∈ [T ], there exists a state transition

distribution p ∈ Hp,t(0) such that the induced diameter of the MDP (S ,A , p) is upper

bounded by the constant D̄ := 1/ζ with high probability.

Proposition 23. Under Assumption 6 and conditioned on the event E√, there exists a state

transition distribution p in the confidence region Hp,t(0), such that the induced diameter of

the MDP (S ,A , p) is at most D̄ := 1/ζ for all t ∈ [T ].

The proof of Proposition 23 is provided in Section B.14 of the appendix. The propo-

sition indicates that the DM can achieve a bounded dynamic regret by implementing the

SWUCRL2-CW algorithm with η = 0. We are now ready to state the dynamic regret bound of

the SWUCRL2-CW algorithm when Assumption 6 holds (we omit the proof since it is similar

to that of Theorem 21.).

Theorem 24. Under Assumption 6 and assuming S > 1, the SWUCRL2-CW algorithm with

window size W, confidence widening parameter η = 0, and δ = T−1 satisfies the dynamic
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regret bound

Dyn-RegT (SWUCRL2-CW) = Õ

(
BrW + D̄

[
BpW +

S
√

AT√
W

+
SAT
W

+
√

T

])

If we further put W =W * = S2/3A1/2T 2/3(Br +Bp +1)−2/3, this dynamic regret bound is

Õ
(

D̄(Br +Bp +1)1/3S2/3A1/2T 2/3
)
.

3.5.1 An Application to Inventory Control

In this subsection, we first elaborate on Assumption 6 in the context of single non-perishable

item inventory control problem with zero lead time, fixed cost, and lost sales similar to

[183], and then demonstrate how to implement the SWUCRL2-CW algorithm for this prob-

lem. For each time step t ∈ [T ] of the inventory control problem (with some abuse of

notations), the following sequence of events happens:

1. The seller first observes her stock level st , and decides the quantity at to order.

2. If at > 0, a fixed cost f and a c per-unit ordering cost are incurred, and the order

arrives instantaneously. The stock level then becomes st +at .

3. The demand Xt is realized, and the seller observes the censored demand Yt =min{Xt ,st +

at}. The DM faces non-stationary demands, in the sense that the demand distri-

butions of X1, . . . ,XT at time steps 1, . . .T are independent but not identically dis-

tributed.

4. Unfulfilled demand incurs a l per-unit lost sales cost, while excess inventory leads to

a h per-unit holding cost. The total cost for time step t is

Ct(st ,at) = f ·1[at > 0]+ c ·at + l · [Xt− st−at ]
++h · [st +at−Xt ]

+. (3.11)

Due to demand censoring, the cost is not observable.

The seller’s objective is to minimize the cumulative total cost ∑
T
t=1Ct(st ,at). To map this

into the non-stationary MDP model we described in Section 3.1, we represent the level
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of stock at the beginning of each time step as the state. Same as [183] (and similar to

[106, 186, 12]), we assume the DM has a limited shelf capacity, and she can hold at most

S units of inventory at any time. Consequently, S = {0, . . . ,S}, and As = {0, . . . ,S− s}

for each s ∈S . We also define the reward and state transition distributions for all t ∈ [T ],

s,s′ ∈S , and a ∈As as follows,

Rt(s,a) =−Ct(s,a) and pt(s′|s,a) = Pr
(
s+a−min{s+a,Xt}= s′

)
.

However, it is worth emphasizing that, different than our setup in Section 3.1, Rt(s,a) is

not observable as Ct(s,a) is not observable. Nevertheless, we shall demonstrate in Section

3.5.1 that one could use the technique of pseudo-reward proposed in [12] to bypass this

issue.

Following Assumption 6, we make the strictly positive probability mass function (PMF)

assumption on X1, . . . ,XT .

Assumption 7 (Strictly Positive PMF). There is a ζ > 0 such that Pr(Xt = s)≥ ζ > 0 for

all t ∈ [T ] and s ∈ {0, . . . ,S}.

Remark 14. It can be readily verified that if the demands satisfy the strictly positive PMF

assumption, the underlying inventory control problem satisfies Assumption 6. Indeed, the

DM could transit from a state s ∈S to another state s′ ∈S with probability at least ζ by

ordering S− s units of the item, since then pt (s′|s,S− s) = Pr(Xt = S− s′)≥ ζ .

Comparisons to Existing Inventory Control Models

We first compare our setting and existing ones on single non-perishable item inventory

control problem with lost sales.

Similar to [106, 186, 183, 12], the model presented in this section studies the single

non-perishable item inventory control problem with lost sales. However, there are several

key differences between ours and the existing works in terms of cost functions, demand

distributions, and lead time:

∙ Cost Functions: In [106], the authors assume a linear purchasing cost function with-

out fixed cost, linear lost sales and holding cost functions. In [183], the authors
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Cost functions Demand distributions Lead time
[106] no fixed cost stationary, continuous or discrete zero

[186, 12] no fixed cost stationary, continuous or discrete positive
[183] with fixed cost stationary, continuous or discrete zeros
Ours with fixed cost non-stationary, discrete, with strictly positive PMF zero

Table 3.1: Comparisons between our inventory control model and existing works’

additionally allow fixed cost. In [186, 12], the authors assume the lost sales cost

function and the holding cost function are linear, and there is no purchasing cost. In

our setting, our cost function is the same as that of [183].

∙ Demand Distributions: In [106, 186, 183, 12], the authors assume stationary de-

mand distributions, but they admit both continuous or discrete demand distributions.

In contrast, we allow non-stationary demand distributions, but we impose that the

demand distribution has to be discrete, and satisfies the strictly positive PMF as-

sumption described above.

∙ Lead Time: In [186, 12], the authors allow the lead time to be positive; while in

[106, 183] and our setting, we assume the lead time is zero.

A summary of the comparisons is provided in Table 3.1.

Implementation of the SWUCRL2-CW algorithm

As pointed out in Section 3.5.1, different than the model we present in Section 3.1, the

reward in each time step t is not directly observable due to the censored demand. Nev-

ertheless, we can follow the pseudo-reward technique proposed in [12] to implement the

SWUCRL2-CW algorithm on a sequence of suitably designed pseudo-reward distributions.

In particular, we define the pseudo-reward following [12] for each time step t ∈ [T ],

every state s, and every action a ∈As as

Rpseudo
t (s,a) := Rt(s,a)+ l ·Xt =− f ·1[a > 0]− c ·at−h · [s+a−Yt ]

++ l ·Yt ,

where we recall Yt = min{s+ a,Xt} is the censored demand. We note that the pseudo-
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reward is perfectly observable. We also define the mean pseudo-reward or each time step

t ∈ [T ], every state s, and every action a ∈As as

rpseudo
t (s,a) := E

[
Rpseudo

t (s,a)
]
= E [Rt(s,a)+ l ·Xt ] = rt(s,a)+ l ·E[Xt ]. (3.12)

This indicates regardless of state and action, the mean pseudo-reward of a time step t can

be obtained from shifting the corresponding mean reward uniformly by l ·E[Xt ]. With-

out loss of generality, we assume for all t ∈ [T ], s ∈ S , and a ∈ As, the mean pseudo-

reward is bounded, i.e., rpseudo
t (s,a) ∈ [0,1], and the pseudo-reward Rpseudo

t (s,a) is 1-sub-

Gaussian with mean rpseudo
t (s,a). Defining ρ

*pseudo
t as the optimal long-term average re-

ward of the stationary MDP with state transition distribution pt and mean reward rpseudo
t =

{rpseudo
t (s,a)}s∈S ,a∈As, we can show that for any policy Π, the dynamic regret of the non-

stationary MDP instance specified by the tuple M = (S ,A ,T,r, p) and the dynamic regret

of the non-stationary MDP instance specified by the tuple M pseudo = (S ,A ,T,rpseudo =

{rpseudo
t }T

t=1, p) are the same.

Proposition 25. For any policy Π, we denote the sample path for following Π on M as

{st(M ),at(M )}T
t=1, and the sample path for following Π on M pseudo as

{st(M
pseudo),at(M

pseudo)}T
t=1,

we have

T

∑
t=1
{ρ*t −E[rt(st(M ),at(M ))]}=

T

∑
t=1

{
ρ
*pseudo
t −E[rpseudo

t (st(M
pseudo),at(M

pseudo))]
}
.

The proof of Proposition 25 is provided in Section B.15 in the appendix. Together with

Theorem 24, we have the following dynamic regret bound guarantee for the SWUCRL2-CW

algorithm on the the single non-perishable item inventory control problem with zero lead

time, fixed cost, and lost sales.

Theorem 26. For the inventory control model in Section 3.5.1, under Assumption 7 and

assuming S > 1, the SWUCRL2-CW algorithm with window size W, confidence widening
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parameter η = 0, and δ = T−1 satisfies the dynamic regret bound

Dyn-RegT (SWUCRL2-CW) = Õ

(
BrW + D̄

[
BpW +

S
3
2 T√
W

+
S2T
W

+
√

T

])

If we further put W =W * = ST 2/3(Br +Bp +1)−2/3, this dynamic regret bound is

Õ
(

D̄(Br +Bp +1)1/3ST 2/3
)
.

Remark 15. To interpret the dynamic regret bound of the SWUCRL2-CW algorithm in the

context of inventory control, we note that in Theorem 26, we normalize the cost functions

so that the cost incurs in each time period is in [0,1]. This is slightly different than the

setups in [106, 186, 183, 12], where the upper bound of the cost functions are of order

O(S).

3.6 Numerical Experiments

As a complement to our theoretical results, we conduct numerical experiments on synthetic

datasets to compare the dynamic regret performances of our algorithms with the UCRL2

algorithm [108], which is one of the most widely used benchmarks for RL in MDPs due

to its nearly-optimal regret bound in stationary environments [175], and also the restarting

UCRL2 (denoted as UCRL2.S) algorithm for RL in piecewise-stationary MDPs [108]

Setup: We consider a MDP with 2 states {s1,s2} and 2 actions {a1,a2}, and set T = 5000.

The mean rewards are set to

rt(s1,a1) = 0.2+3cos(5Vrπt/T ) , rt(s1,a2) = 0.2+ cos(5Vrπt/T ) ,

rt(s2,a1) = 0.2− cos(5Vrπt/T ) , rt(s2,a2) = 0.2−3cos(5Vrπt/T ) .

The total variations in mean rewards is thus Br = 15Vr = Θ(Vr). An illustration of the

reward process of state s2 and action a2 is provided in Fig. 3-3 (the mean rewards of other

(state,action) pairs are similar). The state transition distributions are set to
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Figure 3-3: Illustrations of mean rewards rt(s2,a2) (the mean rewards of other state-action
pairs are similar)

pt(s1|s1,a1) = 1, pt(s2|s1,a1) = 0, pt(s1|s1,a2) = 1−βt , pt(s1|s1,a2) = βt ,

pt(s1|s2,a1) = 0, pt(s2|s2,a1) = 1, pt(s1|s2,a2) = βt , pt(s1|s2,a2) = 1−βt .

where βt is governed by the process: βt = 0.5+ 0.3sin(5Vpπt/T ) . The total variations

in the state transition distributions is thus Bp = 12Vp = Θ(Vp). In this simulation, we al-

low both Vr and Vp to take values from {T 0.2,T 0.5} to evaluate the performances of the

algorithms in low and high variations scenarios. Here, we assume the SWUCRL2-CW algo-

rithm knows the variation budgets, and the UCRL2.S algorithm restarts the UCRL2 algo-

rithm every ⌊T 2/3⌋ time steps. All the results are averaged over 50 runs.

Results: The cumulative rewards of the algorithms under various variation budgets are

shown in Fig. 3-4. The results show that both the SWUCRL2-CW algorithm and the BORL

algorithm are able to collect at least 20% more rewards then the UCRL2 algorithm and

the UCRL2.S algorithm except for the case when Bp = Θ(T 0.5) and Br = Θ(T 0.2), the

percentage improvement is 12%. Comparing the results in Figs. 3-4(a), 3-4(b), and 3-4(c),

we can see that both the SWUCRL2-CW algorithm and the BORL algorithm are more robust

to variations in the state transition distributions than that in reward distributions. This

demonstrate the power of our confidence widening technique. Interestingly, we can see that

in Figs. 3-4(a), 3-4(b), and 3-4(c), the cumulative rewards of the BORL algorithm (does not

know the variation budgets) are higher than those of the SWUCRL2-CW algorithm (knows the
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(c) Bp = Θ(T 0.5), Br = Θ(T 0.2)
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Figure 3-4: Cumulative rewards of the algorithms

variation budgets). This indeed has no contradiction to our theoretical results. Theorems

21 and 22 state that the SWUCRL2-CW algorithm and the BORL algorithm enjoy the same

(in the sense of Õ(·)) worst case dynamic regret bound. Nevertheless, the environments

we construct in Fig. 3-3 are not the worst case scenario, and the results indicate that the

adaptive master algorithm (i.e., the EXP3.P algorithm) of the BORL algorithm is able to

leverage this more benign environment to attain higher rewards.
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Chapter 4

Meta Dynamic Pricing

4.1 Problem Formulation

For ease of exposition, we primarily focus on a seller offering a single product at a time.

Our approach and results generalize straightforwardly when multiple products are offered

simultaneously, where a seller must also learn cross-product elasticities to capture substi-

tution effects (see extension in Appendix F).

Notation: Throughout this chapter, all vectors are column vectors by default. We define

[n] to be the set {1,2, . . . ,n} for any positive integer n. We use ‖x‖u to denote the `u norm of

a vector x∈Rd, but we often omit the subscript when we refer to the `2 norm. For a matrix

X ∈Rd×d ‖X‖op :=maxv∈Rd :‖v‖=1 |v⊤Xv| is the operator norm of X . For a positive definite

matrix A ∈Rd×d and vectors x,y ∈Rd , let ‖x‖A denote the matrix norm
√

x⊤Ax and ⟨x,y⟩

denote the inner product x⊤y. For two matrices A and B, we use A⊗B to denote their

Kronecker product. We also denote x∨y and x∧y as the maximum and minimum between

(x,y) ∈R, respectively. We use the standard notation O(·),Ω(·) and Θ(·) to characterize

the asymptotic growth rate of a function [65]; when logarithmic factors are omitted, we use

Õ(·),Ω̃(·) and Θ̃(·). Finally, let λmin(·) and λmax(·) denote the minimum and maximum

eigenvalues of a matrix respectively.
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4.1.1 Model

We first describe the classical dynamic pricing formulation for a single product; we then

formalize our meta-learning formulation over a sequence of N products.

Classical Formulation: Consider a seller who offers a single product over a selling hori-

zon of T periods. The seller can dynamically adjust the offered price in each period. At the

beginning of each period t ∈ [T ], the seller observes a random feature vector (capturing ex-

ogenous and/or customer-specific features) that is independently and identically distributed

from an unknown distribution. Upon observing the feature vector, the seller chooses a price

for that period. The seller then observes the resulting demand, which is a noisy function of

both the observed feature vector and the chosen price. The seller’s revenue in each period

is given by the chosen price multiplied by the corresponding realized demand. The goal in

this setting is to develop a policy π that maximizes the seller’s cumulative revenue by bal-

ancing exploration (learning the demand function) with exploitation (offering the estimated

revenue-maximizing price).

Meta-learning Formulation: We consider a seller who sequentially offers N related

products, each with a selling horizon of T periods. For simplicity, a new product is not

introduced until the life cycle of the previous product ends.1 We call each product’s life

cycle an epoch, i.e., there are N epochs that last T periods each. Each product (and corre-

sponding epoch) is associated with a different (unknown) demand function, and constitutes

a different instance of the classical dynamic pricing problem described above. We now

formalize the problem.

In epoch i ∈ [N] at time t ∈ [T ], the seller observes a random feature vector xi,t ∈Rd ,

which is independently and identically distributed from a known distribution Pi. She then

chooses a price pi,t for that period. Based on practical constraints, we will assume that the

allowable price range is bounded across periods and products, i.e., pi,t ∈ [pmin, pmax] and

1We model epochs as fully sequential for simplicity; if epochs overlap, we would need to additionally
model a customer arrival process for each epoch. Our algorithms straightforwardly generalize for overlapping
epochs; see remark in §4.3.4.
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0 < pmin < pmax < ∞. The seller then observes the resulting induced demand

Di,t(pi,t ,xi,t) = ⟨αi,xi,t⟩+ pi,t⟨βi,xi,t⟩+ εi,t ,

where αi ∈ Rd and βi ∈ Rd are unknown fixed constants throughout epoch i, and εi,t ∼

N (0,σ2) is i.i.d. Gaussian noise with variance σ2. This demand model was recently

proposed by [26], and captures several salient aspects. In particular, the observed feature

vector xi,t in period t determines both the baseline demand (through the parameter αi) and

the price-elasticity of the demand (through the parameter βi) of product i.

Example 4 (Rue La La). Rue La La sells a limited set of new products in multi-day “events"

[78]. In this case, T is the number of price changes during the event (events are typically

1-4 days, and prices are updated no more than a few times a day), N is the number of events

offered so far by the seller (note that N≫ T ), and K is the number of simultaneously-offered

products in an event. For ease of exposition, we primarily consider K = 1, but Appendix

F provides a straightforward extension to general values of K, accounting for substitution

effects.

Remark 16 (Alternative Demand Models). Our demand model utilizes a continuous out-

come variable, motivated by the setting where many customers simultaneously view the

same product with the same price in a given time unit. One can alternatively modify the

demand model to follow a generalized linear model (e.g., logistic) to consider a binary

purchase outcome variable for each customer. Our proposed algorithms easily generalize

by appropriately modifying our Bayesian posterior update rules; however, we restrict our

regret analysis to the linear case since OLS Bayesian posterior updates have a closed form,

yielding a tractable analysis.

Shared Structure: For ease of notation, we denote θi =
(

α⊤i β⊤i

)⊤
∈R2d; following

the classical formulation of dynamic pricing, θi is the unknown parameter vector that must

be learned within a given epoch in order for the seller to maximize her revenues over T

periods. When there is no shared structure between the {θi}N
i=1, our problem reduces to N

independent dynamic pricing problems.
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However, we may expect that related products share a similar potential market, and thus

may have some shared structure that can be learned from previously offered products. We

model this relationship by positing that the product demand parameter vectors {θi}N
i=1 are

independent and identically distributed draws from a common unknown distribution, i.e.,

θi ∼N (θ*,Σ*) for each i ∈ [N].2 As discussed earlier, knowledge of the distribution over

the unknown demand parameters can inform the prior for Thompson sampling, thereby

avoiding the need to use a conservative prior that can result in poor empirical performance

[105, 132]. The mean of the shared distribution θ* is unknown; we will consider settings

where the covariance of this distribution Σ* is known and unknown. We propose using

meta-learning to learn this distribution from past epochs to inform and improve the current

product’s pricing strategy.

Remark 17 (Product Features). A complementary form of shared structure can be captured

through product features. However, even after conditioning on observed product features,

the demand functions for two products may behave very differently, e.g., two black dresses

may cater to very different types of customers or have very different price elasticities due

to attributes like fit or design that may be hard to capture as features. To capture product-

specific (i.e., SKU-level) demand behaviors, we allow the coefficients of the demand func-

tion (e.g., price-elasticity) to differ.

4.1.2 Assumptions

We now describe some mild assumptions on the parameters of the problem for our regret

analysis.

Assumption 8 (Boundedness). The support of the features are bounded, i.e.,

∀i ∈ [N] ,∀t ∈ [T ] ‖xi,t‖ ≤ xmax.

Furthermore, there exists a positive constant S such that ‖θ*‖ ≤ S.

2Following the literature on Thompson sampling, we consider a multivariate Gaussian distribution since
the posterior has a simple closed form, thereby admitting a tractable theoretical analysis. When implementing
such an algorithm in practice, more complex distributions can be considered (e.g., see discussion in [163]).
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Our first assumption is that the observed feature vectors {xi,t} as well as the mean of

the product demand parameters θ* are bounded. This is a standard assumption made in

the bandit and dynamic pricing literature, ensuring that the expected regret at any time step

is bounded. This is likely satisfied since features and outcomes are typically bounded in

practice.

Assumption 9 (Positive-Definite Feature Covariance). The minimum eigenvalue of the fea-

ture covariance matrix Exi,t∼Pi

[
xi,tx⊤i,t

]
in every epoch i ∈ [N] is lower bounded by some

positive constant λ0, i.e.,

min
i∈[N]

λmin

(
Exi,t∼Pi

[
xi,tx⊤i,t

])
≥ λ0 .

Our second assumption imposes that the covariance matrix of the observed feature vec-

tors E
[
xi,tx⊤i,t

]
in every epoch is positive-definite. This is a standard assumption for the

convergence of OLS estimators; in particular, our demand model is linear, and therefore

requires that no features are perfectly collinear in order to identify each product’s true de-

mand parameters.

Assumption 10 (Positive-Definite Prior Covariance). The maximum and minimum eigen-

values of Σ* are upper and lower bounded by positive constants λ and λ , respectively

i.e.,

λmax (Σ*)≤ λ , λmin (Σ*)≥ λ .

Our final assumption imposes that the covariance matrix of the random product demand

parameter θ is also positive-definite and bounded. Again, this assumption ensures that each

product’s true demand parameter is identifiable using standard OLS estimators.

4.1.3 Background on Thompson Sampling with Known Prior

In this subsection, we consider the setting where the true prior N (θ*,Σ*) over the un-

known product demand parameters is known. This setting will inform our definition of the

101



meta oracle and meta regret in the next subsection. When the prior is known, a natural can-

didate policy for minimizing Bayes regret is the Thompson sampling algorithm [168]. The

Thompson sampling algorithm adapted to our dynamic pricing setting for a single epoch

i ∈ [N] is formally given in Algorithm 5 below. Since the prior is known, there is no addi-

tional shared structure to exploit across products, so we can treat each epoch independently.

We denote TS(N (θ*,Σ*) ,λe) , as the Thompson sampling algorithm with prior N (θ*,Σ*)

and a positive input parameter λe for initialization. In line with pricing algorithms in the

literature (see, e.g., [117, 26]), to ensure that we can obtain a well-defined OLS estimate of

the underlying parameter at the end of an epoch, our algorithm initially performs random

price exploration (alternating between pmin and pmax) until the Fisher information matrix

Vi,t = ∑
t
s=1

(
x⊤i,s pi,sx⊤i,s

)⊤(
x⊤i,s pi,sx⊤i,s

)
has minimum eigenvalue of at least λe. Let Ti

be the (random) length of this initialization period in epoch i,

Ti = argmin
t

λmin (Vi,t) ≥ λe . (4.1)

We show that Ti = Õ(1) with high probability (see Lemma 4 in Appendix A), and therefore

this initialization period forms a negligible portion of the epoch.

For each time step after initialization, t ≥Ti+1, the algorithm (1) samples the unknown

product demand parameters θ̊i,t =
[
α̊i,t ; β̊i,t

]
from the posterior N

(
θ TS

i,t ,Σ
TS
i,t

)
, and (2)

solves and offers the resulting optimal price based on the demand function given by the

sampled parameters

pTS
i,t = argmax

p∈[pmin,pmax]

p · ⟨α̊i,t ,xi,t⟩+ p2 ·
〈

β̊i,t ,xi,t

〉
. (4.2)

Upon observing the actual realized demand Di,t

(
pTS

i,t ,xi,t

)
, the algorithm computes the

posterior N
(

θ TS
i,t+1,Σ

TS
i,t+1

)
for round t+1. Specifically, using the update rule for Bayesian

linear regression [43] and letting mTS
i,t = (x⊤i,t , pTS

i,t x⊤i,t)
⊤, the posterior at time t is

θ
TS
i,t =

(
Σ
−1
* +σ

t−1

∑
s=1

mTS
i,s (m

TS
i,s )
⊤

)−1(
Σ
−1
* θ*+σ

t−1

∑
s=1

mTS
i,s Di,s

)
,
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Σ
TS
i,t =

(
Σ
−1
* +σ

t−1

∑
s=1

mTS
i,s (m

TS
i,s )
⊤

)−1

.

The same algorithm is applied independently to each epoch i ∈ [N].

Algorithm 5 TS(N (θ*,Σ*) ,λe) : Thompson Sampling Algorithm
1: Input: The prior mean vector θ* and covariance matrix Σ*, the index i of epoch, the

length of each epoch T, the noise parameter σ , exploration parameter λe.

2: Initialization: t← 1,
(

θ TS
i,t ,Σ

TS
i,t

)
← (θ*,Σ*).

3: while λmin

(
∑

t−1
s=1
(
x⊤i,s pi,sx⊤

)⊤ (x⊤i,s pi,sx⊤
))

< λe do

4: Observe feature vector xi,t , and offer price pTS
i,t ←

{
pmax if t is even,
pmin otherwise.

5: Observe demand Di,t

(
pTS

i,t ,xi,t

)
, and compute the posterior N

(
θ TS

i,t+1,Σ
TS
i,t+1

)
.

6: t← t +1
7: end while
8: while t ≤ T do
9: Observe feature vector xi,t .

10: Sample parameter θ̊i,t ←
[
α̊i,t ; β̊i,t

]
∼N

(
θ TS

i,t ,Σ
TS
i,t

)
.

11: pTS
i,t ← argmaxp∈[pmin,pmax] p · ⟨α̊i,t ,xi,t⟩+ p2 ·

〈
β̊i,t ,xi,t

〉
.

12: Observe demand Di,t

(
pTS

i,t ,xi

)
, and compute the posterior N

(
θ TS

i,t+1,Σ
TS
i,t+1

)
.

13: t← t +1
14: end while

As evidenced by the large literature on the practical success of Thompson sampling

[55, 162, 77], Algorithm 5 is a very attractive choice for implementation in practice.

Algorithm 5 attains a strong performance guarantee under the classical formulation

compared to an oracle that knows all N product demand parameters {θi}N
i=1 in advance. In

particular, the oracle would offer the expected optimal price in each period t ∈ [T ] in epoch

i ∈ [N], i.e.,

p*i,t = argmaxp∈[pmin,pmax] p ·Eε [Di,t(p,xi,t)]

= argmaxp∈[pmin,pmax] p⟨αi,xi,t⟩+ p2⟨βi,xi,t⟩ . (4.3)
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The resulting Bayes regret [162] of a policy π relative to the oracle is:

Bayes RegretN,T (π) = Eθ ,x,ε

[
N

∑
i=1

T

∑
t=1

p*i,tD(p*i,t ,xi,t)−
N

∑
i=1

T

∑
t=1

pπ
i,tD(pπ

i,t ,xi,t)

]
, (4.4)

where the expectation is taken with respect to the unknown product demand parameters,

the observed random feature vectors, and the noise in the realized demand. The following

theorem bounds the Bayes regret of the Thompson sampling dynamic pricing algorithm:

Theorem 27. When the prior over the demand parameters is known, Algorithm 5 satisfies

Bayes RegretN,T (π) = Õ
(

d
3
2 N
√

T
)
,

Theorem 27 follows from a similar argument used for the linear bandit setting presented

in [162], coupled with standard concentration bounds for multivariate normal distributions.

The proof is given in Appendix A for completeness. Note that the regret scales linearly in

N, since each epoch is an independent learning problem.

Remark 18. Prior-independent Thompson sampling [10] achieves a Bayes regret of Õ(d2N
√

T ),

which is comparable to the performance of Algorithm 5. However, we document a substan-

tial gap in empirical performance between the two approaches in §4.4, motivating our

study of learning the prior.

4.1.4 Meta Oracle and Meta Regret

We cannot directly implement Algorithm 5 in our setting, since the prior over the product

demand parameters N (θ*,Σ*) is unknown. In this work, we seek to learn the prior (shared

structure) across products in order to leverage the superior performance of Thompson sam-

pling with a known prior. Thus, a natural question to ask is:

What is the price of not knowing the prior in advance?

To answer this question, we first define our performance metric. Since our goal is to

converge to the policy given in Algorithm 5 (which knows the true prior), we define this

policy as our meta oracle.3 Comparing the revenue of our policy relative to the meta oracle
3We use the term meta oracle to distinguish from the oracle in the classical formulation.
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leads naturally to the definition of meta regret RN,T for a policy π , i.e.,

RN,T (π) = Eθ ,x,ε

[
N

∑
i=1

T

∑
t=1

pTS
i,t D(pTS

i,t ,xi,t)−
N

∑
i=1

T

∑
t=1

pπ
i,tD(pπ

i,t ,xi,t)

]
,

where the expectation is taken with respect to the unknown product demand parameters,

the observed random feature vectors, and the noise in the realized demand.

Note that prior-independent Thompson sampling and UCB treat each epoch indepen-

dently, and would thus achieve meta regret that grows linearly in N. Our goal is to design

a policy with meta regret that grows sublinearly in N. Recall that Theorem 27 bounds the

Bayes regret of Thompson sampling with a known prior as Õ
(
N
√

T
)
. Thus, if our meta

regret (i.e., the performance of our meta-learning policy relative to Algorithm 5) grows

sublinearly in N, then the price of not knowing the prior N (θ*,Σ*) in advance is negligi-

ble in experiment-rich environments (large N) compared to the cost of learning the demand

parameter for each product (the Bayes regret of Algorithm 5).

The values of the prior mean θ* as well as the actual product demand parameter vectors

{θi}N
i=1 are unknown; we consider two settings — known and unknown Σ* (covariance of

the prior).

Remark 19 (Choice of meta oracle). To the best of our knowledge, the optimal prior to

use for Thompson sampling remains a difficult, open problem. Existing theory shows (in

limited settings) that priors that fail to place sufficient mass on the true parameter fare

poorly: the closest setting to ours is the linear bandit construction in Proposition 3.1 of

[97], which shows that prior-dependent Thompson sampling with a mis-specified prior can

achieve regret that scales exponentially in d; Theorem 1 of [132] and Theorem 2 of [105]

also provide illustrative constructions with the same insight. In the other extreme, many

empirical evaluations suggest that overly conservative priors (such as prior-independent

approaches) also fare poorly relative to using the true prior (see, e.g., Section 6 of [31],

the discussions in [55], or our numerical results in Section 4.4). As a result, we choose

Thompson Sampling with the true prior as our meta oracle. However, one can choose

alternative meta oracles — e.g., one that “widens" the true prior to place more weight on

parameters that may induce higher regret — implementing such a meta oracle would still
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likely require learning the true prior, which is our primary contribution.

Non-anticipating Policies: We restrict ourselves to the family of non-anticipating poli-

cies Π : π = {πi,t} that form a sequence of random functions πi,t that depend only on

price and demand observations collected until time t in epoch i (including all times t ∈ [T ]

from prior epochs), and feature vector observations up to time t +1 in epoch i. In particu-

lar, let H0,0 = (x1,1), and Hi,t = (p1,1, p1,2, · · · , pi,t ,D1,1,D1,2, · · · ,Di,t ,x1,1,x1,2, · · · ,xi,t+1)

denote the history of prices and corresponding demand realizations from prior epochs and

time periods, as well as the observed feature vectors up to the next time period; let Fi,t

denote the σ -field generated by Hi,t . Then, we impose that πi,t+1 is Fi,t measurable.

4.2 Meta-DP Algorithm

We begin with the case where the prior’s covariance matrix Σ* is known, and describe the

Meta Dynamic Pricing (Meta-DP) algorithm for this setting. We will consider the case of

unknown Σ* in the next section.

4.2.1 Overview

The Meta-DP algorithm begins by using initial product epochs as an exploration phase

to initialize our estimate of the prior mean θ*. These exploration epochs use the prior-

independent Thompson sampling algorithm to ensure no more than Õ(d2
√

T ) meta regret

for each epoch. After this initial exploration period, our algorithm sequentially updates

the estimated prior and leverages this estimate in each subsequent epoch. The key tech-

nical challenge is that the estimated prior has finite-sample estimation error, resulting in a

Thompson sampling instance with a mis-specified prior. We introduce a prior alignment

proof technique to show that, despite prior mis-specification, our Meta-DP algorithm still

achieves meta regret that grows sublinearly in N.
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4.2.2 Algorithm

The Meta-DP algorithm is presented in Algorithm 6. We first define some additional nota-

tion, and then describe the algorithm in detail.

Additional Notation: Throughout the rest of the chapter, we use mi,t =
(

x⊤i,t pi,tx⊤i,t

)⊤
to denote the price and feature information and Vi,t = ∑

t
τ=1 mi,tm⊤i,t to denote the Fisher

information matrix of round t in epoch i for all i ∈ [N] and t ∈ [T ].

Algorithm Description: The first N0 epochs are treated as exploration epochs, where we

define

N0 = 4c2
2dT 2

e loge(4dN2T ) loge(2NT ) = Õ(d) , (4.5)

where Te =max
{

6loge/2(dNT )/c1,2λe/c0

}
= Õ(1) (Te is a high probability upper bound

on all Ti’s, see Lemma 4 in Appendix A), and the constant is given by

c2 =
32
√

x2
max(1+ p2

max)(σ
2λ
−1
e +5λ )

λeλσ2 .

As described in the overview, the Meta-DP algorithm proceeds in two phases. In particular,

we distinguish the following two cases for each epoch i:

1. Epoch i≤ N0 : the Meta-DP algorithm runs the prior-independent Thompson sam-

pling algorithm [10, 5] TS(N (0,ΨI2d),λe), where

Ψ = pmaxσ

√
2d loge(T (1+ x2

max p2
max(1+ p2

max)T ))+
√

20λd loge(2T ) .

This is simply Algorithm 5 with a conservative prior (variance is a function of the

horizon T ).

2. Epoch i > N0 : the Meta-DP algorithm first computes the OLS estimate of the true

parameter for each previous epoch j < i. It then averages these parameter estimates
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to form an estimator θ̂i of the prior mean θ*, i.e.,

θ̂i =
∑

i−1
j=1V−1

j,T
(
∑

T
t=1 D j,t(p j,t ,x j,t)m j,t

)
i−1

. (4.6)

Then, the Meta-DP algorithm runs Thompson Sampling (Algorithm 5) with the es-

timated prior N (θ̂i,Σ*), i.e., TS(N (θ̂i,Σ*),λe). Specifically, after some random

initialization steps (these steps are identical to our meta oracle), our Meta-DP algo-

rithm (1) samples the unknown product demand parameters θ̊i,t =
[
α̊i,t ; β̊i,t

]
from its

posterior N
(

θ MD
i,t ,ΣMD

i,t

)
, and (2) solves and offers the resulting optimal price based

on the demand function given by the sampled parameters

pi,t = argmax
p∈[pmin,pmax]

p · ⟨α̊i,t ,xi,t⟩+ p2 ·
〈

β̊i,t ,xi,t

〉
. (4.7)

Upon observing the actual realized demand Di,t (pi,t ,xi,t), the algorithm computes

the posterior N
(

θ MD
i,t+1,Σ

MD
i,t+1

)
for round t +1.

Algorithm 6 Meta-Dynamic Pricing Algorithm
1: Input: The prior covariance matrix Σ*, the total number of epochs N, the length of

each epoch T, the noise parameter σ , and the set of feasible prices [pmin, pmax].
2: Initialization: N0 as defined in Eq. (4.5).
3: for each epoch i = 1, . . . ,N do
4: if i≤ N0 then
5: Run TS(N (0,Ψ) ,λe) .
6: else
7: Update θ̂i according to Eq. (4.6), and run TS

(
N
(
θ̂i,Σ*

)
,λe
)
.

8: end if
9: end for

We now state our main result upper bounding the meta regret of our Meta-DP algo-

rithm (Algorithm 6). The proof is provided in Section 4.2.3 and Appendix C.

Theorem 28. The meta regret of the proposed Meta-DP algorithm satisfies

RN,T (Meta-DP algorithm) =

Õ(d2N
√

T ) when N < N0

Õ(d2
√

NT ) otherwise
= Õ

(
d2
√

NT +d3
√

T
)
.
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It is worthwhile to compare the bound in Theorem 28 to the Õ(d2N
√

T ) meta regret

bound for prior-independent Thompson Sampling (Lemma 11 in Appendix C). When N .

Õ(d), our bound matches that of prior-independent Thompson Sampling, since we simply

treat all our epochs as exploration epochs. In the large N regime, our meta regret scales as

Õ(d2
√

NT ). Thus, our approach of learning the prior is particularly valuable in experiment-

rich settings (N≫ d). Combining the two regimes yields a bound that is sublinear in both

N and T .

Theorem 28 is somewhat surprising in the context of a growing theoretical literature

that suggests that a mis-specified prior can result in very poor regret for prior-dependent

Thompson Sampling (see, e.g., [105, 132, 97]). Indeed, one may expect that the mis-

specification induced by using the prior N (θ̂i,Σ*) instead of N (θ*,Σ*) can be substantial,

since the ratio between these two probability density functions is unbounded when θ̂i ̸=

θ*. Yet, using our prior alignment proof strategy (described in the next subsection), we

establish that Thompson Sampling is remarkably robust to mis-specification of the prior

mean, lending theoretical support to previous empirical observations [31].

4.2.3 “Prior Alignment" Proof Strategy

Since we only have a logarithmic number (in N and T ) of exploration epochs, the meta

regret accrued from these epochs is Õ(d2N0
√

T ) (see Lemma 11 in Appendix C).

In each non-exploration epoch i>N0, the meta oracle starts with the true prior N (θ*,Σ*)

while our algorithm Meta-DP starts with the estimated prior N (θ̂i,Σ*). The following

lemma (whose proof is in Appendix B) bounds the error of the estimated prior mean with

high probability:

Lemma 29. For any fixed i≥ 2 and δ ∈ [0,2/e], with probability at least 1−δ−2/(N2T 2),

∥∥θ̂i−θ*
∥∥≤ 8

√
2(σ2/λe +5λ )d loge(4d/δ )

i
.

Thus, the key challenge in proving Theorem 28 is bounding the difference in regret

incurred by using a Thompson Sampling algorithm with a boundedly mis-specified prior.
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We introduce a new “prior alignment" proof technique to address this challenge. At a

high level, we show that after the Ti exploration time steps, the distributions of the meta

oracle’s (random) posterior estimate θ TS
i,Ti+1 and Meta-DP’s (random) posterior estimate

θ MD
i,Ti+1 are close. More specifically, there is a continuum of realizations of the stochastic

noise (in the observed demands) such that Meta-DP achieves the same posterior estimate

θ MD
i,Ti+1 = θ TS

i,Ti+1 despite starting with a different prior; when such a match occurs, the

expected regret moving forward from time Ti + 1, · · · ,T is the same for both policies.

Using this approach, the regret of our Meta-DP algorithm can be expressed as a weighted

distribution of the regret of the meta oracle (which we bounded in Theorem 27).

More specifically, the following lemma (whose proof is in Appendix C) establishes

the difference in Bayesian posteriors between the meta oracle and our Meta-DP algorithm.

Note that only the means of the posterior differ but the variance is the same.

Lemma 30. Conditioned on θi and xi,1, . . . ,xi,Ti, the posteriors of the meta oracle and our

Meta-DP algorithm satisfy

θ
TS
i,Ti+1−θ

MD
i,Ti+1 =

(
Σ
−1
* +σ

Ti

∑
t=1

mi,tm⊤i,t

)−1(
Σ
−1
*
(
θ*− θ̂i

)
+σ

Ti

∑
t=1

mi,t

(
ε

TS
i,t − ε

MD
i,t

))
,

Σ
TS
i,Ti+1 = Σ

MD
i,Ti+1 .

Now, consider any non-exploration epoch i ≥ N0 + 1. If upon completion of all ex-

ploration steps at time Ti + 1, we have that the posteriors of the meta oracle and our

Meta-DP algorithm coincide — i.e., (θ MD
i,Ti+1,Σ

MD
i,Ti+1) = (θ TS

i,Ti+1,Σ
TS
i,Ti+1) — then both poli-

cies would achieve the same expected revenue over the time periods Ti + 1, · · · ,T . By

Lemma 30, we know that ΣTS
i,Ti+1 = ΣMD

i,Ti+1 always, so all that remains is establishing when

θ TS
i,Ti+1 = θ MD

i,Ti+1.

Since the two algorithms begin with different priors but encounter the same covariates

{xi,t}T
t=1 and take the same decisions in t ∈ {1, · · · ,Ti}, their posteriors can only align at

time Ti + 1 due to the stochasticity in the observations εi,t . For convenience, denote the

noise terms from t ∈ {1, · · · ,Ti} of the meta oracle and the Meta-DP algorithm respectively
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as

χ
TS
i =

(
εTS

i,1 . . . εTS
i,Ti

)⊤
, (4.8)

χ
MD
i =

(
εMD

i,1 . . . εMD
i,Ti

)⊤
. (4.9)

Furthermore, let Mi =
(

mi,1 . . . mi,Ti

)
∈R2d×Ti . Lemma 30 indicates that if

χ
MD
i −χ

TS
i =

1
σ
(M⊤i Mi)

−1M⊤i Σ
−1
*
(
θ*− θ̂i

)
, (4.10)

then the posteriors of both algorithms align with θ TS
i,Ti+1 = θ MD

i,Ti+1. Thus for every realiza-

tion of the meta oracle’s noise terms χTS
i and the prior mean estimation error θ*− θ̂i, there

exists a well-defined and feasible choice of Meta-DP algorithm’s error χMD
i that allows the

two posteriors to coincide. Furthermore, by Lemma 29, ‖θ*− θ̂i‖ is bounded as a func-

tion of
√

1/i with high probability, ensuring that the difference in noise terms χMD
i − χTS

i

needed to achieve alignment is small for later epochs (as i grows large). With this obser-

vation, we can perform a change of measure over our noise terms and integrate over the

resulting distributions, yielding the desired bound on the meta regret. The proof is provided

in Appendix C.

Remark 20. Our prior alignment approach may be of general interest for analyzing the

regret of mis-specified Thompson Sampling instances. [162] propose a related but differ-

ent approach in Section 3.1 of their paper. Specifically, they relate the regret of imple-

menting T S(N (θ̂i,Σ*),λe) in an environment with true prior N (θ*,Σ*) to the regret of

T S(N (θ̂i,Σ*),λe) in an environment with a different true prior N (θ̂i,Σ*). In contrast,

we wish to compare the regret of implementing T S(N (θ̂i,Σ*),λe) (Meta-DP, Algorithm

6) and T S(N (θ*,Σ*),λe) (meta oracle, Algorithm 5) in the same environment with true

prior N (θ*,Σ*). We cannot adopt their approach since one must additionally quantify

the difference in regret between TS algorithms learning in environments with different true

priors; while this regret difference clearly scales sublinearly in T , we require a bound

that limits to 0 as the difference in priors ‖θ̂i− θ*‖ → 0 (as i→ ∞). This requirement

is because even a constant nonzero difference in regret between the meta oracle and our
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Meta-DP algorithm would result in O(N) meta regret over N epochs. To our knowledge,

it is an open problem to derive such a bound. Our “prior alignment" sidesteps this issue

by directly relating T S(N (θ̂i,Σ*),λe) and T S(N (θ*,Σ*),λe) in an environment with true

prior N (θ*,Σ*).

4.3 Meta-DP++ Algorithm

In this section, we consider the setting where the prior covariance matrix Σ* is also un-

known. We propose the Meta-DP++ algorithm, which builds on top of the Meta-DP algo-

rithm and additionally estimates the unknown prior covariance Σ*.

4.3.1 Overview

The Meta-DP++ algorithm also begins by using initial product epochs as an exploration

phase to initialize our estimate of the prior mean θ* and covariance Σ*. After this initial

exploration period, our algorithm sequentially updates the estimated prior and leverages

this estimate in each subsequent epoch. Once again, the estimated prior has finite-sample

estimation error, resulting in a Thompson sampling instance with a mis-specified prior. The

key challenge compared to the previous section is that we can no longer exactly “align" our

algorithm’s posterior with that of the meta oracle when Σ* is also estimated. We leverage

importance sampling arguments from off-policy evaluation to bound the additional meta

regret accrued due to this mismatch. Importantly, to ensure that our importance weights

remain well-behaved, we widen the estimated covariance via a correction term that scales

as the finite-sample estimation error of estimating Σ̂*.

4.3.2 Algorithm

The Meta-DP++ algorithm is presented in Algorithm 7. We first define some additional

notation, and then describe the algorithm in detail.

Additional Notation: As with the Meta-DP algorithm, at the beginning of each epoch

i ∈ [N], we update our estimate θ̂i of the prior mean θ* according to Eq. (4.6). To estimate
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Σ*, we need unbiased and independent estimates for the unknown true demand parameter

realizations θi across epochs.4 We use the initialization steps t ∈ [Ti] to produce an estimate

θ̇i for θi, i.e.,

θ̇i =V−1
i,Ti

(
Ti

∑
t=1

Di,t(pi,t ,xi,t)mi,t

)
.

Algorithm Description: The first N1 epochs are treated as exploration epochs, where we

employ the prior-independent Thompson Sampling algorithm. We define

N1 = max
{

N0, 256c2
3d3T 2

e log3
e(4dN2T ), c2

4d4T 2 log3
e(2N2T )

}
= Õ(d4T 2) , (4.11)

and the constants are given by

c3 =
16
√

σ2λ
−1
e +5λ

σλeλ
+

256(λλ 2
e +16σ2)

λ 2
e λ

2

(
8pmaxxmax

√
(1+ p2

max)

λe
+

S
σλe

)
,

c4 =
104σ(λλ 2

e +16σ2)

λ 2
e λ

2 .

Note that we now require Õ(min{N,d4T 2}) exploration epochs, whereas we only required

Õ
(
d2) exploration epochs for the Meta-DP algorithm.

As described in the overview, the Meta-DP++ algorithm proceeds in two phases:

1. Epoch i≤ N1: the Meta-DP++ algorithm runs the prior-independent Thompson sam-

pling algorithm [10, 5] TS(N (0,ΨI2d),λe), where

Ψ = pmaxσ

√
2d loge(T (1+ x2

max p2
max(1+ p2

max)T ))+
√

20λd loge(2T ) .

This is simply Algorithm 5 with a conservative prior (variance is a function of the

horizon T ).

2. Epoch i > N1: the Meta-DP++ algorithm computes an estimator θ̂i of the prior mean
4When estimating the prior covariance, we cannot use an estimator of θi that uses all T observations

from epoch i (as we do when estimating the prior mean). This is because the use of the learned prior from
past epochs renders observations from later epochs non-independent. We avoid this issue by restricting our
estimator of θi to observations from the initialization periods in each epoch, t ∈ [Ti].
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θ* using Eq. (4.6) (same as Meta-DP algorithm), and an estimator Σ̂i of the prior

covariance Σ* as

Σ̂i =
1

i−2

i−1

∑
j=1

(
θ̇ j−

∑
i−1
k=1 θ̇k

i−1

)(
θ̇ j−

∑
i−1
k=1 θ̇k

i−1

)⊤
−

σ2
∑

i−1
j=1E

[
V−1

j,T j

]
i−1

. (4.12)

The second term σ2
∑

i−1
j=1E

[
V−1

j,T j

]
/(i−1) accounts for the estimation error in {θ̇ j}i−1

j=1.

As noted earlier, we then widen our estimator to account for finite-sample estimation

error:

Σ̂
w
i = Σ̂i +

256(λλ 2
e +16σ2d)
λ 2

e

√
5d loge(2N2T )

i
· I2d , (4.13)

where I2d is the (2d)-dimensional identity matrix.

Then, the Meta-DP++ algorithm runs Thompson Sampling (Algorithm 5) with the

estimated prior N (θ̂i, Σ̂
w
i ), i.e., TS(N (θ̂i, Σ̂

w
i ),λe). Specifically, after some random

initialization steps (these steps are identical to our meta oracle), our Meta-DP++ al-

gorithm (1) samples the unknown product demand parameters θ̊i,t =
[
α̊i,t ; β̊i,t

]
from

the posterior N
(

θ MDP
i,t ,ΣMDP

i,t

)
, and (2) solves and offers the resulting optimal price

based on the demand function given by the sampled parameters

pi,t = argmax
p∈[pmin,pmax]

p · ⟨α̊i,t ,xi,t⟩+ p2 ·
〈

β̊i,t ,xi,t

〉
. (4.14)

Upon observing the actual realized demand Di,t (pi,t ,xi,t), the algorithm computes

the posterior N
(

θ MDP
i,t+1 ,Σ

MDP
i,t+1

)
for round t +1.

We now state our main result upper bounding the meta regret of our Meta-DP++ algo-

rithm (Algorithm 7). The proof is provided in Section 4.3.3 and Appendix E.

Theorem 31. The meta regret of the proposed Meta-DP++ algorithm satisfies

RN,T (Meta-DP++ algorithm) = Õ
(

min
{

d2NT
1
2 , d4N

1
2 T

3
2

})
= Õ

(
d3(NT )

5
6

)
.
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Algorithm 7 Meta-Dynamic Pricing++ Algorithm
1: Input: The total number of products N, the length of each epoch T, the noise parameter

σ , and the set of feasible prices [pmin, pmax].
2: for epoch i = 1, . . . ,N do
3: if i≤ N1 then
4: Run TS(N (0,Ψ) ,λe) .
5: else
6: Update θ̂i and Σ̂i according to Eqs. (4.6) and (4.12) respectively.
7: Compute widened prior mean estimate Σ̂w

i according to Eq. (4.13).
8: Run TS

(
N
(
θ̂i, Σ̂

w
i
)
,λe
)
.

9: end if
10: end for

It is worthwhile to compare the bound in Theorem 31 to the Õ(d2N
√

T ) meta re-

gret bound for prior-independent Thompson Sampling (Lemma 11 in Appendix C). When

N . Õ(d4T 2), our bound matches that of prior-independent Thompson Sampling, since we

simply treat all our epochs as exploration epochs. In the large N regime, our meta regret

scales as Õ(d4N
1
2 T

3
2 ). Thus, our approach of learning the prior is particularly valuable

in settings with many short-horizon experiments (N ≫ T ). For instance, as discussed in

Example 4, sellers like Rue La La host many events, offering new items with short selling

seasons. Combining the two regimes yields a bound that is sublinear in both N and T .

4.3.3 Proof Strategy

The number of exploration epochs N1 is logarithmic in N but quadratic in T . This motivates

the analysis of two cases: (i) when the number of epochs N < N1 = Õ(d4T 2), the meta

regret guarantees given by existing prior-independent approaches is already good; (ii) when

we transition to an experiment rich environment with N > N1, the meta regret accrued from

these epochs is small since their cardinality scales logarithmically in N (see argument in

Appendix E). We now focus on the latter case where N is large.

Once again, following the proof strategy employed for Meta-DP algorithm, we employ

“prior alignment" to match the means of the meta oracle’s (random) posterior estimate and

Meta-DP++’s (random) posterior estimates. However, since Σ* was known in the previous

section, matching the posterior means θ MD
i,Ti+1 = θ TS

i,Ti+1 implied equality of the entire dis-

115



tribution of the posterior (see Lemma 30). This equivalence allowed us to exactly equate

the expected regret (after alignment) for the meta oracle and our Meta-DP algorithm.

However, when Σ* is unknown, matching the posterior means θ MDP
i,Ti+1 = θ TS

i,Ti+1 no

longer implies that the posterior distributions are equal. Furthermore, since the Bayesian

update for the covariance matrix does not depend on the noise terms (it depends only on

the observed covariates and chosen prices), we cannot use any alignment strategy based

on χTS
i and χMDP

i to get exact equivalence of the posterior distributions. Thus, the key

added challenge in proving Theorem 31 is bounding the difference in regret between our

Meta-DP++ algorithm and the meta oracle after alignment of the means of their posteriors

at time t = Ti.

Specifically, in each non-exploration epoch i > N1, the meta oracle starts with the true

prior N (θ*,Σ*) while our algorithm Meta-DP++ starts with the (widened) estimated prior

N (θ̂i, Σ̂
w
i ). Lemma 29 from the previous section already provides a bound on ‖θ̂i−θ*‖,

and the following lemma (whose proof is in Appendix D) bounds the error of the estimated

covariance ‖Σ̂i−Σ*‖ (and thus the error of our widened covariance ‖Σ̂w
i −Σ*‖) with high

probability:

Lemma 32. For any fixed i≥ 3 and δ ∈ [0,2/e], with probability at least 1−2δ−2/(N2T 2),

∥∥Σ̂i−Σ*
∥∥

op ≤
128(λλ 2

e +16σ2d)
λ 2

e

(√
5d loge(2/δ )

i
∨ 5d loge(2/δ )

i

)
.

At time t = Ti + 1, we use a change of measure to “align" our Meta-DP++ algo-

rithm’s prior N (θ MDP
i,Ti+1,Σ

MDP
i,Ti+1) to N (θ TS

i,Ti+1,Σ
MDP
i,Ti+1). Combining Lemma 32 and the

fact that both policies offer the same prices in the random exploration periods, we know

that ΣTS
i,Ti+1 and ΣMDP

i,Ti+1 are close with high probability for later epochs. However, it re-

mains to bound the regret difference between the meta oracle’s policy, which employs

the prior N (θ TS
i,Ti+1,Σ

TS
i,Ti+1), and our Meta-DP++ algorithm, which employs the prior

N (θ TS
i,Ti+1,Σ

MDP
i,Ti+1). We leverage importance sampling arguments from off-policy eval-

uation [146, 138] to bound this remaining term. Prior widening is instrumental in this last

step, ensuring that our importance weights do not diverge.

Remark 21. While our Meta-DP algorithm does not require prior widening, we widen our
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prior for our Meta-DP++ algorithm as described above. This allows us to shave off some

extra factors of the dimension d in our analysis, by ensuring that the importance weights

are well-behaved post-alignment. This is consistent with recent work by [97], who show

that Thompson sampling can in general incur a worst-case regret that scales exponentially

in d, unless it uses a widened posterior variance at each step. Furthermore, we observe

(often significantly) improved empirical performance on both synthetic and real datasets

by employing our Meta-DP++ algorithm compared to its non-widened analog (see Section

4.4).

4.3.4 Additional Remarks

Hierarchical Model: An alternative heuristic to leverage shared structure is to use hi-

erarchical Thompson Sampling, maintaining a posterior on the shared prior and updating

it after each epoch. In Appendix G.1, we compare the Meta-DP algorithm to a hierarchi-

cal approach; while the hierarchical algorithm outperforms prior-independent Thompson

Sampling by leveraging shared structure, we find that it still significantly underperforms

compared to the Meta-DP algorithm for moderate to large values of N due to excessive

exploration.

Knowledge of N,T : Our formulation assumes knowledge of N and T . However, this

assumption can easily be removed using the well-known “doubling trick". In particular,

we can initially fix any values N0 and T0, and iteratively double the length of the respective

horizons; we refer the interested reader to [54] for details. For the Meta-DP algorithm, we

would simply continue to update the estimated prior mean; for the Meta-DP++ algorithm,

we would need to also follow the prior widening schedule. It is easy to see that our regret

bounds are preserved up to logarithmic terms under such an approach.

Overlapping Epochs: We model epochs as fully sequential for simplicity; if epochs

overlap, we would need to additionally model a customer arrival process for each epoch.

Our algorithms straightforwardly generalize to a setting where arrivals are randomly dis-

tributed across overlapping epochs. In particular, both the Meta-DP algorithm and the
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Meta-DP++ algorithm can be modified to only use samples from the initialization period

t ∈ [Ti] in each epoch for estimating the prior mean (note that our estimation of the prior co-

variance already only uses samples from initialization periods) without affecting the meta

regret bounds and analysis. Therefore, when epochs overlap, we will update our estimate

of the prior as soon as we see Õ(1) customer responses for any product.

4.4 Numerical Experiments

We now validate our theoretical results by empirically comparing the performance of our

proposed algorithms against prior-independent Thompson Sampling [10]. As discussed

earlier, this approach ignores learning shared structure (the prior) across products, and

achieves Õ(d2N
√

T ) meta regret (see Lemma 11 in Appendix C). When the prior covari-

ance is unknown, we illustrate the benefits of prior widening by additionally comparing

against a version of the Meta-DP++ algorithm that greedily uses the estimated covariance

matrix (i.e., Σi = Σ̂i).

In addition to meta regret, we present results on Bayes regret (relative to the classical

oracle) to illustrate that our transfer learning approach significantly increases performance

under the standard metric. We perform numerical experiments on both synthetic data as

well as a real dataset on auto loans provided by the Columbia University Center for Pricing

and Revenue Management.

A number of additional numerical results are presented in Appendix G, including com-

parison to a hierarchical Thompson Sampling heuristic (G.1), examining the estimation

error of the prior as a function of N (G.2), as well as results under a revenue metric (G.3).

4.4.1 Synthetic Data

We begin with the case where the prior covariance Σ* is known.

Parameters: We consider N = 700 products, each with a selling horizon of T = 300

periods. We set the feature dimension d = 5, the prior mean θ* = [1.2× 1d;−0.3× 1d]
⊤,

and the prior covariance Σ* = 0.2× I2d. In each epoch i ∈ [N] and each round t ∈ [T ], each
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entry of the observed feature vector xi,t is drawn i.i.d. from the uniform distribution over

[0,1/
√

d]d; note that this ensures the `2 norm of each feature vector is upper bounded by

1. For each product i ∈ [N], we randomly draw a demand parameter θi i.i.d. from the true

prior N (θ*,Σ*) . The allowable prices lie in (0,5]. Finally, the noise distribution is the

standard normal distribution, i.e., σ = 1.
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Figure 4-1: Cumulative meta regret and Bayes regret for Meta-DP and prior-independent
Thompson Sampling.

Results: We plot the cumulative meta regret and Bayes regret of each algorithm, averaged

over 20 random trials, as a function of the number of epochs N (recall that each epoch lasts

for T periods). The results are shown in Figure 4-1. Both algorithms are identical during

the initial exploration epochs.

As expected, the prior-independent approach achieves meta regret that scales linearly

in N, since each epoch is treated independently. In contrast, the left panel of Figure 4-1

shows that Meta-DP achieves nearly zero meta regret after the exploration epochs as it has

learned the prior.

The right panel of Figure 4-1 examines Bayes regret; note that even the meta-oracle

achieves O(N) Bayes regret (Theorem 27). However, the slope of Meta-DP closely matches

that of the meta-oracle after the initial exploration epochs, i.e., we do not accrue addi-

tional regret (relative to the meta oracle) as N grows large. In contrast, the slope of prior-

independent Thompson Sampling is significantly larger, resulting in additional regret con-
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tinually accruing as N grows large. In particular, when N = 700, the Bayes regret of prior

independent Thompson Sampling is 39% larger than that of Meta-DP and 48% larger than

that of the meta oracle. Thus, our approach of learning shared structure is particularly

valuable in experiment-rich environments.
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(a) d = 1
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(b) d = 10

Figure 4-2: Cumulative meta regret and Bayes regret for Meta-DP and prior-independent
Thompson Sampling for different values of the feature dimension d.

Varying the feature dimension d: We now explore how our results vary as we change

the dimension of the observed features. Our previous results considered d = 5. We now

additionally consider:
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1. No features, d = 1: We set xi,t = 1 for all i ∈ [N] and t ∈ [T ].

2. Many features, d = 10: Each entry of the observed feature vector xi,t is again drawn

i.i.d. from the uniform distribution over [0,1/
√

d]d for all i ∈ [N] and t ∈ [T ].

The results for both cases, averaged over 20 random trials, are shown in Figures 4-2(a)

and 4-2(b) respectively. Again, we see that Meta-DP substantially outperforms prior-

independent Thompson sampling algorithm in both meta regret and Bayes regret, regardless

of the choice of feature dimension d. Note that we require more exploration epochs when

d is larger (since N0 scales as d).
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Figure 4-3: Cumulative meta regret and Bayes regret for Meta-DP++ and benchmark algo-
rithms.

Unknown prior covariance Σ*: We now shift our attention to the Meta-DP++ algorithm,

and follow the same setup described earlier. To quantify the benefit of prior widening, we

additionally consider a version of the Meta-DP++ algorithm that greedily uses the estimated

covariance matrix, i.e., Σi = Σ̂i. The results, averaged over 20 random trials, are shown in

Figure 4-3. We see that the Meta-DP++ algorithm significantly outperforms both the prior-

independent Thompson sampling algorithm as well as the non-widened greedy benchmark

in meta regret (left panel) and Bayes regret (right panel). Interestingly, the greedy approach

performs significantly worse in earlier epochs after the initial exploration epochs (when it

relies on a prior that is likely to be significantly mis-specified); in later epochs, the greedy
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approach’s slope begins to match that of Meta-DP++ as it starts learning the true prior.

Thus, prior widening appears critical to ensure good performance on each pricing problem

— particularly earlier ones, where we should be careful not to over-rely on a prior is likely

to be significantly mis-specified. The overall success of Meta-DP++ suggests that the price

of not knowing the prior in advance is negligible in experiment-rich environments (large

N).

4.4.2 Real Data on Online Auto-Lending

We now turn to the on-line auto lending dataset. This dataset was first studied by [145],

and subsequently used to evaluate dynamic pricing algorithms by [26]. We will follow a

similar set of modeling assumptions.

The dataset records all auto loan applications received by a major online lender in the

United States from July 2002 through November 2004. It contains 208,085 loan appli-

cations. For each application, we observe some loan-specific features (e.g., date of appli-

cation, the term and amount of loan requested, and the borrower’s personal information),

the lender’s pricing decision (i.e., the monthly payment required of the borrower), and the

resulting demand (i.e., whether or not this offer was accepted by the borrower). We refer

the interested reader to Columbia University Center for Pricing and Revenue Management

[64] for a detailed description of the dataset.

Algorithms: We consider the setting where both the prior mean and prior covariance are

unknown. Thus, we compare the performance of our Meta-DP++ algorithm against that

of prior-independent Thompson Sampling, the ILSX algorithm proposed in [26],5 and the

greedy version of Meta-DP++ that does not employ prior widening.

Products: We first define a set of related products. We segment loans by the borrower’s

state (there are 50 states), the term class of the loan (0-36, 37-48, 49-60, or over 60 months),

and the car type (new, used, or refinanced). The expected demand and loan decisions

5We do not use a `1 penalty in our implementation because the “true support" identified by [26] with all
observations is precisely the set of features we consider.
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offered for each type of loan is likely different based on these attributes. We consider loans

that share all three attributes as a single “product" offered by the online lender. We thus

obtain a total of N = 589 unique products. The number of applicants in the data for each

loan type determines T for each product; importantly, note that T is not identical across

products.

Features: We use the feature selection results from [26], which yields the following fea-

tures: FICO score, the loan amount approved, prime rate, and the competitor’s rate.

Remark 22. We use three categorical features (state, term of loan, and car type) to define

N = 589 products, and we additionally have 4 numerical features per product. In contrast,

the ILSX algorithm [26] sets N = 1 and encodes this information as product features; this

results in a feature vector of dimension 4+ 50+ 4+ 3 = Θ(d +N), since each possible

value of the categorical feature will be represented as a 1-hot encoding. The resulting

meta regret of ILSX will therefore still grow superlinearly in N (unlike our proposed algo-

rithms). Moreover, their demand model is less expressive compared to ours since it does

not allow for different price elasticities by state/term/car type (see our earlier Remark 2 for

discussion).

Remark 23. Following our model, we simulate each epoch sequentially. In reality, cus-

tomers will likely arrive randomly for each loan type at different points of time. We note

that the Meta-DP algorithm only uses the initial sample from each epoch for estimating

the prior mean, and thus, in principle, it can be adapted to a setting where arrivals are

randomly distributed across overlapping epochs as well (see discussion in §4.3.4).

Setup: Following the approach of [145] and [26], we impute the price of a loan as the net

present value of future payments (a function of the monthly payment, customer rate, and

term approved; we refer the reader to the cited references for details). The allowable price

range in our experiment is [0,30].

We note that, although we use a linear demand model, our responses are binary (i.e.,

whether a customer accepts the loan). This approach is common in the literature (see, e.g.,
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Figure 4-4: Computational results on a real dataset on online auto loans.

[127]). [40] provide theoretical justification for this approach by showing that we may still

converge to the optimal price despite the demand model being misspecified.

Finally, unlike our model and analysis, the true distribution over loan demand param-

eters across products may not be a multivariate Gaussian. We use the entire dataset to

estimate each product’s demand parameter, and then fit a multivariate Gaussian prior over

the empirical distribution of product demand parameters — our meta oracle uses this prior.

However, our regret is evaluated with respect to the true data (i.e., our meta oracle may

perform poorly in Bayes regret if the prior is far from a multivariate Gaussian). Thus, this

experiment can provide a check on whether our algorithms (which seek to mimic the meta

oracle) are robust to model misspecification of the prior.

Results: We average our results over 100 random permutations of the data. The results

are shown in Figure 4-4. We first note that, despite potential misspecification of the prior’s

model class, the meta oracle (prior-dependent Thompson Sampling) achieves much bet-

ter Bayes regret (right panel) than all algorithms. This implies that the (potentially mis-

specified) shared prior across products is informative, and thus leveraging shared structure

may be valuable. Then, by design, our Meta-DP++ algorithm learns this shared structure,

incurring meta regret that grows sublinearly in N (left panel). Consistent with our results on

synthetic data, we see that the Meta-DP++ algorithm significantly outperforms the bench-
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mark algorithms; this is true even though the multivariate Gaussian prior that we estimate

may not be the true prior. This result suggests that our proposed algorithms may be robust

to model misspecification of the prior.
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Chapter 5

Calibrating Sales Forecast in a

Pandemic Using Competitive Online

Non-Parametric Regression

5.1 Problem Formulation

In this section, we introduce the notations and the learning protocol.

5.1.1 Notations

We define [n] to be the set {1,2, . . . ,n} for any positive integer n. We denote 1[·] as the

indicator function. For p ∈ [1,∞], we use ‖x‖p to denote the `p-norm of a vector x ∈ Rd.

We denote x∨ y and x∧ y as the maximum and minimum between x,y ∈ R, respectively.

For a set A ⊆R, we write ∆(A ) as the simplex over A . We adopt the asymptotic notations

O(·),Ω(·), and Θ(·) [65]. When logarithmic factors are omitted, we use Õ(·),Ω̃(·), Θ̃(·),

respectively. With some abuse, these notations are used when we try to avoid the clutter

of writing out constants explicitly. Given a finite set of covariates X ⊂ R, a function

f : X → [0,1] is isotonic (non-decreasing) if and only if for any pair x1,x2 ∈X , x1 ≤ x2

implies f (x1)≤ f (x2) [156]. For ease of exposition, we denote F as the set of all possible
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isotonic functions that maps X to [0,1], i.e.,

F = { f : X → [0,1] : f is isotonic}. (5.1)

5.1.2 Learning Protocol

At each time step t ∈ [T ], the following events happen in sequence: 1) The DM observes the

covariate xt ∈X ⊂ R for this time step. We assume the covariates x1, . . . ,xT are sampled

from a simulatable joint distribution D ∈ ∆(X T ). 2) She then predicts the label of xt as

ŷt . 3) The label yt ∈ [0,1] is revealed, and the DM suffers the squared loss `(ŷt ,yt) = (ŷt −

yt)
2. Except for boundedness, we make no assumption on the sequence of yt’s, and they

could even be chosen adversarially. Specifically, we denote pt ∈ ∆([0,1]) as the (possibly

adversarial) distribution from which yt is sampled from. When making prediction at each

time step t ∈ [T ], the DM can employ any non-anticipatory policy πt that only takes the

history information Ht−1 = {xs,ys}t−1
s=1 (H0 is defined to be the empty set /0), the observed

covariate xt , and the joint covariate distribution D as input, and outputs a distribution qt ∈

∆([0,1]) from which ŷt is sampled from. We denote π = {πs}T
s=1 as the policy used by the

DM. The policy π is evaluated by regret, defined as

T

∑
t=1

`(ŷt(πt),yt)− inf
f∈F

T

∑
t=1

`( f (xt),yt). (5.2)

Intuitively, regret is the difference between the squared `2-norm associated with labels gen-

erated by the algorithm and labels generated by an adversary and the squared `2-norm

associated with labels generated by the best isotonic (non-decreasing) function in hind-

sight and the adversarial labels. The objective of the DM is to choose a policy π that will

minimize the worst case regret over all possible choices of yt’s (or pt’s) by the adversary.

Formally, the objective is

RT (π|F ) = E
x1

sup
p1

E
ŷ1∼q1

E
y1∼p1

. . .E
xT

sup
pT

E
ŷT∼qT

E
yT∼pT

[
T

∑
t=1

`(ŷt(πt),yt)− inf
f∈F

T

∑
t=1

`( f (xt),yt)

]
.

(5.3)
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We make two remarks regarding the model.

Remark 24 (Model Robustness). As observed earlier, our notion of regret follows [152],

and is similar to competitive analysis used in online resource allocation. Specifically, we

make no statistical assumption on the label’s generative process, but the adversary cannot

be too far from our best understanding of nature. We also demonstrate in Proposition 33 of

Section 5.1.4 that the naive greedy learning policy would incur linear in T regret without

making additional assumptions on the label’s generative process (e.g., eq. (1.1)). Conse-

quently, our model (and our forthcoming solution) is more robust than directly applying

eq. (1.1) because now the process that governs the (covariate, label) observations is only

asked to be close to monotonic.

Remark 25 (Worst case extrapolation). As shown in the definition of regret in eq. (5.3),

when the DM makes extrapolations, i.e., when xt /∈ [mins∈[t−1] xs,maxs∈[t−1] xs], she needs

to take precautions for any possible yt to minimize the worst case regret.

Remark 26 (Comparisons with Online Linear Regression). A related model is the online

linear regression setting [170], where the only difference is that f has to be linear instead

of non-parametric (or isotonic). Since the linear function is a proper subset of the isotonic

function class, it follows that the isotonic function class is more expressive than the linear

function class. Consequently, our oracle can have a smaller loss when compared with an

oracle defined w.r.t. the linear function class, yet minimizing regret against in our case is

much more challenging.

5.1.3 Additional Notations: Data-Dependent Discretization

As discussed in Theorem 3 and Section 4 of [121], it is important to work with the discrete

isotonic function class when trying to minimize regret. [121] first make the observation

that it is only the orders of xt’s (not there particular values) play a role in this problem, and

can thus assume w.lo.g. that {xt}T
t=1 is a permutation of [T ] since they assume all the xt’s

are known ahead. Then, they construct a fixed discrete isotonic function class F ([T ]) ={
f ∈F : ∀t ∈ [T ] f (t) = kt

K , where kt ∈ {0,1, . . . ,K}
}
. Here, K is a positive integer to be
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specified. Afterwards, they show that the regret defined w.r.t. F ([T ]) is at most T/4K2

away from the one defined w.r.t. F , and thus work with the former.

Different than [121], however, we do not have access to the xt’s ahead of time, and

thus cannot initiate F ([T ]). To get aroun this, we work with a covariate-specific discrete

isotonic function class. Specifically, given a sequence of T covariates x′1, . . . ,x
′
T ∈X , we

define the corresponding data-dependent discrete isotonic function class as

F ({x′t}T
t=1) =

{
f ∈F : ∀t ∈ [T ] f (x′t) =

kt

K
, where kt ∈ {0,1, . . . ,K}

}
. (5.4)

It is shown in Theorem 4 of [121] that, for any HT = {xt ,yt}T
t=1, the cumulative loss of the

optimal isotonic function in F ({xt}T
t=1) is at most T/4K2 larger than that of the optimal

isotonic function in F , i.e.,

inf
f∈F

T

∑
t=1

`( f (xt),yt)≤ inf
f∈F({xt}T

t=1)

T

∑
t=1

`( f (xt),yt)+
T

4K2 . (5.5)

5.1.4 Inadequacy of Naive Greedy Learning

In this subsection, we demonstrate that simply following the conventional iterative least

squares (ILS) policy (i.e., the naive greedy learning policy) would lead to Θ(T ) regret, and

thus formally justified that new learning policy is needed for this setup. Recall that at each

time step t, the ILS policy would take all historical observations Ht−1 = {xs,ys}t−1
s=1 and

compute f̂t using least squares as follows:

f̂t = argmin
f∈F

t−1

∑
s=1

`( f (xs),ys). (5.6)

Afterwards, it predicts the label at time step t as ŷt = f̂t(xt). In the following proposition,

we show that without imposing a monotonic generative process on yt’s, the ILS policy’s

regret would scale linearly in T even if it does not need to make any non-parametric ex-

trapolations.
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Proposition 33. For any T ≥ 14, there exists an assignment of y1, . . . ,yT ∈ [0,1] such

that even if the DM knows the values of x1, . . . ,xT and y1,y2 ahead of time and all xt ∈

[x1,x2] ∀t ≥ 3 (i.e., no extrapolation is needed), the regret of the ILS policy is at least

(T −1)/8.

Proof. Proof Sketch. The compete proof is provided in Section D.1 of the appendix. We

let x1 = 1,x2 = T,xt = t−1 ∀t ∈ [3,T ], and

yt =


1 if xt is odd and xt < T ;

0 if xt is even and xt < T ;

1
2 if xt = T.

See Fig. 5-1 for an illustration. Then, the oracle can employ a constant function f (xt) =

Figure 5-1: Illustration of the true labels

1/2 and achieve a cumulative loss at most inf f∈F ∑
T
t=1 `( f (xt),yt) ≤= (T −1)/4. Now,

if the DM follows the ILS policy, it is easy to verify (following the properties of isotonic

regression [121]) that when xt is odd f̂t(x) = 1/2 and hence, `( f̂t(xt),yt) = 1/4 (left panel

of Fig. 5-2); while when xt is even

f̂t(x) =


1
2 if x≤ xt−1;

3
4 oterhwise,

and hence, `( f̂t(xt),yt) = 9/16 (right panel of Fig. 5-2). Altogether, ∑
T
t=1 `( f̂t(xt),yt) ≥

12(T −1)/32. The statement thus follows.
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(a) When xt is odd, yt = 1 and ILS predicts ŷt = 1/2

(b) When xt is even, yt = 0 and ILS predicts ŷt = 3/4

Figure 5-2: Oscillating behavior of f̂t(·)

Remark 27 (Instatbility of ILS policy without Eq. (1.1)). In absence of eq. (1.1), the

counterexample in Proposition 33 demonstrates that the ILS policy would oscillate between

the oracle’s choice (i.e., when xt is odd) and a clearly sub-optimal choice (i.e., when xt is

even) and hence incur a regret that scales with T.

5.2 Simulating Exponential Weights Policy

[121] designed a computationally-efficient policy to overcomes the computational barrier

of general online non-parametric regression methods [152, 89], when all the covariates are

known beforehand. In particular, the policy 1) Views {x1, . . . ,xT} as [T ], and constructs the

discrete isotonic function class F ([T ]) . 2) Implement a dynamic programming accelerated

version of the exponential weights forecast over F ([T ]) to attain the optimal regret bound.

In our setting, however, we only have access to the generative process, but not the realized

values, of the covariates, and hence cannot implement step 1). Nevertheless, inspired by

[121], we propose a novel Simulating Exponential Weights (SEW) policy that additionally
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incorporates the simulated future covariates for our problem.

5.2.1 Design Details and Efficient Implementation

For each time step t, after observing the covariate xt , the SEW policy first samples the covari-

ates x′t+1, . . . ,x
′
T from the joint covariate distribution D . The DM then views x1, . . . ,xt and

x′t+1, . . . ,x
′
T as the covariates she would encounter throughout the course of prediction, and

constructs the data-dependent discrete isotonic function class F
(
{xs}ts=1∪{x′j}T

j=t+1

)
with K =

⌈
T 1/3/[4(loge(T +1))1/3]

⌉
(to be justified in Theorem 34) as described in eq.

(5.4) of Section 5.1.3. Afterwards, she makes the prediction according to the exponen-

tial weights algorithm [131] over F
(
{xs}ts=1∪{x′j}T

j=t+1

)
. In particular, for each iso-

tonic function f ∈F
(
{xs}ts=1∪{x′j}T

j=t+1

)
, this exponential weight algorithm assigns a

weight, which is inversely proportional to the exponential of f ’s total loss in the previous

t− 1 time steps. Then, it computes the prediction by a weighted average over all the f ’s

evaluated on xt , i.e.,

ŷt =

∑ f∈F
(
{xs}ts=1∪{x′j}T

j=t+1

) f (xt)exp
(
−∑

t−1
s=1( f (xs)− ys)

2/2
)

∑ f∈F
(
{xs}ts=1∪{x′j}T

j=t+1

) exp
(
−∑

t−1
s=1( f (xs)− ys)2/2

) . (5.7)

Efficient computation: A direct computation of ŷt via eq. (5.7) is inefficient as it re-

quires an enumeration of every f in F
(
{xs}ts=1∪{x′j}T

j=t+1

)
, whose cardinality is of or-

der Θ(T K) (see Theorem 4 of [121]). To mitigate this computational obstacle, we adopt the

dynamic programming acceleration technique introduced in [121]. For ease of exposition,

we denote F
(
{xs}ts=1∪{x′j}T

j=t+1

)
by Ft . At each time step t, we can sort the observed

covariates x1, . . . ,xt and the randomly sampled covariates x′t+1, . . . ,x
′
T in ascending order

as z1,z2, . . . ,zT . W.l.o.g., we assume all the zs’s are mutually different. We define for ev-

ery s ∈ [T ] and every k ∈ {0, . . . ,K}, uk
s = exp

(
−1
[(

zs ∈ {x j}tj=1

)]
·
(
k/K− yσ(s)

)2
/2
)
,

where σ(s) is the corresponding subscript of the xq that is equal to zs if zs ∈ {x j}tj=1, i.e.,

σ(s) = q. Suppose xt is the ith smallest in all the covariates, i.e., xt = zi, then starting from

wk
0 = 1 for every k, we recursively compute for all k = 0, . . . ,K, wk

s+1 = ∑
k
j=0 u j

sw j
s , and
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Algorithm 8 SEW policy
1: Input: Time horizon T, joint covariate distribution D .

2: Initialize: K←
⌈

T 1/3/[4(loge(T +1))1/3]
⌉
.

3: for t = 1, . . . ,T do
4: Observe context xt and sample (x′t+1, . . . ,x

′
T ) from D .

5: Rank {x1, . . . ,xt ,x′t+1, . . . ,x
′
T} in ascending order as {zσ(1), . . . ,zσ(T )}, where σ(s)

is the subscript of the sth smallest covariate in x1, . . . ,xt ,x′t+1,x
′
T . Let i ∈ [T ] be such

that xt = zσ(i).

6: uk
s ← exp

(
−1
[(

zs ∈ {x j}tj=1

)]
· (k/K−yσ(s))

2

2

)
for all s ∈ [T ] and k = 0, . . . ,K.

7: wk
0← 1,vk

T ← 1 for all k = 0, . . . ,K.
8: for s = 1, . . . , i−1 do
9: wk

s+1← ∑
k
j=0 u j

sw j
s for k = 0, . . . ,K.

10: end for
11: for s = T, . . . , i+1 do
12: vk

s−1← ∑
K
j=k u j

sv j
s for k = 0, . . . ,K.

13: end for
14: Predict ŷt =

∑
K
k=0

k
K wk

i vk
i

∑
K
k=0 wk

i vk
i

15: end for

this process goes from s = 1,2, . . . , i− 1; Also, starting from uk
T = 1 for every k, we re-

cursively compute for all k ∈ {0,1, . . . ,K}, vk
s−1 = ∑

K
j=k u j

sv j
s , and this process goes from

s= T,T−1, . . . , i+1. Finally, one can compute ŷt =
∑

K
k=0

k
K wk

i vk
i

∑
K
k=0 wk

i vk
i
. We include a more detailed

description of this dynamic programming acceleration in Section D.4 of the appendix. The

above procedure gives a O(T K2) per time step algorithm. A pseudo-code implementation

of the SEW policy is provided in Algorithm 8.

5.2.2 Regret Bound

We are now ready to present the regret bound of the SEW policy, whose proof is presented

in Section D.3 of the appendix.

Theorem 34. With K =
⌈

T 1/3/[4(loge(T +1))1/3]
⌉
, the regret of the SEW policy is Õ(T 1/3).

Before providing the intuition about the proof of Theorem 34, we make the following

remark regarding optimality of the SEW policy.

Remark 28 (Optimality). Inspecting the lower bound in Theorem 5 of [121] for the case
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when all xt’s are known beforehand, a strictly easier setting than ours, we know that the

regret upper bound in Theorem 34 is optimal up to logarithmic terms.

5.2.3 Proof Sketch of Theorem 34

We begin by applying eq. (5.5) to the regret defined in eq. (5.3),

RT (π|F )≤RT
(
π|F

(
{xt}T

t=1
))

+
T

4K2 (5.8)

With this, it is enough to restrict our attention to minimize regret w.r.t. the loss-minimizing

isotonic function in F ({xt}T
t=1). For ease of exposition, we refer to the total squared loss

of the loss-minimizing isotonic function in F ({xt}T
t=1),

inf
f∈F({xt}T

t=1)

T

∑
t=1

`( f (xt),yt),

as the data-dependent benchmark.

We then pick a sequence of potential functions {Vt}T
t=0 that satisfy (informally)

1. The data-dependent benchmark has to incur a total squared loss of at least −VT , i.e.,

Data-dependent benchmark := inf
f∈F({xt}T

t=1)

T

∑
t=1

`( f (xt),yt)≥−VT , (5.9)

2. By using the SEW policy, the loss of each time step t is at most Vt−1−Vt , i.e.,

Loss of the SEW policy at time step t := `(ŷt ,yt)≤Vt−1−Vt . (5.10)

Therefore, we have

RT
(
π|F

(
{xt}T

t=1
))

=
T

∑
t=1

Loss of the SEW policy at time step t−Data-dependent benchmark

≤
T

∑
t=1

(Vt−1−Vt)+VT =V0. (5.11)
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To derive the potential functions {Vt}T
t=1, we follow a modified version of the backward

induction relaxation framework in [152] (see Section D.2 of the appendix for more details).

Intuitively, each Vt is defined to be the softmax upper bound for the opposite number of

expected (w.r.t. xt+1, . . . ,xT ) data-dependent benchmark of first t time steps, i.e.,

Vt := softmax
(
− E

xt+1,...,xT
[data-dependent benchmark of first t time steps ]

)
= softmax

(
− E

xt+1,...,xT

[
inf

f∈F({xt}T
t=1)

t

∑
t=1

`( f (xt),yt)

])

=2 E
xt+1,...,xT

loge

 ∑
f∈F({xt}T

t=1)

exp
[
−∑

t
s=1( f (xs)− ys)

2

2

] (5.12)

and

V0 :=V0 = K loge(T +1) = Õ(inf
π

RT (π|F ({xt}T
t=1))). (5.13)

Here, eq (5.12) critically exploits the availability of the generative process of the covariates,

and eq. (5.13) (together with eq. (5.11)) implies the optimality of the SEW policy.

Finally, combining eq. (5.8) and (5.13), and setting K =
⌈

T 1/3/[4(loge(T +1))1/3]
⌉
,

we conclude the statement of the theorem. The formal proof, including how to derive

the relaxation for our setting as well as how to apply it to show the regret bound of the

SEW policy, is provided in Section D.3 of the appendix.

Remark 29 (The Importance of Combining Online Learning and Pandemic Modeling). In

[152], the relaxation framework is developed w.r.t. a model where the xt’s are also chosen

by an adversary (formally, this is replacing the expectation over xt’s by supremum over xt’s

in the regret definition (5.3)). Unfortunately, as [121] pointed out, the DM has to suffer

Ω(T ) regret if the xt’s are chosen by the adversary when F is the isotonic function class.

This implies that a direct adoption of the original relaxation framework is not enough to

show the regret bound of the SEW policy. We overcome this by critically exploiting the fact

that the generative process of xt’s (e.g., the SIR epidemic model in the case of AB InBev’s)

is available, i.e., eq. (5.12), and customize the relaxation framework to fully leverage the
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availability of the generative process.

Remark 30 (Comparison to [121]). Although the design of the SEW policy follows [121],

its regret analysis requires different techniques. This is because different than [121] (and

most existing online learning algorithms [53, 46]), which generate predictions based only

on historical observations, the SEW policy additionally makes use of the simulated future

covariates. This makes direct application of conventional regret analysis techniques chal-

lenging.

5.3 Numerical Results

In this section, we conduct numerical simulations with synthetic and AB InBev’s datasets to

empirically gauge the performance of the SEW policy. The first set of simulations, presented

in Section 5.3.1, makes use of synthetic datasets to demonstrate that the SEW policy outper-

forms competing algorithms, and show that the regret growth of the SEW policy matches our

theoretical analysis presented in Theorem 34. We then apply our method to AB InBev’s

datasets to forecast sales amid the COVID-19 pandemic.

5.3.1 Numerical Simulations with Synthetic Data

We set T = 5000, and assume the covariates xt’s are sampled uniformly from X = [0,1].

The labels yt’s are generated as yt = h(xt) for every t ∈ [T ]. We consider three different

options for h(·) :

∙ Cubic process: In this case, h(x) = x3.

∙ Stair process: In this case, h(x) = 1[x > 0.5].

∙ Hybrid process: In this case, h(x) = 2
3 · 1[x ∈ [0.25,0.5)] + 1

3 · 1[x ∈ [0.5,0.75)] +

1[x ∈ [0.75,1]].

For all the cases, we have yt ∈ [0,1] for all t ∈ [T ]. For the cubic process and the stair

process, h(·)’s are non-decreasing. Moreover, the cubic process is continuous, and can be
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(a) Cubic process
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(b) Stair process
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(c) Hybrid process

Figure 5-3: Results for synthetic dataset.

well approximated by a linear function (via Taylor expansion). For the last case, however,

h(·) is non-monotonic nor continuous although its overall trend is increasing.

We evaluate the cumulative regret of the SEW policy against the online linear regression

(OLR) algorithm [170] and the exponential weights (EW) algorithm for the fixed design
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case [121]. In the latter case, the EW algorithm has access to the realization of all the xt’s

in advance. All the results are averaged over 20 runs.

Results

The results are displayed in Fig. 5-3. In each of the three cases, the left hand side plot

depicts the cumulative regret of the three algorithms, while the right hand side plot depicts

the cumulative regret of the SEW policy divided by t1/3.

Comparing the cumulative regrets of the SEW policy and the EW algorithm, we can see

that even though the SEW policy only knows the distribution of xt’s, but not their realizations,

its cumulative regret is very close (less than 3% difference) to the cumulative regret of the

EW algorithm, which has access to all the realizations of the xt’s.

For the cubic process in Fig. 5-3(a), the SEW policy outperforms the OLR algorithm

when t ≥ 400. This is because the cubic function permits a good linear approximation and

the OLR algorithm takes advantage of this. In contrast, the isotonic function class is more

expressive, and thus requires more samples to learn. Nevertheless, once a certain sample

size threshold is reached, the SEW policy outperforms the OLR algorithm.

For the stair and hybrid processes in Fig. 5-3(b) and Fig. 5-3(c), since no good linear

approximation exists, we can see that the regret of the SEW policy is significantly smaller

than that of the OLR algorithm throughout.

Finally, the right hand side plots verify that the regret growth of the SEW policy are

indeed T 1/3 in all three cases.

5.3.2 Numerical Simulations with AB InBev’s Data

In this section, we apply the SEW policy to the problem of forecasting sales under the

COVID-19 pandemic. We use datasets from AB InBev for three geographical regions.

We hereafter refer to them as region A, region B, and region C. Each data set contains the

baseline sales forecast data and the actual sales data of all AB InBev’s products in the re-

spective geographical area. The baseline sales forecast applies AB InBev’s offline learning

algorithm with historical sales data and other external data, such as social & economic data,
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to forecast the sales volumes.

Following the modeling approach in Section 1.4, we sequentially predict the offset

in sales (i.e., level of calibration to the baseline sales forecast) caused by the COVID-19

pandemic with the SEW policy. We then generate an SEW policy calibrated sales forecast by

subtracting the predicted offsets from the baseline sales forecast. For both regions A and B,

we use the COVID-19 confirmed case numbers, death numbers, and recovered numbers in

January 2020 and February 2020 to initialize the respective SIR epidemic model (the SIR

epidemic models will then be updated monthly, see Section 5.3.2 for model details), and

then evaluate the performances of the SEW policy with data beginning from March 2020.

For region C, since the pandemic hit this region about a month later, we use the COVID-

19 confirmed case numbers, death numbers, and recovered numbers in January, February,

and March 2020 to initialize the respective SIR epidemic model, and then evaluate the

performances of the SEW policy with data beginning from April 2020. We compare our

SEW policy with the baseline sales forecast and the online linear regression (OLR) algorithm

[170] calibrated sales forecast. We measure the performance of each algorithm by weighted

mean absolute percentage error (WMAPE) and mean squared error (MSE).

According to AB InBev’s needs, we first consider a monthly forecast setting where we

predict the sales volumes month by month. To accommodate other potential business appli-

cations, we further consider a weekly forecast setting where we predict the sales volumes

week after week.

∙ Monthly forecast (AB InBev’s main focus): In this case, we predict the sales vol-

umes month by month. Since the number of monthly time periods under the COVID-

19 pandemic is small (e.g., ≤ 8 for both regions), the total number of periods in our

model will be too small if we set each month as a time step. As a result, we set each

day of a month as a time step. Therefore, at the beginning of each month, we predict

the daily offsets for this month all at once, and apply the summation of the daily

offsets as the monthly offset. Here, the covariate xt is the COVID-19 case estimate

generated by the SIR model at the beginning of each month (for every day t of the

month), and is applied in line 4 of Algorithm 8. ŷt and yt are the predicted offset and

the actual offset of day t, respectively.
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∙ Weekly forecast: In this case, we predict the sales volumes week by week. For each

week, we need to make the prediction at the beginning of this week. We thus set

each week as a time step, the covariate xt as the mean COVID-19 case estimates of

week t. In this process, ŷt and yt are the predicted offset and the actual offset of week

t, respectively. We apply the SIR epidemic model to generate the COVID-19 case

estimates when implementing line 4 of Algorithm 8.

Pandemic Modeling

When generating the COVID-19 case estimates, we work with AB InBev to apply the

SIR epidemic model [114]. We use the least squares minimization method to update the

parameters, including spread rate β and recovery rate γ , of the SIR epidemic model for

both regions month by month.

Mar Apr May Jun Jul Aug Sep Oct Nov
Spread rate β 0.329 0.350 0.350 0.350 0.350 0.350 0.350 0.350 0.350

Recovery rate γ 0.050 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083

Table 5.1: Monthly updated parameters of SIR epidemic model for region A

Mar Apr May Jun Jul (2nd wave) Aug
Spread rate β 0.280 0.283 0.271 0.270 0.543 0.209

Recovery rate γ 0.074 0.095 0.068 0.067 0.504 0.187
Sep Oct Nov

Spread rate β 0.206 0.952 0.207
Recovery rate γ 0.146 0.872 0.130

Table 5.2: Monthly updated parameters of SIR epidemic model for region B
Apr May Jun Jul Aug (2nd wave) Sep

Spread rate β 0.328 0.239 0.220 0.200 0.200 0.200
Recovery rate γ 0.060 0.051 0.050 0.050 0.106 0.128

Oct Nov Dec (3rd wave)
Spread rate β 0.200 0.200 0.200

Recovery rate γ 0.083 0.050 0.105

Table 5.3: Monthly updated parameters of SIR epidemic model for region C

For region A, we update the SIR epidemic model parameters at the beginning of each

month (from March 2020 to July 2020) with historical confirmed COVID-19 case numbers,
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death numbers, and recovered numbers from late January 2020 to the end of the previous

month. The resulted parameters for region A are reported in Table 5.1.

For region B, we also begin by updating the SIR epidemic model parameters at the be-

ginning of each month with historical confirmed COVID-19 case numbers, death numbers,

and recovered numbers from late January 2020 to the end of the previous month. Different

than region A, however, the active COVID-19 case numbers in June 2020 indicates that

region B was hit by a second wave of the COVID-19 pandemic. To capture the second

wave in July 2020 and August 2020, we update the parameters of the SIR epidemic model

for July 2020 and August 2020 only with historical data beginning from June 2020. The

resulted parameters for region B are reported in Table 5.2.

For region C, since it has experienced three different waves of the COVID-19 pandemic,

we follow a similar procedure as region B to compute the SIR forecast parameters, i.e.,

when a new wave of the pandemic occurs, we discard historical data observed in the prior

waves. The resulted parameters for region C are reported in Table 5.3.

Hyper-Parameters

We also introduce a scaling factor and make some minor modifications to the prediction

range of the SEW policy to better adapt to AB InBev’s sales forecast calibration problem.

Scaling factor: Our model and algorithm require that all yt’s belong to the range [0,1].

However, the actual offsets in AB InBev’s datasets go far beyond this range. To mitigate for

this, we additionally apply a (dynamic) scaling factor when implementing the SEW policy.

For the monthly forecast setting, we initialize the scaling factor to be the absolute value

of the mean of the daily offsets observed from late January 2020 to the end of February

2020. We then sequentially update the scaling factor at the beginning of each month m.

Specifically, we first compute the absolute value of the mean offset of all the months from

March 2020 to month m− 1, 2020, and then set the scaling factor to be the floor of the

maximum of them. Formally,

scaling factor =
⌊

max
{∣∣∣∣∑time step s∈March ys

31

∣∣∣∣ , . . . , ∣∣∣∣∑time step s∈month m−1 ys

#days in month m−1

∣∣∣∣}⌋ .
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For the weekly forecast setting, the scaling factor for each week is the scaling factor of

the month to which this week belongs to multiplied by 7 (i.e., there are 7 days in a week).

By doing so, we re-scale the mean of the quantities yt/scaling facotr so that it lies in

[−1,1] most of the time.

Prediction range: To accommodate possibly negative offsets, we further modify lines

6, 7, 9, 12 of Algorithm 8 so that the iterations of k starts from −K instead of 0. The three

summations in lines 9 and 14 should also begin from k =−K instead of k = 0.

Combining both, we replace yσ(s) by yσ(s)/scaling factor in line 6 of Algorithm 8, and

ŷt is computed as scaling factor×
(
∑

K
k=−K

k
K wk

i vk
i
)
/
(
∑

K
k=−K wk

i vk
i
)

in line 14 of Algorithm

8.

Mitigation for Impact of Lockdown

From late January 2020 to late March 2020, part of region A has imposed a strict lock-

down, where businesses were shut down completely. Since customer behaviors can be

drastically different before and after the lockdown is lifted, the lift of lockdown can cre-

ate non-stationarity for our problem. To combat non-stationarity, we follow an intuitive

restarting strategy that has been employed by non-stationary online learning in [36, 57].

Specifically, we restart the SEW policy and the OLR algorithm at the beginning of April

2020. Under this design, both of them discard all historical data observed during the lock-

down period (from late January 2020 to late March 2020). We refer to the restarting version

of the SEW policy and the OLR algorithm as the Re-SEW policy and the Re-OLR algorithm,

respectively.

For regions B, since no strict lockdown has been imposed, we don’t implement the

Re-SEW policy and the Re-OLR algorithm for it.

For region C, it has imposed two lockdowns, one from early March 2020 to late May

2020 and the other one beginning in October 2020. Therefore, the Re-SEW policy and the

Re-OLR algorithm discard all historical data observed during March 2020 to late May 2020

when making predictions from June 2020 to September 2020; while they discard historical

data observed from June 2020 to September 2020 (but retaining those observed from March

2020 to late May 2020) when making predictions from October 2020 onwards.
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Results for Region A

We first report the results for region A.

Monthly setting: The monthly forecast results are shown in Table 5.4 and Table 5.5.

Table 5.4 implies that the Re-SEW policy calibrated sales forecast outperforms the OLR

forecast in 6 out of 9 months, the Re-OLR forecast in 8 out of 9 months, and it also outper-

forms the baseline sales forecast in 6 out of the 9 months.

Table 5.5 implies that the WMAPE of the Re-SEW policy calibrated sales forecast is

smaller than the WMAPE of the Re-OLR calibrated sales forecast by 53%. The MSE of the

Re-SEW policy calibrated sales forecast is smaller than the MSE of the Re-OLR calibrated

sales forecast by 88%.

Mar Apr May Jun Jul Aug
Baseline 175.70% 27.09% -5.46% -8.58% -0.18% -5.52%

OLR 3.17% -27.14% -29.69% -20.17% -8.10% -11.03%
Re-OLR 3.17% -25.79% 4.38% 7.01% 13.03% 3.76%
SEW policy -16.29% -35.77% -12.64% -5.86% 3.90% -0.70%

Re-SEW policy -16.29% -8.81% -4.33% -5.24% 3.87% -0.69%
Sep Oct Nov

Baseline 6.93% 2.31% -2.21%
OLR 2.45% -4.16% -9.64%

Re-OLR 24.26% 21.89% 7.57%
SEW policy 12.06% 5.08% -1.65%

Re-SEW policy 12.06% 5.08% -1.65%

Table 5.4: Percentage forecast errors of different methods for monthly forecast, negative
indicates underestimation, the best method of each month is bold (Region A).

Baseline OLR Re-OLR SEW policy Re-SEW policy
WMAPE 12.87% 14.34% 11.69% 9.09% 5.42%

MSE 15894705.66 13072148.80 7007389.41 5422899.81 1449112.15

Table 5.5: WMAPE and MSE of different methods for monthly forecast, results of the best
method is bold (Region A).

Baseline OLR Re-OLR SEW policy Re-SEW policy
WMAPE 19.78% 19.06% 16.63% 17.89% 13.84%

MSE 5497065.12 4528688.89 3595356.34 4228711.84 2673345.05

Table 5.6: WMAPE and MSE of different methods for weekly forecast, results of the best
method is bold (Region A).
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(a) Re-SEW policy outperforms the baseline sales forecast
in 21 out of 40 weeks.
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(b) Re-SEW policy outperforms the Re-OLR algorithm in
24 out of 40 weeks.

Figure 5-4: Plot for weekly forecast of region A

The WMAPE of the Re-SEW policy calibrated sales forecast is smaller than the WMAPE

of the OLR calibrated sales forecast by 62%. The MSE of the Re-SEW policy calibrated

sales forecast is smaller than the MSE of the OLR calibrated sales forecast by 88%.

The WMAPE of the Re-SEW policy calibrated sales forecast is smaller than the WMAPE

of the baseline sales forecast by by 57%. The MSE of the Re-SEW policy calibrated sales

forecast is smaller than the MSE of the baseline sales forecast by by 90%.

The WMAPE of the Re-SEW policy calibrated sales forecast is smaller than the WMAPE

of the SEW policy calibrated sales forecast by by 40%. The MSE of the Re-SEW policy cali-

brated sales forecast is smaller than the MSE of the SEW policy calibrated sales forecast by

by 73%.
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Weekly setting: The weekly forecast results from March to the end of July for region A

are depicted in Fig. 5-4 (For brevity, we only plot the results of the Re-SEW policy and the

Re-OLR method as their WMAPEs are smaller than the SEW policy and the OLR method,

respectively). The WMAPE and MSE of different methods are presented in Table 5.6.

In terms of forecast accuracy, the Re-SEW policy calibrated sales forecast outperforms

the Re-OLR calibrated sales forecasts in 24 out of the 40 weeks. It outperforms the baseline

sales forecast in 21 out of the 40 weeks.

Table 5.6 implies that the WMAPE of the Re-SEW policy calibrated sales forecast is

smaller than the WMAPE of the Re-OLR calibrated sales forecast by 16%. The MSE of the

Re-SEW policy calibrated sales forecast is smaller than the MSE of the Re-OLR calibrated

sales forecast’s by 25%.

The WMAPE of the Re-SEW policy calibrated sales forecast is smaller than the WMAPE

of the OLR calibrated sales forecast by 27%. The MSE of the Re-SEW policy calibrated

sales forecast is smaller than the MSE of the OLR calibrated sales forecast’s by 40%.

The WMAPE of the Re-SEW policy calibrated sales forecast is smaller than the WMAPE

of the baseline sales forecast by 30%. The MSE of the Re-SEW policy calibrated sales fore-

cast is smaller than the MSE of the baseline sales forecast’s by 51%.

The WMAPE of the Re-SEW policy calibrated sales forecast is smaller than the WMAPE

of the SEW policy calibrated sales forecast by by 22%. The MSE of the Re-SEW policy cali-

brated sales forecast is smaller than the MSE of the SEW policy calibrated sales forecast by

by 36%.

Remark 31 (Benefits of Restarting). Comparing the performances of the SEW policy and

the Re-SEW policy in the monthly forecast and weekly forecast settings, we can read from

the results that the restarting scheme benefits the Re-SEW policy more in the monthly setting.

This is because for the monthly forecast setting, the number of updates (i.e., the number of

months) the algorithms can make is very small even though the total number of time steps

T is larger than the weekly forecast setting. Therefore, it is important for the algorithms to

discard irrelevant historical observations in the monthly setting.
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Results for Region B

For region B, since the SIR epidemic model is not very accurate at the beginning of March,

the OLR algorithm performs poorly as it is very sensitive to the COVID-19 case estimates.

To fix this problem, we propose an OLR++ algorithm, which requires that the level of cal-

ibration output by the OLR++ algorithm to be in the range [−scaling factor,scaling factor]

in March.

Monthly setting: The monthly forecast results are shown in Table 5.7 and Table 5.8.

Table 5.7 implies that the SEW policy calibrated sales forecast outperforms the OLR++

calibrated sales forecast in 7 out of the 9 months and it also outperforms the baseline sales

forecast in all 9 months.

Table 5.8 implies that the WMAPE of the SEW policy calibrated sales forecast is smaller

than the WMAPE of the OLR++ calibrated sales forecast by 67%. The MSE of the SEW pol-

icy calibrated sales forecast is smaller than the MSE of the OLR++ calibrated sales forecast

by 95%.

The WMAPE of the SEW policy calibrated sales forecast is smaller than the WMAPE of

the baseline sales forecast by by 90%. The MSE of the SEW policy calibrated sales forecast

is smaller than the MSE of the baseline sales forecast by by 98%.

Weekly setting: The weekly forecast results from March to the end of August for re-

gion B are depicted in Fig. 5-5. The WMAPE and MSE of different methods are presented

in Table 5.9.

Table 5.9 implies that the WMAPE of the SEW policy calibrated sales forecast is smaller

than the WMAPE of the OLR++ calibrated sales forecast by 21%. The MSE of the SEW pol-

icy calibrated sales forecast is smaller than the MSE of the OLR++ calibrated sales fore-

cast’s by 51%.

The WMAPE of the SEW policy calibrated sales forecast is smaller than the WMAPE

of the baseline sales forecast by 52%. The MSE of the SEW policy calibrated sales forecast

is smaller than the MSE of the baseline sales forecast’s by 71%.

In terms of forecast accuracy, the SEW policy calibrated sales forecast outperforms the

OLR++ calibrated sales forecast in 20 out of the 40 weeks. It outperforms the baseline
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March April May June July August
Baseline 47.93% 36.99% 32.99% 26.37% 30.60% 43.82%
OLR++ -73.03% -3.26% -3.64% -3.34% 0.96% 8.58%

SEW policy 4.99% -0.99% -2.28% -2.66% -0.30% 5.27%
Sep Oct Nov

Baseline 34.03% 50.08% 32.21%
OLR++ 2.12% 9.97% -5.23%

SEW policy -2.72% 3.67% -10.63%

Table 5.7: Percentage forecast errors of different methods for monthly forecast, negative
indicates underestimation, the best method of each month is bold (Region B).

Baseline OLR++ SEW policy
WMAPE 36.48% 10.65% 3.47%

MSE 1021912.07 318705.80 13175.01

Table 5.8: WMAPE and MSE of different methods for monthly forecast, results of the best
method is bold (Region B).

Baseline OLR++ SEW policy
WMAPE 36.67% 22.46% 17.63%

MSE 326090.48 194756.36 92519.97

Table 5.9: WMAPE and MSE of different methods for weekly forecast (Region B).

sales forecast in 32 out of the 40 weeks.

Results for Region C

We first report the results for region A.

Monthly setting: The monthly forecast results are shown in Table 5.10 and Table 5.11.

Table 5.10 implies that the Re-SEW policy calibrated sales forecast outperforms the

OLR forecast in 8 out of 9 months, the Re-OLR forecast in 8 out of 9 months, and it also

outperforms the baseline sales forecast in 6 out of the 9 months.

Table 5.11 implies that the WMAPE of the Re-SEW policy calibrated sales forecast is

smaller than the WMAPE of the Re-OLR calibrated sales forecast by 63%. The MSE of the

Re-SEW policy calibrated sales forecast is smaller than the MSE of the Re-OLR calibrated

sales forecast by 87%.

The WMAPE of the Re-SEW policy calibrated sales forecast is smaller than the WMAPE

of the OLR calibrated sales forecast by 62%. The MSE of the Re-SEW policy calibrated
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(a) SEW policy outperforms the baseline sales forecast in
32 out of 40 weeks.
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(b) SEW policy outperforms the OLR++ algorithm in 20 out
of 40 weeks.

Figure 5-5: Plot for weekly forecast of region B

sales forecast is smaller than the MSE of the OLR calibrated sales forecast by 85%.

The WMAPE of the Re-SEW policy calibrated sales forecast is smaller than the WMAPE

of the baseline sales forecast by by 56%. The MSE of the Re-SEW policy calibrated sales

forecast is smaller than the MSE of the baseline sales forecast by by 81%.

The WMAPE of the Re-SEW policy calibrated sales forecast is smaller than the WMAPE

of the SEW policy calibrated sales forecast by by 48%. The MSE of the Re-SEW policy cali-

brated sales forecast is smaller than the MSE of the SEW policy calibrated sales forecast by

by 77%.

Weekly setting: The weekly forecast results from March to the end of July for region A

are depicted in Fig. 5-6 (For brevity, we only plot the results of the Re-SEW policy and the
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Apr May Jun Jul Aug Sep
Baseline 21.68% 24.95% 2.13% -10.03% -15.66% 1.28%

OLR 4.99% 6.73% -11.29% -24.70% -30.55% 9.30%
Re-OLR 4.99% 9.88% -7.99% 34.14% 30.41% 17.30%
SEW policy -2.75% 0.86% -15.70% -10.03% -15.66% 1.28%

Re-SEW policy 1.90% 3.60% -6.13% 9.15% 4.36% 1.28%
Oct Nov Dec

Baseline 34.58% 7.78% 56.07%
OLR 44.35% -12.61% 41.19%

Re-OLR 5.79% -25.71% 50.69%
SEW policy 34.57% 7.78% 56.07%

Re-SEW policy 6.62% -22.35% 17.45%

Table 5.10: Percentage forecast errors of different methods for monthly forecast, negative
indicates underestimation, the best method of each month is bold (Region C).

Baseline OLR Re-OLR SEW policy Re-SEW policy
WMAPE 16.98% 19.68% 20.13% 14.27% 7.30%

MSE 29494.01 38682.73 43011.96 24558.33 5456.78

Table 5.11: WMAPE and MSE of different methods for monthly forecast, results of the
best method is bold (Region C).

Baseline OLR Re-OLR SEW policy Re-SEW policy
WMAPE 23.35% 21.44% 20.19% 20.78% 13.89%

MSE 11359.11 12386.56 8815.76 12737.73 5604.29

Table 5.12: WMAPE and MSE of different methods for weekly forecast, results of the best
method is bold (Region C).

Re-OLR method as their WMAPEs are smaller than the SEW policy and the OLR method,

respectively). The WMAPE and MSE of different methods are presented in Table 5.12.

In terms of forecast accuracy, the Re-SEW policy calibrated sales forecast outperforms

the Re-OLR calibrated sales forecasts in 28 out of the 39 weeks. It outperforms the baseline

sales forecast in 29 out of the 39 weeks.

Table 5.12 implies that the WMAPE of the Re-SEW policy calibrated sales forecast is

smaller than the WMAPE of the Re-OLR calibrated sales forecast by 31%. The MSE of the

Re-SEW policy calibrated sales forecast is smaller than the MSE of the Re-OLR calibrated

sales forecast’s by 36%.

The WMAPE of the Re-SEW policy calibrated sales forecast is smaller than the WMAPE
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(a) Re-SEW policy outperforms the baseline sales forecast
in 29 out of 39 weeks.

0 10 20 30 40
Week

4

6

8

10

12

14

16

18

20

V
ol

um
es

Actual
Re-SEW
Re-OLR

(b) Re-SEW policy outperforms the Re-OLR algorithm in
28 out of 39 weeks.

Figure 5-6: Plot for weekly forecast of region C

of the OLR calibrated sales forecast by 25%. The MSE of the Re-SEW policy calibrated

sales forecast is smaller than the MSE of the OLR calibrated sales forecast’s by 54%.

The WMAPE of the Re-SEW policy calibrated sales forecast is smaller than the WMAPE

of the baseline sales forecast by 30%. The MSE of the Re-SEW policy calibrated sales fore-

cast is smaller than the MSE of the baseline sales forecast’s by 51%.

The WMAPE of the Re-SEW policy calibrated sales forecast is smaller than the WMAPE

of the SEW policy calibrated sales forecast by by 40%. The MSE of the Re-SEW policy cali-

brated sales forecast is smaller than the MSE of the SEW policy calibrated sales forecast by

by 50%.
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Chapter 6

Concluding Remarks

In this thesis, we considered data-driven operations in several different dynamically chang-

ing environments.

In Chapter 2, we developed general data-driven decision-making algorithms with state-

of-the-art dynamic regret bounds for non-stationary bandit settings. We characterized

the minimax dynamic regret lower bound and presented a tuned Sliding Window Upper-

Confidence-Bound algorithm with matching dynamic regret. We further proposed the

parameter-free bandit-over-bandit framework that automatically adapts to the unknown

non-stationarity. Finally, we conducted extensive numerical experiments on both synthetic

and real-world data to validate our theoretical results.

In Chapter 3, we study the problem of un-discounted reinforcement learning in a grad-

ually changing environment. In this setting, the parameters, i.e., the reward and state tran-

sition distributions, can be different from time to time as long as the total changes are

bounded by some variation budgets, respectively. We first incorporate the sliding win-

dow estimator and the novel confidence widening technique into the UCRL2 algorithm

to propose a SWUCRL2-CW algorithm with low dynamic regret when the variation budgets

are known. We then design a parameter-free BORL algorithm that allows us to enjoy the

same dynamic regret bound as the SWUCRL2-CW algorithm without knowing the variation

budgets. The main ingredient of the proposed algorithms is the novel confidence widening

technique, which injects extra optimism into the design of learning algorithms, and thus
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ensure low dynamic regret bounds. This is in contrast to the widely held believe that opti-

mistic exploration algorithms for (stationary and non-stationary) stochastic online learning

settings should employ the lowest possible level of optimism. To extend this finding, we

also use the problem of single-item inventory control with fixed cost as an example to

demonstrate how one can leverage special structures in the state transition distributions to

attain low dynamic regret bound without widening the confidence region.

In Chapter 4, we consider the multi-product dynamic pricing setting where a decision-

maker must learn a sequence of related unknown parameters through experimentation; we

capture the relationship across these unknown parameters by imposing that they arise from

a shared distribution (the prior). We propose meta-learning policies that efficiently learn

both the shared distribution across experiments and the individual unknown parameters

within experiments.

Our meta-learning approach can easily be adapted beyond dynamic pricing applications

to classical multi-armed and contextual bandit problems as well. For instance, consider

clinical trials, which were the original motivation for bandit problems [168, 124]. Many

have argued the benefits of Bayesian clinical trials, which allow for the use of historical

information and for synthesizing results of past relevant trials, e.g., past clinical trials on

the same disease may indicate that patients with certain biomarkers or concomitant medica-

tions are less likely to benefit from standard therapy. Such information can be encoded in a

Bayesian prior to potentially allow for more informative clinical trials and improved treat-

ment allocations to patients within the trial, see, e.g., [33, 14]. Our meta-learning approach

can inform how such priors are constructed. Importantly, prior widening gracefully tran-

sitions from an uninformative to an informative prior as we accrue data from more related

clinical trials.

Our prior widening technique is inspired by the emerging literature studying prior mis-

specification in Thompson sampling. In general, adopting a more conservative prior allows

Thompson sampling to still achieve the optimal theoretical guarantee, while a less conser-

vative prior may cause failure to converge [105, 132]. However, the use of a conserva-

tive prior often results in poor empirical performance, and can erode the benefit of using

Thompson sampling over UCB and other prior-free approaches, see, e.g.,[162, 31]. We
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take the view that a successful implementation of Thompson sampling requires learning an

appropriate prior, and propose meta-learning policies to achieve this goal across a sequence

of learning problems.

In Chapter 5, together with AB InBev, we consider the problem of sales forecasts cali-

bration due to the impact of the COVID-19 pandemic. Combining tools from online learn-

ing and pandemic modeling, we develop a data-driven online non-parametric regression

method that takes the current and simulated future active COVID-19 case numbers as in-

put, and outputs the level of calibration of AB InBev’s baseline sales forecast. Without

making any statistical assumptions on the labels, we propose a computationally-efficient

Simulating Exponential Weights (SEW) policy for the online non-parametric regression set-

ting. We show that the SEW policy achieves the minimax-optimal regret bound. We also

demonstrate the empirical performances of the SEW policy on both synthetic and AB In-

Bev’s datasets of different geographical regions. The AB InBev’ numerical experiments

show that our method is capable of reducing the forecasting errors in terms of WMAPE

and MSE by by more than 50% in the monthly forecast (AB InBev’s main focus) and 15%

in the weekly forecast.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Theorem 1

First, let’s review the lower bound of the linear bandit setting, which is related to ours

except that the θt’s do not vary across rounds, and are equal to the same (unknown) θ , i.e.,

∀t ∈ [T ] θt = θ .

Lemma 35 ([125]). For any T0 ≥
√

d/2 and let D =
{

x ∈ Rd : ‖x‖ ≤ 1
}
, then there exists

a θ ∈
{
±
√

d/4T0

}d
, such that the worst case regret of any algorithm for linear bandits

with unknown parameter θ is Ω(d
√

T0).

Going back to the non-stationary environment, suppose nature divides the whole time

horizon into ⌈T/H⌉ blocks of equal length H rounds (the last block can possibly have less

than H rounds), and each block is a decoupled linear bandit instance so that the knowledge

of previous blocks cannot help the decision within the current block. Following Lemma

35, we restrict the sequence of θt’s are drawn from the set
{
±
√

d/4H
}d

. Moreover, θt’s

remain fixed within a block, and can vary across different blocks, i.e.,

∀i ∈
[⌈

T
H

⌉]
∀t1, t2 ∈ [(i−1)H +1, i ·H ∧T ] θt1 = θt2. (A.1)

We argue that even if the DM knows this additional information, it still incur a regret

Ω(d2/3B1/3
T T 2/3). Note that different blocks are completely decoupled, and information is
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thus not passed across blocks. Therefore, the regret of each block is Ω
(
d
√

H
)
, and the

total regret is at least

(⌈
T
H

⌉
−1
)

Ω

(
d
√

H
)
= Ω

(
dT H−

1
2

)
. (A.2)

Intuitively, if H, the number of length of each block, is smaller, the worst case regret

lower bound becomes larger. But too small a block length can result in a violation of

the variation budget. So we work on the total variation of θt’s to see how small can H

be. The total variation of the θt’s can be seen as the total variation across consecutive

blocks as θt remains unchanged within a single block. Observe that for any pair of θ ,θ ′ ∈{
±
√

d/4H
}d

, the `2 difference between θ and θ ′ is upper bounded as

√√√√ d

∑
i=1

4d
4H

=
d√
H

(A.3)

and there are at most ⌊T/H⌋ changes across the whole time horizon, the total variation is

at most

B =
T
H
· d√

H
= dT H−

3
2 . (A.4)

By definition, we require that B≤ BT , and this indicates that

H ≥ (dT )
2
3 B
− 2

3
T . (A.5)

Taking H =

⌈
(dT )

2
3 B
− 2

3
T

⌉
, the worst case regret is

Ω

(
dT
(
(dT )

2
3 B
− 2

3
T

)− 1
2
)

= Ω

(
d

2
3 B

1
3
T T

2
3

)
. (A.6)

Note that in order for H ≤ T, we require BT ≥ dT−1/2. Also, to make |⟨x,θt⟩| ≤ 1 for all

t ∈ [T ] and x ∈ Dt , we need ‖θt‖ ≤ 1, which means
√

d2/4H ≤ 1 or BT ≤ 8d−2T.
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A.2 Proof of Theorem 2

The difference θ̂t−θt has the following expression:

V−1
t−1

(
t−1

∑
s=1∨(t−w)

XsX⊤s θs +
t−1

∑
s=1∨(t−w)

ηsXs

)
−θt

=V−1
t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)+V−1
t−1

(
t−1

∑
s=1∨(t−w)

ηsXs−λθt

)
, (A.7)

The first term on the right hand side of eq. (A.7) is the estimation inaccuracy due to the non-

stationarity; while the second term is the estimation error due to random noise. We now

upper bound the two terms separately. We upper bound the first term under the Euclidean

norm.

Lemma 36. For any t ∈ [T ], we have∥∥∥∥∥V−1
t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)

∥∥∥∥∥
2

≤
t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 .

Proof. Poof. In the proof, we denote B(1) as the unit Euclidean ball, and λmax(M) as

the maximum eigenvalue of a square matrix M. By folklore, we know that λmax(M) =

maxz∈B(1) z⊤Mz. In addition, recall the definition that Vt−1 = λ I +∑
t−1
s=1∨(t−w)XsX⊤s We

prove the Lemma as follows:∥∥∥∥∥V−1
t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)

∥∥∥∥∥
2

=

∥∥∥∥∥V−1
t−1

t−1

∑
s=1∨(t−w)

XsX⊤s

[
t−1

∑
p=s

(
θp−θp+1

)]∥∥∥∥∥
2

=

∥∥∥∥∥V−1
t−1

t−1

∑
p=1∨(t−w)

p

∑
s=1∨(t−w)

XsX⊤s
(
θp−θp+1

)∥∥∥∥∥
2

(A.8)

≤
t−1

∑
p=1∨(t−w)

∥∥∥∥∥V−1
t−1

(
p

∑
s=1∨(t−w)

XsX⊤s

)(
θp−θp+1

)∥∥∥∥∥
2

(A.9)
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≤
t−1

∑
p=1∨(t−w)

λmax

(
V−1

t−1

(
p

∑
s=1∨(t−w)

XsX⊤s

))∥∥θp−θp+1
∥∥

2 (A.10)

≤
t−1

∑
p=1∨(t−w)

∥∥θp−θp+1
∥∥

2 . (A.11)

Equality (A.8) is by the observation that both sides of the equation is summing over the

terms XsX⊤s (θp− θp+1) with indexes (s, p) ranging over {(s, p) : 1∨ (t −w) ≤ s ≤ p ≤

t−1}. Inequality (A.9) is by the triangle inequality.

Inequality (A.10) is by the fact that, for any matrix M ∈ Rd×d with λmax(M) ≥ 0 and

any vector y ∈ Rd , we have ‖My‖2 ≤
√

λmax(M2)‖y‖2. Applying the above claim with

M =V−1
t−1

(
∑

p
s=1∨(t−w)XsX⊤s

)
and y = θp−θp+1 demonstrates inequality (A.10).

Finally, for inequality (A.11), we denote the corresponding basis for each Xs as ψi(s),

i.e., Xs = zsψi(s) = zsΨei(s), where ei is the ith standard orthonormal basis. Let A1 =

∑
t−1
s=1∨(t−w) ei(s)e⊤i(s) + λ I and A2 = ∑

p
s=1∨(t−w) ei(s)e⊤i(s), it is evident that Vt−1 = ΨA1Ψ⊤

and ∑
p
s=1∨(t−w)XsX⊤s = ΨA2Ψ⊤. Therefore, we have

λmax

((
p

∑
s=1∨(t−w)

XsX⊤s

)
V−2

t−1

(
p

∑
s=1∨(t−w)

XsX⊤s

))
= λmax

(
ΨA2Ψ

⊤(ΨA1Ψ
⊤)−2

ΨA2Ψ
⊤
)

= λmax

(
ΨA2A−2

1 A2Ψ
⊤
)
= λmax

(
A2A−2

1 A2
)
≤ 1, (A.12)

where we have used the fact that both A1 and A2 are diagonal matrix in the last step. Alto-

gether, the Lemma is proved.

Applying Theorem 2 of [3], we have the following upper bound for the second term in

eq. (2.2).

Lemma 37 ([3]). For any t ∈ [T ] and any δ ∈ [0,1], we have

∥∥∥∥∥ t−1

∑
s=1∨(t−w)

ηsXs−λθt

∥∥∥∥∥
V−1

t−1

≤ R

√
d ln
(

1+wL2/λ

δ

)
+
√

λS

holds with probability at least 1−δ .

Combining the above two lemmas: fixed any δ ∈ [0,1], we have that for any t ∈ [T ] and
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any x ∈ Dt ,

∣∣∣x⊤(θ̂t−θt)
∣∣∣= ∣∣∣∣∣x⊤

(
V−1

t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)

)
+ x⊤V−1

t−1

(
t−1

∑
s=1∨(t−w)

ηsXs−λθt

)∣∣∣∣∣
≤

∣∣∣∣∣x⊤
(

V−1
t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)

)∣∣∣∣∣+
∣∣∣∣∣x⊤V−1

t−1

(
t−1

∑
s=1∨(t−w)

ηsXs−λθt

)∣∣∣∣∣
(A.13)

≤‖x‖2 ·

∥∥∥∥∥V−1
t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)

∥∥∥∥∥
2

+‖x‖V−1
t−1

∥∥∥∥∥ t−1

∑
s=1∨(t−w)

ηsXs−λθt

∥∥∥∥∥
V−1

t−1

(A.14)

≤L
t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 +β ‖x‖V−1
t−1

, (A.15)

where inequality (A.13) uses triangle inequality, inequality (A.14) follows from Cauchy-

Schwarz inequality, and inequality (A.15) are consequences of Lemmas 36, 37.
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A.3 Proof of Theorem 3

In the proof, we choose λ so that β ≥ 1, for example by choosing λ ≥ 1/S2. By virtue of

UCB, the regret in any round t ∈ [T ] is

⟨x*t −Xt ,θt⟩ ≤ L
t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 + ⟨Xt , θ̂t⟩+β ‖Xt‖V−1
t−1
−⟨Xt ,θt⟩ (A.16)

≤ 2L
t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 +2β ‖Xt‖V−1
t−1

. (A.17)

Inequality (A.16) is by an application of our SW-UCB algorithm established in equation

(2.9). Inequality (A.17) is by an application of inequality (A.15), which bounds the differ-

ence |⟨Xt , θ̂t−θt⟩| from above. By the assumption |⟨X ,θt⟩| ≤ 1 in Section 2.1, it is evident

that ⟨Xt , θ̂t−θt⟩ ≤ |⟨Xt , θ̂t⟩|+ |⟨Xt ,−θt⟩| ≤ 2, and we have

⟨x*t −Xt ,θt⟩ ≤ 2L
t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2 +2β

(
‖Xt‖V−1

t−1
∧1
)
. (A.18)

Summing equation (A.18) over 1 ≤ t ≤ T , the regret of the SW-UCB algorithm is upper

bounded as

E [RegretT (SW-UCB algorithm)] =E

[
∑

t∈[T ]
⟨x*t −Xt ,θt⟩

]

≤2L

[
T

∑
t=1

t−1

∑
s=1∨(t−w)

‖θs−θs+1‖2

]
+2β ·E

[
T

∑
t=1

(
‖Xt‖V−1

t−1
∧1
)]

=2L

[
T

∑
s=1

(s+w)∧T

∑
t=s+1

‖θs−θs+1‖2

]
+2β ·E

[
T

∑
t=1

(
‖Xt‖V−1

t−1
∧1
)]

≤2LwBT +2β ·E

[
T

∑
t=1

(
‖Xt‖V−1

t−1
∧1
)]

. (A.19)

What’s left is to upper bound the quantity 2β ·E
[
∑t∈[T ]

(
1∧‖Xt‖V−1

t−1

)]
. Following the

trick introduced by the authors of [3], we apply Cauchy-Schwarz inequality to the term
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∑t∈[T ]

(
1∧‖Xt‖V−1

t−1

)
.

∑
t∈[T ]

(
1∧‖Xt‖V−1

t−1

)
≤
√

T
√

∑
t∈[T ]

1∧‖Xt‖2
V−1

t−1
. (A.20)

By dividing the whole time horizon into consecutive pieces of length w, we have

√
∑

t∈[T ]
1∧‖Xt‖2

V−1
t−1
≤

√√√√⌈T/w⌉−1

∑
i=0

(i+1)w

∑
t=i·w+1

1∧‖Xt‖2
V−1

t−1
. (A.21)

While a similar quantity has been analyzed by Lemma 11 of [3], we note that due to the

fact that Vt’s are accumulated according to the sliding window principle, the key eq. (6) in

Lemma 11’s proof breaks, and thus the analysis of [3] cannot be applied here. To this end,

we state a technical lemma based on the Sherman-Morrison formula.

Lemma 38. For any i≤ ⌈T/w⌉−1,

(i+1)w

∑
t=i·w+1

1∧‖Xt‖2
V−1

t−1
≤

(i+1)w

∑
t=i·w+1

1∧‖Xt‖2
V−1

t−1
,

where

V t−1 =
t−1

∑
s=i·w+1

XsX⊤s +λ I. (A.22)

Proof. Proof of Lemma 38. For a fixed i≤ ⌈T/w⌉−1,

(i+1)w

∑
t=i·w+1

1∧‖Xt‖2
V−1

t−1
=

(i+1)w

∑
t=i·w+1

1∧X⊤t V−1
t−1Xt

=
(i+1)w

∑
t=i·w+1

1∧X⊤t

(
t−1

∑
s=1∨(t−w)

XsX⊤s +λ I

)−1

Xt . (A.23)

Note that i ·w+1≥ 1 and i ·w+1≥ t−w ∀t ≤ (i+1)w, we have

i ·w+1≥ 1∨ (t−w). (A.24)
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Consider any d-by-d positive definite matrix A and d-dimensional vector y, then by the

Sherman-Morrison formula, the matrix

B = A−1−
(

A+ yy⊤
)−1

= A−1−A−1 +
A−1yy⊤A−1

1+ y⊤A−1y
=

A−1yy⊤A−1

1+ y⊤A−1y
(A.25)

is positive semi-definite. Therefore, for a given t, we can iteratively apply this fact to obtain

X⊤t

(
t−1

∑
s=i·w+1

XsX⊤s +λ I

)−1

Xt

=X⊤t

(
t−1

∑
s=i·w

XsX⊤s +λ I

)−1

Xt +X⊤t

( t−1

∑
s=i·w+1

XsX⊤s +λ I

)−1

−

(
t−1

∑
s=i·w

XsX⊤s +λ I

)−1
Xt

=X⊤t

(
t−1

∑
s=i·w

XsX⊤s +λ I

)−1

Xt

+X⊤t

( t−1

∑
s=i·w+1

XsX⊤s +λ I

)−1

−

(
Xi·wX⊤i·w +

t−1

∑
s=i·w+1

XsX⊤s +λ I

)−1
Xt

≥X⊤t

(
t−1

∑
s=i·w

XsX⊤s +λ I

)−1

Xt

...

≥X⊤t

(
t−1

∑
s=1∨(t−w)

XsX⊤s +λ I

)−1

Xt . (A.26)

Plugging inequality (A.26) to (A.23), we have

(i+1)w

∑
t=i·w+1

1∧‖Xt‖2
V−1

t−1
≤

(i+1)w

∑
t=i·w+1

1∧X⊤t

(
t−1

∑
s=i·w+1

XsX⊤s +λ I

)−1

Xt

≤
(i+1)w

∑
t=i·w+1

1∧‖Xt‖2
V−1

t−1
, (A.27)

which concludes the proof.
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From Lemma 38 and eq. (A.21), we know that

2β ∑
t∈[T ]

(
1∧‖Xt‖V−1

t−1

)
≤2β
√

T ·

√√√√⌈T/w⌉−1

∑
i=0

(i+1)w

∑
t=i·w+1

1∧‖Xt‖2
V−1

t−1

≤2β
√

T ·

√√√√⌈T/w⌉−1

∑
i=0

2d ln
(

dλ +wL2

dλ

)
(A.28)

≤2βT

√
2d
w

ln
(

dλ +wL2

dλ

)
.

Here, eq. (A.28) follows from Lemma 11 of [3].

Now putting these two parts to eq. (A.19), we have

E [RegretT (SW-UCB algorithm)]

≤2LwBT +2βT

√
2d
w

ln
(

dλ +wL2

dλ

)
+2T δ

=2LwBT +
2T√

w

(
R

√
d ln
(

1+wL2/λ

δ

)
+
√

λS

)√
2d ln

(
dλ +wL2

dλ

)
+2T δ . (A.29)

Now if BT is known, we can take w = Θ

(
(dT )2/3B−2/3

t

)
and δ = 1/T, we have

E [RegretT (SW-UCB algorithm)] = Õ
(

d
2
3 B

1
3
T T

2
3

)
;

while if BT is not unknown, taking w = Θ

(
(dT )2/3

)
and δ = 1/T, we have

E [RegretT (SW-UCB algorithm)] = Õ
(

d
2
3 BT T

2
3

)
.
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A.4 Proof of Lemma 4

For any block i, the absolute sum of rewards can be written as∣∣∣∣∣ i·H∧T

∑
t=(i−1)H+1

⟨Xt ,θt⟩+ηt

∣∣∣∣∣≤ i·H∧T

∑
t=(i−1)H+1

|⟨Xt ,θt⟩|+

∣∣∣∣∣ i·H∧T

∑
t=(i−1)H+1

ηt

∣∣∣∣∣≤ Hν +

∣∣∣∣∣ i·H∧T

∑
t=(i−1)H+1

ηt

∣∣∣∣∣ ,
where we have iteratively applied the triangle inequality as well as the fact that |⟨Xt ,θt⟩| ≤ ν

for all t.

Now by property of the R-sub-Gaussian [154], we have the absolute value of the noise

term ηt exceeds 2R
√

lnT for a fixed t with probability at most 1/T 2 i.e.,

Pr

(∣∣∣∣∣ i·H∧T

∑
t=(i−1)H+1

ηt

∣∣∣∣∣≥ 2R

√
H ln

T√
H

)
≤ 2H

T 2 . (A.30)

Applying a simple union bound, we have

Pr

(
∃i ∈

⌈
T
H

⌉
:

∣∣∣∣∣ i·H∧T

∑
t=(i−1)H+1

ηt

∣∣∣∣∣≥ 2R

√
H ln

T√
H

)

≤
⌈T/H⌉

∑
i=1

Pr

(∣∣∣∣∣ i·H∧T

∑
t=(i−1)H+1

ηt

∣∣∣∣∣≥ 2R

√
H ln

T√
H

)
≤ 2

T
. (A.31)

Therefore, we have

Pr

(
Q≥ Hν +2R

√
H ln

T√
H

)
≤ Pr

(
∃i ∈

⌈
T
H

⌉
:

∣∣∣∣∣ i·H∧T

∑
t=(i−1)H+1

ηt

∣∣∣∣∣≥ 2R

√
H ln

T√
H

)
≤ 2

T
.

(A.32)

The statement then follows.
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A.5 Proof of Proposition 5

By design of the BOB algorithm, its dynamic regret can be decomposed as the regret of the

SW-UCB algorithm with the optimally tuned window size wi = w† for each block i plus the

loss due to learning the value w† with the EXP3 algorithm, i.e.,

E [RegretT (BOB algorithm)] =E

[
T

∑
t=1
⟨x*t ,θt⟩−

T

∑
t=1
⟨Xt ,θt⟩

]

=E

[
T

∑
t=1
⟨x*t ,θt⟩−

⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
Xw†

t ,θt

〉]

+E

[
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
Xw†

t ,θt

〉
−
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

⟨Xwi
t ,θt⟩

]
.

(A.33)

Here, eq. (A.33) holds as the BOB algorithm restarts the SW-UCB algorithm in each block,

and for a round t in block i, Xw
t refers to the action selected in round t by the SW-UCB algorithm with

window size w∧ (t− (i−1)H−1) initiated at the beginning of block i.

By Theorem 3, the first expectation in eq. (A.33) can be upper bounded as

E

[
T

∑
t=1
⟨x*t ,θt⟩−

⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
Xw†

t ,θt

〉]
=E

[
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
x*t −Xw†

t ,θt

〉]

=
⌈T/H⌉

∑
i=1

Õ
(

w†BT (i)+
dH√

w†

)
=Õ

(
w†BT +

dT√
w†

)
, (A.34)

where

BT (i) =
(i·H∧t)−1

∑
t=(i−1)H+1

‖θt−θt+1‖2

is the total variation in block i.

We then turn to the second expectation in eq. (A.33). We can easily see that the number

of rounds for the EXP3 algorithm is ⌈T/H⌉ and the number of possible values of wi’s is

|J|. If the maximum absolute sum of reward of any block does not exceed Q, the authors of
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[18] gives the following regret bound.

E

[
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
Xw†

t ,θt

〉
.−
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

⟨Xwi
t ,θt⟩

∣∣∣∣∣∀i ∈ [⌈T/H⌉]
i·H∧T

∑
t=(i−1)H+1

Yt ≤ Q/2

]

=Õ

(
Q

√
|J|T
H

)
. (A.35)

Note that the regret of our problem is at most T, eq. (A.35) can be further upper bounded

as

E

[
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
Xw†

t ,θt

〉
−
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

⟨Xwi
t ,θt⟩

]

≤Õ

(
Q

√
|J|T
H

)
×Pr

(
∀i ∈ [⌈T/H⌉]

i·H∧T

∑
t=(i−1)H+1

Yt ≤ Q/2

)

+E

[
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
Xw†

t ,θt

〉
−
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

⟨Xwi
t ,θt⟩

∣∣∣∣∣∃i ∈ [⌈T/H⌉]
i·H∧T

∑
t=(i−1)H+1

Yt ≥ Q/2

]

×Pr

(
∃i ∈ [⌈T/H⌉]

i·H∧T

∑
t=(i−1)H+1

Yt ≥ Q/2

)

≤Õ
(√

H|J|T
)
+T · 2

T

=Õ
(√

H|J|T
)
. (A.36)

Combining eq. (A.33), (A.34), and (A.36), the statement follows.
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A.6 Proof of Theorem 6

With Proposition 5 as well as the choices of H and J in eq. (2.12), the regret of the

BOB algorithm is

RT (BOB algorithm) = Õ
(

w†BT +
dT√
w†

+
√

H|J|T
)
= Õ

(
w†BT +

dT√
w†

+d
1
2 T

3
4

)
.

(A.37)

Therefore, we have that when BT ≥ d−1/2T 1/4, the BOB algorithm is able to converge to the

optimal window size, i.e., w† = w* (≤ H), and the dynamic regret of the BOB algorithm is

upper bounded as

RT (BOB algorithm) =Õ
(

d
2
3 B

1
3
T T

2
3 +d

1
2 T

3
4

)
; (A.38)

while if BT < d−1/2T 1/4, the BOB algorithm converges to the window size w† = H, and the

dynamic regret is

RT (BOB algorithm) =Õ
(

dBT T
1
2 +d

1
2 T

3
4

)
= Õ

(
d

1
2 T

3
4

)
. (A.39)

Combining the above two cases, we conclude the desired dynamic regret bound.
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A.7 Proof of Theorem 7

Similar to eq. (A.7), we can rewrite the difference θ̂t−θt as

V *t−1

(
t−1

∑
s=1∨(t−w)

XsX⊤s θs +
t−1

∑
s=1∨(t−w)

ηsXs

)
−θt

=V *t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)+V *t−1

(
t−1

∑
s=1∨(t−w)

ηsXs

)
. (A.40)

We then analyze the two terms in eq. (A.40) separately. For the first term,∥∥∥∥∥V *t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)

∥∥∥∥∥
∞

=

∥∥∥∥∥V *t−1

t−1

∑
s=1∨(t−w)

XsX⊤s

[
t−1

∑
p=s

(
θp−θp+1

)]∥∥∥∥∥
∞

=

∥∥∥∥∥ t−1

∑
p=1∨(t−w)

[
V *t−1

p

∑
s=1∨(t−w)

XsX⊤s
(
θp−θp+1

)]∥∥∥∥∥
∞

≤
t−1

∑
p=1∨(t−w)

∥∥∥∥∥V *t−1

p

∑
s=1∨(t−w)

XsX⊤s
(
θp−θp+1

)∥∥∥∥∥
∞

≤
t−1

∑
p=1∨(t−w)

‖θs−θs+1‖∞
. (A.41)

Here, almost all the steps follow exactly the same arguments as those of eq. (A.8)-(A.11),

except that in inequality (A.41), we make the direct observation that

V *t−1 =



1[Nt−1(1)>0]
Nt−1(1)

0 . . . . . . . . . 0

0 1[Nt−1(2)>0]
Nt−1(2)

0 . . . . . . 0

0 0 . . . 0 . . . 0
...

...
... . . . . . . ...

0 0 0 . . . 1[Nt−1(d−1)>0]
Nt−1(d−1) 0

0 0 0 . . . 0 1[Nt−1(d)>0]
Nt−1(d)


(A.42)
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and

p

∑
s=1∨(t−w)

XsX⊤s =



N′p(1) 0 . . . . . . . . . 0

0 N′p(2) 0 . . . . . . 0

0 0 . . . 0 . . . 0
...

...
... . . . . . . ...

0 0 0 . . . N′p(d−1) 0

0 0 0 . . . 0 N′p(d)


, (A.43)

where N′p(i) is the number of times that action ei is selected during rounds 1∨(t−w), . . . , p

for all i∈ [d]. As p≤ t−1, we have N′p(i)≤Nt−1(i) for all i∈ [d]. Now, V *t−1 ∑
p
s=1∨(t−w)XsX⊤s

is a diagonal matrix with all diagonal entries less than 1, and hence the argument.

For the second term of eq. (A.40), we consider for any fixed i ∈ [d],∣∣∣∣∣e⊤i V *t−1

(
t−1

∑
s=1∨(t−w)

ηsXs

)∣∣∣∣∣=1[Nt−1(i)> 0]
Nt−1(i)

∣∣∣∣∣e⊤i
(

t−1

∑
s=1∨(t−w)

ηsXs

)∣∣∣∣∣
=
1[Nt−1(i)> 0]

(
∑

t−1
s=1∨(t−w)1[Is = i]ηs

)
Nt−1(i)

, (A.44)

where the first step again use the definition of V *t−1 in eq. (A.42). Now if Nt−1(i) = 0, eq.

(A.44) equals to 0; while if Nt−1(i)> 0, we can apply the Corollary 1.7 of [154] to obtain

that

Pr

∣∣∣∣∣∣
1[Nt−1(i)> 0]

(
∑

t−1
s=1∨(t−w)1[Is = i]ηs

)
Nt−1(i)

∣∣∣∣∣∣≤ R

√
2ln(2dT 2)

Nt−1(i)

≥ 1− 1
dT 2 . (A.45)

Hence, with probability at least 1−1/dT 2, for any fixed t ∈ [T ] and any fixed i ∈ [d],

∣∣∣e⊤i (θ̂t−θt)
∣∣∣= ∣∣∣∣∣e⊤i

(
V *t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)

)
+ e⊤i V *t−1

(
t−1

∑
s=1∨(t−w)

ηsXs−λθt

)∣∣∣∣∣
≤

∣∣∣∣∣e⊤i
(

V *t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)

)∣∣∣∣∣+
∣∣∣∣∣e⊤i V *t−1

(
t−1

∑
s=1∨(t−w)

ηsXs−λθt

)∣∣∣∣∣
(A.46)
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≤‖ei‖1 ·

∥∥∥∥∥V *t−1

t−1

∑
s=1∨(t−w)

XsX⊤s (θs−θt)

∥∥∥∥∥
∞

+R

√
2ln(2dT 2)

Nt−1(i)
(A.47)

≤
t−1

∑
s=1∨(t−w)

‖θs−θs+1‖∞
+R

√
2ln(2dT 2)

Nt−1(i)
, (A.48)

where inequality (A.46) applies the triangle inequality, inequality (A.47) follows from the

Holder’s inequality as well as inequality (A.44) and (A.45), and inequality (A.48) follows

from inequality (A.41).

The statement of the theorem now follows immediately by applying union bound over

the decision set and the time horizon as well as the simple observation ‖ei‖V *t−1
=
√

1/Nt−1(i).
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A.8 Proof of Theorem 10

From the proof of Proposition 1 in [79], we know that for all x ∈ D

∣∣µ (⟨x,θt⟩)−µ
(〈

x, θ̂t
〉)∣∣≤ kµ

∣∣∣∣∣x⊤G−1
t−1

[
t−1

∑
s=1∨(t−w)

(
µ (⟨Xs,θt⟩)−µ

(〈
Xs, θ̂t

〉))
Xs

]∣∣∣∣∣ ,
(A.49)

where

Gt−1 =
∫ 1

0

[
t−1

∑
s=1∨(t−w)

XsX⊤s µ
(〈

Xs,s0θt +(1− s0)θ̂t
〉)]

ds0

By virtue of the maximum quasi-likelihood estimation, i.e., eq. (2.25) we have

t−1

∑
s=1∨(t−w)

µ
(〈

Xs, θ̂t
〉)

Xs =
t−1

∑
s=1∨(t−w)

YsXs =
t−1

∑
s=1∨(t−w)

(µ (⟨Xs,θs⟩)+ηs)Xs, (A.50)

and (A.49) is

kµ

∣∣∣∣∣x⊤G−1
t−1

t−1

∑
s=1∨(t−w)

(µ (⟨Xs,θt⟩)−µ (⟨Xs,θs⟩)−ηs)Xs

∣∣∣∣∣
=kµ

∣∣∣∣∣x⊤G−1
t−1

t−1

∑
s=1∨(t−w)

(µ (⟨Xs,θt⟩)−µ (⟨Xs,θs⟩))Xs− x⊤G−1
t−1

t−1

∑
s=1∨(t−w)

ηsXs

∣∣∣∣∣
≤kµ

∣∣∣∣∣x⊤G−1
t−1

t−1

∑
s=1∨(t−w)

(µ (⟨Xs,θt⟩)−µ (⟨Xs,θs⟩))Xs

∣∣∣∣∣+ kµ

∣∣∣∣∣x⊤G−1
t−1

t−1

∑
s=1∨(t−w)

ηsXs

∣∣∣∣∣
(A.51)

≤kµ

∣∣∣∣∣x⊤G−1
t−1

t−1

∑
s=1∨(t−w)

(µ (⟨Xs,θt⟩)−µ (⟨Xs,θs⟩))Xs

∣∣∣∣∣+β‖x‖V−1
t−1

(A.52)

≤kµ ‖x‖2

∥∥∥∥∥G−1
t−1

t−1

∑
s=1∨(t−w)

(µ (⟨Xs,θt⟩)−µ (⟨Xs,θs⟩))Xs

∥∥∥∥∥
2

+β‖x‖V−1
t−1

(A.53)

≤
kµL
cµ

∥∥∥∥∥V−1
t−1

t−1

∑
s=1∨(t−w)

(µ (⟨Xs,θt⟩)−µ (⟨Xs,θs⟩))Xs

∥∥∥∥∥
2

+β‖x‖V−1
t−1

.

Here, inequality (A.51) is a consequence of the triangle inequality, inequality (A.52) again

follows from Proposition 1 of [79], inequality (A.53) is the Cauchy-Schwarz inequality,
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and the last step uses the fact that Gt−1 ⪰ cµVt−1. For the firs quantity, we have

∥∥∥∥∥V−1
t−1

t−1

∑
s=1∨(t−w)

(µ (⟨Xs,θt⟩)−µ (⟨Xs,θs⟩))Xs

∥∥∥∥∥
2

=

∥∥∥∥∥V−1
t−1

t−1

∑
s=1∨(t−w)

Xs

t−1

∑
p=s

(
µ
(〈

Xs,θp+1
〉)
−µ

(〈
Xs,θp

〉))∥∥∥∥∥
2

=

∥∥∥∥∥V−1
t−1

t−1

∑
p=1∨(t−w)

p

∑
s=1∨(t−w)

Xs
(
µ
(〈

Xs,θp+1
〉)
−µ

(〈
Xs,θp

〉))∥∥∥∥∥
2

≤
t−1

∑
p=1∨(t−w)

∥∥∥∥∥V−1
t−1

p

∑
s=1∨(t−w)

Xs
(
µ
(〈

Xs,θp+1
〉)
−µ

(〈
Xs,θp

〉))∥∥∥∥∥
2

(A.54)

=
t−1

∑
p=1∨(t−w)

∥∥∥∥∥V−1
t−1

p

∑
s=1∨(t−w)

Xsµ̇
(〈

Xs, θ̃p
〉)

X⊤s
(
θp+1−θp

)∥∥∥∥∥
2

(A.55)

=
t−1

∑
p=1∨(t−w)

∥∥∥∥∥V−1
t−1

p

∑
s=1∨(t−w)

µ̇
(〈

Xs, θ̃p
〉)

XsX⊤s
(
θp+1−θp

)∥∥∥∥∥
2

=
t−1

∑
p=1∨(t−w)

λmax

(
V−1

t−1

p

∑
s=1∨(t−w)

µ̇
(〈

Xs, θ̃p
〉)

XsX⊤s

)∥∥(θp+1−θp
)∥∥

2 (A.56)

≤kµ

t−1

∑
p=1∨(t−w)

λmax

(
V−1

t−1

p

∑
s=1∨(t−w)

XsX⊤s

)∥∥(θp+1−θp
)∥∥

2

≤kµ

t−1

∑
p=1∨(t−w)

∥∥(θp+1−θp
)∥∥

2 , (A.57)

where inequality (A.54) is an immediate consequence of the triangle inequality, eq. (A.55)

utilizes the mean value theorem (with θ̃p being some certain linear combination of θp and

θp+1 for all p), and inequalities (A.56) and (A.57) follow from the same steps as the proof

of Lemma 36 in Section A.2.
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A.9 Proof of Theorem 13

We start with a regret lower bound result from [38] on drifting K-armed bandits:

Theorem 39 ([38]). Consider the drifting K-armed bandit problem, where K ≥ 2, with

T ≥ 1 rounds. For any BT ∈ [1/K,T/K], there exists a finite class of reward distributions

P̃ = {P̃(`)}L
`=1, where P̃(`) = {P̃(`)

t,k }t∈[T ],k∈[K], that satisfy the following:

∙ Each P̃(`)
t,k represents the reward distribution of arm k in round t under distribution

P̃(`). For each ell, t,k, the distribution P̃(`)
t,k is a Bernoulli distribution, with the mean

denoted θ̃
(`)
t,k .

∙ For every ` ∈ [L], the following variational budget inequality holds:

T−1

∑
t=1

max
k∈[K]

{∣∣∣θ̃ (`)
t+1(k)− θ̃

(`)
t (k)

∣∣∣}≤ BT .

∙ For any non-anticipatory policy π̃ , there exists ` ∈ [L] under which the dynamic

regret is lower bounded:

T

∑
t=1

{
max
k∈[K]

θ̃
(`)
t (k)−E[θ̃ (`)

t (It)]
}
≥ 1

4
√

2
(KBT )

1/3T 2/3.

We denote the choice of arm under policy π̃ in round t as It , and the expectation

is taken over the randomness in the choice of It , which is caused by the previous

outcomes and the policy’s internal randomness.

We prove the Theorem by modifying the class of instances P to suit the setting of

drifting combinatorial semi-bandits. The modification follows the style of Kveton et al.

[123]. Let d,m be two integers, where d is divisible by m W.L.O.G.. We define the ground

set E = [d]. In addition, we define the action set Et = {a1, . . . ,ad/m} ⊂ {0,1}d , which

contains d/m combinatorial arms and does not vary with t. Each combinatorial arm ai

belongs to {0,1}d . For each 1 ≤ i ≤ d/m, we define ai( j) = 1 if (i−1)m+1 ≤ j ≤ i ·m,

and ai( j) = 0 for other j.
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Consider Theorem 39 when K = d/m≥ 2, and let P̃ = {P̃(`)}L
`=1 be the class of reward

distributions for the regret lower bound. For each P̃̀ = {P̃(`)
t,k }t∈[T ],k∈[K] (which is on the K =

d/m-armed bandit instance), we construct another reward distribution P̀ = {P(`)
t, j }t∈[T ], j∈[d]

that is defined on the combinatorial semi-bandit instance. For each j ∈ [d], we identify the

index i∈ [d/m] such that (i−1)m+1≤ j≤ i ·m, and define P(`)
t, j to be the same distribution

as P̃(`)
t,i . That is, P(`)

t, j is a Bernoulli distribution with mean θt( j) = θ̃t(i), where i = ⌈ j/m⌉.

By the second property in Theorem 39, it is straightforward to check that BT is also a

variation budget for P(`) for each `, that is,

T−1

∑
t=1

max
j∈[d]

{∣∣∣θ (`)
t+1( j)−θ

(`)
t ( j)

∣∣∣}≤ BT .

For each 1 ≤ i ≤ d/m, the random rewards Wt((i− 1)m+ 1), . . . ,Wt(i ·m) for the items in

combinatorial arm i are identical Bernoulli random variables. That is, they simultaneously

realize as all ones or all zeros.

Finally, to complete the proof, we relate the dynamic regret of any non-anticipatory pol-

icy π on the drifting combinatorial semi-bandit instance to that of some non-anticipatory

policy π̃ on the drifting K-armed instance. For the combinatorial bandit instance, a non-

anticipatory policy π is in fact a sequence of mappings {πt}∞
t=1, where πt maps the his-

torical information Ht−1 = {Xs,{Ws(i)}i∈Xs}t−1
s=1 from time 1 to t − 1 and a random seed

U to the combinatorial arm Xt to pull in time t, or more mathematically πt(Ht−1,U) = Xt .

Likewise is true for any non-anticipatory policy π̃ for a K-armed instance.

Given a non-anticipatory policy π for the combinatorial semi-bandit instance, we con-

struct another non-anticipatory policy π̃ for the K-armed bandit instance that mimics the be-

haviour of π . Suppose that πt(H,U)=X j for a realization of the history H = {Xs,{Ws(i)}i∈Xs}t−1
s=1

and random seed U . To construct π̃ , we map the H to the historical information H̃ for the K-

armed bandit instance, where H̃ = {X̃s,W̃s}t−1
s=1 is defined as follows: X̃s = i iff Xs = ai, and

W̃s =
1
m ∑i∈[d]Xs(i)Ws(i). It is clear that W̃s ∈{0,1} for each s, by our assumption on the cor-

relations among {Wt(i)}i∈[d]. Finally, we define π̃t(H̃,U) = i if and only if πt(H,U) = ai.

It is evident from our construction that πt is well-defined, in the sense that it maps to a

unique arm for every possible realization of H̃,U . Importantly, for any 1≤ `≤ L, we know
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that

Expected reward of π under P(`) = m×Expected reward of π̃ under P̃(`),

Optimal expected reward under P(`) = m×Optimal expected reward under P̃(`),

or more mathematically we have ∑
T
t=1 maxai∈Et ∑ j:ai( j)=1 θ

(`)
t ( j)=m×∑

T
t=1 maxk∈[K] θ̃

(`)
t (k).

Consequently, by the third property of Theorem 39, we know that for any non-anticipatory

policy π , there is an index ` such that the dynamic regret of π under P(`) is at least

m× ( 1
4
√

2
( d

mBT )
1/3T 2/3), which proves the theorem.
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A.10 Proof of Theorem 14

Define

θ̄t,i =
∑

t−1
s=1∨(t−w)θs(i) ·1[Xs(i) = 1]

max{Nt−1(i),1}
.

First, we claim that, with probability at least 1−δ , for all i ∈ [d], t ∈ T it holds that

∣∣θ̄t,i− θ̂t,i
∣∣≤ 2R

√
log(2dT/δ )

max{Nt−1(i),1}
≤ 4R

√
log(2dT/δ )

Nt−1(i)+1
. (A.58)

The Claim is proved by applying the following inequality for each item i ∈ [d]. Let

ϒ1, . . . ,ϒT be i.i.d R-sub-Gaussian random variables with mean zero. For any δ ∈ (0,1),

we have

Pr

(∣∣∣∣∣ 1
t−q+1

t

∑
s=q

ϒs

∣∣∣∣∣≤ 2R

√
log(2dT/δ )

t−q+1
for all 1≤ q≤ t ≤ T

)
≥ 1− δ

d
, (A.59)

by Corollary 1.7 of Rigollet and Hütter [154] and a union bound over all (q, t) with 1≤ q≤

t ≤ T (We can alternatively use Lemma 6 in Abbasi-Yadkori et al. [3] for a slightly worse

bound, but holds for more general ηt ).

Next, observe that for each i, t, for certain we have

∣∣θ̄t,i−θt,i
∣∣≤ 1

max{Nt−1(i),1}

t−1

∑
s=1∨(t−w)

1[Xs(i) = 1] · |θs(i)−θt(i)|

≤ 1
max{Nt−1(i),1}

t−1

∑
s=1∨(t−w)

1[Xs(i) = 1] ·

(
t−1

∑
q=s

∣∣θq(i)−θq+1(i)
∣∣)

≤
t−1

∑
s=1∨(t−w)

|θs(i)−θs+1(i)| ≤
t−1

∑
s=1∨(t−w)

‖θs−θs+1‖∞
. (A.60)
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A.11 Proof of Theorem 15

Recall our notations on Nt−1(i) and θ̂t,i (Note that 1[Xs(i) = 1] = Xs(i)):

Nt−1(i) =
t−1

∑
s=1∨(t−w)

1[Xs(i) = 1],

θ̂t,i =
∑

t−1
s=1∨(t−w)Ws(i) ·1[Xs(i) = 1]

max{Nt−1(i),1}
. (A.61)

First, we claim that, with probability at least 1−δ , it holds that

∣∣θ̂t,i−θt,i
∣∣≤ 4R

√
log(2dT/δ )

Nt−1(i)+1
+

t−1

∑
s=1∨(t−w)

‖θs−θs+1‖∞
.

Consequently, the following UCB holds for each t with probability at least 1−δ :

θ
⊤
t Xt ≤max

x∈Et

{
θ
⊤
t x
}

≤max
x∈Et

{
∑
i∈E

[
θ̂t,i +4R

√
log(2dT/δ )

Nt−1(i)+1
+

t−1

∑
s=1∨(t−w)

‖θs−θs+1‖∞

]
x(i)

}

= ∑
i∈E

[
θ̂t,i +4R

√
log(2dT/δ )

Nt−1(i)+1
+

t−1

∑
s=1∨(t−w)

‖θs−θs+1‖∞

]
Xt(i). (A.62)

By summing (A.62) across t, we can bound the dynamic regret with probability at least

1−δ as

RT (SW-UCB algorithm for combinatorial semi-bandits)

≤
T

∑
t=1

∑
i∈E

4R

√
log(2dT/δ )

Nt−1(i)+1
·1[Xt(i) = 1]︸ ︷︷ ︸

(†SCB)

+m
T

∑
t=1

t−1

∑
s=1∨(t−w)

‖θs−θs+1‖∞︸ ︷︷ ︸
(‡SCB)

. (A.63)

To complete the proof on the regret bound, we bound each (†SCB,‡SCB) from above.

Analysing (†SCB). Let’s first define the notation N̄i,t = ∑
t−1
s=1+⌊t/w⌋·w 1[Xs(i) = 1]. We

can understand N̄i,t as follows, similarly to the derivation in the proof of Lemma 37. On
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one hand, the parameter Ni,t counts the occurrences of Xs(i) = 1 in the w previous rounds

(or t−1 previous rounds if t ≤ w). On the other hand, for the parameter N̄i,t , we first divide

the horizon into consecutive blocks of w rounds (with the last block having T −⌊T/w⌋ ·w

rounds). Then, for a round t, we look at the block that t belongs to, and the parameter N̄i,t

counts the occurrences of Xs(i) = 1 for s < t in that block. Certainly, we have N̄i,t ≤ Ni,t .

We next use N̄i,t to proceed with the bound:

T

∑
t=1

∑
i∈E

√
1[Xt(i) = 1]

Ni,t +1
≤

T

∑
t=1

∑
i∈E

√
1[Xt(i) = 1]

N̄i,t +1

=
⌈T/w⌉

∑
j=1

∑
i∈E

j·w∧T

∑
t=( j−1)w+1

√
1[Xt(i) = 1]

N̄i,t +1

≤
⌈T/w⌉

∑
j=1

∑
i∈E

j·w∧T

∑
t=( j−1)w+1

√
1[Xt(i) = 1]
max{N̄i,t ,1}

≤
⌈T/w⌉

∑
j=1

∑
i∈E

{
1+2

√
N̄i, j·w∧T

}
(A.64)

≤
⌈T/w⌉

∑
j=1

{
d +2

√
dmw

}
(A.65)

≤
⌈T/w⌉

∑
j=1

3
√

dmw≤ 6
√

dmT√
w

. (A.66)

Step (A.64) is by the observation that, when we enumerate the non-zero summands
√

1[Xt(i)=1]
max{N̄i,t ,1}

from t =(i−1)w+1 to t = i·w∧T , the enumerated terms are 1/
√

1,1/
√

1,1/
√

2,1/
√

3, . . . ,

1/
√

max{N̄i, j·w∧T ,1}. The sum of these terms is upper bounded as 1+2
√

N̄i, j·w∧T . Step

(A.65) is by the following calculation:

∑
i∈E

√
N̄i, j·w∧T ≤

√
d ·∑

i∈E
N̄i, j·w∧T =

√√√√d ·∑
i∈E

j·w∧T

∑
t=( j−1)w+1

1[Xt(i) = 1]≤
√

dmw.

Finally, step (A.66) is by the Theorem’s assumption that (d/m)≤ w≤ T .

194



Analysing (‡SCB). We note that

m
T

∑
t=1

t−1

∑
s=1∨(t−w)

‖θs−θs+1‖∞
= m

T−1

∑
s=1

T∧(s+w)

∑
t=s+1

‖θs−θs+1‖∞
≤ mwBT . (A.67)
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A.12 Proof of Theorem 16

Similar to the proof of Proposition 5, the dynamic regret of the BOB algorithm can be de-

composed as the regret of the SW-UCB algorithm with the optimally tuned window size

wi = w† (≥ d/m) for each block i plus the loss due to learning the value w† with the EXP3

algorithm, i.e.,

E [RegretT (BOB algorithm)] =E

[
T

∑
t=1
⟨x*t ,θt⟩−

⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
Xw†

t ,θt

〉]

+E

[
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
Xw†

t ,θt

〉
−
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

⟨Xwi
t ,θt⟩

]
.

(A.68)

Here, eq. (A.68) holds as the BOB algorithm restarts the SW-UCB algorithm in each block,

and for a round t in block i, Xw
t refers to the action selected in round t by the SW-UCB algorithm with

window size w∧ (t− (i−1)H−1) initiated at the beginning of block i.

By Theorem 15, the first expectation in eq. (A.68) can be upper bounded as

E

[
T

∑
t=1
⟨x*t ,θt⟩−

⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
Xw†

t ,θt

〉]
=E

[
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
x*t −Xw†

t ,θt

〉]

=
⌈T/H⌉

∑
i=1

Õ

(
w†mBT (i)+

√
dmH√
w†

)

=Õ

(
w†BT +

√
dmT√
w†

)
, (A.69)

where

BT (i) =
(i·H∧t)−1

∑
t=(i−1)H+1

‖θt−θt+1‖∞

is the total variation in block i.

We then turn to the second expectation in eq. (A.68). We can easily see that the number

of rounds for the EXP3 algorithm is ⌈T/H⌉ and the number of possible values of wi’s is

|J|. If the maximum absolute sum of reward of any block does not exceed Q, the authors of
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[18] gives the following regret bound.

E

[
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
Xw†

t ,θt

〉
−
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

⟨Xwi
t ,θt⟩

∣∣∣∣∣∀i ∈ [⌈T/H⌉]
i·H∧T

∑
t=(i−1)H+1

Yt ≤ Q/2

]

=Õ

(
Q

√
|J|T
H

)
. (A.70)

Note that the regret of our problem is at most T, eq. (A.70) can be further upper bounded

as

E

[
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
Xw†

t ,θt

〉
−
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

⟨Xwi
t ,θt⟩

]

≤Õ

(
Q

√
|J|T
H

)
×Pr

(
∀i ∈ [⌈T/H⌉]

i·H∧T

∑
t=(i−1)H+1

Yt ≤ Q/2

)

+E

[
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

〈
Xw†

t ,θt

〉
−
⌈T/H⌉

∑
i=1

i·H∧T

∑
t=(i−1)H+1

⟨Xt (wi) ,θt⟩

∣∣∣∣∣∃i ∈ [⌈T/H⌉]
i·H∧T

∑
t=(i−1)H+1

Yt ≥ Q/2

]

×Pr

(
∃i ∈ [⌈T/H⌉]

i·H∧T

∑
t=(i−1)H+1

Yt ≥ Q/2

)

≤Õ
(

m
√

H|J|T
)
+T · 2

T

=Õ
(

m
√

H|J|T
)
. (A.71)

Combining eq. (A.68), (A.69), and (A.71), we have for any w† ∈ J and w† ≥ d/m,

E [RegretT (BOB algorithm)] =Õ

(
w†mBT (i)+

√
dmH√
w†

+m
√

H|J|T

)

=Õ

(
w†mBT +

√
dmT√
w†

+d
1
4 m

3
4 T

3
4

)
.

where we have plugged in the choices of H and J in eq. (2.28). Therefore, we have that

when BT ≥ d−1/4m1/4T 1/4, the BOB algorithm is able to converge to the optimal window

size i.e., w† = w* (≤ H), and the dynamic regret of the BOB algorithm is upper bounded as

RT (BOB algorithm) =Õ
(

d
1
3 m

2
3 B

1
3
T T

2
3 +d

1
4 m

3
4 T

3
4

)
= Õ

(
d

1
3 m

2
3 B

1
3
T T

2
3

)
; (A.72)
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while if BT < d−1/4m1/4T 1/4, the BOB algorithm converges to the window size w† = H,

and the dynamic regret is

RT (BOB algorithm) =Õ
(

d
1
2 m

1
2 BT T

1
2 +d

1
2 T

3
4

)
= Õ

(
d

1
4 m

3
4 T

3
4

)
. (A.73)

Combining the above two cases, we conclude the desired dynamic regret bound.

A.13 Supplementary Details for Section 3.6

When BT is known , we select wopt that minimizes the explicit regret bound in (A.29),

resulting in

wopt =

⌈
w̄

B2/3
T

⌉
, where w̄=

d1/3T 2/3

21/3L2/3

(
R
√

d ln(T +T 2L2/λ )+
√

λS
)2/3

log1/3
(

1+
T L2

dλ 2

)
.

(A.74)

When BT is not known, we select wobl = ⌈w̄⌉, which is independent of BT .
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Appendix B

Proofs for Chapter 3

B.1 Supplementary Details about MDPs

B.1.1 Linear Program Formulations

The optimal long term reward ρ*t is equal to the optimal value of the linear program P(rt , pt)

[147]. For a reward vector r and a transition distribution p, we define

P(r, p) : max ∑
s∈S ,a∈As

r(s,a)x(s,a) (B.1)

s.t. ∑
a∈As

x(s,a) = ∑
s′∈S ,a′∈As′

p(s|s′,a′)x(s′,a′) ∀s ∈S

∑
s∈S ,a∈As

x(s,a) = 1

x(s,a)≥ 0 ∀s ∈S ,a ∈As

Throughout our analysis, it is useful to consider the following dual formulation D(r, p) of

the optimization problem P(r, p):

D(r, p) : min ρ (B.2)

s.t. ρ + γ(s)≥ r(s,a)+ ∑
s′∈S

p(s′|s,a)γ(s′) ∀s ∈S ,a ∈As
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φ ,γ(s) free ∀s ∈S .

The following Lemma shows that any feasible solution to D(r, p) is essentially bounded if

the underlying MDP is communicating, which will be crucial in the subsequent analysis.

Lemma 40. Let (ρ,γ) be a feasible solution to the dual problem D(r, p), where (S ,A , p)

consititute a communicating MDP with diameter D. We have

max
s,s′∈S

{
γ(s)− γ(s′)

}
≤ 2D.

The Lemma is extracted from Section 4.3.1 of [108], and it is more general than [125],

which requires (ρ,γ) to be optimal instead of just feasible.

B.1.2 Proof of Proposition 18

We begin with invoking Lemma 40, which guarantees that for each t there is an optimal

solution (ρ*t ,γ
*
t ) of D(rt , pt) that satisfies 0≤ γ*t (s)≤ 2Dmax for all s ∈S . Recall for each

t:

Br,t = max
s∈S ,a∈As

|rt+1(s,a)− rt(s,a)| , Bp,t = max
s∈S ,a∈As

‖pt+1(·|s,a)− pt(·|s,a)‖1 . (B.3)

Consider two time indexes t ≤ τ . We first claim the following two inequalities:

ρ
*
τ ≥ ρ

*
t −

τ−1

∑
q=t

(
Br,q +2DmaxBp,q

)
(B.4)

ρ
*
t ≥ rτ(sτ ,aτ)+

[
∑

s′∈S
pτ(s′|sτ ,aτ)γ

*
t (s
′)− γ

*
t (sτ)

]
−

τ−1

∑
q=t

(
Br,q +2DmaxBp,q

)
. (B.5)

The proofs of inequalities (B.4, B.5) are deferred to the end. Now, combining (B.4, B.5)

gives

ρ
*
τ ≥ rτ(sτ ,aτ)+

[
∑

s′∈S
pτ(s′|sτ ,aτ)γ

*
t (s
′)− γ

*
t (sτ)

]
−2

τ−1

∑
q=t

(
Br,q +2DmaxBp,q

)
. (B.6)
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Let positive integer W ≤ T be a window size, which is specified later. Summing (B.6) over

τ = t, . . . , t +W −1 and taking expectation over {(sτ ,aτ)}t+W−1
τ=t yield

t−W+1

∑
τ=t

ρ
*
τ ≥ E

[
t−W+1

∑
τ=t

rτ(sτ ,aτ)

]
+E

[
t−W

∑
τ=t

pτ(s′|sτ ,aτ)γ
*
t (s
′)− γ

*
t (sτ+1)

]
(B.7)

+E

[
∑

s′∈S
pt−W+1(s′|st−W+1,at−W+1)γ

*
t (s
′)− γ

*
t (st)

]
−2

t−W+1

∑
τ=t

τ−1

∑
q=t

(
Br,q +2DmaxBp,q

)
(B.8)

≥ E

[
t−W+1

∑
τ=t

rτ(sτ ,aτ)

]
−2Dmax−2W

t+W−1

∑
q=t

(
Br,q +2DmaxBp,q

)
. (B.9)

To arrive at (B.9), note that the second expectation in (B.7), which is a telescoping sum, is

equal to 0, since sτ+1 is distributed as p(·|sτ ,aτ). In addition, we trivially lower bound the

first expectation in (B.8) by −2Dmax by applying Lemma 40. Next, consider partitioning

the horizon of T steps into intervals of W time steps, where last interval could have less

than W time steps. That is, the first interval is {1, . . . ,W}, the second is {W +1, . . . ,2W},

and so on. Applying the bound (B.9) on each interval and summing the resulting bounds

together give

T

∑
t=1

ρ
*
t ≥ E

[
T

∑
t=1

rt(st ,at)

]
−2⌈ T

W
⌉Dmax−2W

T

∑
t=1

(Br,t +2DmaxBp,t)

≥ E

[
T

∑
t=1

rt(st ,at)

]
− 4T Dmax

W
−2W (Br +2DmaxBp). (B.10)

Now we distinguish two cases:

∙ Case 1. T ≥ Br/Dmax +2Bp : In this case, we can choose W to be any integer in the

interval [
√

T/(Br +2DmaxBp),2
√

T/(Br +2DmaxBp)], and have

E

[
T

∑
t=1

rt(sΠ*
t ,aΠ*

t )

]
−

T

∑
t=1

ρ
*
t ≤ 4

√
Dmax(Br +2DmaxBp)T ;
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∙ Case 2. T < Br/Dmax +2Bp : In this case, one can trivially upper bound

E

[
T

∑
t=1

rt(st ,at)

]
−

T

∑
t=1

ρ
*
t ≤ E

[
T

∑
t=1

rt(st ,at)

]
≤ Br +2Bp.

Combining the two cases yields the desired inequality in the Proposition.

Finally, we go back to proving inequalities (B.4,B.5). These inequalities are clearly true

when t = τ , so we focus on the case t < τ .

Proving inequality (B.4). It suffices to show that the solution (ρ*τ + ∑
τ−1
q=t (Br,q +

2DmaxBp,q),γ
*
τ ) is feasible to the linear program D(rt , pt). To see the feasibility, it suf-

fices to check the constraint of D(rt , pt) for each state-action pair s,a:

ρ
*
τ +

τ−1

∑
q=t

(Br,q +2DmaxBp,q)

≥

[
rτ(s,a)+

τ−1

∑
q=t

Br,q

]
+

[
−γ
*
τ (s)+ ∑

s′∈S
pτ(s′|s,a)γ*τ (s′)+

τ−1

∑
q=t

2DmaxBp,q

]
.

The feasibility is proved by noting that

|rτ(s,a)− rt(s,a)| ≤
τ−1

∑
q=t

Br,q, (B.11)∣∣∣∣∣ ∑
s′∈S

pτ(s′|s,a)γ*τ (s′)− ∑
s′∈S

pt(s′|s,a)γ*τ (s′)

∣∣∣∣∣≤ ‖pτ(·|s,a)− pt(·|s,a)‖1 ‖γ
*
τ ‖∞

≤
τ−1

∑
q=t

Bp,q(2Dmax). (B.12)

Proving inequality (B.5). We have

ρ
*
t ≥ rt(sτ ,aτ)+ ∑

s′∈S
pt(s′|sτ ,aτ)γ

*
t (s
′)− γ

*
t (sτ)

≥ rτ(sτ ,aτ)+ ∑
s′∈S

pt(s′|sτ ,aτ)γ
*
t (s
′)− γ

*
t (sτ)−

τ−1

∑
s=t

Br,s (B.13)

≥ rτ(sτ ,aτ)+ ∑
s′∈S

pτ(s′|sτ ,aτ)γ
*
t (s
′)− γ

*
t (sτ)−

τ−1

∑
s=t

Br,s−2Dmax

τ−1

∑
s=t

Bp,s, (B.14)
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where steps (B.13, B.14) are by inequalities (B.11, B.12). Altogether, the Proposition is

proved. �

B.1.3 Extended Value Iteration (EVI) by [108]

Algorithm 9 EVI(Hr,H p;ε), mostly extracted from [108]

1: Initialize VI record u0 ∈ RS as u0(s) = 0 for all s ∈S .
2: for i = 0,1, . . . do
3: For each s ∈S , compute VI record ui+1(s) = maxa∈As ϒ̃i(s,a), where

ϒ̃i(s,a) = max
ṙ(s,a)∈Hr(s,a)

{ṙ(s,a)}+ max
ṗ∈H p(s,a)

{
∑

s′∈S
ui(s′)ṗ(s′)

}
.

4: Define stationary policy π̃ : S →As as π̃(s) = argmaxa∈As
ϒ̃i(s,a).

5: Define optimistic reward r̃ = {r̃(s,a)}s,a with r̃(s,a) ∈ argmax
ṙ(s,a)∈Hr(s,a)

{ṙ(s,a)}.

6: Define optimistic distribution p̃ = {p̃(·|s,a)}s,a with p̃(·|s,a) ∈
argmax
ṗ∈H p(s,a)

{∑s′∈S ui(s′)ṗ(s′)}.

7: Define optimistic dual variables ρ̃ = maxs∈S {ui+1(s)−ui(s)}, γ̃(s) = ui(s)−
mins∈S ui(s).

8: if maxs∈S {ui+1(s)−ui(s)}−mins∈S {ui+1(s)−ui(s)} ≤ ε then
9: Break the for loop.

10: end if
11: end for
12: Return policy π̃ .
13: Auxiliary output: optimistic reward and state transition distributions (r̃, p̃), optimistic

dual variables (ρ̃, γ̃).

We provide the pseudo-codes of EVI(Hr,Hp;ε) proposed by [108] in Algorithm 9.

By [108], the algorithm converges in finite time when the confidence region Hp contains a

transition distribution p such that (S ,A , p) constitutes a communicating MDP. The output

(π̃, r̃, p̃, ρ̃, γ̃) of the EVI(Hr,Hp;ε) satisfies the following two properties [108].

Property 1. The dual variables (ρ̃, γ̃) are optimistic, i.e.,

ρ̃ + γ̃(s)≥ max
ṙ(s,a)∈Hr(s,a)

{ṙ(s,a)}+ ∑
s′∈S

γ̃(s′) max
ṗ∈Hp(s,a)

{ṗ(s′|s,a)}.
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Property 2. For each state s ∈S , we have

r̃(s, π̃(s))≥ ρ̃ + γ̃(s)− ∑
s′∈S

p̃(s′|s, π̃(s))γ̃(s′)− ε.

Property 1 ensures the feasibility of the output dual variables (ρ̃, γ̃), with respect to the

dual program D(ṙ, ṗ) for any ṙ, ṗ in the confidence regions Hr,Hp. The feasibility facilitates

the bounding of maxs∈S γ̃(s), which turns out to be useful for bounding the regret arise

from switching among different stationary policies. To illustrate, suppose that Hp is so

large that it contains a transition distribution ṗ under which (S ,A , ṗ) has diameter D. By

Lemma 40 in Section B.1.1, we have 0≤maxs∈S γ̃(s)≤ 2D.

Property 2 ensures the near-optimality of the dual variables (ρ̃, γ̃) to the (r̃, p̃) opti-

mistically chosen from Hr,Hp. More precisely, the deterministic policy π̃ near-optimal

for the MDP with time homogeneous reward function r̃ and time homogeneous transition

distribution p̃, under which the policy π̃ achieves a long term average reward is at least

ρ̃*− ε .

B.2 Proof of Proposition 19

We distinguish two cases:

Case 1. D2
maxBp ≥ Br : Following the piecewise stationary lower bound construction for

the non-stationary bandit setting [36] and the non-stationary RL setting [137], we consider

the following stationary MDP M as specified in the proof of Theorem 5 of [108] for a total

of T ′ time periods, where there are a total of S/2+1 states {s0,s1,1, . . . ,s⌊S/2⌋,1}, ⌊S/2⌋×

⌊(A−1)/2⌋ actions for s0, and ⌊(A−1)/2⌋ actions for all sq,1. We denote As0 = As0(1)∪

. . .∪As0(⌊S/2⌋), where As0(q) with |As0(q)| = ⌊(A− 1)/2⌋ is the collection of actions

that transition from s0 to sq,1. For any actions a ∈As0(q) and a′ ∈Asq,1 , we set the rewards

to r(s0,a) = 0 and r(sq,1,a′) = 1 ∀q ∈ [⌊S/2⌋] deterministically. We also let p(sq,1|s0,a) =

p(s0|sq,1,a′) = 4/Dmax, p(s0|s0,a) = p(sq,1|sq,1,a′) = 1−4/Dmax for all a and all q except

for one q* and a* ∈ As0(q
*) such that p(sq,1|s0,a) = 4/Dmax +

√
S(A−1)/(25T ′Dmax).

Here, q* is first chosen uniformly random among all q ∈ [⌊S/2⌋] and then a* is then chosen
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uniformly from As0(q
*).

Lemma 41. Denoting ν1 = 4/Dmax and ν2 =
√

S(A−1)/(25T ′Dmax), the optimal reward

of M over a total of T ′ time period is at least ν1+ν2
2ν1+ν2

(T ′−1) for any starting state.

The proof of this lemma is provided in Section B.2.1.

Lemma 42. For any algorithm, any S,A ≥ 10,Dmax ≥ 20logA S, and T ′ ≥ DmaxAS, the

regret of this algorithm, which aims at collecting reward by interacting with M , is at least

Ω(
√

DmaxSAT ′).

This lemma can be easily shown by combining Lemma 41 and Theorem 5 of [108].

Now we consider partitioning T, the entire time horizon, into epochs of length T ′. This

results in a total of ⌈T/T ′⌉ epochs, each with T ′ steps (except possibly for the last one).

For each epoch, a new pair of (q*,a*) is sampled uniformly random. Then, even if the

DM knows this additional piece of information, she still has to suffer Ω(
√

DmaxSAT ′) (dy-

namic) regret per epoch according to Lemma 42. This is because the epochs are completely

independent. Therefore, the total dynamic regret is of order at least

Ω(T
√

DmaxSA/T ′). (B.15)

Now, each change of epoch would incur a 2
√

S(A−1)/(25T ′Dmax) consumption of

the variation budget Bp, which implies 2(⌈T/T ′⌉−1)
√

S(A−1)/(25T ′Dmax)≤ Bp. Con-

sequently, T ′ ≥ 5−2/3D−1/3
max S1/3(A−1)1/3B−2/3

p T 2/3. Taking the least possible value of T ′,

(B.15) becomes Ω(D2/3
maxB1/3

p S1/3A1/3T 2/3).

Case 2. Br ≥ D2
maxBp : For this case, we try to map the problem to a multi-armed bandits

problem with SA actions. We consider exactly the same state and action space as the previ-

ous case. The state transition probability between s0 and all sq,1’s are set deterministically

to 1. The reward of any action related to s0 is 0. Now, we can follow the same argument

as [36] to set the reward of the actions related to sq,1’s. This gives us a lower bound of

Ω(B1/3
r S1/3A1/3T 2/3) for any Br ∈ [S−1A−1,S−1A−1T ].
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B.2.1 Proof of Lemma 41

In computing the optimal reward, we only need to consider s0 and s1 (= sq*,1). Let Vt(s0)

and Vt(s1) be the optimal reward of going from time step t to T ′. One can easily formulate

the following recursive equations

VT ′+1(s0) =VT ′+1(s1) = 0, (B.16)

Vt(s0) = (1−ν1−ν2)Vt+1(s0)+(ν1 +ν2)Vt+1(s1), (B.17)

Vt(s1) = 1+ν1Vt+1(s0)+(1−ν1)Vt+1(s1). (B.18)

From (B.17) and (B.18), one can easily derive that

Vt−2(s0) = (2−2ν1−ν2)Vt−1(s0)+(2ν1 +ν2−1)Vt(s0)+ν1 +ν2,

Vt−2(s1) = (2−2ν1−ν2)Vt−1(s1)+(2ν1 +ν2−1)Vt(s1)+ν1 +ν2.

Re-arranging the terms

Vt−2(s0)+(2ν1 +ν2−1)Vt−1(s0) =Vt−1(s0)+(2ν1 +ν2−1)Vt(s0)+ν1 +ν2,

Vt−2(s1)+(2ν1 +ν2−1)Vt−1(s1) =Vt−1(s1)+(2ν1 +ν2−1)Vt(s1)+ν1 +ν2.

Taking the telescoping sum from t = 3 to T ′+1, we have

V1(s0)+(2ν1 +ν2−1)V2(s0) =VT ′(s0)+(2ν1 +ν2−1)VT ′+1(s0)+(T ′−1)(ν1 +ν2),

V1(s1)+(2ν1 +ν2−1)V2(s1) =VT ′(s1)+(2ν1 +ν2−1)VT ′+1(s1)+(T ′−1)(ν1 +ν2).

Through direction computation, one could easily verify that VT ′(s0)=VT ′+1(s0)=VT ′+1(s1)=

0 and VT ′(s1) = 1, which gives us

V1(s0)+(2ν1 +ν2−1)V2(s0) = (T ′−1)(ν1 +ν2),

V1(s1)+(2ν1 +ν2−1)V2(s1) = 1+(T ′−1)(ν1 +ν2).
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Note that the reward of M is non-negative and thus V1(s0) ≥ V2(s0), V1(s1) ≥ V2(s1).

Therefore,

V1(s0)≥
ν1 +ν2

2ν1 +ν2
(T ′−1), V1(s1)≥

ν1 +ν2

2ν1 +ν2
(T ′−1)+

1
2ν1 +ν2

,

which concludes the proof.

B.3 Proof of Proposition 20

The sequence p1, . . . , pW alternates between the following 2 instances p1, p2. Now, define

the common state space S = {1,2} and action collection A = {A1,A2}, where A1 =

{a1,a2}, {A2} = {b1,b2}. We assume all the state transitions are deterministic, and a

graphical illustration is presented in Fig. B-1. Clearly, we see that both instances have

diameter 1.

Figure B-1: Example MDPs. Since the transitions are deterministic, the probabilities are
omitted.

Now, consider the following two deterministic and stationary policies π1 : π1(1) =

a1,π
1(2) = b2, and π2 : π2(1) = a2,π

2(2) = b1. Since the MDP is deterministic, we have

p̂W+1 = p̄W+1.

In the following, we construct a trajectory where the DM alternates between policies

π1,π2 during time {1, . . . ,W} while the underlying transition distribution alternates be-

tween p1, p2. In the construction, the DM is almost always at the self-loop at state 1 (or

2) throughout the horizon, no matter what action a1,a2 (or b1,b2) she takes. Consequently,

it will trick the DM into thinking that p̂W+1(1|1,ai) ≈ 1 for each i ∈ {1,2}, and likewise

p̂W+1(2|2,bi) ≈ 1 for each i ∈ {1,2}. Altogether, this will lead the DM to conclude that
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(S ,A , p̂W+1) constitute a high diameter MDP, since the probability of transiting from

state 1 to 2 (and 2 to 1) are close to 0.

The construction is detailed as follows. Let W = 4τ . In addition, let the state transition

distributions be

p1 = . . .= pτ = p1, pτ+1 = . . .= p2τ = p2, p2τ+1 = . . .= p3τ = p1, p3τ+1 = . . .= p4τ = p2.

The DM starts at state 1. She follows policy π1 from time 1 to time 2τ , and then policy π2

from 2τ +1 to 4τ .

Under the specified MDP models and policies, it can be readily verified that the DM

takes action a1 from time 1 to τ +1, action b2 from time τ +2 to 2τ , action b1 from time

2τ + 1 to 3τ + 1, and action a2 from time 3τ + 2 to 4τ . As a result, the DM is at state 1

from time 1 to τ + 1, state 2 from time τ + 2 to 3τ + 1, and eventually state 1 from time

3τ +2 to 4τ as depicted in Fig. B-2. We thus have:

Figure B-2: Illustration of the latent MDPs, policies, and state visits.

p̂W+1(1|1,a1) =
τ

τ +1
, p̂W+1(2|1,a1) =

1
τ +1

, p̂W+1(1|1,a2) = 1, p̂W+1(2|1,a2) = 0

p̂W+1(2|2,b1) =
τ

τ +1
, p̂W+1(1|2,b1) =

1
τ +1

, p̂W+1(2|2,b2) = 1, p̂W+1(1|2,b2) = 0,

and It can be readily verified that the diameter of (S ,A , p̂W+1) is τ +1 = Θ(W ). Finally,

for the confidence region Hp,W+1(0) = {Hp,W+1(s,a;0)}s,a constructed without confidence

widening, for any p̃ ∈ Hp,W+1(0) we have

p̃(2|1,a1) = p̃(1|2,b1) = O

(√
logW
τ +1

)
, p̃(2|1,a2) = p̃(1|2,b2) = O

(√
logW
τ−1

)
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respectively. Since the stochastic confidence radii Θ

(√
logW
τ+1

)
and Θ

(√
logW
τ−1

)
dominate

the sample mean 1
τ+1 and 0. Therefore, for any p̃ ∈ Hp,W+1(0), the diameter of the MDP

constructed by (S ,A , p̃) is at least Ω

(√
W

logW

)
.

B.4 Proof of Theorem 21

Recall

Er = {r̄t(s,a) ∈ Hr,t(s,a) ∀s,a, t}, Ep = { p̄t(·|s,a) ∈ Hp,t(s,a;0) ∀s,a, t},

we first show that the events Er and Ep hold with probability at least 1−δ .

Lemma 43. We have Pr[Er]≥ 1−δ/2, Pr[Ep]≥ 1−δ/2.

The proof of Lemma 43 is provided in Section B.5. We then define the following

variation measure for each t in an episode m:

varr,t =
t−1

∑
q=(τ(m)−W )∨1

Br,q, varp,t =
t−1

∑
q=(τ(m)−W )∨1

Bp,q.

With these notations, we provide an upper bound on the difference between ρ*t and SWUCRL2-CW

algorithm’s reward at a time step t of episode m when Hp,τ(m)(η) contains a state transition

distribution with small diameter.

Proposition 44. Consider an episode m, condition on events Er,Ep, and suppose that there

exists a state transition distribution p̊ ∈ Hp,τ(m)(η) such that the diameter of (S ,A , p̊) at

most D. Then, for every t ∈ {τ(m), . . . ,τ(m+1)−1} in episode m, we have

ρ
*
t − rt(st ,at)≤

[
∑

s′∈S
pt(s′|st ,at)γ̃τ(m)(s

′)

]
− γ̃τ(m)(st) (B.19)

+
1√

τ(m)
+[2varr,t +4D(varp,t +η)]+

[
2rad-r,τ(m)(st ,at)+4D · rad-p,τ(m)(s,a)

]
.

(B.20)

The proof of Proposition 44 is provided in Section B.6.
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To facilitate our discussion, we denote M(T ) as the total number of episodes. By abus-

ing the notation we, let τ(M(T )+1)−1 = T . Episode M(T ), containing the final round T ,

is interrupted and the algorithm is forced to terminate as the end of time T is reached. We

can now rewrite the difference between the quantity ∑
T
t=1 ρ*t and the expected cumulative

reward of the SWUCRL2-CW algorithm as the sum of difference from each episode:

T

∑
t=1

(ρ*t − rt(st ,at)) =
M(T )

∑
m=1

τ(m+1)−1

∑
t=τ(m)

(ρ*t − rt(st ,at)) (B.21)

To proceed, we define the set

U = {m ∈ [M(T )] : pτ(m)(·|s,a) ∈ Hp,τ(m)(s,a;η) ∀(s,a) ∈S ×As}.

For each episode m ∈ [M(T )], we distinguish two cases:

∙ Case 1. m ∈ U : Under this situation, we apply Proposition 44 to bound the dif-

ference during the episode, using the fact that pτ(m) satisfies the assumptions of the

proposition with D = Dτ(m) ≤ Dmax.

∙ Case 2. m∈ [M(T )]∖U : In this case, we trivially upper bound the difference of each

round in episode m by 1.

For case 1, we bound the difference during episode m by summing the error terms in

(B.19, B.20) across the rounds t ∈ [τ(m),τ(m+1)−1] in the episode. The term (B.19) ac-

counts for the error by switching policies. In (B.20), the terms rad-r,τ(m), rad-p,τ(m) accounts

for the estimation errors due to stochastic variations, and the term varr,t ,varp,t accounts for

the estimation error due to non-stationarity.

For case 2, we need an upper bound on ∑m∈[M(T )]∖U ∑
τ(m+1)−1
t=τ(m)

1, the total number of

rounds that belong to an episode in [M(T )] ∖U . The analysis is challenging, since the

length of each episode may vary, and one can only guarantee that the length is≤W . A first

attempt could be to upper bound as ∑m∈[M(T )]∖U ∑
τ(m+1)−1
t=τ(m)

1 ≤W ∑m∈[M(T )]∖U 1, but the

resulting bound appears too loose to provide any meaningful regret bound. Indeed, there

could be double counting, as the starting time steps for a pair of episodes in case 2 might

210



Figure B-3: Both episodes mi and mi+4 belong to QT (and thus Q̃T ) because pτ(mi) /∈
Hp,τ(mi)(η) and pτ(mi+4) /∈ Hp,τ(mi+4)(η). mi+1 is added to Q̃T (but not QT ) because
τ(mi+1)− τ(mi) ∈ [0,W ]. mi+2 and mi+3 belong to neither of QT nor Q̃T as pτ(mi+2) ∈
Hp,τ(mi+2)(η) and pτ(mi+3) ∈ Hp,τ(mi+3)(η).

not even be W rounds apart!

To avoid the trap of double counting, we consider a set QT ⊆ [M(T )] ∖U where the

start times of the episodes are sufficiently far apart, and relate the cardinality of QT to

∑m∈[M(T )]∖U ∑
τ(m+1)−1
t=τ(m)

1. The set QT ⊆ [M(T )] is constructed sequentially, by examining

all episodes m = 1, . . . ,M(T ) in the time order. At the start, we initialize QT = /0. For each

m = 1, . . . ,M(T ), we perform the following. If episode m satisfies both criteria:

1. There exists some s ∈S and a ∈As such that pτ(m)(·|s,a) /∈ Hp,τ(m)(s,a;η);

2. For every m′ ∈ QT , τ(m)− τ(m′)>W,

then we add m into QT . Afterwards, we move to the next episode index m+ 1. The pro-

cess terminates once we arrive at episode M(T ) + 1. The construction ensures that, for

each episode m ∈ [M(T )], if τ(m)− τ(m′) /∈ [0,W ] for all m′ ∈ QT , then ∀s ∈ S ∀a ∈

As pτ(m)(·|s,a) ∈ Hp,τ(m)(s,a); otherwise, m would have been added into QT .

We further construct a set Q̃T to include all elements in QT and every episode index m

such that there exists m′ ∈ QT with τ(m)− τ(m′) ∈ [0,W ]. By doing so, we can prove that

every episode m ∈ [M(T )]∖ Q̃T satisfies pτ(m)(·|s,a) ∈ Hp,τ(m)(s,a) ∀s ∈S ∀a ∈As. The

procedures for building Q̃T (initialized to QT ) are described as follows: for every episode

index m ∈ [M(T )], if there exists m′ ∈ QT , such that τ(m)− τ(m′) ∈ [0,W ], then we add m

to Q̃T . Formally,

Q̃T = QT ∪
{

m ∈ [M(T )] : ∃m′ ∈ QT τ(m)− τ(m′) ∈ [0,W ]
}
.

We can formalize the properties of QT and Q̃T as follows.

Lemma 45. Conditioned on Ep, |QT | ≤ Bp/η .

211



Lemma 46. For any episode m /∈ Q̃T , we have pτ(m)(·|s,a) ∈Hp,τ(m)(s,a;η) for all s ∈S

and a ∈As.

The proofs of Lemmas 45 and 46 are presented in Sections B.7 and B.8, respectively.

Together with eqn. (B.21) and Proposition 18, we can further decompose the dynamic

regret of the SWUCRL2-CW algorithm as

Dyn-RegT (SWUCRL2-CW)

=
T

∑
t=1

(
E[rt(sΠ*

t ,aΠ*
t )]−E[rt(sΠ

t ,a
Π
t )]
)

=
T

∑
t=1

E[rt(sΠ*
t ,aΠ*

t )]−
T

∑
t=1

ρ
*
t +

T

∑
t=1

ρ
*
t −

T

∑
t=1

E[rt(sΠ
t ,a

Π
t )]

=
T

∑
t=1

E[rt(sΠ*
t ,aΠ*

t )]−
T

∑
t=1

ρ
*
t + ∑

m∈Q̃T

τ(m+1)−1

∑
t=τ(m)

(ρ*t − rt(st ,at))

+ ∑
m∈[MT ]∖Q̃T

τ(m+1)−1

∑
t=τ(m)

(ρ*t − rt(st ,at))

≤4
√

Dmax(Br +2DmaxBp)T +(Br +2Bp)

+ ∑
m∈Q̃T

τ(m+1)−1

∑
t=τ(m)

(ρ*t − rt(st ,at)) (♠)

+ ∑
m∈[MT ]∖Q̃T

τ(m+1)−1

∑
t=τ(m)

{[
∑

s′∈S
pt(s′|st ,at)γ̃τ(m)(s

′)− γ̃τ(m)(st)

]
+

1√
τ(m)

}
(♣)

+ ∑
m∈[MT ]∖Q̃T

τ(m+1)−1

∑
t=τ(m)

(2varr,t +4Dmax · varp,t +2Dmaxη) (♦)

+ ∑
m∈[MT ]∖Q̃T

τ(m+1)−1

∑
t=τ(m)

[
2rad-r,τ(m)(st ,at)+4Dmax · rad-p,τ(m)(st ,at)

]
, (♥)

where the last step makes use of Lemma 46 and Proposition 44. We accomplish the

promised dynamic regret bound by the following four Lemmas that bound the dynamic

regret terms (♠, ♣, ♦, ♥).
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Lemma 47. Conditioned on Ep, we have

(♠) = O
(

BpW
η

)
.

Lemma 48. Conditioned on events Er,Ep, we have with probability at least 1−O(δ ) that

(♣) = Õ(Dmax[M(T )+
√

T ]) = Õ
(

Dmax

[
SAT
W

+
√

T
])

.

Lemma 49. With certainty,

(♦) = O((Br +DmaxBp)W +DmaxT η) .

Lemma 50. With certainty, we have

(♥) = Õ

(
DmaxS

√
AT√

W

)
.

The proofs of Lemmas 47, 48, 49, and 50 are presented in Sections B.9, B.10, B.11,

and B.12, respectively. Putting all these pieces together, we have the dynamic regret of the

SWUCRL2-CW algorithm is upper bounded as

Õ

(
BpW

η
+BrW +Dmax

[
BpW +

S
√

AT√
W

+T η +
SAT
W

+
√

T

]
+
√

Dmax(Br +2DmaxBp)T

)
,

and by setting W and η accordingly, we can conclude the proof.

B.5 Proof of Lemma 43

We employ the self-normalizing concentration inequallity [3]. The following inequality is

extracted from Theorem 1 in [3], restricted to the case when d = 1.

Proposition 51 ([3]). Let {Fq}T
q=1 be a filtration. Let {ξq}T

q=1 be a real-valued stochastic

process, such that ξq is Fq-measurable, and ξq is conditionally R-sub-Gaussian, i.e. for

all λ ≥ 0, it holds that E[exp(λξq)|Fq−1]≤ exp(λ 2R2/2). Let {Yq}T
q=1 be a non-negative
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real-valued stochastic process such that Yq is Fq−1-measurable. For any δ ′ ∈ (0,1), it

holds that

Pr

(
∑

t
q=1 ξqYq

max{1,∑t
q=1Y 2

q }
≤ 2R

√
log(T/δ ′)

max{1,∑t
q=1Y 2

q }
for all t ∈ [T ]

)
≥ 1−δ

′.

In particular, if {Yq}T
q=1 be a {0,1}-valued stochastic process, then for any δ ′ ∈ (0,1), it

holds that

Pr

(
∑

t
q=1 ξqYq

max{1,∑t
q=1Yq}

≤ 2R

√
log(T/δ ′)

max{1,∑t
q=1Yq}

for all t ∈ [T ]

)
≥ 1−δ

′. (B.22)

The Lemma is proved by applying Proposition 51 with suiatable choices of

F T
q=1,{ξq}T

q=1,{Yq}T
q=1,δ

. We divide the proof into two parts.

B.5.1 Proving Pr[Er]≥ 1−δ/2

It suffices to prove that, for any fixed s ∈S ,a ∈As, t ∈ [T ], it holds that

Pr
(∣∣r̂(s,a)− r̄t(s,a)

∣∣≤ rad-r,t(s,a)
)

=Pr

(∣∣∣∣∣ 1
N+

t (s,a)

t−1

∑
q=(τ(m)−W )∨1

[
Rq(s,a)− rq(s,a)

]
·1(sq = s,aq = a)

∣∣∣∣∣≤ 2

√
log(2SAT 2/δ )

N+
t (s,a)

)

≥1− δ

2SAT
. (B.23)

since then Pr[Er] ≥ 1− δ/2 follows from the union bound over all s ∈ S ,a ∈ As, t ∈

[T ]. Now, the trajectory of the online algorithm is expressed as {sq,aq,Rq}T
q=1. Inequality

(B.23) directly follows from Proposition 51, with {Fq}T
q=1,{ξq}T

q=1,{Yq}T
q=1,δ defined as

Fq = {(s`,a`,R`)}q
`=1∪{(sq+1,aq+1)},

ξq = Rq(s,a)− rq(s,a),
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Yq = 1
(
sq = s,aq = a,((t−W )∨1)≤ q≤ t−1

)
,

δ
′ =

δ

2SAT
.

Each ξq is conditionally 2-sub-Gaussian, since −1≤ ξq ≤ 1 with certainty. Altogether, the

required inequality is shown.

B.5.2 Proving Pr[Ep]≥ 1−δ/2

We start by noting that, for two probability distributions p,{p(s)}s∈S , p′ = {p′(s)}s∈S on

S , it holds that ∥∥p− p′
∥∥

1 = max
θ∈{−1,1}S

θ(s) · (p(s)− p′(s)).

Consequently, to show Pr[Ep] ≥ 1−δ/2, it suffices to show that, for any fixed s ∈S ,a ∈

As, t ∈ [T ],θ ∈ {−1,1}S , it holds that

Pr

(
∑

s′∈S
θ(s) ·

(
p̂t(s′|s,a)− p̄t(s′|s,a)

)
≤ rad-p,t(s,a)

)

≤Pr

(
1

N+
t (s,a)

t−1

∑
q=(τ(m)−W )∨1

[
∑

s′∈S
θ(s′)1(sq = s,aq = a,sq+1 = s′)

]

−

[
∑

s′∈S
θ(s′)pq(s′|s,a) ·1(sq = s,aq = a)

]
≤ 2

√
log(2SAT 22S/δ )

N+
t (s,a)

)

≥1− δ

2SAT 2S , (B.24)

since then the required inequality follows from a union bound over all s ∈S ,a ∈ As, t ∈

[T ],θ ∈ {−1.1}S . Similar to the casea of Er, (B.24) follows from Proposition 51, with

{Fq}T
q=1,{ξq}T

q=1,{Yq}T
q=1,δ defined as

Fq = {(s`,a`)}q+1
`=1 ,

ξq =

[
∑

s′∈S
θ(s′)1(sq = s,aq = a,sq+1 = s′)

]
−

[
∑

s′∈S
θ(s′)pq(s′|s,a)

]
,

Yq = 1
(
sq = s,aq = a,((t−W )∨1)≤ q≤ t−1

)
,
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δ
′ =

δ

2SAT 2S .

Each ξq is conditionally 2-sub-Gaussian, since −1≤ ξq ≤ 1 with certainty. Altogether, the

required inequality is shown.

B.6 Proof of Proposition 44

In this section, we prove Proposition 44. Throughout the section, we impose the assump-

tions stated by the Proposition. That is, the events Er,Ep hold, and there exists p̊ with (1)

p̊∈Hp,τ(m)(η), (2) (S ,A , p̊) has diameter at most D. We begin by recalling the following

notations:

Br,t = max
s∈S ,a∈As

|rt+1(s,a)− rt(s,a)|, Bp,t = max
s∈S ,a∈As

‖pt+1(·|s,a)− pt(·|s,a)‖1 ,

varr,t =
t−1

∑
q=τ(m)−W

Br,q, varp,t =
t−1

∑
q=τ(m)−W

Bp,q.

We then need the following auxiliary lemmas

Lemma 52. Let t be in episode m. For every state-action pair (s,a), we have

∣∣rt(s,a)− r̄τ(m)(s,a)
∣∣≤ varr,t ,

∥∥pt(·|s,a)− p̄τ(m)(·|s,a)
∥∥

1 ≤ varp,t

Lemma 53. Let t be in episode m. We have

ρ̃τ(m) ≥ ρ
*
t − varr,t−2D · varp,t .

Lemma 54. Let t be in episode m. For every state-action pair (s,a), we have∣∣∣∣∣ ∑
s′∈S

p̃τ(m)(s
′|s,a)γ̃τ(m)(s

′)− ∑
s′∈S

pt(s′|s,a)γ̃τ(m)(s
′)

∣∣∣∣∣≤ 2D
[
varp,t +2rad-p,τ(m)(s,a)+η

]
.

Lemmas 52, 53, 54 are proved in Sections B.6.1, B.6.2, and B.6.3, respectively.
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B.6.1 Proof of Lemma 52

We first provide the bound for rewards:

∣∣rt(s,a)− r̄τ(m)(s,a)
∣∣≤ ∣∣rt(s,a)− rτ(m)(s,a)

∣∣+ ∣∣rτ(m)(s,a)− r̄τ(m)(s,a)
∣∣

≤
t−1

∑
q=τ(m)

∣∣rq+1(s,a)− rq(s,a)
∣∣+ 1

W

W

∑
w=1

∣∣rτ(m)(s,a)− rτ(m)−w(s,a)
∣∣ .

By the definition of Br,q, we have

t−1

∑
q=τ(m)

∣∣rq+1(s,a)− rq(s,a)
∣∣≤ t−1

∑
q=τ(m)

Br,q,

and

1
W

W

∑
w=1

∣∣rτ(m)(s,a)− rτ(m)−w(s,a)
∣∣≤ 1

W

W

∑
w=1

w

∑
i=1

∣∣rτ(m)−i+1(s,a)− rτ(m)−i(s,a)
∣∣

≤ 1
W

W

∑
w=1

W

∑
i=1

∣∣rτ(m)−i+1(s,a)− rτ(m)−i(s,a)
∣∣

=
W

∑
i=1

∣∣rτ(m)−i+1(s,a)− rτ(m)−i(s,a)
∣∣≤ W

∑
i=1

Br,τ(m)−i.

Next, we provide a similar analysis on the transition distribution.

∥∥pt(s,a)− p̄τ(m)(s,a)
∥∥

1 ≤
∥∥pt(s,a)− pτ(m)(s,a)

∥∥
1 +
∥∥pτ(m)(s,a)− p̄τ(m)(s,a)

∥∥
1

≤
t−1

∑
q=τ(m)

∥∥pq+1(s,a)− pq(s,a)
∥∥

1 +
1

W

W

∑
w=1

∥∥pτ(m)(s,a)− pτ(m)−w(s,a)
∥∥

1 .

By the definition of Bp,q, we have

t−1

∑
q=τ(m)

∥∥pq+1(s,a)− pq(s,a)
∥∥

1 ≤
t−1

∑
q=τ(m)

Bp,q,
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and

1
W

W

∑
w=1

∥∥pτ(m)(s,a)− pτ(m)−w(s,a)
∥∥

1 ≤
1

W

W

∑
w=1

w

∑
i=1

∥∥pτ(m)−i+1(s,a)− pτ(m)−i(s,a)
∥∥

1

≤ 1
W

W

∑
w=1

W

∑
i=1

∥∥pτ(m)−i+1(s,a)− pτ(m)−i(s,a)
∥∥

1

=
W

∑
i=1

∥∥pτ(m)−i+1(s,a)− pτ(m)−i(s,a)
∥∥

1 ≤
W

∑
i=1

Bp,τ(m)−i.

Altogether, the lemma is shown.

B.6.2 Proof of Lemma 53

We first demonstrate two immediate consequences about the dual solution (ρ̃τ(m), γ̃τ(m)) by

the Proposition’s assumptions:

0≤ γ̃τ(m)(s)≤ 2D for all s ∈S ,

(B.25)

ρ̃τ(m)+ γ̃τ(m)(s)≥ r̄τ(m)(s,a)+ ∑
s′∈S

γ̃τ(m)(s
′)p̄τ(m)(s

′|s,a) for all s ∈S ,a ∈As.

(B.26)

To see inequality (B.25), first observe that

ρ̃τ(m)+ γ̃τ(m)(s)≥ max
ṙ(s,a)∈Hr,τ(m)(s,a)

{ṙ(s,a)}+ ∑
s′∈S

γ̃τ(m)(s
′) max

ṗ∈Hp,τ(m)(s,a;η)
{ṗ(s′|s,a)}

(B.27)

≥ max
ṙ(s,a)∈Hr,τ(m)(s,a)

{ṙ(s,a)}+ ∑
s′∈S

γ̃τ(m)(s
′)p̊(s′|s,a). (B.28)

Step (B.27) is by Property 1 of the output from EVI, which is applied with confidence re-

gions Hr,τ(m),Hp,τ(m)(η). Step (B.28) is because of the assumption that p̊ ∈ Hp,τ(m)(η).

Altogether, the solution (ρ̃τ(m), γ̃τ(m)) is feasible to D(ṙ, p̊) for any ṙ ∈ Hr,τ(m). Now,

by Lemma 40, we have maxs,s′∈S |γ̃τ(m)(s)− γ̃τ(m)(s′)| ≤ 2D. Finally, inequality (B.25)

follows from the fact that the bias vector γ̃τ(m) returned by EVI is component-wise non-
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negative, and there exists s ∈S such that γ̃τ(m) = 0.

To see inequality (B.26), observe that

ρ̃τ(m)+ γ̃τ(m)(s)≥ max
ṙ(s,a)∈Hr,τ(m)(s,a)

{ṙ(s,a)}+ ∑
s′∈S

γ̃τ(m)(s
′) max

ṗ∈Hp,τ(m)(s,a;η)
{ṗ(s′|s,a)}

(B.29)

≥ r̄τ(m)(s,a)+ ∑
s′∈S

γ̃τ(m)(s
′)p̄τ(m)(s

′|s,a). (B.30)

Step (B.29) is again by Property 1 of the output from EVI, and step (B.30) is by the as-

sumptions that r̄τ(m) ∈ Hr,τ(m), and p̄τ(m) ∈ Hp,τ(m)(0)⊂ Hp,τ(m)(η).

Now, we claim that (ρ̃τ(m)+ varr,t + 2D · varp,t , γ̃τ(m)) is a feasible solution to the tth

period dual problem D(rt , pt), which immediately implies the Lemma. To demonstrate the

claim, for every state-action pair (s,a) we have

r̄τ(m)(s,a)≥ rt(s,a)− varr,t (B.31)

∑
s′∈S

γ̃τ(m)(s
′)pτ(m)(s

′|s,a)≥ ∑
s′∈S

γ̃τ(m)(s
′)pt(s′|s,a)−

∥∥γ̃τ(m)

∥∥
∞

∥∥pt(·|s,a)− p̄τ(m)(·|s,a)
∥∥

1

≥ ∑
s′∈S

γ̃τ(m)(s
′)pt(s′|s,a)−2D · varp,t , . (B.32)

Inequality (B.31) is by Lemma 52 on the rewards. Step (B.32) is by inequality (B.25), and

by Lemma 52 which shows ‖pt(·|s,a)− p̄τ(m)(·|s,a)‖1 ≤ varp,t . Altogether, putting (B.31),

(B.32) to inequality (B.26), our claim is shown, i.e., for all s ∈S and a ∈As,

ρ̃τ(m)+ varr,t +2D · varp,t + γ̃τ(m)(s)≥ rt(s,a)+ ∑
s′∈S

γ̃τ(m)(s
′)pt(s′|s,a).

Hence, the lemma is proved.

B.6.3 Proof of Lemma 54

We have∣∣∣∣∣ ∑
s′∈S

[
p̃τ(m)(s

′|s,a)− pt(s′|s,a)
]

γ̃τ(m)(s
′)

∣∣∣∣∣
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≤
∥∥γ̃τ(m)

∥∥
∞︸ ︷︷ ︸

(a)

·

∥∥p̃τ(m)(·|s,a)− p̄τ(m)(·|s,a)
∥∥

1︸ ︷︷ ︸
(b)

+
∥∥p̄τ(m)(·|s,a)− pt(·|s,a)

∥∥
1︸ ︷︷ ︸

(c)

 . (B.33)

In step (B.33), we know that

∙ (a)≤ 2D by inequality (B.25),

∙ (b)≤ 2rad-p,τ(m)(s,a)+η , by the facts that p̃τ(m)(·|s,a)∈Hp,τ(m)(s,a;η) and p̄τ(m)(·|s,a)∈

Hp,τ(m)(s,a;0),

∙ (c)≤ varp,t by Lemma 52 on the bound on p.

Altogether, the Lemma is proved.

B.6.4 Finalizing the Proof

Now, we have

rt(st ,at)

≥r̄τ(m)(st ,at)− varr,t (B.34)

≥r̃τ(m)(st ,at)− varr,t−2 · rad-r,τ(m)(st ,at) (B.35)

≥ρ̃τ(m)+ γ̃τ(m)(st)−

[
∑

s′∈S
p̃τ(m)(s

′|st ,at)γ̃τ(m)(s
′)

]
− 1√

τ(m)

− varr,t−2 · rad-r,τ(m)(st ,at) (B.36)

≥ρ
*
t + γ̃τ(m)(st)−

[
∑

s′∈S
pt(s′|st ,at)γ̃τ(m)(s

′)

]
− 1√

τ(m)

−2
[
varr,t + rad-r,τ(m)(st ,at)

]
−2D

[
2 · varp,t +2 · rad-p,τ(m)(s,a)+η

]
. (B.37)

Step (B.34) is by Lemma 52 on t. Step (B.35) is by conditioning that event Er holds. Step

(B.36) is by Property 2 for the output of EVI. In step (B.37), we upper bound ρ̃τ(m) by

Lemma 53 and we upper bound ∑s′∈S p̃τ(m)(s′|st ,at)γ̃τ(m)(s′) by Lemma 54. Rearranging

gives the Proposition.
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B.7 Proof of Lemma 45

We first claim that, for every episode m ∈ QT , there exists some state-action pair (s,a) and

some time step tm ∈ [(τ(m)−W ∨1),τ(m)−1] such that

‖pτ(m)(·|s,a)− ptm(·|s,a)‖1 > η . (B.38)

For contradiction sake, suppose the otherwise, that is, ‖pτ(m)(·|s,a)− pt(·|s,a)‖1 ≤ η for

every state-action pair s,a and every time step t ∈ [(τ(m)−W ∨ 1),τ(m)− 1]. For each

state-action pair (s,a), consider the following cases on Nτ(m)(s,a) = ∑
τ(m)−1
q=(τ(m)−W )∨1 1(sq =

s,aq = a):

∙ Case 1: Nτ(m)(s,a) = 0. Then p̂τ(m)(·|s,a) = 0S , and clearly we have

‖pτ(m)(·|s,a)− p̂τ(m)(·|s,a)‖1 = 1 < rad-pτ(m)(s,a)< rad-pτ(m)(s,a)+η .

∙ Case 2: Nτ(m)(s,a)> 0. Then we have the following inequalities:

‖pτ(m)(·|s,a)− p̄τ(m)(·|s,a)‖1

=

∥∥∥∥∥ 1
N+

τ(m)
(s,a)

τ(m)−1

∑
q=(τ(m)−W )∨1

[
pτ(m)(·|s,a)− pq(·|s,a)

]
·1(sq = s,aq = a)

∥∥∥∥∥
1

(B.39)

≤ 1
N+

τ(m)
(s,a)

τ(m)−1

∑
q=(τ(m)−W )∨1

∥∥pτ(m)(·|s,a)− pq(·|s,a)
∥∥

1 ·1(sq = s,aq = a)≤ η .

(B.40)

Step (B.39) is by the definition of p̄τ(m)(·|s,a), and step (B.40) is by the triangle

inequality. Consequently, we have

‖pτ(m)(·|s,a)− p̂τ(m)(·|s,a)‖1

≤‖ p̄τ(m)(·|s,a)− p̂τ(m)(·|s,a)‖1 +‖pτ(m)(·|s,a)− p̄τ(m)(·|s,a)‖1 (B.41)

≤rad-pτ(m)(s,a)+η .
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Step (B.41) is true since we condition on the event Ep,

Combining the two cases, we have shown that pτ(m)(·|s,a) ∈ Hp,τ(m)(s,a,η) for all s ∈

S ,a ∈ As, contradicting to the fact that m ∈ QT . Altogether, our claim on inequality

(B.38) is established.

Finally, we provide an upper bound to |QT | using (B.38):

Bp = ∑
t∈[T−1]

max
s∈S ,a∈As

{‖pt+1(·|s,a)− pt(·|s,a)‖1}

≥ ∑
m∈QT

τ(m)−1

∑
q=tm

max
s∈S ,a∈As

{∥∥pq+1(·|s,a)− pq(·|s,a)
∥∥

1

}
(B.42)

≥ ∑
m∈QT

max
s∈S ,a∈As

{∥∥∥∥∥τ(m)−1

∑
q=tm

(pq+1(·|s,a)− pq(·|s,a))

∥∥∥∥∥
1

}
(B.43)

>|QT |η . (B.44)

Step (B.42) follows by the second criterion of the construction of QT , which ensures that

for distinct m,m′ ∈ QT , the time intervals [tm,τ(m)], [tm′,τ(m′)] are disjoint. Step (B.43)

is by applying the triangle inequality, for each m ∈ QT , on the state-action pair (s,a) that

maximizes the term ‖∑
τ(m)−1
q=tm (pq+1(·|s,a)− pq(·|s,a))‖1 = ‖(pτ(m)(·|s,a)− ptm(·|s,a))‖1.

Step (B.44) is by applying the claimed inequality (B.38) on each m ∈ QT . Altogether, the

Lemma is proved. �

B.8 Proof of Lemma 46

We prove by contradiction. Suppose there exists an episode m /∈ Q̃T , a state s ∈S , and an

action a ∈ As such that pτ(m)(·|s,a) /∈ Hp,τ(m)(s,a;η), then m should have been added to

QT . To see this, we first note that episode m trivially satisfies criterion 1 in the construction

of QT . Moreover, at the time when m is examined, we know that any m′ has been added

to QT should satisfy τ(m)− τ(m′) > W as otherwise m would have been added to Q̃T .

Therefore, we have prove m ∈ QT ⊆ Q̃T , which is clearly a contradiction.
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B.9 Proof of Lemma 47

Denote QT = {m1, . . . ,m|QT |}. By construction, for every element m ∈ Q̃T , there exists an

unique m′ ∈ QT such that

τ(m)− τ(m′) ∈ [0,W ]. (B.45)

We can thereby partition the elements of Q̃T into |QT | disjoint subsets Q̃T (m1), . . . , Q̃T (m|QT |)

such that

1. Each element m ∈ Q̃T belongs to exactly one Q̃T (m′) for some m′ ∈ QT .

2. Each element m ∈ Q̃T (m′) satisfies τ(m)− τ(m′) ∈ [0,W ].

We bound (♠) from above as

∑
m′∈QT

∑
m∈Q̃T (m′)

τ(m+1)−1

∑
t=τ(m)

(ρ*t − rt(st ,at))

≤ ∑
m′∈QT

∑
m∈Q̃T (m′)

τ(m+1)−1

∑
t=τ(m)

1 (B.46)

= ∑
m′∈QT

∑
m∈Q̃T (m′)

(τ(m+1)− τ(m))

≤ ∑
m′∈QT

(
max

m∈Q̃T (m′)
τ(m+1)− τ(m′)

)
(B.47)

= ∑
m′∈QT

[
max

m∈Q̃T (m′)
(τ(m+1)− τ(m)+ τ(m))− τ(m′)

]

≤ ∑
m′∈QT

[
max

m∈Q̃T (m′)
(τ(m+1)− τ(m))+ max

m∈Q̃T (m′)
τ(m)− τ(m′)

]
≤ ∑

m′∈QT

[W +W ] (B.48)

=2W |QT |

≤2BpW/η .

Here, inequality (B.46) holds by boundedness of rewards, inequality (B.47) follows from
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the fact that episodes are mutually disjoint, inequality (B.48) makes the observations that

each episode can last for at most W time steps (imposed by the SWUCRL2-CW algorithm) as

well as criterion 2 of the construction of Q̃T (m′)’s, and the last step uses Lemma 45.

B.10 Proof of Lemma 48

We first give an upper bound for M(T ), the total number of the episodes.

Lemma 55. Conditioned on events Er,Ep, we have M(T )≤ SA(2+log2W )T/W = Õ(SAT/W )

with certainty.

Proof. First, to demonstrate the bound for M(T ), it suffices to show that there are at most

SA(2+ log2W ) many episodes in each of the following cases: (1) between time steps 1

and W , (2) between time steps jW and ( j + 1)W , for any j ∈ {1, . . . ,⌊T/W⌋ − 1}, (3)

between time steps ⌊T/W⌋ ·W and T . We focus on case (2), and the edge cases (1, 3) can

be analyzed similarly.

Between time steps jW and ( j+1)W , a new episode m+1 is started when the second

criterion νm(st , π̃m(st)) < N+
τ(m)

(st , π̃m(st)) is violated during the current episode m. We

first illustrate how the second criterion is invoked for a fixed state-action pair (s,a), and

then bound the number of invocations due to (s,a). Now, let’s denote m1, . . . ,mL as the

episode indexes, where jW ≤ τ(m1) < τ(m2) < .. . < τ(mL) < ( j+ 1)W , and the second

criterion for (s,a) is invoked during m` for 1≤ `≤ L. That is, for each ` ∈ {1, . . . ,L}, the

DM breaks the while loop for episode m` because νm`(s,a) = N+
τ(m`)

(s,a), leading to the

new episode m`+1.

To demonstrate our claimed bound for M(T ), we show that L≤ 2+ log2W as follows.

To ease the notation, let’s denote ψ` = νm`(s,a). We first observe that ψ1 = N+
τ(m1)

(s,a)≥

1. Next, we note that for ` ∈ {2, . . .L}, we have ψ` ≥ ∑
`−1
k=1 ψk. 1 Indeed, we know that for

each ` we have (τ(m`+ 1)− 1)− τ(m1) ≤W , by our assumption on m1, . . . ,m`. Conse-

quently, the counting sum in Nτ(m`)(s,a), which counts the occurrences of (s,a) in the pre-

vious W time steps, must have counted those occurrences corresponding to ψ1, . . . ,ψ`−1.

1We proceed slightly differently from the stationary case, where the corresponding Nt(s,a) is non-
decreasing in t [108], which is clearly not true here due to the use of sliding windows
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The worst case sequence of ψ1,ψ2, . . . ,ψL that yields the largest L is when ψ1 = ψ2 = 1,

ψ3 = 2, and more generally ψ` = 2`−2 for `≥ 2. Since ψ` ≤W for all W , we clearly have

L≤ 2+ log2W , proving our claimed bound on L. Altogether, during the T time steps, there

are at most (SAT (2+ log2W ))/W episodes due to the second criterion and T/W due to the

first, leading to our desired bound on M(T ).

Next, we establish the bound for (♣). By Lemma 46, we know that γ̃τ(m)(s)∈ [0,2Dmax]

for all m ∈ [M(T )]∖ Q̃T and s. For each episode m ∈ [M(T )]∖ Q̃T , we have

τ(m+1)−1

∑
t=τ(m)

[
∑

s′∈S
pt(s′|st ,at)γ̃τ(m)(s

′)− γ̃τ(m)(st)

]

=−γ̃τ(m)(sτ(m))+ γ̃τ(m)(sτ(m)+1)︸ ︷︷ ︸
≤2Dmax

+
τ(m+1)−1

∑
t=τ(m)

[
∑

s′∈S
pt(s′|st ,at)γ̃τ(m)(s

′)− γ̃τ(m)(st+1)

]
︸ ︷︷ ︸

=Yt

.

(B.49)

Summing (B.49) over m ∈ [M(T )]∖ Q̃T we get

∑
m∈[M(T )]∖Q̃T

τ(m+1)−1

∑
t=τ(m)

[
∑

s′∈S
pt(s′|st ,at)γ̃τ(m)(s

′)− γ̃τ(m)(st)

]

≤2Dmax ·
(
M(T )−|Q̃T |

)
+ ∑

m∈[M(T )]∖Q̃T

τ(m+1)−1

∑
t=τ(m)

Yt . (B.50)

Define the filtration Ht−1 = {(sq,aq,Rq(sq,aq))}tq=1. Now, we know that E[Yt |Ht−1] = 0,

Yt is σ(Ht)-measurable, and |Yt | ≤ 2Dmax. Therefore, we can apply the Hoeffding inequal-

ity [104] to show that

∑
m∈[M(T )]∖Q̃T

τ(m+1)−1

∑
t=τ(m)

[
∑

s′∈S
pt(s′|st ,at)γ̃τ(m)(s

′)− γ̃τ(m)(st)

]
=O

(
Dmax ·M(T )+Dmax

√
T log

1
δ

)

with probability 1−O(δ ), where we use the facts that

M(T )−|Q̃T | ≤M(T )
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and

∑
m∈[M(T )]∖Q̃T

τ(m+1)−1

∑
t=τ(m)

1≤ T.

Finally, note that

∑
m∈[M(T )]∖Q̃T

τ(m+1)−1

∑
t=τ(m)

1√
τ(m)

≤
M(T )

∑
m=1

τ(m+1)−1

∑
t=τ(m)

1√
τ(m)

≤
⌈T/W⌉

∑
i=1

W√
iW

= O(
√

T ).

Hence, the Lemma is proved.

B.11 Proof of Lemma 49

We first note that

∑
m∈[MT ]∖Q̃T

τ(m+1)−1

∑
t=τ(m)

(2varr,t +4Dmax · varp,t +2Dmaxη)≤
T

∑
t=1

(2varr,t +4Dmax · varp,t +2Dmaxη) ,

since varr,t ≥ 0 and varp,t ≥ 0 for all t. We can thus work with the latter quantity.

We first bound ∑
T
t=1 varr,t . Now, recall the definition that, for time t in episode m,

we have defined varr,t = ∑
t−1
q=τ(m)−W Br,q. Clearly, for iW ≤ q < (i+ 1)W , the summand

Br,q only appears in varr,t for iW ≤ q < t ≤ (i + 2)W , since each episode is contained

in {i′W, . . . ,(i′+ 1)W} by our episode termination criteria (t is a multiple of W ) of the

SWUCRL2-CW algorithm. Altogether, we have

2
T

∑
t=1

varr,t ≤ 2
T−1

∑
t=1

Br,tW = 2BrW. (B.51)

Next, we bound ∑
T
t=1 varp,t . Now, we know that τ(m+ 1)− τ(m) ≤W by our episode

termination criteria (t is a multiple of W ) of the SWUCRL2-CW algorithm. Consequently,

4Dmax

T

∑
t=1

varp,t ≤ 4Dmax

T−1

∑
t=1

Bp,tW = 4DmaxBpW. (B.52)

Finally, combining (B.51, B.52) with 2Dmax ∑
T
t=1 η , the Lemma is established.
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B.12 Proof of Lemma 50

Due to non-negativity of rad-rt(s,a)’s and rad-pt(s,a)’s, we have

∑
m∈[MT ]∖Q̃T

τ(m+1)−1

∑
t=τ(m)

rad-rτ(m)(st ,at)≤
M(T )

∑
m=1

τ(m+1)−1

∑
t=τ(m)

rad-rτ(m)(st ,at), (B.53)

∑
m∈[MT ]∖Q̃T

τ(m+1)−1

∑
t=τ(m)

rad-pτ(m)(st ,at)≤
M(T )

∑
m=1

τ(m+1)−1

∑
t=τ(m)

rad-pτ(m)(st ,at) (B.54)

We thus first show that, with certainty,

M(T )

∑
m=1

τ(m+1)−1

∑
t=τ(m)

rad-rτ(m)(st ,at) =
M(T )

∑
m=1

τ(m+1)−1

∑
t=τ(m)

2

√
2ln(SAT/δ )

N+
τ(m)

(st ,at)
= Õ

(√
SAT√
W

)
, (B.55)

M(T )

∑
m=1

τ(m+1)−1

∑
t=τ(m)

rad-pτ(m)(st ,at) =
M(T )

∑
m=1

τ(m+1)−1

∑
t=τ(m)

2

√
2S log(ATW/δ )

N+
τ(m)

(st ,at)
= Õ

(
S
√

AT√
W

)
.

(B.56)

We analyze by considering the dynamics of the algorithm in each consecutive block of

W time steps, in a way similar to the proof of Lemma 48. Consider the episodes indexes

m0,m1 . . . ,m⌈T/W⌉,m⌈T/W⌉+1, where τ(m0) = 1, and τ(m j) = jW for j ∈ {1, . . . ,⌈T/W⌉},

and m⌈T/W⌉+1 = m(T )+ 1 (so that τ(m⌈T/W⌉+1− 1) is the time index for the last episode

in the horizon).

To prove (B.55, B.56), it suffices to show that, for each j ∈ {0,1, . . . ,⌊T/W⌋}, we have

m j+1−1

∑
m=m j

τ(m+1)−1

∑
t=τ(m)

1√
N+

τ(m)
(st ,at)

= O
(√

SAW
)
. (B.57)

Without loss of generality, we assume that j ∈ {1, . . . ,⌊T/W⌋−1}, and the edge cases of

j = 0,⌊T/W⌋ can be analyzed similarly.

Now, we fix a state-action pair (s,a) and focus on the summands in (B.57):

m j+1−1

∑
m=m j

τ(m+1)−1

∑
t=τ(m)

1((st ,at) = (s,a))√
N+

τ(m)
(st ,at)

=
m j+1−1

∑
m=m j

νm(s,a)√
N+

τ(m)
(s,a)

(B.58)

227



It is important to observe that:

1. It holds that νm j(s,a)≤Nτ(m j)(s,a), by the episode termination criteria of the SWUCRL2-CW

algorithm,

2. For m ∈ {m j +1, . . . ,m j+1−1}, we have ∑
m−1
m′=m j

νm′(s,a)≤ Nτ(m)(s,a) . Indeed, we

know that episodes m j, . . . ,m j+1−1 are inside the time interval { jW, . . . ,( j+1)W}.

Consequently, the counts of “(st ,at) = (s,a)” associated with {νm′(s,a)}m−1
m′=m j

are

contained in the W time steps preceding τ(m), hence the desired inequality.

With these two observations, we have

(B.58)≤
νm j(s,a)√

max{νm j(s,a),1}
+

m j+1−1

∑
m=m j+1

νm(s,a)√
max{∑m−1

m′=m j
νm′(s,a),1}

≤
√

max{νm j(s,a),1}+(
√

2+1)

√√√√max

{
m j+1−1

∑
m=m j

νm(s,a),1

}
(B.59)

≤ (
√

2+2)

√√√√max

{
( j+1)W−1

∑
t= jW

1((st ,at) = (s,a)),1

}
. (B.60)

Step (B.59) is by Lemma 19 in [108], which bounds the sum in the previous line. Step

(B.60) is by the fact that episodes m j, . . . ,m j+1−1 partitions the time interval jW, . . . ,( j+

1)W − 1, and νm(s,a) counts the occurrences of (st ,at) = (s,a) in episode m. Finally,

observe that (B.58) = 0 if νm(s,a) = 0 for all m ∈ {m j, . . . ,m j+1−1}. Thus, we can refine

the bound in (B.60) to

(B.58)≤ (
√

2+2)

√√√√( j+1)W−1

∑
t= jW

1((st ,at) = (s,a)). (B.61)

The required inequality (B.57) is finally proved by summing (B.61) over s ∈S a ∈A and

applying Cauchy Schwartz:

m j+1−1

∑
m=m j

τ(m+1)−1

∑
t=τ(m)

1√
N+

τ(m)
(st ,at)

= ∑
s∈S ,a∈As

m j+1−1

∑
m=m j

νm(s,a)√
N+

τ(m)
(s,a)
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≤(
√

2+2) ∑
s∈S ,a∈As

√√√√( j+1)W−1

∑
t= jW

1((st ,at) = (s,a))

≤(
√

2+2)
√

SAW .

Altogether, the Lemma is proved.

B.13 Proof of Theorem 22

To begin, we consider the following regret decomposition, for any choice of (W †,η†) ∈ J,

we have

Dyn-RegT (BORL)

=
⌈T/H⌉

∑
i=1

E

[
i·H∧T

∑
t=(i−1)H+1

ρ
*
t −Ri

(
Wi,ηi,s(i−1)H+1

)]
+

T

∑
t=1

E[rt(sΠ*
t ,aΠ*

t )]−
T

∑
t=1

ρ
*
t

=
⌈T/H⌉

∑
i=1

E

[
i·H∧T

∑
t=(i−1)H+1

ρ
*
t −Ri

(
W †,η†,s(i−1)H+1

)]

+
⌈T/H⌉

∑
i=1

E

[
⌈T/H⌉

∑
i=1

Ri

(
W †,η†,s(i−1)H+1

)
−Ri

(
Wi,ηi,s(i−1)H+1

)]
+

T

∑
t=1

E[rt(sΠ*
t ,aΠ*

t )]−
T

∑
t=1

ρ
*
t .

(B.62)

For the first term in eqn. (B.62), we can apply the results from Theorem 21 to each block

i ∈ ⌈T/H⌉, i.e.,

i·H∧T

∑
t=(i−1)H+1

[
ρ
*
t −R

(
W †,η†,s(i−1)H+1

)]
=Õ

(
Bp(i)W †

η† +Br(i)W † +Dmax

[
Bp(i)W † +

S
√

AH√
W †

+Hη
† +

SAH
W † +

√
H

])
, (B.63)

where we have defined

Br(i) =

(
i·H∧T

∑
t=(i−1)H+1

Br,t

)
, Bp(i) =

(
i·H∧T

∑
t=(i−1)H+1

Bp,t

)
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for brevity. For the second term, it captures the additional rewards of the DM were it uses

the fixed parameters (W †,η†) throughout w.r.t. the trajectory on the starting states of each

block by the BORL algorithm, i.e., s1, . . . ,s(i−1)H+1, . . . ,s(⌈T/H⌉−1)H+1, and this is exactly

the regret of the EXP3.P algorithm when it is applied to a ∆-arm adaptive adversarial bandit

problem with reward from [0,H]. Therefore, for any choice of (W †,η†), we can upper

bound this by

Õ
(

H
√

∆T/H
)
= Õ

(√
T H
)

as ∆ = O
(
ln2 T

)
. Summing these two, the regret of the BORL algorithm is

Õ

(
BpW †

η† +BrW † +Dmax

[
BpW † +

S
√

AT√
W †

+T η
† +

SAT
W † +

√
T H

]
+
√

Dmax(Br +2DmaxBp)T

)
.

(B.64)

By virtue of the EXP3.P, the BORL algorithm is able to adapt to any choice of (W †,η†) ∈ J.

Note that

H ≥W*= 3S
2
3 A

1
2 T

1
2

(Br +Bp +1)
1
2
≥ 3T

1
2

(3T )
1
2
≥ 1, (B.65)

S
1
3 A

1
4 ≥ η

* =
(Bp +1)

1
2 S

1
3 A

1
4

(Br +Bp +1)
1
4 T

1
4
≥ S

1
3 A

1
4

2T
1
2
= S

1
3 A

1
4 Φ. (B.66)

Therefore, there must exists some j† and k† such that

H j†/∆W ≤W * ≤ H( j†+1)/∆W , S
1
3 A

1
4 Φ

k†/∆η ≥ η
* ≥ S

1
3 A

1
4 Φ

(k†+1)/∆η (B.67)

By adapting W † to H j†/∆W and η† to Φk†/∆η , we further upper bound eqn. (B.64) as

Dyn-RegT (BORL) = Õ
(

Dmax(Br +Bp +1)
1
4 S

2
3 A

1
2 T

3
4

)
.

where we use H1/∆W = exp(1) and Φ1/∆η = exp(−1) in the last step.
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B.14 Proof of Proposition 23

We first show the following lemma.

Lemma 56. Conditioned on Ep, there exists a state transition distribution p∈Hp,t(0) such

that for every pair of states s,s′ ∈S ,

p(s′|s,a(s,s′))≥ ζ

for every time step t ∈ [T ].

The proof of the lemma is provided in Section B.14.1. We then consider the state

transition distribution p ∈ Hp,t(0) specified in Lemma 56. For an arbitrary state s′ ∈S ,

we consider the policy π such that π(s) = a(s,s′) for all s ∈S (see Assumption 6 for the

definition of a(s,s′)). Starting from an arbitrary state s ∈S , the policy either hits state s′

in the next step, which happens with probability at least ζ , or it transits to another state

s′′ ̸= s′, which would then hit state s′ in the next step with probability at least ζ . Therefore,

the hitting process stochstically dominates the Bernoulli process with success probability

ζ , and thus the expected hitting time is at most 1/ζ .

B.14.1 Proof of Lemma 56

First, we recall the definition of defintion of confidence region Hp,t(s,a;0) in eqn. 3.6,

Hp,t(s,a;0) =
{

ṗ ∈ ∆
S : ‖ṗ(·|s,a)− p̂t(·|s,a)‖1 ≤ rad-p,t(s,a)

}
.

For every pair of states s,s′ ∈S , we construct p by distinguishing the following two cases:

∙ If Nt(s,a(s,s′)) = 0, then by definition, rad-p,t(s,a(s,s′))≥ 1, therefore every probabil-

ity distribution p̄ on S belongs to Hp,t(s,a;0). Setting p(·|s,a(s,s′)) = pt(·|s,a(s,s′))

for any t satisfies the requirement in the Lemma.
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∙ If Nt(s,a(s,s′))> 0, then we know from Assumption 6 and eqn. 3.5 that

p̄t(s′|s,a(s,s′)) =
1

N+
t (s,a(s,s′))

t−1

∑
q=(τ(m)−W )∨1

pq(s′|s,a(s,s′))1(sq = s,aq = a(s,s′))≥ ζ .

By conditioning on E√, we know that p̄t(·|s,a(s,s′)) ∈ Hp,t(s,a(s,s′);0), and we can

thus set p(·|s,a(s,s′)) = p̄t(·|s,a(s,s′)).

Combining the above cases, the transition probability distribution p satisfies the stated

inequality in the Lemma, and we conclude the proof.

B.15 Proof of Proposition 25

We first show that for any time step t ∈ [T ], we have ρ*t −ρ
*pseudo
t =−l ·E[Xt ]. From Section

B.1.1, we have ρ*t is equal to the optimal value of the following linear program P(rt , pt);

while ρ
*pseudo
t is equal to the optimal value of the following linear program P(rpseudo

t , pt).

The two linear programs has the same set of constraints, and follows from eqn. (3.12),

the only difference is that the objective value of P(rpseudo
t , pt) is l ·E[Xt ] more than that of

P(rt , pt) (note that the summation of x(s,a) over s ∈S and a ∈ As is 1 from the second

constraint of the linear program (B.1)). Therefore, we have

T

∑
t=1

(
ρ
*
t −ρ

*pseudo
t

)
=

T

∑
t=1
−l ·E[Xt ]. (B.68)

Next, conditioned on any demand realizations X1, . . . ,XT , we can show by induction

that the trajectory generated by Π on M and M pseudo are exactly the same as they use the

same sequence of state transition distributions. Therefore,

T

∑
t=1

E[rt(st(M ),at(M ))|{Xs}ts=1]−
T

∑
t=1

E[rpseudo
t (st(M

pseudo),at(M
pseudo))|{Xs}ts=1]

=
T

∑
t=1
−l ·Xt . (B.69)

Taking expectation on both sides of eqn. (B.69), and combining this with eqn. (B.68), we
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can conclude the statement.
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Appendix C

Proofs for Chapter 4

We begin by defining some helpful notation. First, let

REV
(
θ , θ̂ ,Σ, t

)
= E

[
t

∑
s=1

pi,sDi,s(pi,s,xi,s)

]
,

be the expected total revenue over t time steps obtained by running TS(N (θ̂ ,Σ),0) — the

Thompson sampling algorithm in Algorithm 5 with the (possibly incorrect) prior N
(
θ̂ ,Σ

)
and exploration parameter λe = 0 — in an epoch with true parameter θ . Second, let

REV* (θ , t) = E

[
t

∑
s=1

p*i,sDi,s(p*i,s,xi,s)

]
,

be the expected total revenue over t time steps obtained by the oracle — recall p*i,s is the

oracle price defined in Eq. (4.3) — in an epoch with true parameter θ .

All norms ‖ · ‖ refer to the `2 norm unless stated otherwise.

C.1 Meta oracle Regret Analysis

We first state the following lemma, whose proof is provided in Section C.1.1.

Lemma 57. For any epoch i ∈ [N], the length of the random exploration periods Ti is
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upper bounded by

Te = max
{

6loge/2(dNT )/c1,2λe/c0

}
(C.1)

with probability at least 1−2/(N3T 2). The constants are given by

c0 =
λ0

3

 p2
max + p2

min +2
2

−

√(
p2

max + p2
min +2

2

)2

− (pmax− pmin)2

 , c1 =
c0

(1+ p2
max)x2

max
.

In other words, we incur at most logarithmic regret due to the initial random exploration

in Algorithm 5.

Proof. (Proof of Theorem 27) The proof proceeds in three steps. We first show that the

regret incurred in the initial random exploration steps is negligible. We then map the re-

maining regret to a linear bandit formulation, and bound the resulting terms.

First, define the event

A = {Ti ≤Te ∀i ∈ [N]} . (C.2)

By Lemma 57, Pr(¬A )≤ 2/(NT )2. We can decompose the regret from Algorithm 5 into

exploration and non-exploration periods, conditioned on whether or not A holds:

E
θi∼N (θ*,Σ*)

[
REV* (θi,T )−

Ti

∑
t=1

pTS
i,t Di,t(pTS

i,t ,xi,t)−REV
(

θi,θ
TS
i,Ti

,ΣTS
i,Ti

,T −Ti

)]

= E

[
REV* (θi,T )−

Ti

∑
t=1

pTS
i,t Di,t(pTS

i,t ,xi,t)−REV
(

θi,θ
TS
i,Ti

,ΣTS
i,Ti

,T −Ti

)∣∣∣∣∣¬A
]

Pr(¬A )

+E

[
REV* (θi,Ti)−

Ti

∑
t=1

pTS
i,t Di,t(pTS

i,t ,xi,t)

∣∣∣∣∣A
]

+E
[(

REV* (θi,T −Ti)−REV
(

θi,θ
TS
i,Ti

,ΣTS
i,Ti

,T −Ti

))∣∣∣A ]
≤ E

[
2pmaxxmax

√
1+ p2

max‖θi‖
2N2T

]
+E

[
2pmaxxmax

√
1+ p2

maxTe‖θi‖
]

+E
[(

REV* (θi,T −Ti)−REV
(

θi,θ
TS
i,Ti

,ΣTS
i,Ti

,T −Ti

))∣∣∣A ] , (C.3)
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where we have used the facts that Pr(¬A )≤ 2/(NT )2, the worst-case regret achievable in

a single time period is 2pmaxxmax
√

1+ p2
max‖θi‖, and Ti ≤Te on the event A .

The first two terms in Eq. (C.3) are O(1/(N2T ))+O(log(dNT )) = Õ(1). To analyze

the third term in Eq. (C.3), we construct a mapping between the dynamic pricing and linear

bandit problems, in order to leverage existing results on TS and UCB for linear bandits

[162, 3]. In particular, we can map the Bayes regret of an epoch

E
θi∼N (θ*,Σ*)

[(
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti

,ΣTS
i,Ti

,T −Ti

))∣∣∣E] ,
to the Bayes regret of the Thompson sampling algorithm [162] for a linear bandit in-

stance as follows. Let the unknown parameter θ =
(

α⊤ β⊤
)⊤

be drawn from the prior

N (θ*,Σ*). Take the decision set to be At = {(pxi,t ; p2xi,t) : p ∈ [pmin, pmax]}, where xi,t is

the feature vector drawn i.i.d from the feature distribution. Note that the magnitude of the

`2-norm of an action is at most pmax
√

1+ p2
maxxmax and the noise terms are conditionally

(pmaxσ)-subgaussian.

Using this mapping, by Theorem 3 of [3] and Lemma 73 in Appendix C.7, the Bayes

regret of an epoch is upper bounded as

E
θi∼N (θ*,Σ*)

[(
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti

,ΣTS
i,Ti

,T −Ti

))∣∣∣E]
= E

[
Õ
(
‖θ‖
√

dT
(
‖θ‖+

√
d
))]

= E
[
Õ
(
‖θ‖2

√
dT +‖θ‖d

√
T
)]

. (C.4)

where Eq. (C.4) follows from the facts that (i) the upper bound on the regret of a linear

bandit instance scales linearly with the maximum absolute value of the rewards and, (ii) the

absolute value of the expected reward (revenue) for each round is upper bounded as

max
p∈[pmin,pmax]

|⟨m,θ⟩| ≤ max
p∈[pmin,pmax]

‖m‖‖θ‖ = pmax

√
1+ p2

maxxmax‖θ‖ = O(‖θ‖) .

(C.5)
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To complete the proof, we must bound E
θ∼N (θ*,Σ*)

[
‖θ‖2]. By the “trace trick", we have

E
θ∼N (θ*,Σ*)

[
‖θ‖2]= trace

(
E

θ∼N (θ*,Σ*)

[
θθ
⊤
])

= trace
(

E
θ∼N (θ*,Σ*)

[
(θ −θ*)(θ −θ*)

⊤+θ*θ
⊤+θθ

⊤
* −θ*θ

⊤
*

])
= trace

(
Σ*+θ* E

θ∼N (θ*,Σ*)

[
θ
⊤
]
+ E

θ∼N (θ*,Σ*)
[θ ]θ⊤* −θ*θ

⊤
*

)
= trace

(
Σ*+2θ*θ

⊤
* −θ*θ

⊤
*

)
= trace(Σ*)+ trace

(
‖θ*‖2)

≤ dλ +S2 = O(d) , (C.6)

where we have used the definition of the covariance matrix Σ*= E
θ∼N (θ*,Σ*)

[
(θ −θ*)(θ −θ*)

⊤
]
,

and the last step follows from Assumptions 8 and 10. Moreover, by Cauchy-Schwarz in-

equality, we have

E
θ∼N (θ*,Σ*)

[‖θ‖] ≤
√
E [‖θ‖2] ≤

√
dλ +S2 = O

(√
d
)
. (C.7)

Substituting Eqs. (C.6) and (C.7) into Eq. (C.4), we obtain that the third term of Eq. (C.3)

is Õ(d3/2T 1/2). Noting that the first and second terms of Eq. (C.3) contribute Õ(1) regret,

we can bound the total regret of each epoch as Õ(d3/2T 1/2).

Since each epoch is mutually independent, the Bayes regret of Algorithm 5 over all N

epochs is simply N× Õ(d3/2T 1/2) = Õ(d3/2NT 1/2).

C.1.1 Proof of Lemma 57

Recall that Vi,t = ∑
t
s=1

(
x⊤i,s pi,sx⊤i,s

)⊤(
x⊤i,s pi,sx⊤i,s

)
is the Fisher information matrix of

epoch i after time step t. Lemma 57 states that λmin(Vi,Te) ≥ λe with high probability.

Since Vi,t is a random matrix, we will apply the following matrix Chernoff inequality to

lower bound its minimum eigenvalue (Note that λmax

((
x⊤i,s pi,sx⊤i,s

)⊤(
x⊤i,s pi,sx⊤i,s

))
≤

(1+ p2
max)x

2
max).
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Lemma 58 (Theorem 3.1 of [169]). For any ζ ∈ [0,1), any real number u, and any t ≤Ti

Pr(λmin(Vi,t) ≥ (1−ζ )u and λmin (E [Vi,t ]) ≥ u)) ≥ 1−d
(

exp(−ζ )

(1−ζ )1−ζ

)c1u/c0

.

The above lemma states that the probability that λmin(Vi,t) is much less than λmin (E [Vi,t ])

is small. To apply the above result, we must first lower bound the minimum eigenvalue of

E [Vi,t ]:

Lemma 59. For all t ≤Ti, the minimum eigenvalue of E [Vi,t ] is lower bounded as

λmin (E [Vi,t ])≥ c0t.

Proof. (Proof of Lemma 59) From linearity of expectation, we have

E [Vi,t ] = ∑
τ even, τ≤t

E

 xi,τ

pi,txi,τ

(x⊤i,τ pi,τx⊤i,τ

)+ ∑
τ odd, τ≤i

E

 xi,τ

pi,txi,τ

(x⊤i,τ pi,τx⊤i,τ

)
≥ t

3

 E[xi,1x⊤i,1] pminE[xi,1x⊤i,1]

pminE[xi,1x⊤i,1] p2
minE[xi,1x⊤i,1]

+

 E[xi,1x⊤i,1] pmaxE[xi,1x⊤i,1]

pmaxE[xi,1x⊤i,1] p2
maxE[xi,1x⊤i,1]


=

t
3

 2E[xi,1x⊤i,1] (pmin + pmax)E[xi,1x⊤i,1]

(pmin + pmax)E[xi,1x⊤i,1]
(

p2
min + p2

max
)
E[xi,1x⊤i,1]


=

t
3

 2 (pmin + pmax)

(pmin + pmax)
(

p2
min + p2

max
)
⊗E[xi,1x⊤i,1] .

We can compute the minimum eigenvalue of

 2 (pmin + pmax)

(pmin + pmax)
(

p2
min + p2

max
)
 to be

p2
max + p2

min +2
2

−

√(
p2

max + p2
min +2

2

)2

− (pmax− pmin)2 .

Note that the eigenvalues of a symmetric positive semi-definite matrix coincide with its

singular values. Thus, we can apply Lemma 74 to obtain that the minimum eigenvalue of
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E [Vi,t ] is at least

λmin (E [Vi,t ])≥
t
3
·λmin

 2 (pmin + pmax)

(pmin + pmax)
(

p2
min + p2

max
)
 ·λmin

(
E[xi,1x⊤i,1]

)

≥ tλ0

3

 p2
max + p2

min +2
2

−

√(
p2

max + p2
min +2

2

)2

− (pmax− pmin)2

 ,

where we have used Assumption 9.

Proof. (Proof of Lemma 57) Taking ζ = 1/2 in Lemma 58 and substituting the result from

Lemma 59, we have

Pr
(

λmin(Vi,t)≥
c0t
2

)
≥ 1−2d

(e
2

)− c1t
2
.

Setting t = Te = max
{

6loge/2(dNT )/c1,max2λe/c0

}
, this implies

Pr
(
λmin(Vi,Te) ≥ λe

)
≥ 1− 2

N3T 2 ,

and we can conclude the proof.

C.2 Convergence of Prior Mean Estimate

Lemma 29 shows that, after observing i epochs of length T , our estimate θ̂i of the unknown

prior mean θ* is close with high probability. To prove Lemma 29, we first focus on the case

where the event A defined in Eq. (C.2) holds. We will show that at the end of each epoch,

our estimated parameter vector θ̇i is close to the true parameter vector θi (Lemma 60) with

high probability, which implies that the average of our estimated parameters from each

epoch 1
i ∑

i
j=1 θ̇ j is close to the average of the true parameters from each epoch 1

i ∑
i
j=1 θ j

(Lemma 62) with high probability. Next, we will show that the latter term 1
i ∑

i
j=1 θ j is a

good approximation of θ* (Lemma 63). Combining these steps via a triangle inequality

and accounting for the probability A does not hold yields the result in Lemma 29.
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We first state two useful lemmas from the literature regarding the concentration of OLS

estimates and the matrix Hoeffding bound.

Lemma 60. When the event A holds, for any epoch i ∈ [N] and δ ∈ [0,2/e], conditional

on Fi = σ(θ̇1, . . . , θ̇i−1), we have

Pr
(∥∥θ̇i−θi

∥∥≥ 2σ

√
2d loge(2/δ )

λe

∣∣∣∣ Fi

)
≤ δ ,

Proof. (Proof of Lemma 60) When A holds, the random exploration periods are completed

before T time steps, guaranteeing that λmin(Vi,T ) ≥ λe. Thus, this result follows immedi-

ately from Theorem 4.1 of [192], where we note that d + loge(2/δ ) ≤ 2d loge(2/δ ) for

δ < 2/e.

Lemma 61 ([111]). Let random vectors X1, . . . ,Xn ∈ Rd, satisfy that for all i ∈ [n] and

u ∈R,

E[Xi|σ(X1, . . . ,Xi−1)] = 0, Pr(‖Xi‖ ≥ u|σ(X1, . . . ,Xi−1))≤ 2exp
(
− u2

2σ2
i

)
,

then for any δ > 0,

Pr

∥∥∥∥∥∑
i∈[n]

Xi

∥∥∥∥∥≤ 4
√

∑
i∈[n]

σ2
i loge(2d/δ )

≥ 1−δ .

We now show that the average of our estimated parameters from each epoch is close to

the average of the true parameters from each epoch with high probability.

Lemma 62. When the event A holds, for any i≥ 2, the following holds with probability at

least 1−δ : ∥∥∥∥∥1
i

i

∑
j=1

(
θ̇ j−θ j

)∥∥∥∥∥≤ 8σ

√
d loge(4d/δ )

λei
.

Proof. (Proof of Lemma 62) By Lemma 60, we have for any u ∈R,

Pr(‖θ̇i−θi‖ ≥ u | Fi) ≤ 2exp(−λeu2/8dσ
2) .
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Furthermore, since the OLS estimator is unbiased, E[θ̇i|Fi] = θi. Thus, we can apply the

matrix Hoeffding inequality (Lemma 61) to obtain

Pr

(∥∥∥∥∥ 1
i−1

i−1

∑
j=1

(θ̇i−θi)

∥∥∥∥∥ ≤ 8

√
σ2d loge(4d/δ )

λe(i−1)

)
≥ 1−δ .

Noting that i≤ 2(i−1) for all i ∈ {2, . . . ,N} concludes the proof.

Lemma 63. When the event A holds, for any i≥ 2, the following holds with probability at

least 1−δ :

∥∥∥∥∥1
i

i

∑
j=1

θ j−θ*

∥∥∥∥∥ ≤ 8

√
5λd loge(4d/δ )

i
.

Proof. (Proof of Lemma 63) We first show a concentration inequality for the quantity ‖θ j−

θ*‖ similar to that of Lemma 60. Note that for any unit vector s ∈R2d, u⊤(θi− θ*) is a

zero-mean normal random variable with variance at most λ . Therefore, for any u ∈R,

Pr
(
|s⊤(θ j−θ*)| ≥ u

)
≤ 2exp

(
− u2

2λ

)
. (C.8)

Consider W, a (1/2)-cover of the unit ball in R2d. We know that |W | ≤ 42d. Let s(θ j) =

θ j−θ*/‖θ j−θ*‖, then there exists ws(θ j) ∈W, such that ‖ws(θ j)− s(θ j)‖ ≤ 1/2 by defini-

tion of W. Hence,

‖θ j−θ*‖=⟨s(θ j),θ j−θ*⟩= ⟨s(θ j)−ws(θ j),θ j−θ*⟩+ ⟨ws(θ j),θ j−θ*⟩

≤
‖θ j−θ*‖

2
+ ⟨ws(θ j),θ j−θ*⟩ .

Rearranging the terms yields

‖θ j−θ*‖ ≤ 2⟨ws(θ j),θ j−θ*⟩ .

Applying an union bound to all possible w ∈W with inequality (C.8), we have for any
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u ∈R,

Pr(‖θ j−θ*‖ ≥ u)≤ Pr(∃w ∈W : ⟨w,θ j−θ*⟩ ≥ u/2)

≤ 2 ·42d exp
(
− u2

2λ

)
≤ exp

(
5d− u2

2λ

)
.

If u2 ≤ 10λd, we have

Pr(‖θ j−θ*‖ ≥ u) ≤ 1 ≤ 2exp
(
− u2

20λd

)
;

else if u2 = 10λd + v for some v≥ 0, we have

Pr(‖θ j−θ*‖ ≥ u)≤ exp
(
− v

2λ

)
≤ 2exp

(
− u2

20λd

)
.

Thus, for any u ∈R, we can write

Pr(‖θ j−θ*‖ ≥ u)≤ 2exp
(
− u2

20λd

)
. (C.9)

Applying Lemma 61, we have

Pr

∥∥∥∥∥∑
i−1
j=1 θ j

i−1
−θ*

∥∥∥∥∥≤ 4

√
10λd loge(4d/δ )

i−1

≥ 1−δ .

The proof can be concluded by the observation i≤ 2(i−1) for all i ∈∈ {2, . . . ,N}.

We can now combine Lemmas 57, 62 and 63 to prove Lemma 29.

Proof. (Proof of Lemma 29) When the event A holds, we can use the triangle inequality
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and a union bound over Lemmas 62 and 63 to obtain

∥∥θ̂i−θ*
∥∥= ∥∥∥∥∥∑

i−1
j=1 θ̇ j

i−1
−

∑
i−1
j=1 θ j

i−1
+

∑
i−1
j=1 θ j

i−1
−θ*

∥∥∥∥∥
≤

∥∥∥∥∥ 1
i−1

i−1

∑
j=1

(
θ̇ j−θ j

)∥∥∥∥∥+
∥∥∥∥∥ 1

i−1

i−1

∑
j=1

θ j−θ*

∥∥∥∥∥
≤ 8

√
2(σ2/λe +5λ )d loge(4dN/δ )

i
,

with probability at least 1−2δ , where we have use the fact that
√

a+
√

b≤
√

2(a+b). By

Lemma 57, the event A does not hold with probability at most 2/(N2T 2). Thus, a second

union bound yields the result.

C.3 Meta-DP Regret Analysis

Appendix C.3.1 provides the proof of Lemma 30 and the statement of an intermediate

Lemma 64. Appendix C.3.2 provides the proof of Theorem 28, following the proof strategy

outlined in Section 4.2.3.

C.3.1 Intermediate Lemmas

Recall that for any t ∈ {Ti + 1, · · · ,T}, the meta oracle maintains and samples from its

posterior N
(

θ TS
i,t ,Σ

TS
i,t

)
(see Algorithm 5), while our Meta-DP algorithm maintains and

samples parameters from its posterior N
(

θ MD
i,t ,ΣMD

i,t

)
(see Algorithm 6). Lemma 30 in

Section 4.2.3 established the difference in Bayesian posteriors between the meta oracle and

our Meta-DP algorithm. The proof follows from the standard update rules for Bayesian

linear regression and is given below.

Proof. (Proof of Lemma 30)

Using the posterior update rule for Bayesian linear regression [43], the posterior of the
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oracle at t = Ti +1 is

θ
TS
i,Ti+1 =

(
Σ
−1
* +σ

Ti

∑
t=1

mi,tm⊤i,t

)−1(
Σ
−1
* θ*+σ

Ti

∑
t=1

mi,tDi,t

)

=

(
Σ
−1
* +σ

Ti

∑
t=1

mi,tm⊤i,t

)−1(
Σ
−1
* θ*+σ

Ti

∑
t=1

mi,tm⊤i,tθi +σ

Ti

∑
t=1

mi,tε
TS
i,t

)
,

Σ
TS
i,Ti+1 =

(
Σ
−1
* +σ

Ti

∑
t=1

mi,tm⊤i,t

)−1

.

Similarly, the posterior of the Meta-DP algorithm at t = Ti +1 is

θ
MD
i,Ti+1 =

(
Σ
−1
* +σ

te

∑
t=1

mi,tm⊤i,t

)−1(
Σ
−1
* θ̂i +σ

Ti

∑
t=1

mi,tDi,t

)

=

(
Σ
−1
* +σ

Ti

∑
t=1

mi,tm⊤i,t

)−1(
Σ
−1
* θ̂i +σ

Ti

∑
t=1

mi,tm⊤i,tθi +σ

Ti

∑
t=1

mi,tε
MD
i,t

)
,

Σ
MD
i,Ti+1 =

(
Σ
−1
* +σ

Ti

∑
t=1

mi,tm⊤i,t

)−1

.

The result follows directly.

We also note that the prior-independent Thompson sampling algorithm employed in the

exploration epochs satisfies a meta regret guarantee:

Lemma 64. The meta regret of the prior-independent Thompson sampling algorithm in a

single epoch is Õ(d2T 1/2).

The proof can be easily adapted from the literature (see, e.g., [10, 5]), and is thus

omitted. We note that our normalization implies E[‖θ‖] = Θ(d1/2)). Lemma 64 ensures

that we accrue at most Õ(d2N0
√

T ) regret in the N0 exploration epochs; from Eq. (4.5), we

know that N0 grows merely poly-logarithmically in N and T .

C.3.2 Proof of Theorem 28

Consider any non-exploration epoch i≥N0+1. If upon completion of all exploration steps

at time Ti+1, we have that the posteriors of the meta oracle and our Meta-DP algorithm co-
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incide — i.e., (θ MD
i,Ti+1,Σ

MD
i,Ti+1) = (θ TS

i,Ti+1,Σ
TS
i,Ti+1) — then both policies would achieve the

same expected revenue over the time periods Ti +1, · · · ,T , i.e., we would have

REV
(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
= REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)
.

By Lemma 30, we know that ΣTS
i,Ti+1 = ΣMD

i,Ti+1 always, so all that remains is establishing

when θ TS
i,Ti+1 = θ MD

i,Ti+1.

Since the two algorithms begin with different priors but encounter the same covariates

{xi,t}T
t=1 and take the same decisions in t ∈ {1, · · · ,Ti}, their posteriors can only align at

time Ti + 1 due to the stochasticity in the observations εi,t . As shown in Eq. (4.10) in

Section 4.2.3, alignment occurs with θ TS
i,Ti+1 = θ MD

i,Ti+1 if

χ
MD
i −χ

TS
i =

1
σ
(M⊤i Mi)

−1M⊤i Σ
−1
*
(
θ*− θ̂i

)
,

where we recall χTS,χMD
i were defined in Eqs. (4.8)-(4.9).

Now, we start by defining the clean event

E =

∥∥θ̂i−θ*
∥∥≤ 8

√
2(σ2/λe +5λ )d loge(4dN2T )

i
, Ti ≤Te ∀i≥ N0 +1

 ,

(C.10)

which stipulates that for every epoch i after the initial N0 exploration epochs, (i) our esti-

mated prior mean θ̂i is close to the unknown prior mean θ* (which holds with high prob-

ability by Lemma 29), (ii) and the event A defined in Eq. (C.2) holds, ensuring that the

number of exploration periods per epoch is small (which holds with high probability by

Lemma 57). Since E holds with high probability, we first focus on analyzing the meta

regret conditioned on E .

Denote the meta regret of epoch i conditioned on the event E defined in Eq. (C.10) as

RN,T (i) | E . The next lemma bounds the meta regret for any epoch i≥ N0 under the event

E .
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Lemma 65. The meta regret of an epoch i≥ N0 +1 satisfies

RN,T (i) | E = Õ

(
d2

√
T
i
+

√
d

N

)
.

Proof. Proof of Lemma 65 As noted earlier, during the exploration periods 1≤ t ≤Ti, the

meta oracle and our Meta-DP algorithm encounter the same covariates {xi,t}T
t=1 and offer

the same prices; thus, by construction, they achieve the same expected revenue and the

resulting meta regret is 0. Then, we can write

RN,T (i) | E

= E
θi,θ̂i,χ

TS
i ,χMD

i

[
REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)
−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
| E
]

= E
θi,θ̂i,χ

MD
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
| E
]

−E
θi,θ̂i,χ

TS
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)
| E
]
. (C.11)

We will use our prior alignment technique to express the first term in Eq. (C.11) in

terms of the second term in Eq. (C.11); in other words, we will use a change of measure

suggested by Eq. (4.10) to express the true regret of our Meta-DP algorithm as a function

of the true regret of the meta oracle.

We start by expanding the first term of Eq. (C.11) as

E
χMD

i

[
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
| E
]

=
∫

χMD
i

exp
(
−
∥∥χMD

i

∥∥2
/2σ2

)
(2πσ2)te/2

(
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

))
dχ

MD
i | E .

Given a realization of χMD
i , we denote χTS

i (χMD
i ) (with some abuse of notation) as the

corresponding realization of χTS
i that satisfies Eq. (4.10). Note that this is a unique one-to-

one mapping. We then perform a change of measure to continue:

∫
χMD

i

exp
(
−
∥∥χMD

i

∥∥2
/2σ2

)
exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

) exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2
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×
(
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
dχ

MD
i
)
| E

=
∫
‖χMD

i ‖≤4σ
√

Ti loge(2NT )

exp
(
−
∥∥χMD

i

∥∥2
/2σ2

)
exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

) exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
dχ

MD
i
)
| E

+
∫
‖χMD

i ‖≥4σ
√

Ti loge(2NT )

exp
(
−
∥∥χMD

i

∥∥2
/2σ2

)
exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

) exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
dχ

MD
i
)
| E

≤ max
‖χMD

i ‖≤4σ
√

Ti loge(2NT )
exp

(∥∥χTS
i (χMD

i )
∥∥2−

∥∥χMD
i

∥∥2

2σ2

)

×
∫
‖χMD

i ‖≤4σ
√

Ti loge(2NT )

exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
dχ

MD
i
)
| E

+
∫
‖χMD

i ‖≥4σ
√

Ti loge(2NT )

exp
(
−
∥∥χMD

i

∥∥2
/2σ2

)
exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

) exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
dχ

MD
i
)
| E

≤ max
‖χMD

i ‖≤4σ
√

Ti loge(2NT )
exp

(∥∥χTS
i (χMD

i )
∥∥2−

∥∥χMD
i

∥∥2

2σ2

)∫
χMD

i

exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
dχ

MD
i
)
| E

+
∫
‖χMD

i ‖≥4σ
√

Ti loge(2NT )

exp
(
−
∥∥χMD

i

∥∥2
/2σ2

)
exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

) exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
dχ

MD
i
)
| E (C.12)

≤ max
‖χMD

i ‖≤4σ
√

Ti loge(2NT )
exp

(∥∥χTS
i (χMD

i )
∥∥2−

∥∥χMD
i

∥∥2

2σ2

)
×E

χTS
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)
| E
]

+E
χMD

i

[
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
| E ,

∥∥χ
MD
i
∥∥≥ 4σ

√
Ti loge(2NT )

]
×Pr

(∥∥χ
MD
i
∥∥≥ 4σ

√
Ti loge(2NT )

)
. (C.13)
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Here, inequality (C.12) follows from the fact that REV*(θi,T−Ti)≥ REV(θi,θ ,Σ,T−Ti) for

any choice of θ and Σ. Thus, we have expressed the true regret of our Meta-DP algorithm as

the sum of a term that is proportional to the true regret of the meta oracle, and an additional

term that depends on the tail probability of χMD
i . To obtain our desired bound, we will

argue that (i) the coefficient of the first term decays to 1 as the epoch number i grows

large, ensuring that our meta regret goes to 0 for later epochs, and (ii) the second term is

negligible with high probability since χMD
i is a subgaussian random variable.

We start by characterizing the coefficient of the first term in Eq. (C.13):

max
‖χMD

i ‖≤4σ
√

Ti loge(2NT )
exp

(∥∥χTS
i (χMD

i )
∥∥2−

∥∥χMD
i

∥∥2

2σ2

)

= max
‖χMD

i ‖≤4σ
√

Ti loge(2NT )
exp

(∥∥nMD
i − 1

σ
(M⊤i Mi)

−1M⊤i Σ−1
*
(
θ*− θ̂i

)∥∥2−
∥∥χMD

i

∥∥2

2σ2

)

= max
‖χMD

i ‖≤4σ
√

Ti loge(2NT )
exp

((
χMD

i
)⊤

(M⊤i Mi)
−1M⊤i Σ−1

*
(
θ*− θ̂i

)
σ3

)

× exp

(∥∥(M⊤i Mi)
−1M⊤i Σ−1

*
(
θ*− θ̂i

)∥∥2

2σ4

)

≤ max
‖χMD

i ‖≤4σ
√

Ti loge(2NT )
exp

(∥∥χMD
i

∥∥∥∥(M⊤i Mi)
−1M⊤i Σ−1

*
(
θ*− θ̂i

)∥∥
σ3

)

× exp

(∥∥(M⊤i Mi)
−1M⊤i Σ−1

*
(
θ*− θ̂i

)∥∥2

2σ4

)

=exp

(
4
√

Ti loge(2NT )
∥∥(M⊤i Mi)

−1M⊤i Σ−1
*
(
θ*− θ̂i

)∥∥
σ2 +

∥∥(M⊤i Mi)
−1M⊤i Σ−1

*
(
θ*− θ̂i

)∥∥2

2σ4

)
.

(C.14)

Note that

4
∥∥∥(M⊤i Mi)

−1M⊤i Σ
−1
*
(
θ*− θ̂i

)∥∥∥≤λmax

(
(M⊤i Mi)

−1
)√

λmax(MiM⊤i )λmax(Σ
−1
* )
∥∥θ̂i−θ*

∥∥
≤32

√
Tix2

max(1+ p2
max)(σ

2λ
−1
e +5λ )d loge(4dN2T )

λ 2
e λ

2i

≤c2σ
2

√
dTi loge(4dN2T )

i
. (C.15)
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Furthermore, by the definition of N0 in Eq. (4.5), we have for all i≥ N0 +1,

4
√

Ti loge(2NT )
∥∥(M⊤i Mi)

−1M⊤i Σ−1
*
(
θ*− θ̂i

)∥∥
σ2 +

∥∥(M⊤i Mi)
−1M⊤i Σ−1

*
(
θ*− θ̂i

)∥∥2

2σ4 ≤ 1 .

(C.16)

Combining Eqs. (C.14) and (C.16), and applying Lemma 76 in Appendix C.7 yields

max
‖χMD

i ‖≤4σ
√

Ti loge(2NT )
exp

(∥∥χTS
i (χMD

i )
∥∥2−

∥∥χMD
i

∥∥2

2σ2

)

≤ 1+
8
√

Ti loge(2NT )
∥∥(M⊤i Mi)

−1M⊤i Σ−1
*
(
θ*− θ̂i

)∥∥
σ2 +

∥∥(M⊤i Mi)
−1M⊤i Σ−1

*
(
θ*− θ̂i

)∥∥2

σ4

≤ 1+
16
√

Ti loge(2NT )
∥∥(M⊤i Mi)

−1M⊤i Σ−1
*
(
θ*− θ̂i

)∥∥
σ2

≤ 1+4c2Ti

√
d loge(4dN2T ) loge(2NT )

i
, (C.17)

where we have used Eq. (C.15) in the last step. Plugging this into Eq. (C.13), we can now

bound

E
χMD

i

[
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
| E
]

≤

(
1+4c2Ti

√
d loge(4dN2T ) loge(2NT )

i

)
×E

χTS
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)
| E
]

+E
χMD

i

[
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Ti+1,Σ

MD
i,Ti+1,T −Ti

)
| E ,

∥∥χ
MD
i
∥∥≥ 4σ

√
Ti loge(2NT )

]
×Pr

(∥∥χ
MD
i
∥∥≥ 4σ

√
Ti loge(2NT )

)
. (C.18)

As desired, this establishes that the coefficient of our first term decays to 1 as i grows

large. Thus, our meta regret from the first term approaches 0 for large i. We now show that

the second term in Eq. (C.18) is negligible with high probability. Similar to the proof of

Lemma 63, for any u ∈R, we can write Pr
(∥∥χMD

i

∥∥≥ u
)
≤ 2exp

(
−u2/(10σ2Ti)

)
, which
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implies

Pr
(∥∥χ

MD
i
∥∥≥ 4σ

√
Ti loge(2NT )

)
≤ 1

NT
. (C.19)

Moreover, noting that the worst-case regret achievable in a single time period is

2pmaxxmax

√
1+ p2

max‖θi‖,

and Ti ≤Te on the event E , we can bound

E
χMD

i

[
REV* (θi,T −Ti)−REV

(
θi,θ

MD
i,Te+1,Σ

MD
i,Ti+1,T −Ti

)
| E ,

∥∥χ
MD
i
∥∥≥ 4σ

√
Ti loge(2NT )

]
≤ 2(T −Ti)pmaxxmax

√
1+ p2

maxE[‖θi‖]

= O(
√

dT ) , (C.20)

where we recall from Eq. (C.7) that E[‖θi‖] =O(
√

d). Substituting Eqs. (C.19) and (C.20),

into Eq. (C.18), we obtain(
1+4c2Ti

√
d loge(4dN2T ) loge(2NT )

i

)

×E
χTS

i

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)
| E
]
+O

(√√
d

N

)
.

Substituting the above into Eq. (C.11), we can bound the meta regret of epoch i as

RN,T (i) | E

≤

(
4c2Ti

√
d loge(4dN2T ) loge(2NT )

i

)

×E
χTS

i

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)
| E
]
+O

(√
d

N

)

= Õ

(
d2

√
T
i
+

√
d

N

)
.
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Here, we have used the fact that the meta oracle’s true regret is bounded (Theorem 27), i.e.,

E
χTS

i

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)
| E
]
≤ Õ(d3/2

√
T ) .

The remaining proof of Theorem 28 follows straightforwardly.

Proof. (Proof of Theorem 28) The meta regret can then be decomposed as follows:

RN,T = (RN,T | E )Pr(E )+(RN,T | ¬E )Pr(¬E )

≤ (RN,T | E )+(RN,T | ¬E )Pr(¬E ) .

Recall that the event E is composed of two events: A (bounded by Lemma 57) and a bound

on ‖θ̂i−θ*‖ (bounded by Lemma 29). Applying a union bound over the epochs i≥ N0+1

to Lemma 29 (setting δ = 1/(N2T )), and applying Lemma 57 yields a bound

Pr(E )≥ 1−1/(NT )−4/(NT 2)≥ 1−5/(NT ) .

Recall that when the event E is violated, the meta regret is O(NT ), so we can bound

(RN,T | ¬E )Pr(¬E ) ≤ O(NT × 1/(NT )) = O(1). Therefore, the overall meta regret is

simply

RN,T ≤ (RN,T | E )+O(1) .

When N > N0, applying our result in Lemma 65 yields

N0

∑
i=1

(RN,T (i) | E )+
N

∑
i=N0+1

(RN,T (i) | E )+O(1)

≤ N0Õ(d2
√

T )+
N

∑
i=N0+1

Õ

(
d2

√
T
i
+

√
d

N

)
+O(1)

≤
N

∑
i=1

Õ

(
d2

√
T
i
+

√
d

N

)
+ Õ(d3

√
T )
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= Õ
(

d2(NT )
1
2 +d3

√
T
)
,

where we have use the fact that ∑
N
i=1 1/

√
i≤ 2
√

N in the last step.

C.4 Convergence of Prior Covariance Estimate

Lemma 32 shows that, after observing i epochs of length T , our estimator Σ̂i is close to

Σ* with high probability. To prove Lemma 32, we first focus on the case where the event

A defined in Eq. (C.2) holds. For ease of notation, denote the average of the estimated

parameters from each epoch as

θ̄i =
1

i−1

i−1

∑
k=1

θ̇k .

Then, recall from the definition in Eq. (4.12) that

Σ̂i =
1

i−2

i−1

∑
j=1

(
θ̇ j− θ̄i

)(
θ̇ j− θ̄i

)⊤− σ2

i−1

i−1

∑
j=1

E
[
V−1

j,T j

]
.

Then, we can expand

∥∥Σ̂i−Σ*
∥∥

op

=

∥∥∥∥∥∥ 1
i−2

i−1

∑
j=1

(
θ̇ j− θ̄i

)(
θ̇ j− θ̄i

)⊤− σ2
∑

i−1
j=1E

[
V−1

j,T j

]
i−1

−Σ*

∥∥∥∥∥∥
op

=

∥∥∥∥∥∥ 1
i−2

i−1

∑
j=1

(
θ̇ j−θ*

)(
θ̇ j−θ*

)⊤− i−1
i−2

(
θ*− θ̄i

)(
θ*− θ̄i

)⊤− σ2
∑

i−1
j=1

[
V−1

j,T j

]
i−1

−Σ*

∥∥∥∥∥∥
op

=

∥∥∥∥∥∥ 1
i−2

i−1

∑
j=1

(
θ̇ j−θ*

)(
θ̇ j−θ*

)⊤− i−1
i−2

Σ*−
σ2

∑
i−1
j=1E

[
V−1

j,T j

]
i−2

− i−1
i−2

(
θ*− θ̄i

)(
θ*− θ̄i

)⊤
+

1
i−2

Σ*+
σ2

∑
i−1
j=1E

[
V−1

j,T j

]
(i−1)(i−2)

∥∥∥∥∥∥
op

≤ i−1
i−2

∥∥∥∥∥∥ 1
i−1

i−1

∑
j=1

(
θ̇ j−θ*

)(
θ̇ j−θ*

)⊤−Σ*−
σ2

∑
i−1
j=1E

[
V−1

j,T j

]
i−1

∥∥∥∥∥∥
op
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+
i−1
i−2

∥∥∥∥∥∥(θ*− θ̄i
)(

θ*− θ̄i
)⊤− 1

i−1
Σ*−

σ2
∑

i−1
j=1E

[
V−1

j,T j

]
(i−1)2

∥∥∥∥∥∥
op

. (C.21)

We proceed by showing that each of the two terms is a subgaussian random variable,

and therefore satisfies standard concentration results. The following lemma first establishes

that both terms have expectation zero, i.e., Σ̂i is an unbiased estimator of the true prior

covariance matrix Σ*.

Lemma 66. When the event A holds, for any epoch i≥ 3,

E

[
1

i−1

i−1

∑
j=1

(
θ̇ j−θ*

)(
θ̇ j−θ*

)⊤]
= Σ*+

σ2
∑

i−1
j=1E

[
V−1

j,T j

]
i−1

,

E
[(

θ*− θ̄i
)(

θ*− θ̄i
)⊤]

=
1

i−1
Σ*+

σ2
∑

i−1
j=1E

[
V−1

j,T j

]
(i−1)2 .

Proof. (Proof of Lemma 66) When A holds, the random exploration time steps are com-

pleted before T time steps. Denote

∆ j =V−1
j,T j

(
T j

∑
t=1

ε j,tm j,t

)
= θ̇ j−θ j . (C.22)

Then noting that E[θ j] = θ*, E[∆ j] = 0, and E[∆ j∆
⊤
j ] = σ2E

[
V−1

j,T j

]
, we can write

E
[
(θ̇ j−θ*)(θ̇ j−θ*)

⊤
]
= E

[
(θ j +∆ j)(θ j +∆ j)

⊤−θ*θ
⊤
*

]
= E

[
θ jθ

⊤
j −θ*θ

⊤
*

]
+E

[
∆ j∆

⊤
j

]
= Σ*+σ

2E
[
V−1

j,T j

]
.

Summing over j and dividing by (i− 1) on both sides yields the first statement. For the

second statement, we can write

E
[
(θ̄i−θ*)(θ̄i−θ*)

⊤
]
= E

[
θ̄iθ̄
⊤
i −θ*θ

⊤
*

]
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= E

(∑
i−1
k=1 θ̇k

i−1

)(
∑

i−1
k=1 θ̇k

i−1

)⊤
−θ*θ

⊤
*


= E

[
∑

i−1
k=1 θkθ⊤k +∑

i−1
k=1 ∆k∆⊤k +∑1≤ j1< j2≤i−1 θ j1θ⊤j2

(i−1)2 −θ*θ
⊤
*

]

= E

[
∑

i−1
k=1 θkθ⊤k +∑

i−1
k=1 ∆k∆⊤k

(i−1)2 − 1
i−1

θ*θ
⊤
*

]

=
1

i−1
Σ*+

σ2
∑

i−1
k=1E

[
V−1

j,T j

]
(i−1)2 .

Having established that both terms in Eq. (C.21) have expectation zero, the following

lemma shows that these terms are subgaussian and therefore concentrate with high proba-

bility.

Lemma 67. When the event A holds, for any δ ∈ [0,1], the following holds with probability

at least 1−2δ :∥∥∥∥∥∥∑
i−1
j=1
(
θ̇ j−θ*

)(
θ̇ j−θ*

)⊤
i−1

−Σ*−
σ2

∑
i−1
j=1E

[
V−1

j,T j

]
i−1

∥∥∥∥∥∥
op

≤ 16(λλ 2
e +16σ2d)
λ 2

e

(√
5d +2loge(2/δ )

i−1
∨ 5d +2loge(2/δ )

i−1

)
,∥∥∥∥∥∥(θ*− θ̄i

)(
θ*− θ̄i

)⊤− 1
i−1

Σ*−
σ2

∑
i−1
j=1E

[
V−1

j,T j

]
(i−1)2

∥∥∥∥∥∥
op

≤16(λλ 2
e +16σ2d)(5d +2loge(2/δ ))

λ 2
e (i−1)

.

Proof. Proof of Lemma 67 First, since the OLS estimator is unbiased, we have that

E
[
θ̇ j−θ*

]
= 0

for all j, and consequently, E
[
θ̄i−θ*

]
= 0. Recall also our definition of ∆ j from Eq. (C.22).
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Then, for any v ∈R2d such that ‖v‖= 1, we can write for all u ∈R,

E
[
exp(u⟨v, θ̇ j−θ*⟩)

]
=E
[
exp(u⟨v,θ j−θ*⟩)exp(u⟨v,∆ j⟩)

]
= E

[
exp(u⟨v,θ j−θ*⟩)

]
E
[
exp(u⟨v,∆ j⟩)

]
= exp

(
u2v⊤Σ*v

2

)
E
[
exp(u⟨v,∆ j⟩)

]
≤ exp

(
u2

(
λ

2
+

8σ2d
λ 2

e

))
,

where we have re-used Lemmas 60 (from Appendix C.2) and 77 (from Appendix C.7) in

the last step. Similarly,

E
[
exp(u⟨v, θ̄ −θ*⟩)

]
≤ exp

(
u2

i−1

(
λ

2
+

8σ2d
λ 2

e

))
.

By definition, along with Lemma 66, this implies that θ̇ j−θ* is a
(√

(λλ 2
e +16σ2d)/2λ 2

e

)
-

subgaussian vector and, similarly θ̄−θ* is a
(√

(λλ 2
e +16σ2d)/[λ 2

e (i−1)]
)

-subgaussian

vector. Applying concentration results for subgaussian random variables (see Lemma 78

from Appendix C.7), we have with probability at least 1−δ ,

∥∥∥∥∥∥∑
i−1
j=1
(
θ̇ j−θ*

)(
θ̇ j−θ*

)⊤
i−1

−Σ*−
σ2

∑
i−1
j=1E

[
V−1

j,T j

]
i−1

∥∥∥∥∥∥
op

≤16(λλ 2
e +16σ2d)
λ 2

e

(√
5d +2loge(2/δ )

i−1
∨ 5d +2loge(2/δ )

i−1

)
.

Similarly, with probability at least 1−δ ,

∥∥∥∥∥∥(θ*− θ̄i
)(

θ*− θ̄i
)⊤− 1

i−1
Σ*−

σ2
∑

i−1
j=1E

[
V−1

j,T j

]
(i−1)2

∥∥∥∥∥∥
op

≤16(λλ 2
e +16σ2d)(5d +2loge(2/δ ))

λ 2
e (i−1)

.

Combining these with a union bound yields the result.

256



The proof of Lemma 32 directly follows as shown below.

Proof. Proof of Lemma 32 When the event A holds, we can apply Lemma 67 to Eq.

(C.21). It is helpful to note that (i− 1)/(i− 2) ≤ 2 and 1/(i− 1) ≤ 2/i for all i ≥ 3, and

5d+2loge(2/δ )≤ 10d loge(2/δ ) for all δ ∈ [0,2/e]. By Lemma 57, the event A does not

hold with probability at most 2/(N2T 2). Thus, a second union bound yields the result.

C.5 Meta-DP++ Regret Analysis

As discussed in Section 4.3.3, we consider two cases; we first focus on the more substantive

case where N > N1.

We define a new clean event

J =

{
∀i≥ N1 , Ti ≤Te ,

∥∥θ̂i−θ*
∥∥≤ 8

√
(σ2/λe +5λ )d loge(4dN2T )

i
,

∥∥Σ̂i−Σ*
∥∥

op ≤
128(λλ 2

e +16σ2d)
λ 2

e

(√
5d loge(2N2T )

i
∨ 5d loge(2N2T )

i

)
,

‖θi‖ ≤ S+5σ

√
d loge(2N2T )

}
, (C.23)

which stipulates that for every epoch after the initial N1 exploration epochs, (i) the event

A defined in Eq. (C.2) holds, ensuring that the number of exploration periods per epoch

is small, (ii) our estimated prior mean θ̂i is close to the unknown prior mean θ*, (iii) our

estimated prior covariance Σ̂i is close to the unknown prior covariance Σ*, and (iv) the true

parameter for epoch i θi ∼N (θ*,Σ*) is not too large in the `2-norm. These events all hold

with high probability based on Lemma 57, 29, and 32, and by the properties of multivariate

Gaussians respectively; therefore the event J holds with high probability.

Denote the meta regret of epoch i conditioned on the event J defined in Eq. (C.23) as

RN,T (i) |J . As noted earlier, during the exploration periods 1 ≤ t ≤ Ti, the meta oracle

and our Meta-DP++ algorithm encounter the same covariates {xi,t}T
t=1 and offer the same

prices; thus, by construction, they achieve the same expected revenue and the resulting
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meta regret is 0. Then, as in the proof of Theorem 28, we can write

RN,T (i) |J

=E
θi,θ̂i,χ

TS
i ,χMDP

i

[
REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)
−REV

(
θi,θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1,T −Ti

)
|J

]
=E

θi,θ̂i,χ
MDP
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1,T −Ti

)
|J

]
−E

θi,θ̂i,χ
TS
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)
|J

]
. (C.24)

Appendix C.5.1 states two intermediate lemmas and Appendix C.5.2 provides the proof of

Theorem 31.

C.5.1 Intermediate Lemmas

First, as we did for the proof of Theorem 28, we characterize the meta regret accrued by

aligning the mean of the meta oracle’s posterior θ TS
i,Ti+1 and the mean of our Meta-DP++ al-

gorithm θ MDP
i,Ti+1.

Lemma 68. For an epoch i≥ N1,

E
θi,θ̂i,χ

MDP
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1,T −Ti

)
|J

]
≤

(
1+

16c3d3/2Ti log3/2
e (4dN2T )√

i

)

×E
θi,θ̂i,χ

TS
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

MDP
i,Ti+1,T −Ti

)∣∣∣J ]
+O

(
1
N

)
.

Proof. (Proof of Lemma 68) By the posterior update rule of Bayesian linear regression

[43], we have

θ
TS
i,Ti+1 =

(
Σ
−1
* +σ

Ti

∑
t=1

mi,tm⊤i,t

)−1(
Σ
−1
* θ*+σ

Ti

∑
t=1

mi,tm⊤i,tθi +σ

Ti

∑
t=1

mi,tε
TS
i,t

)
,

θ
MDP
i,Ti+1 =

((
Σ̂

w
i
)−1

+σ

Ti

∑
t=1

mi,tm⊤i,t

)−1((
Σ̂

w
i
)−1

θ̂i +σ

Ti

∑
t=1

mi,tm⊤i,tθi +σ

Ti

∑
t=1

mi,tε
MDP
i,t

)
.
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Denoting Mi =
(

mi,1 . . . mi,Ti

)
∈R2d×Ti, we observe that prior alignment is achieved

with θ MDP
i,Ti+1 = θ TS

i,Ti+1 when the following holds:

χ
TS
i −χ

MDP
i

=
1
σ
(M⊤i Mi)

−1
[(

Σ̂
w
i
)−1

θ̂i−Σ
−1
* θ*+

(
Σ
−1
* −

(
Σ̂

w
i
)−1
)((

Σ̂
w
i
)−1

θ̂i +σMiM⊤i θi +Miχ
MDP
i

)]
︸ ︷︷ ︸

∆n

.

(C.25)

We denote the RHS of the above equation as ∆n for ease of exposition. While this ex-

pression is more complicated than Eq. (4.10), it still induces a mapping between χTS
i and

χMDP
i . We then proceed similarly to the proof of Lemma 65. We start by expanding

E
χMDP

i

[
REV* (θi,T −Ti)−REV

(
θi,θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1,T −Ti

)∣∣J ]
=
∫

χMDP
i

exp
(
−
∥∥χMDP

i

∥∥2
/2σ2

)
(2πσ2)Ti/2

(
REV* (θi,T −Ti)−REV

(
θi,θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1,T −Ti

))
dχ

MDP
i |J .

Given a realization of χMDP
i , we denote χTS

i (χMDP
i ) (with some abuse of notation) as the

corresponding realization of χTS
i that satisfies Eq. (C.25). It is easy to see that this is a

unique one-to-one mapping. We then perform a change of measure (similar to Eq. (C.13))

to continue:

∫
χMDP

i

exp
(
−
∥∥χMDP

i

∥∥2
/2σ2

)
exp
(
−
∥∥χTS

i (χMDP
i )

∥∥2
/2σ2

) exp
(
−
∥∥χTS

i (χMDP
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV* (θi,T −Ti)−REV

(
θi,θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1,T −Ti

)
dχ

MDP
i

)
|J

≤ max
‖χMDP

i ‖≤4σ
√

Ti loge(2NT )
exp

(∥∥χTS
i (χMDP

i )
∥∥2−

∥∥χMDP
i

∥∥2

2σ2

)
×E

χTS
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

MDP
i,Ti+1,T −Ti

)∣∣∣J ]
+E

χMDP
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1,T −Ti

)∣∣∣∣J ,
∥∥χ

MDP
i

∥∥≥ 4σ

√
Ti loge(2NT )

]
×Pr

(∥∥χ
MDP
i

∥∥≥ 4σ

√
Ti loge(2NT )

)
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≤ max
‖χMDP

i ‖≤4σ
√

Ti loge(2NT )
exp

(∥∥χTS
i (χMDP

i )
∥∥2−

∥∥χMDP
i

∥∥2

2σ2

)
×E

χTS
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

MDP
i,Ti+1,T −Ti

)∣∣∣J ]
+

√
κ +S2 pmaxxmax

√
1+ p2

max
N

, (C.26)

where the last step follows from Eqs. (C.19) and (C.20). Thus, we have expressed the true

regret of our Meta-DP++ algorithm as the sum of a term that is proportional to the true regret

of a policy that is aligned with the meta oracle (i.e., it employs the prior N (θ MDP
i,Ti+1,Σ

MDP
i,Ti+1)),

and an additional term that is small (i.e., scales as 1/N).

We now characterize the coefficient of the first term in Eq. (C.26):

max
‖χMDP

i ‖≤4σ
√

Ti loge(2NT )
exp

(∥∥χTS
i (χMDP

i )
∥∥2−

∥∥χMDP
i

∥∥2

2σ2

)

= max
‖χMDP

i ‖≤4σ
√

Ti loge(2NT )
exp

(∥∥χMDP
i +∆n

∥∥2−
∥∥χMDP

i

∥∥2

2σ2

)

= max
‖χMDP

i ‖≤4σ
√

Ti loge(2NT )
exp

((
χMDP

i
)⊤

∆n

σ2 +
‖∆n‖2

2σ2

)

≤ max
‖χMDP

i ‖≤4σ
√

Ti loge(2NT )
exp

(∥∥χMDP
i

∥∥‖∆n‖
σ2 +

‖∆n‖2

2σ2

)

= max
‖χMDP

i ‖≤4
√

Ti loge(2NT )
exp

(
4
√

te loge(2NT )‖∆n‖
σ

+
‖∆n‖2

2σ2

)
. (C.27)

To continue, we must characterize ‖∆n‖. Applying the triangle inequality, we have that

‖∆n‖ (C.28)

≤ 1
σλe

∥∥∥(Σ̂w
i
)−1

θ̂i−Σ
−1
* θ*

∥∥∥+ 1
σλe

∥∥∥(Σ
−1
* −

(
Σ̂

w
i
)−1
)((

Σ̂
w
i
)−1

θ̂i +σMiM⊤i θi +Miχ
MDP
i

)∥∥∥ .
The first term of Eq. (C.28) satisfies

1
σλe

∥∥∥(Σ̂w
i
)−1

θ̂i−Σ
−1
* θ*

∥∥∥
=

1
σλe

∥∥∥Σ
−1
*
(
θ̂i−θ*

)
+
((

Σ̂
w
i
)−1−Σ

−1
*

)(
θ̂i−θ*

)
+
((

Σ̂
w
i
)−1−Σ

−1
*

)
θ*

∥∥∥
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≤ 1
σλe

∥∥Σ
−1
*
(
θ̂i−θ*

)∥∥+ 1
σλe

∥∥∥((Σ̂w
i
)−1−Σ

−1
*

)(
θ̂i−θ*

)∥∥∥+ 1
σλe

∥∥∥((Σ̂w
i
)−1−Σ

−1
*

)
θ*

∥∥∥
≤ 8

√
(σ2/λe +5λ )d loge(4dN2T )

σ2λ 2
e i

(
1
λ
+
∥∥∥(Σ̂w

i
)−1−Σ

−1
*

∥∥∥
op

)
+

S
σλe

∥∥∥(Σ̂w
i
)−1−Σ

−1
*

∥∥∥
op
.

(C.29)

Next, the second term of Eq. (C.28) satisfies

1
σλe

∥∥∥(Σ
−1
* −

(
Σ̂

w
i
)−1
)((

Σ̂
w
i
)−1

θ̂i +σMiM⊤i θi +Miχ
MDP
i

)∥∥∥
≤

∥∥∥Σ−1
* −

(
Σ̂w

i
)−1
∥∥∥

op

σλe

(∥∥∥(Σ̂w
i
)−1

θ̂i

∥∥∥+∥∥∥σMiM⊤i θi

∥∥∥+∥∥Miχ
MDP
i

∥∥)

≤

∥∥∥Σ−1
* −

(
Σ̂w

i
)−1
∥∥∥

op

σλe

(∥∥∥(Σ̂w
i
)−1
∥∥∥

op
(S+1)+σTix2

max(p2
max + p4

max)

+4σ pmaxxmax

√
Ti(1+ p2

max) loge(2NT )
)

≤

∥∥∥Σ−1
* −

(
Σ̂w

i
)−1
∥∥∥

op

σλe

(∥∥Σ
−1
*
∥∥

op (S+1)+σTix2
max(p2

max + p4
max) (C.30)

+4σ pmaxxmax

√
Ti(1+ p2

max) loge(2NT )
)

≤
8pmaxxmax

√
Ti(1+ p2

max) loge(2NT )
∥∥∥Σ−1
* −

(
Σ̂w

i
)−1
∥∥∥

op

λe
, (C.31)

where Eq. (C.30) follows from the fact that ‖Σ̂w
i ‖op≥‖Σ*‖op (on the event J ) and because

both matrices are positive semi-definite (since they are covariance matrices). Applying

Lemma 79, we can simplify the term

∥∥∥Σ
−1
* −

(
Σ̂

w
i
)−1
∥∥∥

op
=
∥∥∥(Σ̂w

i
)−1

(Σ̂w
i −Σ*)Σ

−1
*

∥∥∥
op

≤
∥∥∥(Σ̂w

i
)−1
∥∥∥

op

∥∥Σ̂
w
i −Σ*

∥∥
op

∥∥Σ
−1
*
∥∥

op

≤ 256(λλ 2
e +16σ2d)

λ 2
e λ

2

√
5d loge(2N2T )

i
. (C.32)
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Combining Eqs. (C.28)–(C.32), we have

‖∆n‖ ≤ c3σd

√
dTi loge(4dN2T ) loge(2N2T )

i
.

Substituting this expression into Eq. (C.27), we can bound the coefficient

max
‖χMDP

i ‖≤4σ
√

Ti loge(2NT )
exp

(∥∥χTS
i (χMDP

i )
∥∥2−

∥∥χMDP
i

∥∥2

2σ2

)

≤ exp

(
8c3dTi loge(2N2T )

√
d loge(4dN2T )

i

)

≤ 1+16c3dTi log4
e(4dN2T )

√
d
i
,

where we used Lemma 76 in the last step. Substituting into Eq. (C.26) yields the result.

We will use Lemma 68 in the proof of Theorem 31 to characterize the meta regret from

prior alignment. The next lemma will help us characterize the remaining meta regret due

to the difference in the covariance matrices post-alignment.

Lemma 69. When the event J holds, we can write

T

∏
t=Ti+1

max
θ :‖θ−θ TS

i,t ‖≤C

dN
(

θ TS
i,t ,Σ

′MDP
i,t

)
dN

(
θ TS

i,t ,Σ
TS
i,t

) ≤ 1+
2c4d5/2T log3/2

e (2N2T )√
i

≤ 3 .

Proof. (Proof of Lemma 69) By the definition of the multivariate normal distribution, we

have

max
θ :‖θ−θ TS

i,t ‖≤C

dN
(

θ TS
i,t ,Σ

′MDP
i,t

)
dN

(
θ TS

i,t ,Σ
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i,t

)
=

√√√√√ det
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)
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)×
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(
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)
2

−

(
θ −θ TS

i,t

)⊤(
Σ′MDP

i,t
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θ −θ TS

i,t

)
2
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=

√√√√ det(ΣTS
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) exp

C2
∥∥∥Σ−1
* −

(
Σ̂w

i
)−1
∥∥∥

op

2


≤

√√√√√det
((

Σ̂w
i
)−1

+∑
t−1
τ=1 wi,τw⊤i,τ

)
det
(

Σ
−1
* +∑

t−1
τ=1 wi,τw⊤i,τ

) exp

(
128C2(λλ 2

e +16σ2d)

λ 2
e λ

2

√
5d loge(2N2T )

i

)
,

where we have used Eq. (C.32) in the last step. Since our estimated covariance matrix is

widened, we know that on the event J , Σ−1
* −

(
Σ̂w

i
)−1

= Σ−1
*
(
Σ̂w

i −Σ*
)(

Σ̂w
i
)−1 is positive

semi-definite, and thus it is evident that
(

Σ−1
* +∑

t−1
τ=1 wi,τw⊤i,τ

)
−
((

Σ̂w
i
)−1

+∑
t−1
τ=1 wi,τw⊤i,τ

)
is also positive semi-definite. Therefore, conditioned on the clean event J ,

√√√√√det
((

Σ̂w
i
)−1

+∑
t−1
τ=1 wi,τw⊤i,τ

)
det
(

Σ
−1
* +∑

t−1
τ=1 wi,τw⊤i,τ

) ≤ 1 .

The result follows directly.

C.5.2 Proof of Theorem 31

Proof. (Proof of Theorem 31) First, we consider the “small N" regime, where N ≤ N1. In

this case, our Meta-DP++ algorithm simply executes N instances prior-independent Thomp-

son sampling. Then, an immediate consequence of Lemma 64 is that the meta regret is

bounded by N × Õ
(

d2T 1/2
)
= Õ

(
d3(NT )5/6

)
because N ≤ N1 = O(d4T 2). Thus, the

result already holds in this case.

We now turn our attention to the “large N" regime, i.e., N > N1. The meta regret can be

decomposed as

RN,T = (RN,T |J )Pr(J )+(RN,T |¬J )Pr(¬J )

≤ (RN,T |J )+(RN,T |¬J )Pr(¬J ) .
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Recall that the event J is composed of four events, each of which hold with high proba-

bility. Applying a union bound over the epochs i≥N1+1 to Lemma 57, Lemma 29 (setting

δ = 1/(N2T )), Lemma 32 (with δ = 1/(N2T )), and Eq. (C.9) (with u= 5σ
√

d loge(2N2T )),

we obtain that

Pr(J )≥ 1−4/(NT )−6/(NT 2)≥ 1−10/(NT ) .

Recall that when the event J is violated, the meta regret is O(NT ), so we can bound

(RN,T |¬J )Pr(¬J ) = O(NT × 1/(NT )) = O(1). Therefore, the overall meta regret is

simply

RN,T ≤ (RN,T |J )+O(1) . (C.33)

Thus, it suffices to bound RN,T |J . As described in Section 4.3.3, we consider bound-

ing the meta regret post-alignment (t =Ti+1, · · · ,T ), where our Meta-DP++ algorithm fol-

lows the aligned posterior N (θ TS
i,Ti+1,Σ

MDP
i,Ti+1). Let N (θ TS

i,t ,Σ
′MDP
i,t ) denote the posterior of

our Meta-DP++ algorithm at time step t, if it begins with the prior N (θ TS
i,Ti+1,Σ

MDP
i,Ti+1) in

time step Ti +1, but follows the randomness of the oracle. Then, we can write

E
θi,θ̂i,

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

MDP
i,Ti+1,T −Ti

)∣∣∣J ]
=E

θi,θ̂i,

[∫
θ

REV* (θi,T −Ti)−REV(θi,θ ,0,1)

−REV
(
θi,θ

MDP
i,Ti+2,Σ

MDP
i,Ti+2,T −Ti−1

)
dN (θ TS

i,Ti+1,Σ
MDP
i,Ti+1)

∣∣∣J ]
=E

θi,θ̂i,

[∫
θ :‖θ‖≤C

REV* (θi,T −Ti)−REV(θi,θ ,0,1)

−REV
(
θi,θ

MDP
i,Ti+2,Σ

MDP
i,Ti+2,T −Ti−1

)
dN (θ TS

i,Ti+1,Σ
MDP
i,Ti+1)

∣∣∣J ]
+E

θi,θ̂i,

[∫
θ :‖θ‖>C

REV* (θi,T −Ti)−REV(θi,θ ,0,1)

−REV
(
θi,θ

MDP
i,Ti+2,Σ

MDP
i,Ti+2,T −Ti−1

)
dN (θ TS

i,Ti+1,Σ
MDP
i,Ti+1)

∣∣∣E]
≤E

θi,θ̂i,

[
max

θ :‖θ−θ ′MDP
i,t ‖≤C

dN (θ TS
i,Ti+1,Σ

′MDP
i,Ti+1)

dN (θ TS
i,Ti+1,Σ

TS
i,Ti+1)

(
REV* (θi,1)−REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,1

))∣∣∣∣∣J
]
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+E
θi,θ̂i,

 max
θ :
∥∥∥θ−θ TS

i,Ti+1

∥∥∥≤C

dN (θ TS
i,Ti+1,Σ

′MDP
i,Ti+1)

dN (θ TS
i,Ti+1,Σ

TS
i,Ti+1)

×
(
REV* (θi,T −Ti−1)−REV

(
θi,θ

TS
i,Ti+2,Σ

′MDP
i,Ti+2,T −Ti−1

))∣∣∣J ]
+E

θi,θ̂i,

[∫
θ :
∥∥∥θ−θ TS

i,Ti+1

∥∥∥>C
REV* (θi,T −Ti)dN (θ TS

i,Ti+1,Σ
MDP
i,Ti+1)

∣∣∣∣∣J
]
,

where C = 5σ
√

d loge(NT ). Inductively, we have

E
θi,θ̂i,χ

TS
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

MDP
i,Ti+1,T −Ti

)∣∣∣J ]
≤E

θi,θ̂i,

[
T

∏
t=Ti+1

max
θ :‖θ−θ TS

i,t ‖≤C

dN (θ TS
i,t ,Σ

′MDP
i,t )

dN (θ TS
i,t ,Σ

TS
i,t )

×
(
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

))∣∣∣J ]
+

T

∑
t=Ti+1

E
θi,θ̂i,

[
T

∏
t=Ti+2

max
θ :‖θ−θ TS

i,t ‖≤C

dN (θ TS
i,t ,Σ

MDP
i,t )

dN (θ TS
i,t ,Σ

TS
i,t )

(C.34)

×
∫

θ :‖θ‖>C
REV* (θi,T − t)dN (θ TS

i,t ,Σ
′MDP
i,t )

∣∣∣∣J ]
.

Applying Lemma 69, we can bound Eq. (C.34) as

E
θi,θ̂i,χ

TS
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,te+1,Σ

MDP
i,te+1,T −Ti

)∣∣∣J ]
≤

(
1+

2c4d5/2T log3/2
e (2N2T )√
i

)
×E

θi,θ̂i,

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)∣∣∣J ]
+

T

∑
t=Ti+1

E
θi,θ̂i,

[
3
∫

θ :‖θ‖>C
REV* (θi,T − t)dN (θ TS

i,t ,Σ
′MDP
i,t )

∣∣∣∣J ]

=

(
1+

2c4d5/2T log3/2
e (2N2T )√
i

)

×E
θi,θ̂i,

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)∣∣∣J ]
+O

(
1
N

)
,

where we used Eq. (C.9) in the last step. Thus, we have expressed the post-alignment meta

regret as the sum of a term that is proportional to the true regret of the meta oracle and
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a negligibly small term. We can now apply Lemma 68 to further include the meta regret

accrued from our prior alignment step to obtain

E
θi,θ̂i,χ

MDP
i

[
REV* (θi,T −Ti)−REV

(
θi,θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1,T −Ti

)∣∣J ]
≤

(
1+

16c3d3/2Ti log3/2
e (4dN2T )√

i

)(
1+

2c4d5/2T log3/2
e (2N2T )√
i

)

×E
θi,θ̂i,

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)∣∣∣E]+O
(

1
N

)
.

As desired, this establishes that the coefficient of our first term decays to 1 as i grows large.

Thus, our meta regret from the first term approaches 0 for large i, and all other terms are

clearly negligible.

Noting that N > N1 = Õ(d4T 2) in the “large N" regime, we can upper bound the meta

regret as

N

∑
i=N1+1

[(
1+

16c3d3/2Ti log3/2
e (4dN2T )√

i

)(
1+

2c4d5/2T log3/2
e (2N2T )√
i

)
−1

]

×E
θi,θ̂i,

[
REV* (θi,T −Ti)−REV

(
θi,θ

TS
i,Ti+1,Σ

TS
i,Ti+1,T −Ti

)∣∣∣J ]
+O

(
1
N

)
= Õ

(
N

∑
i=N1+1

d4T
3
2

√
i

)
= Õ

(
d4N

1
2 T

3
2

)
= Õ

(
d2(NT )

5
6

)
.

C.6 Extension to Multiple Products with Substitution Ef-

fects

Thus far, we have considered the setting where the seller offers a single product in each

epoch. In practice, there may be many products offered simultaneously in an epoch, and

there may be substitution effects across these products (within a single epoch) that must be

additionally modeled. We now show that our transfer learning approach extends straight-

forwardly to this setting.
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C.6.1 Formulation

We extend our single-product epoch formulation from Section 4.1 to a multi-product epoch

formulation, where K products are offered in each epoch. To capture substitution effects

within an epoch, we will employ an epoch-level joint demand model across all K products.

Our demand model is an extension of the multi-product demand model proposed by [117],

with the addition of (exogenous, product-specific and customer-specific) features. The

seller will now choose a price vector (one for each product), observe a demand vector, and

estimate the demand function jointly across all products given the price/demand data.

As before, in epoch i ∈ [N] at time t ∈ [T ], the seller observes a random feature vector

xi,t ∈ Rd , which is sampled i.i.d. from a known distribution Pmp
i . She then chooses a

price vector pmp
i,t =

(
pmp

i,t,1 . . . pmp
i,t,K

)⊤
∈RK , where pmp

i,t,k is the chosen price for product

k ∈ [K] in time t and epoch i. Recall that, owing to practical constraints, we assume that the

allowable price range is bounded across periods and products, i.e., pmp
i,t ∈ [pmin,1]K and that

0 < pmin < 1.1 The seller then observes the resulting induced demand for product k ∈ [K],

Dmp
i,t,k(pmp

i,t ,xi,t) = ⟨αmp
i,k ,xi,t⟩+

K

∑
j=1

pmp
i,t, j⟨β

mp
i,k, j,xi,t⟩+ ε

mp
i,t,k ,

where α
mp
i,k ∈ Rd and β

mp
i,k, j ∈ Rd are unknown fixed constants throughout epoch i, and

ε
mp
i,t,k ∼N (0,σ2) is i.i.d. Gaussian noise with variance σ2.

Observe that the demand for product k now depends not only on the price of product

k but also on the prices of all other products in this epoch — in particular, βi,k, j for j ̸= k,

captures the substitution effects between products k and j under feature vector xi,t . For ease

of notation, we collectively denote the demand vector

Dmp
i,t (pmp

i,t ,xi,t) =
(

Dmp
i,t,1(pmp

i,t ,xi,t) . . . Dmp
i,t,K(pmp

i,t ,xi,t)
)
. (C.35)

1Note that we have set pmax = 1; this is done WLOG since we can always normalize our parameters
appropriately.
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Shared Structure: For ease of notation, we additionally define the matrix

θ
mp
i =


α

mp
i,1 . . . α

mp
i,K

β
mp
i,1,1 . . . β

mp
i,K,1

... . . .
...

β
mp
i,1,K . . . β

mp
i,K,K

 ∈R(K+1)d×K ,

where θ
mp
i is the unknown parameter matrix that must be learned within a given epoch

in order for the seller to maximize her revenues over T periods. When there is no shared

structure between the {θ mp
i }N

i=1, our problem reduces to N independent dynamic pricing

problems.

However, as discussed in the main chapter, we may have some shared structure that can

be related across products. We model the shared structure by positing that product demand

parameters {θ mp
i }N

i=1 are independent and identically distributed draws from a common

unknown matrix normal distribution,2 i.e., θ
mp
i ∼MN (θ mp

* ,Σmp
* , IK) for each i ∈ [N].

(The third argument is IK because the noise terms are uncorrelated by assumption.)

Assumptions: We impose the same assumptions made in Section 4.1.2. However, since

we are now learning (K2 +K)d instead of just 2d parameters (in the single-product case),

we may naturally expect that the constants to differ. Specifically, we take the constants in

Assumption 8 to be xmax and Smp; similarly, we take the constant in Assumption 10 to be

λ
mp

and λ
mp for the multi-product setting.

Meta Oracle: As before, we define our meta oracle to be Thompson Sampling with

a known prior. Here, our meta oracle is TS
(
MN

(
θ

mp
* ,Σmp

* , IK
)
,λ mp

e
)
, the Thompson

sampling algorithm with prior MN
(
θ

mp
* ,Σmp

* , IK
)

and an input parameter λ
mp
e . The de-

scription is formally given in Algorithm 10 below. As before, we perform random price

2See, e.g., [95] for the definition and properties of a matrix normal distribution.
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exploration for Õ(1) time periods by offering initial prices

p(1) =



pmin

pmin

pmin
...

pmin


, p(2) =



1

pmin

pmin
...

pmin


, p(3) =



pmin

1

pmin
...

pmin


, . . . p(K+1) =



pmin

pmin
...

pmin

1


.

(C.36)

The random exploration period ends once the minimum eigenvalue of the matrix

t

∑
s=1

(
x⊤i,s pmp

i,s,1x⊤i,s . . . pmp
i,s,Kx⊤i,s

)⊤(
x⊤i,s pmp

i,s,1x⊤i,s . . . pmp
i,s,Kx⊤i,s

)
,

exceeds λ
mp
e . For each subsequent time step, the meta oracle (1) samples the unknown

product demand parameters

θ̊
mp
i,t =


α̊

mp
i,t,1 . . . α̊

mp
i,t,K

β̊
mp
i,t,1,1 . . . β̊

mp
i,t,K,1

... . . .
...

β̊
mp
i,t,1,K . . . β̊

mp
i,t,K,K

 ,

from the posterior N
(

θ TS
i,t , IK⊗ΣTS

i,t

)
, and (2) solves and offers the resulting optimal price

based on the demand function given by the sampled parameters

pTS
i,t = argmax

p∈[pmin,1]
K

K

∑
k=1

[
pk

(〈
α̊i,t,k,xi,t

〉
+

K

∑
j=1

p j ·
〈

β̊i,t,k, j,xi,t

〉)]
. (C.37)

Upon observing the actual realized demand Di,t

(
pTS

i,t ,xi,t

)
, the algorithm computes the

posterior MN
(

θ TS
i,t+1,Σ

TS
i,t+1, IK

)
for round t + 1 [158]. The same algorithm is applied

independently to each epoch i ∈ [N].

The following theorem bounds the Bayes regret of our meta oracle:
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Algorithm 10 TS(MN
(
θ

mp
* ,Σmp

* , IK
)
,λ mp

e ) : Thompson Sampling Algorithm

1: Input: The prior mean matrix θ
mp
* and covariance matrix Σ

mp
* , the index i of epoch,

the length of each epoch T, the noise parameter σ , exploration parameter λe.

2: Initialization: t← 1,
(

θ TS
i,t ,Σ

TS
i,t

)
←
(
θ

mp
* ,Σmp

*
)
,

3: while λmin

(
∑

t−1
s=1
(
x⊤i,s pi,s,1x⊤i,s . . . pi,s,Kx⊤i,s

)⊤ (x⊤i,s pi,s,1x⊤i,s . . . pi,s,Kx⊤i,s
))
≤ λe

do
4: Observe feature vector xi,t , and offer price pTS

i,t ← p(t mod K)

5: Observe demand Di,t

(
pTS

i,t ,xi,t

)
, and compute the posterior

MN
(

θ TS
i,t+1,Σ

TS
i,t+1, IK

)
.

6: t← t +1.
7: end while
8: while t ≤ T do
9: Observe feature vector xi,t .

10: Sample parameter θ̊i,t ∼MN
(

θ TS
i,t ,Σ

TS
i,t , IK

)
.

11: Offer pTS
i,t according to eq. (C.37).

12: Observe demand Di,t

(
pTS

i,t ,xi

)
, and compute the posterior

MN
(

θ TS
i,t+1,Σ

TS
i,t+1, IK

)
.

13: t← t +1.
14: end while

Corollary 70 (Multi-Product meta oracle). The Bayes regret of Algorithm 10 satisfies

Bayes RegretN,T (π) = Õ
(

K3d
3
2 N
√

T
)
,

when the prior over the product demand parameters is known.

Corollary 70 follows directly from Theorem 27 in the single-product case. This is be-

cause, if a matrix X follows the matrix Gaussian distribution MN (A,B,C), then vec(X),

(i.e., the vectorized version of X that concatenates each column of X to form a vector), fol-

lows the multivariate Gaussian distribution N (A,C⊗B) [95]. Thus, since we still maintain

a linear demand model, the only mathematical change is that the unknown parameter has

dimension (K2 +K)d instead of 2d. Thus, the same result applies by replacing the d in

Theorem 27 with (K2 +K)d.
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C.6.2 Multi-Product Meta-DP Algorithm

The multi-product Meta-DP algorithm is presented in Algorithm 11. We first define some

additional notation, and then describe the algorithm in detail.

Additional Notation: Analogous to our previous notation, we use

mmp
i,t =


xi,t

pmp
i,t,1xi,t

...

pmp
i,t,Kxi,t

 ,

to denote the price and feature information and V mp
i,t = ∑

t
τ=1 mmp

i,t

(
mmp

i,t

)⊤
to denote the

Fisher information matrix of round t in epoch i for all i ∈ [N] and t ∈ [T ].

Algorithm Description: The first Nmp
0 epochs are treated as exploration epochs, where

we define

Nmp
0 = (cmp

2 )2d2(K2 +K)2 loge(4d(K2 +K)N2T ) loge(2NT )λ mp
e , (C.38)

and the constant cmp
2 is defined as

cmp
2 =

32
√

2x2
max(σ

2
(
λ

mp
e
)−1

+5λ
mp

)

λ
mp
e λ

mp
σ2 .

As before, the Meta-DP algorithm proceeds differently for earlier exploration epochs and

later epochs:

1. Epoch i≤ Nmp
0 : The Meta-DP algorithm runs the prior-independent Thompson sam-

pling algorithm [10, 5] TS(MN (0,Ψmp · I(K+1)d, IK),λe), where

Ψ
mp = σ

√
2d loge(T (1+2x2

maxT ))+
√

20λ
mp

d loge(2T ).
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2. Epoch i > Nmp
0 : the Meta-DP algorithm computes the ordinary least square (OLS)

estimate of the parameter vector θi for each of the past epochs; then, it averages these

OLS estimates to arrive at an estimate θ̂
mp
i of the prior mean θ*, i.e.,

θ̂
mp
i =

∑
i−1
j=1

(
V mp

j,T

)−1(
∑

T
t=1 mmp

j,t Dmp
j,t (pmp

j,t ,x j,t)
)

i−1
. (C.39)

Then, the Meta-DP algorithm runs the Thompson sampling algorithm (see Algorithm

10) with the estimated prior MN (θ̂ mp
i ,Σmp

* , IK).

Algorithm 11 Meta-Personalized Dynamic Pricing Algorithm

1: Input: The prior covariance matrix Σ
mp
* , the total number of epochs N, the length of

each epoch T, the subgaussian parameter σ , and the set of feasible prices [pmin,1].
2: Initialization: N0 as defined in eq. (C.38).
3: for each epoch i = 1, . . . ,N do
4: if i≤ N0 then
5: Run TS(MN (0,Ψmp · I(K+1)d, IK),λ

mp
e ).

6: else
7: Update θ̂

mp
i according to eq. (C.39), and run TS

(
MN

(
θ̂

mp
i ,Σmp

* , IK
)
,λ mp

e
)
.

8: end if
9: end for

We now translate our previous upper bound on the meta regret of the single-product

Meta-DP algorithm to the multi-product setting.

Corollary 71 (Multi-Product Meta-DP). The meta regret of multi-product Meta-DP satis-

fies

RN,T (Meta-DP algorithm) = Õ
(

K4d2(NT )
1
2

)
.

Corollary 71 is again an immediate consequence of Theorem 28. Again, this is because,

if a matrix X follows the matrix Gaussian distribution MN (A,B,C), then vec(X), (i.e.,

the vectorized version of X that concatenates each column of X to form a vector), follows

the multivariate Gaussian distribution N (A,C⊗ B) [95]. In other words, we can map

the multi-product prior MN
(
θ

mp
* ,Σmp

* , IK
)

to the same form as a single-product prior

N
(
θ

mp
* , Ik⊗Σ

mp
*
)
, by taking the unknown prior mean to be the vectorized vec(θ mp

* ) and
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the prior covariance to be
(

1 pmp
i,t,1 . . . pmp

i,t,K

)⊤
⊗ xi,t ⊗ 1K (1K is the K × 1 column

vector with all entries equal to 1). Thus, since we still maintain a linear demand model, the

only mathematical change is that the unknown parameter has dimension (K2+K)d instead

of 2d. Thus, the same result applies by replacing the d in Theorem 28 with (K2 +K)d.

C.6.3 Multi-Product Meta-DP++ algorithm

The multi-product Meta-DP++ algorithm is presented in Algorithm 12. We first define

some additional notation, and then describe the algorithm in detail.

Algorithm Description: The first Nmp
1 epochs are treated as exploration epochs, where

we define

Nmp
1 = max{N0, 32(cmp

3 )2d3(K2 +K)3T 2
e log3

e(2d(K2 +K)N2T ),

(cmp
4 )2d4(K2 +K)4T 2 log3

e(2N2T )} , (C.40)

and the constants are defined as

cmp
3 =

16
√

σ2(λ mp
e )−1 +5λ

mp

σλ
mp
e λ

mp +
256(λ

mp
(λ mp

e )2 +16σ2)(
λ

mp
e λ

mp)2

(
8
√

2xmax

λ
mp
e

+
Smp

σλ
mp
e

)
,

c4 =
104σ(λ

mp
(λ mp

e )2 +16σ2)(
λ

mp
e λ

mp)2 .

As before, the Meta-DP++ algorithm proceeds differently for earlier exploration epochs

and later epochs:

1. Epoch i≤ Nmp
1 : the Meta-DP++ algorithm runs the prior-independent Thompson

sampling algorithm TS(MN (0,Ψmp · I(K+1)d, IK),λe), where

Ψ
mp = σ

√
2d loge(T (1+2x2

maxT ))+
√

20λ
mp

d loge(2T ) .

2. Epoch i > Nmp
1 : the Meta-DP++ algorithm computes an estimator θ̂

mp
i of the prior

mean θ
mp
* using Eq. (C.39) (same as the multi-product Meta-DP algorithm), and an
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estimator Σ̂
mp
i of the prior covariance Σ

mp
* as

Σ̂
mp
i =

1
i−2

i−1

∑
j=1

(
θ̇

mp
j −

∑
i−1
k=1 θ̇

mp
k

i−1

)(
θ̇

mp
j −

∑
i−1
k=1 θ̇

mp
k

i−1

)⊤
−

σ2
∑

i−1
j=1E

[(
V mp

j,T j

)−1
]

i−1
,

(C.41)

where, following the single-product Meta-DP++ algorithm, we define

θ̇
mp
i =

(
V mp

i,Ti

)−1
(

Ti

∑
t=1

Dmp
i,t (pmp

i,t ,xi,t)m
mp
i,t

)
.

The widened posterior covariance is thus

Σ̂
mp,w
i = Σ̂i +

128(λ
mp

(λ mp
e )2 +8σ2dK(K +1))
(λ mp

e )2

√
5dK(K +1) loge(2N2T )

i
· IK(K+1)d ,

(C.42)

where IK(K+1)d is the (K(K +1)d)-dimensional identity matrix.

Then, the Meta-DP++ algorithm runs the Thompson Sampling algorithm (see Algo-

rithm 10) with the estimated prior MN
(
θ̂

mp
i , Σ̂mp,w

i , IK
)
.

Algorithm 12 Meta-Dynamic Pricing++ Algorithm
1: Input: The total number of products N, the length of each epoch T, the noise parameter

σ , and the set of feasible prices [pmin,1].
2: for epoch i = 1, . . . ,N do
3: if i≤ Nmp

1 then
4: Run TS(MN (0,Ψmp · I(K+1)d, IK),λ

mp
e ).

5: else
6: Update θ̂

mp
i and Σ̂

mp
i according to Eqs. (C.39) and (C.41) respectively.

7: Compute widened prior mean estimate Σ̂
mp,w
i according to Eq. (C.42).

8: Run TS
(
MN

(
θ̂

mp
i , Σ̂mp,w

i , IK
)
,λ mp

e
)
.

9: end if
10: end for

We now translate our previous upper bound on the meta regret of the single-product

Meta-DP++ algorithm to the multi-product setting.

274



Corollary 72 (Multi-Product Meta-DP++). The meta regret of multi-product Meta-DP++

satisfies

RN,T (Meta-DP++ algorithm) = Õ
(

min
{

K4d2NT
1
2 , K8d4N

1
2 T

3
2

})
= Õ

(
K6d3(NT )

5
6

)
.

Corollary 72 is again an immediate consequence of Theorem 31. The reasoning is

exactly the same as for Corollary 71, so we omit it. Essentially, we can map the multi-

product prior to the same form as a single-product prior, so that the only mathematical

change is that the unknown parameter has dimension (K2 +K)d instead of 2d. Thus, the

same result applies by replacing the d in Theorem 31 with (K2 +K)d.

C.7 Auxiliary Results

For completeness, we restate some well-known results from the literature.

The following lemma characterizes the Bayesian regret of Thompson sampling for the

linear bandit.

Lemma 73 (Proposition 3 of [162]). Fix positive constants σ ,c, and c′. Denote the set

of all possible parameters as Θ ∈Rd, the mean reward function as fθ (a) = ⟨φ(a),θ⟩ for

some φ : A → R, supρ∈Θ ‖ρ‖ ≤ c, and supa∈A ‖φ(a)‖ ≤ c′, and for each t, the noise

term is σ -subgaussian, then the Bayesian regret of the Thompson sampling algorithm is

Õ(d
√

T ).

The following lemma characterizes the eigenvalues of a matrix Kronecker product.

Lemma 74 (Corollary 13.11 of [126]). Let A be a real-valued matrix with singular values

λ1 ≥ . . .≥ λr > 0, and let B be a real-valued matrix with singular values λ ′1 ≥ . . .≥ λ ′s > 0,

then A⊗B has r · s singular values λiλ
′
j (i ∈ [r] j ∈ [s]).

The following lemma upper bounds the covering number of a d-dimensional unit ball.

Lemma 75 ([171]). For the d-dimensional unit ball, its δ covering number is upper bounded

by d loge(1+2/δ ).

The following lemma provides an upper bound for the quantity exp(1/a) when a > 1.
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Lemma 76. For any number a ∈ [0,1], exp(a)≤ 1+2a.

Proof. Proof of Lemma 76. We note that the function f (a) = exp(a)−1−2a is a convex

function as

f ′′(a) = ea > 0, (C.43)

as well as that f (0) = 1−1 = 0 and f (1) = e−3 < 0, so f (a)≤ 0 for all a ∈ [0,1].

The following lemma makes a connection between the tail probability of a random

variable and its moment generating function.

Lemma 77 (Lemma 1.5 of [154]). For a random variable X ∈R such that E[X ] = 0 and

for any u > 0,

Pr(|X |> u)≤ 2exp
(
− u2

2σ2

)
,

we have for any v ∈R,

E[exp(vX)]≤ exp(4v2
σ

2).

The following lemma provides a concentration inequality for estimating the empirical

covariance matrix.

Lemma 78 (Theorem 7.1 of [155] and Theorem 6.5 of [171]). Let X1, . . . ,Xn be n i.i.d.

copies of the random vector X such that E[X ] = 0,E[XX⊤] = Σ, and X is σ -subgaussian

vector. Then, the operator norm of the difference between the empirical covariance ∑
n
i=1 XiX⊤i /n

and Σ satisfies

Pr

(∥∥∥∥∑
n
i=1 XiX⊤i

n
−Σ

∥∥∥∥
op
≤ 32σ

2

(√
5d +2loge(2/δ )

n
∨ 5d +2loge(2/δ )

n

))
≥ 1−δ

for any δ ∈ [0,1].

The following lemma shows that the operator norm of the product of two matrices is

upper bounded by the product of the operator norms of those matrices.
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Lemma 79. For two positive semi-definite matrices A and B, we have

‖AB‖op ≤ ‖A‖op‖B‖op.

Proof. The statement can be easily concluded as follows.

‖AB‖op = max
x:‖x‖=1

‖ABx‖= max
x:‖x‖=1

‖ABx‖
‖Bx‖

‖Bx‖

≤ max
x:‖x‖=1

‖ABx‖
‖Bx‖

max
y:‖y‖=1

‖By‖

= max
Bx:‖x‖=1

‖ABx/‖Bx‖‖
‖Bx/‖Bx‖‖

max
y:‖y‖=1

‖By‖

=‖A‖op‖B‖op.

The following lemma compares the determinants of two positive semi-definite matrices.

Lemma 80. For two symmetric positive semi-definite matrices A and B, if A−B is positive

semi-definite, then det(A)≥ det(B).

Proof. Note that

det(A) = det(B+(A−B)) =det
(

B
1
2

(
I +B−

1
2 (A−B)B−

1
2

)
B

1
2

)
=det(B)det

((
I +B−

1
2 (A−B)B−

1
2

))
≥det(B)

(
1+det

(
B−

1
2 (A−B)B−

1
2

))
(C.44)

=det(B)+det(A−B)

≥det(B). (C.45)

Here, inequality (C.44) holds because ∏
2d
k=1(1+ µk) ≥ 1+∏

2d
k=1 µk where µk is the kth

eigenvalue of B−
1
2 (A−B)B−

1
2 , and inequality (C.45) holds because A−B is positive semi-

definite.
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Appendix D

Proofs for Chapter 5

D.1 Proof of Proposition 33

We let x1 = 1,x2 = T,xt = t−1 ∀t ∈ [3,T ], and

yt =


1 if xt is odd and xt < T ;

0 if xt is even and xt < T ;

1
2 if xt = T.

Then, we can see that the oracle can employ a constant function f (xt) = 1/2 and achieve a

cumulative loss at most

inf
f∈F

T

∑
t=1

`( f (xt),yt)≤
T

∑
t=1

`

(
1
2
,yt

)
=

T−1

∑
t=1

(
1
2

)2

=
T −1

4
.

According to [121], the solution to the least square problem 5.6 can be computed by the

Pool Adjacent Violators Algorithm (PAVA) [24]. The algorithm is based on the observation

that if the labels of any two consecutive labels yi,yi+1 violate isotonicity (i.e., xi ≤ xi+1 but

yi ≥ yi+1), then we must have f̂ (xi) = f̂ (xi+1) in the optimal solution of the least square

and we may merge both points to their average. This process repeats and terminates until

every historical data is passed. For every time step t, there are two important properties of

the fitted function f̂t [156, 121]:
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1. The function f̂t(·) is piecewise constant and thus its level sets partition {1, . . . ,T}.

2. The value of f̂t(·) on any level set is equal to the weighted average of labels within

that set.

Now, we show that even if the ILS policy knows f (x1) = f (T ) = 1/2+1/T and f (x2) =

f (1) = 1 (i.e., the ILS policy does not need to perform extrapolation) would have to incur

a cumulative loss of 13(T −2)/32. To see this, we distinguish two cases for every t ≥ 2 :

∙ Case 1. xt is odd: In this case, one can easily verify f̂t(x) = 1/2 and hence,

`( f̂t(xt),yt) =

(
1
2
−1
)2

=
1
4
.

∙ Case 2. xt is even: In this case, one can easily verify

f̂t(x) =


1
2 if x≤ xt−1;

3
4 oterhwise.

Hence,

`( f̂t(xt),yt) =

(
3
4
−0
)2

=
9
16

.

Summing up the two cases

T

∑
t=1

`( f̂t(xt),yt)≥
(

1
4
+

9
16

)
T −2

2
=

13(T −2)
32

≥ 12(T −1)
32

,

where we use the assumption T ≥ 14. The statement thus follows.

D.2 Relaxation and Admissibility

In [152], a rate-optimal algorithmic recipe for the general problem of online non-parametric

regression is proposed based on the relaxation framework introduced in [151]. The relax-

ation framework follows a backward induction approach to characterized the minimax-

optimal regret bounds for general online learning problems. Although the induced algo-
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rithm is computationally inefficient in general, we will adopt the framework to characterize

the minimax-optimal regret upper bound, and design a computationally-efficient algorithm

in Section 5.2 for our setting by exploiting the special properties of random-design online

isotonic regression.

Following the zero-sum sequential game formulation for online learning (see, e.g., Sec-

tion 7.3 of [53]), the minimax-optimal regret of our setting can be written as (we recall

that {xt}T
t=1 ∼D , ŷt ∼ qt ∈ ∆([0,1]), and yt ∼ pt ∈ ∆[0,1] for all time step t ∈ [T ], but for

brevity, we often do not write these out explicitly)

RT := infRT (π|F ) =E
x1

inf
q1

sup
p1

Ê
y1
E
y1
. . .E

xT
inf
qT

sup
pT

Ê
yT
E
yT

[
T

∑
t=1

`(ŷt ,yt)− inf
f∈F

T

∑
t=1

`( f (xt),yt)

]
,

(D.1)

where the DM picks the qt’s to minimize the terminating loss, i.e.,

T

∑
t=1

`(ŷt ,yt)− inf
f∈F

T

∑
t=1

`( f (xt),yt)

, while an adversary picks the pt’s to maximize the terminating loss, which is also her gain.

Remark 32. The relaxation framework is not specifically tied to any particular online

non-parametric regression setting, and F can be replaced by any other non-parametric

function class.

Formally, a relaxation Rel = {Relt}T
t=0 is a sequence of mappings from the history

information and the covariate distributions to real numbers. Specifically, a relaxation Rel

is called admissible if the following conditions (in eq. (D.2) and eq. (D.3)) are satisfied,

i.e.,

RelT (HT )≥− inf
f∈F

T

∑
t=1

`( f (xt),yt), (D.2)

and for every t ∈ [T ], there exists a distribution q̃t ∈ ∆([0,1]) (recall that for a set A ∈ R,
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∆(A ) is the simplex over A ), such that

E
xt

sup
p̃t∈∆([0,1])

E
ŷt∼q̃t

E
yt∼p̃t

[`(ŷt ,yt)+Relt (Ht)]≤ Relt−1 (Ht−1) . (D.3)

Here, we do not explicitly include the dependence on D for brevity. It can be readily shown

that an admissible relaxation-policy pair can lead to the following regret bound guarantee.

Lemma 81. If Rel is admissible, then RT ≤ Rel0(H0).

The proof of Lemma 81 is similar to the proof of Proposition 1 in [151]. For complete-

ness, we include it in Section D.2.1.

Suppose there exists a relaxation Rel that is admissible for a certain online non-parametric

regression problem, [152] proposed a natural way to derive π to attain the regret upper

bound specified in Proposition 81: For each time step t, after the covariate xt is revealed,

the DM predicts by sampling ŷt according to the distribution qt defined as follows:

qt := argmin
q′t∈∆[0,1]

sup
pt∈∆([0,1])

E
ŷt∼q′t

E
yt∼pt

[`(ŷt ,yt)+Relt (Ht)] . (D.4)

Remark 33. Although it can be easily seen that this specific choice of policy is can lead

to the regret upper bound shown in Lemma 81, it is often computationally hard to solve

the optimization problem (D.4) as pointed out by [152]. In particular, it is unclear how to

adopt this framework to the online isotonic regression problem even under the fixed-design

setting (see Section 1.1 of [121]).

One useful corollary for the relaxation result is that if the induced probability of a policy

π satisfies eq. (D.2) and (D.3), then the regret of π is upper bounded by Rel0(H0).

Corollary 82. Following the notations in Section 3.1, let qt be the induced distribution of

πt , and Rel be any admissible relaxation, if it satisfies

RelT (HT )≥− inf
f∈F

T

∑
t=1

`( f (xt),yt),
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and for every t ∈ [T ],

E
xt

sup
p̃t∈∆([0,1])

E
ŷt∼qt

E
yt∼p̃t

[`(ŷt ,yt)+Relt (Ht)]≤ Relt−1 (Ht−1) .

then the regret of π = {πt}T
t=1 is upper bounded by Rel0(H0).

The proof of 82 is very similar to that of Lemma 81, and it is thus omitted.

D.2.1 Proof of Lemma 81

By definition, the regret of π can be written as (we recall that xt ∼ Dt , ŷt ∼ q̃t ∈ ∆([0,1]),

and yt ∼ pt ∈ ∆[0,1] for all time step t ∈ [T ])

RT =E
x1

sup
p1

Ê
y1
E
y1
. . .E

xT
sup
pT

Ê
yT
E
yT

[
T

∑
t=1

`(ŷt ,yt)− inf
f∈F

T

∑
t=1

`( f (xt),yt)

]

≤E
x1

sup
p1

Ê
y1
E
y1
. . .E

xT
sup
pT

Ê
yT
E
yT

[
T

∑
t=1

`(ŷt ,yt)+RelT (HT )

]
(D.5)

=E
x1

sup
p1

Ê
y1
E
y1
. . . E

xT−1
sup
pT−1

E
ŷT−1

E
yT−1

{
T−1

∑
t=1

`(ŷt ,yt)+E
xT

sup
pT

Ê
yT
E
yT
[`(ŷt ,yt)+RelT (HT )]

}
,

where we have used the admissibility condition (D.2) in inequality (D.5). Continue to apply

the admissibility condition (D.3), we can further upper bound the above as

RT ≤E
x1

sup
p1

Ê
y1
E
y1
. . . E

xT−1
sup
pT−1

E
ŷT−1

E
yT−1

[
T−1

∑
t=1

`(ŷt ,yt)+RelT−1(HT−1)

]
.

Recursively applying admissibility condition (D.3) for t = T −1, . . . ,1, we have

RT ≤ E
x1

sup
p1

Ê
y1
E
y1
[`(ŷ1,y1)+Rel1(H1)]≤ Rel0(H0).

D.3 Proof of Theorem 34

Following the discussion in Section 5.2.2, we know that the difficulty in analyzing the regret

bound of the SEW policy lies in its design, i.e., it utilizes simulated future covariates to make
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predictions. It turns out that the relaxation framework also leverages a backward induction

principle to establish regret bounds for online non-parametric regression problems [152].

We thus exploit this approach throughout the proof.

D.3.1 Arriving at the Relaxation

In this section, we first derive the relaxation (i.e., the potential functions Vt’s will be the

Relt(Ht)’s then) for our setting. Following the discussion in Section 5.1.3, it is suf-

ficient to show a regret upper bound against the data-dependent discrete offline oracle

inf f∈F({xt}T
t=1)

∑
T
t=1 `( f (xt),yt). We thus follow eq. (D.2) and (D.3) to work in a backward

manner, and begin by upper bounding the term− inf f∈F({xt}T
t=1)

∑
T
t=1 `( f (xt),yt). Note that

for any positive real number λ (> 0),

− inf
f∈F({xt}T

t=1)

T

∑
t=1

`( f (xt),yt) = sup
f∈F({xt}T

t=1)
−

T

∑
t=1

( f (xt)− yt)
2

=λ
−1 sup

f∈F({xt}T
t=1)
−λ

T

∑
t=1

( f (xt)− yt)
2.

From the fact that ∀x ∈ R, x = loge(exp(x)), we have

− inf
f∈F({xt}T

t=1)

T

∑
t=1

`( f (xt),yt) =λ
−1 loge

 sup
f∈F({xt}T

t=1)
exp

(
−λ

T

∑
t=1

( f (xt)− yt)
2

)
≤λ
−1 loge

 ∑
f∈F({xt}T

t=1)

exp

(
−λ

T

∑
t=1

( f (xt)− yt)
2

) ,
where we have used the non-negativity of the exponential function to replace the supremum

by the summation. We can thus define

RelT (HT ) = λ
−1 loge

 ∑
f∈F({xt}T

t=1)

exp

(
−λ

T

∑
t=1

( f (xt)− yt)
2

) (D.6)

with λ (> 0) to be specified in the forthcoming Lemma 83. It is evident that this choice

satisfies inequality (D.2) by definition. We then compute an upper bound for the quantity
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E
xT

inf
qT

sup
pT

Ê
yT
E
yT
[`(ŷT ,yT )+RelT (HT )] to guide our design of the relaxation.

Lemma 83. Setting λ = 1/2 in eq. (D.6), we have

E
xT

inf
qT

sup
pT

Ê
yT
E
yT
[`(ŷT ,yT )+RelT (HT )]≤ 2E

xT
loge

 ∑
f∈F({xt}T

t=1)

exp

[
−∑

T−1
t=1 ( f (xt)− yt)

2

2

] .

The proof of Lemma 83 is provided in Section D.3.3 of the appendix. Lemma 83

motivates us to define the following relaxation for, i.e.,

∀t ∈ [T ] Relt(Ht) = 2 E
xt+1

. . .E
xT

loge

 ∑
f∈F({xt}T

t=1)

exp
[
−∑

t
s=1( f (xs)− ys)

2

2

] .

(D.7)

We now show that this choice of relaxation is admissible.

Lemma 84. The relaxation (D.7) is admissible.

The proof of Lemma 84 is provided in Section D.3.4 of the appendix. To this end, we

have come up with one possible relaxation for our problem. In what follows, we shall see

how to utilize the relaxation to show that the regret of the SEW policy is indeed O(T 1/3).

D.3.2 Completing the Proof

In this section, we verify that the SEW policy and the relaxation defined in eq. (D.7) satisfies

the precondition of Corollary 82, and the regret of the SEW policy is thus upper bounded by

Rel0(H0) = O(T 1/3).

We first write out the output ŷt by the SEW policy at each time step t ∈ [T ] explicitly.

For each time step t, conditioned on the sampled future covariates x′t+1, . . . ,x
′
T , we define a

distribution qt ∈ ∆
(
F
(
{xs}ts=1∪{xs}T

s=t+1
))

: ∀ f ∈F
(
{xs}ts=1∪{x′s}T

s=t+1
)

Pr( f (xt)) =
exp
(
−∑

t−1
s=1( f (xs)− ys)

2/2
)

∑ f ′∈F
(
{xs}ts=1∪{x′j}T

j=t+1

) exp
(
−∑

t−1
s=1( f ′(xs)− ys)2/2

) . (D.8)
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We can thus express ŷt output by the SEW policy as ŷt = E
f (xt)∼qt

[ f (xt)]. We now verify that

the SEW policy and the relaxation defined in (D.7) satisfy the admissibility condition in

(D.3). Note that

E
xt

sup
pt

E
ŷt∼πt

E
yt∼pt

[`(ŷt ,yt)+Relt (Ht)]

=E
xt

sup
pt

E
x′t+1

. . .E
x′T

E
yt∼pt

[
`

(
E

f (xt)∼qt
[ f (xt)],yt

)
+Relt (Ht)

]
=E

xt
sup

pt

E
x′t+1

. . .E
x′T

E
yt∼pt

[(
E

f (xt)∼qt
[ f (xt)]− yt

)2

+Relt (Ht)

]

=E
xt

sup
pt

E
x′t+1

. . .E
x′T

E
yt∼pt

2loge exp


(

E
f (xt)∼qt

[ f (xt)]− yt

)2

2

+Relt (Ht)

 . (D.9)

To proceed, we show the following lemma.

Lemma 85. Conditioned on x′t+1, . . . ,x
′
T , we have

exp


(

E
f (xt)∼qt

[ f (xt)]− yt

)2

2

≤ ∑ f ′∈F({xs}ts=1∪{x′s}T
s=t+1)

exp
(
−∑

t−1
s=1( f ′(xs)− ys)

2/2
)

∑ f∈F({xs}tt=1∪{x′s}T
s=t+1)

exp(−∑
t
s=1( f (xs)− ys)2/2)

(D.10)

The proof of Lemma 85 is provided in Section D.3.5. Applying Lemma 85 to the RHS

of (D.9), we have

E
xt

sup
pt

E
ŷt∼πt

E
yt∼pt

[`(ŷt ,yt)+Relt (Ht)]

≤E
xt

sup
pt

E
x′t+1

. . .E
x′T

E
yt∼pt

2loge

∑ f ′∈F({xs}ts=1∪{x′s}T
s=t+1)

exp
(
−∑

t−1
s=1( f ′(xs)− ys)

2/2
)

∑ f∈F({xs}tt=1∪{x′s}T
s=t+1)

exp(−∑
t
s=1( f (xs)− ys)2/2)

+Relt (Ht)

 .
(D.11)

Further note that x′t+1, . . . ,xT are i.i.d. copies of xt+1, . . . ,xT , the RHS of (D.11) can be
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rewritten as

E
xt

sup
pt

E
ŷt∼πt

E
yt∼pt

[`(ŷt ,yt)+Relt (Ht)]

≤E
xt
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E
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. . .E
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E
yt∼pt

2loge

∑ f ′∈F({xs}T
s=1)

exp
(
−∑
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s=1( f ′(xs)− ys)

2/2
)

∑ f∈F({xs}T
s=1)

exp(−∑
t
s=1( f (xs)− ys)2/2)

+Relt (Ht)


(D.12)

=E
xt

sup
pt

E
xt+1

. . .E
xT

E
yt∼pt

2loge

 ∑
f ′∈F({xs}T

s=1)

exp

(
−∑

t−1
s=1( f ′(xs)− ys)

2

2

) , (D.13)

where we have recalled the definition of Relt(Ht) as

Relt(Ht) = 2 E
xt+1

. . .E
xT

loge

 ∑
f∈F({xt}T

t=1)

exp
[
−∑

t
s=1( f (xs)− ys)

2

2

] . (D.14)

in inequality (D.12). Continue with (D.13), we have

E
xt

sup
pt

E
ŷt∼πt

E
yt∼pt

[`(ŷt ,yt)+Relt (Ht)]

≤E
xt
. . .E

xT

2loge
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f∈F({xs}T

s=1)

exp

(
−∑

t−1
s=1( f (xs)− ys)

2

2

)
=Relt−1(Ht−1).

Therefore, we have established that the relaxation defined in eq. (D.7) and the policy

induced by the SEW policy algorithm satisfy eq. (D.3). Together with Corollary 82, we can

derive the following regret upper bound for the SEW policy against the oracle

inf
f∈F({xt}T

t=1)

T

∑
t=1

`( f (xt),yt).

Lemma 86. The regret of the SEW policy against the discrete isotonic function class F
(
{xt}T

t=1
)
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is upper bounded as

E

[
T

∑
t=1

`(ŷt(πt),yt)− inf
f∈F({xt}T

t=1)

T

∑
t=1

`( f (xt),yt)

]
≤ Rel0(H0)≤ 2K loge(T +1).

The proof of Lemma 86 is provided in Section D.3.6 of the appendix. By Lemma 86

and inequality (5.5), we know that the regret of the SEW policy against the isotonic function

class F is upper bounded as

RT = E

[
T

∑
t=1

`(ŷt(πt),yt)− inf
f∈F

T

∑
t=1

`( f (xt),yt)

]
≤ 2K loge(T +1)+T/4K2.

By setting K =
⌈

T 1/3/[4(loge(T +1))1/3]
⌉
, this is of order RT = Õ(T 1/3).

D.3.3 Proof of Lemma 83

Recall that for a set A ⊆ R, ∆(A ) is the simplex over A , by the minimax theorem [141],

we have

E
xT

inf
qT

sup
pT

Ê
yT
E
yT
[`(ŷT ,yT )+RelT (HT )] =E

xT
sup
pT

inf
qT

Ê
yT
E
yT
[`(ŷT ,yT )+RelT (HT )] .

Since the RHS is convex in ŷT , the infimum over qT ∈ ∆([0,1]) is attained at a point mass,

and we can further rewrite

E
xT

inf
qT

sup
pT

Ê
yT
E
yT
[`(ŷT ,yT )+RelT (HT )] =E

xT
sup
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ŷT
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=E
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[
(ŷT − yT )

2 +RelT (HT )
]

=E
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sup
pT

[
inf
ŷT

E
yT
(ŷT − yT )

2 +E
yT

RelT (HT )

]
.

Note that the minimum of E
yT
(ŷT − yT )

2 is attained at ŷT = E[yT ], and by definition of

RelT (HT ) in eq. (D.6),

E
xT

inf
qT

sup
pT

Ê
yT
E
yT
[`(ŷT ,yT )+RelT (HT )]
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=E
xT
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E
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[
(E[yT ]− yT )

2 +RelT (HT )
]

(D.15)
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−1 loge

 ∑
f∈F({xt}T
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T

∑
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( f (xs)− ys)
2

)
Observing that x = loge(exp(x)), we can proceed as

E
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inf
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sup
pT

Ê
yT
E
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[`(ŷT ,yT )+RelT (HT )]
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(
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2
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2

) .
Observing that (E[yT ]− yT )

2− ( f (xT )− yT )
2 = 2(yT −E[yT ])( f (xT )−E[yT ])− ( f (xT )−

E[yT ])
2, we have

E
xT

inf
qT

sup
pT

Ê
yT
E
yT
[`(ŷT ,yT )+RelT (HT )]

=E
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E
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2
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∑
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( f (xs)− ys)
2

)]
.

By concavity of the logarithm function and the Jensen inequality, we can further upper

bound

E
xT

inf
qT

sup
pT

Ê
yT
E
yT
[`(ŷT ,yT )+RelT (HT )]
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≤E
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λ
−1 loge
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E
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exp
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2λ (yT −E[yT ])( f (xT )−E[yT ])−λ ( f (xT )−E[yT ])

2

(D.16)

−λ

T−1

∑
t=1

( f (xt)− yt)
2

]}
.

Note that yt−E[yt ] ∈ [−1,1], which implies it is 1-subGaussian (Lemma 1.8 of [153]), and

hence

E
yt

exp [2λ (yt−E[yt ])( f (xt)−E[yt ])]≤ exp
[
2λ

2( f (xT )−E[yT ])
2] . (D.17)

Applying inequality (D.17) to the RHS of (D.16), we arrive at an upper bound

E
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(D.18)

Taking λ = 1/2 in the RHS of (D.18), we further have

E
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] .

D.3.4 Proof of Lemma 84

Following exactly the same steps until eq. (D.15) in the proof of Lemma 83, we have

E
xt

inf
qt

sup
pt

Ê
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E
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.

By definition of the relaxation in (D.7) and minimax theorem, we have

E
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qt

sup
pt

Ê
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Observing that x = loge(exp(x)), we can proceed as
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Note that (E[yt ]− yt)

2− ( f (xt)− yt)
2 = 2(yt −E[yt ])( f (xt)−E[yt ])− ( f (xt)−E[yt ])

2, we

can continue as
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By concavity of the logarithm function and the Jensen inequality, we can further upper

bound

E
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Ê
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Applying inequality (D.20) to the RHS of (D.19), we arrive at an upper bound
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Ê
yt
E
yt
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D.3.5 Proof of Lemma 85

From pg. 46 of [53], we know that exp(−(a−b)2/2) is concave in a if (a−b)2 ≤ 1. Note

that
(

E
f (xt)∼qt

[ f (xt)]− yt

)2

≤ 1 since both E
f (xt)∼qt

[ f (xt)] and yt belong to [0,1]. We can

thus apply the Jensen’s inequality as follows
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×
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where we have used the definition of qt (defined in eq. (D.8)) in eq. (D.22). Rearranging

the terms, we can conclude the proof.

D.3.6 Proof of Lemma 86

The first inequality is an immediate consequence of Corollary 82. To see the second part,

we note that by definition
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From the proof of Theorem 4 of [121], we know that
∣∣F (
{xt}T

t=1
)∣∣≤ (T +1)K. Therefore,

(D.23) is at most K loge(T +1).

D.4 Dynamic Programming Acceleration

Following [121], we can define for each k ∈ {0, . . . ,K} and s ∈ [T ]
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Suppose xt is the ith smallest in all the covariates, i.e., xt = zi, then it can be readily verified

that
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and similarly, ∑ f∈Ft exp
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To this end, we can compute wk
s from s = 1 to i for all k ∈ {0, . . . ,K} as follows. We recall

we have defined for every s ∈ [T ] and every k ∈ {0, . . . ,K},
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where σ(s) is the corresponding subscript of the xq that is equal to zs if zs ∈ {x j}tj=1, i.e.,

σ(s) = q.

Hence, starting from wk
0 = 1 for every k, we have the recursive equations for all k ∈
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For vk
s’s, starting from uk

T = 1 for every k, we have the recursive equations for all k ∈

{0, . . . ,K},
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