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Abstract

We focus on grade prediction in the context of the 6.0001/2 course by utilizing stu-
dent data – including assignment, assessment, and participation scores/metrics and
click data – from past iterations of the course. In doing so, we explore various ma-
chine learning algorithms to create expressive, accurate predictive models. We have
created and integrated the predictive modeling tool into the current course site to
allow course staff to monitor student grade trajectories while guiding and assisting
struggling students. Staff are able to interface with this tool which allows them to see
this grade prediction along with other useful attributes for any student enrolled in the
course. Students, although not directly able to interface with the tool, can be alerted
and offered assistance if their grade trajectory is predicted to be a failing grade or
below a certain threshold in order to provide them with the necessary resources to
succeed in the course. Finally, we analyze the grade predictions and compare them
to the final grade outcomes to find trends and patterns with regards to how students
with different trajectories through the semester adjust their behaviors in the course
based on the marks they receive.
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Chapter 1

Introduction

1.1 Background

Nowadays, socioeconomic advancement and even securing a job requires more educa-

tion than ever before (see Fig 1.1) [3]. Meanwhile, the shift towards a more digital

world has led to the automation of many jobs and caused a surge in demand for

computer based skills in the workforce. More and more jobs, projects, and problems

require familiarity, experience, and an understanding of computer science fundamen-

tals like programming, computational thinking, optimization, etc regardless of the

industry [5].

Table 1.1: Departments Requiring Students to Take 6.0001/2

Department 6.0001 6.0002
Course 3: Materials Science and Engineering Optional* Optional*
Course 6: Electrical Engineering and Computer Science Required Required
Course 9: Brain and Cognitive Sciences Required Required
Course 15-2: Business Analytics Required Required
Course 16: Aeronautics and Astronautics Required Required
Course 18-C: Mathematics with Computer Science Required Not Required
Course 20: Biological Engineering Required Required
Course 22: Nuclear Science and Engineering Optional* Optional*

* Students must either take both 6.0001 and 6.0002, or one of three other courses
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Figure 1-1: Unemployment Rate (blue) and Median Weekly Earnings (green) by
Education Attainment based on Labor Force Statistics from the Current Population
Survey in 2019. Data is only includes workers over 25 and earnings are for full-time
wage and salary workers. [1]

At the Massachusetts Institute of Technology, this has led to many departments,

not just the Electrical Engineering and Computer Science (EECS) department, re-

quiring their students to take the introductory programming course(s) 6.0001 Intro-

duction to Computer Science and Programming in Python and 6.0002 Introduction

to Computational Thinking and Data Science. Currently, eight departments have

6.0001/2 as a graduation requirement or graduation requirement option for students

- See Table 1.1. In addition, during the 2020-2021 academic year 6.0001 and 6.0002

were each listed as a prerequisite or co-requisite for 25 unique courses and there are

three courses that list both 6.0001 and 6.0002 as prerequisites or co-requisites [2].

Student enrollment numbers in these two courses is comparable to that of some Gen-

eral Institute Requirements (GIRs) - See Fig 1.1 - with students having a large range

of experience levels with the material and includes students at every grade level

from freshman who have no programming experience to seniors who’ve completed

programming related courses, projects, and/or internships. The course is not only
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popular among MIT undergraduates, but also MIT graduate students from various

departments and cross-registered undergraduate students from Harvard University

and Wellesley College.

Figure 1-2: Number of students enrolled in past iterations of 6.0001 and 6.0002. The
enrollment numbers are based on the number of students who’ve completed the course
and received a grade as to not count those students who drop the course.

1.2 Motivation

The goal of this project is two-fold. First, on a more individualized and course specific

basis, we hope to be able to alert staff when a student is not on track to pass the

course so that the staff can quickly recognize and offer assistance and resources to

students who need it. Especially during this shift to virtual learning sessions, it is

difficult to keep track of student progress and notice when students are falling behind,

so with this tool, staff are able to more closely monitor and help students struggling

in the course. Secondly, we aim to understand and generalize trends and behaviors

students with various grade trajectories follow. In doing so, we hope to uncover what

habits and factors can contribute to being a successful student and how students can

improve their trajectories. In order to do so, we aim to answer the following questions:

17



1.2.1 Research Questions

• How well can we predict student performance or grades at various points in the

semester?

– What machine learning algorithm(s) performs the best at predicting stu-

dent grades?

– Which features are indicative of high student grades?

• How often do students in danger or failing actually fail the course? What

percentage of students in the category (danger of failing) actually end up failing?

1.3 Related Work

1.3.1 6.0001/2 MOOC Research

Since its creation, 6.0001/2 dataset has been used to study a multitude of student

behaviors. Much of research, however, is focused on the Massive Open Online Course

(MOOC) version of the course that is offered on the ed-tech platform edX, which

allows anyone to access the course in either a free or paid version, where the paid

version offers access to more materials .

One such work classifies students based on their learner type which is based on

characteristics like their number of times the student has attempted the course, course

version (either free or paid), course pace (either self- or instructor- paced), etc. then

studies what factors affect the behaviors and outcomes of students with different

learner types [7]. In another project, the 6.0001/2 MOOC data was used to under-

stand student learning trajectories or behaviors over different time frames . These

time frames studies were both over the course of solving a single problem and over

multiple problems in order to understand which behaviors best support learning [4].

Another paper explored the effect that receiving grade feedback has on the behavior

of students and ultimately concluded that students did not change their learning be-

havior after receiving a specific grade [10]. In this way, the grade prediction feature

18



we work on should not affect the way that students in the course learn the material

nor affect their outcomes in the course.

The importance of research into this version of the course is invaluable as MOOCs

make education more accessible for a wider range of learners. However, we intend

to study the behavior of another important class of students, in-person learners, in

order to understand and improve the way that versions of the courses are taught and

managed. Similarly, in his paper, Vostatek analyzes factors that affect and strongly

correlate with student performance in both the MOOC and in-person setting versions

of 6.0001/2 and goes on to compare and contrast student performance in the two

versions of the course, the MOOC version and the on-campus version [9].

1.3.2 Grade Prediction

There have also been many research efforts in predicting student grades. In one

such work, Iqbal et. al. employ various machine learning models to predict grades

from Information Technology University (ITU), Lahore, Pakistan and ultimately find

that Restricted Boltzmann Machines were the most successful at correctly predicting

student grades [8]. However, their dataset features focus more on the prior experience

of the student (i.e. courses they’ve taken before, grades they’ve received in other

classes, etc.) which differs greatly from the features in the 6.0001/2 dataset which

is mostly comprised of data generated from interactions at the time of taking the

course.

In Vostastek’s aforementioned paper, he also studies grade prediction for in-person

6.0001/2 students and found some very promising prediction algorithms that have

shown the ability to learn which features relate to a student’s final grade [9]. Our

work builds on this project in that we integrate the grade prediction feature into

the course site, further study models that can more accurately predict grades, and

investigate the best way to interpret and utilize the grade predictions to improve

student performance.
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1.4 Outline

The general outline of work that has been completed for this thesis project is as

follows:

• Gather the relevant data from previous iterations of the courses.

• Train a predictive model to determine student grades based on their assignment

scores, assessment scores, participation, and relevant click data from site.

• Design and implement interface for grade predictions.

• Continuously monitor the tool’s performance at weekly intervals throughout the

semester while the course is running.

• Study the trajectory of students whose grade trajectory ever is a failing grade

or below a certain threshold throughout the entirety of their time in the course.

• Once grades are finalized, analyze the performance and usefulness of the tool

with regards to improving student grade outcomes when compared to looking at

individual student trajectories and comparing the course to previous iterations

as a whole.
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Chapter 2

Course Information

2.1 Course Overview

Initially, the material in 6.0001/2 were combined into a single semester course named

6.00 which was first taught in 2008. Now, 6.0001 and 6.0002 are offered as separate

half-semester courses each with 6 units of credit1 as of Spring 2019 with 6.0001 and

6.0002 being held in the first and second halves of each semester.

Officially titled Introduction to Computer Science and Programming in Python,

6.0001 focuses on the role computation can have in problem solving while teaching

students how to write small programs and best practices in Python. The course

assumes little to no prior knowledge or experience with the topics or programming and

covers fundamental computer science topics from iteration to python data structures

to algorithm analysis. 6.0002, or Introduction to Computational Thinking and Data

Science, is the continuation of 6.0001 and thus assumes more prior knowledge and

experience because 6.0001 is also listed as a formal prerequisite for the course. In

6.0002, students apply what they’ve learned in 6.0001 to real-world problems and

phenomena with emphasis on relevant algorithms and topics like probability and

statistics, optimized search, and machine learning.

Generally, a lot of freshman students enroll in one or both of the course(s) and

during their first semester at MIT. During the first semester, freshman do not receive
1A normal full semester course is 12 units which roughly equates to 4 semester hours or credits.
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letter grades on their transcripts; rather than showing the grade they received, they

either get a P for a pass or NR for no record which signifies internally that they

didn’t pass the course but does not appear on their official transcripts. This tends to

occur for most freshman in the Fall semester (i.e. unless they defer their admission

by a semester) and can affect the way that students behave and perform in the class.

Although the course was initially only available to students at or cross-registered

at MIT, as of 2012 it is now available online through MIT’s massive open online course

(MOOC) provider, edX. In this version of the course, students can get a certification

for a small fee or participate for free with more limited access to materials. In this

thesis, we will not include student data from the MOOC version of the course because

of variations in grading breakdowns, incentives, course pace, etc.

2.2 Grading Scheme

The final grade in each course is determined by three assignment types and the

breakdown is the same for both courses and can be seen in Table 2.1:

1. Finger Exercises: Short Python programming exercises that are due before

every lecture. The purpose of these assignments are to confirm that students

understand the topics covered in lecture and are answered and automatically

graded on the course site.

2. Problem Sets: Longer Python programming problems that typically take 1

week. When a students submit a problem set, it is graded automatically with a

testing suite hosted on the site. Also, students must also complete a checkoff for

each problem set where the student meets with a Teaching Assistant (TA) or

Lab Assistant (LA) to answer questions and discuss their solutions and concepts

covered in the assignment. Students are allowed 3 late days which are extensions

that can be applied to any problem set deadline.

3. Microquizzes: Timed 30-45 minutes quizzes in which students are given roughly

1-2 programming questions and 2-3 true/false or multiple choice questions.
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These assessments are open-note however students may not collaborate nor

use the internet during the quiz time window.

Table 2.1: Grading Breakdown in 6.0001/2

Assignment Type # Assignments % of Final Grade
Finger Exercises 6-7 10%
Problem Sets 5-6 45%
Microquizzes best 3 of 4 45%

2.2.1 Final Grades

The final grade in the course is the weighted average of their scores on all the as-

signments. Students are guaranteed an A for a score >90%, a B for a score >80%, a

C for a score >70%, and so on. For students that fall right around a boundary, the

course staff - which is comprised of the lecturers and TAs - meet to discuss whether

or not students should be bumped to the higher grade or not based on their progress

in the class; interactions in lecture, office hours, or recitation; and any information

the student provides them with (i.e. why they missed a deadline).

2.3 Resources Available to Students

Both courses have two 80 minute lectures led by one of three MIT faculty and an

optional one hour recitation led by an undergraduate or graduate TA each week.

Students also have access to office hours from 11AM - 9PM every Monday through

Thursday and 11AM - 5PM every Fridays except during the three hours of scheduled

lecture time each week. During each of these hours, there is one TA and three to four

LAs that students can utilize to get help understanding concepts, debugging problem

sets, and receiving problem set checkoffs. There is also an online Piazza forum where

students can anonymously ask and answer each others questions about course content,

logistics, clarifications, etc. Course TAs are also responsible for responding to Piazza
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questions. Finally, students have access to video summaries and practice problems

on MITx, an which offers massive open online courses through edX.

2.4 Buddy System

Figure 2-1: Number of students signed up for buddies for each problem set in 6.0001
and 6.0002 during the Fall 2020 semester when it was first introduced.

Usually, all assignments in the course are meant to be completed individually.

Students are allowed to work together to understand topics but they are never to

share or look at other student’s code or assignments. However, due to the COVID-19

pandemic in the Fall 2020 semester, the course introduced the buddy system where

students could opt to work with another student whom they could share code with to

encourage the types of collaboration seen in dorms or office hours and help students

interact and meet others. Any student opting into the system received a random

buddy with a similar experience level and in a similar timezone. Initially, opting into

the buddy system meant that for every problem set students would get a new buddy

they were required to work with. However, midway through 6.0001 this requirement

was relaxed so that students could opt in to the system on a per-problem-set basis,

which has remained the course policy on buddies since then.
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Chapter 3

Data and Models

3.1 Dataset

In order to predict student grades throughout the semester, we utilize a number of

sources that the students interact with and aggregate them into one dataset to per-

form these predictions. From these sources, a dataset of approximately 80 features is

created, and utilizing the Fall19 and Fall20 semesters’ data, we obtain about 750 data

points to use in our testing and training datasets. We specifically chose these two

semesters, excluding Spring 2021, as the Spring 2021 was the semester in which stu-

dents were forced to leave the campus mid semester due to the COVID-19 pandemic,

leaving many abnormalities and inconsistencies in the data. Here we will discuss the

three sources of data: the course site, the piazza forum, and MITx.

3.1.1 Course Site

The course site contains logs of all the site interactions (i.e. clicks, activities, etc),

as well as student’s assignment submissions, grades, feedback, etc. For the purposes

of this thesis, we focus on the data collected in the student survey, the grades that

students received on assignments (psets, checkoffs, finger exercises, and quizzes), stu-

dent interactions with the queue, and submission times.
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Student Survey:

At the start of the semester, students are asked to complete a background survey as

an ungraded assignment that also serves to help students set up their programming

environment before the course ramps up. The data collected in this survey is useful

as it gives insight into which students might struggle more, making it easier to clus-

ter them with students in prior semesters with similar experiences. The survey asks

about the following topics:

Figure 3-1: Survey that students are asked to complete at the start of 6.0001 or 6.0002
(if student didn’t enroll in 6.0001 the semester in which they took 6.0002).

• Grade Level: Options include Freshman, Sophomore, Junior, Senior, Gradu-
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ate Student (Non MBA), and MBA Student

• Primary Major: Options include all MIT majors plus a Freshman option for

undeclared freshman

• Secondary Major (if applicable): Options include all MIT majors

• Approximate # of lines of code written prior to enrollment: Options

include 0, 50, 100, 200, 300, 500, 1000, 5000, and 10,000

• Programming languages and/courses taken prior to enrollment: Op-

tions include None, HTML, AP Computer Science, Online Coding Course (i.e.

code academy), Programming Experience in Language Other than Python, Pro-

gramming Experience in Python, Took 6.0001 Before, Took a Python Course

at MIT During IAP Before (e.g. 6.145), Watched or Participated in OCW or

edX, College Course using Programming Language Other Than Python, and

College Course Using Python (multiple options may be selected)

• Reason for enrolling in course: Options include To learn How to Program,

To Fulfill a Course Requirement, To Get a Good Grade, and Other (multiple

options may be selected)

• Resources that they are aware of/have used when learning to code:

Options include Google, Online Coding Courses, Stack Overflow, and Friends

Who Know How to Program (multiple options may be selected)

Assignment Grades:

Another very useful indicator as to how a student is progressing through the course

is their assignment grades, as these are what ultimately determine a student’s final

grade in the course. Particularly for 6.0001/2, that includes their scores on the psets

and their respective checkoffs, as well as their quizzes and finger exercises. Because of

the way in which they’re formatted, we also have access to the number of attempted

questions, and the number of times each question was attempted for finger exercises.
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Queue Interactions:

We also utilize click data obtained from the course queue. The queue is a site feature

used during office hours, where students can add themselves when they have questions

about anything in the course (usually psets or to obtain a checkoff) and be claimed

by an LA or TA who will answer, help debug, or perform the checkoff. The queue

data is useful because it can help identify when a student is struggling or has a firm

grasp of the content depending on the frequency of them adding themself to the queue.

Submission Interactions:

Finally, we also use the student submission times on psets in particular as part of

our dataset. Submission history can give a lot of insight into a student’s trajectory

in a course as it can show how early or late the student submits in relation to the

due date. If a student is struggling they might utilize all of the days up until the due

date, whereas a student who finishes early might have a better understanding of the

material.

3.1.2 Piazza

The course Piazza, as mentioned before, is a forum in which students can ask questions

anonymously about anything related to the course. Students and staff can answer

the questions and post related follow-up questions and tips. The forum has proven

useful in helping students understand topics without needing to have a one on one

interaction in office hours and giving them anonymity if they need or want it. We

can extrapolate information about how a student is doing in the course based on how

much they interact with this forum; like if they ask a lot of questions they might

be struggling in contrast to answering a lot of questions which can indicate mastery

of the material. From the Piazza site, we are able to export data on the number of

days a student was active on the forum and how many questions they’ve answered,

followed up on, or viewed.
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3.1.3 MITx

The final source that student data is pulled from is MITx. Although interacting with

the site is optional, many students utilize the available problems to study for quizzes

and get more experience with the topics covered. From MITx, we can obtain records

of each day that a student is active on the platform. For each of those days, we

have information like the number of videos and/or chapters they’ve gone through,

number of times they’ve paused videos, the amount of time between each session on

the site for that day, number of problems they’ve attempted, etc. We suspect that

these features can be used to help determine how a student will progress, as these

habits give insight into the proactivity and study habits of various students.

3.2 Modeling

In order to model student grades over the course of 6.0001/2, we utilize a couple

of different models to study which fits the problem best. First, there is the actual

overall grade which acts as a benchmark for how well or poorly a student actually is

doing throughout the course. Then, we looked at two different regressors to model

the problem; the first of which, SVR, was used by Vostatek to also study predicting

grades in 6.0001/2 and performed well in comparison to other models. We compare

with an ensemble-based machine learning regression model in an effort to find a model

the better suits the data [9].

3.2.1 Actual Overall Grade

The student’s actual current overall grade at any point in the semester gives us an

idea of how well the student is doing at a certain point in the course. To generate

this value at a given point in the course, each student’s overall grade is taken as the

weighted average (using the respective assignment type weights from Table 2.1) of all

of the assignments due by that point in the course.
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3.2.2 Machine Learning Regression Models

Because we are predicting a student’s grade as a number from 0-100, we looked at a

number of machine learning regression models, and ultimately decided on the follow-

ing two models because of how well they performed on the data as well as their ability

to describe the importance of the features in terms of model parameters - Support

Vector Regression (SVR) and Extra Trees Regressor (ETR). The latter is particu-

larly useful for our application as we want to know what features are most relevant

for predicting grades in order to advise students ways in which they can improve their

grade trajectories.

Support Vector Regression:

As discussed in his paper, Vostatek utilized SVRs for this problem because of the of

the dataset’s high dimensionality and because of the SVR’s ability to separate data

based on these dimensions [9]. Although the 3 different kernels he used - Linear,

Poly, and RBF - performed similarly well, we ultimately decided to utilize a Linear

SVR with the same hyperparameters because of the ability to extrapolate the weights

assigned to the features.

Extra Trees Regressor:

After testing many different regression models, we that found the Extra Trees Re-

gression performed best on this dataset. Extra Trees is an ensemble-based method

that works by averaging a number of randomized decision trees that are created on

sub-samples of the data [6].

3.3 Data Prediction Pipeline

In order to interact with the grade prediction and monitoring tools we’ve created,

we have also integrated some new features into the course site. In this section, we

will discuss the data prediction pipeline set up to automate the prediction process

throughout the various points in the semester. Because we are aggregating data from
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a variety of sources, it can be difficult to organize, manage, and join all of the data.

To account for this, we created a semi-automated system on the server hosting the

course site which generates the datasets at given points in the semester. Because they

are not on generated on the server, the MITx and Piazza data is manually pulled and

updated on the server each week. Subsequently, scripts are run on the server that

generates relevant datasets and makes predictions using all of the data sources.

Figure 3-2: Overview of data sources from Dataset Section and how they are related
to data pipeline for all semesters after Fall 2019.

First, the two non-site data sources are organized and formatted. Then, two

datasets are created for the current week; one for the training/testing data used to

generate the model and the other for the current semester data for which predictions

will be made. In order to create these datasets, the current date is used to find how

many days have elapsed since the start of the current iteration of the course. Then,

for all of semesters, the datasets are generated using only assignments which have

been due by that point in that semester in order to account for variation in due dates

as well as the number of assignments duen from semester to semester. Around 80

features are collected and generated for each of the datasets which are described in

Table A.1. Finally, a script is run to calculate the overall score and generate the ETR

and SVR predictions for each student at that point in the semester.
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Chapter 4

Experimental Setup

We evaluate our predictive models on a weekly basis for both the 6.0001 and 6.0002

courses which each last around 7 weeks. For each week’s model, we evaluate the per-

formance using three regression metrics to find the most effective model; we compare

our predictive models to a baseline model using these metrics; and we analyze the

relevance and importance of each feature for each model to understand what factors

most contribute to more successful outcomes, all of which we discuss in this section.

4.1 Metrics

We utilize a few different regression metrics to measure and compare the performance

of our models.

4.1.1 Mean Absolute Error

The mean absolute error (MAE) is the average in absolute errors over the entire

dataset and is calculated as

MAE =
𝑛∑︁

𝑖=1

|𝑦𝑖 − 𝑦𝑖|
𝑛

where 𝑛 is the number of samples in the dataset and 𝑦𝑖 and 𝑦𝑖 are the expected and
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predicted values respectively. A nice property of MAE values is that they increase

proportionally with error, rather than disproportionately penalizing larger errors more

than smaller ones, which makes it more intuitive when compared to other metrics.

4.1.2 Mean Squared Error

The mean squared error (MSE) is the expected value of the squared error and is

calculated as

MSE =
1

𝑛

𝑛∑︁
𝑖=0

(𝑦𝑖 − 𝑦𝑖)
2

𝑛

Squaring the difference between expected and predicted effectively magnifies any large

errors, penalizing models more for larger errors.

4.1.3 Root Mean Squared Error

The root mean squared error (RMSE) is the expected value of the square root of the

error and is calculated as

MSE =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=0

(𝑦𝑖 − 𝑦𝑖)
2

𝑛

Because the root of the error is used, the units of the value returned by this error func-

tion match that of the expected value, making this metric more easy to understand

when evaluating model performance when compared to MSE.

4.2 Baseline Model

We utilize a baseline model as a basis for which we compare the performance of the

machine learning regression models used to predict grades. As our baseline model, we

employ a very basic regressor which always predicts the mean of the training data.
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Because of this, the metrics for this model are consistently the same for each week

because the model is independent of all the features which fluctuate from week to

week and is only dependent on the final outcomes.

4.3 Quantifying Feature Importance

In an effort to understand the relevance of different features in student outcomes, we

aim to quantify the importance of the features for each of our predictive models. In

doing so, we hope to use this information to advise struggling students what they

can do to improve their grade trajectory. However, because of differences in the ways

the models make predictions, we must look at different methods of quantified feature

importance for each of the two predictive models we use.

4.3.1 SVR Feature Weights

For the SVR model, the feature importance are represented as the weights assigned

to the features by the model, which describes the correlation of the features and the

outcome. The sign indicates whether the feature is positively or negatively correlated

with the outcome, and having a larger magnitude signifies a stronger correlation

relative to the other features. For example, on the feature table in Figure 5-4, in

Week 1, we see that workahead_time = 11.8 means that the feature workahead_time

has a feature weight of 11.8, which is the highest of all the features studied. This tells

us that the time that students work ahead of the problem set deadline is most highly

indicative of student success in this week so, for this a value of 4 days is better than

a value of 1 day. However, for a feature like nprob_attempt = -5.19, having a lower

number of problems is more strongly correlated with a better outcome.

4.3.2 Extra Trees Regression Gini Importance

For the Extra Trees Regression model, the feature importances are impurity-based,

also called Gini importance or Mean Decrease in Impurity (MDI). A higher, the
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more important the feature. Essentially, Gini importance is a measure of the average

decrease in impurity in our decision trees for a given feature. Unlike the SVR model

however, this measure of importance does not correlate our features and outcome, but

rather is measures how useful the feature was in reducing the variance of our model.
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Chapter 5

Results

In this section, we discuss the end result of our integrated system onto the course

website including the visualization pages to view and interact with these predictions

and student progress in 6.0001/2. We will analyze the performance of the predictive

models with respect to the metrics described in Section 4.1. We will also analyze and

discuss the features which were most indicative of successful outcomes in the course

in terms of the model specific importance metrics described in Section 4.3. Finally,

we will look at trends in student trajectories to understand and generalize student

behavior in the context of 6.0001/2.

5.1 Website Integration

Equally as important as our models’ predictive capabilities is an effective, concise

method for interacting with these predictions. We have created multiple pages on

the course website that display information about students in the course as a whole,

and also about students on an individual level. In this way, staff can quickly parse

at information pertaining to the entire class and make generalizations about things

like the difficulty of the assignments, but also they can see details about each student

and intervene when students struggle.
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5.1.1 Overall Progress Page

Figure 5-1: Course progress overview as a collective in terms of current overall grade
and assignment scores.

In order to visualize student progress relative to other students and keep track of

students in a more general sense, we implemented an overall progress page. Here, staff

can view all of the students grades on any assignment as well as the students’ current

overall grade at that moment in the semester in a way that is easy to understand

and navigate. On the page is a filterable table with columns for kerberos, overall

grade, each pset (checkoffs are shown within the corresponding pset column), each

microquiz, and each finger exercise. The rows in the table are sorted in ascending

order of current overall grade. The first column holds the student kerberos (which
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have been replaced with random student numbers in Figure 5.1.1 to maintain student

anonymity) each which are hyperlinked to the student’s Individual Student Progress

Page (discussed in Section 5.1.2).

Grade values in the table are color coded such that dark green indicates an A

(above 90% on the assignment) and dark red indicates an F (below 50% on the

assignment) as shown in Figure 5.1.1. The current overall grade is calculated using

only the assignments that are due on or before the current date, however students

can turn in assignments early if they’ve already been released. In order to handle

this, boxes in the scores table are shaded light grey to signify that that assignment

has already been due and is being used in the overall grade calculation; any other

grades are shown in boxes shaded white but are not used in the overall grade. Also,

grades for items not yet turned in are signified by a ’-’ in the table.

Figure 5-2: Color scale for displayed grades used in both the Overall Progress Page
and the Individual Student Progress Pages

There are also options to filter the rows shown by experience and background.

Staff is able to filter by any of the questions asked in the student survey (see Section

3). This way, it is easy to group students based on their experience and background

to find trends among these groups while easily monitoring students with little to no

familiarity with the course material.

5.1.2 Individual Student Progress Page

To visually monitor each student’s progress throughout the course, we integrated an

Individual Student Progress page for each student on the course site. This page has

two main components; the student overview and the grade trajectory information as

shown in Figure 5-3 and Figure 5-4 respectively. Arranging the prediction information

in this way makes it convenient for staff to view a student’s progress in the course
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Figure 5-3: Individual student overview comprised of student survey responses and
assignment scores which is displayed on each individual student progress page.

as well as easily determine and understand what factors can lead to improving a

student’s trajectory at each week in the course.

The student overview condenses all of the information available from the student

survey discussed in Section 3.1.1 as well as the student’s scores on all assignments

they’ve turned in. Much like the overall progress page, a ’-’ in the scores table

signifies that the student has not turned in a given assignment and grade values for

these assignment scores are color coded in the same way as in the Overall Progress

Page shown in Figure 5.1.1.

The grade trajectory information includes a weekly prediction chart along with a

features table as shown in Figure 5-4. The interactive prediction chart displays three

lines representing the actual grade, the Extra Trees Regression predictions, and the

SVR predictions for that student at that point in the course as described in Section

3.2.

The features table displays each feature along with a measure of it’s importance

in sorted order of absolute value for each model each week. The information is color
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Figure 5-4: Grade trajectory visualization comprised of interactive chart of student
grades prediction over the weeks of the course along with table of feature importances
for SVR and coefficients for Extra Trees Regression model which are displayed on each
of the individual progress pages.

coded in the same way as the progress prediction plots such that the colors correlate

to the model’s feature importances — yellow for Extra Trees Regression and orange

for SVR as discussed in Section 4.3.
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5.2 Performance Analysis

In order to understand and compare the performance of each model relative to one

another, for each week, we look at the metric values for the baseline model, the Extra

Trees Regression (ETR), and the Support Vector Regression (SVR).

5.2.1 MAE

Week 6.0001 6.0002
Baseline ETR SVR Baseline ETR SVR

1 12.363 30.782 11.835 10.097 21.165 16.792
2 12.363 26.319 21.689 10.097 8.815 9.153
3 12.363 13.038 11.5 10.097 5.461 7.042
4 12.363 7.037 6.869 10.097 5.843 6.397
5 12.363 4.884 5.641 10.097 3.83 5.413
6 12.363 3.241 7.195 10.097 4.033 5.232
7 12.363 2.879 4.914 10.097 3.355 5.608

Table 5.1: Weekly breakdown of MAE values for each model separated by course.
Smaller MAE values signify smaller error in the predictions and are therefore better.
For each week and course, the smallest value among three models is bolded.

In Table 5.1, we see the weekly mean average error values for our baseline model

along with our two machine learning models separated by course. For 6.0001, in

the first week, the SVR model slightly outperforms the baseline model and greatly

outperforms the ETR model. For 6.0002, the baseline outperforms both other models.

This is likely due to grades being greatly inflated the first week because nothing is

due, however the first deadline occurs in week two or three (depending whether the

course is 6.0001 or 6.0002) which would cause a lot of noise in the data.

However, by the next couple of weeks for each course, we see the ETR and SVR

models’ MAE values decrease by a factor of about four and begin to outperform

baseline model. As more data is made available to the models each week, we see that

their MAE values significantly decrease as well. The two models perform similarly up

until the middle of the courses (weeks 2-4) when we see the ETR begin to significantly
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outperform the other two models.

5.2.2 MSE

Week 6.0001 6.0002
Baseline ETR SVR Baseline ETR SVR

1 365.491 1073.282 288.263 364.962 799.424 490.527
2 365.491 776.881 537.022 364.962 102.582 152.979
3 365.491 221.302 199.344 364.962 51.34 101.09
4 365.491 66.029 73.639 364.962 55.79 78.582
5 365.491 36.767 47.365 364.962 27.979 52.77
6 365.491 21.515 66.474 364.962 28.013 50.02
7 365.491 17.046 34.313 364.962 22.916 53.651

Table 5.2: Weekly breakdown of MSE values for each model separated by course.
Smaller MSE values signify smaller error in the predictions and are therefore better.
For each week and course, the smallest value among three models is bolded.

Table 5.2 displays the weekly mean squared error values for all three of the models

by course. Here, we see similar trends as the MAE values discussed in 5.2.1, the main

difference being that the ETR starts to outperforms the SVR model earlier on in the

weeks for 6.0001.

5.2.3 RMSE

Finally, the weekly root mean squared error values for each model by course are shown

in Table 5.3 and follow the almost the exact same trends as the MSE values, as these

values are simply the square root of the MSE values.

5.2.4 Summary of Performance

In general, for each metric, we see that the ETR model initially underperforms when

compared to the baseline and SVR models, which is attributed to the fact that there

is little information available to the models during the beginning of each course.

However, the ETR significantly outperforms both the baseline and SVR model very
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Week 6.0001 6.0002
Baseline ETR SVR Baseline ETR SVR

1 19.118 30.34 16.971 19.104 27.199 22.151
2 19.118 28.053 23.139 19.104 10.15 12.386
3 19.118 13.731 14.168 19.104 8.775 10.043
4 19.118 7.641 8.579 19.104 7.671 8.892
5 19.118 5.917 6.911 19.104 5.51 7.262
6 19.118 4.762 8.167 19.104 5.286 7.07
7 19.118 4.147 5.873 19.104 4.82 7.334

Table 5.3: Weekly breakdown of RMSE values for each model separated by course.
Smaller RMSE values signify smaller error in the predictions and are therefore better.
For each week and course, the smallest value among three models is bolded.

quickly. After the first couple of weeks, the ETR model begins making very accurate

final grade predictions in terms of each metric and compared to both other models.

These trends highlight the correlation between our features and student grade

outcomes, especially as the semester progresses and more data is available to the

models. However, it also highlights the difficulty in predicting grades in the absence

of assignment scores and student behavior related features — like time spent on psets,

number of submissions to assignments, etc. — , which is made evident by the poor

performance in the first couple of weeks of both courses.

We also see that the model ETR model seems to better fit the 6.0002 data as com-

pared to 6.0001 because it takes longer for the ETR to outperform the other models

in 6.0001. These courses, although similar, vary significantly in content and prior

experience, as 6.0002 is a more even playing field since it is required that students

complete 6.0001 before taking it. Also, the content in 6.0001 builds upon itself much

more so than 6.0002, whereas 6.0002 is explores a wider variety of computational top-

ics that don’t necessarily depend on each other. This could explain this discrepancy

in model performance between the courses, and suggests that using a different model

for each course could prove more successful in predicting grades.
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5.3 Feature Importance Analysis

To understand which features are most important in determining a student’s outcome

in the course, we will look at the feature importance of each of our predictive models

in terms of the quantifying metrics described in Section 4.3.

5.3.1 SVR Analysis

For the SVR model, we look at the feature weights assigned by the model, which is

shown in Figure 5-5 for each week and course. The top seven largest positively and

negatively valued features for the model are displayed in order.

The first week’s values are particularly interesting, as there is no assignment score

data available yet since no assignments are due by that point. We see that in both

semesters, the workahead_time, which is the amount of time on average that a student

starts the pset relative to the due date, has the highest valued weight. This implies

that students with a larger workahead_time are predicted to do better, which makes

intuitive sense because students who start earlier on assignments would have more

time to fix mistakes and get better scores. We also see some other features with

high feature weights that one would expect to correlate with doing well in a course;

like n_days_act, avg_submits, and lines_of code, which are the number of days

active on MITx, the average number of pset submissions, and the amount of lines of

code written prior to enrollment respectively. However, again since there is very little

data available at the start of the course, there are some noisy features that don’t

intuitively correlate with our outcome; like course 5 and course 20, which signify

that a student is a chemistry or biological engineering major respectively.

We also see many large negatively correlated features which one might expect that

appear in the first week and also persist throughout the semester; like nprob_attempt

and nprob_checked (the total number of MITx problems attempted and checked re-

spectively) and the features pertaining to MITx videos — like n_videos_view,nvideo,

and nseek_video (the total number of MITx videos watched, videos interacted with,

and the average number of seeks in videos respectively). The problem attempts fea-
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Figure 5-5: Top 14 highest feature weights by absolute value for SVR model per week
separated by course.
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ture being negatively correlated implies that more attempts indicates more guessing

rather than actually learning and understanding concepts. Similarly, the MITx video

features being negatively correlated indicates that repeatedly watching/re-watching

and repeatedly interacting with videos (i.e. seeking) implies difficulty understanding

of concepts.

As the weeks progress, we see that for both courses, the largest absolute valued

features are the pset_avg and quiz_avg. Each week, the other features’ magni-

tude decreases and by the last week, it is clear that these two features are becom-

ing the most strongly correlated with the outcome. After these two features, the

checkoff_avg and fex_correct, are the largest. These features represent the only

aspects of the course that count towards the grade, so as the weeks go by and more

data on these features are collected, they become the most important to determining

a student’s success. The other features cannot directly impact the student’s outcome

like the scores on these assignments, so they are much more relevant at the start of

the course when assignment scores fluctuate greatly.

One consistently interesting feature for each week’s models is the time_after_submit

which is the average amount of time between each final pset submission and it’s due

date. One could expect that this feature would be positively correlated because stu-

dents who submit psets early, likely would do better than ones who turns things in

closer to the deadline. However, the feature consistently has a large negative feature

weight. This implies that a smaller time_after_submit leads to better outcomes.

This is likely to be attributed to having more time to catch and fix issues in psets

when turning them in later. In certain weeks, like the first one, workahead_time has

large positive correlation in contrast to time_after_submit having a large negative

correlation to the outcome. Although this may seem contradictory, this simply im-

plies that starting the psets early and turning them in near the due date, or in other

words spending the full week on the pset, results in better outcomes. This makes

sense since utilizing more time to work on the pset allows more time for students to

find bugs and get exposure to the concepts and topics covered on the assignments.

Another interesting comparison is that of 6.0001 versus 6.0002 with respect to
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which features are most indicative of dictating student success. Most of the features

are generally consistent between the two courses, as those features pertaining to the

same sources (like MITx) have similar correlations in terms of magnitude and sign.

However, we also see that the lines_of_code feature is consistently a highly positive

valued feature in 6.0002 but the same is not true of 6.0001. This validates that prior

coding experience is not as necessary in 6.0001, where students learn the basics of

programming, as compared to 6.0002 which assumes experience with programming

and is more focused on computational thinking.

5.3.2 ETR Analysis

The ETR model utilizes Gini Importance to represent how important each feature to

the model, which can be seen in Figure 5-6. The top ten highest valued features are

displayed in order of magnitude for each week and course.

Looking at the first week’s most important features we see that some of the top

features are also features that had large values for the SVR model like avg_submits

and workahead_time. However, we also see a lot more importance given to the survey

related features, like grade_level, exp_None, and exp_python, which represent the

student’s grade level and experience level. These features would intuitively be most

useful at the start of the course as it should represent how comfortable a student may

or may not be with the course material.

Quickly, in the subsequent weeks, the ETR model gives more and more importance

to the quiz and pset scores. Much like the SVR model, we see that the importances

are converging to values that mimic the grading breakdown of the course shown in

Table 2.1. This is clear as the quiz_avg, pset_avg, checkoff_avg, and fex_correct

importance values grow, while all other feature importances approach zero throughout

the progression of weeks.

We also see that experience is more important in 6.0002 when compared to 6.0001,

which is consistent with the SVR feature weight results. This is evident through

features like exp_python and awr_stack_ovf which signifies that the student has

prior experience with python and is aware of Stack Overflow as a resource respectively.
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Figure 5-6: Top 10 feature with highest Gini Importance values for Extra Trees
Regressor by week separated by course.
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These features have relatively high importance values in 6.0002, and although in

6.0001 the lines_of_code feature is important in the later weeks, it’s importance

value is much smaller than the other features.

5.3.3 Comparison of ML Models

As we’ve discussed, there are a lot of similarities between the trends found in the

feature importance values for each model. Specifically, we see similarities in the way

that the models utilize the features in the absence of score data at the beginning of

the course and how they converge to similar importance levels throughout the course

of the semester. Because of this, the most useful weeks for utilizing these grade

predictions are those in the middle of the semester.

Although the ETR model generally outperforms the SVR model, the SVR model

is powerful in that it’s feature weights can be more expressive in explaining the

importance of the features. This is because the SVR feature weights correlate the

feature values with the outcomes. By looking at the signs of the weights we can

determine the relationship between the feature and the outcome, whereas the Gini

importances simply tells us how useful a feature was for the model.

The two models’ feature importances, however, cannot be directly compared as

they utilize different methods and calculate different feature importance values, al-

though both provide useful information about which features are most indicative of

successful student outcomes in these courses.

5.4 Student Trajectory Analysis

Now we will analyze and discuss general patterns in trends using the student trajec-

tory data obtained from our machine learning model predictions.
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Figure 5-7: Final grades breakdown (by percentage) for the Spring 2021 semester split
by course. Shows both the actual final breakdown as well as the predicted breakdowns
for the ML models.

5.4.1 Final Grades

First, we will look at the final grades breakdown for this semester of 6.0001/2 to

contextualize the predictions made by our machine learning models. In Figure 5-7,

we can see a side by side comparison of the predicted and actual grade breakdowns.

The predictions made by the models do not factor in any intervention measures by

staff.

As shown, most students in the course get an A or B and very few get D’s or F’s.

We also see that both of the models’ grade breakdowns are fairly close to the actual

outcomes. One outlier is the number of A’s predicted by the SVR model, however

this matches up with our results as the SVR model does not perform as well as the

ETR model — with respect to our metrics as discussed in Section 5.2 — for predicting

grades especially at the end of the semester.

One thing to note is that the number of actual failures are significantly higher

than the predicted, especially in 6.0001. This fluctuation can be attributed to the

many students who forget to drop the course early on in the semester and thus turn

in little to no assignments. This is a common occurrence in these courses especially

with students who put the course on Pass/No Record grading.

51



Figure 5-8: Number of students projected to fail — predicted to get a score between
15% and 60% — by each of the ML models alongside the number with failing grades
each week over the course of semester for each course. The 15-60% range is used
to account for students who meant to drop the course but have not — a common
occurrence in these courses. The horizontal lines above the bars in the chart represent
the final number of students whose actual grade was failing at the end of the semester.

5.4.2 Students in Danger of Failing

As discussed, we are most interested in the behavior of students who end up failing,

as students who follow such a trajectory should be reached out to in an effort to

help them improve and understand course content. Figure 5-8 displays the number

of students predicted/actually failing at any given week in the course along with a

line signifying the final number of students who’ve failed the course. The final value

is calculated after all grade adjustments including regrades and the dropping of the

lowest microquiz.

As we have seen throughout, the first week or two have very ambiguous predicted

values that vary wildly with the actual values because of the lack of data. However,

one interesting thing we do see from these numbers is that the models tend to get

very close to the final value by the middle to end of the course. This is very important

as we can accurately reach out to struggling students and intervene when necessary

to help students get back on track.

5.4.3 General Patterns

In an effort to understand when it is best for staff to intervene, we will discuss the

general projections made by our models as compared to the actual values each week.
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Figure 5-9: Student Grade Change Projections for each model and each semester.
Each row of charts shows the percentage students are predicted to improve, stay the
same, or worsen their grade respectively. We define a grade as staying the same if it
is within a ±1 percentage points threshold.

Figure 5-9 shows the percentage of students projected to improve, keep, or worsen

their grades from the beginning of one week to the end of the same week. We show

these grade projection percentages for the seven weeks of each course. These per-

centages are calculated as the number of students per week in a given category —

improving, keeping same, or worsening their grade — out of the total number of stu-

dents to be in that category over the course of each class. For example, in weeks 1-2,

the dark green bar with a value of ∼17% represents the percent of actual number

students who improve in weeks 1-2 out of all students who improve over all weeks.

We see that the models both follow the same general trends as the actual outcomes
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with some slight variation. As expected, the values for the first week are not very

conclusive nor informative because of the lack of data. What we do see, however,

is that students tend to have higher improvement at the beginning to middle of the

semester around weeks 2-5. We also see that generally, the percentage of students that

keep the same grade stays at around 10-25% throughout the entire course, although

the models predict higher values during the latter end of the course. Also, students

tend to start to do worse at the beginning/middle of the course — at around weeks

1-4. Then we see these numbers stay relatively low after these weeks.

The trends seem fairly consistent between the two courses, however we do see

some discrepancies especially around the ends of each course. The beginnings of each

course also tend to differ, however this is likely due to the lack of data available to

the models during these weeks. For example, looking at the improvement values, we

see that weeks 5-6 are very different when comparing courses – the values are very

high in 6.0001 and very low in 6.0002. However, there were also many differences in

assignment due dates between the courses, especially near the end of each course. For

example, in 6.0001, the final pset has no checkoff wheres the 6.0002 counterpart does

have a checkoff and the final microquiz in 6.0001 was in the 6th week of the course

and in the 5th for 6.0002. Also, the final pset in 6.0002 was assigned a lot earlier

in the course this semester since it was extended to include more topics. Therefore

these differences in the trends between the courses, could be due to these variations

in assignment due dates between the courses.

We care about reaching out to students that are falling behind, therefore, staff

should reach out to students when they are expected to do worse. For this reason,

these weeks at the beginning to middle of the course (weeks 1-4) are optimal for

intervention.

54



Chapter 6

Conclusion

6.1 Future Work

Now that the prediction capability is integrated into the 6.0001/2 course site, there

is an opportunity to utilize it to help struggling students. Thresholds can easily be

set such that if a student’s predicted grade is lower it, staff will be alerted. In this

scenario, staff can utilize the feature importance values of the predictive models to

direct students to methods and behaviors that can improve their outcomes. With

this in mind, a couple of open questions include:

• How much does the tool contribute to decreasing the number of students that

end up failing the course when compared to past semesters?

• How many students do staff reach out to due to the grade they’re predicted to

receive?

• How many students respond and/or utilize more resources following interactions

with the staff regarding their predicted grades?

Another natural extension of this project is to apply these predictive models to

other formats of the course, like the edX MOOC that is available to the public. In

doing so, we can study the differences in grade trajectories and important features
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within these different contexts to better understand learner behaviors as students are

motivated and incentivised in very different ways.

6.2 Final Thoughts

Education is unequivocally important for advancement in many aspects of society,

including financial security, job security, food security, etc.. Furthermore, as more

and more jobs are beginning to be automated, the need for technical skills in fields

like computer science are becoming more and more necessary. Therefore, understand-

ing how students learn and what behaviors can contribute to success in courses like

6.0001/2 is key to improving educational processes in the burgeoning tech sector.

As we have discussed in this work, our predictive models provide accurate and

useful predictions as well as useful insight into what behaviors can be correlated and

relate to successful outcomes in the context of 6.0001/2. More specifically, these pre-

dictions are least useful at the beginning of a course, when there is lack of information

available to the model, and at the end of the course when grades are practically al-

ready determined. Therefore, as discussed, the most insightful predictions, therefore,

are in the middle of the course, and thus these weeks are the most crucial for interven-

tion. As these predictive models are more integrated into the course staff workflow, it

is imperative that these predictions are monitored and used to reach out to struggling

students during these critical middle weeks of the course.

Finally, we have shown how helpful and effective these grade predictions can be

and believe that they can be extended to help improve and understand the learning

experience in many contexts. Through this research and these tools developed for

predicting and monitoring student grades, we hope to provide a basis for which fu-

ture courses can improve their understanding of course difficulty, students’ retained

knowledge of material, and learner behavior.
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Appendix A

Tables

Feature Brief Description

kerberos student institute wide unique identifier

fex_correct # of correct finger exercise questions

fex_num_attempts # of attempted finger exercise questions

fex_num_answered # of finger exercise questions answered

ndays_act # of days active on MITx

sum_dt total amount of time away from MITx window

n_dt # of times away from MITx window in session

nevents # of total MITx events logged

npause_video # of times videos were paused on MITx

nproblem_check # of problems checked on MITx

nseek_video # of times seeked through MITx videos

nseq_goto # of times went to a specific point in MITx videos

nshow_answer # of times answer to an MITx question was shown

nvideo # of MITx videos interacted with

nvideos_viewed # of MITx videos watched

nproblems_attempted # of MITx problems attempted

avg_dt avg time away from an MITx window in session

sdv_dt std time away from an MITx window in session

57



max_dt max time away from an MITx window in session

pset_avg average on psets

checkoff_avg average on checkoffs

quiz_avg average on quizzes

pset_queue_help # of times gone onto queue for help

Grade A-F grade in course

Overall numerical grade value

awr_friends student uses friends as a resource

awr_google student uses Google as a resource

awr_online student uses internet as a resource

awr_stack_overflow student uses stack overflow as a resource

exp_None student has no prior experience

exp_ap_comp_sci student has taken AP Computer Science

exp_html student has experience with HTML

exp_non_python student has experience language with non Python

exp_non_python_college student has taken a non python coding course

exp_ocw student has taken OCW version of course

exp_online_class student has taken an online coding course

exp_python student has experience with Python

exp_python_college tudent has taken a python coding course

grade_level student grade level

lines_of_code number of lines of code written prior to course

mot_gpa motivated to take course to boost GPA

mot_learn motivated to take course to learn

mot_other motivated to take course by something else

mot_requirement taking course because it’s a requirement

semester current semester

dep_Employee student is an employee of the Institute
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dep_MaterialsScienceAndEng major is MaterialsScienceAndEng

dep_ElectricalEngComputerSci major is ElectricalEngComputerSci

dep_PoliticalScience major is PoliticalScience

dep_Architecture major is Architecture

dep_AeroAndAstro major is AeronauticsAndAstronautics

dep_Biology major is Biology

dep_Undesignated major is Undesignated

dep_Unknown major is Unknown

dep_Economics major is Economics

dep_Humanities major is

dep_EarthAtmosPlanetarySci major is Humanities

dep_ChemicalEngineering major is ChemicalEngineering

dep_Chemistry major is Chemistry

dep_Undeclared major is Undeclared

dep_CivilAndEnvironmentalEng major is CivilAndEnvironmentalEng

dep_Management major is Management

dep_BiologicalEngineering major is BiologicalEngineering

dep_NuclearScienceEngineering major is NuclearScienceEngineering

dep_Mathematics major is Mathematics

dep_HealthSciencesTechnology major is HealthSciencesTechnology

dep_Physics major is Physics

Wellesley student is a cross-registered Wellesley student

Harvard student is a cross-registered Harvard student

dep_UrbanStudiesAndPlanning major is UrbanStudiesAndPlanning

dep_HumanitiesEngineering major is UrbanStudiesAndPlanning

dep_MechanicalEngineering major is MechanicalEngineering

dep_BrainAndCognitiveSciences major is BrainAndCognitiveSciences

days online number of days active on piazza
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posts number of piazza posts made

answers number of answers to piazza questions posted

edits to answers number of edits to piazza answers posted

followups number of follow ups made on piazza

replies to followups number of replies to follow ups made on piazza

avg_time_after_last_submit avg time of last submit before deadline

avg_workahead_time avg time of first submit after pset release

avg_submits avg # times student submits psets

Table A.1: Dataset features with descriptions
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Appendix B

Progress Page Documentation

B.1 Website File Structure

Within the website source code, we’ve added a progress directory which holds all of

the code used for both the frontend and backend of the grade prediction pages. This

section discusses the relevant files/directories created for this work with the hopes of

to helping with set up of the grade prediction tool in future semesters of 6.0001/2.

The directory tree (rooted at the progress directory) of relevant files and directories

is shown in Figure B.1, and the files/directories contain the following:

• _files: This directory holds various data files used for the predictions.

– gradedata: Holds csvs of grades assigned at the end of courses used in

the datasets. Files are named using the following convention:

grades-{semester}-{course#}.csv

– profiles: Holds profiles of students for previous semesters of the courses.

The data for the files are pulled from the website logs. Profiles are as

described in Vostatek’s paper [9]. Files are named using the following

convention:

profiles-{semester}.csv

– registrationdata: Holds registration information for the semesters used

in the datasets. Data is pulled from LMOD. Files are named using the
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progress

_files

forumdata

gradedata

profiles

registrationdata

dataset

deadlines

fex

piazza_data

generate_profiles.py

get_current_dataset.py

organize_person_course_day.py

update_dataset.py

updated_profiles.csv

student_progress

content.md

get_student_progress.py

preload.py

content.md

filter_by_survey_resp.py

get_fex_scores.py

get_profiles.py

preload.py

update_predictions.py

Figure B-1: Condensed file structure of directories and files used to create and visual-
ize grade predictions. Blue indicates a directory and black indicates a file. Only rele-
vant files/directories are shown in figure, however there are other files/directories that
are not essential or are superfluous for understanding the grade prediction pipeline.
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following convention:

{semester}_reg_{course#}.csv

• dataset: This directory is for all files pertaining to generating the datasets used

in the predictions.

– deadlines: This is a directory to hold the deadline information used when

pulling information for each semester (i.e. finding out what files were due

by a certain date in a semester). Each semester used in the predictions

(including the current semester) must have a file (named {semester}.py)

that holds all of the deadlines for the semester. All of the deadline data

can be pulled from the site source code and must be formatted in the same

way. There is also a generate_deadlines_file.py file, which is used to

generate a json of all deadlines over all semesters which is used by the

prediction pipeline.

– fex: This directory contains information pertaining to finger exercises

when they were on MITx (before they were moved to the course site) as

well other MITx data used by the prediction pipeline. There is a 6.0001

and 6.0002 directory located in this directory. Each holds a file pulled

from MITx weekly for that course. They are named with the following

convention:

6.000{#}r_{#}_person_course_day.csv where # is 10 for the fa19 semester,

11 for the sp19 semester, 12 for the fa20 semester, and so on.

– piazza_data: Holds data pulled weekly from piazza that is used for pre-

dictions. There is also a 6.0001 and 6.0002 directory located in this

directory. For each week (1-7) of each course, there is a file for this data

in the respective directory based on course. It is named with the following

convention:

{semester}week{#}.csv

– generate_profiles.py: Used to generate profiles at the end of the semester

for use in predictions in future semesters (especially useful for when the log
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for that semester gets cleared). This file uses the unformatted_profiles.csv

that is also found in the colorblue dataset directory.

– get_current_dataset.py: Uses all of the data described above to gen-

erate a dataset for the current semester used in grade predictions.

– organize_person_course_day.py: Organizes the person_course_day

csvs described above so that they information in these csvs can be easily

accessed when generating the datasets.

– unformatted_profiles.csv: Holds the unformatted profiles that are pulled

directly from course logs. After using generate_profiles.py, data avail-

able in this file is formatted and stored in updated_profiles.csv

– update_dataset.py: Organizes the dataset of all previous semesters (ex-

cluding the current semester’s data) to be used as the train/test datasets.

– updated_profiles.csv: Holds the formatted profiles used in the datasets

discussed above.

• student_progress: Holds the files relevant for the individual student progress

pages

– content.md: A markdown file that renders the individual student progress

page. Holds all HTML and formatting for the page as well.

– get_student_progress.py: File used to pull all student progress infor-

mation – i.e. the numbers used to populate the grade trajectory chart.

– preload.py: File for helpers and relevant variables used in the content.md

file.

• content.md: A markdown file that renders the overall student progress page.

• filter_by_survey_resp.py: File used to filter the data shown of the overall

student progress page based on the dropdowns available on the page.

• get_profiles.py: File used to pull profiles for previous iterations of the courses

from course site logs.
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• preload.py: File for helpers and relevant variables used in the content.md file.

• update_predictions.py: Used to generate the predictions of a given week in

a course. Performs the training/testing of ML models and generates the predic-

tions from the datasets created by get_current_dataset.py and update_dataset.py.

B.2 Updating Weekly Predictions

B.2.1 Beginning of Course Setup

There are a couple of files that need to be created/updated at the start of each course.

Once they are finalized, they are used for the rest of the semester and do not need to

be updated.

Deadlines File

The first is the deadlines file, which is used to calculate which assignments were

due at various points in the semesters used to create our datasets. In order to

update this file, once due dates for the courses are finalized, create a file called

{semester}.py and put it in the progress/dataset/deadlines directory. The files

must be formatted in the same way in order for the dates to be extrapolated – see

fa20.py in this directory as an example of how to format and store data in these

files. Then run the progress/dataset/deadlines/generate_deadlines_file.py

locally. Then just commit and push these changes to git. Note: if any changes to due

dates made throughout the course of either class, update the {semester}.py, re-run

progress/dataset/deadlines/generate_deadlines_file.py, and commit/push these

changes so that they’re reflected.

Profiles Files

The other files that needs to be generated at the start of each semester are the

unformatted_profiles.py and the updated_profiles.py files. To create them,

first add/update the relevant variables in progress/get_profiles.py – see doc-

strings/comments in this file for more information regarding what varibles to add/update
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–, then run it on the server by going to the url https://sicp-s1.mit.edu/{semester}

/progress/ get_profiles.py. Then save the response to the progress/unformatted

_profiles.py file. Finally, locally run the progress/dataset/update_profiles.py,

which will update the updated_profiles.py file, and commit/push these changes.

B.2.2 Weekly Prediction Generation

Updating Piazza Data

To update Piazza data weekly, complete the following steps each Sunday:

1. Go to Statistics → Export Statistics (on the bar at the top of the page)

2. Change the max date to the Sunday of that week and export

3. Save file and rename it {semester}week{#}.csv

4. Store file at progress/dataset/piazza_data/{semester}

5. Commit and push changes

Updating MITx Data

To update MITx data weekly, complete the following steps:

1. Pull data on BigQuery

2. Rename to 6.000{#}r_{semester #}_person_course_day.csv

3. Store file at progress/dataset/fex/6.000{#}

4. Commit and spush changes

Generating Grade Predictions

After updating the weekly data, generating the grade predictions is as easy as clicking

the Generate Predictions button at the top, left-hand side of the overall progress

page. To monitor the status of the predictions (successes/failures of API calls), use

your browser’s developer tools to view the console after the Generate Predictions

button is pushed. There you will see what calls have been made, any errors, and a

log of when the prediction generation process is finished.
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