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ABSTRACT

t
-

This thesis presents upper and lower bounds to the
probability of error for convolutional codes. The lower
bound is derived for an optimum decoder with convolutional
codes in which each of the V channel symbols generated
per encoder shift may have a different 'constraint length."
This lower-bound is of the form P(E) > exp-K*V[EL(R)nol(K*)]
where K*V is the sum of the V generator lengths and
ol(K*) is a function which approaches zero as K* approaches
infinity. An ensemble average upper-bound is derived for
multiple generator length convolutional codes with op timum
decoding. This upper-bound may be written as
P(E) < exp-K*V[E (R)-o, (K*)] provided that the length of
the second shortest ge%erator is proportional to K*. For
R > Eo(l), EL(R) = EU(R) on symmetric channels.

The Fano sequential decoding algorithm is also
investigated. A rather surprising result is found for
systematic convolutional codes with sequential decoding.

If the sequential decoder bias B equals the data rate R,

then the sequential decoder has the same error exponent

as optimum decoding for equal generator length convolutional
codes. On the other hand, sequential decoding on systematic
convolutional codes has a considerably lower error exponent
then optimum decoding with the same K*V. This non-optimality
of sequential decoding may be removed by increasing the
decoder bias B. Unfortunately, this increase in bias
substantially increases the decoder computation.
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I. INTRODUCTION

Most modern statistical work in communication
theory stems from Shannon's proof of the coding
theorem in 1948. Communication is essentially the
process of transmitting information from one point
to another through a noisy channel. A simple example
of a noisy channel is the discrete memoryless channel
(DMC) . If symbol i, one of I possible symbols, is
inserted into the DMC, one of J symbols, for example
symbol j is received. The relationship between the
symbol i andgthe symbol j is knowﬁ}only through a
set of probabilities P(j/i). This set of IJ transition
probabilities completely characterizes the channel
noise. The DMC is a somewhat idealized model of a
noisy channel with digital input and with quantized
or digital output.

In designing communications systems, a specific
signal is assigned to each of the M messages which the
system might be called upon to transmit. If the
transmission is to be over a DMC, these signals are
sequences of channel input symbols. The selection rule
which assigns a transmitted signal to each possible
message is called the code. The coding theorem

demonstrates the existence of codes which achieve



arbiﬁrarily low probability of erroneous communication

if and only if the information transmission rate R is

less than some maximum rate C called the channel capacity.
Perhaps the key words in the coding theorem are

demonstrates and existence. Shannon demonstrated the

coding theorem by showing that at least one code in

a very large collection or ensemble of codes can

achieve arbitrarily low probability of erroneous
communication if the information rate R is less than the
channel capacity C. Unfortunately, the coding theorem
does not specify which codes give a low probability

of error. TLe question of which codes give good
performance has been addressed by many authors in the
last twenty years. 1In 1950, R. W. Hamming presented

the first errbr-correcting code. This Hamming code was
the forerunner of many block codes presented by

numerous authors. These block codes generate a block
of N channel symbols when given a block of K information
symbols. Much research has been done on block codes

and the results have been presented in detail by
Peterson (1960), Massey (1967), Berlekamp (1968) and
Gallager (1968). In many applications, the information
symbols to be transmitted arrive at the encoder

serially rather than in large blocks. A type of code




which takes advantage of the serial nature of incoming
data is the convolutional code first presented by
Elias (1954). Convolutional codes have not been
studied as much as block codes. This thesis presents
several significant results about convolutional codes.
Convolutional codes can be most easily explained
by describing the encodgr. Moreover, this description
will allow us to define a set of convolutional code
parameters which will be used throughout this thesis.
A convolutional encoder is shown schematically in
Fig. l.l1. Information symbols from a g-letter alphabet
are shifted%serially into a (K+l)-stage shift register.
We have taken the length of the shift register,
often called the constraint length of the code, to
be K+l instead of K: this notational change simplifies
the later algebra. 1In order to make each information
symbol a member of the finite field GF(g), g is
restricted to be an integer power of a prime. After
each information register shift, V channel symbols
(phase 1 through phase V) are generated in parallel.
These parallel channel symbols are commutated, added
to a randomly selected sequence E_and transmitted
through a discrete memoryless channel. This random

sequence can be omitted in most circumstances but
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11l.

simplifies the analysis. Each of the V channel symbols
is a weighted sum of the K+l information symbols

stored %n the shift register plus the appropriate member
of the sequence r. All weights and elements of r are
selected from GF(g) and the mathematical operations

in the encoder are performed in GF(g). After the V
channel symbols are generated, the information

register is shifted to bring in the next information

symbol and another V channel symbols are generated.

Let tV g be the phase v channel symbol generated
’
t

immediately after the d h information symbol id
enters the encoder. Then,

K+1

= i + £V E .
v,a z “v,p*a+1-b " Fv,a Lever  {L.1)
=1

where w is the weight attached to the information

v,b
. th . . . .
symbol in the b shift register stage in determining

the phase v channel symbol, and r, is the appropriate

,d
member of r.

One of the most difficult problems in coding theory
is to find a decoder that is simple enough to be
implemented for codes that are complex enough to give

a low probability of error. Massey (1963) has

presented a simple threshold decoding algorithm which
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provides a good decoder for some simple but useful
convolutional codes. Unfortuzately, threshold decoding
cannot gé applied to the more powerful convolutional
codes necessary to achieve good performance on channels
with high noise levels. Despite its limitations,
threéhold decoding is used in some current communications
systems because it provides an extremely efficient
method of decoding some simple convolutional codes
which are suitable for many less noisy channels.
Sequential decoding, invented by Wozencraft (1957)

is a more poyerful decoding algorithm for convolutional
codes. Sequential decoding is applicable to all con-
volutional codes and works at data rates much nearer
channel capacity than threshold decoding. These
advantages of sequential decoding are bought at

the cost of a more complicated decoding algorithm.

An impcrtant subclass of convolutional codes is
the family of convolutional codes in which one of the
transmitted symbols is the information symbol that
most recently entered the encoder plus the appropriate
member of the random sequence r (we assume that r is
known at the decoder). Such codes are called systematic
convolutional codes. Let us assume that the phase 1

channel symbol is the systematic channel symbol. Thus




for a systematic convolutional code

1,d | 1,d (1.2)

and t2,d through tV,d the parity symbcls, are
generated according to Eqg. (l.1l). Systematic
convolutional codes are of both theoretical and
practical interest for several reasons. First,
‘systematic convolutional codes are free from

"noiseless error propagation" as demonstrated by

Massey and Sain (1967); however, many nonsystematic
convolutional codes exhibit this type of error prop-
agation. In noiseless error propagation, two or

more information sequences differing in infinitely
many information symbols produce channel sequences
differing in only finitely many channel symbols.

Such nearly identical channel sequences are impossible
for the systematic convolutional code because the
phase 1 channel symbol must differ whenever corresponding
information symbols differ. Second, most easily
implemented decoding algorithms for convolutional
codes work well only if past decoding decisions have
been correct. In the event of a decoder failure, some

reasonable estimate of the transmitted information

may be made simply by using the received phase 1
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channel symbols of a systematic convolutional code.
Third, ;F large communications systems where both
inexpensive terminals and expensive highly reliable
terminals are required, a systematic convolutional cbde
may be used throughout. 1In such a system, inexpensive
terminals would look at just the received systematic
channel symbols while expensive terminals would look
at the whole convolutional code with a good decoder.
Moreover, such a system with a systematic convolutional
code would be compatible with equipment which was
built before. the error-correcting code was added.

The class of systematic convolutional codes can
be generalized into the class of multiple generator

length convolutional codes. 1In the systematic code,

=] and w through w

wl.l 1,2 all equal zero.

1,K+1

These zero weights indicate that the contents of the
second through (K+.I.)th stages of the encoder shift
register cannot affect the systematic channel symbol.
Suppose now that the communications system designer wishes

to restrict the K+l encoder weights Wy through
’

so that only th first k_+1 of these weights

Yo K+l 2

may be nonrzero. We shall denote this case as the case

in which the second generator G has length k_+1.

2 2

Likewise the communications system designer might wish
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to restrict the length of Gv to be kv+l. The

integer &v may assume any value between O and K.

If kv were chosen greater than K, the phase v channel
symbol would depend on information symbols which had
passed out of the encoder shift register and out of the
encoder's memory. Although the kv's may be selected
arbitrarily, there is no loss of generality if we

number the generators such that klik S...‘kv. Multiple

2
generator length convolutional codes were first

suggested by Dr. K. L. Jordan (1966) of M.I.T. Lincoln
Laboratory. *Jordan's suggested use for the multiple
generator length convolutional code consists of using

a systematic code (kl=0) with a short phase 2 generator,
and a long phase 3 generator. With this code, the
receiver could use the received systematic symbols

to make some reasonable estimate of the transmitted

data after a decoder failure. Once the receiver had

made reasonable guesses about k2 consecutive information
symbols, it could also use the phase 2 received symbols
in decoding. Finally, after the decoder had hypothesized
k3 consecutive information symbols, it could also use
received phase 3 channel symbols. Such a restarting

procedure can obviously be extended to V generators.

Additional uses of the multiple generator length
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convolutional code also suggest themselves. If the

code werg designed with a systematic generator, a short
generator and two long generators (e.g. k3=k4=2k2),

simple inexpensive terminals could just look at the phase 1
and phase 2 symbols. Such a hybrid scheme is useful

only if the 62 generator permits some simple form of
decoding; e.g. threshold decoding.

The V channel symbols produced per shift of the
encoder register depend only upon the encoder weights,
the additive sequence r, and the K+l information digits
that most recently entered the encodei. The initial
state of the encoder shift register is assumed to be
known at the decoder and is generally the all-zero
state. This depeﬁdence upon a series of past events
suggests a tree-like structure with g new alternatives
(branches) arising at each shift of the encoder register.
Figure 1.2 illustrates the beginning portion of the
tree associated with some convolutional code. The
symbols on each branch of the tree in figure 1.2 are
the channel symbols which would be transmitted if the
encoder were encoding the message represented by that
particular path through the tree. The convolutional
code used to generate the tree in Fig. 1.2 is a

systematic convolutional code with V=3, k2=k3=3, g=2,
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=0 an< w, 1

r=0, 2,17%2,37"2,473,17"3,27 3,47

In Figuxe 1.2, an upward branch represents the event
of a binary zero entering the encoder.

This thesis examineslboth optimum and Fano-type
sequential decoding of multiple generator length cbn—
volutional codes. 1In chapter II, we derive a Jlower
bound to error probability for any convolutional code.

This bound is of the form,

P(E) = exp -K*V [EL(R) —03(K*)] (1.3)

+
where

*V = k +tk. +t...+
K*V kl k2 kv

and 03(K*) is a function of K* which goes to zero as K¥
approaches infinity. This lower bound is valid for all
decoding algorithms and all convolutional codes. The lower
bound error exponent EL(R) is obtained by a geometric
operation on a lower bound error exponent for block

codes eb(r). This geometric procedure may be used to
obtain a valid EL(R) from any eb(r). Chapter III considers
upper-bounds to error probability for multiple generator
length convolutional codes with optimum decoding. These
optimum decoding upper-bounds on error probability

indicate the capability of the convolytional codes



19.

themselves. Such optimum decoder results are useful
as a reference standard when analyzing practical but
suboptimum decoders. These upper-bounds are derived
by upper-bounding the average probability of error

for a large collection or ensemble of codes. The
probability of error for some code in the ensemble is
less than or egual to the ensemble average probability

of error. Thus, these ensemble average upper-bounds

on error probability are also upper-bounds to the

probability of error for some code in the ensemble.
For equal gé;erator length convolutional codes these
ensemble average upper-bounds on error probability
take the form

P(E) € const exp -KVEU(R). (1.4)

In chapter III we find that the error bound in inequality
(1.4) is still valid for multiple generator length
convolutional codes if KV is replaced by the more

general term K*V (the sum of the generator lengths)

provided that either (i) all kv except k. equal K or

1

(ii) that if v=23, k2 is "not too short." The words

“not too short" in case ii imply an asymptotic rather

than absolute convergence. Finally in chapter 1V,
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we consider using the Fano (1963) sequential decoding
algorithm for multiple generator length convolutional
codes. We find that sequential decoding gives the same
upper bound error exponent as optimum decoding for
equal generator length convolutional codes; however,
sequeritial decoding does not give the optimum error
exponent for systematic convolutional codes and for
multiple generator length convolutional codes. This
exponential non-optimality may be eliminated by
increasing a decoder parameter called the bias B.
Increasing £he bias from its usual value B=R, to a bias
large enough to eliminate this non-optimality causes

a substantial increase in the decoder computation.
Chapter IV also analyzes this increase in computation.
Forney's simulations (1968) demonstrate both these
effects. Finally, Chapter V discusses the implications
of these results and makes suggestions for further
research.

A mathematical dilemma arises in discussing
optimum decoders for convolutional codes. The dilemma
is that the decoder must make a decision involving some
signal sequence that may never end. This dilemma can
be circumvented by requiring that information digits

be encoded in sequences of at most L information symbols.
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Once L consecutive information symbols have been shifted
into the encoder, K information zeros are shifted into
the encééer before any additional message-dependent
information symbols are allowed to enter the encoder.
This terminating sequence of K information zeros returns
the encoder to its initial state just before the next
sequence of L information symbols begins to enter the
encoder. This return to the initial state makes the
gncoding of the next sequence of L information symbols
appear to be just like the encoding of those symbols

in fresh enc?der with an all-zero initial state.

With periodic resetting, the convolutional encoder may
be thought of as a block encoder that generates a
sequence of (L+K)V channel symbols to encode a

message of L information symbols. Analytically, resetting
allows a straight forward definition of optimum decoding,
and hence allows us to express the error correcting
capability of convolutional codes. In practice,
resetting allows the receiver to restart some practical,
but suboptimum, deccder that has been confused by a
particularly noisy sequence of received symbols.

These suboptimum decoders may be restarted because

each "block" of (L+K)V channel symbols is decoded

independently. Implementing such a resetting procedure



decreacses the true data rate from its nominal value of

r = inlal

. v (L.5)

to R(L/L+K). Normally the value of L is two or three

orders of magnitude greater than K and the small rate

loss is ignored.
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ITI Lower Bound on the Probability of Error
\,

Techniques recently developed by Jacobs and
Berlekamp (1967), Viterbi (1967), and Forney (1967)
may be generalized to lower-bound the probability of
error for multiple generator length convolutional
codes. Suppose that L is very large and that the

decoder is given the first L-L" information symbols.

‘The decoder must then correctly decode the last L™

information symbols if no communication error is to
occur. There are many decoding rules which the decoder
given the first L-L" information symbols could adopt.
Since the first L-L" information symbols are already
known to the decoder, each of these rules for the
assisted decoder produces some estimate of the last L"
information sympols. There is some probability of error
for each of these assisted decoder decision rules.

The optimum (lowest probability of error) decoding rule
for the aided decoder has a probability of error which

we denote as P(E_ . /I

Le/I;_pa). Note that P(E_,/I

L L—L“) is not

a conditional probability but an average over all
sequences of L-L" information symbols. Let P(E) denote
the probability of error for the optimum unaided decoder

(the maximum likelihood decoder) that is not given the
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first L-L" information symbols. Then,

P(E) 2 P(E /IL ) (2.1)

L " __L [1]

because the decision rule for the optimum unaided
decoder was one of the possible decision rules for the
) is the minimum probability

aided decoder, and P(E /IL

L [1] "’L "n

of error for all possible aided decoder decision rules.
Inequality (2.1) may be interpreted as a mathematical
statement of an intuitive notion. Namely, the aided
decoder can do no worse than the unaided decoder because
the aided decoder can always ignore the information
symbols it has been given and imitate the unaided decoder.
The channel symbol sequence cannot depend upon any
of the last L" information symbols until the first of
these last L" information symbols enters the encoder.
Since the channel is memoryless, the aided decoder need
only consider those received symbols that depend on the
last L" information symbols. For any given choice of
the first L-L" information symbols, the encoder with
resetting defines L"V channel symbols while the last
L*" information symbols are entering the encoder. During
resynchronization, all phase v channel symbols must be

the same for any message after the first kv information
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zeros in the resynchronizing sequence have entered the
encoder ., These phase v channel symbols which must be

the same simply reflect the fact that the information
symbols in L" have been shifted so far down the register
that they are no longer within the f%rst kv+1 stageé.

For a memoryless channel, these channel symbols which
must identical for all messages need not be considered

at the decoder. Thus, during resynchronization, the
encoder defines K*V=k, +k,+...+k  channel symbols which
are truly dependent upon the last L" information symbols.

Hence there are a total of
N = (L"+K*)V

channel symbols dependent upon the last L" information

symbols. There are

choices for the last L" information symbols. Since
the first L—L“'information symbols are given the aided
decoder, the aiéed decoder is just decoding one of M
possible messages which was encoded in a seque;ce of

N channel symbols. For any choice of the first L-L*"
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information symbols, the convolutional encoder's
assignment of a sequence of N channel symbols to each
possible segquence for the last L* information symbols
is just the generation of some block code. This block
code transmits one of M messages by a sequence of ﬁ
channel symbols. The block code produced by the
convolutional encoder can have no lower probability of
error than the best block code which transmits one of
‘M messages with a sequence of N channel symbols.

Using inequality (2.1), we have now argued that

4

P(E) 2 P(E_ /I ) 2 P(E for best code using N symbols

L 1] L-L "
to transmit one of M messages).

(2.2)
Shannon, Gallager, and Berlekamp (1967) have shown
that the probability of error for the best possible code
using N channel symbols to transmit one of M messages

over a discrete memoryless channel may be lower-bounded as

P(E for best code using N symbols 2 exp -N[eb(r)-o(N)],

to transmit one of M messages) . (2.3)

where o(N) is a function that approaches zero as N

approaches infinity, and
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N (2.4)
\
We shall leave eb(r) temporarily unspecified, in order
to show that subsequent manipulations are not dependent
upon a specific form of eb(r). Recalling that K* was

defined such that

* =
K*V kl+k2+k3+...+kv

and defining g such that

*

L" = gK¥,
we may combine Egs. (2.2) and (2.3) to show that

P(E) 2 exp -N{}b(r) -o(Nﬂ =
exp -K*V Bg+l)eb(r) -ol(K*a .

where ol(K*) is a function of K* which approaches zero

as K* approaches infinity,

, = M) g in(g) _ 9.
N g+l v g+l




and R is the nominal data rate of the convolutional
code as defined in Eg. (l.5).
\
We may write

P(E) 2 exp -K*V [Eg(R) -ol(K*ﬂ - (2.5)
if we define Eg(R) such that

E_(R) = (g+l)e, (T R) . (2.6)

Up to this point, we have implicitly assumed that
g is a multiple of L/K*; however, in the asymptotic case
of large K*, the difference between any non-negative
value of g and the nearest multiple of 1/K* may be
represented as a function 02(K*), which approaches zero
as K* approaches infinity. Thus, Egs. (2.5) and (2.0)
are valid for all non-negative g. In particular,
inequality (2.5) must hold for that value of g which gives
the largest probability of error; that is, inequality
(2.5) must hold for the value of g that minimizes Eg(R).
Thus, we may lower-bound the probability of error for

a multiple generator length convolutional code as

P(E) 2 exp -K*V [FL(R) -oB(K*ﬂ (2.7)
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where

EL(R) = ir;g [(g’rl)eb(&%‘rR)]- (2.8)

Forney (1967) has developed a geometric method of
finding EL(R) from any lower-bound block code exponent
eb(r). Figure 2.1 shows a typical eb(r) curve. Consider
the points R0 and §%IRO on the rate axis. The straight
line connecting the point Ro on the rate axis and eb(gérRo)
on the e (r)écurve intersects the E(R) axis at the point
(g+tl)e (g+lR ). Changing the value of g simply moves
the point E:TRO along the rate axis between O and Ro.
Thus, EL(RO) is the lowest E(R) intercept of any straight
line passing through the rate axis at R0 and touching
the curve eb(r). If the eb(r) curve is smooth, EL(Ro) is
the E(R) axis intercept of the straight line from Ro
which is tangent to the eb(r) curve. Repeating this
construction for each possible Ro, we obtain the EL(R)
curve from the eb(r) curve. In figure 2.1, this

construction has been completed to show EL(R).
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III Upperbound on the Probability of Error for Multiple
Generator Length Convolutional Codes with Optimum

\
Decoding.

3.1 Introduction

A measure of performance for any code is the
probability of erronecus communication with the optimum
decoder. Calculating the probability of error for any
_specific code is so complicated that it is virtually
impossible to find the best code in a set of codes.
This immense problem of detailed code selection may

s

be avoided by finding the average probability of error
for a very large collection or ensemble of codes.
This ensemble of codes contains every possible code
that could ever be used for a given design technique.
One ensemble of multiple generator length convolutional
codes might be the collection of all multiple generator
length convolutional codes with given kl' k2, <o kv.
Unfortunately, there are both theoretical and practical
problems with this ensemble of "fixed-generator" convolutional
codes. These problems can be avoided by using the ensemble
of convolutional codes with a fixed k., ... kv in which

1

wl l=l and all remaining nontrivial encoder weights are
’

reselected after each shift of the information storage
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register. Each new weight in the encoder is selected
from GF(g), with all weights being equally probable.
This randomly reselected weights ensemble of multiple
generator length convolutional codes is analogous to
the ensembles of convolutional codes used in all
"random-coding" upper bounds on the probability of
error.

Under the assumption that all messages are equally
.likely, the optimum decoder for any code is the maximum-
likelihood decoder which operates on the entire received
sequence. fbr the periodically reset convolutional
code, the maximum-likelihood decoder considers Y the
entire sequence of {(L+K)V received symbols. Let Km
denote the channel sequence the encoder assigns to
the message m. The maximum-likelihood decoder estimates
that message ﬁ was transmitted where & is the value of
m which maximizes the conditional probability P(X/Zm).
Erroneous communication results if the decoder selects
any message sequence m' that is not identical to the
encoded message sedquence m e There are two different
probabilities of error which may be of interest. First,
one may be interested in the probability that some

particular information symbol was decoded incorrectly.
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Second, one might be interested in the probability that

any of t%e L information symbols was incorrectly decoded.
The structure of the convolutional encoder is

such that the transmitted sequences for two messages

must be identical during those time intervals in which

the contents of the encoder shift register are identical

for the two messages. For example, let m, be an

incorrect message differing from the correct message

'm_ only in the first information symbol. The corresponding

0

channel sequences X and X must be identical after
‘ —ml _mo
the first information symbol leaves the encoder. Let

us consider a multiple generator length convolutional

code with generator lengths kl' kz,...kv. By definition,
only the kv+l information symbols which most recently
entered the encoder are involved in the determination

of the phase v channel symbol. Thus, the channel sedquences
gm and Km must be identical for all but the first

0 1

kl+l phase 1 channel symbols, the first k_+1 phase 2

2
channel symbols,... and the first kv+l phase V channel

symbols. Thus, X and X must be identical in all but
o ™
V+kl+k2+...+kV=V(l+K*) channel symbols. This matter of

identical channel symbols for different message sequences

may be generalized as the concept of diverging and merging

sequences. Two information sequences are merged for a
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specific phase v channel symbol if the kv+l information
symbols \ynost recently entering the encoder are the
same for both messages. If two message sequences are
not merged for a specific channel symbol, they are said
to be diverged for that channel symbol. Thus, two'
information sequences are merged at a specific channel
symbol only if that channel symbol must be identical for
both messages for any code with the same set of kv's.
The number and location of channel symbols at
which a given incorrect message sequence is diverged
from the correct message may be found with the aid of
diagrams such as that in Figure 3.l.l. The nth division
of the box labeled "information different?" represents
the nth information symbol in the message sequence. An
X placed in a division of the “information different?"
box indicates that the corresponding symbol of the
incorrect message m' differs from its counterpart in
the correct message mo. The column labeled "channel
symbol phase" lists the phase of each of the V channel
symbols generated after an encoder shift. Merged channel
symbols are represented by the unshaded regions of
Figure 3.1.1 and diverged channel symbols are represented
by the shaded regions. The rule for determining shaded

regions in a divergence diagram is that the area representing
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a phase v channel symbol is shaded if and only if there
is an x either in the division of the “information
differeﬂk?“ box immediately below that area or in one
or more of the kV divisions of the "information
different?" box immediately to the left of that
division.

The maximum-likelihood decoder decides that message
m was transmitted only if ff is the value of m which
maximizes the conditional probability P(X/Em). Hence

a decoder error can occur only if

P(Y/X_,) 2 p(g/}_gmo) (3.1.1)

for any m' # m_. The equality in (3.1.1) is used to

0]

denote the possibility that a decoder error will occur

if m' and m, have equal a posteriori probabilities.

0
Dividing both sides of ineguality (3.l.1) by P(X/Zm ).
0
we find that an error can occur only if
P(Y/X )
—— 2
P(Y/X ) L (3.1.2)
Mo

for any m' # m- Since the channel is assumed to be
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memoryless, each conditional probability in the likeli-
hood ratio is the product of individual channel symbol
transiglon probabilities. 1In general each particular

m' is merged with my for some channel symbols. The
transmitted sequénces zmo and Km' are identical at

these merged channel symbols. Hence the individual
channel symbol transition probabilities P(yi/xm,i)

and P(yi/xmoi ) are identical for these merged channel
symbols. The numerical value of the likelihood ratio

in (3.1.2) is unchanged if these common factors are
cancelled {n the numerator and denominator. Thus in
determining whether a specific m' may be decoded instead
of my. we need only consider those received channel'symbols

at which m' is diverged from m.

If a diagram st as that in Figure 3.1.1 were
drawn for an entire incorrect message m', there vould
be L+K encoder shifts represented. 1In general there
would be several, say h, disjoint shaded regions in
the diagram. Each of these disjoint shaded.regions
would represent divergence of the incorrect message
from the correct message and subsequent remerging with
it. We may view each disjoint shaded region as arising

out of some subsequence of m' which is divergent from m0

at exactly those channel symbols involved in that



particular shaded region. Hence, any incorrect message
sequenc? m' may be viewed as a number of divergent
information subsequences joined together by information
subsequences identical to the corresponding parts of mo.
Because the channel is memoryless, the likelihood ratio
in inequality (3.l1l.2) is just the product of the likeli-
hood ratios calculated for each of the h divergent
information subsequences in m'. Furthermore, we now

- show that the incorrect message m' can be decoded only
if the likelihood ratio for each divergent subsequence
of m' is greater than or equal to one. Suppose that
the ith (ish) divergent subsequence of m' has a
likelihood ratio that is less than one. Suppose there
is a message m* with the same over all likelihood

ratio as m' except that the likelihood ratio for the ith

divergent subsequence is replaced by one. Then m* has

a larger likelihood ratio than m' and m* will be decoded
in preference to m'. But the incorrect message that is
identical to m' in all but the ith divergent subsequence
and identical to m0 in that subsequence is just such

an m*. Thus an incorrect message m' cannot be decoded
unless the likelihood ratio for each divergent subsequence
is greater than or equal to one.

Each divergent subsequence of any incorrect message




sequence m' (each continuous shaded region of the
divergence diagram for m') may be characterized by a
number b such that m' and m, are phase V diverged for
exactly b+K+l encoder shifts. Since the phase V
generator is the longest generator (kvzkv_lz...kl)'and
=kv, the total length of the divergent region will
be b+K+l information symbols. In order for complete
remerging to occur after b+K+l encoder shifts, the last
K information symbols in the divergent subsequence
must be identical to the corresponding symbols of mo.
Since each incorrect message has a divergence diagram,
we may classify incorrect message sequences by their
divergence diagram patterns. 1In particular, we may
enumerate all incorrect messages by enumerating all

divergence diagrams.

39.
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3.2 A Basic Lemma

In\this section, we will derive a basic lemma
upper-bounding the ensemble average probability of
decoding an incorrect information subsequence with a
divergence pattern from a certain family of divergénce
patterns. This family of divergence patterns is rather
hard to motivate and the reader will have to be patient
with a good deal of algebra before the desired result
is reached. OQuite a bit of complexity arises out of
the need to consider systematic convolutional codes

4

in which kléo and w L. The family of divergent

1,1
information subsequences we wish to consider is the set
of all divergent subsequences which are fully merged

at the (j-l)th encoder shift, diverge at the ]th encoder
shift, remain at least partially diverged for exactly
b+K+1l encoder shifts and have the same pattern of

diverged phase 2 through phase V channel symbols.

Figure 3.2.1 shows several members of this family of
divergence diagrams. Let us call this family of

incorrect subsequences Mjpb where p is an index indicating
the pattern of diverged phase 2 through phase V channel
symbols.

Let P(Ejpb) denote the ensemble average probability

of decoding some incorrect message subsequence in Mjpb
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Figure 3.2.1 Three divergence diagrams with
the same pattern of diverged
phase 2 through phase V channel
symbols.



42,

instead of the corresponding subsequence of mo. We

may uppsr-bound ;TE;;;) by using techniques first developed
by Gallager (1965) for block codes and later extended

by the author (1968) to systematic convolutional codes.
The ensemble of multiple generator length convolutional
codes is the set of all convolutional codes with fixed

kl' k2,...k-V in which wl,l=l and all other non-trivial
encod.x weights are reseiécted after each shift of the
encoder shift register. The only encoder weights
considered as trivial are those required to be zero

by the kv+f length of the phase v generator. The randomly
selected weights are from the finite field GF(g) with all
values being equally probable for each weight subject

to reselection.

Since we are dealing with the set of all incorrect
messages with a fixed pattern p of diverged phase 2
through phase V channel symbols, let us examine the
possible pétterns p. The fixed pattern p of diverged
phase 2 through phase V channel symbols will have

several, say D fﬁﬁs\cf~diverged phase 2 channel

2'
symbols. Each of these runs of diverged phase 2 channel
symbols must be separated by one or more merged phase

2 channel symbols (but not by any merged phase V channel

symbols since the pattern must be continuous). A study
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of the divergence-remerger mechanism and the requirement
that kr§k2‘k3‘...$kv shows that if the phase v channel
symbol is merged with m, then the corresponding phase j
channel symbol is also merged for all jsSv. Likewise,
if the phase v channel symbol is diverged from mo'at
any encoder shift, the corresponding phase j channel
symbol is diverged for all j2v. If the phase 2 channel
symbols are merged and a symbol of m' differing from the
corresponding symbol of m, were about to enter the
encoder, there must be a phase 1 divergence and the
phase 2 through phase V channel symbols must also diverge
if they are not already diverged from M. Moreover, a
phase v merger cannot occur until a phase v-1 merger
occurs. Thus, the "skyline" in the divergence pattern
p may slowly fall off as one moves to the right but
must always rise as high as possible whenever it rises
at all.

An examination of the information symbols in some m"

subsequence in M. will aid in the proof of the lemma.

jpb
As discussed above, let us assume that there are D2
distinct runs of diverged phase 2 channel symbols. If
the desired pattern of diverged phase 2 channel symbols

is to occur, the information symbols of m" must satisfy

four conditions. These conditions must hold for
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each distinct run of diverged phase 2 channel symbols

\

and are ‘most easily stated if we assume that a run of

diverged phase 2 channel symbols is c+k_+l channel symbols

2
long. First, the symbol of m" corresponding to the first
symbol of this run of diverged phase 2 channel symbols
must differ from the corresponding symbol of m - Second,
the information symbols of m" corresponding to the second
through cth symbols of this run are arbitrary except

for the restriction that no consecutive k2+l information
symbols be identical to the corresponding symbols of

4

m,- Third, the information symbol of m" corresponding

to the (c+.l.)th symbol of the run of diverged phase 2
channel symbols must differ from the corresponding symbol
of mo. Fourth, all subsequent symbols of m" must be
identical to the corresponding symbol of m, until the
start of the next run of diverged phase 2 channel symbols.
This latter run of matching information symbols must

be at least k2+1 symbols long in order for there to

be a phase 2 merger to terminate the run of diverged
phase 2 channel symbols. The first condition is
necessary if the run of diverged phase 2 channel symbols
is to start at the desired place. The second condition

assures that the run of diverged phase 2 channel symbols

does not end before the desired spot. The third and
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fourth conditions are necessary if the run of diverged
phase 2‘channel symbols is to end at the right place
and if there are to be no phase 2 divergences before
the start of the next run.

What implications do the above conditions on h"
have on the sequence of channel symbols? These
implications are best found if we continue to consider
the run of c+k2+l diverged phase 2 channel symbols.
The third and fourth conditions require that the phase

v channel symbols merge kv—k steps after the end of

*

the run of diverged phase 2 channel symbols unless

2

another run of diverged phase 2 channel symbols starts
at or before that step. Thus, the lengths of the runs
of diverged phase 2 channel symbols and the spacings
between these runs completely determine the pattern p
for a fixed set of kv's. The third condition and the

random reselection of w through w imply that

2 +
ll l.kl .I.

the'kl phase 1 channel symbols corresponding to the
_,th th
(c+2) through (c+l+kl) symbols of the run are equally
likely to be any sequence of kl g-ary symbols independent
of zm and m. Furthermore, the fourth condition
0
implies that all phase 1 channel symbols after the

(c+l+kl)th symbol of the run are merged until the start
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of the next run of diverged phase 2 channel symbols. Thus,
a run of‘c+k2+l consecutive diverged phase 2 channel
symbols implies at most c+kl+l diverged phase 1 channel
symbols and (from above) a run of c+l information symbols
in m" which need not be identical to the corresponding
symbols of m, - Because wl,l=l' the c+l1 phase 1 channel
symbols corresponding to the first c+l symbols of the

run are a one-to-one function of the c+)l information

symbols which may differ from the corresponding symbols

of mo. That is, for each code (given sequence of encoder

+

weights and fixed r) there is exactly one subsequence
of c+l phase 1 channel symbols for each subsequence
of ctl information symbols differing from the corre-
sponding subsequence of mo.

Now let us suppose that the pattern p has D

2

distinct runs of diverged phase 2 channel symbols and pr2

diverged phase 2 channel symbols in all. We may repeat
the'above argument for each of these runs. Thus, the
pattern p has D2kl phase 1l channel symbols which are
selected statistically independently of Zmo and m. -
Moreover, the pattern p has prz-Dzk2 phase 1 channel
symbols which are a one-to-one map of the prz-Dzk2

symbols of m" which may differ from the corresponding

symbols of me As a check we note that we have accounted
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for prz—Dz(kz-kl) phase 1 channel symbols which is the
\
maximum number of phase 1 channel symbols which may be

diverged for any m" in M.
g Y ipb.

The reselection of encoder weights guarantees that
over the ensemble of codes, each diverged phase 2
through phase V chanrel symbols is edqually likely to

be any g-ary symbol independent of gm and m- We
0
may combine the diverged phase 2 through phase V channel

symbols with the D2kl phase 1 channel symbols which are

equally likely to be any g-ary sequence to form xm“r' Xm“r
is the set of channel symbols which in the ensemble

are equally likely to be any g-ary symbol independent

of m_  and Km for any m" in M The subscript r in

0 0

the name Xm“r indicates that the symbols in xm"r are

jpb’

randomly selected by the code independently of m and

gmo. Likewise, we may define xm“l as the set of prz-Dzk2

channel symbols which are a one-to-one map of the

prz-Dzk2 information symbols of m" which may differ

from the corresponding symbols of the correct message

m.. Hence, X , and X , contain all the channel symbols
0 m'r m*l

at which any m" in Mjpb may be diverged from mo. Thus,

we need only consider the received channel symbols

corresponding to xm"r and Xm“l in determining whether any
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information subsequence m" in M. may be decoded instead

jpb

\ .
of the corresponding part of mo. Notational problems
will be simplified if we let Yr denote the part of the
received sequence Y corresponding to the symbols in Xm“r'

Similarly, we may define Y , X and X .
mor mol

We may use the random nature of the ensemble to

1

derive an upper-bound on P(E. . /Y Y X X ), the

m
jpb” 1 r mol mor 0

ensemble average probability of decoding some incorrect
message subsequence in Mjéﬁ given that m0 was encoded as

Em and that Y was received. The maximum likelihood
O 4

decoder can decode an incorrect message subsequence m"“

in Mjpb only if the code sequence for m" was selected
such that
p(YLYr/xm"lgm“r)
2 . 2.
P(Y Y /X X ) L (3.2.1)
L r mol mor

The structure of the encoder (wl l=l) is such that the
’

channel sequence selected for m" is not entirely

independent of the channel sequence for m Using a

O.
it follows that

union bound to account for all m" in Mjpb'
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‘ 1
P(Ejpb/Yerxm 1 m r O 2{: 2{%(x “l {erxm 1xm r 0)
0 0 0
\ jpb (3.2.2)
where the rightmost summation is over all Xm“l and

Xm for which inequality (3.2.1) holds.
The rightmost summation (3.2.2) is simply the probability

that the randomly selected code assigned an Xm"lxm“r

leading to the decoding of m", for the given Yl' Yr'

X ., and X . Since the code is selected before enccding
mol mor
and transmission begin, the code words must be independent

of the receiéed sequence Y. Thus,

P(xm“.I.xm“r/Y.l.YerOJ.Xmormo) = P(xm“l.xm“I:/Xmo.l.xmormo)'

Noting that whenever inequality (3.2.1) is satisfied,

<
P(Xm“.l.xm"r/xm le rmO) P(Xm"].xm“r/xm lxm rmO)
0 0 0 0
s
P(Y Y /X w X )
L' r" "m"l m"r
P(Y Y /X X )
lr mol mor

for any s20. We may now upper bound the right hand side

of inequality (3.2.2) by



Y Y X X
P(Ejpb/ e 1 ¥m o)

<.
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P(X
Z ( m"lxm“r/xm lxm rmO)

0 0 0 0
\ m"CM. x X
pr all mlll m!lr
s
P Y Y X
( /. "1 )
P(Yer/xm lxm r) .

0

0]

(3.2.3)

One is an edqually valid upper bound for any probability;

: E
thus, we may upper bound P( jpb/YerxmoleormO

minimum of one and the right-hand side of inequality

) by the
(3.2.3). A .frequently used inequality (Gallager, 1968)
states that if u and v are positive numbers,

s ul—P Vp

min(u,v)
for all p in the range 0%$pf£l. Using this inequality to
upper-bound the minimum of one and the right hand side of

(3.2.3), we find that

E <
P pr/YLerm 1 m, rmo) {Z: jz}(xm“lxm“r/xm lxm rmO)
0 " 0o e
eM X .. X .
jpb m"l m"r
P(Y Y /K, X, ) SIP
X
P(Yer/Xmoleor) J .

(3.2.4)
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The condition in the probability on the left-hand
side of inequality (3.2.4) may be removed by taking

the expectation over the conditioning event. Thus,

P(E ) =< ZE: :E: :E: P(Y Y /X leOrmo) P(Xmolxmor/mo)

mol mor

,-‘
X
x P(mO) ZE: 213 P(Xm“lxm“r/ molxmormo)

" X X
m thpb m 1 mp

S \pP
P X X
x (Yer/ m"l mf;l
P(Y.¥Y /X X )
L mgl mgr . (3.2.5)

The statistical independence of the channel noise and

the message m, guarantees that

0

P(YY /X X m) = P(Y Y /X X ).
lr mol mor 0 mol mor

Moreover, the memoryless channel permits the factoring of
P Y X
(Yl r/xml mr) as

p(Yer/xmlxmr) = P(Yl/xml)P(Yr/xmr)'

Substituting these two relations into the right-hand side
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of inequality (3.2.5) and setting s=‘—£“, we find that

1+p
.
1+p
P(Ejpb) s z Z Z Z Zp(xm Ko /M) Bm)P(Y, /X )
0 0 0
Yl Yr mO Xm 1 xm Y
0 0
.
xp(y /x )P Z Z
r mor
m eMjpb xm"l Xm"r
1 1 P

1+p 1+p
P(Xm"l.xm"r/xm!].xm rmO)P(Y.l_/X ) P(Yr/xm"r)

5 0 m"l

(3.2.6)

Several.}roperties of the ensemble of multiple
generator length convolutional codes allow additional
simplification of the right-hand side of inequality (3.2.6).
Let us denote the number of diverged phase 2 through

phase V channel symbols in the pattern p as Nbp' For

a systematic convolutional code with kl=0 and all other

=(b+1+K) (V-1). The random additive

kv s equal to K, Nbp

sequence r ensures that the channel symbol sequences

X and X are equally likely to be any sequence of
mol mor
- + e - .
pr2 D2k2 and Nbp D2 N g-ary symbols, respectively, for

any mo. Moreover, the random sequence r ensures

that all Xm . sequences are edqually probable for any
0
given Xm and m_. Thus,

Ol 0



X X
P( m.1l m.r

/m_) = Q(X )Q(X )
0 0 4] mol mO

r

\

where Q( ) is the probability assignment in which all
sequences occur with equal probability. The reader
should note that the exact numerical value of Q( ) is
dependent upon t+~ length of the sequence of g-ary
symbols that is the argument of Q( ). The discussion
above indicates that for any m" in Mjpb the sequence

X is equally likely to be any sedquence of g-ary

m

llr

symbols independent of gm and my. Since there are
0
different enaoder weights used in generating xm"l and

X , X is also independent of X
m"r m

m"r " *l. Thus,

53.

P(xm“lxm"r/xm lxm rmO) = P(xm“r/xm"lxm lxm rmO)
0 0 0 0
X P(xm"l/xm lxm rmO)
0 0
- Q(Xm"r)P(xm"l/xmo.LxmormO

Substituting these equations into the right-hand side
of inequality (3.2.6) and performing some algebra, we

find that

).
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1
P l+p
TERRICI MDD N IR AT
0 0
Y b4 X
1 r m.Ll
0
\ 1
% / 1+p
Q(Xm r)P(Yr/Xm )
m.r 0 0
0
1
N 1+p
4 P(mo) - Q(xm,,r)P(Yr/Xmur)
0 mYr
18P
D) =
“Z P(X_. /X X rmO)P(Yl/xm"l) .
m"eM. X . 0 0
jpb m"1
(3.2.7)

The summations over m"eM. and X ,, are difficult
jpb m"l

to perform because of mathematical difficulty in expressing

the requirements on the m" in Mjpb' However, the one-

to-one mapping from information subsequences m" in Mjpb

into channel symbol sequences xm"l assures that for each
code in the ensemble there is a unique xm“l subsequence
for any specific m". Hence for any specific code and

fixed m", P(Xm“l/xmolxmormo) is unity for one specific

xm"l and zero for all other possible xm“l' Thus, the

summation over m"eMjpb may be viewed as just a summation

over sequences xm“l' Because of the one-to-one nature

of the mapping from m" into xm"l subsequences, no

possible X subsequence enters the combined m" and

m"L

xm"l summation more than once. The right-hand side of
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inequality (3.2.7) is not decreased if this implied

summation over Xm“l subsequences is expanded to include
\

all possible Xm“l subsequences instead of just those

X required by the code and by the condition m"eM. .
n L du Y Y jpb

Finally note that

-(N . .-D.k.).
_ pb2 272
Q(Xm..l) g

Thus,
i
l+p
PE__ ). ¢ Z z z Q(x Ol)P(Y.L/XmOl)
YJ. Yr Xm 1
0 L
> ax_ e(y /x )P
xm r 0 0
0 I N
x Z QX L IP(Y_/x_,)F
x (1}
mbux
L
(N. .-D.k.) .
z o B2 220 LRCE  L+e
m"l
X .
m"l
(3.2.8)

X and X ,_ are different indices of summation in
mor mr
identical summations and X and X ,. are also

mol m"L

different indices for identical summations. Thus,
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1l \1+p
p(N __-D k.) Tta
— pb2 272 :E: :E: 1+p
P(Ejpb) £ q Q(Xml)P(Yl/Xml)
\
Yl xml
N 1+p
1+p
JPRPIETELLACE
Y x .-
r mr
(3.2.9)

Since the channel in memoryless, the right-hand
side of inequality (3.2.9) may be further simplified.
+
The subseguence er may be any sequence of Nbp D2kl
g-ary symbol§ with equal probability. Numbering these

channel symbols in some way, we may write

Nb3:23k1
Q(er) - {l Q(eri)
i=1

where Q(xmri) is the probability assignment on the ith

letter of X . For the memoryless channel, P(Y /X )
mr r’ “mr
is the product of the individual channel transition

probabilities. Using the same numbering scheme for

the symbols of Yr as for the symbols of er,

Ny oDk,
— r_.
P(Yr/xm ) B ll P(yri/xmri)'
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Hence,
1 1+p
1+
zZQ(X yP(Y /X ) ° =
\ mr r’ T mr
Y X
r mr
+
pr Poky
Yy g *) *N 1=1
bpr bpr
1 1+p
1+p
%
Q(xmri)P(yr:i/xmri) ‘
(3.2.10)

A little thogght shows that the order of summation and
multiplication may be interchanged in the right-hand

side of Eq. (3.2.10). Thus,

L y1+p
1+0 _
> Z Q(x_)P(Y_/X )
Y X
r mr
+
Npp P2y L +p
Q(x )P .
![ ji: :E: ( mPl) (ypl/xmpi)
i=1 Y. . X . .
ri mri

(3.2.11)

The term in braces on the right-hand side of Eq. (3.2.11)
is identical for each i. Thus, following Gallager's

(1965) notation,
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L \1ltp
j{: ZE' Q(X )P(Y /X )l+P = exp -(N._ +D_k )E (p,Q)
% ) mr r’ “mr bp 2170 p.
b mr
k (3.2.12)
where
-
L l+P
)3 D
EO(F,Q) = -1ln Q(i)P(k/1i) .
k\1i
- (3.2.13)
A similar argument shows that
2.2 e o)
.L+p _
Q(Xml)P(Yl/xml) =
Y X
1 ml
exp -(prz—DZkz)EO(p,Q)
(3.2.14)

Equations (3.2.12) and (3.2.14) may be substitcuted
into the right-hand side of inequality (3.2.9) to show
that
—— PNk ]

< P -[ - -k )+ E (0 .
P(Ejpb) lof exp pr2 D2(k2 kl) pr 0( ,Q)
The notational cumbersomeness of this upper-bound on

i -D
P(Ejpb) may be decreased if remember that pr2 2k2



59.

is the total number of possibly differing information
symbols in m" consistent with the pattern p. Moreover,

\
N —D2(k2-kl) is the total number of possibly diverged

pb?2
phase 1 channel symbols consistent with the pattern p.
We may summarize by stating a lemma which we have
just proved.
Lemma:
Let Mjpb be the set of all incorrect messages

completely merged with m_ at the (j—l)th encoder shift,

0
diverging at the jth encoder shift, not completely
merging until the (j+b+K+l)th encoder shift, and having
a fixed pattern p of diverged phase 2 through phase V
channel symbols. Let ETEQ;;T-be the ensemble average

probability that an optimum decoder will decode any

m" in Mjpb instead of the corresponding subsedquence of mye

) £q P(Ip) exp —(Nlp+Nbp)Eo(p,Q)

(3.2.15)

for any p such that 0%p<l, where Nbp is the number of
diverged phase 2 through phase V channel symbols in the
pattern p, Ip is the number of possibly differing information

symbols implied by the pattern p and Nlp is the number
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of possibly diverged phase 1 channel symbols implied
by the pittern p. We have used the phrase "possibly
differing information symbol" to denote information
symbols in m" which the pattern p does not require
to be identical to the corresponding symbol of m -
The phrase "possibly diverged phase 1 channel symbol”
has a similar meaning.

The reader should note that the pattern p of
diverged phase 2 throwoi phase V channel symbols is
fixed for all m"” in Mjpb but that &all patterns of

diverged phaée 1 channel symbols consistent with the

pattern p are included.
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3.3 Error Probability for Systematiic Convolutional Codes.
\

We may use the lemma 3.2.15 to derive an upper-
bound to the ensemble average probability of erroneous
communication for a systematic convolutional code with
maximum-likelihood decoding. A systematic convolutional
code has kl=0 and all other kv's equal K. There is no
difficulty added in considering the larger family of
convolutional codes in which kl is arbitrary and all
other kv's equal K. First, let us determine what
patterns of diverged phase 2 through phase V channel
symbols are consistent with the generator lengths used.
Since k2= k3=...=kV=K, the phase 2, phase 3, ... and
phase V channel symbeols must all diverge and merge
together. Thus, the only possible patterns of diverged
phase 2 through phase V channel symbols are long blocks of
diverged channel symbols in which all phase 2 through
phase V channel symbols in the block are diverged. Because
of the requirements for a phase V merger, this long
block of diverged chanrel symbols must be K+l information
register shifts long or longer. Suppose that the length
of this block of diverged channel symbols is b+K+1

information register shifts. As discussed in section

3.2, the K information symbols corresponding to the last

K encoder shifts in this block must be identical to the
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corresponding symbol of mo. Thus, a block of b+K+1
diverged phase 2 through phase V channel symbols
implies b+l possibly differing information symbols in

\
m". Like@ise, this block of bt+K+l diverged phase 2
through phase V channel symbols implies b+1+kl possibly

diverged phase 1 channel symbols. Setting Ip=b+l,

N _=b+l+k and N =(b+K=1)(V-1), we may use the lemma
1p 1 bp

to upper-bound P(Ejb}, the ensemble average probability
of the decoder's selecting some incorrect message
subsequence that is completely merged at the (j—l)th
encoder shift, diverges at the jth shift and completely
remerges with mg immediately after the (j+b+K+].)th

encoder shift. Thus,

p(b+l)

P(Ejb) s g exp - Eb+1)v+x(v-1)+kl] E (p,0).

(3.3.1)

The upper bound on P(Ejb) may be used to find an

upper bound on P(Eblock)' the ensemble average probability
that any of the L information symbols in the block is
decoded incorrectly. 1If any of the decoded information
symbols is incorrect, the decoder must have decoded some

in some M. For the codes under consideration,

m L]
jpb

there is only one pattern p of diverged phase 2 through
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. . .t
phase V channel symbols diverging at the j h encoder
shift and remerging at the (j+b+K+]_)th encoder shift.
Using a union bound to account for all j and for all b,

\
we find that

L L-3
£ 2 .
Coroad * 2, 2, Ty
j=1 b=0

(3.3.2)

Using inequality (3.3.1) to upper-bound the members of
the double summation in the right-hand side of (3.3.2),

we find that

P(Eblock) £ exp —[K(V—l)+kJEO(0,Q)
ﬁ L L-j
X Z Z exp -(b+1)V[EO(p,Q)-pI{]
j=1 b=0

(3.3.3)

where R is the nominal data rate of the convolutional code

Since L may be arbitrarily large, we shall neglect the
small rate losé occurring because of the periodic
resetting.

The right-hand side of inequality (3.3.3) is not
decreased if the upper limit of the b-summation is

raised to infinity. The infinite sum over b converges
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if and only if (see note)
PR < Eo(p,Q) for some p Osp<]. (3.3.4)

Taking the infinite sum over b and the finite sum over

j, we find that

1
P(Eblock) S L eVE-l exp —[%(V—l)+k11Eo(p,Q)
(3.3.5)
where
Eo(p,Q) -pR = ¢ > 0 and O0<p<). (3.3.6)

In order to obtain the tightest upper-bound on P(E )

block
we select that value of p which maximizes Eo(p,Q)
subject to the convergence condition of Egq. (3.3.6)
Gallager (1965) has shown that this tightest bound may
be obtained by selecting the largest value of p which

satisfies the dual conditions listed in (3.3.6).

The upper-bound on P(Ejb) may also be used to

upper -bound p(ES 1) the ensemble average probability

ymbo

that any specific information symbol was decoded

t
incorrectly. If the w h symbol of the decoded information

Note: The reader may wonder at the wisdom of raising

the upper limit of the b summation to infinity and then
requiring that the infinite converge. Such a convergence
condition is prudent in that if the infinite sum did not
converge, the L power term in the finite sum would dominate
and give a bound that is exponentially increasing with

the length of the information sequence.
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sequence is erroneous, it is erroneous because ejither
some m" subsequence with any b and J=w was accepted or
because gome m" subsequence with b=2i and j=w—-i was

\-

accepted. Using a union bound,

L-1 L-
P(Esyrnbcl Z Z P(E

Raising the upper limits of both summations to infinity

and using the upper bound on P(E,_ ),

ib
P(E_ o)) 5 exo —E((V—l)+ktJEO(p,Q)
® @
: Z —(b+l)VEEO(p,Q)-pR] .
i=0 b=i

Expressing the summations on the right-hand side in

a different form, we have

P(Esymbol) £ exp —K(V—J_)+kt EO(D,Q)
®
z (i+l)exp -(i+1)V[E0(p,Q)—pR:| .
i=0 (3.3.7)

If the dual conditions of Eg. (3.3.4) are met, the infinite

summation in the right-hand side of inequality (3.3.7)

converges and
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Ve
——e _ _ >
E gymbol’ ‘(e"‘-l)z =P E((V ””‘1] Eolp,0)

P(

(3.3.8)
\.

The awkward appearance of the dual conditions in

Eg. (3.3.4) may be removed by defining

E (1,0)
O

E_(p.Q) with p such that E_(p,Q)-pR=¢>0

(3.3.9)
We have defined K*V such that for these codes
%
K*V=kl+K(V-l),
We may use the definition of EU(R) to write
P(E ) £ exp -K*V E_ (R 3.3.10
(B o Ve P y(R) ( )
e -1
and
e+Ve
K *
P(Es lol) ( Ve 5 ©€Xp K*V EU(R) (3,3.11)
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If O( ) is the probability assignment which maximizes
Eo(p,g) as a function of Q, a result by Shannon, Gallager
and Berlekamp (1967) shows that EL(R)=EU(R) for Ron(l,Q).
The class of channels for which Q( ) maximizes Eo(p,g)
as a function of Q includes symmetric channels. ‘1nus,
the upper bounds on error probability in inequalities
(3.3.10) and (3.3.11) are exponentially tight for many
channels of interest. Figure 3.3.1 shows EL(R) and
EU(R) for a typical channel and compares these error
exponents with the analogous terms for block codes

(Gallager, 1968) of similar encoder complexity K*V.

4
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3.4 Error Probability for Multiple Generator Length

Convolutional Codes
\

In this section, we use the lemma presented in
section 3.2 to derive an upper-bound to the probability
of error for multiple generator length convolutional codes
with optimum decoding. The lemma gives an upper-bound
to ETE;;;; the ensemble average probability of decoding
any incorrect information sequence m" which is completely

merged with m_ at the (j-l)th encoder shift, diverges

0

t . .
from m, at the j h shift, completely remerges with m

immediately after the (j+b+K+].)th encoder shift and has

0]

a fixed pattern p of diverged phase 2 through phase V
channel symbols. If an information symbol is
erroneously decoded, some m" with some j, p and b must

have been decoded instead of the corresponding subsequence of m

Using a union bound, we may upper-bound P(Eblock) by
the expression
’ L
e s ) D D FE_D.
block j=L p b ipb (3.4.1)

In order to use the lemma, we must have some way

of knowing how many patterns p there are with Nbp

diverged phase 2 through phase V channel symbols and
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for which the pattern p implies Ip possibly differing
information symbols and Nlp possibly diverged phase 1

channel symbols. Let N(IP,N 'Nbp) be the number of

lp

such patterns p. Then using the lemma we find that,

P(E ) £ ii :{1 2{: N(I ,N ,N. )
block =1 5 5 p 1lp bp

p(I ) _

(3.4.2)

for any p, 0<nsl. Since the parameter b is essentially
determined by the pattern p, we may include the b-sum-
mation in thé p-summation for convenience.

In order the calculate a value for the upper-bound

in inequality (3.4.2) we must know N(Ip,N ). A

1p'Vbp
general way of solving combinatorial problems is the
combinatorial generating function. Since communications
oriented engineers are seldom familiar with combinatorial
generating functions, we will present a short introduction
to combinatorial generating functions. If the followihg
introduction to combinatorial generating functions is
too brief, the reader may consult a book on combinatorial
analysis; e.g. Riordan (1958) or Liu (1968).
Combinatorial generating functions are best taught
X

by example. Consider three objects labeled x and

1’ 72!
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X Form the algebraic product

30

(1+X12)(l+x22)(l+x3z) = 1 +(xl+x +x3) z

2

2
+ + +
(xlx2 xlx3 x2x3) z

+{x x

1¥o¥3) 2

(3.4.3)

The coefficient of zh in the right-hand side of (3.4.3)
contains one additive term for each combination of three
Xx's taken h at a time. Hence, the number of combinations
of three things taken h at a time is the coefficient

of zh with ali three x's set to one. We may readily
extend this result to combinations of N things taken

h at a time by using N factors of (l+xiz) instead of

three. The polynomial

F(z) = [| (4% 2) (3.4.4)
i

is called the combinatorial generating function of

N things with no object selected more than once. The
principal property of this generating function is that
the number of combinations of N things taken h at a
time is just the coefficient of the term zh when all

x's are set to one. 1In expression (3.4.4), each factor
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of the product is a binomial which indicates in terms
of 1 and xiz the fact that the object xi may not or may
appear in\any combination. The product generates
combinations because the coefficient of zh is obtained
by picking unity terms from n-h factors and terms like
X, 2 from the remaining h factors in all possible wayé.
The factors in (3.4.4) are limited to two terms because
no object may appear more than once. If the object

x'.l may appear 0,1,3 or 5 times, the generating function

is altered by writing
- ) [l+x.z+(x.z)3+(x.z)5]
i i i

in place of (1+xiz).

Let us conclude this introduction to éombinatorial
generating functions by finding H(y,2z) tﬁe generating
function for combinations of objects taken from two
different sets of objects. Let F(y) be the generating
function of combinations of objects in the first set
and G(z) be the generating function of combinations of
objects taken from the second set. Any combination
of objects taken from the first set may be paired with
any combination of objects taken from the second set.
Thus the number of combinations of i objects from the

first set and j objects from the second set is just the



product of the number of combinations of i objects from
the first set and the number of combinations of j objects
from the second set. Thus,

\0

H(y,z) = F(y)G(z).

If all the x's (object name indicators) are set to one,

) in H(y,z) is the number of ways

the coefficient of yiz
of selecting i objects from the first set and j objects
from the second set. The number of ways of selecting a
total of k objects from the two sets combined is just
the sum over i of coefficients of all yizk-i terms in
H(y,z). Hence the number of combinations of k objects
selected from the two sets combined is just the coefficient
of the zk term in H(z,z). If we are interested in
knowing only the number of combinations without enumerating
these combinations, we may set the xi‘s equal to one
when the generating function is written.

Let us now use combinatorial generating functions

to determine the number N(Ip,N 'Nbp) in the right hand

lp
side of inequality (3.4.2). 1In this particular case,
there are three different kinds of objects involved in

the combinations. Thus the generating function must

be a polynomial of three different variables. Let
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F(u,dl,d) be the generating function of the number of

patterns p of N diverged phase 2 through phase V

pb
channel §ymbols in which the pattern p implies Ip
possibly differing information symbols and Nlp possibly

diverged phase 1 channel symbols. Hence,

= (), (v ) (N ).
F(u dl,d) = z Z Z N(Ip'Nlp'Nbp) u p dl lp'd" bp

(3.4.5)

Since the lemma in section 3.2 was developed by
looking at distinct runs of diverged phase 2 channel
symbols, let,us continue to look at runs of diverged
phase 2 channel symbols. We may divide the pattern p
into a number of distinct segments. Let us define a
segment of the pattern p as the portion of the pattern
following (and including) the start of a run of diverged
phase 2 channel symbols and preceeding the next run of
diverged phase 2 channel symbols; By definition, the
last segment of the pattern p terminates when there
is a complete remerger. Using the notation of section

3.2, a pattern has D, segments. In figure 3.2.1, each

2

segment of the pattern is underscored with a brace.
In the simplest case, there is only one segment in the

pattern p. Let T(u,d, ,d) be the part of F(u,dl,d)

1
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representing this terminating segment. In the next most
simple case, there will be one earlier non-terminating
segment ;p the pattern preceeding the last and terminating
segment. Let E(u,dl,d) be the factor of the generating
function representing this non-terminating segment.

Since the terminating and non-terminating segments are
independent entities, the term of F(u,dl,d) representing

this two segment pattern is just T(u,dl,d)E(u,d 4d).

1
In general there may be i non-terminating segments in
the pattern. E(u,dl,d) is the factor of a combinatorial

generating function representing one of these earlier

segments. THus,

i
F(u,dl,d) = T(u,dl,d) x 1..Z=6[E(u,dl,d):]
14

(3.4.6)

The combinatorial properties of the terminating
segment of the pattern differ from those of the
earlier segments. Since the terminating segment is the
simpler case, let us consider it first. This terminating
segment must end with a complete remerger. This remerging
part of the pattern must be preceeded by a run of k2+l
or more diverged phase 2 (and hence diverged phase 3

through phase V) channel symbols. Let this run of

diverged phase 2 channel symbols be c+k2+1 symbols long.
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From section 3.2, we remember that such a run of diverged
phase 2 channel symbols implies a run of c+l possibly
differing\. information symbols and c+].+k1 possibly diverged
phase 1 channel symbols. A divergence diagram for this
terminating segment is shown in figure 3.4.1. Measuring
the shaded area in figure 3.4.l1, we find that this
terminating segment has (c+l+k2)(V-l)+(k3-k2)(k4-k2)
+...+(kv-k2) diverged phase 2, phase 3,...or phase V

channel symbols. Using the definition of K*

K*V = kl +k2 +k3 +...+kv,
we find that this terminating segment has a total of
(c+1)(V-l)+K*V-kl diverged phase 2 through phase V
channel symbols. The number c may be any non-negative
integer. If we let ub represent a string of b possibly
differing information symbols, dlc represent c
possibly diverged phase 1 channel symbols and a" represent

n diverged phase 2, phase 3,... or phase V channel symbols,

aD
Ez u(c+l)(dl)(c+l+kl)d (V-1) (c+1) +K*V-k .

c=

d) =
T(u,dl )

(3.4.7)

By the definition of combinatorial generating functions,
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FIG 3.4.1

TERMINATING SEGMENT
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the coefficient of ubdlcdn in T(u,dl,d) is the number
of terminating segments with n diverged phase 2

through phase V channel symbols, a string of b possibly
differing information symbols and c¢ possibly diverged
phase 1 channel symbols.

The non-terminating segments of the pattern p ére
identical to the terminating segment except that they
must end at or before a complete remerger. There are many
possible divergence diagrams for non-terminating segments.
Each of these divergence diagrams takes the same form
as the divergence diagram in figure 3.4.1 except that
the run of mé}ged phase 2 channel symbols at the end
of the segment may assume any length between one and

ﬂ(v-kz. The number of diverged phase 2, phase 3,... or
phase V channel symbols implied by a run of. merged

phase 2 channel symbols at the end of the segment is

given by the function f(v).

[ w(v-2) 0-vs Xk -k,

B = £0 )+ [0k ] (V-3) gk, <vs K,k

\ By Ry 2)* [v'(lﬁl-l_kv-zil kyoy Ry vElkyhy ) ).

(3.4.8)
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If the form of f(v) seems a bit difficult to see, the
reader may be aided by Table 3.4.1 in which the number
of divergéd phase 2, phase 3,...0r phase V channel symbols

implied by a string of \ merged phase 2 channel symbols

is given for the code in which V=5, kl=l, k2=4, k3=8,
k4=lO, and k5=13.
Number of diverged
phase 2,...or phase V
v channel symbols Remarks
1 3 phases 1 and 2 merged
2 6 "
3 - "
4 12 "
5 14 phase 3 also merged
6 16 "
7 17 phase 4 also merged
8 18 "
9 19 "
10 undefined complete remerger

Table 3.4.1: f(y) for a specific code with explanatory

remarks.

The non-terminating segments have (c+1+k2)+f(v) diverged
phase 2, phase 3,...0r phase V channel symbols. Such
a terminating segment has a string of c+l possibly differing

information symbols and implies c+l+kl possibly diverged




80.

phase 1 channel symbols. As above, the number c may

be any non-negative integer. The number v may be any
\
integer between one and kv—k . Thus,

2
a
E(u,d ,d) = Ez u(C+l)dl(c+1+kl)d(c+l+k2)(v_l)
c=0
kyk,
EE: gtV (3.4.9)
v=1 .

Substituting Egs. (3.4.7) and (3.4.9) into

Egq. (3.4.6), we find that

4

= w-11Y (k) (krvx )

c=0

@® @® (c+1l)
) z [udld(v-l)] dl(kl)d(V—L) (k)

i=0 le=0
ky-k i
vV "2 LE()

\)=.L ’ (304010)

From Eq. (3.4.5), we see that the coefficient of

(), (N, ) (N, ) .
u p dl lp’d " "bp’ is N(Ip'Nlp'Nbp) the number of

patterns of Nbp diverged phase 2 through phase V channel

symbols with Ip possibly differing information symbols

and N]_p possibly diverged phase 1 channel symbols.
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The summation over all p and b in the right-hand
side of inequality (3.4.2) is just the same as the

\
summation over all I , N and N, . Thus,
p° 1lp bp

j=1

L
o)+ ST TS s
( block ( p lp bp
I Nlp Nbp

qp(Ip) exp - (Nlp+Nbp)EO(p,Q).

(3.4.11)

a

Comparing the right-hand side if Egq. (3.4.5) and the
term in braces in the right-hand side of inequality
(3.4.11), we £find that the two expressions are identical
if u=qp ’ dl=exp-EO(p,Q) and d=exp-Eo(p,Q). Thus
after performing the j-summation, we find that
T n
P(E ) ‘SLXF[ exp-E Q) , exp-E o,Q]
block a9, exp-E (p,Q) p-E,(0,0Q)

where F[},dl,d] is the combinatorial generating

function from Eq. (3.4.10) and Osps£l. Thus,
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® (c+1)
PzEblock') s L exp-K*VEo(p,Q)x CZ; E;P exp-VEO(p,Q;J
\‘
®
x Z (exp -[kz(v-l)+kl]E0(P.Q))
1=0
) (c+l)
X Z [qp exp—VEO(p,Q)]
c=0
kv—k2 i
x exp -£(V)E_(p,Q)
EZ 0 . (3.4.12)
. v=l

for any p, in the range 0sp<l.
Inequality (3.4.12) is meaningful only if the
infinite summations over c¢ and i converge. The infinite

summation over c converges only if

qp < exp +VEO(Q,Q)

for some p, O%psl. The nominal data rate R of the code

is given by the equation
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Thus, the convergence condition for the c-summation is

equivalent to the requirement that
\-
E,(p,Q) -pR=e>0 (3.4.13)

for some p in the range O€p<i. If this convergence

condition is met,

K%
P ok £V 7 K*VE, (p,Q)
. ®
L exp -[k. (v-1)+k |E (p,0)
Ve Xp 2 1 “olPe?
e -1
i=0
ky-k, i
x> exp ~£(v) Eg(p.0)
| oot ) (3.4.14)
_

/‘
The i-summation converges if the quantity in braces

on the right-hand side of inequality (3.4.14) is less
than one. Rather than check i-summation convergence

for a number of specific codes and channels, we will

look for an asymptotic result. Let us consider
convolutional codes in which the length of each generator

is proportional to K. For this type of code,
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Thus, the convergence condition for the c-summation is

equivalent to the requirement that
\
Eo(p,Q) -pR=€¢>0 (3.4.13)

for some p in the range 0€p<!. If this convergence

condition is met,

L ~K*
PEY ock’ Ve  ©XP ~K*VE,(p,0)
e “-1
. a
E L
Ve  eXp —E{z(V-l)+kl:l Eo(paQ)
e -1
i=0
kv—k2 i
x z exp ~£(v) E,(p,0)
ool . (3.4.14)

The i-summation converges if the quantity in braces

on the right-hand side of inequality (3.4.14) is less
than one. Rather than check i—sumﬁaﬁion convergence

for a number of specific codes and channels, we will

look for an asymptotic result. Let us consider
convolutional codes in which the length of each generator

is proportional to K. For this type of code,
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k, = L;VK+g
\
where r, is some fraction and the notation [xJ means
the greatest integer less than or equal to x. For a
systematic code rl=0. The convergence condition on -
the i-summation is met if

kv—kz

Z exp-£(Vv)xE (r,0Q) x{exP—K [rz(v'l)+rJE0(p.Q)} V).

v=1

This asymptotic convergence condition is still difficult
to evaluate bécause of the dependence upon the function
f(v). This difficulty may be circumvented by noting
that there are exactly kv—kz terms in the v-summation
and that each of these terms is less than or equal to
one for non-negative values of Eo(p,Q). Thus, the

i-summation converges if
Ve
(K—kz)xexp -K E:Z(V—J_)+IJEO(p,Q) <e -1.

A further simplification results if we use a truncated

\Y
Taylor series for e ® and upper-bound K-k, by K. With

2

this simplification, the convergence condition is more

stringent but the i-summation is more readily performed
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for the general case. With this simplification, we

find that the i-summation converges if,

\

K exp —K[rz(V-J.)+rlJEO(p,Q) < Ve

Since

Il
o

] ~-Ka
lim Ke

K-

for all positive a, there must be a finite Kn such that
the i-summatien converges for all KZKn provided that

is greater than zero. The fraction r is

r2(V—l)+r 1

1

zero for a systematic code. Hence if r, is greater

than zero, the i-summation converges for K (and kz)large
enough and we may upper-bound the ensemble average
probability of error by the expression

) s—L—— exp -R*V E,(p,Q) (3.4.15)

Ve
e e-l—Ve

P(Ebl.ock

when inequality (3.4.13) is satisfied and KZKn. Following
the procedure in section 3.3, we may minimize the
right-hand side of (3.4.15) over all p in the range

0Sp=l, which satisfy inequality (3.4.13). This
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minimum occurs at the maximum possible value of p
in the range 05pSl which satisfies inequality (3.4.13).

\ . .
Thus, when k., grows linearly with K and KZKn

2

L

< =K*
P(Ey)ock! Ve exp -K*VE,(R)
e =1-Ve

(3.4.16)

where EU(R) is the upper-bound exponent defined in
Eg. (3.3.9).
Following section 3.7, we may also derive an upper-

E . Th -
bound on P( symbol) e upper-bound on P(Esymbol)
(

I). (N (N, )
p dl

4
may be found by multiplying each term u lp)d bp

by Ip, the number of information symbols in error for

the pattern p, before setting u=qp and dl=d= exp —Eo(p,Q).

This multiplication may be easily done by taking u times

the derivative of F(u,d,,d) with respect to u. The

1

implied convergence conditions are the same as those

encountered in upper-bounding P(E ). If these

block

convergence conditions are met,

— 1
P(E ) = exp -K*V E _(R).
symbol (eve-l-Ve) U

(3.4.17)
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The reader may wonder whether some form of absolute
rather than asymptotic convergence is possible for the
i—summatién. Such an absolute convergence condition
would prove inequalities (3.4.16) and (3.4.17) for all

K and k2=0 and not just for K2Kn and k,_, proportional

2
to K. Such an absolute convergence condition is
impossible. The impossibility of such an absolute
convergence condition may be seen by considering the
multiple generator length convolutional code in which
V=0, kl=k2=k3=0 and k4=K. For this particular code,
the phase 1, phase 2 and phase 3 channel symbols are
essentially répeats of the systematic channel symbol.
Let us consider these three repeats of the systematic
channel symbol as the input to a single channel with
q3 inputs and q3 outputs and the phase 4 channeli symbol
as the input to the origional channel. A slightly.gener—
alized form of the sphere-packing lower bound (Shannon,
Gallager and Berlekamp 1967) shows a contradiction in
that there is a lower-bound to the probability of error
that is exponentially larger than the hypothesized
upper-bound.

This generalization of the sphere-packing bound

involves modifying the bound to cover codes in which

the transmitter is allowed Nl uses of one channel and
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N2 uses of a second channel. When this generalized form
of the sphere-packing bound is substituted into the
lower bouﬁﬁing calculations of chapter II, the contra-
diction becomes apparent. The proof of the generalized
sphere-packing bound is identical to the proof given

by Shannon, Gallager and Berlekamp (1967) except tha£
the fixed composition codes must cover both channels
and the final removal of the fixed composition
assumption must account for both channels. Since this
extension of the sphere-packing bound is quite straight
forward but tediously long, it will not be reproduced

4

in this thesis.
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3.5 Extension to Convolutional Encoders with Two Shift

Registers
\
To this point, we have assumed that the convolutional
encoder contains only one information shift register.

Hence we have assumed that the rate of the code is

Let us now suppose that we wish to communicate S(S<V)
streams of information instead of one. We may modify
the convolutidnal encoder by using S information storage
registers instead of one. With this modified encoder,

S information symbols enter the encoder per encoder
shift. All S information storage registersare shifted
together. A transmitted channel symbol is still a
weighted sum of the contents of the information storage
registers. I1If we let id(s) denote the dth information

. th ., . .
symbol entering the s information storage register,

Eg. {(l1.l1) becomes

. (s)

+ .
ld+l—b rVd 18vsSV

S

_ (s)

t = wv,d
b=1 s=1
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th | .
symbol in the bth stage of the s h information storage

register in determining the phase v channel symbol and

\
r, a is the appropriate member of the sequence r.
,

We may prove a lemma like that in section 3.2

if we require

for all s in the range 1Ss$S and if we require that

the encoder weights are not restricted in such a way

(s) (i)
that wv,b Tust equal zero when wv,b

equal zero for any i#s. This latter restriction is

need not

essentially a restriction that a given parity symbol
either depends on the contents of the kth stage of
all shift registers or is independent of the contents
th . . .
the k stages of all information storage shift
registers.
The proof of the lemma analogous to the lemma in
section 3.2 follows the proof in section 3.2. The

only change is that Xm the set of channel symbols

nll
which are a one-to-one map of the possibly differing
information symbols includes S channel symbols and

S information symbols per encoder shift instead of just

one channel symbol and one information symbol per shift.
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In this modification of Xm those channel symbols in

lll’

Xm"r which were transferred to xm“l are dropped from
\

Xm"r' Onée this change in diverged channel symbol
classifications is made, the proof follows section 3.2.
Since the proof in section 3.2 is notationally complicated,
a slightly modified repetition of that proof would be
tediously boring to read and impart little new

knowledge of basic techniques. Thus, the proof of

this modified version of the lemma will be omitted.
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Chapter IV Sequential Decoding

4.0 Introduction
\

Chapters II and III present upper and lower bounds
to the probability of erroneous communication for multiple
generator length convolutional codes with optimum decoding.
Unfortunately, optimum systems are often too expensive to
build in a world of limited resources. The extreme cost
of most optimum systems does not make analysis of the optimum
system totally meaningless since there is much to be gained
from knowing how a given system compares with the best
possible. Wozencraft (1957) proposed a technique later
modified by Fano (1963) which provides a practical algorithm
for decoding convolutional codes. This sequential decoding
algorithm has been studied extensively for equal generator
length convolutiocnal codes by Yudkin (1965), Niessen (1965),
Savage (1965) and Falconer (1966). These studies of
sequential decoding have shown that sequential decoding has
the same upper-bound error exponent EU(R) as derived in
Chapter III for optimum decoding. 1In this chapter, we
examine sequential decoding for multiple generator length
convolutional codes. The proofs given in this chapter will
be limited to the case of systematic convolutional codes
(k1=0, all other kv=K); however, section 4.4 will discuss

the extension of the results derived here to the general
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case of multiple generator length convolutional codes. In
upper-bourding the probability of error for systematic
convolutional codes with sequential decoding, we find

that izﬁj, the ensemble average probability of error,

may be upper bounded as

P(E) < Const exp-K*V EUB(R’B)

where

*y = = -
K*V kl +k2 +k3+...kv K(v-1).

4

The sequentiai decoding upper-bound error exponent EUS(R,B)

is a function of the decoder parameter called bias B.

EUS(R’B) is maximized for the same value of bias which minimizes
average computation for equal generator length convolutional
codeg. On the other hand, we find that for systematic

convolutional codes, EUS(R,B) is not maximized for the bias

which minimizes the moments of computation. To the author's

knowledge, this trade-off between error probability and
computation in the sequential decoding of systematic convolutional f
codes is a new analytical result. Forney's simulations

(1968) of sequential decoding show this trade-off between

computation and error probability.
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4.1 Sequential Decoding Algorithm
\

This section presents a brief summary of sequential
decoding as presented by Gallager (1968). In keeping with
the summary nature of this section, certain theoremsvwill
be stated without proof.

Sequential decoding stems from the idea of decoding
the received message one information symbol at a time
rather than decoding all information symbols simultaneously
as in maximum likelihood decoding. The tree nature of the
code facilitates this symbol by symbol decoding. For
binary symbols, the first step in the tree (first information
symbol to enter the encoder) must be either a binary one
or a binary zero. If the decoder correctly decodes this
first step, it will have only two possibilities to consider
as second steps. If such §tep by step decoding were
possible, the computation required to decode the message
would be reduced because the decoder would not have to
consider every message in its entirety. One of the problems
with such a step by step decoder is that the decoder will
occasionally make an incorrect decision at some step and
go off the correct path. Unless the decoder is able to
back up to reconsider previous decisions, such an incorrect
decision will send the decoder permanently off the correct

path.

rY” 3
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An example will serve to illustrate this decoding
idea and the problems inherent in it. Let us use the
convolutional code discussed in the introduction for which
the beginning portion of the channel symbol tree is shown
in Fig. 1.2. For simplicity, let us assume that the
channel is a binary symmetric channel. Thus, each channel
symbol transmission is statistically independent of all
other transmissions,and receiving the transmitted symbol
ié more likely than receiving its binary complement. If
the first five information symbols are 10000, the channel
sequence begi&g with 111 001 010 011 000 where a space
indicates a shift of the encoder register. Suppose that
the received symbol sequence begins with 110 001 010 111 000.
At the first node, the decoder knows that either 111 or 000
was transmitted. Given that 110 is received, it is more
likely that 111 was transmitted than 000. Thus, the decoder
tentatively decides that the first information symbol is
binary 1 which corresponds to the 11l transmission.

Assuming that the first information symbol is a binary 1,
the second set of three transmitted channel symbols must
be either 001 or 110. Given that 00l was received, 001

is more likely to have been tramsmitted than 110. Now the
decoder tentatively decides that the second information

symbol ig binary 0 corresponding to a 00l transmission.
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Continuing in this manner, the decoder tentatively decodes
the first five information symbols as 10000. On the other
hand, suppose that the received sequence begins with

010 001 010 011 000. This time the decoder tentatively
decides that the first information symbol is a binary 0.

If the first information symbol is a binary 0, the second
set of three transmitted channel symbols must be either

000 or 111. Since 00l was received,vthe decoder will
téntatively decide that the second information symbol is
binary 0. The decoder could continue and tentatively
decide that tH; third information symbol is binary 0 and
that Ehe fourth information symbol is a binary 1. If these
four hypothesized information symbols are correct, four
channels errors must have occurred in twelve transmissions.
This high error rate for the hypothesized message may be
explained in one of two ways either the channel was abnormally
noisy during the twelve transmissions or the hypothesized
message is incorrect. The decoder should now begin to
reconsider its past decisions. If it reconsiders its
choice of the first information symbol, it will find an
information sequence 10000 which implies only two errors

in twelve transmissions. This later hypothesis is a more
likely hypothesis which the decoder can reach after reconsidering

its first tentative decoding decision.
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The question of when the decoder should reconsider
earlier detisions is all important. If the decoder reconsiders
past decisions with great hesitancy, it will have to discard
a large amount of work in backing up to reconsider earlier
decisions. On the other hand, if the decoder reconsider;
too quickly, it may discard correct tentative decisions and
eventually have to reconsider the reconsideration.

Fano (1963) proposed a specific algorithm for
détermining when the decoder should back up to reconsider
and when it should move further into the tree. This algorithm
has been so wiéely used that it is now commonly called
"the sequential decoder.' Let X, = (xll"'xlh’x21°"xVh)
be the first Vh digits of the channel sequence for some
as yet unnamed message and Yh = (yll...yVh) be the first
Vh digits of the received symbol sequence. Define the
function P(Xh,Yh) by

rx,Y,) = i zv: [m(P(y"i/xVi)) - B]

=1 v=1 w (g
where « (j) is the nominal probability of the output j,

(4.1.1)

W (1) = 2, QB /L)
» - e i

and B is an arbitrary bias term to be selected later from
the range 0 < B < C. Let us call F(Xh,Yh) the value of
the hypothesis X . If the resynchronization technique

h
discussed in the introduction is used, decoding the message




that corresponds to the X . which maximizes P(XL+K’YL+K)
gives an optimum decoder for memoryless channels. Since

we want a decoder that demands less computation than the
optimum decoder, we must rely upon other properties of the
function P(Xh,Yh). If the Q(i)'s are the input probabilities
which achieve channel capacity C, it can be shown that the
expectation (over channel noise and code selection) of
f’(xh,Yh) is hv(C-B) along the correct path and less than
-hVB along any completely diverged incorrect path.

In terms of [7, our suboptimum decoder is to hypothesize
an X through the tree in such a way that F(Xh,Yh) increases
with h. 1If " starts to decrease with increasing h, the
decoder is probably on a wrong path and should go back
to reexamine past decisions. The Fano sequential decoding
algorithm is a set of rules for moving from one hypothesis
to another. There are three basic moves forward, lateral
and backward. On a forward move the decoder goes one branch
to the right in the message tree; that is, the decoder
hypothesizes the next symbol entering the encoder. Instrumentally,
this corresponds to shifting the decoder's replica of the
encoder one place to the right and inserting the hypothesized
value of the next information symbol into the left end of
the replica shift register. Since the new hypothesized
message sequence differs from the previously hypothesized

message sequence only by having the newest information
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symbol added to it, the new value of I" can be easily

found froﬁ\the previous value of [ by the equation

Y ./X
:t(iy '- B]'

X, Y) = LY ) + Z [m(“

v=1

The digits involved in this calculation are simply the V

channel input symbols coming out of the replica encoder
and the channel symbols in the hth group of V received

channel symbols. On a lateral move, the decoder

considers another possible hypothesis at the same depth
(h-value) into.the tree. On a backward move, the decoder
goes one branch to the left in the message tree; that is,
the decoder backs up to reconsider its hypothesis of the
information symbol immediately preceding the information
symbol which it was last congsidering. The new value of
" may be calculated by subtracting off the last term in
the h-summation expressed in Eq. (4.1.1). The algorithm
used in moving from one node to another is Gallager's
presentation (1968) of the algorithm due to Fano (1963).
This algorithm is given as a set of rules in Fig. 4.1.1.
The rules involve the value Fh of the node currently
hypothesized, the value f;_l of the node one step to the
left of the current node and a threshold T. The value of
T is constrained to change in increments of some fixed

number A . The changes in T are determined by the algorithm.
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The only boundary conditions are that the initial value of

T be zero,\that rb=0 (I" at the starting node equal zero)
and that r;1= -® . This last boundary condition simply

prevents the encoder from ever backing completely out of

the tree.
Conditions on Node Action to be Taken
Previous Comparison of [ and Final Move
Mo h-1 Threshold
ve [. with initial threshold es
ise* *
F or L [_1<T+a (2T Raise F*
' Kk
ForlL [ 2T+a, 2T No Change F
For L r;—l arbitrary, rL<T No Change L or B*%%
i Kok
B f;'l_1<T ’ r;l arbitrary Lower by A F
B r;_12T ’[; arbitrary No Change L or B**%*

* Add j to threshold where j is chosen such that T+ja <f;

** Move forward to the first of the q nodes stemming from the

<T+(+1)a

current node (assuming some predetermined ordering of the q nodes).
*%% Move laterally to next node differing from current node only
in the final branch (assuming the same ordering as above): 1if

the current node is the last of the q nodes, move backward.

Fig. 4.1.1 Rules for Decoder Motion
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Fano (1963) discovered and Gallager (1968) has
methematicilly proved several properties of the sequential
decoding algorithm presented above. Let us define a
descendant of the node Xh as a node to the right of Xh
which is reached by a path thet branches out from Xh.
Hence, a descendant of Xh is a node reached by a path
which coincides with xh for the first h encoder shifts.
Let us also define an F-hypothesis as a hypothesis for
which the next move is forward. The first property
of the algorithm is that for every node which is ever
F~hypothesized: the final threshold T on this first

F-hypothesis is related to the value " of the node by

the inequality

TSNS T+a
Moreover, the final thresﬁold on each subsequent F-hypothesis
of this node is A below the final threshold on the previous
F-hypothesis of the node in question. Second, if the node
Xh is hypothesized with final threshold T, then every
descendant of Xh for which the path from Xh is above T must
be F-hypothesized with final threshold T before Xh can be
rehypothesized. The first Property demonstrates that the
algorithm does not loop in that no node can ever be |

hypothesized twice with the same threshold. The first and

second properties combine to give us a way of determining
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the probability density function for the number of decoder

moves necedsary to decode a message.
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4.2 Computation in Sequential Decoding
\

The intent of sequential decoding is to provide
effective decoding with a device that is less complex
than the maximum-likelihood decoder. The exact sequence
of decoder moves is determined by the received sequence
and the decoder algorithm. Thus, the number of decoder
moves required to decode a block of L information symbols
is é random variable. There can be at most g-1 lateral
moves and one backward move for each forward move of
the decoder. Tﬁus, we may upper-bound sequential decoder
computation by upper-bounding the number of F-hypotheses.
Let WO be the number of F-hypotheses made from the origin
node and from all incorrect nodes stemming from the
origin node. A combination of a lower-bound derived
by Jacobs and Berlekamp (1967) and an upper-bound derived
by Falconer (1966) shows that the random variable W0 has
a Pareto distribution such that

Pr(W0>N) ~ N 2 (4.2.1)

for sufficiently large N when B=R and

Eo(a.Q)
a (4.2.2)

R =
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for 0sasi when the channel is one of the channels for
which the Mnput assignment O maximizes E,(a,Q) over Q.
Results by Jacobs and Berlekamp (1967) and Savage (1966)
have led many observers to conjecture that Eqs. (4.2.))
and (4.2.2) hold for a)) @. The chief characteristic
of the Pareto distribution on WO is that the rth moment
of WO is bounded for all r«<a and for no r2a. This
Characterization of the Pareto distribution leads us
to‘desire a bound on the ath moment of WO.

For the finite constraint length convolutional
encoder used h;re wWeé must consider the problem of
r'emergers. Previous discussions of Computation in
sequential decoding have assumed an infinite constraint
length code which eliminates remergers. We would like
to upper-bound the ath moment of the number of
computations made on the first correct node and all
incorrect descendants of the first correct node.
Remergers make such a computation difficult in that
remergers allow the decoder to reach a correct node
by following some path of incorrect nodes until a
remerger occurs. The question arises as to whether we
consider correct nodes reached by incorrect paths as
"incorrect descendants" or "correct descendants™.

We will take the latter option here and redefine WO
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to be the number of F-hypotheses made on incorrect paths
diverging at the first encoder shift before each of
these paths merges with the correct path. This
redefinition of WO does not lead to an absolutely
tight upper-bound on computation'pecause of the €Xponentially
growing number of “correct descenéants“ or remerged
nodes. It is conjectured that thi;:redefinition of W,
gives some reasonable estimate of cgmputation per decoded
information symbol despite the exponehtially growing
number of correct descendants. Experimental evidence
obtained by For;ey (1968) indicates that this conjecture
is correct. Finally, this redefinition of WO leads
to a result which is identical to that obtained for
infinite constraint length non-systematic convolutional
codes.

At a depth h into the tree there are a total of
qh nodes. One of these qh nodes is the correct node
and qh-K-l are nodes which have merged with the correct
path. With this new definition of WO' the only nodes
at depth h which we must consider are those nodes
reached by a path which does not completely remerge
with the correct path until h+1 or more steps into the

tree. Let m' be some incorrect message subsequence

which we must consider when bounding the number of
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computationsin W_ on nodes at depth h into the tree.

0]

The last infbrmation symbol at which m' and m differ
before the (h+.L)th information symbol must enter the
encoder at the hth or (h—-l)th Or...or (h—K)th encoder
shift. If the last information symbol at which m'

and m, differ had entered the encoder before the
(h--K)th shift, m' and my would be completely merged

at the hth encoder shift contradicting the definition
of m'. Let Mhi be the set of all incorrect message
subsequences that diverge from m, qt the first encoder

Y

shift, never completely remerge with m0 until after the
hth encoder shift and for which the last differing
information symbcocl prior to the (h+1)th encoder shift
enters the encoder at the (h—i)th encoder shift.

If thi denotes the number of F-hypotheses made on

nodes at depth h into the tree reached by incorrect

message paths in Mbi'

® K
W = W
0T 2 2, Mo
h=0 i=0

The number WO is a random variable dependent on
both the channel noise and the code selected. We will
avoid the problem of code selection by taking a

statistical average over both the channe) noise and the
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ensemble of all possible codes. This ensemble of
codes is the ‘set of all convolutional codes for which
k2 =k3 =...=kv =K, wll=l, kl=0 and all other non-
trivial encoder weights are randomly reselected after
each encoder shift. Generalizing a proof first
presented by Falconer (1966) we will derive an upper-

th .
bound on the a moment of the random variable W0 for

a such that 0Osas$l. A standard inequality shows that

Zx \ S-Z(x‘ (4.2.3)
ié) - i tee

for all a such that (0%a%l. Thus,

(4.2.4)

We must now derive an upper-bound on (WOhial The
two properties of the decoding algorithm proved by
Gallager may be combined to show that a given incorrect
node at depth h may be F-hypothesized for the jth

time only if

(o} .
Loty > Fmin (37200 (4.2.5)
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where rm'(h) is the value T of the incorrect node m'

o
at depth h and rﬁin is the minimum of T along the whole

correct path. We will subsequently denote T ' (h) as
m
\;
simply f;. Equation (4.2.5) is true because the

incorrect node m' at depth h must be F-hypothesized

first with a final threshold T such that

£T <T+A .
T&[ <T+A

At each subsequent F-hypothesis of m', the final

threshold is lower by A than the previous final threshold.

o
Once the thresholq has been lowered below rhin the

entire correct path must be hypothesized before the

threshold is lowered again. If the entire correct

path is hypothesized, decoding stops and the threshold

goes no lower. Thus m' can be hypothesized only once
o

after the threshold is lowered below rﬁin' Hence m'

can be hypothesized the jth time only if

P (o]
ﬂi+a_rﬁin
A 2 (j-1)

which is equivalent to the form in (4.2.5).




Let us define

if T -T.° —(5-2)A=
Lif T -T.° -(j-2)A=0

0 otherwise

(4.2.5)

t
where Tdo is the value for the d h node of the correct

path 50.

o —
g = T¥pqr¥g)

Summing over all m' in Mhi' we find that

ao

r‘ (o] .
Woni ® Z Ly Pathy » Tg e 3
m cMhi 3=1

where d is selected such that

Since d is a random variable, we are faced with the
problem of selecting the right value of d. This
problem of finding the correct 4 is eliminated if we

include all d in the summation; thus upper-bounding WOhi
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® a
<2 2 PR
“oni Pally « Tqv 3

j=1 d=0 m'eM_.

Using inequality (4.2.3) on the j-summation and the

d-summation, we find that

-_ ® o =
(thi)a $ Z Z z cPd(rh. ’ rdo' 3) )

j=1 d=0 m'cMhi

Since

Y

PalTy v T v 3) Sexp s -0, ~(5-2)4]

for all s=20,

® o s
(thi)a < z z Z exp s[l"h'—l"d0 -(j-2)A] .
3=1 d=0 |n'eM
(4.2.6)

Let us examine the expectation on the right-hand

side of inequality (4.2.6).
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z e® [T‘h_'-rd" ~(3-2) 4] ; =§ % Zp(}/_}_{m my)
0

mieM i

The conditional expectation E is over the choice of
channel sequences for all the message sequences m'

. a . . ‘s
in Mhi' Since z is a convex {) function of positive

z for 0sas%l,

E(z%) = [E(z)]a .

Thus,

1] le) i ‘
Z oS I -y -(3-2)@ < sz Zp(g/g_cmomo)p(}mo/mow(mo)
m'PMh —'“mo 0
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Finally since the expectation of a sum is the sum of

the expectations,

' a
Z oS [ -I‘d° L (5-2)8]] = zg ZOP(X/LmOmO)PD—{mO/mO)P(mO)
0

h
m'thi
s(...)]®
x .Z z B(Xml/% mo)e
m cM]-ll }—(Tnl 0 ]
Thus,
I
(w. )% s ZE: j?: ZZIZE:P(X/X B )P /m )P (n.)
ohi J=1 d=0 ¥ X~ m, “my 07 gyt 0 0
Mo
[} o a
Z Z P(x ' /YX m ) es [rh -rd -(J-Z)A:]
m'e X m h'—ﬁmo 0
Mhi m'h ‘

(4.2.7)

Further simplification of the right-hand side of
inequality (4.2.7) closely parallels the steps used in
section 3.2. In this section, we will stress those
points at which the arguments differ and skip lightly
over those points of the argument which are identical
to those in section 3.2. We have restricted our attention
to systematic convolutional codes (kl=0' all other kV=K).
Here it will be convenient to divide the symbols of xm‘h
into three groups: (i) Xm'p’ those h(V-~l) diverged
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phase 2 through phase V channel symbols at which Xm,
is equally Likely to be any g-ary symbol independent

of my e Xmo and \the rest of gm,, (ii) Xm,s, those (h-i)

systematic (phase 1) channel symbols which are a one-
to-one map of the information sequences in m' for any
given code and (iii) Xm't’ those i phase L channel
symbols which must be identical to the corresponding

symbol of X for all m' in M ,. The symbols in
m, hi

X are the first h-i phase 1 channel symbols generated

m's

and those in Xm' are the last i phase 1 channel symbols

t
generated before the (h+l)th encoder shift. Combining

the basic properties of the three different groups of

symbols in Xm and the requirement that the codewords

'h

be independent of the received channel symbols, we £find

that,

t'xm t)

1:>(xm,h/gm mo) = Q(Xm'p)P(Xm‘s/xmomO) E(xm, .

0

vhere Q( ) is the probability distribution in which all

sequences are equally likely (see section 3.2) and
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\ 0 otherwise.

For any specific code, the one-to-one map from m'
sequences into Xm,s makes the m'-summation in the
right-hand side of inequality (4.2.7) just a summation
over a set of non-identical xm's terms. The right-

hand side of inequality (4.2.7) is not decreased if

terms is increased to include

the summation over xm

all Xm,s terms. Finally, Zmo is equally likely to

be any g-ary sequénce independent of moo Since

o(x , ) = g (b8

we may combine the preceeding arguments to show that,

(W, )" % i e~(372)sa4 ZZZ P (XA, 100, )

(h-i)
g > > > QXL QUK IEXK LX)
X X

0

1 a
S [rh ‘rdcﬂ . (4.2.8)
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Inequality (4.2.8) is further simplified by

treating the segquences Zm" gmo and Y on a symbol
by symbol basis. As in section 3.2,

L+K Vv
ax_) = || | ox°).
mO n=1 J;L vn

The memoryless channel assures that

L+K \Y
P(-X/-Em )= TT“ 71_ P(Yvn/xsn)'
0 n=1 v=1

Finally, defining

Q(x ) if vn pair indicates a symbol
vn'
o in Xmls or Xm,
P (x' /x ) = p
vn “vn® “vn °
S(x' ,x” ) if vn pair indicates a ,
vn’'“vn

in X
symbol in n't

we may write

v h

T — , o]
Q(Xm's)Q(Xm'p)g(Xm't'xmot) B I’ {I gnx(xvn/xvn)'

V=1 n=1

There are two cases h2d and h2d which we must

consider in simplifying the right-hand side of
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inequality (4.2.8). Let us first consider the case

h®d. The expectations in those terms in the right
\

hand side of inequality (4.2.8) for which h#d may

be written as

Interchanging the qrder of summation and multiplication
and performing some algebra, we find that for hsd the
expectation terms in the right-hand side of inequality

(4.2.8) may be expressed as

a(h-i) Y ,2_ Q(x° )p( /5° )l-sa
: [1TT D) D) etgurty, /xo)
v n=

At those i vn-pairs for which P (x° /x° ) = §(x° X' )
vn' ' vn’ “vn vn'“vn
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Z Z 0(x°)p(y/x°) 172 van(x-/x"n»(y/x-)s
O

y X \ x'

=Z Z 0(x°)P(y/x°) 1 75% (y/x°)5% = | .

Yy x°

(4.2.9)

Holder 's inequality states that for two random

variables

where v, and v, ~are positive numbers such that

Restricting s such that O<sa<l and using Holder's
inequality on the y-summation, we may upper-bound
those terms in the first product for which

P (x' /x )=0(x" ).
vn vn vn vn




ZZO Q(XO)P(Y/)\(O)l—Sa van(x./xo)P(Y/xl)S

y X x'
l-sa
< Zz 0(x°) P (y/ o)l sa | L-sa
- 0
y | x
sa
%33
X Z Q(x')P(y/x)
J
y | x'
sa l-s
= eXp-‘El—sa)EO(l_Sa,O)+saEO(~;—,Qﬂ

vhere Eo(p,Q) was defined in section 3.2 as

L _\1l+p
E (p,0O) = -1n z Z Q(x)P(y/x) TP
y\x
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(4.2.10)

Holder's inequality may again be used on the y-summation

to upper-kound those terms involving Q(xo), P(y/xo)

and w(y) in the second product.
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o l-sa sa saB
zz 0(x°)P (y/x°) oly) e
o
y X
\
l-sa Lnl-sar sa\-L >
< - | L
esaB Z Z Q(xo)P(y/xo) l-sa ng\b(y) sa
y \x° y |
sa
—exp- [ (1-sa)E (722 ,0)-saB] . (4.2.11)

It can be varified for the binary symmetric channel
that these uses of Holder's equality are satisfied with
equality. We may combine inequalities (4.2.9), (4.2.10)
and (4.2.11) to show that the expectation terms on the
right-hand side of inequality (4.2.8) for which hsd

may be upper-bounded as

sa
l-sa’

qa(h—i) exp -(hV—i)[(lfsa)Eo(

1l-
0)+sak (+22,0)]

sa
x exp —-(d-h)V Bl-sa)EO(l_sa,Q)—saé] .

Let us now consider the expectation terms in the
right-hand side of inequality (4.2.8) for which h2d,
Techniques similar to those used above show that for

hzd, the expectation term in the right-hand side of

inequality (4.2.8) may be written as
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d
alh-i) -+ o o ,l-sa
d I Q(Xvn)P(Yvn/xvn)

:]<:
<[]
]

a
S

L o ]
x ZE: Pvn(xvn/xvn)P(yvn/xvn)

|=

Q o -sa
;z ;i; Q(xvn)l:’(yvn/xvn)m(yvn)
y

QJ——
-+
| o

X ZE: P (x' /x° )P(y  /x! )Se—SB a
vn “vn’ “vn vn’ “vn

Expressions (4.2.9) and (4.2.10) allow simplification
of each vn-term in the first product term. Again,

we may use Holder's inequality on the y-summation of
those vn-terms in the second product term for which

P (x' /x ) =0(x'). Remembering that
vn ~vn® “vn vn

w(y) = Z Q(i)P(y/i),
i

wWeé may upper-bound these terms as




120.

a
> > aG®ply/x)n(y) TS DB (k)R (y/xt) SO
Yy X x'
\
..1.
l-sa sa
l-sa L -saB
< Z(,D(y) ) 1-sa Z Z Q(x")P(y/x")°
Y
l-s
= - - +
exp EaEO( n Q) saB]
(4.2.12)
Finally, we must deal with those terms in the second
product for which P (x' /xo )=6(x"' ,xo ). Since there
. vn' vn’ “vn vn' vn

are a total of i terms in the two products for which
Pvn(x'/xo)=6(x‘,xo), we may state that for some td
O‘tdsi there are exactly td terms in the second product
for which Pvn(x'/x°)=6(x'/x°). Thus there are i-td
terms in the first product for which Pvn(x'/xo)=6(x',x°).

For those td terms in the second product for which

Pvn(x'/xo)=6(x',xo).

ﬁ —
). 2, OGIB(y/)uy) % > B (x/x%)ply )
o

Yy x x'

< w(y)

O Sa
= o 52B ZZ Q(x°)P(y/x°) [ﬂl’ll]
Yy

exp - [u(sa)+saé] (4.2.13)

sa
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where

Sa
n(sa) = -1n ZZ Q(x)P(y/x) (%)
y X .

Substituting relations (4.2.9) through (4.2.13) into

the right-hand side of inequality (4.2.8), we find

that for hzd

. (€3] - _ A
W )2 s qan-i) Zf j; o-sa(3-2)/
Ohi
; d=0 j=1

exp —Eiv-(i—td):]El—sa)Eo( 24 Q)+saEO(l_s,Q§|

l-sa’ S

exp - Bh—d)V-tJ (san($§§}Q)+sa4

exp - t, u(sa)+saé] . (4.2.14)

Upon further examination, we find that the upper-bounds
for the expectation terms in the right-hand side of

inequality (4.2.8) are identical for h<d and h2d since

td=0 when h=2d.

The right-~hand side of inequality (4.2.8) is not

decreased if we multiply the term for h<d by the maximum

of one and the largest €, term in the expectation term for h=z4d.
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Defining

\
E (sa) = min
m
sa
L-sa’

u(sa) + (l—sa)EO( Q), (4.2.15)

we find that the right-hand side of inequality (4.2.8)

may be upper-bound to give

®
W ;: : -(j-2)salA a(h-i) l-s
(_WOhi) < e q exp -hV [saEU( - ,O_)+saB]

J=1
exp —tdEm(sa) exp +i‘31-sa)E0( =2 ,Q)+saEO(i§§,Qﬂ
' L-sa
®
sa
;Zg exp —dV[}l—sa)Eo(l_sa,Q)—saﬁ] )
a (4.2.16)

Further simplification occurs when we use the equation

Since the term Em(sa) is non-positive, we may upper-
bound the right-hand side of inequality (4.2.16) by using

namely, t . =i.

the largest possible value of t 4

d:

Finally, we show in an appendix that
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w(sa) + (l-sa)EO(lf:a,o) < 0
\

for all sa. After performing the j-summation, we find

that,

thi < Ijg:ggz exp-hV saEO(

,0)+saB-ag|

xqg laexp—i{_—p(sa) —saEG(l;s,Qﬂ'

®
x ;Z exp-dVv El-sa)Eo(lfga,Q)-saé]
=y .

For future reference we have enclosed in braces {}

those terms in the upper-bound on thia which

result from channel symbols at which m' and mO are
partially merged (phase 1 merged all other phase
diverged). At several later points, we will set the
ccntents of the braces to zero in order to examine

the result for the equal generator length convolutional

code (kl=k2=...=kv=K).

Returning to inequality (4.2.4) we find that
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K

— eSaA -ia 1-s

] £ ——s7 -1

o l-o-534 Z q exp 1[u(sa)EO( - ,Qﬂ

\ ;
1i=0
@®
Z exp -hV saEO(l—s,Q)+saB—aR]
h=0
®
E; exp -dV Bl—sa)Eo(lfza,Q)—saﬂ
d=0
(4.2.17)

Since the i-summation in inequality (4.2.17) is a finite

. .. a
sum, it is always finite and bounded. Thus, WO
is bounded if both the d-summation and the h-summation
are bounded. The d-summation and the h-summation

are just geometric series which are bounded if

sa
l-sa’

(l-sa)EO( Q) -saB = el>0

and

I
(2]
Y
o

l-s
saEO(—?r,Q)+saB-aR

We may summarize by stating a theorem which we
have just proved. Let W0 be the number of sequential

decoder hypotheses made on incorrect paths diverging
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at the origin before these paths completely remerge

a

0 is bounded for 0%asl

with the correct path, then W
\-

if
R < sE (—=,0)+sB (4.2.18)
O S

and

Eo(r-s:%.o)

sa
1-sa (4.2.19)

for some s such that O<as<l.

Setting s_lia and B=R, we find that the two

conditions for boundedness of WO become identical

and that Woa is bounded for a in the range 0%aSs)

if

This special case for B=R agrees with a Falconer's

(1966) result for infinite constraint length convolutional
codes. As mentioned earlier in this section, Jacobs

and Berlekamp (1967) have derived a lower bound to

sequential decoder computation which states that the
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ath moment of WO is unbounded if

Eo(a)

a

R 2

where Eo(a) is the maximum over all possible Q of
the function Eg(a,Q). For symmetric channels

Eo(a) = Eo(a,Q), and the result derived here is
exponentially tight for B=R. As far as the author
knows, this thesis is the first work dealing with

the ath momeqt of computation in sequential decoding
with B#R. Yudkin's thesis (1965) dealt with generalized
bias terms but only for first moments of computation
with equal generator length codes. Falconer's thesis
(1966) dealt with all a for 0Sasl but only for B=R.
For equal generator length convolutional codes, B=R
gives an optimum result. In the next section, we will
iliustrate circumstances in which we may wish to use

a bias that is unequal to the rate.

We may find the largest value of a in the range
Nsas) for which the ath moment of WO is bounded by
finding the largest sa for which inequality (4.2.19)
is satisfied and the smallest s for which inequality
(4.2.18) is satisfied. Dividing the maximum value

of sa by the minimum value of s gives the maximum




127.

possible value of a for which the ath moment of W0
is bounded. If the calculated maximum value of a

is greater than one, weé must acknowledge the restriction
that a be less than or equal to one. From the Pareto
nature of the random variable W0 we may conclude that

Pr(WO>N) ~ N—(amax) :

A computer program Wwas written to evaluate amax
for several bias levels on a binary symmetric channel
with R=.5 bit*. Forney (1968) has performed some computer
simulations of sequential decoding with B#ZR. The table
in figure 4.2.1 compares the simulation value of A ax
with the value of a ax calculated from the theory
developed here. In compiling figure 4.2.1, we have
conjectured that the restriction that 0%£a%l may be
removed. We have been unable to prove this conjecture;
however, the results obtained using this conjecture
are encouraging. For those a ax less than one, the
theoretical development presented here predicts the

simulated value of a ax more closely than any other

theoretical result known to the author.
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Biiogzgiizzir Bias amax theoretical amax measured
9/256 .470 1.26 c 1.29
9/256 .550 1.24 ¢ 1.29

10/256 .480 1.15 ¢ L.15
10/256 .557 L.1l1l ¢ 1.12
11/256 .489 1.05 ¢ 1.06
11/256 .564 .98 .95
12/256 .496 .95 .96
12/256 .569 .86 .88

Figure 4.2.l: Comparsion cf measured and theoretical
value of the pareto exponent a ax

for a binary symmetric channel with
v=2 and R=.5. The letter "c" follows
those theoretical amax which are the

result of conjecture rather than
proved theorems.
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Bziogzziizzsr Bias amax theoretical amax measured
9/256 .470 1.26 ¢ 1.29
9/256 .550 1.24 c 1.29

10/256 .480 1.15 ¢ 1.15
10/256 .557 1.1l c 1.12
11/256 .489 1.05 c 1.06
11/256 .564 .98 .95
12/255 .496 .95 .96
12/256 - 569 .86 .88

Figure 4.2.1l: Comparsion of measured and theoretical

value of the pareto exponent a
- max

for a binary symmetric channel with
v=2 and R=.5. The letter "c" follows
those theoretical amay which are the

-

result of conjecture rather than
proved theorems.
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A geometric construction allows us to find the
limiting vilues of s and sa in inequalities (4.2.18)
and (4.2.19). Figure 4.2.2 shows a plot of the function
Eo(p,Q) for p20. Consider the point (-1,-B). Select

. l-s . . .
a point p=g  on the p-axis. Draw a straight line

connecting the points (-1,-B) and [ sy O( ;S,Q{]. The

slope of this line is just

1-s
o S i-s

= sE +sB.

s O( . ,Q) +sB

L+ i-=s

E

Thus, the slope of this line is the gquantity in the
right-hand side of inequality (4.2.18). For this
value of s, izequality (4.2.18) is satisfied for all

R less than the slope of the line connecting the

l-s

points (-1,-B) and [ =

,Eo(igg,Qﬂ . Hence for a given
R, the smallest value of s (largest p) for which
inequality (4.2.18) holds is that value of g
corresponding to the straight line through the point
(-1,-B) with slope just greater than R. Having found
the minimum value of s, let us find the maximum value
of sa for which inequality (4.2.19) is satisfied.

Consider the straight line of slope B passing through

the origin. The inter.ection of this straight line
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EO(Ps(R,)

FIG. 422 Rprop CONSTRUCTION
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and the Eo(p,Q) curve occurs at the point at which

pB = Eo(p,O).

. sa . C o .
Setting °:=1—sa , we find that this intersection occurs

at that sa for which

Hence for given B, the largest value of sa (Largest p)

which satisfies inequality (4.2.19) is the value of sa

( sa
0 l-sa

straight line through the origin with slope just greater

at the intersection of the curve E ,0) and the

than B.

We may interpret inequality (4.2.18) as stating

that error propagation occurs whenever,

l-s
2 . Ta + . el
RER = max [sE, (252.0) sB| (4.2.20)
s>0
We may use the construction above to find Rprop The

guantity in brackets in the right-hand side of (4.2.20)
is just the slope of the straight line connecting the

points (-1,-B) and iig,Eg(iég,Qi]. Hence the maximum
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over s in the right-hand side of (4.2.20) is the slope
of the stquest line intersecting the Eo(p,Q) curve

and passing through the point (-1,-B). If the Eo(p,Q)a
curve is smooth, this steepest line is a tangent to the

Eo(p,Q) curve. At s the maximizing value of s,

/ l-s l-s
m m

0 s m O s
m m

'Q +S Bo
m

Multiplying both side of the above equation by (l-sm)/sm,

we find that

’l—sm l-sm l—sm 1-s
- / = + -
E0 ( . .0 - EO Q sEo " ,0 smB B.
m m m m
(4.2.21)
The right-hand side of Eg. (4.2.21) is just R -B.
prop

For those channels in which Eo(n,Q) is the maximum of
Eo(p,Q) over all probability assignments Q, the left-
hand side of Eq. (4.2.21) is just the sphere packing
exponent derived by Shannon, Gallager and Berlekamp
(1967). Symmetric channels are included in the set
of channels for which Eo(p,Q) is the maximum over all

Q of Eo(p,g). Hence for symmetric channels,

E R = R - - - o
sp( Prop) brop B (4.2.22)
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where Esp(R) is the sphere-packing exponent derived
by Shannog, Gallager and Berlekamp (1967). 1In
figure 4.2.3, Rp is the value of R at the intersection

rop

of the curves E__(

R ) and R
sp  prop

-B. Using constructions
prop
such as that in figure 4.2.3, we may determine the
minimum bias necessary to achieve a given value of
R .
prep

L computer program was written to evaluate Rprop
as a function of B for a binary symmetric channel.
Figure 4.2.4 shows a plot of R as a function of

prop

B for a binary symmetric channel with crossover
probability 3/6%.

The above theorem on the moments of WO may be
extended to allow the node of initial divergence to

th .

be the n node on the correct path rather than just the
first node on the correct path. The statistical
description of the tree stemming from any node on the
correct path is identical to the statistical description
of the origin node except that all the T values have
a constant added to them. The lemma on the number of
computations at a node is unchanged and the proof is
the same regardless of the node at which the divergence

. . o, a .
begins. This bound on Wn does not strictly lead to

a bound on the distribution of computation per decoded
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F(R prop)

. ? Rpro
B R,,,.,,F prop

F1G. 423  CONSTRUCTION OF Rprop
FROM THE SPHERE PACKING

EXPONENT
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FIG. 424 Rprop AS A FUNCTION OF
BIAS FOR A BINARY SYMMETRIC
CHANNEL WITH P=3/64.
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information symkol because the number of remerged nodes.
grows exponentially with the block length L (which we
have assqped to be very large). We may conjecture

that the above bound leads tc a useful estimate of

the computation per decoded symbol. Simulations
conducted by Forney (1968) and Niessen (1965) indicate
that this conjecture produces reasonably accurate

results.
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4.3 Error Probability for Sequential Decoding

In order to upper-bound the probability of
error for sequential decoding, we must examine the
sequence of T-values assumed by an incorrect path and
by the correct path. When an incorrect path and the
correct path are completely merged, the !'-value increments
are identical for both paths. Let us begin with a
simple case. Consider the set of incorrect message
éubseQuences which inerge at the origin and remerge
with the correct ﬁessage ctK encoder shifts later.
Call this set of incorrect message subsedquences Mic'
Let us find an upper-bound to 5?%1;71 the ensemble
average probability of decoding some m' subsequence

in Mlc instead of the corresponding subsequence of m

0"
As the reader might expect, the location of the minimum
I' along the correct path plays an important part in

the error mechanism. There are two separate cases
which must be considered. First, we shall examine
those cases in which Tﬁgn occurs at or before the end
of the diverged channel symbols for m'. Second, we
shall examine the case in which rﬁ?n occurs after the

end of the diverged channel symbols for m'. Let us

use the notation of section 4.2 in which the minimum T
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along the correct path is presumed to occur d steps
into the tree. With this notation, the first case
corresponés to d$c+K and the second case corresponds
to d>c+Kf

For the first case (d=c+K), there can be no
decoder error if the decoder never hypothesizes any
completely merged descendant of m'. Thus, there
can be no error if the decoder never makes any forward
hypotheses from the last diverged node of m'. Hence
for d=c+K, we may upper-bound ETE::7 by upper-bounding
the ath moment of the number of first F-hypotheses
made from the last diverged nodes of all m' in Mlc.
This last diverged node of m' occurs ctK steps into
the tree. This moment of computation is just the
h=c+K, i=K, j=1 term in the right-hand side of
inequality (4.2.14). Since we have only assumed dfc+K,
we must consider each possible value of d between

zero and c+K. Using a union bound to account for the

various possible values of d, we may upper-bound

P(Elc) .
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salA 1-5 %
£ - caB-
P(Elc) e exp -cV saEO( - ,Q)+saB-a
exp -KV saEO(igé,Q)+saé]
sa 1-s }
- + =
exp +K{(L Sa)EO(l—sa'Q) SaEO( S Q)
ct+K sa ]
exp -dV [( L—sa)EO(l_sa,Q) -saB
d=0
exp -t w(sa)+(L-sa)E (_gg_ O{}
p d 0‘'l-sa’”
(4.3.1)

In writing (4.3.1), we have used the convention
introduced in section 4.2 of enclosing in braces {}
those terms which are edqual to zero for equal generator
. th

length convolutional codes. The a moment of the
number of first F-hypotheses made from the last
diverged nodes of all m' in Mlc is an upper-bound to
the probability of error beczise one or more F-hypotheses
implies a probability of error of one for that particular

- . th
code and noise sequence, and the a power of one or

more F-hypotheses is not less than one.
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sal 1-s
) £ - — + _él
P(Elc' e exp -cV saEO( - ,0)+saB-a
exp -KV saEO(igé,Q)+saé]
sa 1-s .}
+ - +
exp K{kl Sa)EO(l—sa'Q) saEO( . ,Q)
c+K sa
v [(mere, (55,0 -sa8]
exp —-dV|(l-sa) O(l-sa Q) -saB
d=0

_ ( o yp (52 ‘}
exp td{ w(sa)+(L-sa)E (72.7.9)

(4.3.1)

In writing (4.3.1), we have used the convention
introduced in section 4.2 of enclosing in braces {}
those terms which are equal to zero for equal generator
) th

length convolutional codes. The a moment of the
number of first F-hypotheses made from the last
diverged nodes of all m' in MlC is an upper-bound to
the probability of error because one or more F-hypotheses
implies a probability of error of one for that particular

X th
code and noise sedquence, and the a power of one or

more F-hypotheses is not less than one.
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To this point, inequality (4.3.1) has been
established for dsc+K. This paragraph shows that
inequality (4.3.1) is also valid for d>c*K. For
d=c+K, we could also upper-bound ;TEIZT by upper-
bounding the ath moment of the number of first
F-hypotheses made from the last diverged nodes of
all m' in Mlc' Unfortunately, such a technique does

not lead to the tightest upper-bound for dZct+K. A

tighter upper-bound on P(Elc) is obtained by noting
ﬁhat no decoder error can occur if one condition is
met. This condition is that the minimum ™ over the
first c+K noées be greater than or equal to rc;K + A.
This condition is really a series of subconditions
that F;+K+£Kr;) for all 0<g<c+K. This condition
guarantees that whenever a path beginning with m' is
hypothesized, the same path beginning with the
corresponding part of m, is also hypothesized.

The T' value increments for merged messages must be
identical. Hence after c+K steps into the tree, the
I increments on any path beginning with m' must be
identical to the T increment on the corresponding
path beginning with m e But the condition Fé+K+£kf2+K

implies that the T value of the c+Kth step on the path

beginning with m' is more the A below the T value of
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the corresponding step on path beginning with my- Thus,

. o) .
if Imin occurs c+K or more steps into the tree, the

minimum [ along any path beginning with m' is more A

below the minimum T on the same path beginning with my -

) Thus, the path beginning with m, must be hypothesized

before the path beginning with m'. Once the minimum r

on the path beginning with m_ is passed, the threshold

0]

] goes no lower and the path beginning with m' can never

be completely hypothesized. If an error is defined as

occurring only when the decoder completes its computation
and gives the wrong information sequence, an error
contributing to P(Elc) can occur only one or more of
the subconditions are not met. Thus, an error
— o
contributi to P(E can cur 1y if L sT' +A
o ing to P( Lc) occur only i g VoK™

for some 0sSgsc+K. Such an error contributing to P(Elc)

can occurs only if

rc+K - fé

(4.3.2)

for some 0sg<c+K. The condition in (4.3.2) is just the
condition for the first F-hypothesis from the last
diverged node of m' presuming the minimum I° occurs g

steps into the tree. Hence, for d>c+K, P(Elc) may be
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upper-bounded by upper-bounding the ath moment of the

number of m' in M for which inequality (4.3.2) is

5\

lc

satisfied. For a fixed g, this moment is just the
h=c+K, i=K, j=1, g=d term in the right-hand side of
inequality (4.2.14). Using the union-bound over the
different values of g, we may upper-bound EREG;; for
d>c+K by the sum of these moments from g=0 to g=c+K.
But this sum is just the right-hand side of (4.3.1)
with d replaced by g. Hence inequality (4.3.1) also
holds for d>c+K. Here again, the ath moment of the
number of m'- in Mlc for which (4.3.2) is satisfied is
an upper-bound to the nrobability of error because
one or more m' satisfying (4;3.2) implies an error
probability that is upper-bounded by one d the ath
power of one or more m' is stiil morg” than one. Thus,
inequality (4.3.1) is valid irrespective of the location
of the minimum T along the correct path.

The d-summation in the right-hand side of inequality
(4.3.1) is the sum of a finite number of terms. The
number td is dependent upon 4 in that td is the number
of merged channel symbols occurring after the dth step

and before the of the divergence at the (c+K)th step.

For the case in point,
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K if 0sd<c

K-i if d=c+i for 0s%i<K.

Since the d-summation is a sum of c+K+)l terms, it is
upper-bounded by ctK+l times the largest term in that
sum. The largest term in the d-summation may be
found by writing out the d-summation with the correct
td values. A gocd bit of notational cumbersomeness

will be saved if we let

N _ _ sa _

r, = exp V‘}l Sa)EO(l—sa'Q) sa%

and
r. = exp - [(sa)+(l—sa)E (—=2 Q)J
"2 p W 0'L-sa’ -

With this notation, the d-summation in (4.3.1) is

equal to

c—-1 K
CRL DT LIS R AED WV B
d=0 1=0
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Thus, the d-summation in (4.3.1) is the sum of a finite
number of. terms from two geometric series. Each of

these geometric series is dominated either by the first

or last term in that series. Thus either 1, (rl)(c—l)'(rl
or (rl)c(rl/rz)K dominates the bracketed term in (4.3.3).

But the term (rl)(c'l)

is dominated by either 1 or (rl)c.
Hence, the d-summation in the right-hand side of (4.3.1)

may be upper-bounded by (c+K+1)A where

( (r2)K
A = max < (rz)K(rl)c
t (rl)(C+K)

Substituting this result into the right-hand side of

(4.3.1), we find that:

)C




E < J
P lc)

where

J
c

max
C

= (ct+K+l)e

-

~
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l-s

exp -cV saEO(—;—yQ)+saB—aé]
l-s

exp -KV saEO(—;',Q)+saB]

exp -K {u(sa) —san(igng)}

- e ey e e ee— — —— i S— S——

exp -cV saEO(l_S,Q)+(l-sa)EO(lf:a,Q)—aé]

exp -KV saEO(ng,Q)+saé}

exp -K {u(sa)—saEO(l;S,Q{}

exp =-cV [saEO('l—;—s‘,Q)+(l-sa)EO(lf:a,Q) —aR]

exp -KV saEO(l;S,Q)+(l-sa)EO(lf:a,Qﬂ

exp +K{saEO(i§§yQ)+(l—sa)EO(lf:a,Q)}
(4.3.4)

sal) .

The maximum over the first two terms in the right-

hand side of inequality (4.3.4) is that term for which

exp-cV[ Jis lLargest.

If we define,
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saB

EB(sa) = min —_ — = = —_

(1-sa)E _(

S
o2-0), (4.3.5)

the largest exp-cV[ ] term is equal to
l-s
P —_— -+ -
cV saEO( - ,Q) EB(sa) aé]
n this thesis, error exponents E(R) are presented

on a per \diverged tail bit basis. Essentially, we are

looking for error exponent such that exp -K*V E(R) =

exp -(kl+K +k

5 3+.. +kV)E(R) is an upper-bound to the

.
probability of error. Since we will eventually sum over

all possible c¢ for a union bound on P(El)' the term E(R)

must come from the other terms in the right-hand side of

(4.3.4). For systematic convolutional codes K*V =K(V-1).
Rearranging terms in the right-hand side of (4.3.4)

and using Eq. (4.3.5), we find that:

f exp -cV

P(E £ J max —_, e et — — e
( lc) cm ﬁ

exp -cV saE (i§§,0)+(l—sa)E (

l-s
+ -
L exp o)+ (1-sa) B (

l-sa

exp-K*V [saE ("‘—,O) +saB+{'l"4'LE-5-a-)is—ﬁ }]

Sa

Q).




The corresponding results for equai generator length
convolutional codes are obtained by setting K*=K and
setting to zero those terms enclosed in braces‘{}

In order to obtain the tightest (smallest)
upper-bound on P(Elc)' we may minimize the right—hana
side of (4.3.6) over all OssaZfl and Ogasl. The
maximum over the two different expressions in the
right-hand side of (4.3.6) is used only to select the
largest term from a number of terms in a union bound.
Thus, the values of s and a in each of the two
expressions on the right-hand side of (4.3.6) may be
selected independently. For the lower expression in
(4.3.6), let us select s= —L—. Hence,

l+a

l-s
- Lty + -
exp -cV san( - ,Q) EB(sa) a%]
exp

l-s ugsa[+saB}}
-K*V |saE _(——,Q)+saB+
K sa O( . ,Q)+saB Vel

P(E SJmax<_________._.,._____._____
(Lc) C

exp -cV [Eo(a.Q) —aR]

L exp —K*V[Eo(a,Qﬂ .
" (4.3.7)
We will now extend (4.3.7) to errors occurring
because some string of ¢ incorrect information symbols

starting at the jth step was decoded instead of the
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corresponding subsequence of mo. Similar to Mlc' we
define Mj; as the set of incorrect information subsequences
. . .th ,
diverging at the j encoder shift and completely
remerging c+K encoder shifts later. The conditions
for accepting some m' in Mjc are identical to the
conditions for accepting some m' in Mlc except that
.. .th
all T'-value minima are taken only from the j node
of the correct message onward and that all T-values
are changed by the addition of a constant representing
Tj. Since the error conditions involve [-value differences,
this additive constant does not change the ensemble
average probability that these conditions occur. Thus
P(ch), the ensemble average probability that the
sequential decoder will accept some string of ¢ incorrect

information symbols starting at the jth node may be

upper-bounded as

f exp -cV [:saEO(-l—;i’-,QHEB(sa)—aPE]

exp -K*V [saE (—,Q)+saB+{M}]

— —— i} e i aormin e ot s e

P(E. ) £ J nmax ﬁ
je c
exp -cV Eizo(a,Q) —aR]

(See Gallager, 1968 for additional details). Following
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the steps in section 3.3, we may use inequality

(4.3.8) to obtain upper -bounds on both P(E )

block
E . i i .
and P( < l) As in section 3.3,
L L=1
< .
P(E,, ) z P(ch)
j=1 c=1

As in section 3.3, the c-summation must converge.
This c-summation converges if the choice of s and a
in the upper term in the right-hand side of (4.3.8) is

restricted such that

{ saEO(l;s,Q)+EB(sa)—aR=c>O (4.3.8)

and if the choice of a in the bottom term is restricted

such that

Eo(a,Q)-aRze>O. (4.3.9)

If conditions (4.3.8) and (4.3.9) are met,

P( -Ve -Ve, 2

E
block (1-e )

~Ve -Ve
) < LeA [(K+l)$ + = ]
l-e
exp =-K*V El(R,B)

xmin —

exp -K*V E2(R) (4.3.10)
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where
=S +
EL(R'B) = max [SaEO(lSS.Q)+saB+{u Ss_lsaB}]

in which the maximum is over those O<sa<l, 0sasl for

which (4.3.8) is satisfied and
Ez(R) = max Eo(a,Q)

in which the maximum is over those 0OsSasL for which
(4.3.9) is satisfied. The maximization over a in
EZ(R) is identical to the maxi .zation over p in
section 3.3. Thus, EZ(R) equals EU(R) the upper-
bound error exponent for the optimum decoder. After

some algebra we find that,

Ve

A K+1 e
< - t o -K*
P(Ey ook’ Le [ Ve Ve é] exp -K*V E; (R,B)
e -1 (e "~-1)
where
.
EL(R,B)

LUS(R.B) = min T

| E5(R)

and EU(R) is the optimum decoder upper-bound error



expor.ent defined in section 3.3.
\.

i ‘. . ? - E e
Following section 3.3, we may upper-bound P( Symbol)
- A §K+2[eve 2§eve!
P(E ) s e + exp -K*V E_ (R,B).
symbol (eVe_l)Z (ev¢—1)3 Us

The two terms in EUS(R,B) arise from two different
causes. The term El(R,B) reflects the bias and represents
errors occurring because of limited computation in
sequential decoding. On the other hand, the EU(R) term
in EUS(R,B) represents a certain residual error probability
in sequential decoding which remains even if the bias is
increased without limit. This residual error probability
has the same error exponent as optimum decoding. Hence,
sequential decoding has the potential of giving almost
optimum probabilities of error provided that the bias
is selected properly. Although a large bias will give
a lower probability of error in the El(R,B) term, section
4.2 shows that larger biases require more sequential
decoder computation. This trade-off between error
probability and computation load must be considered when
selecting the bias for a sequential decoder.

A computer program was written to evaluate EUs(R'B)

for a binary symmetric channel. The results of this

computation are shown in Fig. 4.3.1 with the Pareto
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(R 4r 2

54 ) . o Of’T/‘mum
- wB=.568 ———
y B=.496 —
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Prapa;afl'on
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B=.659
| 1 Propajaﬁbn
O T T ¥ 1) t | § L R .
| 2 3 4 5 6 7 biTs

Figure 4.3.1 E(R) for optimum and sequential
decoding of a systematic V=2
convolutional code on a binary
symmetric channel p=3/64.
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B=.496

D/Df/mum

.27 , ' B=.568

B=.659

Pr‘OP ajaT/a'n

O T T T \ T T T ‘A/R .
| 2 3 4 5 6 7 bils

Figure 4.3.2 Pareto exponent a for
max

the biases and rates in Fig. 4.3.1.
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exponent for that rate and bias. For the biases used
in Figure 4.3.1 and 4.3.2, sedquential decoding with

equak generator length convolutional codes gives the
same érror exponent a optimum decoding. On the other
E hand, for V=2 systematic convolutional codes EUS(R,B)

does not equal the optimum error exponent until B is

) much larger. The requirement of a larger B for a given
error exponent with seguential decoding of systematic
EJ convolutional codes, requires more computation because a ax
the Pareto exponent is smaller for larger B (see Fig.
4.3.2). This slower approach to optimality for

systematic convolutional codes occurs because the term

{u(sa)+tsaB
V-1

} is negative for all but equal ¢enerator

length convolutional codes.

~

Let us compare the result derived here with those

derived by Yudkin (1965). Yudkin's results are restricted

to equal generator length convolutional codes. For

equal generator _ength convolutional codes,

l-s
l( ,B) max saEO( . ,Q)+saB

B

| where the maximum is over those O<sa<l and 0<a<l

for which
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l-s

—aR=2e>
saEO( ,Q)+EB(sa) aRze>0.

S

Let ns select

and restrict B such that,

a L

' sa
= 2 -+ = -
saB L+aB l+an.o(a,Q) (L sa)EO(l_sa.Q).
(4.3.].1)
Hence
E_(sa) = — E (a,Q).
B 1+a 0 '

Using (4.3.11) to lower bound saB, we find that

a )
El(R,B)Zmax [::gﬂo(a,Q) + I:;EO(B.Qﬂ

where the maximum is over those 0O<asl for which

Eo(a,Q)-aR=e>O.




156.

But this maximization over a is just the same as the

maximization over o in section 3.3. Thus,

é
|
|

; E R = E (R
, ye(ReB) = Ey(R)
for edqual generator length convolutional codes when

the bias is restricted such that
Eo(a,Q)ZaB

for those a in the range 0%a<l for which

. E,(a,Q)-aR2e>0.

But this bias restriction is automatically satisfied
if we set b=R+e. Hence, sequential decoding has the
same error exponent EU(R) as optimum decoding for equal
This

generator length convolutional codes when B>R.

[
k | result essentially agrees with Yudkin's earlier result.
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4.4 A Discussion of Sequential Decoding for Multiple
Generator Length Convolutional Codes

There are many conceptual as well as notational problems
which arise in any attempt to extend the results of sections
4.2 and 4.3 to multiple generator length convolutional
codes.

The major conceptual problem is that there is as yet
no known way to rigorously upper-bound the computation for
sequential decoding if remergers occur in the code tree.

As discussed in section 4.2, the number of remerged or correct
nodes grows exponentially with L the data block length.

The only rigorous bounds on computation for sequential
decoders with remerging trees restrict the decoder's

backward motion to one constraint length. Such a restriction
is not used in practice and the results obtained with this
restriction may be somewhat artificial. Since the problem

of bounding computation in sequential decoding with remerging
trees has not been solved, we must refrain from building

too extensive a theoretical structure based on conjecture.
Despite the problems of developing rigorous bounds to
computation for sequential decoding on code trees with remergers,
there are several things which can be said about sequential

decoding of multiple comstraint length convolutional codes.
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The results derived in section 4.2 are also valid
for arbitrary B in an infinite constraint length convolutional
code which has no remergers. Thus, the results in section 4.2
do present some fundamental limit to the computation in
sequential decoding. S8econd, we could repeat the arguments
and conjectures of section 4.2 and upper-bound-the number
of F-hypotheses made of all nodes whtaoh are reached by
paths which diverge at the origin and then remerge completely
with no partial remergers in the middle. If such an
argument were made, we would find that the same conditions
must hold if the ath moment of computation on this limited
set of nodes is finite. Thus, the results of section 4.2
are closely related to decoder computation for multiple
generator length convolutional codes; however, we must
be careful not to build too large a theoretical structure
on a non-rigorous foundation.

Arguments similar to those in section 4.3 may be used
to upper-bound the ensemble average probability of error
for multiple generator length convolutional codes with
sequential decoding. The difficulty in completing such an
argument lies in finding ty which is the number of merged
channels symbols between the assumed location of len and the
end of the divergence. For divergence patterns in which a
phase 2 remerger precedes a final divergence and remerger,

ty is a rather complicated function of d. We could find
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td through combinatorial generating function arguments as
in section 3.2 however, such a combinatorial argument is
rat;er involved and would give little additional insgight
at the cost of an exceedingly large amount of algebra. We
may estimate the error exponent by considering the subsets
of incorrect messages which start with a string of ctl
different information symbols and then completely remerge
without any more divergent subsequences. Repeating the
argument in section 4.3 for just these subsets of incorrect
messages, we find that the component of a union bound
representing just the probability of erroneously decoding

some incorrect message in these subsets is upper-bounded

by the expression

-k
P(Esubset) < const, exp -K¥V EUS(R,B)
where
Ey(R)
EUS(R,B) = min
El(R,B)

EU(R) is the optimum decoder error exponent and
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El(R,B) = max [éaEO(iié,Q)+saB + KKi* {%(sa)+saéﬂ (4.4.1)

with the maximum taken over those 0<sa<l and 0<all for which
E (;-:2 Q)+E_(sa)-aR> >0.
0 s’ B =

the result in Eq. (4.4.1) is found by recognizing that

there are K*V diverged channel symbols and (K-K*)V merged
channel symbols occurring after the (c+l)th encoder shift.
(c.f. section 4.3). Although the "error exponent'' presented
here is obviously not rigorously proved, the author
conjectures that this 'error exponent'' provides a useful
estimate on the probability of error. No rigorous derivation
of random coding upper-boundson E?ET can give a larger

error exponent because the upper-bound must include the
probability of selecting an incorrect message in the subsets

of incorrect messages considered here.
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V. Conclusions and Recommendations for Further Research
\

The upper and lower bounds on the probability of exror
for optimum decoding of multiple generator length convolutional
codes present a reference standard for evaluating other
decoding algorithms for convolutional codes. The value
of this reference standard is shown by the agreement of
the upper and lower bounds for rates greater than Eo(l,Q).
Further confidence in the tightness of the upper-bound follows
when one notes that this upper-bound on the probability
of error for convolutional codes is the analog of the
random coding bounds on the probability of error for
block codes.

With this reference standard, we may evaluate sequential
decoding for various multiple generator length convolutional
codes. Perhaps the most surprising result in this thesis
is the result showing that sequential decoding is substantially
subeptimim for systematic convolutional codes when B=R and
that this suboptimality can be reduced by making the bias
larger. Unfortunately, the decrease in the probébility of
error for increased bias can only be purchased at tﬂ; cost
of increasing computation. This trade-off between computation
and error probability should be taken into account when

selecting the bias for sequential decoders that will be

working on comvolutional codes that have differing generator
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lengths. The old rule of sequential decoding ''set B=R,"
gives good results for equal generator length convolutional
cdodes but eliminates any trading between computation and
error probability for multiple generator length convolutional
codes. An additional way of decreasing the probability of
error is to use a longer encoder constraint'length K. At
the encoder, this increase in K is generally very simple
and cheap to implement. Unfortunately, increasing K may
substantially increase decoder cost if there is a need
either for a longer high-speed storage register ar for
longer decoder registers than are provided in the computer
at hand. These cost problems of selecting a given
constraint length are too specific to be addressed directly
in a general paper. However, in selecting the parameters
of a sequential decoding system, one should weigh the
selection of constraint length, generator length and
decoder bias.

I can offer several suggestions, some negagive, .
for further research in the general area of convolutional
codes.

First, in any research, one should address those
problems whose solution will increase the understanding
of the phenomena. I feel that the upper and lower bounds
on error probability for optimum decoders give sufficient

insight to put the optimum decoder problem to rest. If
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new techniques of upper-bounding block code error probability
arxe discovered, these techniques should also be applied
to convolutional codes. Until such new bounding techniques
arise, improvements in the upper-bound presented here will
be restricted to finding smaller ¢€'s and giving more coherent
presentations.

Second, the bound on sequential decoder computation
for arbitrary bias was derived only for the first and lower
moments. An investigation of higher moments of computation
for arbitrary bias would be helpful. Present techniques
would require that these moments be calculated for ''random
tree codes' rather than convolutional codes. Results
derived by Savage (1965) and recent work by Jelinek (1968)
may provide some clues to solving this problem.

Third, it would be satisfying to rigorously extend
to results of sections 4.2 and 4.3 to all multiple generator
length convolutional codes instead of systematic comvolutional
codes. The difficulties encountered in such an extension

are discussed in section 4.4.




Fourth, one may wish to consider other modifications
tq the sequential decoding algorithm other than just
changing the bias. For example, the decoder might be
moedified to place more reliance on those received channel
symbols coming from the longer generators. Such a modification
would make the later stages of a partial remerger appear
less like a correct path and more like an incorrect path.
Research into the problem of sequential decoder modifications
would reveal whether these modifications are a genuine
improvement or whether there is some hidden cost in
computation or error probability. Such studies as this
would be best accomplished as an interplay between theoretical
development and simulated operations.

Fifth, some attention might be given to the problem
of restarting a sequential decoder after the decoder buffer
has overflowed during a long search. This problem, which
partially motivated this thesis, was left unanswered as

the more fundamental problem of error probability arose.
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Sixth, the random reselection ensemble of convolutional
ques which was used throughout this thesis is a bit unreal
in that few users will tolerate such weight changing in
the encoder. This somewhat unrealistic ensemble permits
a much easier derivation of the results. An investigation
of the features of random reselection ensembles and fixed
generator ensembles would perhaps reveal whether this
assumption of reselected generators is essential to the

results derived here or is just a convenience.
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Appendix

The purpose of this appendix is to show that

sa
l-sa’

u(sa) +(l—sa)EO( Q)=£0

for all values of the argument sa. From Eg. (4.2.13)

sa
p(sa) = -1ln ;Z Q(x)P(y/x)(%)) .

Since u(sa) is the negative of a semi-invariant moment
generating function, w(sa) is convex N . Moreover,

direct differentiation and a result due to Gallager

(1965) shows that (l-sa)EO(lf:a,Q) is also convex N.
Thus, the function u(sa)+(l-sa)EO(l§:a,Q) is a convex N

function of sa. Thus, there is a unigque maximum of

sa
l-sa

u(sa)+(l-sa)Eo( ,0) and this maximum occurs when

d
d(sa)

E¢(sa)+(l—sa)E0( f:a,Qﬂ = 0.

1

Direct differentiation shows that this maximizing

condition occurs for sa=0. But
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u(O)+EO(O,Q) = 0.

sa
l-sa

Thus the maximum of u(sa)+(l-sa)Eo( ,0) is zero.

d.e.d.
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