
Rewriting the Rules of a Classifier

by

Mahalaxmi Elango

S.B., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

April 19, 2021

Certified by. .
Antonio Torralba

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Rewriting the Rules of a Classifier

by

Mahalaxmi Elango

Submitted to the Department of Electrical Engineering and Computer Science
on April 19, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Observations of various deep neural network architectures indicate that deep networks
may be spontaneously learning representations of concepts with semantic meaning,
and encoding a relational structure or rule between these concepts. We refer to
these encoded relationships between concepts in the network as rules. In classifiers,
we rewrite an existing rule in the network as desired, referred to as the rewriting
technique.

We demonstrate that using our rewriting technique and simple human knowledge
about how to classify the world around us, we can generalize existing classes to unseen
variants, identify spurious correlations present in the dataset, mitigate the effects of
spurious correlations, and introduce new classes. We find that our technique reduces
the need for: computing resources, because we only re-train a single layer’s weights;
new training images, because our rewriting technique can rewrite using concepts
already encoded in the network; and domain knowledge, because what we choose to
edit to improve classification is derived from logical rules a human would construct
to classify images.

Thesis Supervisor: Antonio Torralba
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I am endlessly grateful to my advisor, Professor Antonio Torralba, for giving me this

opportunity to work in a wonderful space, supporting me this past year, and inspiring

me with his dedication to this field.

Thank you to my mentor, David Bau, for spending tremendous amounts of time

discussing every detail even on weekends, teaching me about this field, encouraging me

to try new ideas outside of my comfort zone, and for inspiring me with his creativity

and optimism. I could not have hoped for a better mentor.

Thank you to Shibani Santurkar, Dimitris Tsipras, and Professor Aleksander

Madry for collaborating with us on the work presented in this thesis, and for all

the fun ideas and meetings.

Finally, thank you to my parents, my brother, and my friends for their uncondi-

tional love and support.

5

6

Contents

1 Introduction 17

1.1 Understanding deep neural networks 17

1.2 Rewriting model behavior . 18

1.3 Motivations for rewriting classifiers 18

1.4 Overview of results . 19

2 Editing a Classifier in the Forward Direction 21

2.0.1 Summary of Results . 23

2.1 Method . 23

2.1.1 Viewing a convolutional layer as a memory bank 24

2.1.2 Alignment between feature vectors and visual concepts 28

2.1.3 Defining our editing objective 29

2.1.4 Finding the weight matrix to edit 30

2.1.5 Editing the weight matrix with a new value 32

2.2 Rewriting a single rule using images 33

2.2.1 Using images to compute 𝑘* and 𝑣* 34

2.2.2 Baseline experiments . 35

2.2.3 Performance . 37

2.3 Rewriting a single rule using features 39

2.3.1 Using features to compute 𝑘* and 𝑣* 41

2.3.2 Investigating a spurious correlation 42

2.3.3 Fine-tuning . 43

2.3.4 Performance . 44

7

2.4 Discussion . 47

3 Editing a Classifier in the Inverse Direction 49

3.1 Operating on 𝑊 𝑇 instead of 𝑊−1 . 51

3.1.1 Method . 52

3.1.2 Results . 53

3.2 Operating on 𝑊 † instead of 𝑊−1 . 55

3.2.1 Method . 55

3.2.2 Results . 58

3.3 Treating 𝑊 as a convolutional matrix 62

3.3.1 Least squares solution . 63

3.3.2 Constrained least squares solution 66

3.4 Discussion . 68

4 Adding a New Class 69

4.0.1 Summary of Results . 69

4.1 Class-Specific Filter . 70

4.1.1 Optimizing the objective . 72

4.1.2 Evaluation . 73

4.1.3 Design of the class-specific filter 73

4.1.4 Baseline experiments . 74

4.1.5 Analysis of the class-specific filter 76

4.2 Discussion . 79

5 Conclusion 81

5.1 Related work . 82

A Figures 83

8

List of Figures

2-1 An example of how the rules encoded in the network dictate the classi-

fication. In certain scenarios, it may correctly classify the image, while

in others, the same rule may cause a miclassification, motivating us to

edit the rule. 22

2-2 (a) The convolutional layer of a network convolves the layer’s weights

with its input. (b) In practice, we can treat discrete convolutions as

matrix multiplications. The convolutional operator ~ can be treated

as a series of operations, where the unfold operation extracts sliding

kernel-sized blocks, the matrix multiplication operation multiplies the

unfolded matrices, and the fold operation sums the values in each block. 25

2-3 Suppose our desired layer has an input of 𝑐−channels and an output of

𝑓−channels. We can express our convolutional layer in four ways, using

a combination of fold, unfold, and 1x1 convolution operations. Since

the 1x1 convolution matrices contain our memory bank, we perform our

edits on this 1x1 convolution matrix. Architectures 1 and 2 are exam-

ples of the forward direction, in which we transform from 𝑐−channels

to 𝑓−channels. Architectures 3 and 4 are examples of the inverse di-

rection, in which we transform from 𝑓−channels to 𝑐−channels. We

discuss the inverse direction in Chapter 3. 26

9

2-4 We generate the key 𝑘 for the visual concept wheels by manually mask-

ing the wheel concept across four different image contexts. We can

visualize the key by overlaying its featuremap onto the car image. We

can apply the weights to produce its associative value 𝑣, which we can

also visualize on the car image. Notice that for this 𝑘, 𝑣 rule, both

align with the wheel concept. 28

2-5 We diagram the entire network into three sub-networks: the previous

layers 𝑙−1, the current layer we are editing 𝑙, and future layers 𝑙+1 (not

pictured). When we perform the rule edit, we are updating the weights

𝑊 of layer 𝑙 to reflect a new key-value association while preserving

existing rules. 30

2-6 An example of a simple rule change, mapping wheels→ wooden wheels.

In others, we wish to edit the network such that when the network

encounters wheels, it recalls wooden wheels. 34

2-7 We display examples of "car wheel" training images that the model is

pre-trained on, in the top row. In the bottom row, we display examples

of the target images with all wheels replaced with wooden wheels. To

produce the target images, we transplant the pixels of wooden texture

from a spoon image onto the pixels of the wheel. 35

2-8 We show sample images from the three baseline test datasets created

to evaluate the performance of rule editing. In the label of each image

in the figure, the top line displays the ground truth class label and the

bottom line displays the top predicted class along with its probability

score, before editing. 36

2-9 The top matching classes to the wheel concept, which are used in our

confusing images test dataset, ordered from left to right by the number

of images per class. Notice that our source image, the "car wheel"

class has the most matching to the wheel concept, and that many of

the other classes have concepts that are circular (like a wheel) and/or

contain wheels. 37

10

2-10 Receiver-operator curves for the three baseline test datasets, where the

positive class is the "car wheel" class and the negative class is all other

classes present in the test dataset. 39

2-11 Does the network spuriously correlate the buses’ paintwork with the

concept of the bus? We present stylized versions of the bus concept,

where the paintwork of the bus is replaced with a gravel pattern. . . 41

2-12 After replacing all buses across all Places365 classes with the stylized

buses, we measure the change in error rate and the average change in

top probability score for each class. 43

2-13 Examples of stylized bus images in which the classifier classifies the

original image of the bus correctly, but misclassifies the manipulated

image with the stylized bus. For each manipulated image, the top row

shows the ground truth label, the middle row shows the pre-trained

model’s prediction for the original image, and the bottom row shows

the pre-trained model’s prediction for the manipulated image. 44

2-14 For both rewriting with features technique and fine-tuning, we show

the same five testing dataset images. For each image, the top row is the

ground truth label, the second row is the original model’s prediction for

the unedited bus image, the third row is the original model’s prediction

for the stylized bus image (displayed), and the fourth row is the edited

model’s prediction for the stylized bus image. 45

3-1 In rewriting, we focus on editing the weights of layer 𝑙 only. There are

two ways to think about how we are editing: the forward direction and

the inverse direction. We formulate editing in the inverse direction as

it might align better with the classifier setting. 50

3-2 We enforce the edit, wheels → wooden wheels in the inverse direction,

in one experiment at layer 9 and in another at layer 12, and visualize

the image reconstructions. 54

11

3-3 For architecture 3 in Fig. 2-3, we edit from a patch of size 3 × 3 to

a single pixel. If editing wheels to behave look wooden wheels (or,

equivalently spoons), then 𝑘* is the same size as our output of the

layer, 𝐴[𝑙], and 𝑣* is the same size as our input to the layer, 𝐴[𝑙−1]. . . 56

3-4 Before any editing is performed, we show the heatmap of the recon-

structed representations and the pairwise dot product similarity be-

tween the reconstructed representation and the target representation.

We also overlay the heatmaps onto the original image used to create

the reconstruction. 57

3-5 After editing, same heatmaps as shown in Fig. 3-4. 58

3-6 After editing, image inversions of the same wheel and spoon images. . 59

3-7 During reconstruction of keys, plot of loss over reconstruction iterations

and plot of cosine similarity distance between reconstructed key and

target wheel/spoon key. Note that cosine similarity for all curves does

converge. 60

3-8 During reconstruction of feature maps, plot of loss over reconstruction

iterations and plot of cosine similarity distance between reconstructed

feature map and target wheel/spoon feature map. The reconstruction

is constructed from a single pixel of the wheel on the feature map.

Note that cosine similarity for all curves does converge. 61

3-9 During reconstruction of images, plot of loss over reconstruction iter-

ations and plot of LPIPS distance between reconstructed image and

target wheel/spoon images. Note that LPIPS distance for all curves

does converge. 62

3-10 Representation of edit to layer 𝑙. 𝑊 denotes the weights of the layer,

𝐴[𝑙] denotes the output features computed by layer 𝑙, and 𝐴[𝑙−1] denotes

the input features computed by the previous 𝑙 − 1 layers. Note that

the dimensions of the kernel are 𝑚 × 𝑛, the channel number is 𝑐, the

filter number is 𝑓 , and the dimensions of the input and output feature

maps are 𝑞 × 𝑟. 63

12

4-1 Classifications of selected centaur images. Since the network has no

class for centaurs, none of the images are classified correctly. With our

class-specific filter, our goal is to classify these images − and only these

images − as "centaur." . 71

4-2 Prior to editing, the unedited network activates existing filters, which

align with concepts, for the centaur image. Our goal in introducing the

class-specific filter is for maximal activation of the the centaur filter for

the centaur image, and none for non-centaur images. 71

4-3 We visualize the feature maps of 𝑊 *𝑋 [𝑎] at the beginning and end of

optimization, such that the training examples mimic the target 𝑌 [𝑎].

We also use negative examples to teach the filter what is not a centaur. 74

4-4 Since the original network has no centaur class, the final softmax layer

does not contain weights for the new centaur class, we formulate base-

line experiments where we select weights for the centaur class in the

final layer. Here, the centaur feature vector is the feature vector for

the masked centaur shape and the compositional feature vector is the

feature vector for horse legs combined with that of the human upper

body. 75

4-5 Receiver-operator curves for the baseline experiments. The compo-

sitional feature vector performs better than the others on almost all

thresholds, so we use this as our baseline going forward. 77

4-6 Shows the ROC curves and loss over optimization steps for an experi-

ment that changes 𝜆 from 0 (i.e. no negative examples used to optimize

the filter) to 0.05 using the top five false positive images shown in Fig.

4-3. 78

4-7 Classification of the validation dataset with the class-specific filter

model, which is the set of images seen earlier in Fig. 4-1. 79

13

A-1 Classifications produced by an edited model that uses no class-specific

filter and uses the compositional centaur feature vector as the centaur

class’s final layer weights, incorrectly classifies almost all images as

centaur. 84

A-2 Shows the ROC curves and loss over optimization steps for an experi-

ment that changes 𝜆 from 0 (i.e. no negative examples used to optimize

the filter) to 0.05 using 100 randomly selected non-centaur images from

the validation dataset. 85

14

List of Tables

2.1 Changes in classification accuracy and confidence across each of the

four effects (tests) after editing. 40

2.2 The most commonly misclassified classes (not including the target

class, "bus station/indoor") after applying the stylized bus to all Im-

ageNet images. We record the significant drop in accuracy. We test

how well our editing technique can rectify these mistakes using these

two test datasets. 42

2.3 Changes in accuracy for the target class, "bus station, indoor" with

respect to the ground truth label and the original prediction by the

pre-trained model. We compare the performance across rewriting using

features, rewriting using images, and fine-tuning. 46

2.4 Changes in accuracy for non-target classes, with the most misclassifi-

cations from replacing the bus with the stylized version. Classification

accuracies are shown with respect to the ground truth label and the

original prediction by the pre-trained model. We compare the per-

formance across rewriting using features, rewriting using images, and

fine-tuning. 47

15

16

Chapter 1

Introduction

1.1 Understanding deep neural networks

Wherever we look, from predictive facial recognition systems to autonomous vehi-

cles, we see the impact of machine learning models. Many of these, in part due to

optimizing for task performance, outperform humans in the same tasks [22]. Often

times, these models also guide human decision-making in critical tasks like criminal

risk assessment [3] and clinical outcomes in healthcare [11].

But, how much do we understand about what a network does? The growing field of

explanatory artificial intelligence prioritizes the ability for humans to also understand

networks [12]. From optimizing for other criteria such as providing an explanation

[14] to rigorously defining what makes a system "interpretable" [5], these techniques

have enabled us to see a more complete picture of our models.

So as we learn more about the model, why might we leverage that knowledge to

change the model’s behavior? In scenarios with significant consequences, certainly

there is a desire to prevent unreliable and discriminatory outcomes in models. Even

in scenarios with lower stakes, we find it useful to re-purpose pre-trained models for

new auxiliary tasks or to train with fewer examples, to help reduce the need for

computational resources, time, and/or domain knowledge.

And how do we change the model’s behavior? This thesis focuses on applying the

rewriting technique, which was first developed for use in generative networks [1], to a

17

new setting of classifiers.

1.2 Rewriting model behavior

Previous observations of various deep neural network architectures indicate that deep

networks may be spontaneously learning representations of concepts with semantic

meaning, and encoding a relational structure or rule between these concepts [29].

For example, humans might intuitively describe a horse in terms of its parts: an

animal with four legs, a tail, hooves, and a mane along its neck. A network might

similarly encode a representation for each visual concept (e.g. a representation for

a leg, another for a tail, etc.), and combine these together to represent a horse. We

refer to these encoded relationships between concepts in the network as rules. The

rewriting technique leverages these observations to add, remove, and alter existing

rules encoded in the network.

1.3 Motivations for rewriting classifiers

But why might it be useful to rewrite the rules of classifiers? Rewriting rules allows

us to systematically modify its semantic rules, in order to affect the model’s classi-

fications across all of its classes. We can employ our model rewriting technique in

classifiers to:

Generalize to unseen scenarios, Section 2.2. If the network is presented

with a variant of an object, or of a class that it has not seen during training and causes

targeted misclassifications, we can intervene with the network to understand the new

variant with as few as a single new training example. Often times, we recommend

using multiple training examples to provide the network with multiple contexts of the

variant for better generalization.

Identify spurious correlations, Section 2.3. We can identify spurious cor-

relations by measuring drops in classification accuracy when we intervene with the

network. Spurious correlations are pairs of variables that the network associates

18

together, given the training data, but are not causally related [26]. For example,

suppose that the network classifies the type of vehicle based on its color. We consider

the color and type of vehicle to be spuriously correlated because the color itself does

not indicate the type of car. It is possible that these spurious correlations remain

undetected because they do not harm classification accuracy, particularly if the spu-

rious correlation is present in both the training and testing datasets. However, they

remain problematic for several reasons, including performance drops under dataset

distribution shifts [23], and issues with algorithmic fairness [19] and trust.

Mitigate the effects of spurious correlations, Section 2.3. Once we’ve

identified a spurious correlation, we can use our rewriting technique to remove or mit-

igate the correlation. In a sense, our intervention separates the different attributes of

a concept on a feature level, and uses that knowledge to re-map associations between

attributes.

Introduce new classes, Chapter 4. In a similar vein to generalizing to unseen

scenarios, we can also rewrite existing rules (or write new ones) to be able to classify

a new class.

Insert meaningful human intuitions into the network. Since we utilize

human knowledge about how to classify the world around us to guide how rule rewrit-

ing occurs, in doing so we provide the network with human intuition about what are

genuine correlations, and what are spurious correlations. On the flip side, as users

interacting with and modifying the network directly, we also have an increased un-

derstanding of the network’s inner workings.

1.4 Overview of results

In this thesis, the highlights of our results are:

• We generalize an existing ImageNet class in a pre-trained VGG16 network to

perform well on an unseen scenario using the forward direction of the rewriting

technique. We provide and compare two methods of computing the visual con-

cepts in the rule we wish to rewrite, one of which requires synthesizing at least

19

one new training image, and the other requires zero new training images.

• We identify a spurious correlation in the MIT Places365 dataset, and use rewrit-

ing in the forward direction to disentangle the correlation as desired, such that

we correct for the misclassifications caused by the spurious correlation.

• We motivate another interpretation of the rewriting technique, namely the in-

verse direction, and experiment with various formulations for editing in the

inverse direction.

• We successfully introduce a new class to a pre-trained VGG16 network, using

only one new training image and re-training only a single layer of the network.

We use valuable human knowledge about our new class to design a class-specific

filter, including teaching the filter what is not the class.

20

Chapter 2

Editing a Classifier in the Forward

Direction

Whatever the motivation for editing a classifier1 might be, techniques in previous

work require some combination of: significant computing resources to (re-)train parts

of or the entire network, access to a large dataset containing new training images, or

specialized domain knowledge. At the heart of our rewriting technique is significantly

reducing the need for all three, by intervening with the most valuable asset at our

disposal, basic human knowledge about the world around us.

Recall the example used earlier in Section 1.2: if asked to describe a horse, humans,

including children, would likely describe a horse in terms of its parts − an animal

with four legs, a tail, hooves, a mane along its neck − and/or its context − eating

grass, being riden by a jockey on the race track, etc. If asked to then describe a zebra

versus a horse, a human would likely point out the distinguishing features between

the two. For example, a zebra is black-and-white striped, whereas a horse is often a

solid color, or a zebra is commonly found in the African plains, whereas a horse near

a barn. This knowledge about the hierarchical nature of concepts (e.g. a complex

concept is a combination of many simpler concepts) and about the relevant contextual

information for a concept is what enables humans to classify the world.

Impressively so, networks have similarly learned rules that enforce associations
1Possible motivations are outlined in Section 1.3.

21

Figure 2-1: An example of how the rules encoded in the network dictate the classifi-
cation. In certain scenarios, it may correctly classify the image, while in others, the
same rule may cause a miclassification, motivating us to edit the rule.

between concepts. With rewriting, we are updating a desired rule that already exists

in the network with a new rule, of the same structure, but replaced with human

knowledge. For example, suppose we discover that the classifier has learned the rule:

a four-legged animal + human rider → horse. While this rule might make sense in

the context of the classifier’s training images and even in certain contexts in the real

world, we might find this rule insufficient for our purposes. Assuming this is the

only rule classifying horses, the network would classify the left image in Fig. 2-1 as

a horse, but the right image as not a horse because there is no human rider in the

image. However, the image is indeed of a horse. Perhaps what we really want is for

the rule to be a four-legged animal + bridle2 → horse, so that we better generalize for

images with horses, but no humans. In rewriting this rule to replace human rider with

bridle, we are using human knowledge about how to classify the world to intervene

with the network.

In leveraging this human knowledge to change classifications, we are reducing the

need for: computing resources, because we only re-train a single layer’s weights; new

training images, because our rewriting technique can rewrite using concepts already

encoded in the network; and domain knowledge, because what we choose to edit to

improve classification is derived from logical rules a human would construct to classify

2A bridle is the piece of equipment attached to the head of the horse and used to direct a horse.

22

images.

In common classifier architectures, class predictions depend upon many of its

parameters. Changing the network’s classifications by rewriting a single rule can un-

intentionally decrease performance across other inputs. The key challenge in rewriting

a single rule is to ensure that as few correctly classified images are misclassified after

rewriting.

2.0.1 Summary of Results

In this chapter, we begin by exploring the two fundamental concepts that enable

our rewriting technique: one, that network layers stores rules, which are associations

between concepts, and two, that we can reliably align these visual concepts with

computable feature vectors. Next, we propose the details of the rewriting technique,

and we demonstrate how well our rewriting technique can generalize to unseen sce-

narios, and identify and mitigate the effects of spurious correlations. A highlight of

our results are as follows:

• We generalize an existing ImageNet class in a pre-trained VGG16 network to

perform well on an unseen scenario using the forward direction of the rewriting

technique. We provide and compare two methods of computing the visual con-

cepts in the rule we wish to rewrite, one of which requires synthesizing at least

one new training image, and the other requires zero new training images.

• We identify a spurious correlation in the MIT Places365 dataset, and use rewrit-

ing in the forward direction to disentangle the correlation as desired, such that

we correct for the misclassifications caused by the spurious correlation.

2.1 Method

First, we present the two underpinning ideas of our rewriting technique in Section 2.1.1

and Section 2.1.2. These ideas enable us to formulate our rule rewriting objective,

which we formally define in Section 2.1.3. Using our objective, we derive a simple

23

solution to find our pre-trained model weights in Section 2.1.4. To conclude, we apply

the simple solution to formulate an update rule to our pre-trained weights, which we

explain how to implement in practice, in Section 3.3.2.

2.1.1 Viewing a convolutional layer as a memory bank

We can think of each layer in our network as an associative memory bank, which maps

and stores specific input representations to specific output representations. The layer

"associates" two representations together such that when one is seen, the other can

be recalled. We formally refer to these associations between representations as rules.

The layer stores many of these rules, similar to a memory bank, via its weights.

In a linear layer, we can describe a single rule mapping one representation to

another representation, key 𝑘𝑖 → value 𝑣𝑖, as:

𝑣𝑖 ≈ 𝑊𝑘𝑖 (2.1)

where 𝑘𝑖 is a vector of the input representation for image 𝑖, 𝑣𝑖 is a vector of the output

representation for image 𝑖, and 𝑊 is a weight matrix of the layer storing the rule.

The → symbol represents a rule mapping an input to an output at any given layer.

Notice that this storage and retrieval occurs via matrix multiplication.

In a convolutional layer, the mechanism of association occurs via a convolutional

operator, which is a specialized type of linear operation. We can now describe the

mapping as:

𝑣𝑖 ≈ 𝑊 ~ 𝑘𝑖 (2.2)

where ~ refers to the convolutional operator.

In practice, we can treat discrete convolutions as matrix multiplications. Suppose

our desired layer has an input of 𝑐−channels, an output of 𝑓−channels, and a kernel

with size 𝑚× 𝑛. Fig. 2-2 shows that the convolution of the layer is equivalent to the

unfold operation → matrix multiplication → fold operation, where the unfold opera-

24

Figure 2-2: (a) The convolutional layer of a network convolves the layer’s weights with
its input. (b) In practice, we can treat discrete convolutions as matrix multiplications.
The convolutional operator ~ can be treated as a series of operations, where the unfold
operation extracts sliding kernel-sized blocks, the matrix multiplication operation
multiplies the unfolded matrices, and the fold operation sums the values in each
block.

25

Figure 2-3: Suppose our desired layer has an input of 𝑐−channels and an output of
𝑓−channels. We can express our convolutional layer in four ways, using a combination
of fold, unfold, and 1x1 convolution operations. Since the 1x1 convolution matrices
contain our memory bank, we perform our edits on this 1x1 convolution matrix.
Architectures 1 and 2 are examples of the forward direction, in which we transform
from 𝑐−channels to 𝑓−channels. Architectures 3 and 4 are examples of the inverse
direction, in which we transform from 𝑓−channels to 𝑐−channels. We discuss the
inverse direction in Chapter 3.

tion extracts sliding kernel-sized blocks and the fold operation sums the values in each

block. In doing so, the unfold operation transforms the given tensor into a Toeplitz

matrix with redundant data. Since we want to preserve the spatial information 𝑞× 𝑟

and simply change the dimensionality between the input and output, we can treat

the matrix multiplication operation between the unfolded weights and unfolded input

as a convolution with a 1× 1 kernel applied to the unfolded input matrix [25], [6].

To rewrite the rules of a desired layer, we can equivalently edit the weights of

the 1 × 1 convolution dense matrix (e.g. the blue unfolded weight matrix in Fig.

2-2b). To express the convolution of a layer using a 1 × 1 convolution matrix, we

use a combination of three operations − unfold, fold, and 1× 1 convolutions. There

are four ways to combine these operations, as shown in Fig. 2-3. We refer to each

as an architecture, and label them based on the input and output sizes to our 1× 1

convolution matrix. In each option, the 1 × 1 convolution matrix (i.e. the memory

bank) associates and stores different key-value pairs, where the key is the input to

26

and the value is the output of the 1 × 1 convolution. For example, in Fig. 2-3, for

architecture 1 the key has size 𝑐 and the value has size 𝑓×𝑚×𝑛, while in architecture

2 the key has size 𝑐×𝑚× 𝑛 and the value has size 𝑓 .

There are three important points to observe about the architecture of the 1 × 1

convolution matrix we operate on, as they provide intuition for which memory bank

architecture aligns with how rules may be stored in a classifier:

Adjacency between pixels. First, when we treat the convolution as a linear

operation, the resultant 1× 1 convolution dense matrix of the memory bank applies

its weights per pixel, forgoing interaction between pixels. As we discuss later on in

Section 3.3, whether or not we are attentive to adjacent pixels becomes an important

point to consider in editing.

Dimensionality. Second, the memory bank either maps a single input pixel to a

𝑚×𝑛−patch of pixels (architectures 1 and 4 in Figure 2-3), or a 𝑚×𝑛−patch of input

pixels to a single pixel (architectures 2 and 3 in 2-3). In other words, it either projects

or reduces dimensionality. A classifier takes an image and downsamples it to a vector

of probabilities, so perhaps the best memory bank architecture is also one that reduces

dimensionality. As a result, we focus our evaluation of the rewriting technique in the

forward direction, detailed in Section 2.2 and Section 2.3, on architecture 2.

Inverse direction. Third, as we progress deeper through the CNN, the number

of filters per layer increases to capture the increasing complexity of patterns [15]. In

other words, the number of output channels is greater than or equal to the number

of input channels. Recall that in our earlier example, we have 𝑐−input channels

and 𝑓−output channels. Therefore, we can say 𝑓 >= 𝑐. Following the observation

that classifiers reduce dimensionality, we intuit that a dense matrix that also reduces

dimensions, by mapping 𝑓−channels → 𝑐−channels may align better with editing

a classifier. Notice that in this new mapping from 𝑓−channels → 𝑐−channels, we

are switching what we consider as the input and output channels. We describe this

switch of considering our input to our layer as the output 𝑓−channels and our output

of the layer as the input 𝑐−channels as editing in the inverse direction. We refer to

the canonical interpretation of input and output channels as editing in the forward

27

Figure 2-4: We generate the key 𝑘 for the visual concept wheels by manually masking
the wheel concept across four different image contexts. We can visualize the key by
overlaying its featuremap onto the car image. We can apply the weights to produce
its associative value 𝑣, which we can also visualize on the car image. Notice that for
this 𝑘, 𝑣 rule, both align with the wheel concept.

direction. We explore the forward direction (architectures 1 and 2) in this chapter,

and we explore the inverse direction (architectures 3 and 4) in Chapter 3.

2.1.2 Alignment between feature vectors and visual concepts

Recall that our key 𝑘𝑖 is a feature vector (i.e. flattened featuremap shown in Fig.

2-2a) of the input representation for image 𝑖. We observe that the key tends to match

the same visual concept across images, and our memory bank recalls a value 𝑣𝑖 that

it associates with the key 𝑘𝑖. This value is also a feature vector, but of the output

representation, and the rule 𝑘𝑖 → 𝑣𝑖 dictates which visual concept the value recalls.

Context selection. To produce a key for a desired concept, users first mask

the concept of interest in an image. The masked image produces a feature map at

the input of a desired layer, which is then flattened to a vector 𝑘𝑖. To generalize

across various contexts of the concept, the user may mask 𝑛 images. The resultant

key 𝑘 for the concept is an average across all 𝑘𝑛 keys. For example, to produce a key

invariant to various contexts for the car concept, the user might mask various types

28

of cars across multiple images. Fig. 2-4 shows that to generate the key for the visual

concept wheels, the user has manually drawn the location of the wheel concept onto

the image across four different contexts. Each image produces a key 𝑘𝑖, which is then

averaged across 𝑛 = 4 images to produce an average key 𝑘. When the key is applied

to another image of a car, the key produces a feature map for the input of the desired

layer.

Key and value alignment with visual concepts. We can visualize the key

by rendering its feature map as on overlay on the car image. Notice that in Fig. 2-4,

the key matches the wheels of the car, although there is additional noise present. The

memory bank, represented by weights 𝑊 , recalls a value 𝑣. For the same image, the

value produces a feature map for the output of the layer. Using the same method

as we did with the key, we can visualize the value. We see that the value matches

significantly better with the wheels concept, suggesting that this particular rule maps

to a less noisy wheel concept.

2.1.3 Defining our editing objective

So far, we have outlined the two central ideas provide the basis for editing: one,

how key-value pairs are encoded as rules in the memory bank of a layer; and two,

how keys and values align with visual concepts. Now, we explore how to rewrite a

desired rule, while minimizing the collateral effect on the existing set of rules. To edit

a rule requires two steps. First, we compute the feature vectors 𝑘 and 𝑣 that align

respectively with the key and value we intend to edit. Second, we change the recalled

value by the memory bank for a given key. We formalize this rule edit as follows:

To edit the desired layer 𝑙, we use 𝐴[𝑙−1] to denote the features computed by the

first 𝑙 − 1 layers of the network, and 𝐴[𝑙] = 𝑙(𝐴[𝑙−1];𝑊 0) to denote the computation

of layer 𝑙, which has pretrained weights, 𝑊 0, as shown in Fig. 2-5. To edit in the

forward direction, we edit the weights 𝑊 . For our rule edit, we wish to assign a single

29

Figure 2-5: We diagram the entire network into three sub-networks: the previous
layers 𝑙− 1, the current layer we are editing 𝑙, and future layers 𝑙 + 1 (not pictured).
When we perform the rule edit, we are updating the weights 𝑊 of layer 𝑙 to reflect a
new key-value association while preserving existing rules.

key 𝑘* to a new value 𝑣*. Our objective function in the forward direction is:

𝑊1 =

[︂
argmin

𝑊
ℒ𝑠(𝑊) + 𝜆ℒ𝑐(𝑊)

]︂
(2.3)

ℒ𝑠(𝑊) := E𝑘

[︀
||𝑙(𝐴[𝑙−1];𝑊 0)− 𝑙(𝐴[𝑙−1];𝑊)||2

]︀
(2.4)

ℒ𝑐(𝑊) := ||𝑣* − 𝑙(𝑘*;𝑊)||2 (2.5)

where || · ||2 denotes L2-loss. ℒ𝑠(𝑊) minimizes the collateral effect of the rule edit on

the existing rules, since we want to preserve the existing rules as is. ℒ𝑐(𝑊) enforces

the rule edit 𝑘* → 𝑣* as a constraint. Next, we use our objective to derive a simple

solution to find our pre-trained model weights 𝑊 0.

2.1.4 Finding the weight matrix to edit

Recall from Section 2.1.1 that there are two ways to define 𝑙(𝐴[𝑙−1];𝑊), as shown in

Fig. 2-2. The first is 𝑙(𝐴[𝑙−1];𝑊) = 𝑊~𝐴[𝑙−1], where ~ is the convolutional operator.

This definition is for when we operate on 𝑊 as the 𝑚 × 𝑛 convolution matrix with

dimensions 𝑓×𝑐×𝑚×𝑛. The second is 𝑙(𝐴[𝑙−1];𝑊) = 𝑊 ·𝐴[𝑙−1], for when we operate

on 𝑊 as our 1× 1 convolution dense matrix with dimensions 𝑓 × (𝑐×𝑚× 𝑛). Note

that in both formulations, we forgo the activation and bias components of our layer

as our editing focus is on minimizing the weights. We explore the theory behind the

30

first definition in Section 3.3, and the second definition below. The following compu-

tations are built upon the derivations in [1].

We want to choose 𝑊 0 to minimize the loss function 𝐽(𝑊,𝐴[𝑙−1]):

𝑊 0 = argmin
𝑊

𝐽(𝑊,𝐴[𝑙−1]) = argmin
𝑊

∑︁
𝑖

||𝑣𝑖 −𝑊𝐴
[𝑙−1]
𝑖 ||2 (2.6)

where 𝑊 stores a set of (𝐴[𝑙−1]
𝑖 , 𝑣𝑖) pairs across 𝑖 training examples. Assume that we

have finite set of (𝑘𝑖, 𝑣𝑖) pairs, so we collect the keys and values intro the matrices 𝑉

and 𝐴[𝑙−1], such that their 𝑖−th column is the 𝑖−th key or value. We can write our

minimization problem as:

𝑊 0 = argmin
𝑊

||𝑉 −𝑊𝐴[𝑙−1]||2 (2.7)

Notice that Eq. 2.7 is a standard least squares problem. To find the solution, we

solve for the partial 𝜕𝐽
𝜕𝑊

and set it equal to 0:

0 =
𝜕𝐽

𝜕𝑊
= 2(𝑉 −𝑊 0𝐴[𝑙−1])𝐴[𝑙−1]𝑇 (2.8)

where 𝑇 is the transpose. We can rewrite this as:

𝑉 𝐴[𝑙−1]𝑇 = 𝑊 0𝐴[𝑙−1]𝐴[𝑙−1]𝑇 (2.9)

𝑊 0 = 𝑉 𝐴[𝑙−1]† (2.10)

where † is the Moore-Penrose pseudoinverse.

31

2.1.5 Editing the weight matrix with a new value

Now, we modify 𝑊 0 to assign a single key 𝑘* to a new value 𝑣*. We can formulate

this rule rewrite as:

𝑊 1 = argmin
𝑊

||𝑉 −𝑊𝐴[𝑙−1]||2 (2.11)

subject to 𝑣* = 𝑊 1𝑘* (2.12)

Notice that this is now a constrained least squares problem. We can write this as a

Lagrangian function:

𝐽(𝑊,𝜆) = ||𝑉 −𝑊𝐴[𝑙−1]||2 + 𝜆(𝑣* −𝑊𝑘*) (2.13)

where 𝜆 is a vector of Lagrange multipliers. Again, we solve for the partial 𝜕𝐽
𝜕𝑊

and

set it equal to 0:

0 =
𝜕𝐽

𝜕𝑊
= 2(𝑉 −𝑊 1𝐴[𝑙−1])𝐴[𝑙−1]𝑇 − 𝜆𝑘𝑇

* (2.14)

We can rewrite this as:

𝑉 𝐴[𝑙−1]𝑇 = 𝑊 1𝐴[𝑙−1]𝐴[𝑙−1]𝑇 − 𝜆𝑘𝑇
* (2.15)

𝑊 1𝐴[𝑙−1]𝐴[𝑙−1]𝑇 = 𝑉 𝐴[𝑙−1]𝑇 + 𝜆𝑘𝑇
* (2.16)

We can substitute 𝑉 𝐴[𝑙−1]𝑇 from Eq. 2.9:

𝑊 1𝐴[𝑙−1]𝐴[𝑙−1]𝑇 = 𝑊 0𝐴[𝑙−1]𝐴[𝑙−1]𝑇 + 𝜆𝑘𝑇
* (2.17)

𝑊 1 = 𝑊 0 + 𝜆(𝐴[𝑙−1]𝐴[𝑙−1]𝑇)−1𝑘𝑇
* (2.18)

𝑊 1 = 𝑊 0 + 𝜆(𝐶−1𝑘*)
𝑇 (2.19)

where 𝐶 := 𝐴[𝑙−1]𝐴[𝑙−1]𝑇 . Notice that 𝐶 is the covariance matrix of the input features,

𝐴[𝑙−1]. We have now expressed our rule edit as an update, 𝜆(𝐶−1𝑘*)
𝑇 , to the pre-

32

trained weights 𝑊 0. Since 𝜆 is a vector of Lagrangian multipliers, notice that the

expression 𝜆(𝐶−1𝑘*)
𝑇 from Eq. 2.19 is a rank-one matrix with rows that are all

multiplies of (𝐶−1𝑘*)
𝑇 . Thus, we refer to this formula as a low-rank update.

Now that we have found our weight matrix update, we re-visit our optimization.

In Eq. 2.19, 𝑊 0 is our original weights, 𝑘* is computed from user input, and 𝐶 is

pre-computed. Only 𝜆, the Lagrange multiplier that scales the magnitude of each

row update in (𝐶−1𝑘*)
𝑇 , is unknown. Therefore, we use the following optimization

to find 𝜆:

𝜆1 = argmin
𝜆
||𝑣* − 𝑙(𝑘*;𝑊

0 + 𝜆(𝐶−1𝑘*)
𝑇)|| (2.20)

Once we find 𝜆1, we can update our weights as such:

𝑊1 = 𝑊0 + 𝜆1(𝐶
−1𝑘*)

𝑇 (2.21)

Instead of directly optimizing for 𝜆1 and then updating our weights, we use projected

gradient descent for this constrained optimization, where we minimize argmin𝑊 ||𝑣*−

𝑙(𝑘*;𝑊)||, then after each optimization step we project 𝑊 onto the subspace 𝑊0 +

𝜆1(𝐶
−1𝑘*)

𝑇 [1].

In the next section, we explore how we perform our constrained optimization in

practice using an example rule edit. We present two methods to compute our 𝑘* and

𝑣* for our rule edit. We also present results on how well editing performs.

2.2 Rewriting a single rule using images

To understand how model editing works and to evaluate how well our technique

generalizes to unseen scenarios, we first introduce a simple rule change: rewrite the

layer’s existing rule of wheels → wheels to now be wooden wheels → wheels. In

other words, after rewriting this simple rule, every time the memory bank of the layer

encounters wooden wheels, it should recall conventional wheels. Note that in this

example, the classifier has not been trained on any wooden wheel images. As a result,

33

Figure 2-6: An example of a simple rule change, mapping wheels → wooden wheels.
In others, we wish to edit the network such that when the network encounters wheels,
it recalls wooden wheels.

it will likely no longer classify the images consistently as "car wheel", causing targeted

misclassifications.3 The purpose of editing it to teach the classifier to understand that

wooden wheels are also wheels, such that if it encounters a wooden wheel on a car it

associates the wooden wheel with a conventional wheel, which thereby continues to

classify the image as "car wheel." Fig. 2-6 shows an example of the wheel concept from

the "car wheel" class, and the desired wooden wheel concept produced by copying

the image pixels of wooden texture (from a "wooden spoon" image) and pasting it

onto the image pixels of the wheel.

In this example, we use the ImageNet dataset [4] and we edit the pre-trained

VGG-16 classifier [24], both of which are commonly used in the classifiers setting.

2.2.1 Using images to compute 𝑘* and 𝑣*

So far, we have identified the visual concepts aligned with 𝑘* (wooden wheel) and

𝑣* (conventional wheel) we wish to edit as our rule. Now, we need to compute the

actual feature vectors 𝑘* and 𝑣* that represent both concepts. First, as described in

Section 2.1.2, we mask the concept of wheels in our training images show in Fig. 2-7.

To ensure that there are wheels in the training images, the images are selected from

the "car wheel" class. From these training images, we context match on the input

representations to produce 𝑣*, which in theory matches for the wheel concept across

3In ImageNet, the nearest class to the wheel concept is "car wheel."

34

Figure 2-7: We display examples of "car wheel" training images that the model is
pre-trained on, in the top row. In the bottom row, we display examples of the target
images with all wheels replaced with wooden wheels. To produce the target images,
we transplant the pixels of wooden texture from a spoon image onto the pixels of the
wheel.

images.

To compute 𝑘*, we copy the pixels of the wooden texture and paste it onto the

pixels of the wheel, as shown in Fig. 2-6. We then pass the photo-shopped image

through the model, and use the output representation at the desired layer to compute

the wooden wheel representation. In theory, 𝑘* now context matches for wooden

wheels across images. We refer to this method of transplanting pixels as using images

to compute 𝑘*. We also pre-compute 𝐶−1 = 𝐾𝐾𝑇 , where 𝐾 is a matrix of input keys

for 5000 randomly selected images. Applying the covariance matrix to the concept

key 𝑘* gives us our edit update, (𝐶−1𝑘*)
𝑇 .

2.2.2 Baseline experiments

To test how well our model editing technique generalizes to unseen scenarios, we de-

velop partitioned test datasets for baseline experiments. We choose three baseline

test datasets to experiment: random images, confusing images, and mislabelled im-

ages. For each of the three baselines, we test how editing changes the classification

of our training images class "car wheel" (true positive) and how it performs on other

ImageNet classes (false positive). Examples of the three baseline experiments before

35

Figure 2-8: We show sample images from the three baseline test datasets created to
evaluate the performance of rule editing. In the label of each image in the figure, the
top line displays the ground truth class label and the bottom line displays the top
predicted class along with its probability score, before editing.

editing are shown in Fig. 2-8; in the label of each image in the figure, the top line

displays the ground truth class label and the bottom line displays the top predicted

class along with its probability score.

Random images. We choose 5000 random images from the ImageNet validation

dataset. The random images dataset allows us to evaluate the performance on classes

not associated with the wheel concept, which theoretically should not be impacted

by our rule editing.

Confusing images. We design confusing images that we suspect are most

difficult for the network to classify correctly with this rule edit. We choose images

from classes most similar to the "car wheel" class, and replace the wheel concept

with the wooden wheel. We use 𝑘* to context match for the wheel concept across

all images in the ImageNet validation dataset. Of the images that context match,

we select the top 1% of images by amount of wheel concept activation. For these

matching images, we then overlay the pixels of the wooden wheel on the areas of the

image context matched as wheel to create our confusing images, similar to the the

target images of Fig. 2-7. Fig. 2-9 shows the top matching classes in our confusing

36

Figure 2-9: The top matching classes to the wheel concept, which are used in our
confusing images test dataset, ordered from left to right by the number of images per
class. Notice that our source image, the "car wheel" class has the most matching to
the wheel concept, and that many of the other classes have concepts that are circular
(like a wheel) and/or contain wheels.

images set, ordered from left to right by the number of images per class. Notice

that many of these classes have concepts that are circular (e.g. "stethoscope", "CD

player", "combination lock") or contain wheels (e.g. "minivan", "motor scooter",

"minibus"), while many classes seem to have little to no relationship with wheels.

The confusing images dataset allows us to evaluate the performance on classes closely

related to the wheel concept, thereby testing an important aspect of the collateral

effect of rule editing.

Mislabelled images. We select all the "car wheel" images from the ImageNet

validation dataset, and change the ground truth label to the "noise" class. In effect,

the car wheel images are all mislabelled. The mislabelled images dataset allows us

to evaluate the performance on how well we can correct classifications for the "car

wheel" class itself.

2.2.3 Performance

For each baseline experiment, we are interested in measuring four effects of editing:

one, if "car wheel" images are still classified as "car wheel"; two, if the wooden wheels

overlayed on the wheels of "car wheel" images are now recognized as "car wheel";

three, if there is collateral impact on the classes that also context match for the wheel

concept; and four, if there is collateral impact on these same classes, only the images

37

are manipulated such that wooden wheels are overlayed on the wheels. Respectively,

we refer to these as tests: normal (same class), manipulated (same class), normal

(other classes), and manipulated (other classes). Note that "manipulated" refers to

images where the wooden spoon is overlayed onto the wheel and "same class" refers

to the "car wheel" class.

Using Fig. 2-10 and Table 2.1, we compare the performance pre- and post-editing

for all four tests across all three baseline datasets. These results are shown using

architecture 1 from Fig. 2-3. We highlight important takeaways from this example:

Editing using images improves classification of wheels as "car wheel."

In Table 2.1, for the normal (same class) test we see that classification accuracy of

car wheels increases by nearly 30%. Recall that in the normal (same class) test, we

perform experiments on the original images with label "car wheel." Editing rewrites

the memory bank association of wooden wheel → standard wheel, and since the

remaining associations are preserved, it enables the classification as "car wheel."

Editing using images rewrites the rule as wheel → wooden wheel. As

desired, Table 2.1 shows that for the manipulated (same class) test, the classification

accuracy of wooden wheels as the "car wheel" class increases by nearly 50%. Recall

that for the manipulated (same class) test, all of the images have a wooden texture

overlayed on the wheel concept. As expected, prior to editing, the classification

accuracy of just 21.95% suggests that the network has no rule, wooden wheel →

standard wheel, to enable the classification of wooden wheels as "car wheel." This is

likely because the network has not encountered wooden wheels before during training.

The substantial increase in classification accuracy with editing suggests that editing

associates wooden wheels with standard wheels, and successfully generalizes to the

unseen scenario of wooden wheels.

In Fig. 2-10, we see that for the confusing images and the mislabelled car images,

the post-edit classifier performs better on almost all thresholds of the ROC curve.

Since performance increases with confusing images designed to share commonalities

with the wheel concept, the classifier shows some specificity in that classification is

38

Figure 2-10: Receiver-operator curves for the three baseline test datasets, where the
positive class is the "car wheel" class and the negative class is all other classes present
in the test dataset.

contextual; wooden wheels map to wheels, instead of to similarly circular objects or

other objects commonly present around wheels in images.

Editing using images still has undesirable collateral effect on other

classes not associated with wheels. Recall that we designed our rewriting

objective to minimize collateral effect on existing rules, and therefore preserve ex-

isting unrelated classifications. In Table 2.1, both normal (other classes) test and

manipulated (other classes) test show about 20% decrease in classification accuracy

for non-"car wheel" classes. This also aligns with an analysis of the post-edit ROC

curves for the random images baseline, where for both tests, the post-edit classifier

performs worse on almost all thresholds. Also, note that the overall accuracy of the

classifier drops substantially from 69.66% to 39.08%.

2.3 Rewriting a single rule using features

In Section 2.2, we rewrite a single rule wooden wheels → conventional wheels using

images. Specifically, 𝑘* is computed from a manipulated image, where image pixels of

wooden texture are overlayed on the image pixels of a wheel. In the next section, we

39

Test
Classification Accuracy

accuracy confidence

pre post pre post

Normal (same class) test 51.22 80.49 0.43 0.67
Normal (other classes) test 74.07 53.40 0.61 0.40

Manipulated (same class) test 21.95 70.73 0.16 0.55
Manipulated (other classes) test 56.48 33.44 0.42 0.23

All ImageNet 69.66 39.08 – –

Table 2.1: Changes in classification accuracy and confidence across each of the four
effects (tests) after editing.

present a new example that focuses on how the rewriting technique performs using

features, where 𝑘* is computed from overlaying wooden texture features onto wheel

features. We also compare the performance of rewriting a rule to fine-tuning.

We introduce a new example using the MIT Places365 dataset [30], and we con-

tinue to edit the pre-trained VGG=16 model from the previous wheels example.

Suppose we wish to identify whether there exist spurious correlations between the

attributes of an object, such as its texture, color, and/or pattern. If so, we are in-

terested in rewriting the classifier such that its classifications are invariant to these

spurious correlations, namely object concepts of different textures, colors, or patterns.

For this example, we are interested in rewriting the rule buses → stylized buses, as

shown in Figure 2-11. While the structure and contextual information of the bus

object are intuitively important for understanding what a bus is, in theory its paint-

work is not. To the human eye, both the original bus and the stylized bus in Fig.

2-11 are undeniably buses, but such may not be the case for a network. Although all

other features remain the same, by spuriously correlating the buses’ paintwork with

the concept, it may cause targeted misclassifications.

To identify this spurious correlation, we produce manipulated bus images. We use

a pre-trained COCO segmentation model [21] to segment ImageNet images for the

bus concept, and style transfer [9][18] a desired pattern (in this example, gravel) onto

the segmented bus. We refer to these manipulated bus images as stylized images.

40

Figure 2-11: Does the network spuriously correlate the buses’ paintwork with the
concept of the bus? We present stylized versions of the bus concept, where the
paintwork of the bus is replaced with a gravel pattern.

With this technique, we can exclusively change the object we segment for; notice that

the wheels, lights, and all other parts of the image remain the same.4Similar to the

wooden wheel images from the previous example, the network has never seen these

stylized bus images before.

2.3.1 Using features to compute 𝑘* and 𝑣*

Recall that 𝑘* and 𝑣* are vector representations of the concepts we wish to edit from

and to, respectively. In Section 2.2.1, we compute 𝑘* from the photo-shopped image

of the wooden spoon overlayed onto the wheel. We pass the photo-shopped image

through the model, and use the input representation of the layer to compute 𝑘*. In

effect, we are copying the pixels of the wooden texture and pasting it onto the pixels

of the wheel, then context matching for the wooden wheel feature representation.

In this section, we compute 𝑘* by copying the features of the stylized pattern and

pasting it onto the features of the bus.

In theory, with this method the network should be more receptive to editing only

4Certainly, it is important to note the precision with which we exclusively stylize the desired
object is limited by the performance of the pre-trained COCO segmentation model.

41

Test Dataset Number of images Misclassification error rate w.r.t.
Ground truth label

Misclassification error rate w.r.t.
Pre-edit model pred

Target class 72 97.14% 95.83%

Most commonly
misclassified classes 93 62.96% 68.82%

Table 2.2: The most commonly misclassified classes (not including the target class,
"bus station/indoor") after applying the stylized bus to all ImageNet images. We
record the significant drop in accuracy. We test how well our editing technique can
rectify these mistakes using these two test datasets.

the desired concept (thereby reducing collateral impact) because we are exclusively

transplanting the relevant features of the style.5 In contrast, in using images to

context match, the network has never seen images of stylized buses before and very

likely does not have a robust feature representation for these stylized buses. Moreover,

there is no need for us to create new photo-shopped images, such as the target images

in Fig. 2-7, to compute 𝑘*.

2.3.2 Investigating a spurious correlation

Since we are primarily interested in identifying whether the spurious correlation causes

the classifier to misclassify the stylized bus across all classes, we generate a new test

dataset that uses context matching and concept segmentation to replace buses with

the stylized version. Fig. 2-12 shows the impact of replacing the bus with the stylized

bus, by the rate of errors per class as well as the average change in probability of the

top prediction per class. As expected, our target class − "bus station/indoor" − is

most impacted, according to both the number of misclassifications and the severity

of misclassifications. Notice, however, that classes seemingly unrelated to the bus

concept (e.g. "laundromat", "phone booth") are also impacted by the stylized images.

The reduction in classification accuracy across classes suggests that there is indeed

a spurious correlation between the paintwork of the bus and the bus concept. In this

instance, we have identified the spurious correlation because of a distribution shift in
5In this example, the style we are transferring is gravel, which the network has seen before in the

context of other classes. Other styles with which we tested, such as floral patterns and fuzzy textures,
have also been seen by the network. In theory, the layer may have an existing understanding of the
stylized concepts in feature space.

42

Figure 2-12: After replacing all buses across all Places365 classes with the stylized
buses, we measure the change in error rate and the average change in top probability
score for each class.

the training and test datasets. Additionally, to test how well we can mitigate this

spurious correlation, we filter our test data with which we evaluate our technique, to

these most commonly misclassified classes, explained in Table 2.2. In Fig. 2-13, we

show examples of instances in which the classifier classifies the original image of the

bus correctly, but misclassifies the manipulated image with the stylized bus.

2.3.3 Fine-tuning

One of the most common retraining techniques, fine-tuning, modifies the parame-

ters of a pre-trained model to perform in another task [20]. In our example, we can

fine-tune the layer weights to learn to understand the stylized bus concept to correct

the misclassifications of the stylized bus. Since both our rewriting technique and

fine-tuning attempt to preserve existing representations while simultaneously incor-

porating new representations, we compare the performance of our rewriting technique

with fine-tuning.

To fine-tune, similar to our rewriting technique, we freeze all weights except for

those of the desired layer to edit, 𝑙. Freezing part of the network also prevents

overfitting. To find the fine-tuned weights of 𝑙, 𝑊 𝑓𝑡, we define our objective function

43

Figure 2-13: Examples of stylized bus images in which the classifier classifies the
original image of the bus correctly, but misclassifies the manipulated image with the
stylized bus. For each manipulated image, the top row shows the ground truth label,
the middle row shows the pre-trained model’s prediction for the original image, and
the bottom row shows the pre-trained model’s prediction for the manipulated image.

for fine-tuning as:

𝑊 𝑓𝑡 = argmin
𝑊

∑︁
𝑖

𝐶𝐸 (ℎ(𝑊 *𝑋𝑖);𝑌𝑖) (2.22)

where 𝑊 denotes the weights of the desired layer 𝑙, 𝐶𝐸(·) indicates cross entropy

loss, 𝑋𝑖 denotes the features computed by the previous 𝑙 − 1 layers for image 𝑖, ℎ(·)

describes all the layers after 𝑙, and 𝑌𝑖 is the ground truth label for image 𝑖. All images

𝑖 are manipulated images of the stylized bus. We use stochastic gradient descent to

perform the optimization.

2.3.4 Performance

Our experiments are designed to evaluate whether our rewriting technique is an ef-

fective method to edit the pre-trained network to mitigate mistakes in classifications

made by spurious correlations. We compare the performance of three ideas: rewriting

44

Figure 2-14: For both rewriting with features technique and fine-tuning, we show the
same five testing dataset images. For each image, the top row is the ground truth
label, the second row is the original model’s prediction for the unedited bus image,
the third row is the original model’s prediction for the stylized bus image (displayed),
and the fourth row is the edited model’s prediction for the stylized bus image.

using features, rewriting using images, and fine-tuning. We use the filtered test data

detailed in Section 2.3.2 for all evaluation. The results of the accuracy changes for the

target class, "bus indoor", are shown in Table 2.3 and averaged for all other classes

are shown in Table 2.4. We highlight the following conclusions:

Rewriting corrects mistakes in classification more comprehensively than

fine-tuning does. Both rewriting techniques correct significantly more errors than

the fine-tuning technique for the target class, approximately ≥ 60% more corrections,

and for the most misclassified classes, ≥ 20% more corrections. Fig. 2-14 shows

examples of corrections for rewriting with features and for fine-tuning. Notice that

for the third and fifth image, while rewriting with features correctly rewrites the

classification, fine-tuning does not. As desired with reducing the effects of spurious

correlations present in the original model, rewriting also corrects more errors with

respect to the ground truth label than with respect to the original model prediction.

45

Target class Overall ImageNet accuracyAccuracy w.r.t
Ground truth label

Errors corrected w.r.t.
Ground truth label

Accuracy w.r.t
Pre-edit model pred

Errors corrected w.r.t.
Pre-edit model pred

pre 2.86% – 4.17% – 54.03%
rewriting using features 80.00% 79.41% 80.56% 79.71% 45.60%
rewriting using images 90.00% 89.71% 88.89% 88.41% 43.44%

fine-tuning 22.86% 20.59% 23.61% 20.29% 53.96%

Table 2.3: Changes in accuracy for the target class, "bus station, indoor" with respect
to the ground truth label and the original prediction by the pre-trained model. We
compare the performance across rewriting using features, rewriting using images, and
fine-tuning.

Compared to rewriting with images, rewriting with features reduces

collateral impact on other classes, but reduces performance on target class.

As hypothesized, compared to rewriting with images, rewriting with features reduces

collateral impact on other classes. In Table 2.4, rewriting using features corrects ∼6%

more errors with respect to the ground truth label, and ∼2% more errors with respect

to the original model prediction for other classes. A likely cause is that rewriting with

features better context matches for the stylized concept, since it uses representations

the network already has. Rewriting with features also more exclusively (although,

still with notable noise) transplants the relevant features of the style variant, reducing

potential noise from other parts of the image.

However, we see a marked reduction in classification accuracy for the the target

class. In Table 2.3, rewriting using features corrects ∼10% fewer errors with respect

to the ground truth label, and ∼10% fewer errors with respect to the original model

prediction for other classes. This may be caused in part because in pasting the variant

features onto the original concept, we are replacing some of the critical features unique

to the original concept, which the variant features do not capture. These critical

features may be most useful in correct classification.

Rewriting has considerable unintended impact on other existing rules.

Certainly the most considerable limitation of rewriting is that the the cost is a marked

drop of ∼10% in overall accuracy of all ImageNet classes. It suggests that our rewrit-

ing technique causes considerable collateral damage on existing rules.

46

Other classes Overall ImageNet accuracyAccuracy w.r.t
Ground truth label

Errors corrected w.r.t.
Ground truth label

Accuracy w.r.t
Pre-edit model pred

Errors corrected w.r.t.
Pre-edit model pred

pre 37.04% – 31.18% – 54.03%
rewriting using features 59.26% 35.29% 50.54% 28.12% 45.60%
rewriting using images 55.56% 29.41% 49.46% 26.56% 43.44%

fine-tuning 42.59% 8.82% 37.63% 9.38% 53.96%

Table 2.4: Changes in accuracy for non-target classes, with the most misclassifications
from replacing the bus with the stylized version. Classification accuracies are shown
with respect to the ground truth label and the original prediction by the pre-trained
model. We compare the performance across rewriting using features, rewriting using
images, and fine-tuning.

2.4 Discussion

With minimal, but powerful intervention to the network, we are able to use our rewrit-

ing technique to (1) generalize to unseen scenarios, (2) identify spurious correlations

by enforcing a distribution shift between training and testing datasets, and (3) suc-

cessfully rewrite an existing rule to correct for misclassifications caused by spurious

correlations. Although we may not see wooden wheels or gravel-stylized buses in real-

ity, these examples demonstrate the endless ability to use human intervention to learn

about and correct undesirable observations in commonly used pre-trained networks.

Most notably, our technique forgoes the need for more than one new training images

or the need to re-train most of the network.

Editing multiple rules at once. Although this work focus on editing a single

rule, it is a simple extension of our current problem formulation to edit multiple rules

at once. To alter 𝑖 rules at once, we define our optimization as:

𝜆𝐷 = argmin
𝜆
||𝑉𝐷 − 𝑙(𝐾𝐷;𝑊

0 + 𝜆(𝐶−1𝐾𝐷)
𝑇)|| (2.23)

where 𝐾𝐷 is a matrix of keys and each row contains the update direction 𝐶−1𝑘𝑖, 𝜆𝐷

is a matrix of Lagrangian multipliers, and 𝑉* is a matrix of values. Once we find 𝜆𝐷,

we can update our weights as such:

𝑊𝐷 = 𝑊0 + 𝜆𝐷(𝐶
−1𝐾𝐷)

𝑇 (2.24)

47

Using images versus features to synthesize context match. In our

example of using features to produce the key that context matches for stylized buses,

we rely on the observation that the network has seen the gravel style before and

therefore has an internal feature representation for gravel. However, it may not

always be the case that the network has an existing representation for an unseen

variant. In this case, it may be better to use images, as we did in the wheel example,

to construct a useful representation.

A more comprehensive comparison across different concepts, datasets,

and models. Certainly more work needs to be done to thoroughly understand the

effectiveness of the rewriting technique, specifically across various visual concepts,

datasets, and models. Preliminary work suggests that our rewriting technique does

successfully edit pre-trained ResNet models [16].

Limitations to our rewriting technique. As we observed from our perfor-

mance evaluation of our rewriting technique, we still see notable collateral damage

on existing rules. In practice, we assume that we have an error-free memory, where

the keys form an orthogonal set. In reality, this is not true and ultimately contribute

to the collateral effect.

48

Chapter 3

Editing a Classifier in the Inverse

Direction

Suppose that at layer 𝑙 with weights 𝑊 , our input to the layer 𝐴[𝑙−1] has 𝑐−input

channels and our output of the layer 𝐴[𝑙] has 𝑓−output channels. Suppose we treat

this as a linear operation, then we can write the layer as:

𝐴[𝑙] = 𝑊𝐴[𝑙−1]

In the forward direction, our key ∈ 𝐴[𝑙−1] has 𝑐−channels and our value ∈ 𝐴[𝑙] has

𝑓−channels. As we progress deeper through our convolutional layers in VGG16, we

increase the number of channels to capture increasing complexity. So, we can state

that 𝑓 >= 𝑐. Recall that in Section 2.1.1, we motivate considering the rewriting prob-

lem in the inverse direction. Specifically, since our classifier reduces dimensionality,

perhaps a dense matrix that also reduces dimensions by mapping 𝑓−input channels

to 𝑐−output channels would better align in the classifier setting. Notice that in this

new mapping of 𝑓−input channels to 𝑐−output channels, we are switching what we

consider the input and the output. Therefore, in the inverse direction, our key has

𝑓−channels and our value has 𝑐−channels. Since our key ∈ 𝐴[𝑙] and our value ∈

49

Figure 3-1: In rewriting, we focus on editing the weights of layer 𝑙 only. There are
two ways to think about how we are editing: the forward direction and the inverse
direction. We formulate editing in the inverse direction as it might align better with
the classifier setting.

𝐴[𝑙−1], we can express this switch as:

𝐴[𝑙−1] = 𝑊−1𝐴[𝑙]

where, assuming 𝑊 is invertible, 𝑊−1 is the inverse of 𝑊 . To perform the edit, we

minimize our loss function on 𝑊−1. We then invert the updated weights and insert

it back into the network so that the input and output channel sizes are now the same

as the unedited network. We present both the forward and inverse directions dia-

grammatically in Fig. 3-1. Notice that the key difference is that instead of operating

on 𝑊 as we did in the forward direction, in the inverse direction we operate on the

inverse, 𝑊−1.

This chapter is an exploration of another interpretation of the rewriting technique,

the inverse direction. We experiment with various formulations for editing in the

inverse direction, and hope that future directions of this thesis continue to expand on

50

the inverse direction.

3.1 Operating on 𝑊 𝑇 instead of 𝑊−1

Our formulation in Eq. 3.1, where we operate on 𝑊−1 is problematic for two reasons.

First, notice that 𝑊 is very likely not a square matrix, in which case there exists

no regular two-sided inverse. Second, even if 𝑊 were invertible, it may be compu-

tationally intensive to compute (especially if we were to perform multiple rounds of

edits).

In the inverse direction, what we are truly interested in with regards to updating

our weights is the term that propels backpropagation in the forward direction. We

know the following to be true about the forward direction:

𝐴[𝑙] = 𝑊𝐴[𝑙−1] (3.1)

Suppose we wish to edit the rule 𝐴
[𝑙−1]
* → 𝐴

[𝑙]
* , where 𝐴

[𝑙−1]
* is our key and 𝐴

[𝑙]
* is our

value. Suppose our loss function is squared error:

𝐿 = (𝐴[𝑙] − 𝐴[𝑙]
*)

2 (3.2)

Since we are interested in what fuels backpropagation in the forward direction, we

solve for 𝜕𝐿
𝜕𝐴[𝑙−1] :

𝜕𝐿

𝜕𝐴[𝑙−1]
=

𝜕𝐿

𝜕𝐴[𝑙]
· 𝜕𝐴[𝑙]

𝜕𝐴[𝑙−1]
(3.3)

= 2(𝐴[𝑙] − 𝐴[𝑙]
*) ·𝑊 𝑇 (3.4)

= 2𝑊 𝑇𝐴[𝑙] − 2𝑊 𝑇𝐴[𝑙]
* (3.5)

In our optimization, we can assume that the initial guess 𝐴[𝑙] is random, so in expecta-

tion, 2𝑊 𝑇𝐴[𝑙] = 0. Thus, we can say that 𝑊 𝑇 directs 𝐴[𝑙−1]
* towards 𝐴[𝑙]

* . Therefore, to

perform the edit where we update the weights, we operate on 𝑊 𝑇 . Computationally,

this become much more feasible.

51

3.1.1 Method

Suppose we want to edit the rule wooden wheels → conventional wheels, where

wooden wheels is our key concept and conventional wheels is our value concept, as

we did in Section 2.2. Intuitively, we want 𝑊 𝑇 to guide the conventional wheel to

behave like a wooden wheel.

To edit the desired layer 𝑙, we use 𝐴[𝑙−1] to denote the features computed by the

first 𝑙 − 1 layers of the network, and 𝐴[𝑙] = 𝑙(𝐴[𝑙−1];𝑊
[𝑙]
0) to denote the computation

of layer 𝑙, which has pretrained weights, 𝑊 [𝑙]
0 . To edit in the inverse direction, we edit

the transpose of the weights, 𝑊 𝑇 . In other words, we now consider the computation

of layer 𝑙 as 𝑣 = 𝑙(𝑘;𝑊 𝑇
0). We wish to assign a single key 𝑘* to a new value 𝑣*. Our

objective function is:

𝑊1 =

[︂
argmin

𝑊
ℒ𝑠(𝑊) + 𝜆ℒ𝑐(𝑊)

]︂𝑇
(3.6)

ℒ𝑠(𝑊) := E𝑘

[︀
||𝑙(𝑘;𝑊 𝑇

0)− 𝑙(𝑘;𝑊 𝑇)||2
]︀

(3.7)

ℒ𝑐(𝑊) := ||𝑣* − 𝑙(𝑘*;𝑊
𝑇)||2 (3.8)

where || · ||2 denotes L2-loss.

In Algorithm 1, we present how to edit in the inverse direction using the opti-

mization presented in Eq. 3.6:

Algorithm 1 Procedure to edit in inverse direction
Input: 𝑊0 (pre-trained weights), 𝐴[𝑙−1]

𝑘 (input representation of key in rule edit,
𝐴

[𝑙−1]
𝑣 (input representation of value in rule edit)

Output: 𝑊1 (edited weights)
1: procedure
2: 𝐴

[𝑙]
𝑣 ← 𝑊0𝐴

[𝑙−1]
𝑣

3: 𝑘* ← 𝐴
[𝑙]
𝑣

4: 𝑣* ← 𝐴
[𝑙−1]
𝑘

5: function ℒ(𝑣*, 𝑙(𝑘*;𝑊 𝑇)) ◁ optimization Eq. 3.6
6: return 𝑊 𝑇

7: end function
8: 𝑊1 = (𝑊 𝑇)𝑇 ◁ transpose of optimization Eq. 3.6
9: return 𝑊1

10: end procedure

52

There are two important things to notice here: one, unlike in the forward direction,

𝑘* is based on the representation of the conventional wheel and 𝑣* is based on the

representation of the wooden wheel; and two, the optimization occurs on 𝑊 𝑇 , so

for the dimensions to align in the original network, we transpose the results of the

optimization to be our newly edited weights.

Image inversion to visualize features

To evaluate whether rewriting works, we first pass an image of a wheel through

the edited network. We then perform gradient descent optimization to compute the

image, initialized at random, that reconstructs the target output of the layer for the

wheel image. Suppose the wheel image produces a target output 𝑇 ∈ 𝐴[𝑙] and 𝐹

represents all the layers up to and including 𝑙. We can reconstruct an image 𝑥 using

the loss function:

𝑥recon = argmin
𝑥
ℒimage(𝑥) (3.9)

ℒimage(𝑥) = ||𝐹 (𝑥)− 𝑇 ||2 (3.10)

where || · || is L2-loss. We can then visualize the reconstructed image. These image

reconstructions are synonymous to image inversions in robust models, introduced in

used [7], for their representation inversion property.

Before editing, since the rule maps wheels → wheels, the reconstructed car image

should look the same; the wheels on the car still behave like wheels. In theory, with

editing, since the rule maps wooden wheels→ wheels, the reconstruction of the same

car image should have wooden wheels replacing the conventional wheels. This is

because the rule edit enforces that wheels should now behave like wooden wheels.

3.1.2 Results

We find that operating on the transpose does not sufficiently rewrite the desired rule

in the inverse direction. In Fig. 3-2, we mask the location of the wheels to produce

53

Figure 3-2: We enforce the edit, wheels → wooden wheels in the inverse direction,
in one experiment at layer 9 and in another at layer 12, and visualize the image
reconstructions.

54

the wheel key and we mask the location of the spoon to produce the wooden texture

concept. We then enforce the edit, wheels → wooden wheels in the inverse direction,

in one experiment at layer 9 and in another at layer 121, and visualize the image

reconstructions. We conclude that since the image reconstructions remain the same,

such that wheels still behave like wheels, editing 𝑊 𝑇 does not enforce the rule edit.

Since operating on 𝑊 𝑇 is insufficient, we return to the drawing board to ideate

on what else may be a sufficient approximation of 𝑊−1 to edit on.

3.2 Operating on 𝑊 † instead of 𝑊−1

To approximate the inverse, we use the most widely known generalization of the

inverse matrix, the Moore-Penrose inverse, also known as the psuedoinverse. Instead

of operating on 𝑊−1, we operate on the psuedoinverse, 𝑊 †.

3.2.1 Method

To edit the desired layer 𝑙, we use 𝐴[𝑙−1] to denote the features computed by the first

𝑙−1 layers of the network, and 𝐴[𝑙] = 𝑙(𝐴[𝑙−1];𝑊
[𝑙]
0) to denote the computation of layer

𝑙, which has pretrained weights, 𝑊 [𝑙]
0 . To edit in the inverse direction, we edit the

psuedoinverse of the weights, 𝑊 †. In other words, we now consider the computation

of layer 𝑙 as 𝑣 = 𝑙(𝑘;𝑊 †
0). We wish to assign a single key 𝑘* to a new value 𝑣*. Our

objective function is:

𝑊1 =

[︂
argmin

𝑊
ℒ𝑠(𝑊) + 𝜆ℒ𝑐(𝑊)

]︂†
(3.11)

ℒ𝑠(𝑊) := E𝑘

[︁
||𝑙(𝑘;𝑊 †

0)− 𝑙(𝑘;𝑊 †)||2
]︁

(3.12)

ℒ𝑐(𝑊) := ||𝑣* − 𝑙(𝑘*;𝑊
†)||2 (3.13)

1Layer 9 is the convolutional layer prior to the second to last max pooling layer, and layer 12 is
the last convolution layer of the network. All experiments in this chapter operate using architecture
4 from Fig. 2-3.

55

Figure 3-3: For architecture 3 in Fig. 2-3, we edit from a patch of size 3×3 to a single
pixel. If editing wheels to behave look wooden wheels (or, equivalently spoons), then
𝑘* is the same size as our output of the layer, 𝐴[𝑙], and 𝑣* is the same size as our input
to the layer, 𝐴[𝑙−1].

where || · ||2 denotes L2-loss. We use a modified version of Algorithm 1, where instead

of performing the optimization using Eq. 3.6, we use Eq. 3.11.

Dot product similarity to visualize concept similarity

Recall that our goal is for the wheels to behave like wooden wheels (or, equivalently

as spoons since the wooden texture is derived from a spoon). Fig. 3-3 show us the

edit 𝑘* → 𝑣* visually. To evaluate whether rewriting works, we want to visualize if

and how similar the wheels are to spoons, pre- and post-editing. We ask: what is

the best input layer reconstruction, 𝐴[𝑙−1]
w, recon, of the output layer representation, 𝐴[𝑙]

𝑤 ?

Visualizing 𝐴
[𝑙−1]
w, recon allows us to see the effects of editing in the inverse direction.

To do so, we first pass an image of a wheel through the edited network. The wheel

image produces a target output at layer 𝑙 of 𝐴[𝑙]
𝑤 and input at layer 𝑙 of 𝐴[𝑙−1]

𝑤 . We can

reconstruct 𝐴[𝑙−1]
w, recon, which is initialized at random, from 𝐴

[𝑙]
𝑤 using the loss function:

𝐴[𝑙−1]
w, recon = argmin

𝐴[𝑙−1]

ℒfeatures(𝐴
[𝑙−1]) (3.14)

ℒfeatures(𝐴
[𝑙−1]) = ||𝑙(𝐴[𝑙−1])− 𝐴[𝑙]

𝑤 ||2 (3.15)

where || · || is L2-loss. We can overlay the reconstructed wheel representation as a

heatmap onto the original wheel image, to visualize the salient features encoded in

56

Figure 3-4: Before any editing is performed, we show the heatmap of the reconstructed
representations and the pairwise dot product similarity between the reconstructed
representation and the target representation. We also overlay the heatmaps onto the
original image used to create the reconstruction.

the representation.

Theoretically, if editing succeeds, then reconstructed wheel feature representation

should be similar to a spoon feature representation. To find this output representation

of a spoon, we pass an image of a spoon through the edited network, which produces

an output at layer 𝑙, 𝐴[𝑙]
𝑠 . So, if editing succeeds, then 𝐴

[𝑙−1]
w, recon should be similar to 𝐴

[𝑙]
𝑠 .

We quantify similarity between two representations by calculating the dot product

similarity between corresponding pairs of points between the representations. We can

also overlay the dot product similarity onto the original wheel and spoon images to

visualize the location of similarity (or lack thereof).

We can also perform the same reconstruction using the spoon image to produce

𝐴
[𝑙−1]
s, recon. Theoretically, if editing succeeds, then the reconstructed spoon should still

remain similar to a spoon, so 𝐴
[𝑙−1]
s, recon should be similar to 𝐴

[𝑙]
𝑠 . Fig 3-4 shows us that

before editing, as expected, that 𝐴
[𝑙−1]
w, recon ≈ 𝐴

[𝑙]
𝑤 and 𝐴

[𝑙−1]
s, recon ≈ 𝐴

[𝑙]
𝑠 , while there is

little to no similarity between 𝐴
[𝑙−1]
w, recon and 𝐴

[𝑙]
𝑠 . Our goal in this example is that after

editing, 𝐴[𝑙−1]
w, recon ≈ 𝐴

[𝑙]
𝑠 .

57

Figure 3-5: After editing, same heatmaps as shown in Fig. 3-4.

3.2.2 Results

We wish to perform the edit, 𝑘* = 𝐴
[𝑙]
w, key → 𝑣* = 𝐴

[𝑙−1]
s, key where key denotes a vector.2

We perform the edit outlined in Eq. 3.12 at layer 9, with the desired goal that wheels

behave like wooden wheels. Fig. 3-5 shows the same heatmaps as Fig. 3-4, but

after we perform our edit. Notice that as desired with editing, 𝐴[𝑙−1]
w, recon is closer in

similarity to 𝐴
[𝑙]
𝑠 than before, and that most of the similarity with the spoon concept

is located around the wheel pixels. However, there is still some undesired similarity

with the spoon around the spoon pixels, suggesting that the edit is not localized to

the wheel pixels. In addition, Fig. 3-6 shows that we are unsuccessful in producing

a substantial enough rule rewrite, such that the wheels in the image reconstruction

look visually like wooden wheels.

2In other words, the feature maps have spatial information 𝑞 × 𝑟, while the keys do not. For
example, if 𝐴[𝑙−1] has dimensions 𝑐 × 𝑞 × 𝑟 and 𝐴[𝑙] has dimensions 𝑓 × 𝑞 × 𝑟, then for a 3 × 3

convolution: 𝐴
[𝑙]
w, key has dimensions (𝑓 × 3× 3)× 1. And, 𝐴[𝑙−1]

w, key has dimensions 𝑐× 1. Again, note
that this corresponds with architecture 3 of Figure 2-3, where we map from 𝑓 × 3× 3−channels to
𝑐−channels.

58

Figure 3-6: After editing, image inversions of the same wheel and spoon images.

So, in the process of editing with keys, somewhere in the pipeline of visualizing

the reconstructions of our keys, feature maps, and images, the wheel is not behav-

ing sufficientiyl like a sufficiently. The following must be true at each stage in our

visualization pipeline for editing to be considered successful:

• Keys. The reconstruction using a single given pixel of the wheel key is

approximately equal to a patch of pixels of the spoon key, 𝐴[𝑙−1]
w, recon, key[pixel] ≈

𝐴
[𝑙]
s, key[pixel : pixel + 9].

• Feature maps. At the pixel of a wheel on the feature map, the reconstruction

of the wheel representation is approximately equal to a patch of pixels of the

spoon representation, 𝐴[𝑙−1]
w, recon, pixel ≈ 𝐴

[𝑙]
s [pixel : pixel + 9].

• Images. At the pixels of wheels on the image, the reconstruction of the wheel

image is approximately equal to the spoon image, 𝑥w, recon ≈ 𝑥s.

For each of these stages, we record the distance between the reconstructed object and

each target object (i.e. wheel or spoon) at each iteration of reconstruction loss. The-

oretically, both before and after editing, since the reconstructed object is initialized

at random, it is fairly similar in distance to both the wheel and spoon. Before editing,

as we progress through optimization we should see that the the reconstructed object

looks more and more like a wheel. After editing, the reconstructed object should

look more and more like a spoon. For the keys and feature maps, we chose cosine

similarity as our distance metric to normalize for vector magnitude. The higher the

cosine similarity, the more similar the inputs are. For the images, we chose LPIPS

59

Figure 3-7: During reconstruction of keys, plot of loss over reconstruction itera-
tions and plot of cosine similarity distance between reconstructed key and target
wheel/spoon key. Note that cosine similarity for all curves does converge.

distance [28] as our distance metric, since it measures perceptual similarity between

two images. The lower the LPIPS distance, the more similar the inputs are.

Keys. Fig. 3-7 shows that before editing, the reconstruction looks closer to the

wheel (light purple curve) than it does to a spoon (dark purple curve). After editing,

the reconstruction looks closer to a spoon (dark green curve) than to the wheel (light

green curve). So, at the key stage, we are successfully editing the wheel to behave

like a spoon.

Feature maps. Fig. 3-8 shows that before editing, the reconstructed feature

map is undoubtedly similar to the wheel. After editing, the reconstructed feature

map is still much more similar to the wheel, although notably less so and more closer

to the spoon.

Images. Fig. 3-9 quantifies what we qualitatively see in Fig. 3-6: after editing,

the reconstructed images remain the same. Editing does not produce the desired

effect of wheels behaving and looking like spoons.

60

Figure 3-8: During reconstruction of feature maps, plot of loss over reconstruction
iterations and plot of cosine similarity distance between reconstructed feature map
and target wheel/spoon feature map. The reconstruction is constructed from a single
pixel of the wheel on the feature map. Note that cosine similarity for all curves does
converge.

61

Figure 3-9: During reconstruction of images, plot of loss over reconstruction iterations
and plot of LPIPS distance between reconstructed image and target wheel/spoon
images. Note that LPIPS distance for all curves does converge.

From our reconstructions, we learn that editing works for a single pixel of the key,

but not for a field of pixels of the featuremap. So, we hypothesize that there is some

interaction between adjacent pixels, which dominates in our edit. Recall from Section

3.3.2 that we generalized our rule edit to a nonlinear, convolutional layer by editing

the linear operation 𝑊 . Perhaps this solution ignores the convolutional interactions

that are fundamental to successful editing.

3.3 Treating 𝑊 as a convolutional matrix

Since 𝑙 is a convolutional layer, represented in Fig. 3-10, with a fixed stride of 1 and

a padding of 1, we write the forward pass of 𝑙, which convolves the input to the layer

62

Figure 3-10: Representation of edit to layer 𝑙. 𝑊 denotes the weights of the layer, 𝐴[𝑙]

denotes the output features computed by layer 𝑙, and 𝐴[𝑙−1] denotes the input features
computed by the previous 𝑙 − 1 layers. Note that the dimensions of the kernel are
𝑚 × 𝑛, the channel number is 𝑐, the filter number is 𝑓 , and the dimensions of the
input and output feature maps are 𝑞 × 𝑟.

with the weights using the convolutional operator ~:

𝐴
[𝑙]
𝑓,𝑞,𝑟 = (𝑊 ~ 𝐴[𝑙−1])𝑓,𝑞,𝑟 (3.16)

=
∑︁
𝑐

1∑︁
𝑚,𝑛=−1

𝐴
[𝑙−1]
𝑐,𝑞−𝑚,𝑟−𝑛𝑊𝑓,𝑐,𝑚,𝑛 (3.17)

where 𝑊 denotes the weights of the layer, 𝐴[𝑙] denotes the output features computed

by layer 𝑙, and 𝐴[𝑙−1] denotes the input features computed by the previous 𝑙−1 layers.

Note that the dimensions of the kernel are 𝑚× 𝑛, the channel number is 𝑐, the filter

number is 𝑓 , and the dimensions of the input and output feature maps are 𝑞× 𝑟. We

also ignore the non-linear activation function and bias term.

3.3.1 Least squares solution

In Section 2.1.4, we used the following objective function with linear operations to

find our pre-trained weights 𝑊 0:

𝑊 0 = argmin
𝑊

||𝑉 −𝑊𝐴[𝑙−1]||2 (3.18)

63

We can rewrite our objective function with convolutional operators:

𝑊 0 = argmin
𝑊

||𝑉 −𝑊 ~ 𝐴[𝑙−1]||2 (3.19)

where ~ is the convolutional operator. To solve for 𝑊 0, we solve for the partial of our

objective function 𝐽 with respect to the weights using the chain-rule based formula

from [13]:

𝜕𝐽(𝑊,𝐴[𝑙−1])

𝜕𝑊𝑓,𝑐,𝑚,𝑛

=
∑︁
𝑓,𝑞,𝑟

𝜕𝐽(𝑊,𝐴[𝑙−1])

𝜕𝐴
[𝑙]
𝑓,𝑞,𝑟

·
𝜕𝐴

[𝑙]
𝑓,𝑞,𝑟

𝜕𝑊𝑓,𝑐,𝑚,𝑛

(3.20)

=
∑︁
𝑞,𝑟

𝐺𝑓,𝑞,𝑟𝐴
[𝑙−1]
𝑐,𝑞−𝑚,𝑟−𝑛 (3.21)

where 𝐺𝑓,𝑞,𝑟 = 𝜕𝐽(𝑊,𝐴[𝑙−1])

𝜕𝐴
[𝑙]
𝑓,𝑞,𝑟

. Since 𝐴[𝑙] = (𝑊 ~ 𝐴[𝑙−1]), we can say that 𝐽(𝐴[𝑙]) =

||𝑉 − 𝐴[𝑙]||2. Now, we can solve for 𝐺𝑓,𝑞,𝑟 =
𝜕𝐽(𝐴[𝑙])

𝜕𝐴
[𝑙]
𝑓,𝑞,𝑟

:

𝐺𝑓,𝑞,𝑟 =
𝜕𝐽

𝐴[𝑙]
· 𝜕𝐴[𝑙]

𝜕𝐴
[𝑙]
𝑓,𝑞,𝑟

(3.22)

= −2(𝑉 − 𝐴[𝑙])
𝜕𝐴[𝑙]

𝜕𝐴
[𝑙]
𝑓,𝑞,𝑟

(3.23)

= −2(𝑉 − 𝐴[𝑙])𝛿𝑓,𝑞,𝑟 (3.24)

= −2(𝑉𝑓,𝑞,𝑟 − 𝐴
[𝑙]
𝑓,𝑞,𝑟) (3.25)

where 𝛿 is the Kronecker delta. Substituting this back,

𝜕𝐽(𝑊,𝐴[𝑙−1])

𝜕𝑊𝑓,𝑐,𝑚,𝑛

= −2
∑︁
𝑞,𝑟

(𝑉𝑓,𝑞,𝑟 − 𝐴
[𝑙]
𝑓,𝑞,𝑟)𝐴

[𝑙−1]
𝑐,𝑞−𝑚,𝑟−𝑛 (3.26)

64

We set the partial 𝜕𝐽(𝑊,𝐴[𝑙−1])
𝜕𝑊𝑓,𝑐,𝑚,𝑛

equal to 0 to solve for 𝑊 0
𝑓,𝑐,𝑚,𝑛:

0 = −2
∑︁
𝑞,𝑟

(𝑉𝑓,𝑞,𝑟 − 𝐴
[𝑙]
𝑓,𝑞,𝑟)𝐴

[𝑙−1]
𝑐,𝑞−𝑚,𝑟−𝑛 (3.27)

= −2
∑︁
𝑞,𝑟

(𝑉𝑓,𝑞,𝑟𝐴
[𝑙−1]
𝑐,𝑞−𝑚,𝑟−𝑛) + 2

∑︁
𝑞,𝑟

(𝐴
[𝑙]
𝑓,𝑞,𝑟𝐴

[𝑙−1]
𝑐,𝑞−𝑚,𝑟−𝑛) (3.28)

= −2
∑︁
𝑞,𝑟

(𝑉𝑓,−𝑞,−𝑟𝐴
[𝑙−1]
𝑐,𝑚−𝑞,𝑛−𝑟) + 2

∑︁
𝑞,𝑟

(𝐴
[𝑙]
𝑓,−𝑞,−𝑟𝐴

[𝑙−1]
𝑐,𝑚−𝑞,𝑛−𝑟) (3.29)

= −2(𝑄𝑉 ~ 𝐴[𝑙−1])𝑓,𝑐,𝑚,𝑛 + 2(𝑄𝐴[𝑙] ~ 𝐴[𝑙−1])𝑓,𝑐,𝑚,𝑛 (3.30)

= −2(𝑉 ~ 𝐴[𝑙−1])𝑓,𝑐,𝑚,𝑛 + 2(𝑄(𝑊 0 ~ 𝐴[𝑙−1])~ 𝐴[𝑙−1])𝑓,𝑐,𝑚,𝑛 (3.31)

where 𝑄 is a rotation matrix of 180∘ about the 𝑓 -axis. In other words, 𝑄 flips the

filter of the convolution. Then, we can rearrange Eq. 3.31 to say:

(𝑄𝑉 ~ 𝐴[𝑙−1])𝑓,𝑐,𝑚,𝑛 = (𝑄(𝑊 0 ~ 𝐴[𝑙−1])~ 𝐴[𝑙−1])𝑓,𝑐,𝑚,𝑛 (3.32)

= (𝑄𝑊 0 ~𝑄𝐴[𝑙−1])~ 𝐴[𝑙−1])𝑓,𝑐,𝑚,𝑛 (3.33)

= (𝑄𝑊 0 ~ (𝑄𝐴[𝑙−1] ~ 𝐴[𝑙−1]))𝑓,𝑐,𝑚,𝑛 (3.34)

Note that Eq. 3.34 comes from the property that ~ is associative. Since cross-

correlation is convolution with a flipped filter, we can say:

(𝑄𝑉 ~ 𝐴[𝑙−1])𝑓,𝑐,𝑚,𝑛 = (𝑄𝑊 0 ~ (𝐴[𝑙−1] ⋆ 𝐴[𝑙−1]))𝑓,𝑐,𝑚,𝑛 (3.35)

= (𝑄𝑊 0 ~𝑅𝐴)𝑓,𝑐,𝑚,𝑛 (3.36)

where ⋆ is the cross-correlation operator, and 𝑅𝐴 is the auto-correlation matrix of

𝐴[𝑙−1] cross-correlated with itself. We can write Eq. 3.36 using the cross-correlation

operator entirely:

(𝑉 ⋆ 𝐴[𝑙−1])𝑓,𝑐,𝑚,𝑛 = (𝑊 0 ⋆ 𝑅𝐴)𝑓,𝑐,𝑚,𝑛 (3.37)

65

Another way to write Eq. 3.37 is to say:

𝑉 ⋆ 𝐴[𝑙−1] = 𝑊 0 ⋆ 𝑅𝐴 ∀𝑊 0
𝑓,𝑐,𝑚,𝑛 ∈ 𝑊 0 (3.38)

Suppose 𝑌 := 𝑉 ⋆ 𝐴[𝑙−1]. Then, we can transform the cross-correlation 𝑌 = 𝑊 0 ⋆ 𝑅𝐴

to the frequency domain:

ℱ(𝑌) = ℱ(𝑊 0) · ℱ(𝑅𝐴) (3.39)

where ℱ(·) denotes the discrete Fourier transform, (·) denotes the complex conjugate,

and the operator · denotes element-wise multiplication. We assume that 𝑊 0 is only

real valued, so in the Fourier domain, we can say:

ℱ(𝑊 0) = ℱ(𝑌)ℱ(𝑅𝐴)
−1 (3.40)

ℱ(𝑊 0) = ℱ(𝑌)ℱ(𝑅𝐴)−1 (3.41)

𝑊 0 = ℱ−1
(︁
ℱ(𝑌)ℱ(𝑅𝐴)−1

)︁
(3.42)

where ℱ−1 is the inverse discrete Fourier transform.

3.3.2 Constrained least squares solution

Now, similar to as we did in Section , we modify 𝑊 0 to assign a single key 𝑘* to a

new value 𝑣*, where both 𝑘* and 𝑣* are vectors. We want to choose 𝑊 1 to minimize

the loss function 𝐽(𝑊,𝐴[𝑙−1]):

𝑊 1 = argmin
𝑊

||𝑉 −𝑊 ~ 𝐴[𝑙−1]||2 (3.43)

subject to 𝑣* = 𝑊 1 ~ 𝑘* (3.44)

66

Note that we can expand the convolutional operator of 𝑣* = 𝑊 ~ 𝑘* in terms of its

elements as:

𝑣*𝑓 = (𝑊 ~ 𝑘*)𝑓 (3.45)

=
∑︁
𝑐

1∑︁
𝑚,𝑛=−1

𝑘*
𝑐𝑊𝑓,𝑐,𝑚,𝑛 (3.46)

We can write the constrained least squares problem (Eq. 3.43 and Eq. 3.44) as a

Lagrangian function:

𝐽(𝑊,𝜆) = ||𝑉 −𝑊 ~ 𝐴[𝑙−1]||2 + 𝜆(𝑣* −𝑊 ~ 𝑘*) (3.47)

where 𝜆 is a vector of Lagrange multipliers. To solve for 𝑊 1, we solve for the partial

of our objective function:

𝜕𝐽

𝜕𝑊𝑓,𝑐,𝑚,𝑛

=
∑︁
𝑓,𝑞,𝑟

𝜕𝐽

𝜕𝐴
[𝑙]
𝑓,𝑞,𝑟

·
𝜕𝐴

[𝑙]
𝑓,𝑞,𝑟

𝜕𝑊𝑓,𝑐,𝑚,𝑛

+
𝜕𝐽

𝜕𝑣*
· 𝜕𝑣

*

𝜕𝑣*𝑓
·

𝜕𝑣*𝑓
𝜕𝑊𝑓,𝑐,𝑚,𝑛

(3.48)

=
∑︁
𝑞,𝑟

𝐺𝑓,𝑞,𝑟𝐴
[𝑙−1]
𝑐,𝑞−𝑚,𝑟−𝑛 + 𝜆𝛿𝑓𝑘

*
𝑐 (3.49)

=
∑︁
𝑞,𝑟

𝐺𝑓,𝑞,𝑟𝐴
[𝑙−1]
𝑐,𝑞−𝑚,𝑟−𝑛 + 𝜆𝑓𝑘

*
𝑐 (3.50)

where 𝐺𝑓,𝑞,𝑟 = 𝜕𝐽

𝜕𝐴
[𝑙]
𝑓,𝑞,𝑟

and 𝛿 is the Kronecker delta. Note that we already solved

for 𝐺𝑓,𝑞,𝑟 in Eq. 3.25. We substitute Eq. 3.36 back into Eq. 3.50 for the following

simplified expression:

(𝑉 ⋆ 𝐴[𝑙−1])𝑓,𝑐,𝑚,𝑛 = (𝑊 1 ⋆ 𝑅𝐴)𝑓,𝑐,𝑚,𝑛 + 𝜆𝑓𝑘
*
𝑐 (3.51)

We can write this in compact matrix-vector form since Eq. 3.51 must be true for all

elements of 𝑊 1:

𝑉 ⋆ 𝐴[𝑙−1] = 𝑊 1 ⋆ 𝑅𝐴 + 𝜆𝑘* (3.52)

67

We can use Eq. 3.38 to say:

𝑊 0 ⋆ 𝑅𝐴 = 𝑊 1 ⋆ 𝑅𝐴 + 𝜆𝑘* (3.53)

𝑊 1 ⋆ 𝑅𝐴 = 𝑊 0 ⋆ 𝑅𝐴 − 𝜆𝑘* (3.54)

We convert Eq. 3.54 to the Fourier space:

ℱ(𝑊 1) · ℱ(𝑅𝐴) = ℱ(𝑊 0) · ℱ(𝑅𝐴)−ℱ(𝜆𝑘*) (3.55)

ℱ(𝑊 1) = ℱ(𝑊 0)−ℱ(𝜆𝑘*) · ℱ(𝑅𝐴)
−1 (3.56)

𝑊 1 = 𝑊 0 −ℱ−1(ℱ(𝜆𝑘*) · ℱ(𝑅𝐴)−1) (3.57)

We have now expressed our rule edit as an update matrix, ℱ−1(ℱ(𝜆𝑘*) · ℱ(𝑅𝐴)−1),

to the pre-trained weights 𝑊 0.

3.4 Discussion

Much of what is presented in this chapter is experimental, and is still under work.

In future iterations, we will experiment with this new update based on convolutional

interactions, in hopes that the new update rule successfully captures the interactions

between adjacent pixels such that we can edit in the inverse direction.

68

Chapter 4

Adding a New Class

Suppose we want to extend a classifier to classify new classes. Traditionally, this

would require us to find new training data for the new classes, and either re-train

an existing network or train a new network from scratch. In both cases, there is

an upfront cost to retrieve large amounts of training data and a need for both time

and computational resources to train the network. In this section, we experiment

through various training strategies to add a new class to a pre-trained network that

substantially reduces the need for new training images, for computational resources

to train the network, and domain expertise about networks.

4.0.1 Summary of Results

In this chapter, we first present the idea of a class-specific filter, in which we train

a new filter to detect the defining object parts of a desired class to add. We then

activate only this filter in the last layer of the network to predict the new class. Then,

we formulate baseline experiments to compare the performance of our class-specific

filter, and conclude with an analysis. A highlight of our results are as follows:

• We successfully introduce a new class to a pre-trained network, using only one

new training image and re-training only a single layer of the network.

• We use valuable human knowledge about our new class to design a class-specific

filter, including teaching the filter what is not the class.

69

4.1 Class-Specific Filter

Suppose we want to add a new class to the VGG16 model trained on the MIT

Places365 dataset: centaurs. Centaurs are mythological creatures that are half-man

and half-horse. We choose to add the centaur class for two reasons. One, the centaur

class is out-of-distribution in the sense that the centaur is not a scene category in the

original MIT Places365 dataset. We can ensure that the model has never seen cen-

taur images before. Second, the centaur is by definition a composition of two distinct

object parts − a human upper body and a horse lower body − both of which are

currently found in images the model is trained on. We can utilize this observation

to see if it is sufficient for the network to have previously seen defining parts of the

class, but not the class itself.

Fig. 4-1 shows examples of a variety of centaur images, along with how the

pre-trained VGG16 model classifies these centaur images. By default, since we the

pre-trained model does not contain the centaur class, none of these images can be (or

are) classified as centaur. Our goal is to edit the classifier such that it does classify

these images as "centaur." Notice that a predominant number of these centaur images

are classified under the classes "museum-indoor" and "desert-sand", likely since the

background of these centaur images are often associated with these classes.

In a traditional CNN, multiple filters might activate to detect a single class with

each filter correlating with a visual concept. For example, Fig. 4-2 shows the top

visual concepts for the centaur image and the filters that most correlate with each

concept. A combination of activating these top visual concepts and their correlating

filters results in the top predictive classes. In our class-specific filter CNN, our aim

is to train a single additional filter to detect the defining object parts of the desired

class and to activate this filter alone to predict the desired class. Fig. 4-2 shows that

to predict the new centaur class, we train a new centaur-specific filter to detect the

silhouette of the centaur. To classify the image as centaur, only the centaur-specific

filter is activated.

In order to classify a new class, we must modify the network in two locations:

70

Figure 4-1: Classifications of selected centaur images. Since the network has no class
for centaurs, none of the images are classified correctly. With our class-specific filter,
our goal is to classify these images − and only these images − as "centaur."

Figure 4-2: Prior to editing, the unedited network activates existing filters, which
align with concepts, for the centaur image. Our goal in introducing the class-specific
filter is for maximal activation of the the centaur filter for the centaur image, and
none for non-centaur images.

71

one, introduce a class-specific filter at a desired target convolutional layer, and two,

introduce an additional logit node that corresponds to the new class with an appro-

priate set of weights in the final softmax layer. Note that since we are only adding a

class, and are not revising or removing existing classes, all other components of the

network remain the same.

4.1.1 Optimizing the objective

First, we derive the formulation of training the class-specific filter. In principle, the

ideal filter maps the defining features of a positive example of the class to a high

weight value, and maps the remaining irrelevant features - for now, all the other

features - to zero. We formulate finding the weights of the class-specific filter as a

minimization problem where we use a single positive example of the class to define the

relevant features, and multiple negative examples of what is not the class to define

irrelevant features. The negative examples of what the class is not helps force the

filter to not overfit to activate for other classes that may have similar defining features

to the class we are adding. Suppose we have a convolutional layer 𝑙 such that:

𝐴
[𝑙]
0 = (𝑊 0 * 𝐴[𝑙−1]

0) +𝐵0 (4.1)

where 𝑊 0 denotes the original weights of the layer, 𝐴[𝑙]
0 denotes the output features

computed by layer 𝑙, 𝐴[𝑙−1]
0 denotes the input features computed by the previous 𝑙−1

layers, and 𝐵0 denotes the bias term. Note that the dimensions of 𝑊 0 are 𝑓×𝑐×𝑚×𝑛,

where 𝑓 is the filter number, 𝑐 is the channel number, and 𝑚× 𝑛 are the dimensions

of the kernel. Also note that the dimensions of the input and output feature maps

are 𝑓 × 𝑞 × 𝑟.

We wish to add a single filter at convolutional layer 𝑙 such that:

𝐴
[𝑙]
1 = (𝑊 1 * 𝐴[𝑙−1]

0) +𝐵0 (4.2)

where 𝑊 1 denotes the new weights of the layer, and 𝐴
[𝑙]
1 denotes the new output

72

features computed by layer 𝑙. Note that the dimensions of 𝑊 1 are (𝑓+1)×𝑐×𝑚×𝑛,

and are the weights of a single convolutional layer. Also note that while the dimensions

of the input feature map remains the same, the output feature map has dimensions

(𝑓 + 1)× 𝑞 × 𝑟.

We want to find 𝑊 1 to minimize the loss function 𝐽(𝑊):

𝑊 1 = argmin
𝑊

𝐽(𝑊) (4.3)

= argmin
𝑊

[︃
𝐵𝐶𝐸(𝑊 *𝑋 [𝑝]||𝑌 [𝑝]) + 𝜆

𝑁∑︁
𝑖=1

𝐵𝐶𝐸(𝑊 *𝑋 [𝑛]
𝑖 ||𝑌 [𝑛])

]︃
(4.4)

where 𝐵𝐶𝐸(·) denotes binary cross entropy loss, 𝑋 [𝑝] denotes the input representation

of the positive example to the layer, 𝑋 [𝑛] denotes the input representation of a negative

example to the layer, 𝑌 [𝑝] denotes the target representation of the positive example,

𝑌 [𝑛] denotes the target representation of the negative example, 𝜆 denotes a scaling

factor applied to the loss from negative examples, and 𝑁 denotes the number of

negative examples.

4.1.2 Evaluation

To demonstrate this concept, we edit a pretrained VGG-16 network to add a centaur

class to the MIT Places Dataset, as introduced in Fig. 4-2. First, we reason through

our design of the centaur-specific filter. Then, we present a set of baseline experiments

to evaluate the performance of our techniques, and finally a quantitative analysis of

the centaur-specific filter in comparison to our baseline experiments.

4.1.3 Design of the class-specific filter

Intuitively, for maximal activation of the centaur shape, we design our centaur-specific

filter to mimic the shape in pixel space of the centaur silhouette. We use gradient

descent to minimize the objective. Fig. 4-3 shows our negative examples, which are

the five top-scoring false positives that the edited network classifies as centaur, but

are in fact of a different class, when we perform this optimization with the positive

73

Figure 4-3: We visualize the feature maps of 𝑊 * 𝑋 [𝑎] at the beginning and end of
optimization, such that the training examples mimic the target 𝑌 [𝑎]. We also use
negative examples to teach the filter what is not a centaur.

example only. Fig. 4-3 also shows that since we begin the optimization with a random

set of weights, the feature maps 𝑊 *𝑋 [𝑝] and 𝑊 *𝑋 [𝑛] at the start of optimization

are also random. Towards the end of weight optimization, as desired, we see that

the feature map 𝑊 *𝑋 [𝑝] converges to the target 𝑋 [𝑝], which is the silhouette of the

centaur, and that the feature maps 𝑊 * 𝑋 [𝑛]
𝑖 converges to the target 𝑋 [𝑛], which is

zero.

4.1.4 Baseline experiments

Since the original network has no centaur class, the final softmax layer does not

contain weights for the new centaur class. With the centaur-specific filter, the final

softmax layer weights will be a one-hot vector, with activation only for the centaur

filter. Naturally, it begs the questions: without the class-specific filter, what might

our baseline final layer weights be? And eventually, what might it say about our

ability to classify centaurs with the class-specific filter relative to our baseline? We

74

Figure 4-4: Since the original network has no centaur class, the final softmax layer
does not contain weights for the new centaur class, we formulate baseline experiments
where we select weights for the centaur class in the final layer. Here, the centaur
feature vector is the feature vector for the masked centaur shape and the compositional
feature vector is the feature vector for horse legs combined with that of the human
upper body.

propose three simple baseline experiments for comparison, all of which determine the

set of weights in the final softmax layer for the centaur class:

Random vector. We choose a vector with random weights sampled from a

standard normal distribution.

Class feature vector. We choose the normalized feature vector that has context

matched to the new class object at a later convolutional layer. In this example with

the centaur, we find the feature vector for the centaur object using the manual mask

of the entire centaur shape in the centaur image shown in Fig. 4-4. Note that since

this image is out-of-distribution, it is likely the network has no robust feature vector

for the centaur.

Compositional class feature vector. We combine the feature vectors that

have context matched to the defining features of the new class object. In this example

with the centaur, we might describe a centaur as a human face and chest along with

a horse body, legs, and tail. As shown in Fig. 4-4, we find the feature vectors for each

component from a single image belonging to a class the network is trained on, add

them in feature space, and normalize the final vector to produce a single compositional

75

centaur feature vector.

Our goal with adding a new class is two-fold: one, we wish to maximize the

true positive rate, in other words classify all the centaurs as centaurs; and two, to

minimize the false positive rate, in other words, to not classify the remaining images

as centaurs. In other words, we wish to minimize the collateral effect on the original

classes since we wish for the original classifications to remain the same. To measure

the relationship between true positive and false positive rates, we use the area under

the receiver-operator curve (ROC), where the positive class is the newly added class

and the negative class is all of the remaining classes combined. Since the positive

and negative class sizes are imbalanced, we allow each sample to provide a weighted

contribution, relative to class size, to the overall score. Note that a higher ROC score

indicates more correct predictions. By nature of our goal to add a new class, there

exists no prior validation dataset for this new class. To build a validation dataset for

evaluation, we scrape Google Search for sixty centaur images, shown in Fig. 4-1, and

manually verify that these are indeed centaurs.

Fig. 4-5 motivates the promise behind a class-specific filter; the relative mediocre

performance (i.e. 𝑅𝑂𝐶 ≈ 0.6) of both the centaur feature vector and the composi-

tional centaur feature suggest that the later layer filters in the network are not greatly

associated with centaurs or a combination of the components of centaurs. Instead,

we need to build a filter tuned to detect a centaur to be able to classify it well. For

future experiments, we use the highest scoring baseline method - the compositional

feature vector - as our primary baseline comparison.

4.1.5 Analysis of the class-specific filter

In this section, we add the centaur-specific filter to the network along with final layer

weights for the centaur class as a one-hot vector, activated only for the newly added

centaur-specific filter. Notice that in our filter optimization objective, Eq. 4.4, we

use 𝜆 as a scaling factor to regulate the contribution of the negative examples to the

overall loss. Fig. 4-6 shows the ROC curves and loss over optimization steps for an

experiment that changes 𝜆 from 0 (i.e. no negative examples used to optimize the

76

Figure 4-5: Receiver-operator curves for the baseline experiments. The compositional
feature vector performs better than the others on almost all thresholds, so we use this
as our baseline going forward.

filter) to 0.05 using the top five false positive images shown in Fig. 4-3. Compared to

the baseline of the compositional feature vector with 𝑅𝑂𝐶 = 0.54, we see a substantial

increase to 𝑅𝑂𝐶 = 0.82 with the class-specific filter at 𝜆 = 0. In fact, the centaur-

specific filter for all 𝜆 values are higher than the baseline, demonstrating the utility

of our approach in using a class-specific filter to edit an existing network to include

a new class.

Fig. 4-7 looks at the classification of the validation dataset with the class-specific

filter model, which is the set of images seen earlier in Fig. 4-2. Out of the 59

centaur images, we are able to classify 24 images (≈ 40%) correctly as centaur; of the

remaining classified incorrectly, ≈ 80% are classified in the same top false positive

classes seen earlier in Fig. 4-1. However, notice that these false positive images tend

to be renderings without contextual background (e.g. a white background) or clip

art. It is possible that the model relies on contextual scene information, such as

nature in the background, and/or that the model is unable to process clip art well,

if having never seen clip art images before. The relatively high ROC score of our

edited classifier suggests that the class-specific filter edited classifier minimizes false

negatives; Fig. A-1 in the Appendix shows that a naively edited model with a low

77

Figure 4-6: Shows the ROC curves and loss over optimization steps for an experiment
that changes 𝜆 from 0 (i.e. no negative examples used to optimize the filter) to 0.05
using the top five false positive images shown in Fig. 4-3.

78

Figure 4-7: Classification of the validation dataset with the class-specific filter model,
which is the set of images seen earlier in Fig. 4-1.

ROC score incorrectly classifies almost all images as centaur.

In addition to seeing a substantial performance increase with the centaur-specific

filter in Fig. 4-6, we also see that the inclusion of negative examples does improve

how well we predict centaurs. Just as important as teaching the network what is a

centaur, the intention behind using negative examples is to help teach the network

what is not a centaur. The question now is: what other negative examples might we

use and how many should be used? Fig. A-2 in the Appendix shows the performance

of the class-specific filter when using random images sampled from the MIT Places

validation dataset as negative examples.

4.2 Discussion

With minimal, but powerful intervention to the network, we are able to successfully

introduce a new class to a pre-trained network, forgoing the need for more than one

79

new training image or the need to re-train the network itself.

Optimal filter. In our optimization of the filter, Eq. 4.4, we intuitively

choose our target 𝑌 [𝑝] to be the centaur silhouette. While the centaur silhouette is an

informative and promising target, it may not capture the most valuable information:

what makes a centaur unique? At least to reduce the false positive predictions, it

is useful to find the parts or features of the class that are unusual or distinctive to

the class. Moreover, careful design of the target provides an important opportunity

for human input to intervene with the network to adjust what the network currently

says. Other possibilities for the target include: a mask of the unique parts of the

centaur, e.g. the location at which the human part transforms into the horse part, or

a max pooling of the centaur shape.

Separate optimization for final layer weights. In our current implemen-

tation, we assume that we only need the centaur-specific filter to detect centaurs.

Instead, it is likely that including existing filters, such as ones chosen by human input

that correlate with desirable visual concepts or ones chosen by the network through

another optimization of the final layer weights, improves classification ability.

Choice of negative examples. Certainly the type of negative examples, and

likely the number of negative examples greatly affects the performance of the filter.

More experiments need to be conducted to better understand the role and effect of

negative examples in this optimization.

Limitations to our technique. At present, our technique is a type of one-shot

learning; in other words, we still require a single example of the class from which we

build the target filter. While we consider human input in the form of designing the

target filter to be undeniably valuable, there is certainly a cost to this intervention.

Although our current method only requires human input to mask the relevant features

of the single class image for a working class-specific filter, users might find that more

subtle design choices must be made to find the optimal class-specific filter. Certainly

future iterations have the potential to automate these human decisions further.

80

Chapter 5

Conclusion

In this thesis, we have shown how to update a classifier to our desire using basic

intuitive knowledge about how humans classify the world. Doing so allows us to

reduce the reliance on computational resources, new training images, and domain

knowledge. We began by examining the forward direction of rule rewriting. We

explore how to use the rewriting technique to expand a class to unseen scenarios, how

to identify spurious correlations in our model, and how to use rewriting to significantly

reduce the effects of a spurious correlation.

We explore the two fundamental ideas to rewriting, namely that we can think of

our layer’s weights as a memory bank that stores and associates two feature repre-

sentations together and that visual concepts align with these feature representations.

As a result, we can use human knowledge about visual concepts to directly formulate

the feature representations to edit.

Next, we explore another interpretation of the rewriting technique, the inverse

direction. The inverse direction poses unique challenges with computational resources,

but is a promising avenue to update rules specifically in the classifier setting. Finally,

we conclude with how to use the fundamental ideas discussed prior to add an entirely

new class to our model.

81

5.1 Related work

In this section, we highlight related work and how it compare to our rewriting tech-

nique:

Transfer learning. Transfer learning transfers knowledge from one domain

to another domain [31]; in practice, domain adaptation adapts the source domain

to reduce the difference between domains, one-shot or few-shot learning generalizes

using only a few samples [27], meta-learning trains on a variety of learning tasks, such

that it can solve new learning tasks using only a small number of training samples

[8], and fine-tuning updates model parameters to a specific set of images [17]. All

of these techniques require substantial training time with additional annotated data,

or extend classification to a particular set of images. Our rewriting technique only

requires re-training a single layer of the network and directly modifies the rules of the

network, not the pre-trained images, to extend classification.

Identifying and resolving spurious correlations. [26] designs a reward

function that incentivizes an agent to do an intervention to find errors in the causal

model. [10] manipulates the objective function to learn a disentangled representation.

[2] proposes variations of auto-encoders that lead to better disentanglement. Similar

to the techniques in transfer learning, ideas in this space focus on revising the op-

timizer to generate new models, as opposed to post-hoc changes to the pre-trained

model.

82

Appendix A

Figures

83

Figure A-1: Classifications produced by an edited model that uses no class-specific
filter and uses the compositional centaur feature vector as the centaur class’s final
layer weights, incorrectly classifies almost all images as centaur.

84

Figure A-2: Shows the ROC curves and loss over optimization steps for an experiment
that changes 𝜆 from 0 (i.e. no negative examples used to optimize the filter) to 0.05
using 100 randomly selected non-centaur images from the validation dataset.

85

Bibliography

[1] David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and Antonio Torralba.
Rewriting a deep generative model, 2020.

[2] Christopher P. Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters,
Guillaume Desjardins, and Alexander Lerchner. Understanding disentangling in
-vae, 2018.

[3] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias
in recidivism prediction instruments, 2017.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

[5] Finale Doshi-Velez and Been Kim. Towards A Rigorous Science of Interpretable
Machine Learning. arXiv:1702.08608 [cs, stat], March 2017. arXiv: 1702.08608.

[6] Marat Dukhan. The indirect convolution algorithm, 2019.

[7] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon
Tran, and Aleksander Madry. Adversarial robustness as a prior for learned rep-
resentations, 2019.

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning
for fast adaptation of deep networks, 2017.

[9] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A neural algorithm
of artistic style, 2015.

[10] Benoit Gaujac, Ilya Feige, and David Barber. Learning disentangled representa-
tions with the wasserstein autoencoder, 2020.

[11] Marzyeh Ghassemi, Tristan Naumann, Peter Schulam, Andrew L. Beam, Irene Y.
Chen, and Rajesh Ranganath. A review of challenges and opportunities in ma-
chine learning for health, 2018.

[12] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and
Lalana Kagal. Explaining Explanations: An Overview of Interpretability of Ma-
chine Learning. arXiv:1806.00069 [cs, stat], February 2019. arXiv: 1806.00069.

86

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[14] Bryce Goodman and Seth Flaxman. European union regulations on algorithmic
decision-making and a "right to explanation". 2016.

[15] Boris Hanin and David Rolnick. Complexity of linear regions in deep networks,
2019.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition, 2015.

[17] Ahmadreza Jeddi, Mohammad Javad Shafiee, and Alexander Wong. A simple
fine-tuning is all you need: Towards robust deep learning via adversarial fine-
tuning, 2020.

[18] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu, and Mingli
Song. Neural style transfer: A review, 2017.

[19] Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Ashesh Rambachan.
Algorithmic Fairness. AEA Papers and Proceedings, 108:22–27, May 2018.

[20] Zhizhong Li and Derek Hoiem. Learning without forgetting, 2016.

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr
Dollár. Microsoft coco: Common objects in context, 2014.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning, 2013.

[23] Stephan Rabanser, Stephan Günnemann, and Zachary C. Lipton. Failing loudly:
An empirical study of methods for detecting dataset shift, 2018.

[24] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition, 2014.

[25] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient processing
of deep neural networks: A tutorial and survey, 2017.

[26] Sergei Volodin, Nevan Wichers, and Jeremy Nixon. Resolving spurious correla-
tions in causal models of environments via interventions. 2020.

[27] Yaqing Wang, Quanming Yao, James Kwok, and Lionel M. Ni. Generalizing
from a few examples: A survey on few-shot learning, 2019.

[28] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang.
The unreasonable effectiveness of deep features as a perceptual metric, 2018.

87

http://www.deeplearningbook.org

[29] Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba. Interpreting deep
visual representations via network dissection, 2017.

[30] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.
Places: A 10 million image database for scene recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2017.

[31] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. A comprehensive survey on transfer learning,
2019.

88

	Introduction
	Understanding deep neural networks
	Rewriting model behavior
	Motivations for rewriting classifiers
	Overview of results

	Editing a Classifier in the Forward Direction
	Summary of Results
	Method
	Viewing a convolutional layer as a memory bank
	Alignment between feature vectors and visual concepts
	Defining our editing objective
	Finding the weight matrix to edit
	Editing the weight matrix with a new value

	Rewriting a single rule using images
	Using images to compute k* and v*
	Baseline experiments
	Performance

	Rewriting a single rule using features
	Using features to compute k* and v*
	Investigating a spurious correlation
	Fine-tuning
	Performance

	Discussion

	Editing a Classifier in the Inverse Direction
	Operating on WT instead of W-1
	Method
	Results

	Operating on W instead of W-1
	Method
	Results

	Treating W as a convolutional matrix
	Least squares solution
	Constrained least squares solution

	Discussion

	Adding a New Class
	Summary of Results
	Class-Specific Filter
	Optimizing the objective
	Evaluation
	Design of the class-specific filter
	Baseline experiments
	Analysis of the class-specific filter

	Discussion

	Conclusion
	Related work

	Figures

