
Inferring the Existence of Geometric Primitives to
Represent Non-Discriminable Data

by

James A. Peraire-Bueno

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Aeronautics and Astronautics

March 18, 2021

Certified by .
Nicholas Roy

Professor, Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Zoltan Spakovsky

Professor, Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Inferring the Existence of Geometric Primitives to Represent

Non-Discriminable Data

by

James A. Peraire-Bueno

Submitted to the Department of Aeronautics and Astronautics
on March 18, 2021, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

In this thesis, we set out to find an algorithm that uses only geometric primitives to
represent an input pointcloud. In addition to the problems faced in general primi-
tive fitting, non-discriminable data presents additional data association challenges.
We propose to address these challenges by estimating the existence rather than pa-
rameters of geometric primitives, and explore various options to do so. We first
explore a sampling-based Markov-Chain Monte-Carlo approach together with a
ray likelihood model. We then explore a neural network approach and finish by
presenting a method to make the Chamfer distance differentiable with respect to
primitive existence.

Thesis Supervisor: Nicholas Roy
Title: Professor, Aeronautics and Astronautics

3

4

Acknowledgments

Thank you to my family; my mom for being there whenever I needed anything

- emotional or edible, my dad for his support and advice, and my brothers Olek

and Anton for their friendship. I’d like to thank my friends and the staff at the

MIT Sailing pavilion - they’ve been a lot of fun to be around! Thank you as well to

all of the members of RRG, and in particular to Kyel Ok, Katherine Liu, and Nick

Greene for all of the help and the many discussions they have provided over the

past couple of years. Finally, I’d like to thank Nick Roy for his guidance, questions,

suggestions, and advice.

Thank you all,

James

5

6

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Challenges . 18

1.2.1 Primitive identification . 19

1.2.2 Data association . 19

1.3 Thesis overview . 21

2 Related Work 23

2.1 Volumetric and mesh representations 24

2.2 Data Association . 26

2.3 Reasoning over varying number of entities 27

2.4 Primitive fitting and scene reconstruction 29

2.5 Pointcloud learning . 32

2.6 Differentiating discrete functions . 34

2.7 Registration . 35

3 General overview 37

3.1 Preliminaries . 37

3.2 Relaxing the exact optimization . 40

4 Sampling methods 43

7

4.1 Intuition . 43

4.2 Approach . 44

4.2.1 Measurement model . 44

4.2.2 Combinatorial optimization and implementation details . . . 50

4.3 Results . 53

5 Learning primitive existence 63

5.1 Training a general neural network . 64

5.2 Probabilistic chamfer distance . 67

5.2.1 Smoothing existence values and an expected chamfer distance 68

5.2.2 Probabilistic chamfer primitive loss 70

5.3 Probabilistic chamfer point loss . 71

5.4 Implementation details . 72

5.4.1 Set Abstraction Layers . 72

5.5 Training and Results . 73

5.6 Discussion . 76

6 Inferring primitive scenes with a probabilistic chamfer distance 79

6.1 Revisiting the probabilistic chamfer distance 80

6.1.1 Probabilistic primitive loss . 80

6.1.2 Probabilistic point loss . 80

6.1.3 Runtime analysis . 82

6.2 Approximations . 83

6.2.1 Reducing the degree of the polynomial 83

6.2.2 Reducing the number of variables in the polynomial 84

6.3 Results and Discussion . 84

6.3.1 Manipulation . 86

6.3.2 Navigation . 87

8

6.3.3 Registration . 91

7 Conclusion 97

9

10

List of Figures

1-1 Primitives fit to a floor plan of a simple room 16

1-2 Multiple valid ways to fit primitives to the same scene 20

1-3 Fitting primitives by discretizing space 21

2-1 A figure taken from SPFN [47] . 30

2-2 Figures taken from PointNet [16] and PointNet++ [63] 33

2-3 A figure taken from Teaser++ [84] . 35

3-1 A diagram of a primitive type . 37

3-2 Fitting primitives by discretizing space 41

4-1 Computing point likelihoods . 46

4-2 A numerical example of the ray-likelihood model 49

4-3 A working toy example of the ray-likelihood model 55

4-4 A heatmap of the likelihoods for a toy example 57

4-5 A real-world example where the ray-likelihood model fails 58

4-6 A toy example demonstrating the weaknesses of the ray-likelihood

model . 60

4-7 Timing results for a scene evaluation using the ray-likelihood model 61

5-1 Sample scenes used to train our neural network 74

5-2 Test accuracies for various primitive alignments 76

5-3 Network training time . 77

11

6-1 Fitting geometric primitives to a pipe 87

6-2 The effects of discretization on error and solve time 88

6-3 The effects of α on error and solve time. 89

6-4 Primitives fit to a hallway using a Python implementation 90

6-5 A histogram of the mean error using a Python implementation 91

6-6 Primitives fit to a hallway using a C++ implementation 92

6-7 A histogram of the mean error using a C++ implementation 93

6-8 Using the probabilistic chamfer loss for registration 94

6-9 Using the probabilistic chamfer loss to register multiple primitives

at once . 94

12

List of Tables

1.1 Table of existing approaches . 17

3.1 Various definitions used in our work 42

4.1 Loglikelihoods of various configurations in a toy example 60

5.1 Test accuracies for various training and test sets 75

13

14

Chapter 1

Introduction

As the autonomous systems we design become more complex, it becomes increas-

ingly important for us to choose efficient representations to perceive and reason

about the world. In this thesis, we study the problem of perception. In particular,

we aim to find efficient representations to model given input scenes, where a scene

refers to the sensor measurements corresponding to given environments. In this

work, we present methods that use geometric primitives to represent entire scenes

and in doing so address a gap in the existing literature. This chapter first supplies

a motivation for our problem, and explains why existing work fails to solve it. We

then address the difficulties in solving our problem, and conclude by providing an

overview of the rest of the work.

1.1 Motivation

Geometric primitives are one useful representation used in robotic perception [56,

57, 86, 48, 47]. A geometric primitive (or just primitive) is a manifold embedded

in euclidean space. By using generic primitives, various parts of a scene can of-

ten be represented using the same manifold representation. Due to this re-use,

15

Figure 1-1: A floor plan of a simple room. Rather than use the 47 red points to
reason about tangency or occupancy, we use the seven blue lines. The advantage
gained in higher dimensional spaces is more extreme, as the number of points
increases exponentially with each additional dimension.

representing a scene with geometric primitives is space efficient. For one, this

space efficiency allows for fast and bandwidth-limited inter-agent communication.

But perhaps more importantly, geometric primitives are useful as they provide a

parametrized understanding of the world. A parametrized model simplifies the

use of priors such as plane-object tangency constraints seen in Plane SLAM [86] or

state-space features used to model constraints in work such as CBN-IRL [59]. We

provide a simple two-dimensional example of primitives being used to represent

a scene in figure 1-1.

Existing perception methods either fail to represent an entire scene or resort to us-

ing overparametrized representations. Algorithms like FLaME [27] and Octomap

[33], which respectively store meshes and octree voxel grids, are overparametrized.

Their internal representations store many parameters, often more than would be

required to sufficiently represent a given scene for planning or navigational pur-

poses. Overparametrized representations make it difficult to reason about the

scene they represent in any capacity beyond collision avoidance. On the other

16

Representation Scene reconstruction Overparametrized
Meshes [27, 61, 71] Full Yes

Volumetric [33, 35, 80] Full Yes
Hybrid [39, 87, 86] Full Partly

CSG [43, 32, 73] Incomplete No
Missing (Our goal) Full No

Table 1.1: Notably missing from this table is an algorithm able to capture an entire
scene without relying on overparametrized representations such as meshes, voxel
grids, or point clouds.

hand, techniques such as constructive solid geometry (CSG) [43, 32, 73] provide

accurate and efficient reconstructions at the cost of being prohibitively expensive

to construct for large and complex scenes. Hybrid approaches [39, 87, 86] use

parameter-efficient primitive representations where possible, but resort to using

overparametrized pointclouds elsewhere. These details are summarized in table

1.1. Notably missing is an algorithm able to capture an entire scene without rely-

ing on any overparametrized representations.

The main goal of this work is to bridge this gap; we wish to fully represent an

input scene using only geometric primitives. This process of choosing primitives

to represent a scene is referred to as fitting primitives to a scene. In the context of

this work, a scene is a pointcloud sampled from an environment. We can choose

to fit primitives to a part of a scene, in which only some subset of the pointcloud

is considered. Likewise, a full or complete primitive fitting is a fitting in which the

entire pointcloud is considered.

17

1.2 Challenges

To fully understand why existing methods are unsatisfactory, it is important to

make a distinction between things and stuff. Borrowing from Forsyth et al. [24],

we use the term thing to refer to bounded objects with semantic meaning. A thing

is an object we may care about: a car, a book, a ball, a chair. Things tend to have

clear boundaries and “easy” data associations, at least for a human being. Given

two images of a book or a bicycle, one would, with reasonable certainty, be able to

identify whether they are the same book or bicycle. We refer to these correspon-

dences between measurements and internal representations as the data association

of our measurements. On the other hand, stuff is defined by textures. Stuff has

uncertain boundaries with no distinctive shape, and the data association for stuff

is generally quite difficult; it is difficult to identify two wall segments as part of

the same wall, or two sections of shrubbery as part of the same shrub. But even

if stuff is not semantically relevant to a task at hand, it must still be tracked for

collision avoidance or for constraint enforcement. After all, it is no better to crash

a quadrotor into a wall than it is to crash it into a car.

Existing primitive-based perception algorithms are able to use primitives to rep-

resent the things in a scene, but they are not able to fully represent the stuff. The

methods that do fit primitives to stuff rely on strong assumptions about their en-

vironment [38, 87, 86]. Existing primitived-based perception methods rely on se-

mantic information to pick out meaningful objects in the world [39, 56]. While

relatively successful at mapping bounded objects with semantic meaning, these

approaches are not able to fit primitives to the stuff in the scene that lacks this

meaning. Most scenes contain both things and stuff, so this weakness is unaccept-

able if we wish to fully reconstruct input scenes.

18

Two challenges make it particularly difficult to fit primitives to stuff: the problem

of primitive identification and the problem of data association. The first challenge

of primitive identification, requires us to choose the number and types of primi-

tives to fit to a given scene. The second challenge of data association requires us to

determine the mapping between sensor measurements and the primitives which

represent those measurements.

1.2.1 Primitive identification

Choosing the number and type of primitives to fit to things is relatively straight-

forward with the help of neural network object detections. A neural network can

identify the things in the scene, and a perception system can fit either a general

volumetric primitive or a primitive specific to the detected object [39, 56]. In either

case, the number of primitives to fit is unambiguous: the system fits one primitive

per detection.

On the other hand, neural networks only provide semantic labelings for pixels or

points corresponding to stuff. The task of grouping labeled points into separate

primitives is therefore left up to us. Without detections, we must estimate the

number of primitives in a scene as well as their shapes.

1.2.2 Data association

Because the data associations (groupings) are not provided, we must estimate them

ourselves, and this estimation is particularly difficult for stuff. For stuff, the data

associations and the primitive parameters are inherently linked. Because stuff is

19

Figure 1-2: Two different, but equally valid ways to fit primitives to a winding
road. Notice that while the two orange dots belong to different primitives on the
green fitting, they belong to the same primitive on the purple fitting.

defined by unbounded textures [24], one patch of stuff can be nearly indistinguish-

able from a different one. As a consequence, data associations for stuff must rely

heavily on metric information. The primitive parameters depend on the data asso-

ciations, which, for stuff, depend on the distances between the primitives and the

measurements, which in turn depend on the primitive parameters themselves.

Furthermore, stuff often has many possibly correct primitive fittings, and therefore

often has many correct corresponding data associations. Consider an example in

which we must fit primitives to a road, such as in figure 1-2. Both fittings use nine

primitives and appear qualitatively indistinguishable. For all practical purposes,

both fittings are equally correct. But we can also consider the two orange points

measured on this road. In one fitting, the two points belong to the same primitive,

but in the other they belong to different primitives. In the same way, both data

associations are equally correct.

20

Figure 1-3: By first discretizing space, and then determining which primitive pa-
rameter combinations exist, we are able to represent an input pointcloud scene.

Existing approaches to the primitive identification and data association challenges

are insufficient for our purpose of fitting primitives to stuff. Existing iterative clus-

tering approaches to the primitive identification problem tend to rely on a good

initialization and are often not flexible enough to allow for a varying number of

primitives. Approaches meant to explicitly reason about the number of objects

restrict the form of the clusters to simple distributions such as the Normal distri-

bution [15]. Additionally, most prior work in data association makes assumptions

about the existence of unique and correct associations [4, 11, 21].

1.3 Thesis overview

The approach at the core of this thesis is to tackle the two challenges presented

by inferring over the space of primitive existence rather than by inferring over the

21

space of primitive parameters. To do so, we discretize the world into some finite

set of primitives with fixed parameters. By fixing the primitive parameters, we

remove their dependence on the data association. By then inferring which subset

of these discretized primitives exist, we allow for a flexible number of primitives,

sidestepping the primitive identification problem. A visualization of our approach

can be seen in figure 1-3. Elaborating on the words of Vien and Toussaint [77], who

write that “... the problem of reasoning with uncertainties over existence of objects

is a fundamental type of uncertainty in real worlds that is not really nicely repre-

sented in practical models", we propose a question to help guide us through the

remainder of this work:

How can we infer the existence of geometric primitives, and is inferring exis-

tence useful when fitting primitives to non-discriminable data?

The rest of this thesis is structured in the following manner: Chapter 2 describes

the existing work related to our problem and Chapter 3 introduces key ideas and

definitions central to the technical approaches. In Chapter 4, we derive from first

principles a probabilistic model for primitive fitting, and show how we can use

sampling techniques to optimize over it. Chapter 5 is about training a pointcloud

based neural network to identify geometric primitives in a given scene. In Chapter

6, we revisit the loss function used in training the network in Chapter 5 and derive

an algorithm that allows for its efficient optimization using gradient methods. Fi-

nally, we conclude this work in Chapter 7.

22

Chapter 2

Related Work

Recall that the goal of this work is to use only geometric primitives to fully repre-

sent an input scene. In Section 2.1 we cover alternative possible representations. In

Chapter 1, we explained that there are two primary challenges when fitting primi-

tives to stuff. One challenge is the problem of data association. Section 2.2 contains

current work in that area, albeit generally applied to things rather than stuff. The

other challenge is that the number of primitives to fit is uncertain, and must be rea-

soned about. We list work concerned with explicitly reasoning about a varying

number of objects in Section 2.3, and cover existing primitive fitting approaches in

Section 2.4. One of our approaches to primitive fitting is built on top of the Point-

Net++ architecture [63]. We cover various pointcloud learning works in Section

2.5. A different approach we use is based on differentiating a discrete function,

and Section 2.6 contains other papers that differentiate discrete functions. Finally,

Section 2.7 is about pointcloud registration: one of the evaluation metrics used in

Chapter 6.

23

2.1 Volumetric and mesh representations

We wish to represent the world through geometric primitives, but various other

approaches have also been successful for various applications. Moravec and Elfes

[54] pioneered an occupancy grid model in 1985, in which space is partitioned into

a grid of volumetric cubes called voxels. Each voxel can be marked as occupied,

unoccupied, or unknown. Some work combines occupancy grids with other rep-

resentations or algorithms. Thrun [74] and Konolidge et al. [40] combined occu-

pancy grids with topological approaches by locally navigating using voxel grids

but planning high-level objectives on a topological map. Wong et al. [83] intro-

duced a method which maintained separate voxel grid and geometric primitive

representations and merged them at query time. Recently, Muglikar et al. [55]

used voxel grids instead of keyframes for visual SLAM.

A space-efficient occupancy grid formulation was given in Octomap [33], which

used octrees to keep the voxel grid compact. Octomap was used in various robotics

applications such as Pushbroom Stereo [9] or work done by Schmid et al. [67]. Var-

ious dense occupancy grid reconstructions use GPUs (Graphics Processing Units)

with RGBD (RGB-Depth) cameras. KinectFusion [35] fused measurements from a

low-cost Microsoft Kinect using a voxelized representation of the truncated-sign

distance function (TSDF), and was extended by Chen et al. [17] to realtime perfor-

mance using a memory efficient hierarchical data structure rather than a regular

voxel grid. Whelan et al. [80], also using the TSDF, stored a rolling voxel grid that

moved with the camera pose similar to the approach used by Chen et al., but ad-

ditionally provided a method to mitigate drift and enforce global consistency.

An alternative to volumetric representations are mesh representations. Various

works use meshes as lightweight reconstructions of full scenes for navigation. Pil-

24

lai et al. [61] used piecewise planar meshes for semi-dense reconstruction from

stereo images. Various approaches [27, 71] reconstructed a scene into a lightweight

mesh using monocular vision by creating and regularizing a two-dimensional De-

launay triangulation. Rosinol et al. [66] built a mesh in a VIO scene by coupling

mesh regularization and state estimation to allow them to smooth the mesh over

multiple frames. Not only can meshes be fit to entire scenes, they can also be fit

to individual objects. ProFORMA [58] used a 3D Delaunay tetrahedralization of

landmark points to create a textured surface mesh of an object. Li et al. [44] used

a structured chamfer distance to train an autoencoder that fits articulated mesh

models to point clouds of things.

Certain dense reconstruction approaches iteratively expanded small surface patches

called surfels [29, 79, 41]. Wilkowski et al. [81] used an octree for efficient surfel

map storage. A different deep learning approach by Groueix et al. [28] factorized a

thing’s surface representation into a template and a global feature vector and used

the chamfer distance to fine tune outputs. While useful, these volumetric, mesh

and surfel methods are significantly overparametrized compared to our work.

Finally, approaches such as those presented by Laidlaw et al. [43], Hoffmann et

al. [32], or Thibault and Naylor [73] represented objects as sums or differences of

individual polyhedra. This technique, called constructive solid geometry (CSG),

has found much use in computer-aided design. While CSG provides accurate re-

constructions, computational constraints preclude it from modeling entire scenes,

particularly with any form of streaming measurements.

25

2.2 Data Association

A naïve approach to data association might be to take the data association solution

implicitly given by a clustering algorithm. The k-means algorithm splits a space

into clusters to minimize the intra-cluster squared Euclidean distance. In 2007,

Arthur and Vassilvitskii presented k-means++ [2], a way to initialize the original

k-means algorithm such that it converges faster and to better solutions. Dempster,

Laird and Rubin [20] introduced the general Expectation-Maximization algorithm

that solves for maximum likelihood parameters in models with latent variables or

missing data. Applied to Gaussian Mixture models, the Expectation-Maximization

algorithm allows for probabilistic labeling of points as well as a minimization of

Mahalanobis distance rather than Euclidean distance, allowing for non-spherical

clusters.

The idea of data association with measurement uncertainty originated in the target

tracking literature of the mid to late 20th century. The probabilistic data associa-

tion filter and joint probabilistic data association filter [7, 6] calculated probabilities

that measurements were generated by particular targets when the number of tar-

gets was known and the assumed models were Gaussian or linear. Bowman et

al. [12], in 2017, extended the probabilistic data association algorithm to semantic

SLAM where robot and landmark poses were estimated together with the data as-

sociation. These approaches work reasonably well when the data associations can

be well approximated by a unimodal distribution.

Multiple hypothesis tracking (MHT) also avoids committing to hard data asso-

ciation labels, but explicitly reasons about multimodal distributions. With MHT,

various different data association hypotheses are kept around and either improved

or pruned as they become unlikely [64, 11]. Multiple-hypothesis data association

26

was adapted to SLAM by Cox and Leonard [18, 19]. More recent work by Doherty

et al. [21] allowed for data association that is neither Gaussian nor explicitly stores

multiple hypotheses by representing hypotheses as a multimodal distribution of a

sensor model. Doherty et al. were able to solve the semantic SLAM graph problem

with these non-Gaussian factors by using nonparametric belief propagation [70].

Work by Atanasov et al. [4] used finite random sets to represent data associations,

and reduced the problem of computing association probabilities to that of comput-

ing a matrix permanent. Approximation algorithms to the problem of computing

the matrix permanent give a polynomial time algorithm that allowed associations

for up to two-hundred semantic objects at a time.

These various approaches attempt to solve the general data association problem,

but for reasons described in Chapter 1, namely, the fact that we have no ground

truth data association, are unable to solve our specific case. As we will later show

in Chapter 3, our approach avoids explicitly solving the data association problem

by shifting uncertainties to primitive existences rather than reasoning about uncer-

tainties in data associations and primitive parameters.

2.3 Reasoning over varying number of entities

One of the challenges at the core of the primitive identification problem is that it

is unknown how many primitives must be fit to a given scene. A weakness of the

data association algorithms presented in Section 2.2 is that they assumed an a priori

choice on the number of primitives, landmarks, or clusters. This choice led to poor

results in situations where the number of primitives, landmarks, or clusters were

27

not known or may have been changing.

Mahler et al.’s finite set statistics [25] and the probability hypothesis density filter

[50] were developed to track an unknown number of variables. Finite random sets

model observations as random sets rather than random variables. Because a ran-

dom set can have an arbitrary number of values, they are able to model behaviors

such as missed and erroneous detections, as well as handle an unknown number of

targets to track. Although initially computationally intractable, sequential Monte

Carlo approximations were shown to converge to the true probability hypothesis

density filter [37]. These approximations were used in various applications, such

as tracking targets via radar [75], tracking feature points in a sequence of images

[34] and tracking an unknown and time-varying number of speakers [82] in an

audio domain. An extension to the clustering approaches in Section 2.2 was pre-

sented by Campbell et al. [15], in which they introduced a novel algorithm that

did not require a prior choice on the number of clusters. By using a dependent

Dirichlet process mixture model, Campbell et al. captured the behavior of a gen-

erative model that had a time-varying number of clusters. Inference on the depen-

dent Dirichlet process mixture model was done through a novel Gibbs sampling

algorithm, a special case of the more general Metropolis-Hastings algorithm. Al-

though an impressive amount of work has been done in the area, our work avoids

explicitly reasoning about varying numbers of primitives by shifting uncertainties

to primitive existences.

Inference on models where computing the exact posterior is intractable, such as

the ones mentioned in the previous paragraph, is generally done through either

sampling methods or optimization methods. Metropolis et al. [53] presented an

early work on Monte-Carlo statistical simulations. A generalization by Hastings

28

[31] introduced what has become known as the Metropolis-Hastings algorithm:

a Markov Chain Monte Carlo method (MCMC) for sampling from a probabil-

ity distribution when a proportional distribution is available but the normalizing

constant is difficult to compute. One of the typical limitations of the standard

Metropolis-Hastings algorithm is that the dimensionality from which the user may

sample is fixed. Peter Green [26] published a method which allowed the sampler

to “jump” to different dimensional sampling spaces, and as such allowed MCMC

methods to be applied to problems involving Bayesian model selection. Vien and

Toussaint [77] used Reversible-Jump MCMC to solve a toy problem requiring in-

ference over the number of “bacteria” as well as their parameters. One of our

approaches in Chapter 4 uses a MCMC method to sample various possible scene

configurations before returning the configuration with the highest likelihood.

2.4 Primitive fitting and scene reconstruction

Recent SLAM work uses bounding geometric primitives to build a map. Kaess [38]

demonstrated how to include infinite planes in a SLAM formulation. Elghor et al.

[22] jointly estimated pose as well as planar landmarks. Pop-up SLAM by Yang

et al. [87] assumed a structured indoor environment and “pop-up” planes were

created at the ground-wall edges. Planes were then associated based on their nor-

mals and overlap. Yang and Scherer [86] extended the work to include rectangular

object primitives and object-plane constraints. Nicholson et al. [56] used semantic

bounding boxes as dual quadric constraints to create ellipsoidal object primitives

as landmarks and Ok et al. [57] extended the algorithm to run online.

The SLAM work described thus far in this section has been concerned with fit-

29

Figure 2-1: Primitive fitting results from Li et al.’s Supervised Primitive Fitting
Network (SPFN) [47]. Figure reproduced with permission.

ting rough bounding primitives, such as fitting an ellipsoid to a car, rather than

trying to capture the shape of the primitive being fit. The problem of precise prim-

itive fitting has various RANSAC-based approaches [68]. A major issue with these

approaches is the sensitivity of the result to the parameters which may be arbitrar-

ily chosen. This sensitivity to parameters cause RANSAC-based methods to scale

poorly, and Li et al. [48] extended these RANSAC based methods by refining ex-

tracted primitives to better fit the input. Li and Feng [45] recognized that RANSAC

approaches often suffer from poor initialization and used a segmentation deep net-

work for better initialization.

Network based approaches include ideas such as 3D-PRNN [89], a network which

used cuboids to represent objects such as chairs, or work by Tulsiani et al. [76],

which did the same thing but in an unsupervised manner. An approach by Paschali-

dou, Gool, and Geiger [60] created a parts decomposition by using a binary tree to

represent simpler parts with fewer primitives than more complex parts. A different

approach by Li et al. [47] presented Supervised Primitive Fitting Network (SPFN),

an end-to-end neural network able to detect varying numbers of primitives to a

30

single object (see figure 2-1). Although impressive, SPFN had limitations. In par-

ticular, adding a new primitive to the set of four primitives that SPFN could fit

required carefully writing a differentiable parameter fitting function for that geo-

metric primitive. Additionally, SPFN was trained in a fully supervised manner,

where separate primitives had to be labeled as such, and where points were la-

beled with their corresponding primitive. These limitations preclude SPFN from

solving our problem of primitive fitting to stuff, because supervised training data

is often not available for our purposes. Furthermore, any new primitive added

requires a hand-written differentiable parameter fitting function – a restriction we

do not require. Nevertheless, the network outperformed RANSAC approaches,

even when the RANSAC approaches were allowed additional information such as

point normals.

A final few ideas take different approaches. Martinović et all. [51] used a Struc-

ture from Motion (SfM) approach complemented with architectural principles to fit

primitives to a facade of buildings. Eslami et al. [23] used generative models with

recurrent neural networks to identify multiple objects per scene. The model chose

the number of inference steps required to decompose 3D images into the various

numbers of objects. Bagautdinov, Fleuret and Fua [5] used generative models but

formulate the optimization variationally. And Lafarge and Mallet [42] performed

primitive fitting of cities in a more straightforward segmentation and fitting ap-

proach.

31

2.5 Pointcloud learning

Our network in Chapter 5 is based on the PointNet line of neural networks. Qi et

al. [16] presented PointNet, an architecture for deep learning on pointcloud input

data. Their approach used a combination of multi-layer perceptrons and max-

pooling to build a network capable of classifying a pointcloud into various classes,

segment a scene into various semantic objects, or segment an object into various

parts. Although it was shown that the PointNet architecture was a universal func-

tion approximator, it lacked the ability to capture local structures and therefore did

not generalize well to complex scenes. Qi et al. [63] addressed this weakness by in-

troducing multi-scale and multi-resolution grouping, a process that ran the vanilla

PointNet architecture at various scales to capture both local structure as well as

scene wide structure. The PointNet architectures are shown in figure 2-2. Qi et al.

[62] combined deep point networks with Hough voting to create pointcloud object

detection as opposed to classification.

Yi et al. presented the Generative Shape Proposal Network (GSPN) [88], which

generated proposals by reconstructing shapes from noisy pointcloud input. Based

on PointNet, GSPN achieved state-of-the-art performance on instance segmenta-

tion tasks. The authors suggested that its success was due to geometric under-

standing during object proposals. Yi et al. used multiple losses, including the

chamfer loss, which is differentiable with respect to the input point coordinates.

Although these networks are structured similarly to our network in Chapter 5,

they output only detections, segmentations, or in the case of GSPN, primitive fit-

tings of objects. In fact, Yi et al. wrote that the “success of GSPN largely comes

from... greatly reducing proposals with low objectness”. Our network addresses

primitive fitting to precisely those parts of the scene GSPN does not fit to.

32

Figure 2-2: The architecture diagram for PointNet [16] (above) and PointNet++ [63]
(below). Figure reproduced with permission. PointNet uses a symmetric function
to introduce input order invariance. PointNet++ combines various PointNet layers
to learn pointcloud information at various scales.

33

2.6 Differentiating discrete functions

One of our approaches, at its core, is about taking a function with discrete in-

put and probabilistically relaxing the function to achieve differentiability. This

idea of differentiating discrete functions has precedent in existing literature. Jang,

Gu and Poole [36] used the Gumbel distribution to present a differentiable way

of sampling from a categorical distribution by perturbing the log probabilities of

sampling from any given element and finding the largest element. This trick al-

lowed neural networks to contain categorical latent variables. More complex al-

gorithms can also be made differentiable. DSAC, or Differentiable RANSAC [13]

replaced the deterministic selection of the hypothesis for a probabilistic selection,

over which the expectation could be computed. Thewlis et al. [72] rewrote the

deep-matching algorithm as a convolutional neural network by representing a dy-

namic program as a sequence of differentiable convolutional operators. Arand-

jelovic et al. [1] replaced the popular “Vector of Locally Aggregated Descriptors”

(VLAD) with a differentiable network layer that uses soft assignment rather than

hard assignment.

Several works deal with the estimation of gradients of stochastic random variables.

Bengio et al. [10] provided four strategies to estimate gradient of stochastic or non-

smooth nodes in neural networks. They first considered the family of approaches

using minimum variance unbiased estimators for stochastic binary neurons, then

considered decomposing a stochastic binary neuron into a stochastic part and a

smooth differentiable part. The third approach injected additive and multiplica-

tive noise into a computational graph, and the fourth provided a straight-through

estimate. Rezende et al. [65] developed the theory of stochastic backpropagation:

backpropagation through stochastic nodes. Schulman et al. [69] provided the more

general idea of a stochastic computation graph and used a directed acyclic graph to

34

Figure 2-3: An example taken from Teaser++ [84]. Figure reproduced with per-
mission. Although impossible for a human to verify, Teaser is able to solve for the
correct pose of a bunny in a noisy pointcloud with an error of less than 4°.

compute the gradient of functions that were defined by an expectation of a col-

lection of random variables. Although these techniques provide general tools to

compute gradients of expectations, we focus on a specific expectation in Chapters

5 and 6 that allows us to write a closed form solution for the gradient.

2.7 Registration

In addition to scene reconstruction and primitive fitting, we also apply our ap-

proach to the problem of pointcloud registration, in which a rigid body transfor-

mation plus a scaling must be estimated to map one point cloud to another. ICP

[3] found this transformation by alternating point correspondences with parameter

estimation. Low [49] extended the algorithm from pointcloud-pointcloud match-

ing to allow a point to plane registration. ICP, while computationally efficient,

suffered from the presence of noise in the pointclouds. RANSAC methods such as

35

those compiled by Meer et al. [52] were fast in low noise applications with few out-

liers, but failed or converged more slowly on datasets with many outliers. GORE

[14] was able to reduce the number of outliers and be robust in up to 95% noise, but

was unable to estimate the scale and has exponential worst-case time complexity.

Yang and Carlone proposed two algorithms based on formulating the registration

problem as a truncated least squares problem, and using a semidefinite relaxation

to efficiently solve it [85, 84]. Yang and Carlone [85] provided an algorithm robust

to 99% noise, and [84] provided theoretical results on performance as well as a

faster algorithm, TEASER++, that used graduated non-convexity to estimate the

transformation without explicitly solving the semidefinite program. The output of

the TEASER++ algorithm can be seen in figure 2-3.

36

Chapter 3

General overview

3.1 Preliminaries

Recall our work’s guiding question:

How can we infer the existence of geometric primitives, and is inferring exis-

tence useful when fitting primitives to non-discriminable data?

To answer this question, we examine its various parts. Formally, we define a geo-

metric primitive type to be a two dimensional manifold embedded in R3. We define

Figure 3-1: A primitive type is a manifold embedded in R3 given by the image of
various coordinate charts from the unit disk.

37

this manifold via an atlas, or a collection of coordinate charts τ : B2 → R3, where

B2 is the open unit disk. The geometric primitive type is the union of the image of

each coordinate chart in the atlas (figure 3-1). We work with a predetermined and

finite set of such manifolds, denoting the set of primitive types as T .

A geometric primitive p is then given by a primitive type η together with a rigid

body transformation θ ∈ SE(3)1. In particular, p = {θ(x)|x ∈ η}, where θ(x) is

the standard group action of SE(3) on 3-space. We use primitives to represent oc-

cupied surfaces. Rather than store and reason about large sets of points, we are

able to reason about a much smaller set of primitive types, together with well-

understood rigid-body transformations. By representing surfaces and volumes as

a collection of parametrized coordinate charts, we can provide fast geometric op-

erations such as tangency and intersection queries.

In certain instances, we may wish to talk about the existence of a given primitive, or

lack thereof. We associate with every pi a boolean variable φi ∈ {0, 1} to indicate

its existence. A value of 1 indicates that pi exists, and a value of 0 indicates lack

of existence. All together, if Ψ is the set of all primitives, Φ is the set of all such

indicator variables. For notational convenience, we use P = {pi|φi = 1} to denote

existing primitives.

We next examine the idea of “fitting primitives”. In our work, we fix the set of

primitive types T . As a result, any set of points created by a union of our prim-

itives is parametrized by Ψ and Φ. Fitting primitives to our data D then corre-

sponds to choosing the maximum posterior estimates of these parameters. More

formally, for some probability distribution p, we wish to solve:

1While we use SE(3), nothing in our work is specific to SE(3) and any parametrized transforma-
tion would be suitable.

38

Ψ∗, Φ∗ = arg max
Ψ,Φ

p(Ψ, Φ|D). (3.1)

The last piece of the guiding question raises a question about the meaning of “non-

discriminable”. A natural approach to solving equation 3.1 is to use Bayes’ theo-

rem and to maximize some observational model f (D|Ψ, Φ). For us, the key impli-

cation of our data being “non-discriminable” is that any reasonable model f will

be unidentifiable. We make the assumption that the set of points that are elements

of some existing primitive, ∪P , are a sufficient statistic for the primitive parame-

ters themselves. Formally, this statement means that f (D|Ψ, Φ,∪P) = f (D| ∪ P).

Put another way, the likelihood function does not depend on the parameters of the

primitives, just the points that the primitives represent. This assumption is reason-

able; our primitive parametrizations are merely a mathematical and computational

tool used to represent a set of points.

This idea that ∪P is a sufficient statistic for the likelihood of the pointcloud has

a particularly deep impact on our problem. We say data is “non-discriminable”

when it corresponds to stuff. As described by Forsyth et al. [24], stuff “... has no

specific or distinctive spatial extent or shape”. Because stuff itself has no specific

or distinctive spatial shape, the primitives we use to fit to stuff do not either, and

in fact often have some degree of symmetry. Therefore, various different combi-

nations of primitive parameters can result in the same aggregated set of element

points ∪P . As a consequence, any model we use that makes these assumptions is

unidentifiable: it is impossible to learn the true values of the underlying representa-

tion used.

39

Our goal for this work, then, is to develop a framework that will allow us to rea-

son about the maximization in equation 3.1. The resulting parameter values may

not be unique, but uniqueness is not required when many scene representations

are equally valid. In the following chapters, we propose various likelihood mod-

els and corresponding optimization techniques to find some of these maximizing

parameter values.

3.2 Relaxing the exact optimization

The two common threads in our various approaches are the inference over exis-

tence and the discretization of primitives. Given the combination of continuous and

discrete parameters, the exact solution of the mixed integer optimization problem

in equation 3.1 becomes intractable. And f is overparametrized; if a given exis-

tence value is zero, the corresponding primitive’s parameters are not important

for scene reconstruction. Rather than attempt a full estimation, one can fix certain

inputs and estimate the others. Existing clustering approaches that assume a fixed

number of primitives can be seen as fixing the existence values. We propose to do

the opposite: we fix the primitive parameters Ψ and optimize over the existence

values Φ, as in equation 3.2.

Φ∗ = arg max
Φ

p(Φ|D; Ψ). (3.2)

This alternate framing where we fix the primitive parameters might seem harder

to solve than the more typical fixing of the existence values. After all, what could

40

Figure 3-2: We consider only a discrete set of primitives. By selecting some subset
of them, we are able to represent an input pointcloud scene.

be a continuous optimization over a relatively small number of parameter values

now becomes a discrete optimization over a large number of existence values. It

does, however, has a significant advantage: because the primitive parameter val-

ues are fixed, the implicit data association problem is much easier. Rather than

have a cycle where the parameter values and the data associations depend on each

other, we remove the dependence of the parameter values on the data associations

and thus are able to compute the data associations using the fixed parameter val-

ues.

In our work, we restrict ourselves to finite-dimensional optimizations. To make

our problem computationally tractable, we discretize SE(3) to choose some finite

set of parameters Θ ⊂ SE(3), and using this finite set construct a set of N primi-

tives G = {p|p = θ(η), θ ∈ Θ, η ∈ T } (see figure 3-2). This construction introduces

41

Symbol Definition
D Input pointcloud

y ∈ D Individual Pointcloud point
T Primitive types set

η ∈ T Individual primitive type
p Primitive

Θ ⊂ SE(3) Discretized set of parameters
θ ∈ Θ Primitive parameters

φ Existence variable corresponding to a given primitive
Φ Existence variables of all primitives
G Discretized set of primitives
P Set of existing primitives

Table 3.1: Various definitions used in our work.

a new type of epistemic error in any fitting: discretization error. In addition to

being robust to noise, any likelihood model used must now additionally be robust

to the possibility that the best primitive in Ψ may not exist in G.

The following chapters deal with pointcloud data. In Chapter 4, we assume stream-

ing measurements of a semantically labeled pointcloud. D = {Dt}T
t=0 is the set of

time-indexed pointclouds. Each pointcloud Dt = {yj}J
j=0 is a set of J points, with

each yj ∈ R3 × S2 ×N+ representing a point’s position, normal, and semantic

class. Chapters 5 and 6 assume batch measurements with no semantic informa-

tion. In the context of Chapter 5 and 6, we have D = {yj}J
j=0, where each yj ∈ R3

represents a point in 3-space.

For convenience, table 3.1 provides a summary of some of the definitions intro-

duced in this chapter.

42

Chapter 4

Sampling methods

4.1 Intuition

In this chapter, we build a ray-based measurement model from first principles to fit

geometric primitives to a hallway scene. For the purposes of exposition, suppose

that we receive a single pointcloud as input, where each point contains only its

own position in R3 – that is, for this example, our pointcloud has no information

about semantic class or point normals.

The first observation we make is that each point observed provides us with two

key pieces of information. A single point is evidence for occupied space at the

given point, but it is also evidence that all of the space along the ray from the

pointcloud sensor to the point is empty. Our measurement model considers all

such rays to build a model. Using a few assumptions about noise and point gen-

eration along the ray, we specify a probabilistic model to update the likelihood of

any particular primitive based on its intersections with these rays. Ray-primitive

intersections far in front of detected points provide negative evidence for those

primitives, while ray-primitive intersections sufficiently close to detected points

43

provide positive evidence.

Our probabilistic model fundamentally takes boolean inputs; it takes in some com-

bination of existing primitives and returns a likelihood value, so we find the maxi-

mum likelihood primitive configuration by running a Markov Chain Monte-Carlo

sampling scheme. We use semantic information and point normals to inform a

prior that allows for more efficient sampling from the Markov Chain.

4.2 Approach

In practice, D = {yj} is the set of time-indexed input pointclouds each contain-

ing various points yj ∈ R3 × S2 ×N representing a point’s location, normal, and

semantic class. Our optimization problem is then to choose the set of primitives

most likely to exist given the input pointcloud. Mathematically, for some proba-

bility distribution p, we wish to compute

Φ∗ = arg max
Φ∈{0,1}N

p(Φ|D;G) (4.1)

where, as before G is the predetermined set of the N discretized primitives and Φ

are the existence values for each p ∈ G.

4.2.1 Measurement model

Equation 4.1 does little to shed light on the maximization problem to be solved. In

particular, there is no obvious probability distribution to optimize. One possible

44

approach at computing the desired probability distribution is to use Bayes rule to

re-write the problem:

Φ∗ = arg max
Φ∈{0,1}N

p(D|Φ;G)p(Φ;G)
p(D) . (4.2)

We consider each term in this expression individually.

Point-Primitive model

We first explore a possible model for p(D|Φ;G). Each detected point in D has

an associated ray originating through the camera and passing through that point.

Additionally, any number of existing primitives in P = {pi ∈ G|Φi = 1} may

intersect this ray (see figure 4-1). We state four assumptions used to specify this

model:

1. A primitive intersecting a ray generates a single point along that ray. Mul-

tiple primitives may generate multiple points. Each point generated in this

manner is generated with a Gaussian distribution around the primitive-ray

intersection.

2. Additional points are generated along rays at some uniform noise rate r per

unit distance.

3. The point observed by the pointcloud measurement is the nearest point to

the sensor generated along a ray.

4. Points are conditionally independent given a primitive set.

This last assumption states that the Gaussian distributions from which points are

sampled are independent between rays. We recognize that this is not always truly

45

Figure 4-1: Point likelihoods are computed by projecting a ray and corresponding
primitive intersections from R3 onto R.

the case, as nearby rays are likely to have similar bias, but it is an assumption made

to make the problem tractable. This last assumption allows us to factor

p(D|Φ;G) = ∏
j

p(yj|Φ;G). (4.3)

To compute any of these individual ray probabilities themselves, we first compute

the distance zj of each point yj along its projection ray from the camera. Any prim-

itive in pi ∈ P that intersects this ray has a corresponding intersection distance µj,k

and corresponding projected variance σ2
j,k.

46

As an example, we first compute p(yj|∅): the probability of a generated point

given no existing primitive intersections along the ray to yj. For the point yj to be

observed, it must be generated at distance zj and there must be no points generated

in front of it. As there are no primitive intersections along the ray, the only way

a point can be generated is through some background noise rate r. Following the

derivation for an exponential random variable, we divide zj into n segments of

length ∆zj =
zj
n , assume a point has a constant probability r∆zj of being generated

in each segment, and take n→ ∞ to compute the probability that zj is the observed

point along the given ray.

p(zj|∅) = lim
n→∞

r(1− r∆zj)
n = lim

n→∞
r(1− r

zj

n
)n (4.4)

= re−rzj (4.5)

We next consider a scenario where there is a single primitive intersection. Using

the law of total probability, we decompose the measurement function into two

cases: either the measurement is noise-generated or the measurement is primitive

generated.

p(zj|{pi}) =p(zj|{pi}, noise generated)p(noise generated) (4.6)

+p(zj|{pi}, generated by pi)p(generated by pi) (4.7)

The noise process has a probability r to create a noise point at zj, and the condi-

tional probability p(zj|{pi}, noise generated) is the probability that this point at zj

is the closest point on the ray to the camera.

47

The probability that pi does not generate a point in front of zj is given by the in-

verse CDF of the normal distribution: g(zj; µi, σ2
i) = 1−

∫ zj
−∞ N(x; µi, σ2

i)dx, where

µi and σ2
i are the intersection and projected variance of pi along the ray to yj. The

probability that zj is observed, given that it is noise generated, is then the product

of the probability that there are no primitive-generated occlusions g(zj; µi, σ2
i), the

probability that there are no noise-generated occlusions e−rzj , and the probability

of generation r.

Similarly, the primitive has a probability N(zj; µi, σi) to generate a point at zj, and

probability e−rz that there is no noise-generated point in front of it. In this case,

there is no need for the inverse cumulative density function as each primitive gen-

erates only one point per intersecting ray.

Writing out the full expression, we find

p(zj|{pi}) = e−rzj(r× g(zj; µi, σ2
i) + N(zj; µi, σ2

i)) (4.8)

= e−rzj g(zj; µi, σ2
i)

(
r +

N(zj; µi, σ2
i)

g(zj; µi, σ2
i)

)
. (4.9)

Using the same arguments and some algebra, the measurement function involving

an arbitrary number of primitives can be written:

p(zj|P) = e−rzj ∏
pi∈P intersects ray

g(zj; µi, σ2
i)×

(
r + ∑

pi∈P intersects ray

N(zj; µi, σ2
i)

g(zj; µi, σ2
i)

)
.

(4.10)

We qualitatively examine this likelihood function in figure 4-2. The point likeli-

hood in front of the primitive is relatively high, as the noise process might generate

48

Figure 4-2: The ray-based likelihood model. One primitive intersection at µ = 4,
and two primitive intersections at µ = 4 and 5

an occlusion. The point likelihood behind the primitive is low, as any noisy points

will be occluded by primitive generated points. A strange feature of this model is

that likelihoods are not always higher near where primitives exist. For example,

the likelihood of a point is generated at z = 5 is lower when a primitive at µ = 5

exists than when it does not! Although seemingly counterintuitive, this feature is

a result of the occlusion calculations.

Primitive prior

We use flat circular disks as our primitives, and discretize the space such that a

1-meter radius disk in each of three orientations (face-up, face-forward, and face-

left/right) occurs every 0.5 meters. We use each yj’s surface normal orientation

as well as semantic class to construct the primitive prior p(Φ;G) over existence

values. We assume a factored form p(Φ;G) = ∏i p(φi; pi). Each p(φi; pi) is set in-

49

dividually by considering nearby points. The centers of the discretized primitives

form a lattice structure, and each yj lies inside a cell formed by this lattice structure.

Each primitive has eight neighboring cells that include its center as a vertex. We set

each p(φi; pi) to some small constant (0.1 in practice) if there are any yj in the neigh-

boring cells, and set p(φi; pi) to zero otherwise. To inject semantic information into

the prior, we only count points that have been semantically labeled as “ground”

when setting the prior for face-up disks, and only count points with a “door” or

“wall” label when setting the prior for the face-forward or face-left/right disks.

We use the surface normals of the “door” and “wall” points to decide whether a

given point is counted for face-forward disks or face-left/right disks.

4.2.2 Combinatorial optimization and implementation details

As the evidence of the points p(D) is intractable to compute in closed form, we use

Markov Chain Monte Carlo techniques to sample from a function proportional to

the posterior:

h(Φ|D;G) ∝ p(D|Φ;G)p(Φ;G). (4.11)

We use a Metropolis-Hastings sampler to sample according to equation 4.3 and

equation 4.11. From now on, for notational simplicity we use the boolean vector Φ

of length N to refer to a primitive set, leaving the primitive parameters implicit in

the notation. All primitives being considered are assigned an entry in Φ, which is

set to one to indicate the primitive exists in that scene, and set to zero otherwise.

50

Proposal distribution

We store only primitives with positive prior probabilities. As primitives are de-

tected by our semantic segmentation, we check to see if that specific primitive has

already been instantiated, and if it has not, it is added to a data structure that stores

the most recent frame in which it was detected.

Given some scene sample Φ, we compute the next proposed primitive set accord-

ing to a probabilistic transition function Q(Φ′|Φ) by randomly flipping the exis-

tence values of the primitives in G. More concretely, we sample a vector b of length

N where the entry bi is a Bernoulli random variable with parameter λi. We then

set Φ′ = Φ xor b: the existence of primitives is flipped wherever bi = 1. Each pa-

rameter λi is set such that more recently detected primitives are more likely to be

flipped. By setting λi to decay exponentially by frame, each primitive will on ex-

pectation be flipped an equal number of times. In this manner, most computation

is spent on newer primitives, but older primitives are still occasionally revisited

for improvements.

Ray intersection lookups

A series of computational tricks are used to make sampling efficient. A naïve im-

plementation might take advantage of the conditional independence between rays

and compute likelihoods on a per-pointcloud, and per-ray basis, as in algorithm 1.

Evaluating equation 4.10 for a given ray depends on knowing which primitives

intersect with the given ray. The naïve approach checks these intersections in a

double nested loop, without taking advantage of the locality of points. We con-

vert pointclouds to spherical coordinates centered at the pose from which they are

51

Algorithm 1 A naïve approach to evaluating equation 4.11

1: procedure COMPUTEINTERSECTIONS(yj, poset,P)
2: intersections← []
3: for pi ∈ P do
4: if pi intersects MAKERAY(poset, yj) then
5: Append pi to intersections
6: end if
7: end for
8: return intersections
9: end procedure

10: procedure SIMPLE PROBABILITY EVALUATION(Dt, poset,P)
11: log likelihood← 0
12: for yj ∈ Dt do
13: intersections← COMPUTEINTERSECTIONS(yj, poset,P)
14: log likelihood += COMPUTELOGLIKELIHOOD(yj, poset, intersections)
15: end for
16: return log likelihood
17: end procedure

measured to take advantage of this structure. We then store the points inside a

KD tree indexed on each point’s azimuthal and polar angle. Usually, polar coordi-

nates would be unsuitable for use in a KD tree due to the discontinuity that occurs

due the wrapping around of the coordinates, but our camera cannot detect points

behind it. Therefore, if we set the discontinuity of the polar coordinate mapping

into the KD tree behind the camera, reasonable ball queries will return the correct

result. We call this polar coordinate KD tree a RayTree, and propose a more efficient

algorithm 2. This approach avoids the double nested loop present in algorithm 1.

We take advantage of the efficient ball search of the RayTree and flip the nested

loop; rather than iterate over rays to compute intersections, we compute the in-

tersections by iterating over primitives and use the results to update a table that

stores each ray’s intersections. This lookup table is then used to compute log like-

lihoods according to equation 4.10.

A final improvement can be made by recognizing that due to our proposal distri-

52

Algorithm 2 An approach to evaluating equation 4.11 using RayTrees

1: procedure RAYTREE PROBABILITY EVALUATION(Dt, poset,P)
2: RayTree← MAKERAYTREE(Dt, poset)
3: Initialize RayMap
4: for pi ∈ P do
5: θ ← COMPUTEPOLARBOUNDS(pi, poset)
6: intersecting rays← BALLSEARCH(RayTree, θ)
7: for yj ∈ intersecting rays do
8: append pi to RayMap[yj]
9: end for

10: end for
11: log likelihood← 0
12: for yj ∈ Dt do
13: intersections← RayMap[yj]
14: log likelihood += COMPUTELOGLIKELIHOOD(poset, yj, intersections)
15: end for
16: return log likelihood
17: end procedure

bution, Φ′ tends to be close to Φ. Therefore, it suffices to evaluate only the rays

which intersect with primitives that were flipped in the proposal update: Φ xor Φ′

to compute the likelihood difference. This incremental evaluation decreases the

scene evaluation time by an order of magnitude and can be found in algorithm 3.

4.3 Results

We construct two toy examples to demonstrate the capabilities of the measurement

model. Because of the independence assumption between rays, the likelihood of a

scene is a sum of the likelihood of the rays in the scene. Our examples consist of

six primitives arranged in a row; each behind the previous one. We set our camera

at the origin, and the primitives are equally spaced such that the nearest one is 7

meters away, and the furthest one is 12 meters away. Points are then sampled from

the surface of the primitive at 10 meters. One example consists of planar primi-

tives, and one example consists of cylindrical primitives. A side-view diagram of

53

Algorithm 3 An approach to incrementally evaluating equation 4.11 incrementally

1: procedure RAYTREE PROBABILITY EVALUATION(Dt, poset, old scene score,
new primitives, removed primitives)

2: RayTree← MAKERAYTREE(Dt, poset)
3: Initialize RayMap, NewRayMap, RemovedRayMap
4: for pi ∈ P do
5: θ ← COMPUTEPOLARBOUNDS(pi, poset)
6: intersecting rays← BALLSEARCH(RayTree, θ)
7: for yj ∈ intersecting rays do
8: append pi to RayMap[yj]
9: end for

10: end for
11: for pi ∈ new primitives do
12: θ ← COMPUTEPOLARBOUNDS(pi, poset)
13: intersecting rays← BALLSEARCH(RayTree, θ)
14: for yj ∈ intersecting rays do
15: append pi to NewRayMap[yj]
16: end for
17: end for
18: for pi ∈ removed primitives do
19: θ ← COMPUTEPOLARBOUNDS(pi, poset)
20: intersecting rays← BALLSEARCH(RayTree, θ)
21: for yj ∈ intersecting rays do
22: append pi to RemovedRayMap[yj]
23: end for
24: end for
25: log likelihood← old scene score
26: . Iterate only over the modified rays
27: for yj ∈ AddedRayMap ∪ RemovedRayMap do
28: intersections← RayMap[yj]
29: old score += COMPUTELOGLIKELIHOOD(poset, yj, intersections)
30: intersections← RayMap[yj] + NewRayMap[yj] - RemovedRayMap[yj]
31: new score += COMPUTELOGLIKELIHOOD(poset, yj, intersections)
32: log likelihood += new score - old score
33: end for
34: return log likelihood
35: end procedure

54

Figure 4-3: We consider a toy setup where six primitives are arranged in a row, and
points are sampled from the primitive at 10 meters. On the top, we consider planar
primitives, and on the bottom we consider cylindrical primitives (side view).

the setup can be seen in 4-3.

We evaluate all possible scenes, but plot the likelihood of single and double prim-

itive scenes in the heatmap shown in figure 4-4, in which darker squares are more

likely. The square on the diagonal at index i corresponds to the negative log likeli-

hood of the single primitive at i meters, and the square on the off diagonal at posi-

tion i, k corresponds to the negative log likelihood of two primitives: one at i and

one at k. Unsurprisingly, the most likely configurations are those configurations

whose nearest primitive is the primitive from which we sampled our pointcloud.

Any configurations containing primitives in front of the sampled pointcloud ap-

pear highly unlikely.

An interesting effect of our measurement model is that scene likelihoods are largely

55

determined by the nearest primitive along each ray. This property is a result of our

third assumption: the assumption that the point observed by a pointcloud mea-

surement is the nearest point generated along its ray. The assumption is meant

to model occlusions, and we see its effect in figure 4-4: all of the scenes with the

nearest primitive at 10 meters are very close in likelihood, regardless of where the

furthest primitive is. This is reasonable, as a measurement of a primitive at 10 me-

ters gives us little information as to the existence of any primitives behind it. We

also note that the two heatmaps in figure 4-4 appear visually identical. This sim-

ilarity occurs because the two scenes are similar once the points and intersections

are projected onto their corresponding rays; the zj are all exactly at the primitive

intersections µi,j. This behavior is more general: any example where all of the

points yj are sampled from the surface of primitives in G are correctly detected by

our likelihood function.

Ultimately, the method does not work particularly well when applied to real-world

datasets. Representative results can be found in figure 4-5. We find that there seem

to be extra primitives fit in certain places, and missing primitives in other places

we would have expected them. These disappointing results can be attributed to

two design choices: the choice of measurement model, and the sampling-based

maximum likelihood estimation.

Issues with the measurement model

Our measurement model has two primary issues, one caused by the ray-based

point generation and the other by the discretization of primitives. The first issue is

the inability of the model to handle non-depth noise. We only model noise along

each ray, providing no way to reason about points that might be noisy along a

56

Figure 4-4: Heatmaps of the negative loglikelihood of one and two primitive com-
binations for the toy examples in figure 4-3. Diagonal squares correspond to single-
primitives, and off-diagonal terms correspond to a two primitive combination.
Darker colors are more likely.

57

(a) (b)

(c) (d)

Figure 4-5: We show a sample input image (a) and corresponding semantic seg-
mentation (b). We merge the pointclouds from many frames to form the full input
pointcloud, together with surface normals (c). Running our algorithm results in a
primitive fit (d).

58

different axis. The second issue is caused by the assumption that points on each

ray are generated independently from each other, given the existing primitives.

Because of the error introduced by the discretization, our primitive models are

sensitive to point-primitive alignment. If our discretization is dense enough that

the points are close enough to a possible primitive, we are able to accurately fit

primitives to a scene as in figure 4-3. But if the alignment is poor, and the scene

is not well represented by any of the possible discretized primitives, the error is

consistent between rays. As a result of these two issues, even scenes we are able to

solve exactly are poorly approximated by our maximizing subset.

We set up a toy example in figure 4-6 to demonstrate the failure of our model in

capturing a simple scene if the point-primitive alignment is bad. The red points

are sampled from a plane to form the input pointcloud, and two possible prim-

itives are considered to represent this pointcloud. We evaluate our model on all

four combinations of primitive existences and report the resulting likelihoods in

table 4.1. Because the front primitive has many pointcloud points directly behind

it, the likelihood given to any scene which includes it is zero. This is partly due to

the assumption that points generated along rays are independent; while one point

behind an existing primitive may be unlikely, the occurrence of many points be-

hind the primitive make its existence in our model near-impossible, even if their

existence is well-explained by epistemic error. For similar reasons, the existence of

the primitive in the back has no positive evidence, and the model therefore implic-

itly treats the pointcloud as noise-generated.

59

Configuration Loglikelihood
Empty -0.69 (50%)

Front primitive only -358.2 (0%)
Back primitive only -0.69 (50%)

Both primitives -358.2 (0%)

Table 4.1: Loglikelihoods of various primitive configurations in our toy example

Figure 4-6: A toy example to show the weaknesses of our measurement model. The
red points are sampled from a plane to form an input pointcloud, and the planar
primitives are the two possible primitives are considered in G. Note that the plane
used to sample the red points is not considered in G.

60

Figure 4-7: We run scene evaluation algorithms 2 and 3. The solid line is the mean
of the time taken per evaluation, and the shaded regions represent times within
a standard deviation of the mean. The non-incremental evaluation tends to be on
average about an order of magnitude slower than the incremental evaluation.

Sampling based maximum likelihood estimation

We timed scene evaluations using both the standard and incremental algorithms

found in algorithms 2 and 3. The results of the timing are found in figure 4-7. We

found that the incremental algorithm is able to evaluate scenes roughly an order

of magnitude faster than the non-incremental scene. The scene shown in figure 4-5

consists of about 20000 points and considers 500 possible primitives to fit to the

scene. A scene evaluation and Metropolis-Hastings step takes 50 ms to compute

from scratch, or 2 ms to compute incrementally on an Intel CORE i7. All things

considered, we run 1000 Metropolis-Hastings sampling steps plus some appro-

priate burn-in steps before returning a maximum likelihood estimate. Even if the

measurement model were able to accurately capture the desired primitive fitting

behavior, the randomized sampling nature of the approach means it is possible

that good primitive combinations are never sampled.

61

For these two reasons, we determine that a sampling-based approach together

with our ray-based model is impractical for primitive map building. These fail-

ures, however, offer some lessons to be learned. The first is that a measurement

model which better reflects good primitive fits must be developed. The second

is that a pure sampling-based approach may fail to return a good map. We learn

from these lessons in Chapter 5 and 6.

62

Chapter 5

Learning primitive existence

Some of the issues we found in Chapter 4 were due to a poor measurement model.

We explained that even the global optimum of the ray-based measurement func-

tion leads to qualitatively bad scene reconstructions. In this section, we attempt to

have a neural network learn better scene reconstructions. In our particular case, we

wish to use a neural network to fit primitives to an input pointcloud. As described

in Chapter 3 and done in Chapter 4, we once again discretize the primitive param-

eter space and use a neural network to infer primitive existence. We describe this

process in more detail in the following sections.

A neural network is fundamentally a function approximator. In a supervised set-

ting, the network requires training examples of the function to approximate. But

these examples are hard to come by. Recall that the problem of data association to

stuff has no single correct solution, and that this ambiguity is even more general

than simply data association: in many cases, there may be multiple equally valid

primitive reconstructions as well as solutions to the data association problem.

63

5.1 Training a general neural network

In its most general form, a neural network can be seen as a black-box function tak-

ing some input and resulting in some output. This black-box function has some

number of internal parameters which specify a nonlinear transformation from the

input to the output. Although it is difficult to set parameter values which may

cause a neural network to approximate a given nonlinear transformation a priori,

we can use two algorithms, backpropagation and stochastic gradient descent to iter-

atively and incrementally update the parameter values to better approximate the

given nonlinear transformation.

For the purposes of this example, suppose we are given K supervised training ex-

amples (X, y)k, where Xk ∈ Rn is the example input to f , and yk ∈N is the super-

vised label. In the context of image classification, Xk might be the pixel values of

an image, and yk might be a label describing the contents of the image. Our goal is

to find the internal parameters γ of our neural network function f (·; γ) that min-

imizes an expectation E[L(y, f (X; γ))] over our examples, where L is some loss

function that specifies how close the network output value is to the true output.

Because yk and Xk are given, the minimization of L occurs over γ.

Minimizing the expected loss over our examples might be done by using gradient

descent. In the case where we optimize over a small number of training examples,

one can directly compute the expectation E[L(y, f (X; γ))] over our examples, and

therefore compute the gradient dE[L]
dγ and optimal iterative update: γ = γ− η

dE[L]
dγ

for some learning rate η. In practice, a large number of training examples makes

this expectation impractical to compute, so an approximate algorithm is used.

Stochastic gradient descent (SGD) approximates the gradient for this expectation

by sampling the gradient for specific training examples. After sampling a training

64

example k, SGD applies the partial update γ = γ − η
L(yk, f (Xk;γ))

dγ . By iteratively

computing gradients for stochastically chosen training examples, SGD optimizes

the expected loss in a memory and time efficient manner.

A subtle detail we passed over in our summary of SGD was the computation of

the gradient dL
dγ . In practice, the neural network f is defined by composing a se-

quence of simpler nonlinear functions f = f` ◦ · · · ◦ f1. The gradient dL
dγ can then be

computed via the chain rule dL
dγ = dL

d f
d f
dγ , where d f

dγ is also computed via the chain

rule:

d f
dγ

=
∂ f`
∂γ

+
∂ f`

∂ f`−1

d f`−1

dγ
(5.1)

=
∂ f`
∂γ

+
∂ f`

∂ f`−1

(
∂ f`−1

∂γ
+

∂ f`−1

∂ f`−2

d f`−2

dγ

)
(5.2)

= · · · (5.3)

Here, d indicates a total derivative, and ∂ indicates a partial derivative. The back-

propagation algorithm provides an efficient evaluation order for this chain rule cal-

culation to avoid the repeated computation of intermediate terms. A consequence

of this training is that every fk and L used in computing the loss function must be

differentiable; if any steps are nondifferentiable, then dL
dγ is not well defined, and

stochastic gradient descent cannot be used to optimize the network parameters.

There are two particular challenges that we would face if we were to try to train

a neural network to identify primitives in a supervised manner as described. The

first challenge would be in creating a loss function in primitive-space; it is difficult

to quantify what it means for two geometric primitive scenes to be similar or differ-

ent. The second challenge would be the existence of training labels. Because there

65

is no single correct primitive fitting, training labels for any data we may want to

use are difficult to find. To address both problems, we propose that self-supervised

training is both the most elegant and the most practical solution. Self-supervision

is the idea of training a neural network by using training labels easily computed

from the input data. In the context of our problem, the self supervised loss func-

tion works as follows: first, each primitive in the network output is converted

into some finite set of points in R3. Next, we use an existing and well-understood

pointcloud-distance function, such as the chamfer distance1 [8] given in equation

5.4, to measure the distance between the network output pointcloud, and the input

pointcloud. This strategy addresses both challenges: by using an existing point-

cloud distance function, there is no need to create an arbitrary primitive distance

function, and by converting each primitive scene back into a pointcloud, we com-

pare our output directly against our input data, so there is no need for any training

data labels. This idea is consistent with our exposition in Chapter 3. By projecting

each chosen primitive back into a pointcloud, certain superflous information dif-

ferentiating equally valid reconstructions can be discarded. This projection can be

thought of as computing the sufficient statistic described in Chapter 3 to make the

likelihood function identifiable.

For two finite pointclouds S1, S2 ⊂ R3, we define the chamfer distance dchamfer(S1, S2)

dchamfer(S1, S2) = ∑
x∈S1

min
y∈S2
‖x− y‖2 + ∑

y∈S2

min
x∈S1
‖x− y‖2 . (5.4)

More concretely, as before, we consider a set of primitive types T together with a

discrete and finite parameter set to form the set of discretized primitives G. Each

primitive pi ∈ G has a corresponding finite set σi ⊂ R3 of points sampled from its

1Note that the chamfer distance function is not a true metric, as the triangle inequality does not
hold

66

surface. Our neural network output is a vector Φ. The primitives in G are ordered

and the existence of pi ∈ G corresponds to the output φi of the network at index

i. The proposed network therefore takes in a pointcloud as input and generates a

vector of existence values for a predetermined set of primitives. During training,

these existence values are used to project the existing primitives into a generated

pointcloud: ∪{σi|φi = 1}. The loss function computes the chamfer distance be-

tween the input pointcloud and the generated pointcloud.

The chamfer distance is computed by summing over point-point correspondence

distances. Good fits are encouraged by the minimum terms in the distance func-

tion: an additional primitive that lowers minimum distances will likely decrease

the total distance. On the other hand, adding additional existing primitives once

the minimum distances are already low is unlikely to lower the minimum dis-

tances by enough to overcome the additional terms in the sum. In other words,

although the chamfer distance does not explicitly enforce mutual exclusion, as

multiple primitives may, in theory, be used to describe the same part of a scene,

primitives are added to ensure that the points in the input pointcloudD have prim-

itive points near them, while ensuring that any unneeded primitives are not added.

5.2 Probabilistic chamfer distance

In our case, the self-supervised approach is not as straightforward as described.

Existence is binary: a geometric primitive either exists or it does not. While the

chamfer loss described in equation 5.4 is differentiable with respect to point posi-

tions, it is not differentiable with respect to point inclusions or exclusions which

67

would result from the binary existence output2. And as mentioned in Section 5.1,

if any part of the loss computation is nondifferentiable, the network cannot be

trained. Approximating a discrete difference is a combinatorial problem in the

number of variables, so to have any hope of training a neural network with the

chamfer loss, the process must be made differentiable.

5.2.1 Smoothing existence values and an expected chamfer dis-

tance

We wish to make the chamfer loss differentiable. To this end, we first relax the do-

main of the function. Rather than take boolean existence values, we propose that

our modified chamfer loss take a vector of floats in [0, 1] as input. While using a

vector of floats may seem strange for the task of primitive classification, we offer

the following interpretation: a value of pi at index i indicates that pi exists with

probability pi.

Assigning to each primitive a probability also leads to a reasonable map from prim-

itive space to pointcloud space for use in computing the chamfer loss. Recall that

each primitive pi has a corresponding set of points σi sampled from its surface.

Rather than including pi’s entire corresponding pointset σi when φi = 1, each

point in σi is included with probability pi. To denote this random sampling, we

define a random variable Qi ⊆ σi with a corresponding probability distribution

πi(Qi) = p|Qi|
i (1− pi)

|σi|−|Qi|.

Although smoothing the existence values seems to be a necessary first step, it is not

2Using a Softmax type loss similar to those used in classification networks would require label-
ings of the correct primitives in a scene.

68

sufficient, as the approach described is still non-differentiable in several places. In

particular, the random variables Qi are both discrete and random. The discrete-

ness makes it impossible to differentiate, and the randomness makes it difficult to

optimize as the gradient depends on the results of the random sampling, which

may be different between function calls.

We propose to address both problems by taking an expectation of the chamfer

distance over different samplings. Intuitively, it seems reasonable to claim that re-

moving a point or adding a point is unlikely to vastly change the distance between

two pointclouds, and increasing or decreasing projection probabilities does, on ex-

pectation, exactly this. We use this idea to smooth the random sampling procedure.

Recall that the definition of the chamfer distance between two point sets S1 and S2

is given by

dchamfer(S1, S2) = ∑
x∈S1

min
y∈S2
‖x− y‖2 + ∑

y∈S2

min
x∈S1
‖x− y‖2 . (5.5)

We specialize the notation for our case. We use Q = ∪iQi to denote the set of

sampled points from the entire primitive scene. We use π as the probability distri-

bution of Q, assuming independence between the Qi. We then set S1 = Q and S2

becomes the input pointcloud, D. All together, we wish to compute

Eπ [dchamfer(Q,D)] = Eπ

[
∑

x∈Q
min
y∈D
‖x− y‖2 + ∑

y∈D
min
x∈Q
‖x− y‖2

]
. (5.6)

We refer to the loss in equation 5.6 as the probabilistic chamfer distance3. Using the

3There is an existing probabilistic chamfer loss in work done by Li and Lee [46]. The two losses

69

linearity of expectation, we break this expectation into two terms and compute

them separately.

5.2.2 Probabilistic chamfer primitive loss

The first term we call the probabilistic primitive loss. To compute this term, we

split the sampled points into groups based on which set they were sampled from,

and once again use the linearity of expectation to compute the loss for each primi-

tive individually.

Eπ

[
∑

x∈Q
min
y∈D
‖x− y‖2

]
= ∑

i
Eπi

[
∑

x∈Qi

min
y∈D
‖x− y‖2

]
. (5.7)

To compute each individual primitive’s loss, we expand the definition of condi-

tional expectation and use the indicator function I.

Eπi

[
∑

x∈Qi

min
y∈D
‖x− y‖2

]
= ∑

Qi

πi(Qi)

(
∑

x∈σi

I(x ∈ Qi)min
y∈D
‖x− y‖2

)
(5.8)

= ∑
x∈σi

min
y∈D
‖x− y‖2

(
∑
Qi

π(Qi)I(x ∈ Qi)

)
. (5.9)

As each point is sampled independently in π, the inside nested sum is equal to the

probability that a given set π(σi, pi) contains the point x ∈ σi. This probability is

precisely pi. So all together, the probabilistic primitive loss can be written:

are distinct; our probabilistic chamfer distance probabilistically includes points in S1, while their
probabilistic chamfer loss forms a probability distribution based on the distances between corre-
sponding points.

70

Eπ

[
∑

x∈Q
min
y∈D
‖x− y‖2

]
= ∑

i
pi ∑

x∈σi

min
y∈D
‖x− y‖2 . (5.10)

As such, the primitive point loss is a linear function in the primitive probabilities.

5.3 Probabilistic chamfer point loss

The second term we call the probabilistic point loss. Once again using linearity of

expectation,

Eπ

[
∑

y∈D
min
x∈Q
‖x− y‖2

]
= ∑

y∈D
Eπ

[
min
x∈Q
‖x− y‖2

]
. (5.11)

Consider this second term for a given y ∈ D. We wish to compute the expected

squared distance of the nearest point. Each point in σ has a corresponding squared

distance dk to y, and a corresponding probability of sampling pk. Then the ex-

pected squared distance to the nearest point sampled is a sum of the distances,

weighted by the probability that any given distance corresponds to the nearest

point sampled. Without loss of generality, the squared distances are ordered such

that d1 ≤ d2 ≤ d3 ≤ · · · and we can write

Eπ

[
min
x∈Q
‖x− y‖2

]
= d1p1 + d2(1− p1)p2 + d3(1− p1)(1− p2)p3 + · · · (5.12)

= ∑
k

dk pk

k−1

∏
l=1

(1− pl) (5.13)

The final sum is a sum over one such polynomial for every point in the input point-

cloud, so the probabilistic point loss is a polynomial in the primitive probabilities.

71

Eπ

[
∑

y∈D
min
x∈Q
‖x− y‖2

]
= ∑

y∈D
∑
k

dk,y pk,y

k−1

∏
l=1

(1− pl,y) (5.14)

5.4 Implementation details

We implement the neural network in PyTorch and use the IBM Horovod distributed

training package. The network consists of three set abstraction layers, followed by

two fully connected, batch norm, ReLU, and dropout layers. A final fully con-

nected layer with a scaled hyperbolic tangent activation outputs a vector with val-

ues between 0 and 1.

5.4.1 Set Abstraction Layers

The backbone of the neural network is made of Pointnet [16] and Pointnet++’s [63]

set abstraction layers. A set abstraction layer processes a set of points to compute a

new set of fewer but higher-dimensional points containing features of the original

point set. It does so in three layers: a sampling layer, a grouping layer, and an

abstraction layer.

The sampling layer uses furthest point sampling to choose some subset of the input

points to represent the point cloud. The grouping layer consists of a nearest neigh-

bor or ball query around each sampled point meant to provide local context. The

final abstraction layer consists of a multilayer perceptron followed by a max-pool.

The multilayer perceptron can approximate arbitrary functions and the max-pool

introduces desired symmetries into the representation. For more information see

the cited papers.

72

5.5 Training and Results

We train the network on Satori, a high performance Power 9 cluster run by MIT

and IBM. Each run uses PyTorch’s Adam optimizer and is run for forty epochs. We

train and test the network on simple synthetically generated toy examples. We con-

sider a small set of nine possible primitives placed at disjoint locations. One such

visualization can be seen in figure 5-1. To generate scenes, some subset of these

nine primitives are chosen to be active, and points are randomly sampled from

their surfaces, with both jitter (per-point noise) and drift (per-primitive noise).

The first experiment compares the performance of a network trained using our self

supervised probabilistic chamfer loss to a network trained using a cross entropy

loss. We train both networks with a dataset consisting of all 29 = 512 combinations

of existing and non existing primitives, and test on a similar dataset spanning all

combinations of primitives but with different jitter and drifts. Our network out-

puts a prediction for each individual primitive whereas the supervised network

classifies each primitive combination as one of 512 different classes. Thresholding

the probability output of our network and comparing with the ground truth, we

are able to correctly identify 98% of all primitives, and perfectly reconstruct 96%

of scenes, with no extra stray primitives identified. The fully supervised cross-

entropy network does similarly well, achieving an accuracy of 98% across scenes.

In the second experiment, we train the self-supervised probabilistic chamfer loss

network on all of the combinations except for the single primitive scenes. We then

test on these single primitive scenes which the network has never seen before. The

73

Figure 5-1: Top down view of four sample scenes used to train the neural network.
Each scene is made up some combination of nine cylinders. Once the cylinders
have been selected, points are sampled from their surfaces and perturbed to create
the training scene.

74

Train Test Scene Acc. Primitive Acc.
All combinations All combinations 0.96 0.98

Multiple-primitive Single-primitive 0.85 0.85
Single-primitive Multiple-primitive 0.05 0.33

Table 5.1: Test accuracies for various training and test sets.

network achieves 85% accuracy on these new scenes. For the third experiment,

we train the network on scenes each including a single primitive. We then test the

network on pairs of primitives. The scene accuracy is no higher than 5%, with only

33% of primitives correctly detected, and an extra 43% of erroneous primitives de-

tected. These results are summarized in table 5.1.

We also examine the effects of discretization and alignment on the neural network.

Due to our discretization of the primitive space, only a finite set of primitives are

considered. When this finite set of primitives aligns with the true pointcloud, we

are able to achieve good reconstructions. In cases where none of the primitives

considered are good fits, we achieve significantly worse reconstructions. To quan-

tify the effect of this alignment on the network performance, we test the network

on datasets with shifted alignment. Each test example is assigned a maximum

offset from its primitive-aligned position, and the test example alignment is sam-

pled from a uniform random variable between zero and this maximum offset. A

maximum offset of 0 indicates that the pointcloud and primitives considered are

perfectly aligned, and a maximum offset of 1 indicates that the maximum shift will

align the pointcloud with a neighboring primitive. The effects of the maximum off-

set on the scene and primitive accuracy can be seen in figure 5-2.

75

Figure 5-2: We plot the percentage of scenes and the percentage of primitives cor-
rectly reconstructed for various possible alignments. The maximum offset param-
eter determines the maximum difference between the true primitive-pointcloud
alignment and the test primitive-pointcloud alignment.

5.6 Discussion

We find that given an equal training set, the self-supervised probabilistic chamfer

loss network does approximately as well as the fully supervised network. This in-

dicates that the self-supervised loss is at least as expressive as the softmax loss on

this 9 primitive dataset. The similarity in performance is not surprising as the two

networks have similar structure, except for the difference in loss functions.

While a 9 primitive dataset has 512 possible scenes, a 20 primitive dataset has over

a million scenes, and even a modest 100 primitive dataset has over 1030 possible

scenes. We show training times for networks with varying numbers of primitives

in figure 5-3. We see that treating each scene as a separate class is not feasible for

more complex environments. For any practical use, the network must be able to

learn from simple training scenes and generalize to unseen test scenes. The second

76

Figure 5-3: The time taken to train the neural network increases exponentially with
the number of primitives considered.

experiments is the first of two experiments aimed at capturing this generalizabil-

ity. In the second experiment, the network is trained on complex multi-primitive

scenes, and tested on simple single-primitive scenes. Without having seen any

single-primitive scenes, the network is able to choose the correct mapping between

primitive location and output indices 85% of the time.

Unfortunately, we find that while the network generalizes from complex to simple

scenes, it does not generalize from simple to complex scenes. We test the simplest

such generalization by training on single-primitive scenes and testing on scenes

of two primitives each. A scene accuracy of 5% indicates that the network is not

learning the correct mappings between points in R3 and primitive indices, and is

therefore unsuitable for use in its current form. Because of this disappointing result

on a toy dataset, we refrain from testing on any larger or more complex examples

and instead report this as a negative result.

77

78

Chapter 6

Inferring primitive scenes with a

probabilistic chamfer distance

The probabilistic chamfer distance may be too complex to learn efficiently using

our network, but our ability to analytically compute its gradient makes it well

suited for iterative optimization methods. Gradient based optimizations require

repeated evaluations, so we use this chapter to develop approximations to the ex-

act probabilistic chamfer distance. Using these approximations, we are able to

present an algorithm with runtime linear in the size of the input pointcloud |D|

and linear in the number of primitives considered |G|. This efficient evaluation

allows us to optimize the probabilistic chamfer distance on scenes with thousands

of primitives and tens of thousands of points.

79

6.1 Revisiting the probabilistic chamfer distance

6.1.1 Probabilistic primitive loss

Recall that the expression for the probabilistic primitive loss is given b y

Eπ

[
∑

x∈Q
min
y∈D
‖x− y‖2

]
= ∑

i
pi ∑

x∈σi

min
y∈D
‖x− y‖2 . (6.1)

The probabilistic primitive loss is a linear function of the primitive probabilities.

Furthermore, notice that the coefficients of this linear function do not depend on

the probabilities themselves: they depend only on the input pointcloud D as well

as the points corresponding to the possible primitive projections σ. This allows

us to compute the coefficients once, and re-use them for subsequent optimization

function calls. The algorithm to do so is given in algorithm 4.

Algorithm 4 Computing the probabilistic primitive loss coefficients

1: procedure PROBABILISTIC PRIMITIVE LOSS COEFF(D, σ)
2: KDTree← MAKEKDTREE(D)
3: g← Zeros(N) . Vector to hold coefficients
4: for i← 1 to N do . Iterating over the number of primitives
5: for xk ∈ σi do
6: Increment gi by NEARESTDISTANCE(KDTree, xk)2

7: end for
8: end for
9: return g

10: end procedure

6.1.2 Probabilistic point loss

The expression for the probabilistic point loss is given by

80

Eπ

[
∑

y∈D
min
x∈Q
‖x− y‖2

]
= ∑

y∈D
∑
k

dk,y pk,y

k−1

∏
l=1

(1− pl,y). (6.2)

where the first sum is over points in D, and the second sum is over the nearest

points in σ. Note that a single pi may correspond to multiple pk, as pi is the proba-

bility value assigned to the ith primitive, and pk is the probability value assigned to

the primitive corresponding to the kth nearest point to the pointcloud point yj. The

expression for the probabilistic point loss is also a polynomial in the pi, whose coef-

ficients are once again defined by only D and σ. As the polynomial corresponding

to yj is determined by the nearest point distances to it, our precomputation need

only compute these distances as well as the nearest point ordering. We provide a

possible way to compute these coefficients in algorithm 5.

Algorithm 5 Computing the exact probabilistic point loss coefficients

1: procedure SINGLE POINT COEFF(yj, σ)
2: distances← []
3: for i← 1 to N do
4: for z ∈ σi do
5: Append d(yj, z)2 to distances
6: end for
7: end for
8: sorted distances, sorting indices← SORT(distances)
9: return sorted distances, sorting indices

10: end procedure
11: procedure PROBABILISTIC POINT LOSS EXACT COEFFICIENTS(D, σ)
12: for yj ∈ D do
13: Accumulate SINGLE POINT COEFF(yj, σ) in all sorted distances, all sort-

ing indices
14: end for
15: return all sorted distances, all sorting indices
16: end procedure

Although the coefficients are straightforward to compute, this polynomial has

81

many more terms than the linear probabilistic primitive loss given in equation

5.10, so care must be taken in its evaluation. Given the squared point distances d,

one could expand the expression for the probabilistic point loss to find the coef-

ficients of the terms, but such an expansion would be slow and impractical. We

instead factor the polynomial so that each pk appears only once per yj and exploit

this factoring in a recursive expression.

This recursion is given in terms of the expecting remaining distance, ERD. An

ERDk for point yj corresponds to the expected distance of the nearest sampled

point in σ to yj, given that the nearest k points were not sampled. Notice that the

probabilistic point loss is the sum of all ERD0 for each yj. Seen slightly differently,

for one given yj,

ERD0 = ∑
k

dk pk

k−1

∏
l=1

(1− pl) (6.3)

= d1p1 + d2p2(1− p1) + d3p3(1− p1)(1− p2) + · · · (6.4)

= p1d1 + (1− p1)

[
p2d2 + (1− p2)

[
p3d3 + (1− p3)[· · ·]

]]
(6.5)

= p1d1 + (1− p1)ERD1 (6.6)

Similarly, ERDk−1 = pkdk + (1− pk)ERDk.

6.1.3 Runtime analysis

Suppose we have |D| = J points in our input pointcloud, |G| = N primitives in our

grounded primitive set, less than |σi| ≤ M points in each primitive projection, and

we evaluate the probablistic chamfer loss and gradient t times in our optimization.

The probabilistic primitive loss consists of creating a KD-Tree for the pointcloud

82

points and one nearest neighbor query for each primitive point. Evaluating the

primitive loss and gradient is done in O(N), so altogether, the probabilistic primi-

tive loss runs in O((J + NM) log J + tN).

Computing the coefficients for the probabilistic point loss involves computing dis-

tances between J pointcloud points and NM primitive points. Each of these NM

distances for each pointcloud point are then sorted. These steps run in O(JNM(log N +

log M)). Evaluation involves computing O(JNM) expected remaining distances,

so therefore the probabilistic point loss and gradient computation runs in O(JNM(log N +

log M) + JNMt).

6.2 Approximations

Because the probabilistic primitive loss relatively is cheap to compute, it needs

no approximations and instead we focus on approximations for the probabilistic

point loss. We note that each polynomial created for the probabilistic point loss

is a polynomial in N variables each of degree M. This suggest two possible ap-

proximations. The first reduces the degree of the polynomial by considering the

effects of the expected remaining distance. The second approximation reduces the

number of variables by considering the locality of each point in the pointcloud.

6.2.1 Reducing the degree of the polynomial

For each point yj ∈ D, the degree of the polynomial is based on the number of near-

est neighbors considered from each primitive. By considering only the α points

from each primitive nearest to yj, the degree of the polynomial becomes α. We

83

build intuition that this approximation is a good approximation by considering

two possibilities: either the pi corresponding to these α points is high, or it is low.

If the pi is high, the probability that the (α + 1)st point is the nearest point to yj is

low because it is likely that one of the nearer α points is projected. And if pi is low,

then the probability that the (α + 1)st point is the nearest point is once again low

because its probability of projection is low.

This truncation improves the runtime. The weights of the probabilistic point loss

now include an additional O(NM log M) term to form the KD-Trees to compute

the α nearest points to each yj, but the overall construction is now O(NM log M +

αJN log M) and the evaluation is now O(αJNs) for an overall runtime of O(NM log M+

αJN log M + αJNs) 1.

6.2.2 Reducing the number of variables in the polynomial

The second approximation we make is to limit the number of primitives consid-

ered for each point. By only considering the β nearest primitives to yj, we further

reduce the complexity to O(NM log M + αβJ log N log M + αβJs).

We present an efficient algorithm for computing these approximate coefficients in

algorithm 6.

6.3 Results and Discussion

We test our approach on three tasks. The first task is to fit geometric primitives to a

pipe with multiple bends. This task is meant to simulate the sort of primitive fitting

1With an efficient implementation, the O(NM log M) tree construction can also be reduced by
noting that each KD tree of a given primitive type is isomorphic to the others.

84

Algorithm 6 Computing the approximate probabilistic point loss coefficients

1: procedure SINGLE POINT APPROX COEFF(yj, KDTreei, PrimitiveKDTree, α, β)
2: nearest primitives← NEARESTNEIGHBORS(yj, PrimitiveKDTree, β)
3: distances← []
4: for i ∈ nearest primitives do
5: nearest neighbors← NEARESTNEIGHBORS(yj, KDTreei, α)
6: for z ∈ nearest neighbors do
7: Append d(yj, z)2 to distances
8: end for
9: end for

10: sorted distances, sorting indices← SORT(distances)
11: return sorted distances, sorting indices, nearest primitives
12: end procedure
13: procedure PROBABILISTIC POINT LOSS APPROX COEFF(D, σ, α, β)
14: for i← 1 to N do
15: KDTreei ← MAKEKDTREE(σi)
16: end for
17: PrimitiveKDTree← MAKEKDTREE(σ centers)
18: sorted distances← []
19: sorting indices← []
20: nearest primitives← []
21: for yj ∈ D do
22: Accumulate SINGLE POINT APPROX COEFF(yj, KDTreei, Primi-

tiveKDTree, α, β) in sorted distances, sorting indices, nearest primitives
23: end for
24: return sorted distances, sorting indices, all nearest primitives
25: end procedure

85

that one might encounter while solving a manipulation problem. For our second

task, we revisit a hallway domain to fit primitives to walls. This task is meant

to simulate a navigation problem. Finally, we apply our approach to a registra-

tion problem. Our current implementation of the probabilistic chamfer distance is

written in Python with NumPy [30] and tested on an Intel Core i7. Profiling shows

that the vast majority of computation is spent doing nearest neighbor queries in

the chamfer distance coefficient construction, so we estimate that an efficient C++

implementation might be between one and two orders of magnitude faster. The

results from a preliminary C++ implementation is shown in figure 6-6.

6.3.1 Manipulation

We generate a pipe made of some combination of straight segments and right angle

elbows. We sample points from the surface of this pipe, and these points become

the input pointcloud D that we try to match. This problem is difficult because we

do not a priori know the shape of the pipe or how many segments it has, and the

boundaries of the segments are unclear. We find that even in the presence of point-

cloud jitter, we are able to accurately detect and reconstruct the pipes. A scene

such as the ones shown in figure 6-1 is solved in about 30 seconds. We run this

example with α = 10, β = ∞.

We also explore the effects of various discretizations in figure 6-2. We run 20 tri-

als at each discretization, varying the alignment of the input pointcloud with the

possible primitives in G for each trial. A discretization value of zero represents the

base discretization necessary to fully represent the scene if the pointcloud and the

existing primitives are well aligned, and discretization values deviating from 0 in-

dicate a denser or sparser G. In particular, for a discretization value of i, the spacing

86

Figure 6-1: We are able to fit geometric primitives to pipes with an unknown shape
and number of parts. The left column contains the input pointcloud, and the right
column contains the fit primitives.

between primitives is given by 2i times the base spacing. Unsurprisingly, denser

discretizations allow for better fits. The average error for a discretization value of

-2 is 275,000: just over the error of 245,000 given by hand-tuning the pointcloud-

primitive alignment in figure 6-1. The second graph in figure 6-2 indicates that

solve time scales linearly with the number of primitives considered as predicted

by our analysis.

The effects of α on the probabilistic chamfer distance and on solve time is shown

in figure 6-3. We find that, as expected, fewer points in the approximation leads

to faster solve times, but also results in primitive scenes with higher error. While

solve time increases relatively monotonically with α, the error introduced by the

approximation seems to plateau around α = 10.

6.3.2 Navigation

To test the navigation capabilities of a map build with the probabilistic chamfer

loss, we fit square patches to a hallway pointcloud input from the Multisensorial

87

Figure 6-2: We measure the effects of discretization on both the error and the solve
time. A discretization value of i means the spacing is given by 2i times the base
spacing. Solid lines represent the mean of twenty trials, while the shading repre-
sents the standard deviation.

88

Figure 6-3: We measure the effect of α on both the error and the solve time. Solid
lines represent the mean of twenty trials, while the shading represents the standard
deviation.

89

Figure 6-4: A hallway scene from the Multisensorial Indoor Mapping and Posi-
tioning Dataset [78]. The full pointcloud scene (left) compared to the initial fitted
primitive scene (right).

Indoor Mapping and Positioning Dataset [78]. An image of the input pointcloud

and reconstructed scene can be found in figure 6-4. Our examples are run with

α = 10, β = 125.

We measure the mean error from each pointcloud point to the nearest primitive,

and present a histogram of the results in figure 6-5. When considering square

primitives with 1 meter side lengths, the expected distance between a point in the

input pointcloud and the nearest primitive is 0.22 meters, and every point in the

input pointcloud has at least one primitive within a meter of it.

We note that the reconstructed figure in figure 6-4 seems to have weaknesses sim-

ilar to the navigation reconstruction in Chapter 4. In this case, though, the weak-

nesses are caused by computational constraints. The python implementation re-

quires aggressive sparsification of the input pointcloud to fit the required arrays

in memory. Although out of scope for this thesis, the results of a preliminary C++

90

Figure 6-5: A histogram of the mean error between pointcloud points and their
nearest primitives in figure 6-4.

implementation are included in figure 6-6 and figure 6-7. Further analysis will be

performed in future work.

6.3.3 Registration

Pointcloud registration is a difficult problem to solve using this space discretiza-

tion approach. Although there are in general fewer “true” primitives that must be

found, this sparsity does not benefit our approach. Furthermore, the inherent er-

ror introduced by the discretization is dominant in the continuous pose and scale

space. We include a particle-filter type approach, where particles represent param-

eters of various geometric primitives, and our differentiable chamfer loss acts as

the measurement function, but note that it is not a practical algorithm compared

to single-primitive registration methods such as ICP [3] or Teaser [84]. Never-

theless, we include results as they show the flexibility of the algorithm, run with

α = 10, β = ∞.

91

Figure 6-6: The C++ implementation results from fitting primitives to the Multi-
sensorial Indoor Mapping and Positioning Dataset [78]. The increased efficiency
and precise control over memory management allows us to run with an order of
magnitude more points, which results in a better fitting.

92

Figure 6-7: A histogram of the mean error between pointcloud points and their
nearest primitives in figure 6-6.

In figure 6-8, we demonstrate the particle filter registration approach. We start with

multiple possible primitives, and after a few resampling iterations converge to a

qualitatively good solution. In figure 6-8 we estimate only the rotation of the prim-

itive in the presence of 95% noise. To generate the input pointcloud, we sample 100

points from the surface of a randomly rotated true bunny, and augment the point-

cloud with 1900 points uniformly sampled from a similar area. The false points

are explicitly modeled by a primitive that contains points uniformly sampled from

space. In figure 6-9 we show that we are able to register multiple primitives at the

same time and estimate translation as well as rotation.

We find that the probabilistic chamfer loss is not particularly well suited to regis-

tration. Because parameters are never estimated directly, the only way to find the

correct primitive to fit to a given set of points is to randomly sample it from pa-

93

Figure 6-8: Various registration examples. More transparent points indicate a
lower likelihood of that primitive (top left). After 20 iterations, we have less un-
certainty over the pose of the primitive (top right). 1900 points of random noise,
and 100 points sampled from the surface of a primitive (bottom left). We are able
to find the rotation of the primitive in a noisy pointcloud (bottom right).

Figure 6-9: We are able to register multiple primitive in a single scene.

94

rameter space in the particle resampling step. The probability of sampling a pose

that is sufficiently close decreases exponentially with dimensionality, and we see

that we are able to much more easily sample close rotations from a 3 dimensional

space than we are able to sample close poses from a 6 dimensional space.

95

96

Chapter 7

Conclusion

To conclude, we revisit our guiding question:

How can we infer the existence of geometric primitives, and is inferring exis-

tence useful when fitting primitives to non-discriminable data?

While the first part of the question has not been fully answered, it seems reason-

able to say that the answer to the second part of the question is yes. In this work,

we have presented three possibilities for inferring existence of geometric primi-

tives representing stuff. While the sampling based approach had critical flaws, and

the probabilistic chamfer distance based neural network needed certain network

restructuring, we found that the direct optimization of the probabilistic chamfer

distance revealed promising results.

We provided an algorithm that computes an approximation of the probabilistic

chamfer distance and its gradient in linear time with the size of the input point-

cloud. Fundamental to our approach of inferring existence is the idea of probabilis-

tic existence. By relaxing what would have previously been a binary constraint,

97

we are able to efficiently compute gradients and turn a combinatorial optimization

problem into a standard polynomial optimization problem. Testing this algorithm

on various datasets we find promising results that indicate that inferring existence

may be a viable way to fit geometric primitives to non-semantically meaningful

data.

Further work could take various directions. One option is to implement the prob-

abilistic chamfer distance in a compiled language to increase the scale of the prob-

lems it can be used to solve. Another option is to use the output of the probablistic

chamfer distance to solve planning problems such as manipulation or navigation.

Alternatively, an incremental solve might allow near-realtime performance on sim-

ple scenes such as the hallway navigation scene from Chapter 6. If this incremental

optimization and near-realtime performance is achieved, it might become feasible

to use primitives generated by the probabilistic chamfer distance in a factor graph

for a SLAM system. Finally, we note that our approach is not more expressive

than the chamfer distance itself, and in certain cases the chamfer distance might

not capture behavior which is desirable to model. Future work could use a similar

probabilistic approach to different pointcloud distance functions.

We initially set out to find a general purpose algorithm able to fit geometric prim-

itives to a whole scene without a strong prior on what the scene would look like.

While our current implementation is too slow to fully build large scenes, and some

priors are needed to choose primitives to be considered, it sets up a new frame-

work capable of building fully primitive scenes with weaker priors than existing

approaches. We are excited to see where this work goes next.

98

Bibliography

[1] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. Netvlad: Cnn
architecture for weakly supervised place recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5297–5307, 2016.

[2] David Arthur and Sergei Vassilvitskii. K-means++: the advantages of careful
seeding. In In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2007.

[3] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d
point sets. IEEE Trans. Pattern Anal. Mach. Intell., 9(5):698–700, May 1987.

[4] N. Atanasov, M. Zhu, K. Daniilidis, and G. Pappas. Localization from seman-
tic observations via the matrix permanent. The International Journal of Robotics
Research (IJRR), 35:73–99, 2015.

[5] T. Bagautdinov, F. Fleuret, and P. Fua. Probability occupancy maps for oc-
cluded depth images. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2829–2837, 2015.

[6] Y. Bar-Shalom, F. Daum, and J. Huang. The probabilistic data association filter.
IEEE Control Systems Magazine, 29(6):82–100, 2009.

[7] Yaakov Bar-Shalom and Edison Tse. Tracking in a cluttered environment with
probabilistic data association. 1975.

[8] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. Parametric corre-
spondence and chamfer matching: Two new techniques for image matching.
In Proceedings of the 5th International Joint Conference on Artificial Intelligence
- Volume 2, IJCAI’77, page 659–663, San Francisco, CA, USA, 1977. Morgan
Kaufmann Publishers Inc.

[9] A. J. Barry and R. Tedrake. Pushbroom stereo for high-speed navigation in
cluttered environments. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 3046–3052, 2015.

[10] Yoshua Bengio, N. Léonard, and Aaron C. Courville. Estimating or propagat-
ing gradients through stochastic neurons for conditional computation. ArXiv,
abs/1308.3432, 2013.

99

[11] S. S. Blackman. Multiple hypothesis tracking for multiple target tracking.
IEEE Aerospace and Electronic Systems Magazine, 19(1):5–18, 2004.

[12] Sean L. Bowman, Nikolay Atanasov, Kostas Daniilidis, and George J. Pap-
pas. Probabilistic data association for semantic slam. 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 1722–1729, 2017.

[13] Eric Brachmann, Alexander Krull, Sebastian Nowozin, J. Shotton, F. Michel,
S. Gumhold, and C. Rother. Dsac — differentiable ransac for camera localiza-
tion. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2492–2500, 2017.

[14] Alvaro Parra Bustos and Tat-Jun Chin. Guaranteed outlier removal for rota-
tion search. In Proceedings of the 2015 IEEE International Conference on Computer
Vision (ICCV), ICCV ’15, page 2165–2173, USA, 2015. IEEE Computer Society.

[15] Trevor Campbell, Miao Liu, Brian Kulis, Jonathan P How, and Lawrence
Carin. Dynamic clustering via asymptotics of the dependent dirichlet pro-
cess mixture. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
26, pages 449–457. Curran Associates, Inc., 2013.

[16] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 77–85, 2017.

[17] Jiawen Chen, Dennis Bautembach, and Shahram Izadi. Scalable real-time vol-
umetric surface reconstruction. ACM Trans. Graph., 32(4), July 2013.

[18] I. J. Cox and J. J. Leonard. Probabilistic data association for dynamic world
modeling: a multiple hypothesis approach. In Fifth International Conference on
Advanced Robotics ’Robots in Unstructured Environments, pages 1287–1294 vol.2,
1991.

[19] Ingemar J. Cox and John J. Leonard. Modeling a dynamic environment using
a bayesian multiple hypothesis approach. Artificial Intelligence, 66(2):311 – 344,
1994.

[20] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38, 1977.

[21] K. Doherty, D. Fourie, and J. Leonard. Multimodal semantic slam with prob-
abilistic data association. In 2019 International Conference on Robotics and Au-
tomation (ICRA), pages 2419–2425, 2019.

[22] H. E. Elghor, D. Roussel, F. Ababsa, and E. H. Bouyakhf. Planes detection for
robust localization and mapping in rgb-d slam systems. In 2015 International
Conference on 3D Vision, pages 452–459, 2015.

100

[23] S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David
Szepesvari, koray kavukcuoglu, and Geoffrey E Hinton. Attend, infer, repeat:
Fast scene understanding with generative models. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 29, pages 3225–3233. Curran Associates, Inc., 2016.

[24] D. Forsyth, J. Malik, Margaret M. Fleck, H. Greenspan, Thomas Leung,
Serge J. Belongie, C. Carson, and C. Bregler. Finding pictures of objects in
large collections of images. In Object Representation in Computer Vision, 1996.

[25] I. R. Goodman, Ronald P. Mahler, and Hung T. Nguyen. Mathematics of Data
Fusion. Kluwer Academic Publishers, USA, 1997.

[26] Peter J. Green. Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika, 82(4):711–732, 12 1995.

[27] W. N. Greene and N. Roy. Flame: Fast lightweight mesh estimation using
variational smoothing on delaunay graphs. In 2017 IEEE International Confer-
ence on Computer Vision (ICCV), pages 4696–4704, 2017.

[28] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and
Mathieu Aubry. 3d-coded: 3d correspondences by deep deformation. In Vit-
torio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors,
Computer Vision – ECCV 2018, pages 235–251, Cham, 2018. Springer Interna-
tional Publishing.

[29] Martin Habbecke and Leif Kobbelt. A surface-growing approach to multi-
view stereo reconstruction. In IN CVPR, 2007. [4] . OKUTOMI.

[30] Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian
Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H.
van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern’andez del R’ıo,
Mark Wiebe, Pearu Peterson, Pierre G’erard-Marchant, Kevin Sheppard, Tyler
Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–362,
September 2020.

[31] W. K. Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57(1):97–109, 04 1970.

[32] C. M. Hoffmann, J. E. Hopcroft, and M. J. Karasick. Robust set operations on
polyhedral solids. IEEE Computer Graphics and Applications, 9(6):50–59, 1989.

[33] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wol-
fram Burgard. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Autonomous Robots, 2013.

101

[34] N. Ikoma, T. Uchino, and H. Maeda. Tracking of feature points in image se-
quence by smc implementation of phd filter. In SICE 2004 Annual Conference,
volume 2, pages 1696–1701 vol. 2, 2004.

[35] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard New-
combe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, An-
drew Davison, and Andrew Fitzgibbon. Kinectfusion: Real-time 3d recon-
struction and interaction using a moving depth camera. In Proceedings of the
24th Annual ACM Symposium on User Interface Software and Technology, UIST
’11, page 559–568, New York, NY, USA, 2011. Association for Computing Ma-
chinery.

[36] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with
gumbel-softmax. 2017.

[37] Adam M. Johansen, Sumeetpal S. Singh, Arnaud Doucet, and Ba ngu Vo. Con-
vergence of the smc implementation of the phd filter cued/f-infeng/tr-517,
2005.

[38] M. Kaess. Simultaneous localization and mapping with infinite planes. 2015
IEEE International Conference on Robotics and Automation (ICRA), pages 4605–
4611, 2015.

[39] S. H. Khan, Xuming He, M. Bannamoun, F. Sohel, and R. Togneri. Separat-
ing objects and clutter in indoor scenes. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4603–4611, 2015.

[40] K. Konolige, E. Marder-Eppstein, and B. Marthi. Navigation in hybrid metric-
topological maps. In 2011 IEEE International Conference on Robotics and Automa-
tion, pages 3041–3047, 2011.

[41] Michael Krainin, Peter Henry, Xiaofeng Ren, and Dieter Fox. Manipulator
and object tracking for in-hand 3d object modeling. The International Journal
of Robotics Research, 30(11):1311–1327, 2011.

[42] Florent Lafarge and Clément Mallet. Creating large-scale city models from
3d-point clouds: A robust approach with hybrid representation. International
Journal of Computer Vision, 99, 08 2012.

[43] David H. Laidlaw, W. Benjamin Trumbore, and John F. Hughes. Construc-
tive solid geometry for polyhedral objects. SIGGRAPH Comput. Graph.,
20(4):161–170, August 1986.

[44] C. Li, T. Simon, J. Saragih, B. Póczos, and Y. Sheikh. Lbs autoencoder: Self-
supervised fitting of articulated meshes to point clouds. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 11959–
11968, 2019.

102

[45] Duanshun Li and Chen Feng. Primitive fitting using deep geometric seg-
mentation. In Mohamed Al-Hussein, editor, Proceedings of the 36th Interna-
tional Symposium on Automation and Robotics in Construction (ISARC), pages
780–787, Banff, Canada, May 2019. International Association for Automation
and Robotics in Construction (IAARC).

[46] J. Li and G. H. Lee. Usip: Unsupervised stable interest point detection from
3d point clouds. In 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 361–370, 2019.

[47] L. Li, M. Sung, A. Dubrovina, L. Yi, and L. J. Guibas. Supervised fitting of geo-
metric primitives to 3d point clouds. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2647–2655, 2019.

[48] Yangyan Li, Xiaokun Wu, Yiorgos Chrysathou, Andrei Sharf, Daniel Cohen-
Or, and Niloy J. Mitra. Globfit: Consistently fitting primitives by discovering
global relations. ACM Trans. Graph., 30(4), July 2011.

[49] Kok-lim Low. Linear least-squares optimization for point-toplane icp surface
registration. Technical report, 2004.

[50] Ronald P. S. Mahler. Statistical Multisource-Multitarget Information Fusion.
Artech House, Inc., USA, 2007.

[51] A. Martinović, J. Knopp, H. Riemenschneider, and L. Van Gool. 3d all the
way: Semantic segmentation of urban scenes from start to end in 3d. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
4456–4465, 2015.

[52] Peter Meer, Doron Mintz, Azriel Rosenfeld, and Dong Yoon Kim. Robust
regression methods for computer vision: A review. Int. J. Comput. Vision,
6(1):59–70, April 1991.

[53] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller. Equation of state calculations by fast com-
puting machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[54] H. Moravec and A. Elfes. High resolution maps from wide angle sonar. In
Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol-
ume 2, pages 116–121, 1985.

[55] Manasi Muglikar, Zichao Zhang, and D. Scaramuzza. Voxel map for visual
slam. 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 4181–4187, 2020.

[56] L. Nicholson, M. Milford, and N. Sünderhauf. Quadricslam: Dual quadrics
from object detections as landmarks in object-oriented slam. IEEE Robotics and
Automation Letters, 4(1):1–8, 2019.

103

[57] K. Ok, K. Liu, K. Frey, J. P. How, and N. Roy. Robust object-based slam
for high-speed autonomous navigation. In 2019 International Conference on
Robotics and Automation (ICRA), pages 669–675, 2019.

[58] Q. Pan, Gerhard Reitmayr, and Tom Drummond. Proforma: Probabilistic
feature-based on-line rapid model acquisition. In BMVC, 2009.

[59] Daehyung Park, Michael Noseworthy, Rohan Paul, Subhro Roy, and Nicholas
Roy. Inferring task goals and constraints using bayesian nonparametric in-
verse reinforcement learning. In Leslie Pack Kaelbling, Danica Kragic, and
Komei Sugiura, editors, 3rd Annual Conference on Robot Learning, CoRL 2019,
Osaka, Japan, October 30 - November 1, 2019, Proceedings, volume 100 of Proceed-
ings of Machine Learning Research, pages 1005–1014. PMLR, 2019.

[60] Despoina Paschalidou, Luc Van Gool, and Andreas Geiger. Learning unsu-
pervised hierarchical part decomposition of 3d objects from a single rgb im-
age. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[61] S. Pillai, S. Ramalingam, and J. J. Leonard. High-performance and tunable
stereo reconstruction. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 3188–3195, 2016.

[62] Charles R. Qi, O. Litany, Kaiming He, and L. Guibas. Deep hough voting for
3d object detection in point clouds. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 9276–9285, 2019.

[63] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hier-
archical feature learning on point sets in a metric space. In Proceedings of the
31st International Conference on Neural Information Processing Systems, NIPS’17,
page 5105–5114, Red Hook, NY, USA, 2017. Curran Associates Inc.

[64] D. Reid. An algorithm for tracking multiple targets. IEEE Transactions on
Automatic Control, 24(6):843–854, 1979.

[65] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic
backpropagation and approximate inference in deep generative models. In
Proceedings of the 31st International Conference on International Conference on Ma-
chine Learning - Volume 32, ICML’14, page II–1278–II–1286. JMLR.org, 2014.

[66] Antoni Rosinol, Torsten Sattler, M. Pollefeys, and L. Carlone. Incremental
visual-inertial 3d mesh generation with structural regularities. 2019 Interna-
tional Conference on Robotics and Automation (ICRA), pages 8220–8226, 2019.

[67] K. Schmid, T. Tomic, F. Ruess, H. Hirschmüller, and M. Suppa. Stereo vision
based indoor/outdoor navigation for flying robots. In 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 3955–3962, 2013.

104

[68] R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for Point-Cloud Shape
Detection. Computer Graphics Forum, 2007.

[69] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gra-
dient estimation using stochastic computation graphs. In Proceedings of the
28th International Conference on Neural Information Processing Systems - Volume
2, NIPS’15, page 3528–3536, Cambridge, MA, USA, 2015. MIT Press.

[70] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky. Nonparamet-
ric belief propagation. In 2003 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2003. Proceedings., volume 1, pages I–I, 2003.

[71] L. Teixeira and M. Chli. Real-time mesh-based scene estimation for aerial
inspection. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4863–4869, 2016.

[72] James Thewlis, Shuai Zheng, Philip Torr, and Andrea Vedaldi. Fully-trainable
deep matching. pages 145.1–145.12, 01 2016.

[73] William C. Thibault and Bruce F. Naylor. Set operations on polyhedra using
binary space partitioning trees. SIGGRAPH Comput. Graph., 21(4):153–162,
August 1987.

[74] Sebastian Thrun. Learning metric-topological maps for indoor mobile robot
navigation. Artificial Intelligence, 99(1):21–71, 1998.

[75] M. Tobias and A. D. Lanterman. Probability hypothesis density-based multi-
target tracking with bistatic range and doppler observations. IEE Proceedings
- Radar, Sonar and Navigation, 152(3):195–205, 2005.

[76] S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and J. Malik. Learning shape
abstractions by assembling volumetric primitives. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1466–1474, 2017.

[77] Ngo Vien and Marc Toussaint. Reasoning with uncertainties over existence of
objects. pages 120–125, 01 2013.

[78] C. Wang, S. Hou, C. Wen, Z. Gong, Q. Li, X. Sun, and J. Li. Semantic line
framework-based indoor building modeling using backpacked laser scanning
point cloud. ISPRS Journal of Photogrammetry and Remote Sensing, 143:150 –
166, 2018.

[79] T. Weise, Thomas Wismer, B. Leibe, and L. Gool. In-hand scanning with on-
line loop closure. 2009 IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops, pages 1630–1637, 2009.

[80] Thomas Whelan, Michael Kaess, Hordur Johannsson, Maurice Fallon, John J.
Leonard, and John McDonald. Real-time large-scale dense rgb-d slam with
volumetric fusion. The International Journal of Robotics Research, 34(4-5):598–
626, 2015.

105

[81] A. Wilkowski, T. Kornuta, M. Stefańczyk, and W. Kasprzak. Efficient gener-
ation of 3d surfel maps using rgb–d sensors. International Journal of Applied
Mathematics and Computer Science, 26:122 – 99, 2016.

[82] Wing-Kin Ma, Ba-Ngu Vo, S. S. Singh, and A. Baddeley. Tracking an unknown
time-varying number of speakers using tdoa measurements: a random finite
set approach. IEEE Transactions on Signal Processing, 54(9):3291–3304, 2006.

[83] L. L. S. Wong, L. P. Kaelbling, and T. Lozano-Perez. Not seeing is also believ-
ing: Combining object and metric spatial information. In 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 1253–1260, 2014.

[84] H. Yang, J. Shi, and L. Carlone. TEASER: Fast and Certifiable Point Cloud
Registration. IEEE Transactions on Robotics (T-RO), 2020.

[85] Heng Yang and Luca Carlone. A polynomial-time solution for robust regis-
tration with extreme outlier rates. Robotics: Science and Systems (RSS), 2019.

[86] S. Yang and S. Scherer. Monocular object and plane slam in structured envi-
ronments. IEEE Robotics and Automation Letters, 4(4):3145–3152, 2019.

[87] S. Yang, Y. Song, M. Kaess, and S. Scherer. Pop-up slam: Semantic monocu-
lar plane slam for low-texture environments. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1222–1229, 2016.

[88] Li Yi, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas J. Guibas. Gspn:
Generative shape proposal network for 3d instance segmentation in point
cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[89] C. Zou, E. Yumer, J. Yang, D. Ceylan, and D. Hoiem. 3d-prnn: Generating
shape primitives with recurrent neural networks. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 900–909, 2017.

106

	Introduction
	Motivation
	Challenges
	Primitive identification
	Data association

	Thesis overview

	Related Work
	Volumetric and mesh representations
	Data Association
	Reasoning over varying number of entities
	Primitive fitting and scene reconstruction
	Pointcloud learning
	Differentiating discrete functions
	Registration

	General overview
	Preliminaries
	Relaxing the exact optimization

	Sampling methods
	Intuition
	Approach
	Measurement model
	Combinatorial optimization and implementation details

	Results

	Learning primitive existence
	Training a general neural network
	Probabilistic chamfer distance
	Smoothing existence values and an expected chamfer distance
	Probabilistic chamfer primitive loss

	Probabilistic chamfer point loss
	Implementation details
	Set Abstraction Layers

	Training and Results
	Discussion

	Inferring primitive scenes with a probabilistic chamfer distance
	Revisiting the probabilistic chamfer distance
	Probabilistic primitive loss
	Probabilistic point loss
	Runtime analysis

	Approximations
	Reducing the degree of the polynomial
	Reducing the number of variables in the polynomial

	Results and Discussion
	Manipulation
	Navigation
	Registration

	Conclusion

