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Abstract

Technological advancements have increased the potential and feasibility of widespread
drone networks. Among other tasks, monitoring road traffic flow is a task well-suited
for such networks. While real-time traffic flow estimation systems have been explored
at length and exist as commercial services, these systems have limited spatial rea-
soning and suffer in accuracy when predicting future traffic conditions. To that end,
graph neural networks can account for spatial patterns, and can more effectively cap-
ture the impact of a region’s current traffic conditions on neighboring regions in the
future. Our work builds on prior graph neural network architectures for traffic flow
prediction. While current traffic prediction models are trained on ground-based data
with limited features, we propose leveraging aerial traffic data to train spatiotem-
poral models with richer feature spaces. Our research makes contributions towards
assembling a dataset from aerial footage and predicting traffic across a road network
given aerial images from a small set of drones.
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Chapter 1

Introduction

In 2012, the Federal Aviation Administration forecasted that 30,000 drones would be

operating in the US airspace by 2020 [1]. As of January 2021, the US government

has registered over 1.7 million drones, blowing these predictions out of the water [2].

Remarkably, the market for commercial and recreational drones is continuing to grow

at a rapid pace. Commercially, drones have become indispensable in the streamlining

and advancement of operations across many sectors, including entertainment, agri-

culture, and delivery. In 2017, drone activity generated $1 billion in revenue in the

United States, and it is estimated to achieve annual contributions of $31-$46 billion

to the nation’s GDP by 2026 [14].

It is clear that commercial and consumer interest in drones is soaring, and as the

market heads towards the prospect of mass adoption, this technology offers greater

potential for impact. Recognizing this, researchers at MIT and elsewhere have pur-

sued the development of shared mobility platforms, intended to connect and estab-

lish a robust network between drones and their consumers. Pursuing a future where

drones operate in coordinated fleets to provide various services, the primary objective

for these platforms is to match drone hardware to clientele in need of such services.

Leveraging the excess capacity that currently exists in the form of over 1.2 million,

often idle, registered recreational drones, such platforms would offer the ability to

coordinate routes and tasks with this finite resource network.

Over the last few years, significant progress has been made along several facets of
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the problem, including scheduling [5], as well as data collection and analysis for various

drone sensing tasks. In this thesis, we explore drone-based traffic flow prediction as a

promising application for a shared mobility platform. The primary objective for this

work is to frame and lay the foundations for a project aiming to leverage aerial traffic

footage and powerful spatiotemporal forecasting models to more accurately predict

traffic conditions.

We first study how optical flow can be utilized to implement an enhanced speed

estimation algorithm and curate a ground truth dataset. We then define and model

an initial task that aims to predict traffic conditions across a road network given

traffic data from a subset of its nodes, effectively simulating the constraints of traffic

flow prediction across a network with a limited number of drones.
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Chapter 2

Background

Traffic forecasting plays a key role in traffic patterns and management. Tracking

metrics like average speed within a region on a daily, hourly, or even more granular

basis can inform city planning and maintenance decisions and more effectively reduce

congestion. This data also informs drivers in selecting efficient routes to reach their

destinations.

Until recently, traffic forecasting services predominantly provided estimates based

on traffic conditions collected via GPS and various ground-based sensor systems.

With limited perception of future traffic conditions, these services offered limited ac-

curacy when predicting traffic along routes and calculating estimated times of arrival.

In the last decade, however, advancements in machine learning and technology have

enabled significant progress in the traffic forecasting domain. With the availability

of larger datasets and an explosive increase in computing power, studies have shifted

attention towards more sophisticated learning methods.

2.1 Temporal Forecasting Methods

Initial advancements in traffic forecasting focused on enhancing models with tem-

poral reasoning. As Figure 2-1 suggests, traffic patterns display strong periodicity

[17]. This is not only limited to daily and weekly patterns; rather, we often capture

oscillating behavior on the order of minutes as well, and this can be attributed to

15



Figure 2-1: Average traffic speed shows periodic behavior on a daily and weekly basis.

the periodic ebbs and flows of traffic caused by traffic signals. Services like Google

Maps have amassed years of traffic data and leveraged these temporal signals in their

data to enable their predictive models to characterize dynamic traffic conditions more

effectively [15].

Prior to the resurgence of deep learning, statistical and machine learning methods

like the Autoregressive Integrated Moving Average (ARIMA) model [3, 4] and support

vector regression [22] were leading methods for establishing temporal reasoning. In

recent years, deep learning models for traffic forecasting have surpassed many of

these approaches. Variants of the recurrent neural network, including long short-term

memory networks and gated recurrent units, have especially shown great potential

[20, 21].

Though these methods are powerful in capturing the overarching traffic patterns

that we expect on a daily or weekly basis, they largely lack adaptability to real-time

changes in traffic [13]. These methods are often limited in the event of unanticipated

short-term occurrences like road closures and accidents, as well as long-term pattern

shifts caused by factors like COVID-19. For increased adaptability, models should

ideally account for spatial dependence as well.
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2.2 Spatiotemporal Forecasting Methods

Spatial reasoning is valuable in capturing the propagation effect that occurs as traffic

shifts upstream or downstream in a road network [23]. The impact of congestion

is rarely isolated to one region, so identifying a representation that captures the

connectivity between regions would be beneficial for a quicker response to evolving

traffic behavior.

2.2.1 Graph Neural Networks

To characterize this spatial dependence effectively, several recent studies have pro-

posed graph neural network (GNN) architectures [23, 6, 18]. Traffic-sensing regions

and the connections between them can be represented as a graph 𝐺 = (𝑉,𝐸), where

nodes 𝑣𝑖 ∈ 𝑉 represent said regions and edges 𝑒𝑖𝑗 ∈ 𝐸 represent the road segments

connecting them. For simplicity, we can define 𝐺 as an undirected graph, as the

impact of congestion typically propagates in both directions. 𝐺 is accompanied by an

associated feature matrix 𝑋 ∈ 𝑅𝑁×𝐷 where 𝑁 represents the number of nodes and

𝐷 represents the number of features attributed to each node.

These studies then primarily define the problem as learning the function 𝑓 that

maps the traffic network 𝐺 and feature matrix 𝑋 to traffic metrics over the next T

time steps:

[𝑋𝑡+1, · · · , 𝑋𝑡+𝑇 ] = 𝑓(𝐺; (𝑋𝑡−𝑛, · · · , 𝑋𝑡−1, 𝑋𝑡)) (2.1)

where 𝑛 represents the length of the historical time series and 𝑇 represents the

length of the time series to be forecasted.

2.2.2 Graph Convolutional Networks

The core component underlying these models’ spatial understanding is the graph

convolutional network (GCN) [19]. GCNs take inspiration from convolutional neu-

ral networks, their image equivalents; however, graphs pose additional complexities,
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mostly stemming from the variability of their structures. Notably, GCNs are designed

to handle graphs consisting of unordered nodes with varying degrees - complexities

that are not pertinent to image convolution.

Making use of the node features and graph structure (i.e., the adjacency matrix),

GCNs pass a filter over the nodes and their first-order neighbors to capture spatial

relationships between the nodes. A single layer of the model can be expressed as

𝑓(𝐺;𝑋𝑡) = 𝐷− 1
2𝐺′𝐷− 1

2𝑋𝑡𝑊 (2.2)

where 𝐷 is the degree matrix, 𝐺′ represents the adjacency matrix 𝐺 with self-loops

included for each node, and 𝑊 represents the weight matrix for the layer. Stacking 𝑘

GCN layers allows for information to be accumulated for the 𝑘-hop neighbors of each

node.

Various GCN-based architectures have achieved remarkably accurate predictions

of average speeds, with accuracies exceeding 90% and error margins in the range of

approximately two to six miles per hour [23, 6, 18]. Architectures that combine GCN

layers with temporal layers have been shown to perform particularly well.

2.3 Aerial Imagery Using Drones

The evolution of technology has a role to play in the improvement of forecasting meth-

ods as well. Previously proposed traffic forecasting models have been predominantly

trained upon a small selection of popular traffic speed or volume datasets [16, 7, 21].

These datasets have been curated using inductive-loop vehicle detectors, taxi trajec-

tory data, and GPS probe data, and as such, the subsequent feature matrices for these

datasets are limited to the traffic metrics and time-based features, such as the day or

month, for each sample. Recent studies have attempted to learn representations that

can capture features such as number of lanes and road conditions [18]; however, no

dataset directly captures these features.

The rise of commercial and consumer drone technologies presents us with the

novel opportunity to improve traffic flow prediction models by expanding their feature

18



spaces. Aerial footage can offer a visual dimension to traffic datasets and directly

capture number of lanes, road quality and closures, road type, and other spatial

characteristics.

2.4 Objectives

The vision for this project is to develop a traffic flow prediction model that can

forecast traffic given current and past traffic data collected in the form of drone

footage. Breaking down this idea into current and future objectives, we aim to

1. Leverage drone footage to build a dataset that can enable a richer feature space.

2. Predict traffic flow across all 𝑁 nodes in the network given eyes (i.e., drones)

that observe a subset 𝐾 of those nodes.

3. Calculate the optimal placement of the 𝐾 drones at each time step to maximize

traffic flow information and reduce uncertainty within the network.

This thesis makes contributions towards the first two objectives and lays a foun-

dation for future efforts towards the third objective.
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Chapter 3

Data

3.1 Drone Footage

In prior work, a framework was devised and implemented for collection of video-based

traffic data across a road network. Eleven locations were selected in the Boston-

Cambridge area based on their proximity to four handpicked intersections, as shown

in Figure 3-1. Selecting points on or near these intersections allowed for the possibility

of studying how the impact of traffic signals on traffic flow propagates across the

network.

Six drones were utilized to gather approximately one hour each of footage across

the eleven different locations. The drone flights were synchronized to enable accurate

comparison and analysis of traffic patterns in the collected footage. Distance per

pixel was also tracked to account for variations in the height at which the footage was

collected at each of these locations.

3.2 Additional Sources

Though useful for the framing of this project, one hour of footage across a traffic

network was too limited for the prediction tasks we intended to pursue. To avoid

being bottlenecked by the need for further drone-based data collection, we identified

additional traffic datasets that could be utilized for the early stages of our prediction
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Figure 3-1: Traffic-sensing locations in drone footage (left) and PeMS-BAY (right)
datasets.

efforts. We ultimately selected the publicly available PeMS-BAY dataset based on

thoroughness and cleanliness of data [16, 17].

The PeMS-BAY dataset, provided by the California Department of Transporta-

tion, contains traffic data collected from January 1st, 2017, to May 31st, 2017, by 325

sensors positioned across the freeway system in the Bay Area. The data is collected

in 5-minute intervals.
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Chapter 4

Estimating Speed via Optical Flow

To assemble a complete, usable dataset from the collected drone footage, we first

sought out a method for establishing ground truth, as the raw footage had no asso-

ciated labels measuring traffic flow. Selecting average speed as our traffic metric of

choice, we landed upon object detection and tracking as a means for estimating the

speed within the recorded field of view.

4.1 Detection and Tracking

Vehicle detection and tracking is a common method for estimation of speed, density,

and other traffic metrics. Upon detection, the vehicle is tracked until it is no longer

in view. By tracking the trajectory of each vehicle 𝐶𝑖 in the 𝑛-length list of currently

tracked vehicles 𝐶, we have sufficient information to reasonably estimate its speed by

approximating the distance 𝐷 it travels and dividing this value by the time 𝑇 taken

to do so. The average speed 𝑎 for the region is then calculated as follows:

𝐷(𝐶𝑖) =
√︁

(𝑒𝑥 − 𝑠𝑥)2 + (𝑒𝑦 − 𝑠𝑦)2 * 𝑝𝑑 (4.1a)

𝑇 (𝐶𝑖) =
1

𝑟
* (𝑓𝑒 − 𝑓𝑠) (4.1b)

𝑎 =
1

𝑛
*

𝑛∑︁
𝑖=1

𝑑𝑖𝑠𝑡(𝐶𝑖)

𝑡𝑖𝑚𝑒(𝐶𝑖)
(4.1c)
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where 𝑠 = (𝑠𝑥, 𝑠𝑦) and 𝑒 = (𝑒𝑥, 𝑒𝑦) are the tracked starting and ending coordinates

of vehicle 𝐶𝑖 as it passes through the field of view, 𝑝𝑑 represents distance per pixel, 𝑟

represents video frame rate, and 𝑓𝑒 − 𝑓𝑠 represents the length of 𝐶𝑖’s trajectory (i.e.

the number of frames in which vehicle 𝐶𝑖 is present and tracked). It should be noted

that this estimation simplifies all paths to a straight line between the starting and

ending coordinates.

While variations of this speed estimation method are commonly utilized for video-

based traffic surveillance, it is best suited for footage collected by fixed surveillance

cameras. A key limitation of traditional object detection and tracking is the assump-

tion of a static background. In the case of footage collected by drones and other

mobile camera platforms, we expect background movement caused by planned plat-

form movement as well as air turbulence. Developing vehicle detectors and trackers

that subtract this noise is essential for accuracy of estimation.

4.2 Sparse vs. Dense Optical Flow

Determining this relative movement between the vehicles and the camera is the funda-

mental idea behind optical flow [10]. Leveraging optical flow, we can generate vector

fields expressing the movement of points between consecutive frames.

The two primary optical flow methods are sparse and dense optical flow. As

the name suggests, sparse optical flow generates flow vectors for a subset of pixels.

These pixels are selected based on distinguishing factors. For example, state-of-the-

art sparse optical flow methods select these pixels based on maximum difference in

pixel intensity. Dense optical flow, on the other hand, generates flow vectors for the

entire frame. Consequently, it achieves higher accuracy at the cost of being more

computationally expensive than sparse optical flow.

Based on empirical analysis and further research, we concluded that dense optical

flow is more applicable for our use case. The ideal method would distinguish station-

ary and moving features, enabling us to calculate and remove the stationary speed,

which constitutes the speed contributed by drone movement. As evident in Figure
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A-1, selecting features based on maximum difference in pixel intensity causes a mix

of stationary and moving objects to be selected, especially in more complex fields of

view that contain buildings and other prominent objects in addition to vehicles. The

noise introduced by this reduces the utility of sparse optical flow for our problem

space.

When using dense optical flow, we produce information for every pixel and can

more effectively differentiate stationary and moving objects by running a clustering

algorithm over the full-frame flow field. Dense optical flow is additionally promising

because it allows for separation of features by flow direction. As seen in Figures B-2

and B-3, this allowed us to distinguish lanes, which should prove useful for future

efforts to expand the feature space of our predictive models.

4.3 Dense Optical Flow Estimator

Figure 4-1: Flow diagram for optical flow speed estimation algorithm.

Figure 4-1 depicts the optical flow pipeline that takes the drone footage as input

and outputs the average speeds for a sequence of video segments.
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4.3.1 Image Acquisition

The estimator takes in a traffic surveillance video as input as well as the interval at

which average speed should be calculated. For our data, we elected to calculate the

average speed for every 10-second segment in the video. Additional metadata that

the estimator requires are the video’s frame rate and the distance spanned per pixel.

We loop over the frames in the video stream and run them through the optical

flow, detection, filtering, tracking, and estimation modules. Sample frames can be

seen in Figure B-1.

4.3.2 Optical Flow

We apply the Gunnar-Farnebäck dense optical flow algorithm1 to generate flow vector

fields for the incoming frames. The algorithm takes two consecutive frames as input

and computes the magnitude and direction of optical flow. We then visualize the

magnitude and direction of flow using the value and hue, respectively, in the HSV

color representation. Saturation is set to the maximum 255 value for maximum color

intensity. Figure B-2 in Appendix B offers an example of this visualized flow vector

field.

4.3.3 Detection

In the detection step, we independently detect the moving and stationary features in

each frame that we intend to track and estimate the speed of. These features can be

distinguished based on the magnitude and direction of flow, which are encoded in the

HSV-frames. Moving features typically have greater magnitude of flow and variable

angles that are defined by the lanes, while stationary features can be identified by

a lower magnitude and likely a shared, fixed angle of flow within any given video

segment. Leveraging these differences, we apply thresholding to the frames to isolate

the two categories of features.

1See Section A.2 for background.
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Beginning with the moving features, we first empirically establish a binary thresh-

old above which pixels are set to white and below which pixels are set to black;

hence, we distinguish the moving features and categorize everything else as back-

ground. Next, to extract the moving features, we apply a contouring algorithm to

each frame. In doing so, we identify the boundaries separating white pixels from black

and detect the location of each moving object in the frame. The example depicted in

Figure B-3 highlights the results of this process.

We repeat the same steps for detecting stationary features, beginning with empir-

ically establishing a threshold and then generating contours to detect locations.

4.3.4 Filtering

Because optical flow is not a noiseless method, we factor in a simple filtration step

to only store the contours that are likely to represent moving or stationary features.

This filtering occurs based on the size of the generated contours. We estimate size

using bounding boxes for each contour and leverage width, height, and area to classify

contours as moving, stationary, or error. The size constraints are similarly determined

through empirical means. Stationary features are projected to be smaller on average,

as the majority of detected stationary features are lane markings. As vehicles are

typically of similar size, they can be distinguished with reasonable accuracy.

4.3.5 Tracking

Upon detection, we transition into the tracking module. All newly detected moving

and stationary contours are stored as bounding boxes in two separate lists. We begin

by using the bounding box coordinates to derive the centroid of each object in each

list.

We pass each of these lists through an association algorithm that matches these

new input centroids to the existing centroids. The algorithm computes the distance

between every pair of the new and existing centroids and matches them based on

minimal distance, as it is expected that the objects will not stray far from their
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current trajectories from frame to frame. After these centroids are matched, the new

centroid is appended to its associated object’s stored trajectory.

Any remaining input centroids are registered as new objects with newly initiated

trajectories. Similarly, any existing centroids that were not matched are marked as

having disappeared. Since an object may be momentarily out of sight (e.g., as a

vehicle passes under a bridge) or incorrectly unmatched by the algorithm, we set a

buffer corresponding to the number of frames during which an object can hold the

disappeared status before it is officially de-registered. If the object reappears, we reset

its status and count.

This procedure is run for both the moving and stationary features to update

tracked data about the objects in view.

4.3.6 Estimation

When the specified number of frames for a segment has been processed (i.e., frames

spanning ten seconds in our case), we estimate the speed over that segment.

𝑎𝑠 =
1

𝑚
*

𝑚∑︁
𝑖=1

𝑑𝑆𝑖
* 𝑑𝑖𝑠𝑡(𝑆𝑖)

𝑡𝑖𝑚𝑒(𝑆𝑖)
(4.2a)

𝑎′ =
1

𝑛
*

𝑛∑︁
𝑖=1

(︂
𝑑𝑖𝑠𝑡(𝐶𝑖)

𝑡𝑖𝑚𝑒(𝐶𝑖)
+ 𝑞 * 𝑎𝑠

)︂
(4.2b)

where 𝑞 =

⎧⎪⎨⎪⎩1 𝑑𝑆𝑖
̸= 𝑑𝐶𝑖

−1 𝑑𝑆𝑖
= 𝑑𝐶𝑖

(4.2c)

The average speed 𝑎′ for the optical flow estimator is derived from the average

speed calculation for traditional detection and tracking methods as detailed in Equa-

tion 4.1c. Rather than calculating speed based on the vehicles alone, we now factor

in the 𝑚-length list of currently tracked stationary features 𝑆. We first calculate

the average velocity of the stationary features using the same framework set up in

Equation 4.1c, but with the multiplicative factor 𝑑𝑆𝑖
representing direction of motion
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for each stationary feature 𝑆𝑖. We use the stored trajectory for each object 𝑆𝑖 to

determine its direction 𝑑𝑆𝑖
. The resulting average velocity of the stationary features,

described in Equation 4.2a, represents the average velocity of the drone.

We then calculate the speed for each moving feature and adjust for the average

stationary velocity by adding or subtracting based on the direction of motion. This

is formalized in Equations 4.2b and 4.2c.

The resulting average across all moving features should theoretically hold little to

no error caused by drone movement and should accordingly be more accurate than

traditional methods.

4.4 Comparison of Methods

Figure 4-2: A comparison between our optical flow estimator and the traditional
detection and tracking algorithm.

To evaluate the merit of the optical flow speed estimator, we analyze its perfor-

mance against comparable methods. Because our aerial footage lacks ground truth,

we compare the optical flow method’s results against the previously implemented

detection and tracking algorithm’s results. This detection and tracking algorithm

is described in Section 4.1. After passing an hour of drone footage through both
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estimators, we obtain the results shown in Figure 4-2.

The optical flow estimator consistently approximates higher average speeds than

the previous method. Despite this disparity, it is promising to note that both esti-

mators share similar peaks and troughs, and both accurately identify the segments

during which the drone is charging and not monitoring any region, as evidenced by

the time steps during which both estimators output an average speed of 0 meters per

second.

Figure 4-3: The distribution of values for the absolute difference between the optical
flow algorithm and detection and tracking algorithm approximations. The purple bar
represents the additional sample count that comes from the segments during which
the drone is charging.

We calculate the absolute difference between approximations generated by both

estimators and find that 31.38% of the optical flow estimates are within 2.5 meters

per second of their detection and tracking counterparts, as seen in Figure 4-3. Noting

that many of the samples that fall under this bin came from time segments during

which the drone was charging and the average speed was 0, we re-calculate without

these samples and find that the number of values in the bin drops to less than 2.5%.

This analysis suggests that the optical flow algorithm likely accurately identifies

increases and decreases in average speed within a region over time. Without a reliable

ground truth, speculating on the accuracy beyond a high-level trend comparison is
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ineffective. A deeper investigation into the discrepancies between the two estimators

is warranted; regardless, we can likely rely on this dataset to equip a spatiotemporal

model with useful signals on traffic dynamics, with the caveat that values may need

to be scaled up or down.
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Chapter 5

Prediction

In this chapter, we describe our contributions towards the second objective: traffic

flow prediction across a road network. As mentioned in Section 2.2, several studies

have explored the effectiveness of graph neural networks (GNNs) in predicting traffic

flow. These studies design prediction tasks that leverage sensors at every location

to forecast traffic conditions in those regions at future time steps, as described in

Equation 2.1.

Unlike data collected by ground-based sensor networks, data collected by drone

fleets is likely to be less comprehensive, especially if executed as envisioned on shared

mobility platforms. A limited supply of drones may not be able to monitor every

location within a road network at all times. One approach to resolving this is modi-

fying the definition of a traffic sensing location such that a network consists of fewer

regions; however, doing so introduces permanent uncertainty into the network, as we

would lose granularity for each region.

We instead explore a dynamic setup where drones relocate to different locations at

different time steps. Given 𝑁 total locations, we place drones at a subset 𝐾 of these

locations and expect to relocate them in accordance with a preset scheme. Similar to

the alternative approach, we face uncertainty at the unmonitored 𝑁 −𝐾 locations;

however, we can reposition drones and distribute uncertainty across all locations over

a given time period. With the optimal scheme, we can coordinate this repositioning

to reduce uncertainty and effectively fill in the gaps in our knowledge.
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Various imputation methods can be utilized to fill in our lack of knowledge at the

𝑁 − 𝐾 unmonitored locations at any time step 𝑡. Most of these make use of data

from past time steps, while some, such as the 𝑘-nearest neighbors method, incorporate

some spatial reasoning by accounting for traffic conditions in neighboring regions.

Taking inspiration from the spatiotemporal methods applied to traffic forecasting,

we leverage GNNs to predict traffic conditions at the unmonitored 𝑁 − 𝐾 regions

given data for the remaining 𝐾 regions.

5.1 Methodology

Formalizing our prediction task, we establish a graph 𝐺 to represent our road network,

as described in Section 2.2.1. The associated feature matrix 𝑋 ∈ 𝑅𝑁×𝐷 holds the

features attributed to each node. Given that we only have data for 𝐾 rows in this

matrix, we fill the rows for the unlabeled 𝑁 − 𝐾 nodes with a reserve value. We

define the simplest problem as learning the function that maps the network 𝐺 and

incomplete feature matrix 𝑋 ′
𝑡 to the complete feature matrix with predicted values

for those previously unlabeled 𝑁 −𝐾 nodes.

𝑋𝑡 = 𝑓(𝐺;𝑋 ′
𝑡) (5.1)

If we factor in temporal reasoning as well, we extend the definition to include data

for past time steps as input.

𝑋𝑡 = 𝑓(𝐺; (𝑋𝑡−𝑛, · · · , 𝑋𝑡−1, 𝑋
′
𝑡)) (5.2)

5.2 Experimental Framework

5.2.1 Data

In this study, we primarily utilize the PeMS-BAY dataset due to the scarcity of

collected drone data, as explained in Section 3.2. The original dataset consists of

34



samples collected by a 325-node sensor network across a freeway system in 5-minute

intervals.

Utilizing this data, we build a 325-node graph 𝐺 and associated feature matrices

𝑋 ′
𝑡 for every time step 𝑡 in the dataset. At each time step, we randomly select the 𝐾

nodes to be labeled, simulating drone movement across time steps.

5.2.2 Evaluation Metrics

To evaluate the prediction performance of our models, we use three metrics that

quantify the difference between the prediction vector 𝑌𝑡 ∈ 𝑅𝑁 and the target vector

𝑌𝑡 ∈ 𝑅𝑁 , which contain the average speeds at the 𝑁 nodes that make up the road

network:

1. Root Mean Squared Error (RMSE)

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑁
*

𝑁∑︁
𝑖=1

(𝑌𝑡 − 𝑌𝑡)2 (5.3)

2. Accuracy

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1− ‖𝑌𝑡 − 𝑌𝑡‖
‖𝑌𝑡‖

(5.4)

3. Mean Absolute Percentage Error (MAPE)

𝑀𝐴𝑃𝐸 =
1

𝑁
*

𝑛∑︁
𝑖=1

⃒⃒⃒⃒
⃒𝑌𝑡 − 𝑌𝑡

𝑌𝑡

⃒⃒⃒⃒
⃒ (5.5)

The training process minimizes error by utilizing mean squared error (MSE) as its

loss function. We leverage the accuracy and MAPE metrics to compare results across

experiments. Furthermore, these metrics are used by several previously cited traffic

flow prediction efforts [23, 6, 18], which enables effective comparison across studies.
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Parameter Values
Batch Size 64 - 256
Epochs 300 - 1500
Learning Rate 0.0005 - 0.002
Hidden Layer Size 4 - 256
Normalization True/False
Masked Loss True/False

Table 5.1: Valid values for model pa-
rameters.

Parameter Values
Window Size 30 min

120 min
Data Sampling Frequency 5 min

10 min
30 min
60 min

Table 5.2: Additional parameters for
spatiotemporal models.

5.2.3 Model Configuration

The hyperparameters for the evaluated suite of spatial and spatiotemporal models

include batch size, training epochs, learning rate, and the size of hidden layers. Ad-

ditionally, we assess the value of data normalization and any benefits to masking the

values of the 𝐾 labeled nodes in the output.

The valid values we test for these parameters are listed in Table 5.1. Additional

parameters that are specific to spatiotemporal models are listed in Table 5.2.

To identify the optimal settings for these parameters, we run a Bayesian search [9].

This optimization method models the relationship between select parameters and a

chosen metric with the goal of selecting configurations with the highest probability of

improvement over the current setting. These updates at each step are done according

to Bayes’ rule. For our experiments, we optimize for validation accuracy using the

metric described in Equation 5.4.

Based on our search, we set the learning rate to 0.001, batch size to 64, and the

hidden layer size to 256. These results, as shown in Figure 5-1, fall in line with what

we expect; we land upon a low batch size, as larger batch sizes tend to lead to poor

generalization [12]. Analyzing the feature importance values for each hyperparameter,

we find that the hidden layer size is the most important parameter for the spatial and

spatiotemporal models in our suite. This finding is corroborated by previous studies

on spatiotemporal traffic models [23].

Through our experiments, we additionally find that network training converges

faster with the support of data normalization. We set the lower and upper bounds
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Figure 5-1: Comparison of prediction performance under different batch sizes (left)
and hidden layer sizes (right).

for our dataset to 0 and 100 miles per hour, respectively, and utilize these bounds

to apply min-max normalization and rescale the input and labels to the range [0,

1]. As Figure 5-2 illustrates, the model converges in fewer epochs when the data

is normalized. On average, 50-100 epochs of training is sufficient for spatial models

if the data is normalized, while the raw data requires 400-500 epochs. Similarly,

spatiotemporal variants require 300-500 epochs if the data is normalized and 800-1000

epochs if not. As such, normalization offers a significant boost in training efficiency.

Finally, we find that masking the 𝐾 labeled nodes in the output is critical for

model accuracy. Training our models to both carry forward the average speeds at

the 𝐾 labeled nodes and predict the average speeds at the unlabeled 𝑁 −𝐾 nodes

introduces unnecessary noise. We can avoid this by only running the predicted values

for the 𝑁 − 𝐾 unlabeled nodes through the loss function and subsequent learning

pipeline. We can see in Figure 5-3 that the model fails to learn without masking;

there is a significant reduction in error once this noise is eliminated.

5.2.4 Baseline Methods

We compare the performance of the spatiotemporal models with a GCN model as

described in Section 2.2.2 and by Equation 5.1. Applying a GCN to our problem

37



Figure 5-2: Data normalization contributes to network training efficiency.

Figure 5-3: Masking the labeled nodes in the loss function is critical to model learning.

space helps us to confirm the merit of spatial reasoning in capturing traffic flow

trends in real-time, and comparing it against spatiotemporal models enables us to

additionally identify the value of equipping traffic flow prediction models with both

spatial and temporal reasoning. The GCN model used for the experiments in this

study is a 2-layer model.

Additional benchmarks we utilize for each spatiotemporal model applied to our
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unmonitored node prediction problem are the performance metrics of its forecasting

equivalent. Each of the model architectures selected for our experiments has been

previously applied to the traffic forecasting problem defined by Equation 2.1 and

trained on comparable datasets [23, 24]. We can analyze the results of our experiments

by determining whether or not they are within a reasonable range of the results

generated for the forecasting problem. We can extend our benchmarks to include

other comparable traffic flow prediction models as well.

5.2.5 Temporal Graph Convolutional Network

The core spatiotemporal model we build our analysis upon is the temporal graph

convolutional network (T-GCN) [23]. The T-GCN architecture consists of a GCN

for spatial reasoning and gated recurrent unit (GRU) for temporal reasoning. Begin-

ning with Equation 2.2 for the graph convolution process, the T-GCN operations are

defined as follows:

𝑢𝑡 = 𝜎(𝑊𝑢[𝑓(𝐺,𝑋𝑡), ℎ𝑡−1] + 𝑏𝑢) (5.6)

𝑟𝑡 = 𝜎(𝑊𝑟[𝑓(𝐺,𝑋𝑡), ℎ𝑡−1] + 𝑏𝑟) (5.7)

𝑐𝑡 = tanh(𝑊𝑐[𝑓(𝐺,𝑋𝑡), (𝑟𝑡 * ℎ𝑡−1)] + 𝑏𝑐) (5.8)

ℎ𝑡 = 𝑢𝑡 * ℎ𝑡−1 + (1− 𝑢𝑡) * 𝑐𝑡 (5.9)

In summary, 𝑢𝑡 and 𝑟𝑡 are the update and reset gates, ℎ𝑡−1 refers to the output

at time 𝑡− 1, and 𝑊 and 𝑏 represent the weights and biases.

5.2.6 Attention Temporal Graph Convolutional Network

We also apply a variant of the T-GCN model, the attention temporal graph con-

volutional network (A3T-GCN) to the unmonitored node prediction problem. The

A3T-GCN architecture simply channels the hidden states produced by the T-GCN

operations defined in Equations 5.6-5.9 through an attention model. The attention
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mechanism is intended to capture global trends about the traffic state to supplement

the local trends captured by the GRU.

5.3 Results

5.3.1 T-GCN Experiments

We first compare the performance of the T-GCN model with varying window sizes

and data sampling frequencies, as defined in Table 5.2. Varying the window size

enables us to analyze the impact of including short-term or long-term input signals.

We vary the data sampling frequency to analyze the optimal granularity of data; the

original PeMS-BAY dataset is collected at 5-minute intervals, and we resample this

data at three additional intervals to study this effect.

Sampling Window RMSE Accuracy MAPE
Frequency (min) (%) (%)

(min)
5 30 6.73 89.37 9.08
5 120 6.17 90.27 8.31

10 30 6.74 89.39 9.10
10 120 6.34 90.01 8.55
30 30 7.60 88.04 10.25
30 120 6.92 89.08 9.68
60 60 7.89 87.65 10.75
60 120 7.60 88.07 10.58

Table 5.3: Prediction results produced by the T-GCN model with different sampling
frequency and window size configurations.

Table 5.3 shows the results of these experiments. It can be seen that the model

produces the best results when a 2-hour window is used in conjunction with a 5-

minute data sampling rate. In other words, larger quantities of more granular data

are optimal for learning. The positive results generated by lower sampling frequencies

suggest that variations in traffic on the order of minutes offer valuable signals. Traffic

light systems may be a contributing factor to this. Additionally, the larger window

size consistently leads to better performance. Equipping the model with more data
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may be especially effective in capturing long-term traffic trends such as rush hour.

The optimal settings would likely differ for a dataset with more nodes at local streets.

5.3.2 Comparison Against Baseline Models

Model RMSE Accuracy (%) MAPE (%)
GCN 9.06 85.71 13.50
T-GCN 6.17 90.27 8.31
A3T-GCN 6.11 90.29 8.30
GRU* 4.00 - 5.22 72.49 - 91.09 N/A
GCN* 5.66 - 7.79 61.07 - 86.73 N/A
T-GCN* 3.92 - 5.13 73.06 - 91.27 N/A
A3T-GCN* 3.90 - 5.09 73.18 - 91.33 N/A
DRCNN* 2.95 - 4.74 N/A 2.90 - 4.90
GaAN* 5.24 - 7.65 N/A 6.99 - 10.62

Table 5.4: Prediction results generated by our suite of models and other baseline
methods. Models marked with * are trained to solve the traffic flow prediction prob-
lem detailed in Section 2.2.1 and by Equation 2.1. We provide performance ranges
for models not trained on the PeMS-BAY dataset to offer a high-level comparison.

Table 5.4 contains the results of our suite of models and the baseline models

identified in Section 5.2.4. The T-GCN and A3T-GCN models visibly outperform

the GCN model under all evaluation metrics, and this showcases the importance of

modeling temporal reasoning in addition to spatial reasoning.

When comparing these models to results from past studies that addressed the

original traffic forecasting problem defined in Equation 2.1, we compare against per-

formance ranges for the models from past studies. These models have been tested

on multiple data sources, and the varying results generated by each of those sources

form the ranges. We choose to compare our evaluation metrics to ranges due to the

disparities caused by our models being trained on a different data source.

The spatiotemporal models deviate from the target value by approximately six

miles per hour on average. This error can be further reduced if 𝐾 is selected more

intentionally, which will be the case in a practical setting. Rather than selecting

𝐾 random nodes at each time step, we can update our dataset to select the nodes

to be monitored in a more realistic fashion; by selecting randomly within the 𝑘-hop
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neighbors of each monitored node, we mimic the limitations on range of movement

for the drones within a given time step. We can further build upon this by tracking

prediction uncertainty at nodes to inform optimal drone placement; by more densely

monitoring regions with or near greater uncertainty, we can develop a more accurate

understanding of conditions within the road network.

A 90% accuracy rate with clear scope for further improvement is an extremely

promising result and showcases the potential these models possess to surpass the

traffic flow prediction methods underlying most commercial real-time estimation sys-

tems.
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Chapter 6

Prediction Using Aerial Imagery

In the previous section, we establish the effectiveness of spatiotemporal graph network

architectures in filling in missing traffic data across a road network. We can capture

the variable nature of traffic flow and predict traffic conditions at the unmonitored

𝑁 −𝐾 locations with remarkable accuracy.

While data scarcity prompted us to leverage the PeMS-BAY dataset for our analy-

sis, we ultimately intend to train our models on aerial footage. As described in Section

2.3, aerial footage offers the opportunity to expand the feature space we equip our

models with.

As a final experiment, we utilize the dataset assembled via our optical flow speed

estimator to train the T-GCN model. The footage collected at eleven different lo-

cations is labeled by the optical flow algorithm, and the resulting dataset is pre-

processed to be channeled through the T-GCN training pipeline.

As described in Section 3.1, six drones are used to capture data at these eleven

locations, and as a result, we have incomplete knowledge of traffic patterns across the

road network at any given time. For the purpose of running a controlled experiment

with credible evaluation procedures, we mask the labels of an additional monitored

node and define a scaled down task of predicting traffic at this fixed node given data

from a combination of the remaining ten nodes.

There are some clear limitations to the aerial footage dataset. While the PeMS-

BAY dataset consists of over 52,000 datapoints, collected at consistent intervals over
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a wide network, the aerial footage produces 400 datapoints that represent a much

smaller road network. As such, it is critical to reduce the complexity of the prediction

task. We do so by fixing 𝑁 − 𝐾 instead of masking nodes randomly at each time

step, as well as adjusting some of the hyperparameters. We set batch size to 32

and hidden layer size to 16. After analyzing the minimum and maximum speeds

in the aerial data, which is not a uniform, freeway system dataset, we also modify

the maximum speed value to 50 miles per hour, which impacts the normalization

operation. We acknowledge that there are multiple sources of noise within the dataset.

The filmed footage consists of certain patches where the camera is not pointed at the

region of interest. Additionally, the optical flow algorithm introduces some noise when

generating our ground truth.

Sampling Window Accuracy MAPE
Frequency (min) (%) (%)

(min)
0.17 1 61.05 38.12
0.17 5 53.55 66.20
0.17 10 45.20 55.60

Table 6.1: Prediction results produced by the T-GCN model when trained on aerial
footage.

Despite these limitations, the results are promising. Interestingly, smaller window

sizes contribute to higher accuracy, unlike the results produced by the PeMS-BAY

dataset. This may be attributed to a few different reasons. First and foremost, the six

drones that generated the aerial footage had to recharge after every 12-20 minutes of

flight time. It is highly likely that a larger window size would result in more datapoints

where a significant portion of the drones were out of commission, and consequently,

most nodes were unmonitored. A narrow window size, on the other hand, may have

produced more meaningful data. Another point to consider is the difference between

the road network captured in the aerial footage and the freeway system captured in

the PeMS-BAY dataset. Freeway traffic may be more heavily influenced by long-term

traffic trends than traffic within internal roads, which is likely dictated by the short-

term, cyclical patterns of traffic light systems. A larger window size may introduce
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noise and prevent the model from clearly identifying some of these short-term signals.

Finally, a larger window size reduces the number of valid datapoints. A ten-minute

window size reduces the dataset by 60 samples – a non-trivial 15% of the original

dataset.

More aerial data and a cleaner framework for collecting it would address most

of the limitations listed above and improve the model’s ability to learn and predict.

Additionally, tapping into the additional features that can be extracted from the

aerial footage may significantly improve performance. These are some of the many

potential next steps that we outline for this research in Section 7.2.
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Chapter 7

Conclusions

In this work, we made progress towards multiple facets of the drone-based traffic flow

prediction problem. Revisiting the objectives defined in Section 2.4, the overarching

purpose of this project is to build a richer traffic flow dataset using drone footage,

develop a model that can predict traffic conditions across a network given data at a

subset of its nodes, and devise an approach for calculating the optimal placement of

drones across the network at each time step such that uncertainty is minimized.

To address the first objective, we developed an optical flow-based speed estimation

algorithm to assemble a dataset from the previously collected aerial footage. We

identified potential features that could be extracted from this data to create a richer

feature space for our prediction models, and leveraging optical flow, we made some

progress towards lane detection.

Significant contributions were made towards the second objective as well. After

exploring past efforts to apply spatiotemporal models to traffic forecasting, we defined

a new prediction task: predicting traffic conditions at the unmonitored 𝑁 −𝐾 loca-

tions given data from drones at the remaining 𝐾 locations. We implemented a suite

of spatial and spatiotemporal models, identified optimal hyperparameter settings for

these models, and compared their performance to several baseline models. On the

whole, we achieved model performance surpassing 90% accuracy, and we identified

next steps that will likely further reduce the error percentage.

Finally, we initiated efforts to combine the results of the first two objectives by
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configuring a spatiotemporal model to be trained on the newly assembled aerial traffic

dataset. Though data limitations prevented us from achieving performance on par

with the models trained on the PeMS-BAY dataset and models from past studies, we

produced valuable insights on the data collection framework and potential sources of

error.

These efforts laid out the foundation for this research and suggested promising

directions for further investigation.

7.1 Future Work

We have several recommendations regarding next steps for each of the three primary

objectives.

To build upon our contributions to the first objective, we suggest further evalua-

tion of the optical flow speed estimation algorithm. Securing a reliable ground truth

dataset for evaluation would help to confirm the performance of our estimator. Addi-

tionally, the estimator should be tested on a diverse range of terrains and road network

types. The current estimator may not generalize, especially due to its reliance on spe-

cific features like lane markings. Although lane markings are likely to be present in

most footage, additional indicators could be incorporated for generalizability.

There is also potential for further refinement of the implementation of our estima-

tor. It is currently bottlenecked by the Gunnar-Farnebäck computation step, which

alone takes 1.5 seconds per frame. Two potential solutions include optimizing the im-

plementation of this algorithm or exploring how to run the estimator on a subset of the

input video’s frames while retaining sufficient information. The Gunnar-Farnebäck

algorithm is inherently computationally expensive because it is a dense optical flow

algorithm. While sparse optical flow proved to produce unfavorable results in this

study, some recent work has had more success [11]. Investigating this work and

experimenting with parameter tuning for such algorithms may be beneficial.

The second objective would be primarily advanced by significant efforts to grow

the aerial dataset. Data collection using a refined data collection framework and data
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augmentation can be conducted to collectively assemble a dataset comparable in size

to PeMS-BAY and other datasets assembled using ground-based sensors. Once an

adequate amount of data has been collected for model learning, we suggest dedicating

efforts towards expansion of the feature set. Features such as number of lanes, road

quality and closures, and road types can be extracted from the aerial footage for

this purpose. This will enable the model to effectively leverage the rich information

encoded within video data. Finally, more realistic selection of the 𝐾 nodes at every

time step would be useful in mimicking the practical setup for drone-based traffic

sensing. Instead of random selection, constraints should be placed on the range of

movement for drones at every time step.

Finally, the contributions in this work are intended to serve as a foundation for

future research towards the coordinated planning of drone locations for aerial imagery.

With optimal drone placement, the resource limitations of this technology can be

accounted for, and the full potential of shared mobility platforms can be realized.
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Appendix A

Optical Flow Methods

A.1 Lucas-Kanade Method

Figure A-1: Feature detection using sparse optical flow.

The Lucas-Kanade method is a sparse optical flow algorithm that estimates mo-

tion between consecutive frames. This method assumes that objects aren’t displaced

drastically between consecutive frames and that the pixel intensities of objects won’t

change from frame to frame. Relying on these assumptions, it builds windows around

detected features of interest and assumes all pixels within these windows share the

same magnitude and direction of flow. These pixels can be used to generate a system
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of equations to solve for the displacement.

Figure A-1 shows an example of the drawbacks of the Lucas-Kanade method; due

to its reliance on selecting features based on maximum difference in pixel intensity,

both moving and stationary features are selected and challenging to differentiate.

A.2 Gunnar-Farnebäck Method

The Gunnar-Farnebäck method is a dense optical flow algorithm. Unlike Lucas-

Kanade and other sparse optical flow methods, which only track certain points of

interest, dense optical flow considers every pixel and compares each of them from

frame to frame. Similar to Lucas-Kanade, this method generates windows around

each pixel. It approximates these windows through polynomial expansion and then

estimates flow vectors from the coefficients of this expansion. Specific operations can

be found in Farnebäck’s original paper [8].
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Appendix B

Optical Flow on Aerial Data

The following visuals depict the results of different modules within the dense optical

flow speed estimation pipeline.

B.1 Image Acquisition

Figure B-1: Sample frames from aerial dataset.

B.2 Optical Flow

Because the flow field highlights objects in motion, it leaves out parked cars and other

stationary objects when the camera platform is steady. In the case where the drone is

in motion due to turbulence or planned flight, stationary objects are detected in the
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flow field; however, their magnitude of flow is distinctly smaller than their moving

counterparts.

Figure B-2: RGB representation of flow vector field generated by Gunnar-Farnebäck
method.

B.3 Detection

We leverage differences in magnitude and direction of flow to isolate the moving

and stationary features. Thresholding and contouring are applied to the frames to

generate the bounding boxes as shown in Figure B-3. We also see in Figure B-3 that

there are cases where multiple moving objects are registered as one mass, largely due

to noise in the flow field generated by the optical flow function.

Figure B-3: Bounding boxes are generated around moving features via thresholding
and contouring.
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