Road Traffic Flow Prediction Using Aerial Imagery
by
Simran K. Pabla

S.B., Computer Science and Engineering, Massachusetts Institute of
Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2021
(© Massachusetts Institute of Technology 2021. All rights reserved.

AUthor ..o
Department of Electrical Engineering and Computer Science
May 20, 2021

Certified Dy . ..o
Hamsa Balakrishnan

William E. Leonhard (1940) Professor

Associate Department Head of Aeronautics & Astronautics

Thesis Supervisor

Accepted Dyo
Katrina LaCurts
Chair, Master of Engineering Thesis Committee

Road Traffic Flow Prediction Using Aerial Imagery
by
Simran K. Pabla

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2021, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Technological advancements have increased the potential and feasibility of widespread
drone networks. Among other tasks, monitoring road traffic flow is a task well-suited
for such networks. While real-time traffic flow estimation systems have been explored
at length and exist as commercial services, these systems have limited spatial rea-
soning and suffer in accuracy when predicting future traffic conditions. To that end,
graph neural networks can account for spatial patterns, and can more effectively cap-
ture the impact of a region’s current traffic conditions on neighboring regions in the
future. Our work builds on prior graph neural network architectures for traffic flow
prediction. While current traffic prediction models are trained on ground-based data
with limited features, we propose leveraging aerial traffic data to train spatiotem-
poral models with richer feature spaces. Our research makes contributions towards
assembling a dataset from aerial footage and predicting traffic across a road network
given aerial images from a small set of drones.

Thesis Supervisor: Hamsa Balakrishnan
Title: William E. Leonhard (1940) Professor
Associate Department Head of Aeronautics & Astronautics

Acknowledgments

I would like to thank my thesis advisor, Professor Hamsa Balakrishnan, for being an
invaluable source of inspiration and wisdom throughout the course of this project. She
has always encouraged me to pursue the problems that most excite me and generously
offered her time and resources to support my learning and growth. I truly look up to
her and the way she leads the DINaMo group.

I would also like to thank the DINaMo group for welcoming me into its warm,
knowledge-driven culture. I am especially appreciative of Karthik Gopalakrishnan
and Max Li for their mentorship when I first joined the group and their continued ac-
cessibility throughout my research journey. I can’t thank Karthik enough for guiding
me through the process of framing my project and sharing his accumulated domain
knowledge without reservation. I owe a huge thanks to Siddharth Nayak as well for
his valuable insights and support.

I couldn’t be where I am today without the support of my friends and family. I'm
grateful to my friends for always inspiring me, offering me sage advice, and bringing
me so much joy and laughter. Through every Zoom call and countless late-night
work sessions, they’ve helped me inch closer towards my goals. Special thanks to
Stuti Vishwabhan, Shana Mathew, and Anj Fayemi for fueling my motivation and
making this unique MEng experience so rewarding and memorable.

Above all, I'm grateful to my family for their unwavering support and for always
instilling confidence within me. They’ve cheered me on through every accomplishment
and setback, acted as my sounding board, and revitalized me with their contagious

exuberance and boundless love.

Contents

1 Introduction

2 Background

2.1 Temporal Forecasting Methods
2.2 Spatiotemporal Forecasting Methods

2.2.1 Graph Neural Networks

2.2.2 Graph Convolutional Networks
2.3 Aerial Imagery Using Drones
2.4 Objectives e

3 Data

3.1 Drone Footage
3.2 Additional Sources

4 Estimating Speed via Optical Flow

4.1 Detection and Trackingo Lo
4.2 Sparse vs. Dense Optical Flow
4.3 Dense Optical Flow Estimator
4.3.1 Image Acquisition oL
4.3.2 Optical Flow
4.3.3 Detectiono
4.3.4 Filtering
4.3.5 Tracking

13

15
15
17
17
17
18
19

21
21
21

4.3.6 Estimation.

4.4 Comparison of Methods

Prediction

5.1 Methodology

5.2 Experimental Framework 0L,
521 Data
5.2.2 Evaluation Metrics oL
5.2.3 Model Configuration
5.2.4 Baseline Methods
5.2.5 Temporal Graph Convolutional Network
5.2.6 Attention Temporal Graph Convolutional Network

5.3 Resultso
5.3.1 T-GCN Experiments
5.3.2 Comparison Against Baseline Models

Prediction Using Aerial Imagery

Conclusions

7.1 Future Work

Optical Flow Methods
A.1 Lucas-Kanade Method
A.2 Gunnar-Farnebiack Method

Optical Flow on Aerial Data

B.1 Image Acquisition
B.2 Optical Flow
B.3 Detection

33
34
34
34
35
36
37
39
39
40
40
41

43

47
48

51
o1
52

List of Figures

3-1

4-1
4-2

4-3

5-1

5-2

Average traffic speed shows periodic behavior on a daily and weekly

Flow diagram for optical flow speed estimation algorithm.

A comparison between our optical flow estimator and the traditional

detection and tracking algorithm.

The distribution of values for the absolute difference between the op-
tical flow algorithm and detection and tracking algorithm approxima-
tions. The purple bar represents the additional sample count that

comes from the segments during which the drone is charging.

Comparison of prediction performance under different batch sizes (left)
and hidden layer sizes (right).
Data normalization contributes to network training efficiency.

Masking the labeled nodes in the loss function is critical to model

learning.o
Feature detection using sparse optical flow.

Sample frames from aerial dataset.

RGB representation of flow vector field generated by Gunnar-Farnebéck

method.,

16

22

25

29

30

37

38

38

ol

93

B-3 Bounding boxes are generated around moving features via thresholding

and contouring. Lo 54

10

List of Tables

5.1
5.2
5.3

5.4

6.1

Valid values for model parameters.
Additional parameters for spatiotemporal models.
Prediction results produced by the T-GCN model with different sam-
pling frequency and window size configurations.
Prediction results generated by our suite of models and other baseline
methods. Models marked with * are trained to solve the traffic flow
prediction problem detailed in Section 2.2.1 and by Equation 2.1. We
provide performance ranges for models not trained on the PeMS-BAY

dataset to offer a high-level comparison.

Prediction results produced by the T-GCN model when trained on

aerial footage.

11

36

40

41

12

Chapter 1

Introduction

In 2012, the Federal Aviation Administration forecasted that 30,000 drones would be
operating in the US airspace by 2020 [1]. As of January 2021, the US government
has registered over 1.7 million drones, blowing these predictions out of the water [2].
Remarkably, the market for commercial and recreational drones is continuing to grow
at a rapid pace. Commercially, drones have become indispensable in the streamlining
and advancement of operations across many sectors, including entertainment, agri-
culture, and delivery. In 2017, drone activity generated $1 billion in revenue in the
United States, and it is estimated to achieve annual contributions of $31-$46 billion
to the nation’s GDP by 2026 [14].

It is clear that commercial and consumer interest in drones is soaring, and as the
market heads towards the prospect of mass adoption, this technology offers greater
potential for impact. Recognizing this, researchers at MIT and elsewhere have pur-
sued the development of shared mobility platforms, intended to connect and estab-
lish a robust network between drones and their consumers. Pursuing a future where
drones operate in coordinated fleets to provide various services, the primary objective
for these platforms is to match drone hardware to clientele in need of such services.
Leveraging the excess capacity that currently exists in the form of over 1.2 million,
often idle, registered recreational drones, such platforms would offer the ability to
coordinate routes and tasks with this finite resource network.

Over the last few years, significant progress has been made along several facets of

13

the problem, including scheduling [5], as well as data collection and analysis for various
drone sensing tasks. In this thesis, we explore drone-based traffic flow prediction as a
promising application for a shared mobility platform. The primary objective for this
work is to frame and lay the foundations for a project aiming to leverage aerial traffic
footage and powerful spatiotemporal forecasting models to more accurately predict
traffic conditions.

We first study how optical flow can be utilized to implement an enhanced speed
estimation algorithm and curate a ground truth dataset. We then define and model
an initial task that aims to predict traffic conditions across a road network given
traffic data from a subset of its nodes, effectively simulating the constraints of traffic

flow prediction across a network with a limited number of drones.

14

Chapter 2

Background

Traffic forecasting plays a key role in traffic patterns and management. Tracking
metrics like average speed within a region on a daily, hourly, or even more granular
basis can inform city planning and maintenance decisions and more effectively reduce
congestion. This data also informs drivers in selecting efficient routes to reach their
destinations.

Until recently, traffic forecasting services predominantly provided estimates based
on traffic conditions collected via GPS and various ground-based sensor systems.
With limited perception of future traffic conditions, these services offered limited ac-
curacy when predicting traffic along routes and calculating estimated times of arrival.
In the last decade, however, advancements in machine learning and technology have
enabled significant progress in the traffic forecasting domain. With the availability
of larger datasets and an explosive increase in computing power, studies have shifted

attention towards more sophisticated learning methods.

2.1 Temporal Forecasting Methods

Initial advancements in traffic forecasting focused on enhancing models with tem-
poral reasoning. As Figure 2-1 suggests, traffic patterns display strong periodicity
[17]. This is not only limited to daily and weekly patterns; rather, we often capture

oscillating behavior on the order of minutes as well, and this can be attributed to

15

Periodicity of Traffic

Average Speed (mph)

2017-02-05 2017-02-06 2017-02-07 2017-02-08 2017-02-09 2017-02-10 2017-02-11 2017-02-12
Time

Figure 2-1: Average traffic speed shows periodic behavior on a daily and weekly basis.

the periodic ebbs and flows of traffic caused by traffic signals. Services like Google
Maps have amassed years of traffic data and leveraged these temporal signals in their

data to enable their predictive models to characterize dynamic traffic conditions more

effectively [15].

Prior to the resurgence of deep learning, statistical and machine learning methods
like the Autoregressive Integrated Moving Average (ARIMA) model |3, 4| and support
vector regression [22] were leading methods for establishing temporal reasoning. In
recent years, deep learning models for traffic forecasting have surpassed many of
these approaches. Variants of the recurrent neural network, including long short-term
memory networks and gated recurrent units, have especially shown great potential
[20, 21].

Though these methods are powerful in capturing the overarching traffic patterns
that we expect on a daily or weekly basis, they largely lack adaptability to real-time
changes in traffic [13]. These methods are often limited in the event of unanticipated
short-term occurrences like road closures and accidents, as well as long-term pattern
shifts caused by factors like COVID-19. For increased adaptability, models should

ideally account for spatial dependence as well.

16

2.2 Spatiotemporal Forecasting Methods

Spatial reasoning is valuable in capturing the propagation effect that occurs as traffic
shifts upstream or downstream in a road network [23]. The impact of congestion
is rarely isolated to one region, so identifying a representation that captures the
connectivity between regions would be beneficial for a quicker response to evolving

traffic behavior.

2.2.1 Graph Neural Networks

To characterize this spatial dependence effectively, several recent studies have pro-
posed graph neural network (GNN) architectures [23, 6, 18]. Traffic-sensing regions
and the connections between them can be represented as a graph G = (V, E), where
nodes v; € V represent said regions and edges e;; € E represent the road segments
connecting them. For simplicity, we can define G as an undirected graph, as the
impact of congestion typically propagates in both directions. G is accompanied by an
associated feature matrix X € RV*P where N represents the number of nodes and
D represents the number of features attributed to each node.

These studies then primarily define the problem as learning the function f that
maps the traffic network G and feature matrix X to traffic metrics over the next T

time steps:

[Xt+1, s 7Xt+T] = f(GS (Xt—m e, Xy, Xt)) (2-1)

where n represents the length of the historical time series and T represents the

length of the time series to be forecasted.

2.2.2 Graph Convolutional Networks

The core component underlying these models’ spatial understanding is the graph
convolutional network (GCN) [19]. GCNs take inspiration from convolutional neu-

ral networks, their image equivalents; however, graphs pose additional complexities,

17

mostly stemming from the variability of their structures. Notably, GCNs are designed
to handle graphs consisting of unordered nodes with varying degrees - complexities
that are not pertinent to image convolution.

Making use of the node features and graph structure (i.e., the adjacency matrix),
GCNs pass a filter over the nodes and their first-order neighbors to capture spatial

relationships between the nodes. A single layer of the model can be expressed as

G X)) =D :G'D 2 X,W (2.2)

where D is the degree matrix, G’ represents the adjacency matrix G with self-loops
included for each node, and W represents the weight matrix for the layer. Stacking k
GCN layers allows for information to be accumulated for the k-hop neighbors of each
node.

Various GCN-based architectures have achieved remarkably accurate predictions
of average speeds, with accuracies exceeding 90% and error margins in the range of
approximately two to six miles per hour [23, 6, 18|. Architectures that combine GCN

layers with temporal layers have been shown to perform particularly well.

2.3 Aerial Imagery Using Drones

The evolution of technology has a role to play in the improvement of forecasting meth-
ods as well. Previously proposed traffic forecasting models have been predominantly
trained upon a small selection of popular traffic speed or volume datasets [16, 7, 21].
These datasets have been curated using inductive-loop vehicle detectors, taxi trajec-
tory data, and GPS probe data, and as such, the subsequent feature matrices for these
datasets are limited to the traffic metrics and time-based features, such as the day or
month, for each sample. Recent studies have attempted to learn representations that
can capture features such as number of lanes and road conditions [18]; however, no
dataset directly captures these features.

The rise of commercial and consumer drone technologies presents us with the

novel opportunity to improve traffic flow prediction models by expanding their feature

18

spaces. Aerial footage can offer a visual dimension to traffic datasets and directly
capture number of lanes, road quality and closures, road type, and other spatial

characteristics.

2.4 Objectives

The vision for this project is to develop a traffic flow prediction model that can
forecast traffic given current and past traffic data collected in the form of drone

footage. Breaking down this idea into current and future objectives, we aim to
1. Leverage drone footage to build a dataset that can enable a richer feature space.

2. Predict traffic flow across all N nodes in the network given eyes (i.e., drones)

that observe a subset K of those nodes.

3. Calculate the optimal placement of the K drones at each time step to maximize

traffic flow information and reduce uncertainty within the network.

This thesis makes contributions towards the first two objectives and lays a foun-

dation for future efforts towards the third objective.

19

20

Chapter 3

Data

3.1 Drone Footage

In prior work, a framework was devised and implemented for collection of video-based
traffic data across a road network. FEleven locations were selected in the Boston-
Cambridge area based on their proximity to four handpicked intersections, as shown
in Figure 3-1. Selecting points on or near these intersections allowed for the possibility
of studying how the impact of traffic signals on traffic flow propagates across the
network.

Six drones were utilized to gather approximately one hour each of footage across
the eleven different locations. The drone flights were synchronized to enable accurate
comparison and analysis of traffic patterns in the collected footage. Distance per
pixel was also tracked to account for variations in the height at which the footage was

collected at each of these locations.

3.2 Additional Sources

Though useful for the framing of this project, one hour of footage across a traffic
network was too limited for the prediction tasks we intended to pursue. To avoid
being bottlenecked by the need for further drone-based data collection, we identified

additional traffic datasets that could be utilized for the early stages of our prediction

21

Iess

hoo e So\FgH

Wildlife... =AY
N\ O N \
‘ \I?.D | = I]*\:I'— Alto
1 4 ‘ EI @ | ! [
4 fﬁt 7\%(I‘ = i)
i:'T' '\-E!U. ('(g I }‘\‘f: S Milpitas
P \ o Hpr
% 0 ||‘ L"_ ‘ p.v) Ca”@ndérSt 3 vaose ot B
= = [y N 3 N
b ‘g [1 & Ave T, . T
— V'l P RIVERMARK @ O]
J Q,‘ Western Mounta%
— Tt
e 2
s =
\otterdam St ® z

(
e (
s |
—
Saho’.

J
1

NORTH SAN JO®E Q'
shills View'g <O ‘. * % East Foothills
] 5 20

L = Sunnyvale J
O > o
.
O & S

Rancho San 2 QY

Antonio ®

A Preserve “pertino. ©
pertino

2 Permanente X e

(2 it Santa

7}

‘s

()

@ WEST SAN JOSE
Jlara e

JleTree Suites @g O
{otel Boston... ¥ |

EVERGR
v
Campbell
O
Robertsvil's
=3 | =2 0 G e» EDENVALE
) Sanborn ®
le Rock county Park Lo et
te Park

S
e —(®
1
A
)
o~
>
&
i
o
w
5
% g
s ®
()
<&
'.‘
@3 @
@3
©3
=
o
2
<
S
@
%
2
=
5
o
C

G7)

Figure 3-1: Traffic-sensing locations in drone footage (left) and PeMS-BAY (right)
datasets.

efforts. We ultimately selected the publicly available PeMS-BAY dataset based on
thoroughness and cleanliness of data [16, 17].

The PeMS-BAY dataset, provided by the California Department of Transporta-

tion, contains traffic data collected from January 1st, 2017, to May 31st, 2017, by 325

sensors positioned across the freeway system in the Bay Area. The data is collected
in 5-minute intervals.

22

Chapter 4

Estimating Speed via Optical Flow

To assemble a complete, usable dataset from the collected drone footage, we first
sought out a method for establishing ground truth, as the raw footage had no asso-
ciated labels measuring traffic flow. Selecting average speed as our traffic metric of
choice, we landed upon object detection and tracking as a means for estimating the

speed within the recorded field of view.

4.1 Detection and Tracking

Vehicle detection and tracking is a common method for estimation of speed, density,
and other traffic metrics. Upon detection, the vehicle is tracked until it is no longer
in view. By tracking the trajectory of each vehicle C; in the n-length list of currently
tracked vehicles C', we have sufficient information to reasonably estimate its speed by
approximating the distance D it travels and dividing this value by the time T' taken

to do so. The average speed a for the region is then calculated as follows:

D(C) = \/(es — 52 + (e — 5,)2 * pa (4.1a)

T(C) = (f~ f) (4.10)
1 & dist(Gy)

=t Z time(C;) (4.1c)

where s = (s;, s,) and e = (e, e,) are the tracked starting and ending coordinates
of vehicle C; as it passes through the field of view, p, represents distance per pixel, r
represents video frame rate, and f, — fs represents the length of C;’s trajectory (i.e.
the number of frames in which vehicle C; is present and tracked). It should be noted
that this estimation simplifies all paths to a straight line between the starting and
ending coordinates.

While variations of this speed estimation method are commonly utilized for video-
based traffic surveillance, it is best suited for footage collected by fixed surveillance
cameras. A key limitation of traditional object detection and tracking is the assump-
tion of a static background. In the case of footage collected by drones and other
mobile camera platforms, we expect background movement caused by planned plat-
form movement as well as air turbulence. Developing vehicle detectors and trackers

that subtract this noise is essential for accuracy of estimation.

4.2 Sparse vs. Dense Optical Flow

Determining this relative movement between the vehicles and the camera is the funda-
mental idea behind optical flow [10]|. Leveraging optical flow, we can generate vector
fields expressing the movement of points between consecutive frames.

The two primary optical flow methods are sparse and dense optical flow. As
the name suggests, sparse optical flow generates flow vectors for a subset of pixels.
These pixels are selected based on distinguishing factors. For example, state-of-the-
art sparse optical flow methods select these pixels based on maximum difference in
pixel intensity. Dense optical flow, on the other hand, generates flow vectors for the
entire frame. Consequently, it achieves higher accuracy at the cost of being more
computationally expensive than sparse optical flow.

Based on empirical analysis and further research, we concluded that dense optical
flow is more applicable for our use case. The ideal method would distinguish station-
ary and moving features, enabling us to calculate and remove the stationary speed,

which constitutes the speed contributed by drone movement. As evident in Figure

24

A-1, selecting features based on maximum difference in pixel intensity causes a mix
of stationary and moving objects to be selected, especially in more complex fields of
view that contain buildings and other prominent objects in addition to vehicles. The
noise introduced by this reduces the utility of sparse optical flow for our problem
space.

When using dense optical flow, we produce information for every pixel and can
more effectively differentiate stationary and moving objects by running a clustering
algorithm over the full-frame flow field. Dense optical flow is additionally promising
because it allows for separation of features by flow direction. As seen in Figures B-2
and B-3, this allowed us to distinguish lanes, which should prove useful for future

efforts to expand the feature space of our predictive models.

4.3 Dense Optical Flow Estimator

Image Acquisition Optical Flow Detection Filtering Tracking Estimation
Split into frames. [——»| Generate flow —>| Apply - Filter out I 1 Dgtermine
vector field using thresholding to contours that Calculate centroid velocity for each
Gunnar-Farneback distinguish don’t meet size for each contour. stationary feature
algorithm. moving features. constraints. and calculate
average.
T]] 7
Generate image Generate Compute distance Determine speed

that sets hue contours to between new for each moving

value according to distinguish input centroids feature and
and tracked

optical flow angle. moving features. ¢) subtract the
object centroids. average
¥ ¥ stationary speed.
Apply Match centroids Calculate average.
thresholding to with minimum
distinguish distance and
stationary update
features. trajectories.
i ¥
Generate - n
— Deregister objects
contours to
distinauish that have not
N & been matched for
stationary

specified number
of frames.

features.

Figure 4-1: Flow diagram for optical flow speed estimation algorithm.

Figure 4-1 depicts the optical flow pipeline that takes the drone footage as input

and outputs the average speeds for a sequence of video segments.

25

4.3.1 Image Acquisition

The estimator takes in a traffic surveillance video as input as well as the interval at
which average speed should be calculated. For our data, we elected to calculate the
average speed for every 10-second segment in the video. Additional metadata that
the estimator requires are the video’s frame rate and the distance spanned per pixel.

We loop over the frames in the video stream and run them through the optical
flow, detection, filtering, tracking, and estimation modules. Sample frames can be

seen in Figure B-1.

4.3.2 Optical Flow

We apply the Gunnar-Farnebick dense optical flow algorithm! to generate flow vector
fields for the incoming frames. The algorithm takes two consecutive frames as input
and computes the magnitude and direction of optical flow. We then visualize the
magnitude and direction of flow using the value and hue, respectively, in the HSV
color representation. Saturation is set to the maximum 255 value for maximum color
intensity. Figure B-2 in Appendix B offers an example of this visualized flow vector

field.

4.3.3 Detection

In the detection step, we independently detect the moving and stationary features in
each frame that we intend to track and estimate the speed of. These features can be
distinguished based on the magnitude and direction of flow, which are encoded in the
HSV-frames. Moving features typically have greater magnitude of flow and variable
angles that are defined by the lanes, while stationary features can be identified by
a lower magnitude and likely a shared, fixed angle of flow within any given video
segment. Leveraging these differences, we apply thresholding to the frames to isolate

the two categories of features.

1See Section A.2 for background.

26

Beginning with the moving features, we first empirically establish a binary thresh-
old above which pixels are set to white and below which pixels are set to black;
hence, we distinguish the moving features and categorize everything else as back-
ground. Next, to extract the moving features, we apply a contouring algorithm to
each frame. In doing so, we identify the boundaries separating white pixels from black
and detect the location of each moving object in the frame. The example depicted in
Figure B-3 highlights the results of this process.

We repeat the same steps for detecting stationary features, beginning with empir-

ically establishing a threshold and then generating contours to detect locations.

4.3.4 Filtering

Because optical flow is not a noiseless method, we factor in a simple filtration step
to only store the contours that are likely to represent moving or stationary features.
This filtering occurs based on the size of the generated contours. We estimate size
using bounding boxes for each contour and leverage width, height, and area to classify
contours as moving, stationary, or error. The size constraints are similarly determined
through empirical means. Stationary features are projected to be smaller on average,
as the majority of detected stationary features are lane markings. As vehicles are

typically of similar size, they can be distinguished with reasonable accuracy.

4.3.5 Tracking

Upon detection, we transition into the tracking module. All newly detected moving
and stationary contours are stored as bounding boxes in two separate lists. We begin
by using the bounding box coordinates to derive the centroid of each object in each
list.

We pass each of these lists through an association algorithm that matches these
new input centroids to the existing centroids. The algorithm computes the distance
between every pair of the new and existing centroids and matches them based on

minimal distance, as it is expected that the objects will not stray far from their

27

current trajectories from frame to frame. After these centroids are matched, the new
centroid is appended to its associated object’s stored trajectory.

Any remaining input centroids are registered as new objects with newly initiated
trajectories. Similarly, any existing centroids that were not matched are marked as
having disappeared. Since an object may be momentarily out of sight (e.g., as a
vehicle passes under a bridge) or incorrectly unmatched by the algorithm, we set a
buffer corresponding to the number of frames during which an object can hold the
disappeared status before it is officially de-registered. If the object reappears, we reset
its status and count.

This procedure is run for both the moving and stationary features to update

tracked data about the objects in view.

4.3.6 Estimation

When the specified number of frames for a segment has been processed (i.e., frames

spanning ten seconds in our case), we estimate the speed over that segment.

1 & dist(S;)
P N L LA 4.2
GB=m ; si ¥ time(S;) (4.2)
r— = D) . 4.2h
=5 % ity) 42
1 ds, 7 de,
where ¢ = (4.2¢)
—1 dg, =dg,

The average speed a' for the optical flow estimator is derived from the average
speed calculation for traditional detection and tracking methods as detailed in Equa-
tion 4.1c. Rather than calculating speed based on the vehicles alone, we now factor
in the m-length list of currently tracked stationary features S. We first calculate
the average velocity of the stationary features using the same framework set up in

Equation 4.1c, but with the multiplicative factor dg, representing direction of motion

28

for each stationary feature S;. We use the stored trajectory for each object S; to
determine its direction dg,. The resulting average velocity of the stationary features,
described in Equation 4.2a, represents the average velocity of the drone.

We then calculate the speed for each moving feature and adjust for the average
stationary velocity by adding or subtracting based on the direction of motion. This
is formalized in Equations 4.2b and 4.2c.

The resulting average across all moving features should theoretically hold little to
no error caused by drone movement and should accordingly be more accurate than

traditional methods.

4.4 Comparison of Methods

Comparison of Speed Estimation Methods

—— Optical Flow
—— Detection & Tracking

—
~N
wn

—
wu
=}

—
N
o

-
<
=}

7.5 M
5.0
2.5

|

0.0

Estimated Average Speed (m/s)

0 50 100 150 200 250 300 350 400
Time Step (10s Segments)

Figure 4-2: A comparison between our optical flow estimator and the traditional
detection and tracking algorithm.

To evaluate the merit of the optical flow speed estimator, we analyze its perfor-
mance against comparable methods. Because our aerial footage lacks ground truth,
we compare the optical flow method’s results against the previously implemented
detection and tracking algorithm’s results. This detection and tracking algorithm

is described in Section 4.1. After passing an hour of drone footage through both

29

estimators, we obtain the results shown in Figure 4-2.

The optical flow estimator consistently approximates higher average speeds than
the previous method. Despite this disparity, it is promising to note that both esti-
mators share similar peaks and troughs, and both accurately identify the segments
during which the drone is charging and not monitoring any region, as evidenced by
the time steps during which both estimators output an average speed of 0 meters per

second.

Distribution of Absolute Difference Values Between Estimation Methods

120

100

80

Count

60

40

20

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5
Absolute Difference

Figure 4-3: The distribution of values for the absolute difference between the optical
flow algorithm and detection and tracking algorithm approximations. The purple bar
represents the additional sample count that comes from the segments during which
the drone is charging.

We calculate the absolute difference between approximations generated by both
estimators and find that 31.38% of the optical flow estimates are within 2.5 meters
per second of their detection and tracking counterparts, as seen in Figure 4-3. Noting
that many of the samples that fall under this bin came from time segments during
which the drone was charging and the average speed was 0, we re-calculate without
these samples and find that the number of values in the bin drops to less than 2.5%.

This analysis suggests that the optical flow algorithm likely accurately identifies
increases and decreases in average speed within a region over time. Without a reliable

ground truth, speculating on the accuracy beyond a high-level trend comparison is

30

ineffective. A deeper investigation into the discrepancies between the two estimators
is warranted; regardless, we can likely rely on this dataset to equip a spatiotemporal
model with useful signals on traffic dynamics, with the caveat that values may need

to be scaled up or down.

31

32

Chapter 5

Prediction

In this chapter, we describe our contributions towards the second objective: traffic
flow prediction across a road network. As mentioned in Section 2.2, several studies
have explored the effectiveness of graph neural networks (GNNs) in predicting traffic
flow. These studies design prediction tasks that leverage sensors at every location
to forecast traffic conditions in those regions at future time steps, as described in
Equation 2.1.

Unlike data collected by ground-based sensor networks, data collected by drone
fleets is likely to be less comprehensive, especially if executed as envisioned on shared
mobility platforms. A limited supply of drones may not be able to monitor every
location within a road network at all times. One approach to resolving this is modi-
fying the definition of a traffic sensing location such that a network consists of fewer
regions; however, doing so introduces permanent uncertainty into the network, as we
would lose granularity for each region.

We instead explore a dynamic setup where drones relocate to different locations at
different time steps. Given N total locations, we place drones at a subset K of these
locations and expect to relocate them in accordance with a preset scheme. Similar to
the alternative approach, we face uncertainty at the unmonitored N — K locations;
however, we can reposition drones and distribute uncertainty across all locations over
a given time period. With the optimal scheme, we can coordinate this repositioning

to reduce uncertainty and effectively fill in the gaps in our knowledge.

33

Various imputation methods can be utilized to fill in our lack of knowledge at the
N — K unmonitored locations at any time step t. Most of these make use of data
from past time steps, while some, such as the k-nearest neighbors method, incorporate
some spatial reasoning by accounting for traffic conditions in neighboring regions.

Taking inspiration from the spatiotemporal methods applied to traffic forecasting,
we leverage GNNs to predict traffic conditions at the unmonitored N — K regions

given data for the remaining K regions.

5.1 Methodology

Formalizing our prediction task, we establish a graph G to represent our road network,
as described in Section 2.2.1. The associated feature matrix X € RV*P holds the
features attributed to each node. Given that we only have data for K rows in this
matrix, we fill the rows for the unlabeled N — K nodes with a reserve value. We
define the simplest problem as learning the function that maps the network G and
incomplete feature matrix X to the complete feature matrix with predicted values

for those previously unlabeled N — K nodes.

X, = f(G; X)) (5.1)

If we factor in temporal reasoning as well, we extend the definition to include data

for past time steps as input.

Xy = f(G, (Xt—nv KR, P Xt{)) (52)

5.2 Experimental Framework

5.2.1 Data

In this study, we primarily utilize the PeMS-BAY dataset due to the scarcity of

collected drone data, as explained in Section 3.2. The original dataset consists of

34

samples collected by a 325-node sensor network across a freeway system in 5-minute

intervals.

Utilizing this data, we build a 325-node graph GG and associated feature matrices
X/ for every time step t in the dataset. At each time step, we randomly select the K

nodes to be labeled, simulating drone movement across time steps.

5.2.2 Evaluation Metrics

To evaluate the prediction performance of our models, we use three metrics that
quantify the difference between the prediction vector Y, € RN and the target vector
Y, € RY, which contain the average speeds at the N nodes that make up the road

network:

1. Root Mean Squared Error (RMSE)

N
1 ~
RMSE = |+ * ;(y; —Y,)? (5.3)
2. Accuracy R
[V, - Yi|
Accuracy =1 — ———— (5.4)
hal
3. Mean Absolute Percentage Error (MAPE)
L Y-V
MAPE = — .
~* ; v (5.5)

The training process minimizes error by utilizing mean squared error (MSE) as its
loss function. We leverage the accuracy and MAPE metrics to compare results across
experiments. Furthermore, these metrics are used by several previously cited traffic

flow prediction efforts [23, 6, 18], which enables effective comparison across studies.

35

Parameter Values Parameter Values
Batch Size 64 - 256 Window Size 30 min
Epochs 300 - 1500 120 min
Learning Rate 0.0005 - 0.002 Data Sampling Frequency 5 min
Hidden Layer Size 4 - 256 10 min
Normalization True/False 30 min
Masked Loss True/False 60 min

Table 5.1: Valid values for model pa- Table 5.2: Additional parameters for
rameters. spatiotemporal models.

5.2.3 Model Configuration

The hyperparameters for the evaluated suite of spatial and spatiotemporal models
include batch size, training epochs, learning rate, and the size of hidden layers. Ad-
ditionally, we assess the value of data normalization and any benefits to masking the
values of the K labeled nodes in the output.

The valid values we test for these parameters are listed in Table 5.1. Additional
parameters that are specific to spatiotemporal models are listed in Table 5.2.

To identify the optimal settings for these parameters, we run a Bayesian search [9].
This optimization method models the relationship between select parameters and a
chosen metric with the goal of selecting configurations with the highest probability of
improvement over the current setting. These updates at each step are done according
to Bayes’ rule. For our experiments, we optimize for validation accuracy using the
metric described in Equation 5.4.

Based on our search, we set the learning rate to 0.001, batch size to 64, and the
hidden layer size to 256. These results, as shown in Figure 5-1, fall in line with what
we expect; we land upon a low batch size, as larger batch sizes tend to lead to poor
generalization [12]. Analyzing the feature importance values for each hyperparameter,
we find that the hidden layer size is the most important parameter for the spatial and
spatiotemporal models in our suite. This finding is corroborated by previous studies
on spatiotemporal traffic models [23].

Through our experiments, we additionally find that network training converges

faster with the support of data normalization. We set the lower and upper bounds

36

Impact of Batch Size on Validation Accuracy Impact of Hidden Layer Size on Validation Accuracy
- 128 — 202 — 75 — 128 — 256

0.855 0.855

WK

Accuracy

0.85 0.85

0.845 0.845

0.84 0.84

0.835 0.835
Epoch Epoch

0.83 0.83

Figure 5-1: Comparison of prediction performance under different batch sizes (left)
and hidden layer sizes (right).

for our dataset to 0 and 100 miles per hour, respectively, and utilize these bounds
to apply min-max normalization and rescale the input and labels to the range [0,
1]. As Figure 5-2 illustrates, the model converges in fewer epochs when the data
is normalized. On average, 50-100 epochs of training is sufficient for spatial models
if the data is normalized, while the raw data requires 400-500 epochs. Similarly,
spatiotemporal variants require 300-500 epochs if the data is normalized and 800-1000
epochs if not. As such, normalization offers a significant boost in training efficiency.

Finally, we find that masking the K labeled nodes in the output is critical for
model accuracy. Training our models to both carry forward the average speeds at
the K labeled nodes and predict the average speeds at the unlabeled N — K nodes
introduces unnecessary noise. We can avoid this by only running the predicted values
for the N — K unlabeled nodes through the loss function and subsequent learning
pipeline. We can see in Figure 5-3 that the model fails to learn without masking;

there is a significant reduction in error once this noise is eliminated.

5.2.4 Baseline Methods

We compare the performance of the spatiotemporal models with a GCN model as

described in Section 2.2.2 and by Equation 5.1. Applying a GCN to our problem

37

Average Training Loss Impact of Normalization on Validation Accuracy

= Raw = Normalized = Raw = Normalized
0.85 fusmmrimpemprery
1200 | w > i
= g
>
1000 08 | &
800 0.75
600 07
400
0.65
200
poc 06 Epoch
0 3
0 50 100 150 200 250 300 0 100 200 300 400 500

Figure 5-2: Data normalization contributes to network training efficiency.

Average Training Loss Impact of Masked K Nodes on Validation
= Original = Masked Loss Accuracy
1200 & = Original = Masked Loss
= -
1000 08 2
5
s}
800 06 [=
600
0.4
400
02 -
200
poc Epoch
0 0
0 50 100 150 200 250 300 0 100 200 300 400

Figure 5-3: Masking the labeled nodes in the loss function is critical to model learning.

space helps us to confirm the merit of spatial reasoning in capturing traffic flow
trends in real-time, and comparing it against spatiotemporal models enables us to
additionally identify the value of equipping traffic flow prediction models with both
spatial and temporal reasoning. The GCN model used for the experiments in this

study is a 2-layer model.

Additional benchmarks we utilize for each spatiotemporal model applied to our

38

unmonitored node prediction problem are the performance metrics of its forecasting
equivalent. Each of the model architectures selected for our experiments has been
previously applied to the traffic forecasting problem defined by Equation 2.1 and
trained on comparable datasets |23, 24]. We can analyze the results of our experiments
by determining whether or not they are within a reasonable range of the results
generated for the forecasting problem. We can extend our benchmarks to include

other comparable traffic flow prediction models as well.

5.2.5 Temporal Graph Convolutional Network

The core spatiotemporal model we build our analysis upon is the temporal graph
convolutional network (T-GCN) [23]. The T-GCN architecture consists of a GCN
for spatial reasoning and gated recurrent unit (GRU) for temporal reasoning. Begin-
ning with Equation 2.2 for the graph convolution process, the T-GCN operations are

defined as follows:

ur = oc(Wolf(G, Xt), he—1] + by) (5.6)

re = o(W.[f(G, Xy), hy—1] + b) (5.7)

¢y = tanh(W,[f(G, Xy), (ry * hy—1)] + be) (5.8)
he =g % ey + (1= w) % ¢ (5.9)

In summary, u; and r; are the update and reset gates, h;_; refers to the output

at time ¢ — 1, and W and b represent the weights and biases.

5.2.6 Attention Temporal Graph Convolutional Network

We also apply a variant of the T-GCN model, the attention temporal graph con-
volutional network (A3T-GCN) to the unmonitored node prediction problem. The
A3T-GCN architecture simply channels the hidden states produced by the T-GCN

operations defined in Equations 5.6-5.9 through an attention model. The attention

39

mechanism is intended to capture global trends about the traffic state to supplement

the local trends captured by the GRU.

5.3 Results

5.3.1 T-GCN Experiments

We first compare the performance of the T-GCN model with varying window sizes
and data sampling frequencies, as defined in Table 5.2. Varying the window size
enables us to analyze the impact of including short-term or long-term input signals.
We vary the data sampling frequency to analyze the optimal granularity of data; the
original PeMS-BAY dataset is collected at 5-minute intervals, and we resample this

data at three additional intervals to study this effect.

Sampling Window RMSE Accuracy MAPE

Frequency (min) (%) (%)
(min)

) 30 6.73 89.37 9.08

) 120 6.17 90.27 8.31

10 30 6.74 89.39 9.10

10 120 6.34 90.01 8.95

30 30 7.60 88.04 10.25

30 120 6.92 89.08 9.68

60 60 7.89 87.65 10.75

60 120 7.60 88.07 10.58

Table 5.3: Prediction results produced by the T-GCN model with different sampling
frequency and window size configurations.

Table 5.3 shows the results of these experiments. It can be seen that the model
produces the best results when a 2-hour window is used in conjunction with a 5-
minute data sampling rate. In other words, larger quantities of more granular data
are optimal for learning. The positive results generated by lower sampling frequencies
suggest that variations in traffic on the order of minutes offer valuable signals. Traffic
light systems may be a contributing factor to this. Additionally, the larger window

size consistently leads to better performance. Equipping the model with more data

40

may be especially effective in capturing long-term traffic trends such as rush hour.

The optimal settings would likely differ for a dataset with more nodes at local streets.

5.3.2 Comparison Against Baseline Models

Model RMSE Accuracy (%) MAPE (%)
GCN 9.06 85.71 13.50
T-GCN 6.17 90.27 8.31
A3T-GCN 6.11 90.29 8.30

GRU* 4.00 - 522 7249-91.09 N/A
GCN* 5.66 - 7.79 61.07-86.73 N/A

T-GCN* 3.92-5.13 73.06-91.27 N/A
A3T-GCN* 3.90-5.09 73.18-91.33 N/A
DRCNN* 2.95-4.74 N/A 2.90 - 4.90
GaAN* 524 -7.65 N/A 6.99 - 10.62

Table 5.4: Prediction results generated by our suite of models and other baseline
methods. Models marked with * are trained to solve the traffic flow prediction prob-
lem detailed in Section 2.2.1 and by Equation 2.1. We provide performance ranges
for models not trained on the PeMS-BAY dataset to offer a high-level comparison.

Table 5.4 contains the results of our suite of models and the baseline models
identified in Section 5.2.4. The T-GCN and A3T-GCN models visibly outperform
the GCN model under all evaluation metrics, and this showcases the importance of
modeling temporal reasoning in addition to spatial reasoning.

When comparing these models to results from past studies that addressed the
original traffic forecasting problem defined in Equation 2.1, we compare against per-
formance ranges for the models from past studies. These models have been tested
on multiple data sources, and the varying results generated by each of those sources
form the ranges. We choose to compare our evaluation metrics to ranges due to the
disparities caused by our models being trained on a different data source.

The spatiotemporal models deviate from the target value by approximately six
miles per hour on average. This error can be further reduced if K is selected more
intentionally, which will be the case in a practical setting. Rather than selecting
K random nodes at each time step, we can update our dataset to select the nodes

to be monitored in a more realistic fashion; by selecting randomly within the k-hop

41

neighbors of each monitored node, we mimic the limitations on range of movement
for the drones within a given time step. We can further build upon this by tracking
prediction uncertainty at nodes to inform optimal drone placement; by more densely
monitoring regions with or near greater uncertainty, we can develop a more accurate
understanding of conditions within the road network.

A 90% accuracy rate with clear scope for further improvement is an extremely
promising result and showcases the potential these models possess to surpass the
traffic flow prediction methods underlying most commercial real-time estimation sys-

tems.

42

Chapter 6

Prediction Using Aerial Imagery

In the previous section, we establish the effectiveness of spatiotemporal graph network
architectures in filling in missing traffic data across a road network. We can capture
the variable nature of traffic flow and predict traffic conditions at the unmonitored
N — K locations with remarkable accuracy.

While data scarcity prompted us to leverage the PeMS-BAY dataset for our analy-
sis, we ultimately intend to train our models on aerial footage. As described in Section
2.3, aerial footage offers the opportunity to expand the feature space we equip our
models with.

As a final experiment, we utilize the dataset assembled via our optical flow speed
estimator to train the T-GCN model. The footage collected at eleven different lo-
cations is labeled by the optical flow algorithm, and the resulting dataset is pre-
processed to be channeled through the T-GCN training pipeline.

As described in Section 3.1, six drones are used to capture data at these eleven
locations, and as a result, we have incomplete knowledge of traffic patterns across the
road network at any given time. For the purpose of running a controlled experiment
with credible evaluation procedures, we mask the labels of an additional monitored
node and define a scaled down task of predicting traffic at this fixed node given data
from a combination of the remaining ten nodes.

There are some clear limitations to the aerial footage dataset. While the PeMS-

BAY dataset consists of over 52,000 datapoints, collected at consistent intervals over

43

a wide network, the aerial footage produces 400 datapoints that represent a much
smaller road network. As such, it is critical to reduce the complexity of the prediction
task. We do so by fixing N — K instead of masking nodes randomly at each time
step, as well as adjusting some of the hyperparameters. We set batch size to 32
and hidden layer size to 16. After analyzing the minimum and maximum speeds
in the aerial data, which is not a uniform, freeway system dataset, we also modify
the maximum speed value to 50 miles per hour, which impacts the normalization
operation. We acknowledge that there are multiple sources of noise within the dataset.
The filmed footage consists of certain patches where the camera is not pointed at the
region of interest. Additionally, the optical flow algorithm introduces some noise when

generating our ground truth.

Sampling Window Accuracy MAPE

Frequency (min) (%) (%)
(min)

0.17 1 61.05 38.12

0.17 5 53.55 66.20

0.17 10 4520 55.60

Table 6.1: Prediction results produced by the T-GCN model when trained on aerial
footage.

Despite these limitations, the results are promising. Interestingly, smaller window
sizes contribute to higher accuracy, unlike the results produced by the PeMS-BAY
dataset. This may be attributed to a few different reasons. First and foremost, the six
drones that generated the aerial footage had to recharge after every 12-20 minutes of
flight time. It is highly likely that a larger window size would result in more datapoints
where a significant portion of the drones were out of commission, and consequently,
most nodes were unmonitored. A narrow window size, on the other hand, may have
produced more meaningful data. Another point to consider is the difference between
the road network captured in the aerial footage and the freeway system captured in
the PeMS-BAY dataset. Freeway traffic may be more heavily influenced by long-term
traffic trends than traffic within internal roads, which is likely dictated by the short-

term, cyclical patterns of traffic light systems. A larger window size may introduce

44

noise and prevent the model from clearly identifying some of these short-term signals.
Finally, a larger window size reduces the number of valid datapoints. A ten-minute
window size reduces the dataset by 60 samples — a non-trivial 15% of the original
dataset.

More aerial data and a cleaner framework for collecting it would address most
of the limitations listed above and improve the model’s ability to learn and predict.
Additionally, tapping into the additional features that can be extracted from the
aerial footage may significantly improve performance. These are some of the many

potential next steps that we outline for this research in Section 7.2.

45

46

Chapter 7

Conclusions

In this work, we made progress towards multiple facets of the drone-based traffic flow
prediction problem. Revisiting the objectives defined in Section 2.4, the overarching
purpose of this project is to build a richer traffic low dataset using drone footage,
develop a model that can predict traffic conditions across a network given data at a
subset of its nodes, and devise an approach for calculating the optimal placement of
drones across the network at each time step such that uncertainty is minimized.

To address the first objective, we developed an optical flow-based speed estimation
algorithm to assemble a dataset from the previously collected aerial footage. We
identified potential features that could be extracted from this data to create a richer
feature space for our prediction models, and leveraging optical flow, we made some
progress towards lane detection.

Significant contributions were made towards the second objective as well. After
exploring past efforts to apply spatiotemporal models to traffic forecasting, we defined
a new prediction task: predicting traffic conditions at the unmonitored N — K loca-
tions given data from drones at the remaining K locations. We implemented a suite
of spatial and spatiotemporal models, identified optimal hyperparameter settings for
these models, and compared their performance to several baseline models. On the
whole, we achieved model performance surpassing 90% accuracy, and we identified
next steps that will likely further reduce the error percentage.

Finally, we initiated efforts to combine the results of the first two objectives by

47

configuring a spatiotemporal model to be trained on the newly assembled aerial traffic
dataset. Though data limitations prevented us from achieving performance on par
with the models trained on the PeMS-BAY dataset and models from past studies, we
produced valuable insights on the data collection framework and potential sources of
error.

These efforts laid out the foundation for this research and suggested promising

directions for further investigation.

7.1 Future Work

We have several recommendations regarding next steps for each of the three primary
objectives.

To build upon our contributions to the first objective, we suggest further evalua-
tion of the optical flow speed estimation algorithm. Securing a reliable ground truth
dataset for evaluation would help to confirm the performance of our estimator. Addi-
tionally, the estimator should be tested on a diverse range of terrains and road network
types. The current estimator may not generalize, especially due to its reliance on spe-
cific features like lane markings. Although lane markings are likely to be present in
most footage, additional indicators could be incorporated for generalizability.

There is also potential for further refinement of the implementation of our estima-
tor. It is currently bottlenecked by the Gunnar-Farnebédck computation step, which
alone takes 1.5 seconds per frame. Two potential solutions include optimizing the im-
plementation of this algorithm or exploring how to run the estimator on a subset of the
input video’s frames while retaining sufficient information. The Gunnar-Farnebéck
algorithm is inherently computationally expensive because it is a dense optical flow
algorithm. While sparse optical flow proved to produce unfavorable results in this
study, some recent work has had more success [11|. Investigating this work and
experimenting with parameter tuning for such algorithms may be beneficial.

The second objective would be primarily advanced by significant efforts to grow

the aerial dataset. Data collection using a refined data collection framework and data

48

augmentation can be conducted to collectively assemble a dataset comparable in size
to PeMS-BAY and other datasets assembled using ground-based sensors. Once an
adequate amount of data has been collected for model learning, we suggest dedicating
efforts towards expansion of the feature set. Features such as number of lanes, road
quality and closures, and road types can be extracted from the aerial footage for
this purpose. This will enable the model to effectively leverage the rich information
encoded within video data. Finally, more realistic selection of the K nodes at every
time step would be useful in mimicking the practical setup for drone-based traffic
sensing. Instead of random selection, constraints should be placed on the range of
movement for drones at every time step.

Finally, the contributions in this work are intended to serve as a foundation for
future research towards the coordinated planning of drone locations for aerial imagery.
With optimal drone placement, the resource limitations of this technology can be

accounted for, and the full potential of shared mobility platforms can be realized.

49

50

Appendix A

Optical Flow Methods

A.1 Lucas-Kanade Method

—
—_—
—_—
e
—
—_—
—
=

Figure A-1: Feature detection using sparse optical flow.

The Lucas-Kanade method is a sparse optical flow algorithm that estimates mo-
tion between consecutive frames. This method assumes that objects aren’t displaced
drastically between consecutive frames and that the pixel intensities of objects won’t
change from frame to frame. Relying on these assumptions, it builds windows around
detected features of interest and assumes all pixels within these windows share the

same magnitude and direction of flow. These pixels can be used to generate a system

51

of equations to solve for the displacement.
Figure A-1 shows an example of the drawbacks of the Lucas-Kanade method; due
to its reliance on selecting features based on maximum difference in pixel intensity,

both moving and stationary features are selected and challenging to differentiate.

A.2 Gunnar-Farneback Method

The Gunnar-Farnebéck method is a dense optical flow algorithm. Unlike Lucas-
Kanade and other sparse optical flow methods, which only track certain points of
interest, dense optical flow considers every pixel and compares each of them from
frame to frame. Similar to Lucas-Kanade, this method generates windows around
each pixel. It approximates these windows through polynomial expansion and then
estimates flow vectors from the coefficients of this expansion. Specific operations can

be found in Farnebéck’s original paper [8].

52

Appendix B

Optical Flow on Aerial Data

The following visuals depict the results of different modules within the dense optical

flow speed estimation pipeline.

B.1 Image Acquisition

Figure B-1: Sample frames from aerial dataset.

B.2 Optical Flow

Because the flow field highlights objects in motion, it leaves out parked cars and other
stationary objects when the camera platform is steady. In the case where the drone is

in motion due to turbulence or planned flight, stationary objects are detected in the

53

flow field; however, their magnitude of flow is distinctly smaller than their moving

counterparts.

Figure B-2: RGB representation of flow vector field generated by Gunnar-Farnebéck
method.

B.3 Detection

We leverage differences in magnitude and direction of flow to isolate the moving
and stationary features. Thresholding and contouring are applied to the frames to
generate the bounding boxes as shown in Figure B-3. We also see in Figure B-3 that
there are cases where multiple moving objects are registered as one mass, largely due

to noise in the flow field generated by the optical flow function.

Figure B-3: Bounding boxes are generated around moving features via thresholding
and contouring.

o4

Bibliography

[1]
12l

3]

4]

[5]

[6]

7]

18]

19]
[10]

[11]

[12]

FAA Modernization and Reform Act of 2012, February 2012.

Federal Aviation Administration. UAS by the Numbers. Retrieved online from
https://www.faa.gov/uas/resources/by the numbers/.

M. S. Ahmed and A. R. Cook. Analysis of Freeway Traffic Time-Series Data by
Using Box-Jenkins Techniques. Transp. Res. Rec. no. 722, pp. 1-9, 1979.

M. M. Hamed, H. R. Al-Masaeid, and Z. M. B. Said. Short-term Prediction of
Traffic Volume in Urban Arterials. J. Transp. Eng. vol. 121, no. 3, pp. 249254,
1995.

A. Balasingam, K. Gopalakrishnan, R. Mittal, V. Arun, A. Saeed M. Alizadeh, H.
Balakrishnan and H. Balakrishnan. Throughput-fairness tradeoffs in mobility
platforms. To Appear, Mobisys, 2021.

Z. Cui, K. Henrickson, R. Ke, and Y. Wang. High-Order Graph Convolutional
Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traf-
fic Learning and Forecasting. CoRR, abs/1802.07007, 2018.

Z. Cui, K. Henrickson, R. Ke, and Y. Wang. Traffic graph convolutional recurrent
neural network: A deep learning framework for network-scale traffic learning and
forecasting. IEEFE Transactions on Intelligent Transportation Systems, 2019.

G. Farnebédck. Two-frame motion estimation based on polynomial expansion.
volume 2749, pages 363-370, 06 2003.

Peter 1. Frazier. A tutorial on bayesian optimization, 2018.

A. Mordvintsev A. K. Optical Flow. Retrieved online from https://opencv-
python-tutroals.readthedocs.io/, 2013.

Ruimin Ke. Advanced framework for microscopic and lane-level macroscopic
traffic parameters estimation from uav video. IET Intelligent Transport Systems,
14:724-734(10), July 2020.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On
large-batch training for deep learning: Generalization gap and sharp minima.

ICLR, 2017.

95

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

21]

22]

23]

24]

O. Lange and L. Perez. Traffic prediction with advanced graph neural networks.
Retrieved online from https://deepmind.com/blog/, September 2020.

P. Cohn, A. Green, M. Langstaff, and M. Roller. Commercial drones are here:
The future of unmanned aerial systems. Retrieved online from McKinsey.com,
December 2017.

J. Lau. Google Maps 101: How Al helps predict traffic and determine routes. Re-
trieved online from https://blog.google/products/maps/google-maps-101-how-
ai-helps-predict-traffic-and-determine-routes/, September 2020.

Y. Li, R. Yu, C. Shahabi, and Y. Liu. Diffusion Convolutional Recurrent Neu-
ral Network: Data-Driven Traffic Forecasting. In International Conference on
Learning Representations (ICLR ’18), 2018.

California Department of Transportation. Caltrans PeMS. Retrieved online from
http://pems.dot.ca.gov/.

X. Wang, Y. Ma, Y. Wang, W. Jin, X. Wang, J. Tang, C. Jia, and J. Yu. Traffic
Flow Prediction via Spatial Temporal Graph Neural Network. In Proceedings of
The Web Conference 2020, WWW 20, page 1082-1092, New York, NY, USA,
2020. Association for Computing Machinery.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive
survey on graph neural networks. CoRR, abs/1901.00596, 2019.

X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang. Long short-term memory neural
network for traffic speed prediction using remote microwave sensor data. Transp.
Res. Part C Emerg. Technol. vol. 54, pp. 187-197, 2015.

R. Ke Z. Cui and Y. Wang. Deep Stacked Bidirectional and Unidirectional
LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction. in
6th International Workshop on Urban Computing (UrbComp 2017), 2016.

C. F. Shao, Z. S. Yao, and Y. L. Gao. Research on Methods of Short-term Traffic
Forecasting based on Support Vector Regression. Journal of Beijing Jiaotong
Unwversity. vol. 30, no. 3, pp. 19-22, 2006.

L. Zhao, Y. Song, M. Deng, and H. Li. Temporal Graph Convolutional Network
for Urban Traffic Flow Prediction Method. CoRR, abs/1811.05320, 2018.

J. Zhu, Y. Song, L. Zhao, and H. Li. A3t-gcn: Attention temporal graph convo-
lutional network for traffic forecasting, 2020.

56

