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Abstract

Lookup of strings into in-memory database indexes is a problem with different consid-
erations from those using integer keys. With their variable sizes, efficiently inserting
strings into indexes should account for properties specific to strings. We investigate
learning alternate schemes for encoding and inserting strings into index structures
such as the adaptive radix tree (ART) and their impact on memory and lookup per-
formance. In this thesis, we examine three different properties of string datasets and
perform three experiments aimed at taking advantage of these properties. While us-
ing a character frequency based encoding was successful in increasing throughput on
a theoretical read-heavy workload, it did not preserve lexicographical order and is
unlikely to be useful in most workloads. Meanwhile, the experiments that did pre-
serve lexicographical order were unsuccessful in demonstrating space or throughput
improvements. We suggest improvements on these approaches for further experimen-
tation.

Thesis Supervisor: Tim Kraska
Title: Associate Professor
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Chapter 1

Introduction

In recent decades, the increased presence of online business has dramatically affected

the need for fast and efficient OLTP applications. The execution of such workloads

often deals with in-memory search trees and indexes on string keys. However, fast and

efficient lookup of strings into in-memory database indexes is a problem with different

considerations from those using integer keys. With their variable sizes, efficiently

inserting strings must account for different properties as compared to indexing integer

keys.

Current state-of-the art structures used for string indexing generally use a trie

structure. A trie is a type of search tree where the character information is stored

in branches between nodes. Keys with the same node in their parents will have the

same prefix. Tries generally deal well with variable length data, as its height does not

scale with the number of keys inserted; searching a trie takes time proportional to

the length of the search key. Unlike other tree structures, insertions and deletions do

not require balancing operations. Consequently, they are a common structure used

for storing string data.

One such trie structure with good performance on insertion and lookup is the

adaptive radix tree (ART) [11]. ART supports efficient insertions and deletions and

addresses space inefficiency of tries by having hard-tuned node sizes. It adaptively

chooses from four different node sizes as data is inserted and deleted. Furthermore,

ART uses path compression and lazy expansion to further reduce space used. The
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performance is comparable to hash tables on dense datasets. ART’s efficiency and

low memory footprint make it a state-of-the-art index structure for in-memory string

indexing.

The goal of this thesis is to explore methods for increasing the efficiency of trie

structures such as ART by utilizing methods to learn the distribution of the datasets

used on them. An area we have chosen to focus on is encoding strings prior to insertion

into indexes.

String compression is a simple method for reducing the size of the data traveling

through index structures. Depending on whether or not the original data must be

easily recoverable, this is a useful option for achieving insertion and lookup efficiency.

Regarding string compression for insertion into index structure, range queries must

be supported, so a good compression algorithm must also preserve lexicographical

ordering of the data.

The High-speed Order Preserving Encoder (HOPE) is one such encoder that is

optimized for compressing database index keys [13]. HOPE is a dictionary-based

compressor that preserves order of keys. The paper defines a string axis model to

characterize dictionary encoding schemes. This model’s most important properties

are that it is complete, uniquely decodable, and order-preserving. The model lays

out strings on a single axis in order, and defines intervals between which codes are

assigned. Intervals can be fixed or variable length, and the assigned codes can also be

fixed or variable length. Different combinations of interval and code type categorize

four different types of dictionary encoders:

1. Fixed-Length Interval Fixed-Length Code (FIFC): ASCII

2. Fixed-Length Interval, Variable-Length Code (FIVC): Hu-Tucker encoding (order-

preserving) [7], Huffman encoding (non order-preserving) [8]

3. Variable-Length Interval, Fixed-Length Code (VIFC): Antoshenkov et al.’s string

compression algorithm [2]

4. Variable-Length Interval, Variable-Length Code (VIVC): HOPE’s N-Grams en-

coding scheme
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Encoders take advantage of the entropy in string distribution and assign shorter codes

to more frequently-accessed intervals. While fixed-length codes are usually easier to

decode, in our experiments we assume heavy read-only workloads, thus removing the

need for efficient decoding. Thus, we focus on the VIVC scheme described in HOPE,

as it provides higher compression rates.

HOPE’s uses 3-Grams and 4-Grams as VIVC encoding schemes, which we will

refer to in general as N-Grams. For a given value of 𝑛, the algorithm uses 𝑛-character

strings as interval boundaries. Given a dictionary size 𝑑, the algorithm samples

the data to select the top 𝑑/2 occurring 𝑛-character strings. Each of these strings

receives an entry in the dictionary. Additionally, each gap between two lexicographical

consecutive strings receives an entry in the dictionary to cover the gap. These use

Hu-Tucker codes to assign codes.

In this thesis, we explore and analyze modifications to both ART and N-Grams,

and we observe their effect on the efficiency of inserting keys into an index. We

perform three experiments with the goal of improving lookup throughput in an ART

index. Our approaches are as follows: (i) using a character frequency based encoding

and modifying ART to take advantage of this encoding, (ii) encoding using longer

substrings, and (iii) weighting suffixes more heavily within the compression algorithm.

In the following section, we will describe in more detail the setup and methods used

by these experiments.
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Chapter 2

Related Work and Discussion

There exists a wide body of research relating to improving index performance for

string keys.

2.1 Traditional index structures

The Height-Optimized Tree (HOT) [3] optimizes its internal structure around the

height of the tree. It adaptive adjusts for high fan-out consistently throughout the

tree by varying the size of the prefix considered at each node. Low height of the tree

indicates fewer nodes traveled.

Masstree [12] uses B+ trees in a trie-like structure. Each B+ tree deals with a

fixed length prefix, and the structure overall is capable of handling arbitrary-length

keys.

Both HOT and Masstree focused on reducing tree depth via algorithmic means.

In contrast, our experiments looked to key compression combined with ART to reduce

key length and thus tree depth.

2.2 Learned indexes

Recent research has explored the use of machine learning to help predict and identify

where data may be located in an index structure. Such learned indexes often have
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reduced sizes and faster lookup times. However, updates to the data often require

retraining the model, so they best support a read-heavy workload.

Kraska et al.’s Learned Index [10] uses recursive model indexes (RMI) with staged

models to predict where data is located in a sorted array. RMIs model the CDF of

a dataset, narrowing down the subrange a key is predicted to be in and performing

a local search within an error bound. These structures feature faster lookups than

traditional indexes, but are suspect to requiring retraining upon inserts or updates.

ALEX [5] is a learned index based on B+ Tree. Like Learned Index, it uses RMIs

to predict key location. However, it dynamically adjusts the number of levels and

number of models at each level in response to the workload, allowing it more flexibility

in modeling the data distribution. By using a cost model to adjust its RMI structure,

it avoids the need for re-tuning for different datasets or workloads.

Self-Tuning ART (START) [6] is a modification on top of traditional ART that

uses multilevel nodes to reduce tree height. START develops a cost model based on

ART metrics collected on the target machine, and uses that to determine how to place

multilevel nodes. It consistently performs better than ART on read-only workloads.

RadixSpline (RS) [9] is a learned index that, like RMIs, models the CDF of a

dataset. RS builds a spline to fit the underlying data, then uses the spline points

as entries in a radix table. RS can be constructed in a single pass and has few

parameters, thus making it easier to tune.

2.3 Key compression

Orthogonal to improvements on the efficiency of the index structure, another approach

is to compress input keys before they are inserted into a search structure. Compression

of keys reduces the overall size of the amount of data inserted into the index structure.

Optimizations can also be made around how frequently data is accessed and by how

much it is compressed.

Column-store DBMSs often use string compression to replace variable-length strings

with fixed-length integers, which undergo further compression to reduce size. These
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use dictionary compression to handle encoding. Abadi et al. presented the effect of

various compression schemes on columnar databases for improving query performance

[1]. Processing on top of already compressed data led to significant improvements in

the system. Furthermore, order-preserving dictionary encoding, while having a worse

compression rate, can still provide benefits to query performance, even when domain

size is unknown or variable [4].
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Chapter 3

Methods

To investigate improvements to ART, we pursued three avenues of investigation. The

first focused on an alternate character frequency based encoding, the second focused

on using longer substrings for N-Gram encoding, and the third focused on the impact

of changing N-Gram encoding weights.

Each of the following experiments were performed with two datasets:

1. Email: 144 million keys, average length 21 bytes, max length 30 bytes

2. URL: 72 million keys, average length 55 bytes, max length 254 bytes

The benchmarks collected for each experiment were collected by running 10 trials

for each variant, and averaging the metric collected. Metrics collected included com-

pression rate, keys looked up per second, and memory usage of the index structure.

3.1 Character frequency based encoding

The first experiment investigated a frequency based encoding for the string data to

insert into the index structure. We re-encoded the dataset prior to insertion, and

measured the lookup speed. We altered ART to take advantage of the frequency

based encoding by taking faster paths when encountering more frequently occurring

characters while traversing the tree. We expected that this would result in faster

lookup times, at the cost of increased memory usage.
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Figure 3-1: Comparison of the inner structure of original ART Node4 and our aug-
mented Node4

3.1.1 Implementation

The data was processed and re-encoded according to the frequency of characters

across the dataset. Supposing an ordering of the most to least frequent characters

as 𝑐0, 𝑐1, . . ., each character was encoded as 𝜋(𝑐𝑖) = 𝑖 + 1. To allow ART to take

advantage of this encoding, we augmented each of the original ART nodes with an

additional size 𝑛 array containing pointers to children. Traversing the tree would

directly follow one of these pointers if the character being looked up at that node was

less than 𝑛.

Te original ART nodes each have some internal structure determining how to find

the next child. Figure 3-1 demonstrates the augmented Node4 structure with 𝑛 = 4.

The additional array would be used to travel to the next child if the next character

was less than 𝑛.

The experiment was run on our two previously mentioned datasets, with the size

of the augmented array taking the values 𝑛 = 4, 8, 16, 24, 32. We measured the time

it took to lookup the dataset once fully inserted into the augmented ART structure,

as well as the amount of space used by the new structure.
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3.2 N-Gram analysis

The second experiment examined the N-Gram encodings described in the HOPE

paper. The HOPE paper used 3-Grams and 4-Grams as VIVC encoding schemes. We

decided to additionally implement 5-Grams. We expected that using longer sequences

as intervals would provide more compression, thus leading to better performance

within an index structure.

The HOPE paper indicated that 4-Grams encoding performance suffered com-

pared to 3-Grams encoding performance. However, it was not clear whether or not

the longer sampling length would take advantage of a larger dictionary size to be-

come more efficient for index insertion and lookups as compared to a shorter sampling

length. As a result, our experiment also varied dictionary size. We expected that us-

ing a larger dictionary size would result in more efficient codes, thus improving lookup

time.

3.2.1 Implementation

Like 3-Grams and 4-Grams, given a dictionary size 𝑑, our implementation of 5-Grams

sampled keys from the dataset and selected the 𝑑/2 most frequently occurring length

5 substrings. We built a dictionary encoder around these substrings as previously

described, assigning codes to the 𝑑/2 sampled keys and the intervals between them.

We measured the performance comparison between 3-Grams, 4-Grams, and 5-

Grams across encoding size, ART lookup performance, and ART memory usage. The

performance metrics were gathered for dictionary values of 𝑑 = 5000, 10000, 20000, 40000

and compared the differences in performance.

3.3 N-Grams frequency weighting

The final experiment investigated modifying the N-Grams encoding algorithm to ac-

count for n-gram sequence location within the original string. The motivation for this

originated from the observation that in ART, prefixes of strings have lower impact
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on the size of ART as compared to suffixes. The latter half of the strings, because of

exponential fanout, have a heavy impact on the size of ART. We altered the N-Grams

encoding algorithm to weight n-grams appearing at the end of keys by different fac-

tors, and examined how they altered the performance of encoding and insertion into

ART.

Our hypothesis was that by weighting the latter half of strings, the encoding algo-

rithm would assign codes with shorter length more frequently to sequences at the end

of strings, which would affect ART memory usage. We expected that lookup through-

put would improve, at the cost of increased ART memory usage. Since the encoding

algorithm was altered into a less than optimal encoding function, we expected that

the compression rate of the new algorithm would suffer as compared to the original.

3.3.1 Implementation

As previously described, the N-Grams encoding algorithm samples keys from the

dataset and selects the 𝑛/2 most frequently occurring length 𝑁 substrings. We altered

the method of counting the substrings to weight n-grams appearing at the end of

keys more heavily by a factor 𝑓 . Given a length 𝑛 string 𝑠0𝑠1 . . . 𝑠𝑛, for any n-gram

beginning with the character 𝑠𝑖 with 𝑖 > 𝑛/2, we increase its weight in the n-grams

by counting it as occurring 𝑓 times.

For this experiment, we used 3-Gram encoding and a dictionary size of 5000. In

our experiments, the range of values for 𝑓 were 𝑓 = 5, 10, 20, 50, 100. Performance

metrics measured were encoder size, lookup throughput, and ART size.
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Chapter 4

Evaluation

4.1 Character-based frequency encoding

This experiment re-encoded the data according to the frequency of each character.

We modified the ART nodes to short-circuit if the next character found was a highly

frequent character. We expected that the throughput of lookups would increase under

this scheme, alongside a slight increase in memory usage.

4.1.1 Memory usage

Figure 4-1: Dictionary encoding sizes across augmenting array sizes

Figure 4-1 demonstrates that as the number of characters used for short-circuiting
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Figure 4-2: Space used by each type of augmented node

increased, the memory used by ART increased in a roughly linear manner. Since we

augmented each node with further data structures, this was expected. Investigating

the distribution of memory among node types, Figure 4-2 demonstrates that as 𝑛

increased, data concentrated in the augmented Node4 types.

4.1.2 Throughput

4.1.3 Memory usage

Figure 4-3: Throughput across augmenting array sizes

As seen in Figure 4-3, short-circuiting by the top 𝑛 characters provides an im-

provement to throughput that plateaus near 𝑛 = 16. The augmenting array size
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describes the number of the more frequent characters that were skipped. For the

email dataset, increasing the size of the augmenting array from 4 to 32 led to a 15%

increase in throughput. For the URL dataset, increasing the size of the augmenting

array from 4 to 32 led to a 16% increase in throughput.

4.1.4 Discussion

We expected the throughput to improve and the memory usage to worsen. Our results

indicate that throughput did increase as the number of characters directly indexed

increased. However, the increase in memory usage with size of the augmenting array

was far more than expected.

We found that the memory usage linearly increased with 𝑛, and tended to not

utilize the higher levels of ART nodes efficiently. These observations indicate that

augmenting ART in this manner had the effect of giving already tuned node sizes

additional children, which had the result of concentrating children at lower levels of

nodes without reaching the threshold to upgrade into the next node type. Further

experimentation with these augmented ART nodes could consider tuning the upgrade

thresholds for the nodes, or constructing a model from the data for when to upgrade.

Additionally, as mentioned previously, this type of encoding does not preserve

lexicographical order, so this model will not support range queries. Consequently,

this augmented ART structure will support a read-heavy workload that only requires

point lookups and does not have a need for space efficiency.

4.2 N-Gram analysis

In this experiment, we implemented 5-Grams, and measured the performance of 3-

Grams, 4-Grams, and 5-Grams with varying dictionary size. We expected that 5-

Grams, by encoding longer substrings, would result in a higher compression rate and

thus increased lookup throughput and lower memory usage as compared to 3-Grams

and 4-Grams.

We found that on the same dictionary size, 3-Grams used the least memory for
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the encoding dictionary. Once the encoded keys were inserted into ART, 3-Grams

also had the fastest lookup speed and used the least memory. The total memory used

by the index structure consistently spanned a range of approximately 100MB in all

trials across the same dictionary size, and indicated roughly linear growth.

4.2.1 Memory usage

Figure 4-4: Dictionary encoding sizes across N-Gram encodings

Figure 4-5: Index sizes across N-Gram encodings

Reflecting the conclusions of the HOPE paper, the dictionary encoding size grew

roughly linearly with increasing dictionary size, as can be seen in Figure 4-4. Within

the trials with fixed dictionary size and different N-Gram encoding choices, the dic-
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Figure 4-6: Compression rate across N-Gram encodings

tionary space usage also grew nonlinearly. However, the differences in encoding dic-

tionary size were comparatively negligible to the range of memory usage of the index

structure. The maximum dictionary encoding size found in these experiments was

less than 1.5 MB.

The index sizes, as seen in Figure 4-5, decreased with increasing dictionary size,

reflecting the increased compression rate that larger dictionaries can perform. In-

creasing the dictionary size from 5000 to 40000 reduced ART size by 2.5-3% in both

datasets. However, we observed that on the same dictionary size, 5-Grams did not

cause ART to use less memory in comparison to 3-Grams, indicating that using longer

ngrams for compression did not aid in reducing memory usage.

This was further reflected in the compression rate metrics. As seen in Figure 4-6,

increasing the number of dictionary entires was linked to a higher compression rate.

However, 3-Grams performed markedly better than 4-Grams and 5-Grams, both of

which have near similar compression rates at all dictionary sizes tested.

4.2.2 Throughput

The metrics gathered under using 5-Gram encoding show that increasing dictionary

size allows for higher throughput. With the email dataset, the throughput was best

under the 3-Gram encoding, and across all N-Grams, improved as the number of
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Figure 4-7: Throughput across N-Gram encodings

dictionary entries. We can likely link these results to the impact of the compression

rate – higher compression rates result in shorter keys, which take less time to lookup

in the search tree.

For the email dataset, the throughput differences between different N-Grams are

quite stark, with 3-Grams performing noticeably better than 4-Grams or 5-Grams.

However, for the URL dataset, the difference is not quite as severe, with 5-Grams

and 4-Grams having just slightly better performance than 3-Gram, as can be seen in

Figure 4-7.

4.2.3 Discussion

We expected that 5-Grams would have better compression rates than 3-Grams or

4-Grams, and thus lead to better performance from ART. However, the metrics we

gathered indicate that this was not the case. 3-Grams had the best compression rate

out of the N-Gram encodings used. In fact, the compression rate for 4-Grams and

5-Grams were generally quite close regardless of the number of dictionary entries. It

is possible that the dictionary encoding algorithm had too many unique 4-grams or

5-grams to achieve a good encoding. However, further experimentation using a larger

dataset or different sampling methods would be required to confirm this.

The experiments also indicated that compression alone may have reduced effects
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on datasets with longer keys – suggesting that further efficiency improvements through

key compression alone have a limit to them. Further algorithmic improvements in-

volving compression are likely to require consideration of the index structure being

used.

4.3 N-Grams frequency weighting

In this experiment, we adjusted the N-Grams encoding algorithm to weight suffixes

more frequently when counting ngrams. We expected that increasing suffix weight

would result in higher lookup throughput with decreased memory usage, while having

a worse compression rate.

4.3.1 Memory usage

Figure 4-8: Index sizes across weighting factors

In Figure 4-8, we see that increasing the weighting factor had little effect on the

size of ART. In both datasets, the index sizes fluctuated over a range of approximately

10MB, which was less than 1% of the total index size.
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Figure 4-9: Throughput across weighting factors

Figure 4-10: Compression rate across weighting factors

4.3.2 Throughput

Figure 4-9 shows that the throughput of lookups decreased as weighting factor in-

creased. On both datasets, increasing the weighting factor from 1 to 100 led to

a throughput decrease of approximately 2.5%. The change in throughput roughly

matches the difference in compression rate across weighting factors, seen in 4-10. In-

creasing the weighting factor from 1 to 100 led to compression rate decreasing by

1.6% and 3.2% in the email and URL datasets, respectively.
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4.3.3 Discussion

We expected that weighting the suffixes would lead to improved throughput at the

cost of compression rate. As expected, giving the suffixes of keys more weight in the

N-Grams encoding algorithm led a worse compression rate. However, the change in

algorithm did not lead to increased throughput with increased weighting.

One possible explanation for why weighting suffixes had little impact may be that

the datasets already use strings with common ngrams in the suffixes. Emails and

URLs will tend to have similar endings due to sharing domain names. Consequently,

it is likely that the suffixes already are weighted more frequently when using the

unmodified N-Grams encoding algorithm. Examining this further would likely require

experimentation with different datasets without this sort of suffix skew. Additionally,

observing the effect of weighting prefixes as well as suffixes may prove insightful.

Another possible coinciding explanation for why weighting suffixes had little im-

pact may be that more efficient compression for suffixes may have been counterbal-

anced by less efficient compression for the prefixes. As a result, the two may have

balanced out and caused little change. Further experiments to verify this would likely

require observing the compression rates of prefixes and suffixes separately. An exten-

sion of this would likely involve learning the best point within a string to split the

weighting of prefix or suffix.
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Chapter 5

Conclusion

In this thesis, we presented three experiments that aimed to improve throughput

of lookups in ART by changing the encoding schemes used for the data. While

using character frequency based encoding helped to improve throughput, the vastly

increased memory usage and non-order-preserving nature of the encoding makes it

impracticable for common use. While we expected that using 5-Grams for encoding

would lead to better performance, we saw that 5-Grams generally performed worse

than 3-Grams in both throughput and memory usage. Finally, modifying N-Gram

encoding to weight suffixes more frequently did not lead to performance improvements

as we expected, instead leading to slightly worse performance results. We suggest

some further lines of query stemming from the observations of these experiments,

including examining the effect of separately weighting prefixes and suffixes of the

data, possibly via learning a model.
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