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Abstract

In the natural world, life has found an uncountable number of ways to survive and
often thrive. Between and even within species, each individual has a slightly unique
way of existing, and this diversity lends robustness to life in general. In this work, we
aim to incentivize diversity of agent policies while optimizing for an external reward.
To this end, we introduce a generative model of policies which maps a low-dimensional
latent space to an agent policy space. In order to learn a broad range of solutions,
our generative model uses a diversity regularizer that incentivizes different agent
behaviors given the same state. Agents are assigned a specific latent vector through
their trajectory, and the generator learns to encode these behavioral preferences in
the latent space. Results show that our generator is able to find an array of policies
that can express agent individuality through distinct and unique agent policies. Of
particular interest, we find that having a diverse policy space allows us to rapidly
adapt to unforeseen environmental ablations simply by optimizing generated policies
in the low-dimensional latent space. We test this adaptability in an open-ended grid-
world, as well as in a competitive, zero-sum, two-player soccer environment.

Thesis Supervisor: Phillip Isola
Title: Assistant Professor
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Chapter 1

Introduction

Quick thought experiment: imagine our world was such that all people acted, thought,

and looked exactly the same in every situation. Would we ever have found the influ-

ential dissenters that sparked scientific and political revolutions that now define our

humanity - daring to fight for civil rights, venture into space, and far more?

In reinforcement learning (RL), it is common to learn a single policy that fits an

environment. However, it is often desirable to instead find an entire array of high

performing policies. To this end, we propose learning a generative model of policies.

At a high level, we aim to show that purposefully learning a diverse policy space

for a given environment can be competitive to learning a single policy, while better

simulating the complexity and diversity of life in the real world.

Previous works have touched on ideas akin to a generative model of policies. Un-

der the hierarchical RL framework, the the high-level policy controller could itself be

considered a policy generator of sub-policies that are ‘options’ (Sutton et al. [1999],

Eysenbach et al. [2018], Florensa et al. [2017]). But these methods are designed with

the intent to find decomposable skills that aid in the construction of just one down-

stream controller policy, and ultimately could even be integrated into our framework

to instead learn generative model of ‘high-level’ controllers. A body of prior work that

aligns more closely with our goals is that of Quality Diversity (Pugh et al. [2016]),

which optimizes a population of agents along the axes of both reward and diversity.

These methods often use evolutionary search and a require a discrete sized popula-
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tion of separate agents with their own policy weights, which consumes more time and

training resources, and limits the number of diverse behaviors. Our work integrates

the goals of quality diversity into a time and memory efficient deep RL framework

by simulating an entire population of agents via a generative model of policies, with

diversity bounded only by capacity of the generator.

Why should we bother with finding more than one policy per environment? There

are two primary reasons, elaborated in the following paragraphs.

RL environments are continually approaching greater levels of open-endedness

and complexity. For a given environment, there might be an entire manifold of valid

and near-equally high performing strategies. Each environment might have several

or hundreds of degrees-of-freedom that allow different choices of varying scale. For

example, many role-playing games have entirely different stories and outcomes de-

pending on player actions - impacted by decisions as grandiose as whether the player

is aligned along the faction of good or evil, or as menial as whether the player stopped

and talked to a seemingly inconsequential non-playing character. These forks in the

road define an entire set of enjoyable play-styles. So then, learning how to play an

environment should not stop at just one possible solution. We want to find policies

that lie across the entire manifold of high performing strategies defined by the envi-

ronment. By learning an entire manifold of policies, we increase the robustness and

adaptability of our entire population of learned agents. Using our generative model,

we are able to adapt our population to select individuals that can still survive given

the ablation, much like natural selection drives evolution in the real world. To this

end, we introduce a simple optimization algorithm that can quickly adapt to ablated

environments, unseen adversaries, and even novel reward functions without forgetting

prior solutions, as would be a problem when using transfer learning.

Secondly, using a generative model of policies as a population of agents makes

sense in multi-agent environments, in which different agents should in many cases

act like they are actual unique individuals. However, it is common in many multi-

agent reinforcement learning settings to deploy the same policy across all agents, such

that they are essentially distributed clones. Doing so can reduce the multi-modality
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of the agent population, resulting in essentially a single ‘average’ agent, which we

will show in Chapter 4. Along a similar thread, we believe using a single policy

distributed across agents reduces the complexity of behaviors and interactions to be

found in multi-agent environments, which is a driving factor behind emergent co-

operation (Bansal et al. [2017]) and learning curriculums (Baker et al. [2019]) that

make multi-agent environments so interesting, and which we explore in Chapter 5.

The current alternative is to use separate weight policies for each agent, which comes

with scalability issues in the number of agents active in the environment, both in

terms of memory and sample efficiency. Of greater concern; however, is that using 𝑘

distinct policies to simulate a multi-agent environment bounds the number of unique

agent ‘personalities’ or ‘behavior profiles’ to 𝑘. Instead, by using a generative model,

we are able to find unbounded number of diverse solutions, unlocking the potential

of interpolate between solutions, diversify the population as much as is possible, and

potentially improve multi-agent auto-curricula.

The path of this thesis is as follows. First, we introduce the generative modelling

framework upon which we model a population of agents that learn to solve a particular

environment. We then show that our generative model has the capacity to form actual

distinct ‘species’ of agents, without requiring separate policy weights per agent. We

then go on to explore the potentials of learning a population of agents by ablating

environments and optimizing generated policies to fit each ablation, directly in the

latent space. We study two main environments: Markov Soccer (Littman [1994]),

and Farmworld, a new environment developed during the course of this thesis which

supports multi-agent learning in a open-ended gridworld environment.

15
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Chapter 2

Methods

2.1 Diversity Objective

Our method is simple: all policies in Π share the same weight parameters, but are

strongly conditioned on latent variable 𝑧 ∈ 𝑍. We condition each policy 𝜋 ∈ Π via a

latent variable via two methods: a diversity regularizer, and model architecture.

One might think that we could train our generative model like a generative model

of images or text; however, unlike methods in those fields, we do not have any training

data. So instead of learning a generator that can match a training data distribution,

we train it to make diverse but high quality behaviors, defined by the environmental

reward function.

Figure 2-1: Method Diagram
Upon agent initialization, we sample a latent 𝑧 ∈ 𝒵. In this case vector 𝐺 : 𝑧3 → 𝜋𝑧3 which
is used to roll out a trajectory in the environment. Diversity regularizer loss is defined over

the expected pair (𝑧𝑖, 𝑧𝑗) and is thus optimized over all possible policies – not just the
current policy used on the environment.
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Diversity Regularization We introduce a diversity regularization objective as

the primary methodology to condition each policy 𝜋𝜃,𝑧 on 𝑧. In general, we seek

to optimize the following objective shown in (2.1), alongside a standard RL reward

maximization objective such as in PPO.

max
𝜃

E
𝑠∈𝑆

⎡⎢⎣ E
𝑧𝑖,𝑧𝑗∈𝑍
𝑧𝑖 ̸=𝑧𝑗

𝛼𝐷(𝜋𝑧𝑖,𝜃(𝑠), 𝜋𝑧𝑗 ,𝜃(𝑠))

⎤⎥⎦ (2.1)

Since policies define a space of actions taken over different states, we propose that in

order for two policies to be distinct, they must have different action distributions given

the same state. In (2.1), 𝐷 defines some distance between the action distributions of

two policies 𝜋𝜃,𝑧𝑖 and 𝜋𝜃,𝑧𝑗 , and 𝛼 is a scaling constant for the diversity regularizer.

While we introduce (2.1) as a general form diversity regularization objective, in our

experiments, we particularly optimize

min
𝜃

E
𝑠∈𝑆

⎡⎢⎣ E
𝑧𝑖,𝑧𝑗∈𝑍
𝑐𝑖 ̸=𝑧𝑗

𝛼 exp
(︀
−𝐷𝐾𝐿(𝜋𝑧𝑖,𝜃;𝑏(𝑠)‖𝜋𝑧𝑗 ,𝜃;𝑏(𝑠))

)︀⎤⎥⎦ (2.2)

in which 𝐷𝐾𝐿 is the KL-divergence between the two policy action distributions, and 𝑏

is a smoothing constant over the action distributions. We use the constant 𝑏 because in

continuous settings and categorical settings, the KL-divergence can quickly approach

infinity as probability mass over a particular action approaches zero.

Figure 2-2: Model Architectures for Latent Integration

18



Model Architecture In our experiments, we have found that richer integrations

between the latent vector and the context can yield a policy space that has more multi-

modal solutions. Such models are known in literature as Stochastic Neural Networks,

but are not commonly used in RL. We call our baseline model the concatenation

model, which concatenates the latent vector z with the environment observation.

We additionally introduce a multiplicative model, which is inspired by the attention

network architecture. Using a latent vector of dimension 𝑘, our multiplicative model

is able to learn 𝑘 interpretations of the observation, which are each modulated by a

dimension of the latent vector. Using a skip connection allows the model to learn

policies faster than without.

Optimization of 𝐺 In our experiments, we optimize the diversity objective in an

on-line fashion using gradient descent, in conjunction with a PPO clipped-surrogate

objective and entropy regularization objective. We provide pseudocode for in Algo-

rithm 2.

Adaptation via Optimization in the Latent Space of 𝐺 By learning an entire

space of policies Π, we are able to search our policy space for the highest performing

policy on any given environment. In contrast to searching over policy parameters,

we are able to quickly search over the low-dimensional latent space (dimension 3 in

our experiments). We provide psuedocode for our optimization process in Algorithm

1. In general, we are able to optimize for new conditions in the space of just 100

generations, which takes under a minute and requires no gradient updates.
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Chapter 3

Related Work

3.1 Option Discovery

Sutton et al. [1999] introduced the option framework, which provides a temporal

abstraction of actions. Under the options framework, a high-level controller policy

chooses a latent vector z, which encodes a sequence of actions to be executed by a

sub-policy. Frequently, the high level controller is sampled for an action every k steps

(Zhang et al. [2021], Haarnoja et al. [2018]), which aids in hard exploration problems

by reducing the number of actions required to find a solution. Generally, the sub-

policy is a single policy network conditioned on z, and can itself be thought of as a

generative model. Nevertheless, works in this field have several distinctions from our

work. We detail three main differences.

First, the options framework is intended to find an abstracted set of ‘options,’

or skills that maximize the the ability of a higher level policy. These skills are not

intended to be stand-alone policies. In some situations, such as 2D gridworld naviga-

tion, it is sufficient to sample just one option for the course of the episode Eysenbach

et al. [2018]. However, this is not always the case. For example policy sub-controllers

may learn skills such as ‘jumping’ or ‘crawling,’ which on their own are not policies

that can solve a more complex task, like ‘walk over to the object and pick it up.’ In

order to get such a solution, one would need to compose a sequence of the learned

options. On the other hand, in our framework, the pair (𝐺, 𝑧): generative model and

21



a corresponding sampled latent vector, is intended to fully define a complete policy

for an environment. Generated policies are complete, in the sense that they should

fully define a behavior profile that finds high reward in the train environment.

Secondly, our work introduces a novel diversity regularizer in comparison to the

objectives used in many options frameworks. In options frameworks, the general

optimization problem is a mutual information maximization problem:

max
𝜋,𝜑

E
𝑧∼𝑝(𝑧)

[︃
E

𝜏∼𝜋,𝑧

[︃
𝑇∑︁
𝑡=0

(log 𝑞𝜑(𝑧|𝜉)− log 𝑝(𝑧))

]︃
+ 𝛽ℋ(𝜋|𝑧)

]︃
(3.1)

where, 𝜉 is an arbitrary aspect of the agent’s existence in the environment. Most often,

𝜉 is grounded in the state of the environment (Eysenbach et al. [2018], Achiam et al.

[2018]), so that the agent must visit unique states in order to provide information

about the latent 𝑧. The inner expectation log 𝑞𝜑(𝑧|𝜉) − log 𝑝(𝑧) corresponds to an

intrinsic reward that is proportional to the discriminability of 𝑧 given 𝜉. 𝛽ℋ(𝜋|𝑧) is

the term that maximizes the entropy of the latent conditioned policy, so that learned

options are diverse as possible. 𝜋 is conditioned on 𝑧 by the manner of providing 𝑧

as an additional input alongside the state 𝑠𝑡.

Grounding 𝜉 entirely in the state makes assumptions that difference in state is a

good metric for diversity. In cases such as 2D navigation, this certainly may be true -

since the state varies greatly over the course of an agent’s trajectory. Howeever, such

an assumption may not apply to environments that have very similar states across a

trajectory, as we will see in our experiments. To this end, our novel diversity regu-

larizer discards the use of mutual information maximization, and aims to incentivize

action diversity given state. Recent works (Wang et al. [2020], Zhang et al. [2021]),

attempt a similar technique by including not just state information in 𝜉, but also

policy action logits, squashed into a sigmoid. This allows the mutual information

term to be optimized directly by gradient descent, rather than through reinforcement

learning as in Eysenbach et al. [2018].

The third main difference is that most option discovery methods are often learned

in an unsupervised manner without regard to actual test-time extrinsic environmental
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reward Eysenbach et al. [2018]. If reward is used, then it is oftentimes a simple

surrogate extrinsic reward designed to elicit behavioral abstractions (Haarnoja et al.

[2018], Florensa et al. [2017]). For example, in a 2D point-mass navigation task, one

might learn options using an extrinsic reward such as the speed of the point mass.

This surrogate reward is simple enough to allow the options method to discover a

large number of distinct options, such as directions to move. However, when trained

with extrinsic rewards that are more difficult to satisfy, learning a distinct set of

options using the mutual information maximization objective becomes a challenging

problem of balancing intrinsic option reward and extrinsic environmental reward. On

the other hand, our diversity regularizer does not deal with mutual information, and

has been easier to optimize alongside test-time extrinsic reward.

Despite the differences between these methods, they are not actually disjoint. One

could imagine potentially combining the option framework with our policy generator,

to get an array of high-performing yet diverse hierarchical ‘controllers.’ To do so, one

could easily modify our diversity regularizer to measure behavioral difference across

potential options rather than environment actions.

3.2 Stochastic Neural Networks

In our work, we find that using a class of models called Stochastic Neural Networks

aids in allowing our generator to map latent vectors to highly multi-modal and in-

dividualistic agent policies. Stochastic Neural Networks have been used in (Florensa

et al. [2017], Fukui et al. [2016], Wu et al. [2016]) to improve optimization and yield

more complex interactions between the latent vector and latent-conditioned policies.

Although we employ a slight different architecture than prior works, we also find that

richer integrations of the latent than concatenation inherently offer some degree of

multi-modality, and additionally help optimize directly for diverse modes of behavior.
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3.3 Quality Diversity

A field known as Quality Diversity has very similar goals as our work. In general,

works in this field aim to find a large number of high performing policies, and find that

doing so can avoid pitfalls of objective based optimization. Novelty Search (Lehman

and Stanley [2011b]) and MapElites (Mouret and Clune [2015]) use methods inspired

from evolution, such as mutation and recombination of the parameter space, to find

high performing solutions in an environment. MapElites aims to find a large array

of high performing solutions to an environment by partitioning the genotype space

into buckets, and having solutions compete only within their respective bucket. Mu-

tations will cause genotypes to slowly spread out and fill many buckets. Novelty

Search directly optimizes for diversity of behavior, and selects individuals based on

how differently they are in behavior space from an archive of past individuals. A mod-

ification, Novelty search with Local Competition (Lehman and Stanley [2011a]), only

optimizes for behavioral diversity against other agents that have similar morpholo-

gies. However, work has shown that NS and NL-LC is very sensitive to the choice of

behavior space, and sometimes requires the very domain knowledge that it seeks to

avoid. Overall, these works indicate that incorporating diversity into reinforcement

learning can have promising results in finding diverse, robust, and high-performing

solutions.

3.4 Learning with a Population of Policies

There are several prior works that aim to connect ideas of Quality Diversity with deep

reinforcement learning. These methods attempt to optimize a fixed-size population

or archive of policies to be distinct from each other. Hong et al. [2018] augments

PPO with an additional objective that enforces that the current version of a policy is

different from a fixed size archive of past versions of itself, measured by the distance

of the policy action spaces. However, this method ultimately only produces a single

policy, and is primarily used as a way to avoid local minimum during optimization.
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Since comparisons are made against past versions of the same policy, diversity in the

archive is inherently constrained. DIPG (Masood and Doshi-Velez [2019]) instead

learns a family of separate-weight policies that are each distinct from one another,

using a distance metric to push policies apart from one another. Similarly, Parker-

Holder et al. [2020] also optimizes for a diverse fixed-size family of separate-weight

policies. They define a behavioral embedding as the expected behavior across states,

and optimize for the volume of the region contained by all behavior embedding points

of the family of policies. Ultimately, these methods constrain the amount of possible

diversity by learning only a fixed size population of diverse policies. Instead, by

using a generative model of policies to represent our policy population, we have the

potential to learn unbounded number of separate and interesting policies.
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Chapter 4

Learning an Effective Generator

One of the motivations behind learning a policy generator is that we want to rep-

resent a multitude of diverse agent policies while only using the weights for a single

environment. Using shared weights helps with computational costs in training large

multi-agent populations, and also helps accelerate the learning process by using data

collected across all agents to update their shared weights. However, using shared

weights also comes with its potential pitfalls. Naively using shared weights across

agents may result in all agents in an environment acting like clones, which is precisely

what we wish to avoid. We need to ensure that our policy generator is able to learn

a highly multi-modal space of policies.

What is a multi-modal space of policies? At its most extreme, our generator should

be able to map a two latent vectors to two policies that act completely differently in

every state they encounter.

In this chapter, we introduce three experiments that aided in testing the ability

of our generator 𝐺 to model a multi-modal space of policies. Our experiments are as

follows:

• FunctionWorld: a multi-regression task, in which we attempt to regress three

different functions using the same regression model, using RL.

• Niche Specialization: a Farmworld experiment in which to attain high reward,

agents must specialize into two distinct niches that have disjoint behavioral
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requirements.

• Agent Traits: an experiment in which agents are given different abilities, or

traits, and must act according to their traits if they want to survive in the

environment.

4.1 How Model Architecture and Context Distribu-

tion affects Multi-Modality

We train a policy 𝜋 to maximize 1-step expected rewards given observation of the

domain 𝑥 ∈ [0, 1] and target 𝑓(𝑥) ∈ [0, 1]. The output of 𝜋 is 𝜇 and 𝜎2, from which

we generate action 𝑎 ∼ 𝒩 (𝜇, 𝜎2). We use the REINFORCE algorithm, and compute

advantage by normalizing the reward across a batch of samples (𝑠, 𝑎, 𝑟), where 𝑠 is

the (𝑥, 𝑧) input pair and 𝑎 = the 𝑦 prediction. Crucially, we normalize rewards with

across a batch collected using the same latent 𝑧, which essentially treats each latent

vector as a unique ‘bucket,’ similarly to how MapElites (Mouret and Clune [2015])

only measures competition with individuals that are in the same bucket. Doing so is

important, since otherwise we would hinder specialization and diversity by measuring

the reward of a hypothetical latent vector 𝑧𝑖 that is currently attempting to diversify,

against the reward of a currently high-performing hypothetical latent vector 𝑧𝑗. This

would penalize 𝑧𝑖’s actions, when in reality, we want to encourage the diversification.

In later experiments, we discard this sort of reward normalization in favor of using

an actual value function that is able to account for these expected reward differences,

conditional on the particular latent 𝑧.

Reward is calculated as

min
𝑓∈ℱ

−(𝑎− 𝑓(𝑥))2

where ℱ is a family of functions in the multi-function environment. We use

ℱ = {𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥)}
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where

𝑓1(𝑥) = 𝑥2 + 0.5

𝑓1(𝑥) = −𝑥

𝑓3(𝑥) = 𝑥− 0.75

In this experiment we explore the influence of model architecture, and latent

distribution, and use of our diversity regularizer on the multi-modality of the policy

generator.

Model Architectures

• Concatenation Model as seen in 2-2. A latent context is concatenated to the

flattened environmental observation.

• Multiplicative Model as seen in 2-2. The latent context is multiplicatively inte-

grated with a learned embeddings of the environmental observation.

Context Distributions of size 3

• Uniform 3-Categorical (𝑘-dim one-hot)

• R3 ∼ Unif[0, 1]

• R3 ∼ Unit Sphere, centered at 0, 0. Thus the magnitude of the latent vector

|𝑧| = 1.

Results As seen in 4.1, both model architecture and latent distribution are impor-

tant in learning a multi-modal policy space.

The first thing to note is that using our multiplicative model, a type of Stochastic

Neural Network, has a significant impact on the ability of our generator to learn a

multi-modal space of policies. Simply using the concatenation model does not provide

the generator enough representational flexibility to fit to all three functions in ℱ .

Our second observation is that using continuous latent vectors hinders how well

any one latent can fit to a particular function. However, we believe using continuous
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Figure 4-1: Using a Multi-Modal Policy to Model Three Different Functions
Target functions are shown in dotted lines. Policy predictions are shown in solid colored
lines, where each (𝑥, 𝑦) point is visualized in the RGB color directly proportional to it’s
latent vector. Importantly, we observe that using a concatenation model does not provide
the generator enough representational flexibility to fit to all three functions in ℱ .

latent space still provides major benefits over a discrete latent space. First and

foremost, a discrete latent space will only be able to find a limited set of distinct agent

policies. On the other hand, a continuous latent space of policies offers the enticing

possibility of finding as many policies as the generator 𝐺 can fit. Additionally, a

continuous latent space offers the ability to interpolation and optimization policies in

the latent space.

In all following experiments, unless otherwise specified, we use continuous contexts

sampled from the 3-dimensional unit sphere.

4.2 Specialization of Policies in Π

Environment We test our generative model of policies in a new open-ended grid-

world environment called Farmworld, that supports multi-agent interaction and par-

tially observable observations. The idea behind Farmworld is simple: agents move

about on the map to collect various resources. Agents get 0.1 reward per time-step
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alive, and they can gain health by mining or farming resources from the environment.

Their are two types of resources: towers and chickens. Agents can interact directly

by attacking each other, or indirectly by competing for shared and limited resources.

An agent observation is composed of a flattened representation of the units in a con-

figurable L1 radius centered at its location. In all of our Farmworld experiments, we

set this radius to be 2 tiles around the agent.

Niche Specialization Experiment To test the multi-modality of our generator

G, we set up the Farmworld environment using a hidden rule: when an agent spawns,

it is able harness resources from either towers or chickens. However, once it gets

health from one unit type, it becomes ‘locked-into’ that unit type, and cannot gain

health from other unit types. Additionally, information about whether an agent is

‘locked-into’ a unit, and if so, which unit it is locked into, is not provided as part of

the agent observation. For this experiment, we place 8 each of agents, towers, and

chickens on a 10×10 grid.

Baselines In this experiment, we test our Diversity Regularization method against

a variety of algorithm baselines, which are elaborated in Appendix B.

• Vanilla PPO

• DIAYN

• DIAYN + action: Same as DIAYN, but uses action information alongside with

state to train the mutual information discriminator.

• Differentiable Mutual Information (MI): a method used in Zhang et al. [2021],

that maximizes the mutual information between state-action-logits pair and the

latent 𝑧 in a differentiable manner.

• Differentiable MI + Noise: Same as Differentiable MI, but with uniform noise

applied to the action logits when optimizing the MI discriminator.
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For each baseline, we evaluate its performance with Concatenation and Multiplicative

model architectures. Additionally, we test Vanilla PPO using a recurrent model, since

it could be helpful to learn and remember the initial unit an agent attacked.

Figure 4-2: Specialization versus Reward in the Niche Specialization Experiment
Per-Agent Specialization is measure by the 1 minus the average entropy between chicken
interactions and tower interactions per agent.

Results Figure 4-2 details the outcome of our Niche Specialization experiment.

Additionally, we visualize samples of episode trajectories in C-3 and a table of results

broken down even further by method in table 4.2.

The thing to take away from Figure 4-2 is that our Diversity method (Div) is

able to attain the highest reward in the environment, while maintaining high per-

agent specialization. Specialization is measure by the 1 minus the average entropy

between chicken interactions and tower interactions per agent. Thus, an agent that

only attacks chickens during the course of its trajectory will have a specialization

of 1, while a agent that attacks both units equally will have an specialization of

zero. Our Diversity method is able to achieve a significantly higher reward than any

other method using a purely reactive policy (multiplicative or concatenation), while

maintaining having specialization result. The RNN model also has high reward, likely

due to better map exploration, but does not learn to specialize between towers and

chickens.

This means that our generator G has learned a mapping from 𝑍 → Π that parti-

tions agents into one of two highly distinct roles: chicken farmers and tower farmers.
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G has actually learned a space of policies, conditional on the latent vector. On the

other hand, without our diversity regularizer, Vanilla PPO with Mult and RNN mod-

els are not able to learn as multi-modal and diverse a space of policies. As such, they

tend to have much higher chicken-tower interaction entropy, and agents will waste

time attacking a unit from which they will gain no health.

Furthermore, option discovery baselines also do not learn to balance specialization

and reward in an effective manner. Figure C-3 shows that DIAYN generally ignores

extrinsic reward, and instead opts to find states that provide information about the

agent latent vector 𝑧. Differentiable MI also suffers from optimization problems in

this task, and we see a tradeoff between specialization and reward.

Model Setting Mean Reward C. Hits T. Hits C-T Entropy
DIAYN Concat 13.2 ± 0.3 1.0 ± 0.2 0.9 ± 0.2 0.15 ± 0.0
DIAYN Mult 13.8 ± 0.9 1.2 ± 0.4 1.3 ± 0.7 0.21 ± 0.1

Diff. MI Concat 17.5 ± 0.3 3.1 ± 0.1 4.4 ± 0.3 0.61 ± 0.0
Diff. MI Concat + Noise 15.6 ± 0.0 2.1 ± 0.3 3.0 ± 0.2 0.35 ± 0.0

Diff. MI Mult 17.4 ± 0.2 3.1 ± 0.1 4.2 ± 0.3 0.61 ± 0.0
Diff. MI Mult + Noise 16.1 ± 0.0 2.0 ± 0.0 2.6 ± 0.0 0.20 ± 0.0
Div Concat Ctx 0.1 18.4 ± 0.9 2.7 ± 0.3 3.8 ± 0.8 0.34 ± 0.2
Div Mult Ctx 0.1 19.2 ± 0.6 3.1 ± 0.2 3.2 ± 0.0 0.19 ± 0.1
Vanilla Concat 17.9 ± 0.0 3.7 ± 1.4 4.4 ± 0.1 0.64 ± 0.1
Vanilla Mult 17.6 ± 0.0 4.0 ± 1.6 4.3 ± 0.1 0.65 ± 0.1
Vanilla RNN 18.9 ± 0.0 3.0 ± 0.3 4.5 ± 0.2 0.66 ± 0.0

Table 4.1: Specialization and Reward by Model and Algorithm
Notice that while our Div Mult model attains the highest reward, it actually has fewer
interactions with chickens and towers (C. Hits and T.Hits) than the Vanilla methods. This
is because the Vanilla methods tend to waste agent steps attacking towers and chickens,
even though they are not able to do damage on them.

4.3 Harnessing Agent Individuality

In the prior experiment, we determined that our generator is able to adapt to a multi-

modal policy space as required by our environmental rules. It managed to encode

information into the initially meaningless latent space, partitioning agents into two

major niches: chicken attackers and tower attackers.
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But what if the latent space actually has semantic meaning? In this experiment,

we measure if our generative model is able to build a policy space according to implicit

semantic meaning. We motivate this experiment by an observation that in nature,

species are granted their genes a priori, and must act in accordance with how their

genes ‘program’ them. A lion cannot attempt to live like a herbivore, because its

biology would not let it. Along this line, we design our experiment such that the

latent vector dictates how an agent should act in the Farmworld environment via

modulating how much damange it is able to do on each unit type in Farmworld.

Environment We again use the Farmworld environment. We place 10 each of

agents, towers, and chickens on a 12×12 grid, with locations randomly initialized

each episode.

Agent Trait Experiment As in the prior experiment, we augment the standard

Farmworld environment with an additional rule. In this experiment, agents are as-

signed a latent vector 𝑧 that is directly proportional to that agent’s damage profile.

We call the the damage profile a trait (each dimension of the latent 𝑧 could be an

allele, of sorts).

This set-up draws inspiration from character creation video games such as MMORPGs,

in which agents have a limited set of points to assign to various statistics that make

up a given agent’s profile. In our experiment, 5 points are distributed randomly

amoungst three measures of agent damage: agent vs. chicken damage, agent vs.

tower damage, and agent vs. agent damage. For example, an agent with damage

profile < 3, 1.2, 0.8 > is able to do 3 units per hit against chickens, but only 1.2 and

0.8 units per hit against towers and other agents respectively. We experiment with

two settings:

• soft traits: action statistics are sampled from the space of continuous 3-dimensional

vectors that sum to 5.

• hard traits: agent statistics are randomly sampled from the set {< 5, 0, 0 >,<

0, 5, 0 >,< 0, 0, 5 >}
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In order to generate the a latent vector 𝑧 given a damage profile, we subtract 2.5 from

each dimension of the profile, and then project the profile onto the 3-dimensional unit

sphere.

Additionally, we scale up chicken, tower, and agent healths, such that it would

be disadvantageous for an agent with a below-average tower damage to attempt to

attack towers, for example. Specifically, we scale tower health to 10, chicken health

to 6, and agent health to 30. Since even with maximum agent damage, it would take

6 hits for one agent to defeat another agent, we add a 5x multiplier to agent damage

when computing how much damage an agent does on another agent. Now, an agent

with a maxed-out statistic in one particular unit type will only take at most 2 hits

to defeat that unit.

Baselines We test our Diversity Regularization method against Vanilla PPO, using

both multiplicative and concatenation models. We do not use the baselines tested in

the prior experiment, since they exhibited degenerate performance.

Results Looking at the reward in 4-3 was initially quite surprising. In our soft

traits experiment, the Vanilla PPO concatenation model obtained significantly higher

rewards than our generative policy model!

Figure 4-3: Reward in Agent Trait Experiment
Reward over three random seeds, by each method.

In order to understand what was going on, we calculated the average damage
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done to each unit type in any given episode. Since agent damage profiles are sampled

uniformly, one would expect that in aggregate, agents do approximately equal damage

to each of the three unit types in Farmworld during a complete episode. If, on the

other hand, one unit type has an inordinately small amount of damage, then we know

that agent policies are essentially ignoring that unit type, even though some agents

exist that should primarily be attacking that unit type.

Hard Traits

Soft Traits

Figure 4-4: Agent Interactions Given Trait
Agent traits are composed of three damage statistics - Chicken, Tower, Agent - that are
used as the R, G, and B values respectively of each scatter plot dot. Left: it is clear that all
phenotypes simply focus on gaining health through chickens. Right: there are potentially
3 modes of agent interaction, red chicken-specialized agents on the y-axis focus on chickens,
green tower-specialized agents on the x-axis focus on towers, and agents with an average of
the skills tend to interpolate their behavior.

Sure enough, it turned out that the concatenation model nearly completely ignored
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the tower unit type in the soft trait experiment, as well as had significantly less damage

against other agents as well. In other words, agents with very weak chicken damage

still attacked only chickens. On the other hand, our generative policy model was able

to learn to partition the policy space into at least three niches of multi-modality,

along the axes of the damage profile.

So the Concatenation model with Vanilla PPO was able to attain high rewards in

the soft trait environment, largely because agents attacked each other on average less

than the other methods. These deficiencies are even more apparent in the hard traits

experiment, in which we can observe that agents generally completely ignore towers,

even though 1
3

of agents can only gain health from towers.
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Chapter 5

Adaptation and Robustness

In nature, differences between species and even within species lend robustness to life

as a whole. It becomes less likely that any single perturbation in the environment

will break the overall system. In the same manner, having a space of policies that

exist in an environment that each behave differently lends robustness to the policy

space as a whole.

Figure 5-1: Adapting from the Train Environment to the Test Environment

Experiment and Baselines In this experiment, we use a Farmworld environment

seen in Figure 5-1, containing eight of agents, towers, and chickens each, on a 10x10

grid. We do not enforce any specialization or grant agents with unique traits, as the

point is to see what degrees of diversity might be naturally learned by 𝐺.

We test how a diverse policy space allows us to adapt agent policies to better

fit an ablated Farmworld environment. As seen in Figure 5-1, we train our policy
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generator 𝐺 on the train environment and then evaluate the learned generator on an

ablated test environment. We attempt to search the latent space of 𝐺 for a subset of

latent vectors that are able to thrive in the new test environment.

Our search procedure is motivated by the idea of reproduction and mutation in

evolutionary search. Over the course of a small number of generations, we evaluate

random contexts and keep higher performing ones with greater probability. More

details on our evolutionary search are included in Algorith 1. Importantly, the search

procedure takes a mere quantity of seconds, and by conditioning 𝐺 via a latent sub-

space rather than modifying the weights towards the ablated environments, we avoid

problems of the network forgetting its original solutions.

We use the same baselines as in the Niche Specialization environment, but exclude

using an model RNN, as our main focus is learning a diverse space of policies via our

diversity regularizer. We run each method across three random seeds and report the

mean and standard deviation for each result.

Ablations Each ablation targets a potential degree-of-freedom present in the train

environment. Particularly, we measure ablations that require a diverse policy space

that covers locomotion preference, timing preferences, and unit-target preferences.

We describe each ablation in more detail below.

• Far Corner: Food has migrated to a new source! The map is expanded to

size 18x18. Four agents spawn in the top left of the map, and food is entirely

concentrated in the bottom right of the map, far away from the spawn points.

Agents have 60 max health in order to reach the food at the bottom right.

• Wall Barrier: A rift opens up between agents and their food source! Four

agents spawn at the bottom left of the map, and a wall extends up to the

middle. Agents have 40 max health in order to reach the food at the bottom

right.

• Speedy Attacking: Food has a very low health yeild, and agents must constantly

work to keep their health from ticking to zero. A single agent spawns in a
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2x2 environment, with two towers, so a tower is always adjacent to the agent.

Towers yield 3 health, re-spawn immediately, and take 2 turns to defeat, so

agents must constantly be farming the towers in order to survive.

• Slow Attacking: Food takes a long time to grow, and agents must ration out

their food sources! Same map settings as Speedy Attacking. However, this time,

towers yield 20 health and take 30 timesteps to re-spawn. Agents are capped

at a max health of 20, so agents must be patient before attacking the towers in

order to make full use of tower health. Applying the optimal Speedy Attacking

strategy would mean an agent would only live for 26 timesteps.

• Poison Chickens: The title says it all. Agents spawn on the same map in which

they were trained. However, chickens now yield -15 health, and towers yield 10

health. Living a long time requires not targeting chickens.

For each ablation above, we do an evolutionary search in the latent space to

maximize reward under the ablation. We show a table of the results in Table 1.

Using our diversity regularizer, we are able to find policies that can adapt to the

environmental ablations without any gradient updates on our policy weights.

Figure 5-2: Lifetime After Optimization on Ablations
Plots of agent health (y-axis) after latent space optimization on each ablation. We plot the
agent’s initial health as a dashed black line. Notice that only diversity methods are able
to succeed in the Locomotion and Slow Attack tasks, and can be optimized to avoid dying
prematurely in the Poison Chicken task.
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Results Our results show that by using our diversity regularizer, we are able to

adapt to a large variety of environmental ablations with just a single generative model

of policies. Performance on these ablations shows that our generator was able to iden-

tify and diversify agents along several degrees-of-freedom in the train environment.

The most obvious degree-of-freedom might be agent locomotion, in which it would

make sense for different agents to explore in different directions given an empty state.

We thought that policy diversity would stop here, but much to our surprise, our

generative model managed to actually learn a patient agent, that delays attacking a

tower or chicken until absolutely necessary! We visualize these results in 5-3.

Takeaway Soros and Stanley [2014] hypothesizes that one of the conditions for

emergent life is that solutions to life create opportunities for other solutions to exploit

or co-operate with – a sort of stair step progression of evolution. For example, algae

evolves in a pond, and in doing so now allows fish that eat the algae to evolve. This

sort of progression of evolution requires that we actually have species and specializa-

tion in our multi-agent population. Certainly, using a naive single policy distributed

across agent clones does not grant us this sort of progression. Instead, by applying

our diverse policy generator, we may be able to speciate the multi-agent population in

a manner that finds ways agents can co-operate and compete in a more natural way.

In this section, we have shown that our generative model can emergently find ways

to speciate its population, and that this helps in ablations to the train environment.

In the next section, we show that learning a generative model of policies may

offer additional advantages in finding a natural training curriculum in multi-agent

self-play.
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Figure 5-3: Adapting to Locomotion and Speed Ablations
Top: We show two locomotion ablations, Far Corner and Wall Barrier, and the results of
latent space search from a randomly selected model from Vanilla and Div methods. The
blue dashed square marks the initialization location of agents, and agents must navigate to
the food locations located at the bottom right of the maps. We show the Far Corner at
frame 60, and Wall Barrier at frame 40. Episode steps are stacked in a faded fashion, such
that more recent episodes are darker. Notice that a high-entropy policy does not equate
to a diverse policy space, and results in the Vanilla model failing to navigate far from its
origin. Bottom: We show selected frames from the slow speed ablation. Notice how the
Div + Mult agent refrains from attacking the tower until absolutely necessary. This allows
the agent to harness more food from the tower, and survive until the next tower respawn.
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Chapter 6

Auto-Curricula and Competition

This experiment uses the same environment as in Littman [1994], which introduces

an environment called Markov Soccer. In this game, two agents, A and B, are placed

on a grid-world soccer field, and each have the objective to ‘dribble’ the soccer ball

into the goal that is guarded by the opposing agent. Possession of the ball is given

randomly to one of A or B, and possession only changes upon a ‘block’ – if one agent

attempts to move into a square that is occupied by the other agent. In this case,

possession switches, and the move fails for the agent that was blocked. Actions for

both agents are to move one block up, down, left or right, or to ‘stand’ and remain

in-place. Actions of A and B occur on the same timestep, and the order of execution

is randomized. Additionally, with some probability on each timestep, the game ends

in a draw. We keep everything the same as in the original paper, except for reducing

the probability the game ends in a draw on each step to 1
20

. We did this so that we

could attempt to learn more interesting strategies that took a longer time horizon to

execute.

Markov Soccer is an interesting environment, because the best policy for one

agent depends on the policy of the other agent. As described in Markov Games for

Multi-Agent RL, there exists a worse-case-optimal probabilistic policy for Markov

Soccer, which maximizes the minimum possible score against any adversary. This

strategy tends to be conservative, preferring to act towards a draw where a different

policy could have obtained a higher score. On the other hand, non-worse-case-optimal

45



strategies may be less conservative and may achieve very high scores against some

opponents, but very low scores against others. Analogous to real soccer, different

players have varying abilities and play styles, and a given player p1 may be optimal

against p2, but not against p3.

If any single policy has its drawbacks, can we instead learn an entire space of

diverse policies Π := {𝜋1, 𝜋2, ..., 𝜋inf}, where for any opponent, we can select a policy

𝜋𝑖 ∈ Π that achieves the maximum score against that opponent? Ideally, this space

includes the worse-case-optimal policy, as well as other more aggressive policies. Then,

just as a coach might swap out a soccer player, we can mix and match our champion

as suited.

We propose that our generative model acts as a mechanism in which to achieve a

diverse family of policies, and that navigating in context space lets us quickly swap

out policies.

Baselines and Training As a baseline, we train a policy on Markov Soccer, using

self-play and Proximal Policy Optimization with entropy regularization. We found

that using entropy regularization was necessary to prevent policies trained with PPO

using self-play from devolving into degenerate solutions that completely fail against

opponents other than themselves. As in previous experiments, we combine the envi-

ronment observation with a small random latent vector that the policy can use as it

sees fit. Additionally, we test the Vanilla PPO method with both Concatenation and

Multiplicative model types.

We train both Vanilla PPO and our Diversity method for 30 million time steps.

In both situations, latent vectors for agents A and B are sampled uniformly and

independently at the beginning of an episode, and held fixed throughout the episode.

Adaptation to Various Adversaries We evaluate adaptability to various adver-

saries using two methods. First, we test baselines and our method against a set

of hand-coded soccer bots. These bots are designed to represent a wide gamut of

strategies, some of which are far more exploitable than others. Secondly, we evaluate
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the learned generative models of policies by playing them in a round robin tourna-

ment against each other, by method. For evaluation, score is determined by Wins -

Losses over the course of 1000 simulated episodes.

Against Hard-Coded Bots

Each bot plays as agent A, and the learned policy plays as agent B. Then, we

attempt to optimize reward using our latent space optimization. Each bot is described

below:

Figure 6-1: Visualization of Oscillating Defense - Column 1
Example of Oscillating Defense - Column 1 hand-coded policy. Possession is indicated in
light-gray, B aims to hit the red goal, and A aims to hit the green goal. B blindly moving

forward will result in the ball being stolen half of the time.

• Straight-Only Offense: Agent A always starts with possession, and spawns on

tile (1, 0). Agent A then always moves right, regardless of B’s actions.

• Oscillating Defense - Column 0 : Agent B always starts with possession. Agent

A oscillates between (1, 0) and (2, 0) regardless of B’s actions. Visualized in

Figure 6-1.

• Oscillating Defense - Column 1 : Agent B always starts with possession. Agent

A oscillates between (1, 1) and (2, 1) regardless of B’s actions. This bot is very

exploitable, as a policy could just walk above or below the area of oscillation.

• Stand-Only Defense: Agent A spawns on (1, 0) and always stands. B always

has possession.
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• Rule-Based Heuristics : Possession starts randomly between A and B. Agent A

follows a hand-crafted policy that follows a strong suite of rules.

• Random: Possession starts randomly between A and B, and Agent A acts ran-

domly.

Round-Robin Against Each Other

Let the two generative models of policies be 𝐺1 and 𝐺2. Evaluation is tricky,

since each generative model could map to an entire space of policies. Our goal is to

evaluate the best individual policy from 𝐺1 against the best individual policy from

𝐺2. To compute the score of 𝐺1 against 𝐺2, we select the latent vector 𝑧2 for 𝐺2

that maximizes the expected reward of 𝐺2 against the entire family of policies of 𝐺1.

Then, we select the latent vector 𝑧1 for 𝐺1 that maximizes 𝐺1’s reward against 𝜋𝐺2,𝑧2 .

The score of 𝐺1 vs 𝐺1 is 𝜋𝐺1,𝑧1 versus 𝜋𝐺2,𝑧2 .

Figure 6-2: Results of learned policy spaces in a Round Robin tournament and against
pre-programmed bots
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Results We present results in the form of a score bar chart. Most impressively, the

diversity regularization methods are able to beat our rule-based preprogrammed bot

and win the round-robin tournament, in addition to performing the best agaist our

‘naive’ bots. On the other hand, Vanilla methods have significantly lower generaliza-

tion across our naive bots.

The ability of our diveristy regularization methods to win the round-robin tour-

nament and beat our rule-based heuristic bot indicates that using a generative model

of policies in self-play could be beneficial. It is possible that by essentially training

a ‘population’ of agents via our policy generator, we expose agents to a wide range

of strategies that prevents degenerate behavior and enforces that individual agents

learn strategies that are robust to a variety of counter-strategies. We believe that

using generative models of policies warrants more exploration, as potentially a sub-

stitute or augmentation to learning a fixed size set of competitiors, as might be done

in Population Based Training (Jaderberg et al. [2017]).

Robustness-Performance Tradeoff We want to understand the relationship be-

tween policy space diversity on general adaptation performance, and worst-case-

optimal performance. We let general adaptation performance be the score of the G

against {Oscillate-0, Oscillate-1, Straight, Stand, and Random}, as these

are naive and exploitable opponents that may not be encountered in the standard

self-play curriculum. We measure worst-case-optimal performance as the score of 𝐺

against our hard-coded bot Rule-Based, which as seen in Figure 6-2, is a strong

opponent against all methods.

In our experiment, we use the Div + Mult model and vary only the diversity reg-

ularizer coefficient. All other parameters remain the same as in the prior experiment.

We use coefficient settings 0.0, 0.1, 0.2, 0.3, 0.4. Note that setting 0.0 is equivalent

to Vanilla PPO with entropy regularization. We then test each method against our

suite of hand-coded bots.

As seen in the Figure 6-3, there is a strong positive relationship between higher

diversity regularizer coefficient, and score against the {Oscillate-0, Oscillate-1,
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Figure 6-3: Robustness and Performance as a Function of Capacity and Diversity
Regularizer Coefficient

Straight, Stand, and Random} tasks. On the other hand, as the diversity regular-

izer coefficient increases, performance against our hand-coded bot remains generally

constant, provided there is enough network capacity. We conclude that, in general,

it is not necessary to sacrifice adaptability for performance against a single task. For

example, if there exists a worse-case-optimal policy in an environment, there is no

reason it would be excluded from the learned policy space.
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Chapter 7

Conclusion

In this thesis, we have presented what is, to our knowledge, a novel way of thinking

about learning policies in a reinforcement learning setting. We present a framework

of learning a generative model of policies. Rather than learning just one policy, we

aim to find as many high-performing and individually distinct policies as possible, all

compressed within the parameters of our generator. By learning a generative model of

policies, we are essentially learning an entire population of agents that fit a particular

environment.

Like populations of individuals or species in the real world, our policy populations

contain individually unique solutions that attempt to find reward in correspondingly

unique ways. In Chapter 4, we discuss how learning unique agent policies enables us to

solve the problem of fitting to distinct and mutually exclusive niches in our Farmworld

environment. We show how without our diversity regularization objective, policies

fail to recover truly distinct agent personalities, resulting an a ‘jack-of-all-trades’

agent that is cloned across the Farmworld multi-agent environment. By learning a

generative model of policies, we have the power to harness agent individuality, just

as organisms in the natural world are unique in some way.

Also as in the natural world, the diversity of our solutions provide robustness and

the capacity to adapt to changes in the training environment. Though one generated

policy might fail, we can likely find a different generated policy that does not. We

demonstrate in Chapters 5 and 6 how we can adapt to a surprising array of changes
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in an environment simply by optimizing our policy latent space in a fast and efficient

manner. In Farmworld, we are able to emergently discover agent policies that have

locomotion preferences, in addition to agents that exhibit a sense of patience and

moderation. During our exploration of Markov Soccer, we discussed how any single

deterministic policy has its weaknesses, but by learning a learning a ‘team’ of policies

via our policy generator, we are able to adapt to and exploit a variety of unexpected

adversaries.

We have certainly have only scratched the surface of the possibilities unlocked

by thinking about reinforcement learning as a policy generation problem. Exploring

new, larger, and even more open-ended environments is certainly essential to testing

the limits of policy generators. Yet another research direction could be integrating

high-level policy generators into hierarchical reinforcement learning, potentially com-

bining our diversity regularizer with option discovery methods. This could provide

benefits, since our method is not inherently an exploration strategy, and could be

difficult to optimize in very sparse reward settings or when action spaces are too

high dimensional. Additionally, in Chapter 6, we hypothesized that learning a pop-

ulation of agents improved the self-play learning curriculum during Markov Soccer

training. Nevertheless, there is a lot more work to be done in understanding how

a policy generator could impact emergent multi-agent cooperation and competition.

Ultimately, by grounding reinforcement learning in the processes that sparked true

biological intelligence, we can hope to get one step closer to true silicon intelligence.
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Appendix A

Algorithm Pseudocode

Algorithm 1 Latent Space Optimization
1: Input: 𝑔 the number of optimization generations
2: Input: 𝐸 an environment
3: Input: 𝐺 a policy generator
4: Input: 𝑍 a latent distribution with dimension 𝑘
5: Initialize: best ← descending sorted array
6: for 𝑖 = 1, 2, ..., 𝑔 do
7: explor ∼ Unif([0, 1])
8: 𝑟 ∼ Unif([0, 1])
9: if (explor ≤ 0.5 and 𝑖 ≤ 3

4
𝑔) or len(best) ≤ 10 then

10: if 𝑟 ≤ 0.5 or len(best) ≤ 10 then
11: 𝑧 ∼ 𝑍 ◁ Random Sampling
12: else
13: 𝑧 ← sample(best[0:10])
14: 𝑧 ← 𝑧 + project𝑍(Unif[-0.1, 0.1]𝑘) ◁ Mutation
15: end if
16: else
17: if 𝑟 ≤ 0.5 then
18: 𝑧 ← sample(best[0:10]) ◁ Replication
19: else
20: 𝑧 ← pop(best[0:10]) ◁ Pruning
21: end if
22: end if
23: score ← Reward from running 𝜋𝐺,𝑧 on 𝐸
24: best.push(𝑧) with key score
25: end for
26: Return best[0]
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Algorithm 2 PPO with Diversity Regularization
1: 𝑚 the number of sampled latents in diversity estimation
2: 𝑏 the number of sampled states in diversity estimation
3: 𝑘 latent vector size
4: for for iteration = 1, 2, ... do
5: Let 𝐵 be an empty batch of (s, a, r) tuples
6: for actor 𝑎 = 1, 2, ..., 𝑁 do
7: Sample latent 𝑧 from latent distribution
8: 𝐵 ← Run policy 𝜋(·|𝜃𝑜𝑙𝑑; 𝑧) in environment for 𝑇 steps
9: Compute advantage estimates 𝐴1, ..., 𝐴𝑇

10: end for
11: Sample 𝑀 ∈ R𝑚×𝑘 from the latent distribution ◁ latent matrix
12: Sample a batch 𝑆 of 𝑏 states from 𝐵
13: 𝐿𝑑𝑖𝑣 ← 0
14: for 𝑖 = 1, 2, ...,𝑚− 1 do
15: for 𝑗 = 𝑖 + 1, 𝑖 + 2, ...,𝑚 do
16: 𝐿𝑑𝑖𝑣 ← 𝐿𝑑𝑖𝑣 + 1

𝑏

∑︀
𝑠∈𝑆 𝐷(𝜋(𝑠|𝜃𝑜𝑙𝑑,𝑀 (𝑖)), 𝜋(𝑠|𝜃𝑜𝑙𝑑,𝑀 (𝑗)))

17: end for
18: end for
19: 𝐿𝑑𝑖𝑣 ← 2

𝑚(𝑚+1)
𝐿𝑑𝑖𝑣 ◁ Scale by number of policy-distance pairs

20: Optimize surrogate 𝐿𝑠𝑢𝑟𝑟 + 𝐿𝑐𝑡𝑥 wrt 𝜃
21: 𝜃𝑜𝑙𝑑 ← 𝜃
22: end for
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Appendix B

Benchmarks and Toy Environments

B.1 Benchmarks

In this work, we compare our method against several existing option discovery meth-

ods. These benchmark methods, and any modifications we made during the course

of training are reported here.

DIAYN DIAYN (Eysenbach et al. [2018]) originally attempts to maximize the mu-

tual information between the state and a discrete categorical latent vector, as shown

in Equation 3.1. On the other hand, our method uses a continuous latent in order to

find a potentially unbounded number of diverse skills. In order to get DIAYN work-

ing with continuous latent vectors, we train the discriminator to regress the latent,

rather than predict the latent category. We add this intrinsic reward to the extrinsic

environmental reward, giving us the new reward function 𝑟′:

𝑟′𝑡 = 𝑒𝑟𝑟𝑡 + 𝑟𝑡

where

𝑒𝑟𝑟𝑡 = −(𝑞𝜑(𝑠𝑡)− 𝑧)2 −mean(𝑒𝑟𝑟𝑏𝑎𝑡𝑐ℎ)

𝑧 is the latent vector, mean(𝑒𝑟𝑟𝑏𝑎𝑡𝑐ℎ) is the mean discriminator error across the update

batch. We subtract by this mean so that on average, expected agent reward equals
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only what is provided by the extrinsic environment. Otherwise, DIAYN stuggled

with balancing dense extrinsic environmental rewards from the experiment with the

intrinsic discriminator reward. Finally, since we are attempting to learn a generative

model of policies, and not options, we keep 𝑧 fixed throughout an agent episode.

Additionally, we experiment with providing the discriminator action information

as well which we label in our experiments DIAYN + action. This implementation is

the same, except that we modify 𝑒𝑟𝑟𝑡 to be

𝑒𝑟𝑟𝑡 = −(𝑞𝜑(𝑠𝑡, 𝜎(𝜋𝑧(𝑠𝑡)))− 𝑧)2 −mean(𝑒𝑟𝑟𝑏𝑎𝑡𝑐ℎ)

where 𝜎 is the softmax operator. We optimize both of these via PPO with entropy

regularization. We use the same regression strategy for continuous latents as in DI-

AYN + action.

Differentiable Mutual Information (MI) Zhang et al. [2021] and Wang et al.

[2020] introduce a variant of a mutual information maximization objective as in option

discovery that is differentiable through the action logits of a policy. In our implemen-

tation of this variant, we attempt to maximize the following objective via gradient

descent:

max
𝜋,𝜑

E
𝑧∼𝑝(𝑧)

[︃
E

𝜏∼𝜋,𝑧

[︃
𝑇∑︁
𝑡=0

(𝑞𝜑(𝑠𝑡, 𝜎(𝜋𝑧(𝑠𝑡)))− 𝑧)2

]︃]︃
(B.1)

alongside the standard clipped surrogate PPO objective, and an entropy regulariza-

tion term where applicable.

B.2 Experiments in Toy Environments

To test that our baseline comparisons were working, we evaluated all methods on two

toy environments: CartPole (Brockman et al. [2016]) and a Multi-Agent MultiGoal.
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B.2.1 CartPole

Environment CartPole is a standard control task in RL, with a continuous four-

dimensional observation space and a two-dimensional discrete action space for pushing

the cart left or right. The objective of CartPole is to move the cart such that the

pole remains standing up. If the pole sways too far to the left or right from the

90-degree perpendicular from the ground, then the episode terminates. Otherwise,

we set reward to be 0.1 per timestep, and episodes can last for 200 timesteps.

Experiment We perform a similar analysis of each method as in the Farmworld and

Markov Soccer experiments. Our procedure is to train each method on the normal

CartPole task, and then evaluate performance under ablated conditions, and modified

reward functions. In particular, we evaluate each method using:

Environmental Ablations

• Normal: The standard CartPole task

• Observational Noise: Uniform [-0.25, 0.25] noise is added to the observations.

New Reward Functions

• Left: the policy should stay on the left side of the x-axis: 𝑟(𝜏) =
∑︀

𝑠∈𝜏 −𝑠x-pos

• Right: the policy should stay on the right side of the x-axis: 𝑟(𝜏) =
∑︀

𝑠∈𝜏 𝑠x-pos

• Sway the pole: the policy should maximize the angular velocity of the pole,

without ending the episode: 𝑟(𝜏) =
∑︀

𝑠∈𝜏 |𝑠angular-velocity|

• Minimizing cart motion: the policy should keep the cart as still as possible

during the course of the episode: 𝑟(𝜏) = −
∑︀

𝑠∈𝜏 𝑠x-velocity

Results In Figure B-1, we report numerical scores by method, and by ablation

or modified reward function. Additionally, in Figure B-2 we visualize each ablated

environment or new reward function. We leave out Minimizing cart motion, because

all methods except for Vanilla PPO managed to find a hack around this method: they
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Figure B-1: Reward in CartPole under Various Conditions
Reward over three random seeds, by each method.

found a latent 𝑧 that immediately terminated the episode by swaying the pole too

much. It turned out that since the 𝜏 was terminated so quickly, this minimized the

sum of cart velocity over the course of 𝜏 .

As one can see in Figure B-1, DIAYN performed quite well over all ablations

and tasks, validating our implementation of that method. The Differentiable Mutual

Information methods did not perform nearly as well, and we see a sharp decrease in

performance on the train task (Normal) when we attempt to increase the coefficient

of the MI loss. As expected, Vanilla PPO performs optimally on the train task, but

fails to generalize to our ablated reward functions via latent space optimization alone.

B.2.2 Multi-Agent MultiGoal

Environment Our MultiGoal task is a variant of the standard 2D gridworld nav-

igation task. Agents start in the center square [0, 0] of the 20 × 20 grid, and must
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Figure B-2: Visualization of Stacked CartPole Trajectories

navigate to one of four goals placed at [8, 8], [8, -8], [-8, 8], [8, 8]. Agents get 0 reward

for all actions that do not take them to a goal, and 1 reward if they reach a goal. Addi-

tionally, episodes terminate immediately after reaching the goal. Observations are the

one-hot encoding of the discrete agent 𝑥, 𝑦 position, and an additional 3-dimensional

latent vector 𝑧, integrated in the concatenation or multiplicative fashion.

The caveat is that each MultiGoal episode contains 40 agents that spawn at the

center, and each goal has ‘food support’ for only 10 agents. So if all agents act ‘the

same’ and navigate to the same goal, then the expected reward will only be 0.25 per

agent. However, if agents learn to specialize based on the additional latent 𝑧, then

they can achieve a significantly higher expected reward. Episodes terminate after 20

steps, so agents can only attempt to find one goal.

Thus, the Multi-Agent MultiGoal experiment is both a challenging exploration

task, and a multi-agent specialization and coordination task.
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Experiment We do not run any ablations on this environment, as our experiment

simply aims to measure how many goals each method is able to find.

Results The methods that are able to consistently reach at least 4 goals are our Di-

versity Policy Generator (Div), DIAYN, and Differentiable Mutual Information with

action noise. Vanilla PPO, DIAYN + action, and Differentiable Mutual Information

without any action noise generally fail to find more than 2 goals. We visualize agent

trajectories in C-1, and show graphs of reward per method in C-2.
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Appendix C

Figures
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Figure C-1: Visualization of Trajectores of Agents in the Multi-Goal Environment
Each agent trajectory is reprsented as a connected sequence of points starting from the
origin. Additionally, we color each agent trajectory with its corresponding 3-dimensional
latent 𝑧, represented proportionally as RGB values.
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Figure C-2: Reward Multi-Agent MultiGoal over Epochs
Reward over three random seeds, by each method. Shaded region represents standard devi-
ation across seeds.
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Figure C-3: Sample Trajectories in Farmworld Niche Specialization
For visualization, we have annotated each agent with a green box if it is now a tower-agent,
and a red box if it is now a chicken-agent. These annotations are not visible as part of
the agent state, and are just for demonstrating how in many cases, a red chicken-agent will
fruitlessly attack a tower, or vice versa with a green tower-agent.
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Appendix D

Model Architectures and

Experimental Hyperparameters

Unless otherwise mentioned, we used optimized our policies using a clipped PPO

surrogate objective with learning rate 3e-4. Advantages were computed using Gen-

eralized Advantage Estimation, with a 𝛾 discount factor of 0.99 and a 𝜆 smoothing

parameter of 1. We use the RLLib (Liang et al. [2018]) framework for training, us-

ing their default PPO configuration. For all experiments, model architectures are as

seen in Figure 2-2. Importantly, we always use separate value and policy networks.

Attempts to combine these networks generally resulted in non-diverse policy spaces,

which we believe is a result of the importance of the value function in recognizing the

differing expected rewards conditional on each latent from the latent space.

For multi-agent environments, batch sizes are always in agent steps, rather than in

environment steps. Thus, if there are 40 agents in an environment, then 1 environment

step is 40 agent steps.

To optimize our diversity regularization objective, we use parameters 𝑚 = 10, 𝑏 =

30, 𝑘 = 3, as detailed in 2. However, preliminary investigation into the effect of

these hyperparameters indicates that it is possible to get away with even smaller

samples of latent vectors and states, while still effectively optimizing for a diverse

policy manifold.

Additionally, we explore various coefficients to weigh the importances of our di-
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versity regularizer, and, where applicable, the differentiable MI objective. Unless

otherwise specified we use a diversity regularizer coefficient on our novel objective

of coefficient of 0.1 in Farmworld, 0.1 in CartPole, 0.2 in Markov Soccer, and 0.5 in

MultiGoal. We use a differentiable MI coefficient of 0.75 and 2.0 in CartPole, 0.75

in MultiGoal, 1 and 2 in Farmworld. In Farmworld and MultiGoal, we additionally

augment the differentiable MI action probabilities with uniform noise in the range [0,

0.15], which we report as differentiable MI + Noise.

For all methods, we generally use an 0.05 entropy coefficient, except in Markov

Soccer in which we also run PPO with 0.1 entropy coefficient and were able to achieve

slightly stronger performance. In our Markov Soccer experiment, we report the aver-

age of these two PPO results.
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Batch size 4000
Minibatch size 400
SGD iterations per batch 10
Training epochs 200
Hidden dimension 16
Value Activations ReLU
Policy Activations Tanh

Table D.1: CartPole

Batch size 4000
Minibatch size 400
SGD iterations per batch 10
Training epochs 500
Hidden dimension 32
Value Activations Tanh
Policy Activations Tanh

Table D.2: Multi-Agent MultiGoal

Batch size 8000
Minibatch size 8000
SGD iterations per batch 10
Training epochs 10 thousand
Hidden dimension 64
Value Activations Tanh
Policy Activations Tanh

Table D.3: Enforced Specialization and Farmworld Ablation Experiment

Batch size 4000
Minibatch size 2000
SGD iterations per batch 10
Training epochs 1200
Hidden dimension 128
Value Activations Tanh
Policy Activations Tanh

Table D.4: Agent Trait Experiment
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Batch size 8000
Minibatch size 8000
SGD iterations per batch 10
Training epochs 10 thousand
Hidden dimension 64
Value Activations Tanh
Policy Activations Tanh
GAE lambda 0.95
GAE gamma 0.9

Table D.5: Markov Soccer
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