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Abstract
Sleep studies help doctors diagnose a variety of sleep-related disorders, such as insomnia
and sleep apnea. Most disorders can be managed once they are correctly diagnosed. How-
ever, sleep studies usually introduce discomfort and high cost, as patients need to go to
hospitals, sleep in unfamiliar beds, and wear sensors all over the body. Such high bars may
discourage patients from taking sleep studies.

In this thesis, we explore alternative solutions that make sleep studies comfortable and
affordable, and at the same time, deliver clinically meaningful measurements. Specifically,
we propose four systems that leverage radio frequency (RF) signals to remotely and auto-
matically monitor the user’s sleep in the user’s bedroom. First, we present EZ-Sleep, the
first contactless sleep sensor that automatically identifies bed entries and exits, and moni-
tors key insomnia parameters like sleep latency and sleep efficiency. Further, we propose
RF-Sleep, which demonstrates a much superior sleep stages classification accuracy than
state-of-art methods. Next, we introduce DeepBreath, the first wireless respiration moni-
toring system that can recover the breathing signals of multiple individuals even when they
right next to each other. And finally, we have BodyCompass, the first RF-based system that
provides accurate sleep posture monitoring overnight.

Collectively with all four systems, we turn the user’s bedroom into a contactless sleep
lab. We provide doctors tools to diagnose and keep track of sleep-related symptoms without
any additional efforts from the patient.

Thesis Supervisor: Dina Katabi
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivations

Sleep plays an important role in our physical and mental health. Having a good night of

sleep can not only make us feel energetic, but also keep our body healthy and prevent dis-

eases. For example, sleep improves brain functions by removing toxins that build up while

you are awake [165], and it speeds up muscle recovery by effecting hormone secretion [32].

Unfortunately, many people in the world suffer from poor sleep quality due to various

sleep-related problems. For example, insomnia and sleep deprivation are common health

problems in the US. One in every three Americans do not get enough sleep, and about

10% of the population suffers from chronic insomnia [108]. Sleep apnea, which affects ap-

proximately 18-22 million Americans [129], is another common, potentially serious sleep

disorder. People with untreated sleep apnea stop breathing repeatedly during their sleep,

sometimes hundreds of times during the night. Sleep apnea may also cause severe health

problems if left untreated, including hypertension [49], stroke [167], etc.

To diagnose and treat sleep disorders, the patient usually needs to undergo a sleep study.

A sleep study monitors vital signals throughout the night, e.g. the respiration signal, sleep

stages and sleep postures. Those signals provide doctors more conclusive evidences about

certain type of sleep disorders [137]. Sleep studies may also be used to help initiate or

adjust treatment plans.

However, prevailing approaches for monitoring sleep are inconvenient and intrusive.
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The medical gold standard relies on overnight polysomnography (PSG), which is typically

conducted in a hospital or sleep lab, and requires the patient to wear a plethora of sensors,

such as EEG-scalp electrodes, an ECG monitor, multiple chest bands, and nasal probes.

As a result, patients can experience sleeping difficulties, which render the measurements

unrepresentative, especially for insomnia patients (the first night effect [8]). Furthermore,

the cost and discomfort of the PSG limit the potential for long-term sleep studies.

For at-home long-term sleep-tracking, doctors usually ask the patient to keep a sleep

diary. However it puts much overhead on the patient, as the patient needs to record many

parameters everyday, e.g. bed time, lights-out time and time it takes to fall asleep [135].

Therefore it is hard to sustain a sleep diary for a long period of time. Making it even worse,

research shows that people’s impression of their sleep can be wildly wrong, off by hours

in some cases [139, 17]. Alternative approaches use wearable sensors, such as actigra-

phy, which leverage accelerometers to monitor body movements and infer sleep quality.

However, many people do not feel comfortable sleeping with wearable devices [23]. And

motion alone can only provide limited information; for example, it is known to be a poor

metric for estimating sleep stages [114].

1.2 Proposed Solutions

In this thesis, we aim to monitor the user’s sleep fully automatically and contactlessly at

home, all without scarifying accuracy. Our systems work by transmitting low-power radio-

frequency signals (RF signals), and analyzing RF signals that bounced back from the envi-

ronment. Since the user’s motion, like walking and breathing, will alter how RF reflects in

the space, the RF reflection encodes rich information about the user. With novel algorithms

and machine learning models, we demonstrate the ability of our system to capture different

aspects of the sleep accurately, including sleep parameters, sleep stages, respiration and

postures during sleep.

Our approach brings multiple advantages: compared to PSG which requires the user

to go to hospital and wear sensors all over the body, our approach is much more comfort-

able and affordable, as the user can just sleep normally at home. And compare to wearable
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sensors and user self-reported information, our approach is more accurate, with lower over-

head. Users no longer need to manually write down their memories and their sleep will not

be interrupted by wearables.

In the following, we briefly describe all the vital signs that can be monitored with our

system.

1.2.1 Sleep Parameters

Sleep parameters are usually used for insomnia assessment. They consist of the time be-

tween going to bed and falling asleep, or sleep latency (SL), the percentage of sleep time

to the time in bed, or sleep efficiency (SE), the total sleep time (TST), and the amount of

wakefulness after falling asleep (WASO).

In Chapter 2, we introduce EZ-Sleep that measures sleep parameters accurately without

any user overhead. It works by automatically detecting the location of the user’s bed, iden-

tifying when she goes to bed and when she leaves the bed, and monitoring the key insomnia

assessment parameters SL, SE, TST, and WASO. Its design involves four components that

work together to deliver the application:

(a) Monitoring the user via RF signals: EZ-Sleep uses an FMCW radio and an antenna

array to separate RF signals based on the location of the reflecting body. This allows it to

track both the location of the user and her breathing, and use both to extract the user’s sleep

patterns.

(b) Identifying bed location: EZ-Sleep introduces a novel algorithm for automatically

detecting where the user goes to sleep. The algorithm first identifies locations where the

user stays stationary like chairs, desks, couches and beds. It then classifies these locations

as bed vs. non-bed.

(c) Detecting bed entries and exits: EZ-Sleep employs a Hidden Markov Model (HMM),

where location measurements act as observations of the hidden state which takes one of

two values: in-bed or out-of-bed.

(d) Computing sleep parameters: Once it knows the user is in bed, EZ-Sleep zooms in

on the RF signal reflected from the bed region. EZ-Sleep feeds this signal to a deep neural
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network model to detect whether the user is asleep.

1.2.2 Sleep Stages

Sleep progresses in cycles that involve four sleep stages: Awake, Light sleep, Deep sleep

and Rapid Eye Movement (REM). Different stages are associated with different physiolog-

ical functions. For example, deep sleep is essential for tissue growth, muscle repair, and

memory consolidation, while REM helps procedural memory and emotional health.

In Chapter 3, we introduce RF-Sleep that can robustly estimate sleep stages of the user

only by analyzing reflected RF signals. It involves a new model that delivers a significantly

higher accuracy and generalizes well to new environments and subjects. The model adapts

a convolutional neural network (CNN) to extract stage-specific features from RF spec-

trograms, and couples it with a recurrent neural network (RNN) to capture the temporal

dynamics of sleep stages.

To enhance its generalizability, we introduce a new adversarial training regime that

discards extraneous information specific to individuals or measurement conditions, while

retaining all information relevant to the predictive task –i.e., the adversary ensures condi-

tional independence between the learned representation and the source domains.

Our training regime involves three players: the feature encoder (CNN-RNN), the sleep

stage predictor, and the source discriminator. The encoder plays a cooperative game with

the predictor to predict sleep stages, and a minimax game against the source discriminator.

Our source discriminator deviates from the standard domain-adversarial discriminator in

that it also takes as input the predicted distribution of sleep stages in addition to the en-

coded features. This dependence facilitates accounting for inherent correlations between

stages and individuals, which cannot be removed without degrading the performance of the

predictive task.

1.2.3 Respiration

Respiration is an important health metric used for tracking diseases in many areas, such

as sleep [106, 140], pulmonology [117], and cardiology [19, 171]. However, past work on
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RF-based respiration monitoring requires monitored people to be located away from each

other. This requirement precludes respiration monitoring during sleep for people who share

the same bed.

In Chapter 4, we introduce DeepBreath, the first system that disentangles mixed RF-

based breathing signals. DeepBreath can monitor the respiration signals of multiple people

even if they have zero distance between them. It also provides continuous monitoring

throughout the night for people who share the same bed.

The design of DeepBreath combines three components as described below.

(a) Breathing Separation: We present an approximation that allows us to formulate the

problem as blind source separation and solve it using independent component analysis

(ICA). DeepBreath uses its formulation of the mixing process to recover the original breath-

ing signals from such observations using ICA.

(b) Motion Detection: DeepBreath needs to automatically detect movements and run its

breathing separation module on each stable period separately. We use a convolutional

neural network that is trained to identify movements of the monitored people.

(c) Identity Matching: The recovered breathing signals with ICA do not have identity.

Yet identity of the breathing segments is needed to reconstruct full night breathing signal.

We formulate this problem as an optimization problem, where the solution maximizes a

similarity metric between the person’s breathing signals across different periods.

1.2.4 Sleep Posture

Significant clinical research has shown that sleep posture is a valuable marker of disease

progression, and has a significant impact on health. For instance, supine position (facing

upwards) is considered the worst posture for sleep apnea patients as it imposes unfavorable

airway geometry and reduces lung volume [95, 104].

In Chapter 5, we present BodyCompass, the first RF-based system that provides ac-

curate sleep posture monitoring overnight in users’ own homes. The key enabler of the

system is to use the multipath effect, a known phenomenon in RF communication systems

that refers to the fact that RF signals bounce off different objects and obstacles in the envi-
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ronment and reach the receiver through multiple paths. As the RF signal is incident upon

the human body, it reflects from the body based on the body orientation and bounces off the

surrounding objects and walls creating a multipath signature indicative of the body posture.

Our system learns an inverse map that receives the reflected multipath profile and attempts

to infer the body posture.

1.3 Thesis Contributions

This thesis and its core modules make the following key contributions:

1. EZ-Sleep (Chapter 2) is the first RF-based sleep sensor that automatically detects bed

locations, identifies bed entries and exits, and monitors key insomnia parameters like

sleep latency, sleep efficiency, total sleep time, and wake after sleep onset.

2. RF-Sleep (Chapter 3) learns sleep stages from RF signals and achieves a significant

improvement over the state-of-the-art methods. It adapts and extends a CNN ar-

chitecture to extract stage-specific features from RF reflections, and couples it with

RNNs to capture the dynamic evolution of sleep stages.

3. DeepBreath (Chapter 4) is the first system that recovers the detailed respiration sig-

nals of multiple people sharing the bed or sitting with zero separation. This result

renders much recent research using RF signals to monitor respiration, sleep, and ap-

nea applicable to a significantly larger segment of the population.

4. BodyCompass (Chapter 5) is the first RF-based system that provides accurate sleep

posture monitoring overnight in users’ own homes. It achieves high accuracy without

sacrificing privacy and sleep comfort.
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Beyond the above applications, some of the algorithms developed in this thesis apply

generally to other applications and data modalities, as explained below.

1. We introduce and analyze a conditional adversarial approach to domain adaptation

in machine learning. Our design removes domain-dependent information that is ex-

traneous to the task of interest, while preserving information relevant to the task.

In contrast, prior work on domain-adaptation using adversarial learning can remove

both extraneous information as well as information relevant to the predictive task.

Our conditional adversarial setup is suitable for problems that require aligning do-

main distributions in situations where labels may be correlated with domains (Chap-

ter 3).

2. We propose a new algorithm for disentangling radio signals received by a Frequency

Modulated Carrier Wave (FMCW) radio without knowledge of their corresponding

channel information. In particular, FMCW radios can receive radio signals reflected

off multiple co-located targets, which interfere with each other and prevent target

detection and identification. We prove that for scenarios where the co-located targets

exhibit small perturbations, the problem can be reduced to blind source separation,

and the targets can be resolved using independent component analysis (ICA). Our

analysis can be applied generally to wireless sensing using FMCW (Chapter 4).

3. We propose a dynamic-programming algorithm for identity matching in longitudinal

sensing over discrete intervals. Many RF-based sensing scenarios aim to use episodic

sensing to track multiple targets longitudinally. This creates a need for matching the

RF signal from each target across different episodes. Such matching is difficult in the

absence of a priori known RF signature for each target. We formulate this problem

as an optimization problem and introduce a dynamic programming algorithm for

finding the best match across time (Chapter 4).

4. Data augmentation is a general approach for improving the robustness and general-

izabilty of machine learning models. We propose a new approach for data augmen-

tation that we call target-focused data augmentation. It augments data from a target
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domain without breaking the spatial structure of the features. The method is helpful

when the traditional augmentation methods (e.g., rotation, cropping, flipping) can-

not generate valid samples. Instead, we sample training data that are similar to the

labeled data from the target domain, and treat it as labeled target data. (Chapter 5).
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Chapter 2

Measuring Sleep Parameters

2.1 Introduction

Insomnia and sleep deprivation are common health problems in the US. One in every three

Americans do not get enough sleep, and about 10% of the population suffers from chronic

insomnia [108]. Chronic insomnia increases the risk of heart disease, kidney failure, high

blood pressure, diabetes, and stroke [91]. The statistics are even worse among the elderly,

where 50% of seniors experience periods of insomnia that last for weeks, months or even

years [108, 163]. In-home sleep monitoring is important for both detecting insomnia and

treating it. People’s impression of their sleep can be wildly wrong, off by hours in some

cases [139, 17]. On the other hand, older patients may not report their insomnia symptoms

in the first place [108].

Further, there is an increasing interest in replacing drug-based treatment with Cognitive

Behavior Therapy for Insomnia (CBT-I). CBT-I is based on gradual adjustments of sleep

schedule and the time spent in bed, and hence in-home monitoring of those parameters is

beneficial for treatment tracking [55].

Monitoring insomnia is difficult. The gold standard in sleep monitoring is overnight

Polysomnography (PSG), conducted in a hospital or sleep lab, where the subject sleeps

with EEG, ECG, EMG, respiration, and pulse monitors. PSG does not work well for in-

somnia because sleeping away from one’s bed with obtrusive sensors causes difficulties in

falling asleep that are unrelated to insomnia (the first night effect [123, 8]). In fact, most

31



insomnia studies use patient diaries, requiring people to keep daily records of when they go

to bed, how long it takes them to fall asleep, how often they wake up at night, etc. This ap-

proach creates significant overhead and is hard to sustain over long periods. More recently,

actigraphy-based solutions have been used to track motion and infer sleep patterns, but they

must instrument the user with accelerometers at the wrist or hip [107]. Many people do not

feel comfortable sleeping with wearable devices [23], and older adults are encumbered by

wearable technologies and may simply take the device off creating adherence issues.

Insomnia and long term sleep monitoring should be zero effort without sacrificing accu-

racy. It should provide in-home continuous monitoring without requiring the user to wear a

device or write a diary. It should also measure the key sleep parameters used for insomnia

assessment. This means it needs to measure the time between going to bed and falling

asleep, or sleep latency (SL), the percentage of sleep time to the time in bed, or sleep effi-

ciency (SE), the total sleep time (TST), and the amount of wakefulness after falling asleep

(WASO).

In this chapter, we introduce EZ-Sleep, a sleep sensor that achieves these goals. EZ-

Sleep is zero effort – all that the user has to do is to put EZ-Sleep in her bedroom and plug

it to the power outlet. EZ-Sleep works by transmitting radio frequency (RF) signals and

listening to their reflections from the environment. By analyzing these RF reflections, EZ-

Sleep automatically detects the location of the user’s bed, identifies when she goes to bed

and when she leaves the bed, and monitors the key insomnia assessment parameters SL, SE,

TST, and WASO. Further, because it directly measures the user’s bed routine, i.e., when she

enters and exits the bed, EZ-Sleep can be used in CBT-I to monitor patient compliance with

prescribed changes in her bed schedule.

The design of EZ-Sleep builds on recent advances in wireless systems, which show that

by transmitting a wireless signal and analyzing its reflections, one can localize a person and

track her vital signs without any wearables [3, 4]. However, past solutions that leveraged

these advances in the context of sleep have limited themselves to analyzing the user’s vital

signs (mainly breathing) as extracted from the RF signals [120, 87, 147, 179]. In contrast,

EZ-Sleep uses the RF signal to extract both the user’s breathing and location, and combines

both to infer the user’s bed schedule and sleep quality. In the absence of information on
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when the user goes to bed and leaves the bed, past work cannot compute key insomnia

parameters like sleep latency, sleep efficiency and WASO. Furthermore, most past solutions

rely on the Doppler effect which is highly sensitive to interference from other sources

of motion in the environment such as potential neighbors or flatmates (see Sec. 2.9.1 for

empirical results). In contrast, by leveraging RF-based localization, EZ-Sleep is not only

robust to motion in the environment but can also monitor the sleep of multiple subjects at

the same time.

EZ-Sleep

Figure 2-1: EZ-Sleep setup in one of our subjects’ bedroom.

We designed EZ-Sleep as a standalone sensor as shown in Fig. 2-1. Our design involves

four components that work together to deliver the application:

• Monitoring the user via RF signals: EZ-Sleep uses an FMCW radio and an antenna

array to separate RF signals based on the location of the reflecting body. This allows

it to track both the location of the user and her breathing, and use both to extract the

user’s sleep patterns.

• Identifying bed location: EZ-Sleep introduces a novel algorithm for automatically

detecting where the user goes to sleep. The algorithm first identifies locations where

the user stays stationary like chairs, desks, couches and beds. It then classifies these

locations as bed vs. non-bed. To do so, EZ-Sleep leverages RF-based localization to

analyze how the user uses the space. It builds a map of where the user spends her

time. Using tools from image processing and machine learning, EZ-Sleep segments

the map into meaningful areas.
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• Detecting bed entries and exits: Knowing when the person goes to bed is essential

for both assessing insomnia and monitoring compliance with CBT-I. But, since RF-

localization error can be as high as one meter, we cannot simply rely on the location

estimate to detect when the person goes to bed. Instead, EZ-Sleep employs a Hid-

den Markov Model (HMM), where location measurements act as observations of the

hidden state which takes one of the two values: in-bed or out-of-bed.

• Classifying sleep and awake periods, and computing sleep parameters: Once it

knows the user is in bed, EZ-Sleep zooms in on the RF signal reflected from the

bed region. EZ-Sleep feeds this signal to a deep neural network model, which oper-

ates in two phases. In the first phase it learns to classify the time in bed into sleep and

awake epochs. In the second phase, it zooms in on the first transition from awake to

sleep, and trains a second model customized for learning sleep onset. Once it knows

entry and exit from the bed, the sleep onset, and any later awakenings, EZ-Sleep can

compute all of the insomnia assessment parameters described above.

We have implemented EZ-Sleep and evaluated it in 8 homes. We collected a total of 100

nights of sleep, including 30 nights with an EEG-based FDA-approved sleep monitor [136].

Our results show correct bed identification in all places. The results also show that EZ-

Sleep is highly accurate. Specifically, its average errors in computing SE, SL, TIB, TST,

and WASO are 2.8%, 4.9 min, 3.2 min, 10.3 min, 8.2 min respectively. These results show

that EZ-Sleep’s accuracy is comparable or better than medical grade actigraphy devices [34,

28, 80].1 Thus, EZ-Sleep can deliver clinically meaningful sleep parameters without asking

the user to wear any sensor or record her sleep data. Furthermore, the results also show that

EZ-Sleep can monitor the sleep of two subjects simultaneously, making it the first RF-based

sleep monitor that works with multiple people.

Contributions: To our knowledge, EZ-Sleep is the first RF-based sleep sensor that auto-

matically detects bed locations, identifies bed entries and exits, and monitors key insomnia

parameters like sleep latency, sleep efficiency, total sleep time, and wake after sleep onset.

1Medical grade actigraphy errors are as follows: SE: 3~5%, SL: 0.2~3 min, TST: 8~19 min, and WASO:
12 min [34, 28, 80]. Since actigraphy cannot measure TIB, these estimates require the user to push a button
to indicate going-to-bed and leaving-bed.
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It is also the first RF-based sleep sensor that can monitor multiple users simultaneously.

These properties are enabled by the observation that sleep monitoring can benefit from

combining location tracking with temporal analysis of the user’s breathing signal, both

extracted from RF reflections. We introduce new algorithms that use tools from image pro-

cessing and machine learning to analyze the user’s location and breathing signals and infer

her bed schedule and sleep quality. We further implement our design as a standalone sensor

which we deploy and evaluate in eight homes, demonstrating its high accuracy.

2.2 Background and Related Work

We first provide background on insomnia monitoring and then describe past solutions, both

in industry and academia.

2.2.1 Key Insomnia Parameters

Insomnia and sleep deprivation are typically assessed using the following sleep parame-

ters [80, 130]:

• Sleep latency (SL) is the time between going to bed and falling asleep. Sleep latency

is perhaps the most common metric for assessing insomnia. A sleep latency that is

longer than 30 minutes for more than two nights per week is a sign of insomnia.

• Total sleep time (TST) is the total time in bed actually spent in sleep. It captures

whether the person gets enough sleep.

• Time in Bed (TIB) which is also called time from light out to light on. It puts an upper

bound on the sleep time and can show that the person does not allow herself enough

time to sleep.

• Sleep efficiency (SE) is the ratio of the total sleep time to the total time in bed, (i.e.,

TST/TIB).

• Wake after sleep onset (WASO) is the total duration of wakefulness occurring after

sleep onset. It captures sleep fragmentation, or the inability to sustain sleep. For
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example, some older people wake up after a few hours of sleep and cannot go back

to sleep.

• Number of awakenings: This metric counts the number of awakenings that last for

more than 5 minutes (NA > 5). In this chapter, we experiment with healthy individu-

als, and have not had any reports of night awakenings. Hence, we do not report results

for this metric. However, our design can compute this metric because it classifies all

30-second epochs as awake or asleep, as explained in section 2.7.

Figure 2-2 shows the relation between these sleep parameters.

In Bed

Sleep Sleep

SL

Enter Leave

Sleep Onset WASO

Figure 2-2: The definition of all sleep parameters.

2.2.2 Sleep Monitoring Solutions

Laboratory-based Polysomnography (PSG) is the medical gold standard for sleep monitor-

ing. It requires the person to spend the night in a sleep lab connected to a dozen sensors,

including EEG scalp electrodes, an ECG monitor, a respiratory chest band, a nasal probe,

etc. PSG monitors many aspects of sleep including sleep stages, sleep parameters, and sleep

apnea. Yet, PSG is both highly obtrusive and impractical for long term studies [71]. The

discomfort with the sensors changes the user’s sleep behavior, making it hard to measure

insomnia. Further, since night-to-night sleep variability is a important factor for diagnosing

insomnia [15], a single night of study is often insufficient.

Patient diaries are commonly used for monitoring insomnia. The person is asked to

keep daily records of when they go to bed, how long it takes them to fall asleep, how often

they wake up at night, etc. Writing sleep diaries requires a significant effort and it is hard

to sustain for long periods of time. Medical grade actigraphy has been used to track user

movement to infer sleep. Actigraphy measures user motion using accelerometers tied to
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a person’s wrist or hip. However, some people feel encumbered to sleep with wearable

devices [23] , and older people and kids may simply take the device off during the night.

The consumer industry has developed wellness devices that track sleep. They encom-

pass activity trackers such as FitBit and Jawbone, smartphone-based solutions like Sleep-

bot and Sleep Cycle, bed side sensors or bed pads inserted under the sheets such as Bed-

dit [42, 67, 133, 134, 12]. These solutions have lower accuracy than the medical grade

devices [52]. Some of these solutions require the user to input when they are physically in

bed [141] or may have lower accuracy if this information is missing [12].

The research community has shown a great interest in monitoring sleep using smart-

phones or systems that sense environmental factors [24, 23, 54, 98, 56, 69]. They infer

sleep quality using data from microphones, accelerometers, cameras, phone usage, etc.

However, recording audio and video information throughout the night may still be con-

sidered obtrusive for some people due to privacy and comfort reasons [120]. Also, these

systems may not be easy to configure for certain sectors of the populations, like the elderly

or children.

In terms of technology, EZ-Sleep is closest to past work on using radio signals for moni-

toring sleep stages or in-bed movements [120, 82, 87, 147, 179]. All of these systems work

by extracting a person’s breathing using radio signals that bounce off the person’s body.

They then classify the night into periods that correspond to different sleep stages or body

movements. EZ-Sleep differs from these systems along four axes. First, EZ-Sleep analyses

sleep behavior both in time and space. It does so by combining RF capabilities to extract

breathing and location. Second, EZ-Sleep computes sleep parameters unavailable to past

systems including TIB, SL, and WASO. Third, EZ-Sleep introduces new algorithms that

automatically identify where a person sleeps and track her bed entries and exists. Fourth,

EZ-Sleep can simultaneously monitor multiple users with one device.

2.3 EZ-Sleep Overview

EZ-Sleep is an in-home sleep monitoring system that requires zero user effort. It operates

by transmitting a low power wireless signal and capturing its reflections off users in the
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vicinity of the device. By analyzing the signals, it learns the bed location, when the user

goes to bed, and when she falls asleep. Based on this knowledge, it generates sleep pa-

rameters including Time in bed (TIB), Sleep latency (SL), Total sleep time (TST), Sleep

efficiency (SE), and Wake after sleep onset (WASO).

The EZ-Sleep sensor is a software-hardware system whose operation involves the fol-

lowing key steps:

1. Capturing the user’s location and breathing using RF signals.

2. Inferring bed areas by observing the user’s movements through space.

3. Detecting bed entry and exit events by interpreting noisy location measurements.

4. Classifying sleep versus awake when the person is in bed and estimating sleep pa-

rameters.

In the following sections, we explain each step in detail.

2.4 Extracting Location and Breathing from RF Signals

The relationship between motion and sleep is intuitive and constitutes the core of all actigraphy-

based sleep sensors. But sleep sensors, so far, have looked only at the amount of motion

over time – i.e., actigraphy. We observe however that some sleep parameters, such as

going-to-bed, can be better inferred by analyzing motion as a function of space. Wireless

signals are a powerful tool to capture a person’s motion both in time and space. When

the person is stationary, her motion over time is mostly her breathing motion [5]. Thus, in

designing EZ-Sleep, we leverage these RF capabilities. The literature already shows the

capacity of RF signals to capture both location [4, 3, 153, 72] and breathing [5, 120, 155].

We introduce these techniques briefly and refer the reader to [3, 5] for more information.

EZ-Sleep uses a combination of an FMCW radio and an antenna array. The FMCW

technique measures the distance of the reflecting body from the device, whereas the an-

tenna array measures the spatial direction of the reflector with respect to the device. Thus,

together, they allow us to divide the x-y plane into pixels and separate RF reflections from

different pixels in space.
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Once we have separated the signal from each x-y pixel, we need to first identify human

reflections from reflections of other objects in the environment such as walls and furni-

ture. To do so, we apply two different filters to the signals to capture two types of human

motions. The first is a high pass filter that captures fast and non-periodic human motion, in-

cluding walking and any hand or limb movements. The second is a band pass filter around

the breathing frequency that captures a user’s chest motion when she is breathing and not

actively moving other body parts. Note that since furniture and walls neither move at a

periodicity similar to human breathing, nor have non-periodic motion, their reflections dis-

appear at the output of both filters. Applying these filters to the signal allows us to detect

whether the x-y pixel has a human at that time, and whether the human is only breathing or

he is performing a bigger non-periodic motion.

In our implementation, we generate one measurement per pixel every 50 milliseconds.

Each measurement contains a time sample of the RF signal reflected from that pixel at that

time, and a tag that states whether the pixel has a moving person, a stationary person, or

is empty (i.e., has no person). We project the area covered by EZ-Sleep into a 500-by-500

pixel image, where each square pixel occupies a 0.024-by-0.024 square meter space.

Finally, we note that RF-based localization suffers from environment noise and multi-

path problems, and its 90 percentile error can be more than one meter [3, 72, 153]. Simi-

larly, breathing signals extracted from RF reflections are highly sensitive to body motion,

and can be erroneous when the user moves her limbs [5]. EZ-sleep is designed to be robust

to these phenomena and can measure sleep parameters accurately in the presence of noise.

2.5 Bed Identification

In this section, we describe EZ-Sleep’s algorithm for detecting beds in the home. The algo-

rithm first identifies areas in the home where the user is mostly stationary. Such areas span

the bed and various seating places such as chairs and couches. Next, EZ-Sleep identifies

which of these stationary areas are beds.

Potential bed areas are places where people stay stationary for long periods of time.

Thus, we would like to identify areas in the home where the radio sees the person station-
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ary for significant periods. Recall that at every 50 millisecond, we have a tag that identifies

every pixel as being stationary, moving, or empty. Thus, the first step of our algorithm com-

putes a 2D histogram of the stationary pixels in the x-y plane. The histogram is computed

every day. Regions where the person sits or lies down will accumulate many stationary tags

and hence will show up as peaks in the histogram.

Fig. 2-3 shows example histograms from two of the homes where we deployed EZ-

Sleep. The locations of EZ-Sleep are shown as the blue rectangles and the black lines

indicate walls or boundaries of beds or desks. The darker the pixels are the more stationary

time is spent in that location. The figure reveals three observations: First, the distribution

of stationary pixels does indeed reveal the location of actual seating or sleeping areas. For

example, the dark regions in the figure refer to real beds, couches and desks. Second, EZ-

Sleep can detect more than one bed and can identify beds and seating areas outside the

room where the device is installed. Third, the stationary pixels do not span the whole bed

region. This is because most people sleep on a particular side of the bed. Besides, stationary

pixels correspond to locations where there is some breathing signal – i.e., the chest, face,

and abdomen. This description of the sleeping area is more relevant to our task than the

whole physical space of the bed. Fourth and most importantly, the stationary regions can be

connected in the histogram. For example, one of the beds in the figure appears connected to

the desk. Simply by looking at the histogram, EZ-Sleep cannot tell whether this is one big

bed or two distinct stationary areas. Thus, our next step is to separate the distinct seating

or sleeping areas observed by the device.

In the second step, our algorithm takes the 2D histogram as input and extracts distinct

seating or sleeping areas. We frame this problem as an image segmentation problem – i.e.,

we would like to assign each pixel a label such that pixels with the same label share the

same area identity (i.e., desk, couch, or bed). Common approaches to image segmentation

take initial labels of a few pixels, and finds boundaries dividing regions with different initial

labels. Such initial labels are called markers. But, how can we assign initial labels to the

images in Fig. 2-3a such that the bed and the desk have different labels automatically?

Simply using local maxima as initial distinct labels will lead to over segmentation because

each area can have multiple local maxima. Smoothing the image first does not help because
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Figure 2-3: Images of the distribution of stationary location measurements from two
homes. The locations of EZ-Sleep are shown as the blue rectangles and the black lines
indicate walls or boundaries of beds or desks. Dark regions indicate areas where people
stay stationary for long periods of time, such as beds, desks or couches.

it blurs region boundaries.

To assign initial labels for the segmentation algorithm, we use a processing pipeline

explained in Fig. 2-4. To estimate the initial labels, we binarize the input image (Fig. 2-4a)

into foreground and background (red and white regions in Fig. 2-4b) using Otsu threshold-

ing [111]. In the binarized image (Fig. 2-4b), the desk and the bed are still connected. We

can make the distinction between two areas bigger by computing the distance transform,

i.e., the nearest distance to the background, for each pixel of this image. Given the trans-

formed image (Fig. 2-4d), we can apply a threshold to get the central regions of both the

desk and the bed (Fig. 2-4e). Note that to set a threshold that generalizes to different areas

in different homes, we normalize the transformed image with respect to the size of each

connected component (Fig. 2-4c) before thresholding. After thresholding, the connected

components of the thresholded image (Fig. 2-4e) can be used as the initial labels for the

segmentation algorithm. Fig. 2-4f shows the final segmentation result using Watershed al-

gorithm [97]. We reject regions whose area is too small to be a bed. The remaining regions

are the potential bed areas.

The third and last step in our algorithm is to identify beds from other areas where the

user may spend some time while stationary, like a couch or a desk. People may spend

long time in areas other than beds. Using only the amount of time spent in an area as the

classifying feature is not enough. Also, people’s schedule changes from day to day. A user
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(a) (b) (c)

(d) (e) (f)

Figure 2-4: Estimating potential bed areas. The image of the stationary location distribution
is shown in (a). This image is binarized using Otsu thresholding, resulting in (b) where the
red pixels form the foreground. To obtain the markers for watershed, we first compute
the connected components as shown in (c). Computing a distance transform results in (d)
which is thresholded to obtain the markers in (e). The watershed segmentation outputs the
potential bed areas as shown in (f).

can spend more time on a couch watching TV than sleeping in the bed during the weekend.

Similarly, before a deadline a user can spend more time working at her desk than sleeping

in her bed. The task is further complicated by the fact that we want to discover multiple

beds in the same house and different people may have very different schedules.

To address these problems, we analyze the temporal activities in each potential bed area

to extract additional features and look at the consistency of features across multiple days.

Specifically, in addition to the amount of time the user stays in an area, we also use the

ratio of time being stationary versus moving. To compute this feature, we take the sum of

all stationary tags for all pixels in the area and divide it by the sum of all moving tags for

all pixels in the area. Fig. 2-5a visualizes around two weeks of data for 10 potential bed

areas identified at the final output of the segmentation pipeline in Fig. 2-4. The two axes

refer to the two features: total amount of time, and ratio of stationary time to moving time

spent in that area. Each day contributes one data point to each detected area. The circles

refer to real beds, whereas the triangles refer to couch and desk areas. We remove data
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points where people spent zero amount of time from this figure. We can see that the desk

and couch areas form a cluster in the lower left corner. There are outliers as a person may

sleep less on some days or a couch may look like a bed occasionally. To better understand

this, we highlight data from one bed region and one desk region in Fig. 2-5b. If we look

across multiple days, data from the bed and the desk stay in their respective clusters.
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(a) Figure shows the two features
for 10 potential bed areas. Using
the two features, we can separate
the bed and non-bed areas.
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for a specific bed and desk re-
gion. We use data across multiple
days to classify a region as bed or
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Figure 2-5: Identifying actual beds.

Given the analysis, we use the above two features to train a bed classifier using SVM

with a linear kernel. To determine if a region is a bed, we look at the its predicted labels

over the past 𝐷 days. We identify the region as bed if the percentage of days labeled as bed

is greater than 𝛾:

𝑦𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝐵𝑒𝑑, 𝑖𝑓

𝐷−1∑︀
𝑑=0

‖𝑓(𝐴𝑖;𝑑)‖

𝐷
> 𝛾

𝑁𝑜𝑡 𝐵𝑒𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (2.1)

where 𝑦𝑖 is the final prediction for area 𝐴𝑖, 𝑓(.) is the classifier, 𝑓(𝐴𝑖; 𝑑) is the binary

predicted results for area 𝐴𝑖 on the 𝑑th day. Our default is 𝐷 = 7 and 𝛾 = 5/7. Fig. 2-5

shows the classification boundary of our classifier.
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2.6 Detecting Bed Entry and Exit

After identifying the bed areas, we consider the problem of detecting when a user goes to

bed and when she leaves the bed. RF-based localization returns the location of the people

in the environment. However, as mentioned in Section 2.4 their errors can be as large as one

meter. An error of plus or minus one meter is pretty much the size of the bed. It can easily

move a person from the bed to outside the bed. Similarly, a person who is changing his

clothes next to the bed may look already in bed. These localization errors have little impact

on detecting the bed region because in that case we can use the histogram of location data

over a whole day, which allows us to average out the errors. In contrast, when detecting

entries and exits from the bed, we would like to detect them as quickly as possible because

any delay in detecting such event will appear as an error in our estimate of sleep latency.

So, how do we accurately track when the user enters or leaves her bed? Instead of

directly mapping the measured locations to in or out of the bed, EZ-Sleep considers the

location measurements as noisy observations of the true state. The true state –i.e., whether

the user is in or out of bed – is hidden. EZ-Sleep uses a Hidden Markov Model (HMM) to

infer the true state from the observations. Below we give a short primer on HMM followed

by our particular HMM design.

2.6.1 HMM Background

A hidden Markov model is a statistical model that tries to explain a sequence of observa-

tions with a sequence of hidden states. Time progresses in steps. In each time step, the

model is presented with a new observation which it uses to decide whether to stay in the

current state or transition to some other state. The key assumption underlying an HMM

is that the probability of an observation given the current state is independent of any other

observation or state. Mathematically, let us model the observation at time, 𝑡, as 𝑜𝑡 and the

hidden state as 𝑠𝑡. If 𝑃 (𝑋) denotes the probability of event 𝑋 , then the assumption can be

represented as:

𝑃 (𝑜𝑡|𝑠0, 𝑠1, 𝑠2, ..., 𝑠𝑡−1, 𝑠𝑡) = 𝑃 (𝑜𝑡|𝑠𝑡) (2.2)
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Thus, the joint probability of having a sequence of states, {𝑠𝑡}𝑁𝑡
𝑡=1 and observations, {𝑜𝑡}𝑁𝑡

𝑡=1

is given by:

𝑃 ({𝑜𝑡, 𝑠𝑡}𝑁𝑡
𝑡=1) = 𝑃 (𝑠0)𝑃 (𝑜0|𝑠0)

𝑁𝑡∏︁
𝑡=1

𝑃 (𝑜𝑡|𝑠𝑡)𝑃 (𝑠𝑡|𝑠𝑡−1) (2.3)

To model a problem as an HMM one has to define a set of possible states 𝒮 = {𝒮1, ....,𝒮𝑀},
a set of observations 𝒪 = {𝒪1, ....,𝒪𝑁}, a 𝑀 ×𝑀 transition probability matrix T, and a

𝑀 × 𝑁 emission probability matrix E. Transition probability is the probability of transi-

tioning from state, 𝒮𝑖 to 𝒮𝑗 in consecutive time steps, i.e., T𝑖𝑗 = 𝑃 (𝑠𝑡 = 𝒮𝑖|𝑠𝑡−1 = 𝒮𝑗). The

emission probability is the probability of an observation given a state, i.e, E𝑖𝑗 = 𝑃 (𝑜𝑡 =

𝒪𝑗|𝑠𝑡 = 𝒮𝑖). The set of observations and states is typically picked by the designer, and the

transmission probabilities and emission probabilities are learned from the data.

2.6.2 Design of Our HMM

We use the HMM hidden states to represent whether the user is in the bed or outside the

bed at each time step 𝑡. We denote the state corresponding to being in the bed as 𝒮0 and

outside the bed as 𝒮1.
We define our observations by first dividing the space around the bed region into three

areas: center area (𝑅0), buffer area (𝑅1), and outer area (𝑅2). The center area is the bed re-

gion we found in section 2.5, and the buffer area is a 50-centimeter-wide area that encircles

the center area. The outer area is the rest of the space. We define 9 possible observations

which correspond to the user transitioning from one of the three areas to another or staying

in the same area. Thus, the observations for the HMM are the set of tuples

𝒪 = {(𝑅𝑠, 𝑅𝑒) ∀𝑅𝑠, 𝑅𝑒 ∈ 𝑅0, 𝑅1, 𝑅2} .

To detect which observation has occurred in each time step, we divide time into consecutive

windows of 5 seconds each. For each window we detect the location of the user from the

moving and stationary pixels. We average the location in each second and map it to one of

the three area: 𝑅0, 𝑅1, or 𝑅2. Then 𝑅𝑠 denotes the area that corresponds to the first second

of the window while 𝑅𝑒 is the area that correspond to the last second of the window.
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We specify the buffer area around the bed because we are often unsure of the person’s

exact location. To decide a person’s state, we need to look a bit into the past and the future.

Having the buffer area helps us encode different beliefs in these observations as opposed to

simply dividing the space into inside versus outside the bed. Given the learned bed regions

from the last section, this choice of observations does not require any information specific

to the home. Thus, we can use the same HMM for all homes. In addition, we transform raw

location data into discrete observations for better generalization of our model. If we use a

continuous input instead (e.g., the distance to the center of the bed), because people stay

at different locations away from beds in different homes, the model trained at few places

cannot generalize well to different homes.

If multiple bed regions are detected, we generate different observations for each bed.

EZ-Sleep uses mechanisms similar to [3] to track raw locations of users to form observa-

tions for the HMM.

Learning and Inference: The goal of the learning algorithm is to learn the transition

probabilities matrix, 𝑇 , and the emission probabilities matrix, 𝐸. In the absence of priors,

the typical way to learn 𝑇 and 𝐸 is to compute their statistics using labeled data. Thus, we

manually label the training data with the correct states and use them to learn 𝑇 and 𝐸.

After the learning phase, the model can be used independent of the environment given

the bed region. In the inference phase, we give the HMM the sequence of observations for

one day and find a sequence of states that best explain those observations using the Viterbi

algorithm [44]. This means that we can give the HMM the observations extracted from the

areas around each detected bed, and have the HMM predict for us when a person enters the

bed (i.e., the state transition from 𝒮1 to 𝒮0) and when she exits the bed (a transition from

𝒮0 to 𝒮1).

2.7 Estimating Sleep Parameters

So far, we have learned the bed area and when the user enters and leaves the bed. To

estimate the sleep parameters in Section 3.2, we still need to detect when the user falls

asleep, and the sleep-awake intervals throughout a night. To do so, we divides the time in

46



EZ-Sleep

Room Boundary

Bed Boundary

Estimated Bed

Voxels

Spectrogram
& Selection

Sleep Probability
Predictionp

t

SO TST WASO

Parameters Estimation

Breathing Signal Spectrogram

Figure 2-6: Sleep parameters estimation system. Breathing signals are collected from bed
pixels, and provided to the neural network classifier as different channels. The classifier
outputs the probability of sleep at each time epoch. Finally, a second layer estimation
algorithms take sleep probability as input, and output sleep parameters: Sleep Onset Time
(SO), Total Sleep Time (TST) and Wake After Sleep Onset (WASO).

bed into 30-second epochs, as typical in sleep studies. We would like to classify each epoch

into sleep vs. awake and identify the first epoch in which the person falls asleep, which is

the sleep onset.

The information of whether a person is asleep or awake is encoded in her breathing

pattern and body movements [120, 147, 54]. To extract this information, we need to en-

sure that the RF signal that we provide to the classifier, in each epoch, reflects the user’s

breathing and movements and is filtered from any source of interference. This is challeng-

ing because there are many other sources of motion in the environment, e.g., rotating fans,

neighbors whose movements may impact the signal, and even curtains moving due to air

conditioning. These extraneous movements can impact the signal and completely over-

shadow the small movements caused by human breathing. As we show in Section 2.9.1,

having the neighbor walking in another room from behind the wall can easily interfere with

the breathing signal.

To separate breathing from extraneous interference, EZ-Sleep uses the identified bed

areas as spatial filters to filter out motion coming from outside the bed. Specifically, we

zoom in on the pixels in the bed areas and analyze only the signals reflected from those

pixels. For each epoch, we consider the signals reflected from pixels tagged as stationary

or moving (i.e., non empty). We use these signals as estimates of the user’s breathing

pattern and body movements.
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For our classifier, we build on recent success of convolutional neural network (CNN)

in classifying time signals [1]. The benefit of this classifier is that we do not need to pick

features manually. We can directly pass the signal in each epoch to the classifier. We build

a CNN classifier with a 14-layer residual network model [57]. Our network architecture is

similar to the 18-layer network described in [57] but with no repetition for the conv4 and

conv5 layers. The classifier takes the spectrogram of the signal in each epoch as input, and

outputs the probability of the person being asleep. Hence for each night, we obtain a series

of probabilities {𝑝𝑖}𝑛, where 𝑛 is the total number of epochs for that night, and 𝑖 is the 𝑖𝑡ℎ

epoch. We use this CNN classifier as a building block for estimating sleep onset time, Total

sleep time (TST), and Wake after sleep onset (WASO).

Sleep Onset Time: Predicting the onset of sleep, using the CNN classifier alone would

not give us enough accuracy. The reason is that in training the CNN, the model tries to

maximize the overall accuracy of predicting asleep-awake for the entire night, but not the

accuracy of detecting the exact sleep onset time. Thus, we use this first CNN classifier as

the first phase in detecting sleep onset. Specifically, for each night, we consider the first

epoch in which the probability of sleep 𝑝𝑖 is larger than 0.5. We then take a window of

15 minutes before and 15 minutes after that epoch. This gives us the sequence of epochs

around the sleep onset time.

We build a Gradient Boosting Regressor on top of the above CNN with special focus

on the sleep onset transition. The regressor takes as input the signal in the epochs in the

above window to learn the exact sleep onset. In this case, we would like to learn which

epoch is the sleep onset. Since this function is an impulse function, it cannot be directly

learned by the regressor. It has to be smoothed first. Thus, we smooth it by convolving

it with a Gaussian kernel. For each epoch, the regressor predicts the probability of being

the sleep onset epoch. The epoch with the largest probability score is considered the sleep

onset epoch.

TST and WASO: With the predicted sleep probabilities {𝑝𝑖}𝑛 and sleep onset time 𝜅, we

can estimate TST and WASO. Specifically, TST is the total duration of all epochs for which

𝑝𝑖 > 0.5, starting after epoch 𝜅. Similarly, WASO is the total time durations of all epochs
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for which 𝑝𝑖 ≤ 0.5 starting after epoch 𝜅.

SE and SL: Finally, sleep efficiency (SE) is computed directly as TST/TIB, and sleep

latency (SL) is the time difference between the last entry to bed before epoch 𝜅 and the

beginning of epoch 𝜅.

We use an implementation of residual networks from [73]. Our network architecture is

similar to the 18-layer network described in [57] but with no repetition for the conv4 and

conv5 layers. For estimating sleep onset time, we use the default parameters for Gradient

Boosting Regressor from the scikit-learn library. The standard deviation of the Gaussian

kernel is chosen to be 3 epochs (90 seconds).

2.8 Evaluation Setup

We evaluated EZ-Sleep through actual deployments in 8 homes. We collected more than

100 nights of sleep data from 10 healthy subjects whose age spans 23 to 45 years. Out of

these, all subjects slept with SleepProfiler [136, 143], which is an FDA-approved medical

grade sleep monitoring device, for a total of 30 nights to obtain the ground truth for our

sleep parameters. We install the EZ-Sleep device in the bedroom of the subject. Figure 2-8

shows the location of the device in all 8 homes. In our deployments, two of the homes have

two beds in the device’s coverage area. All subjects have been consented in accordance

with our IRB.

SleepProfiler (used to obtain the ground-truth) has three frontal EEG electrodes to mea-

sure brain activity, accelerometers for detecting motion, a chest band for breathing, and a

pulse rate sensor for monitoring heart rate. The device has a push button for the user to

indicate when she goes to bed and when she leaves the bed. The subjects are instructed

to push the button when they enter and leave the bed. Other parameters can be extracted

directly from the sleep report provided by the device. The subject may make mistakes in

setting up the sleep profiler or wearing the sensors. For example, they may forget to attach

the adhesives that prevent the EEG electrodes from moving, or remove the sensors and go

back to sleep. To ensure that all nights considered in the study do not have such errors,

we ask the subjects to keep a sleep diary, in which they record when they go to bed and
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when they wake up, whether they experienced any awakenings during the night, and other

comments that regarding removal of the device. The diary is used to check for consistency

with the sleep profiler data and exclude inconsistent nights.

The ground truth data is also used to train the classifiers. Training and testing are done

on different people and different homes –i.e., for each home, we test a classifier trained on

the other homes.

2.9 Results

Below we start by showing that EZ-Sleep is more robust to interference than past solutions

that use RF-based signals but rely on the Doppler effect. We then evaluate EZ-Sleep’s

ability to detect the bed region and extract the sleep parameters.

2.9.1 Sensor Robustness

There are two benefits for using the spatial information extracted from RF-signals. The first

is the ability to detect where and when the user goes to bed. The second, is the fact that we

can separate the RF reflections from different pixels in space. This latter property allows

EZ-Sleep to eliminate interference from other sources of motion, such as fans, neighbors,

etc. In this section, we demonstrate empirically the added robustness due to this spatial

filtering. We also provide mathematical reasons why Doppler-based solutions common in

past work [120, 82, 87, 141], can be easily confused in the presence of extraneous motion.

We did an experiment where we ask a person to lie on a bed in the same room as the

radio device. We ask the person to be stationary, so that we can focus only on his breathing

motion. The RF signal is measured both using the EZ-Sleep radio and a similar radio, where

the only difference is that we replace the FMCW and antenna array setup with measuring

the Doppler effect as described in [120]. Figure 2-7a shows that both the Doppler radar

and EZ-Sleep capture the person’s breathing when he is the only source of motion in the

environment. We repeat the same experiment, but this time with another person present in

an adjacent room. Figure 2-7b shows the results. The second person is stationary in the first

half of the experiment, and starts walking around the 12th second. For the Doppler-based
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approach, even before the second person starts walking, his presence disturbs the signal

making it hard to track the breathing of the person in the bed. This gets worse when the

person starts walking, as shown in the second half of Figure 2-7b. In contrast, EZ-Sleep’s

signal stays clean and clearly reflects the breathing of the subject in the bed.

Our Approach

Doppler

0 5 10 15 20

0 5 10 15 20

Time (sec)

(a) Single Person Scenario

Our Approach

Doppler

0 5 10 15 20

0 5 10 15 20

Time (sec)

(b) Two Person Scenario

Figure 2-7: EZ-Sleep vs. Doppler based approaches. The signal using the Doppler effect
gets disturbed in the presence of other motion in the environment.

The above results can be explained as follows. A Doppler-based sensor transmits a

single frequency and detects the chest displacement 𝑥0(𝑡) by looking at the baseband signal

𝐵(𝑡) at the receiver [120]:

𝐵(𝑡) = 𝐴0𝑐𝑜𝑠(
4𝜋𝑥0(𝑡)

𝜆
+ 𝐶0), (2.4)

where 𝐴0 is proportional to the amplitude of the reflection, 𝜆 is the wavelength, and 𝐶0 is a

constant that depend on the person’s distance from the device. The chest motion 𝑥0(𝑡) can

be inferred from the phase of the signal 𝐵(𝑡). However, in the presence of another source

of motion with displacement 𝑥1(𝑡), the baseband signal becomes:

̃︀𝐵(𝑡) = 𝐴0𝑐𝑜𝑠(
4𝜋𝑥0(𝑡)

𝜆
+ 𝐶0) + 𝐴1(𝑡)𝑐𝑜𝑠(

4𝜋𝑥1(𝑡)

𝜆
+ 𝐶1(𝑡)) (2.5)

where 𝐴1(𝑡) is proportional to the amplitude of the second reflection and 𝐶1(𝑡) is related to

the second person’s distance. Without knowing how the second person moves, both 𝐴1(𝑡)

and 𝐶1(𝑡) are unknown, and one can no longer infer 𝑥0(𝑡). Moreover, since both terms

could change over time, estimating the periodicity of 𝑥0(𝑡) becomes challenging. Hence,
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Doppler-based approaches cannot estimate the breathing rate accurately in this scenario.

In contrast, combining FMCW with an antenna array (Section 2.4) allows EZ-Sleep to

separate the two reflections using the fact that they come from different spatial pixels.

Therefore, we can extract cleaner breathing signal, as shown in Figure 2-7b, even in the

presence of other people.

2.9.2 Identifying Bed Areas

We compare the bed areas identified by EZ-Sleep with the ground truth location of the bed.

The ground truth is obtained using careful measurements of the location of the bed and the

layout of each home using laser distance meters with an accuracy of 0.06”. To train our bed

model we divide the data into two sets, each cover 4 homes. We train the model on one set

and test it on the other. We then swap the training and test sets. Thus, the model is asked

to predict the bed area for new homes that it did not see in the training phase.

Figure 2-8 shows the results of our bed identification. The figure shows the floor plans

from all 8 homes. The location of the EZ-Sleep device is illustrated using a blue rectangle.

We label the ground truth bed areas using the red boxes and show the bed areas identified

by EZ-Sleep in dark green. Note that in the homes in (c) and (g), EZ-Sleep monitor two

beds simultaneously.

As shown in Figure 2-8, EZ-Sleep correctly identified the bed areas for all 8 homes,

even at places where there are two beds in the coverage area (2-8c and 2-8g). Note that

the identified bed area usually covers a subregion of the physical bed. As explained in

Section 2.5, these areas are obtained using the location data when the person is stationary

and breathing is the only motion. These areas represent the chest, abdomen and face of

the person. Having this ability to accurately estimate the spacial pixels that reflect the

user’s breathing allows us to zoom in on the subject during their sleep to estimate the sleep

parameters avoiding a scan of a larger 3D space.
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Bed

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2-8: Bed areas identified by EZ-Sleep. Locations of EZ-Sleep are illustrated with
blue rectangles. The red boxes represent the ground truth bed areas and the green areas
show the identified bed areas.

2.9.3 Accuracy of Sleep Parameters

In this section, we evaluate EZ-Sleep’s accuracy of detecting bed entry and exit events,

and estimating the various sleep parameters. We distinguish scenarios in which the sensor

monitors one subject and one bed from scenarios in which the sensor monitors two subjects

in two beds.

Single User Scenarios

Let us start by reporting the accuracy of detecting bed entry and exit events and the resulting

time in bed (TIB). As explained earlier, EZ-Sleep uses an HMM based approach to identify

bed entries and exits. The average error of the HMM in detecting bed entries and exits are

1.8 minutes and 1.3 minutes, respectively. The entries and exits are used to compute the

TIB, which has an average error of 3.15 minutes.

To show the individual errors for all subjects and all nights, we show in Figure 2-9 a

scatter plot of the predicted TIB values versus the actual TIB values. The TIB values in our

dataset range from 273 minutes to 564 minutes. Most of the points in Figure 2-9 lie on the

diagonal line. This shows that EZ-Sleep achieves high accuracy of TIB estimation across a

wide range of sleep schedules.
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Figure 2-9: Predicted versus actual Time in Bed.

Next, we compare the other sleep parameters predicted by EZ-Sleep to their ground

truth values. Figure 2-10 shows scatter plots of the predicted sleep parameters vs. their

ground truth values taken over all subjects and all nights. Table 2.1 summarizes the statis-

tics in the scatter plots and presents the average, mean and standard deviation of the pre-

diction error, for the various sleep parameters. The table shows that EZ-Sleep has high

accuracy. Specifically, its average error in predicting TST, SL, SE, and WASO is 10.3 min,

4.9 min, 2.8%, and 8.2 min, respectively. These results are comparable to medical grade

actigraphy-based insomnia monitors and within the clinically meaningful ranges [80].

Table 2.1: Accuracy of Sleep Parameters for Single User Scenarios

Sleep Parameter Average Error Median Error Std of Error
Time in Bed (TIB) 3.15 (min) 0.14 (min) 6.11 (min)

Total Sleep Time (TST) 10.3 (min) 8.5 (min) 7.7 (min)
Sleep Latency (SL) 4.9 (min) 4.3 (min) 3.1 (min)

Sleep Efficiency (SE) 2.8 (%) 2.6 (%) 2.1 (%)
Wake After Sleep Onset (WASO) 8.2 (min) 6.2 (min) 8.5 (min)
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Figure 2-10: Scatter plots of the predicted sleep parameters versus their ground truth values.
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Monitoring Multiple Users

Finally, we show that EZ-Sleep can simultaneously monitor multiple subjects sleeping in

their corresponding beds. We have two homes where the RF signal covers two beds, as

shown in Figure 2-8c and 2-8g. Table 2.2 presents the error statistics for simultaneously

monitoring two people sleeping in the same home. The table shows that the errors in

TST, SL, and WASO are a few minutes higher than in the case of a single person. This

is expected because while mechanisms like antenna array separate signals from different

directions, the separation is not perfect (due to the array’s side lobes). Thus, the presence of

a second person can add a small disturbance to the signal from the other person, particularly

if the two people are close to each other. However, the errors are still small and comparable

to medical grade actigraphy [80]. This result is particularly interesting since it shows that

EZ-Sleep is the first RF-based sleep sensor that is capable of monitoring multiple people

simultaneously.

Table 2.2: Accuracy of Sleep Parameters for Multi User Scenarios.

Sleep Parameter Average Error Median Error Std of Error
Time in Bed (TIB) 0.2 (min) 0.1 (min) 0.2 (min)

Total Sleep Time (TST) 15.8 (min) 15.5 (min) 11.8 (min)
Sleep Latency (SL) 7.6 (min) 7.0 (min) 6.4 (min)

Sleep Efficiency (SE) 1.8 (%) 2.2 (%) 1.2 (%)
Wake After Sleep Onset (WASO) 13.1 (min) 13.5(min) 12.1 (min)

2.10 Conclusion

We have presented EZ-Sleep, a new approach to monitoring insomnia and sleep deficien-

cies. EZ-Sleep is both accurate and easy to use. All that the user has to do is to put the

device in her bedroom and plug it to the power outlet. EZ-Sleep automatically figures out

where the user sleeps, and continuously monitors her sleep parameters. It has high accu-

racy in monitoring sleep latency, sleep efficiency, total sleep time, time in bed, and wake

after sleep onset.
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Chapter 3

Estimating Sleep Stages

3.1 Introduction

Sleep progresses in cycles that involve multiple sleep stages: Awake, Light sleep, Deep

sleep and REM (Rapid Eye Movement). Different stages are associated with different

physiological functions. For example, deep sleep is essential for tissue growth, muscle

repair, and memory consolidation, while REM helps procedural memory and emotional

health. At least, 40 million Americans each year suffer from chronic sleep disorders [103].

Most sleep disorders can be managed once they are correctly diagnosed [103]. Monitor-

ing sleep stages is beneficial for diagnosing sleep disorders, and tracking the response to

treatment [18].

Prevailing approaches for monitoring sleep stages are inconvenient and intrusive. The

medical gold standard relies on Polysomnography (PSG), which is typically conducted in

a hospital or sleep lab, and requires the subject to wear a plethora of sensors, such as EEG-

scalp electrodes, an ECG monitor, multiple chest bands, and nasal probes. As a result,

patients can experience sleeping difficulties, which renders the measurements unrepresen-

tative [58]. Furthermore, the cost and discomfort of PSG limit the potential for long term

sleep studies.

Recent advances in wireless systems have demonstrated that radio technologies can

capture physiological signals without body contact [68, 5, 177]. These technologies trans-

mit a low power radio signal (i.e., 1000 times lower power than a cell phone transmission)
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and analyze its reflections. They extract a person’s breathing and heart beats from the ra-

dio frequency (RF) signal reflected off her body. Since the cardio-respiratory signals are

correlated with sleep stages, in principle, one could hope to learn a subject’s sleep stages

by analyzing the RF signal reflected off her body. Such a system would significantly re-

duce the cost and discomfort of today’s sleep staging, and allow for long term sleep stage

monitoring.

There are multiple challenges in realizing the potential of RF measurements for sleep

staging. In particular, we must learn RF signal features that capture the sleep stages and

their temporal progression, and the features should be transferable to new subjects and

different environments. The problem is that RF signals carry much information that is ir-

relevant to sleep staging, and are highly dependent on the individuals and the measurement

conditions. Specifically, they reflect off all objects in the environment including walls and

furniture, and are affected by the subject’s position and distance from the radio device.

These challenges were not addressed in past work which used hand-crafted signal features

to train a classifier [174, 147]. The accuracy was relatively low (∼64%) and the model did

not generalize beyond the environment where the measurements were collected.

This chapter presents RF-Sleep, a new model that delivers a significantly higher accu-

racy and generalizes well to new environments and subjects. The model adapts a convolu-

tional neural network (CNN) to extract stage-specific features from RF spectrograms, and

couples it with a recurrent neural network (RNN) to capture the temporal dynamics of sleep

stages.

However, a CNN-RNN combination alone would remain liable to distracting features

pertaining to specific individuals or measurement conditions (i.e., the source domains),

and hence would not generalize well. To address this issue, we introduce a new adversarial

training regime that discards extraneous information specific to individuals or measurement

conditions, while retaining all information relevant to the predictive task –i.e., the adver-

sary ensures conditional independence between the learned representation and the source

domains.

Our training regime involves 3 players: the feature encoder (CNN-RNN), the sleep

stage predictor, and the source discriminator. The encoder plays a cooperative game with
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the predictor to predict sleep stages, and a minimax game against the source discriminator.

Our source discriminator deviates from the standard domain-adversarial discriminator in

that it takes as input also the predicted distribution of sleep stages in addition to the en-

coded features. This dependence facilitates accounting for inherent correlations between

stages and individuals, which cannot be removed without degrading the performance of the

predictive task.

We analyze this game and demonstrate that at equilibrium, the encoded features discard

all extraneous information that is specific to the individuals or measurement conditions,

while preserving all information relevant to predicting the sleep stages. We also evaluate

our model on a dataset of RF measurements and corresponding sleep stages. Experimental

results show that our model significantly improves the prediction accuracy of sleep stages.

In particular, our model has a prediction accuracy of 79.8% and a Cohen’s Kappa of 0.70,

whereas the best prior result for predicting sleep stages from RF signals [147] has an accu-

racy of 64% and a Cohen’s Kappa of 0.49.

Contributions: The chapter makes the following contributions:

• We present RF-Sleep, which delivers a significant improvement in prediction accu-

racy and is able to transfer the learning to new subjects and different environments.

• It adapts and extends a CNN architecture to extract stage-specific features from RF

reflections, and couples it with RNNs to capture the dynamic evolution of sleep

stages.

• It introduces and analyzes a new adversarial setup for removing subject and environ-

ment specific information from the latent features while preserving the ability to pre-

dict sleep stages. The adversarial model is conditioned on the predicted distribution

of stage labels rather than the labels themselves allowing it to deliver a fine-grained

distribution matching.
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Table 3.1: Automated Sleep Staging Systems

Signal Source Accuracy (acc/𝜅)1 Comfort
EEG High (83%/0.76)2 Low

Cardiorespiratory Medium (71%/0.56) Medium
Actigraphy Low (65%/-)3 High

RF
State-of-the-art Low (64%/0.49) High

RF-Sleep High (79.8%/0.70) High
1 Four-class subject-independent classification accuracy on
every 30-second segment.
2 Some studies achieve accuracy over 90% [31] but they
discard artifacts and use segments from the same night to
train and test.
3 Three-class classification based on 5-minute segment.

3.2 Related Work

(a) Sleep Staging: The gold standard in sleep staging is based on Polysomnography (PSG)

conducted overnight in a hospital or sleep lab. The subject has to sleep while wearing

multiple sensors including an EEG monitor, an EMG monitor, an EOG monitor, nasal

probes, etc. A sleep technologist visually inspects the output of the sensors and assigns to

each 30-second window a stage label [121].

A few past proposals have tried to automate the process and reduce the number of

sensors. These solutions can be classified into four categories according to their source

signal: EEG-based, Cardiorespiratory-based, Actigraphy-based, or RF-based. Table 3.1

summarizes the state of the art performance in each category. The table shows both the

classification accuracy and the Cohen’s Kappa coefficient, 𝜅. The most accurate methods

rely on EEG signals [40, 45, 115, 128]. However, EEG monitors are also the most in-

trusive because they require the subject to sleep with a skullcap or a head-band equipped

with multiple electrodes, which is uncomfortable and can cause headaches and skin ir-

ritation.The second category requires the subject to wear a chest-band and analyzes the

resulting cardiorespiratory signals. It is more comfortable than the prior method but also

less accurate [89]. The third approach is based on actigraphy; it leverages accelerometers

in FitBit or smart phones [56, 54] to monitor body movements and infer sleep quality. Yet,

motion is known to be a poor metric for measuring sleep stages and quality [114]. The
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last approach relies on RF signals reflected off the subject body during her sleep. It allows

the subject to sleep comfortably without any on-body sensors. Yet past approaches in this

category have the worst performance in comparison to other solutions.

RF-Sleep builds on the above literature but delivers significant new contributions. In

comparison to methods that use sources other than RF signals, RF-Sleep enables accurate

monitoring of sleep stages while allowing the subject to sleep comfortably in her own bed

without sensors on her body. Furthermore, due to differences between RF signals and other

signal sources, our model has to eliminate extraneous information that are specific to the

environment and irrelevant to sleep stage classification. In comparison to past work on

learning sleep stages from RF signals [120, 147, 87], our approach significantly improves

the prediction accuracy as shown in Table 3.1. This improvement is due to intrinsic dif-

ferences between past models and the model in this chapter, which avoids hand-crafted

features, and learns features that capture the temporal dependencies and transfer well to

new subjects and different environments.

(b) Representation Learning: We build on a rich body of literature on CNNs and RNNs

which have been successfully used to model spatial patterns [145, 57] and temporal dynam-

ics [144], including combinations of the two [113]. Our CNN differs slightly in terms of

convolutions that are adapted to our domain while, architecturally, our RNN is a standard

variety LSTM.

Our work also contributes to learning invariant representations in deep adversarial net-

works. Adversarial networks were introduced to effectively train complex generative mod-

els of images [50, 119, 22] where the adversary (discriminator) was introduced so as to

match generated samples with observed ones. The broader approach has since been adopted

as the training paradigm across a number of other tasks as well, from learning represen-

tations for semi-supervised learning [94], and modeling dynamic evolution [154, 118] to

inverse maps for inference [37, 38], and many others. Substantial work has also gone into

improving the stability of adversarial training [96, 10, 9].

On a technical level, our work is most related to adversarial architectures for domain

adaptation [46, 47, 150, 151]. Yet, there are key differences between our approach and the

above references, beyond the main application of sleep staging that we introduce. First, our

61



x

E

E(x)

F D

QF (y) QD(s)

Py(·|x)

(a) Model (Ideal Game)

x

E

E(x)

F D

QF (y) QD(s)

(b) Extended Game

Figure 3-1: Model and Extended Game. Dotted arrow indicates that the information does
not propagate back on this link.

goal is to remove conditional dependencies rather than making the representation domain

independent. Thus, unlike the above references which do not involve conditioning in the

adversary, our adversary takes the representation but is also conditioned on the predicted

label distribution. Second, our game theoretic setup controls the information flow differ-

ently, ensuring that only the representation encoder is modified based on the adversary

performance. Specifically, the predicted distribution over stages is strategically decoupled

from the adversary (conditioning is uni-directional). Third, we show that this new condi-

tioning guarantees an equilibrium solution that fully preserves the ability to predict sleep

staging while removing, conditionally, extraneous information specific to the individuals

or measurement conditions. Guarantees of this kind are particularly important for health-

care data where the measurements are noisy with a variety of dependencies that need to be

controlled.

Finally, our work is naturally also related to other non-adversarial literature on multi-

source domain adaptation [30, 88], and work on metrics for measuring distance between

distributions [13, 41].

3.3 Model

Let 𝑥 ∈ Ω𝑥 be an input sample, and 𝑦 ∈ {1, 2, ..., 𝑛𝑦} an output label. Let 𝑠 ∈ {1, 2, ..., 𝑛𝑠}
denote an auxiliary label that refers to the source of a specific input sample. We define
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𝑥 = [𝑥1, 𝑥2..., 𝑥𝑡] ∈ Ω𝑥 as the sequence of input samples from the beginning of time until

the current time 𝑡.

In the context of our application, the above notation translates into the following: The

input sample 𝑥 is a 30-second RF spectrogram, and the output label 𝑦 is a sleep stage that

takes one of four values: Awake, Light Sleep, Deep Sleep, or REM. The vector 𝑥 refers

to the sequence of RF spectrograms from the beginning of the night until the current time.

Since RF signals carry information about the subject and the measurement environment,

we assign each input 𝑥 an auxiliary label 𝑠 which identifies the subject-environment pair,

hereafter referred to as the source.

Our goal is to learn a latent representation (i.e., an encoder) that can be used to predict

label 𝑦; yet, we want this representation to generalize well to predict sleep stages for new

subjects without having labeled data from them. Simply making the representation invari-

ant to the source domains could hamper the accuracy of the predictive task. Instead we

would like to remove conditional dependencies between the representation and the source

domains.

We introduce a multi-domain adversarial model that achieves the above goal. Our

model is shown in Fig. 3-1a. It has three components: An encoder 𝐸, a label predictor

𝐹 , and a source discriminator 𝐷. Our model is set up as a game, where the representation

encoder plays a cooperative game with the label predictor to allow it to predict the correct

labels using the encoded representation. The encoder also plays a minimax game against

the source discriminator to prevent it from decoding the source label from the encoded

representation.

A key characteristic of our model is the conditioning of the source discriminator on

the label distribution, 𝑃𝑦(·|𝑥) (see Fig. 3-1a). This conditioning of the adversary allows

the learned representation to correlate with the domains, but only via the label distribution

–i.e., removes conditional dependencies between the representation and the sources.

The rest of this section is organized as follows. We first formally define three players

𝐸, 𝐹 , and 𝐷 and the representation invariance they are trained to achieve. In Sec. 3.3.1,

we analyze the game and prove that at equilibrium the encoder discards all extraneous

information about the source that is not beneficial for label prediction (i.e., predicting 𝑦).

63



Training the ideal model in Fig. 3-1a is challenging because it requires access to the label

distribution 𝑃𝑦(·|𝑥). To drive an efficient training algorithm, we define in Sec. 3.3.2 an

extended game where the source discriminator uses the output of the label predictor as

an approximation of the posterior probabilities, as shown in Fig. 3-1b. We prove that the

equilibriums of the original game are also equilibriums in the extended one.

Encoder 𝐸: An encoder 𝐸(·) : Ω𝑥 → Ω𝑧 is a function that takes a sequence of input

samples 𝑥, and returns a vector summary of 𝑥 as 𝑧 = 𝐸(𝑥).

Label Predictor 𝐹 : A label predictor 𝐹 (·) : Ω𝑧 → [0, 1]𝑛𝑦 takes a latent representa-

tion 𝐸(𝑥) as input and predicts the probability of each label 𝑦 associated with input 𝑥 as

𝑄𝐹 (𝑦|𝐸(𝑥)). The goal of an ideal predictor 𝐹 is to approximate 𝑃𝑦(·|𝑥) with 𝑄𝐹 (·|𝐸(𝑥)).

The loss of the label predictor, 𝐹 , given the encoder 𝐸, is defined as the cross-entropy

between the label distribution 𝑃𝑦(·|𝑥) and 𝑄𝐹 (·|𝐸(𝑥)):

ℒ𝑓 (𝐹 ;𝐸) = E𝑥,𝑦[− log𝑄𝐹 (𝑦|𝐸(𝑥))] (3.1)

During training, the encoder 𝐸 and predictor 𝐹 play a co-operative game to minimize the

label prediction loss.

Source Discriminator 𝐷: We define a source discriminator as 𝐷(·, ·) : Ω𝑧×[0, 1]𝑛𝑦 →
[0, 1]𝑛𝑠 . It takes the latent representation 𝐸(𝑥) and the label distribution 𝑃𝑦(·|𝑥) as inputs,

and predicts which source domain (i.e., subject and environment) they are sampled from as

𝑄𝐷(·|𝐸(𝑥), 𝑃𝑦(·|𝑥)).

Next, we define the desired representation invariance.

Definition 1 (Representation invariance). We say that representation 𝐸 is invariant if 𝐸(𝑥)

contains no information about 𝑠 beyond what is already contained in 𝑃𝑦(·|𝑥); that is,

𝑄𝐷(·|𝐸(𝑥), 𝑃𝑦(·|𝑥)) = 𝑄𝐷(·|𝑃𝑦(·|𝑥)) for the optimal 𝐷.

To measure the invariance of an encoder 𝐸, we define the loss of the source discrimi-

nator 𝐷 as the cross-entropy between 𝑃𝑠(·|𝑥) and 𝑄𝐷(·|𝐸(𝑥), 𝑃𝑦(·|𝑥)):

ℒ𝑑(𝐷;𝐸) = E𝑥,𝑠[− log𝑄𝐷(𝑠|𝐸(𝑥), 𝑃𝑦(·|𝑥))] (3.2)
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During training, encoder 𝐸 and discriminator 𝐷 play a minimax game: while 𝐷 is trained

to minimize the source prediction loss, encoder 𝐸 is trained to maximize it in order to

achieve the above invariance.

3.3.1 Ideal Game

During training, encoder 𝐸 plays a co-operative game with predictor 𝐹 , and a minimax

game with discriminator 𝐷. We define a value function of 𝐸, 𝐹 and 𝐷 with 𝜆 > 0:

𝒱(𝐸,𝐹,𝐷) = ℒ𝑓 (𝐹 ;𝐸)− 𝜆 · ℒ𝑑(𝐷;𝐸) (3.3)

The training procedure can be viewed as a three-player minimax game of 𝐸, 𝐹 and 𝐷:

min
𝐸

min
𝐹

max
𝐷
𝒱(𝐸,𝐹,𝐷) = min

𝐸,𝐹
max
𝐷
𝒱(𝐸,𝐹,𝐷) (3.4)

Proposition 2 (Optimal predictor). Given encoder 𝐸,

ℒ𝑓 (𝐸) , min
𝐹
ℒ𝑓 (𝐹 ;𝐸) ≥ 𝐻(𝑦|𝐸(𝑥)), (3.5)

where 𝐻(·) is entropy.

The optimal predictor 𝐹 * that achieves equality is:

𝑄𝐹 *(𝑦|𝐸(𝑥)) = 𝑝(𝑦|𝐸(𝑥)) (3.6)
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Proof.

ℒ𝑓 (𝐹 ;𝐸)

=E𝑥,𝑦[− log𝑄𝐹 (𝑦|𝐸(𝑥))]

=E𝐸(𝑥),𝑦[− log𝑄𝐹 (𝑦|𝐸(𝑥))]

=E𝑧∼𝑃 (𝐸(𝑥)) E𝑦∼𝑃 (𝑦|𝑧)[− log𝑄𝐹 (𝑦|𝑧)]

=E𝑧∼𝑃 (𝐸(𝑥))[𝐻(𝑦|𝑧) + 𝐷KL(𝑃 (𝑦|𝑧) ‖𝑄𝐹 (𝑦|𝑧))]

≥E𝑧∼𝑃 (𝐸(𝑥))[𝐻(𝑦|𝑧)]

=𝐻(𝑦|𝐸(𝑥))

The equality holds when 𝐷KL(𝑃 (𝑦|𝐸(𝑥)) ‖𝑄𝐹 (𝑦|𝐸(𝑥))) = 0 for almost every 𝑥 ∈ 𝑆𝑢𝑝𝑝(𝑃𝑥).

That is 𝑄𝐹 *(𝑦|𝐸(𝑥)) = 𝑝(𝑦|𝐸(𝑥)) for almost every 𝑦 and 𝑥 ∈ 𝑆𝑢𝑝𝑝(𝑃𝑥).

Similarly we can prove the following Proposition.

Proposition 3 (Optimal discriminator). Given encoder 𝐸,

ℒ𝑑(𝐸) , min
𝐷
ℒ𝑑(𝐷;𝐸) ≥ 𝐻(𝑠|𝐸(𝑥), 𝑃𝑦(·|𝑥)) (3.7)

The optimal discriminator 𝐷* that achieves this value is:

𝑄𝐷*(𝑠|𝐸(𝑥), 𝑃𝑦(·|𝑥)) = 𝑃 (𝑠|𝐸(𝑥), 𝑃𝑦(·|𝑥)) (3.8)

Corollary 3.1. 𝐻(𝑠) is an upper bound of the loss of the optimal discriminator 𝐷* for any

encoder 𝐸.

Next, we state the virtual training criterion of the encoder.

Proposition 4. If predictor 𝐹 and discriminator 𝐷 have enough capacity and are trained

to achieve their optimal losses, the minimax game (3.4) can be rewritten as the following

training procedure of encoder 𝐸:

min
𝐸

[𝐻(𝑦|𝐸(𝑥))− 𝜆 ·𝐻(𝑠|𝐸(𝑥), 𝑃𝑦(·|𝑥))] (3.9)
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Proof. Based on the losses of the optimal predictor 𝐹 * and the optimal discriminator 𝐷* in

Proposition 2 and Proposition 3, the minimax game (3.4) can be rewritten as (3.9). Thus,

encoder 𝐸 is trained to minimize a virtual training criterion 𝐶(𝐸) = 𝐻(𝑦|𝐸(𝑥)) − 𝜆 ·
𝐻(𝑠|𝐸(𝑥), 𝑃𝑦(·|𝑥)).

Next, we describe the optimal encoder.

Theorem 5 (Optimal encoder). If encoder 𝐸, predictor 𝐹 and discriminator 𝐷 have enough

capacity and are trained to reach optimum, any global optimal encoder 𝐸* has the follow-

ing properties:

𝐻(𝑦|𝐸*(𝑥)) = 𝐻(𝑦|𝑥) (3.10a)

𝐻(𝑠|𝐸*(𝑥), 𝑃𝑦(·|𝑥)) = 𝐻(𝑠|𝑃𝑦(·|𝑥)) (3.10b)

Proof. Since 𝐸(𝑥) is a function of 𝑥:

ℒ𝑓 (𝐸) = 𝐻(𝑦|𝐸(𝑥)) ≥ 𝐻(𝑦|𝑥) (3.11a)

ℒ𝑑(𝐸) = 𝐻(𝑠|𝐸(𝑥), 𝑃𝑦(·|𝑥)) ≤ 𝐻(𝑠|𝑃𝑦(·|𝑥)) (3.11b)

Hence, 𝐶(𝐸) = 𝐻(𝑦|𝐸(𝑥))− 𝜆 ·𝐻(𝑠|𝐸(𝑥), 𝑃𝑦(·|𝑥)) ≥ 𝐻(𝑦|𝑥)− 𝜆 ·𝐻(𝑠|𝑃𝑦(·|𝑥)). The

equality holds if and only if both (3.10a) and (3.10b) are satisfied. Therefore, we only need

to prove that the optimal value of 𝐶(𝐸) is equal to 𝐻(𝑦|𝑥)− 𝜆 ·𝐻(𝑠|𝑃𝑦(·|𝑥)) in order to

prove that any global encoder 𝐸* satisfies both (3.10a) and (3.10b).

We show that 𝐶(𝐸) can achieve 𝐻(𝑦|𝑥)−𝜆·𝐻(𝑠|𝑃𝑦(·|𝑥)) by considering the following

encoder 𝐸0: 𝐸0(𝑥) = 𝑃𝑦(·|𝑥). It can be examined that 𝐻(𝑦|𝐸0(𝑥)) = 𝐻(𝑦|𝑥) and

𝐻(𝑠|𝐸0(𝑥), 𝑃𝑦(·|𝑥)) = 𝐻(𝑠|𝑃𝑦(·|𝑥)).

Adversarial training of 𝐷 can be viewed as a regularizer, which leads to a common rep-

resentation space for multiple source domains. From Theorem 5, the optimal encoder 𝐸*

using adversarial training satisfies 𝐻(𝑦|𝐸*(𝑥)) = 𝐻(𝑦|𝑥), which is the maximal discrimi-

native capability that any encoder 𝐸 can achieve. Thus, we have the following corollary.
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Corollary 5.1. Adversarial training of the discriminator does not reduce the discriminative

capability of the representation.

Remark 5.1. During the proof of Theorem 5, we construct an encoder 𝐸0(𝑥) = 𝑃𝑦(·|𝑥)

that can achieve the optimal value of 𝐶(𝐸). However, we argue that training will not

converge to this trivial encoder in practice. This is because 𝑃𝑦(·|𝑥) is a mapping from the

full signal history to the distribution over stages at the current step, therefore itself highly

complex. Since we use the RNN state as the encoding 𝐸(𝑥), and it feeds into the LSTM

gates, distribution over stages at previous step does not represent a sufficient summary of

the history until the current one. Therefore, 𝐸(𝑥) must be able to anticipate the temporal

evolution of the signal and contain a more effective summary than 𝑃𝑦(·|𝑥) would be.

Corollary 5.2. If encoder 𝐸 and predictor 𝐹 have enough capacity and are trained to

reach optimum, the output of 𝐹 is equal to 𝑃𝑦(·|𝑥).

Proof. When predictor 𝐹 is optimal (Proposition 2), 𝑄𝐹 (𝑦|𝐸(𝑥)) = 𝑝(𝑦|𝐸(𝑥)). When 𝐸

is optimal (Theorem 5), 𝐻(𝑦|𝐸(𝑥)) = 𝐻(𝑦|𝑥), that is 𝑝(𝑦|𝐸(𝑥)) = 𝑝(𝑦|𝑥). Therefore,

𝑄𝐹 (𝑦|𝐸(𝑥)) = 𝑝(𝑦|𝑥).

3.3.2 Extended Game

In practice, estimating the posterior label distribution 𝑃𝑦(·|𝑥) from labeled data is a non-

trivial task. Fortunately however our predictor 𝐹 and encoder 𝐸 are playing a cooperative

game to approximate this posterior label distribution 𝑃𝑦(·|𝑥) with 𝑄𝐹 (·|𝐸(𝑥)). Therefore,

we use 𝑄𝐹 (·|𝐸(𝑥)), the output of predictor 𝐹 , as a proxy of 𝑃𝑦(·|𝑥) and feed it as input to

discriminator 𝐷 (Fig. 3-1b).

An extended three-player game arises: while encoder 𝐸 still plays a cooperative game

with predictor 𝐹 and a minimax game with discriminator 𝐷, discriminator 𝐷 depends

strategically on predictor 𝐹 but not vice versa. The dotted line in Fig. 3-1b illustrates this

dependency.

The relationship between the ideal minimax game (Sec. 3.3.1) and the extended one is

stated below.
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Algorithm 1 Encoder, predictor and discriminator training

Input: Labeled data {(𝑥𝑖, 𝑦𝑖, 𝑠𝑖)}𝑀𝑖=1, learning rate 𝜂.
Compute stop criterion for inner loop: 𝛿𝑑 ← 𝐻(𝑠)
for number of training iterations do

Sample a mini-batch of training data {(𝑥𝑖, 𝑦𝑖, 𝑠𝑖)}𝑚𝑖=1

ℒ𝑖
𝑓 ← − log𝑄𝐹 (𝑦𝑖|𝐸(𝑥𝑖))

𝑤𝑖 ← 𝑄𝐹 (·|𝐸(𝑥𝑖)) I stop gradient along this link
ℒ𝑖𝑑 ← − log𝑄𝐷(𝑠𝑖|𝐸(𝑥𝑖),𝑤𝑖)

𝒱 𝑖 = ℒ𝑖𝑓 − 𝜆 · ℒ𝑖𝑑
Update encoder 𝐸:

𝜃𝑒 ← 𝜃𝑒 − 𝜂𝑒∇𝜃𝑒
1
𝑚

∑︀𝑚
𝑖=1 𝒱 𝑖

Update predictor 𝐹 :
𝜃𝑓 ← 𝜃𝑓 − 𝜂𝑓∇𝜃𝑓

1
𝑚

∑︀𝑚
𝑖=1 𝒱 𝑖

repeat
Update discriminator 𝐷:

𝜃𝑑 ← 𝜃𝑑 + 𝜂𝑑∇𝜃𝑑
1
𝑚

∑︀𝑚
𝑖=1 𝒱 𝑖

until 1
𝑚

∑︀𝑚
𝑖=1 ℒ𝑖

𝑑 ≤ 𝛿𝑑
end for

Proposition 6. If encoder 𝐸, predictor 𝐹 and discriminator 𝐷 have enough capacity, the

solution that encompasses the optimal encoder, 𝐸*, predictor, 𝐹 * and discriminator, 𝐷*, in

the ideal minimax game is also an equilibrium solution of the extended game.

Proof. By Corollary 5.2, when encoder 𝐸 and predictor 𝐹 are optimal, 𝑄𝐹 (·|𝐸(𝑥)) is

equal to 𝑃𝑦(·|𝑥). Thus, the extended game becomes equivalent to the ideal game, and 𝐸*,

𝐹 * and 𝐷* is an equilibrium solution of both games.

3.3.3 Training Algorithm

We implement the extended three-player game with iterative updates of the players (Al-

gorithm 1). Note that, since the output of the label predictor is a proxy of the underlying

posterior, and since the source discriminator depends strategically on the predictor but not

vice versa, the gradient does not back-propagate from the discriminator to the predictor

(i.e., the dotted link in Fig. 3-1b).

The number of training steps in the inner loop usually needs to be carefully chosen [50].

A large number of steps is computationally inefficient but a small one will cause the model

to collapse. This is because the outer players, 𝐸 and 𝐹 , can be over-trained against a non-
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optimal inner player 𝐷, and they will try to maximize ℒ𝑑 at the cost of increasing ℒ𝑓 . To

prevent the model collapse phenomenon, we use an adaptive number of training steps in

the inner loop and adjust it dynamically based on ℒ𝑑 (Algorithm 1). The idea is to use the

upper bound in Corollary 3.1 as the stopping criterion for the inner loop.

3.3.4 Discussion of the Model Benefits

While we described our model in the context of sleep staging, we believe the model can be

applied more broadly. Our model is characterized by the 3-way game and the adversarial

conditioning on the label distribution. This combination yields the following benefits: 1)

It guarantees an equilibrium solution that fully preserves the ability to perform the pre-

dictive task while removing any distracting information specific to the source domains.

Guarantees of this kind are particularly important in healthcare where the measurements

are noisy and have a variety of dependencies that need to be controlled. 2) It allows to

properly leverage the adversarial feedback even when the target labels are uncertain. For

example, in the sleep staging problem, each 30-second window is given one label. Yet,

many such windows include transitions between sleep stages, e.g., a transition from light

to deep sleep. These transitions are gradual and hence the transition windows can be intrin-

sically different from both light and deep sleep. It would be desirable to have the learned

representation capture the concept of transition and make it invariant to the source (see the

results in Sec. 3.4.5). 3) It allows the conditioning to remain available for additional guid-

ing of representations based on unlabeled data. The model can incorporate unlabeled data

for either semi-supervised learning or transductive learning within a unified framework.

3.4 Experiments

In this section, we empirically evaluate our model.
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3.4.1 RF-Sleep Dataset

RF-Sleep is a dataset of RF measurements during sleep with corresponding sleep stage

labels. All studies that involve human subjects were approved by our IRB.

Study setup: The sleep studies are done in the bedroom of each subject. We install a

radio device in the bedroom. It transmits RF signals and measure their reflections while the

subject is sleeping alone in the bed.

Ground truth: During the study, each subject sleeps with an FDA-approved EEG-

based sleep monitor [115], which collects 3-channel frontal EEG. The monitor labels every

30-second of sleep with the subject’s sleep stage. This system has human-level comparable

accuracy [115], and has already been used in several sleep studies[90, 127].

Size of dataset: The dataset collects 100 nights of sleep from 25 young healthy subjects

(40% females). It contains over 90k 30-second epochs of RF measurements and their

corresponding sleep stages provided by the EEG-based sleep monitor. Each epochs has

one of four labels Awake, REM, Light Sleep (N1 or N2) and Deep Sleep (N3).

3.4.2 Parameterization

We parameterize encoder 𝐸, predictor 𝐹 and discriminator 𝐷 as neural networks. En-

coder 𝐸 is parameterized by a hybrid CNN-RNN model. We adapt a residual networks

architecture [57] with 24 convolutional layers to extract features from each 30-second RF

spectrogram, and an RNN with LSTM cell [59] that takes sequences of CNN features as

input. Both predictor 𝐹 and discriminator 𝐷 are parameterized by networks with two fully-

connected layers.

3.4.3 Classification Results

We evaluate the model on every subject while training on the data collected from the other

subjects (i.e., the model is never trained on data from the test subject). The training data is

randomly split into a training set and validation set (75%/25%).

We use two metrics commonly used in automated sleep staging, namely Accuracy and

Cohen’s Kappa. While accuracy measures the percent agreement with ground truth, Co-
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hen’s Kappa coefficient 𝜅 [27] takes into account the possibility of the agreement occurring

by chance and is usually a more robust metric. 𝜅 > 0.4, 𝜅 > 0.6, 𝜅 > 0.8 are considered

to be moderate, substantial and almost perfect agreement [77].

Table 3.2: Sleep Stage Classification Accuracy and Kappa

Approach Accuracy 𝜅
Tataraidze et al. [147] 0.635 0.49
Zaffaron et al. [174] 0.641 0.45

Ours 0.798 0.70
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Figure 3-2: Fig. 3-2a shows that our model can distinguish deep and light sleep with high
accuracy. And Fig. 3-2b illustrates that our model works well for different subjects and
environments.

Table 3.2 shows the accuracy and Cohen’s Kappa of our model compared to the state-

of-the-art in classifying sleep stages using RF reflections. Since neither the dataset nor the

code used in past papers is publicly available, we compare with their published results. We

note however that the Cohen’s Kappa provides some normalization since it accounts for

the underlying uncertainty in the data. The table shows that our model has an accuracy of

79.8% and a 𝜅 = 0.70, which significantly outperforms past solutions.

Fig. 3-2a shows the confusion matrix of our model. Fig. 3-2b also shows the accuracy

on each subject. It has a standard deviation of 2.9%, suggesting that our model is capable

of adapting to different subjects and environments.
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Figure 3-3: Three examples of full night predictions corresponding to the average, best and
worst classification accuracy.

Finally, we show in Fig. 3-3 the full-night predictions along with the ground truth for

the average, best, and worst classification accuracy.

3.4.4 Understanding the Role of CNN & RNN

We analyze the role of CNN and RNN in predicting sleep stages. To do so, we use t-SNE

embedding [92] to visualize the response of our network after CNN and RNN, respectively.

Fig. 3-4 shows the visualization results from one of the subjects. Data points are randomly

sub-sampled for better viewing. The result shows that the CNN succeeds at separating the

Wake, REM from Light and Deep Sleep. However it fails at separate Light Sleep and Deep
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Figure 3-4: Visualizations of the CNN and RNN responses. CNN can separate Wake REM
and from the other stages, yet Deep and Light Sleep can only be distinguished by RNN.

Source Loss Test Loss

0 2000 4000 6000 0 2000 4000 6000

0.8

1.0

1.2

1.4

1

2

w/o Adversary      w/ Adversary

Figure 3-5: Baseline model and ours are evaluated on same dataset. A higher source loss
indicates the removal of source specific information, and a lower test loss shows that the
proposed setup can better avoid overfitting.

Sleep from each other. In contrast, Light Sleep and Deep Sleep form different clusters in

the RNN response. These results demonstrate the role of CNN and RNN in our model:

CNN learns stage-specific features that can distinguish Wake, REM and from Deep and

Light Sleep. RNN captures the dynamics of those features to further determine whether the

sleep is light or deep. Note that Light and Deep Sleep are more similar to each other and

are typically referred to as NREM, i.e., non-REM.

We have trained a similar model without the RNN layer on top of CNN. In this case,

the overall accuracy decreases by 12.8%, specifically the precision light and deep sleep

decreases by 23.5%. This suggests that there are stage-specific information embedded

in the temporal dynamics of the RF measurements, and therefore can only be captured
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Figure 3-6: Visualization of learned latent representations from two sources. Data-points
are separated when no adversary, yet they are well aligned by proposed setup.
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Figure 3-7: Visualization of fine-grained alignment on test data. Our model, which condi-
tions the adversary on the posterior distribution, not only aligns deep and light stages, but
also aligns the transition periods, which are not directly specified by the labels.

and exploited with RNN. Moreover, these temporal dynamics are particularly crucial for

distinguishing light and deep sleep. Indeed, there are known temporal patterns that govern

the progression of light and deep sleep through the night [16]. For example, the probability

of being in deep sleep decreases as sleep progresses. Also, people usually need to go

through light sleep before they can get into deep sleep. Moreover, people tend to have

less body movements during deep sleep. These temporal dynamics of sleep stages can be

captured by RNN and might be exploited to distinguish light and deep sleep.

To illustrate those patterns, we segment each night into several stable NREM periods

with requirement that all periods should be longer than 30𝑚𝑖𝑛 and do not contain more than

2𝑚𝑖𝑛 of continuous REM/Awake epochs, and then we calculate the occurrence likelihood
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Third Stable NREM Fourth Stable NREM

First Stable NREM Second Stable NREM

Awake  REM  Light  Deep

Figure 3-8: The x-axis is time normalized over one night of sleep from 0% to 100%, and
the height of each region shows its likelihood of its occurrence. The figure shows that deep
sleep is more likely to happen in the first half of the night, and is surrounded by light sleep.

of each stage based on our dataset. As shown in Figure 3-8, likelihood of deep sleep reaches

its maximum in the middle of each stable NREM period, and is decreasing with respect to

time. Also the figure shows that there are more movements during the light sleep period.

On average, people move about 90𝑠𝑒𝑐/ℎ during the light sleep stage, but only 24𝑠𝑒𝑐/ℎ

during the deep sleep stage. So if the person moves frequently, he or she is less likely to be

in deep sleep.

It is worth noticing that two types of awake epochs: before sleep and during the sleep.

In CNN they are mixed together, in contrast, the first type of wake is separated far away

from others by RNN, because it is a common pattern that it takes a while for people to go

sleep after they turn off the light.

3.4.5 Role of Our Adversarial Discriminator

We evaluate the role of our adversarial discriminator in learning transferable features for

predicting sleep stages. We first look at the losses on the validation set as training pro-

gresses to check whether the extraneous information specific to the individuals and envi-

ronments can be removed. As a baseline, we compare with a version of our model without

the source discriminator. For this baseline, we train a (non-adversarial) discriminator to

76



determine the source of features. Fig. 3-5 shows that the loss of the source discrimina-

tor in the baseline model decreases very quickly while ours stays high (upper bounded by

𝐻(𝑠) = 2.81 in this case), suggesting that our learned representation is invariant across

sources. The figure also shows that adding an adversarial discriminator increases the per-

formance on the test set and can be helpful in reducing over-fitting.

To check that our adversarial model has learned transferable features, we visualize the

learned features 𝐸(𝑥) on the test data for both models. Color-coding the sources, Fig. 3-

6 shows that our learned features have almost the same distribution on different sources,

while the baseline model learns features that are separable.

Next, we illustrate the benefits of conditioning on the posterior distribution, and that it

can recover underlying concepts not specified in the labels. We consider the learned fea-

tures for transition periods between light and deep sleep, which might be a class that is

different from both light and deep sleep. We define transition periods as epochs that have

both light and deep sleep as neighbors. We visualize it with a different color. Color-coding

stages and shape-coding sources, Fig. 3-7 shows the learned features from transition peri-

ods are segregated, as those from light sleep and deep sleep. This indicates that our learned

features have recovered the concept of a transition period, which is helpful in understanding

and predicting sleep stages.

3.5 Conclusion

This chapter introduces RF-Sleep, a new predictive model that learns sleep stages from

RF signals and achieves a significant improvement over the state-of-the-art. We believe

this work marks an important step in sleep monitoring. We also believe that the proposed

adversarial setup, which extracts task-specific domain-invariant features, is applicable to

other predictive tasks, particularly in health sensing where variations across subjects and

measurement conditions could be a major challenge.
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Chapter 4

Extracting Multi-Person Respiration

4.1 Introduction

Breathing is an important health metric used for tracking diseases in many areas, such as

sleep [106, 140], pulmonology [117], and cardiology [19, 171]. It can also provide useful

insights about the psychological state of an individual [79, 76]. Respiration monitoring

during sleep is particularly useful. For example, as explained in Chapter 3, the respira-

tion signal can be used to infer the person’s sleep stages (light, deep or REM sleep), and

diagnose sleep disorders [14, 43]. Monitoring can also be used to track sleep disturbed

breathing which has been associated with cardiac arrest in heart failure patients [170, 101].

Furthermore, respiration monitoring is important for diagnosing and tracking sleep apnea,

a condition in which the person stops breathing for short intervals during the night [16].

Traditional approaches for respiration monitoring are relatively cumbersome. They

require the person to wear a breathing belt and/or a nasal probe and sleep with it. How-

ever, recent advances in RF-based sensing have demonstrated the possibility of monitoring

breathing without any sensor on the person’s body [120, 5]. Such systems transmit a low

power wireless signal and capture its reflections. The signal bounces off the people in the

environment and gets modulated by their breathing. The receiver uses the reflected signal

to track the person’s breathing without any sensors on the body.

However, past work on RF-based respiration monitoring requires monitored people to

be located away from each other. This requirement precludes respiration monitoring during
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sleep for people who share the same bed. Hence, it prevents a large fraction of the popu-

lation benefiting from such technology including couples that share the same bed, and new

mothers who sleep with their infants.

Tracking respiration when people are next to each other is a difficult problem. RF

reflections off two bodies super-impose (i.e. add up) over the wireless medium and in-

terfere at the receiver. For relatively distant people, one can use antenna arrays and/or

Frequency-Modulated Continuous Wave (FMCW) radios [93] to zoom in on the location

of a particular individual and receive the signal reflected off his/her body with limited to

no interference. However, as people get closer, interference becomes too high. Hence,

even systems that combine antenna arrays and FMCW still require a minimum separation

of 1.5 to 2 meters [5]. Fundamentally, today there is no solution that can disentangle mixed

RF-based breathing signals. Hence, all systems require a minimum distance between mon-

itored users.

This chapter introduces DeepBreath, the first system that disentangles mixed RF-based

breathing signals. DeepBreath can monitor the respiration signals of multiple people even

if they have zero distance between them. It also provides continuous monitoring throughout

the night for people who share the same bed.

The design of DeepBreath combines three components as described below.

(a) Breathing Separation: DeepBreath has a breathing separation module that recon-

structs the correct breathing signals of multiple co-located individuals. To design this

component, we first model how RF-based breathing signals mix over the wireless medium.

We show that the mixing is complicated by changes in the wireless channels due to move-

ments. We present an approximation that allows us to formulate the problem as blind source

separation and solve it using independent component analysis (ICA). Given this new for-

mulation, DeepBreath uses an FMCW radio equipped with an antenna array to zoom in on

RF signals from different locations in space. It calls those RF signals observations. Deep-

Breath uses its formulation of the mixing process to recover the original breathing signals

from such observations using ICA.

(b) Motion Detection: When people move, their location changes and the contribution

of their breathing to each observation changes. Hence the mapping from observations to
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original breathing signals has to be recomputed. Note that even a small motion – such as

turning in bed – changes the mapping. Thus, DeepBreath has to automatically detect such

movements and run its breathing separation module on each stable period separately. To

detect motion reliably DeepBreath uses a convolutional neural network that is trained to

identify movements of the monitored people and ignore irrelevant motion, e.g, a fan or the

HVAC (Heating, ventilation and air conditioning).

(c) Identity Matching: For continuous monitoring, a night of sleep has to be segmented

into multiple periods of stable breathing with no motion. Yet, when running ICA on each

such period, the recovered breathing signals can be permuted in the output. For example,

say there are 2 people in the environment. During the first period, the first ICA component

may refer to the first person’s breathing and the second component to the second person’s

breathing. However, in the next period, the situation may flip. How do we identify the ICA

components that correspond to the breathing of the same individual in different periods?

We formulate this problem as an optimization problem, where the solution maximizes

a similarity metric between the person’s breathing signals across different periods. We

solve this optimization using dynamic programming. The final solution provides a robust

system that disentangles the breathing signals of multiple people and delivers continuous

respiration monitoring throughout the night.

We have implemented DeepBreath and evaluated it with 13 couples.1 The couples sleep

in the same bed, with the bed size ranging from twin (1m wide) to king (2m). To obtain

ground truth breathing, each subject sleeps with an FDA-approved respiration monitoring

belt [138]. In total, we have collected 21 nights of sleep, and 151 hours of data. To

measure the accuracy of the reconstructed breathing signal, we compute its correlation

with the ground truth signal from the respiration belt. Note that the correlation between

two breathing belts on the same subject, one on the chest and one on the belly is around

0.915. Thus a comparable correlation value indicates a high accuracy of the recovered

breathing signals.

Our experiments show that DeepBreath recovers the breathing signals of couples shar-

ing the bed with high accuracy. Specifically, the recovered breathing signal has an average

1All experiments are approved by our IRB.

81



correlation of 0.914 with the breathing belt signal measured on the subject’s chest. Deep-

Breath also recovers the breathing rates of the monitored subjects with an average error as

small as 0.140 breaths per minute.2

Further, DeepBreath scales beyond two people. We conduct experiments with 5 sub-

jects sitting shoulder-to-shoulder on one couch. DeepBreath can recover the breathing sig-

nals of all 5 subjects with an average correlation of 0.922 with the ground truth breathing

signals.

To the best of our knowledge, DeepBreath is the first system that recovers the detailed

respiration signals of multiple people sharing the bed or sitting with zero separation. This

result renders much recent research using RF signals to monitor respiration, sleep, and ap-

nea applicable to a significantly larger segment of the population including couples sharing

the same bed and recent mothers sleeping with their babies.

4.2 Illustrative Example

Loc. 1 Loc. 2

RF Reflections

Lo
c.

 1
Lo

c.
 2

Ground Truth
Lo

c.
 1

Lo
c.

 2

Person 1 

Person 2

Pe
rs

on
 1

Pe
rs

on
 2

Device

Figure 4-1: A scenario of two people sharing a bed. Loc. 1 and Loc. 2 represent the
locations of Person 1 and Person 2’s bodies. During this moment, both Person 1 and Person
2 are breathing normally, yet the reflected signal from Loc. 2 indicates Person 2 has an
apnea event.

Consider a scenario in which a couple shares the bed. Let us examine the accuracy

of monitoring their breathing using the state of the art RF techniques. To do so, we use

an FMCW radio equipped with an antenna array as in [5]. Such a radio divides the space

2Average breathing rate of all the subjects is 15.68 breaths per minute, with a standard deviation of 2.18
breaths per minute. So our system’s breathing rate percentage error is 0.89%.
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Fourier Transform Window

(a) Two sine waves with different frequency (b) Windowed Fourier Transform result

Figure 4-2: A sinc example. Fig. 4-2a shows two sine waves with slightly different fre-
quency. The black box on top of the signals indicates the Fourier Transform window.
Fig. 4-2b shows the result of the Fourier Transform. Two signals are sincs in frequency
domain, and when the frequencies of the signals are similar, their sincs are close to each
other.

into voxels, and separates RF signals received from different spatial voxels. We deploy the

radio in the couple’s bedroom as shown in the first column in Fig. 4-1. We also ask both

subjects to wear respiration belts to obtain their ground truth breathing.

We measure the exact location of both subjects with respect to the radio using the Bosch

GLM50 laser distance measurement tool [29]. We then make the FMCW radio and antenna

array zoom in on the two voxels in space that are centered on the chest of each subject. This

gives us the best estimates of the subjects’ breathing signals based on past work, under the

assumption that past work is able to perfectly localize the subjects. We plot those RF

signals in the middle column in Fig. 4-1. The figure shows that by looking at RF reflections

from the two subjects, it seems that person 2 has experienced an apnea event – i.e., a period

during which he did not breath.

Now let us look at the actual breathing signals from the two belts on the subjects, which

we show in the third column in Fig. 4-1. The ground truth shows that both subjects have

regular breathing and neither of them had an apnea event, which contradicts the behavior

shown in the RF signals reflected off their chests. This can lead to serious errors in reporting

a person’s health condition.

This experiment shows that even if one zooms in on the signal from the exact location

of the person’s chest, one cannot eliminate the effect of the signal reflected off a nearby

person. The reason we cannot completely separate the two signals is that antenna arrays

and FMCW are filters over space. However, no filter is perfect. In particular, both antenna
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arrays and FMCW filter signals using the Fourier transform [93, 4]. Since the Fourier

transform is applied over a finite window, it will result in a sinc in the frequency domain.

This causes nearby signals to mix with each other due to the sinc tail, as shown in Fig. 4-2.

The closer the two people are, the closer the frequency response after taking the Fourier

Transform, and the more the corresponding sinc functions leak into each other.3

4.3 Related Work

DeepBreath is related to past work on RF-based sensing and the general literature on blind

source separation.

4.3.1 RF-Based Sensing

Recent years have witnessed much interest in using RF signals to monitor people’s move-

ments and vital signs without any on-body sensors. Researchers have developed systems

that transmit low power RF signal and monitor its reflections. They used these reflections

to infer a person’s location [4, 75], breathing [5, 26, 155], heart rate [5, 26] and even emo-

tions [177].

DeepBreath is closest to past work that uses RF signals to monitor breathing. Studies

using Doppler Radio [120], FMCW [5, 62, 179], millimeter waves [168, 26], and WiFi

signals [155, 87] all demonstrate accurate monitoring of a single person’s breathing. Res-

piration monitoring using radio signal is also closely related to monitoring breathing using

acoustic signals, which tends to use FMCW techniques and demonstrates good accuracy

for a single person [102, 149]. Further, some recent papers demonstrate that the breath-

ing signal extracted from RF can be used to infer additional health metrics [177, 126]. In

particular, a larger number of papers use the breathing extracted from RF to monitor sleep

quality, track insomnia, and infer sleep stages (Chapter 3).

A key challenge in passive wireless monitoring is the interference between different

3Note that leakage through the sinc tail occurs even when two objects are separated by a distance larger
than the resolution of the antenna array or the FMCW radio. Said differently, the resolution of antenna array
or FMCW radio identifies the minimum distance for two objects to be both detectable (but it does not mean
that their reflections are completely separated.)
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people. RF signals reflect off all people in the environment. Those reflections super-impose

over the wireless medium and add-up in the received signal. To avoid this problem, much

of the past work assumes a single person in the environment [177, 4, 179]. Papers that

show results for multiple users require people to have a minimum separation of 1.5 to 2

meters [5, 62, 168]. Having a minimum separation between subjects reduces the mixing

between the RF signals reflected off their bodies, and allows the receiver to zoom in on each

individual using techniques like FMCW and antenna arrays. The need for such minimum

separation prevents past work from monitoring users sitting next to each other or sleeping

in the same bed.

The only past studies, that we know of, that report breathing results for users in the

same bed are [155] and [102]. The former requires the users to lie in a specific position

and have significantly different breathing rates. The latter uses audio signals as opposed to

RF signals, and hence is vulnerable to environmental audio sources and is affected by thick

comforters and clothes. Furthermore, both studies only report the breathing rate, which is

an average value over a long interval. Recovering the exact details of the breathing signal

is a much more demanding task.

More fundamentally, all past work relies on the existence of good RF/audio signals

that do not suffer from interference and mixing, and no past work can disentangle mul-

tiple breathing signals when they are mixed together. In contrast, by modeling different

reflections of FMCW as linear combinations of breathing signals, and applying indepen-

dent component analysis, our system can disentangle breathing signals from mixtures of

such signals. Hence, it can accurately monitor multiple users’ respiration signals without a

minimum separation requirement.

4.3.2 Blind Source Separation and ICA

DeepBreath leverages the literature on blind source separation (BSS) [25]. The problem

is defined as the recovery of a set of source signals from a set of mixture signals, without

knowing the properties of the original sources or how they are mixed together. If the sources

are independent and have non-Gaussian distributions, and the mixing is linear, then one can
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use independent component analysis (ICA) to recover the source signals from the mixture

signals. ICA recovers the original sources by maximizing the statistical independence of

the estimated components in the mixtures [64, 65].

ICA has been used in many domains including speech and image processing, text min-

ing, financial data processing, communication systems, and EEG processing [146, 125,

142, 100, 109, 35]. In this chapter, we extend the applications of ICA to include the recov-

ery of the breathing signals of collocated individuals.

4.4 Modeling Mixtures of RF-Based Breathing Signals

In this section, we discuss how to separate mixtures of RF breathing signals.

4.4.1 Primer

Breathing signals have a variety of patterns that are unpredictable in advance, and the re-

sults of multiple people breathing in an environment are seen in a combined form in the

observed RF signals. Identifying the individual breathing signals from the combined RF

signals falls under the broad framework of Blind Source Separation. A common example

of such blind source separation is the cocktail party problem, where the audio signals from

multiple speakers are combined in the environment, and the goal is to separate the audio

signals corresponding to each individual speakers. In the particular case that the sources are

independent, non-Gaussian, and combine linearly, we can perform Blind Source Separation

efficiently using a technique called Independent Component Analysis (ICA).

Traditionally, ICA is defined as follows: Let there be 𝑁 independent time varying

sources, 𝑠𝑖(𝑡), 𝑖 = 1 . . . 𝑁 , and 𝑀 different observations, 𝑥𝑖(𝑡), 𝑖 = 1 . . .𝑀 . For 𝑇 time

units (𝑡 = 1 . . . 𝑇 ), we can define the source signals as a 𝑁 × 𝑇 matrix,

𝑆𝑁×𝑇 =

⎡⎢⎢⎢⎣
𝑠11 𝑠12 . . .
... . . .

𝑠𝑁1 𝑠𝑁𝑇

⎤⎥⎥⎥⎦
and the observations as a 𝑀 × 𝑇 matrix,
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𝑋𝑀×𝑇 =

⎡⎢⎢⎢⎣
𝑥11 𝑥12 . . .

... . . .

𝑥𝑀1 𝑠𝑀𝑇

⎤⎥⎥⎥⎦
The observations 𝑋 are produced by the sources 𝑆 combining via a mixing matrix

𝑊𝑀×𝑁 , such that we can write:

𝑋𝑀×𝑇 = 𝑊𝑀×𝑁 × 𝑆𝑁×𝑇 (4.1)

The goal of ICA is to recover the sources 𝑆 and the mixing matrix 𝑊 given only the

observations 𝑋 , provided the sources are independent and non-Gaussian.

4.4.2 The Challenge in Applying ICA to RF Breathing

At first blush, it might seem that applying ICA to recover mixed breathing signals is sim-

ple. The RF signals reflected off people’s bodies add up linearly over the wireless medium.

Further, the breathing signals of different subjects are generally independent and not Gaus-

sian.4 The problem, however, is that Eq. 4.1 assumes that the mixing matrix 𝑊 is the same

at every time instance. ICA leverages the distribution of the sources during the period 𝑇

to impose additional constraints to solve the problem. Unfortunately, this assumption does

not hold for our problem.

In our problem, the sources are the RF signals reflected off each person’s torso. At any

point in time, antennas on the radio receive linear mixtures of these reflections. The mixing

coefficients, 𝑊 , are the wireless channels from the torso of each person to each antenna.

When the person breathes, his/her torso moves. As a result, the channels change and the

mixing coefficients are no longer constant. This means that there is not a single mixing

matrix that can be used independent of time in Eq. 4.1.

In the remaining parts of this section, we describe the mathematical structure of the RF

signal, how the signal changes with multiple reflectors, and how we can reformulate the

mixing problem to allow source identification using ICA.

4In the evaluation section, we show the distribution of a person’s breathing signal.
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Figure 4-3: Transmitted and received FMCW signal. The red line is the transmitted signal,
and the blue line is the received signal reflected by a single reflector. FMCW operates by
transmitting a sequence of sweeps, and comparing the frequency difference between the
transmitted signal and received signal.

4.4.3 FMCW with a single reflector

We will analyze RF reflections assuming a Frequency-Modulated Carrier Waves (FMCW)

radio, which is widely used in the literature [5, 62, 179]. FMCW operates by transmitting

a sequence of sweeps. During each sweep, the frequency of the transmitted signal changes

linearly with time, as illustrated by the red lines in Fig. 4-3. The human body reflects

the signal back. The reflected signal, depicted in blue, is a time-shifted version of the

transmitted sweep, where the shift is equal to the time it takes the signal to travel to the

reflector and back to the radio. Because the duration of each sweep is usually very short

(∼ 0.1𝑚𝑠), we assume the reflector does not move within each sweep. For a single reflector

at distance 𝑑(𝑡) during the 𝑡𝑡ℎ sweep, the signal’s time-in-flight is 𝜏(𝑑(𝑡)) = 2𝑑(𝑡)/𝐶,

where 𝐶 is the speed of light. In this case, the received FMCW signal within the 𝑡𝑡ℎ sweep

can be written in the time domain as [112]:

𝑚(𝑑(𝑡), 𝑢) = 𝐴𝑒𝑗2𝜋(𝐹0𝜏(𝑑(𝑡))+𝐾𝑠𝜏(𝑑(𝑡))𝑢−1/2𝐾𝑠𝜏2(𝑑(𝑡))), 𝑢 ∈ [0, 𝑇𝑠], (4.2)

where 𝐴 is the amplitude of the received signal, 𝐹0 is the smallest frequency in the sweep,

𝑇𝑠 is the sweeping period, and 𝐾𝑠 = 𝐵𝑤/𝑇𝑠 is sweeping rate defined as the swept band-

width divided by the sweeping time. For convenience, we also define the following quanti-

ties: carrier-to-bandwidth ratio 𝑅 = 𝐹0/𝐵𝑤, and resolution 𝑈 = 𝐶/2𝐵𝑤.

In order to compute the frequency response of this time domain signal, we can compute
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the Fourier Transform of the signal within each sweep.

For simplification, we use 𝑑 to denote 𝑑(𝑡). Recall inside each sweep 𝑢 ∈ [0, 𝑇𝑠], with

a reflector at distance 𝑑, the received FMCW signal can be written as:

𝑚(𝑑, 𝑢) = 𝐴𝑒𝑗2𝜋(𝐹0𝜏(𝑑)+𝐾𝑠𝜏(𝑑)𝑢−1/2𝐾𝑠𝜏(𝑑)2), 𝑢 ∈ [0, 𝑇𝑠], (4.3)

Because the signal travels with the speed of light, 𝜏(𝑑)2 is a small amount and can be

ignored. Then we have:

𝑚(𝑑, 𝑢) ≈ 𝐴𝑒𝑗2𝜋(𝐹0𝜏(𝑑)+𝐾𝑠𝜏(𝑑)𝑢), 𝑢 ∈ [0, 𝑇𝑠] (4.4)

Next we compute the frequency response of 𝑚(𝑑, 𝑢) at frequency 𝑓 by applying continuous

Fourier Transform.

𝑙(𝑑, 𝑓) =

∫︁ 𝑇𝑠

0

𝑚(𝑑, 𝑢)𝑒−𝑗2𝜋𝑓𝑢𝑑𝑢 = 𝐴𝑒𝑗2𝜋𝐹0𝜏(𝑑)

∫︁ 𝑇𝑠

0

𝑒𝑗2𝜋(𝐾𝑠𝜏(𝑑)+𝑓)𝑢𝑑𝑢 (4.5)

Define 𝑣(𝑑, 𝑓) , 𝑇𝑠(𝐾𝑠𝜏(𝑑) + 𝑓) = 𝑑/𝑈 + 𝑇𝑠𝑓 , then we have:

𝑙(𝑑, 𝑓) = 𝐴𝑒𝑗2𝜋𝐹0𝜏(𝑑)

∫︁ 𝑇𝑠

0

𝑒𝑗2𝜋𝑣(𝑑,𝑓)𝑢/𝑇𝑠𝑑𝑢

= 𝐴𝑒𝑗2𝜋𝐹0𝜏(𝑑)
𝑒𝑗2𝜋𝑣(𝑑,𝑓)𝑢/𝑇𝑠

⃒⃒
𝑇𝑠
− 𝑒𝑗2𝜋𝑣(𝑑,𝑓)𝑢/𝑇𝑠

⃒⃒
0

𝑗2𝜋𝑣(𝑑, 𝑓)/𝑇𝑠

= 𝐴𝑇𝑠𝑒
𝑗2𝜋𝐹0𝜏(𝑑)

𝑒𝑗2𝜋𝑣(𝑑,𝑓) − 1

𝑗2𝜋𝑣(𝑑, 𝑓)
(4.6)

Noticing that

𝐹0𝜏(𝑑) =
𝐹0

𝐵𝑤

(𝐵𝑤𝜏(𝑑)+𝑇𝑠𝑓−𝑇𝑠𝑓) = 𝑅(𝑑/𝑈 +𝑇𝑠𝑓)−𝑅𝑇𝑠𝑓 = 𝑅𝑣(𝑑, 𝑓)−𝑅𝑇𝑠𝑓 (4.7)
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We can rewrite the Eq. 4.6 as following:

𝑙(𝑑, 𝑓) = 𝐴𝑇𝑠𝑒
−𝑗2𝜋𝑅𝑇𝑠𝑓 · 𝑒𝑗2𝜋𝑅𝑣(𝑑,𝑓) 𝑒

𝑗2𝜋𝑣(𝑑,𝑓) − 1

𝑗2𝜋𝑣(𝑑, 𝑓)
(4.8)

Define ℎ(𝑓) , 𝐴𝑇𝑠𝑒
−𝑗2𝜋𝑅𝑇𝑠𝑓 , then we have:

𝑙(𝑑, 𝑓) = ℎ(𝑓) · 𝑒𝑗2𝜋𝑅𝑣(𝑑,𝑓) 𝑒
𝑗2𝜋𝑣(𝑑,𝑓) − 1

𝑗2𝜋𝑣(𝑑, 𝑓)
(4.9)

Given the fact that

𝑒𝑗2𝑥 − 1 = (cos 2𝑥− 1) + 𝑗 sin 2𝑥 = −2 sin2 𝑥 + 2𝑗(sin𝑥 cos𝑥)

= 2 sin 𝑥(𝑗 cos𝑥− sin𝑥) = 2𝑗 sin𝑥(cos𝑥 + 𝑗 sin𝑥) = 2𝑗 sin𝑥𝑒𝑗𝑥 (4.10)

The frequency response at a subcarrier 𝑓 for a reflector at distance 𝑑(𝑡) can be written

as:

𝑙(𝑑, 𝑓) = ℎ(𝑓) · 𝑒𝑗2𝜋𝑅𝑣(𝑑,𝑓)2𝑗 sin(𝜋𝑣(𝑑, 𝑓))𝑒𝑗𝜋𝑣(𝑑,𝑓)

2𝑗𝜋𝑣(𝑑, 𝑓)

= ℎ(𝑓) · 𝑠𝑖𝑛𝑐(𝑣(𝑑, 𝑓)) · 𝑒𝑗2𝜋(𝑅+1/2)𝑣(𝑑,𝑓) (4.11)

4.4.4 FMCW with multiple reflectors

Now consider the case with multiple reflectors 𝑟1, 𝑟2, . . . , 𝑟𝑁 , at distances 𝑑1, 𝑑2, . . . , 𝑑𝑁 .

In such a case, the total reflected signal for the 𝑁 reflectors is simply the sum of the corre-

sponding time domain signals, i.e., 𝑀(𝑡, 𝑢) =
∑︀𝑁

𝑖=1𝑚(𝑑𝑖(𝑡), 𝑢).

Since Fourier Transform is linear, the frequency domain representation of 𝑀(𝑡) can be

obtained simply by summing the individual frequency distributions, i.e

𝐿(𝑑(𝑡), 𝑓) =
𝑁∑︁
𝑖=1

𝑙(𝑑𝑖(𝑡), 𝑓). (4.12)

As can be seen from Eq. 4.11, the function 𝐿(𝑑(𝑡), 𝑓) can no longer be written as a
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linear sum of 𝑁 independent sources, i.e., one cannot define sources 𝑔(𝑑1(𝑡)), . . . , 𝑔(𝑑𝑁(𝑡))

(note that 𝑔(.) are not a function of frequency 𝑓 ) such that we can write the output signal

𝐿(𝑑(𝑡), 𝑓) =
𝑁∑︁
𝑖=1

𝑤𝑖(𝑓)𝑔(𝑑𝑖(𝑡)), (4.13)

for every 𝑓 , where the 𝑤𝑖(𝑓) are the mixing coefficients and remain constant for all the

sweeps. This prevents us from directly applying ICA to the signal 𝐿(𝑑(𝑡), 𝑓), as described

in Section 4.4.2.

4.4.5 Making ICA work for FMCW with multiple reflectors

Our key insight, however, is that we can create such a decomposition by considering only

the small linear motions involved with breathing. Specifically, we can write 𝑙(𝑑𝑖(𝑡), 𝑓) as

𝑙(𝐷𝑖 + 𝛿𝑖(𝑡), 𝑓) where 𝐷𝑖 is the mean position of the reflector (i.e., the mean position of

the chest during breathing), and 𝛿𝑖(𝑡) are the small time varying motions corresponding to

breathing. Using the Taylor series expansion till the first order term, this function can be

approximated as: 𝑙(𝑑𝑖(𝑡), 𝑓) = 𝑙(𝐷𝑖, 𝑓) + 𝛿𝑖(𝑡)𝑙
′(𝐷𝑖, 𝑓), where 𝑙′(𝐷𝑖, 𝑓) is the derivative

with respect to distance. The total frequency response for all the 𝑁 reflectors can then be

written as:

𝐿(𝑑(𝑡), 𝑓) =
𝑁∑︁
𝑖=1

𝑙(𝐷𝑖, 𝑓) +
𝑁∑︁
𝑖=1

𝑙′(𝐷𝑖, 𝑓)𝛿𝑖(𝑡) (4.14)

In Eq. 4.14, note that the first term is simply the mean frequency response across all

time units, which we can subtract from the signal without affecting the estimation of the

breathing signal. The second term is exactly of the form in Eq. 4.13 desired by ICA,

where the derivative term corresponds to the desired ICA mixing coefficient, and the 𝛿𝑖(𝑡)

corresponds to the time varying source relevant to the breathing motion.

Thus, we can apply ICA algorithms to this modified signal, i.e. after subtracting the

mean across time for each frequency and recover the individual breathing motions of all

the sources.
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Figure 4-4: The architecture of DeepBreath. DeepBreath has three components: a mo-
tion detector to detect motions disruptive to ICA and generate stable periods, a breathing
separation module that adapts ICA to recover breathing signal candidates, and an iden-
tity matching module to stitch all reconstructed breathing signals that belong to the same
person.

Formally, we define our observations for the ICA as:

𝑂(𝑓, 𝑡) = 𝐿(𝑑(𝑡), 𝑓)−
𝑁∑︁
𝑖=1

𝑙(𝐷𝑖, 𝑓) =
𝑁∑︁
𝑖=1

𝑙′(𝐷𝑖, 𝑓)𝛿𝑖(𝑡). (4.15)

As described above, these observations are linear combinations of the source signals. We

can therefore use ICA to separate the source signals.

4.5 DeepBreath

DeepBreath is the first RF-based full night breathing reconstruction system that can accu-

rately monitor multiple people even when they share the same bed. The breathing signals

extracted by DeepBreath can be directly analyzed to learn the health status of the individ-

uals, or fed to a sleep analysis system like the one described in [179].

DeepBreath runs on top of an FMCW radio equipped with an antenna array. The radio

transmits a low power wireless signal and captures its reflections from users in the vicinity.

Multi-antenna FMCW radios allow us to capture the RF signal from a particular location in

space [93] – i.e., they allow us to obtain multiple concurrent RF signals, each corresponding

to the signal reflected from a particular voxel in space. We use this property to focus on

RF signals from voxels in and around the bed. Each such RF signal is a mixture of the

original breathing signals. We call such mixtures, "observations". The difference between
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observations stems from differences in the contribution of each breathing signal to that

particular observation, which depends on the position of the person and the location that

the observation focuses on.

DeepBreath takes as input a set of full-night observations and returns the breathing

signals of each person. It does so by following a three-step process illustrated in Fig. 4-4

and summarized below:

• Motion Detection: The motion detection component takes as input observations,

identifies motion intervals, and splits the observations into a series of stable periods,

as shown in the first row of Fig. 4-4.

• Breathing Separation: This module processes the observations during each stable

period to disentangle the breathing signals of different people. It outputs the recon-

structed breathing signals during that period, as shown in the second row of Fig. 4-4.

• Identity Matching: The breathing separation module is not aware whom each recon-

structed signal belongs to. In order to create full-night reconstruction, DeepBreath

has a special module that stitches all reconstructed breathing signals that belong to

the same person, as shown in the third row of Fig. 4-4.

Below we describe these components in detail.

4.5.1 Robust Human Motion Detector

When there are large motions, ICA will fail for two reasons. First, the frequency response

of a large motion can no longer be approximated by the first order Taylor expansion, there-

fore its corresponding observations are no longer linear related to each other. Second, a

large motion usually represents a change of posture of the user. He may move slightly

away from his original position, and cause a change in the signal mixing pattern. There-

fore, we should segment the signal when we detect large motions and apply ICA to each

stable period separately.

Ideally, we want a motion detector that raises a flag only when one of the people moves

but ignores other sources of motion. This is because only a movement of one of the breath-
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ing people disrupts the ICA. Other sources of motion in the environment (e.g., the HVAC)

do not affect the contribution of each breathing signal to the observations.

To distinguish movements of the monitored individuals from other sources of motion,

we rely on the following intuition. When one of the monitored people moves, the motion

affects the breathing signal in every observation. On the contrary, environmental motions

are usually further away from the person and they affect the breathing signal due to the sinc

effect. Thus when an environmental motion occurs, the breathing pattern will be detectable

in some observations.

In order to utilize the above intuition, we define the following terms:

Definition 7. Short Observation A short observation is a small period of a observation

with a fixed duration.

We assume that the human’s breathing rate is constant during a short period. This

means that breathing can be assumed periodic during a short observation. Therefore, the

periodicity of a short observation can represent its signal quality. Then we have:

Definition 8. Short term Breathing-to-Noise Ratio (s-BNR) ℬ𝑠 of a short observation 𝑜

is defined as the ratio of breathing energy to the overall energy in observation 𝑜.

We computed 𝐵𝑠 by first taking an FFT of the short observation signal. We then find

the FFT bin with maximal energy within the human breathing range. We compute the ratio

between that bin’s energy and the energy sum of all FFT bins. In our computation, we use

15 seconds for the default duration of short observations and 10 to 30 breaths/minute for

the human breathing range [48, 124]. The larger the s-BNR, the more periodic the short

observation is, then more likely the short observation contains good breathing signal.

Thus, an observation is a time series of short (15-second) observations, each of which

has a particular 𝐵𝑠. Next, we define "a motion tableau" over all observations as follows:

Definition 9. Motion Tableau is a matrix with columns representing discretized time slots

and rows representing observations at different locations. Each (i, j) cell represents the

short observation at the 𝑗th location during 𝑖th time slot. The value of cell (𝑖, 𝑗) is the

s-BNR of that short observation.
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Human Motion Human MotionEnvironmental Motion

Stable Period

Figure 4-5: An example of Motion Tableau. More reddish the cell is, higher the s-BNR
of that short observation is. During this period, we can see three typical patterns. When
there are no motion, a large part of short observations have high s-BNR. When there are
environmental motions, some observations are affected, but there still exists high s-BNR
observations. And when there are human motions, nearly all observations are destroyed.
We call the period between two human motions as a stable period.

Figure 4-5 shows an example of motion tableau computed over a full night of sleep of a

couple in our dataset. The figure shows that the motion tableau has the following desirable

property: Different kinds of motion have different patterns. Human motion usually causes

all short observations during that period to have low s-BNR, whereas environmental motion

does not affect the s-BNR much.

Then, instead of using hand-crafted features that are hard to tune, we can treat the mo-

tion tableau as an image and train a Convolutional Neural Network(CNN) based classifier

to detect human motion. CNNs are well-known for its good accuracy and robustness on

image classification tasks. Here, we adopt a classic VGG16 [131] architecture with adjust-

ment of the input size and output dimension. The CNN classifies each column in the motion

tableau to identify whether it experiences human motion. To classify the 𝑖th column, we

feed the CNN a small image that includes all rows and the columns [𝑖− 𝑘, 𝑖 + 𝑘], where 𝑘

is a small number that allows the CNN to look at the context around the particular column

of interest. The CNN outputs "one" to indicate movements of the monitored people and

"zero" otherwise.
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Figure 4-6: A multipath example. The direct path from the device to the second person is
blocked by the first person. Yet the second person can be reached by signals reflected by a
wall.

4.5.2 Breathing Separation

After motion detection, we can divide a single night into a series of stable periods. Ideally,

we can apply ICA to each stable period and obtain the breathing reconstructions. Yet, there

are still two practical challenges:

1. The direct path of the farther person may be completely blocked. Thus, we cannot

assume breathing signals are always located in the bed area.

2. Noise may completely overwhelm breathing signals in some observations. Such ob-

servations no longer satisfy the linearity property and are harmful to the reconstruc-

tion.

Therefore we propose a breathing quality filter to address both challenges.

Dealing with Blockage

To solve the blockage problem, we leverage a well-known phenomenon called multipath.

Wireless signals can be reflected by walls and furniture, and can reach the receiver even

though the direct path is not available. Fig. 4-6 shows a typical example. Although multi-

path signals have a different time-of-flight compared to the direct path signal, they are all

linearly related to the origin breathing motion. Therefore, multipath signals provide the

same level of information as direct path signals. So, instead of only focusing on bed area,

we use observations from the larger space around the bed to gather as much information as

possible.
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Filtering Noisy Observations

As explained earlier, we need to consider observations in the larger area around the bed, so

that we may recover the breathing of a person whose direct path to the receiver is occluded.

On the other hand, for observations that are located far away from the person, the breathing

signals will be suppressed and noise will become the main component. Feeding such noisy

observations to ICA is harmful since ICA will then try to reconstruct the noise pattern.

To filter out noisy observations and keep the useful ones, we again rely on the periodic-

ity of human breathing. Specifically, a good observation should have many short observa-

tions (sequences of 15 seconds) that exhibit high s-BNR. Thus, we propose the following

definition to measure the signal quality during long observation, i.e. the observation over a

whole stable period:

Definition 10. Long term Breathing-to-Noise Ratio (l-BNR) ℬ𝑙 of a long observation 𝑜

is computed as the average of the s-BNR of the series of short observations that constitute

the long observation.

A low l-BNR indicates a low possibility that the observation contains useful breathing

information, and hence such observations should not excluded in recovering breathing sig-

nals. Once we filter out such low l-BNR observations, we can apply our model introduced

in Sec. 4.4 and reconstruct the breathing signals of the people in the scene.

4.5.3 Identity Matching

After we apply the breathing separation algorithm to each stable period, we get several ICA

components for each of them. Assuming, in each stable period, that the ICA components

are all successfully reconstructed breathing signals, the last step to get the full night breath-

ing of every person is to figure out which ICA component corresponds to which person.

We call this problem, identity matching.

Identity matching is non-trivial even in the case of two people. Say we have two people

𝑝1 and 𝑝2. In each stable period, we have two ICA components 𝑐1, 𝑐2. There are two choices

when matching these components: 𝑐1 is 𝑝1’s breathing, 𝑐2 is 𝑝2’s breathing or vice versa.

One now needs to make such a choice for each stable period. Because we have at least two
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Table 4.1: All key notations of identity matching module

Symbol Meaning
𝑁 number of people
𝑀 number of stable periods
𝐾 number of ICA components in each stable periods
𝑝𝑛 𝑛th person (𝑛 = 1, .., 𝑁 )
𝑞𝑚 𝑚th stable periods (𝑚 = 1, ..,𝑀 )
𝑐𝑘𝑚 𝑘th ICA component in stable period 𝑞𝑚 (𝑘 = 1, .., 𝐾)
ℳ(𝑐𝑘𝑚) mixing vector of ICA components 𝑐𝑘𝑚
ℳ(𝑐𝑘𝑚)𝑖 𝑖th element in mixing vectorℳ(𝑐𝑘𝑚)
ℐ(·, ·) identity consistency metric for two ICA components
ℐ𝜎(·, ·) identity consistency metric for two ICA assignments

𝜎𝑚 : {1, .., 𝑁} → {1, .., 𝐾} ICA assignment in stable periods 𝑞𝑚

possible matchings in each stable period, the valid solution space grows exponentially with

the number of stable periods. Things can become much more complex when the number

of people or the number of ICA components are larger than two.

To solve the identity matching problem, we start by defining a consistency metric that

captures the likelihood that two ICA components represent the breathing signal of the same

person. We then formulate identity matching as an optimization problem that assigns iden-

tities to maximize the consistency metric. We show how to solve the optimization problem

efficiently using dynamic programming. We explain this process in detail below. Table 4.1

summarizes the notations used this section.

Identity Consistency Metric.

We define an identity consistency metric ℐ. Metric ℐ takes two ICA components 𝑐1, 𝑐2

(from different stable periods) as input, and gives a consistency score ℐ(𝑐1, 𝑐2) as output.

The higher the consistency score, ℐ(𝑐1, 𝑐2) is, the more likely the ICA components 𝑐1, 𝑐2

are the breathing of the same person during two stable periods.

To compute ℐ we leverage the mixing vector of the ICA components. The mixing

vector ℳ(𝑐) is one column of the mixing matrix (𝑊 in section 4.4) that corresponds to

ICA component 𝑐. The length of the mixing vector is the number of original observations

we used to generate the ICA components. Each entry of the mixing vector represents how

this ICA component 𝑐 contributes to its corresponding observation. Two ICA components
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having similar mixing vectors means that they contribute similarly to the RF observations.

Thus they are more likely to represent the same source signal.5

Then we mathematically define the ICA component identity consistency metric ℐ as

follows:

ℐ(𝑐1, 𝑐2) =
∑︁
𝑖

min(ℳ(𝑐1)𝑖,ℳ(𝑐2)𝑖)

max(ℳ(𝑐1)𝑖,ℳ(𝑐2)𝑖)
(4.16)

where the index 𝑖 runs over all the entries of the corresponding mixing vectors.

Consistent Identity Assignments.

We introduce the ICA assignment 𝜎𝑚 for stable periods 𝑞𝑚. Each assignment can be viewed

as a permutation of the ICA components. Specifically, 𝜎𝑚(𝑛) = 𝑘 means ICA component

𝑐𝑘𝑚 is assigned as person 𝑝𝑛’s breathing in ICA assignment 𝜎𝑚.

We compute the consistency score of two assignments for two stable periods by com-

puting the consistency between the components they assign to the same person, as follows:

ℐ𝜎(𝜎𝑚, 𝜎𝑚′) ,
𝑁∑︁

𝑛=1

ℐ(𝑐𝜎𝑚(𝑛)
𝑚 , 𝑐

𝜎𝑚′ (𝑛)
𝑚′ ), (4.17)

where the sum is over all people and ℐ(𝑐
𝜎𝑚(𝑛)
𝑚 , 𝑐

𝜎𝑚′ (𝑛)
𝑚′ ) is the consistency between a pair of

ICA components that were assigned the same identity by assignments 𝜎𝑚 and 𝜎𝑚′ .

The score ℐ𝜎(𝜎𝑚, 𝜎𝑚′) is used to measure whether ICA assignment 𝜎𝑚 and 𝜎𝑚′ re-

order the ICA components in a consistent way. By saying consistent, we mean that after

the reordering, ICA components having the same order in two stable periods do actually

represent the breathing of the same person.

Objective Function and Solution.

Our goal is to find ICA assignments 𝜎𝑚 for each stable periods such that after reordering, an

ICA component having the same order in all stable periods is the same person’s breathing.

5Note that since ICA is not sensitive to scale, mixing vectors of different ICA components may have
different scales. Thus before doing comparison, we have to normalize the mixing vectors.
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Thus, we define the following objective function 𝒥 .

𝒥 (𝜎1, .., 𝜎𝑀) =
𝑀∑︁

𝑚=1

min(𝑀,𝑚+ℎ)∑︁
𝑚′=𝑚+1

ℐ𝜎(𝜎𝑚, 𝜎𝑚′) (4.18)

The objective 𝒥 simply sums all the ICA assignment identity consistency scores for all

pairs of ICA assignments in two different and temporally close stable periods. Here, two

stable periods 𝑞𝑚, 𝑞𝑚′ are considered as temporally close if there are less than ℎ stable

periods between these two stable periods .i.e |𝑚−𝑚′| ≤ ℎ (our default is h=12). The reason

why we limit ourselves to nearby stable periods is that the consistency metric 𝐼 is valid only

over a short period. Specifically, the consistency metric captures the fact that when a person

tosses around in bed, or moves on a chair or couch, he is still in the same general location

and hence the mixing matrix of his breathing changed by a small amount. However, if the

person keeps moving, then eventually the mixing matrix can change significantly.

The above objective function captures the idea that if each pair of ICA assignments

orders ICA components in a consistent way then all the ICA assignments order the ICA

components consistently. Thus, the optimal set of assignments can be represented as:

𝜎*
1, .., 𝜎

*
𝑀 = arg max𝒥 (𝜎1, .., 𝜎𝑀) (4.19)

To solve the optimization in Eq.(4.19), we design a dynamic programming algorithm

which performs two passes, forward and backward. In the forward pass, we have initial

conditions 𝑓ℎ and DP-equation 𝑓𝑚 and 𝑔𝑚 as follow:

𝑓ℎ(𝜎1, .., 𝜎ℎ) =
ℎ∑︁

𝑖=1

ℎ∑︁
𝑗=𝑖+1

ℐ𝜎(𝜎𝑖, 𝜎𝑗) (4.20)

𝑓𝑚(𝜎𝑚−ℎ+1, .., 𝜎𝑚) = max
𝜎𝑚−ℎ

𝑓𝑚−1(𝜎𝑚−ℎ, .., 𝜎𝑚−1) + ℐ𝜎(𝜎𝑚−ℎ, 𝜎𝑚), 𝑚 = ℎ + 1, ℎ + 2, ..,𝑀(4.21)

𝑔𝑚(𝜎𝑚−ℎ+1, .., 𝜎𝑚) = arg max
𝜎𝑚−ℎ

𝑓𝑚−1(𝜎𝑚−ℎ, .., 𝜎𝑚−1) + ℐ𝜎(𝜎𝑚−ℎ, 𝜎𝑚), 𝑚 = ℎ + 1, ℎ + 2, ..,𝑀(4.22)

In the backward pass, we can get optimal solution 𝜎*
1, .., 𝜎

*
𝑀 in a reverse order based on
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the DP-functions computed in forward pass.

𝜎*
𝑀−ℎ+1, .., 𝜎

*
𝑀 = arg max 𝑓𝑀(𝜎𝑀−ℎ+1, .., 𝜎𝑀) (4.23)

𝜎*
𝑚 = 𝑔𝑚+ℎ(𝜎*

𝑚+1, .., 𝜎
*
𝑚+ℎ), 𝑚 = 𝑀 − ℎ,𝑀 − ℎ− 1, .., 1 (4.24)

4.6 Evaluation

In this section, we empirically evaluate our theoretical model and DeepBreath’s perfor-

mance. All experiments with human subjects are approved by our IRB and we have

obtained informed consent from every subject. For the hardware, we have implemented

a state-of-art FMCW radio that sweeps from 5.7𝐺𝐻𝑧 to 7.2𝐺𝐻𝑧 and transmits at sub-

milliwatt power in accordance with the FCC regulations. The radio is equipped with an

antenna array to improve spacial resolution.

Ground Truth: To obtain the ground truth breathing of people, we use SleepView[138],

an FDA-approved sleep and apnea monitor. The user sleeps while wearing a special belt

that uses respiratory inductance plethysmography to measure the expansion of the chest,

which it translates to breathing signal.

Metrics: To evaluate our breathing reconstruction results, we use the following two met-

rics:

• Pearson correlation coefficient (correlation): We evaluate the similarity between the

reconstructed signal and the ground truth by computing their correlation. The corre-

lation is computed over stable periods. The aggregate per-night correlation is com-

puted by taking a weighted average of the correlation over stable periods where the

weight corresponds to the length of each period (normalized by the total duration of

stable periods throughout the night).

The optimal value for the correlation is 1. This would happen if the reconstructed

signal is exactly the same as the ground truth. Of course in practice, the correlation is

never 1. Thus, it is natural to ask what correlation value is good enough. To answer

this question we compare the correlation between two respiration belts on the same
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(a) Signals captured from chest and diaphragm (b) Correlation CDF between two signals

Figure 4-7: Comparison between chest level and diaphragm level breathing signals. Fig. 4-
7a shows a 2 minutes sample of two breathing signals, and Fig. 4-7b shows the the corre-
lation CDF between two breathing signals.

person: one is strapped around the chest and the other around the diaphragm area.

Both belts capture the person’s breathing but at slight different locations on the body.

Fig. 4-7a plots an example that shows the breathing signal of the same person cap-

tured at the chest and diaphragm levels. The figure shows small differences between

the two signals. For quantitative results, we plot in Fig. 4-7b a CDF of the the corre-

lation between two breathing signals. The data in the figure are taken over 2-minute

windows from 6 individuals over 6 nights. As can be seen from the figure, the two

breathing signals are slightly different –i.e. their correlation is not 1. The average

correlation is 0.915 and 90th percentile is 0.860. This CDF provides a point of com-

parison. Specifically, since the RF signal captures reflections from multiple areas of

the human body, an ideal reconstruction would show a correlation comparable to the

correlation between the breathing signals captured in different locations on the body.

• Breathing Rate: Breathing rate is the number of breaths per minute. We compare our

reconstructed signal to the ground truth breathing rate as captured by the respiration

belt. As in past work, we compute the breathing rate over 2-minute windows.

4.6.1 Empirical Validation of Our Model

The use of ICA to separate mixed signals is subject to three requirements: 1) the mixing is

linear, 2) the sources are independent, and 3) the distributions of the source signals are not

Gaussian.
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Figure 4-8: Linearity of an observation as a function of its l-BNR. Blue line represents
the average linearity of observations with certain l-BNR and grey area shows the standard
deviation. The figure shows that observations with high l-BNR are linear functions of the
breathing signals.

We empirically check that our formulation of the breathing separation problem satisfies

all three requirements. We conduct an experiment in which two people sit shoulder-to-

shoulder on a couch. Each subject is asked to wear a breathing belt to record his ground-

truth breathing signal. The subjects breathe normally with no restrictions. Each trial lasts

for 5 minutes. In total, we invite 10 people to participate in this experiment and conduct 20

trials.

(a) Linearity of the Observations: To check whether the observations are linear com-

binations of breathing signals, we measure the linearity of a given observation 𝒪(𝑡) as

follows:

𝑙𝒪 = max
𝑎1,𝑎2
|𝜌(𝑎1𝑠1(𝑡) + 𝑎2𝑠2(𝑡),𝒪(𝑡))|, (4.25)

where 𝑠1(𝑡) and 𝑠2(𝑡) are the ground truth breathing signals,𝒪(𝑡) is the observation signal,

and 𝜌() is the Pearson correlation coefficient function. This metric computes the correlation

between the observation and the closest linear combination of the signals.

We plot in Fig. 4-8 the linearity of observations as a function of their l-BNR. The figure

shows that the linearity of an observation increases with l-BNR. This is expected because

observations with low l-BNR are dominated by noise. The figure also shows that when

the l-BNR is higher than 0.15, linearity is higher than 0.9. Thus, we can treat high l-BNR

observations as linear functions of the breathing signals.

(b) Independence of the Source: Second, we examine the correlation between the breath-

ing of two subjects as a function of the duration of an observation. For each duration 𝑡,

we divide the duration of the experiment to non-overlap periods of length 𝑡. For each such
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Figure 4-9: Correlation between the breathing of two subjects over windows with different
duration. Blue line represents the average correlation between subjects and and grey area
shows the standard deviation.

(a) Example Breathing Signal (b) Example Distribution

Figure 4-10: Figure shows that marginal distribution of a subject breathing is non-Gaussian

period, we compute the correlation between the breathing of the two subjects in the exper-

iment. We repeat this computation for all subjects and trials. Fig. 4-9 plots the relationship

between the correlation of the subject’s ground-truth breathing and the duration of the ob-

servation. The blue line represents the averaged correlation, and the grey area shows the

standard deviation. The figure shows that the correlation of the subjects breathing signals

decreases as the duration of the observation increases, and is lower than 0.1 when the dura-

tion is larger than 2 minutes. Thus, it is safe to assume that the breathing signals of different

subjects are statistically independent over periods equal or larger than two minutes.6

(c) Non-Gaussianity of the Sources: Finally, we look at the distribution of the breathing

signals of our subjects. We show a representative example of the ground truth breathing

of a subject in Fig. 4-10a and its distribution in Fig. 4-10b. Clearly the distribution is not

Gaussian. The distributions of other subjects are similarly non-Gaussian.

6Note that two signals can look similar but still have low correlation if the frequency of breathing is slight
different or the breathing cycles are unsynchronized.
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4.6.2 Evaluation of DeepBreath’s Performance

We deploy our system and evaluate it with 13 different couples. The experiments are run in

the couple’s own homes. All monitored couples sleep in the same bed. The bed size ranges

from twin (1𝑚 wide) to king (2𝑚). Each subject wears a breathing belt for the whole night

to obtain the ground truth breathing. We install our device at the bedside. We refer to the

subject who sleeps closer to the device as the near subject and the other subject as the far

subject. In total, we have collected 21 nights, and 151 hours of data.

We first generate stable periods for each night by detecting all motion using the motion

detector. We remove periods with motion and operate on stable periods. Our analysis

shows that, on average, 11% of a night exhibits motion. This is compatible with medical

literature [34].7 We then process the stable periods and compare them with the ground truth

breathing signals.

We also compare the performance of DeepBreath with a baseline that uses an oracle to

iterate over all voxels in the bed area, and for each person, it zooms in on the voxel that

results in the most accurate breathing signal for that person. This baseline highlights the

importance of disentangling the breathing signals as opposed to zooming in on the best RF

signal that corresponds to the person’s breathing, as in past work. Note that the baseline

is a conservative representation of past work since we allow it to look at the actual ground

truth breathing as it picks the best signal.

Fig. 4-11a plots a CDF of the correlation between the reconstructed breathing signals

and the ground truth for both DeepBreath and the baseline. The figure shows that Deep-

Breath’s average correlation is 0.920 and 0.908 for the near and far subjects respectively.

This is comparable with the average correlation between two belts that capture breathing

at two locations on the same person. In comparison, the baseline achieves a correlation of

0.874 and 0.733 for the near and far subjects respectively. This performance is significantly

worse than DeepBreath’s, particularly for the far person. Note that, as mentioned earlier,

the baseline is allowed to look at the ground truth signals so that it can zoom in on the

RF signals with the best correlation, which is not feasible in practice. Despite this extra

7Healthy people experience around 30 minutes of intermittent awakenings each night [34]. Since we
monitor a couple, we detect motion when either of them moves.
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(a) CDF of breathing correlation (b) CDF of breathing rate errors

Figure 4-11: Performance comparison between DeepBreath and an oracle-based baseline.

information, it is still unable to match DeepBreath’s performance.

Fig. 4-11b plots a CDF of the error in estimating the breathing rate for both DeepBreath

and the baseline. The median breathing rate error in DeepBreath is 0.121 and 0.158 for the

near and far subjects. In contrast, the baseline shows a breathing rate error of 0.200 and

0.633 for the near and far subjects respectively.

There are two reasons for the lower performance of the baseline. First, for most cases,

since the subjects are fairly close, their breathing signals are mixed in all locations in space.

Thus, sometimes it is not possible to find a good voxel that includes breathing from only

one subject. Second, the signal from the near person can be much stronger than the far

person, and the body of the near person can sometimes occlude the body of the far person.

DeepBreath does not suffer from these problems because it is intrinsically designed to

separate mixed signals. Further, it combines information across all observations and can

leverage multipath effects to reconstruct the breathing of the far person.

Finally, Fig. 4-12 shows a few examples of our reconstructed breathing signals and the

corresponding ground truth signals. The figure shows that DeepBreath is able to separate a

couple’s respiration signals even when their breathing patterns look similar. It also shows

that DeepBreath can deal with irregular breathing patterns such as those experienced by the

far person in couple 2 and couple 3.

4.6.3 Evaluation of the Components of DeepBreath

The above result shows that DeepBreath can correctly recover the breathing of each indi-

vidual even when they share the bed. In this section, we zoom in on the identity matching
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Figure 4-12: Examples of recovered breathing signals and the original ground truth signals
from the breathing belt. The figure shows that DeepBreath is accurate even when the mon-
itored couple have similar breathing rates or their breathing signals have irregular patterns.

Figure 4-13: Accuracy of identity matching. Each bar shows the identity matching accu-
racy of each subject.

and motion detection components to understand their performance.

Evaluation of Identity Matching: We report the accuracy of identity matching for all

stable periods in the collected 21 nights. We compute the average accuracy weighted by

the duration of each stable period. The total averaged accuracy is 99.1% and accuracy for

each subject is shown in Fig. 4-13. Accuracies of all the subjects are above 95%, which

shows the robustness of our identity matching algorithm.

Evaluation of Motion Detection: We also evaluate the motion detection component. To

obtain the ground truth motion we have asked 4 subjects to sleep while wearing accelerom-

eters on each ankle and each wrist. In this experiment, each subject sleeps in a separate bed

to ensure that the motion captured by the accelerometers is as close to the ground truth as

possible. Each subject also wears a breathing belt for ground truth breathing.
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Figure 4-14: Experiment setup. 5 subjects are sitting shoulder-to-shoulder on a 1.9𝑚
couch.

Accelerometers are affected by gravity. To eliminate this effect we subtract the aver-

age acceleration and consider only changes. Because the reading from the accelerometer

is noisy, for each 30 second period, we say there is a human motion if the acceleration

is 2 times larger than the standard deviation. We declare motion if any accelerometer ex-

periences a motion event. We compare the output of our motion detector to the result of

predicting motion based on the four accelerometers. On average we achieve a precision of

0.933 and a recall of 0.954. This result shows that our motion detector successfully detects

motion.

4.6.4 Breathing Separation with Many People

Finally, we would like to show that DeepBreath is not limited to two people and can scale

to a larger number of users. We conduct an experiment with 5 subjects sitting shoulder-to-

shoulder on a 1.9𝑚 couch, as shown in Fig. 4-14. The subjects wear a breathing belt to

capture the ground truth breathing signals. In total we invited 8 people to participate in this

experiment, and we conducted 3 trials with different subject combinations. Each trial lasts

for 5 minutes.

Fig. 4-15a shows the observations at the voxels centered on each of the five subjects.

Each observation is a different mixture of the breathing signals of the subjects. Fig. 4-

15b plots the ground truth and the reconstructed breathing signals. As can be seen, even
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(b) Ground truth and reconstructed signals

Figure 4-15: Five people experiment. Observations at each subject’s location are plotted
in Fig. 4-15a. Because there are no gaps between subjects, breathing signals are mixed
together. But DeepBreath can reconstruct the breathing of each subject accurately, as shown
in Fig. 4-15b, with an average correlation of 0.92.

though every observation is a mixture of multiple subject’s breathing, our algorithm can

still reconstruct the breathing of each subject accurately. On average, we achieve 0.922

correlation and 0.034 breathing rate error with respect to the ground truth breathing signals.

These results demonstrate that DeepBreath can reconstruct the breathing of at least 5 people

even when there is nearly zero distance between them.

4.7 Conclusion

This chapter presents DeepBreath, the first wireless system that disentangles breathing sig-

nals of multiple individuals from mixtures of such signals. As a result, it can provide

contactless respiration monitoring of multiple people even when they have zero distance

between them. A user study with 13 couples who used DeepBreath for 21 nights in their

own homes shows that DeepBreath is highly accurate.

We believe DeepBreath opens the door for contactless multi-person sleep studies. Its

output can directly serve as the input for sleep stage classifiers [179, 89], or apnea detec-

tors [152, 7]. As such it extends the benefits of such contactless monitoring to couples and

individuals sharing the same bed.
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Chapter 5

Monitoring Sleep Postures

5.1 Introduction

Shown by significant clinical research, sleep posture is a valuable marker of disease pro-

gression, and has a significant impact on health. For instance, patients with Parkinson’s

disease often suffer from loss of axial movement; and less frequent nocturnal turnovers and

longer periods spent recumbent or supine (i.e., facing up) are associated with deterioration

in the condition of Parkinson’s patients [99]. Similarly, infrequent changes in sleep posture

can lead to pressure ulcers in the elderly and post-surgery patients [51]. Studies have also

demonstrated that sleeping in a supine position can reduce back pain since it is the position

in which the muscles have the least amount of work to do to maintain one’s posture against

the force of gravity [36]. In contrast, if one has obstructive sleep apnea (OSA), the supine

position becomes the worst posture because it imposes unfavorable airway geometry and

reduces lung volume. Studies have shown that more than half of all OSA cases can be

classified as supine related [95, 104]. Improper sleep posture can even be fatal – sleeping

on the stomach can boost the risk of sudden infant death syndrome (SIDS) [39] and sudden

death in epilepsy patients [81, 70]. These examples highlight the importance of contin-

uous and fully automatic sleep posture monitoring. Such monitoring can provide doctors

with information to better manage patient conditions; it can also provide people themselves

information to adjust their posture and reduce their health risks.

Unfortunately, today, there is no good way to provide such sleep posture monitoring.
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Figure 5-1: BodyCompass in one of our deployments. The white box mounted on the wall
is the radio. It uploads the RF signals to the cloud where the model processes them to
extract sleep posture.

Doctors typically resort to asking patients about their sleep posture, an error-prone mech-

anism since people routinely, and unknowingly, change their postures while sleeping. Au-

tomated monitoring systems primarily fall into two categories. The first category is vision-

based. These methods use a camera to monitor the user’s sleep, then extract postures from

recorded videos with a machine learning system. Deploying cameras in people’s bedrooms,

however, is privacy-intrusive. Furthermore, cameras have difficulties tracking body posture

if the person is covered or lighting is bad, both of which are typical scenarios when sleep-

ing. The second category uses various kinds of on-bed sensors. Such methods require the

user to fix the sensor to the surface of the mattress, which can affect sleep comfort.

Ideally, one desires a system that is non-contact, non-intrusive, and works even in dark

scenarios typical of sleeping conditions. In this chapter, we present BodyCompass, an RF-

based system for sleep posture monitoring. BodyCompass analyzes the reflections of RF

signals to infer subjects’ sleep postures. It does so without requiring users to wear or be in

contact with any sensors. It is not invasive of privacy, and can also work in the dark. Unlike

much previous work, BodyCompass has also been demonstrated to work in the wild - with

real subjects sleeping in their own homes, and can generalize to new environments with

minimal additional training. Fig. 5-1 shows BodyCompass deployed in the home of one of

our users.

But how can one extract the sleep posture from radio signals? Our idea is to use the
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multipath effect, a known phenomenon in RF communication systems that refers to the

fact that RF signals bounce off different objects and obstacles in the environment and reach

the receiver through multiple paths. Past work has shown that the human body acts as a

reflector in the low-GHz frequencies, commonly used in commodity radios [2, 178]. As

the RF signal is incident upon the human body, it reflects from the body based on the body

orientation and bounces off the surrounding objects and walls creating a multipath signa-

ture indicative of the body posture. Our objective is to learn an inverse map that receives

the reflected multipath profile and attempts to infer the body posture. A key challenge in

delivering this idea is that the RF signal bounces off many objects in the environment, not

just the human body. Only a subset of the signal path involves reflections from the human

body, and hence is relevant to the sleep posture. Thus, one has to extract only the RF re-

flections that bounced off the human body either directly or indirectly in order to determine

the sleep posture.

To address this challenge, we leverage DeepBreath (Chapter 4) to extract a person’s

breathing from RF signals. Our intuition is that all paths that bounce off a person’s trunk

(e.g. chest and belly) during their sleep are modulated by the person’s breathing, and hence

we can use this property to disentangle these reflections from the rest of the reflections.

Specifically, we use standard techniques to separate signals along different paths (FMCW

and angle of arrival), and correlate these separated signals individually with the subject’s

breathing signal to identify the specific signals corresponding to the person in bed. We

further design a neural network model that takes this breathing filtered multipath profile,

and predicts the sleep posture of the person.

A key question with such a system is how well the neural network model works with

different people and in different homes. While RF reflections and the multipath effect natu-

rally depend on the environment, one would hope that with proper design, the model would

be able to transfer some of the knowledge across environments. Such a model would learn

the underlying features that identify each sleep posture, and tune them to a new environ-

ment with a small amount of additional labeled data from that environment. To address

this issue, we design our model to be easily transferable. Specifically, given a set of source

domains i.e., a number of people and their sleep postures in the training set, and a target
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domain i.e., a new person in his own home, the model can use a small amount of labeled

data (16 minutes to one night) from the new home to optimize its performance for this new

environment.

Our transfer model has three components. First, given that the calibration data from the

target can be very small, particularly when we have only 20 minutes of data, we create a

virtual target composed of selected data points from the existing sources. These data points

are selected based on their similarity with the calibration data (the similarity is based both

on labels and features as described in Sec. 5.4). Second, given that we now have a virtual

target with enough labeled data, we perform domain adaptation to adapt the source models

to the target domain. Finally, since not every source is amenable to domain adaptation

because the data corresponding to some sources can be significantly disjoint from the target

data, both in terms of subject sleeping postures and model features, we perform model

selection using the calibration data1 to pick the sources that have high accuracy on the

calibration data. We treat the collection of models for these sources as an ensemble and

perform majority voting over them, to infer the target sleep posture.

Our model delivers high accuracy. Specifically, our basic sleep posture model using

multipath, when trained and tested on the same person and home, achieves an accuracy

of 94.1%. The transfer learning model to a new person and a new home has an accuracy

of 86.7% with one night of labeled data, and 83.7% with a labeled dataset comprising 8

examples, where in each example, the person lies down in one of his typical sleep postures

for a duration of 2 minutes.

To summarize, this chapter makes the following contributions:

1. We present BodyCompass, the first RF-based system that provides accurate sleep

posture monitoring overnight in users’ own homes. It achieves high accuracy without

sacrificing privacy and sleep comfort.

2. BodyCompass can transfer its model to new homes and users with very little addi-

tional training data.

1Note that the virtual target includes only points from the source data that are similar to the calibration
data, but does not include the calibration data.
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3. We implement and evaluate BodyCompass extensively in real world settings using

data from 26 homes with 26 different subjects and more than 200 nights of sleep.

5.2 Related Work

Past work on sleep posture monitoring can be divided into two major categories: 1) systems

with on-body sensors, and 2) non-contact monitoring systems.

(a) On-body Solutions: On-body sensors can monitor sleep postures accurately [78, 169,

20]. For example, one may attach an accelerometer to the person’s chest to monitor their

sleep posture. Since gravity always points downwards, the accelerometer’s orientation can

be calculated by combining the acceleration along three different axes [169, 20]. However

this method is cumbersome and uncomfortable since the accelerometer needs to be fixed

on the user’s body during their sleep.

Figure 5-2: Pressure sensitive bedsheet from [83].

(b) Non-Contact Solutions: Contactless systems are more comfortable for the user com-

pared to on-body sensors. Work in this class falls in the following categories. First, vision-

based systems [6, 86, 53] deploy RGB or infra-red cameras to record videos of the user’s

sleep, then process those videos using convolutional neural networks to predict sleep pos-

tures. However, cameras, particularly in people’s bedrooms, are privacy-intrusive. Further,

the accuracy of camera systems decreases significantly in dark settings and when people

are covered with a blanket or comforter [6, 86, 53].

Second, on-bed sensors cover the mattress with an array of pressure sensors [61, 83,

166, 116, 110] or RFID Tags [84, 60]. These solutions are more privacy-preserving than
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camera systems. However, on-bed sensors, shown in Fig. 5-2, change the feel of the bed and

thus affect the sleep comfort of the subject. Further, most of these systems are evaluated in

the lab, as opposed to overnight testing in people’s own homes [61, 166, 116, 110, 84, 60].

Third, a few papers have proposed the use of RF signals for monitoring sleep pos-

ture [87, 11, 85]. The approach in those papers is intrinsically different from ours; they

analyze the signal power as measured by the RSSI (received signal strength indicator) [11]

or the power of the frequency sub-channels extracted from the CSI (channel state informa-

tion) [87, 85]. As studied in Sec. 2.9.1, they all inherently suffer from interference. That

is, they have no ability to separate changes in the signal that are due to the sleeping person

from those due to other sources of motion (e.g. a fan, or a person moving in a neighboring

room). Such extraneous motion brings randomness and will greatly hamper the robustness

of the system in the wild. As a result, all previous papers are evaluated in a single lab envi-

ronment with one or two subjects consciously performing specified postures.2 In contrast,

we study the spatial pattern of reflections –i.e., the multipath – and ignore the power by

re-normalizing the power distribution of each path (see Sec. 5.4). Therefore, our system

can provide accurate sleep posture monitoring overnight in users’ homes and can be easily

transferred to new environments.

We also note that past work has demonstrated the feasibility of inferring the human

skeleton using only RF reflections [178]. It might seem that one could use such models

to infer the skeleton of the person lying in bed and hence their sleep posture. However,

due to RF specularity, such models rely on people walking and moving around to achieve

good accuracy [178]. Specifically, as described in those papers, a snapshot of RF signal

reflections does not capture the full body; Any snapshot captures only a few limbs or body

parts that reflect signals directly towards the radio. Hence, their neural networks rely on

people moving and walking to expose different body parts in each snapshot so that the

network can combine those body parts to create the human skeleton. In contrast, when the

person is asleep in bed, the person is mostly static and hence there is not enough motion

to allow the neural network to fill in the gaps and combine body parts across different

2We note that while the authors of [85] test their vital sign algorithms outside the lab, the sleep posture is
only tested in the lab and in one setting.
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snapshots. To deal with this challenge, our system not only takes the direct reflections

towards the radio, but also all the indirect reflections due to multipath. By taking all the

multi-path reflections as input, our system estimates the sleep posture accurately even when

the person remains static.

Finally, BodyCompass is related to a growing body of research that focuses on passive

monitoring using radio signals. Researchers have demonstrated that by carefully analyz-

ing RF reflections off the human body, they can monitor people’s location [3, 164, 162],

gait [63, 158, 175], breathing [160, 172, 105], heart rate [5, 159], falls [148, 161, 156], and

sleep quality and stages [179, 62, 120, 147]. Our work builds on this foundation and lever-

ages past work on inferring the breathing signal as a sub-component in our system [172].

5.3 BodyCompass

BodyCompass is the first RF-based system that provides accurate sleep posture monitoring

in the wild, i.e., with subjects sleeping in their own beds in their homes, and it generalizes

to new subjects and homes with minimal additional effort. It can be used by healthy indi-

viduals interested in monitoring their sleep behavior, or can be provided either to patients to

help them modify their sleep posture, or to doctors to assist them in understanding disease

prognosis and patient health.

BodyCompass leverages measurements from an FMCW radio equipped with an an-

tenna array [93]. Such radios are commonly used in passive health monitoring using RF

signals [172, 120, 62]. They work by transmitting a low power radio signal, and observing

its reflections from the surrounding environment. The use of an antenna array combined

with FMCW enables the radio to resolve RF reflections from multiple points in space.

Specifically, at each instance in time, the radio outputs an array of signal values from vari-

ous voxels in space, which we refer to as an RF-snapshot.

BodyCompass takes a sequence of RF-snapshots from an FMCW radio across a whole

night, and produces the sleep postures for the night. A sleep posture is described by an an-

gle between two normal vectors, one of the bed surface and one of the user’s anterior trunk

surface, as shown in Fig. 5-3a. For example, 0° represents the user facing upwards and 90°
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represents the user facing rightwards. Defining sleep posture in terms of angle allows us

to differentiate between a slight tilt of the trunk to the right and someone sleeping on their

right side. This enables a finer granularity definition of sleep postures that encompasses

and expands beyond common posture classes (supine, left side, right side, prone). A fine

granularity in posture estimation is important for applications that aim to detect changes

in postures, such as tracking the progression of Parkinson’s patients by monitoring the

frequency of their change of sleep posture.

BodyCompass computes sleep postures using three components:

• A filtered multipath profile feature extractor to estimate the RF reflections that bounced

off the person directly or indirectly.

• A source-specific neural network that utilizes the multipath profile features to esti-

mate the sleep posture of a specific person in a specific home.

• A transfer learning model that adapts the source-specific models to estimate the sleep

posture of a new person in a new home with minimal additional labeled data.

Below, we describe these components in detail.

Bed     

Normal vector
of bed surface

Normal vector
of anterior 

trunk surface

Angle of Body Orientation

(a) Angle of body orientation (b) Coordinates of RF-snapshots

Figure 5-3: Illustration of body orientation and coordinates of RF-snapshots. In Fig. 5-
3b, we represent all RF voxels in a Cartesian coordinate system. The rightmost pixels are
closest to the device, and have the shortest distance. Therefore the direct-path reflections
should be to the right of the indirect-path reflections since they travel the shortest path
between the user and the device.
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5.4 Filtered Multipath Feature Extractor

In this section, we describe how BodyCompass extracts filtered multipath features specific

to a person from RF-snapshots produced by a FMCW antenna array.

An RF-snapshot consists, for each point of space (RF voxel), of the magnitude of the

RF reflection from that point of space. An RF voxel is represented by two coordinates, its

distance from the device, and the angle of that position relative to the normal from the de-

vice. Specifically, an RF voxel at coordinate (𝑖, 𝑗) represents a small cube around the point

at traveling distance 𝑑𝑗 from the device, and an angle of arrival of 𝛼𝑖, as shown in Fig. 5-4.

We divide the space into N angles, and M distances, and therefore each RF-snapshot is an

𝑁 ×𝑀 matrix. For better visualization, we plot voxels in a standard Cartesian coordinate

system, as shown in Fig. 5-3b, instead of a polar coordinate system.

RF Voxel at  (i, j)

Traveling Distance dj
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Device

Figure 5-4: Illustrative example of an RF voxel. The green rectangle represents the radio
location and the red rectangle represents the bed location. Our FMCW antenna array di-
vides the space into small grids. The coordinates of the grid represent the distance from the
radio and the angle of arrival.

5.4.1 Stable Sleep Periods

We first note that sleep postures are not independent over time, since people typically sleep

in a posture for some period of time, followed by a movement, after which they settle into

a different sleep posture, and so on. BodyCompass therefore first segments the night into

a series of stable sleep periods. During each stable period, the orientation of the body is

approximately constant, and BodyCompass extracts a single sleep posture from that period.
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BodyCompass leverages prior work [172] to identify motion events from RF-snapshots,

and defines the intervals between such motion events as stable sleep periods.

5.4.2 Filtered Multipath profile

Next, BodyCompass extracts the multipath profile for each stable sleep period, with the

objective of learning the sleep posture from the multipath profile. Recall that the multipath

profile captures the pattern of spatial reflections, i.e., how the RF signals bounce around

in space before they reach our radio. We represent the multipath profile of a particular

stable period with the relative signal power along each path. Thus, the multipath profile

of a particular stable period can be computed by taking the RF-snapshots corresponding to

the stable sleep period and computing the variance in each voxel.

The multipath profile is affected by the sleep posture of the person, and is therefore

informative about their orientation. For instance, when the person is supine, i.e., lying flat

on their back, a significant portion of the signal reflects towards the ceiling and bounces off

other objects in the environment before reflecting back to the radio, and as a result the mul-

tipath profile shows significant dispersion. In contrast, when the person is sleeping on their

side, the direct RF reflections will be significantly stronger than the indirect reflections, and

the multipath profile will therefore show high concentration.

However, one cannot directly use the overall multipath profile in a stable sleep period

to infer sleep posture. This is because such multipath profile contains reflections both from

the environment and from the subject. While reflections from static reflectors (e.g., walls,

tables) can be removed,3 reflections from moving objects cannot be easily disentangled,

and their contributions can confound the system for two reasons. First, even within a single

home, those contributions can change over time even when the sleep posture does not

change, for instance, because of movements from a fan, people walking in the environment,

or heating, ventilation, and air conditioning (HVAC) systems. Since these changes are not

correlated with the sleep posture of the person, they will adversely affect the ability of

BodyCompass to infer sleep posture. Furthermore, such reflections are highly specific to

3We remove static reflections by subtracting the average RF-snapshot for each stable period before com-
puting the multipath profile [172].
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each home, and incorporating them into the multipath profile will prevent BodyCompass

from generalizing to new homes.

So, how does one filter out environmental contributions while still retaining the mul-

tipath contributions from the sleeping subject? Our idea is inspired by the following ob-

servation: when breathing, the chest and belly area of the human body move forward and

backward. These motions will change the multipath contributions corresponding to the hu-

man body in a manner correlated with the breathing signal, while other environment related

multipath contributions will not change in a manner correlated with the person’s breathing.

Fig. 5-5 shows an illustrative example of this point with a person sleeping facing the device,

and a nearby fan.

Bed     
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Indirect-path

Direct-path

Indirect-path

Direct-path

Device
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Figure 5-5: An illustrative example of signal reflections. In this case the multipath profile
contains reflections from the subject (in blue) and a ceiling fan (in orange). Correct pro-
cessing requires eliminating the fan reflections. Also the figure illustrates how the posture
could affect the multipath. When the user is facing the device, the reflections along the
direct path have the largest signal variations because the chest movements are most signif-
icant in that direction. In contrast, the signal variations along the indirect path are much
smaller because the side of the body is not moving significantly.

Using breathing also allows BodyCompass to identify the orientation of the person,

i.e., whether the person is facing up/down when supine, and whether the person is facing

towards/away from the device when on their side. This is because during breathing, only

the front of the human body moves significantly, whereas the back does not, therefore

breaking symmetry between the orientations, and changing the filtered multipath profiles

in the two cases.

BodyCompass uses DeepBreath [172], to extract the breathing signal of the subject

in bed from the RF-snapshots in the stable period. The breathing signal is a time series
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that reflects the scaled chest displacement of the subject over time. Then, for each RF-

voxel, BodyCompass correlates this extracted breathing signal with the time series of signal

magnitudes for this RF-voxel obtained from the RF-snapshots. Specifically, for each voxel,

BodyCompass computes the absolute value of the Pearson correlation coefficient between

the person’s breathing and the magnitude of the RF signal received from that voxel, as

expressed in the sequence of RF-snapshots. This correlation provides a spatial filter that

allows us to extract the voxels in the multipath profile whose signal is highly correlated

with the person’s breathing.

Next, BodyCompass multiplies the multipath profile with the above filter to extract the

filtered multipath profile, which focuses on the signals that bounced directly or indirectly

off the subject. The filtered multipath profile emphasizes pixels with a significant contribu-

tion from the subject’s breathing while still retaining the relative power contributions from

direct and indirect paths corresponding to that breathing.

A

BC

(a) Original multipath profile

A

BC

(b) Filtered multipath profile

A

BC

(c) Filter used to extract the multipath associated with the subject. The filter
consists of the correlation coefficients with breathing

Figure 5-6: Visualization of one stable period. The value of each RF-voxel represents the
corresponding attribute of the RF reflection. The visualization is color-coded, the redder
the pixel, the higher the relative value of that pixel, and the bluer the pixel, the lower the
relative value. Points A, B, C highlight three different kinds of reflections: environmental
movement reflections, breathing reflections along direct-path, breathing reflections along
indirect-path.
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To help understand the process, we plot an example in Fig. 5-6. Specifically, Fig. 5-6a

shows the relative power in each voxel in space in the original multipath profile. Fig. 5-

6c shows the breathing filter, and Fig. 5-6b shows the filtered multipath profile. As we

can see, pixel A is very bright in the original multipath profile (Fig. 5-6a), meaning that it

has very a high reflection power relative to other pixels. However, since it has a very low

correlation coefficient with breathing (Fig. 5-6c), it is removed in the final filtered multipath

profile (Fig. 5-6b). In this case, pixel A was contributed by environmental movements

from a different person walking in the environment. In contrast, while pixels B and C have

lower power compared to A, they are emphasized in the filtered multipath profile since they

exhibit strong correlation with the breathing signal. It is also worth noting that pixel B is

actually the direct-path reflection, and pixel C is one of the indirect-path reflections.

Next we show two typical filtered multipath profiles of two different postures in Fig. 5-

7. When the user is sleeping in a supine position, the filtered multipath profile shows more

dispersion because the subject reflects a significant part of the signal towards the ceiling

causing more indirect reflections. In contrast, when the user is facing the device most of

the signal is directly reflected from the user to the device and hence the power in the filtered

multipath profile is concentrated at the user’s location, i.e. the direct path.

(a) The user facing up (b) The user facing the device

Figure 5-7: Two typical examples of filtered multipath profiles of the user facing up (Fig. 5-
7a) and facing towards the device (Fig. 5-7b). Compared to Fig. 5-7b, in Fig. 5-7a, we can
see much higher power in further away pixels. This is because when the user is facing up,
he deflects the signal towards the ceiling causing indirect reflections.

5.5 Source-Specific Sleep Posture Model

Having computed the filtered multipath profile for each stable sleep period corresponding

to a source (i.e. a user in a specific home), BodyCompass then uses a neural network to
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predict the sleep posture for that source during each stable sleep period.

Our model uses a multi-layer fully-connected neural network. We deliberately choose

a fully-connected neural network instead of the commonly used convolutional neural net-

work (CNN). CNNs are more suitable for natural images because one typically needs to

compare each pixel with the pixels in its neighborhood. In contrast, to capture the multipath

profile, one needs to compare pixels globally. (See Sec. 5.8.4 for an empirical comparison

of the performance of a fully-connected network and a CNN on this task.)

For training the neural network, we ask subjects to wear accelerometers to collect the

ground-truth angular orientation of the body. Detailed ground truth collection process is

described in Sec. 5.7.2. Recall that we express the sleep position in terms of the angle

specifying the trunk rotation with respect to the bed. BodyCompass averages the angular

values that the accelerometer measures during a stable period to obtain the ground truth

sleep posture of the subject in that period.

BodyCompass trains the neural network to predict the sleep angle associated with each

filtered multipath profile. To train the network we need to compare the predicted angle

with the ground truth angle. Directly comparing angles however leads to discontinuity

since angles wrap around, i.e., 0° and 360° are the same angle, but simply computing their

difference will yield a large loss.

Therefore, in order to ensure smoothness of the loss function, BodyCompass’s model

predicts complex numbers, and uses the phase of the complex number as the angle predic-

tion. Specifically, we define Circular Loss as follows:

ℒ𝑐(𝜃) = E𝑥,𝑦∼𝑝(𝑥,𝑦) 𝑎𝑟𝑐𝑐𝑜𝑠(
𝑅𝑒(𝐹 (𝑥, 𝜃) · 𝑒−𝑖𝑦)

|𝐹 (𝑥, 𝜃)| ) (5.1)

where 𝑥 is the input feature vector (i.e., the filtered multipath profile of a stable segment),

𝑦 is the ground-truth angle, 𝐹 (·, 𝜃) is the model that maps a feature vector into a complex

number, 𝜃 is the model parameters (the wights of the neural network), arccos denotes the

arc cosine function, and E is the expectation.

The operand of 𝑎𝑟𝑐𝑐𝑜𝑠: 𝑅𝑒(𝐹 (𝑥,𝜃)·𝑒−𝑖𝑦)
|𝐹 (𝑥,𝜃)| can be interpreted as the cosine similarity be-

tween two vectors: one is our prediction (𝑅𝑒(𝐹 (·)), 𝐼𝑚(𝐹 (·)) and the other one represent
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the unit vector of the ground truth angle (𝑐𝑜𝑠(𝑦), 𝑠𝑖𝑛(𝑦)). The similarity reaches its max-

imum when the predicted vector has the same angle as the ground truth (an 𝑎𝑟𝑐𝑐𝑜𝑠 of 0).

And it reaches its minimum when these two vectors are diametrically opposed (an 𝑎𝑟𝑐𝑐𝑜𝑠

of 𝜋 radians). This loss function solves the discontinuity problem since it computes the

angle difference between our prediction and the ground truth in a differentiable way.

5.6 Transferring the Model to New Users

In the previous section, we explained how to train a model to predict a user’s sleep posture

accurately given abundant labeled data from the that user. However, data collection is a

laborious and time-consuming task for both the user and the operator of the system. Ideally,

we would like our system to perform well on new users with minimal effort.

Since the properties of RF signals (power, phase, and multipath) depend on the en-

vironment, transfer between different homes is a challenging task. In order to achieve

satisfactory performance while reducing the burden on the user, we assume that only lim-

ited labeled data from a new user is available. We refer to such labeled examples (where

an example is a filtered multipath profile and its correct sleep angle) as Calibration Points.

As described in Sec. 5.8.2, the number of calibration points can be as few as 8 examples,

each lasting for 2 minutes, for a total of only 16 minutes.

Given the scarcity of the calibration points, it is not practical to train a model entirely

based on those points. Instead, we formulate the task as a semi-supervised domain adapta-

tion problem: we have multiple source users, each with abundant labeled data, and a target

user for which we have a few calibration points. We would like the system to achieve high

accuracy on the target user given the above information.

5.6.1 Overview of the Transfer Model

Given a set of source domains i.e. a number of people and their sleep postures in the

training set, and a target domain i.e. a new person in their own home, we design a model

that learns from the training data of the source domains how to infer sleep posture in the

target domain, with a small number of calibration points.
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At a high level, our transfer model first preprocesses the training data to ensure that

the probability distributions of the source domains look as close as possible to the target

domain. Next, given that the amount of data from the target domain is not sufficient to

train a model, we try to augment the data from the target by selecting data points from the

source domains that look similar to the target data, both in terms of its feature map (i.e.,

filtered multipath) and the corresponding posture. We use this augmented data to create a

virtual target which is similar to the original target but has much more labeled data. Now

we can adapt the model from each source domain to work well on the virtual target. The

final prediction is then performed by majority voting over all of these adapted models.

In the following sub-sections, we expand on this high-level description, providing the

details of the three key components of our transfer model:

1. Distribution Alignment: We explicitly align the data distributions across users,

whose differences are caused by different room layouts.

2. Data Augmentation: We generate augmented data by picking data points from

source subjects that resemble the calibration points.

3. Ensemble Learning: We use Majority Voting to generate one final prediction that is

robust and accurate.

5.6.2 Distribution Alignment

(a) User A’s bedroom layout (b) User B’s bedroom layout

Figure 5-8: Bedroom layouts of two users. Green rectangle shows the location of our
device. Red rectangles shows the location of the bed and blue circle shows the position of
the pillow.
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(a) User A’s profile when facing to the device (b) User B’s profile when facing to the device

Figure 5-9: Examples showing how the bed position with respect to the radio affects the
signal’s strength and location. The figures show that due to differences in the position of
the bed with respect to the radio, User A’s direct path signal is much stronger and closer to
the radio compared to User B’s.

Figure 5-10: Visualization of data distribution of User A (red) and User B (green). Since
the feature map (i.e., the filtered multipath profile) is high-dimensional, to visualize the
data in a two-dimensional space we perform joint Principal Component Analysis (PCA) on
all the feature vectors (all filtered multipath profiles) from both A and B using the same set
of basis, and plot the data with respect to the two largest principle components. We plot
the data of the source and target separately in the left two figures and combined in the right
figure. As we can see, the distributions of two users are mismatched significantly.

Without any alignments, the model’s generalization ability will be greatly hampered by

the distribution shift between the source user and the target user. One major reason of this

distribution shift is caused by different room layouts. For example, we have User A and

User B with their floor plan visualized in Fig. 5-8. User A’s bed is very close to the device

(the device is right above the bed), and in comparison, User B’s bed is far from the device.

We show the multipath profiles of the two users in in Fig. 5-9 (a) and (b). As clear from

these figures, the difference in the bed location with respect to the radio impacts the filtered

multipath profile in two ways. First, the direct-path reflection of User B needs to travel

a longer distance compared to User A. Thus pixels at the same location in the multipath

profiles are not directly comparable. Second, the power of RF reflections decreases as the
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(a) User A’s profile after aligning bed location (b) User B’s profile after aligning bed location

Figure 5-11: The multipath profiles in Fig. 5-9 after aligning bed locations. Now the direct
path pixels of both Users A and B are at the same location.

Figure 5-12: Visualization of data distribution of User A (red) and User B (green) after
bed alignment and power normalization. Compared to Fig. 5-10, we can see that the two
distributions are much better aligned.

traveling distance increases. Therefore the breathing powers of User B’s pixels are much

smaller than User A. As a result, and as shown in Fig. 5-10, the data distributions of User

A and User B are significantly mismatched. Below, we explain the two methods we use to

align the distributions.

(a) Aligning Bed Locations: We first align the relative location between the bed and radio

across all users. While not all differences can be eliminated, this way, we ensure that all

direct-path reflections have the same traveling distance. And since we cannot ask every user

to move their bed, we can do this alignment virtually by reducing or increasing traveling

distances of all the RF reflections in the multipath profile. This method brings us two

advantages: 1) it keeps the original RF reflection pattern, and 2) we only need to know the

bed location to perform this alignment.

Identifying the bed position can be done manually, however it is tedious and error-

prone. Instead, we propose a robust and accurate way of measuring bed location for align-

ing. For each user, we do a pixel-wise summation for all of his filtered multipath profiles.
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Since the direct signal path has the shortest traveling distance, usually it has the highest

breathing power in the filtered multipath profiles. Therefore, the pixel with the highest sum

will give us an accurate estimation of the bed location. We additionally apply a Gaussian

filter with a sigma of 1 to erase small location mismatches.

Looking back to Fig. 5-8, there is another mismatch. In User A’s case, the radio device

is on the right-hand side of the user, and for User B, the device is on his left-hand side. This

indicates that, when two users are both facing the device, they are actually facing different

directions (to the right in Fig. 5-9a and to the left in Fig. 5-9b). Therefore we also align

directions by flipping the angles. In all of the following discussions and results,−90° (left)

represents the direction facing the device (to the right for User A and to the left for User

B), and 90° (right) represents the opposite direction.

Fig. 5-11 shows the filtered multipath profiles of Users A and B above after aligning

the bed location. We can see that the direct path pixels of both A and B are now at the same

location.

(b) Power Normalization: RF signals attenuate with distance. Hence, the power in a

particular pixel in the filtered multipath profile depends on the path length, more so than the

sleep posture, as shown in Fig. 5-11. This dependence can prevent model generalization to

a new target user if the target’s room layout differs from the source user. Thus we would like

to eliminate this dependence. To deal with this issue, we normalize the power distribution

in each pixel of the filtered multipath profile (i.e., for each data point, we subtract the mean

of the distribution and divide by its standard deviation).

Data distributions for User A and B after both aligning the bed location and normalizing

the power are plotted in Fig. 5-12, and they are aligned much better compared to Fig. 5-10.

5.6.3 Target Data Augmentation

Given the small number of calibration points, our information about the target user is lim-

ited. One solution is to perform data augmentation. In computer vision tasks, researchers

have long been using augmentation techniques such as cropping, rotating, and horizontal

flipping to help the model to capture data invariances. After those augmentations, images
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are still valid images. However, this is not true for our multipath profile. For example, flip-

ping means that the furthest pixel becomes the closest, and the longest indirect reflections

becomes the direct-path reflection. Therefore such standard augmentation techniques for

images will break the spatial structure of the multipath profile.

Instead, we use data points from the source users that are similar to the calibration points

from the target user. Specifically, our augmentation process contains the following steps:

First, we align all the data points from all the users (including the calibration points), as

described in the previous section. Then given one calibration point (𝑥0, 𝑦0), we first select

all the points (𝑥𝑖, 𝑦𝑖) that satisfy the condition that the angle difference between 𝑦0 and 𝑦𝑖 is

smaller than a certain threshold (the default is 20 degrees). Then for those selected points,

we further sort them based on the similarity of their multipath profiles to the calibration

point as captured by the L2 distance: ‖𝑥𝑖 − 𝑥0‖2. Finally, we pick the data points most

similar to the calibration point (specifically we pick the 30 most similar source points to

each calibration point). We refer to the set of augmented data points as the virtual target.

When adapting the neural network model from a particular source user to the target

user, we combine the augmented data points with the labeled data from that source user to

train the model and improve the model’s performance on the target user. Note that we do

not use the calibration points in training any of the adapted models. We hold the calibration

points and use them to select the most effective adapted models as explained in the next

section.

5.6.4 Majority Voting

So far, we adapted each of the source models to transfer its knowledge to the virtual target.

However, some of the source users in our training set may be very different from the target

user, and despite adaptation, their knowledge may not translate well to the target user. Thus

we need a mechanism to detect models that are well adapted to the target and combine their

predictions.

We define validation accuracy as the model’s accuracy on the target’s calibration points.

This validation accuracy is an estimate of the adapted model’s true accuracy on the target
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data. Thus, we use this validation accuracy to evaluate the source’s compatibility with the

target. We filter out models that have bad validation accuracy (accuracy worse than 10%

compared to the best model), and perform a majority vote among the models with good

accuracy.

The majority vote is performed as follows: We create a histogram of the predictions

where each angle degree has its own bin. Then we smooth this histogram with a Gaussian

filter with a standard deviation of 20. Finally we pick the angle that has the highest value

after smoothing as our final predicted angle. It is worth mentioning that, the smoothing is

performed in a circular way, i.e., the last bin and the first bin are connected.

5.7 Experiment Setup

5.7.1 Data Collection

All experiments with human subjects were approved by our IRB, and we have obtained

informed consent from every subject. In total, we have collected 224 nights of data from

26 subjects (17 male subjects and 9 female subjects).4 Subjects’ bed sizes cover most

common sizes, from twin-size (1m wide) to king-size (2m wide). Each subject sleeps

alone in his/her own bedroom. For each subject, we install the radio device on the wall to

the side of the bed. The distance between the bed and the radio ranges from 0 meters (right

above the bed) to 4 meters (on the other side of the bedroom).

Figure 5-13: The placement of accelerometers on the subject’s body. The accelerometers
are used to collect the ground truth posture.

4After data cleaning described in Sec. 5.7.2

131



5.7.2 Ground Truth Collection

To collect the ground truth postures, for each night, we ask the subject to wear two ac-

celerometers, one on the chest and one on the abdomen. Both accelerometers are fixed

on the body using sport tapes to prevent sliding during sleep. In Fig. 5-13, we show the

placement of accelerometers on the body.

We align both accelerometers so that the accelerometer’s 𝑥’s positive points towards

the subject’s head, and 𝑧’s positive points opposite to the body. Then the angle of body

orientation 𝑦 can be calculated using the following equation [122]:

𝑦 = 𝑎𝑡𝑎𝑛2(𝑎𝑦, 𝑎𝑧)

where 𝑎𝑡𝑎𝑛2 is the 2-argument arctangent function.

We use two accelerometers for mutual validation. There are many factors that can lead

to poor data quality. Most commonly, sensors may fall off from the body during sleep, or

the subject may fail to align the sensors correctly. By having two accelerometers, we can

identify bad data points because readings from those two will no longer be equal. Such bad

data points are then excluded from training and testing.

5.7.3 Radio Specification

We use a standard FMCW radio similar to the one used in past work [157, 172, 5, 176].

The radio sweeps the frequencies from 5.4 𝐺𝐻𝑧 to 7.2 𝐺𝐻𝑧 and transmits at sub-milliwatt

power in accordance with the FCC regulations. The radio is equipped with two antenna

arrays: a horizontal array and a vertical array. Each array is capable of dividing space

into 20 (angle) by 71 (distance) pixels, with an angular resolution of ∼ 8° and a distance

resolution of ∼ 20𝑐𝑚. In total we have 2× 20× 71 different pixels.

5.7.4 Model Implementation

We use a fully-connected neural network with 4 layers. After each hidden layer, there is

a layer of Batch Normalization [66], a layer of ReLU and a layer of Dropout. Fig. 5-14
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illustrates the neural network architecture.
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Figure 5-14: Architecture of the neural network.

5.8 Evaluation

In this section, we empirically evaluate the performance of BodyCompass.

5.8.1 Metrics

We define Angle Error as follows: For a single data point (stable segment) with a ground

truth angle of 𝑦 and a predicted angle of 𝑦′, its Angle Error is the difference between 𝑦 and

𝑦′, as defined in Eq. 5.2. Angle error is always within the range from 0° to 180°.

𝑒(𝑦, 𝑦′) = |(𝑦 − 𝑦′ + 180) mod 360− 180| (5.2)

We use following two metrics that are based on angle error to evaluate the performance

of our system.

• Average Angle Error (Error): Average Angle Error is the weighted average of all

the angle errors for all stable segments in the testing dataset, where the weight of

each stable segment is set its time the duration.

• Threshold Accuracy (Accuracy): Since most past work computes accuracy with

respect to a few key postures (supine, right side, left side, and prone), we similarly

estimate accuracy as the percentage of time that the angle error between the predic-

tion and the ground truth is smaller than 45°. This gives us an intuitive understanding

of the percentage of time we predict the direction of the user correctly.
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5.8.2 Evaluation Setting

Depending on the amount of data available from the target subject, we present results under

three different evaluation settings:

1. 1-Week: If we collected enough data from the target subject, we can directly train on

the target’s data, without transfer learning. Under this setting, for each subject in our

dataset, we report the result with leave-one-night-out cross-validation, i.e., using one

night for testing and the remaining nights for training, and repeat this process until

all the nights have been tested.

2. 1-Night: In this setting we limit ourselves to only one night of labeled data from

the target subject, and the rest of data from the target is unlabeled. One night is

not enough for training. Therefore, we use this one night of data for our calibration

points as discussed in Sec. 5.6.

3. 16-Minutes: To further reduce the effort required from users, we present the results

with only 8 labeled data points from the target subject. We assume that those 8

points cover most common positions of that user. This can be achieved by asking the

user to emulate sleeping in his common sleep postures. In our evaluation, We select

those calibration points from the existing sleep dataset by clustering the subject’s

sleep postures, and picking the center points for each cluster. If the resulting stable

segment is longer than 2 minutes we use only a window of two minutes. Thus,

collecting these 8 calibration points can be done in 16 minutes.

5.8.3 Evaluation of BodyCompass’s Performance

To evaluate the effectiveness of BodyCompass, we compare its performance with three

baselines: k-NN (k-Nearest Neighbors), Random Forest and XGBoost [21]. Note that all

baselines and BodyCompass take filtered multipath profiles as input. Since the baselines

do not have transferability capability like BodyCompass it is not clear how to train them

when the available labeled data from the target subject is limited, i.e., in the 1-night and
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Table 5.1: Evaluation results under three different settings with different methods (Body-
Compass, k-NN, Random Forest (RF), XGBoost [21] (XGB)). Baseline methods are evalu-
ated under two scenarios: All (A): trained with data from all the subjects; Target (T): trained
with data from the target subject only. Note that BodyCompass significantly outperforms
all three baselines under all settings.

BodyCompass k-NN (A) k-NN (T) RF (A) RF (T) XGB (A) XGB (T)

Angle Error (1-week) 15.3°± 4.4° NA 31.3°± 9.7° NA 33.8°± 13.0° NA 33.8°± 13.3°

Accuracy (1-week) 94.1%± 4.3% NA 77.7%± 9.8% NA 75.4%± 12.0% NA 75.5%± 12.9%

Angle Error (1-night) 25.6°± 6.7° 43.1°± 11.0° 40.6°± 11.0° 52.5°± 17.0° 45.4°± 15.1° 53.9°± 16.2° 49.2°± 13.1°

Accuracy (1-night) 86.7%± 6.7% 65.2%± 10.5% 67.8%± 10.2% 54.8%± 14.5% 62.2%± 13.8% 53.5%± 14.2% 59.9%± 10.5%

Angle Error (16-min) 28.3°± 8.7° 59.1°± 19.0° 60.6°± 19.0° 58.4°± 20.2° 55.0°± 18.9° 60.7°± 20.1° 65.1°± 13.1°

Accuracy (16-min) 83.7%± 6.8% 50.3%± 14.6% 46.4%± 17.0% 51.0%± 14.9% 52.2%± 15.0% 48.7%± 15.8% 42.8%± 11.4%

16-minutes settings. Thus, for these settings, we evaluate the baselines’ performance under

two different training setups: 1. using data from all the available subjects; 2. using data

only from the target subject.

Table 5.1 compares BodyCompass with the baselines for three different amounts of

labeled data from the target subject: 1-week, 1-night, and 16-minutes. The table shows that

BodyCompass significantly outperforms all three baselines under all settings. Specifically,

BodyCompass and the baselines achieve their best performance when there is sufficient

data from the target user. In such setting, BodyCompass’s accuracy is 94%, whereas best

accuracy across all baseline methods is only 77.7%.

The table also shows that when the amount of labeled data from the target subject is

limited (e.g., in the 1-night setting and 16-minutes setting), the accuracies of all baselines

are significantly reduced – 27.4% reduction for k-NN, 24.4% reduction for Random For-

est, and 26.8% reduction for XGBoost. This is because of the natural variability in sleep

postures. For example, even in the same body orientation, a slight change in arm or leg

positions can cause a change in the pattern of RF reflections. All three baselines do not

have the ability to handle such variability in the absence of a large amount of labeled data

from the target. And since differences between different subjects are large, data from other

subjects cannot help the baselines improve their robustness (e.g. under 1-night setting, data

from other subjects is detrimental to the final performance). In contrast, BodyCompass

aligns the distribution across different users, and performs data augmentation to battle this

variability. As a result, BodyCompass can sustain high accuracy of 83.7% even with only
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16 minutes of labeled data from the target user.

Male Subjects Female Subjects

Figure 5-15: Accuracy for each of our subjects under three different test settings. Subjects
are separated by their gender.

Next, we zoom in on BodyCompass and check the accuracy for each target user. In

Fig. 5-15, we plot the average accuracy for each subject with our system under three dif-

ferent settings: 1-week, 1-night, 16-minutes. One can see that while transfer learning gives

good accuracy across subjects, not all subjects have equal accuracy. Subjects who are more

different from the source subjects will naturally have a lower accuracy when they have only

1-night of labeled data or 8 calibration points. We notice that, in our dataset, on average

the accuracy on male subjects is higher than female subjects. Given the small number of

subjects, it is not clear whether this accuracy gap is due to gender differences or is specific

to the individuals in our dataset.

Another interesting aspect is that we see a slight increase of the accuracy of Subject #11

when moving from 1-week setting to a transfer setting like 1-night or 16-minutes. This is

because while collecting data from Subject #11, the accelerometers often fell off during

sleep. As a result, a significant part of each night from this subject had bad data with no

accurate labels and was ignored. In this case, transfer learning can potentially have higher

accuracy because it leverages labeled data from other users.

Finally, Fig. 5-16a presents the accuracy as a function of body orientation under all

three settings. Our system has a high accuracy across all body orientations except for some

corner cases where we lack enough training data (See the amount of labeled data for each

angle in Fig. 5-16b). For example, at angle −180°, our system has low accuracy due to the

fact that the amount of labeled data for this posture is 1/20 amount of labeled data for the
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supine case, i.e., 0°.

(a) Accuracy w.r.t. Orientation
(b) Amount of labeled data as a function
of orientation (normalized by the amount of
data for the supine case)

Figure 5-16: Accuracy and amount of labeled data for each body orientation.

5.8.4 Evaluating the Components of BodyCompass

Table 5.2: Evaluation of the various components of BodyCompass. The table shows the ac-
curacy under a 1-night setting for the whole system and for the system without a particular
component.

Angle Error Threshold Accuracy

Full System 25.6°± 6.7° 86.7%± 6.7%

CNN instead of Fully-Connected Network 29.5°± 10.1° 82.5%± 10.0%

Direct Path instead of Multipath 43.0°± 11.8° 67.7%± 9.5%

L2 loss instead of Circular Loss 33.1°± 12.4° 77.7%± 13.2%

w/o Breathing Filtering 30.0°± 10.2° 81.7%± 9.3%

w/o Distribution Alignment 33.4°± 11.9° 78.5%± 10.8%

w/o Data Augmentation 30.7°± 10.2° 81.5%± 8.6%

w/o Majority Voting 31.2°± 11.2° 80.5%± 9.7%

We evaluate the contribution of each component in our system by evaluating the per-

formance of the system without that component. Specifically, we evaluate the contribution

of using multipath profiles, breathing-filtering multipath profiles, distribution alignment,

data augmentation, majority voting, fully-connected neural network, and circular loss. Re-

moving the contribution of the breathing-filtering multipath profiles, data alignment and
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data augmentation components is straightforward, yet for the rest, we present the following

substitutions:

1. Substitution for the Multipath Profiles: Instead of taking the multipath profile as

input, we zoom in on the voxels from the bed area, and take only those voxels. This

is equivalent to focusing on the direct path only, and ignoring any indirect paths that

involve signals that bounced off the person and other objects in space.

2. Substitution for the Fully-Connected Network: We substitute the fully-connected

neural network with a convolutional neural network (CNN) and evaluate the resulting

performance. The CNN model follows the AlexNet model [74].

3. Substitution for the Circular Loss: We can directly regress the angle and use the

standard L2 loss.

4. Substitution for Majority Voting: Instead of training on each source subject and

performing majority voting, we can combine labeled data from all source subjects

and train only one model.

Table 5.2 provides the evaluation results for BodyCompass’s components. All experi-

ments are conducted under 1-night setting. The first row shows BodyCompass’s accuracy

1-night setting when all components are active. Comparing the first row with the other

rows in the table shows that each of BodyCompass’s components offers a considerable im-

provement to the overall performance, and the removal of any component results in reduced

accuracy.

5.8.5 Sensitivity Study

In this section, we test our system’s robustness to various factors such as the presence of

other people in the environment and their movements, whether the subject has shallow or

deep breathing, and the exact location of the radio. We note that when collecting data in the

wild, i.e., in people’s own homes during their natural overnight sleep, we have no control

over the above factors. In fact, in all of the experiments reported in the previous sections, we

leave the radio in the home of the subject for about a week to collect the data. We have no
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(a) Multipath Profile w/o Neighbor (b) Multipath Profile w/ Neighbor

(c) Filtered Multipath Profile w/o Neighbor (d) Filtered Multipath Profile w/ Neighbor

Figure 5-17: Robustness to moving neighbors. The figures in the top row show the multi-
path profile without and with a moving neighbor. Figures in the bottom row filtered mul-
tipath profile without and with a moving neighbor. The figures show that filtering the
multipath profile eliminates extraneous movements from other people, hence boosts the
robustness of the system.

control over when the subject goes to bed, where in the bed they sleep, whether their sleep

location changes from one night to the next, how they breathe, and who else is at home and

how they move while the subject is asleep. Thus, we cannot run sensitivity tests in the wild.

We run these tests in a controlled environment where the subject is lying in bed but they

are not asleep. In each case, the subject lies in bed at a particular body orientation, while

we change the parameter we want to study, and measure BodyCompass’s accuracy. The

subject then changes his body orientation and we repeat the measurements while varying

the parameter of interest.

Sensitivity to Movements by Other People

We evaluate our system’s performance when there is a neighbor moving in an adjacent

room. The subject sleeps approximately 3 meters away from the radio, whereas the neigh-

bor is about 7 meters away from the radio. We ask the subject to lay down for 2 minutes

in each of the following postures: supine, facing left, facing right, and prone. We train
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the system with examples in which the subject was alone without anyone moving in the

neighboring room. We use 6 examples for each sleep posture for training. During testing,

we bring a second person to the adjacent room and ask them to move at will, while the

subject is lying in bed. We collect 3 examples of each sleep posture for testing.

Table 5.3: Performance w/ neighbor movements.

Angle Error Accuracy

Full System 12.7° 100%

w/o Filtering 53.6° 58.3%

Fig. 5-17 shows that our filtering of the multipath profile makes the system robust to

extraneous movements such as the presence of a neighbor. The figure plots the multi-

path profile as well as the filtered multipath profile. As the figure shows, the neighbor’s

movements have a significant impact on the unfiltered multipath profile (Fig. 5-17b), yet

its impact is removed after filtering the multipath profile using the method in Sec 5.4.2

(Fig. 5-17d).

Table. 5.3 presents BodyCompass’s accuracy results averaged across the test examples.

It shows that our system is robust against extraneous movements by other people.

Sensitivity to Breathing Strength

Table 5.4: Performance when subjects breathe at different strengths.

Strength Angle Error Accuracy

Deep 13.6°± 13.5° 97.2%± 4.8%

Shallow 8.6°± 4.8° 100%± 0%

In this section, we investigate BodyCompass’s robustness to variations in breathing

strength, i.e., to people having shallow vs. deep breathing. As in the previous section,

we ask the subject to lie in bed in various sleep postures and for each posture, vary their

breathing depth and rate. We repeat the test for each sleep posture, and with 3 different

subjects. During testing, we ask the subject to perform 2 groups of experiments. Each
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group contains 4 postures (supine, facing left, facing right, and prone) and each posture is

repeated 3 times. For the first group, we ask the subject to breathe deeply and slowly, and

for the second group, we ask the subject to breathe shallowly and quickly. In Fig. 5-18,

we show the breathing signals as well as their corresponding multipath profiles. Table. 5.4

reports the average accuracy for different breathing strength. It shows that BodyCompass

has high accuracy for both shallow and deep breathing.

(a) Deep Breathing Signal (b) Shallow Breathing Signal

(c) Multipath Profile w/ Deep Breathing (d) Multipath Profile w/ Shallow Breathing

Figure 5-18: Breathing signals and their corresponding multipath profiles. Although the
amplitude and frequency of the two breathing signals are quite different, their multipath
profiles have similar patterns.

We also note that the accuracy results in these sensitivity tests are higher than the num-

bers presented in Table. 5.1 for testing in the wild. This is because when the subject is

awake, the subject is able to accurately control his posture; In contrast, when the subject is

asleep, the limbs can take various positions; Also the subjects may use pillows to support

their bodies, and their use of pillows may change across days. Thus, overall there is much

more variability in the wild.

Sensitivity to Device Location

Because the radio has directional antennas and the breathing signal is relatively weak, the

device should face the bed to get a good SNR. However, we do not require the device to

be exactly facing the chest of the person, nor do we require the device to be at a specific

distance from the person.
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In this section, we show that BodyCompass is fairly robust to variability in device

distance and deviation from facing the chest of the person. In contrast to the previous two

sensitivity tests, our in-the-wild deployments exhibit significant diversity in terms of device

distance and azimuthal angle with respect to the person’s chest. Specifically, in terms of

distance between the chest and the device, our deployments cover a range from 0.5𝑚 to

4𝑚. In terms of the angle between the device and the person’s chest, our deployments

cover a range up to plus/minus 35°, where a zero degree means that the device is facing the

chest of the person.

Fig. 5-19 plots the accuracy of BodyCompass as a function of the distance to the person,

and the angle to person’s chest. The results in the figure show that BodyCompass works

reliably for different location settings.

(a) Distance between radio and subject (b) Azimuthal angle from device to subject’s chest

Figure 5-19: Scatter plots of accuracy w.r.t. difference location settings. As two plots show,
our system can accommodate a wide range of location settings.

5.8.6 Example Application: Monitoring the Frequency of Posture Changes

Figure 5-20: Ground truth and predictions of posture shift frequency for each subject.

The frequency of posture shift (moving from one posture to another) during sleep is an
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important sleep-related metric. The literature shows that posture shift frequency is corre-

lated with aging [132, 33] and sleep qualities [33]. Further for patients with Parkinson’s dis-

ease, less frequent nocturnal turnovers reflects a deterioration in the disease condition [99].

Note that not every motion is a posture change. For example, when the user just changes

his arm position, his body angle remains the same. To thoroughly evaluate our system’s

performance, we adopt the definition of posture change in [132]: to be quantified as a

posture change, a body angle change of at least 30° is required.

Fig. 5-20 plots the frequency of posture shifts for all 26 subjects, ordered in ascending

order. The figure compares the ground truth and our model with 1-night of training data

from the target user. The figure shows that our model is capable of tracking the frequency

of posture shifts accurately, with an average relative error of only 10.3%. These results

indicate that our model can be used to track changes in posture shift in Parkinson’s patients.

5.8.7 Failure Case Analysis

Figure 5-21: Angle histogram of Subject #15. Histogram is color-coded into the ring, as a
more reddish color represent more occurrence.

Looking back at Fig. 5-15, we can see that even when the amount of labeled data is

scarce, our system is still able to deliver satisfactory accuracies for most subjects. How-

ever, there are few exceptions where we can see a significant reduction in performance

when the amount of labeled data is reduced. For example, for Subject #15, we have the

largest reduction in performance, from 95.0% to 68.7%. To understand the reason, we plot

his angle histogram in Fig. 5-21. We can see that most of his time is spent in prone position

(sleep on stomach), and he never sleeps facing left or right. Recall in Sec. 5.6.2, we explic-

itly align the distribution to be the same. However this subject’s intrinsic distribution is not
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similar to any other subjects. Therefore the alignment cannot fully succeed, which causes

bad transfer performance. We expect to see an increase of our system’s performance on

this subject if we have more subjects with similar sleep postures.

5.9 Conclusion

We present BodyCompass, a wireless system that provides accurate sleep posture mon-

itoring in the wild. By explicitly extracting RF reflections from the user and designing

appropriate machine learning algorithms, our system can accurately capture the user’s pos-

ture and is able to transfer its knowledge to a new home with minimal additional data. A

user study in 26 different homes with 26 subjects and more than 200 nights shows that

BodyCompass is highly accurate, with an accuracy of 94% using 1 week of data from the

user, and 83.7% using only 16 minutes of data. We believe that this work can serve as a

practical sleep posture monitoring system, enabling easy adoption and helping doctors and

patients address this unmet need.
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Chapter 6

Conclusion and Discussion

In this thesis, we explore alternative solutions that allow for in-home sleep studies that

are comfortable and affordable, and at the same time, deliver clinically meaningful mea-

surements. By only relying on wireless reflections, our system do not require the user to

wear any on-body sensors and he can sleep comfortably in his own bed. We developed the

following systems as parts of this thesis.

For sleep parameters, we introduce EZ-Sleep. It involves novel algorithms that models

RF-based locations as noisy measurements, and pinpoint bed entry/exit events with a Hid-

den Markov Model. It then applies a convolutional neural network on the wireless signals

reflected from the bed to detect whether the user is asleep.

For sleep stages, we present RF-Sleep, which achieves a significant improvement over

the state-of-the-art methods. It adapts a convolutional neural network (CNN) to extract

stage-specific features from RF spectrograms, and couples them with a recurrent neural

network (RNN) to capture the temporal dynamics of sleep stages. It also proposes a novel

conditional adversary model, which enables the encoder at equilibrium to discard all extra-

neous information specific to the source domains, while retaining the relevant information

for the predictive task.

For breathing monitoring, we propose DeepBreath, the first system that recovers the

detailed respiration signals of multiple people sharing a bed or sitting with zero separa-

tion. We present a mathematical reduction that allows us to formulate the problem as blind

source separation and solve it using independent component analysis.
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And finally for sleep posture, we have BodyCompass, the first wireless system that pro-

vides accurate sleep posture monitoring in the wild. By explicitly extracting RF reflections

from the user and designing appropriate machine learning algorithms, we can accurately

capture the user’s posture and our system is able to transfer its knowledge to a new home

with minimal additional data.

Collectively, the four systems can turn the user’s own bedroom into a sleep lab, where

detailed sleep studies can be conducted every night with zero overhead for the subject. Our

approach provides medical doctors tools to diagnose and track sleep-related problems and

treatments in the patient’s home.

6.1 Lessons Learned

The experience of designing and deploying RF-based deep-learning sensing systems with

real users in their normal living spaces has led to the following lessons.

Labeling RF signals: Typically, deep learning requires labeled data. Yet, unlike images,

audio, and text, radio signals cannot be labeled by human labelers. Further, there are no

existing RF datasets that one can use for training and testing a model. Hence, RF-based

sensing applications require the designer to collect a new dataset and find a way to label it.

This is perhaps a more general problem that applies to data that cannot be easily interpreted

by humans, like RF signals, accelerometer time series, etc. One way to label such data is to

find an alternative modality that is easy to label by humans, and synchronize the radio signal

with this modality. There is no single modality that works for all problems. For example, in

the sleep staging application we used EEG signals which are the gold standard for scoring

sleep stages; in DeepBreath, we had the user wear a breathing belt and used a matching

algorithm to synchronize the breathing with the radio signal. In BodyCompass, we asked

the person to wear two accelerometers on their chest and belly, which we synchronized

with the radio and used to detect the ground truth body posture at different times.

Understanding RF signals: It might seem at first that one can simply feed the radio signal

to a neural network and train the desired model. Unfortunately this approach does not
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work. Similarly to how machine learning scientists use their intuition about images and

text to design appropriate models for such modalities, a designer of an RF-based learning

model needs to deeply understand the radio signal and its relationship to the task of interest.

For example, knowing radio propagation and how the radio signal is modulated by all

objects in the environment made us actively work to eliminate the extraneous information

in the signal. This was done at multiple levels. First, a significant amount of irrelevant

information was eliminated by understanding how radios signals can zoom spatially on a

target. Then we eliminated the residual irrelevant information through our model design,

i.e., using a conditional adversarial architecture.

Working in the Wild: Many academic papers demonstrate a proof of concept in the lab

and assume that the system will generalize to work outside the lab. When we started our

work on RF-sensing of breathing and sleep, we naturally conducted the first few experi-

ments in the lab environment. However as we moved our experiments to users’ homes, we

discovered that even simple things that we take for granted in a lab setting become a hard

problem. For example, in a sleep lab, it is clear when the user goes to bed. In contrast, at

home we need to design an algorithm to discover when the user goes to bed. We also need

to decide whether the user went to bed for sleep or simply to sit and work in bed. There

are also many other uncertainties about the environment and the various people in it and

the unknown interferers that may affect the radio signal. The robustness that is needed for

working outside the lab is very different and cannot be appreciated without trying to run

sensing systems in the wild with real users, as they go about their normal life.

6.2 Limitations

During the design process of our systems, we make a few assumptions about the data.

Those assumptions hold for most scenarios, including data we have collected during the

developments of the systems. However we do notice that those assumptions may fail under

rare conditions. Some of the assumptions used by our current design are listed below.

Reliability of RF-based localization system: EZ-Sleep leverages a state-of-art RF-based
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localization system, which should be able to localize the user to within 1 meter in 90% of

cases. However, the error of the RF localization system will greatly increase if there are

constant environmental motions near the bed, such as a rotating fan above the bed. Unless

actively addressed, such motions could confuse the system and let it believe that there is

always a person in the bed.

Sleep cycles: Our sleep stages progress in cycles and will enter different sleep stages

in order. Our model leverages the temporal information to generate accurate estimation.

However, patients with particular diseases may not follow the routine sleep cycles. For

those patients, our system may not be able to achieve optimal performance.

Up to 2 persons in the bed: The identity matching algorithm assumes there are up to 2

people in the same bed. However, some couples like to sleep with their pets, and pets breath

as well. Though the breathing separation module can successfully extract each individual

breathing signals, the identity matching algorithm would fail because there are intrinsically

more than 2 people in the same bed.

6.3 Future Directions

Beyond sleep and breathing: During a sleep study, the doctor has access to a wide range

of vital signals, including electroencephalogram, electrooculography, electromyography,

blood oxygen level, etc. Those vital signals are important for certain sleep diseases. Future

work could consider estimating these signals from the radio waves that reflect off people’s

bodies. Some of these signals are more directly related to motion and can be easily ex-

tracted from radio signals with a proper choice of wavelength. Others, e.g., blood oxygen,

are not directly related to motion but may be indirectly inferred from breathing which can

be extracted from radio signals. The details and achievable performance are interesting

topics for future work.

Chronic Disease Monitoring: Many chronic diseases are directly related to sleep. For ex-

ample, research shows that depression patients usually have much longer REM. Therefore
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the amount of REM sleep within one night could act as a measurement of depression sever-

ity. Some chronic diseases like Parkinson’s Disease can also cause sleep fragmentation,

which is reflected by a high amount of WASO. Since our systems are designed for long-

term monitoring, we provide doctors tools to better understand the progression of those

diseases, and potentially study the impact of medications on sleep and nocturnal breathing.
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