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Abstract

When dealing with classical, Euclidean data, the statistician’s toolkit is enviably
deep: from linear and nonlinear regression, to dealing with sparse or structured data,
to interpolation techniques, most any problem dealing with vector or matrix data
is amenable to several different statistical methods. Yet modern data is often not
Euclidean in nature. The semantic content of natural images does not have a vector
structure; shifting an image one pixel to the right does not perceptibly change it, but
its vector representation is very different. For model cross-validation or bootstrapping,
each data point is a dataset in its own right, and one might want to consider an
“average dataset”. In an ensemble method, experts may express their beliefs as prior
distributions; how would we perform a statistical analysis of these?

Recently much attention has been paid to a framework which subsumes all of these
problems: the Wasserstein space of measures with finite second moment. Works
on point estimation [61], generalized means [19, 36, 5], and linear regression [11,
32] have appeared, as have some on smooth interpolation [7, 15], greatly expanding
the statistical toolkit for modern data. In this vein, the present work is broadly a
theoretical and computational exploration of curves of measures which in some sense
minimize curvature while interpolating data, as splines do in Euclidean space. We
answer several questions about the relationship between the intrinsic Wasserstein-
Riemannian curvature of such curves and a particle flow-based, “fluid-dynamical”
formulation, and provide fast and accurate smooth interpolation techniques. We also
study a related probabilistic interpolation problem unique to the measure setting,
which asks for particle trajectories that satisfy certain interpolation constrains and
minimize a KL divergence, in analogy with the Schrödinger bridge problem [38, 56,
55]. We conclude with an extension of our methods to the case of unbalanced measures
in the Wasserstein-Fisher-Rao space.

Thesis Supervisor: Philippe Rigollet
Title: Professor, Mathematics
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Chapter 1

Introduction

For classical data, the statistician’s toolkit is enviably deep: from linear and nonlin-

ear, parametric and nonparametric estimators, to regression of sparse or structured

data, to interpolation techniques, most any problem dealing with numerical vector

or matrix data is amenable to several different statistical methods. Moreover, all of

these problems can be solved efficiently, often in time linear in the size of the data.

However, an increasing amount of data is not naturally structured as a vector in R𝑑,

an essential property in the problems above. For instance, natural images are stored

as vectors in, say, R1080×1920, but their semantic content has nothing to do with this

representation; shifting an image one pixel to the right does not change its meaning,

but it drastically changes the vector representing it. In the same way, temperature

data on the earth does not live in Euclidean space (we study this example in detail

in Chapter 3). For model training and validation, say using cross-validation or boot-

strapping, each data point might be a dataset in its own right; what would it mean

to form an “average dataset”? Finally, we might imagine that in an ensemble method,

each expert produces for us a prior representing their beliefs about a particular event;

how would we perform a statistical analysis of these priors?

Much attention has been focused on non-Euclidean data via the so-called manifold

hypothesis, which assumes that the data is drawn from a manifold. (This is believed

to underlie some of the workings of neural networks, see for example [24].) While this

framework is very general, this means statistical methods, theoretical and numerical,
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are difficult to apply, owing to the wild variation within the class of manifolds. Even

smooth interpolation with splines is highly nontrivial in this setting [49]. In contrast,

in the statistical community much effort has been directed towards a different frame-

work which is simultaneously general enough to encompass the problems mentioned

above, and specific enough to admit theoretical analysis and fast numerical methods.

This is the Wasserstein space 𝒫2 of probability measures over R𝑑 with finite second

moment, defined roughly by

𝑊 2
2 (𝜇, 𝜈) = inf

𝑇 : R𝑑→R𝑑

∫︁
|𝑥− 𝑇 (𝑥)|2 𝑑𝜇 s.t. 𝑇#𝜇 = 𝜈

This seeks to find the least-distortion map from 𝜇 to 𝜈. When greyscale images are

viewed as measures on [0, 1]2, with mass 𝑑𝜇(𝑥, 𝑦) equal to the image intensity, this

metric recovers semantic meaning in an image, allowing, for instance, denoising of

unaligned brain scans [30, 21]. In bootstrapping and cross-validation, dataset folds

can be viewed as empirical measures on a master dataset 𝒟. Priors are already

measures, so they fit naturally into this framework. This metric, by the name of

optimal transport, has proved immensely fruitful in modern applications ranging from

the understanding the evolution of cell types human development [54] to natural

image superresolution [34]; see [33] for more. This is to say nothing of the enormous

theoretical implications of optimal transport outside of statistics [58, 59].

A modern treatment of data science using the Wasserstein space requires analogues

of all the techniques mentioned above. Works on point estimation [61], “means”

(barycenters) [19, 36, 5], and linear regression [11, 32] have recently appeared, as

have some on interpolation by splines [7, 15]. It is this latter problem with which we

are concerned. This thesis can be seen broadly as an exploration of curves of measures,

which are smooth and in some sense attempt to minimize the total curvature, in the

same way a Euclidean spline does. We also cover a related probabilistic problem,

of finding the most likely trajectories taken by a collection of particles subject to

distributional constraints at certain times — an interpolation problem unique to the

setting of measures. Broadly, this work can be seen as a theoretical study of measure
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interpolation problems, coupled with fast methods and extensions to new problems.

A general formulation of the interpolation problem asks: given measures 𝜇𝑖 at

times 𝑡𝑖, find a curve (𝜇𝑡) of probability measures that interpolates the data — that

is, 𝜇𝑡𝑖 = 𝜇𝑖 — and is smooth. In the Euclidean setting the solution to this prob-

lem is classical: the natural interpolant is a piecewise cubic polynomial.1 To attack

the problem of defining and computing splines of measures, we first proceed purely

abstractly, considering the set 𝒫2 as a smooth manifold. Indeed it can be equipped

with a Riemannian structure; we provide an overview in Chapter 2, and more de-

tails can be found in [28]. In any Riemannian manifold 𝒳 with covariant derivative

∇ = D
𝑑𝑡

, splines can be formulated via a variational problem, by minimizing the energy

functional:

min
𝑥𝑡

∫︁
‖∇�̇�𝑡�̇�𝑡‖2𝑥𝑡 𝑑𝑡 s.t. 𝑥𝑡𝑖 = 𝑥𝑖

where the norm ‖·‖𝑥𝑡 is that of the Riemannian metric. In Euclidean space, intro-

ducing a variation 𝑥𝑡 + 𝜀𝛾𝑡 and using integration by parts yields that the optimal 𝑥

satisfies 𝑑4

𝑑𝑡4
𝑥 = 0, so that 𝑥 is a cubic. On a manifold, the same logic gives that (see

[46])
D3

𝑑𝑡3
�̇�𝑡 +𝑅

(︂
D

𝑑𝑡
�̇�𝑡, �̇�𝑡

)︂
�̇�𝑡 = 0

where 𝑅 is the Riemann curvature tensor; in Euclidean space 𝑅 ≡ 0, and this reduces

to the equation characterizing cubics. This can be solved in certain cases with compu-

tationally expensive shooting schemes [13]. For merely approximating the minimizer,

again in special cases, a different method known as the de Casteljau algorithm can be

used [49]. However, in a general manifold the spline problem essentially stops here,

with no easy way to compute or approximate energy-minimizing splines.

The key to the Riemannian geometry on 𝒫2, however, is that it is not a purely

abstract notion; measures 𝜇 ∈ 𝒫2 should be considered not only as points in a struc-

1It is the unique piecewise cubic that interpolates the data, is 𝒞2, and has zero curvature at the
endpoints. Uniqueness can be checked by counting parameters.
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tured space, but as distributions of indistinguishable particles in R𝑑. The properties

of objects in the Wasserstein space are then expressed in terms of the behavior of the

underlying particles. As a starting point, given a curve of measures (𝜇𝑡) and a curve

of velocity fields (𝑣𝑡) with 𝑣𝑡 : R𝑑 → R𝑑, we say these satisfy the continuity equation

if

𝜕𝑡𝜇𝑡 + div(𝑣𝑡𝜇𝑡) = 0

Here 𝜕𝑡𝜇𝑡 is the “Euclidean” time derivative; if 𝜇𝑡 has density 𝜌𝑡 then 𝜕𝑡𝜇𝑡 has density
𝑑
𝑑𝑡
𝜌𝑡. From the particle perspective, the fields 𝑣𝑡 represent the instantaneous velocity

of the particles, and the measures 𝜇𝑡 are their distributions. Specifically, define the

flow maps 𝜙𝑡 by the ODE

𝜙′
𝑡(𝑥) = 𝑣𝑡(𝜙𝑡(𝑥)), 𝜙0(𝑥) = 𝑥

Then particles travel along trajectories 𝑡 ↦→ 𝜙𝑡(𝑥), and 𝜇𝑡 = (𝜙𝑡)#𝜇0. In this way

we can move between a Lagrangian and Eulerian perspective on particle dynamics,

the former emphasizing trajectories and the latter instantaneous velocity fields; given

particle trajectories 𝜙𝑡(𝑥) we can extract 𝑣𝑡 = 𝜙′
𝑡 ∘ 𝜙−1

𝑡 , and then 𝜇𝑡 = (𝜙𝑡)#𝜇0 will

satisfy the continuity equation.2

The continuity equation provides the link between curves in 𝒫2 and their particle

representations. The only issue is uniqueness; if 𝑤𝑡 satisfies div(𝑤𝑡𝜇𝑡) = 0 then 𝑣𝑡+𝑤𝑡

satisfies the continuity equation just as well as 𝑣𝑡.3 This is solved by choosing the

fields 𝑣𝑡 that minimize the kinetic energy

𝑣𝑡 = argmin

∫︁
|𝑣𝑡(𝑥)|2 𝑑𝜇𝑡(𝑥)

while still solving the equation for the curve (𝜇𝑡). This is exactly the kinetic energy

in the physical sense.

2Incidentally, by using the divergence theorem the continuity equation can be seen as enforcing
conservation of mass of the particle system.

3For example, if 𝜇𝑡 = 𝜇0 = 𝑁(0, 𝐼) then we can choose 𝑣𝑡 = 0 or 𝑣𝑡(𝑥) = 𝑅𝑥, where 𝑅 is any
rotation; since the Gaussian is rotationally invariant, both will satisfy the continuity equation.
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By considering the particle trajectories as the central object, one can obtain an-

other relationship between curves of measures and curves of particles. A path measure

is a measure 𝑃 on the space Ω of continuous paths. A path measure 𝑃 is a represen-

tation of a curve (𝜇𝑡) if

𝜇𝑡 = (𝑋𝑡)#𝑃

for each 𝑡, where 𝑋𝑡(𝜔) = 𝜔𝑡 is the time-𝑡 evaluation functional on Ω. Strictly

speaking this is more general than a continuity equation representation, since nothing

here requires paths to be unique from their initial position; we can have 𝜔(1)
0 = 𝜔

(2)
0

for different paths in the support of 𝑃 .

The Riemannian geometry on Wasserstein space uses the continuity equation to

define the metric (see the Benamou-Brenier theorem below). A fundamental fact

about Wasserstein space is that the intrinsic definition of geodesics, using the Rie-

mannian formalism, coincides with the path measure perspective. Indeed, one might

define a “path geodesic” between 𝜇 and 𝜈 by

min
𝑃

∫︁
ℓ(𝜔) 𝑑𝑃 s.t. (𝑋0)#𝑃 = 𝜇, (𝑋1)#𝑃 = 𝜈

where ℓ is the length functional. The solutions to this problem are precisely the same

as the intrinsic geodesics; see Chapter 2 below. The optimal 𝑃 will be supported on

Euclidean geodesics (straight lines), and the flow maps 𝜙𝑡(𝑥) will form straight lines

as well (the same ones). From this one can formulate the principle that to define a

geometric object in Wasserstein space, one should look at the corresponding object in

Euclidean space, and consider the Wasserstein object to be a measure on Euclidean

objects. For example, a surface in Wasserstein space may be captured by a “surface

measure” 𝑃 ∈ 𝒫(𝒴), where 𝒴 is the set of continuous surfaces in Euclidean space; for

𝑝 ∈ R2 we would have 𝜇𝑝 = (𝑋𝑝)#𝑃 , where 𝑋𝑝 is as before the evaluation functional.

We study this exact problem in Chapter 3, under the name of thin-plate splines.

As mentioned in the last paragraph, for “first-order” objects — distances, lengths,

geodesics — intrinsic Riemannian objects are perfectly described by lifting their Eu-

clidean analogs, via both the continuity equation and a path measure. The first part
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of this thesis is concerned with this question: for “second-order” objects — curvatures

and splines — can we use the same principle? For example, a second-order path

measure spline would be defined by

min
𝑃

∫︁ ∫︁ 1

0

|�̈�𝑡|2 𝑑𝑡 𝑑𝑃 (𝜔) s.t. (𝑋𝑡𝑖)#𝑃 = 𝜇𝑖

which was introduced simultaneously in [7, 15]. As we will see, intrinsic splines do

differ from their path measure counterparts, even for Gaussian measures (Theorem

5), and imposing that the optimal path measure be a particle flow, with deterministic

paths taken by each particle, creates yet another different solution (Theorem 4. Thus

we resolve that for second-order objects the intrinsic Riemannian definition, the La-

grangian path-measure perspective, and the Eulerian particle-evolution perspective

differ. However, all is not lost. We go on to use the Eulerian perspective to define

a new spline of measures, which we term the transport spline. This turns out to be

both much cheaper to compute, and a closer approximation of the intrinsic spline,

even equaling it in certain situations (see Theorem 10). We then demonstrate, as

mentioned above, that the same techniques can be applied to more general objects,

such as interpolating surfaces of measures.

In Chapter 4 we study a stochastic formulation of measure splines. To motivate

it, we recall a circle of ideas around entropic optimal transport and the Schrödinger

bridge problem.

Though discovered early in the 20th century, entropic optimal transport was re-

cently popularized in [22] as a means of speeding up the computation of ordinary

optimal transport. The entropic OT problem is

min
𝜋∈Π(𝜇,𝜈)

∫︁
|𝑥− 𝑦|2 𝑑𝜋 − 𝜀𝐸[𝜋]

where 𝜀 > 0 is some parameter and 𝐸 is the ordinary differential entropy (so in par-
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ticular 𝜋 must be absolutely continuous if the objective is finite). Just as optimal

transport has the static formulation min
∫︀
|𝑥− 𝑦|2 𝑑𝜋 and the dynamical formulation

given by the continuity equation, one might hope that entropic OT also has a dynam-

ical form. Indeed, it was found in the 1930s by Schrödinger [56, 55] that the entropic

OT problem is precisely equivalent to the Schrödinger bridge problem

min
𝑃

KL(𝑃 ‖ 𝑄𝜀) s.t. (𝑋0)#𝑃 = 𝜇, (𝑋1)#𝑃 = 𝜈

where 𝑄𝜀 is the reference process of Brownian motion started at 𝜇, that is, 𝑄𝜀
𝑡 =

𝑥0 +
√
𝜀𝐵𝑡 where 𝑥0 is sampled from 𝜇. In physical terms, the bridge problem asks:

if I observe a gas in configuration 𝜇 at time 𝑡 = 0 and configuration 𝜈 at 𝑡 = 1, then

what was the most likely distribution of paths for the particles of gas to have taken?

Of course, as stated this problem is ill-formed since the distribution at 𝑡 = 1 must

be precisely 𝜇 * 𝒩 (0, 𝜀𝐼), but by considering a finite discretization of 𝜇 and asking

that at time 1 it be close in some sense to 𝜈, this problem can be given meaning,

and as the discretization grows finer this problem will converge to the Schrödinger

bridge problem; see [38] for more details. With this in hand, we have a complete pic-

ture of optimal transport, describing entropic regularization and the static-dynamic

equivalence (this is the table (4.7) from Chapter 4):

Dynamical Static

𝜖 > 0 Schrödinger bridge entropically regularized OT

𝜖 = 0 dynamical formulation of OT OT

Horizontally we have equivalence, while vertically we have convergence as 𝜀→ 0; this

is proved in [38, 39]. Convergence is not merely in the value, but in the arg-optima

as well. For instance, the lower-left problem is

min
𝑃

∫︁ ∫︁ 1

0

|�̇�𝑡|2 𝑑𝑡 𝑑𝑃 (𝜔) s.t. (𝑋0)#𝑃 = 𝜇, (𝑋1)#𝑃 = 𝜈

If 𝑃 𝜀 optimizes the Schrödinger bridge problem and 𝑃 solves the dynamical OT
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problem, then 𝑃 𝜀 → 𝑃 weakly (hence in the Wasserstein metric on path measures).

recall from above that the optimal 𝑃 will be supported on straight lines; this means

that 𝑃 𝜀 will be supported on Brownian bridges with variance going to zero, which in

some sense converge to straight lines.

Whereas the above discussion focuses on geodesics, we develop a similar under-

standing of splines of measures. For the purposes of this discussion we focus on path

measure splines, defined above by minimizing
∫︀ ∫︀ 1

0
|�̈�𝑡|2 𝑑𝑡 𝑑𝑃 (𝜔). Furthermore, the

case that admits the most complete solution is not an interpolating spline, but a

so-called endpoint spline. In Euclidean space, the following variational problem

min

∫︁ 1

0

|�̈�(𝑡)|2 𝑑𝑡 s.t. 𝑥(0) = 𝑥0, 𝑥(1) = 𝑥1, �̇�(0) = 𝑣0, �̇�(1) = 𝑣1

can be seen to admit as its solution the unique cubic polynomial satisfying the end-

point constraints.4 Likewise, we can define an endpoint measure spline by

min
𝑃

∫︁ ∫︁ 1

0

|�̈�𝑡|2 𝑑𝑡 𝑑𝑃 (𝜔) s.t. 𝑃 ∈ Π(𝜇, 𝜈, 𝑉,𝑊 )

where 𝑉 and 𝑊 are fixed vector fields and the constraint set Π(𝜇, 𝜈, 𝑉,𝑊 ) is the set

of path measures 𝑃 with marginals 𝜇 at 0 and 𝜈 at 1, and for each 𝜔 ∈ Supp(𝑃 )

we have �̇�0 = 𝑉 (𝜔0) and �̇�1 = 𝑊 (𝜔1). In other words, the initial and final positions

dictate the initial and final velocities. This is a dynamical problem, and it can be

shown to be equivalent to a static optimal transport problem min
∫︀
𝑐(𝑥, 𝑦) 𝑑𝜋, where

the cost 𝑐 is the optimal value of the Euclidean endpoint spline problem above (with

velocities 𝑉 (𝑥) and 𝑊 (𝑦)). In turn this can be entropically regularized in the usual

way. The remaining piece of the puzzle is to find a stochastic dynamical problem that

is equivalent to the regularized one.

We show in Chapter 4 that the right notion of stochastic dynamical spline is given

4This is a subproblem of the spline interpolation problem. By solving the endpoint problem
on each interval for fixed velocities, and then optimizing over the velocities, we obtain exactly the
cubic spline interpolant. Incidentally, the optimal value of the interpolation problem, considered as
a function of (𝑥0, 𝑥1, 𝑣0, 𝑣1), is a positive definite quadratic form, so expressing the spline problem
as an iterated optimization makes it the same as optimizing a quadratic form.
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by altering the reference process in the Schrödinger bridge problem. Specifically,

instead of Brownian motion, we consider the integrated Brownian motion

𝑄𝜀
𝑡 = 𝑥0 + 𝑡𝑉 (𝑥0) +

√
𝜀

∫︁ 𝑡

0

𝐵𝑠 𝑑𝑠

with noise level 𝜀, where 𝑥0 is an initial position sampled from 𝜇. This yields a path

measure problem which we call the Schrödinger spline

minKL(𝑃 ‖ 𝑄𝜀) s.t. 𝑃 ∈ Π(𝜇, 𝜈, 𝑉,𝑊 )

By standard methods this can be seen to be equivalent to the entropically regularized

endpoint spline, and adapting arguments from [38, 39] we can show that as 𝜀 → 0

this converges to the path measure problem above.

Furthermore, we can characterize fully the solution 𝑃 𝜀; we show that it is the

product of an OT coupling with a certain “spline bridge”. This bridge is the sum of

an ordinary cubic spline and a special noise process (which is scaled by
√
𝜀. In this

way we can completely understand the convergence of the Schrödinger spline to the

path spline, through the noise process. See the figures in Chapter 4 for more details.

Finally, we expand our study of splines in Wasserstein space to splines of mea-

sure of different total masses. The natural setting for such measures is the so-called

Wasserstein-Fisher-Rao space introduced in [41, 40, 20, 35]. Whereas the continuity

equation above encodes conservation of mass, we are explicitly interested in non-

conservation of mass, since the total mass of the measures must change along the

curve. We begin with the non-conservative continuity equation

𝜕𝑡𝜇𝑡 + div(𝑣𝑡𝜇𝑡) = 4𝛼𝑡𝜇𝑡

We now have a triple (𝜇𝑡, 𝑣𝑡, 𝛼𝑡) representing the distribution of particles, the particles’

instantaneous velocity, and an instantaneous relative growth rate. Physically, this
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describes (among other things) an evolving system of chemical compounds which

are undergoing reactions, increasing or decreasing its mass locally by 𝛼𝑡 as well as

convecting by 𝑣𝑡. This equation does not have a unique solution; whereas before we

disambiguated the solution by minimizing the kinetic energy, we now select for each

𝜇𝑡 the pair (𝑣𝑡, 𝛼𝑡) minimizing the energy

min
𝑣𝑡,𝛼𝑡

∫︁
|𝑣𝑡(𝑥)|2 + 4𝛼𝑡(𝑥)

2 𝑑𝜇𝑡

(The factor of 4 is convenient later). In this way a Riemannian structure on this space

can be defined; see [35]. The natural analog of the flow maps 𝜙𝑡 from Wasserstein

space adds a mass term: with 𝜙′
𝑡(𝑥) = 𝑣𝑡(𝜙𝑡(𝑥)) as above, and defining

𝑚′
𝑡(𝑥) = 4𝛼𝑡(𝜙𝑡(𝑥))𝑚𝑡(𝑥), 𝑚0 = 1

we have under some smoothness conditions that

𝜇𝑡 = (𝜙𝑡)#(𝑚𝑡 · 𝜇0)

This provides a Lagrangian perspective on curves in WFR. Contrasted with the 𝑊2

case, this gives to each particle a mass𝑚𝑡(𝑥), and the particle evolves as ((𝜙𝑡(𝑥),𝑚𝑡(𝑥)).

The space of (point,mass) pairs is called the cone space C = R𝑑 × R+/R𝑑 × {0},

and all points of zero mass are identified. Curves in WFR space can then be naturally

written as path measures on the set ΩC of continuous paths in the cone space, in the

same way that curves in Wasserstein space are written as measures on the space of

euclidean paths. Indeed, geodesics in WFR are intimately related to path measures

on C; see Chapter 5 for more information.

We begin our study of WFR splines by deriving the covariant derivative associ-

ated to the Riemannian structure and using this to define an intrinsic spline. We

then define a Lagrangian notion of splines as measures on ΩC, and show that it is a

relaxation of intrinsic splines (which most likely is not tight, as we demonstrated in

the Wasserstein case). Proceeding as in 𝑊2, we use the flow maps to define transport
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splines in WFR, and describe a simple numerical algorithm for computing them. This

requires computing the intrinsic spline on C; it is not known how to do this exactly,

even in the one-dimensional case, so we use a simple approximation. In addition

to numerical examples of our method, for the benefit of the reader we also provide

examples of WFR geodesics between some one-dimensional measures.
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Chapter 2

Background on Optimal Transport

The material in this chapter is based on the excellent sources [2, 28, 53].

The starting point for optimal transport is the so-called Monge problem of finding

the “best” mapping from an initial measure 𝜇 onto another measure 𝜈:

min
𝑇

∫︁
|𝑥− 𝑇 (𝑥)|2 𝑑𝜇 s.t. 𝑇#𝜇 = 𝜈 (2.1)

where 𝑇#𝜇 is the measure defined by 𝑇#𝜇(𝐴) = 𝜇(𝑇−1(𝐴)). Here, “best” is defined

as minimizing total distance squared — one can think of moving a pile of sand into

a different configuration, grain by grain, and minimizing effort spent doing so. The

intuitive appeal of this problem is counterbalanced by the intractability of the con-

straint 𝑇#𝜇 = 𝜈. Indeed, by the change-of-variables formula, assuming that 𝑑𝜇 = 𝑓𝑑𝑥

and 𝑑𝜈 = 𝑔𝑑𝑥 this can be phrased as

𝑓(𝑥) = 𝑔(𝑇 (𝑥))| det∇𝑇 (𝑥)|

∇ being the Jacobian. This is highly nonlinear and largely intractable both theoret-

ically and practically. Furthermore, it is not even guaranteed that a feasible 𝑇 for

(2.1) exists; for instance, if 𝜇 = 𝛿0 and 𝜈 = 1
2
𝛿0 +

1
2
𝛿1, there can be no mapping from

𝜇 to 𝜈.

For this reason, though practically a solution to (2.1) is desired, it is better to
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consider the Kantorovich problem

min
𝛾∈Π(𝜇,𝜈)

∫︁
𝑐(𝑥, 𝑦) 𝑑𝛾 (2.2)

where the case 𝑐(𝑥, 𝑦) = |𝑥− 𝑦|2 corresponds to the Monge problem. The set Π(𝜇, 𝜈)

is defined as those probability measures 𝛾 ∈ 𝒫(𝑋2) such that 𝜋𝑥𝛾 = 𝜇 and 𝜋𝑦𝛾 = 𝜈,

where 𝜋𝑥𝛾 is the first marginal of 𝛾, so 𝜋𝑥𝛾(𝐴) = 𝛾(𝐴 × 𝑋) and likewise for 𝜋𝑦.

Whereas (2.1) is concerned with mapping the mass of 𝜇 onto 𝜈, (2.2) finds a plan of

mass movement, which can possibly split the mass of 𝜇 as it moves it to 𝜈. In contrast

with (2.1) the constraints are each linear (so the constraint set is convex) and the

objective is linear as well, considered as a function of 𝛾, so it is simple to analyze and

easily solved. Furthermore, it is a relaxation of (2.1), since if 𝑇 is feasible for (2.1)

then 𝛾 = (Id, 𝑇 )#𝜇 is feasible for (2.2). Theoretically, much is gained:

Theorem 1. The problem (2.2) is always feasible. If 𝑐(𝑥, 𝑦) : 𝑋 × 𝑋 → [0,∞] is

lower semicontinuous, (2.2) admits a solution.

It also transpires that little is lost; the injection 𝑇 ↦→ (Id, 𝑇 )#𝜇 from (2.1) to (2.2)

is reversible at optimality, as often as can be expected.

Definition 1. A cost function 𝑐(𝑥, 𝑦) satisfies the twist condition if 𝑐 is differen-

tiable in 𝑥 at every point, and the map 𝑦 ↦→ ∇𝑥𝑐(𝑥, 𝑦) is injective for every x. If the

cost function is 𝒞2, this is equivalent to det
(︀
(𝜕𝑥𝑖𝜕𝑦𝑗𝑐)𝑖𝑗

)︀
̸= 0.

For the cost 𝑐(𝑥, 𝑦) = |𝑥− 𝑦|2 we have ∇𝑥𝑐(𝑥, 𝑦) = 2(𝑥− 𝑦), which is injective for

fixed 𝑥.

Theorem 2. If 𝑐 satisfies the twist condition, and 𝜇 is absolutely continuous (or at

least places zero mass on sets of Hausdorff dimension at most 𝑑− 1), then (2.2) has

a unique solution 𝛾*, and it is induced by a map 𝑇 , so that 𝛾* = (Id, 𝑇 )#𝜇.

As (2.2) is a relaxation of (2.1), the 𝑇 supplied from the theorem above must

minimize (2.1). For the specific case of 𝑐 = |𝑥−𝑦|2, which will be our almost exclusive

concern in this work, more can be said:
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Theorem 3 (Brenier). For the quadratic cost, the map 𝑇 is the gradient of a convex

function.

For two measures 𝜇 and 𝜈, we now know there is a unique optimal map 𝑇 between

them, and it must be the gradient of a convex function. Without making reference

to 𝜇 and 𝜈, however, we can still say that a map 𝑇 is optimal. We have

Proposition 1. If 𝑇 = ∇𝜙 where 𝜙 is convex, then 𝑇 is optimal between 𝜇 and 𝑇#𝜇

for any measure 𝜇.

This can be seen, for instance, from Brenier’s polar factorization theorem, stated

in a simple setting below.

Theorem 4 (Brenier Polar Factorization). Let Ω be a compact domain and 𝑇 : Ω →

R𝑑 some mapping. Let 𝜆 be the unit-scaled Lebesgue measure on Ω, and suppose that

𝑇#𝜆 is absolutely continuous. Then there is a convex function 𝜙 and a measure-

preserving map 𝑆 (meaning that 𝑆#𝜆 = 𝜆) such that 𝑇 = (∇𝜙) ∘ 𝑆, and furthermore

𝑆 solves

max

∫︁
⟨𝑇 (𝑥), 𝑆(𝑥)⟩ 𝑑𝜆(𝑥) s.t. 𝑆#𝜆 = 𝜆

or equivalently

min

∫︁
|𝑇 (𝑥)− 𝑆(𝑥)|2 𝑑𝜆(𝑥) s.t. 𝑆#𝜆 = 𝜆

This idea will recur later in the discussion of the dynamic formulation of optimal

transport.

2.1 Duality

As remarked, both the objective and constraints in (2.2) are linear in 𝛾, so that it

is an infinite-dimensional linear program. Following the standard procedure, its dual

program is seen to be

max
𝜙,𝜓

∫︁
𝜙𝑑𝜇+

∫︁
𝜓 𝑑𝜈 s.t. 𝜙(𝑥) + 𝜓(𝑦) ≤ 𝑐(𝑥, 𝑦) (2.3)

The duality is more than formal.
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Theorem 5. Assume that there are functions 𝑐𝑋 ∈ 𝐿1(𝜇) and 𝑐𝑌 ∈ 𝐿1(𝜈) such that

𝑐(𝑥, 𝑦) ≤ 𝑐𝑋(𝑥) + 𝑐𝑌 (𝑦). Then the maximum in (2.3) is attained, and we have the

strong duality statement min (2.2) = max (2.3). If the cost is merely lower semicon-

tinuous and lower-bounded, then strong duality still holds, though dual optimality may

not be attained.

In the quadratic case, the optimal Monge map can be read from the dual solution.

If 𝜙 is dual optimal, then 1
2
|𝑥|2 − 𝜙(𝑥) is convex, and 𝑇 (𝑥) = 𝑥−∇𝜙.

2.2 The Wasserstein Space 𝑊2

The optimization problem (2.2) defines a metric on the space 𝒫2 of probability mea-

sures with finite second moment.1 Specifically,

𝑊 2
2 (𝜇, 𝜈) = min

𝛾∈Π(𝜇,𝑛𝑢)

∫︁
𝑐 𝑑𝛾

where 𝑐 = 1
2
|𝑥− 𝑦|2 as usual. As a metric space, (𝒫2,𝑊2) has a rich structure.

2.2.1 Topology

To begin with, the topology of 𝑊2 is easily described.

Definition 2. The weak topology on 𝒫(𝑋) is defined in duality with 𝒞𝑏(𝑋), the

set of bounded continuous functions. Specifically, 𝜇𝑛 converges weakly to 𝜇, denoted

𝜇𝑛
𝑤−→ 𝜇, if

∫︀
𝑓 𝑑𝜇𝑛 →

∫︀
𝑓 𝑑𝜇 for all 𝑓 ∈ 𝒞𝑏(𝑋).

(This is also known as the narrow topology.)

Theorem 6. Take 𝑋 ⊂ R𝑛. Let 𝜇𝑛, 𝜇 ∈ 𝒫2. Then 𝜇𝑛
𝑊2−−→ 𝜇 if and only if 𝜇𝑛

𝑤−→ 𝜇

and
∫︀
|𝑥|2 𝑑𝜇𝑛 →

∫︀
|𝑥|2 𝑑𝜇, where 𝑤−→ denotes weak convergence.

An analogous statement holds for non-Euclidean 𝑋. In brief, 𝑊2 metrizes the

weak topology.
1If 𝑋 is not a subset of R𝑑 then this condition can be phrased as

∫︀
𝑑(𝑥, 𝑥0)

2 𝑑𝜇 < ∞ for some
𝑥0, or equivalently for any 𝑥0.
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2.2.2 Curves

Generally, a curve (𝑥𝑡) in a metric space (𝑋, 𝑑), abusing notation for the moment, is

called absolutely continuous if there is 𝑓 ∈ 𝐿1 such that

𝑑(𝑥𝑠, 𝑥𝑡) ≤
∫︁ 𝑡

𝑠

𝑓(𝑟) 𝑑𝑟

If (𝑥𝑡) is absolutely continuous, is metric derivative is defined by

|�̇�𝑡| = lim
ℎ→0

𝑑(𝑥𝑡+ℎ, 𝑥𝑡)

ℎ

and as (𝑥𝑡) is absolutely continuous this limit exists almost everywhere.

Since 𝑊2 is a metric these definitions apply readily, but we are interested in the

specific interpretation of its points as measures representing the density of particles,

and curves of its points as movement of these particles. In this way the Wasserstein

space has a natural interpretation in terms of fluid dynamics. Let 𝜇0 ∈ 𝒫2, and fix

velocity fields 𝑣𝑡 : 𝑋 → 𝑇𝑋. By solving the Cauchy problem

𝜙𝑡(𝑥)
′ = 𝑣𝑡(𝑥), 𝜙0(𝑥) = 𝑥 (2.4)

we obtain the so-called flow maps 𝜙𝑡(𝑥). From this we can define a curve of measures

by

𝜇𝑡 = (𝜙𝑡)#𝜇0

Physically, the flow maps define the movement of infinitesimal masses 𝜇0(𝑥) originat-

ing at 𝑥, and the measures 𝜇𝑡 describe the density of the resulting configuration at

time 𝑡. It is a consequence of the divergence theorem that the measures 𝜇𝑡 solve the

continuity equation

𝜕𝑡𝜇𝑡 + div(𝑣𝑡𝜇𝑡) = 0 (2.5)

Indeed, this equation characterizes regular curves in Wasserstein space.
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Theorem 7. If (𝜇𝑡) is an absolutely continuous curve, then there is a family of vector

fields 𝑣𝑡 solving the continuity equation such that ‖𝑣𝑡‖𝐿2(𝜇𝑡) ≤ |�̇�𝑡|.

Conversely, if (𝜇𝑡, 𝑣𝑡) solves the continuity equation and
∫︀ 1

0
‖𝑣𝑡‖𝐿2(𝜇𝑡) 𝑑𝑡 <∞, then

the curve (𝜇𝑡) is absolutely continuous and |�̇�𝑡| ≤ ‖𝑣𝑡‖𝐿2(𝜇𝑡).

The reason for the reversing inequalities is that even for fixed (𝜇𝑡), the solution

to (2.5) is not uniquely defined. We may add to a solution any family 𝑤𝑡 with

div(𝑤𝑡𝜇𝑡) = 0 (which can be thought of as divergence-free fields, experiencing only

curl), and (𝜇𝑡, 𝑣𝑡 + 𝑤𝑡) will again solve (2.5).

2.2.3 Geodesics

Definition 3. Let (𝑋, 𝑑) be a metric space. A curve (𝑥𝑡)𝑡∈[0,1] ⊂ 𝑋 is a geodesic if

𝑑(𝑥𝑠, 𝑥𝑡) = |𝑠 − 𝑡|𝑑(𝑥0, 𝑥1) for all 𝑠, 𝑡 ∈ [0, 1]. A metric space (𝑋, 𝑑) is a geodesic

space if for all 𝑥, 𝑦 ∈ 𝑋 there is a geodesic between them.

The central result is that if 𝑋 is a geodesic space, then (𝒫2,𝑊2) is a geodesic

space as well, and the geodesic is easily described. Let 𝜇0, 𝜇1 ∈ 𝒫2, and let 𝛾 be the

optimal coupling between them. For 𝑥, 𝑦, let ℓ𝑥,𝑦(𝑡) be the geodesic between them in

𝑋. Using this, define 𝑋𝑡(𝑥, 𝑦) = ℓ𝑥,𝑦(𝑡), and let

𝜇𝑡 = (𝑋𝑡)#𝛾 (2.6)

Theorem 8. The curve (𝜇𝑡) defined in (2.6) is a geodesic in 𝑊2. In 𝑋 = R𝑑, if 𝛾 is

induced by a map 𝑇 from 𝜇0 to 𝜇1, this curve has the simpler description

𝜇𝑡 = ((1− 𝑡) Id+𝑡𝑇 )# 𝜇0

One can also arrive at the description of geodesics by considering an optimization

program over paths in 𝑋. Let Ω be the set of continuous paths in 𝑋, and let ℓ : Ω →

[0,∞] the length functional. Then consider the optimization program

min
𝑃∈𝒫(Ω)

∫︁
ℓ 𝑑𝑃 s.t. (𝑋0)#𝑃 = 𝜇0, (𝑋1)#𝑃 = 𝜇1 (2.7)
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where 𝑋𝑡(𝛾) = 𝛾(𝑡) is the evaluation function.

Proposition 2. Let 𝑃 be the solution to (2.7). Then 𝑃 is supported on geodesics,

and (𝑋0, 𝑋1)#𝑃 is the optimal coupling between 𝜇0 and 𝜇1, so 𝜇𝑡 = (𝑋𝑡)#𝑃 is the

geodesic described above.

2.2.4 Riemannian Metric

Theorem 7 strongly suggests that if 𝒫2 were to have a Riemannian structure, then

its tangent vectors would be given by velocity fields 𝑣𝑡, and the norm of this vector

would be ‖𝑣𝑡‖𝐿2(𝜇𝑡). This intuition is strengthened by the following result.

Theorem 9 (Benamou-Brenier). Let 𝜇0, 𝜇1 ∈ 𝒫2. Then

𝑊 2
2 (𝜇0, 𝜇1) = inf

𝜇𝑡,𝑣𝑡

∫︁ 1

0

‖𝑣𝑡‖2𝐿2(𝜇𝑡)
𝑑𝑡

where the infimum is taken over families (𝜇𝑡, 𝑣𝑡) satisfying the continuity equation.

This is exactly analogous to the Riemannian definition of geodesics as length-

minmizing curves under the hypothesis above that we should take ‖𝑣𝑡‖𝜇𝑡 = ‖𝑣𝑡‖𝐿2(𝜇𝑡).

One problem remains, however: non-uniqueness of solutions to the continuity equa-

tion. Theorems 7 and 9 suggest that we should privilege vector fields 𝑣𝑡 solving the

continuity equation that have minimal 𝐿2(𝜇𝑡) norm. Let 𝑣𝑡 be some fixed solution to

the continuity equation. Then the problem

min ‖𝑣𝑡‖2𝐿2(𝜇𝑡)
s.t. 𝜕𝑡𝜇𝑡 + div(𝑣𝑡𝜇𝑡) = 0

has a unique solution for each 𝑡, as the norm is strongly convex. From this, applying

the continuity equation shows that the optimal field 𝑣𝑡 satisfies

⟨𝑣𝑡, 𝑤𝑡⟩𝜇𝑡 = 0 for all 𝑤 s.t. div(𝑤𝑡𝜇𝑡) = 0

this implies that 𝑣𝑡 is a gradient, or rather in its closure in 𝐿2(𝜇𝑡). Thus we are led
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to define

𝑇𝜇(𝒫2) = clos𝐿2(𝜇) {∇𝜙 | 𝜙 ∈ 𝒞∞
𝑐 } (2.8)

With this in hand, the right Riemannian metric on Wasserstein space is given by

⟨𝑣, 𝑤⟩𝜇 = ⟨𝑣, 𝑤⟩𝐿2(𝜇) =

∫︁
⟨𝑣(𝑥), 𝑤(𝑥)⟩ 𝑑𝜇(𝑥)

A more intuitive explanation of the tangent space is that it is composed, as men-

tioned above, of optimal maps, which are gradients of convex functions. Specifically,

if (𝜇𝑡, 𝑣𝑡) satisfies the continuity equation and 𝑣𝑡 is 𝐿2(𝜇𝑡)-minimal — that is, it is in

the tangent space — we have the following limiting result:

𝑣𝑡 = lim
ℎ→0

𝑇𝜇𝑡→𝜇𝑡+ℎ
− Id

ℎ
(2.9)

where 𝑇𝜇→𝜈 is the optimal map from 𝜇 to 𝜈, and the limit occurs in 𝐿2(𝜇𝑡). Tangent

vectors should point along geodesics, and as discussed above geodesics are given by

moving mass along straight lines. Likewise, if 𝑣 ∈ 𝑇𝜇(𝒫2) is small then 𝑇 = Id+𝑣 is

the gradient of a convex function, and causing mass to travel from 𝜇 in the direction

of 𝑣 is the same as applying the map 𝑇 . Thus, in a sense, the exponential map is

given transporting mass along geodesics in the direction 𝑣, and the logarithmic map

is given by solving the Monge problem to recover the transport map.

2.2.5 Covariant Derivative

As 𝒫2 is not a true Riemannian manifold — it is infinite-dimensional, and has singular

points at singular measures — the covariant derivative and Levi-Civita connection

are not immediate from the metric and must be verified to exist. We present a

new construction here that takes pieces from [28], as it will prove useful later. The

Levi-Civita connection is has two properties:

1. It must respect the metric. If (𝜇𝑡) is a curve and 𝑣𝑡, 𝑤𝑡 are two vector fields
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along it, then

𝑑

𝑑𝑡
⟨𝑣𝑡, 𝑤𝑡⟩𝜇𝑡 =

⟨
D

𝑑𝑡
𝑣𝑡, 𝑤𝑡

⟩
𝜇𝑡

+

⟨
𝑣𝑡,

D

𝑑𝑡
𝑤𝑡

⟩
𝜇𝑡

2. It must be torsion-free. If 𝑋 and 𝑌 are vector fields, then

∇𝑋𝑌 −∇𝑌𝑋 = [𝑋, 𝑌 ]

Let (𝑢𝑡) be the tangent field of the curve (𝜇𝑡) (as noted above, the minimal field

is unique and is a gradient2), and let (𝑣𝑡), (𝑤𝑡) be two other fields along (𝜇𝑡). The

product rule yields

𝑑

𝑑𝑡
⟨𝑣𝑡, 𝑤𝑡⟩𝜇𝑡 =

𝑑

𝑑𝑡

∫︁
⟨𝑣𝑡, 𝑤𝑡⟩ 𝑑𝜇𝑡

=

∫︁
⟨𝜕𝑡𝑣𝑡, 𝑤𝑡⟩+ ⟨𝑣𝑡, 𝜕𝑡𝑤𝑡⟩ 𝑑𝜇𝑡 +

∫︁
⟨𝑣𝑡, 𝑤𝑡⟩ 𝑑(𝜕𝑡𝜇𝑡)

Because (𝜇𝑡, 𝑢𝑡) solves the continuity equation, the dual definition of div(𝑢𝑡𝜇𝑡) gives

∫︁
⟨𝑣𝑡, 𝑤𝑡⟩ 𝑑(𝜕𝜇𝑡) =

∫︁
⟨∇𝑣𝑡 · 𝑢𝑡, 𝑤𝑡⟩+ ⟨∇𝑤𝑡 · 𝑢𝑡, 𝑣𝑡⟩ 𝑑𝜇𝑡

If the covariant derivative respects the metric, then grouping terms yields

⟨
D

𝑑𝑡
𝑣𝑡, 𝑤𝑡

⟩
+

⟨
𝑣𝑡,

D

𝑑𝑡
𝑤𝑡

⟩
= ⟨𝜕𝑡𝑣𝑡 +∇𝑣𝑡 · 𝑢𝑡, 𝑤𝑡⟩+ ⟨𝑣𝑡, 𝜕𝑡𝑤𝑡 +∇𝑤𝑡 · 𝑢𝑡⟩

where all inner products are with respect to 𝜇𝑡. From here it is almost required that

D

𝑑𝑡
𝑣𝑡 = 𝒫𝜇𝑡

(︂
𝐷

𝑑𝑡
𝑣𝑡

)︂
= 𝒫𝜇𝑡 (𝜕𝑡𝑣𝑡 +∇𝑣𝑡 · 𝑢𝑡) (2.10)

where 𝒫𝜇𝑡 is the orthogonal projection onto 𝑇𝜇𝑡(𝒫2) in 𝐿2(𝜇𝑡). We call 𝐷
𝑑𝑡

the total

derivative. Note that if 𝑣𝑡 = 𝑢𝑡 = ∇𝜙𝑡 then 𝜕𝑡𝑣𝑡 + ∇𝑣𝑡 · 𝑣𝑡 = ∇
(︀
𝜕𝑡𝜙𝑡 +

1
2
|∇𝜙𝑡|2

)︀
∈

𝑇𝜇𝑡(𝒫2), so no projection is necessary, and the total and covariant derivatives coincide;
2In general it is merely in the closure of the set of gradients, but if all measures involved are

absolutely continuous then it is truly a gradient.
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in other words,
D2

𝑑𝑡2
𝜇𝑡 = 𝜕𝑡𝑣𝑡 +∇𝑣𝑡 · 𝑣𝑡 (2.11)

We now examine the torsion-free property, and we follow Gigli’s argument [Gigli

page 73], which we partially repeat for convenience of reference. It is quite technical

to give meaning directly to a smooth vector field on all of 𝒫2, and so to the Levi-

Civita connection, but it can be indirectly defined via the covariant derivative, which

is all that will be necessary in this work. Let (𝜇
(1)
𝑡 ) and (𝜇

(2)
𝑡 ) be two (absolutely

continuous) curves such that 𝜇(1)
0 = 𝜇

(2)
0 = 𝜇, and let their velocity fields be (𝑢

(1)
𝑡 )

and (𝑢
(2)
𝑡 ). Define two new tangent fields along these curves by

𝑣
(1)
𝑡 = 𝑢

(2)
0

𝑣
(2)
𝑡 = 𝑢

(1)
0

Under reasonable assumptions (for instance, of all the measures involved are abso-

lutely continuous) 𝑢(𝑖)0 are gradients, so they are in 𝑇𝜇(𝒫2) for every 𝜇, so these indeed

define tangent fields.

With this definition, it is reasonable to interpret

∇
𝑣
(1)
0
𝑣
(2)
𝑡

⃒⃒⃒
𝑡=0

=
D

𝑑𝑡
𝑣
(2)
𝑡

⃒⃒⃒
𝑡=0

with the derivative of course being taken along 𝜇(2)
𝑡 , and similarly for ∇

𝑣
(2)
0
𝑣
(2)
𝑡 . Now,

fix 𝜙 and consider the functional 𝐹 : 𝜇 ↦→
∫︀
𝜙𝑑𝜇. By the continuity equation, the

derivative of 𝐹 along 𝑣(2)𝑡 is

𝜕𝑡𝐹 [𝜇
(2)
𝑡 ] =

∫︁
𝜙𝑑

(︁
𝜕𝑡𝜇

(2)
𝑡

)︁
=

∫︁
⟨∇𝜙, 𝑣(2)𝑡 ⟩ 𝑑𝜇(2)

𝑡
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Then since the covariant derivative above respects the metric,

𝑣
(1)
0 (𝑣(2)(𝐹 ))[𝜇] =

𝑑

𝑑𝑡
⟨∇𝜙, 𝑣(2)𝑡 ⟩

𝜇
(2)
𝑡

⃒⃒
𝑡=0

=

⟨
D

𝑑𝑡
∇𝜙, 𝑣(2)𝑡

⟩
𝜇
(2)
𝑡

+

⟨
∇𝜙, D

𝑑𝑡
𝑣
(2)
𝑡

⟩
𝜇
(2)
𝑡

⃒⃒⃒⃒
𝑡=0

=
⟨
∇2𝜙 · 𝑣(1)0 , 𝑣

(2)
0

⟩
𝜇
+
⟨
∇𝜙,∇

𝑣
(1)
0
𝑣
(2)
𝑡

⟩
𝜇

Performing the same calculation for 𝑣(2)0 (𝑣(1)(𝐹 ))[𝜇] and subtracting, since ∇2𝜙 is

symmetric the first terms cancel and we get

𝑣
(1)
0 (𝑣(2)(𝐹 ))[𝜇]− 𝑣

(2)
0 (𝑣(1)(𝐹 ))[𝜇] =

⟨
∇𝜙,∇

𝑣
(1)
0
𝑣
(2)
𝑡 −∇

𝑣
(2)
0
𝑣
(1)
𝑡

⟩
𝜇

Since gradients ∇𝜙 are dense in 𝑇𝜇(𝒫2) this means that D
𝑑𝑡

is indeed torsion-free.

We will return to this calculation when characterizing the covariant derivative in

Wasserstein-Fisher-Rao space.
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Chapter 3

Splines in 𝑊2

3.1 Introduction

Smooth interpolation is a fundamental tool in numerical analysis that plays a central

role in data science.1 While this task is traditionally studied on the flat Euclidean

space R𝑑, recent applications have called for interpolation of points living on curved

spaces such as smooth manifolds [46] and, more recently, the Wasserstein space of

probability measures. An important application arises in single-cell genomic data

analysis where the measure 𝜇𝑡 represents a population of cells at time 𝑡 of a biological

process such as differentiation, and the cells of an organism specialize over the course

of early development. In this context, two main questions arise: 1) to infer the profile

of the population at unobserved times; and more importantly 2) to reconstruct the

trajectories of individual cells in gene space, that is: given a cell at time 𝑡, determine

its (likely) history and fate. [51] argue that cellular trajectory reconstruction is crucial

to unlocking the promises of single-cell genomics. A breakthrough in this direction was

recently achieved using optimal transport by [54], but their work does not produce

smooth trajectories. To illustrate, we display in Figure 3-1 a comparison of their

approach with the smooth interpolation methodology developed in the present work.

Although we are mainly motivated by cell trajectory reconstruction, we are confident

that the flexibility and efficiency of the method will allow it to find applications
1This work appears in [17].
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Figure 3-1: Piecewise linear and cubic spline interpolation of four Gaussians. The inter-
polation knots are shown in red and the interpolated Gaussians are shown in orange. See
Appendix A.1 for details.

beyond this scope.

While the first question above is a natural extension of interpolation to the space

of probability measures, the second question calls for a specific type of interpolation:

one that also reconstructs the (smooth) trajectories of individual particles. These

two concepts are linked by the continuity equation (2.5) and the flow maps (2.4). If

(𝜇𝑡) is an interpolating curve of measures, then the tangent velocity field 𝑣𝑡 ∈ 𝑇𝜇𝑡𝒫2

yields canonical particle trajectories (𝑋𝑡) via (2.4), but there are other choices that

lead to alternative trajectories while maintaining the same measures. We are led to

the following problem.

The problem. Let (𝑋*
𝑡 )𝑡∈[0,1] be a stochastic process on R𝑑 with 𝒞2 sample paths

and marginal laws 𝑋*
𝑡 ∼ 𝜇*

𝑡 , 𝑡 ∈ [0, 1]. Given 𝜇*
𝑡0
, 𝜇*

𝑡1
, . . . , 𝜇*

𝑡𝑁
at times 0 = 𝑡0 < 𝑡1 <

· · · < 𝑡𝑁 = 1, the task is to construct a stochastic process (𝑋𝑡)𝑡∈[0,1] such that 𝑋𝑡

has 𝒞2 sample paths and the distribution 𝜇𝑡 of 𝑋𝑡 interpolates the given measures, so

𝜇𝑡𝑖 = 𝜇*
𝑡𝑖

for 𝑖 = 0, 1, . . . , 𝑁 .
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3.1.1 Prior Work

This work is at the intersection of interpolation and optimal transport. On the one

hand, interpolation in R𝑑 is very well-developed, with fast and accurate methods

ranging from interpolating polynomials and splines to more exotic non-parametric

approaches [60], and with renewed interest due to recent theoretical results [6]. Our

methodology can accommodate all of these options, but we focus on cubic spline

interpolations due to their simplicity, theoretical guarantees, and their curvature-

minimizing property (see Section 3.2). On the other hand, optimal transport has

become a useful tool in the analysis of observations represented in the form of proba-

bility measures. Recent computational advances [23, 1, 48] have led to the develop-

ment of many methods in statistical optimal transport, from barycenters to geodesic

PCA. The present work extends this toolbox by developing a method for smooth

interpolation over the Wasserstein space of probability measures.

Splines in Wasserstein space were considered concurrently and independently

by [15] and [7]. Both papers converge to the same notion of splines, which we call P-

splines. Though motivated by particle dynamics, P-splines solve an optimal transport

problem that is not guaranteed to have a Monge solution (see Theorem 2). Instead,

it outputs stochastic processes (𝑋𝑡)𝑡∈[0,1] for which 𝑋𝑡 is not a deterministic function

of 𝑋0. In other words, given an initial position, there is no unique particle trajec-

tory emanating from this position but rather a superposition of such trajectories; see

Figure 3-2 and the discussion in Section 3.4.1. We show that this is not an isolated

phenomenon arising from pathological data but applies even to the canonical example

of one-dimensional Gaussian distributions. This limitation, together with a relatively

heavy computational cost, severely hinders the deployment of P-splines in applica-

tions, ours included, especially where interpretation is a priority. We discuss these

prior works in the sequel.
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Figure 3-2: A comparison of 50 trajectories sampled from P-splines and transport splines
for the Gaussian interpolation problem in Proposition 4 (see Section 3.3.1 for a detailed
discussion). The first figure shows trajectories drawn from the P-spline interpolation, while
the second shows trajectories from our method.

3.1.2 Contributions

To overcome the aforementioned issues, we propose in Section 3.4 a new method

for constructing measure-valued splines. Our method outputs Monge solutions, and

moreover enjoys significant computational advantages: it only requires 𝑁 evaluations

of Monge maps and standard Euclidean cubic spline fitting to output trajectories. In

the case where all of the measures are Gaussian, our approach is more interpretable

and scalable than the SDP-based approach of [15].

In particular, for Gaussian measures, our method only requires one 𝑑× 𝑑 matrix

inversion and 𝑂(1) multiplications per sample point 𝜇*
𝑡𝑖
. In comparison, the method

of [15] solves an SDP with 𝑁 coupled 4𝑑 × 4𝑑 matrix variables. In the general

case we still only need to perform 𝑁 pairwise OT computations, which can be done

efficiently [1], while the competing algorithms in [7] require time exponential in either

𝑁 or 𝑑.

Our new method comes with a theoretical study of its approximation error. In the

Gaussian setting, we introduce new techniques for studying quantitative approxima-

tion of transport maps and vector fields. In turn, it yields an approximation guarantee

analogous to the classical setting (Theorem 11), but adapted to the geometry of the

space. This paves the way for a principled theory of approximation on Wasserstein
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space that mirrors classical Euclidean results. In a forthcoming work, we build upon

these ideas to develop higher-order approximation schemes.

A key feature of our approach is its flexibility, which allows us to easily extend

our method to fitting thin-plate splines for measures indexed by high-dimensional

covariates. We study the case of two-dimensional spatial covariates in Section 3.6.

3.2 Background on Splines

We first recall the definition of natural cubic splines in Euclidean space. Given points

(𝑥0, 𝑥1, . . . , 𝑥𝑁) in R𝑑 to interpolate at a sequence of times 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 1,

consider the variational problem

min
(𝛾𝑡)

∫︁ 1

0

|𝛾𝑡|2 𝑑𝑡 s.t. 𝛾𝑡𝑖 = 𝑥𝑖 for all 𝑖. (3.1)

It is classical that the solution to this minimization problem is a piece-wise cubic

polynomial that is globally 𝒞2 and has zero acceleration at times 𝑡0 = 0 and 𝑡𝑁 = 1.

Based on this energy-minimizing property, there is a natural generalization of

cubic splines to Riemannian manifolds: in (3.1) the acceleration 𝛾 is replaced with its

Riemannian analogue, the second covariant derivative D2

𝑑𝑡2
𝛾 = ∇�̇� �̇�, and the norm is

given by the Riemannian metric. However, unlike its Euclidean counterpart, there is

no general algorithm to fit Riemannian cubic splines, leading to alternative proposals

[29]. Regardless, in analogy with the Riemannian setting, it is natural to define energy

splines (E-splines in short) via

inf
(𝜇𝑡,𝑣𝑡)

∫︁ 1

0

⃦⃦⃦⃦
D

𝑑𝑡
𝑣𝑡

⃦⃦⃦⃦2

𝜇𝑡

𝑑𝑡 s.t. 𝜇𝑡𝑖 = 𝜇𝑖 for all 𝑖 (3.2)

where the minimization is taken over all curves (𝜇𝑡) and their tangent vectors (𝑣𝑡),

and the measures 𝜇𝑖 are the fixed measures to interpolate. This definition appeared

simultaneously in (Chen et al and Benamou et al).

This is an intuitively appealing definition of an interpolating curve, but there is,

at present, no way of computing (3.2). Thus, (Chen et al and Benamou et al) also
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introduced a relaxation which we call path splines (P-splines in short):

inf
𝑃∈𝒫(Ω)

∫︁ ∫︁ 1

0

|�̈�|2 𝑑𝑡 𝑑𝑃 (𝑋) s.t. (𝑋𝑡𝑖)#𝑃 = 𝜇𝑖 (3.3)

where Ω is the set of twice-differentiable paths 𝑋 : [0, 1] → R𝑛, and 𝑋𝑡 is the evalua-

tion map 𝑋𝑡(𝜔) = 𝜔𝑡. We may equally well rewrite (3.2) as

inf
(𝑋𝑡)

E|�̈�|2 s.t. 𝑋𝑡𝑖 ∼ 𝜇*
𝑡𝑖

which emphasizes the stochastic process rather than a path measures; this is the

perspective we take in some of our proofs, and we refer to the two interchangeably.

This is indeed a relaxation of (3.2), as proved in (Chen et al and Benamou et al).

Specifically, if (𝜇𝑡, 𝑣𝑡) is feasible for (3.2), letting 𝑋𝑡 be the flow maps defined by

𝑋 ′
𝑡 = 𝑣𝑡(𝑋𝑡) and 𝑋0 = Id, and defining 𝑃 to place mass 𝜇0(𝑥) on the path 𝑡 ↦→ 𝑋𝑡(𝑥),

then by definition these flow maps govern this curve of measures and

E[(𝜇𝑡)] = P[𝑃 ]

where E is the E-spline cost in (3.2) and P is the cost in (3.3). Thus (3.3) ≤ (3.2). As

we will show, this inequality is strict, even for very well-behaved classes of measures.

It is instructive to compare P-splines to the discussion of geodesics in section

2.2.3. Proposition 2 reduces Wasserstein geodesics to distributions of geodesics in the

underlying space; while the same procedure for curvature-minimizing paths does not

lead to a tight characterization, as we mentioned above, it is nevertheless profitable

to consider.

The program (3.3) can be reduced to a multimarginal optimization problem as

follows. Let 𝑐(𝑥0, . . . , 𝑥𝑁) =
∫︀ 1

0
|𝑆𝑡[𝑥0, . . . , 𝑥𝑁 ]|2 𝑑𝑡, where 𝑆𝑡[𝑥0, . . . , 𝑥𝑁 ] is the (natu-

ral) Euclidean spline interpolating (𝑡0, 𝑥0), . . . , (𝑡𝑁 , 𝑥𝑁), with the times kept implicit.

Then Chen et al prove
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Proposition 3. The P-spline problem is equivalent to

min
𝜋

∫︁
𝑐 𝑑𝜋 s.t. 𝜋𝑥𝑖 = 𝜇𝑖 (3.4)

where 𝜋𝑥𝑖 is the 𝑖th marginal. If 𝜋* is a solution to (3.4) then the measure 𝑃 placing

mass 𝜋*(𝑥0, . . . , 𝑥𝑁) on the cubic spline 𝑆𝑡[𝑥0, . . . , 𝑥𝑛] is optimal for (3.3), and any

optimal solution of (3.3) induces thusly an optimal solution of (3.4).

This simply says that the optimal P-spline measure will be supported on Euclidean

splines.

Unfortunately, though solvable in principle, (3.4) remains difficult to compute,

scaling exponentially in 𝑁 , and its solution is not necessarily induced by a determin-

istic map; that is, there is no guarantee of a deterministic function 𝜙𝑡 : R𝑑 → R𝑑 such

that 𝑋𝑡 = 𝜙𝑡(𝑋0). This point is particularly problematic for inference of trajectories

as illustrated in Figure 3-2.

3.3 Results on 𝑃 -splines and 𝐸-splines

Given the various definitions of splines, some natural questions arise, some raised in [7]

and [15]. Specifically, these papers left open the question of whether E-splines coincide

with P-splines, and whether the solution to the P-spline problem is necessarily induced

by Monge maps. This section resolves these questions in the negative.

Proposition 4 (informal). There exist non-degenerate Gaussian data 𝜇*
𝑡0
, . . . , 𝜇*

𝑡𝑁

such that there is a unique jointly Gaussian solution to the P-spline problem (3.3)

and it is not induced by a deterministic map.

Proposition 5 (informal). There exist non-degenerate Gaussian data 𝜇*
𝑡0
, . . . , 𝜇*

𝑡𝑁
for

which the E-spline (3.2) and P-spline (3.3) interpolations do not coincide.

These propositions require a sequence of lemmas, some interesting in their own

right, which we collect in separate sections for organizational purposes.
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3.3.1 Proof of Proposition 4

We begin by remarking that in general, there is no reason to expect that solutions of

the P-spline problem (3.3) are deterministic. Indeed, consider the following.

Proposition 6. Let 𝜇*
0 and 𝜇*

1 be any probability measures. Then, any coupling

(𝑋0, 𝑋1) of the two measures induces an optimal P-spline solution (𝑋𝑡) to (3.3) with

data 𝜇*
0 and 𝜇*

1.

Proof. Indeed, simply set 𝑋𝑡 := (1− 𝑡)𝑋0 + 𝑡𝑋1. Since 𝑡 ↦→ 𝑋𝑡 is a line traversed at

constant speed, it incurs zero P-spline cost and is therefore optimal for (3.3).

As this example shows, the P-spline problem with two measures is quite degener-

ate; in particular, it does not recover the 𝑊2 geodesic joining 𝜇0 to 𝜇1, and 𝑋*
1 is not

guaranteed to be a deterministic function of 𝑋*
0 . A slight modification of this simple

example yields:

Proposition 7. Let 𝜇*
0 be any absolutely continuous measure. Then, there exist

absolutely continuous data (𝜇*
𝑖/𝑁)

𝑁

𝑖=1
and an optimal solution (𝑋𝑡) to the P-spline

problem (3.3) for (𝜇*
𝑖/𝑁)

𝑁

𝑖=0
such that 𝑋1 is not a deterministic function of 𝑋0.

Proof. Indeed, let 𝑇, 𝑇 : R𝑑 → R𝑑 be two mappings which are 𝜇*
0-a.e. distinct, i.e.,

𝑇 ̸= 𝑇 . Draw 𝑋0 ∼ 𝜇*
0. Then, we either set 𝑋𝑡 = (1 − 𝑡)𝑋0 + 𝑡𝑇 (𝑋0) or else

𝑋𝑡 = (1 − 𝑡)𝑋0 + 𝑡𝑇 (𝑋0) with probability 1/2 each (with the choice being made

independently of the draw of 𝑋0). Set 𝜇*
𝑖/𝑁 := law(𝑋𝑖/𝑁).

By construction, the marginals of the process (𝑋𝑡) at times 0, 1/𝑁, . . . , 1 do indeed

interpolate the data. Also, since 𝑡 ↦→ 𝑋𝑡 is a straight line traversed at constant speed,

then (𝑋𝑡) incurs zero P-spline cost and is optimal for (3.3)

Since 𝑇 and 𝑇 are distinct, 𝑋1 is not a deterministic function of 𝑋0. Also, the

mappings 𝑇 and 𝑇 can easily be chosen to make the data all absolutely continuous

(e.g., by taking them to be gradients of uniformly convex functions; c.f. the proof

of [58, Proposition 5.9]).

(Compare this with Proposition 7 and the subsequent remark in [7].)
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We next turn towards the Gaussian case. As noted, the P-spline problem is

equivalent to the problem (3.4) and the optimal stochastic process 𝑋𝑡 for the P-

spline problem is supported on natural cubic splines. Furthermore, the function 𝑐

in (3.4) is quadratic in 𝑥0, . . . , 𝑥𝑁 , so the cost
∫︀
𝑐 𝑑𝜋 depends only on the mean and

covariance matrix of 𝜋. Thus, if the data 𝜇*
𝑡𝑖

is Gaussian, for any coupling 𝜋 there is

a jointly Gaussian coupling �̃� with the same mean and covariance, and thus the same

cost
∫︀
𝑐 𝑑�̃�. This �̃� then induces a Gaussian process which is optimal for (3.3) — in

specific, the law of 𝑋𝑡 is Gaussian for all 𝑡. Thus it is natural to restrict ourselves

to solutions of (3.3) that are Gaussian processes. We call this a Gaussian solution to

(3.3). We now state the counterexample that proves Proposition 4.

Proposition 8. Assume 𝑁 > 1. For 𝑖 = 0, . . . , 𝑁 , let 𝜇*
𝑡𝑖
= 𝒩 (0, (1 − 𝑡𝑖)

2 + 𝑡2𝑖 ).

Then there is a unique Gaussian solution to the P-spline problem (3.3) and it is not

induced by a deterministic map.

Proof. The key observation is that the marginals 𝜇*
𝑡𝑖

arise from the curve of measures

formed as the law of 𝑋*
𝑡 := (1− 𝑡)𝑋*

0 + 𝑡𝑋*
1 for independent standard Gaussians 𝑋*

0

and 𝑋*
1 . If we consider the distribution on paths which is the law of (𝑋*

𝑡 ), then it is

supported on straight lines traversed at constant speed and so it must be optimal for

the 𝑃 -spline problem (3.3), having zero objective value.

Consider some other stochastic process (𝑋𝑡) such that the law of (𝑋𝑡𝑖)
𝑁
𝑖=0 is jointly

Gaussian. For (𝑋𝑡) to be an optimal solution to the P-spline problem (3.3), it must

also have zero objective value and hence be supported on straight lines almost surely.

Thus, we must have 𝑋𝑡 = (1 − 𝑡)𝑋0 + 𝑡𝑋1. By the marginal constraints we have

E[𝑋2
0 ] = E[𝑋2

1 ] = 1 and so long as 𝑁 > 1, for 𝑖 = 1, . . . , 𝑁 − 1, it holds that

𝑡𝑖 /∈ {0, 1} and

(1− 𝑡𝑖)
2 + 𝑡2𝑖 = E

[︀(︀
(1− 𝑡𝑖)𝑋0 + 𝑡𝑖𝑋1

)︀2]︀
= (1− 𝑡𝑖)

2 + 𝑡2𝑖 + 2𝑡𝑖 (1− 𝑡𝑖)E[𝑋0𝑋1].

Therefore E[𝑋0𝑋1] = 0 and (𝑋𝑡) has the same distribution as (𝑋*
𝑡 ). Consequently,

the unique jointly Gaussian solution to the P-spline problem is (𝑋*
𝑡 ). Clearly, the
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path (𝑋*
𝑡 ) is not a deterministic function of 𝑋*

0 . Indeed, 𝑋*
1 is independent of 𝑋*

0 .

Note that the uniqueness assertion is false when 𝑁 = 1, highlighting the degener-

acy of the case of two marginals.

3.3.2 Proof of Proposition 5

Understanding E-splines requires a few technical results, which we first collect before

moving on to the proof. We remark that, prior to this work, little was known about

E-splines. In particular, it was not known whether the E-spline interpolation of

Gaussian measures consists only of Gaussian measures.

Throughout, it will be convenient to consider the E-spline problem over the closed

convex set of curves taking values in a closed convex set 𝐾 of a Hilbert space:

min
𝛾:[0,1]→𝐾

∫︁ 1

0

‖𝛾(𝑡)‖2 𝑑𝑡 s.t. 𝛾(𝑡𝑖) = 𝑥𝑖 for all 𝑖 (E𝐾)

Denote by 𝐸[𝛾] =
∫︀ 1

0
‖𝛾(𝑡)‖2 𝑑𝑡 the objective function in (E𝐾). It follows from the

triangle inequality and strict convexity of the function 𝑥 ↦→ 𝑥2 that 𝐸 is strictly

convex on the convex set of admissible curves, so the solution must be unique if it

exists. We denote this unique solution by 𝛾𝐾 .

Proposition 9. Let 𝐻 be a Hilbert space, and let 𝐿 ⊆ 𝐻 be a closed linear subspace.

Take points 𝑥0, . . . , 𝑥𝑁 ∈ 𝐿. Then the solution 𝛾𝐻 of the E-spline problem (E𝐻) on

𝐻 satisfies 𝛾𝐻(𝑡) = 𝛾𝐿(𝑡) ∈ 𝐿 for all 𝑡.

Proof. Let 𝑃 be the orthogonal projection onto 𝐿, and suppose 𝛾 interpolates the

points (𝑥𝑖)
𝑁
𝑖=0. Then for any admissible curve 𝛾(𝑡) = 𝑃𝛾(𝑡) + (𝐼 − 𝑃 )𝛾(𝑡), so 𝛾(𝑡) =

𝑃𝛾(𝑡) + (𝐼 − 𝑃 )𝛾(𝑡) as well. Since these two terms are orthogonal, we have

‖𝛾(𝑡)‖2 = ‖𝑃𝛾(𝑡)‖2 + ‖(𝐼 − 𝑃 )𝛾(𝑡)‖2.

Thus, on the one hand, if 𝛾(𝑡) = 𝑃𝛾𝐻(𝑡) then 𝐸[𝛾] ≤ 𝐸[𝛾𝐻 ], and 𝛾 is interpolating

because 𝑥𝑖 ∈ 𝐿. On the other hand, 𝐸[𝛾𝐻 ] ≤ 𝐸[𝛾𝐿] ≤ 𝐸[𝛾] and by uniqueness,
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𝛾𝐻 = 𝛾𝐿.

Proposition 10. Let 𝐾 be a convex subset of a Hilbert space 𝐻 whose span is closed,

and let 𝑥1, . . . , 𝑥𝑛 ∈ 𝐾. If 𝛾𝐾(𝑡) lies in the relative interior of 𝐾 for all times 𝑡, then

𝛾𝐾 = 𝛾𝐻 .

Proof. Let 𝐿 be the linear span of 𝐾, which is closed. In light of Proposition 9, it

suffices to prove that 𝛾𝐾 = 𝛾𝐿 so replacing 𝐻 by 𝐿 we may assume that 𝐾 is of full

dimension.

Let 𝑓 : [0, 1] → 𝐻 be a twice differentiable perturbation such that 𝑓(𝑡𝑖) = 0 for all

𝑖. Hence, 𝛾𝐾 + 𝜖𝑓 is admissible for (E𝐻). Since 𝛾𝐾 lies in the interior of 𝐾 and 𝐾 is

full-dimensional, a standard compactness argument shows that for any such 𝑓 there

exists an 𝜖 > 0 with 𝛾𝐾(𝑡) + 𝜖𝑓(𝑡) ∈ 𝐾 for all 𝑡. By optimality of 𝛾𝐾 we then have

𝐸[𝛾𝐾 + 𝜖𝑓 ] ≥ 𝐸[𝛾𝐾 ]. Thus 𝛾𝐾 is stationary for 𝐸 considered on 𝐻, and because 𝐸 is

strictly convex it follows that 𝛾𝐾 is optimal for (E𝐻) and is therefore equal to 𝛾𝐻 by

uniqueness.

Proposition 11. Let 𝜇*𝑡0, 𝜇
*𝑡1, . . . , 𝜇

*𝑡𝑁 be Gaussian measures on R. Consider the

Gaussian version of the E-spline problem on R:

min
(𝛾𝑡)

∫︁ 1

0

‖∇𝑣𝑡𝑣𝑡‖
2
𝐿2(𝛾𝑡)

𝑑𝑡 s.t. 𝛾𝑡𝑖 = 𝜇*𝑡𝑖, 𝑖 = 1, . . . , 𝑁

where the minimization is taken over curves (𝛾𝑡) of Gaussian measures with their

corresponding tangent vectors 𝑣𝑡 ∈ 𝑇𝛾𝑡𝒫2(R). That is, it is the Wasserstein E-spline

problem (3.2) in 𝒫2(R) with the added constraint that the measures are Gaussian. If

there is an optimal solution (𝛾⋆𝑡 ) which is a non-degenerate Gaussian for all time,

then it is also the solution to the E-spline problem (3.2).

Proof. It is known that 𝒫2(R) is isometric to a closed convex subset 𝑆 of the Hilbert

space 𝐻 = 𝐿2[0, 1] (see the discussion following Lemma 9.1.4 in [3]). This isometry is

given by 𝜇 ↦→ 𝐹 †
𝜇, where 𝐹 †

𝜇 denotes the quantile function of 𝜇. Let 𝐾 be the image

of the mean-zero Gaussian measures under this isometry; it is immediate that 𝐾 is

convex, since the Gaussian measures form a geodesically convex set in 𝒫2(R), and it
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has closed span because it is finite-dimensional. In light of this isometry the E-spline

problem (3.2) is equivalent to (E𝑆) while the Gaussian E-spline problem stated in the

proposition is equivalent to (E𝐾) and 𝛾⋆ = 𝛾𝐾 (the preservation of E-splines under

isometry is discussed in Section 3.3.2).

Applying Proposition 10 to 𝛾⋆ = 𝛾𝐾 , we deduce that 𝛾⋆ = 𝛾𝐻 . Moreover, 𝐸[𝛾𝐻 ] ≤

𝐸[𝛾𝑆] ≤ 𝐸[𝛾⋆], whence by uniqueness we get that 𝛾⋆ = 𝛾𝑆 as well.

We also require a technical lemma regarding P-splines which remain Gaussian for

all times, which follows from considerations of several-variable complex functions.

Lemma 1. Let (𝜇𝑡) be a P-spline with initial and final data 𝜇0 and 𝜇1 which are

Gaussian, and assume:

1. 𝜇𝑡 is a Gaussian distribution for all times 𝑡 ∈ [0, 1],

2. (𝜇𝑡) has zero cost for the P-spline objective.

Then (𝜇𝑡) is induced by a jointly Gaussian coupling of 𝜇0 and 𝜇1.

Proof. Since (𝜇𝑡) has zero cost it must be supported on straight lines, so if we let

𝑋𝑡 ∼ 𝜇𝑡 where these are coupled according to the (𝜇𝑡) coupling, then

𝑋𝑡 = (1− 𝑡)𝑋0 + 𝑡𝑋1 (3.5)

and by assumption this variable is Gaussian. Let 𝑍 be the Gaussian with the same

covariance structure as 𝑋. Scaling (3.5) by a positive constant, we get, for all 𝑎, 𝑏 ≥ 0

⟨(𝑎, 𝑏), 𝑋⟩ d
= ⟨(𝑎, 𝑏), 𝑍⟩

where we mean equality in distribution. This implies

𝜙𝑋(𝑎, 𝑏) = 𝜙𝑍(𝑎, 𝑏)

where 𝜙𝑌 denotes the characteristic function of 𝑌 and is defined by 𝜙𝑌 (𝑧) = E[𝑒𝑖⟨𝑧,𝑌 ⟩].

Now, it is well-known that if E𝑒𝑚|𝑌 | < ∞ for some 𝑚 > 0 then 𝜙𝑌 continues to a
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holomorphic function in the strip {𝑧 | |Im 𝑧𝑖| < 𝑚 ∀𝑖} [37, Theorem 2.7.1]. In

particular, if 𝑌 has sub-Gaussian tails, 𝜑𝑌 is entire.

Functions of several complex variables admit an identity theorem, similar to the

univariate complex case, which can be found in [50, Remark 1.20].2 This is:

Theorem (identity theorem). Let 𝑓 and 𝑔 be holomorphic functions of several com-

plex variables in a domain Ω ⊆ C𝑑, and let 𝑧 ∈ Ω. A real cube of radius 𝑟 about 𝑧 is

defined as

{(𝑧1 + 𝑥1, . . . , 𝑧𝑑 + 𝑥𝑑) ∈ C𝑑 | |ℜ𝑥𝑖| < 𝑟 for 𝑖 = 1, . . . , 𝑑}.

If 𝑓 and 𝑔 agree on a real cube of positive radius about 𝑧, then 𝑓 ≡ 𝑔 on all of Ω.

Now, 𝑋 has sub-Gaussian tails. Indeed,

𝑀𝑋(𝑡) = E𝑒⟨𝑡,𝑋⟩ = E𝑒𝑡1𝑋0+𝑡2𝑋1 ≤
(︀
E𝑒2𝑡1𝑋0 E𝑒2𝑡2𝑋1

)︀1/2
= 𝑒𝑡

2
1var𝑋0+𝑡22var𝑋1

where 𝑀𝑋 denotes the moment generating function of 𝑋. Thus 𝜙𝑋 is entire, along

with 𝜙𝑍 , and it is clear from the above discussion that they agree on the real cube

about 𝑧 = (1, 1) with radius 𝑟 = 1. The identity theorem then implies that 𝜙𝑋 ≡ 𝜙𝑍 ,

so 𝑋 d
= 𝑍. Thus 𝑋 is jointly Gaussian.

Proposition 5 is implied by the following result.

Proposition 12. For 𝑖 = 0, . . . , 𝑁 , let 𝜇*
𝑡𝑖
= 𝒩 (0, 𝜎2

𝑡𝑖
), where 𝜎2

𝑡 = (1−𝑡)2+𝑡2. Then

for all 𝑁 ≥ 2, the E-spline (3.2) and P-spline (3.3) interpolations do not coincide.

Before starting the proof, we dispense with a possible source of confusion. The

solution to the P-spline problem (3.3) is a stochastic process (𝑋𝑡); on the other hand,

the E-spline solution yields a natural stochastic process, namely the (𝑋*
𝑡 ) induced by

the continuity equation with the intrinsic tangent velocity fields. In the proposition,

2The careful reader will note that the hypothesis of this theorem is much stronger than the single-
variable requirement that 𝑓 and 𝑔 agree merely on a set with an accumulation point. For several
complex variables this is not sufficient; indeed, several-variable holomorphic functions never have
isolated zeros.
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we are not asserting that the processes (𝑋𝑡) and (𝑋*
𝑡 ) are different (indeed this is an

easier statement to prove since the P-spline solution is often not even deterministic;

see Section 3.3.1). Instead, we are asserting that the interpolated measures associated

with the E- and P-splines are different, which is strictly stronger statement.

Proof. First, the manifold of mean-zero Gaussian measures on R equipped with the

𝑊2 metric is isometric to the ray [0,∞) equipped with the standard Euclidean metric.

Indeed, we have

𝑊2

(︀
𝒩 (0, 𝜎2

0),𝒩 (0, 𝜎2
1)
)︀
= |𝜎0 − 𝜎1|.

Suppose we have data 𝜇*𝑡𝑖 = 𝒩 (0, 𝜎2
𝑖 ) at times 𝑡𝑖 and let 𝑡 ↦→ 𝛾(𝑡) be the Euclidean

spline interpolation of (𝑡𝑖, 𝜎𝑖)
𝑁
𝑖=0 on R. It is possible that 𝛾(𝑡) ≤ 0 at some 𝑡, but if

𝛾(𝑡) > 0 for all 𝑡, then by Proposition 10 it must also be the spline considered on the

ray [0,∞). Since covariant derivatives are preserved under isometry (see 3.3.2 for a

formal verification in our setting), the function 𝐸[·] is also preserved under isometry,

and so its minimizers — E-splines — are preserved as well. This means that the

Gaussian-constrained E-spline is

𝜇E
𝑡 = 𝒩

(︀
0, 𝛾(𝑡)2

)︀
, 𝑡 ∈ [0, 1],

and by Proposition 11 this must coincide with the Wasserstein E-spline (3.2). This

is all under the hypothesis that 𝛾(𝑡) > 0.

Now substitute our example, with 𝜎2
𝑖 = (1− 𝑡𝑖)

2 + 𝑡2𝑖 . We need to check that 𝛾(𝑡)

remains strictly positive for all times. From [31, Theorem 5], we see that for all 𝑡

|𝛾(𝑡)−
√︀
𝑡2 + (1− 𝑡)2| ≤ 5

384
· 24

√
2 · 1

𝑁4
.

For 𝑁 ≥ 2 this is less than 0.03. The smallest value of
√︀
𝑡2 + (1− 𝑡)2 is

√︀
1/2 ≈

0.7071, so the spline is bounded below by 0.704 for all times.

Let (𝜇P
𝑡 ) be an interpolating P-spline. It is possible that this is not unique, but if

𝜇P
𝑡 is not Gaussian for some 𝑡 then we are done, since 𝜇E

𝑡 is Gaussian by Proposition 11.

Applying Lemma 1, we see that 𝜇P
𝑡 must be induced by a jointly Gaussian coupling
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of 𝜇⋆0 and 𝜇⋆1, so by Proposition 8 it must be that 𝜇P
𝑡 = 𝒩 (0, (1− 𝑡)2 + 𝑡2).

The standard deviation of 𝜇E
𝑡 is 𝛾(𝑡) and this is locally a cubic polynomial in 𝑡.

The standard deviation of the P-spline 𝜇P
𝑡 , however, is given by

√︀
(1− 𝑡)2 + 𝑡2, which

cannot be locally represented by a polynomial, so they must differ.

From the final steps of our proof, we see that (in the Gaussian case) P-splines

and E-splines will most likely differ generically, since their interpolated variances are

polynomial splines of different orders.

Preservation of Splines Under Isometry

In this section, we give a formal3 verification of the assertion that the E-spline func-

tional is preserved under the isometry between 𝒫2(R) and its image in 𝐻 = 𝐿2[0, 1].

Formally, this assertion can be viewed as a manifestation of a classical fact from

Riemannian geometry: the covariant derivative (associated with the Levi-Civita con-

nection) depends only on the Riemannian metric, and is thus preserved under isome-

tries.4

In the derivation below, we make all necessary regularity assumptions (e.g., we

can assume that the measures are compactly supported) in order to convey the in-

tuition. Suppose (𝜇𝑡) is a curve of measures in 𝒫2(R) and let 𝑣𝑡 ∈ 𝑇𝜇𝑡𝒫2(R) be the

corresponding tangent vectors. If 𝐹𝜇 denotes the CDF of 𝜇, then (2.5) implies

𝜕𝑡𝐹𝜇𝑡(𝑥) = 𝜕𝑡

∫︁ 𝑥

−∞
𝑑𝜇𝑡 = −

∫︁ 𝑥

−∞
(𝜇𝑡𝑣𝑡)

′ = −𝜇𝑡(𝑥)𝑣𝑡(𝑥).

3The word formal here, meaning that the argument proceeds by manipulating the form of the
expressions, is not a synonym for “rigorous”.

4In fact, this is related to Gauss’s famous Theorema Egregium, see [27, §4.3] and [26, Remark
2.7].
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Next, if we differentiate the relation 𝐹−1
𝜇𝑡 (𝐹𝜇𝑡(𝑥)) = 𝑥, we obtain

0 = (𝜕𝑡𝐹
−1
𝜇𝑡 )

(︀
𝐹𝜇𝑡(𝑥)

)︀
+ (𝐹−1

𝜇𝑡 )
′(︀𝐹𝜇𝑡(𝑥))︀

= (𝜕𝑡𝐹
−1
𝜇𝑡 )

(︀
𝐹𝜇𝑡(𝑥)

)︀
+

1

𝐹 ′
𝜇𝑡(𝑥)

= (𝜕𝑡𝐹
−1
𝜇𝑡 )

(︀
𝐹𝜇𝑡(𝑥)

)︀
+

1

𝜇𝑡(𝑥)
,

where we have applied the inverse function theorem. Thus,

(𝜕𝑡𝐹
−1
𝜇𝑡 )(𝛼) = 𝑣𝑡

(︀
𝐹−1
𝜇𝑡 (𝛼)

)︀
(3.6)

Differentiating again,

(𝜕2𝑡 𝐹
−1
𝜇𝑡 )(𝛼) = (𝜕𝑡𝑣𝑡)

(︀
𝐹−1
𝜇𝑡 (𝛼)

)︀
+ 𝑣′𝑡

(︀
𝐹−1
𝜇𝑡 (𝛼)

)︀
(𝜕𝑡𝐹

−1
𝜇𝑡 )(𝛼)

= (𝜕𝑡𝑣𝑡 + 𝑣′𝑡𝑣𝑡)
(︀
𝐹−1
𝜇𝑡 (𝛼)

)︀
However, we recognize 𝜕𝑡𝑣𝑡 + 𝑣′𝑡𝑣𝑡 as the covariant derivative ∇𝑣𝑡𝑣𝑡 in 𝒫2(R) (see for

example the discussion in [15, §5.1]). In particular, it implies

∫︁ 1

0

⃒⃒
𝜕2𝑡 𝐹

−1
𝜇𝑡

⃒⃒2
=

∫︁ 1

0

⃒⃒
(𝜕𝑡𝑣𝑡 + 𝑣′𝑡𝑣𝑡) ∘ 𝐹−1

𝜇𝑡

⃒⃒2
=

∫︁
|𝜕𝑡𝑣𝑡 + 𝑣′𝑡𝑣𝑡|

2
𝑑𝜇𝑡

= ‖∇𝑣𝑡𝑣𝑡‖2𝐿2(𝜇𝑡)

where we use the fact that the pushforward of the uniform distribution on [0, 1] under

𝐹−1
𝜇𝑡 is 𝜇𝑡. This equation shows that the norm (measured in 𝐻) of the acceleration

of the curve 𝑡 ↦→ 𝐹−1
𝜇𝑡 in 𝐻 is the same as the norm (measured in 𝒫2(R)) of the

acceleration of the curve 𝑡 ↦→ 𝜇𝑡 in 𝒫2(R), and thus the E-spline cost functional is

preserved by the embedding 𝒫2(R) →˓ 𝐻.

From the equation (3.6), we can also read off the isometry between the tangent

space of 𝐻 and the tangent space of 𝒫2(R).

The reader who is uncomfortable with the formal derivation above can instead use
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the isometric embedding 𝒫2(R) →˓ 𝐿2[0, 1] as the definition of the geometry of 𝒫2(R)

(and thus, the definition of E-splines on 𝒫2(R)). Indeed, a rigorous development of

second-order calculus on Wasserstein space faces significant technical hurdles [28],

and such a definition is actually more convenient for the purposes of this paper.

3.4 Transport Splines

To address the difficulties discussed in the previous section, we propose a new method

for measure interpolation, which we call transport splines. Our framework decouples

the interpolation problem into two steps:

1. Couple the given measures, that is, construct a random vector (𝑋𝑡0 , 𝑋𝑡1 , . . . , 𝑋𝑡𝑁 )

with the specified marginal laws 𝜇*
𝑡0
, 𝜇*

𝑡1
, . . . , 𝜇*

𝑡𝑁
.

2. Apply a Euclidean interpolation algorithm to the points 𝑋𝑡0 , 𝑋𝑡1 , . . . , 𝑋𝑡𝑁 .

A convenient choice for the second step is to use cubic splines, but our framework

works equally well with other standard Euclidean methods and can be adapted to

the application at hand. We illustrate this point in Section 3.6, where we construct

surfaces interpolating one-dimensional measures using thin-plate splines.

A simple and practical choice for the first step, which we explore in the present pa-

per, is to couple the random variables 𝑋𝑡0 , 𝑋𝑡1 , . . . , 𝑋𝑡𝑁 successively using the Monge

maps between them. That is, we draw 𝑋𝑡0 ∼ 𝜇*
𝑡0
, and for each 𝑖 = 1, . . . , 𝑁 we

set 𝑋𝑡𝑖 = 𝑇𝑖(𝑋𝑡𝑖−1
), where 𝑇𝑖 is the Monge map from 𝜇*

𝑡𝑖−1
to 𝜇*

𝑡𝑖
. The second step

then reduces to interpolating 𝑋𝑡0 , 𝑇1(𝑋𝑡0), . . . , 𝑇𝑁 ∘ · · · ∘ 𝑇1(𝑋𝑡0) in Euclidean space.

The interpolation property of transport splines follows readily from the definition of

Monge maps since 𝑇𝑖 ∘ · · · ∘ 𝑇1(𝑋𝑡0) ∼ 𝜇*
𝑡𝑖
.

For the task of outputting sample trajectories from the transport spline, we sum-

marize our method in Algorithm 1, and we display an application to the reconstruction

of trajectories in a many-body physical system in Figure 3-3.
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Figure 3-3: Reconstruction of trajectories in a physical system. See Appendix A.3.

Algorithm 1 Sample Transport Spline Trajectories
1: procedure interpolate((𝑡𝑖)

𝑁
𝑖=0, (𝜇

*
𝑡𝑖
)𝑁
𝑖=0

)

2: Draw 𝑋𝑡0 ∼ 𝜇*
𝑡0

3: for 𝑖 = 1, . . . , 𝑁 do

4: Set 𝑋𝑡𝑖 = 𝑇𝑖(𝑋𝑡𝑖−1
), where 𝑇𝑖 is the Monge map from 𝜇*

𝑡𝑖−1
to 𝜇*

𝑡𝑖

5: end for

6: Interpolate the points 𝑋𝑡0 , 𝑋𝑡1 , . . . , 𝑋𝑡𝑁 to obtain a curve (𝑋𝑡)

7: output (𝑋𝑡)

8: end procedure

The choice of coupling in the first step of our method is motivated by the geometry

of 𝒫2(R𝑑). If the observations 𝜇*
𝑡0
, . . . , 𝜇*

𝑡𝑁
sit along a curve of measures (𝜇*

𝑡 ), then

there are flow maps (𝑋*
𝑡 ) satisfying �̇�⋆

𝑡 = 𝑣⋆𝑡 (𝑋
*
𝑡 ), where 𝑣𝑡 are the tangent fields.

Thus if 𝛿 = 𝑡1 − 𝑡0, then 𝑋*
𝑡1
= 𝑋*

𝑡0
+ 𝛿𝑣⋆𝑡0(𝑋

*
𝑡0
) + 𝑜(𝛿). On the other hand, from (2.9)

the Monge map 𝑇1 gives a first-order approximation to 𝑣⋆𝑡0 : 𝑇1 − Id = 𝛿𝑣⋆𝑡0 + 𝑜(𝛿) (see

[3, Proposition 8.4.6]). Combining these approximations we get 𝑇1(𝑋*
0 ) = 𝑋*

𝑡1
+ 𝑜(𝛿).

From this heuristic discussion, one expects that as the mesh size max𝑖∈[𝑁 ](𝑡𝑖 − 𝑡𝑖−1)

tends to zero, the coupling 𝑋𝑡0 , 𝑋𝑡1 , . . . , 𝑋𝑡𝑁 obtained via successive Monge maps is

a good approximation to the coupling along the flow maps (𝑋*
𝑡0
, 𝑋*

𝑡1
, . . . , 𝑋*

𝑡𝑁
).
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3.4.1 Relationship to 𝐸-Splines in One Dimension

Although E-splines are in general intractable, in the one-dimensional case it turns out

that there are many situations of interest in which E-splines coincide with transport

splines. Indeed, suppose that the measures 𝜇*
𝑡0
, 𝜇*

𝑡1
, . . . , 𝜇*

𝑡𝑁
are all one-dimensional,

and for a measure 𝜇 let 𝐹 †
𝜇 denote its quantile function.5 Let (𝐺𝑡) be the natural

cubic spline in 𝐿2[0, 1] interpolating the quantile functions 𝐹 †
𝜇*𝑡0
, 𝐹 †

𝜇*𝑡1
, . . . , 𝐹 †

𝜇*𝑡𝑁
. Then:

Theorem 10. Suppose that for all 𝑡, 𝐺𝑡 is a valid6 quantile function. Then the

transport spline and the E-spline both coincide with the curve (𝜇𝑡), where 𝜇𝑡 has

quantile function 𝐺𝑡. Furthermore, if (𝑋𝑡) is the stochastic process associated with

the transport spline and (𝑋*
𝑡 ) is the flow map for the E-spline, then (𝑋𝑡) and (𝑋*

𝑡 )

have the same distribution as the law of (𝐺𝑡(𝑈)), where 𝑈 is a uniform random

variable on [0, 1].

Before moving on to the proof, we emphasize that, in light of the counterexamples

above, the P-spline and E-spline are likely to differ generically, even in the Gaussian

case. Therefore, it appears that the transport spline is more suitable as a relaxation

of the E-spline when interpolating univariate distributions.

Proof. Let 𝑈 be a uniform random variable on [0, 1], and define the random variables

𝑋𝑡𝑖 := 𝐹 †
𝜇*𝑡𝑖

(𝑈) ∼ 𝜇*
𝑡𝑖
, 𝑖 = 0, . . . , 𝑁.

These random variables are simultaneously optimally coupled, as can be seen in Sec-

tion 3.6. In particular, each successive pair of these random variables is coupled via

a Monge map. It follows from the definition of a transport spline that the stochastic

process (𝑋𝑡) associated with the transport spline can be realized as the (Euclidean)

cubic spline interpolating the points (𝑋𝑡𝑖)
𝑁
𝑖=0.

Since each 𝑋𝑡𝑖 is a function of 𝑈 , so is the interpolation 𝑋𝑡, so we can write

𝑋𝑡 = �̃�𝑡(𝑈). It follows that (�̃�𝑡) is the cubic spline in 𝐻 = 𝐿2[0, 1] which interpolates
5Under our assumption that the measures are absolutely continuous, the quantile function 𝐹 †

𝜇

simply coincides with the inverse CDF 𝐹−1
𝜇 , but we use the quantile function notation here to reflect

the general embedding 𝒫2(R) →˓ 𝐿2[0, 1].
6A valid quantile function 𝐺𝑡 : [0, 1] → R ∪ {±∞} is increasing and right-continuous.
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the quantiles
(︀
𝐹 †
𝜇*𝑡𝑖

)︀𝑁
𝑖=0

, that is, (�̃�𝑡) = (𝐺𝑡). At this point, we have established one

of the assertions of the theorem, namely, the explicit description of the process (𝑋𝑡)

associated with the transport spline.

Next, since 𝑋𝑡 = 𝐺𝑡(𝑈), by hypothesis 𝐺𝑡 is an increasing function that pushes

forward the uniform distribution to the law 𝜇𝑡 of𝑋𝑡. By the characterization of Monge

maps in one dimension as increasing mappings (see again Section 3.6), it follows that

𝐺𝑡 = 𝐹 †
𝜇𝑡 .

Since (𝐺𝑡) is a cubic spline, then it minimizes curvature, i.e., it solves the problem

inf
(𝐺𝑡)

∫︁ 1

0

‖�̈�𝑡‖2𝐿2[0,1] 𝑑𝑡, s.t. 𝐺𝑡𝑖 = 𝐹 †
𝜇*𝑡𝑖

for all 𝑖.

From our characterization 𝐺𝑡 = 𝐹 †
𝜇𝑡 , it is clear that (𝜇𝑡) solves the problem

inf
(𝜇𝑡)

∫︁ 1

0

‖𝜕2𝑡 𝐹 †
𝜇𝑡‖

2
𝐿2[0,1] 𝑑𝑡, s.t. 𝜇𝑡𝑖 = 𝜇*

𝑡𝑖
for all 𝑖,

since the the first problem is a relaxation of the second (given a solution (𝜇𝑡) of

the second problem, we can obtain a solution (𝐺𝑡) = (𝐹 †
𝜇𝑡) for the first problem).

Indeed, the second problem can be interpreted as the first problem with the additional

constraint that the functions 𝐺𝑡 must be quantile functions. Next, in light of the

isometry described in 3.3.2, the latter problem is equivalent to

inf
(𝜇𝑡,𝑣𝑡)

∫︁ 1

0

‖∇𝑣𝑡𝑣𝑡‖2𝐿2(𝜇𝑡)
𝑑𝑡, s.t. 𝜇𝑡𝑖 = 𝜇*

𝑡𝑖
for all 𝑖,

where the infimum is taken over curves (𝜇𝑡) in 𝒫2(R) and their corresponding tangent

vectors (𝑣𝑡). This problem is seen to be the E-spline problem (3.2).

We have thus shown that (𝜇𝑡) is an E-spline. Actually, in light of Proposition 9

and the fact that (𝐺𝑡) is the spline in 𝐻, then the E-spline is unique. Thus, the

E-spline and transport spline coincide.

Finally, it remains to show that the flow map coupling (𝑋*
𝑡 ) associated with the

E-spline has the same law as (𝑋𝑡). For this, we can simply appeal to the embedding

𝒫2(R) →˓ 𝐻 again. Indeed, since �̇�𝑡 = 𝜕𝑡𝐹
†
𝜇𝑡(𝑈), the calculation in 3.3.2 shows that
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�̇�𝑡 = 𝑣𝑡(𝑋𝑡) where (𝑣𝑡) is the tangent vector to (𝜇𝑡), so in fact (𝑋𝑡) is the flow map

coupling of (𝜇𝑡).

3.5 The Gaussian Case

We now focus on the Gaussian case and we assume that we employ natural cubic

splines in Step 2 of our algorithm. For simplicity, we can assume that the measures are

centered.7 A centered non-degenerate Gaussian can be identified with its covariance

matrix, and the Wasserstein distance induces a Riemannian metric on the space of

positive definite matrices. The resulting manifold is called the Bures-Wasserstein

space; see [8] for a comprehensive survey.

It is known that the Monge map from Gaussian 𝒩 (0,Σ1) to 𝒩 (0,Σ2) is the linear

map 𝑇 given by

𝑇 (𝑋) = Σ
−1/2
1

(︀
Σ

1/2
1 Σ2Σ

1/2
1

)︀1/2
Σ

−1/2
1 𝑋 (3.7)

Cubic splines have the property that the interpolation evaluated at time 𝑡 is a

linear function of the interpolated points (𝑥𝑡𝑖)
𝑁
𝑖=0. That is, the map 𝑆𝑡 referenced

above, taking 𝑥0, . . . , 𝑥𝑁 to the natural cubic spline interpolant, is linear in 𝑥0, . . . , 𝑥𝑁

for each 𝑡.8 This has important consequences for our algorithm:

1. It implies that our algorithm outputs a process (𝑋𝑡) such that 𝑋𝑡 is a linear

function of 𝑋𝑡0 , 𝑋𝑡1 , . . . , 𝑋𝑡𝑁 . On the other hand, each 𝑋𝑡𝑖 is a linear function

of 𝑋𝑡0 , which follows from the description of Step 1 of our algorithm and the

fact that Monge maps between Gaussians are linear (3.7).

Since a linear function of a Gaussian is also Gaussian, we conclude that the

transport spline interpolating Gaussian measures only passes through Gaussian

measures.

2. From the previous point, it is clear that the covariance matrix of 𝑋𝑡 can be

computed in terms of 𝑆𝑡, Σ𝑡0 , and the Monge maps (which have the closed-form
7The discussion here extends easily to incorporate non-centered measures.
8Note that the matrix representing 𝑆𝑡 is independent of (𝑥𝑡𝑖)

𝑁
𝑖=0, but depends on the time grid

(𝑡𝑖)
𝑁
𝑖=0.
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expression (3.7)). We conclude that in this setting, not only can we output

sample trajectories as in Algorithm 1, but we can also efficiently output the

covariance matrices of the interpolated measures.

Furthermore, this discussion extends to any other interpolation method with

this linearity property, such as higher-order splines, polynomial interpolation, and

thin-plate splines. We also remark that in the case where the data consists of one-

dimensional Gaussian distributions, then in many cases the transport spline and the

E-spline coincide.

Proposition 13. Suppose that 𝜇*
𝑡0
, 𝜇*

𝑡1
, . . . , 𝜇*

𝑡𝑁
are one-dimensional Gaussians. Then,

if the transport spline (𝜇𝑡) interpolating these data is never degenerate, i.e., 𝜇𝑡 is a

non-degenerate Gaussian for each 𝑡 ∈ [0, 1], then the conditions of Theorem 10 hold.

Proof. Since the Gaussian measures form a 2 dimensional half-subspace of 𝐿2[0, 1]

with the usual identification 𝒫2(R) →˓ 𝐿2[0, 1], the E-spline interpolation between

Gaussian measures is the transport spline if transport splines is not degenerate at

any time (i.e., the transport lies in the relative interior of Gaussian measures within

𝒫2(R)).

3.5.1 Failure of Equality Between Transport Splines and 𝐸-

Splines

In this section we give some examples that show that 𝐸-splines and transport splines

differ when the spline (𝐺𝑡) described in Theorem 10 does not stay within 𝒫2(R) ⊂

𝐿2[0, 1]. First, we give a Gaussian counterexample.

Proposition 14. Let 𝛿 > 0 be sufficiently small and consider the measures

𝜇*
0 = 𝜇*

1 = 𝒩 (0, 1), 𝜇*
1/3 = 𝜇*

2/3 = 𝒩 (0, 𝛿2).

Then, the E-spline interpolation (𝜇E
𝑡 ) and transport spline interpolation (𝜇T

𝑡 ) do not

coincide for this data.
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Proof. Let (𝑋𝑡) denote the stochastic process corresponding to the transport spline.

It is easy to see that (𝑋0, 𝑋1/3, 𝑋2/3, 𝑋1) = (𝑋0, 𝛿𝑋0, 𝛿𝑋0, 𝑋0) is the optimal coupling

at the knots. Recalling that 𝑆𝑡 is the linear mapping which produces the spline, it

follows that

𝑋𝑡 = 𝑆𝑡(𝑋0, 𝛿𝑋0, 𝛿𝑋0, 𝑋0) = 𝑆𝑡(1, 𝛿, 𝛿, 1)𝑋0,

so that 𝜇T
𝑡 = 𝒩 (0, 𝑆𝑡(1, 𝛿, 𝛿, 1)

2).

If we identify the space of Gaussians with the half-ray [0,∞), then the transport

spline corresponds to the curve of standard deviations 𝑡 ↦→ |𝑆𝑡(1, 𝛿, 𝛿, 1)|. However,

because the spline curve 𝑡 ↦→ 𝑆𝑡(1, 0, 0, 1) becomes negative between 1/3 and 2/3,

then so does the curve 𝑡 ↦→ 𝑆𝑡(1, 𝛿, 𝛿, 1) for small 𝛿. It can be checked that at time

1/3, the curve 𝑡 ↦→ |𝑆𝑡(1, 𝛿, 𝛿, 1)| is not 𝒞2 differentiable and therefore cannot be an

E-spline.

This counterexample, however, is somewhat degenerate because the transport

spline passes through a degenerate measure, and thus it is not clear if the E-spline

exists, and if so whether it remains non-degenerate. We now give another example

where the transport spline does not coincide with the E-spline, but the transport

spline remains non-degenerate; hence, we believe that the E-spline problem is well-

posed for these data.

For this example, we take 𝛿 > 0 and let

𝜇*
0 = 𝜇*

1 = uniform on [−(1 + 𝛿),−1] ∪ [1, 1 + 𝛿]

𝜇*
1/4 = 𝜇*

3/4 = uniform on [−𝛿, 𝛿]
(3.8)

As in the proof of Proposition 11, 𝒫2(R) is seen as a convex subset of 𝐿2[0, 1]

where probability measures are identified as their quantile function. Thus our E-

spline interpolation can be reformulated as the problem

inf
(𝜇𝑡)

∫︁ 1

0

∫︁ 1

0

|𝐹 †
𝑡 (𝑢)|2 𝑑𝑢 𝑑𝑡 s.t. 𝜇𝑡 = 𝜇*

𝑡 for all 𝑡 ∈ {0, 1/4, 3/4, 1},

where 𝐹 †
𝑡 denotes the quantile function of 𝜇𝑡. In particular, the E-spline interpolation
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Figure 3-4: Transport splines interpolation for the four uniform distributions as in (3.8).
The red line is the quantile of order 3/4 for the interpolation and the orange dotted line
represents the corresponding candidate 𝐹 †

𝑡 (𝑢) for 𝑢 = 3/4 introduced in (3.9).

problem can be seen as the transport spline interpolation with the extra constraint

that the trajectories of the particles must stay ordered (see Theorem 10).

Denote by (𝑋𝑡) the random process given by the transport spline problem. One

can check that

𝑋𝑡 = sign(𝑋0)
[︁16
3
(𝑡− 1/2)2 − 1

3
+ |𝑋0| − 1

]︁
.

Clearly, for 𝛿 small enough the quantiles 𝐹 †
𝑡 (𝑢) of order 𝑢 > 1/2 associated to the

transport spline interpolation decrease before 𝑡 = 1/4 and increase after = 3/4.

In particular, for each 𝑢 > 1/2, there exists 1/4 < 𝑡−𝑢 < 𝑡+𝑢 < 3/4 such that

𝜕𝑡𝐹
†
𝑡 (𝑢)|𝑡=𝑡−𝑢 = 𝜕𝑡𝐹

†
𝑡 (𝑢)|𝑡=𝑡+𝑢 = 0 and |𝜕2𝑡 𝐹

†
𝑡 (𝑢)| > 0 for 𝑡 ∈ (𝑡−𝑢 , 𝑡

+
𝑢 ). One can check

then that the function 𝑢 ↦→ 𝐹 †
𝑡 at time 𝑡 ∈ [0, 1] defined by

𝐹 †
𝑡 (𝑢) =

⎧⎨⎩𝐹
†
𝑡−𝑢
(𝑢), 𝑢 ∈ (𝑡−𝑢 , 𝑡

+
𝑢 )

𝐹 †
𝑡 (𝑢), otherwise

(3.9)

is a quantile function. In particular, the measures with quantiles 𝐹 †
𝑡 interpolate the
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measures (3.8) and

|𝜕2𝑡 𝐹
†
𝑡 (𝑢)| =

⎧⎪⎨⎪⎩0, 𝑢 ∈ (𝑡−𝑢 , 𝑡
+
𝑢 )

|𝜕2𝑡 𝐹
†
𝑡 (𝑢)|, otherwise,

ensuring that 𝐹 †
𝑡 has a lower cost than the transport spline. Thus, the transport

spline is not the E-spline.

Since the transport spline is non-degenerate for this example, we believe that the

E-spline also exists and is non-degenerate. Therefore, we expect that the failure of

transport splines to equal E-splines in general is not simply due to the fact that

E-splines can be ill-posed.

To summarize: when the trajectories of the transport spline remain ordered

throughout the interpolation, then it coincides with the E-spline. Otherwise, there is

no reason to expect the two notions of spline to coincide.

3.5.2 Approximation Guarantees

Our method is the first to provide approximation guarantees on Wasserstein space. In

order to obtain strong quantitative results, we focus on the Bures-Wasserstein setting

detailed in the previous section, where all measures 𝜇*
𝑡𝑖

are centered non-degenerate

Gaussian distributions.

The Bures-Wasserstein space has already been used in works such as [44, 19] as

a prototypical setting in which to understand the behavior of algorithms set on the

general Wasserstein space. Although the Bures-Wasserstein space is a Riemannian

manifold and transport splines can in principle be studied using purely Riemannian

techniques, we give proofs inspired by optimal transport so that the analysis may be

more easily extended to other settings of interest.

We now state our main approximation result.

Theorem 11. Let (𝜇*
𝑡 ) be a curve of measures in Bures-Wasserstein space, and let

(𝑋*
𝑡 ) ∼ (𝜇*

𝑡 ) be the flow map coupling. Let:
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• 𝐿 := sup𝑡∈[0,1]‖�̇�⋆
𝑡 ‖𝐿2(P) be the Lipschitz constant of the curve, and

• 𝑅 := sup𝑡∈[0,1]‖�̈�⋆
𝑡 ‖𝐿2(P) be an upper bound on its curvature, and

• 𝜆min be a lower bound on the eigenvalues of the covariance matrices of 𝜇⋆𝑡0 , 𝜇
⋆
𝑡1
, . . . , 𝜇⋆𝑡𝑁 .

where ‖𝑋‖𝐿2(P) =
√︀

E[‖𝑋‖2] Let (𝜇𝑡) be the cubic transport spline interpolating

𝜇*
𝑡0
, . . . , 𝜇*

𝑡𝑁
and assume

𝛼𝛿 ≤ 𝑡𝑖 − 𝑡𝑖−1 ≤ 𝛿, for 𝑖 = 1, . . . , 𝑁 (3.10)

where 𝛼, 𝛿 > 0. Then, provided that 𝛿 <
√
𝜆min/(2𝐿), we have the following approxi-

mation guarantee:

sup
𝑡∈[0,1]

𝑊2(𝜇𝑡, 𝜇
*
𝑡 ) ≤

58

𝛼3
𝑅𝛿2.

The proof comprises the remainder of this section. We begin by describing the

general strategy. Consider the interval [𝑡𝑖−1, 𝑡𝑖], let (𝑋*
𝑡 ) denote the flow map coupling

for (𝜇*
𝑡 )𝑡, and let (𝑋𝑡) be the stochastic process associated with the transport spline.

Since 𝜇𝑡𝑖−1
= 𝜇*

𝑡𝑖−1
, we can couple the two processes together so that𝑋𝑡𝑖−1

= 𝑋*
𝑡𝑖−1

. By

the definition of the Wasserstein distance, we can bound 𝑊2(𝜇𝑡, 𝜇
*
𝑡 ) ≤ ‖𝑋𝑡−𝑋*

𝑡 ‖𝐿2(P),

so it suffices to show that the trajectories (𝑋𝑡) and (𝑋*
𝑡 ) are close on the interval

[𝑡𝑖−1, 𝑡𝑖].

We will use a basic deterministic fact: if two curves 𝑥 and 𝑦 defined on [0, 𝛿] are

such that:

• 𝑥(0) = 𝑦(0),

• �̇�(0) = �̇�(0) +𝑂(𝛿), and

• the two curves satisfy the curvature bound

sup
𝑡∈[0,𝛿]

{|�̈�(𝑡)| ∨ |𝑦(𝑡)|} ≤ 𝑅,
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then it follows that sup𝑡∈[0,𝛿] |𝑥(𝑡)− 𝑦(𝑡)| ≤ 𝐶𝑅𝛿2, where 𝐶 is a numerical constant.

1. the velocities of 𝑋𝑡 and 𝑋*
𝑡 at time 𝑡 = 𝑡𝑖−1 are within 𝑂(𝛿) of each other

(Proposition 16);

2. the trajectory (𝑋𝑡) has curvature 𝑂(𝑅) (Proposition 17);

3. the trajectory (𝑋*
𝑡 ) has curvature 𝑂(𝑅);

The last step is immediate from our assumptions; the point of the second step is to

control the curvature of the interpolated process (𝑋𝑡) in terms of the curvature of the

true process (𝑋*
𝑡 ).

Putting these pieces together, we give the proof of Theorem 11.

Notation

Since we study the approximation guarantee in the Bures-Wasserstein setting, we can

equivalently think in terms of the probability measure (a Gaussian), or in terms of

the covariance matrix. It will be useful to employ the language of matrices, so we fix

notational conventions here.

Associated with the curve (𝜇*
𝑡 ), we have a corresponding curve of covariance ma-

trices (Σ𝑡) such that 𝜇*
𝑡 = 𝒩 (0,Σ𝑡).

Given a matrix 𝐴 ∈ R𝑑×𝑑, we define the norm

‖𝐴‖Σ :=
√︀

⟨𝐴,Σ𝐴⟩

The norm is defined so that if 𝑋* ∼ 𝒩 (0,Σ), then ‖𝐴𝑋*‖𝐿2(P) = ‖𝐴‖Σ. From our

eigenvalue bound we have ‖𝐴‖Σ ≥
√︀
𝜆min(Σ) ‖𝐴‖F.

The Monge map 𝑇 between two Gaussians is the linear map 𝑇 (𝑋) given in (3.7)

and abusing notation slightly, we identify the map 𝑇 with the corresponding matrix,

and we write 𝑇 (𝑥) = 𝑇𝑥. In particular, linearity of the Monge maps implies that the

velocity vector field (𝑣⋆𝑡 ) associated to the Lagrangian coupling of the curve, is also

linear for each 𝑡: 𝑣⋆𝑡 is a symmetric linear mapping R𝑑 → R𝑑, that is, there exists a

symmetric matrix 𝑉 ⋆
𝑡 ∈ R𝑑×𝑑 such that 𝑣⋆𝑡 (𝑥) = 𝑉 ⋆

𝑡 𝑥.
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Control of the Velocities

We write 𝛿𝑖 := 𝑡𝑖+1 − 𝑡𝑖 and 𝛿 := max𝑖∈[𝑁 ] 𝛿𝑖. The first step is to prove a quantitative

bound on how well the Monge map 𝑇𝑖 approximates Id + 𝛿𝑖𝑣𝑡𝑖−1
. We prove a more

general approximation result which may be of independent interest.

Theorem 12. Let 𝑡, 𝑡 + ℎ ∈ [0, 1], where ℎ ̸= 0. Write 𝛿 := |ℎ| and assume 𝛿 ≤

𝑐
√︀
𝜆min(Σ𝑡)/𝐿, for some constant 0 < 𝑐 < 1. Let 𝑇 denote the Monge map from

𝜇*
𝑡 to 𝜇*

𝑡+ℎ, and let 𝑇 : R𝑑 → R𝑑 be another linear mapping satisfying the following

properties:

1. 𝑇 can be identified with a symmetric matrix.

2. ‖𝑇𝑋*
𝑡 −𝑋*

𝑡 ‖𝐿2(P) ≤ 𝑐
√︀
𝜆min(Σ𝑡).

Then,

‖𝑇𝑋*
𝑡 − 𝑇𝑋*

𝑡 ‖𝐿2(P) ≤
1 + 2𝑐

1− 𝑐
‖𝑇𝑋*

𝑡 −𝑋*
𝑡+ℎ‖𝐿2(P)

Proof. Let 𝑒 := 𝑋*
𝑡+ℎ − 𝑇𝑋*

𝑡 .

Consider the quadratic function 𝜑 : R𝑑 → R defined by 𝜑(𝑥) := ⟨𝑥,𝐴𝑥⟩, where

𝐴 := (𝑇 − 𝑇 )/‖𝑇 − 𝑇‖Σ𝑡 . Note that 𝐴 is symmetric (since 𝑇 and 𝑇 are). Then,

E𝜑(𝑇𝑋*
𝑡 ) = E𝜑(𝑋*

𝑡+ℎ) = E𝜑(𝑇𝑋*
𝑡 + 𝑒)

Expanding this out,

0 = E⟨(𝑇 + 𝑇 )𝑋*
𝑡 + 𝑒, 𝐴{(𝑇 − 𝑇 )𝑋*

𝑡 − 𝑒}⟩

= E⟨(𝑇 + 𝑇 )𝑋*
𝑡 , 𝐴(𝑇 − 𝑇 )𝑋*

𝑡 ⟩+ error

We next bound the error term. First, note that by our assumption,

‖𝑇 − 𝐼𝑑‖Σ𝑡 = 𝑊2(𝜇
*
𝑡 , 𝜇

*
𝑡+ℎ) ≤ 𝐿𝛿 ≤ 𝑐

√︀
𝜆min,

‖𝑇 − 𝐼𝑑‖Σ𝑡 ≤ 𝑐
√︀
𝜆min
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where we write 𝜆min = 𝜆min(Σ𝑡). The error term is split into two further terms. For

the first term,

|E⟨𝑒, 𝐴(𝑇 − 𝑇 )𝑋*
𝑡 ⟩| ≤ ‖𝑒‖𝐿2(P) ‖𝐴(𝑇 − 𝑇 )‖Σ𝑡

≤ ‖𝑒‖𝐿2(P) ‖𝐴‖F ‖𝑇 − 𝑇‖Σ𝑡

≤ ‖𝑒‖𝐿2(P)
1√
𝜆min

(‖𝑇 − 𝐼𝑑‖Σ𝑡 + ‖𝑇 − 𝐼𝑑‖Σ𝑡)

≤ 2𝑐 ‖𝑒‖𝐿2(P)

where we used the fact that ‖𝐴‖Σ𝑡 ≤ 1 implies that ‖𝐴‖F ≤ 1/
√
𝜆min. The second

term is bounded by

|E⟨(𝑇 + 𝑇 )𝑋*
𝑡 + 𝑒, 𝐴𝑒⟩| ≤ |E⟨𝑇𝑋*

𝑡 +𝑋*
𝑡+ℎ − 2𝑋*

𝑡 , 𝐴𝑒⟩|+ 2|E⟨𝑋*
𝑡 , 𝐴𝑒⟩|

≤ {‖𝐴‖F (‖𝑇 − 𝐼𝑑‖Σ𝑡 + ‖𝑋*
𝑡+ℎ −𝑋*

𝑡 ‖𝐿2(P)) + 2‖𝐴‖Σ𝑡} ‖𝑒‖𝐿2(P)

≤ 2 (1 + 𝑐) ‖𝑒‖𝐿2(P)

where we used

‖𝑋*
𝑡+ℎ −𝑋*

𝑡 ‖2𝐿2(P) = E
[︁⃦⃦⃦∫︁ 𝑡+ℎ

𝑡

�̇�⋆
𝑠 𝑑𝑠

⃦⃦⃦2]︁
≤ 𝛿

⃒⃒⃒∫︁ 𝑡+ℎ

𝑡

‖�̇�⋆
𝑠‖2𝐿2(P) 𝑑𝑠

⃒⃒⃒
≤ 𝐿2𝛿2

Thus, we have

2‖𝑇 − 𝑇‖Σ𝑡 = 2E⟨𝑋*
𝑡 , 𝐴(𝑇 − 𝑇 )𝑋*

𝑡 ⟩

= −E⟨(𝑇 + 𝑇 − 2𝐼𝑑)𝑋
*
𝑡 , 𝐴(𝑇 − 𝑇 )𝑋*

𝑡 ⟩+ error

≤ (‖𝑇 − 𝐼𝑑‖Σ𝑡 + ‖𝑇 − 𝐼𝑑‖Σ𝑡) ‖𝐴‖F ‖𝑇 − 𝑇‖Σ𝑡 + error

≤ 2𝑐 ‖𝑇 − 𝑇‖Σ𝑡 + (2 + 4𝑐) ‖𝑒‖𝐿2(P)

which finally yields

‖𝑇 − 𝑇‖Σ𝑡 ≤
1 + 2𝑐

1− 𝑐
‖𝑒‖𝐿2(P)
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as required.

corollary 1. Let 𝑡, 𝑡 + ℎ ∈ [0, 1], where ℎ ̸= 0, and write 𝛿 := |ℎ|. Let 𝑘 ∈ {0, 1, 2},

and suppose 𝛿 is small enough so that

𝑘∑︁
𝑖=1

𝑅𝑖𝛿
𝑖

𝑖!
≤ 𝑐

√︀
𝜆min(Σ𝑡),

where we set 𝑅𝑖 := sup𝑡∈[0,1] ‖𝜕𝑖𝑋*‖𝐿2(P). Then,

⃦⃦⃦
𝑇𝑋*

𝑡 −
𝑘∑︁
𝑖=0

ℎ𝑖

𝑖!
(𝜕𝑖𝑋*)𝑡

⃦⃦⃦
𝐿2(P)

≤ 1 + 2𝑐

1− 𝑐

𝑅𝑘+1𝛿
𝑘+1

(𝑘 + 1)!

Proof. We apply Theorem 12 with

𝑇𝑋*
𝑡 =

𝑘∑︁
𝑖=0

ℎ𝑖

𝑖!
(𝜕𝑖𝑋*)𝑡

Using �̇�*
𝑡 = 𝑉 ⋆

𝑡 𝑋
*
𝑡 , where 𝑉 ⋆

𝑡 is symmetric, we obtain:

�̇�*
𝑡 = 𝑉 ⋆

𝑡 𝑋
*
𝑡 ,

�̈�*
𝑡 = �̇� ⋆

𝑡 𝑋
*
𝑡 + 𝑉 ⋆2

𝑡 𝑋*
𝑡 = (�̇� ⋆

𝑡 + 𝑉 ⋆2
𝑡 )𝑋*

𝑡 ,

...
𝑋

*
𝑡 = (𝑉 ⋆

𝑡 + 2�̇� ⋆
𝑡 𝑉

⋆
𝑡 + 𝑉 ⋆

𝑡 �̇�
⋆
𝑡 + 𝑉 ⋆3

𝑡 )𝑋*
𝑡 ,

...

Observe that the 𝑖th derivative of 𝑡 ↦→ 𝑋*
𝑡 at 𝑡 is indeed a linear function of 𝑋*

𝑡 , but

for 𝑖 ≥ 3 it is no longer given by a symmetric matrix, so it no longer satisfies the first

assumption of Theorem 11; this is why we restrict ourselves to 𝑘 = 0, 1, 2.

For the third assumption of Theorem 11, note that

‖𝑇𝑋*
𝑡 −𝑋*

𝑡 ‖𝐿2(P) =
⃦⃦⃦ 𝑘∑︁
𝑖=1

ℎ𝑖

𝑖!
(𝜕𝑖𝑋*)𝑡

⃦⃦⃦
𝐿2(P)

≤
𝑘∑︁
𝑖=1

𝛿𝑖𝑅𝑖

𝑖!
≤ 𝑐

√︀
𝜆min(Σ𝑡),

by our assumption on 𝛿.
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Finally, the error 𝑒 := 𝑋*
𝑡+ℎ − 𝑇𝑋*

𝑡 is controlled via Taylor’s theorem:

‖𝑒‖𝐿2(P) =
⃦⃦⃦
𝑋*
𝑡+ℎ −

𝑘∑︁
𝑖=0

ℎ𝑖

𝑖!
(𝜕𝑖𝑋*)𝑡

⃦⃦⃦
𝐿2(P)

=
⃦⃦⃦∫︁ 𝑡+ℎ

𝑡

(𝜕𝑘+1𝑋*)𝑠
𝑘!

(𝑠− 𝑡)𝑘 𝑑𝑠
⃦⃦⃦
𝐿2(P)

≤ 𝑅𝑘+1𝛿
𝑘+1

(𝑘 + 1)!

One remark: if we let 𝛿 ↘ 0, we can also take 𝑐↘ 0, obtaining

lim sup
𝛿↘0

1

𝛿𝑘+1

⃦⃦⃦
𝑇𝑋*

𝑡 −
𝑘∑︁
𝑖=0

ℎ𝑖

𝑖!
(𝜕𝑖𝑋*)𝑡

⃦⃦⃦
𝐿2(P)

≤ 𝑅𝑘+1

(𝑘 + 1)!

Comparing this to a Euclidean Taylor expansion, this is apparently sharp.

Corollary 1 says that in order to prove our desired result �̇�𝑡𝑖−1
= �̇�*

𝑡𝑖−1
+ 𝑂(𝛿),

it suffices to show that �̇�𝑡𝑖−1
= (𝑇𝑖𝑋𝑡𝑖−1

− 𝑋𝑡𝑖−1
)/𝛿𝑖 + 𝑂(𝛿) (since the RHS of both

expressions equals 𝑉 ⋆
𝑡𝑖−1

𝑋𝑡𝑖−1
= 𝑉 ⋆

𝑡𝑖−1
𝑋*
𝑡𝑖−1

up to 𝑂(𝛿)). Since the latter statement

involves only the process (𝑋𝑡), it is easier to prove.

However, there is still a major difficulty to overcome: �̇�𝑡𝑖−1
is the velocity of an in-

terpolating cubic spline, which depends on all of the interpolated points𝑋𝑡0 , 𝑋𝑡1 , . . . , 𝑋𝑡𝑁 .

In Appendix B, we show that the derivative of the cubic spline interpolation can be

understood in terms of the linear system of equations involving the quantities

Δ𝑖 :=
𝑋𝑡𝑖+1

−𝑋𝑡𝑖

𝛿𝑖+1

−
𝑋𝑡𝑖 −𝑋𝑡𝑖−1

𝛿𝑖
, 𝑖 ∈ [𝑁 − 1]

Therefore, we next control these quantities.

Proposition 15. Assume 𝛿 ≤
√
𝜆min/(2𝐿). For each 𝑖 ∈ [𝑁 − 1], it holds that

⃦⃦𝑋𝑡𝑖+1
−𝑋𝑡𝑖

𝛿𝑖+1

−
𝑋𝑡𝑖 −𝑋𝑡𝑖−1

𝛿𝑖

⃦⃦
𝐿2(P) ≤

25

4
𝑅𝛿
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Proof. From Corollary 1,

⃦⃦𝑋𝑡𝑖 −𝑋𝑡𝑖−1

𝛿𝑖
− 𝑉 ⋆

𝑡𝑖−1
𝑋𝑡𝑖−1

⃦⃦
𝐿2(P) =

⃦⃦𝑇𝑖 − 𝐼𝑑
𝛿𝑖

− 𝑉 ⋆
𝑡𝑖−1

⃦⃦
Σ𝑡𝑖−1

≤ 2𝑅𝛿𝑖

where we use the fact that 𝑋𝑡𝑖−1
∼ 𝜇*

𝑡𝑖−1
and that 𝑋𝑡𝑖 = 𝑇𝑖𝑋𝑡𝑖−1

. Similarly,

⃦⃦𝑋𝑡𝑖+1
−𝑋𝑡𝑖

𝛿𝑖+1

− 𝑉 ⋆
𝑡𝑖
𝑋𝑡𝑖

⃦⃦
𝐿2(P) ≤ 2𝑅𝛿𝑖+1

Therefore,

‖Δ𝑖‖𝐿2(P) ≤ 4𝑅𝛿 + ‖𝑉 ⋆
𝑡𝑖
𝑋𝑡𝑖 − 𝑉 ⋆

𝑡𝑖−1
𝑋𝑡𝑖−1

‖𝐿2(P)

Since 𝑋𝑡𝑖 = 𝑇𝑖𝑋𝑡𝑖−1
, we replace 𝑇𝑖 by 𝐼𝑑 + 𝛿𝑖𝑉

⋆
𝑡𝑖−1

‖𝑉 ⋆
𝑡𝑖
𝑋𝑡𝑖 − 𝑉 ⋆

𝑡𝑖−1
𝑋𝑡𝑖−1

‖𝐿2(P)

≤ ‖𝑉 ⋆
𝑡𝑖
(𝑇𝑖 − 𝐼𝑑 − 𝛿𝑖𝑉

⋆
𝑡𝑖−1

)𝑋𝑡𝑖−1
‖𝐿2(P) + ‖𝑉 ⋆

𝑡𝑖
(𝐼𝑑 + 𝛿𝑖𝑉

⋆
𝑡𝑖−1

)𝑋𝑡𝑖−1
− 𝑉 ⋆

𝑡𝑖−1
𝑋𝑡𝑖−1

‖𝐿2(P)

We control the first term using Corollary 1:

‖𝑉 ⋆
𝑡𝑖
(𝑇𝑖 − 𝐼𝑑 − 𝛿𝑖𝑉

⋆
𝑡𝑖−1

)𝑋𝑡𝑖−1
‖𝐿2(P) ≤ ‖𝑉 ⋆

𝑡𝑖
‖F ‖(𝑇𝑖 − 𝐼𝑑 − 𝛿𝑖𝑉

⋆
𝑡𝑖−1

)𝑋𝑡𝑖−1
‖𝐿2(P)

≤ 𝐿√
𝜆min

‖𝑇𝑖 − 𝐼𝑑 − 𝛿𝑖𝑉
⋆
𝑡𝑖−1

‖Σ𝑡𝑖−1

≤ 𝐿√
𝜆min

· 2𝑅𝛿2𝑖 ≤ 𝑅𝛿𝑖

where we used ‖𝑉 ⋆
𝑡𝑖
‖F ≤ 𝜆

−1/2
min ‖𝑉 ⋆

𝑡𝑖
‖Σ𝑡𝑖

≤ 𝐿𝜆
−1/2
min by our Lipschitz assumption. Now

for the second term. Introduce the random trajectory (𝑋*
𝑡 ) sampled from the true

curve (𝜇*
𝑡 ) with the Lagrangian coupling, and couple the process (𝑋𝑡) with (𝑋*

𝑡 ) by

setting 𝑋𝑡𝑖−1
= 𝑋*

𝑡𝑖−1
. Thus,

‖𝑉 ⋆
𝑡𝑖
(𝐼𝑑 + 𝛿𝑖𝑉

⋆
𝑡𝑖−1

)𝑋𝑡𝑖−1
− 𝑉 ⋆

𝑡𝑖−1
𝑋𝑡𝑖−1

‖𝐿2(P)

≤ ‖𝑉 ⋆
𝑡𝑖
𝑋*
𝑡𝑖
− 𝑉 ⋆

𝑡𝑖−1
𝑋*
𝑡𝑖−1

‖𝐿2(P) + ‖𝑉 ⋆
𝑡𝑖
{(𝐼𝑑 + 𝛿𝑖𝑉

⋆
𝑡𝑖−1

)𝑋*
𝑡𝑖−1

−𝑋*
𝑡𝑖
}‖𝐿2(P)

66



It is easy to control

‖𝑉 ⋆
𝑡𝑖
𝑋*
𝑡𝑖
− 𝑉 ⋆

𝑡𝑖−1
𝑋*
𝑡𝑖−1

‖𝐿2(P) =
⃦⃦⃦∫︁ 𝑡𝑖

𝑡𝑖−1

�̈�*
𝑡 𝑑𝑡

⃦⃦⃦
𝐿2(P)

≤ 𝑅𝛿𝑖

Lastly,

‖𝑉 ⋆
𝑡𝑖
{(𝐼𝑑 + 𝛿𝑖𝑉

⋆
𝑡𝑖−1

)𝑋*
𝑡𝑖−1

−𝑋*
𝑡𝑖
}‖𝐿2(P) ≤ ‖𝑉 ⋆

𝑡𝑖
‖F ‖𝑋*

𝑡𝑖
−𝑋*

𝑡𝑖−1
− 𝛿𝑖𝑉

⋆
𝑡𝑖−1

𝑋*
𝑡𝑖−1

‖𝐿2(P)

≤ 𝐿√
𝜆min

⃦⃦⃦∫︁ 𝑡𝑖

𝑡𝑖−1

∫︁ 𝑡

𝑡𝑖−1

�̈�*
𝑠 𝑑𝑠 𝑑𝑡

⃦⃦⃦
𝐿2(P)

≤ 𝐿√
𝜆min

· 𝑅𝛿
2
𝑖

2
≤ 𝑅𝛿𝑖

4

Putting it all together, we obtain

‖Δ𝑖‖𝐿2(P) ≤
25

4
𝑅𝛿

To match notation with Appendix B, we set

𝑀𝑖 := �̈�𝑡𝑖−1
, 𝑖 ∈ [𝑁 + 1]

Lemma 2. Assume 𝛿 ≤
√
𝜆min/(2𝐿). It holds that

‖𝑀𝑖‖𝐿2(P) ≤
75(1 + 𝛼)2

4𝛼3
𝑅

Proof. As described in Appendix B, we know that 𝑀 = 6T−1Δ, where the entries of
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T−1 are bounded in Lemma 10. Thus,

‖𝑀𝑖‖𝐿2(P) = 6
⃦⃦⃦𝑁−1∑︁
𝑗=1

(T−1)𝑖,𝑗Δ𝑗

⃦⃦⃦
𝐿2(P)

≤ 6
𝑁−1∑︁
𝑗=1

|(T−1)𝑖,𝑗| ‖Δ𝑗‖𝐿2(P)

≤ 6
𝑁−1∑︁
𝑗=1

1

4𝛼2𝛿

1

(1 + 𝛼)|𝑖−𝑗|−1

25

4
𝑅𝛿

≤ 75𝑅

4𝛼2

∞∑︁
𝑘=0

1

(1 + 𝛼)𝑘−1
=

75(1 + 𝛼)2

4𝛼3
𝑅

where we use Proposition 15.

Finally, we are ready to state our control on the velocity of the trajectory (𝑋𝑡).

Proposition 16. Assume 𝛿 ≤
√
𝜆min/(2𝐿). Then,

‖�̇�𝑡𝑖−1
− �̇�*

𝑡𝑖−1
‖𝐿2(P) ≤

16𝛼3 + 75(1 + 𝛼)2

8𝛼3
𝑅𝛿

Proof. It holds that

�̇�𝑡𝑖−1
=
𝑋𝑡𝑖 −𝑋𝑡𝑖−1

𝛿𝑖
− 𝑀𝑖+1 + 2𝑀𝑖

6
𝛿𝑖

(see Appendix B). Therefore,

⃦⃦
�̇�𝑡𝑖−1

−
𝑋𝑡𝑖 −𝑋𝑡𝑖−1

𝛿𝑖

⃦⃦
𝐿2(P) ≤

‖𝑀𝑖+1‖𝐿2(P) + 2‖𝑀𝑖‖𝐿2(P)

6
𝛿 ≤ 75(1 + 𝛼)2

8𝛼3
𝑅𝛿

by Lemma 2. Next, we recall that 𝑋𝑡𝑖 = 𝑇𝑖𝑋𝑡𝑖−1
, and that (𝑋𝑡) and (𝑋*

𝑡 ) are coupled

so that 𝑋𝑡𝑖−1
= 𝑋*

𝑡𝑖−1
. Thus,

‖�̇�𝑡𝑖−1
− �̇�*

𝑡𝑖−1
‖𝐿2(P) ≤

⃦⃦
�̇�𝑡𝑖−1

−
𝑇𝑖𝑋𝑡𝑖−1

−𝑋𝑡𝑖−1

𝛿𝑖

⃦⃦
𝐿2(P) +

⃦⃦
�̇�*
𝑡𝑖−1

−
𝑇𝑖𝑋

*
𝑡𝑖−1

−𝑋*
𝑡𝑖−1

𝛿𝑖

⃦⃦
𝐿2(P)

≤ 75(1 + 𝛼)2

8𝛼3
𝑅𝛿 + 2𝑅𝛿
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where we invoke Corollary 1 again.

Curvature of the Transport Spline

Next, we must bound the curvature of (𝑋𝑡), but this is an easy task given what we

have established so far.

Proposition 17. Assume 𝛿 ≤
√
𝜆min/(2𝐿). Then,

sup
𝑡∈[0,1]

‖�̈�𝑡‖𝐿2(Pr) ≤
75(1 + 𝛼)2

4𝛼3
𝑅.

Proof. Indeed, 𝑡 ↦→ �̈�𝑡 is a piecewise linear function (see Appendix B), so it is maxi-

mized at the knots. For 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖], it follows that

‖�̈�𝑡‖𝐿2(Pr) =
⃦⃦𝑡𝑖 − 𝑡

𝛿𝑖
�̈�𝑡𝑖−1

+
𝑡− 𝑡𝑖−1

𝛿𝑖
�̈�𝑡𝑖

⃦⃦
𝐿2(Pr)

≤ 𝑡𝑖 − 𝑡

𝛿𝑖
‖�̈�𝑡𝑖−1

‖𝐿2(Pr) +
𝑡− 𝑡𝑖−1

𝛿𝑖
‖�̈�𝑡𝑖‖𝐿2(Pr)

≤ ‖�̈�𝑡𝑖−1
‖𝐿2(Pr) ∨ ‖�̈�𝑡𝑖‖𝐿2(Pr)

= ‖𝑀𝑖‖𝐿2(Pr) ∨ ‖𝑀𝑖+1‖𝐿2(Pr)

≤ 75(1 + 𝛼)2

4𝛼3
𝑅,

by Lemma 2.

3.5.3 Proof of the Main Theorem

Proof of Theorem 11. Let 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖], and let the processes (𝑋𝑡) and (𝑋*
𝑡 ) be coupled

with 𝑋𝑡𝑖−1
= 𝑋*

𝑡𝑖−1
. Then,

‖𝑋𝑡 −𝑋*
𝑡 ‖𝐿2(Pr) ≤ 𝛿𝑖 ‖�̇�𝑡𝑖−1

− �̇�*
𝑡𝑖−1

‖𝐿2(Pr) +
⃦⃦⃦∫︁ 𝑡𝑖

𝑡𝑖−1

∫︁ 𝑡

𝑡𝑖−1

(�̈�𝑠 − �̈�*
𝑠 ) 𝑑𝑠 𝑑𝑡

⃦⃦⃦
𝐿2(Pr)

≤ 16𝛼3 + 75(1 + 𝛼)2

8𝛼3
𝑅𝛿2 +

𝛿2

2
sup
𝑡∈[0,1]

(‖�̈�𝑡‖𝐿2(Pr) + ‖�̈�*
𝑡 ‖𝐿2(Pr))

≤ 10𝛼3 + 75(1 + 𝛼)2

4𝛼3
𝑅𝛿2 ≤ 115

2𝛼3
𝑅𝛿2,
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where we have used Proposition 16 and Proposition 17.

Piecewise Geodesic Interpolation

In this section, we study the approximation error of piecewise geodesic interpolation.

Namely, we define a stochastic process, still denoted (𝑋𝑡), as follows.

1. Draw 𝑋𝑡0 ∼ 𝜇𝑡0 .

2. For 𝑖 = 1, . . . , 𝑁 , set 𝑋𝑡𝑖 := 𝑇𝑖(𝑋𝑡𝑖−1
).

3. We join the points 𝑋𝑡0 , 𝑋𝑡1 , . . . , 𝑋𝑡𝑁 via straight lines. Namely, for 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖]

we set

𝑋𝑡 =
𝑡𝑖 − 𝑡

𝑡𝑖 − 𝑡𝑖−1

𝑋𝑡𝑖−1
+
𝑡− 𝑡𝑖−1

𝑡𝑖 − 𝑡𝑖−1

𝑋𝑡𝑖 .

Let 𝜇𝑡 denote the law of 𝑋𝑡.

Theorem 13. Let the notation and assumptions of Theorem 11 hold (except for the

definition of (𝜇𝑡)). Then,

sup
𝑡∈[0,1]

𝑊2(𝜇𝑡, 𝜇
*
𝑡 ) ≤

5

2
𝑅𝛿2.

Proof. As in Appendix 3.5.3, we have

‖𝑋𝑡 −𝑋*
𝑡 ‖𝐿2(Pr) ≤ 𝛿𝑖 ‖�̇�𝑡𝑖−1

− �̇�*
𝑡+𝑖−1

‖𝐿2(Pr) +
⃦⃦⃦∫︁ 𝑡𝑖

𝑡𝑖−1

∫︁ 𝑡

𝑡𝑖−1

�̈�*
𝑠 𝑑𝑠 𝑑𝑡

⃦⃦⃦
𝐿2(Pr)

≤ 2𝑅𝛿2 +
1

2
𝑅𝛿2.

Here, we use several facts: (1) �̇�𝑡+𝑖−1
, the derivative of (𝑋𝑡)𝑡 at 𝑡𝑖−1 from the right,

equals

(𝑇𝑖 − 𝐼𝑑)𝑋𝑡𝑖−1
= (𝑇𝑖 − 𝐼𝑑)𝑋

*
𝑡𝑖−1

,

and so we can apply Corollary 1; (2) the curve (𝑋𝑡), consisting of piecewise straight

lines, has no acceleration. This finishes the proof.
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Formally, Theorem 13 is a slightly better approximation guarantee than Theo-

rem 11. Theorem 13 can also be strengthened asymptotically to

lim sup
𝛿↘0

1

𝛿2
sup
𝑡∈[0,1]

𝑊2(𝜇𝛿,𝑡, 𝜇
*
𝑡 ) ≤ 𝑅

as above. Of course, we do not advocate for using piecewise geodesic interpolation

because it is unsuitable for trajectory estimation (see Figure 3-1).

Some remarks:

1. The definition of 𝐿 in the theorem agrees with the Lipschitz constant of (𝜇*
𝑡 ) in

the metric sense, as can be seen from [3, Theorem 8.3.1].

2. The quantity 𝜆−1
min can be interpreted as a bound on the curvature of Bures-

Wasserstein space at the interpolation points; see [43] for details.

3. The 𝑂(𝛿2) rate of convergence is optimal given our assumptions: a bound 𝑅 on

the second covariant derivative of the curve (𝜇*
𝑡 ). Indeed, this matches classical

approximation results for cubic splines on Euclidean space [12]. We remark that

under these assumptions, piecewise geodesic interpolation, where trajectories

are piecewise linear and not differentiable, also achieves the 𝑂(𝛿2) rate, and we

give the proof of this in 3.5.3. Of course, despite achieving the optimal rate

in this class of curves, such interpolation is unsuitable for many applications

(especially ones in which interpretation and visualization are a priority; see

Figure 3-1).

4. We did not attempt to optimize the constant factor in Theorem 11 and it

appears that it can, in fact, be improved.

5. Cubic splines achieve higher-order approximation rates in the Euclidean set-

ting, albeit over a restricted class of curves. For approximation of functions

𝑓 ∈ 𝒞𝑘, 𝑘 ≤ 4, cubic splines enjoy a 𝑂(𝛿𝑘) approximation rate with explicit

dependence on ‖𝑓 (𝑘)‖sup. It is then natural to ask whether it is possible to

obtain rates better than 𝑂(𝛿2) through a variant of transport splines. This can
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indeed be done by using more accurate approximations to the velocity vector

fields (𝑣𝑡); this study will be reported in a forthcoming work.

3.6 Thin-Plate Splines

To demonstrate the flexibility of our method, we use transport splines to define a

class of smooth interpolating surfaces on Wasserstein space. We first recall classical

thin-plate splines. For a more complete account see [60].

Thin-plate splines are the surface analog of cubic splines, and are useful in spatial

problems where measurements are taken on a plane. Here, the times 𝑡𝑖 are replaced

with points 𝑥𝑖 ∈ R2 at which we observe real values 𝑧𝑖. To account for this ad-

ditional dimension the energy functional
∫︀ 1

0
‖𝛾𝑡‖2 𝑑𝑡 that appears in the variational

definition (3.1) of cubic splines is replaced by its bivariate counterpart. Thin-plate

splines are defined as parametrized surfaces 𝑓 that solve

inf
𝑓

∫︁
R2

‖∇2𝑓‖2F s.t.

⎧⎪⎨⎪⎩𝑓 : R2 → R

𝑓(𝑥𝑖) = 𝑧𝑖, 𝑖 = 0, . . . , 𝑁

(3.11)

where ∇2𝑓 is the Hessian of 𝑓 , ‖·‖F denotes the Frobenius norm, and the interpolation

data (𝑥𝑖, 𝑧𝑖) ∈ R2 × R is given. (Just as before, 𝑓 is constrained to be 𝒞2.) It can be

shown that (3.11) has a unique solution given by

𝑓(𝑥) = 𝑐0 + 𝑐1𝑥
(1) + 𝑐2𝑥

(2) +
𝑁∑︁
𝑖=0

𝛼𝑖𝜙(‖𝑥− 𝑥𝑖‖)

where we use 𝑥(𝑖) to denote coordinates, and

𝜙(𝑟) = 𝑟2 log 𝑟.

This leads to a closed form for the coefficients as follows. Let 𝐾 = (𝜙(‖𝑥𝑖 − 𝑥𝑗‖))𝑁𝑖,𝑗=0

be the “kernel matrix” of the data, and define 𝑃 ∈ R(𝑁+1)×3 to have 𝑖th row (1, 𝑥
(1)
𝑖 , 𝑥

(2)
𝑖 ).9

9The function 𝜙 plays the role of a kernel for the reproducing kernel Hilbert space of twice-
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Then let 𝐿 ∈ R(𝑁+4)×(𝑁+4) be

𝐿 =

⎡⎣𝐾 𝑃

𝑃⊤ 03×3

⎤⎦
Letting 𝑏 = (𝑧0, . . . , 𝑧𝑁 , 0, 0, 0) be the padded data and 𝑤 = (𝛼0, . . . , 𝛼𝑁 , 𝑐0, 𝑐1, 𝑐2) the

coefficients from (3.6), these solve 𝐿𝑤 = 𝑏. This can be inverted explicitly using the

Schur complement, and in particular the resulting coefficients are linear in the data

(𝑧𝑖)
𝑁
𝑖=0.

We now consider the measure-valued analog of the interpolation problem, namely,

at each point 𝑥𝑖 we observe a measure 𝜇*
𝑥𝑖

and our goal is to find a smooth interpolating

surface 𝑥 ↦→ 𝜇𝑥 of measures.

As in the definition of E-splines, 3.11 can be generalized to Wasserstein space, but

it is intractable for the same reasons. In contrast, applying Algorithm 1 is straight-

forward. Step 2 simply requires the fitting of a Euclidean thin-plate spline. For Step

1 we need only produce couplings between the observed measures 𝜇*
𝑥𝑖

.

One possiblity is to mimic the sequential coupling technique described in Sec-

tion 3.4, namely we fix the ordering 𝑥0, 𝑥1, . . . , 𝑥𝑁 and use the system of Monge

maps 𝑇𝑖−1,𝑖 taking 𝜇*
𝑥𝑖−1

to 𝜇*
𝑥𝑖

. As before, we can draw 𝑋𝑥0 ∼ 𝜇*
𝑥0

and then succes-

sively compute the random variables 𝑋𝑥𝑖 = 𝑇𝑖−1,𝑖(𝑋𝑥𝑖−1
) ∼ 𝜇*

𝑥𝑖
for all 𝑖. Sequential

coupling is unsuitable here, however, because it distorts the geometry of the plane.

To circumvent this issue, we next turn towards the special case when the measures

𝜇𝑥⋆𝑖 are defined over R, which is already interesting enough to capture a breadth of

applications.

As leveraged extensively in Section 3.4.1, 𝒫2(R) is isometric to a convex subset

of a Hilbert space, which simplifies analysis. Indeed, the special structure of 𝒫2(R)

has already been used fruitfully in many prior applications of optimal transport, such

as curve registration [47], geodesic principal components [9], estimation of barycen-

ters [10], and uncoupled isotonic regression [52].

For our purposes, we will use the following key property of 𝒫2(R): there is

differentiable, finite-curvature surfaces, but it is not a kernel because it is not positive definite.
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a unique coupling of all of the measures 𝜇*
𝑥0
, 𝜇*

𝑥1
, . . . , 𝜇*

𝑥𝑁
which is simultaneously

optimal for every pair of measures. In other words, there exist random variables

𝑋𝑥0 , 𝑋𝑥1 , . . . , 𝑋𝑥𝑁 such that for any 𝑖, 𝑗 = 0, 1, . . . , 𝑁 , we have 𝑋𝑥𝑗 = 𝑇𝑖,𝑗(𝑋𝑥𝑖),

where 𝑇𝑖,𝑗 is the Monge map from 𝜇*
𝑥𝑖

to 𝜇*
𝑥𝑗

. Sampling from this coupling can be

done using either of the of the following equivalent procedures:

1. Draw 𝑋𝑥0 ∼ 𝜇*
𝑥0

, and for each 𝑖 ∈ [𝑁 ] let 𝑋𝑥𝑖 = 𝑇0,𝑖(𝑋𝑥0) (the choice of 𝑥0 does

not affect the coupling).

2. Let 𝑈 be uniform random on [0, 1], and for 𝑖 = 0, 1, . . . , 𝑁 set 𝑋𝑥𝑖 = 𝐹−1
𝜇*𝑥𝑖

(𝑈),

where 𝐹𝜇 denotes the CDF of 𝜇.

Indeed, the Monge map 𝑇𝑖,𝑗 from 𝜇*
𝑥𝑖

to 𝜇*
𝑥𝑗

is characterized as the (𝜇*
𝑥𝑖

-a.e.) unique

mapping which both pushes 𝜇*
𝑥𝑖

forward to 𝜇*
𝑥𝑗

and is the gradient of a convex function

(see Theorem 3). In one dimension, the latter condition simply means that 𝑇𝑖,𝑗 is an

increasing function. It is easily checked that 𝐹−1
𝜇*𝑥𝑗

∘𝐹𝜇*𝑥𝑖 satisfies these properties, and

thus10

𝑇𝑖,𝑗 = 𝐹−1
𝜇*𝑥𝑗

∘ 𝐹𝜇*𝑥𝑖 .

Now, a composition of increasing maps is increasing, which implies that 𝑇𝑗,𝑘 ∘ 𝑇𝑖,𝑗
must be the Monge map 𝑇𝑖,𝑘. This key fact directly implies the existence of the

simultaneously optimal coupling of the measures. In higher dimensions, this breaks

down because the composition of Monge maps is no longer necessarily a Monge map

(that is, the composition of gradients of functions is not necessarily the gradient of a

function).

In Figure 3-5 we display an application of thin-plate transport splines to tem-

perature data. In the left-hand column we plot the quantiles of the interpolated

measures. This is especially convenient when all of the measures are Gaussian, where

we have a simple expression. Let Φ be the standard Gaussian CDF, so the quantile

10The inverse CDFs described here exist because of our assumption of absolute continuity of the
measures.
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of 𝒩 (𝑚,𝜎2) is 𝑚+ 𝜎Φ−1(𝛼). Now, suppose the measures 𝜇*
𝑥𝑖

, 𝑖 = 0, 1, . . . , 𝑁 , are all

one-dimensional Gaussians, and write 𝜇*
𝑥𝑖
= 𝒩 (𝑚𝑥𝑖 , 𝜎

2
𝑥𝑖
). We have

Proposition 18. Let (𝑚𝑥)𝑥∈R2 be the Euclidean thin-plate spline interpolating the

means 𝑚𝑥𝑖, and (𝑠𝑥)𝑥|𝑖𝑛R2 the Euclidean thin-plate spline interpolating the standard

deviations 𝜎𝑥𝑖. Then the quantile function of the thin-plate transport spline interpo-

lating (𝜇𝑥𝑖) is 𝛼 ↦→ 𝑚𝑥 + |𝑠𝑥|Φ−1(𝛼).

Proof. It is standard that there is a linear mapping 𝑆𝑥 such that the Euclidean thin-

plate spline interpolating through (𝑥𝑖, 𝑧𝑖)
𝑁
𝑖=0 is given by 𝑆𝑥(𝑧0, 𝑧1, . . . , 𝑧𝑁).

It follows from (3.7) that the Monge map from 𝜇*
𝑥0

to 𝜇*
𝑥𝑖

is the increasing map

𝑧 ↦→ (𝜎𝑥𝑖/𝜎𝑥0)(𝑧 −𝑚𝑥0) +𝑚𝑥𝑖 . Thus,

𝑋𝑥 = 𝑆𝑥(𝑋𝑥0 , 𝑋𝑥1 , . . . , 𝑋𝑥𝑁 )

= 𝑆𝑥
(︀
𝑋𝑥0 ,

𝜎𝑥1
𝜎𝑥0

(𝑋𝑥0 −𝑚𝑥0) +𝑚𝑥1 , . . . ,
𝜎𝑥𝑁
𝜎𝑥0

(𝑋𝑥0 −𝑚𝑥0) +𝑚𝑥𝑁

)︀
= 𝑆𝑥(𝑚𝑥0 ,𝑚𝑥1 , . . . ,𝑚𝑥𝑁 ) + 𝑆𝑥

(︀
𝑋𝑥0 −𝑚𝑥0 ,

𝜎𝑥1
𝜎𝑥0

(𝑋𝑥0 −𝑚𝑥0), . . . ,
𝜎𝑥𝑁
𝜎𝑥0

(𝑋𝑥0 −𝑚𝑥0)
)︀

= 𝑚𝑥 +
𝑋𝑥0 −𝑚𝑥0

𝜎𝑥0
𝑆𝑥(𝜎𝑥0 , 𝜎𝑥1 , . . . , 𝜎𝑥𝑁 )

= 𝑚𝑥 + 𝑠𝑥
𝑋𝑥0 −𝑚𝑥0

𝜎𝑥0
∼ 𝒩 (𝑚𝑥, 𝑠

2
𝑥) = 𝜇𝑥.

This is the desired result.

We conclude this section with a few remarks about the case of higher-dimensional

measures, in which case there is no simultaneous optimal coupling of the measures.

If we wish to use Monge map couplings as in Algorithm 1, one possibility is to first

construct a tree graph whose vertices are the data 𝜇*
𝑥𝑖

, and use Monge map couplings

along the edges of the tree. Here, the tree should be chosen to adequately capture

the two-dimensional geometry of the spatial covariates. This consideration becomes

especially relevant when the spatial covariates are sampled from a manifold, and it

is of interest to combine our methodology with existing results on approximation of

manifolds via graphs [57].
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Figure 3-5: Thin-plate splines for California temperature data (in ∘F); in the left column are
the quantiles, while in the right are the means of the interpolated measures for an increasing
sample of observations. See Appendix A.2.
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Chapter 4

Schrodinger’s Splines

This chapter is concerned with an inertial version of the Schrodinger problem, and

its relationship with the 𝑃 -spline problem (3.3) considered in Chapter 2. First, we

describe the Schrodinger problem and its solution, and then define two inertial prob-

lem formulations: one with several marginals corresponding to natural cubic spline

interpolation, and one with two marginals corresponding to an endpoint-constrained

spline problem. Then we show that as the noise level tends to zero, the former con-

verges in a strong sense to the 𝑃 -spline problem (3.3). We then focus on the second,

two-marginal problem, proving analogous convergence results as the noise level 𝜀→ 0,

and we furthermore provide a clean characterization of its solution for fixed 𝜀 and

show that it is equivalent to an entropically regularized OT problem. Our convergence

results are of a similar flavor to those in [38, 39], and we use many of their techniques.

While in preparation we became aware of the paper [16], which formulates a similar

multimarginal problem, though they do not provide results about it and focus more

on an optimal control formulation.

4.1 Introduction and Problem Formulations

The Schrodinger bridge problem, originally formulated in [56, 55], is an old problem

which has received new interest in part due to its connection with optimal transport.

It asks: if a collection of particles was observed to have density 𝜇0 at time 0 and 𝜇1
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at time 1, and assuming that particles evolve under Brownian motion, what is the

most likely trajectory that the particles took? More precisely, we are asked to solve

min KL(𝑃 ‖ 𝑄) s.t. 𝑃 ∈ 𝒫(Ω), (𝑋𝑖)#𝑃 = 𝜇𝑖, 𝑖 = 0, 1 (4.1)

Here Ω is the set of continuous paths and the reference process 𝑄 is the Brownian

motion started at 𝜇0

𝑑𝑄(𝜔) =

∫︁
𝑑𝐵𝑥(𝜔) 𝑑𝜇0(𝑥)

and of course 𝐵𝑥 is Brownian motion started at 𝑥. With the following classical

proposition, the Schrodinger problem can be completely solved.

Proposition 19. Let 𝜃 : 𝑋 → 𝑌 be measurable and let 𝑃,𝑄 ∈ 𝒫(𝑋). Then we have

the chain rule

KL(𝑃 ‖ 𝑄) = KL(𝜃#𝑃 ‖ 𝜃#𝑄) +
∫︁

KL(𝑃 𝑦 ‖ 𝑄𝑦) 𝑑(𝜃#𝑃 )(𝑦) (4.2)

where 𝑃 𝑦(·) = 𝑃 (· | 𝜃 = 𝑦), and likewise for 𝑄.

Let 𝜃 : 𝜔 ↦→ (𝜔0, 𝜔1), let 𝑃01 = 𝜃#𝑃 , and define 𝑃 𝑥𝑦 = 𝑃 (· | 𝜃 = (𝑥, 𝑦)) (and

likewise for 𝑄). Then the objective in (4.1) becomes

KL(𝑃01 ‖ 𝑄01) +

∫︁
KL(𝑃 𝑥𝑦 ‖ 𝑄𝑥𝑦) 𝑑𝑃01(𝑥, 𝑦)

It is clear that these two terms are independent, and setting 𝑃 𝑥𝑦 = 𝑄𝑥𝑦 the second

term vanishes; then 𝑃 𝑥𝑦 is simply the Brownian bridge from 𝑥 to 𝑦. Now, note

𝑑𝑄01(𝑥, 𝑦) = 𝑐𝑑𝑒
− |𝑥−𝑦|2

2 𝑑𝜇0(𝑥)

where 𝑐𝑑 = (2𝜋)−
𝑑
2 , so

KL(𝑃01 ‖ 𝑄01) = −𝐻(𝑃01) +
1

2

∫︁
|𝑥− 𝑦|2 𝑑𝑃01(𝑥, 𝑦) + 𝑐

with 𝑐 = 𝐻(𝜇0)− log 𝑐𝑑 a constant independent of 𝑃01, and 𝐻 as usual is the entropy
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functional 𝐻[𝜇] = −
∫︀
𝜇 𝑑𝜇. The entire Schrodinger problem then reduces to

min
1

2

∫︁
|𝑥− 𝑦|2 𝑑𝑃01(𝑥, 𝑦)−𝐻(𝑃01) s.t. (𝑃01)𝑖 = 𝜇𝑖 (4.3)

This is precisely the entropically regularized optimal transport problem (see for exam-

ple [48]) with regularization parameter 𝜆 = 1. In summary, to solve the Schrodinger

problem we first solve the standard OT problem with entropic regularization to obtain

the marginal law 𝑃01, then interpolate using the Brownian bridge 𝐵𝑥𝑦 between each

pair (𝑥, 𝑦). To sample a trajectory from 𝑃 , we first sample endpoints (𝑥, 𝑦) ∼ 𝑃01,

then sample a Brownian bridge from 𝑥 to 𝑦.

By considering 𝐵𝑥,𝜀 = 𝑥+
√
𝜀𝐵 and instead minimizing

min 𝜀KL(𝑃 ‖ 𝑄𝜀) s.t. 𝑃 ∈ 𝒫(Ω), 𝑃𝑖 = 𝜇𝑖 (4.4)

with 𝑄𝜀 =
∫︀
𝐵𝑥,𝜀 𝑑𝜇0(𝑥), the same analysis reduces the problem to

min
1

2

∫︁
|𝑥− 𝑦|2 𝑑𝑃01(𝑥, 𝑦)− 𝜀𝐻(𝑃01) (4.5)

One would hope from this that as 𝜀 → 0 we have (4.5) → 𝑊 2
2 (𝜇0, 𝜇1), and this is

proved in [38]. Specifically, they show

Theorem 14 ([38, Theorem 3.3]). Let 𝜇0, 𝜇1 ∈ 𝒫(R𝑑). Then as 𝜀 → 0, we have

(4.5) → 𝑊 2
2 (𝜇0, 𝜇1). Furthermore, for small 𝜀 (4.5) admits a unique solution 𝑃 𝜀

01,

and any limit point of the sequence (𝑃 𝜀
01) is an optimal coupling in min 1

2

∫︀
|𝑥−𝑦|2 𝑑𝜋.

In particular, if the optimal 𝑊2 coupling �̂� is unique, as it is for 𝜇0 and 𝜇1 absolutely

continuous, then 𝑃 𝜀
01 → �̂� (in the 𝑊2 topology).

They also prove the stronger statement that (4.4) converges to

min
𝑃∈𝒫(Ω)

∫︁
𝐶 𝑑𝑃 s.t. (𝑋𝑖)#𝑃 = 𝜇𝑖 (4.6)

where 𝐶(𝜔) = 1
2

∫︀
|�̇�𝑡|2 𝑑𝑡 is the (half) squared-length functional on absolutely contin-

uous curves, taking the value infinity otherwise, and 𝑋𝑡 is the evaluation functional
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on paths; see [38, Theorem 3.6]. In this case too the arg-optima converge.

We wish to emphasize naturality of (4.5) and (4.4). Entropically regularized op-

timal transport was rediscovered in a completely different setting than here, focused

on computational speed [22], and subsequently exploited broadly in computational

transport (see again [48]). The results above say exactly that the limit as the regu-

larization parameter tends to zero is the Wasserstein distance. The problem (4.4) in

path space is nothing but a dynamical formulation of entropic OT, a la Benamou-

Brenier. Thus the Schrodinger problem completes a set of formulations of optimal

transport, summarized in the table below.

Dynamical Static

𝜖 > 0 Schrödinger bridge entropically regularized OT

𝜖 = 0 dynamical formulation of OT OT

(4.7)

4.1.1 The Interpolation Problem

Now we define our inertial analogs of the Schrodinger problem, starting with the

multimarginal formulation. Our starting point is the integrated Brownian motion

with initial position and velocity:

𝑄𝜀,x0
𝑡 = 𝑥0 + 𝑡𝑣0 +

√
𝜀

∫︁ 𝑡

0

𝐵𝑠 𝑑𝑠 (4.8)

where we write the shorthand x0 = (𝑥0, 𝑣0). Whereas displacements for Brownian

motion are white noise, here the particle has momentum which changes according

to white noise, and this in turn affects position through integration. Fix an initial

distribution 𝜇 ∈ 𝒫(R𝑑 × R𝑑) on initial positions and velocities — for convenience of

results we choose it to be standard normal, though for the same results it is only

required that 𝜇 ≪ 𝑑𝑥 and 𝑑𝑥 ≪ 𝜇, where 𝑑𝑥 is the Lebesgue measure. We then

define our reference process as

𝑄𝜀 =

∫︁
𝑄𝜀,x0 𝑑𝜇(x0)
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We pause briefly to discuss the initial distribution 𝜇. While for the Schrodinger

problem (4.4) we have complete information about the starting distribution (𝑋0)#𝑄
𝜀,

this is not the case in our setting. We can think of splines as formulated in phase

space, with initial position and velocity, and only the initial position distribution

𝜇0 is known, not the joint initial position-velocity distribution. Indeed, in light of

Proposition 4 in Chapter 3, 𝑣0 will almost certainly not be a deterministic function

of 𝑥0, and it cannot be independent either in general, so we cannot assume anything

about it a priori.

Let 𝜇𝑖 ∈ 𝒫(R𝑑) be fixed measures and 𝑡𝑖 ∈ [0, 1] fixed times. The multimarginal

Schrodinger spline problem is

min 𝜀KL(𝑃 ‖ 𝑄𝜀) s.t. 𝑃 ∈ 𝒫(Ω), (𝑋𝑡𝑖)#𝑃 = 𝜇𝑖 (4.9)

Now, let

𝐶(𝜔) =
1

2

∫︁
|�̈�𝑡|2 𝑑𝑡

be the curvature cost functional on Ω, defined to be ∞ if 𝜔 does not have absolutely

continuous first derivative. Recall that the P-spline problem (3.3) is (up to a factor

of 1
2
)

min
𝑃∈𝒫(Ω)

∫︁
𝐶 𝑑𝑃 s.t. (𝑋𝑡𝑖)#𝑃 = 𝜇𝑖 (4.10)

We will show a result analogous to Theorem 14 for this problem, that is, that this is

the limit of (4.9) as 𝜀→ 0.

4.1.2 The Endpoint Problem

Referring to the table (4.7), in the case of splines the lower-left and lower-right entries

correspond to the formulations (3.3) and (3.4) of 𝑃 -splines. The top-right problem

should then be the entropically regularized version of (3.4)

min

∫︁
𝑐 𝑑𝜋 − 𝜀𝐻(𝜋) s.t. 𝜋𝑥𝑖 = 𝜇𝑖 (4.11)
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where 𝜋𝑥𝑖 is the 𝑖-th marginal. It is natural to suggest that (4.9) become the top-left

entry; however, (4.9) is not equivalent to (4.11) (among other things, the arbitrariness

of the initial distribution of positions and velocities prevents this). One can work

backwards and formulate a Gaussian process which when taken to be the reference

process for a Schrodinger problem becomes equivalent to (4.11), but it is difficult

to characterize this process explicitly. For this reason we formulate another inertial

Schrodinger problem that admits a complete solution.

We first revisit the Euclidean spline problem. Recall that the cost 𝑐 in (3.4) and

(4.11) is the cost of the full spline problem (3.1), as a function of the data (𝑥𝑖),

and it is quadratic (indeed it is positive semidefinite). The matrix representing it is

complicated, but by restricting the problem the cost can be greatly simplified. Fixing

now velocities 𝑣𝑖 as well as positions 𝑥𝑖, define the endpoint cubic spline problem by

min

∫︁ 1

0

|�̈�𝑡|2 𝑑𝑡 s.t. 𝑥𝑡𝑖 = 𝑥𝑖, �̇�𝑡𝑖 = 𝑣𝑖 (4.12)

This decouples across intervals [𝑡𝑖, 𝑡𝑖+1] into problems of the form

min

∫︁ 1

0

|�̈�𝑡|2 𝑑𝑡 s.t. 𝑥0 = 𝑥0, 𝑥1 = 𝑥1, �̇�0 = 𝑣0, �̇�1 = 𝑣1 (4.13)

Integration by parts yields that the optimal curve 𝑥𝑡 is a cubic polynomial — indeed,

the only cubic that satisfies the boundary conditions. Furthermore, as a function of

(𝑥𝑖, 𝑣𝑖), the objective value of (4.13) is quite simply

𝑐(𝑥0, 𝑥1, 𝑣0, 𝑣1) = 12|𝑥1 − 𝑥0 − 𝑣0|2 − 12⟨𝑥1 − 𝑥0 − 𝑣0, 𝑣1 − 𝑣0⟩+ 4|𝑣1 − 𝑣0|2

This can be seen, for instance, in [15]. Now let 𝑣0, 𝑣1 be vector fields on R𝑑. We

generalize (4.13) to the endpoint 𝑃 -spline problem

min

∫︁
𝐶 𝑑𝑃 s.t. 𝑃 ∈ Π(𝜇0, 𝑣0, 𝜇1, 𝑣1) (4.14)
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where the constraint set Π(𝜇0, 𝑣0, 𝜇1, 𝑣1) is

{︁
𝑃 ∈ 𝒫(Ω)

⃒⃒
(𝑋0, �̇�0)#𝑃 = (Id, 𝑣0)#𝜇0, (𝑋1, �̇�1)#𝑃 = (Id, 𝑣1)#𝜇1

}︁
In a particle interpretation, we prescribe the initial and final distribution of particles,

as well as the initial and final velocities of each particle as a function of its position.

The motivation for this is considering 𝑣0, 𝑣1 to be tangent vectors in Wasserstein

space. Suppose a particle flow has trajectories (𝑥𝑡), and let 𝜇𝑡 be the induced curve

of measures as densities of the particles. Letting 𝑣𝑡 = �̇�𝑡, it must be that (𝜇𝑡, 𝑣𝑡)

solves the continuity equation. The endpoint constraints in Π(𝜇0, 𝑣0, 𝜇1, 𝑣1) then

exactly enforce that 𝑣0 and 𝑣1 are the endpoint derivatives of the curve 𝜇𝑡 from the

continuity equation.

Proposition 20. Fix deterministic vector fields 𝑣0, 𝑣1. The problem (4.14) is equiv-

alent to

min

∫︁
𝑐 𝑑𝜋 s.t. 𝜋 ∈ Π(𝜇0, 𝜇1) (4.15)

where Π(𝜇0, 𝜇1) is the ordinary set of couplings, and 𝑐 = 𝑐(𝑥0, 𝑣0(𝑥0), 𝑥1, 𝑣1(𝑥1)) is the

cost (4.1.2) considered as a function of the two variables 𝑥0, 𝑥1. If 𝜋* is optimal for

(4.16) then the measure 𝑃 * defined by giving mass 𝜋*(𝑥, 𝑦) to the cubic with endpoint

data (𝑥, 𝑣0(𝑥), 𝑦, 𝑣1(𝑦)) solves (4.14), and conversely every optimal 𝑃 * arises in this

way.

Proof. If 𝑃 * is optimal, then for each endpoint pair (𝑥, 𝑦) it must be that 𝑃 * places

zero mass on any curve with this data except the cubic with (𝑥, 𝑣0(𝑥), 𝑦, 𝑣1(𝑦)), since

otherwise the total curvature cost 𝐶 could be reduced by substituting this cubic. The

remainder follows from the definition of 𝑐.

The problem (4.15) can be entropically regularized as

min

∫︁
𝑐 𝑑𝜋 − 𝜀𝐻(𝜋) s.t. 𝜋 ∈ Π(𝜇0, 𝜇1) (4.16)

It turns out that this does correspond to a Schrodinger-type problem related to
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(4.14). To define it, we begin again with the integrated Brownian motion, but now

we know precisely the distribution of the initial state (𝑥0, 𝑣0). The reference process

is

𝑄𝜀 =

∫︁
𝑄𝜀,(𝑥0,𝑣0(𝑥0)) 𝑑𝜇0(𝑥0)

which leads us to the endpoint Schrodinger spline problem

min 𝜀KL(𝑃 ‖ 𝑄𝜀) s.t. 𝑃 ∈ Π(𝜇0, 𝑣0, 𝜇1, 𝑣1) (4.17)

With this we can complete a table like (4.7):

Dynamical Static

𝜖 > 0 (4.17) (4.16)

𝜖 = 0 (4.14) (4.15)

(4.18)

Our results can be thought of as establishing equality in the horizontal axis, and

convergence in the vertical axis (as 𝜀→ 0).

4.2 Technical Background

We require some technical background before presenting the proofs of our results,

which we collect here for convenience.

4.2.1 Γ-Convergence

As noted in [38], to prove convergence of optimization programs it does not suffice

to prove pointwise convergence of the objective functions; even uniform convergence

is not enough if convergence of the arg-optima is desired as well. A different notion

of convergence is required, and this is exactly Γ-convergence. This material is taken

from [45, 14]. We assume all spaces are complete and separable metric spaces.
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Definition 4. A function 𝑓 is lower semicontinuous (lsc) if for all 𝑥

𝑓(𝑥) = sup
𝑈∋𝑥

inf
𝑦∈𝑈

𝑓(𝑦)

Equivalently, for all sequences 𝑥𝑛 → 𝑥

𝑓(𝑥) ≤ lim inf 𝑓(𝑥𝑛)

Consider a sequence of optimization problems 𝑃𝑛 = min 𝑓𝑛(𝑥) and 𝑃 = min 𝑓(𝑥).

In order to take the limit 𝑃𝑛 → 𝑃 or arg𝑃𝑛 → arg𝑃 , the right form of convergence

is that 𝑓𝑛 Γ-converges to 𝑓 , which we write as 𝑓𝑛
Γ−→ 𝑓 .

Definition 5. We say 𝑓𝑘
Γ−→ 𝑓 if

𝑓(𝑥) = sup
𝑈∋𝑥

lim
𝑘→∞

inf
𝑦∈𝑈

𝑓𝑛(𝑦)

Equivalently, for all sequences 𝑥𝑛 → 𝑥

𝑓(𝑥) ≤ lim inf 𝑓𝑛(𝑥𝑛)

and there is a sequence 𝑥𝑛 → 𝑥 (called the recovery sequence) such that equality holds.

Definition 6. A function 𝑓 is coercive if for all 𝛼 the set {𝑓 ≤ 𝛼} is precompact;

if 𝑓 is lsc, this is equivalent to compactness.

A family of functions {𝑓𝑛} is equicoercive if for all 𝛼 there is a compact set 𝐾 such

that {𝑓𝑛 ≤ 𝛼} ⊂ 𝐾 for all 𝑛.

Theorem 15. If 𝑓 is lsc and coercive, inf 𝑓 is achieved.

Theorem 16. If {𝑓𝑛} is equicoercive and 𝑓𝑛
Γ−→ 𝑓 , then

1. 𝑓 is coercive

2. inf 𝑓𝑛(𝑥) → inf 𝑓(𝑥)
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3. Letting 𝑥*𝑛 = arg inf 𝑓𝑛, any subsequential limit point of (𝑥*𝑛) is a minimizer of

𝑓 .

Incidentally, the topology of Γ-convergence makes the set of all functions compact;

any sequence of functions has a subsequence that Γ-converges.

We will make use of the following theorems from Leonard.

Theorem 17 ([38, Theorem 7.1]). Suppose 𝑓𝑛
Γ−→ 𝑓 and {𝑓𝑛} is equicoercive, and let

𝜃 : 𝒳 → 𝒴 be a continuous function. Define

𝜓𝑛(𝑦) = inf
𝑥
𝑓𝑛(𝑥) s.t. 𝜃(𝑥) = 𝑦

and similarly for 𝜓 from 𝑓 . Then {𝜓𝑛} is equicoercive and 𝜓𝑛
Γ−→ 𝜓.

Theorem 18 ([38, Corollary 6.4]). Let 𝒴 be a normed space and 𝒳 its topological

dual. Let 𝑔𝑛, 𝑔 : 𝒴 → R be a sequence of functions satisfying

1. 𝑔𝑛 is convex

2. 𝑔𝑛 → 𝑔 pointwise

3. There is a constant 𝑐 such that |𝑔𝑛(𝑦)| ≤ 𝑐(1 + ‖𝑦‖)

Define 𝑓𝑛 = 𝑔*𝑛 and 𝑔 = 𝑔*. Then 𝑓𝑛
Γ−→ 𝑓 and there is a compact set 𝐾 such that

Dom(𝑓𝑛),Dom(𝑓) ⊂ 𝐾, both with respect to the weak topology induced by 𝒴 on 𝒳 .

4.2.2 Large Deviation Principles

The other key ingredient in our results is so-called large deviation principles for fam-

ilies of stochastic processes, most notably Brownian motion. This material appears

in [25].

The crux of the proof is the satisfaction of a so-called large deviation principle.

Definition 7. A family of measures {𝜇𝜀} and a function 𝐶 satisfies the large devi-

ation principle (LDP) if for all measurable 𝐸

− inf
𝜔∈𝐸∘

𝐶(𝜔) ≤ lim inf 𝜀 log 𝜇𝜀(𝐸) ≤ lim sup 𝜀 log 𝜇𝜀(𝐸) ≤ − inf
𝜔∈�̄�

𝐶(𝜔)
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where 𝐸∘ is the interior of 𝐸 and �̄� is the closure of 𝐸. It is required that 𝐶 is lsc,

and it is referred to as the rate function.

The most important such family {𝜇𝜀} is Brownian motion.

Theorem 19 (Schilder). Let 𝐵𝜀
𝑡 =

√
𝜀𝐵𝑡 be rescaled Brownian motion. Then {𝐵𝜀}

satisfies an LDP with rate function 𝐶(𝜔) = 1
2

∫︀
|�̇�𝑡|2 𝑑𝑡.

We will use a few other results about LDP families.

Proposition 21 (Contraction). Suppose {𝜇𝜀} satisfies an LDP with rate function 𝐶,

and let 𝜃 : 𝒳 → 𝒴 be continuous. Define 𝜈𝜀 = 𝜃#𝜇𝜀 and 𝐷(𝑦) = inf𝜃(𝑥)=𝑦 𝐶(𝑥). Then

{𝜈𝜀} satisfies an LDP with rate function 𝐷. Also, if 𝐶 is coercive, then so is 𝐷.

Theorem 20 (Laplace-Varadhan). Suppose {𝜇𝜀} satisfies an LDP with coercive rate

function 𝐶, and let 𝑓 be a bounded continuous function. Then

lim
𝜀→0

𝜀 log

∫︁
𝑒𝑓/𝜀 𝑑𝜇𝜀 = sup

𝜔
𝑓 − 𝐶

4.3 Results

We now present and prove our results, first for the interpolation problem then for the

endpoint problem.

4.3.1 The Interpolation Problem

Our main result in this section is the following.

Theorem 21. Let (𝜇𝑖) be absolutely continuous probability measures. Then there are

measures 𝜇𝜀𝑘 −−→
𝑊2

𝜇𝑘 such that as 𝜀 → 0, we have (4.9) → (4.10). If (4.10) is finite,

then for all small 𝜀 the problem (4.9) (with the data 𝜇𝜀𝑘) admits a unique solution

𝑃 𝜀, and furthermore any limit point of (𝑃 𝜀) is a solution of (4.10). In particular, if

(4.10) admits a unique solution 𝑃 , then 𝑃 𝜀 → 𝑃 in the 𝑊2 topology.
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The proof leverages the properties of Γ-convergence mentioned above. Recall that

𝑄𝜀 =

∫︁
𝑄𝜀,x0 𝑑𝜇(x0)

where 𝜇 is standard Gaussian on R𝑑 × R𝑑. Consider the sequence of functionals

𝐹𝜀(𝑃 ) = 𝜀KL(𝑃 ‖ 𝑄𝜀)

which are just the objectives in (4.9) (without constraints). Though these are defined

only on the space 𝒫(Ω), we extend them to another space 𝒳 ⊃ 𝒫(Ω) by 𝐹𝜀 + 1𝒫(Ω).

This space is defined as follows: Let 𝒴 be the set of bounded Lipschitz functions on

Ω, and 𝒳 its dual. By the Riesz representation theorem we have that 𝒫(Ω) ⊂ 𝒳 .

(However, there is no explicit description of the entirety of 𝒳 .)

Let 𝐹 (𝑃 ) =
∫︀
𝐶 𝑑𝑃 be the total curvature cost, where 𝐶(𝜔) = 1

2

∫︀ 1

0
|�̈�𝑡|2 𝑑𝑡 is the

squared curvature as before. The strategy of proof is the same as in [38]: we will

show that 𝐹 *
𝜀 → 𝐹 * pointwise, where 𝐺* denotes the convex dual of 𝐺, and then

use Theorem 18 to conclude that 𝐹 *𝜀 −→
Γ
𝐹 , and then reimpose the constraints using

Theorem 17. From there the conclusion is simple.

To calculate 𝐹 *
𝜀 we use the following classical result.

Lemma 3. Let 𝑃 and 𝑄 be probability distributions on a metric space with its Borel

𝜎-algebra. Then

KL(𝑃 ‖ 𝑄) = sup
𝑓

∫︁
𝑓 𝑑𝑃 − log

∫︁
𝑒𝑓 𝑑𝑄

where the infimum may be taken over continuous functions, bounded continuous func-

tions, or bounded Lipschitz functions.

This implies that

𝐹 *
𝜀 (𝑓) = 𝜀 log

∫︁
𝑒𝑓/𝜀 𝑑𝑄𝜀

The following lemma calculating 𝐹 * appears in [38].

Lemma 4. For any function 𝐶, the convex dual of the convex functional acting on
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probability measures by

𝑃 ↦→
∫︁
𝐶 𝑑𝑃 + 1𝒫(Ω)(𝑃 )

is the functional

𝑓 ↦→ sup
𝜔
𝑓(𝜔)− 𝐶(𝜔)

We now aim to prove the pointwise convergence of 𝐹 *
𝜀 to 𝐹 *, which we will do via

the Laplace-Varadhan Lemma (20).

Lemma 5. For any x0 ∈ R𝑑 × R𝑑, the family 𝑄𝜀,x0 satisfies an LDP with coercive

rate function 𝐶(𝜔) = 1
2

∫︀
|�̈�𝑡|2 𝑑𝑡 on the space Ωx0 of paths with initial condition x0.

The family 𝑄𝜀 satisfies an LDP with the same rate function on the space Ω of all

paths, but the rate function is not coercive on this space.

Proof. Applying the contraction principle (21) with the function 𝜃(𝜔)𝑡 = 𝑥0 + 𝑡𝑣0 +∫︀ 𝑡
0
𝜔𝑠 𝑑𝑠, Schilder’s theorem implies that the family 𝑄𝜀,x0 satisfies an LDP with the

required rate function, so the first claim is proved.

For the second, first of all, if 𝜇𝜀 = 𝜇 for all 𝜀 then it is easy to check that the

“family” 𝜇𝜀 satisfies an LDP with the null rate function 𝐶 ≡ 0. Now suppose that 𝜇𝜀

satisfies an LDP with rate function 𝐶 and 𝜈𝜀 satisfies an LDP with rate function 𝐷.

Then 𝜇𝜀⊗𝜈𝜀 satisfies an LDP with rate function 𝐶⊕𝐷. To see this, take measurable

sets 𝐸 and 𝐹 ; then (𝐸 × 𝐹 )∘ = 𝐸∘ × 𝐹 ∘ and 𝐸 × 𝐹 = 𝐸 × 𝐹 . Simply adding the

two LDPs for 𝜇𝜀 and 𝜈𝜀 yields the statement for sets of the form 𝐸 × 𝐹 , and since

these generate the product topology and 𝜎-algebra this yields the claim. Now, as

𝑄𝜀 = 𝑄𝜀,x0 ⊗ 𝜇, the lemma is proved.

By itself this is not sufficient, since the Laplace-Varadhan Lemma requires a co-

ercive rate function. Still, the measures 𝑄𝜀 satisfy the conclusions of the lemma.

Recall the classical Egorov theorem.

Theorem 22 (Egorov). Let 𝜇 be a finite measure on a measure space and let 𝑓𝑛 be a

sequence of functions such that 𝑓𝑛 → 𝑓 𝜇-a.e. Then for all 𝛿 > 0 there is a measurable

set 𝐸 such that 𝜇(𝐸𝑐) < 𝛿 and 𝑓𝑛 → 𝑓 uniformly on 𝐸.
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Lemma 6. Let 𝜇 be a finite measure and suppose that 𝑓𝜀 → 𝑓 𝜇-a.e. and that

there is a constant 𝐶 such that 𝑓𝜀 and 𝑓 are bounded by 𝐶. Suppose further that

lim sup𝜀→0 sup 𝑓𝜀 ≤ sup 𝑓 . Then

lim
𝜀→0

𝜀 log

∫︁
𝑒𝑓𝜀/𝜀 𝑑𝜇 = sup 𝑓 (4.19)

All suprema are taken with respect to 𝜇, that is they are 𝜇-essential suprema.

Proof. By rescaling we can assume that 𝜇 is a probability measure. Then since

|𝑓𝜀| ≤ 𝐶 we have −𝐶 ≤ 𝜀 log
∫︀
𝑒𝑓𝜀/𝜀 𝑑𝜇 ≤ 𝐶, so the lim sup and lim inf in the left-

hand side of (4.19) exist; we will show both are equal to sup 𝑓 .

Let us first assume that 𝑓𝑛 → 𝑓 uniformly. Take 𝛿 > 0 and let 𝜀 be small enough

that |𝑓𝜀 − 𝑓 | < 𝛿. Then

𝜀 log

∫︁
𝑒(𝑓−𝛿)/𝜀 𝑑𝜇 < 𝜀 log

∫︁
𝑒𝑓𝜀/𝜀 𝑑𝜇 < 𝜀 log

∫︁
𝑒(𝑓+𝛿)/𝜀 𝑑𝜇

As 𝜀→ 0 the Laplace method says that the left-hand side converges to sup 𝑓 − 𝛿 and

the right-hand side to sup 𝑓 + 𝛿. Letting 𝛿 → 0 concludes.

In general, fixing again 𝛿 > 0, let 𝐸 be the set yielded by Egorov’s theorem. Then

𝜀 log

∫︁
𝑒𝑓𝜀/𝜀 𝑑𝜇 ≥ 𝜀 log

∫︁
𝐸

𝑒𝑓𝜀/𝜀 𝑑𝜇→ sup
𝐸
𝑓

where we have used the first part of the lemma on the measure 𝜇|𝐸. Letting 𝛿 → 0

the right-hand side converges to sup 𝑓 and so

lim inf
𝜀→0

𝜀 log

∫︁
𝑒𝑓𝜀/𝜀 𝑑𝜇 ≥ sup 𝑓

For the other inequality, we have

𝜀 log

∫︁
𝑒𝑓𝜀/𝜀 𝑑𝜇 ≤ 𝜀 log sup 𝑒𝑓𝜀/𝜀 = sup 𝑓𝜀

Taking the lim sup𝜀→0 of both sides and using the second assumption of the lemma
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concludes.

A remark is in order for the curious reader. Though one might think a sort of

dominated convergence result might allow to drop the second hypothesis — essentially,

that sup 𝑓𝜀 → sup 𝑓 — this cannot be so, and the hypothesis is essential. For example,

letting 𝑓𝜀(𝑥) = 1(0,𝜀)(𝑥), we have 𝑓𝑛(𝑥) → 0 pointwise, but it can be computed that

𝜀 log
∫︀ 1

0
𝑒𝑓𝜀/𝜀 𝑑𝑥 → 1. This also shows that a monotone convergence assumption does

not suffice.

Proposition 22. For any bounded Lipschitz function 𝑓 on Ω, we have

lim
𝜀→0

𝜀 log

∫︁
𝑒𝑓/𝜀 𝑑𝑄𝜀 = sup

𝜔
𝑓 − 𝐶

where 𝐶 is the squared curvature cost.

Proof. To leverage Varadhan’s lemma we need to separate the integral for each x0

individually, in order to get a coercive rate function . Write the integral as

𝜀 log

∫︁
exp

[︂
1

𝜀

(︂
𝜀 log

∫︁
𝑒𝑓(𝜔)/𝜀 𝑑𝑄𝜀,x0(𝜔)

)︂]︂
𝑑𝜇(x0)

where 𝜇 is standard normal, as mentioned above. Define

𝑓𝜀(x0) = 𝜀 log

∫︁
𝑒𝑓(x0+𝜔)/𝜀 𝑑𝑄𝜀,0(𝜔)

where x0 + 𝜔 has the clear meaning of linearly offsetting the path 𝜔 by the curve

𝑥0 + 𝑡𝑣0 to have inital data x0. Then the integral becomes

𝜀 log

∫︁
𝑒𝑓𝜀(x0)/𝜀 𝑑𝜇(x0) (4.20)

The Laplace-Varadhan Lemma says that for each x0

𝑓𝜀(x0) → 𝑓0(x0) : = sup
𝜔∈Ω0

𝑓(x0 + 𝜔)− 𝐶(𝜔)

91



and furthermore we have

sup
x0

𝑓𝜀(x0) = sup
x0

𝜀 log

∫︁
𝑒𝑓(x0+𝜀)/𝜀 𝑑𝑄𝜀,0(𝜔)

≤ 𝜀 log

∫︁
𝑒supx0 𝑓(x0+𝜔)/𝜀 𝑑𝑄𝜀,0(𝜔)

→ sup
𝜔∈Ω0

sup
x0

𝑓(x0 + 𝜔)− 𝐶(𝜔)

= sup
𝜔
𝑓(𝜔)− 𝐶(𝜔)

= sup
x0

𝑓0(x0)

where in the third line we have again applied the Laplace-Varadhan Lemma to the

function 𝜔 → supx0
𝑓(x0 + 𝜔). Since 𝑓 is bounded and Lipschitz, this function is

also bounded and Lipschitz with the same constants, as the supremum of Lipschitz

functions with uniform constant is again Lipschitz. We have also used the fact that

𝐶 is invariant under translation by x0. Applying Lemma 6 to (4.20) then gives the

result.

Proposition 23. The functionals 𝐹𝜀 are equicoercive and 𝐹𝜀
Γ−→ 𝐹 . Furthermore, let

𝐿𝜀[𝜇𝑖] = inf 𝜀KL(𝑃 ‖ 𝑄𝜀) s.t. (𝑋𝑡𝑖)#𝑃 = 𝜇𝑖

𝐿[𝜇𝑖] = inf

∫︁
𝐶 𝑑𝑃 s.t. (𝑋𝑡𝑖)#𝑃 = 𝜇𝑖

Then 𝐿𝜀
Γ−→ 𝐿. In particular, there are measures 𝜇𝜀𝑖 −−→

𝑊2

𝜇𝑖 such that 𝐿𝜀[𝜇𝜀𝑖 ] → 𝐿[𝜇𝑖].

Proof. That 𝐹 *
𝜀 → 𝐹 * pointwise is implied by Proposition 22. The first statement

then follows from Theorem 18. For the second, we apply Theorem 17 to the function

𝜃(𝑃 ) = (𝑋𝑡𝑖)#𝑃𝑖. The final statement follows from the definition of Γ-convergence.

Proof of Theorem 21. The bulk of the statements follow from the definition of Γ-

convergence and the previous proposition. Uniqueness of 𝑃 𝜀 follows from the strict

convexity of the KL divergence.
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4.3.2 The Endpoint Problem

Throughout this section we write x = (𝑥0, 𝑣0(𝑥0), 𝑥1, 𝑣1(𝑥1)), as opposed to above

where x0 corresponded only to initial data. We also write 𝑄𝜀|x for the process

𝑄𝜀,(𝑥0,𝑣0(𝑥0)) conditioned on (𝑋1, �̇�1) = (𝑥1, 𝑣1(𝑥1)), and 𝑄𝜀
x for the distribution of

(𝑋0, �̇�0, 𝑋1, �̇�1) under 𝑄𝜀. These notations are extended similarly for 𝑃 . Since

𝜇0, 𝜇1, 𝑣0, 𝑣1 are fixed, we interchangeably refer to the cost 𝑐, measures 𝜋, etc. as

functions of two or four variables, with the understanding that the velocity variables

𝑣 are deterministic functions of the position variables 𝑥.

We first show that the Schrodinger endpoint spline problem is equivalent to an

entropically regularized OT problem.

Proposition 24. The problem (4.17) is equivalent to (4.16) (after reparametrizing

𝜀 → 2𝜀). Specifically, if �̂� is the optimal coupling for (4.16), then the optimal path

measure 𝑃 for (4.17) is the semidirect product

𝑃 =

∫︁
𝑄𝜀|x 𝑑𝜋(x)

Furthermore, the optimal values are the same up to a factor of 2 and an additive

constant which is 𝑂(𝜀).

Proof. First apply the KL divergence chain rule (4.2) to the function 𝜃 : 𝜔 ↦→ (𝜔0, �̇�0, 𝜔1, �̇�1),

we get

KL(𝑃 ‖ 𝑄𝜀) = KL(𝑃x ‖ 𝑄𝜀
x) +

∫︁
KL(𝑃 x ‖ 𝑄𝜀|x) 𝑑𝑃x(x)

These two terms decouple, and it is clear that it is optimal to set 𝑃 x = 𝑄𝜀|x, so

the optimization reduces to just the first term. We now compute the density of 𝑄𝜀
x.

Requiring that 𝑄𝜀 have endpoint values x means

𝑥1 = 𝑥0 + 𝑣0(𝑥0) +
√
𝜀

∫︁ 1

0

𝐵𝑠 𝑑𝑠

𝑣1(𝑥1) = 𝑣0(𝑥0) +
√
𝜀𝐵1
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Now, E𝐵1

∫︀ 1

0
𝐵𝑠 𝑑𝑠 =

1
2

and E
(︁∫︀ 1

0
𝐵𝑠 𝑑𝑠

)︁2

= 1
3

so
(︁∫︀ 1

0
𝐵𝑠 𝑑𝑠,𝐵1

)︁
∼ 𝒩 (0, 𝐴) where

𝐴 = 𝜀

⎡⎣1
3

1
2

1
2

1

⎤⎦
From this we can read off

𝑑𝑄𝜀
x = 𝑐𝐴 · 𝑑𝜇0(𝑥0) · exp

(︂
1

2𝜀
𝑐(𝑥0, 𝑣0(𝑥0), 𝑥1, 𝑣1(𝑥1))

)︂

where 𝑐𝐴 is the Gaussian normalization constant. Explicitly writing the KL divergence

yields

𝜀KL(𝑃 ‖ 𝑄𝜀) =
1

2

∫︁
𝑐 𝑑𝑃x − 𝜀𝐻(𝑃x) + 𝜀(log 𝑐𝐴 +𝐻(𝜇0))

This is the result.

We now characterize the process 𝑄𝜀|x. Consider first the case of x = 0, so our

goal is to condition the process 𝐼𝑡 =
∫︀ 𝑡
0
𝐵𝑠 𝑑𝑠 on 𝐼1 = 𝐼1 = 0. As this is a Gaussian

process, we can use the Gaussian conditioning lemma.

Lemma 7 (Gaussian conditioning). If

⎛⎝𝑋
𝑌

⎞⎠ ∼ 𝑁

⎛⎝0,

⎡⎣ 𝐴 𝐵

𝐵⊤ 𝐶

⎤⎦⎞⎠
then

(𝑋|𝑌 = 𝑦) ∼ 𝒩
(︀
𝐵𝐶−1𝑦, 𝐴−𝐵𝐶−1𝐵⊤)︀

We furthermore have the following simple consequence of Fubini’s theorem.

Lemma 8. If 𝑋𝑡 is a Gaussian process with covariance function 𝑎𝑋(𝑠, 𝑡), then 𝑍𝑡 =∫︀ 𝑡
0
𝑋𝑠 𝑑𝑠 has covariance function

𝑎𝑍(𝑠, 𝑡) =

∫︁ 𝑠

0

∫︁ 𝑡

0

𝑎𝑋(𝑠
′, 𝑡′) 𝑑𝑠′ 𝑑𝑡′

Conditioning 𝐼𝑡 first on 𝐼1 = 0 we obtain the process 𝑍𝑡 =
∫︀ 𝑡
0
(𝐵𝐵)𝑠 𝑑𝑠, where 𝐵𝐵
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is the standard Brownian bridge. To compute 𝑎𝑍 we need to integrate 𝑎𝐵𝐵. As the

Brownian bridge has covariance 𝑎𝐵𝐵(𝑠, 𝑡) = 𝑠(1 − 𝑡) for 𝑠 ≤ 𝑡, calculus reveals that

for 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑎𝑍(𝑠, 𝑡) =
1

2
𝑠2

(︂
𝑡− 1

3
𝑠

)︂
− 1

4
𝑠2𝑡2

Now we must condition 𝑍 on 𝑍1 = 0. It is easy to compute

((𝑍𝑡)𝑡, 𝑍1) ∼

⎡⎣ 𝑎𝑍(𝑠, 𝑡)
1
12
𝑠2 (3− 2𝑠)

1
12
𝑡2 (3− 2𝑡) 1

12

⎤⎦
We use matrix notation for clarity; the “last” row and column corresponds to 𝑠 = 1

and 𝑡 = 1, respectively. Letting 𝑌 = (𝑍 | 𝑍1 = 0) = (𝐼 | 𝐼1 = 0, 𝐼1 = 0), the

conditioning lemma 7 yields

𝑎𝑌 (𝑠, 𝑡) = 𝑎𝑍(𝑠, 𝑡)−
1

12
𝑠2(3− 2𝑠)𝑡2(3− 2𝑡)

Though this expression is opaque, we can use it to test an ansatz. From the similar

expression for the Brownian bridge as 𝐵𝐵𝑡 = 𝐵𝑡 − 𝑡𝐵1, we hypothesize that 𝑌𝑡 is

equal to

𝑌 𝑓
𝑡 = 𝑍𝑡 − 𝑓(𝑡)𝑍1

for some function 𝑓 . This has covariance function

𝑎𝑌 𝑓 (𝑠, 𝑡) = 𝑎𝑍(𝑠, 𝑡)− 𝑓(𝑡)𝑎𝑍(𝑠, 1)− 𝑓(𝑠)𝑎𝑍(𝑡, 1) +
1

12
𝑓(𝑠)𝑓(𝑡)

For this to equal 𝑎𝑌 (𝑠, 𝑡), and thus for 𝑌 𝑓 to equal 𝑌 , we must have

1

12
𝑠2(3𝑠− 2𝑡)𝑡2(3− 2𝑡) = 𝑓(𝑡)𝑎𝑍(𝑠, 1) + 𝑓(𝑠)𝑎𝑍(𝑡, 1)−

1

12
𝑓(𝑠)𝑓(𝑡)

As 𝑎𝑍(𝑠, 1) = 1
12
𝑠2(3− 2𝑠), this is satisfied with

𝑓(𝑡) = 3𝑡2 − 2𝑡3
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Figure 4-1: Samples from the process 𝑌𝑡, the integrated Brownian bridge conditioned on having
endpoint data 0.

By the uniqueness of Gaussian processes given the covariance function we have iden-

tified the process. Notice that 𝑓(𝑡) is exactly the cubic with endpoint constraints

𝑓(0) = 𝑓 ′(0) = 𝑓 ′(1) = 0, 𝑓(1) = 1. Thus we have shown (inserting the factor of
√
𝜀

where it belongs)

Lemma 9. If x = 0, then the process 𝑄𝜀|x is

𝑋𝜀
𝑡 =

√
𝜀𝑌𝑡

where

𝑌𝑡 =

∫︁ 𝑡

0

(𝐵𝐵)𝑠 𝑑𝑠− (3𝑡2 − 2𝑡3)

∫︁ 1

0

(𝐵𝐵)𝑠 𝑑𝑠 (4.21)

with 𝐵𝐵𝑠 being the Brownian bridge.

In figure 4-1 we show a few samples from this process with fixed 𝜀; its smoothness

is to be contrasted with Brownian motion, and notice its endpoint data.

With the same argument we can prove the following.
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Proposition 25. For any x, the process 𝑄𝜀|x is

𝑋𝜀
𝑡 = 𝑔(𝑡) +

√
𝜀𝑌𝑡

where 𝑔𝑡 is the unique cubic with endpoint data x and 𝑌𝑡 is (4.21).

Proof. By subtracting an affine function we can assume that 𝑥0 = 𝑣0 = 0, and so

we are at the starting point of the argument above with the process 𝐼𝑡 =
∫︀ 𝑡
0
𝐵𝑠 𝑑𝑠.

Conditioning on 𝐼1 = 𝑣1 yields the process
∫︀ 𝑡
0
(𝐵𝑠−𝑠𝐵𝑡+𝑠𝑣1) 𝑑𝑠 =

1
2
𝑡2𝑣1+

∫︀ 𝑡
0
(𝐵𝐵)𝑠 𝑑𝑠,

so we may subtract this quadratic term as well (since it will become part of the cubic).

We are thus reduced to the case where 𝑥0 = 𝑣0 = 𝑣1 = 0, 𝑥1 = 1. This is easily

shown to be true by calculating the mean term in the application of the Gaussian

conditioning lemma 7 above, and this term is precisely 𝑡2(3−2𝑡), a cubic. Uniqueness

of the admissible cubic concludes.

Now, to show a convergence result like Theorem 21, we must show a large deviation

principle for 𝑋𝜀
𝑡 , and thus for 𝑌 𝜀

𝑡 .

Proposition 26. For each x, the family 𝑄𝜀|x satisfies a large deviation principle on

Ωx, the set of paths with the requisite endpoint constraints, with coercive rate function

𝐶(𝜔) =
1

2

∫︁ 1

0

|�̈�𝑡 − 𝑔(𝑡)|2 𝑑𝑡

where 𝑔(𝑡) is the unique cubic satisfying the endpoint constraints.

Proof. To begin with, the contraction principle (21) applied to Brownian motion with

the function 𝜃(𝜔)𝑡 = 𝛾𝑡 = 𝜔𝑡− 𝑡𝜔1 implies that the Brownian bridge family
√
𝜀(𝐵𝐵)𝑡

satisfies an LDP with rate function

inf
𝜔𝑡−𝑡𝜔1=𝛾𝑡

1

2

∫︁ 1

0

|�̇�𝑡|2 𝑑𝑡 = inf
𝜔1

1

2

∫︁ 1

0

|�̇�𝑡 + 𝜔1|2 𝑑𝑡

= inf
𝜔1

1

2

∫︁ 1

0

|�̇�𝑡|2 𝑑𝑡+ 𝜔1

∫︁ 1

0

�̇�𝑡 𝑑𝑡+
1

2
𝜔2
1

=
1

2

∫︁ 1

0

|�̇�𝑡|2 𝑑𝑡
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(Since 𝛾0 = 𝛾1 = 0, the middle term on the second line vanishes.) Thus the Brownian

bridge satisfies the same LDP as Brownian motion, on the smaller space where both

endpoints are zero.

Now, we show that the family
√
𝜀𝑌𝑡 satisfies a large deviation principle with rate

function

𝐶(𝜔) =
1

2

∫︁ 1

0

|�̈�𝑡|2 𝑑𝑡 (4.22)

on Ω0. This is enough to conclude, since we may apply the contraction principle to

the function 𝜃 : 𝜔 ↦→ 𝜔 + 𝑔(𝑡) to obtain the result.

Letting 𝑍𝑡 =
∫︀ 1

0
(𝐵𝐵)𝑠 𝑑𝑠, by the exact same logic as for the integrated Brownian

motion,
√
𝜀𝑍𝑡 satisfies an LDP with rate 𝐶 in (4.22). Next, considering 𝜃(𝜔)𝑡 = 𝛾𝑡 =

𝜔𝑡− 𝑓(𝑡)𝜔1 where 𝑓(𝑡) = (3𝑡2− 2𝑡3), by the argument in the earlier part of this proof

we see {
√
𝜀𝑌𝑡} has rate function

inf
𝜔𝑡−𝑓(𝑡)𝜔1=𝛾𝑡

1

2

∫︁ 1

0

|�̈�𝑡|2 𝑑𝑡 = inf
𝜔1

1

2

∫︁ 1

0

|𝛾𝑡 + 6𝜔1(1− 𝑡)|2 𝑑𝑡

= inf
𝜔1

𝐶(𝛾) + 6𝜔1

∫︁ 1

0

𝛾𝑡 · (1− 𝑡) 𝑑𝑡+ 6𝜔2
1

= 𝐶(𝛾)

where integrating by parts we see the middle term in the second line vanishes. This

concludes.

In figure 4-2 we illustrate the large deviation principle for our process with a

specific cubic (the endpoint data is initial and final position 0, and initial and final

velocity 1). Compare this to figure 4-3, which shows convergence for the Brownian

bridge.

By the same strategy as before, we can prove an analog of Theorem 21.

Theorem 23. Let 𝐿𝜀[𝜇, 𝑣] be (4.17) and let 𝐿[𝜇, 𝑣] be (4.14). Then there is a sequence

𝜇𝑘1 → 𝜇1 converging in the weak topology such that

1. 𝐿𝜀[𝜇0, 𝑣0, 𝜇
𝑘
1, 𝑣1] → 1

2
𝐿[𝜇0, 𝑣0, 𝜇1, 𝑣1]
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Figure 4-2: Samples from 𝑋𝑡 as 𝜀 → 0 for fixed 𝑔(𝑡).

Figure 4-3: Samples from different noise levels of the Brownian bridge, illustrating the large
deviations principle for this family.
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2. If 𝑃 *
𝜀 optimizes 𝐿[𝜇0, 𝑣0, 𝜇

𝑘
1, 𝑣1], then any limit point of the sequence (𝑃 *

𝜀 ) op-

timizes 𝐿[𝜇0, 𝑣0, 𝜇1, 𝑣1]. In particular, if 𝐿 admits a unique minimizer, then

𝑃 *
𝜀 → 𝑃 *.

Furthermore 𝐿 admits a unique minimizer when 𝑣0 and 𝑣1 are sufficiently small and

𝜇0 and 𝜇1 are absolutely continuous.

Proof. We first prove the final statement; by the equivalence of (4.14) and (4.15), it

suffices to show the latter has a unique solution, and we will do so by showing that

𝑐(𝑥, 𝑣(𝑥), 𝑦, 𝑤(𝑦)), as a function of (𝑥, 𝑦), satisfies the twist condition in Definition 1.

We have

∇𝑥𝑐(𝑥, 𝑦) = ∇𝑥𝑐(𝑥, 𝑣(𝑥), 𝑦, 𝑤(𝑦)) +∇𝑣(𝑥) · ∇𝑣𝑐(𝑥, 𝑣(𝑥), 𝑦, 𝑤(𝑦))

and

∇𝑥𝑐 = −24(𝑦 − 𝑥− 𝑣(𝑥)) + 12(𝑤(𝑦)− 𝑣(𝑥))

∇𝑣𝑐 = ∇𝑥𝑐− 8(𝑤(𝑦)− 𝑣(𝑥))

so

∇𝑐𝑥(𝑥, 𝑦) = (Id+∇𝑣(𝑥)) · ∇𝑥𝑐(𝑥, 𝑣(𝑥), 𝑦, 𝑤(𝑦))− 8∇𝑣(𝑥) · (𝑤(𝑦)− 𝑣(𝑥))

Assuming 𝑣 and 𝑤 are sufficiently small, it is sufficient to show that

𝑦 ↦→ ∇𝑥𝑐(𝑥, 𝑣(𝑥), 𝑦, 𝑤(𝑦))

is injective. But using that 𝑤 is small again this is clear from the expression for ∇𝑥𝑐

above, as it is nearly linear.

In light of the large deviation principle for 𝑄𝜀|x, the remainder of the proof is

identical to the proof of Theorem 21, so we leave it to the interested reader.

100



Chapter 5

Splines in WFR

5.1 Unbalanced Optimal Transport

By the nature of optimal transport, it is only possible to transport one measure 𝜇

to another one 𝜈 if 𝜇(𝑋) = 𝜈(𝑋); otherwise there can be no feasible coupling be-

tween them. Nevertheless, in applications it is sometimes necessary to consider this

situation, for instance if the fluid-dynamical perspective above is modified so that

the fluid is reactive, and it may increase or decrease in total mass as it evolves. It

is tempting to simply rescale and transport 1
𝜇(𝑋)

𝜇 to 1
𝜈(𝑋)

𝜈, but this obscures the

effects of creation and destruction of mass unique to the problem. For this pur-

pose the Wasserstein-Fisher-Rao metric on non-negative measures, also known as the

Hellinger-Kantorovich metric, was introduced simultaneously in [41, 40, 20, 35].

The starting point of the theory is the so-called non-conservative continuity equa-

tion

𝜕𝑡𝜇𝑡 + div(𝑣𝑡𝜇𝑡) = 4𝛼𝑡𝜇𝑡 (5.1)

This modifies the continuity equation with a relative growth term 𝛼𝑡, taking inspira-

tion from the reactive fluid system described above. The Benamou-Brenier theorem

indicates that we should define

WFR(𝜇0, 𝜇1) = inf
(𝜇𝑡,𝑣𝑡,𝛼𝑡)

∫︁ 1

0

∫︁
‖𝑣𝑡(𝑥)‖2 + 4|𝛼𝑡(𝑥)|2 𝑑𝜇𝑡 𝑑𝑡 (5.2)
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the infimum being taken over solutions to the non-conservative continuity equation

with the prescribed endpoints. (The factor of 4 allows for much simpler notation

later.) It was shown simultaneously in [41, 20] that (5.2) defines a metric on ℳ+(R𝑑),

the space of non-negative measures, and that it turns this into a geodesic space.

Furthermore, [35] it has the structure of a pseudo-Riemannian manifold analogous to

the Riemannian structure on 𝑊2 (see [28]. As in the 𝑊2 case, to define the tangent

space we must consider the functions 𝑣𝑡, 𝛼𝑡 that minimize the 𝐿2(𝜇𝑡) norm.

Proposition 27. Let (𝜇𝑡, 𝑣𝑡, 𝛼𝑡) solve (5.1), and consider the problem

min ‖𝑣𝑡‖2𝐿2(𝜇𝑡)
+ 4|𝑔𝑡|2𝐿2(𝜇𝑡)

s.t. div(𝑣𝑡𝜇𝑡)− 4𝛼𝑡𝜇𝑡 = div(𝑣𝑡𝜇𝑡)− 4𝑔𝑡𝜇𝑡

This has a unique solution 𝑣𝑡, 𝑔𝑡, and

(𝑣𝑡, 𝑔𝑡) ∈ clos𝐿2(𝜇𝑡) {(∇𝜙, 𝜙) | 𝜙 ∈ 𝒞∞
𝑐 }

Thus we define the WFR tangent space to be

𝑇𝜇(𝒫2) = clos𝐿2(𝜇𝑡) {(∇𝜙, 𝜙) | 𝜙 ∈ 𝒞∞
𝑐 }

and equip it with the (pseudo-) Riemannian metric

⟨(𝑣, 𝑔), (𝑤, ℎ)⟩𝜇 = ⟨𝑣, 𝑤⟩𝐿2(𝜇) + 4⟨𝑔, ℎ⟩𝐿2(𝜇)

Notice that this is the same tangent space as 𝑊2 (up to isomorphism) but with the

full 𝐻1(𝜇) norm of 𝜙, whereas the 𝑊2 metric contains only the first derivatives ∇𝜙.

For the benefit of the reader, a few observations are in order:

1. The formula (5.2) defines geodesics between any two non-negative measures of

arbitrary mass. If 𝜇1 = 𝛼𝜇0 — the final measure is a simple rescaling of the

initial measure — then it can be checked that the WFR geodesic between them
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is (assuming without loss of generality that 𝛼 < 1)

𝜇𝑡 = (1− 𝑡)2𝜇0

parametrized as 𝑡 ∈ [0, 1 −
√
𝛼]. This is exactly the geodesic in the closely

related Fisher-Rao metric, which we will not discuss.

2. From this one might expect that the geodesic from 𝜇0 to 𝜇1(𝑥) = 𝜇0(𝑥−𝑥0) is a

simple translation, with no creation or destruction of mass. This is not the case.

The (non-conservative) continuity equation together with the characterization

of 𝑇𝜇(𝒫2) states that

𝜕𝑡𝜇𝑡 + div(∇𝛼𝑡𝜇𝑡) = 4𝛼𝑡𝜇𝑡

If ∇𝛼𝑡 is not locally zero, meaning that there is translation, it must be that 𝛼𝑡

is not locally constant, and in specific it is not 1, thus mass must be modified.

The WFR metric has several equivalent characterizations that we will exploit in the

sequel.

5.1.1 The Cone Space

The cone space C is the manifold R𝑑×R+, with R𝑑×{0} identified as a single point.1

Points (𝑥, 𝑟) ∈ C are thought of as tuples of position and mass. The metric (as a

metric space) is given by

𝑑C ((𝑥0, 𝑟0), (𝑥1, 𝑟1))
2 = 𝑟20 + 𝑟21 − 2𝑟0𝑟1 cos(|𝑥0 − 𝑥1| ∧ 𝜋)

Call the vertex of the cone (the point R𝑑 × {0}) as 0. Notice that if |𝑥0 − 𝑥1| ≥ 𝜋

then 𝑑C((𝑥0, 𝑟0), (𝑥1, 𝑟1)) = 𝑟0 + 𝑟1. Since for any (𝑥, 𝑟) we have 𝑑C((𝑥, 𝑟), 0) = 𝑟, this

reflects that fact that if 𝑥0 and 𝑥1 are far away then the shortest path is to the vertex

and back out.

1Fraktur font characters will be reserved for objects relating to the cone space, consistent with
[41, 40].
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Writing (𝑣, 𝑝) = 𝑑
𝑑𝑡
(𝑥, 𝑟), the Riemannian metric on the cone space is given by

⟨(𝑣1, 𝑝1), (𝑣2, 𝑝2)⟩(𝑥,𝑟) = ⟨𝑣1, 𝑣2⟩𝑟2 + 𝑝1𝑝2 (5.3)

Given a measure 𝜆 ∈ ℳ(C), we can project it to a measure P𝜆 ∈ ℳ(R𝑑) via

∫︁
𝑓(𝑥) 𝑑P𝜆(𝑥) =

∫︁
𝑟2𝑓(𝑥) 𝑑𝛾(𝑥, 𝑟)

The measure 𝜆 is then called a lift of P𝜆. The presence of the term 𝑟2, as opposed

to 𝑟, is to simplify the parametrization of C. Observe that there are many possible

liftings of a measure 𝜇 ∈ ℳ(R𝑑) to 𝜆 ∈ ℳ(C), the most obvious of which is 𝑑𝜆(𝑥, 𝑟) =

𝛿1(𝑟) · 𝑑𝜇(𝑥). As C is (save for the point 0) a Riemannian manifold we can define its

𝑊2 metric as usual

𝑊 2
C,2(𝜆, 𝜂) = inf

𝛾∈Π(𝜆,𝜂)

∫︁
𝑑2C 𝑑𝛾

The following theorem is proved in [41].

Theorem 24. For any measures 𝜇0, 𝜇1 ∈ ℳ+(R𝑑), we have

WFR(𝜇0, 𝜇1) = inf {𝑊C,2(𝜆0, 𝜆1) | 𝜆𝑖 ∈ 𝒫(C), P𝜆0 = 𝜇0, P𝜆1 = 𝜇1}

Furthermore, there are optimal lifts 𝜆0, 𝜆1, and an optimal coupling 𝛾 between them.

This allows to characterize WFR geodesics in the same way as in Euclidean space.

Theorem 25. Let 𝜇0, 𝜇1 ∈ ℳ+(R𝑑), and let 𝛾 ∈ ℳ(C2) be the optimal coupling of

the optimal lifts in Theorem 24. For each pair of points 𝑧0, 𝑧1 ∈ C, let 𝑔𝑧0,𝑧1𝑡 be the

geodesic between them. Then the measures defined by

𝜇𝑡 = P [(𝑔𝑧1,𝑧2𝑡 )#𝛾]

compose a geodesic in WFR between 𝜇0 and 𝜇1.

There is yet another characterization of the WFR metric that will be useful in the
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sequel. The Wasserstein metric can be phrased as

inf
𝜂

∫︁
𝑑(𝑥, 𝑦)2 𝑑𝜂(𝑥, 𝑦) + 𝜒𝜋0𝜂=𝜇0(𝜂) + 𝜒𝜋1𝜂=𝜇1(𝜂)

where 𝜒 is the convex analysis indicator (taking values 0 and ∞). We might relax

the tight constraints as KL(𝜋0𝜂 ‖ 𝜇0) — extending the KL divergence to arbitrary

nonnegative measures in the obvious way — in order to accommodate measures of

non-unit mass. This leads to

Theorem 26. For any measures 𝜇0, 𝜇1, we have

WFR2(𝜇0, 𝜇1) = inf
𝜂∈ℳ+

∫︁
𝑐(𝑥, 𝑦) 𝑑𝜂 +KL(𝜋0𝜂 ‖ 𝜇0) + KL(𝜋1𝜂 ‖ 𝜇1) (5.4)

where

𝑐(𝑥, 𝑦) = −2 log cos
(︀
|𝑥− 𝑦| ∧ 𝜋

2

)︀
Optimality is achieved, and if 𝜇0 and 𝜇1 are absolutely continuous the optimizing 𝜂*

is unique and is induced by a map. Furthermore, if 𝛼𝑖 = 𝑑𝜂*𝑖 /𝑑𝜇𝑖, then for (𝑥, 𝑦) on

the support of 𝜂* we have |𝑥− 𝑦| < 𝜋
2

and

𝛼0(𝑥)𝛼1(𝑦) = cos2 (|𝑥− 𝑦|) > 0

Also, for 𝜇0-a.e. 𝑥 and 𝜇1-a.e. 𝑦, 𝛼0(𝑥)𝛼1(𝑦) ≤ cos2(|𝑥− 𝑦|).

The cost 𝑐 differs from the term in the cone metric 𝑑C by taking the minimum

against 𝜋
2
, not 𝜋. This is the difference between transport of points in C and measures

on C; to transport 𝑧0 = (𝑥0, 𝑟0) to 𝑧1 = (𝑥1, 𝑟1) in C we may reduce the mass to

0, then increase it again to 𝑟1, whereas to transport 𝛿𝑧0 to 𝛿𝑧1 these can be done

simultaneously, so that the WFR geodesic is at each time a combination of two

deltas.

The optimal 𝜂 in Theorem 26 and the optimal coupling 𝛾 in Theorem 24 are

intimately related.
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Theorem 27. Suppose 𝜂 minimizes the objectives in Theorem 26, and let 𝜂𝑖 = 𝜋𝑖𝜂

be its marginals. Write

𝜇𝑖 = 𝜎𝑖𝜂𝑖 + 𝜇⊥
𝑖

where 𝜎𝑖 = 𝑑𝜂𝑖/𝑑𝜇𝑖 and 𝜇𝑖 is mutually singular with 𝜇⊥
𝑖 . Define the plan 𝛾𝜂 by

𝑑𝛾𝜂(𝑧0, 𝑧1) = 𝛿√
𝜎0(𝑥0)

(𝑟0) · 𝛿√𝜎1(𝑥1)
(𝑟1) · 𝑑𝜂(𝑥0, 𝑥1)

+ 𝛿1(𝑟0) · 𝑑𝜇⊥
0 (𝑥0) · 𝛿0(𝑧1) + 𝛿1(𝑟1) · 𝑑𝜇⊥

1 (𝑥1) · 𝛿0(𝑧0)

Then 𝛾𝜂 is optimal for the objective in Theorem 24.

Let us remark on the somewhat surprising nature of this result. In principle, the

optimal coupling of the optimal lifts of 𝜇0 and 𝜇1 has no reason to be induced by

a map in the 𝑥 variable. Even supposing that the OT problem in Theorem 24 has

a Monge solution, it is only Monge in C; there are many points (𝑥, 𝑟) that project

down to each 𝑥 ∈ R𝑑. Ignoring the singular component, Theorem 27 says that each

𝑥0 maps to a unique 𝑥1, and also a unique 𝑟0 and 𝑟1. The singular component governs

the mass that is to be created or destroyed completely, and if both measures have the

same support or are sufficiently close, then this is zero.

5.1.2 The Covariant Derivative

In this section we find the covariant derivative in WFR; recall from Section 2.2.5 that

we must show that it respects the metric and is torsion-free. Repeating the argument

from that section, let u𝑖𝑡 = (𝑢𝑖𝑡, 𝛽
𝑖
𝑡) be two tangent fields along a curve 𝜇𝑡, which has

derivative (𝑣𝑡, 𝛼𝑡). Metric compatibility then reads

𝑑

𝑑𝑡
⟨u1

𝑡 ,u
2
𝑡 ⟩𝜇𝑡 =

∫︁
⟨𝜕𝑡𝑢1𝑡 , 𝑢2𝑡 ⟩+ ⟨𝑢1𝑡 , 𝜕𝑡𝑢2𝑡 ⟩+ 4𝜕𝑡𝛽

1
𝑡 𝛽

2
𝑡 + 4𝛽1

𝑡 𝜕𝛽
2
𝑡 𝑑𝜇𝑡

+

∫︁
⟨𝑢1𝑡 , 𝑢2𝑡 ⟩+ 4𝛽1

𝑡 𝛽
2
𝑡 𝑑(𝜕𝑡𝜇𝑡)

= 𝑇1 + 𝑇2
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By the continuity equation and the dual definition of div 𝑣𝑡𝜇𝑡, the second integral

becomes

𝑇2 =

∫︁
⟨∇𝑢1𝑡 · 𝑣𝑡, 𝑢2𝑡 ⟩+ ⟨𝑢2𝑡 ,∇𝑢2𝑡 · 𝑣𝑡⟩+ 4𝛼𝑡⟨𝑢1𝑡 , 𝑢2𝑡 ⟩

+

∫︁
4𝛽2

𝑡 ⟨∇𝛽1
𝑡 , 𝑣𝑡⟩+ 4𝛽1

𝑡 ⟨∇𝛽2
𝑡 , 𝑣𝑡⟩+ 16𝛼𝑡𝛽

1
𝑡 𝛽

2
𝑡 𝑑𝜇𝑡

Now, we need this to be equal to ⟨u1
𝑡 ,

D
𝑑𝑡
u2
𝑡 ⟩ + ⟨D

𝑑𝑡
u1
𝑡 ,u

2
𝑡 ⟩. Some terms are uniquely

attributable to one or the other, such as
∫︀
⟨𝜕𝑡𝑢1𝑡 , 𝑢2𝑡 ⟩, but some are not, such as

4𝛽2
𝑡 ⟨∇𝛽1

𝑡 , 𝑣𝑡⟩. This can arise from either of the two terms: as ∇𝛽𝑖𝑡 = 𝑢𝑖𝑡,

⟨︀
(0, ⟨∇𝛽1

𝑡 , 𝑣𝑡⟩),u2
𝑡

⟩︀
𝜇𝑡

=
⟨︀
u1
𝑡 , (4𝛽

2
𝑡 𝑣, 0)

⟩︀
𝜇𝑡

Indeed, by splitting these terms and gathering the others, the possible covariant

derivatives that satisfy metric compatibility are of the form

D

𝑑𝑡
u𝑡 = 𝒫𝜇𝑡

⎛⎝𝜕𝑡𝑢𝑡 +∇𝑢𝑡 · 𝑣𝑡 + 2𝛼𝑡𝑢𝑡 + 4𝑝𝛽𝑡𝑣𝑡

𝜕𝑡𝛽𝑡 + (1− 𝑝)⟨∇𝛽𝑡, 𝑣𝑡⟩+ 2𝛼𝑡𝛽𝑡

⎞⎠
for real 𝑝. Let us check the torsion-free identity with 𝑝 = 1/2. In this case, if

u𝑡 = (∇𝜙, 𝜙) is constant in time, then

D

𝑑𝑡

⎛⎝∇𝜙

𝜙

⎞⎠ = 𝒫𝜇𝑡

⎛⎝∇2𝜙 · 𝑣𝑡 + 2𝛼𝑡∇𝜙+ 2𝜙𝑣𝑡

1
2
⟨∇𝜙, 𝑣𝑡⟩+ 2𝛼𝑡𝜙

⎞⎠
Now, with the setup as in the 𝑊2 case, defining 𝐹 : 𝜙 ↦→

∫︀
𝜙𝑑𝜇 and writing 𝜙 =

(∇𝜙, 𝜙), we have from the continuity equation

𝜕𝑡𝐹 [𝜇
𝑖
𝑡] =

∫︁
⟨𝜙,v𝑖𝑡⟩ 𝑑𝜇𝑖𝑡
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where v𝑖𝑡 is the derivative of 𝜇𝑖𝑡. As above, we have

u1
0(u

2(𝐹 ))[𝜇] =
𝑑

𝑑𝑡
⟨𝜙,u2

𝑡 ⟩𝜇2𝑡
⃒⃒
𝑡=0

=

⟨
D

𝑑𝑡
𝜙,u2

𝑡

⟩
𝜇2𝑡

+
⟨
𝜙,∇u1

0
u2
𝑡

⟩
𝜇2𝑡

⃒⃒⃒⃒
𝑡=0

Recalling that at 𝑡 = 0 we have u2
0 = v1

0 = (𝑣10, 𝛼
1
0), the first term becomes (we may

ignore the projection, since u2
𝑡 is already tangent)

𝑄1 =

⟨⎛⎝∇2𝜙 · 𝑣20 + 2𝛼2
0∇𝜙+ 2𝜙𝑣20

1
2
⟨∇𝜙, 𝑣20⟩+ 2𝛼2

0𝜙

⎞⎠ ,

⎛⎝𝑣10

𝛼1
0

⎞⎠⟩
𝜇

while the corresponding term from u2
0(u

2(𝐹 ))[𝜇] is

𝑄2 =

⟨⎛⎝∇2𝜙 · 𝑣10 + 2𝛼1
0∇𝜙+ 2𝜙𝑣10

1
2
⟨∇𝜙, 𝑣10⟩+ 2𝛼1

0𝜙

⎞⎠ ,

⎛⎝𝑣20

𝛼2
0

⎞⎠⟩
𝜇

and we must check that these agree. The “top-left”, “top-right”, and “bottom-right”

terms are identical for both. The top-middle of the first is equal to the bottom-left

for the second, and vice-versa. Thus we have shown that the covariant derivative is

given by

D

𝑑𝑡
u𝑡 = 𝒫𝜇𝑡

⎛⎝𝜕𝑡𝑢𝑡 +∇𝑢𝑡 · 𝑣𝑡 + 2𝛼𝑡𝑢𝑡 + 2𝛽𝑡𝑣𝑡

𝜕𝑡𝛽𝑡 +
1
2
⟨∇𝛽𝑡, 𝑣𝑡⟩+ 2𝛼𝑡𝛽𝑡

⎞⎠
and in specific,

D2

𝑑𝑡2
𝜇𝑡 =

⎛⎝𝜕𝑡𝑣𝑡 +∇𝑣𝑡 · 𝑣𝑡 + 4𝛼𝑡𝑣𝑡

𝜕𝑡𝛼𝑡 +
1
2
|∇𝛼𝑡|2 + 2𝛼2

𝑡

⎞⎠ (5.5)

This quantity is tangent, so no projection is necessary.

This generalizes the results in [41, 20] that characterize geodesics in WFR space

by the equation

𝜕𝑡𝛼𝑡 +
1

2
|∇𝛼𝑡|2 + 2𝛼2

𝑡 = 0
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5.2 Splines

As in the 𝑊2 case, we can define an intrisic notion of curvature-minimizing interpo-

lators, which we also term 𝐸-splines, by

inf
(𝜇𝑡,v𝑡)

∫︁ 1

0

⃦⃦⃦⃦
D

𝑑𝑡
v𝑡

⃦⃦⃦⃦2

𝜇𝑡

𝑑𝑡 s.t. 𝜇𝑡𝑖 = 𝜇𝑖 (5.6)

Though the characterization (5.5) yields an explicit objective function, there is no

practical way to optimize (5.6). Thus we first wish to define an analog of 𝑃 -splines.

From the discussion of Section 5.1.1, we define 𝑃 -splines in WFR by

inf
𝑃∈𝒫(ΩC)

∫︁ ∫︁ 1

0

|𝑧𝑡|2 𝑑𝑡 𝑑𝑃 (𝑧) s.t. P [(𝑒𝑡𝑖)#𝑃 ] = 𝜇𝑖 (5.7)

We prove that this is indeed a relaxation of the 𝐸-spline problem (5.6).

Proposition 28. Let 𝜇𝑡 be a sufficiently smooth curve in WFR. Then there is a

measure 𝑃 ∈ 𝒫(ΩC) such that P [(𝑒𝑡)#𝑃 ] = 𝜇𝑡 for all 𝑡, and the 𝐸-cost of 𝜇 is equal

to the 𝑃 -cost of 𝑃 . The measure 𝑃 is induced by the flow maps associated to the

curve 𝜇𝑡.

To present the proof (and complete the description of the proposition) we must

define the flow maps on WFR. These have the same particle trajectories as in 2.4, but

with varying mass. Similarly to 𝑊2, there is an identification of (sufficiently smooth)

paths in WFR with their flow maps, due to [42].

Proposition 29. Let 𝑣 ∈ 𝐿1(𝑊 1,∞(R𝑑,R𝑑), [0, 1]) be a vector field and 𝛼 ∈ 𝒞(R𝑑 ×

[0, 1]) a bounded locally Lipschitz scalar function. For 𝜇0 ∈ ℳ+(R𝑑), there is a unique

weak solution to the nonconservative continuity equation (5.1) with initial measure 𝜇0.

Furthermore, this satisfies

𝜇𝑡 = (𝑋𝑡)#(𝑅
2
𝑡 · 𝜇0), (5.8)
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for the flow map (𝑋𝑡) and scalar field (𝑅𝑡) which solve the ODE system

⎧⎪⎨⎪⎩�̇�𝑡 = 𝑣𝑡(𝑋𝑡), 𝑋0 = Id

�̇�𝑡 = 2𝛼𝑡(𝑋𝑡)𝑅𝑡, 𝑅0 = 1

We are now in a position to present the proof of Proposition 28.

Proof of proposition 28. Making the definition explicit, we wish of our measure 𝑃

that the cost of (5.7) is equal to

∫︁ 1

0

∫︁
|𝜕𝑡𝑣𝑡 +∇𝑣𝑡 · 𝑣𝑡 + 4𝛼𝑡𝑣𝑡|2 + 4

(︀
𝜕𝑡𝛼𝑡 +

1
2
|∇𝛼𝑡|2 + 2𝛼2

𝑡

)︀2
𝑑𝜇𝑡 𝑑𝑡 (5.9)

Let 𝜆0 ∈ 𝒫(C) be a lift of 𝜇0. By Proposition 29, the measure 𝜆𝑡 = (𝑋𝑡, 𝑅𝑡)#𝜆0 is a

lift of 𝜇𝑡.

In order to compute the second covariant derivative of a curve on the cone, we

compute the Christoffel symbols. These are given by the formulas

∇𝜕𝑖𝜕𝑗 = Γ𝑘𝑖𝑗𝜕𝑘, Γ𝑘𝑖𝑗 =
1

2
𝑔𝑘𝑙

(︂
𝜕

𝜕𝑗
𝑔𝑖𝑙 +

𝜕

𝜕𝑖
𝑔𝑗𝑙 −

𝜕

𝜕𝑙
𝑔𝑖𝑗

)︂
.

Let 𝜕1, . . . , 𝜕𝑛, 𝜕𝑟 be the coordinate basis of the tangent space on the cone, hence

(𝑔𝑖𝑗)𝑖𝑗 =

⎛⎝𝑟2𝐼𝑛 0

0 1

⎞⎠ ,
𝜕

𝜕𝑘
𝑔𝑖𝑗 =

⎧⎪⎨⎪⎩2𝑟 𝑖 = 𝑗 ̸= 𝑟, 𝑘 = 𝑟,

0, else.

Since (𝑔𝑖𝑗) and 𝜕𝑟𝑔𝑖𝑗 are only defined along the diagonal and 𝜕𝑙𝑔𝑖𝑗 = 0 for 𝑙 ̸= 𝑟, the

only terms that do not vanish are

Γ𝑘𝑟𝑗 = 𝑟−1𝛿𝑗𝑘, Γ𝑟𝑖𝑗 = −𝑟𝛿𝑖𝑗

thus the Levi-Civita connection on the cone is given by

∇𝜕𝑟𝜕𝑟 = 0, ∇𝜕𝑟𝑋 = 𝑟−1𝑋, ∇𝑋1𝑋2 = −𝑟⟨𝑋1, 𝑋2⟩𝜕𝑟.
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From this, the second covariant derivative of a curve 𝑧𝑡 = (𝑥𝑡, 𝑟𝑡) on the cone is

given by

𝑧𝑡 = ∇�̇�𝑡 �̇�𝑡 =

(︂
�̈�𝑡 + 2

�̇�𝑡
𝑟𝑡
�̇�𝑡, 𝑟𝑡 − 𝑟𝑡|�̇�𝑡|2

)︂

thus from the Riemannian metric (5.3)

|𝑧𝑡|2 = |𝑟𝑡�̈�𝑡 + 2�̇�𝑡�̇�𝑡|2 +
⃒⃒
𝑟𝑡 − 𝑟𝑡|�̇�𝑡|2

⃒⃒2
Let 𝜆0 be any lift of 𝜇0 and define 𝑃 to place mass 𝜆0(𝑧0) on the path 𝑧𝑡 = (𝑋𝑡(𝑥0), 𝑅𝑡(𝑟0)),

so that 𝑃 is supported on the flow map curves in ΩC. By applying the total derivative

to the defining equations of the flow maps, these curves satisfy

�̇�𝑡 = 𝑣𝑡(𝑥𝑡)

�̈�𝑡 = 𝜕𝑡𝑣𝑡 +∇𝑣𝑡 · 𝑣𝑡

�̇�𝑡 = 2𝑟𝑡𝛼𝑡(𝑥𝑡)

𝑟𝑡 = 2𝑟𝑡
(︀
𝜕𝑡𝛼𝑡 +∇𝛼𝑡 · 𝑣𝑡 + 2𝛼2

𝑡

)︀
Now, we have ∫︁

ΩC

∫︁ 1

0

|𝑧𝑡|2 𝑑𝑡 𝑑𝑃 (𝑧) =
∫︁
C

∫︁ 1

0

|𝑧𝑡|2 𝑑𝑡 𝑑𝜆0(𝑧0)

Expanding out, this is

∫︁
C

∫︁ 1

0

|𝑟𝑡�̈�𝑡 + 2�̇�𝑡�̇�𝑡|2 +
⃒⃒
𝑟𝑡 − 𝑟𝑡|�̇�𝑡|2

⃒⃒2
𝑑𝑡 𝑑𝜆0(𝑧0)

Let us deal with each term separately so the expressions do not become unwieldly.
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For the first

∫︁
C

∫︁ 1

0

|𝑟𝑡�̈�𝑡 + 2�̇�𝑡�̇�𝑡|2 𝑑𝑡 𝑑𝜆0(𝑧0)

=

∫︁
C

∫︁ 1

0

𝑟2𝑡 |𝜕𝑡𝑣𝑡 +∇𝑣𝑡 · 𝑣𝑡 + 4𝛼𝑡𝑣𝑡|2 (𝑥𝑡) 𝑑𝑡 𝑑𝜆0(𝑧0)

=

∫︁ 1

0

∫︁
C

|𝜕𝑡𝑣𝑡 +∇𝑣𝑡 · 𝑣𝑡 + 4𝛼𝑡𝑣𝑡|2 (𝑥𝑡) 𝑑(𝑟2𝑡 · 𝜆0)(𝑧0) 𝑑𝑡

=

∫︁ 1

0

∫︁
|𝜕𝑡𝑣𝑡 +∇𝑣𝑡 · 𝑣𝑡 + 4𝛼𝑡𝑣𝑡|2 (𝑥) 𝑑𝜇𝑡(𝑥) 𝑑𝑡

We have used that (𝑋𝑡, 𝑅𝑡)#𝜆0 = 𝜆𝑡 and P𝜆𝑡 = 𝜇𝑡. The second term is dealt with in

exactly the same way.

5.3 Transport Splines

To alleviate problems of computational tractability and interpretabliity in applica-

tions, above we introduced transport splines on 𝑊2, and in this section we will define

a similar family of curves.

To begin with we need a map between measures on 𝑊2 associated to a geodesic.

The characterization in Theorem 24 is not directly useful here, since it is not obvious

that the optimal coupling of lifted measures is induced by a map (and furthermore

we would need to know the optimal lifts). Even if it were, that would not be enough

for our purposes — we would want to associate a unique mass 𝑟 to each initial point

𝑥, and map that to another unique 𝑟′ and 𝑥′. Instead we turn to Theorem 26, and

Theorem 27.

Suppose the 𝜇0, 𝜇1 are such that 𝜇𝑖 ≪ 𝜂𝑖, so that 𝜇⊥
𝑖 = 0 in Theorem 27. This

happens, for instance, when the conditions of Proposition 29 are satisfied along the

geodesic between them. The optimal 𝜂 for Theorem 26 is supported on a map 𝑇 , and

thus an optimal 𝛾𝜂 for Theorem 24 is supported on the assignment

(𝑥0, 𝑟0(𝑥0)) → (𝑇 (𝑥0), 𝑟1(𝑇 (𝑥0)))
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which associates to each 𝑥0 a unique mass 𝑟0(𝑥0) =
√︀
𝜎0(𝑥0) and maps it to another

unique location and mass 𝑟1(𝑇 (𝑥0)) =
√︀
𝜎1(𝑇 (𝑥0)). This is much stronger than 𝛾𝜂

being induced by a map on C.

Now, define the operator 𝑆C
𝑡 [𝑧0, . . . , 𝑧𝑁 ] to be the Riemannian cubic interpolant

in C of the points 𝑧0, . . . , 𝑧𝑁 . We define transport splines over WFR by the following

procedure

1. For each 𝑖 solve (5.4) between 𝜇𝑖 and 𝜇𝑖+1 to obtain the optimal coupling 𝜂𝑖→𝑖+1,

and thus the map 𝑇𝑖→𝑖+1. Let 𝑇𝑖 = 𝑇0→1 ∘ · · · ∘ 𝑇𝑖−1→𝑖.

2. For each 𝑥, compute the sequence of masses 𝑟𝑖(𝑥) = 𝑑𝜇𝑖(𝑇𝑖(𝑥)).

3. For each 𝑥, form a path 𝑋𝑡(𝑥) interpolating the 𝑥𝑖 = 𝑇𝑖(𝑥), and a mass path

𝑅𝑡(𝑥) interpolating the masses
√︀
𝑟𝑖(𝑥).

4. Define the interpolating curve by 𝑑𝜇𝑡(𝑥) = 𝑅2
𝑡 (𝑥)𝑑 ((𝑋𝑡)#𝜇0) by pushing masses

along the curve 𝑋𝑡

We have left the interpolating strategy in step 3 general for two reasons. First,

though ideally one would interpolate the masses
√︀
𝜎𝑖(𝑥𝑖), this is not feasible since

two adjacent couplings 𝜂𝑖−1,𝑖 and 𝜂𝑖,𝑖+1 may not have the same 𝑖-th marginal, so

𝜎𝑖 is not well-defined. Second, though ideally for any sequence (𝑥𝑖, 𝑟𝑖)𝑖 one would

interpolate using Riemannian cubics on C, these are difficult to compute; unlike the

Euclidean case, there appears to be no closed formula. We suggest then interpolating

the position and mass separately. For the positions 𝑥𝑖 we use Euclidean cubics; for

the masses we may interpolate (
√
𝑟𝑖) using a cubic spline, which will then be positive

once we square it, or we may use techniques for approximating curvature-minimizing

interpolants that are constrained to be positive.

113



114



Appendix A

Details for Numerical Experiments

In this section we provide further details for the experiments in this work.

A.1 Figure 3-1

In this figure, we set five Gaussians as our interpolation knots, alternating between

𝒩
(︁⎡⎣7(𝑘 − 1)

0

⎤⎦ ,
⎡⎣4 0

0 2

⎤⎦)︁ for 𝑘 odd

and

𝒩
(︁⎡⎣7(𝑘 − 1)

7

⎤⎦ ,
⎡⎣2 0

0 4

⎤⎦)︁ for 𝑘 even,

where 𝑘 = 1, . . . , 5.

To determine the linear and cubic spline interpolations we first computed the

optimal transport maps between the neighboring Gaussians. The closed-form formula

for the Monge map from 𝒩 (𝜇1,Σ1) to 𝒩 (𝜇2,Σ2) is

𝑇 (𝑥) = 𝜇2 + 𝐴(𝑥− 𝜇1), 𝐴 = Σ
− 1

2
1 (Σ

1
2
1Σ2Σ

1
2
1 )

1
2Σ

− 1
2

1 .

The gray lines in both figures show the trajectories of individual sample points along
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our interpolations. To draw them, we obtained a sample 𝑋0 from the Gaussian at

time 𝑡 = 0, repeatedly applied the Monge maps between successive Gaussians in time,

and fit a piecewise linear or natural cubic spline through these points as described in

Section 3.4.

Since the maps between successive Gaussians are linear and the formula for the

linear or natural cubic spline is linear in its knots, the value of the spline 𝑆𝑡(𝑋0) inter-

polation at time 𝑡 is linear in 𝑋0. Hence, given the covariance of the Gaussian at time

𝑡 = 0, we used this linear map 𝑆𝑡 to compute the covariance of the interpolated Gaus-

sian at time 𝑡. Likewise, by taking a linear or cubic spline through the means of the

Gaussians at the knot points, we obtained the means of the interpolated Gaussians at

any given time. Using this information, we plotted the interpolated Gaussians at the

halfway points between the knots for both the linear and cubic spline interpolations.

A.2 Figure 3-5

Here we give more details on the thin-plate spline interpolation leading to Figure 3-5.

The data is a representation of the temperature at various weather stations through-

out California on June 1 of each year in a thirty year period. That is, we consider the

distribution of temperatures recorded on each of June 1, 1981, June 1, 1982, . . . , June

1, 2010, and we model this distribution as Gaussian (characterized by its mean and

standard deviation). This data is processed and released each decade by the NOAA

NCEI [4]. We interpolate these measures using our transport spline technique, ob-

taining Gaussian measures at each point in California. The left side of Figure 3-5

summarizes these measures by their quantiles, while the right side illustrates the be-

havior of our method as we sample increasingly many weather stations. The median

temperature in the top left quantile plot is taken to be equal to the mean temper-

ature due to our assumption that the temperature distribution is Gaussian at every

location. Though there are 484 stations in the NOAA dataset, we used substantially

fewer to better capture the convergence of our method.
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A.3 Figure 3-3

To simulate the 𝑛-body trajectories, we used the Python nBody simulator by Cabrera

& Li, which can be accessed at https://github.com/GabrielSCabrera/nBody.

We created 15 smaller bodies, each of mass 5× 109 and radius 1. Each body was

initialized with a position 𝑥 and a velocity 𝑣 drawn randomly according to

𝑥 ∼ 𝒩
(︁⎡⎣100

100

⎤⎦ ,
⎡⎣30 0

0 20

⎤⎦)︁, 𝑣 ∼ 𝒩
(︁⎡⎣ 10

−20

⎤⎦ ,
⎡⎣20 0

0 10

⎤⎦)︁.
In addition, we also created one larger body, with mass 1011 and radius 10, initialized

at the origin with no initial velocity.

We simulated the trajectories of the planets for 5 seconds sampled every 0.02 sec-

onds. We took the positions of the bodies at 5 evenly spaced times as the knots for our

interpolation. In order to solve the matching problem between planets at neighboring

knot times, we placed a uniform empirical distribution over the planets at both times

and used the Python Optimal Transport (POT) library function ot.emd to compute

the Monge map between these two distributions. We checked post process that the

Monge maps computed were indeed valid matchings (i.e. permutation matrices).

Given the Monge maps between knots, we applied Algorithm 1 to interpolate the

empirical distributions of the bodies using cubic splines. Note that in our cubic spline

reconstruction, it is possible to observe mistakes in the matching, i.e., the Monge map

may not necessarily map a body at one time to the same body at a future time. Such

mismatches seem unavoidable without using a more sophisticated method which takes

into account the physical model in the simulation.
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Appendix B

Details on Natural Cubic Splines

In the main text we require some technical results on natural cubic splines, which we

collect here.

We are given times 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 1 and corresponding points

(𝑥𝑡0 , 𝑥𝑡1 , . . . , 𝑥𝑡𝑁 ) in R𝑑. Our goal is to construct a piecewise cubic polynomial inter-

polation 𝑦 : [0, 1] → R𝑑 which is 𝒞2 smooth.

We parametrize 𝑦 in the following way: for each 𝑖 ∈ [𝑁 ] and for 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖], we

set 𝑦(𝑡) = 𝑦𝑖(𝑡), where

𝑦𝑖(𝑡) = 𝑎𝑖 (𝑡− 𝑡𝑖−1)
3 + 𝑏𝑖 (𝑡− 𝑡𝑖−1)

2 + 𝑐𝑖 (𝑡− 𝑡𝑖−1) + 𝑑𝑖

Computing derivatives,

𝑥𝑡𝑖−1
= 𝑦𝑖(𝑡𝑖−1) = 𝑑𝑖,

𝑥𝑡𝑖 = 𝑦𝑖(𝑡𝑖) = 𝑎𝑖𝛿
3
𝑖 +

𝑚𝑖

2
𝛿2𝑖 + 𝑐𝑖𝛿𝑖 + 𝑑𝑖,

�̇�𝑖(𝑡𝑖−1) = 𝑐𝑖,

�̇�𝑖(𝑡𝑖) = 3𝑎𝑖𝛿
2
𝑖 +𝑚𝑖𝛿𝑖 + 𝑐𝑖,

𝑦𝑖(𝑡𝑖−1) = 𝑚𝑖,

𝑦𝑖(𝑡𝑖) = 6𝑎𝑖𝛿𝑖 +𝑚𝑖

where define 𝛿𝑖 := 𝑡𝑖 − 𝑡𝑖−1 and 𝑚𝑖 := 2𝑏𝑖 (and anticipating the natural boundary
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condition, which asserts 𝑦(0) = 𝑦(1) = 0, we make the convention 𝑚𝑁+1 := 0).

Using continuity of the first and second derivatives of 𝑦 at the knots, we solve for the

coefficients of the polynomial 𝑦𝑖 in terms of the variables 𝑚 and 𝑥:

𝑎𝑖 =
𝑚𝑖+1 −𝑚𝑖

6𝛿𝑖
,

𝑏𝑖 =
𝑚𝑖

2
,

𝑐𝑖 =
𝑥𝑡𝑖 − 𝑥𝑡𝑖−1

𝛿𝑖
− 𝑚𝑖+1 + 2𝑚𝑖

6
𝛿𝑖,

𝑑𝑖 = 𝑥𝑡𝑖−1

Therefore, it suffices to work with the variables 𝑚.

If we plug these equations back into the continuity condition for the first derivative

at the knot, after some algebra we obtain the equations

6Δ𝑖 = 𝛿𝑖𝑚𝑖 + 2(𝛿𝑖 + 𝛿𝑖+1)𝑚𝑖+1 + 𝛿𝑖+2𝑚𝑖+2, 𝑖 = 1, . . . , 𝑁 − 1,

where we have defined the quantities

Δ𝑖 :=
𝑥𝑡𝑖+1

− 𝑥𝑡𝑖
𝛿𝑖+1

−
𝑥𝑡𝑖 − 𝑥𝑡𝑖−1

𝛿𝑖

a proxy for the second derivative of the data points.

We can express these equations in matrix form (including also the natural bound-

ary condition 𝑚1 = 0):

⎡⎢⎢⎢⎢⎢⎢⎣
2(𝛿1 + 𝛿2) 𝛿2

𝛿2
. . . . . .
. . . . . . 𝛿𝑁−1

𝛿𝑁−1 2(𝛿𝑁−1 + 𝛿𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

:=T

𝑚 = 6Δ

The matrix T above is a symmetric tridiagonal matrix of size 𝑁 − 1.1 To obtain

1To be precise, we should write this as the block matrix equation (T⊗ 𝐼𝑑)𝑚 = 6Δ.
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bounds on 𝑚, we will study the inverse T−1 of T.

Lemma 10. Assume that for each 𝑖 ∈ [𝑁 ], we have 𝛼𝛿 ≤ 𝑡𝑖 − 𝑡𝑖−1 ≤ 𝛿. Then, we

have the entrywise bound

⃒⃒⃒
(T−1)𝑖,𝑗

⃒⃒⃒
≤ 1

4𝛼2 (1 + 𝛼)|𝑖−𝑗|−1

1

𝛿
, 𝑖, 𝑗 ∈ [𝑁 − 1]

Proof. We write T = B+D, where

B :=

⎡⎢⎢⎢⎢⎢⎢⎣
0 𝛿2

𝛿2
. . . . . .
. . . . . . 𝛿𝑁−1

𝛿𝑁−1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

D := 2 diag(𝛿1 + 𝛿2, . . . , 𝛿𝑁−1 + 𝛿𝑁)

Therefore,

T−1 = (B+D)−1

= D−1/2(𝐼𝑁−1 +D−1/2BD−1/2)
−1
D−1/2

=
∞∑︁
𝑘=0

(−1)𝑘D−1/2(D−1/2BD−1/2⏟  ⏞  
:=M

)
𝑘
D−1/2

The matrix M is

M =

⎡⎢⎢⎢⎢⎢⎢⎣
0 𝛾2

𝛾2
. . . . . .
. . . . . . 𝛾𝑁−1

𝛾𝑁−1 0

⎤⎥⎥⎥⎥⎥⎥⎦
where we set

𝛾𝑖 :=
𝛿𝑖

2
√︀

(𝛿𝑖−1 + 𝛿𝑖)(𝛿𝑖 + 𝛿𝑖+1)
≤ 1

2(1 + 𝛼)
.
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Since M has non-negative entries, we have the entrywise bound

M𝑘 ≤ 1

{2(1 + 𝛼)}𝑘

⎡⎢⎢⎢⎢⎢⎢⎣
0 1

1
. . . . . .
. . . . . . 1

1 0

⎤⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

:=A

𝑘

The matrix A is the adjacency matrix of the path graph on {1, . . . , 𝑁 −1}, so (A𝑘)𝑖,𝑗

is the number of paths from 𝑖 to 𝑗 of length 𝑘. We can trivially bound this number

by 2𝑘1|𝑖−𝑗|≤𝑘. From this we deduce the entrywise bound

(M𝑘)𝑖,𝑗 ≤
1

(1 + 𝛼)𝑘
1|𝑖−𝑗|≤𝑘

Therefore,

|(T−1)𝑖,𝑗| ≤
∞∑︁
𝑘=0

1

2
√︀
(𝛿𝑖 + 𝛿𝑖+1)(𝛿𝑗 + 𝛿𝑗+1)

1|𝑖−𝑗|≤𝑘

(1 + 𝛼)𝑘

≤ 1

4𝛼𝛿

∞∑︁
𝑘=|𝑖−𝑗|

1

(1 + 𝛼)𝑘
=

1

4𝛼2 (1 + 𝛼)|𝑖−𝑗|−1

1

𝛿

122



Bibliography

[1] Jason Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time ap-
proximation algorithms for optimal transport via sinkhorn iteration. In Advances
in Neural Information Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA,
pages 1961–1971, 2017.

[2] Luigi Ambrosio and Nicola Gigli. A User’s Guide to Optimal Transport, pages
1–155. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[3] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows in metric
spaces and in the space of probability measures. Lectures in Mathematics ETH
Zürich. Birkhäuser Verlag, Basel, second edition, 2008.

[4] Anthony Arguez, Imke Durre, Scott Applequist, Mike Squires, Russell Vose,
Xungang Yin, and Rocky Bilotta. Noaa’s u.s. climate normals (1981-2010) [daily],
2010.

[5] Julio Backhoff-Veraguas, Joaquin Fontbona, Gonzalo Rios, and Felipe Tobar.
Bayesian learning with Wasserstein barycenters. arXiv e-prints, 2018.

[6] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling mod-
ern machine-learning practice and the classical bias–variance trade-off. Proceed-
ings of the National Academy of Sciences, 116(32):15849–15854, 2019.

[7] Jean-David Benamou, Thomas O. Gallouët, and François-Xavier Vialard.
Second-order models for optimal transport and cubic splines on the Wasserstein
space. Found. Comput. Math., 19(5):1113–1143, 2019.

[8] Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the Bures-Wasserstein dis-
tance between positive definite matrices. Expo. Math., 37(2):165–191, 2019.

[9] Jérémie Bigot, Raúl Gouet, Thierry Klein, and Alfredo López. Geodesic PCA in
the Wasserstein space by convex PCA. Ann. Inst. Henri Poincaré Probab. Stat.,
53(1):1–26, 2017.

[10] Jérémie Bigot, Raúl Gouet, Thierry Klein, and Alfredo López. Upper and lower
risk bounds for estimating the Wasserstein barycenter of random measures on
the real line. Electron. J. Stat., 12(2):2253–2289, 2018.

123



[11] Jérémie Bigot, Raúl Gouet, Thierry Klein, and Alfredo López. Geodesic PCA
in the Wasserstein space by convex PCA. Annales de l’Institut Henri Poincaré,
Probabilités et Statistiques, 53(1):1 – 26, 2017.

[12] Garrett Birkhoff and Carl de Boor. Error bounds for spline interpolation. J.
Math. Mech., 13:827–835, 1964.

[13] Geir Bogfjellmo, Klas Modin, and Olivier Verdier. Numerical algorithm for c2-
splines on symmetric spaces. SIAM Journal on Numerical Analysis, 56, 03 2017.

[14] Andrea Braides. Chapter 2 a handbook of 𝛾-convergence. volume 3 of Handbook
of Differential Equations: Stationary Partial Differential Equations, pages 101–
213. North-Holland, 2006.

[15] Yongxin Chen, Giovanni Conforti, and Tryphon T. Georgiou. Measure-valued
spline curves: an optimal transport viewpoint. SIAM J. Math. Anal., 50(6):5947–
5968, 2018.

[16] Yongxin Chen, Giovanni Conforti, Tryphon T Georgiou, and Luigia Ripani.
Multi-marginal schrödinger bridges. In International Conference on Geometric
Science of Information, pages 725–732. Springer, 2019.

[17] Sinho Chewi, Julien Clancy, Thibaut Le Gouic, Philippe Rigollet, George Stepa-
niants, and Austin J. Stromme. Fast and smooth interpolation on wasserstein
space, 2020.

[18] Sinho Chewi, Julien Clancy, Thibaut Le Gouic, Philippe Rigollet, George Stepa-
niants, and Austin Stromme. Fast and smooth interpolation on wasserstein space.
In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th In-
ternational Conference on Artificial Intelligence and Statistics, volume 130 of
Proceedings of Machine Learning Research, pages 3061–3069. PMLR, 13–15 Apr
2021.

[19] Sinho Chewi, Tyler Maunu, Philippe Rigollet, and Austin J. Stromme. Gradient
descent algorithms for Bures-Wasserstein barycenters. In Jacob Abernethy and
Shivani Agarwal, editors, Proceedings of Thirty Third Conference on Learning
Theory, volume 125 of Proceedings of Machine Learning Research, pages 1276–
1304. PMLR, 2020.

[20] Lénaïc Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard.
An interpolating distance between optimal transport and Fisher-Rao metrics.
Found. Comput. Math., 18(1):1–44, 2018.

[21] M. Cuturi and A. Doucet. Fast computation of Wasserstein barycenters. In
Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st International
Conference on Machine Learning, volume 32 of Proceedings of Machine Learning
Research, pages 685–693, Bejing, China, 2014.

124



[22] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport.
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 26. Curran
Associates, Inc., 2013.

[23] Marco Cuturi. Sinkhorn distances: lightspeed computation of optimal transport.
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 26, pages 2292–
2300. Curran Associates, Inc., 2013.

[24] Bin Dai, Yu Wang, John Aston, Gang Hua, and David Wipf. Connections with
robust pca and the role of emergent sparsity in variational autoencoder models.
Journal of Machine Learning Research, 19(41):1–42, 2018.

[25] Amir Dembo and Ofer Zeitouni. Large deviations techniques and applications,
volume 38 of Stochastic Modelling and Applied Probability. Springer-Verlag,
Berlin, 2010. Corrected reprint of the second (1998) edition.

[26] Manfredo P. do Carmo. Riemannian geometry. Mathematics: Theory & Appli-
cations. Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second
Portuguese edition by Francis Flaherty.

[27] Manfredo P. do Carmo. Differential geometry of curves & surfaces. Dover Pub-
lications, Inc., Mineola, NY, 2016.

[28] Nicola Gigli. Second order analysis on (P2(𝑀),𝑊2). Mem. Amer. Math. Soc.,
216(1018):xii+154, 2012.

[29] Pierre-Yves Gousenbourger, Estelle Massart, and P.-A. Absil. Data fitting on
manifolds with composite Bézier-like curves and blended cubic splines. J. Math.
Imaging Vision, 61(5):645–671, 2019.

[30] A. Gramfort, G. Peyré, and M. Cuturi. Fast optimal transport averaging of neu-
roimaging data. In Sebastien Ourselin, Daniel C. Alexander, Carl-Fredrik Westin,
and M. Jorge Cardoso, editors, Information Processing in Medical Imaging, pages
261–272, Cham, 2015. Springer International Publishing.

[31] Charles A. Hall and W. Weston Meyer. Optimal error bounds for cubic spline
interpolation. J. Approximation Theory, 16(2):105–122, 1976.

[32] A. Karimi, L. Ripani, and T. T. Georgiou. Statistical learning in wasserstein
space. IEEE Control Systems Letters, 5(3):899–904, 2021.

[33] S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, and G. K. Rohde. Optimal mass
transport: Signal processing and machine-learning applications. IEEE Signal
Processing Magazine, 34(4):43–59, 2017.

125



[34] Soheil Kolouri and Gustavo K. Rohde. Transport-based single frame super reso-
lution of very low resolution face images. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2015.

[35] Stanislav Kondratyev, Léonard Monsaingeon, and Dmitry Vorotnikov. A new
optimal transport distance on the space of finite Radon measures. Advances in
Differential Equations, 21(11/12):1117 – 1164, 2016.

[36] Thibaut Le Gouic, Quentin Paris, Philippe Rigollet, and Austin J. Stromme. Fast
convergence of empirical barycenters in Alexandrov spaces and the Wasserstein
space. arXiv e-prints, 2019.

[37] Erich L. Lehmann and Joseph P. Romano. Testing statistical hypotheses. Springer
Texts in Statistics. Springer, New York, third edition, 2005.

[38] Christian Léonard. From the Schrödinger problem to the Monge-Kantorovich
problem. J. Funct. Anal., 262(4):1879–1920, 2012.

[39] Christian Léonard. A survey of the Schrödinger problem and some of its con-
nections with optimal transport. Discrete Contin. Dyn. Syst., 34(4):1533–1574,
2014.

[40] Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal transport
in competition with reaction: the Hellinger-Kantorovich distance and geodesic
curves. SIAM J. Math. Anal., 48(4):2869–2911, 2016.

[41] Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal entropy-
transport problems and a new Hellinger-Kantorovich distance between positive
measures. Invent. Math., 211(3):969–1117, 2018.

[42] Stefania Maniglia. Probabilistic representation and uniqueness results for
measure-valued solutions of transport equations. Journal de Mathématiques
Pures et Appliquées, 87(6):601–626, 2007.

[43] Estelle Massart, Julien M. Hendrickx, and P.-A. Absil. Curvature of the manifold
of fixed-rank positive-semidefinite matrices endowed with the Bures-Wasserstein
metric. In Geometric science of information, volume 11712 of Lecture Notes in
Comput. Sci., pages 739–748. Springer, Cham, 2019.

[44] Klas Modin. Geometry of matrix decompositions seen through optimal transport
and information geometry. J. Geom. Mech., 9(3):335–390, 2017.

[45] T Muthukumar. Introduction to 𝛾-convergence.

[46] Lyle Noakes, Greg Heinzinger, and Brad Paden. Cubic splines on curved spaces.
6(4):465–473.

[47] Victor M. Panaretos and Yoav Zemel. Amplitude and phase variation of point
processes. Ann. Statist., 44(2):771–812, 2016.

126



[48] Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations
and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[49] Tomasz Popiel and Lyle Noakes. Bézier curves and c2 interpolation in riemannian
manifolds. Journal of Approximation Theory, 148(2):111–127, 2007.

[50] R. Michael Range. Holomorphic functions and integral representations in several
complex variables, volume 108 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1986.

[51] Aviv Regev, Sarah A Teichmann, Eric S Lander, Ido Amit, Christophe Benoist,
Ewan Birney, Bernd Bodenmiller, Peter Campbell, Piero Carninci, Menna Clat-
worthy, Hans Clevers, Bart Deplancke, Ian Dunham, James Eberwine, Roland
Eils, Wolfgang Enard, Andrew Farmer, Lars Fugger, Berthold Göttgens, Nir
Hacohen, Muzlifah Haniffa, Martin Hemberg, Seung Kim, Paul Klenerman,
Arnold Kriegstein, Ed Lein, Sten Linnarsson, Emma Lundberg, Joakim Lun-
deberg, Partha Majumder, John C Marioni, Miriam Merad, Musa Mhlanga,
Martijn Nawijn, Mihai Netea, Garry Nolan, Dana Pe’er, Anthony Phillipakis,
Chris P Ponting, Stephen Quake, Wolf Reik, Orit Rozenblatt-Rosen, Joshua
Sanes, Rahul Satija, Ton N Schumacher, Alex Shalek, Ehud Shapiro, Padmanee
Sharma, Jay W Shin, Oliver Stegle, Michael Stratton, Michael J T Stubbington,
Fabian J Theis, Matthias Uhlen, Alexander van Oudenaarden, Allon Wagner,
Fiona Watt, Jonathan Weissman, Barbara Wold, Ramnik Xavier, Nir Yosef, and
Human Cell Atlas Meeting Participants. Science forum: The human cell atlas.
eLife, 6:e27041, 2017.

[52] Philippe Rigollet and Jonathan Weed. Uncoupled isotonic regression via mini-
mum Wasserstein deconvolution. Inf. Inference, 8(4):691–717, 2019.

[53] Filippo Santambrogio. Optimal transport for applied mathematicians, vol-
ume 87 of Progress in Nonlinear Differential Equations and their Applications.
Birkhäuser/Springer, Cham, 2015. Calculus of variations, PDEs, and modeling.

[54] Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subrama-
nian, Aryeh Solomon, Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, Lia
Lee, Jenny Chen, Justin Brumbaugh, Philippe Rigollet, Konrad Hochedlinger,
Rudolf Jaenisch, Aviv Regev, and Eric S. Lander. Optimal-transport analysis
of single-cell gene expression identifies developmental trajectories in reprogram-
ming. Cell, 176(4):928 – 943.e22, 2019.

[55] E. Schrödinger. Über die umkehrung der naturgesetze. Sitzungsberichte Preuss.
Akad. Wiss. Berlin. Phys. Math., 144:144–153, 1931.

[56] E. Schrödinger. Sur la théorie relativiste de l’électron et l’interprétation de la
mécanique quantique. Ann. Inst. H. Poincaré, 2(4):269–310, 1932.

[57] Amit Singer. From graph to manifold Laplacian: the convergence rate. Appl.
Comput. Harmon. Anal., 21(1):128–134, 2006.

127



[58] Cédric Villani. Topics in optimal transportation, volume 58 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2003.

[59] Cédric Villani. Optimal transport, volume 338 of Grundlehren der Mathe-
matischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 2009. Old and new.

[60] Grace Wahba. Spline models for observational data. Society for Industrial and
Applied Mathematics, 1990.

[61] Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates
of convergence of empirical measures in Wasserstein distance. Bernoulli,
25(4A):2620 – 2648, 2019.

128


	Introduction
	Background on Optimal Transport
	Duality
	The Wasserstein Space W2
	Topology
	Curves
	Geodesics
	Riemannian Metric
	Covariant Derivative


	Splines in W2
	Introduction
	Prior Work
	Contributions

	Background on Splines
	Results on P-splines and E-splines
	Proof of Proposition 4
	Proof of Proposition 5

	Transport Splines
	Relationship to E-Splines in One Dimension

	The Gaussian Case
	Failure of Equality Between Transport Splines and E-Splines
	Approximation Guarantees
	Proof of the Main Theorem

	Thin-Plate Splines

	Schrodinger's Splines
	Introduction and Problem Formulations
	The Interpolation Problem
	The Endpoint Problem

	Technical Background
	-Convergence
	Large Deviation Principles

	Results
	The Interpolation Problem
	The Endpoint Problem


	Splines in `39`42`"613A``45`47`"603AWFR
	Unbalanced Optimal Transport
	The Cone Space
	The Covariant Derivative

	Splines
	Transport Splines

	Details for Numerical Experiments
	Figure 3-1
	Figure 3-5
	Figure 3-3

	Details on Natural Cubic Splines
	Bibliography

