
Sancus: Cryptographic Audits for Virtual Currency
Institutions

by

Ravi Rahman

SB, Electrical Engineering and Computer Science, Massachusetts
Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2021

Certified by. .
Lalana Kagal

Principal Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Sancus: Cryptographic Audits for Virtual Currency

Institutions

by

Ravi Rahman

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Sancus introduces fully accountable, privacy preserving, cryptographic audits for
virtual currency institutions – entities that allow users to deposit, exchange, and
withdraw blockchain-based funds. These audits, verifiable by the public, provide
irrefutable proofs that institutions not only have accounted for all customer transac-
tions but also own at least as much in blockchain assets as they owe to their users.
Sancus addresses major limitations in previous works for blockchain auditing: it
supports institutions that offer multiple currencies on multiple blockchains, includ-
ing Bitcoin and Ethereum; it follows security best practices and uses offline wallets;
it preserves privacy for the institutions and their customers by hiding transaction
amounts and blockchain addresses; and it produces definitive proofs of solvency as
individual customers take no part in the auditing process. Evaluation of our refer-
ence implementation of Sancus demonstrated that the audit generation time, audit
validation time, and size of audits scale linearly with the number of users, number
of transactions, and privacy parameters. With efficient runtimes for audit generation
and validation in a multi-threaded environment and megabyte order-of-magnitude au-
dit sizes, Sancus offers a promising, new approach for continuous auditing of virtual
currency institutions.

Thesis Supervisor: Lalana Kagal
Title: Principal Research Scientist

3

4

Acknowledgments

First and foremost, I would like to thank my advisor, Dr. Lalana Kagal. I joined

her lab in 2018 for my Advanced Undergraduate Researching Opportunities Project

(SuperUROP) on representing legal agreements through blockchain smart contracts.

This opportunity introduced me to blockchain systems and led to the idea for Sancus.

I am grateful to have had such a thoughtful, supportive, and responsive advisor whose

guidance was invaluable to this project.

I would also like to thank the undergraduate researchers (UROPs) – Qiong Huang,

Lay Jain, Anne Ouyang, and Ben Wolz – who implemented key components of the

system. Qiong built a fully-functioning web client which has allowed us to demon-

strate the usability of Sancus. Lay’s and Anne’s research on developing extensions to

support loans and enhance privacy contributed to a more secure and flexible system

design. Ben’s work on implementing the auditor, in addition to evaluating the en-

tire system, was crucial to proving Sancus’s implementation actually works. Building

and demonstrating a full implementation of Sancus, in just one semester, would not

having been possible without this dedicated and talented team.

Finally, I would like to thank my parents – Lynda Furash and Swapan Rahman

– for their encouragement to pursue my Master of Engineering degree and support

through this process. It has been a rewarding experience – one that will be the

foundation for my future.

5

6

Contents

1 Introduction 13

2 Background 15

2.1 Blockchains . 15

2.1.1 Bitcoin . 16

2.1.2 Ethereum . 17

2.2 Challenges of Virtual Currency . 17

2.2.1 Loss of Credentials . 17

2.2.2 Transaction Privacy . 18

2.2.3 Transaction Fees . 18

2.2.4 Transaction Throughput . 18

2.2.5 Accountability . 18

2.3 Zero Knowledge Proofs . 19

2.3.1 Elliptic Curve Cryptography 19

2.3.2 Pedersen Commitments . 20

2.3.3 Non-Interactive Zero Knowledge Proofs (NIZKs) 20

3 Related Works 21

3.1 Proofs of Solvency . 21

3.1.1 Maxwell Protocol . 21

3.1.2 Provisions . 23

3.2 Auditable Blockchains . 24

7

4 System Design 25

4.1 Features . 25

4.1.1 Compatible with Bitcoin and Ethereum 25

4.1.2 Cold Wallets . 25

4.1.3 Privacy Preserving . 26

4.1.4 Fully Accountable . 26

4.2 Trust Model . 27

4.3 Zero Knowledge Algorithms . 27

4.3.1 Key Permutation . 28

4.3.2 Key Bit . 28

4.3.3 Currency Conversion . 28

4.3.4 Blockchain Balance . 29

4.3.5 Less Than Equal . 30

4.4 System Components . 31

4.4.1 Blockchain Nodes, IPFS Nodes, and the Audit Smart Contract 31

4.4.2 Institutional Web Server . 33

4.4.3 Web Client . 33

4.4.4 Auditor . 33

4.5 System Parameters . 34

4.5.1 Base Currency . 34

4.5.2 Alternative Generator Point 34

4.5.3 Currency Precision . 34

4.5.4 Maximum Balance per User and Maximum Number of Users . 34

4.5.5 Exchange Rate Tolerance . 35

4.5.6 Audit Smart Contract . 35

4.6 Data Models . 35

4.7 Client-Server Operations . 37

4.7.1 Customer Registration . 37

4.7.2 Account Creation . 37

4.7.3 Deposits . 37

8

4.7.4 Exchanges . 39

4.7.5 Withdrawals . 41

4.8 Audit Generation . 43

4.8.1 Audit Metadata . 44

4.8.2 Proof of Liabilities . 44

4.8.3 Proof of Assets . 47

4.8.4 Proof of Solvency . 49

4.9 Auditor Verification . 49

4.9.1 Proof of Liabilities . 51

4.9.2 Proof of Assets . 51

4.9.3 Proof of Solvency . 51

4.10 Auditor Remote Procedure Calls . 51

4.10.1 Get Key Account . 52

4.10.2 Is Transaction New . 52

4.11 Security Analysis . 52

4.11.1 Delay or Refusal to Process Transactions 52

4.11.2 Loss of Account Access . 53

4.11.3 Loss of Keys . 53

4.11.4 Collusion Across Institutions 54

4.12 Privacy Analysis . 54

4.12.1 Deposit Addresses . 55

4.12.2 Withdrawal Anonymity Set 55

4.12.3 Transaction History . 55

4.12.4 Insolvent Users . 55

4.12.5 Auditor RPCs . 56

5 Implementation 57

5.1 Blockchains and Currencies Supported 57

5.2 System Components . 57

5.2.1 Institutional Server . 57

9

5.2.2 Audit . 58

5.2.3 Auditor . 58

5.3 Web Client . 58

6 Evaluation 63

7 Future Work and Conclusion 67

7.1 Loans, Interest, and Margin Calls . 67

7.2 Anonymity Set Construction . 69

7.3 Transaction Expiration and Guaranteed Execution 69

7.4 Conclusion . 70

10

List of Figures

4-1 System Architecture . 32

4-2 Procedure: Deposits . 38

4-3 Procedure: Exchanges . 40

4-4 Procedure: Withdrawals . 42

5-1 Client: Customer Registration . 59

5-2 Client: Deposits . 60

5-3 Client: Exchanges . 61

5-4 Client: Withdrawals . 62

6-1 Results: Number of Users . 64

6-2 Results: Number of Transactions . 64

6-3 Results: Number of Deposit Keys . 65

6-4 Results: Size of Deposit Key Decoy Sets 65

6-5 Results: Size of Account Delta Group Anonymity Sets 65

11

12

Chapter 1

Introduction

Public blockchains, such as Bitcoin [29] and Ethereum [41], introduced an alternative

to the traditional financial system. Exchanges such as Coinbase 1 and Gemini 2 enable

users to trade virtual currencies for fiat currencies. BitPay 3 and BlockCard 4 offer

debit cards backed by virtual currency, which enable their customers to effectively use

their virtual currency holdings as checking accounts. More recently, virtual currency

lending platforms such as BlockFi 5 and Nexo 6 issue loans secured by virtual currency.

However, the virtual currency industry does not share the same oversight and

protections extended to traditional financial institutions. In the United States, there

is no federal regulatory framework for virtual currency institutions. Unlike bank de-

posits which are insured by the Federal Deposit Insurance Corporation [15], virtual

currency deposits are not insured by government entities. Individual states have a

patchwork of virtual currency regulation. For example, New York developed BitLi-

cense [31]. In September 2020, the Conference of State Bank Supervisors (CSBS)

introduced a multi-state regulatory framework for money services businesses, which

include virtual currency firms [35]. This system aims to standardize all state virtual

currency regulations. However, the CSBS framework does not offer the same pro-

1https://coinbase.com
2https://gemini.com
3https://bitpay.com
4https://getblockcard.com
5https://blockfi.com
6https://nexo.io

13

https://coinbase.com
https://gemini.com
https://bitpay.com
https://getblockcard.com
https://blockfi.com
https://nexo.io

tections afforded by federal banking regulations, such as insurance on stored funds

[16].

Moreover, the open design of public blockchains have enabled criminal hackers to

steal funds from unsuspecting users. Blockchain accounts do not reveal real-world

identities, and the decentralized control combined with a cryptographic protocol pre-

vents transactions from being reverted. These technical limitations, combined with

a lack of regulatory oversight, illustrate why the blockchain ecosystem must adopt

new approaches for trust and accountability to compete with the traditional financial

system.

We introduce Sancus, a system that produces irrefutable audits for virtual cur-

rency institutions. We define virtual currency institutions as entities that allow users

to deposit, exchange, and withdraw blockchain-based funds. Audits produced by San-

cus are verifiable by the public and prove that institutions not only have accounted

for all customer transactions but also own at least as much in blockchain assets as

they owe to their users. Unlike previous works, Sancus supports institutions that

offer multiple currencies on multiple blockchains, including Bitcoin and Ethereum;

it follows security best practices and uses offline wallets; it preserves privacy for the

institutions and their customers; and it produces definitive proofs of solvency as in-

dividual customers take no part in the auditing process. Unlike traditional auditors,

Sancus runs on off-the-shelf computing equipment, and audits can be performed as

frequently as every new block (e.g. for Bitcoin, every 10 minutes).

Chapter 2 provides a background of blockchain systems and the challenges of a

blockchain-based financial system. Chapter 3 describes related works in the field.

Chapter 4 presents the capabilities and specification for Sancus. Chapter 5 discusses

our reference implementation. We evaluate our implementation in chapter 6 and

conclude with possible extensions in chapter 7.

14

Chapter 2

Background

Sancus extends upon public blockchains and zero knowledge proofs to audit virtual

currency institutions – entities that allow users to deposit, exchange, and withdraw

blockchain-based funds.

2.1 Blockchains

A blockchain is a trustless, decentralized, append-only, globally synchronized ledger.

A network of independent nodes maintain a blockchain. Records appended to a

blockchain, called transactions, are bundled together into blocks. While any type of

data can be appended to a blockchain, records typically denote a transfer of funds

between blockchain users. The nodes collectively guarantee that all new transactions

are consistent with the existing chain – for example, that funds are not being double

spent.

Blockchains offer a promising platform for a new financial system. The append-

only design guarantees that transactions cannot be reverted. Combined with a glob-

ally synchronized state, blockchains prohibit users from spending the same funds

twice. The public record of blockchain transactions enables anyone to validate that

each appended record was a valid transition from the previous state. Competition

among miners provides a competitive market to minimize transaction fees. Unlike the

traditional financial system which requires users to trust many entities, such as banks,

15

auditors, and courts, a blockchain-based financial system can replace this network of

trusted entities with strong cryptographic proofs.

2.1.1 Bitcoin

The Bitcoin white-paper in 2009 [29] introduced a novel computational platform,

called a blockchain.

Anyone can become a Bitcoin user by creating a random 256 bit private crypto-

graphic key, computing the corresponding public key on the secp256k1 elliptic curve,

and following the Bitcoin specification to reduce the public key into a Bitcoin ad-

dress [40]. This authentication scheme does not require any centralized authority to

approve new users. Users must sign their transactions with their private keys. Via

public key cryptography, users can share their public keys. These signatures prove

that the owners authorized the transactions which spend funds associated with their

addresses.

Most transactions involve transferring funds from one account to another account.

However, the Bitcoin protocol, via Bitcoin Script, supports complex transaction au-

thorization. For example, via a multi-signature wallet, one can specify that a trans-

action is only valid if a certain number of signatures have been obtained.

The Bitcoin protocol requires that the entire transaction history be public, so

one can verify that there are sufficient funds available to be spent. While Bitcoin’s

public key authentication does not reveal real-world identities and thereby preserves

anonymity, Bitcoin does not preserve privacy. Anyone can see any user’s transactions,

including transaction recipients and amounts.

A novel contribution from Bitcoin is its proof-of-work protocol. Proof-of-work

requires presenting a solution to a computational hard-to-solve but easy-to-verify

problem. Bitcoin uses the hashcash function, which involves finding a nonce, that

when appended to an input, produces a hash where first 𝑘 bits are 0 [39]. As long as

honest miners contribute a majority of the computational power, it is not feasible for

a minority of dishonest miners to permanently rewrite the transaction history.

To encourage users to become miners and maintain the state of the blockchain,

16

the Bitcoin protocol rewards miners with Bitcoin for mining new blocks. In addition,

individual transactions include transaction fees which go to the miners. This scheme

enables market-based pricing for Bitcoin transactions.

2.1.2 Ethereum

Ethereum, launched in 2015 [41], introduced a new blockchain that supports arbitrary,

Turing-complete transactions. These transactions, called smart contracts, support on-

chain storage, can call functions in other smart contracts, and can spawn new smart

contracts.

Smart contracts support many applications, including Ethereum-based tokens.

The ERC-20 protocol defines a common interface for Ethereum-based tokens [36].

Such tokens typically represent one’s claim to another asset, such as ownership in a

company or hard currencies stored in an institution’s account.

Similar to Bitcoin, Ethereum uses the secp256k1 elleptic curve, has a public

transaction history, and uses a proof of work protocol.

2.2 Challenges of Virtual Currency

There are multiple challenges with building a financial system on the Bitcoin or

Ethereum blockchains.

2.2.1 Loss of Credentials

It is impossible to spend the virtual currency stored at a given address without the

corresponding private key. Should users lose their private keys, their funds would

also be lost – there is no equivalent of a “reset password” operation, as is standard in

online banking. Likewise, should hackers acquire users’ private keys, they would be

able to steal users’ virtual currency. Centralized virtual currency platforms overcame

this challenge by requiring that customers store their virtual currency in accounts

controlled by the platform. Thus, the platforms – and not the users themselves – are

17

responsible for secure key storage.

2.2.2 Transaction Privacy

Suppose Alice wants to send virtual currency to Bob. When Alice asks for Bob’s

virtual currency address, she would be able to see every other transaction for Bob’s

address. Likewise, when Bob receives Alice’s virtual currency, he would be able to

see Alice’s transaction history. While such privacy concerns are mitigated because

the blockchain does not store real-world identities, and one can create infinitely many

blockchain addresses, the public transaction graph of blockchains reveals related ac-

counts and transaction amounts. Virtual currency institutions provide privacy by

pooling customer funds together.

2.2.3 Transaction Fees

To encourage a miner to include a transaction in a block, the transaction must include

a fee for the miner. The fee is independent of the transaction amount. As miners

prioritize transactions by the fee, paying a higher fee results in faster transaction

processing.

2.2.4 Transaction Throughput

Bitcoin and Ethereum collectively process fewer than 20 transactions per second, for

a maximum daily transaction volume of 1.7 million [4, 5]. In comparison, in 2018, the

ACH networks process 63 million transactions per day [28]. Ongoing improvements to

the blockchain, such as lightning networks, promise to increase transaction throughput

[33]. However, lightning networks require users to join and commit funds to the same

network, thereby preventing funds from otherwise being spent on the blockchain.

2.2.5 Accountability

In traditional audits, such as those performed on publicly-traded financial institu-

tions, trusted auditors view confidential records and summarize their non-confidential

18

findings in public statements. However, few traditional auditors offer services for cen-

tralized virtual currency institutions, and privately held companies are not inclined

to pay for auditors absent regulatory requirements. As such, centralized virtual cur-

rency institutions have limited oversight. While some institutions such as Coinbase

and Gemini voluntarily maintain insurance to cover theft of virtual currency [9, 19],

such insurance may be insufficient to cover all customer deposits. As such, users

must rely on the public statements put forth by these companies and the reputation

of their investors. This trust model is weak relative to the auditing and regulatory

requirements imposed on banks.

2.3 Zero Knowledge Proofs

Zero knowledge proofs (ZKPs) enable one to attest to knowledge of a statement

without revealing the statement itself. For example, suppose Alice has a computer

secured by a password, which she tells to Bob. Charlie would like to know whether

Bob can access Alice’s computer. While it would be trivial for Bob to give Charlie

the password, which Charlie could then verify, Charlie would then have access to all

of Alice’s files. Instead, Charlie could present a challenge to Bob, such as asking

him for the content of the latest email Charlie sent to Alice. Bob could then log into

Alice’s computer, retrieve this email, and give it to Charlie. Charlie, knowing his own

emails, could easily verify that Bob is telling the truth. In this example, Bob used a

zero-knowledge proof to demonstrate that he knows a statement (Alice’s password)

without revealing what it is.

In practice, ZKPs use NP-hard algorithms that have trapdoor functions. These

algorithms are identical to those used in public key cryptography.

2.3.1 Elliptic Curve Cryptography

We focus on elliptic curve cryptography (ECC) [22] zero knowledge proofs, as ECC

is also used by blockchain systems. For convention, Sancus uses capital letters to

represent elliptic curve points, lowercase letters to represent scalars, and polynomial

19

notation to represent operations. The Elliptic Curve Discrete Logarithm Problem

forms the basis of ECC security: there is no known efficient (polynomial) solution

to solve for 𝑥 given 𝑌 and 𝐺 in the equation 𝑌 = 𝑥𝐺. ECC permits efficient point

multiplication (𝑌 = 𝑥𝐺) and addition (𝑍 = 𝑋 + 𝑌). It also allows for homomorphic

addition (given 𝑌1 = 𝑥1𝐺1 + 𝑥2𝐺2 and 𝑌2 = 𝑥3𝐺1 + 𝑥4𝐺2, then 𝑌1 + 𝑌2 = (𝑥1 +

𝑥3)𝐺1 + (𝑥2 + 𝑥4)𝐺2).

2.3.2 Pedersen Commitments

For an elliptic curve group G of prime order 𝑞, consider two generators (points)

{𝐺,𝐻} ∈ G and scalars {𝑥, 𝑟} ∈ Z𝑞, where the relative discrete logarithm between

𝐺 and 𝐻 is unknown. The Pedersen commitment 𝑌 = 𝑥𝐺 + 𝑟𝐻 represents a com-

mitment to the value 𝑥 with 𝑟
$←− Z𝑞 [32]. Since 𝑌 is any point on the curve, it is

perfectly hiding; 𝑌 does not reveal any information about 𝑥. One can later “open” a

commitment by revealing 𝑥 and 𝑟. Because of the Elliptic Curve Discrete Logarithm

Problem, it is infeasible to open the commitment without knowing both 𝑥 and 𝑟.

Because Pedersen commitments are based upon ECC, they support point multipli-

cation and homomorphic addition on committed values. Sancus uses these properties

to build commitments, which are later used in zero-knowledge proofs.

2.3.3 Non-Interactive Zero Knowledge Proofs (NIZKs)

Traditional zero knowledge proofs require an interactive process, called the Sigma

protocol. First, the prover commits to a random value. Second, the verifier presents

a random challenge to the prover. Finally, the prover responds to the challenge to

complete the proof. To eliminate the challenge-response step in the Sigma protocol,

the prover can use the Fiat-Shamir characteristic to select an appropriate challenge

[17]. The verifier then checks that the challenge was properly computed. The Sigma

protocol otherwise proceeds as before. Sancus utilizes this technique to form non-

interactive zero-knowledge proofs (NIZKs), as they can be computed once and verified

by anyone.

20

Chapter 3

Related Works

Sancus extends upon existing works regarding zero-knowledge proofs, privacy pre-

serving blockchains, and decentralized information storage and sharing.

3.1 Proofs of Solvency

A proof of solvency demonstrates that a financial institution has sufficient assets to

satisfy its liabilities. This proof is generally broken into two components: a proof of

liabilities and a proof of assets. The proof of liabilities ensures that the institution

properly accounted for all customer-held funds; the proof of assets ensures that the

institution has the private keys to spend its assets. Finally, the proof of solvency

ensures that the amount from the proof of assets is equal to or greater than the

amount from the proof of liabilities.

3.1.1 Maxwell Protocol

The Maxwell protocol (summarized in [12]) introduced a protocol for a proof of li-

abilities. It requires the institution to publish a Merkle tree. Each node on the

tree contains a customer’s balance and a customer-verifiable signature consisting of a

nonce, the customer’s balance, and the customer ID. Parent nodes sum together the

balance of the children and concatenate the signatures. The root node contains the

21

sum of all customer deposits, or institutional liabilities. This node is published in a

well-known location.

For a customer to verify this proof of liabilities, the institution must reveal to the

customer the customer’s own ID, node nonce, and the hashes of the sibling nodes on

the path between the customer’s node and the root node. The customer then recom-

putes the Merkle tree hashes for the nodes on this path. So long as the signatures

hold, then one knows that the institution properly included the node in the proof.

To prove sufficient assets, the institution demonstrates control of the private en-

cryption keys that correspond to their virtual currency addresses. Methods to demon-

strate control include moving well-selected amounts of virtual currencies from one

address to another, or signing a message (such as the proof of liabilities) with the

encryption keys. Such a proof is trivial to verify with public-key cryptography. One

can compute the total assets by summing together the account balances that corre-

spond to the addresses included in the proof. Account balances are public knowledge

on the blockchain.

While simple to implement and efficient to verify, this protocol is weak and leaks

information. Specifically, it requires each customer to verify that one’s own balance

was included, which novice users may not do. The protocol is also not foolproof. In

the case of a disagreement about the customer’s balance, it does not resolve whether

the institution – or the customer – is right. In addition, the proof of liabilities reveals

significant information about the institution – specifically, the number of customers

and the balances of individual, anonymous sibling customers. The proof of assets

requires institutions to publicize their account addresses, which can make them more

susceptible to hacking, and to have the private keys available for each audit, which

prohibits automated audits when using cold (offline) storage.

Notwithstanding these limitations, the Maxwell Protocol’s simplicity enabled it

to be used in practice. Kraken [21], a virtual currency exchange, used a deviation of

this protocol in 2014 [24]. A trusted auditor computed the sum of Kraken’s virtual

currency reserves, and given a list of customer accounts and balances, verified that

the total sum of customer deposits was approximately equal to the amount of the

22

reserves. The auditor then published the root note of the Merkle tree used in the

Maxwell protocol. Karekn offered users the amount reported to auditors, the hash

function, and the hashes of adjacent nodes. Customers could then verify that their

nodes’ hashes are consistent with the root hash of the Merkle tree published by the

auditor, and by extension, that their balances are properly included in the audit.

3.1.2 Provisions

Provisions [12] presents a privacy-preserving proof of solvency for Bitcoin exchanges.

This protocol reveals neither customer balances nor the total liabilities of the insti-

tution. Moreover, it conceals exchanges’ addresses and assets.

For the proof of liabilities, Provisions publishes a Pedersen commitment to each

customer’s balance, which customers can verify independently. The homomorphic

sum of these commitments represents the cumulative liabilities of the institution.

Provision’s proof of assets utilizes anonymity sets, which contain all addresses that

belong to the institution and “decoy” addresses that do not belong to the institution.

Each address has a Pedersen commitment, which is to the address’s balance only if

the institution knows the corresponding private key. Otherwise, this commitment is

to 0. NIZKs prove correct construction of these commitments and ensure that the

“decoy” addresses do not contribute to the committed balance. The sum of these

commitments forms the proof of assets. A zero-knowledge range proof (adapted from

Mao [27]) between the proof of liabilities and assets completes the proof of solvency.

While Provisions introduced a novel, privacy-preserving approach, it has signifi-

cant limitations. First, it only supports one blockchain; many institutions operate on

multiple blockchains. Second, this protocol requires all customers to ensure that their

balances are properly recorded in the proof of liabilities. Even if customers check their

balances and notice a discrepancy, Provisions does not resolve who is correct: is it a

greedy customer or a malicious exchange? Given the requirement for customer par-

ticipation, it is impossible to resolve such a dispute in a privacy-preserving manner.

These weaknesses render the protocol insufficient to replace the role of a traditional

auditor.

23

3.2 Auditable Blockchains

zkLedger introduces a new blockchain that enables private transactions and audits

on a public ledger [30]. It enables participants to transfer virtual currency among

each-other without revealing transaction parties or amounts. The main contribution

of zkLedger is the type of zero-knowledge audits it supports. Through generalized

Schnorr proofs [34], participants on zkLedger can respond to complex auditing queries

in a privacy-preserving manner.

Because of the overhead of on-chain zero-knowledge transactions, zkLedger through-

put decreases significantly as the number of banks grows. With 10 banks, the through-

put decreases to 2 transactions per second. In addition, zkLedger focuses on bank-

level auditing and does not provide breakdowns for individual customers. Because of

the limited transaction bandwidth, it is infeasible to represent each individual cus-

tomer as a bank. Finally, zkLedger is incompatible with Bitcoin and Ethereum and

cannot be used on top of existing blockchains. While an interesting design, zkLedger’s

limitations prevent its real-world use.

24

Chapter 4

System Design

We present the design of Sancus: a protocol for performing cryptographic audits for

virtual currency institutions. Unlike other works, Sancus generates irrefutable proofs

of solvency, and customers do not participate in the auditing process. In addition to

a detailed description of Sancus, we briefly discuss the security and privacy of the

design and offer techniques to mitigate its attack surface.

4.1 Features

4.1.1 Compatible with Bitcoin and Ethereum

Sancus supports the two largest blockchains by market capital, Bitcoin and Ethereum

[10], and is extendable to other blockchains that use the SECP256K1 elliptic curve.

For Ethereum, Sancus supports ETH and ERC-20 smart contract tokens [36].

4.1.2 Cold Wallets

To mitigate the risk of hacking, centralized virtual currency institutions store cus-

tomer funds in offline, cold storage wallets. The private keys for such wallets are not

stored on any internet-connected computer, thereby minimizing the attack surface.

For example, Coinbase only stores 2% of virtual currencies in online accounts to sup-

port its typical transaction volume [9]. Should withdrawal requests exceed this figure,

25

human intervention would be needed to transfer virtual currency into online wallets.

Sancus supports cold-wallet storage and, unlike Provisions [12], does not require an

online private key to prove solvency.

4.1.3 Privacy Preserving

Centralized virtual currency institutions mask the transaction patterns of their cus-

tomers by issuing withdrawals from different accounts than those into which customers

made deposits. As such, observers cannot distinguish individual customers. More-

over, because institutions store their funds in multiple accounts, blockchain users do

not know the institutions’ total assets, which may be considered proprietary.

Sancus offers strong privacy protections, where all account balances are encrypted

via Pedersen commitments, and blockchain addresses are published as larger anonymity

sets which provide plausible deniability. Sancus adapts the privacy-preserving tech-

niques from Provisions [12].

4.1.4 Fully Accountable

Previous works, such as Provisions [12], provided a mechanism for proving the assets

exchanges control are equal to or greater than the value of their self-reported customer

deposits. However, this scheme does not address a scenario where an exchange and

a customer disagree on one’s balance. For example, an institution in Provisions

could selectively ignore customer deposits, such that the reported liabilities would

be artificially lower. The protocol does not provide a mechanism to resolve such a

disagreement between a customer and an institution.

Sancus is fully accountable. It is impossible for an institution to hide customer de-

posits or steal customer funds without being detected. Unlike in previous works where

customers participated in the auditing process and disputes would be left unresolved,

Sancus does not require customer participation. As such, it produces irrefutable

audits that fully account for all liabilities and assets of an institution.

26

4.2 Trust Model

Sancus applies a semi-honest trust model for institutions. In this trust model, in-

stitutions must follow the protocol, but they can attempt to cheat while doing so.

Specifically, we assume that institutions would steal customer funds only if they would

not be caught on any subsequent audit. However, because of the semi-honest trust

model, we assume that they will always publish a properly-formatted audit on a

regular cadence.

Auditors, who can be any member of the public, are assumed to be honest-but-

curious. We assume that they will try to learn private information about the cus-

tomers or institutions. Since anyone can verify the audit, we assume that auditors will

validate the audit properly. One could easily check an auditor’s work by validating

the audit oneself.

Customers are not trusted. Sancus assumes that customers may provide mal-

formed inputs or attempt to make illegal transactions (e.g. withdraw more funds

than they have). The institution and auditors are responsible for validating all cus-

tomer requests and rejecting those that are invalid.

4.3 Zero Knowledge Algorithms

Sancus defines five zero knowledge algorithms. They describe how to generate Ped-

ersen commitments and accompanying NIZKs which are used throughout the audit.

All operations are in the SECP256K1 elliptic curve group G of prime order 𝑞

with generator point 𝐺 ∈ G. 𝐻 ∈ G denotes a second (constant) generator point,

where it is presumed that the discrete logarithm between 𝐺 and 𝐻 is unknown. Proof

statements are presented in Camenisch-Stadler notation [8]. For example, 𝑃𝐾{(𝑥) :

𝑌 = 𝑥𝐺} denotes a proof of knowledge of 𝑥 given 𝑌 and 𝐺 where 𝑌 = 𝑥𝐺. We

use the result of a proof statement to informally represent its non-interactive zero

knowledge proof (NIZK), which can be serialized and later verified.

27

4.3.1 Key Permutation

Algorithm 1 picks a permutation 𝑟𝑌 * and uses this value to permute a public key 𝑌

into 𝑌 *. This algorithm also produces a zero knowledge proof of the permutation

𝑁𝐼𝑍𝐾𝑌 * . Proving 𝑁𝐼𝑍𝐾𝑌 * follows from section 2.1 in Cramer et al. [11]. In

addition, given the private key 𝑥 corresponding to the public key 𝑌 (such that 𝑌 =

𝑥𝐺), it follows that the permuted private key 𝑥* = 𝑟𝑌 *𝑥, and 𝑌 * = 𝑟𝑌 *𝑥𝐺.

Algorithm 1: Key Permutation Algorithm
Input: 𝑌 ∈ G, the public key
Output: 𝑌 *, the permuted public key
Output: 𝑟𝑌 * , the permutation
Output: 𝑁𝐼𝑍𝐾𝑌 * , the NIZK
begin

𝑟𝑌 *
$←− Z𝑞;

𝑌 * ← 𝑟𝑌 *𝑌 ;
𝑁𝐼𝑍𝐾𝑌 * ← 𝑃𝐾{(𝑟𝑌 *) : (𝑌 * = 𝑟𝑌 *𝑌)};

end

4.3.2 Key Bit

Algorithm 2 binds a binary value 𝑠 with an elliptic curve point 𝑌 * representing

a permuted public key. It returns a binding Pedersen commitment 𝐿 and a zero

knowledge proof 𝑁𝐼𝑍𝐾𝐿 demonstrating knowledge of 𝑠 and that 𝑠 ∈ {0, 1}. Proving

𝑁𝐼𝑍𝐾𝐿 follows from Boudot [6], section 1.2.1. In Sancus, 𝑌 * is always a permuted

public key from the key permutation algorithm (algorithm 1).

4.3.3 Currency Conversion

Algorithm 3 uses a publicly-known exchange rate 𝑒𝑛
𝑒𝑑

to convert a Pedersen commit-

ment 𝐶 representing a value 𝑥 in one currency into a Pedersen commitment 𝐶 ′ repre-

senting an equivalent value 𝑥′ = 𝑥 𝑒𝑑
𝑒𝑛

in a second currency. This procedure produces

a zero knowledge proof 𝑁𝐼𝑍𝐾𝐶′ demonstrating such conversion was done correctly.

Specifically, 𝑁𝐼𝑍𝐾𝐶′ demonstrates that 𝑥′ ∈ (𝑥 𝑒𝑑
𝑒𝑛
− 1;𝑥 𝑒𝑑

𝑒𝑛
]. Since 𝑥′ ∈ Z𝑞, there is

only one possible value in that range.

28

Algorithm 2: Key Bit Algorithm
Input: 𝑌 * ∈ G, the permuted public key
Input: 𝑠 ∈ {0, 1}, the secret bit
Output: 𝐿, a Pedersen commitment for 𝑠
Output: 𝑟𝐿, the random value for 𝐿
Output: 𝑁𝐼𝑍𝐾𝐿, the NIZK
begin

𝑟𝐿
$←− Z𝑞;

𝐿← 𝑠𝑌 * + 𝑟𝐿𝐻;
𝑁𝐼𝑍𝐾𝐿 ← 𝑃𝐾{(𝑠, 𝑟𝐿) : (𝐿 = 𝑠𝑌 * + 𝑟𝐿𝐻) ∧ (𝑠 ∈ {0, 1})};

end

The exchange rate 𝑒𝑛
𝑒𝑑

represents the cost for one unit of the second currency in

terms of the first currency; hence, one receives 𝑒𝑑
𝑒𝑛

units of the second currency for

each unit of the first currency. Proving 𝑁𝐼𝑍𝐾𝐶′ follows from Camenisch et al. [7].

Algorithm 3: Currency Conversion Algorithm
Input: 𝑒 = 𝑒𝑛∈Z𝑞

𝑒𝑑∈Z𝑞
, the exchange rate as a fraction

Input: {𝐶, 𝑥, 𝑟𝐶}|𝐶 = 𝑥𝐺+ 𝑟𝐶𝐻, the revealed Pedersen commitment for the
currency being converted

Output: {𝐶 ′, 𝑥′, 𝑟′𝐶}, the revealed Pedersen commitment for the resulting
currency

Output: 𝑁𝐼𝑍𝐾𝐶′ , the NIZK
begin

𝑥′ ← 𝑥 𝑒𝑑
𝑒𝑛

;

𝑟′𝐶
$←− Z𝑞;

𝐶 ′ ← 𝑥′𝐺+ 𝑟′𝐶𝐻;
𝑥* ← 𝑒𝑑𝑥− 𝑒𝑛𝑥

′;
𝑟*𝐶 ← 𝑒𝑑𝑟𝐶 − 𝑒𝑛𝑟

′
𝐶 ;

𝐶* ← 𝑥*𝐺+ 𝑟*𝐶𝐻;
𝑁𝐼𝑍𝐾𝐶′ ← 𝑃𝐾{(𝑥*, 𝑟*𝐶) : (𝐶

* = 𝑒𝑑𝐶 − 𝑒𝑛𝐶
′) ∧ (𝐶* =

𝑥*𝐺+ 𝑟*𝐶𝐻) ∧ (𝑥* ∈ [0, 𝑒𝑛))};
end

4.3.4 Blockchain Balance

Algorithm 4 takes a value 𝑏 ∈ Z𝑞 and produces a Pedersen commitment 𝑃 which

is to 𝑏 ∈ Z𝑞 only if a discrete logarithm 𝑥* ∈ Z𝑞 for 𝑌 * ∈ G is known; otherwise,

29

𝑃 is a Pedersen commitment to 0. It also returns a zero knowledge proof 𝑁𝐼𝑍𝐾𝑃

demonstrating that 𝑃 was constructed correctly. Specifically, this proof demonstrates

that 𝑃 is a Pedersen commitment to the balance 𝑏 secured by key 𝑥 only if the

institution knows the permuted private key 𝑥*. If the institution does not know 𝑥*,

it is guaranteed that 𝑃 is a Pedersen commitment to 0. Proving 𝑁𝐼𝑍𝐾𝑃 follows

from protocol 1 in Provisions [12]. However, since Sancus uses permuted keys from

algorithm 1 and previously computed key bit Pedersen commitments from algorithm

2 as inputs, the validator must also validate that these proofs hold and that the

commitments match.

Algorithm 4: Blockchain Balance Algorithm
Input: 𝑏 ∈ Z𝑞, the value of a balance corresponding to 𝑌
Input: 𝑌 *, the permuted public key for 𝑌
Input: 𝑠 ∈ {0, 1}, the bit representing whether the permuted private key 𝑥*

for 𝑌 * is known
Input: 𝑥* = 𝑠𝑥*, the permuted private key 𝑥* (if 𝑥* is known); otherwise 0
Input: {𝐿, 𝑟𝐿} from the key bit algorithm (algorithm 2) for 𝑌 *, 𝑠
Output: 𝑃 , the Pedersen commitment for 𝑠𝑏
Output: 𝑟𝑃 , the random value for 𝑃
Output: 𝑁𝐼𝑍𝐾𝑃 , the NIZK for 𝑃
begin

𝑟𝑃
$←− Z𝑞;

𝑃 ← 𝑠𝑏𝐺+ 𝑟𝑃𝐻;
𝑁𝐼𝑍𝐾𝑃 ← 𝑃𝐾{(𝑠, 𝑥*, 𝑟𝑃 , 𝑟𝐿) : (𝑃 = 𝑠𝑏𝐺+ 𝑟𝑃𝐻) ∧ (𝐿 =
𝑠𝑌 * + 𝑟𝐿𝐻) ∧ (𝐿 = 𝑥*𝐺+ 𝑟𝐿𝐻)};

end

4.3.5 Less Than Equal

Algorithm 5 demonstrates that the value 𝑥 ∈ [0, 2254) in one Pedersen commitment 𝐶

is less than or equal to the value 𝑥′ ∈ [0, 2254) in another Pedersen commitment 𝐶 ′. It

returns a zero knowledge proof 𝑁𝐼𝑍𝐾𝐶′ . Proving 𝑁𝐼𝑍𝐾𝐶′ follows from Camenisch

et al. [7]. As (0 − (2254 − 1)) mod 𝑞 > 2254, this algorithm is safe from modular

arithmetic overflow.

30

Algorithm 5: Less Than Equal Algorithm
Input: {𝐶, 𝑥, 𝑟𝐶}|𝐶 = 𝑥𝐺+ 𝑟𝐶𝐻, the revealed Pedersen commitment for the

smaller value
Input: {𝐶 ′, 𝑥′, 𝑟′𝐶}|𝐶 ′ = 𝑥′𝐺+ 𝑟′𝐶𝐻, the revealed Pedersen commitment for

the equal or larger value
Precondition : 𝑥 ∈ [0, 2254)
Precondition : 𝑥′ ∈ [0, 2254)
Output: 𝑁𝐼𝑍𝐾𝐶′ , the NZIK
begin

𝑥* ← 𝑥′ − 𝑥 ;
𝑟* ← 𝑟′ − 𝑟 ;
𝐶* ← 𝐶 ′ − 𝐶 ;
𝑁𝐼𝑍𝐾𝐶′ ← 𝑃𝐾{(𝑥*, 𝑟*) : (𝐶* = 𝐶 ′ − 𝐶) ∧ (𝐶* = 𝑥*𝐺+ 𝑟*𝐻) ∧ (𝑥* ∈
[0, 2254)};

end

4.4 System Components

4.4.1 Blockchain Nodes, IPFS Nodes, and the Audit Smart

Contract

Sancus requires nodes for Bitcoin [29], Ethereum [41], and the InterPlanatery File

System (IPFS) [3] which are accessible to both the auditor and the institution. In a

live deployment, the institution and each auditor should run their own nodes, as it

is unsafe to trust the output of remote procedure calls from public nodes. Figure 4-1

illustrates how these components interact.

The institution publishes completed audits to the audit smart contract which has

a well-known location on the blockchain. The smart contract guarantees that audits

are immutable, and to prevent forgeries, only permits the institution to submit audits.

As blockchain storage is expensive, Sancus stores the actual audit data files on the

InterPlanatery File System (IPFS), an immutable, content-addressable file system [3].

The 32-byte IPFS address is a SHA-256 based hash of the content. Recording the

IPFS address in a blockchain both timestamps the audit and prevents the institution

from later changing the audit. IPFS allows anyone to host any content, providing

resiliency should the institution’s IPFS node be unavailable. The audit contains public

31

Reconcile deposits

Broadcast
withdrawals and
publish auditsReveal secret

values in
commitments

Provide
account
information

Sign
transactions

Validate commitments
and blockchain
transactions

Retrieve the
audit from the
blockchain

Reconcile the
audit against
blockchain
transactions

Institutional
Server

Blockchain
Nodes, IPFS

Nodes, and the
Audit Smart

Contract

Web Client Auditor

Figure 4-1: System Architecture.

32

values in clear-text, Pedersen commitments of secret values, and accompanying zero

knowledge proofs. Auditors “listen” to this smart contract for audits.

4.4.2 Institutional Web Server

The institution runs a web server. This web server exposes remote procedure calls

(RPCs) to the web client that customers can invoke, communicates with the Bitcoin

and Ethereum nodes to process and broadcast transactions, computes audits, stores

finished audits on IPFS, and broadcasts audits via the audit smart contract. All web

server / client communication is encrypted via Transport Layer Security (TLS).

4.4.3 Web Client

The web client runs on customers’ devices and allows them to use Sancus. It commu-

nicates with both the institutional web server to perform transactions and retrieve

account information and one or more auditors who can help validate responses pro-

vided by the institutional web server. As the web client manages all customer sig-

natures (via WebAuthn), customers are responsible for ensuring the integrity of the

web client they are running and that they are communicating with honest auditors.

To minimize the attack surface of a malicious web client (e.g. that sends different

values to the server than are presented to the user) and auditors (e.g. that return

incorrect answers), one can audit the web client source code, build it oneself, run one’s

own auditor, and configure the web client to communicate with one’s own auditor.

Customers should not blindly use a web client or auditor provided by the institution.

4.4.4 Auditor

The auditor validates audits published by the institution on the blockchain and ex-

poses a limited API for web clients. As the audit data is self-contained and hosted

on IPFS, the auditor does not communicate with the institution, customers, or other

auditors to retrieve or validate the audit. (However, it will need to retrieve the audit

33

data from another IPFS node, which may be run by the institution, another auditor,

or some other node with the content for the audit’s IPFS address.)

4.5 System Parameters

4.5.1 Base Currency

The institution must pick a base currency into which commitments in other currencies

are converted when computing solvency.

4.5.2 Alternative Generator Point

In a Pedersen commitment 𝐶 = 𝑥𝐺 + 𝑟𝐻 where 𝑥 ∈ Z𝑞 is the secret value being

committed and 𝑟
$←− Z𝑞 is the binding random value, 𝐻 ∈ G must be well-selected as

to have a unknown discrete logarithm with 𝐺, the generator point of the SECP256K1

elliptic curve.

4.5.3 Currency Precision

Each currency in Sancus can have its own precision (number of supported decimal

places). While new currencies can be added after initialization, the number of decimal

places for currencies must never change.

4.5.4 Maximum Balance per User and Maximum Number of

Users

The product of the maximum balance per user and maximum number of users must be

less than 2254 due to the input constraints of algorithm 5. For efficient zero knowledge

proofs, Sancus requires that the maximum balance per user is on [0, 2𝑛)∧(𝑛 ∈ Z)∧(𝑛 ∈

[0, 254]). It follows that the maximum number of users is the integer quotient of 2254−1
2𝑛−1

.

We selected 𝑛 = 127 which allows for log10(2
127) ≈ 38 decimal digits of currency

precision and 2254−1
2127−1

≈ 1038 users.

34

4.5.5 Exchange Rate Tolerance

When verifying an audit, auditors will validate exchange rates. As there is no central-

ized virtual currency market, the tolerance specifies the allowable difference between

the rates used by the institution and found by the auditor. A smaller tolerance would

prevent the institution from cheating by using exchange rates that make it appear

to be more solvent; however, too small a tolerance could cause audits to fail due to

fluctuations across the world’s virtual currency markets.

4.5.6 Audit Smart Contract

The audit smart contract must be at a well known address on the blockchain.

4.6 Data Models

Sancus introduces data models which are shared across the institutional web server,

customer-facing web client, and the auditor. An audit is identified by a monotonically-

increasing version number and contains all information that any auditor needs from

the institution to verify its solvency at a point in time. Audits contain instances of

other data models produced by operations as described in section 4.7. As audits are

cumulative, they do not include records that have been included in a previous audit.

Each audit contains the following metadata: timestamp when the audit was gener-

ated, the block numbers on each supported blockchain for the block at or after the

timestamp, and the exchange rates between supported currencies at that timestamp.

A User represents a customer using Sancus and has a unique identifier and an

associated username.

A UserKey has a unique identifier and represents a WebAuthn credential associ-

ated with a specific User. Each User may have only one UserKey.

An Account has a unique identifier, an associated currency, an AccountType enum,

and an associated User. The only supported AccountTypes are deposit accounts;

however, this field is provided for extensions of Sancus. Each User may have multiple

35

Accounts.

A Key has a unique identifier and represents a SECP256K1 key pair. From the

public key, it is possible to derive the corresponding Bitcoin and Ethereum addresses.

Each Key has an associated key permutation NIZK from algorithm 1 and a Pedersen

commitment to an “ownership” bit (and a corresponding key bit NIZK from algo-

rithm 2) representing whether the institution knows the private key for this key pair.

Private keys and the ownership bit are never published in the audit; however, the

accompanying Pedersen commitments and NIZKs are included.

A KeyAccount associates a Key with an Account. It contains a block number at

which this KeyAccount becomes active and a “credit” bit representing whether future

deposits made to the Key’s address in the Account’s currency will be deposited into

the Account. Each KeyAccount has a key bit NIZK (from algorithm 2) for this

bit. Each Account may have multiple KeyAccounts, and each Key may also have

multiple KeyAccounts. However, each Key cannot have more than one KeyAccount

per currency (determined by the associated Account’s currency) where this “credit”

bit is set to 1. Moreover, should the Key’s “ownership” bit be set to 0, then all “credit”

bits in KeyAccounts associated with this Key must also be set to 0. It is impossible for

the institution to give “credit” for KeyAccounts where it does not “own” the underlying

Keys. The “credit” bit is never published in the audit; however, the accompanying

Pedersen commitments and NIZKs are included.

An AccountDelta represents applying a debit or credit on an Account. For exam-

ple, an AccountDelta for −𝑥 represents a withdrawal for 𝑥. While an AccountDelta

applies to a specific Account, each Account can have many AccountDeltas. The

audit includes a Pedersen commitment to the amount, never the amount itself.

An UnsignedBlockchainTransaction identifies no more than one blockchain

transaction. During a withdrawal, the institution provides these identifiers to the user

to demonstrate which transactions will be performed. It includes all fields needed to

process a transaction, except for the signature. It is unsafe to share a signed trans-

action with a customer, as one could broadcast it preemptively.

An AccountDeltaGroup represents an exchange or withdrawal of virtual currency.

36

AccountDeltaGroups contain AccountDeltas which a customer requested be ap-

plied on their accounts, and for withdrawals, UnsignedBlockchainTransactions.

All AccountDeltas must be applied atomically on the Accounts, all Accounts must

belong to the same User, and if present, all UnsignedBlockchainTransactions must

eventually be included in the blockchain. Customers sign AccountDeltaGroups with

their WebAuthn credentials to indicate their approval.

4.7 Client-Server Operations

Sancus introduces web server and client operations for customer registration, account

creation, deposits, exchanges, and withdrawals.

4.7.1 Customer Registration

Customer registration occurs when a new customer signs up for Sancus. Sancus

follows the WebAuthn registration protocol [37]. Upon successful registration, the

server creates a User and UserKey, which are included in the next audit.

4.7.2 Account Creation

Customers can request new Accounts from the server. When the server creates a new

Account, it includes the Account in the next audit.

4.7.3 Deposits

Deposits are transfers of virtual currency from external blockchain addresses into the

addresses maintained by Sancus on behalf of customers. The audit proves that all

funds deposited into customer addresses are credited to the proper Accounts. This

guarantee prevents a malicious institution from reducing their liabilities by under-

counting customer deposits.

To create a new deposit address for an Account, the server creates a KeyAccount

for this Account where the “credit” bit is 1. For this KeyAccount, the server may use

37

3. Institution
publishes

the KeyAccounts in
the next audit.

5. Customer
recomputes C1 with a
positive credit bit and
the random_value

provided by the
institution.

4. Institution reveals
ka to the customer.

7. Customer sends
virtual currency into

the address for
Key=k.

Customer Audit Institution Blockchain

8. Institution
continuously monitors

the blockchain for
deposits and

internally credits
customer for

deposits.

1. Customer requests
a deposit address for

Account=a.

✅ C1=Commitment(credit=1,
random_value=random_1)

2. Institution creates a
real KeyAccount for
Account=a with a

positive credit bit and
decoy KeyAccounts
for accounts ≠ a and

zero credit bits.

key_account=ka
C1=Commitment(
 credit=1,
 random_value=random_1)
random_value=random_1

ka=KeyAccount
(Key=k,

Account=a,
Commitment=C1)

kb=KeyAccount

(Key=k,
Account=b,

Commitment=C2)

kc=KeyAccount
(Key=k,

Account=c,
Commitment=C3)

Miners confirm
deposits of virtual
currency into k 's

address.

6. Customer verifies
(via an auditor) that
C1, the commitment
in the audit for ka,

matches its computed
commitment.

Figure 4-2: Deposits Procedure. This diagram illustrates the process for creating new
deposit addresses and crediting deposits, as discussed in section 4.7.3.

38

an existing Key or create a new one. The server also creates additional KeyAccounts

for the same Key as the first KeyAccount. These additional KeyAccounts have “credit”

bits set to 0 and are used to preserve privacy (see section 4.12.1). The server publishes

any new Keys and the new KeyAccounts in the next audit.

The Pedersen commitment for the first KeyAccount is revealed to the client. The

client uses this revealed secret to ensure that the Pedersen commitment for the “credit”

bit for this KeyAccount, as it appears in the audit, has a value of 1. An auditor’s Get

Key Account RPC (see section 4.10.1) provides this functionality.

After the client validates that the audit contains a properly constructed KeyAccount,

the client can deposit virtual currency into the address associated with its Key. It is

crucial that the client waits until after the audit has been published before making a

deposit. Only deposits made to addresses covered by KeyAccounts with “credit” bits

set to 1 will be accumulated. The institution could attempt to under-count deposits

and hide assets by tricking customers into sending virtual currency to addresses not

covered by such KeyAccounts. For example, it could reveal one Pedersen commit-

ment to the client but publish another one in the audit. However, because audits are

cumulative and KeyAccounts are immutable, the institution cannot later change the

commitments or NIZKs in published audits.

Figure 4-2 illustrates the deposit procedure.

4.7.4 Exchanges

Customers can exchange one virtual currency for another. Unlike deposits, exchanges

do not take place on the blockchain; they are journal transactions within Sancus.

However, because exchanges decrease customer liabilities in one currency, customers

must demonstrate their approval of such transactions via WebAuthn signatures.

To perform an exchange, the client requests to exchange amount 𝑥 of virtual

currency from Account 𝐴 into the currency of Account 𝐵. Assuming the customer

has sufficient funds, the server responds with an AccountDeltaGroup that contains

AccountDeltas of −𝑥 for Account 𝐴, of an equivalent amount of 𝑥 in 𝐵’s currency

for Account 𝐵, and of 0 for additional Accounts, which are used to preserve privacy

39

4. Customer verifies
the commitment for
Account=a is for -x,
the commitment for
Account=b reflects a

fair exchange rate,
and the commitments

for the other
Accounts are to 0.

5. Customer signs the
AccountDelta
Group with one's

WebAuthn credentials
and returns the

signed response to
the institution.

Customer Audit Institution Blockchain

6. Institution internally
updates customer's

balances and
includes the signed
AccountDelta
Group in the next

Audit.

1. Customer requests
to exchange amount
x of virtual currency
from Account=a to

Account=b.

✅ C1=Commitment(-x, random_1)
✅ C2=Commitment(x*rate, random_2)
✅ C3=Commitment(0, random_3)
✅ C4=Commitment(0, random_4)

2. Institution creates
AccountDeltas to

apply on the
customer's

Accounts. Institution
returns an

AccountDelta
Group and the

revealed
commitments to the

customer.

adg=AccountDeltaGroup(
 AccountDeltas=(
 (Account=a, Commitment=C1),
 (Account=b, Commitment=C2),
 (Account=c, Commitment=C3),
 (Account=d, Commitment=C4)))
C1=Commitment(-x, random_1),
C2=Commitment(x*rate, random_2),
C3=Commitment(0, random_3)
C4=Commitment(0, random_4)

AccountDelta
Group=...,

Signature=🔑

Signature=🔑

Figure 4-3: Exchanges Procedure. This diagram illustrates the process for exchanging
virtual currencies, as discussed in section 4.7.4.

40

(see section 4.12.3). The server reveals all Pedersen commitments privately to the

client. The client, using the revealed commitments from the server, verifies that the

institution constructed an AccountDeltaGroup with proper Pedersen commitments.

Specifically, the Pedersen commitment for Account 𝐴 should be to −𝑥, Account 𝐵

should be for an equivalent amount of 𝑥 at a fair exchange rate, and for all other

Accounts, should be to 0. If the client wishes to proceed with the exchange, it signs

the AccountDeltaGroup with its WebAuthn credentials and returns the signature

to the server. The server verifies the signature, updates customer balances by the

amounts of the AccountDeltas, and includes the AccountDeltaGroup in the next

audit.

Figure 4-3 illustrates this procedure for performing exchanges.

4.7.5 Withdrawals

Withdrawals are transfers of virtual currency from institutional addresses maintained

by Sancus to external addresses specified by the customer. To maintain customer

privacy, withdrawals need not come from the same virtual currency addresses into

which customers originally deposited their funds. As withdrawals affect customer

balances, Sancus requires customers to sign withdrawal requests to reflect their legit-

imacy. These withdrawal requests reveal neither customer balances, firm balances,

nor transaction amounts, and provide plausible deniability for blockchain addresses.

To perform a withdrawal, the client requests to withdraw amount 𝑥 of virtual

currency from Account 𝑎 to a destination address 𝑤. If the user has sufficient funds,

the server responds with an AccountDeltaGroup. In the group, the AccountDeltas

must include a Pedersen commitment to −𝑥 for Account 𝑎, and for privacy, additional

“decoy” Accounts with Pedersen commitments to 0. The server reveals all Pedersen

commitments privately to the client. The UnsignedBlockchainTransactions must

contain a transaction which sends 𝑥 to 𝑤. For privacy, the server should also include

“decoy” transactions that move funds within the institution’s own accounts or are

recent blockchain transactions. The client verifies that the institution constructed a

proper AccountDeltaGroup. Specifically:

41

4. Customer verifies
the commitment for
Account=a is for -x,

and other
commitments are to
0. Customer also

verifies that
the Unsigned
Blockchain
Transactions

contain a transfer of x
to 0x1234 and would

result in a new on-
chain transaction.

5. Customer signs the
AccountDelta
Group with one's

WebAuthn credentials
and returns the

signed response to
the institution.

Customer Audit Institution Blockchain

6. Institution internally
updates customer's

balances and
broadcasts
blockchain

transactions that fulfill
the Unsigned
Blockchain

Transactions.

1. Customer requests
to withdraw amount x

of virtual currency
from account=a to
blockchain address

0x1234.

✅ C1=Commitment(-x, random_1)
✅ C2=Commitment(0, random_2)
✅ UnsignedBlockchainTransactions[0] is new
✅ UnsignedBlockchainTransactions[0] transfers
x to 0x1234

2. Institution creates
AccountDeltas to

apply on the
customer's Accounts

and Unsigned
Blockchain

Transactions.

Institution returns an
AccountDelta
Group and the

revealed
commitments to the

customer.

adg=AccountDeltaGroup(
 AccountDeltas=(
 (account=a, commitment=C1),
 (account=b, commitment=C2)),
 UnsignedBlockchainTransactions=(
 (destination=0x1234, amount=x),
 (desitnation=0x5678, amount=y)))
C1=Commitment(-x, random_1)
C2=Commitment(0, random_2)

AccountDelta
Group=...,

Signature=🔑

Signature=🔑

7. Blockchain miners
mine transactions T1

and T2.

T1=Transaction(from=0xABCD,
to=0x1234, amount=x)
T2=Transaction(From=0xABCD,
to=0x5678, amount=y)

8. After all
transactions are
mined, institution

publishes the
AccountDelta
Group and the

WebAuthn signature
in the audit.

Figure 4-4: Withdrawals Procedure. This diagram illustrates the process for with-
drawing virtual currency, as discussed in section 4.7.5.

42

1. Using the revealed secret values from the server, the client verifies that the

AccountDelta for Account 𝑎 debits it by −𝑥 and has commitments to 0 for all

other Accounts.

2. The client ensures that the UnsignedBlockchainTransactions contain a

transaction for sending 𝑥 to 𝑤.

3. The client ensures that this UnsignedBlockchainTransaction which sends 𝑥

to 𝑤 would result in a new blockchain transaction. An auditor’s Is

Transaction New RPC (see section 4.10.2) provides this functionality.

If the client wishes to proceed with the transaction, it signs the AccountDeltaGroup

with its WebAuthn credentials and shares the signature with the server. The server

verifies the signature, updates customer balances to reflect the AccountDeltas, and

broadcasts blockchain transactions consistent with the UnsignedBlockchainTransactions

in a random order and with random delays. Randomness helps preserve privacy (see

section 4.12.2). Finally, after all transactions are in the blockchain, the server includes

the AccountDeltaGroup in the next audit.

It is critical that the client performs step 3. Without this check, if a user attempted

to withdraw the same amount of virtual currency to the same address as was done in a

previous withdrawal, then the institution could reuse the UnsignedBlockchainTransaction

from this previous withdrawal. As this transaction was already in the blockchain, the

customer would not receive new virtual currency in the destination address even

though account balances would still be adjusted by the AccountDeltas. To prevent

this attack, users must validate that the non-“decoy” transaction is new.

Figure 4-4 illustrates this procedure for performing withdrawals.

4.8 Audit Generation

The institution generates audits periodically. The audit demonstrates that the in-

stitution accounted for all deposits, applies only properly executed exchanges and

withdrawals, and has at least as much in assets as in liabilities.

43

4.8.1 Audit Metadata

When generating an audit, the institution must pick a timestamp after the previous

audit’s timestamp, and use the block for each blockchain at or after this timestamp.

The institution must also determine acceptable exchange rates between the base cur-

rency parameter and each supported currency at this timestamp. While Sancus does

not specify a specific auditing interval or source for exchange rates, it is trivial for au-

ditors to validate these conditions. Block timestamps are embedded in the blockchain,

and protocols such as Compound [25] and Uniswap [1] freely publish historical ex-

change rates.

4.8.2 Proof of Liabilities

To create a commitment for the total liabilities, the institution must sum together all

customer deposits, exchanges, and withdrawals. For every KeyAccount, the institu-

tion uses the blockchain balance algorithm (algorithm 4) to create a commitment and

NIZK to the cumulative deposits. Cumulative deposits, which are measured from the

block number of the KeyAccount through the block number of the audit, are defined

as deposits made in the corresponding Account’s currency to the address spendable

by the corresponding Key. The commitment and NIZK are included in the audit. The

institution sums together these commitments by currency for each user. To account

for exchanges and withdrawals, the institution sums in all AccountDeltas generated

by the exchange and withdrawal procedures, respectively. To get the current bal-

ance, all AccountDeltas, including those that appeared in a previous audit, must be

included. The currency conversion algorithm (algorithm 3) is used to convert these

cumulative commitments (one per currency for each user) into the institution’s base

currency. The NIZKs and resulting commitments from currency conversion are in-

cluded in the audit. These resulting commitments are summed together to produce

one commitment per user. This commitment represents the user’s holdings in the

institution’s base currency.

Users with negative balances must be excluded from the total liabilities commit-

44

Algorithm 6: User Deposits. This sub-procedure, invoked by algorithm
7, computes the cumulative deposits as part of the proof of liabilities (see
section 4.8.2).
Input: auditBlockNumber[𝑐] : 𝑐→ 𝑛𝑐, a mapping from currency 𝑐 to the

audit block number 𝑛𝑐 for 𝑐
Input: User 𝑢
Output: 𝑑[𝑐] : 𝑐→ (𝑥𝑐, 𝑟𝑐), a mapping from currency 𝑐 to the deposit

amount 𝑥𝑐 and random secret 𝑟𝑐
begin

foreach Currency 𝑐 do
𝑑[𝑐]← (0, 0) ; // Initialize deposit value and random secret
by currency to 0

end
foreach Account 𝑎 belonging to 𝑢 do

𝑐← 𝑎’s currency;
foreach KeyAccount 𝑘𝑎 with Key 𝑘 and Account same as 𝑎 do

𝑠𝑡𝑎𝑟𝑡𝐵𝑙𝑜𝑐𝑘 ← block number of 𝑘𝑎;
𝑌 * ← permuted public key for 𝑘;
𝑏← total deposits made into the blockchain address of 𝑘 in
currency 𝑐 on [𝑠𝑡𝑎𝑟𝑡𝐵𝑙𝑜𝑐𝑘, auditBlockNumber[𝑐]];
(𝑠, 𝐿, 𝑟𝐿)← “credit” bit and corresponding key bit commitment
and random value from 𝑘𝑎;

if 𝑠 = 0 then
𝑥* ← 0;

end
else

𝑥* ← permuted private key 𝑥* for 𝑘;
end
(𝑟𝑃 , 𝑁𝐼𝑍𝐾𝑃)← blockchain balance algorithm (algorithm 4) for
balance 𝑏, permuted public key 𝑌 *, secret bit 𝑠, permuted private
key or zero value 𝑥*, key bit commitment 𝐿 and random value 𝑟𝐿;
(𝑥𝑐, 𝑟𝑐)← 𝑑[𝑐];
𝑑[𝑐]← (𝑥𝑐 + 𝑠𝑏, 𝑟𝑐 + 𝑟𝑃);
Add 𝑁𝐼𝑍𝐾𝑃 to the audit;

end
end

end

45

Algorithm 7: Proof of Liabilities. This procedure illustrates how to com-
pute the proof of liabilities (see section 4.8.2).
Input: 𝑏𝑐, the base currency parameter (see section 4.5.1)
Input: 𝑚𝑎𝑥𝐵𝑎𝑙, the maximum balance per user parameter (see section 4.5.4)
Input: 𝑒[𝑐] : 𝑐→ 𝑒𝑐, a mapping from currency 𝑐 to the audit’s exchange rate

𝑒𝑐 for converting 𝑐 into 𝑏𝑐
Output: (𝑥𝑙, 𝑟𝑙), the total liabilities and random secret
begin

(𝑥𝑙, 𝑟𝑙)← (0, 0) ; // Initialize total liabilities to 0
foreach User 𝑢 do

𝑑[𝑐]← user deposits algorithm (algorithm 6) for User 𝑢;
foreach AccountDeltaGroup 𝑎𝑔 belonging to 𝑢 not in any audit do

if all UnsignedBlockchainTransactions in 𝑎𝑔 have been included
in the blockchain then

foreach AccountDelta 𝑎𝑑 ∈ 𝑎𝑔 with Account 𝑎 do
(𝑥𝑑, 𝑟𝑑)← value and random secret of 𝑎𝑑;
𝑐← currency of 𝑎;
(𝑥𝑐, 𝑟𝑐)← 𝑑[𝑐];
𝑑[𝑐]← (𝑥𝑐 + 𝑥𝑑, 𝑟𝑐 + 𝑟𝑑);

end
end

end
(𝑥𝑏𝑐, 𝑟𝑏𝑐)← (0, 0) ; // Initialize user liabilities in 𝑏𝑐 to 0
foreach Currency 𝑐 do

(𝐶 ′, 𝑥′, 𝑟′𝐶 , 𝑁𝐼𝑍𝐾𝐶′)← currency conversion algorithm (algorithm
3) for exchange rate 𝑒[𝑐] and from currency value and random
secret 𝑑[𝑐];
(𝑥𝑏𝑐, 𝑟𝑏𝑐)← (𝑥𝑏𝑐 + 𝑥′, 𝑟𝑏𝑐 + 𝑟′𝐶);
Add 𝑁𝐼𝑍𝐾𝐶′ to the audit;

end
if 𝑥𝑏𝑐 < 0 then // Check for negative balances

𝑢𝑠𝑒𝑟𝑁𝑒𝑔 ← 1;
𝑥𝑏𝑐 ← 𝑥𝑏𝑐 +𝑚𝑎𝑥𝐵𝑎𝑙 + 1;

end
else

𝑢𝑠𝑒𝑟𝑁𝑒𝑔 ← 0;
(𝑥𝑙, 𝑟𝑙)← (𝑥𝑙 + 𝑥𝑏𝑐, 𝑟𝑙 + 𝑟𝑏𝑐);

end
𝑁𝐼𝑍𝐾𝑏𝑐 ← less than equal algorithm (algorithm 5) proving
𝑥𝑏𝑐 (with random secret 𝑟𝑏𝑐) ≤ 𝑚𝑎𝑥𝐵𝑎𝑙 (with random secret 0);

Add 𝑢𝑠𝑒𝑟𝑁𝑒𝑔,𝑁𝐼𝑍𝐾𝑏𝑐 to the audit;
end

end

46

ment. Should negative user balances be included, an institution could under-count

how much it owes to customers. To execute this attack, the institution could cre-

ate its own Users where it controls the UserKeys. It could then run the exchange

protocol (see section 4.7.4) to create properly-signed negative balance commitments.

Summing these negative commitments into the institution’s total liabilities would re-

duce this commitment and allow the institution to circumvent the audit. As such, no

individual user is allowed to reduce the institution’s total liabilities.

For each user, the institution performs the less than equal algorithm (algorithm

5) to prove that the user’s balance commitment is either negative (i.e. greater than or

equal to the maximum allowed user balance system parameter) or positive (i.e. less

than this parameter). It includes in the audit whether the balance is negative and

the corresponding NIZK from the less than equal algorithm. Non-negative balances

are checked per-user, rather than per-account, both to reduce the number of required

zero-knowledge proofs and to support future use cases, such as fully collateralized

loans.

The sum of all users’ balance commitments in the base currency represent the

institution’s cumulative liabilities. Algorithm 7 describes this proof of liabilities pro-

cedure.

4.8.3 Proof of Assets

The audit must include a commitment to the total assets for the institution. Sancus

extends the proof of reserves described in Provisions [12] to support offline wallets

with algorithm 1 and multiple currencies with algorithm 3 .

For the proof of assets, the institution runs the blockchain balance algorithm (al-

gorithm 4) for each Key 𝑘 in each supported currency 𝑐. When running this algorithm,

𝑠 is set to the “ownership” bit of 𝑘. The balance 𝑏 is the minimum of the current

balance at the audit’s block number for 𝑐 and at the previous block.

Using the minimum of these balances prevents the institution from double-counting

funds by using a third-party exchange. For example, suppose there were two curren-

cies 𝑐1 and 𝑐2 on different blockchains (e.g. Bitcoin and Ethereum) with audit block

47

Algorithm 8: Proof of Assets. This procedure illustrates how to compute
the proof of assets (see section 4.8.3).
Input: 𝑏𝑐, the base currency parameter
Input: auditBlockNumber[𝑐] : 𝑐→ 𝑛𝑐, a mapping from currency 𝑐 to the

audit block number 𝑛𝑐 for 𝑐
Input: 𝑒[𝑐] : 𝑐→ 𝑒𝑐, a mapping from currency 𝑐 to the audit’s exchange rate

𝑒𝑐 for converting 𝑐 into 𝑏𝑐
Result: (𝑥𝑎, 𝑟𝑎), total assets and random secret
begin

(𝑥𝑎, 𝑟𝑎)← (0, 0) ; // Initialize total assets to 0
foreach Currency 𝑐 do

(𝑥𝑐, 𝑟𝑐)← (0, 0) ; // Initialize assets by currency to 0
foreach Key 𝑘 do

𝑌 * ← permuted public key for 𝑘;
𝑏← minimum balance of the blockchain address for 𝑘 in currency
𝑐 on blocks [auditBlockNumber[𝑐]− 1, auditBlockNumber[𝑐]];
(𝑠, 𝐿, 𝑟𝐿)← “ownership” bit and corresponding key bit
commitment and random value from 𝑘;

if 𝑠 = 0 then
𝑥* ← 0;

end
else

𝑥* ← permuted private key 𝑥* for 𝑘;
end
(𝑟𝑃 , 𝑁𝐼𝑍𝐾𝑃)← blockchain balance algorithm (algorithm 4) for
balance 𝑏, permuted public key 𝑌 *, permuted private key (or zero
value) 𝑥*, and secret bit 𝑠 with key bit commitment 𝐿 and
random value 𝑟𝐿;
(𝑥𝑐, 𝑟𝑐)← (𝑥𝑐 + 𝑠𝑏, 𝑟𝑐 + 𝑟𝑃);
Add 𝑁𝐼𝑍𝐾𝑃 to the Audit;

end
/* Convert to base currency */
(𝐶 ′, 𝑥′, 𝑟′𝐶 , 𝑁𝐼𝑍𝐾𝐶′)← currency conversion algorithm (algorithm 3)
with exchange rate 𝑒[𝑐] and from currency value 𝑥𝑐 and random
secret 𝑟𝑐;
(𝑥𝑎, 𝑟𝑎)← (𝑥𝑎 + 𝑥′, 𝑟𝑎 + 𝑟′𝐶);
Add 𝑁𝐼𝑍𝐾𝐶′ to the audit;

end
end

48

numbers 𝑏1 and 𝑏2, respectively. After 𝑏1, the institution transfers funds from its

addresses in 𝑐1 to a third-party exchange, converts these funds from 𝑐1 to 𝑐2, and

withdraws funds in 𝑐2. Because blocks are not synchronized across blockchains, it is

possible that such a withdrawal would be included in 𝑏2. Should blockchain balances

be computed at 𝑏1 and 𝑏2, the institution would double-count the funds it had in 𝑐1

– once in 𝑐1, and again in an equivalent amount of 𝑐2. However, using the minimum

balances on [𝑏1 − 1, 𝑏1] and [𝑏2 − 1, 𝑏2] prevents this attack. At the timestamp of the

audit, which is guaranteed to be in these intervals by definition of how audit block

numbers are selected, it is impossible for the same funds to simultaneously be in two

currencies at once.

The institution accumulates, by currency, the resulting Pedersen commitments

from running the blockchain balance algorithm. It uses the currency conversion algo-

rithm (algorithm 3) to convert these commitments into the base currency, which are

summed into one Pedersen commitment for the total assets.

Algorithm 8 describes this proof of assets procedure.

4.8.4 Proof of Solvency

To demonstrate solvency, the institution runs the less than equal algorithm (algorithm

5) to prove that the commitment from the proof of liabilities procedure (see section

4.8.2) is less than or equal to the commitment from the proof of assets procedure (see

section 4.8.3). The resulting proof from this call to the less than equal algorithm is

included in the audit.

4.9 Auditor Verification

The novelty of Sancus is that it allows anyone to independently verify the validity of

an audit and validate the solvency of an institution. Auditors do not directly commu-

nicate with the institution or any customers; all an auditor needs is the audit itself

(and all previous audits), access to the blockchains, and a trusted source for virtual

currency exchange rates (which could be on the blockchain, such as via Compound

49

[25] or Uniswap [1]).

As audits are cumulative, auditors must have already processed and verified all

previous audits. Should any step of audit verification fail for any reason, the auditor

reports that the institution failed.

The auditor monitors the audit smart contract for new audits. When one is

available, the auditor retrieves it from IPFS using the IPFS address contained within

the smart contract. As all blockchain transactions are signed, it is trivial for the

auditor to verify that the institution published the audit. IPFS addresses, which

are cryptographic hashes of the underlying content, ensure the integrity of the data.

As audits are cumulative, uniqueness and existence checks must be run against the

current audit and all previous audits. Each audit contains AuditMetadata, new

entries, a proof of liabilities, a proof of assets, and a proof of solvency.

To verify the AuditMetadata, the auditor checks that the version numbers are

monotonically increasing and that the timestamp is increasing relative to the pre-

vious audit. It also ensures that all block numbers correspond to a block with a

timestamp at or after the AuditMetadata’s timestamp. The auditor compares the

metadata exchange rates to the historical rates (as provided by a trusted source) at

the AuditMetadata’s timestamp. It ensures that these rates are within the exchange

rate tolerance.

To verify the Users, UserKeys, Accounts, Keys, KeyAccounts, and AccountDeltaGroups

in the audit, the auditor validates that they are unique, that referenced components

exist (e.g. for an Account, that the associated User exists), and that all zero knowl-

edge proofs hold. In the case of AccountDeltaGroups, the auditor also verifies the

WebAuthn signature and ensures that each UnsignedBlockchainTransaction has

a “matching” transaction in the blockchain by the block number of the audit. For

Ethereum, a “matching” transaction is one with the same from, nonce, to, value,

gas, and data attributes. For Bitcoin, a “matching” transaction is one where the

blockchain transaction’s sources and destinations are both a super-set of those in the

audit. These checks ensure that institution broadcasts transactions as promised while

providing flexibility for transaction fees.

50

4.9.1 Proof of Liabilities

The auditor verifies the institution’s proof of liabilities by checking each step described

in section 4.8.2. Specifically, it must check that the institution includes a blockchain

balance commitment and NIZK for every known KeyAccount, that all proofs hold,

and that all commitments are consistent with each-other, blockchain data, and other

components of the audit. Skipping KeyAccounts would allow the institution to under-

count deposits.

4.9.2 Proof of Assets

The auditor verifies the institution’s proof of assets by checking each step described

in section 4.8.3. Specifically, for every blockchain balance NIZK generated by the

institution, the auditor ensures that the NIZKs use correctly selected blockchain bal-

ances. The auditor also verifies the summation and conversion of these commitments

into the institution’s base currency. The resulting commitment is to the institution’s

total assets.

4.9.3 Proof of Solvency

The auditor verifies the institution’s proof of solvency using the resulting commit-

ments from the proof of liabilities and proof of assets procedures. Specifically, given

these commitments, it verifies that the less than equal NIZK published by the insti-

tution for the proof of solvency (as described in section 4.8.4) holds.

4.10 Auditor Remote Procedure Calls

Auditors offer remote procedure calls (RPCs) which web clients query to validate

values provided by the institution. The web clients cannot directly perform validations

that require previous audits or indexed blockchain transactions.

51

4.10.1 Get Key Account

This RPC allows the web client to get the KeyAccount commitment and deposit ad-

dress for a given Key ID and Account ID. The auditor returns the “credit” Pedersen

commitment for the KeyAccount that was included in any processed audit, or an ex-

ception if it was not found. The client can then validate that the “credit” commitment

privately revealed by the institution during the deposit operation (see section 4.7.3)

is consistent with the commitment in the audit. The client must perform this check

to ensure it gets credit for deposits sent to the corresponding address.

4.10.2 Is Transaction New

This RPC allows the client to check that an UnsignedBlockchainTransaction would

result in a new on-chain transfer. The auditor may return true only if there is not any

transaction in the blockchain that matches the UnsignedBlockchainTransaction.

This check allows the client to ensure that a withdrawal (see section 4.7.5) would

result in a new blockchain transaction. Otherwise, should a customer request a with-

drawal for an amount and destination address that matches a previous blockchain

transaction, the institution could cheat by presenting this previous transaction, with

which the customer may not receive new funds.

4.11 Security Analysis

The Sancus protocols are designed to provide a secure means for customers to transact

with the institution while also preventing the institution from passing audit verifica-

tion while cheating. Here, we analyze possible attack vectors and their defenses.

4.11.1 Delay or Refusal to Process Transactions

Sancus does not require the institution to process transactions. While the protocol

for counting deposits will ensure that all deposits made into addresses with proper

KeyAccounts will be counted on the next audit, the institution is allowed to refuse to

52

perform exchanges or withdrawals at any stage in the process. For example, the insti-

tution could refuse to offer an exchange between virtual currencies, offer an exchange

that reflects an unattractive exchange rate, or never include an AccountDeltaGroup

in an audit. Section 7.3 offers mitigation strategies.

4.11.2 Loss of Account Access

Should users lose their WebAuthn credentials, Sancus does not define a procedure

for replacing these lost credentials so users can regain access to their accounts. A

traditional password reset system, where users click links sent to their email, would

not be verifiable by the auditors. To mitigate this concern, Sancus can be extended

to allow users to have multiple UserKeys, where new UserKeys are signed by already-

authorized UserKeys or by recovery codes (such as secret questions and answers)

committed to during customer registration.

4.11.3 Loss of Keys

Sancus uses permuted key pairs to support cold wallets, a security best practice.

However, permuted key pairs are not foolproof. Auditors only know that the insti-

tution knew the original key pair when the permuted key pair was generated; audits

do not prove that the institution still knows the original private key needed to spend

virtual currency secured by it. While possible, it is unlikely for an institution to lose

its private keys. Nonetheless, to mitigate this concern, auditors could require that

the permuted key pairs be rotated periodically (e.g. every 𝑛 audits).

Hacks of internet connected systems, however, are more likely. Specifically, con-

sider the scenario where adversaries acquired permuted private keys. They would

learn whether an institution controls ownership of the corresponding blockchain ad-

dresses. This leak would compromise privacy. However, they would be unable to steal

any virtual currency, since it is impossible to recover the original private key from

the permuted private key.

53

4.11.4 Collusion Across Institutions

Multiple institutions implementing Sancus could attempt to collude to make each

appear more solvent than they are individually. One such attack would be generating

permuted key pairs for each other and sharing the permuted private keys. With

permuted private keys, institutions could set the “ownership” bit of a Key to 1 and

pass the audit, even though funds stored in such Keys are inaccessible. This collusion

would allow institutions to inflate their proof of assets. To mitigate this attack, the

proof of non-collusion (section 7) from Provisions [12] can be adapted and applied on

the non-permuted keys. Since this proof would need to be computed only once per

key, it would be compatible with Sancus’s support for cold wallets.

Another such attack would involve institutions borrowing funds from each other.

Suppose there are two institutions, and neither could pass an audit independently

due to a lack of funds, but combined, they both could pass. These institutions

could collude by first transferring all assets into one institution and then having that

institution generate an audit. After the audit, that institution transfers all its funds

into the other institution, and this institution now generates an audit. This cycle

can repeat indefinitely, and both institutions would appear solvent. To prevent this

attack, Sancus could dictate a universal schedule specifying when audits should be

generated. Blockchain funds can only belong to one address at any timestamp.

4.12 Privacy Analysis

Sancus never reveals account balances and transaction amounts through the deposit,

exchange, and withdrawal protocols. However, honest-but-curious auditors could

attempt to infer such information from blockchain transactions and the blockchain

transaction graph. Here, we describe what information is leaked and suggest general

techniques to mitigate such leakage.

54

4.12.1 Deposit Addresses

Through the Key and KeyAccount audit messages, the institution publishes a super-

set of the keys it controls and the keys assigned to accounts. Keys with a “ownership”

bit of 0 and KeyAccounts with “credit” bit of 0 are decoys and do not affect balances;

instead, they provide plausible deniability for the public keys that are associated with

the institution or particular accounts. The institution must add a sufficient number

of decoy Keys and KeyAccounts to prevent a curious auditor from uncovering with

high probability which ones are not decoys.

4.12.2 Withdrawal Anonymity Set

The AccountDeltaGroups for withdrawals contain multiple UnsignedBlockchainTransactions.

Including internal transfers between the institution’s own addresses or unrelated,

but recent, blockchain transactions hides the customer’s destination address and the

amount being withdrawn. A curious auditor cannot immediately identify the cus-

tomer’s withdrawals from the decoys; however, analysis of the blockchain transaction

graph may leak such information. Leakage would reveal how much and to where a

customer withdrew virtual currency.

4.12.3 Transaction History

The audit reveals whenever a customer made an exchange or withdrawal. By in-

cluding AccountDeltas that have commitments to 0 in each AccountDeltaGroup,

the institution hides which accounts, and thereby currencies, were involved in the

transaction. However, auditors would be able to identify more active Users by the

frequency of their AccountDeltaGroups.

4.12.4 Insolvent Users

During the proof of liabilities, the audit reveals which customers have negative bal-

ances. However, the actual account balances remain private.

55

4.12.5 Auditor RPCs

When clients query auditors, they should invoke additional “decoy” RPCs. These

extra requests will mask the KeyAccounts or UnsignedBlockchainTransactions of

interest from a curious auditor who logs RPC calls.

56

Chapter 5

Implementation

We implemented Sancus following the design described in chapter 4. Our implemen-

tation uses a Python server for the institution, a Python server for the auditor, and

a React-based JavaScript web client.

5.1 Blockchains and Currencies Supported

Sancus provides a modular interface for adding blockchains. We implemented support

for Bitcoin and Ethereum. For Ethereum, we support both ETH and ERC-20 tokens

[36]. Each currency can have a customizable number of decimal places: we selected

8 for Bitcoin (smallest unit = 1 Satoshi); 18 for Ethereum (smallest unit = 1 Wei),

and for our mock ERC-20 smart contract representing a USD stablecoin, 2 (smallest

unit = 1 cent).

5.2 System Components

5.2.1 Institutional Server

Our implementation of the institutional server uses the Python library of gRPC,

Google’s Remote Procedure Call (RPC) framework [18]. It is a high performance

RPC framework that offers strong typing for requests and responses via Protobufs [20],

57

simplified error handling, and built-in TLS encryption. The server requires a SQLite

or MySQL database, which is managed via the SQLAlchemy [2] object-relational

mapper. All elliptic curve operations and zero-knowledge proofs use the Petlib [13]

and Zksk [26] libraries, respectively. The server communicates with the Bitcoin,

Ethereum, and IPFS nodes over HTTP. To track deposits, it uses a background loop

to query the blockchain nodes for new blocks. It is able to generate components of

the audit in parallel.

5.2.2 Audit

The audit is structured as a collection of Protobuf messages, with one message for

each individual data model. Protobuf messages are serialized to individual binary

files and compressed into a tarball. Using a binary encoding with a schema over a

text-based, schemaless encoding (i.e. JSON) reduces the size of the audit.

5.2.3 Auditor

The auditor follows a similar design and uses the same technologies as the institutional

server. Unlike the server, however, it processes each component of the audit serially.

5.3 Web Client

The web client is built on the React web framework [14]. It uses the JavaScript gRPC

library with Grpcwebproxy [23] to issue RPC calls to the institutional server and

auditors. It connects to the WebAuthn API [37] provided by the browser to handle

user signature requests. Figures 5-1, 5-2, 5-3, and 5-4 respectively demonstrate the

customer registration, deposit, exchange, and withdrawal functionality.

58

Figure 5-1: Customer Registration. Customers register with Sancus using their
W̃ebAuthn credentials.

59

Figure 5-2: Deposits. Customers can create new deposit addresses into which they
can send virtual currency. Deposits made to these addresses are credited to their
accounts.

60

Figure 5-3: Exchanges. Customers can exchange virtual currency between their ac-
counts. Customers authorize exchanges using the same WebAuthn credentials created
during registration.

61

Figure 5-4: Withdrawals. Customers can withdraw virtual currency from Sancus
to external addresses. Customers authorize withdrawals using the same WebAuthn
credentials created during registration.

62

Chapter 6

Evaluation

We evaluated the performance and space requirements for our implementation of

Sancus to generate, store, and validate audits. We measured how Sancus scales with

respect to the number of users, number of transactions, number of deposit keys, and

sizes of the anonymity sets.

Our evaluation setup consisted of a quad-core, 16 GB virtual machine running

Ubuntu 20.04 and CPython 3.8. We ran Go Ethereum (GETH), Go IPFS, Bitcoin

Core, and MySQL databases via Docker on the same machine to eliminate network

latency. Blocks were mined every 30 seconds. The institutional server and auditor

communicated with these services via normal HTTP sockets on localhost. We used

a headless WebAuthn client to simulate customer signing of transactions.

For all experiments, we measured the end-to-end duration to generate the audit as

well as the cumulative sum of latencies from generating individual audit components.

The end-to-end duration is generally less than the cumulative sum, as components

were generated in parallel. For each audit, we measured the total size by summing

together the sizes for each component of the audit. Finally, the audit validation time

measures how long it took our implementation of the auditor to verify an audit after

downloading it. Unlike audit generation, our implementation of the audit validator

is single-threaded.

Figure 6-1 illustrates how the number of Users affects the audit. Each addi-

tional User requires a constant number of additional audit components, including

63

0 25 50 75 100 125
Number of Users

0

5000

10000

15000
Ti

m
e

(s
)

Audit Generation
Total Duration
Cumulative Latencies

0 25 50 75 100 125
Number of Users

0

5000

10000

Si
ze

 (K
B

)

Audit Size

0 25 50 75 100 125
Number of Users

0

200

400

600

Ti
m

e
(s

)

Audit Validation Duration

Figure 6-1: Number of Users. We varied the number of users and performed 625
transactions, split equally among the users. With a 3 : 1 : 1 split of deposits, ex-
changes, and withdrawal transactions, respectively, each additional User resulted in
11.5 additional seconds for audit generation, an additional 87.7 KB in the audit, and
5.5 additional seconds for audit validation.

0 500 1000 1500 2000 2500 3000
Number of Transactions

0

5000

Ti
m

e
(s

)

Audit Generation
Total Duration
Cumulative Latencies

0 500 1000 1500 2000 2500 3000
Number of Transactions

2500

3000

3500

Si
ze

 (K
B

)
Audit Size

0 500 1000 1500 2000 2500 3000
Number of Transactions

250

500

750

1000

Ti
m

e
(s

)

Audit Validation Duration

Figure 6-2: Number of Transactions. We varied the number of transactions, split
equally among 25 users. With a 3 : 1 : 1 split of deposits, exchanges, and withdrawal
transactions, respectively, each additional transaction, on average, increased the audit
size by 0.43 KB and lengthened the audit validation duration by 0.235 seconds. The
total duration for audit generation remained flat between 210.7 and 237.7 seconds for
up to 1875 transactions, after which thread contention limited performance.

UserKeys, Accounts, Keys, and KeyAccounts. These requirements for each additional

user resulted in linear scaling of all components up to 75 users. At 125 Users, the

average latency to generate components for an audit increased by 11.5% compared to

25 Users; this increase suggests that thread contention limited performance.

Figure 6-2 illustrates how the number of transactions affects the audit. We

achieved linear scaling with respect to the audit size and audit validation time, which

is expected as one AccountDeltaGroup is required for each withdrawal and exchange

transaction. Audit generation had a flat total duration between 210.7 and and 237.7

seconds for up to 1875 transactions, after which thread contention limited perfor-

mance.

Figure 6-3 illustrates how the number of deposit Keys affects the audit. We created

one User with one Account in each of the three currencies, and varied the number

of deposit Keys for these three Accounts. No decoy KeyAccounts (i.e. those with a

64

0 25 50 75 100 125
Number of Deposit Keys

0

500

1000

1500

Ti
m

e
(s

)

Audit Generation
Total Duration
Cumulative Latencies

0 25 50 75 100 125
Number of Deposit Keys

200

400

600

Si
ze

 (K
B

)

Audit Size

0 25 50 75 100 125
Number of Deposit Keys

20

40

60

Ti
m

e
(s

)

Audit Validation Duration

Figure 6-3: Number of Deposit Keys: We varied the number of deposit keys and
experienced linear scaling with respect to the audit generation total duration (0.6
seconds), audit size (3.5 KB) and audit validation duration (0.4 seconds) per Key.

0 25 50 75 100 125
Size of Deposit Key Decoy Sets

0

25000

50000

75000

Ti
m

e
(s

)

Audit Generation
Total Duration
Cumulative Latencies

0 25 50 75 100 125
Size of Deposit Key Decoy Sets

0

10000

20000

30000
Si

ze
 (K

B
)

Audit Size

0 25 50 75 100 125
Size of Deposit Key Decoy Sets

0

1000

2000

3000

Ti
m

e
(s

)

Audit Validation Duration

Figure 6-4: Size of Deposit Key Decoy Sets. We created one User with 125 Accounts
for each of the three currencies. We created 125 Keys, and varied the deposit key decoy
set size (i.e. the number of KeyAccounts per Key). All components experienced
linear scaling, with each additional KeyAccount resulting in 0.51 seconds for the
total duration of audit generation, 1.6 KB in the audit, and 0.22 seconds for audit
validation, when normalized on per-account basis.

“credit” bit set to 0) were used. The proof of liabilities protocol (see section 4.8.2)

requires each KeyAccount to appear in every audit.

Figure 6-4 illustrates how the size of deposit key decoy sets (i.e. the number

of KeyAccounts per Key) affects the audit. Unlike additional Keys, which would re-

quire the auditor to query the balances for additional blockchain addresses, additional

KeyAccounts only require verification of blockchain balance NIZKs from algorithm 4.

0 25 50 75 100 125
Size of Exchange Anonymity Sets

0

1000

2000

3000

Ti
m

e
(s

)

Audit Generation
Total Duration
Cumlative Latencies

0 25 50 75 100 125
Size of Exchange Anonymity Sets

569

570

571

Si
ze

 (K
B

)

Audit Size

0 25 50 75 100 125
Size of Exchange Anonymity Sets

50

100

150

Ti
m

e
(s

)

Audit Validation Duration

Figure 6-5: Size of Account Delta Group Anonymity Sets. We created one user with
125 Bitcoin and 125 Ethereum Accounts and performed one exchange per Account.
The total duration for audit generation remained flat with an average of 61.8 seconds,
and the audit size marginally increased. Each additional account in the anonymity
set added 1.1 seconds to the audit validation duration.

65

This data illustrates how the marginal computing costs scale linearly with decoy set

size. The privacy benefits from larger decoy sets also increases proportionally to the

decoy set size, indicating a trade-off between privacy and cost.

Figure 6-5 illustrates how the size of the account delta group anonymity sets (i.e.

the number of AccountDeltas in the group) affects the audit. Unlike other compo-

nents of the audit, larger set sizes only result in additional Pedersen commitments,

not additional NIZKs or blockchain queries. As such, there is no impact on audit

generation time and a minimal impact on audit size. As the privacy benefits scale

with set size, larger set sizes should be used as the costs are minimal.

66

Chapter 7

Future Work and Conclusion

Here we discuss possible improvements for Sancus to extend the protocol and increase

its security.

7.1 Loans, Interest, and Margin Calls

While the Sancus system design (as described in chapter 4) only supports deposits,

exchanges, and withdrawals, it can be extended to support loans, interest, and margin

calls. Unlike exchanges and withdrawals, these transaction types present challenges

as they cannot use WebAuthn signatures for authorization at the time of each trans-

action. For example, when a customer agrees to the loan terms, future transactions

involving this loan (such as interest charges or margin calls) must be validated exclu-

sively through zero-knowledge proofs.

Here, we present a proposal for fully collateralized, fixed rate loan support in

Sancus. Let there be two additional AccountTypes: loan accounts and collateral ac-

counts. When customers wish to borrow funds, they must transfer sufficient collateral

from their deposit accounts into collateral accounts. They then request to initiate a

loan from the institution, specifying the currency and amount they wish to borrow,

the blockchain address to send funds into, and collateral accounts used to secure the

loan. After checking if the collateral is sufficient, the institution responds with a

loan contract. The loan contract, similar to that of an AccountDeltaGroup, contains

67

AccountDeltas for the loan and collateral accounts, unsigned blockchain transactions

for the initial funds disbursement, the IDs of the loan accounts and collateral accounts,

the interest rate of the loan, the margin call threshold, and the margin maintenance

requirement. If the customer agrees with the loan parameters, one would sign it using

one’s WebAuthn credentials, and returned the signed loan request back to the institu-

tion. This WebAuthn signature, along with the loan parameters, would be included

in the next audit.

The institution is responsible for charging interest and triggering margin calls. To

charge interest, it would create a Pedersen commitment for the interest rate times the

outstanding balance on the loan. Through a zero knowledge proof, it can demonstrate

that interest was correctly calculated. For a margin call, the institution would prove

two statements. First, it would use the currency conversion algorithm and demon-

strate that the collateral, when discounted by the margin call loan-to-value ratio, is

less than the outstanding balance of the loan. Second, after applying the margin call

on both the loan account and collateral account, the institution proves that the new

collateral balance, when discounted by the maintenance loan-to-value ratio, is greater

than the remaining balance of the loan. Collectively, these proofs ensure that the

institution performed a properly-sized margin call, only when permitted by the loan

parameters. This protocol can be adapted to allow for exchange rate markups during

margin calls or for margin calls that take place between audits.

To validate an audit, the auditor would first validate that the loan parameters are

properly signed by the customer’s WebAuthn credentials. For each interest charge,

the auditor would validate that the commitments are consistent with the interest rate

of the loan and that the NIZKs hold. For each margin call, the auditor would use the

exchange rates of the audit, as well as the cumulative commitments to the loan and

margin accounts, to validate the margin call NIZKs.

68

7.2 Anonymity Set Construction

Sancus, similar to Provisions [12], relies on anonymity sets to preserve privacy. Anonymity

sets provide plausible deniability by publicly specifying (in the audit) a super-set

of blockchain addresses and creating BlockchainBalance proofs and commitments,

which hide the underlying addresses that the institution controls or has assigned to

their customers. A curious auditor would not directly be able to uncover which ad-

dresses are decoys; however, by analyzing the blockchain transaction graph, one might

be able to create such an inference with high probability. As such, the institution

must carefully construct anonymity sets and manage transfers between institutional

accounts so as not to inadvertently leak sensitive information.

While the methods to construct anonymity sets and internal transactions are be-

yond the scope of Sancus, one such approach is to reverse engineer techniques used for

anti-money laundering (AML) on public blockchains. Weber, Domeniconi, et al. [38]

describe how they trained machine learning models on 166 features extracted from

the public transaction graph to identify nefarious activity. Sancus could attempt to

defeat such techniques by constructing anonymous transactions such that the distri-

bution of its ‘decoy” transactions, across these 166 features, approaches that of the

non-“decoy” transactions.

7.3 Transaction Expiration and Guaranteed Execu-

tion

As discussed in section 4.11.1, Sancus permits the institution to choose which ex-

change and withdrawal transactions are included in the audit. It may decide to delay

inclusion, or never include, such transactions. To prevent such discretion, transactions

can be adapted to have sequence numbers and expiration timestamps which require

that they be included in order in an audit with a timestamp before the expiration;

otherwise, they are void. In addition, the audit protocol can be extended to allow the

customer to submit institution-signed exchange and withdrawal transactions directly

69

to the audit smart contract instead of first remitting them to the institution. Both

the institution and auditors would listen to the smart contract to know which trans-

actions to perform. While this modification would guarantee that the next passing

audit would include the transactions, it would also increase blockchain transaction

fees, as each transaction would have its own entry in the audit smart contract (rather

than be aggregated together into an audit).

7.4 Conclusion

Sancus introduces a novel protocol and reference implementation for generating ir-

refutable audits for virtual currency institutions. Unlike previous works, Sancus sup-

ports multiple currencies across existing blockchains, follows security best practices

and uses offline wallets, preserves privacy for the institution and its customers, and

does not rely on customers to validate their own balances in the audit. Our evaluation

demonstrates the feasibility of this approach and the usability of the system. The

modular reference implementation can be extended to support new blockchains and

transaction types. As the virtual currency economy continues to evolve, it will become

increasingly important for institutions to adopt trustworthy auditing solutions.

70

Bibliography

[1] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robin-
son. Uniswap v3 core, 2021.

[2] Mike Bayer. Sqlalchemy - the database toolkit for python, 2005.

[3] Juan Benet. Ipfs - content addressed, versioned, p2p file system, 2014.

[4] Blockchair. Bitcoin transactions per second, November 2020.

[5] Blockchair. Ethereum transactions per second, November 2020.

[6] Fabrice Boudot. Efficient proofs that a committed number lies in an interval.
In Bart Preneel, editor, Advances in Cryptology — EUROCRYPT 2000, pages
431–444, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[7] Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols for set
membership and range proofs. In Josef Pieprzyk, editor, Advances in Cryptology
- ASIACRYPT 2008, pages 234–252, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[8] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large
groups. In Burton S. Kaliski, editor, Advances in Cryptology — CRYPTO ’97,
pages 410–424, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[9] Coinbase. Secure bitcoin storage - coinbase, November 2020.

[10] CoinMarketCap. Coinmarketcap, November 2020.

[11] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Yvo G. Desmedt,
editor, Advances in Cryptology — CRYPTO ’94, pages 174–187, Berlin, Heidel-
berg, 1994. Springer Berlin Heidelberg.

[12] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy Clark, and Dan
Boneh. Provisions: Privacy-preserving proofs of solvency for bitcoin exchanges.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’15, page 720–731, New York, NY, USA, 2015. Asso-
ciation for Computing Machinery.

71

[13] George Danezis. Petlib: A python library that implements a number of privacy
enhancing technologies (pets), 2014.

[14] Facebook. React: A javascript library for building user interfaces, 2021.

[15] FDIC. Fdic law, regulations, related acts - rule 2000 part 363, 2009.

[16] FDIC. Fdic: Insured or not insured?, May 2020.

[17] U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols.
In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, STOC ’90, page 416–426, New York, NY, USA, 1990. Association
for Computing Machinery.

[18] Linux Foundation. grpc - a high-performance open-source universal rpc frame-
work, 2021.

[19] Gemini. Gemini user agreement, October 2020.

[20] Google. Protobufs, 2008.

[21] Nermin Hajdarbegovic. Kraken bitcoin exchange passes ‘proof of reserves’ cryp-
tographic audit, March 2014.

[22] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic curve
cryptography. Springer Science & Business Media, New York, New York, USA,
2006.

[23] Improbable. Grpc web proxy, 2021.

[24] Kraken.

[25] Robert Leshner and Geoffrey Hayes. Compound: The money market protocol,
2019.

[26] Wouter Lueks, Bogdan Kulynych, Jules Fasquelle, Simon Le Bail-Collet, and
Carmela Troncoso. Zksk: A library for composable zero-knowledge proofs. In
Proceedings of the 18th ACM Workshop on Privacy in the Electronic Society,
WPES’19, page 50–54, New York, NY, USA, 2019. Association for Computing
Machinery.

[27] Wenbo Mao. Guaranteed correct sharing of integer factorization with off-line
shareholders. In Hideki Imai and Yuliang Zheng, editors, Public Key Cryptogra-
phy, pages 60–71, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[28] Nacha. Ach network moves 23 billion payments and $51 trillion in 2018, February
2019.

[29] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical
report, Manubot, 2009.

72

[30] Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-preserving
auditing for distributed ledgers. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages 65–80, Renton, WA, April
2018. USENIX Association.

[31] New York Department of Financial Services. Virtual currency businesses: Reg-
ulation and history, 2015.

[32] Torben Pryds Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology —
CRYPTO ’91, pages 129–140, Berlin, Heidelberg, 1992. Springer Berlin Heidel-
berg.

[33] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-
chain instant payments, 2016.

[34] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
cryptology, 4(3):161–174, 1991.

[35] Pete Schroeder. U.s. crypto, fintech firms to benefit from slimmed down regula-
tory process, September 2020.

[36] Vitalik Vogelsteller, Fabian; Buterin. Eip-20: Erc-20 token standard. Technical
Report 20, Ethereum Improvement Proposals, November 2015.

[37] W3C. Web Authentication: An API for accessing Public Key Credentials. W3C,
March 2019.

[38] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio
Bellei, Tom Robinson, and Charles E Leiserson. Anti-money laundering in bit-
coin: Experimenting with graph convolutional networks for financial forensics.
arXiv preprint arXiv:1908.02591, 2019.

[39] Bitcoin Wiki. Hashcash, April 2019.

[40] Bitcoin Wiki. Bitcoin Protocol, September 2020.

[41] Gavin Wood. Ethereum: A secure decentralized generalized transaction ledger.
Ethereum project yellow paper, 151:1–32, 2014.

73

	Introduction
	Background
	Blockchains
	Bitcoin
	Ethereum

	Challenges of Virtual Currency
	Loss of Credentials
	Transaction Privacy
	Transaction Fees
	Transaction Throughput
	Accountability

	Zero Knowledge Proofs
	Elliptic Curve Cryptography
	Pedersen Commitments
	Non-Interactive Zero Knowledge Proofs (NIZKs)

	Related Works
	Proofs of Solvency
	Maxwell Protocol
	Provisions

	Auditable Blockchains

	System Design
	Features
	Compatible with Bitcoin and Ethereum
	Cold Wallets
	Privacy Preserving
	Fully Accountable

	Trust Model
	Zero Knowledge Algorithms
	Key Permutation
	Key Bit
	Currency Conversion
	Blockchain Balance
	Less Than Equal

	System Components
	Blockchain Nodes, IPFS Nodes, and the Audit Smart Contract
	Institutional Web Server
	Web Client
	Auditor

	System Parameters
	Base Currency
	Alternative Generator Point
	Currency Precision
	Maximum Balance per User and Maximum Number of Users
	Exchange Rate Tolerance
	Audit Smart Contract

	Data Models
	Client-Server Operations
	Customer Registration
	Account Creation
	Deposits
	Exchanges
	Withdrawals

	Audit Generation
	Audit Metadata
	Proof of Liabilities
	Proof of Assets
	Proof of Solvency

	Auditor Verification
	Proof of Liabilities
	Proof of Assets
	Proof of Solvency

	Auditor Remote Procedure Calls
	Get Key Account
	Is Transaction New

	Security Analysis
	Delay or Refusal to Process Transactions
	Loss of Account Access
	Loss of Keys
	Collusion Across Institutions

	Privacy Analysis
	Deposit Addresses
	Withdrawal Anonymity Set
	Transaction History
	Insolvent Users
	Auditor RPCs

	Implementation
	Blockchains and Currencies Supported
	System Components
	Institutional Server
	Audit
	Auditor

	Web Client

	Evaluation
	Future Work and Conclusion
	Loans, Interest, and Margin Calls
	Anonymity Set Construction
	Transaction Expiration and Guaranteed Execution
	Conclusion

