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Abstract

Mutation in viruses and bacteria presents a major barrier to the development of vac-
cines, antiviral drugs, and antibiotics. Recently, neural language models trained on
viral protein sequence evolution have shown promise in their ability to predict viral
escape mutations, potentially enabling more intelligent therapeutic design [6]. Hie et
al.’s work puts forth the key conceptual advance that viral escape from human im-
munity occurs in the event of a mutation which simultaneously generates meaningful
antigenic change while also preserving viral fitness. These ideas are analogous to the
semantics and grammar of a language.

Theoretically, mutations that confer high semantic change while preserving high
grammaticality may also be predictive of resistance to other types of evolutionary
pressure as well. In this thesis, we show that language modeling of protein evolution
can also predict mutations that confer drug resistance. We validate our language
model predictions using known drug resistance mutations in HIV-1 protease and re-
verse transcriptase proteins and Escherichia coli beta-lactamase protein. Our results
suggest a way to identify and potentially anticipate drug resistance mutations that
generalizes across viruses and bacteria.

Thesis Supervisor: Bonnie Berger
Title: Simons Professor of Mathematics
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Chapter 1

Introduction

Mutation in pathogenic viruses and bacteria present a major barrier against the devel-

opment of reliable vaccines and therapies. For example, viral mutation that escapes

immunity presents a challenge to vaccine development and bacterial resistance to

antibiotics threatens us with potentially untreatable infections. Unable to reliably

depend on our current suite of antiviral and antibiotic drugs, we must seek to better

understand drug resistance and potentially predict escape mutations within disease-

causing viruses and bacteria before they become major problems (e.g., pandemics

involving untreatable and fatal infectious diseases). Being able to predict the muta-

tions which would allow viruses to escape human immunity and bacteria to develop

drug resistance could serve as a valuable tool to intelligent therapeutic design.

Attempting to understand the mechanisms for drug resistance through wetlab

experiments is often time-consuming because of the high complexity of biological sys-

tems. Furthermore, methods developed to understand one strain of a virus might not

generalize to other viral strains or even other viral species or other infectious agents

like bacteria. High throughput techniques such as deep mutational scans (DMS)

have been developed to profile the resulting phenotypic changes from single-residue

mutations, ignoring the prohibitively large set of combinatorial mutations possible.

However, even a simple DMS which neglects combinatorial mutations requires a large

amount of time and effort.

To this end, we seek more efficient means of studying escape through computa-

13



tional models. We draw inspiration from recent work with neural language models

which shows that it is possible to extract functional information from sequences alone,

thus, demonstrating that computation can be leveraged as a promising way to effi-

ciently study viral escape [6].

As in all natural languages, there exists a set of rules (e.g., the grammar) which a

linear sequence of tokens must obey. The encoding of complex ideas is the semantics

of the language. Hie et al. posit that in the language of viral amino-acid sequences,

grammaticality corresponds to and quantifies the virus’s viability and infectivity,

while semantic change corresponds to a different protein capable of escaping current

drugs and human immunity [6]. The key idea is that in order to arrive at viral escape,

a mutation must generate an amino acid sequence with both high grammaticality and

semantic change. The task of searching for such a mutation is called a “constrained

semantic change search” (CSCS) [6]. Previously, CSCS was used to predict escape

mutations in influenza hemagglutinin, HIV Env, and SARS-CoV-2 Spike.

1.1 Related Work

The goal of this thesis is to understand the genrality of the language models to differ-

ent evolutionary settings by showing how CSCS can model not only viral escape from

vaccines but also resistance to artificial drug selection. To this end, we are interested

in conducting empirical studies, applying the CSCS to predict drug resistance muta-

tions in reverse transcriptase and protease within HIV and beta-lactamase protein in

Escherichia coli (E. coli) bacteria.

The idea that co-occurrence patterns encode semantics, the distributional hypoth-

esis, has been the basis of the practical success of language models first in natural

language [15, 10] and more recently in biology. In biology in particular, we have seen

recent success in using recurrent architectures for protein-sequence representation

learning [1, 2, 16]. The main inspiration for this thesis is the recent work by Hie et

al., which shows a novel use of neural language models to learn both semantic change

and grammaticality to enable the prediction of viral escape mutations [6]. The key

14



idea contributed is that grammaticality and semantic change are analogous to and

measure viral fitness and antigenic change, respectively.

Previous non-language model attempts have been made to predict virus mutations

through statistical learning as well as neural networks [3, 19, 7]. Methods have also

been developed to model and predict antibiotic resistance of nontyphoidal Salmonella

[11]. We specifically compare the CSCS algorithm with other attempts to predict

mutational effects on protein fitness using sequence variation alone. These meth-

ods include EVCouplings (independent and epistatic models) and a naive empirical

mutation frequency-based approach following sequence alignment via MAFFT to un-

derstand which approach is most successful in predicting escape mutations [7, 8].

15
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Chapter 2

Methods

2.1 CSCS: Problem Specification

The problem formulation is as in Hie et al., 2020 [6].

Let X be a finite alphabet which represents the set of all amino acids. Given

x , (𝑥1, · · · , 𝑥𝑁) ∈ X𝑁 (2.1)

the wild-type protein sequence of 𝑁 amino acids for a particular viral or bacterial

protein, we are interested in finding the set of mutations which are most likely to

result in escape.

Restricting our attention to single-token mutations, let 𝑚𝑖,𝑥′ : X𝑁 → X𝑁 be the

mutation function which applies a substitution mutation of 𝑥′ ∈ X at position 𝑖 ∈ [𝑁 ]

to its input protein sequence. As such, 𝑚𝑖,𝑥′(x) is a sequence produced as a result of

a particular single-token substitution mutation based on x:

𝑚𝑖,𝑥′ = (𝑥1, · · · , 𝑥𝑖−1, 𝑥
′, 𝑥𝑖+1, · · · , 𝑥𝑁) (2.2)

To quantify the semantics of a particular mutation, we first introduce embedding

function 𝑓𝑠 : X𝑁 → R𝐾 which embeds from the discrete space of token sequences to a

𝐾-dimensional continuous space, capturing the semantics of sequences. In particular,

17



the embedding function 𝑓𝑠 is designed such that semantically similar sequences are

close in a geometric sense with respect to a vector norm ‖·‖. Thus, we can interpret

∆z𝑖,𝑥′(x) , ‖𝑓𝑠(x) − 𝑓𝑠(𝑚𝑖,𝑥′(x))‖ (2.3)

as the semantic change associated with applying mutation 𝑚𝑖,𝑥′(·) to original pro-

tein sequence x.

Next, we define grammaticality which serves as a proxy for biological viability.

With x−𝑖 , (𝑥1, · · · , 𝑥𝑖−1,−, 𝑥𝑖+1, · · · , 𝑥𝑁) denoting the context surrounding position

𝑖 in x, we say that the grammaticality of a mutation is the probability associated with

assigning token 𝑥′ ∈ X to x𝑖 conditional on context x−𝑖

𝑝x𝑖|x−𝑖
(𝑥′|x−𝑖) (2.4)

Our objective function jointly optimizes an additive function of rank-normalized

semantic change (2.3) and grammaticality (2.4) by assigning the score

𝑎x(𝑖, 𝑥′) , rank(∆z𝑖,𝑥′(x)) + 𝛽 · rank(𝑝x𝑖|x−𝑖
(𝑥′|x−𝑖)) (2.5)

to mutation 𝑚𝑖,𝑥′(·) applied to original sequence x which induces semantic change

∆z𝑖,𝑥′(x) and maintains grammaticality 𝑝x𝑖|x−𝑖
(𝑥′|x−𝑖), for some parameter 𝛽 ∈ [0,∞).

2.2 CSCS: Algorithm Overview

As proposed by Hie et al., we consider learning a language model which emits proba-

bility distributions over missing tokens given the surrounding context over all contexts

[6, 10, 15, 4, 5, 13].

This is accomplished through first learning an embedding 𝑓𝑠(·) to generate a latent

variable ẑ−𝑖 = 𝑓𝑠(x−𝑖) such that the latent variable captures all the relevant context

information. More precisely, we have Markov structure x𝑖 ↔ ẑ−𝑖 ↔ x−𝑖 expressing

conditional independence of the missing token’s distribution from the context given

the latent variable. Therefore, we can write

18



𝑝x𝑖|x−𝑖,ẑ−𝑖
(·|x−𝑖, ẑ−𝑖) = 𝑝x𝑖|ẑ−𝑖

(·|ẑ−𝑖) (2.6)

Next, we compute the semantic change of applying mutation 𝑚𝑖,𝑥′(·) on sequence

x ∈ X𝑁 as

∆ẑ𝑖,𝑥′(x) , ‖ẑ(x) − ẑ(𝑚𝑖,𝑥′(x))‖1 (2.7)

where

ẑ(x) ,
1

𝑁

𝑁∑︁
𝑖=1

𝑓𝑠(x−𝑖) (2.8)

is the average embedding of contexts of x across all positions and ‖·‖1 denotes 𝐿1

norm so that embeddings spatially encode semantic similarity and differences.

Grammaticality is analogous to (2.4) where we learn distribution 𝑝 so that

𝑝x𝑖|x−𝑖
(·|x−𝑖) = 𝑝x𝑖|ẑ−𝑖

(·|𝑓𝑠(x−𝑖)) (2.9)

encodes grammaticality.

We then utilize a bidirectional-LSTM as the encoder model for our semantic em-

bedding of context x−𝑖 [6].

ẑ−𝑖 = 𝑓𝑠(x−𝑖) =

⎡⎢⎢⎢⎣
LSTM𝑓 (𝑔𝑓 (𝑥1, · · · , 𝑥𝑖−1))

...

LSTM𝑟(𝑔𝑟(𝑥𝑖+1, · · · , 𝑥𝑁))

⎤⎥⎥⎥⎦ ∈ R𝐾 (2.10)

with 𝑔𝑓 and 𝑔𝑟 being the outputs of the previous feed-forward and subsequent

reverse-directed layers respectively; while LSTM𝑓 and LSTM𝑟 denote the final forward

directed and final reverse-directed components.

Finally, the grammaticality distribution is obtained via

𝑝x𝑖|x−𝑖
(·|x−𝑖) = softmax(Wẑ−𝑖 + b) (2.11)

where W ∈ R|X|×𝐾 and b ∈ R|X| are learned model parameters.

19



With these components, our objective function analogous to (2.5) seeks to mini-

mize

𝑎x(𝑖, 𝑥′) , rank(∆ẑ𝑖,𝑥′(x)) + 𝛽 · rank(𝑝x𝑖|x−𝑖
(𝑥′|x−𝑖)) (2.12)

Alternatively, we can interpret score as a statistic which we can threshold for our

binary hypothesis testing. That is for some threshold 𝛾 ∈ [0,∞) we decide whether

or not a particular mutation is an escape via its score

𝐻̂(x, (𝑖, 𝑥′)) =

⎧⎪⎨⎪⎩escape 𝑎x(𝑖, 𝑥′) ≤ 𝛾

non-escape otherwise

which traces out the ROC curve for our decision rule.

2.3 Architecture Details

As in Hie et al., 2020, we use dense embedding to map each token in the alphabet X

to a 20-dimensional point. There are two BiLSTM layers each with 512 units. Finally,

we minimize categorical loss via Adam with the following parameters:

• learning rate 0.001 for all models except for the model associated with UniProt’s

beta-lactamase which utilized learning rate 0.0001, which we lowered due to

observed instability during model training

• 𝛽1 = 0.9

• 𝛽2 = 0.999

20



Chapter 3

Results

3.1 Biologically meaningful semantic landscapes

We interpret the semantic embeddings learned by the language model by visualizing

the embeddings in two dimensions Uniform Manifold Approximation and Projection

(UMAP), which approximates the high-dimensional nearest-neighbor relationships

in a low-dimensional space [9]. Overall, we find that the language model semantic

embedding meaningfully captures various biologically relevant aspects of sequence

variation.

For example, we will see below that the embedding preserves high level taxonomic

information (e.g, taxonomic phylum) as well as protein class labels among various

beta-lactamase sequences. Consistent with Hie et al.’s work, we also confirm that

the embedding landscape also captures viral subtype information, with evident clus-

tering of sequences with respect to the virus subtype in the HIV pol gene as well as

individually, the subsequences of pol encoding the protease and reverse transcriptase

proteins (Figure 3-1) [6]. Finally, with specific relevance to mutations which enable

escape from antiviral drugs, we find that the semantic embedding landscape reliably

capture’s the drug treatment history of the patient from which the HIV sequence was

retrieved (Figure 3-4). All of these point to evidence that it is indeed possible to learn

semantically meaningful information from sequence data alone in this unsupervised

learning setting [6].
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3.1.1 Subtypes of HIV

In UMAP embedding space, we observe clustering of sequences by the subtype of

the HIV virus from which the sequence was obtained, suggesting that the model had

successfully learned subtype structure (Figure 3-1).

Most notably, subtypes B, C, and AE are consistently the largest main clusterings

in all embeddings which are respectively the most common subtypes in

• Europe, the Americas, Japan, and Australia (subtype B)

• Southern Africa, Eastern Africa, India, Nepal, and parts of China (subtype C)

• AE represents a circulating recombinant form (CRF) prevalent in India

An interesting hypothesis is whether the landscape can be slightly modified to

recapitulate to the geographic world map where the respective strains are most preva-

lent [12]. However, it is unclear from the given data as we clearly only have three

distinctly large clusters.

3.1.2 Phylogeny of Bacteria

At a high level, via beta-lactamase protein sequences from many bacterial species,

our model learns a semantic embedding which encapsulates phylogenetic structure.

Specifically, clusters are seen in the spatial arrangement of sequences when visualized

in the first two UMAP components that correspond to the phylum of the bacteria from

which the sequence came from (Figure 3-2). We include the highest level snapshot

we could obtain by choosing phylum, but we can also verify that at finer levels of

phylogenetic classification, the semantic embedding landscape emits clusters which

are yet further subdivided as one would expect.

3.1.3 Classes of Beta-Lactamase

Mutations in bacterial beta-lactamase are a major threat to our use of beta-lactam

based antibiotics to treat bacterially-caused infectious diseases. In fact, our heavy use

22



(a) HIV Protease

(b) HIV Reverse Transcriptase

(c) HIV pol gene

Figure 3-1: Subtype Landscapes of HIV
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Figure 3-2: Phylums of UniProt database beta-lactamase sequences

of beta-lactam based antibiotics such as Penicillin has resulted in the rapid mutation

of the beta-lactamase gene which confers resistance against these drugs, developing

multiple classes of the protein across bacterial species [14].

In our experiments, the model successfully learns to embed protein sequences in

a way that captures the specific subclass of the sequence (Figure 3-3).

Figure 3-3: Protein class of UniProt database beta-lactamase sequences
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3.1.4 Drug Treatment History

In the LANL HIV datasets, viral sequences come from patients undergoing treatment.

Each of these sequences comes tagged with metadata detailing the set of drug treat-

ments the patient has undergone prior to viral sequencing. With the assumption that

patient revisits are in part due to remaining symptoms after treatment, it is likely

that the drug resistance of a particular sequence is correlated with the drug treat-

ment history appearing in its metadata tag. There is a slight spatial structure with

clustering seen among the drugs Lopinavir and protease-inhibitor, with insufficient

data from other classes of drugs to make strong conclusions.

Figure 3-4: Protein class of UniProt database beta-lactamase sequences

3.2 HIV Protease and Reverse Transcriptase

We first train our two BiLSTM models on unaligned sequences of protease and reverse

transcriptase (73,110 and 6,164 unique sequences respectively). Following sequence

alignment, we perform single-residue escape mutation prediction via CSCS and find
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that regions marked with a high priority for acquisition based on high rank-normalized

grammaticality and semantic change scores contain the known escape mutations (Fig-

ure 3-5). From sequence data alone, CSCS learns in a zero-shot learning setting to

predict with high accuracy escape mutations which it had not previously seen. These

escape mutations are obtained from the Stanford University HIV drug resistance

database, and we classify phenotypes indicated in the highest bucket of drug fold

resistance as escape mutations [17].

In particular, we confirm that both grammaticality and semantic change contain

relevant information for the prediction of viral escape, where grammaticality tracks bi-

ological viability and semantic change indicates a meaningful antigenic change. With

regards to protease and reverse transcriptase which are both encoded on the pol gene,

a prediction scheme made purely based on ranked grammaticality seems to perform

better than one solely based on semantic change, and combining the two in CSCS

improves the AUC for the semantic change-based predictions. In both settings, CSCS

clearly outperforms both the independent and epistatic models of EVcouplings by a

sizeable margin and has similar performance to the Mutation Frequency method (Fig-

ure 3-6). With the comparatively similar performance between CSCS and the naive

Mutation Frequency method, it is likely that the patterns of the viral HIV PR and

RT “languages” are not particularly difficult to learn. We suspect that the relatively

poor performance of the EVcouplings methods in comparison to CSCS and Muta-

tion Frequency suggests that perhaps some of the input preprocessing performed by

EVcouplings was detrimental to its performance to which CSCS is not prone.

3.3 E. coli beta-lactamase

As demonstrated in Hie et al.’s work and confirmed in our HIV experiments with

protease and reverse-transcriptase, through sequence data alone language models are

able to

• learn biologically meaningful semantics embedding landscapes
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(a) CSCS: HIV Protease

(b) CSCS: HIV Reverse Transcriptase

Figure 3-5: CSCS acquisition of HIV protease and reverse-transcriptase single-residue
escape mutations. Each circle represents a single-residue mutation with red Xs drawn
over escape mutations. Light yellow points are acquired first, dark blue points are
acquired last.
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Figure 3-6: CSCS: HIV PR and RT Benchmarked Performance. Higher AUCs are
better.
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• quantify biological fitness via grammaticality

• combine these ideas of semantic change and grammaticality to predict escape

via CSCS [6]

However simultaneously, we must have sufficiently rich sequence data for training

such language models successfully for the purpose of escape prediction inference.

In the following beta-lactamase escape prediction setting, we consider training a

BiLSTM language model based on NCBI’s Anti-Microbial Resistance (AMR) dataset,

which consists of 2,893 unique sequences. Then, based on a recent study, which

screens deep mutants of the beta-lactamase protein among E. coli for resistance to

beta-lactam antibiotics, we consider two different sets of screened deep mutants as

“escape” in our validation tests [18]

• Antibiotic Resistant Mutants: Mutants having an antibiotic IC50 concen-

tration greater than that of the wild-type for any of the beta-lactam based

antibiotic drugs (PIP, ATM, FEP)

• Combination Resistant Mutants: Mutants having an antibiotic IC50 con-

centration greater than that of the wild-type for any of the beta-lactam based

antibiotic drugs (PIP, ATM, FEP) in the presence of avibactam (AVI), an in-

hibitor of beta-lactamase

With these two sets of escape mutations to validate against, we perform CSCS

and also consider the performance of models using only semantic change and gram-

maticality alone. Benchmarking the performance of CSCS, we find statistically sig-

nificant AUCs compared to a null hypothesis of random guessing in both settings,

with p-values of 0.0069 and 0.0001 for combination resistance and antibiotic resistance

respectively.

Although the raw AUC scores are smaller than in the HIV PR and RT results,

CSCS clearly outperforms both EVcouplings methods in combination resistance pre-

diction and does slightly better for antibiotic resistance prediction. Furthermore, it is

not clear whether either the EVcouplings and Mutation Frequency methods perform
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better than random guessing, as the independent EVcouplings method achieves an

AUC which is less than 0.5 in the combination resistance prediction setting, while

CSCS clearly achieves statistically significant results.

Along with the few number of training sequences available (fewer than half as

many sequences available for RT and more than a whole order of magnitude less than

the number of sequences available for PR), these benchmarks suggest that indeed,

the training sequences were not sufficiently rich to enable the language model to suf-

ficiently learn the semantics and grammar of the language. Thus, CSCS performs

statistically significantly better than random guessing but it is likely its AUC perfor-

mance could be further improved with access to a richer training sequence dataset.
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(a) CSCS: E. coli beta-lactamase antibiotic resistance prediction

(b) CSCS: E. coli beta-lactamase antibiotic + AVI combination re-
sistance prediction

Figure 3-7: CSCS acquisition of E. coli single-residue escape mutations. Each circle
represents a single-residue mutation with red Xs drawn over escape mutations. Light
yellow points are acquired first, dark blue points are acquired last.
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Figure 3-8: CSCS: beta-lactamase benchmarked performance. Higher AUCs are bet-
ter.
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Chapter 4

Conclusion and Future Directions

Mutation in viruses and bacteria presents a major barrier to the development of

vaccines, antiviral drugs, and antibiotics. Being able to predict mutations that escape

our current drugs or human immunity could lead to more intelligent therapeutic

design. This work draws on recent work showing the promise of neural language

models in predicting these escape mutations and applies it in understanding HIV-

1 protease and reverse transcriptase. It also extends the application of the CSCS

framework to understanding bacterial proteins by considering beta-lactamase in E.

coli.

Indeed, we confirm that when given a sufficiently rich sequence dataset, one can

train a neural language model to not only succeed in prediction of escape muta-

tions but also construct a biologically-meaningful semantic landscape. From learning

HIV subtype structure to capturing phylogenetic structure in bacteria, it is evident

that neural language models are doing much more than pattern recognition for the

sake of prediction. Instead, neural language models are capable of picking apart the

biologically meaningful information embedded in protein sequences, which is a key

contribution by Hie et al.

Coupling semantics with the notion of grammaticality, CSCS makes successful

predictions when trained on a sufficiently rich sequence dataset. In this research,

we extend the success of CSCS in the viral escape prediction setting and show the

method generalizes for bacterial escape prediction as well. Nonetheless, when we have
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insufficiently rich datasets, the learning is limited and the success of CSCS prediction

falls slightly accordingly. To this end, we can reasonably expect the quality of the

inference performed by CSCS generally improves with more data.

There are several potential areas for future research. The first is to consider train-

ing a model for a bacterial protein for which there exists a sufficiently rich sequence

dataset (e.g. nuclear proteins of influenza, rpoB) in order to further verify the gen-

erality of CSCS. Additionally, the research could also have been extended to account

for combinatorial mutations in a way that preserves computational tractability. Fur-

thermore, improving the methodology to be able to understand not only substitution

mutations but also deletions and insertions is an additional interesting direction to

explore.

Though mutations constantly pose a challenge to researchers hoping to develop

vaccines, antiviral drugs, and antibiotics; there is a recently expanding suite of

methodologies to help. We hope that our work provides useful results and method-

ologies to researchers hoping to more intelligently design therapeutics.
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Appendix A

Tables

Method AUC

CSCS 0.886
grammaticality only 0.916
semantic change only 0.733
EVcouplings (ind.) 0.707
EVcouplings (epi.) 0.735

Mutation Frequency 0.928

Table A.1: HIV PR

Method AUC

CSCS 0.862
grammaticality only 0.881
semantic change only 0.688
EVcouplings (ind.) 0.729
EVcouplings (epi.) 0.685

Mutation Frequency 0.846

Table A.2: HIV RT
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Method AUC

CSCS 0.604
grammaticality only 0.601
semantic change only 0.561
EVcouplings (ind.) 0.562
EVcouplings (epi.) 0.582

Mutation Frequency 0.519

Table A.3: E. Coli beta-lactamase antibiotic resistance

Method AUC

CSCS 0.590
grammaticality only 0.606
semantic change only 0.533
EVcouplings (ind.) 0.482
EVcouplings (epi.) 0.514

Mutation Frequency 0.512

Table A.4: E. Coli beta-lactamase combination resistance
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Appendix B

Figures

(a) Antibiotic Resistance

(b) Combination Resistance

Figure B-1: beta-lactamase ROC Curves
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(a) HIV Protease

(b) HIV Reverse Transcriptase

Figure B-2: HIV ROC Curves
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