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Abstract

Recently, there has been significant effort to generalize successful ideas in Euclidean
optimization to Riemannian optimization. However, one landmark result of Euclidean
optimization has eluded the Riemannian setting: namely, a Riemannian analog of
Nesterov’s accelerated gradient method (AGM). In this thesis, we establish the first
globally accelerated gradient method for Riemannian manifolds.

Toward establishing our result, the first part of the thesis revisits Nesterov’s AGM
and develops a conceptually simple understanding of it based on the proximal point
method (PPM). The main observation is that AGM is in fact an approximation of
PPM, which results in simple derivations and analyses of different versions of AGM.

The second part of the thesis then extends our simple approach to the Riemannian
case. In our extension, we handle a technical hurdle inherent to the Riemannian case
by introducing an appropriate notion of “metric distortion.” We control this distortion
via a novel geometric inequality, which enables us to formulate and analyze global
Riemannian acceleration.

Thesis Supervisor: Suvrit Sra
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter I

Introduction and outline

I.1 Main question

Non-convex optimization is in general intractable. But occasionally, special problem

structure can enable tractability. An important instance of such structure is that of

geodesic convexity (g-convexity), a generalization of convexity that is defined along

geodesics in a metric space [Gro78, BBB+01, BH13]. Tractability through the lens of

g-convexity has been fruitful in several applications (e.g., see [ZS16, §1.1]) and also

some purely theoretical questions [BFG+19, GS19].

Paralleling the theory and applications of g-convexity is the progress on algorithms,

primarily set in Riemannian manifolds [Udr94, AMS09] and CAT(0) spaces [Bac14].

Earlier studies focus on asymptotic analysis, while [ZS16] obtains the first non-

asymptotic iteration complexity analysis for Riemannian (stochastic) gradient meth-

ods. Subsequent works establish iteration complexity for Riemannian proximal-point

methods [BFM17], Frank-Wolfe [WS19], variance reduced methods [ZRS16, KSM16,

ZZS18, ZYYF19], trust-region methods [ABBC20], among others.

Despite this progress, a landmark result of Euclidean optimization has eluded the

Riemannian setting: namely, a Riemannian analog of Nesterov’s accelerated gradient

method (AGM) [Nes83] (see the beginning of Chapter II for background). This gap

motivates the main question:
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Is it possible to develop accelerated gradient methods for Riemannian manifolds?

In this thesis, we tackle this question based on the following two steps:

1 Revisit Nesterov’s acceleration in the Euclidean setting and develop a simple

derivation and analysis for it.

2 Extend the derivation and analysis to the Riemannian setting.

Consequently, this thesis consists of two parts. The first part (consisting of Chapters II

and III) addresses 1 , and the second part (Chapter IV) addresses 2 .

I.2 Outline

To ease presentation, we provide background at the beginning of each chapter and

discuss related work at the end of each chapter.

In Chapter II, we develop a simple derivation and analysis for AGM in the Euclidean

setting. Our approach is based on connecting AGM to another well-known optimization

method called the proximal point method (PPM). In §II.1, we first present a brief

background on PPM including its analysis. In §II.2, we then consider two simplest

ways to approximate PPM, and discuss their limitations. In §II.3, we discuss how a

combination of the two simplest approximations of PPM in fact recovers a version

of AGM, and give a simple analysis based on PPM. In §II.4, we demonstrate how

our framework recovers other well known versions of AGM, including the momentum

version and the similar triangle version.

In Chapter III, we extend our simple derivation and analysis to the strongly

convex setting. In §III.1, based on our simple derivation, we derive the most general

version of AGM due to Nesterov called “General Scheme for Optimal Method ” [Nes18,

(2.2.7)]. We extend our PPM-based analysis to strongly convex costs. As a warm-up,

in §III.2, we first consider the simple case of constant step sizes and recover the

famous parameter choice due to Nesterov (e.g., [Nes18, (2.2.22)]). In §III.3, we then

consider the general case, and demonstrate that one can recover the elaborate step
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sizes choice [Nes18, (2.2.22)] from first principles. In §III.4, we provide the proofs of

technical statements presented in the chapter.

In Chapter IV, we develop the first global accelerated gradient method for Rieman-

nian manifolds, building on the results form Chapter III. In §IV.1, we provide a short

preliminaries on Riemannian geometry required for our development. In §IV.2, we

consider a Riemannian analog of “General Scheme for Optimal Method” and analyze it

by modifying the techniques from §III.3 using the notion of metric distortion. In §IV.3,

we discuss how one can estimate metric distortion rates in terms of the known quantity

and develop a globally accelerated gradient method for Riemannian manifolds. In

§IV.4, we validate our estimation scheme for metric distortion rates by developing

new geometric inequalities. In §IV.5, we analyze how the estimated distortion rate

changes over iterations. In §IV.6, we combine all the ingredients together and prove

an accelerated convergence rate.

In Chapter V, we conclude this thesis with future directions.

15
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Chapter II

From proximal point method to

accelerated gradient methods

This chapter discusses accelerated methods in the Euclidean domain and serves as a

stepping stone for answering the main question of this thesis. We remark that readers

who are mainly interested in our result for the Riemannian case can skip ahead to

Chapter III.

In 1983, Nesterov introduced the accelerated gradient method (AGM) for convex

optimization. AGM is a gradient method that achieves strictly faster convergence rates

than gradient descent. On top of its accelerated rates, AGM is easy to implement,

and it has been applied to a myriad of applications. The list applications includes

sparse linear regression [BT09], compressed sensing [BBC11], the maximum flow

problem [LRS13], and deep neural networks [SMDH13]. Paralleling its success both in

theory and practice, there have been a flurry of works trying to understand the scope

and principles of AGM [SBC16, KBB15, WWJ16, LRP16, WRJ16, AZO17, DO19].

Despite numerous attempts to understand AGM, one aspect of AGM not well

understood in the literature is the fact that it appears in many different forms. In

fact, ever since the original version due to Nesterov, there have been several different

versions of it; below, we list the most representative ones:
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𝑧𝑡+1 = 𝑦𝑡 − 𝛼(1)
𝑡 ∇𝑓(𝑦𝑡) ,

𝑦𝑡+1 = 𝑧𝑡+1 + 𝛽
(1)
𝑡 (𝑧𝑡+1 − 𝑧𝑡) .

Form I [Nes83, BT09].

𝑦𝑡 = 𝛼
(2)
𝑡 𝑥𝑡 + (1− 𝛼(2)

𝑡 )𝑧𝑡 ,

𝑧𝑡+1 = 𝑦𝑡 − 𝛽(2)
𝑡 ∇𝑓(𝑦𝑡) ,

𝑥𝑡+1 = 𝑥𝑡 − 𝛾(2)𝑡 · ∇𝑓(𝑦𝑡) .

Form II [Nes18, AZO17].

𝑦𝑡 = 𝛼
(3)
𝑡 𝑥𝑡 + (1− 𝛼(3)

𝑡 )𝑧𝑡 ,

𝑥𝑡+1 = 𝑥𝑡 − 𝛽(3)
𝑡 ∇𝑓(𝑦𝑡) ,

𝑧𝑡+1 = 𝛾
(3)
𝑡 𝑥𝑡+1 + (1− 𝛾(3)𝑡 )𝑧𝑡 .

Form III [AT06, Tse08, GN18].

𝑦𝑡 = 𝛼
(4)
𝑡 𝑥𝑡 + (1− 𝛼(4)

𝑡 )𝑧𝑡 ,

𝑥𝑡+1 = 𝛽
(4)
𝑡 𝑥𝑡 + (1− 𝛽(4)

𝑡 )𝑦𝑡 − 𝛾(4)𝑡 ∇𝑓(𝑦𝑡) ,

𝑧𝑡+1 = 𝑦𝑡 − 𝛿(4)𝑡 ∇𝑓(𝑦𝑡) .

Form IV [Nes18].

Here 𝛼(·)
𝑡 , 𝛽

(·)
𝑡 , 𝛾

(·)
𝑡 , 𝛿

(·)
𝑡 are some carefully chosen step sizes.

In this chapter, we present a way to understand the details of AGM from the

proximal point method (PPM). Our approach is inspired by that of [Def19]. The

main observation is that different versions of AGM can be derived by viewing them as

approximations of PPM. On top of simple derivations, the PPM view of AGM also

offers simple analyses of different versions of AGM based on the standard analysis of

PPM [Gül91]. Moreover, our view gives rise to the key idea of the method of similar

triangles, a version of AGM shown to have simple extensions to practically relevant

settings [Tse08, GN18]. Our approach also readily extends to the strongly convex case

as we discuss in Chatper III.

We first provide a brief background on the proximal point method.

II.1 Brief background on the proximal point method

The proximal point method (PPM) [Mor65, Mar70, Roc76] is a fundamental method

in optimization which solves the minimization of the cost function 𝑓 : R𝑑 → R by

18



iteratively solving the subproblem

𝑥𝑡+1 ← argmin
𝑥∈R𝑑

{︂
𝑓(𝑥) +

1

2𝜂𝑡+1

‖𝑥− 𝑥𝑡‖2
}︂

(II.1)

for a step size 𝜂𝑡+1 > 0, where the norm is chosen as the ℓ2 norm. The motivation

of the method is clear: we add a quadratic regularization to make the cost function

well conditioned for faster optimization. Nevertheless, solving (II.1) is in general as

difficult as solving the original optimization problem, and PPM is largely regarded as

a “conceptual” guiding principle for accelerating optimization algorithms [Dru17].

The baseline of our discussion is the following convergence rate of PPM for convex

costs proved in a seminal paper by Güler [Gül91] (here 𝑥* denotes a global optimum

point, i.e., 𝑥* ∈ argmin𝑥 𝑓(𝑥)):

𝑓(𝑥𝑇 )− 𝑓(𝑥*) ≤ 𝑂
(︁(︀∑︀𝑇

𝑡=1 𝜂𝑡
)︀−1
)︁

for any 𝑇 ≥ 1. (II.2)

In words, one can achieve an arbitrarily fast convergence rate by choosing step sizes

𝜂𝑡’s large. Below, we review a short Lyapunov function proof of (II.2), which will

serve as a backbone to other analyses.

Proof of (II.2). It turns out that the following Lyapunov function is suitable:

Φ𝑡 :=
(︀∑︀𝑡

𝑖=1 𝜂𝑖
)︀
·
(︀
𝑓(𝑥𝑡)− 𝑓(𝑥*)

)︀
+ 1

2
‖𝑥* − 𝑥𝑡‖2 , (II.3)

where Φ0 := 1
2
‖𝑥* − 𝑥0‖2 and here and below, ‖·‖ is the ℓ2 norm unless stated

otherwise. Now, it suffices to show that Φ𝑡 is decreasing, i.e., Φ𝑡+1 ≤ Φ𝑡 for all 𝑡 ≥ 0.

Indeed, if Φ𝑡 is decreasing, we have Φ𝑇 ≤ Φ0 for any 𝑇 ≥ 1, which precisely recovers

(II.2). To that end, we use a standard result:

Proposition II.1 (Proximal inequality (see e.g. [BC11, Proposition 12.26])). For a

convex function 𝜑 : R𝑑 → R, let 𝑥𝑡+1 be the unique minimizer of the following proximal

19



step: 𝑥𝑡+1 ← argmin𝑥∈R𝑑

{︀
𝜑(𝑥) + 1

2
‖𝑥− 𝑥𝑡‖2

}︀
. Then, for any 𝑢 ∈ R𝑑,

𝜑(𝑥𝑡+1)− 𝜑(𝑢) +
1

2
‖𝑢− 𝑥𝑡+1‖2 +

1

2
‖𝑥𝑡+1 − 𝑥𝑡‖2 −

1

2
‖𝑢− 𝑥𝑡‖2 ≤ 0 .

Now Proposition II.1 completes the proof as follows: First, we apply Proposition II.1

with 𝜑 = 𝜂𝑡+1𝑓 and 𝑢 = 𝑥* and drop the term 1
2
‖𝑥𝑡+1 − 𝑥𝑡‖2 to obtain:

𝜂𝑡+1 [𝑓(𝑥𝑡+1)− 𝑓(𝑥*)] +
1

2
‖𝑥* − 𝑥𝑡+1‖2 −

1

2
‖𝑥* − 𝑥𝑡‖2 ≤ 0 . (Ineq1)

Next, from the optimality of 𝑥𝑡+1, it readily follows that

𝑓(𝑥𝑡+1)− 𝑓(𝑥𝑡) ≤ 0 . (Ineq2)

Now, computing (IV.8) + (
∑︀𝑡

𝑖=1 𝜂𝑖)×(IV.9) yields Φ𝑡+1 ≤ Φ𝑡, which finishes the

proof.

II.1.1 Our conceptual question

Although the convergence rate (II.2) seems powerful, it does not have any practical

values as PPM is in general not implementable. Nevertheless, one can ask the following

conceptual question:

“Can we efficiently approximate PPM for a large step size 𝜂𝑡?”

Perhaps, the most straightforward approximation would be to replace the cost function

𝑓 in (II.1) with its lower-order approximations. We implement this idea in the next

section.

II.2 Two simple approximations of the proximal point

method

To analyze approximation errors, let us assume that the cost function 𝑓 is 𝐿-smooth.
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Definition II.1 (Smoothness). For 𝐿 > 0, we say a differentiable function 𝑓 : R𝑑 → R

is 𝐿-smooth if 𝑓(𝑥) ≤ 𝑓(𝑦) + ⟨∇𝑓(𝑦), 𝑥− 𝑦⟩+ 𝐿
2
‖𝑥− 𝑦‖2 for any 𝑥, 𝑦 ∈ R𝑑.

From the convexity and the 𝐿-smoothness of 𝑓 , we have the following lower and upper

bounds: for any 𝑥, 𝑦 ∈ R𝑑,

𝑓(𝑦) + ⟨∇𝑓(𝑦), 𝑥− 𝑦⟩⏟  ⏞  
=: LOWER(𝑥; 𝑦)

≤ 𝑓(𝑥) ≤ 𝑓(𝑦) + ⟨∇𝑓(𝑦), 𝑥− 𝑦⟩+
𝐿

2
‖𝑥− 𝑦‖2⏟  ⏞  

=: UPPER(𝑥; 𝑦)

.

In this section, we use these bounds to approximate PPM.

II.2.1 First approach: using first-order approximation

Let us first replace 𝑓 in the objective (II.1) with its lower approximation:

𝑥𝑡+1 ← argmin
𝑥

{︂
LOWER(𝑥;𝑥𝑡) +

1

2𝜂𝑡+1

‖𝑥− 𝑥𝑡‖2
}︂
. (II.4)

Writing the optimality condition, one quickly notices that (II.4) actually leads to

gradient descent:

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑡+1∇𝑓(𝑥𝑡) . (II.5)

Let us see how well (II.4) approximates PPM:

Analysis of the first approach. We first establish counterparts of (IV.8) and (IV.9).

First, we apply Proposition II.1 with 𝜑(𝑥) = 𝜂𝑡+1LOWER(𝑥;𝑥𝑡) and 𝑢 = 𝑥*:

𝜑(𝑥𝑡+1)− 𝜑(𝑥*) +
1

2
‖𝑥* − 𝑥𝑡+1‖2 +

1

2
‖𝑥𝑡+1 − 𝑥𝑡‖2 −

1

2
‖𝑥* − 𝑥𝑡‖2 ≤ 0 .

Now using convexity and 𝐿-smoothness, we have

𝜑(𝑥) ≤ 𝜂𝑡+1𝑓(𝑥) ≤ 𝜑(𝑥) +
𝐿𝜂𝑡+1

2
‖𝑥− 𝑥𝑡‖2 ,
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and hence the above inequality implies the following analogue of (IV.8):

𝜂𝑡+1 [𝑓(𝑥𝑡+1)− 𝑓(𝑥*)] +
1

2
‖𝑥* − 𝑥𝑡+1‖2 −

1

2
‖𝑥* − 𝑥𝑡‖2 ≤ (ℰGD1 ), (IneqGD1 )

where (ℰGD1 ) := (𝐿𝜂𝑡+1

2
− 1

2
) ‖𝑥𝑡+1 − 𝑥𝑡‖2. Next, we use the 𝐿-smoothness of 𝑓 and the

fact ∇𝑓(𝑥𝑡) = −1/𝜂𝑡+1(𝑥𝑡+1 − 𝑥𝑡) (due to (II.5)), to obtain the following analogue of

(IV.9):

𝑓(𝑥𝑡+1)− 𝑓(𝑥𝑡) ≤ ⟨∇𝑓(𝑥𝑡), 𝑥𝑡+1 − 𝑥𝑡⟩+
𝐿

2
‖𝑥𝑡+1 − 𝑥𝑡‖2 = (ℰGD2 ), (IneqGD2 )

where (ℰGD2 ) := (𝐿
2
− 1

𝜂𝑡+1
) ‖𝑥𝑡+1 − 𝑥𝑡‖2.

Now paralleling the proof of (II.2), to show that Φ𝑡 (II.3) is a valid Lyapunov

function, we need to find the step sizes 𝜂𝑡’s that satisfy the following relation: (ℰGD1 ) +

(
∑︀𝑡

𝑖=1 𝜂𝑖)× (ℰGD2 ) ≤ 0. On the other hand, note that both (ℰGD1 ) and (ℰGD2 ) become

positive numbers when 𝜂𝑡+1 > 2/𝐿. Hence, the admissible choices for 𝜂𝑡 at each

iteration are upper bounded by 2/𝐿, which together with the PPM convergence rate

(II.2) implies that 𝑂(1/∑︀𝑇
𝑡=1 𝜂𝑡) = 𝑂(1/𝑇) is the best convergence rate one can prove.

Indeed, choosing 𝜂𝑡 ≡ 1/𝐿, then we have (ℰGD1 ) = 0 and (ℰGD2 ) < 0, obtaining the

well-known bound of 𝑓(𝑥𝑇 )− 𝑓(𝑥*) ≤ 𝐿‖𝑥0−𝑥*‖2
2𝑇

= 𝑂(1/𝑇).

To summarize, the first approach only leads to a disappointing result: the approxima-

tion is valid only for the small step size regime of 𝜂𝑡 = 𝑂 (1). We empirically verify

this fact for a quadratic cost in Figure II-1. As one can see from Figure II-1, the

lower approximation approach (II.4) overshoots for large step sizes like 𝜂𝑡 = Θ(𝑡) and

quickly steers away from PPM iterates.

II.2.2 Second approach: using smoothness

After seeing the disappointing outcome of the first approach, our second approach is

to replace 𝑓 with its upper approximation due to the 𝐿-smoothness:

𝑥𝑡+1 ← argmin
𝑥

{︂
UPPER(𝑥;𝑥𝑡) +

1

2𝜂𝑡+1

‖𝑥− 𝑥𝑡‖2
}︂
. (II.6)
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(b) 𝜂𝑡 = 𝑡/3.

Figure II-1: Iterates comparison between PPM (II.1), the first approach (II.4), the
second approach (II.6), and the combined approach (II.8). For the setting, we choose
𝑓(𝑥, 𝑦) = 0.1𝑥2 + 𝑦2 and 𝑥0 = (10, 10).

Writing the optimality condition, (II.6) actually leads to a conservative update of

gradient descent:

𝑥𝑡+1 = 𝑥𝑡 −
1

𝐿+ 𝜂−1
𝑡+1

∇𝑓(𝑥𝑡) . (II.7)

Note that regardless of how large 𝜂𝑡+1 we choose, the actual update step size in (II.7)

is always upper bounded by 1/𝐿. Although this conservative update prevents the

overshooting phenomenon of the first approach, as we increase 𝜂𝑡, this conservative

update becomes too tardy to be a good approximation of PPM; see Figure II-1.

II.3 Nesterov’s acceleration via alternating two ap-

proaches

In the previous section, we have seen that the two simple approximations of PPM both

have limitations. Nonetheless, observe that their limitations are opposite to each other:

while the first approach is too “reckless,” the second approach is too “conservative.”

This observation motivates us to consider a combination of the two approaches which

could mitigate each other’s limitation.

Remark II.1. A similar interpretation of Nesterov’s acceleration as a combination

of a reckless step and a conservative step also appeared in [AZO17, BG19]. However,
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as we shall see, the interpretation based on PPM will bring about a more refined

understanding of Nesterov’s acceleration.

Let us implement this idea by alternating between the two approximations (II.4)

and (II.6) of PPM. The key modification is that for both approximations, we introduce

an additional sequence of points {𝑦𝑡} for cost function approximation; i.e., we use the

following approximations for the 𝑡-th iteration:

𝑓(𝑦𝑡) + ⟨∇𝑓(𝑦𝑡), 𝑥− 𝑦𝑡⟩ ≤ 𝑓(𝑥) ≤ 𝑓(𝑦𝑡) + ⟨∇𝑓(𝑦𝑡), 𝑥− 𝑦𝑡⟩+
𝐿

2
‖𝑥− 𝑦𝑡‖2 .

Indeed, this modification is crucial: if we just use approximations at 𝑥𝑡, the resulting

alternation merely concatenates (II.4) and (II.6) during each iteration, and the two

limitations we discussed in §II.2 will remain in the combined approach.

Having introduced a separate sequence {𝑦𝑡} for cost approximations, we consider

the following alternation where during each iteration, we update 𝑥𝑡 with (II.4) and 𝑦𝑡

with (II.6):

Approximate PPM with alternating two approaches. Given 𝑥0 ∈ R𝑑, let

𝑦0 = 𝑥0 and run:

𝑥𝑡+1 ← argmin𝑥

{︁
LOWER(𝑥; 𝑦𝑡) + 1

2𝜂𝑡+1
‖𝑥− 𝑥𝑡‖2

}︁
, (II.8a)

𝑦𝑡+1 ← argmin𝑥

{︁
UPPER(𝑥; 𝑦𝑡) + 1

2𝜂𝑡+1
‖𝑥− 𝑥𝑡+1‖2

}︁
. (II.8b)

In Figure II-1, we empirically verify that (II.8) indeed gets the best of both worlds:

this combined approach successfully approximates PPM even for the regime 𝜂𝑡 = Θ(𝑡).

More remarkably, (II.8) is exactly equal to one version of AGM (“Form II” in the

introduction). Turning (II.8) into the equational form by writing the optimality

conditions, and introducing an auxiliary iterate 𝑧𝑡+1 := 𝑦𝑡 − 1/𝐿∇𝑓(𝑦𝑡) (only for

simplicity), we obtain the following (𝑥0 = 𝑦0 = 𝑧0):
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Equivalent representation of (II.8):

𝑦𝑡 =
1/𝐿

1/𝐿+𝜂𝑡
𝑥𝑡 + 𝜂𝑡

1/𝐿+𝜂𝑡
𝑧𝑡 , (II.9a)

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑡+1∇𝑓(𝑦𝑡) , (II.9b)

𝑧𝑡+1 = 𝑦𝑡 − 1
𝐿
· ∇𝑓(𝑦𝑡) . (II.9c)

𝑥𝑡 𝑥𝑡+1

𝑧𝑡

𝑦𝑡 𝑧𝑡+1

−𝜂𝑡+1∇𝑓(𝑦𝑡)

− 1
𝐿

∇𝑓(𝑦𝑡)

𝜂𝑡

1/𝐿

Figure II-2: Illustration of (II.9).

Hence, we arrive at AGM without relying on any non-trivial derivations in the literature

such as estimate sequence [Nes18] or linear coupling [AZO17]. To summarize, we have

demonstrated:

Nesterov’s AGM is a simple approximation of the proximal point method!

Remark II.2. Our derivation is inspired by the work of Defazio [Def19, §5,6]. However,

unlike the approach in [Def19], our derivation does not rely on duality, which could

be advantageous in the settings where duality fails.

II.3.1 Understanding mysterious parameters of AGM

It is often the case in the literature that the interpolation step (II.9a) is written

as an abstract form 𝑦𝑡 = 𝜏𝑡𝑥𝑡 + (1 − 𝜏𝑡)𝑧𝑡 with a weight parameter 𝜏𝑡 > 0 to be

chosen [AZO17, LRP16, WRJ16, BG19]. That said, in the previous works, 𝜏𝑡 is

carefully chosen according to the analysis without conveying much intuition. One

important aspect of our PPM view is that it reveals a close relation between the

weight parameter 𝜏𝑡 and the step size 𝜂𝑡. More specifically, 𝜏𝑡 is chosen so that the

ratio of the distances ‖𝑦𝑡 − 𝑥𝑡‖ : ‖𝑦𝑡 − 𝑧𝑡‖ is equal to 𝜂𝑡 : 1/𝐿 (see Figure II-2).

II.3.2 Analysis based on PPM perspective

In order to determine 𝜂𝑡’s in (II.9), we revisit the analysis of PPM from §II.2. In turns

out that following §II.2.1, one can derive the following analogues of (IV.8) and (IV.9)
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using Proposition II.1 (we defer the derivations to §II.5.1):

𝜂𝑡+1(𝑓(𝑧𝑡+1)− 𝑓(𝑥*)) +
1

2
‖𝑥* − 𝑥𝑡+1‖2 −

1

2
‖𝑥* − 𝑥𝑡‖2 ≤ (ℰAGM1 ) , (IneqAGM1 )

𝑓(𝑧𝑡+1)− 𝑓(𝑧𝑡) ≤ (ℰAGM2 ) , (IneqAGM2 )

where (ℰAGM1 ) := (
𝜂2𝑡+1

2
− 𝜂𝑡+1

2𝐿
) ‖∇𝑓(𝑦𝑡)‖2 + 𝐿𝜂𝑡𝜂𝑡+1 ⟨∇𝑓(𝑦𝑡), 𝑧𝑡 − 𝑦𝑡⟩ and (ℰAGM2 ) :=

− 1
2𝐿
‖∇𝑓(𝑦𝑡)‖2− ⟨∇𝑓(𝑦𝑡), 𝑧𝑡 − 𝑦𝑡⟩. Hence, we modify the Lyapunov function (II.3) by

replacing the first 𝑥𝑡 with 𝑧𝑡:

Φ𝑡 := (
∑︀𝑡

𝑖=1 𝜂𝑖) · (𝑓(𝑧𝑡)− 𝑓(𝑥*)) + 1
2
‖𝑥* − 𝑥𝑡‖2 . (II.10)

We note that (II.10) is not new; it also appears in prior works [WRJ16, DO19, BG19],

although with different motivations.

Then as before, to prove the validity of the chosen Lyapunov function, it suffices

to verify (ℰAGM1 ) + (
∑︀𝑡

𝑖=1 𝜂𝑖) · (ℰAGM2 ) ≤ 0, which is equivalent to

1
2𝐿

(︀
𝐿𝜂2𝑡+1 −

∑︀𝑡+1
𝑖=1 𝜂𝑖

)︀
‖∇𝑓(𝑦𝑡)‖2 +

(︀
𝐿𝜂𝑡𝜂𝑡+1 −

∑︀𝑡
𝑖=1 𝜂𝑖

)︀
⟨∇𝑓(𝑦𝑡), 𝑧𝑡 − 𝑦𝑡⟩ ≤ 0 (II.11)

From (II.11), it suffices to choose {𝜂𝑡} so that 𝐿𝜂𝑡𝜂𝑡+1 =
∑︀𝑡

𝑖=1 𝜂𝑖. Indeed, with such

a choice, the coefficient of the inner product term in (II.11) becomes zero and the

coefficient of the squared norm term becomes 1/2𝐿(𝐿𝜂2𝑡+1 − 𝐿𝜂𝑡+1𝜂𝑡+2) ≤ 0 (if {𝜂𝑡}

is increasing). Indeed, one can quickly notice that choosing 𝜂𝑡 = 𝑡/2𝐿 satisfies the

desired relation. Therefore, we obtain the well known accelerated convergence rate of

𝑓(𝑧𝑇 )− 𝑓(𝑥*) ≤ 2𝐿‖𝑥0−𝑥*‖2
𝑇 (𝑇+1)

= 𝑂(1/𝑇 2) [Nes83].

II.4 Simple generalizations with similar triangles

In §II.3, we have demonstrated that Nesterov’s method is nothing but an approximation

of PPM. This view point has not only provided simple derivations of versions of AGM,

but also offered clear explanations of the step sizes. In this section, we demonstrate

that these interpretations offered by PPM actually lead to a great simplification of
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Nesterov’s AGM in the form of the method of similar triangles [Nes18, GN18] which

admits simple generalizations to practically relevant settings (constrained composite

costs). To that end, let us first consider the unconstrained case.

Our starting point is the observations made in the previous section: (i) from

§II.3.1, we have seen ‖𝑦𝑡 − 𝑥𝑡‖ : ‖𝑦𝑡 − 𝑧𝑡‖ = 𝜂𝑡 : 1/𝐿; (ii) from §II.3.2, we have seen

that we need to choose 𝜂𝑡 = Θ(𝑡), and hence, 𝜂𝑡+1 ≈ 𝜂𝑡 ≫ 1. From these observations,

one can readily see that the triangle △𝑥𝑡𝑥𝑡+1𝑧𝑡 is approximately similar to △𝑦𝑡𝑧𝑡+1𝑧𝑡.

Therefore, one can simplify AGM by further exploiting this fact: we modify the

updates so that the two triangles are indeed similar. There are two different ways one

can keep the two triangles similar:

1. Update 𝑧𝑡+1 as before and but now we update 𝑥𝑡+1 so that the two triangles are

similar.

2. Update 𝑥𝑡+1 as before and but now we update 𝑧𝑡+1 so that the two triangles are

similar.

We discuss the above two ways one by one.

II.4.1 First similar triangles approximation: momentum form

of AGM

We first adopt the first way to keep the two triangles similar. We have the following

update.

First similar triangle approximation:

𝑦𝑡 =
1/𝐿

1/𝐿+𝜂𝑡
𝑥𝑡 + 𝜂𝑡

1/𝐿+𝜂𝑡
𝑧𝑡 , (II.12a)

𝑧𝑡+1 = 𝑦𝑡 − 1
𝐿
∇𝑓(𝑦𝑡) , (II.12b)

𝑥𝑡+1 = 𝑧𝑡+1 + 𝐿𝜂𝑡(𝑧𝑡+1 − 𝑧𝑡) . (II.12c)

𝑥𝑡 𝑥𝑡+1

𝑧𝑡

𝑦𝑡
𝑧𝑡+1

𝑦𝑡+1
− 1

𝐿
∇𝑓(𝑦𝑡)

𝜂𝑡

1/𝐿

Figure II-3: The updates of (II.12).

In fact, (II.12) can be equivalently expressed without {𝑥𝑡}, as illustrated with dots

in Figure II-3. More specifically, during the 𝑡-th iteration, once we compute (II.12b),
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one can directly update 𝑦𝑡+1 via 𝑦𝑡+1 = 𝑧𝑡+1 + 𝐿𝜂𝑡
𝐿𝜂𝑡+1+1

(𝑧𝑡+1 − 𝑧𝑡). In other words,

(II.12) ⇐⇒

⎧⎪⎨⎪⎩ 𝑧𝑡+1 = 𝑦𝑡 − 1
𝐿
∇𝑓(𝑦𝑡) ,

𝑦𝑡+1 = 𝑧𝑡+1 + 𝐿𝜂𝑡
𝐿𝜂𝑡+1+1

(𝑧𝑡+1 − 𝑧𝑡) .

Hence, (II.12) is equal to the well-known momentum form of AGM (“Form I” in the

introduction).

Notably, it turns out that our PPM-based analysis suggests the choice of {𝜂𝑡}

as per the recursive relation (𝐿𝜂𝑡+1 + 1
2
)2 = (𝐿𝜂𝑡 + 1)2 + 1

4
, which after substitution

𝐿𝜂𝑡 + 1← 𝑎𝑡 exactly recovers the popular recursive relation 𝑎𝑡+1 = 1
2
(1 +

√︀
1 + 4𝑎2𝑡 )

in [Nes83, BT09]. Below we share the details. The analysis of (II.12) is analogous

to the analysis presented in §II.3.2. It turns out that one can derive the following

counterparts of (IV.8) and (IV.9); see §II.5.2 for derivations.

̃︀𝜂𝑡+1[𝑓(𝑧𝑡+1)− 𝑓(𝑥*)] +
1

2
‖𝑥* − 𝑥𝑡+1‖2 −

1

2
‖𝑥* − 𝑥𝑡‖2 ≤ (ℰSIM1 ) , (IneqSIM1 )

𝑓(𝑧𝑡+1)− 𝑓(𝑧𝑡) ≤ (ℰSIM2 ) , (IneqSIM2 )

where (ℰSIM1 ) := 1
2

(−(𝐿𝜂𝑡 + 1)2 + 𝐿̃︀𝜂𝑡+1) · ‖𝑧𝑡+1 − 𝑦𝑡‖2 + ̃︀𝜂𝑡+1 · ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑥𝑡+1⟩

and (ℰSIM2 ) := 𝐿
2
‖𝑧𝑡+1 − 𝑦𝑡‖2 + ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑧𝑡⟩

Having established counterparts of (IV.8) and (IV.9), following §II.3.2, we choose

Φ𝑡 := (
∑︀𝑡

𝑖=1 ̃︀𝜂𝑖) · (𝑓(𝑧𝑡)− 𝑓(𝑥*)) + 1
2
‖𝑥* − 𝑥𝑡‖2 . (II.13)

To prove the validity of the chosen Lyapunov function, it suffices to verify

(ℰSIM1 ) + (
∑︀𝑡

𝑖=1 ̃︀𝜂𝑖) · (ℰSIM2 ) ≤ 0 (II.14)

which is equivalent to showing (because 𝑧𝑡+1 − 𝑥𝑡+1 = −𝐿𝜂𝑡(𝑧𝑡+1 − 𝑧𝑡)):

1
2

(︀
−(𝐿𝜂𝑡 + 1)2 +

∑︀𝑡+1
𝑖=1 𝐿̃︀𝜂𝑖)︀ · ‖𝑧𝑡+1 − 𝑦𝑡‖2

+
(︀
𝐿𝜂𝑡̃︀𝜂𝑡+1 −

∑︀𝑡
𝑖=1 ̃︀𝜂𝑖)︀ ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑧𝑡⟩

≤ 0 . (II.15)
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From (II.15), it suffices to choose {𝜂𝑡} so that 𝐿𝜂𝑡̃︀𝜂𝑡+1 =
∑︀𝑡

𝑖=1 ̃︀𝜂𝑖. Indeed, with such

a choice, the coefficient of the inner product term in (II.11) becomes zero and the

coefficient of the squared norm term becomes

1
2

(︀
−(𝐿𝜂𝑡 + 1)2 +

∑︀𝑡+1
𝑖=1 𝐿̃︀𝜂𝑖)︀ =

1

2

(︀
−(𝐿𝜂𝑡 + 1)2 + 𝐿̃︀𝜂𝑡+1 + 𝐿̃︀𝜂𝑡+1 · 𝐿𝜂𝑡

)︀
= 1

2
(−(𝐿𝜂𝑡 + 1)2 + 𝐿̃︀𝜂𝑡+1(𝐿𝜂𝑡 + 1)) = 0

since 𝐿̃︀𝜂𝑡+1 = 𝐿𝜂𝑡+1. Indeed, one can actually simplify the relation 𝐿𝜂𝑡̃︀𝜂𝑡+1 =
∑︀𝑡

𝑖=1 ̃︀𝜂𝑖:
𝐿𝜂𝑡+1 · (𝐿𝜂𝑡+1 + 1) = 𝐿𝜂𝑡+1 · 𝐿̃︀𝜂𝑡+2 =

∑︀𝑡+1
𝑖=1 𝐿̃︀𝜂𝑖 = 𝐿̃︀𝜂𝑡+1 + 𝐿𝜂𝑡 · 𝐿̃︀𝜂𝑡+1 = (𝐿𝜂𝑡 + 1)2 .

After rearranging, we obtain the recursive relation: (𝐿𝜂𝑡+1 + 1
2
)2 = (𝐿𝜂𝑡 + 1)2 + 1

4
,

which after the substitution 𝐿𝜂𝑡+1 = 𝑎𝑡 exactly recovers the popular recursive relation

𝑎𝑡+1 =
1+
√

1+4𝑎2𝑡
2

in [Nes83, BT09].

II.4.2 Second similar triangles approximation: acceleration

for composite costs

We now adopt the second way to keep the two triangles similar. We have the following

update.

Second similar triangle approximation:

𝑦𝑡 =
1/𝐿

1/𝐿+𝜂𝑡
𝑥𝑡 + 𝜂𝑡

1/𝐿+𝜂𝑡
𝑧𝑡 , (II.16a)

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑡+1∇𝑓(𝑦𝑡) , (II.16b)

𝑧𝑡+1 =
1/𝐿

1/𝐿+𝜂𝑡
𝑥𝑡+1 + 𝜂𝑡

1/𝐿+𝜂𝑡
𝑧𝑡 . (II.16c)

𝑥𝑡 𝑥𝑡+1

𝑧𝑡

𝑦𝑡 𝑧𝑡+1

−𝜂𝑡+1∇𝑓(𝑦𝑡)𝜂𝑡

1/𝐿

Figure II-4: Illustration of (II.16).

This is “Form III” in the introduction. Below, we provide a PPM-based analysis for a

more general setting.

The main advantage of this similar triangles approximation (II.16) becomes clearer

in the constraint optimization case: when there is a constraint set, the steps (II.9b)
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and (II.9c) both become projections steps which could be costly when the constraint

set does not admit simple projections. On the other hand, since (II.16) only requires

a single projection in each iteration, it minimizes such costly computations.

It turns out (II.16) also admits a simple extension to the practically relevant

setting of constrained optimization on composite costs (see e.g. [Nes18, §6.1.3]). More

specifically, for a closed convex set 𝑄 ⊆ R𝑑 and a closed1 convex function Ψ : 𝑄→ R,

consider

min𝑥∈𝑄 𝑓
Ψ(𝑥) := 𝑓(𝑥) + Ψ(𝑥) ,

where 𝑓 : 𝑄→ R is a differentiable convex function which is 𝐿-smooth with respect to

a norm ‖·‖ that is not necessarily the ℓ2 norm (i.e., we regard the norm in Definition II.1

to be our chosen norm). For the general norm case, we use the Bregman divergence

for the regularization:

Definition II.2. Given a 1-strongly convex (w.r.t the chosen norm ‖·‖) function

ℎ : 𝑄→ R∪{∞} that is differentiable on the interior of 𝑄, 𝐷ℎ (𝑢, 𝑣) := ℎ(𝑢)−ℎ(𝑣)−

⟨∇ℎ(𝑣), 𝑢− 𝑣⟩ for all 𝑢, 𝑣 ∈ 𝑄.

Under the above setting and assumption, (II.16) admits a simple generalization:

Generalization of (II.16) to composite costs:

𝑦𝑡 =
1/𝐿

1/𝐿+𝜂𝑡
𝑥𝑡 + 𝜂𝑡

1/𝐿+𝜂𝑡
𝑧𝑡 , (II.17a)

𝑥𝑡+1 ← argmin𝑥∈𝑄

{︁
LOWER(𝑥; 𝑦𝑡) + 1

𝜂𝑡+1
𝐷ℎ (𝑥, 𝑥𝑡) + Ψ(𝑥)

}︁
, (II.17b)

𝑧𝑡+1 =
1/𝐿

1/𝐿+𝜂𝑡
𝑥𝑡+1 + 𝜂𝑡

1/𝐿+𝜂𝑡
𝑧𝑡 . (II.17c)

Again, the similar triangle approximation (II.17) is computationally advantageous

in that it only requires a single projection in each iteration. Now we provide a simple

PPM-based analysis of (II.17):

PPM-based analysis of (II.17). To obtain counterparts of (IV.8) and (IV.9), we

now use a generalization of Proposition II.1 to the Bregman divergence ([Teb18,
1This means that the epigraph of the function is closed. See [Nes18, Definition 3.1.2].
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Lemma 3.1]). With such a generalization, we obtain the following inequality for

𝜑Ψ(𝑥) := 𝜂𝑡+1[𝑓(𝑦𝑡) + ⟨∇𝑓(𝑦𝑡), 𝑥− 𝑦𝑡⟩+ Ψ(𝑥)]:

𝜑Ψ(𝑥𝑡+1)− 𝜑Ψ(𝑥*) +𝐷ℎ (𝑥*, 𝑥𝑡+1) +𝐷ℎ (𝑥𝑡+1, 𝑥𝑡)−𝐷ℎ (𝑥*, 𝑥𝑡) ≤ 0 , (II.18)

where 𝑥* ∈ argmin𝑥∈𝑄 𝑓
Ψ(𝑥). Now using (II.18), one can derive from first principles

the following inequalities (we defer the derivations to §II.5.3):

𝜂𝑡+1(𝑓
Ψ(𝑧𝑡+1)− 𝑓Ψ(𝑥*)) +𝐷ℎ (𝑥*, 𝑥𝑡+1)−𝐷ℎ (𝑥*, 𝑥𝑡) ≤ (ℰSIM′

1 ) , (IneqSIM
′

1 )

𝑓Ψ(𝑧𝑡+1)− 𝑓Ψ(𝑧𝑡) ≤ (ℰSIM′

2 ) . (IneqSIM
′

2 )

where (ℰSIM′
1 ) := −1

2
‖𝑥𝑡+1 − 𝑥𝑡‖2+𝜂𝑡+1[

𝐿
2
‖𝑧𝑡+1 − 𝑦𝑡‖2+⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑥𝑡+1⟩+Ψ(𝑧𝑡+1)−

Ψ(𝑥𝑡+1)] and (ℰSIM′
2 ) := 𝐿

2
‖𝑧𝑡+1 − 𝑦𝑡‖2+⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑧𝑡⟩+Ψ(𝑧𝑡+1)−Ψ(𝑧𝑡). Similarly

to §II.3.2, yet replacing the norm squared term with the Bregman divergence, we

choose

Φ𝑡 := (
∑︀𝑡

𝑖=1 𝜂𝑖) · (𝑓Ψ(𝑧𝑡)− 𝑓Ψ(𝑥*)) +𝐷ℎ (𝑥*, 𝑥𝑡) .

Then, it suffices to show (ℰSIM′
1 ) + (

∑︀𝑡
𝑖=1 𝜂𝑖) · (ℰSIM

′
2 ) ≤ 0. Using the facts (i) 𝑧𝑡+1 −

𝑥𝑡+1 = 𝐿𝜂𝑡(𝑧𝑡− 𝑧𝑡+1) and (ii) ‖𝑥𝑡+1 − 𝑥𝑡‖ = (𝐿𝜂𝑡 + 1) ‖𝑧𝑡+1 − 𝑦𝑡‖ (both are immediate

consequences of the similar triangles) and rearranging, one can easily check that

(ℰSIM′
1 ) + (

∑︀𝑡
𝑖=1 𝜂𝑖) · (ℰSIM

′
2 ) is equal to

1
2

(︀
−(𝐿𝜂𝑡 + 1)2 + 𝐿𝜂𝑡+1 + 𝐿

∑︀𝑡
𝑖=1 𝜂𝑖

)︀
‖𝑧𝑡+1 − 𝑦𝑡‖2 (II.19)

+
(︀
𝐿𝜂𝑡𝜂𝑡+1 −

∑︀𝑡
𝑖=1 𝜂𝑖

)︀
⟨∇𝑓(𝑦𝑡), 𝑧𝑡 − 𝑧𝑡+1⟩ (II.20)

+𝜂𝑡+1[Ψ(𝑧𝑡+1)−Ψ(𝑥𝑡+1)] +
(︀∑︀𝑡

𝑖=1 𝜂𝑖
)︀
· [Ψ(𝑧𝑡+1)−Ψ(𝑧𝑡)]. (II.21)

Now choosing 𝜂𝑡 = 𝑡/2𝐿 analogously to §II.3.2, one can easily verify (II.19) + (II.20) +

(II.21) ≤ 0. Indeed, for (II.19), since 𝐿𝜂𝑡𝜂𝑡+1 =
∑︀𝑡

𝑖=1 𝜂𝑖, the coefficient becomes

1/2(𝐿𝜂𝑡 + 1)(𝐿𝜂𝑡+1−𝐿𝜂𝑡− 1) which is a negative number since 𝐿𝜂𝑡+1−𝐿𝜂𝑡− 1 = −1/2;

for (II.20), the coefficient becomes zero due to the relation 𝐿𝜂𝑡𝜂𝑡+1 =
∑︀𝑡

𝑖=1 𝜂𝑖; lastly,
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for (II.21), we have

(II.21) = 𝜂𝑡+1 [(1 + 𝐿𝜂𝑡)Ψ(𝑧𝑡+1)−Ψ(𝑥𝑡+1)− 𝐿𝜂𝑡Ψ(𝑧𝑡)] ≤ 0 , (II.22)

where the equality is due to the relation 𝐿𝜂𝑡𝜂𝑡+1 =
∑︀𝑡

𝑖=1 𝜂𝑖, and the inequality is due to

the update (II.17c) (which can be equivalently written as (1 +𝐿𝜂𝑡)𝑧𝑡+1 = 𝑥𝑡+1 +𝐿𝜂𝑡𝑧𝑡)

and the convexity of Ψ. Hence, we obtain the accelerated rate of 𝑓Ψ(𝑧𝑇 )− 𝑓Ψ(𝑥*) ≤
4𝐿𝐷ℎ(𝑥*,𝑥0)

𝑇 (𝑇+1)
= 𝑂(1/𝑇 2).

II.5 Deferred derivations

II.5.1 Deferred derivations from §II.3.2

Let us first derive (IneqAGM1 ). Applying Proposition II.1 with 𝜑(𝑥) = 𝜂𝑡+1[𝑓(𝑦𝑡) +

⟨∇𝑓(𝑦𝑡), 𝑥− 𝑦𝑡⟩] to (II.8a), we obtain:

𝜑(𝑥𝑡+1)− 𝜑(𝑥*) +
1

2
‖𝑥* − 𝑥𝑡+1‖2 +

1

2
‖𝑥𝑡+1 − 𝑥𝑡‖2 −

1

2
‖𝑥* − 𝑥𝑡‖2 ≤ 0 . (II.23)

Now from the convexity of 𝑓 , it holds that 𝜑(𝑥*) ≤ 𝜂𝑡+1𝑓(𝑥*). This together with

the 𝐿-smoothness of 𝑓 , it follows that 𝜑(𝑥𝑡+1) = 𝜂𝑡+1[𝑓(𝑦𝑡) + ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑦𝑡⟩ +

⟨∇𝑓(𝑦𝑡), 𝑥𝑡+1 − 𝑧𝑡+1⟩] ≥ 𝜂𝑡+1

[︀
𝑓(𝑧𝑡+1)− 𝐿

2
‖𝑧𝑡+1 − 𝑦𝑡‖2 + ⟨∇𝑓(𝑦𝑡), 𝑥𝑡+1 − 𝑧𝑡+1⟩

]︀
. Plug-

ging these inequalities back to (IV.12) and rearranging, we obtain the following

inequality:

𝜂𝑡+1[𝑓(𝑧𝑡+1)− 𝑓(𝑥*)] +
1

2
‖𝑥* − 𝑥𝑡+1‖2 −

1

2
‖𝑥* − 𝑥𝑡‖2

≤ −1

2
‖𝑥𝑡+1 − 𝑥𝑡‖2 + 𝜂𝑡+1

[︂
𝐿

2
‖𝑧𝑡+1 − 𝑦𝑡‖2 + ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑥𝑡+1⟩

]︂
. (II.24)

Now decomposing the inner product term in (II.24) into

𝜂𝑡+1 ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑦𝑡⟩+ 𝜂𝑡+1 ⟨∇𝑓(𝑦𝑡), 𝑦𝑡 − 𝑥𝑡⟩+ 𝜂𝑡+1 ⟨∇𝑓(𝑦𝑡), 𝑥𝑡 − 𝑥𝑡+1⟩,

and using 𝑥𝑡+1−𝑥𝑡 = −𝜂𝑡+1∇𝑓(𝑦𝑡) and 𝑧𝑡+1− 𝑦𝑡 = −1/𝐿∇𝑓(𝑦𝑡) (which are (II.9b) and

(II.9c), respectively), (II.24) becomes
(︁

𝜂2𝑡+1

2
− 𝜂𝑡+1

2𝐿

)︁
‖∇𝑓(𝑦𝑡)‖2 + 𝜂𝑡+1 ⟨∇𝑓(𝑦𝑡), 𝑦𝑡 − 𝑥𝑡⟩.
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Now, using the relation 𝑦𝑡 − 𝑥𝑡 = 𝐿𝜂𝑡(𝑧𝑡 − 𝑦𝑡) (which is (II.9a)), we obtain (ℰAGM1 ).

Thus, (IneqAGM1 ) follows.

Next, (IneqAGM2 ) readily follows from the 𝐿-smoothness and the convexity of 𝑓 :

𝑓(𝑧𝑡+1)− 𝑓(𝑧𝑡) = 𝑓(𝑧𝑡+1)− 𝑓(𝑦𝑡) + 𝑓(𝑦𝑡)− 𝑓(𝑧𝑡)

≤ ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑦𝑡⟩+
𝐿

2
‖𝑧𝑡+1 − 𝑦𝑡‖2 + ⟨∇𝑓(𝑦𝑡), 𝑦𝑡 − 𝑧𝑡⟩

(𝑎)
= − 1

2𝐿
‖∇𝑓(𝑦𝑡)‖2 + ⟨∇𝑓(𝑦𝑡), 𝑦𝑡 − 𝑧𝑡⟩ = (ℰAGM2 ),

where (𝑎) is due to 𝑧𝑡+1 − 𝑦𝑡 = −1/𝐿∇𝑓(𝑦𝑡).

II.5.2 Deferred derivations from §II.4.1

We first derive (IneqSIM1 ). By the updates (II.12), we have 𝑥𝑡+1 = 𝑥𝑡 − (𝜂𝑡 + 1
𝐿

)∇𝑓(𝑦𝑡).

Letting ̃︀𝜂𝑡+1 := 𝜂𝑡 + 1
𝐿
, this relation can be equivalently written as:

𝑥𝑡+1 ← argmin𝑥

{︁
𝑓(𝑦𝑡) + ⟨∇𝑓(𝑦𝑡), 𝑥− 𝑦𝑡⟩+ 1

2̃︀𝜂𝑡+1
‖𝑥− 𝑥𝑡‖2

}︁
(II.25)

The rest is similar to §II.5.1: we apply Proposition II.1 with 𝜑(𝑥) = ̃︀𝜂𝑡+1[𝑓(𝑦𝑡) +

⟨∇𝑓(𝑦𝑡), 𝑥− 𝑦𝑡⟩]:

𝜑(𝑥𝑡+1)− 𝜑(𝑥*) +
1

2
‖𝑥* − 𝑥𝑡+1‖2 +

1

2
‖𝑥𝑡+1 − 𝑥𝑡‖2 −

1

2
‖𝑥* − 𝑥𝑡‖2 ≤ 0 . (II.26)

Now from the convexity, we have 𝜑(𝑥*) ≤ ̃︀𝜂𝑡+1𝑓(𝑥*), and from the 𝐿-smoothness, we

have

𝜑(𝑥𝑡+1) = ̃︀𝜂𝑡+1[𝑓(𝑦𝑡) + ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑦𝑡⟩+ ⟨∇𝑓(𝑦𝑡), 𝑥𝑡+1 − 𝑧𝑡+1⟩]

≥ ̃︀𝜂𝑡+1

[︂
𝑓(𝑧𝑡+1)−

𝐿

2
‖𝑧𝑡+1 − 𝑦𝑡‖2 + ⟨∇𝑓(𝑦𝑡), 𝑥𝑡+1 − 𝑧𝑡+1⟩

]︂
.
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Plugging these inequalities back to (II.26) and rearranging, we obtain the following

inequality:

̃︀𝜂𝑡+1[𝑓(𝑧𝑡+1)− 𝑓(𝑥*)] +
1

2
‖𝑥* − 𝑥𝑡+1‖2 −

1

2
‖𝑥* − 𝑥𝑡‖2

≤ −1

2
‖𝑥𝑡+1 − 𝑥𝑡‖2 + ̃︀𝜂𝑡+1

[︂
𝐿

2
‖𝑧𝑡+1 − 𝑦𝑡‖2 + ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑥𝑡+1⟩

]︂
=

1

2

(︀
−(𝐿𝜂𝑡 + 1)2 + 𝐿̃︀𝜂𝑡+1

)︀
· ‖𝑧𝑡+1 − 𝑦𝑡‖2 + ̃︀𝜂𝑡+1 · ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑥𝑡+1⟩ = (ℰSIM1 ) ,

where the last line follows since ‖𝑥𝑡+1 − 𝑥𝑡‖ = (𝐿𝜂𝑡 + 1) · ‖𝑧𝑡+1 − 𝑧𝑡‖ (see Figure II-3).

Next we derive (IneqSIM1 ). From the 𝐿-smoothness and the convexity of 𝑓 :

𝑓(𝑧𝑡+1)− 𝑓(𝑧𝑡) = 𝑓(𝑧𝑡+1)− 𝑓(𝑦𝑡) + 𝑓(𝑦𝑡)− 𝑓(𝑧𝑡)

≤ ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑦𝑡⟩+
𝐿

2
‖𝑧𝑡+1 − 𝑦𝑡‖2 + ⟨∇𝑓(𝑦𝑡), 𝑦𝑡 − 𝑧𝑡⟩

=
𝐿

2
‖𝑧𝑡+1 − 𝑦𝑡‖2 + ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑧𝑡⟩ = (ℰSIM2 ) .

II.5.3 Deferred derviations from §II.4.2

Let us first derive (IneqSIM
′

1 ). From convexity, we have 𝜑Ψ(𝑥*) ≤ 𝜂𝑡+1𝑓
Ψ(𝑥*), and from

the 𝐿-smoothness, we have the following lower bound:

𝜑Ψ(𝑥𝑡+1) = 𝜂𝑡+1[𝑓(𝑦𝑡) + ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑦𝑡⟩+ ⟨∇𝑓(𝑦𝑡), 𝑥𝑡+1 − 𝑧𝑡+1⟩+ Ψ(𝑥𝑡+1)]

≥ 𝜂𝑡+1

[︂
𝑓Ψ(𝑧𝑡+1)−

𝐿

2
‖𝑧𝑡+1 − 𝑦𝑡‖2 + ⟨∇𝑓(𝑦𝑡), 𝑥𝑡+1 − 𝑧𝑡+1⟩+ Ψ(𝑥𝑡+1)−Ψ(𝑧𝑡+1)

]︂
.

Plugging these back to (II.18), and using the bound −𝐷ℎ (𝑥𝑡+1, 𝑥𝑡) ≤ −1
2
‖𝑥𝑡+1 − 𝑥𝑡‖2,

(IneqSIM
′

1 ) follows.

Next, to derive (IneqSIM
′

2 ), we use 𝐿-smoothness and the convexity of 𝑓 to obtain

the following:

𝑓Ψ(𝑧𝑡+1)− 𝑓Ψ(𝑧𝑡) ≤ 𝑓(𝑧𝑡+1)− 𝑓(𝑦𝑡) + 𝑓(𝑦𝑡)− 𝑓(𝑧𝑡) + Ψ(𝑧𝑡+1)−Ψ(𝑧𝑡)

≤ 𝐿

2
‖𝑧𝑡+1 − 𝑦𝑡‖2 + ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑧𝑡⟩+ Ψ(𝑧𝑡+1)−Ψ(𝑧𝑡) ,
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which is precisely equal to (ℰSIM′
2 ).

II.6 Related work for Chapter II

Our approach is inspired by that of Defazio [Def19] that establishes an inspiring

connection between AGM and PPM. The main observation in that paper is that for

strongly convex costs, one can derive a version of AGM from the primal-dual form of

PPM with a tweak of geometry. Compared with [Def19], our approach strengthens

the connection between AGM and PPM by considering more versions of AGM and

their analyses. Another advantage of our approach is that it does not require duality.

We now summarize previous works on developing alternative approaches to Nes-

terov’s acceleration. Most works have studied the continuous limit dynamics of

Nesterov’s AGM [SBC16, KBB15, WWJ16]. These continuous dynamics approaches

have brought about new intuitions about Nesterov’s acceleration, and follow-up works

have developed analytical techniques for such dynamics [WRJ16, DO19]. Another

notable contribution is made based on the linear coupling framework [AZO17]. The

main observation is that the two most popular first-order methods, namely gradient

descent and mirror descent, have complementary performances, and hence, one can

come up with a faster method by linearly coupling the two methods.

PPM has been used to design or interpret other optimization methods [Dru17].

To list few instances, PPM has given rise to fast methods for weakly convex prob-

lems [DG19], the prox-linear methods for composite optimizations [BF95, Nes07,

LW16], accelerated methods for stochastic optimizations [LMH15], and methods for

saddle-point problems [MOP20].
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Chapter III

Extension to strongly convex costs

In this chapter, we extend our PPM framework from Chapter II to the case of strongly

convex costs. As we shall see, our framework gives rise to a simple derivation of the

most general version of AGM due to Nesterov called “General Scheme for Optimal

Method ” [Nes18, (2.2.7)]. We will also extend our PPM-based analysis to strongly

convex costs. The derivation and analysis in this chapter will be used as a building

block for obtaining accelerated methods over Riemannian manifolds.

III.1 Derivation based on proximal point method

We first make the approximate PPM (II.8) more flexible by considering two separate

step sizes.

Approximate PPM with two separate step sizes {𝜂𝑡} and {̃︀𝜂𝑡}. Given

𝑥0 = 𝑦0 ∈ R𝑑,

𝑥𝑡+1 ← argmin𝑥

{︁
LOWER(𝑥; 𝑦𝑡) + 1

2𝜂𝑡+1
‖𝑥− 𝑥𝑡‖2

}︁
, (III.1a)

𝑦𝑡+1 ← argmin𝑥

{︁
UPPER(𝑥; 𝑦𝑡) + 1

2̃︀𝜂𝑡+1
‖𝑥− 𝑥𝑡+1‖2

}︁
. (III.1b)

Now let us apply our PPM view to the strongly convex cost case.

Definition III.1 (Strong convexity). For 𝜇 > 0, we say a differentiable function
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𝑓 : R𝑑 → R is 𝜇-strongly convex if 𝑓(𝑥) ≥ 𝑓(𝑦) + ⟨∇𝑓(𝑦), 𝑥− 𝑦⟩+ 𝜇
2
‖𝑥− 𝑦‖2 for any

𝑥, 𝑦 ∈ R𝑑.

Since 𝑓 is additionally assumed to be strongly convex, one can now strengthen the

lower approximation LOWER(𝑥; 𝑦𝑡) in (III.1a) to LOWER(𝑥; 𝑦𝑡)+ 𝜇
2
‖𝑥− 𝑦𝑡‖2. In other

words, we obtain

Approximate PPM for strongly-convex costs. Given 𝑥0 = 𝑦0 ∈ R𝑑,

𝑥𝑡+1 ← argmin
𝑥∈R𝑑

{︂
LOWER(𝑥; 𝑦𝑡) +

𝜇

2
‖𝑥− 𝑦𝑡‖2⏟  ⏞  

additional term due to
strong convexity

+
1

2𝜂𝑡+1

‖𝑥− 𝑥𝑡‖2
}︂
, (III.2a)

𝑦𝑡+1 ← argmin𝑥

{︁
UPPER(𝑥; 𝑦𝑡) + 1

2̃︀𝜂𝑡+1
‖𝑥− 𝑥𝑡+1‖2

}︁
. (III.2b)

Writing the optimality condition of (III.2), it is straightforward to check that the

approximate PPM (III.1) is equivalent to the following updates (𝑥0 = 𝑦0 = 𝑧0):

Equivalent representation of (III.2):

𝑦𝑡 =
1/𝐿

1/𝐿+̃︀𝜂𝑡𝑥𝑡 + ̃︀𝜂𝑡
1/𝐿+̃︀𝜂𝑡 𝑧𝑡 , (III.3a)

𝑥𝑡+1 =
1/𝜇

1/𝜇+𝜂𝑡+1
𝑥𝑡 + 𝜂𝑡+1

1/𝜇+𝜂𝑡+1
𝑦𝑡

− 1/𝜇·𝜂𝑡+1
1/𝜇+𝜂𝑡+1

∇𝑓(𝑦𝑡)
, (III.3b)

𝑧𝑡+1 = 𝑦𝑡 − 1
𝐿
∇𝑓(𝑦𝑡) . (III.3c)

𝑥𝑡 𝑥𝑡+1

𝑤𝑡

𝑧𝑡

𝑦𝑡

𝑧𝑡+1

−
𝜂𝑡+1·1/𝜇
𝜂𝑡+1+1/𝜇

∇𝑓(𝑦𝑡)

− 1
𝐿

∇𝑓(𝑦𝑡)

̃︀𝜂𝑡
1/𝐿

𝜂𝑡+1

1/𝜇

Figure III-1: Illustration of (III.3).

Note that (III.3) is nothing but “Form IV” in the introduction. Again, our derivation

provides new insights into the choices of the AGM step sizes by expressing them in

terms of the PPM step sizes 𝜂𝑡’s and ̃︀𝜂𝑡’s.
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III.1.1 Relation to well known momentum version

Perhaps, the most well known version of AGM for strongly convex costs is the

momentum version due to Nesterov (see, e.g., [Nes18, (2.2.22)])

𝑧𝑡+1 = 𝑦𝑡 − 1
𝐿
∇𝑓(𝑦𝑡) ,

𝑦𝑡+1 = 𝑧𝑡+1 +
√
𝜅−1√
𝜅+1

(𝑧𝑡+1 − 𝑧𝑡) .
(III.4)

One might wonder whether one can better understand the step sizes in (III.4) from

(III.3).

Let us first recall the well known convergence rate of PPM for strongly convex

costs due to Rockafellar [Roc76, (1.14)]:

𝑓(𝑥𝑇 )− 𝑓(𝑥*) ≤ 𝑂
(︁∏︀𝑇

𝑡=1(1 + 𝜇𝜂𝑡)
−1
)︁

for any 𝑇 ≥ 1. (III.5)

From (III.5), one can see that in order to achieve the accelerated convergence rate

𝑂(exp(−𝑇/√𝜅)) where 𝜅 is the condition number 𝐿/𝜇, the step sizes 𝜂𝑡 must be chosen

so that 𝜂𝑡 ≈ 𝜇−1(
√
𝜅)−1. Having said that, the well known version (III.4) corresponds

to choosing the following step sizes for (III.3):

𝜂𝑡 ≡ 𝜂 := 𝜇−1(
√
𝜅− 1)−1 and ̃︀𝜂𝑡 ≡ ̃︀𝜂 := 𝜇−1(

√
𝜅)−1. (III.6)

In the next section, we will recover the choice based on PPM-based analysis. Now

with such choice of 𝜂 and ̃︀𝜂, (III.3) becomes:

(III.3) with step sizes chosen as (III.6):

𝑦𝑡 = 1
1+

√
𝜅
𝑥𝑡 + 𝜅

1+
√
𝜅
𝑧𝑡 , (III.7a)

𝑥𝑡+1 =
√
𝜅−1√
𝜅
𝑥𝑡 + 1√

𝜅
𝑦𝑡 −

√
𝜅
𝐿
∇𝑓(𝑦𝑡) ,

(III.7b)

𝑧𝑡+1 = 𝑦𝑡 − 1
𝐿
∇𝑓(𝑦𝑡) . (III.7c)

𝑥𝑡 𝑥𝑡+1

𝑤𝑡

𝑧𝑡

𝑦𝑡

𝑧𝑡+1

−
√

𝜅
𝐿

∇𝑓(𝑦𝑡)

− 1
𝐿

∇𝑓(𝑦𝑡)

√
𝜅

1

1

√
𝜅− 1

Figure III-2: Illustration of (III.7).
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In fact, with the step size choices (III.6), △𝑤𝑡𝑥𝑡+1𝑧𝑡 is similar to △𝑦𝑡𝑧𝑡+1𝑧𝑡, and hence

the updates (III.7) can be equivalently written without {𝑥𝑡} and {𝑤𝑡}:

(III.7) ⇐⇒ (III.4) =

⎧⎪⎨⎪⎩ 𝑧𝑡+1 = 𝑦𝑡 − 1
𝐿
∇𝑓(𝑦𝑡) ,

𝑦𝑡+1 = 𝑧𝑡+1 +
√
𝜅−1√
𝜅+1

(𝑧𝑡+1 − 𝑧𝑡) .

III.2 Analysis based on PPM perspective: simplified

version

In Chapter II, we have used the Lyapunov function Φ𝑡 := (
∑︀𝑡

𝑖=1 𝜂𝑖) · (𝑓(𝑧𝑡)− 𝑓(𝑥*)) +

1
2
‖𝑥* − 𝑥𝑡‖2 to analyze the non-strongly convex case. For the strongly convex setting,

we are shooting for a linear convergence rate (III.5), so we consider the following

Lyapunov function:

Φ𝑡 :=
𝑡∏︁

𝑖=1

(1− 𝜉𝑡)−1 ·
[︀
𝑓(𝑧𝑡)− 𝑓(𝑥*) + 𝑏𝑡 · ‖𝑥𝑡 − 𝑥*‖2

]︀
, (III.8)

for some 𝜉𝑡 ∈ (0, 1) and 𝑏𝑡 ≥ 0. Note that the previous Lyapunov function is a special

case above (III.8). If one can show Φ𝑡 is decreasing, then we get a convergence rate of

𝑂(
∏︀𝑡

𝑖=1(1− 𝜉𝑡)).

In this section, as a warm-up, we consider the simplified case where 𝜉𝑡 ≡ 𝜉 and

𝑏𝑡 ≡ 𝑏, i.e.,

Φ𝑡 := (1− 𝜉)−𝑡 ·
[︀
𝑓(𝑧𝑡)− 𝑓(𝑥*) + 𝑏 · ‖𝑥𝑡 − 𝑥*‖2

]︀
. (III.9)

Using this simplified Lyapunov function, we analyze the following constant step sizes

version of (III.3). In particular, we rewrite the weights in the updates using simpler

notations as below.
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(III.3) with constant step size: (𝜂𝑡 ≡ 𝜂 and ̃︀𝜂𝑡 ≡ ̃︀𝜂):
𝑦𝑡 =

1/𝐿
1/𝐿+̃︀𝜂𝑥𝑡 + ̃︀𝜂

1/𝐿+̃︀𝜂𝑧𝑡 =: 𝑧𝑡 + 𝛼(𝑥𝑡 − 𝑧𝑡) , (III.10a)

𝑥𝑡+1 =
1/𝜇

1/𝜇+𝜂
𝑥𝑡 + 𝜂

1/𝜇+𝜂
𝑦𝑡 −

1/𝜇·𝜂
1/𝜇+𝜂
∇𝑓(𝑦𝑡) =: 𝑦𝑡 + 𝛽(𝑥𝑡 − 𝑦𝑡)− (1−𝛽)

𝜇
∇𝑓(𝑦𝑡) ,

(III.10b)

𝑧𝑡+1 = 𝑦𝑡 − 1
𝐿
∇𝑓(𝑦𝑡) =: 𝑦𝑡 − 𝑐∇𝑓(𝑦𝑡) . (III.10c)

Here 𝛼 :=
1/𝐿

1/𝐿+̃︀𝜂 , 𝛽 =
1/𝜇

1/𝜇+𝜂
. For later application, we will in general consider

𝑐 ∈ (0, 2/𝐿).

Hence, the main goal now is to choose the parameters 𝜉, 𝑏, 𝜂, ̃︀𝜂 so that Φ𝑡+1−Φ𝑡 ≤ 0,

or equivalently,

𝑓(𝑧𝑡+1)− 𝑓(𝑥*) + 𝑏 · ‖𝑥𝑡+1 − 𝑥*‖2 − (1− 𝜉) ·
[︀
𝑓(𝑧𝑡)− 𝑓(𝑥*) + 𝑏 · ‖𝑥𝑡 − 𝑥*‖2

]︀
(III.11)

is less than equal to zero. To that end, we first express (III.11) more simply.

III.2.1 Upper bounding the Lyapunov difference

We first express the terms 𝑓(𝑧𝑡+1)− 𝑓(𝑥*) and ‖𝑥𝑡+1 − 𝑥*‖2 in terms of the previous

iterates.

• We know from 𝐿-smoothness of 𝑓 that 𝑓(𝑧𝑡+1)− 𝑓(𝑦𝑡) ≤ ⟨∇𝑓(𝑦𝑡), 𝑧𝑡+1 − 𝑦𝑡⟩+

𝐿
2
‖𝑧𝑡+1 − 𝑦𝑡‖2 = −𝑐(1− 𝐿𝑐/2) ‖∇𝑓(𝑦𝑡)‖2.

• By (III.10b), we have ‖𝑥𝑡+1 − 𝑥*‖2 =
⃦⃦⃦
𝑦𝑡 − 𝑥* + 𝛽(𝑥𝑡 − 𝑦𝑡)− (1−𝛽)

𝜇
∇𝑓(𝑦𝑡)− 𝑥*

⃦⃦⃦2
.

Given these expressions, we streamline our notations as follows.

Notations: we denote the recurring vectors as follows:

∆𝑐 := 𝑐(1− 𝐿𝑐/2) , ∇ := ∇𝑓(𝑦𝑡) , 𝑉 := 𝑦𝑡 − 𝑥* , and 𝑊 := 𝑥𝑡 − 𝑦𝑡.

Since 𝑐 ∈ (0, 2/𝐿), ∆𝑐 is a positive constant.
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With these notations, one can rewrite the previous (in)equalities succintly as

follows:

𝑓(𝑧𝑡+1)− 𝑓(𝑦𝑡) ≤ −∆𝑐 ‖∇‖2 ,

‖𝑥𝑡+1 − 𝑥*‖2 =

⃦⃦⃦⃦
𝑉 + 𝛽𝑊 − 1− 𝛽

𝜇
∇
⃦⃦⃦⃦2
.

Now let us plug these two back to (III.11). Let us first express 𝑏 · ‖𝑥𝑡+1 − 𝑥*‖2 −

(1− 𝜉)𝑏 · ‖𝑥𝑡 − 𝑥*‖2:

𝑏 · ‖𝑥𝑡+1 − 𝑥*‖2 − (1− 𝜉)𝑏 · ‖𝑥𝑡 − 𝑥*‖2 = 𝑏 ·
⃦⃦⃦⃦
𝑉 + 𝛽𝑊 − 1− 𝛽

𝜇
∇
⃦⃦⃦⃦2
− (1− 𝜉)𝑏 · ‖𝑉 +𝑊‖2

=

⎧⎪⎨⎪⎩(𝑏− (1− 𝜉)𝑏) · ‖𝑉 ‖2 + (𝛽2𝑏− (1− 𝜉)𝑏) · ‖𝑊‖2 + (1−𝛽)2

𝜇2 𝑏 · ‖∇‖2

+2(𝛽𝑏− (1− 𝜉)𝑏) · ⟨𝑉,𝑊 ⟩ − 2𝛽 1−𝛽
𝜇
𝑏 ⟨𝑊,∇⟩ − 21−𝛽

𝜇
𝑏 · ⟨𝑉,∇⟩ .

(III.12)

Next we express 𝑓(𝑧𝑡+1) − 𝑓(𝑥*) − (1 − 𝜉) · (𝑓(𝑧𝑡) − 𝑓(𝑥*)) in terms of ∇, 𝑉,𝑊 .

Below, we recall Figure III-1 with the simplified notations for readers’ convenience:

𝑥𝑡 𝑥𝑡+1

𝑤𝑡

𝑧𝑡

𝑦𝑡

𝑧𝑡+1

− 1
𝜇
(1 − 𝛽)∇

− 1
𝐿
∇

̃︀𝜂
1/𝐿

𝜂

1/𝜇

𝛼 :=
1/𝐿

1/𝐿+̃︀𝜂
𝛽 :=

1/𝜇
1/𝜇+𝜂

Using the inequality 𝑓(𝑧𝑡+1)− 𝑓(𝑦𝑡) ≤ −∆𝑐 ‖∇‖2, we obtain

𝑓(𝑧𝑡+1)− 𝑓(𝑥*)− (1− 𝜉) · (𝑓(𝑧𝑡)− 𝑓(𝑥*)) ≤ 𝑓(𝑦𝑡)− 𝑓(𝑥*)−∆𝑐 · ‖∇‖2 − (1− 𝜉) · (𝑓(𝑧𝑡)− 𝑓(𝑥*))

= (1− 𝜉) · (𝑓(𝑦𝑡)− 𝑓(𝑧𝑡)) + 𝜉 · (𝑓(𝑦𝑡)− 𝑓(𝑥*))−∆𝑐 · ‖∇‖2 .

≤ (1− 𝜉) · ⟨∇, 𝑦𝑡 − 𝑧𝑡⟩+ 𝜉 · ⟨∇, 𝑉 ⟩ − 𝜇

2
(1− 𝜉) · ‖𝑦𝑡 − 𝑧𝑡‖2 −

𝜇

2
𝜉 · ‖𝑉 ‖2 −∆𝑐𝜉 · ‖∇‖2 ,

(III.13)

where the last inequality follows from 𝜇-strong convexity of 𝑓 : 𝑓(𝑢) − 𝑓(𝑣) ≤
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⟨∇𝑓(𝑢), 𝑢− 𝑣⟩ − 𝜇
2
‖𝑢− 𝑣‖2. Now from (III.10a) (or from the above figure), we

have 𝑦𝑡− 𝑧𝑡 = 𝛼
1−𝛼

(𝑥𝑡− 𝑦𝑡) = 𝛼
1−𝛼

𝑊 , and hence, one can express (III.13) fully in terms

of ∇, 𝑉,𝑊 :

(III.13) =
𝛼

1− 𝛼
(1− 𝜉) · ⟨∇,𝑊 ⟩+ 𝜉 · ⟨∇, 𝑉 ⟩

− 𝜇

2

(︂
𝛼

1− 𝛼

)︂2

(1− 𝜉) · ‖𝑊‖2 − 𝜇

2
𝜉 · ‖𝑉 ‖2 −∆𝑐 · ‖∇‖2

(III.14)

Combining (III.12) and (III.14), we obtain the following upper bound on Φ𝑡+1 − Φ𝑡

fully in terms of ∇, 𝑉,𝑊 :

Φ𝑡+1 − Φ𝑡 ≤ 𝐶1 · ‖𝑊‖2 + 𝐶2 · ‖𝑉 ‖2 + 𝐶3 ‖∇‖2 + 𝐶4 · ⟨𝑊,𝑉 ⟩+ 𝐶5 · ⟨𝑊,∇⟩+ 𝐶6 · ⟨𝑉,∇⟩ ,

(III.15)

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐶1 := 𝛽2𝑏− (1− 𝜉)𝑏− 𝜇

2
𝛼2

(1−𝛼)2
(1− 𝜉) , 𝐶2 := 𝑏− (1− 𝜉)𝑏− 𝜇

2
𝜉 ,

𝐶3 := (1−𝛽)2

𝜇2 𝑏−∆𝑐 , 𝐶4 := 2(𝛽𝑏− (1− 𝜉)𝑏) ,

𝐶5 := 𝛼
1−𝛼

(1− 𝜉)− 2𝛽 1−𝛽
𝜇
𝑏 , 𝐶6 := 𝜉 − 21−𝛽

𝜇
𝑏 .

III.2.2 Ensuring decrease in Lyapunov function

Having established the bound (III.15), our goal is to now choose the step sizes 𝛼 and

𝛽 (equivalently, 𝜂 and ̃︀𝜂) and the Lyapunov function parameters 𝜉, 𝑏 so that (III.15)

is non-positive. Following the approach from Chapter II, one avenue is to make the

coefficients 𝐶4, 𝐶5, 𝐶6 of the cross terms 0, while making 𝐶1, 𝐶2, 𝐶3 non-positive. It

turns out this strategy fully determines the parameters, as follows:

� Coefficients of cross terms characterize 𝛼, 𝛽, 𝑏 in terms of 𝜉:

• 𝐶4 = 0 and 𝐶6 = 0 characterize 𝛽, 𝑏 in terms of 𝜉: From 𝐶4 = 0, we get

𝛽 = 1 − 𝜉, and from 𝐶6 = 0, we get (1 − 𝛽)𝑏 = 𝜇
2
𝜉, which implies 𝑏 = 𝜇

2
.

Hence,

𝛽 = 1− 𝜉 (⇔ 𝜇𝜂 =
𝜉

1− 𝜉
) and 𝑏 =

𝜇

2
.
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• 𝐶5 = 0 characterizes 𝛼 in terms of 𝜉: From 𝐶5 = 0, we get 𝛼
1−𝛼

(1 − 𝜉) =

2𝛽 1−𝛽
𝜇
𝑏. Hence,

𝛼

1− 𝛼
= 𝜉 (⇔ 𝐿̃︀𝜂 =

1

𝜉
).

� Coefficients of squared terms determines 𝜉:

• From 𝐶3 ≤ 0, we get (1−𝛽)2

𝜇2 𝑏 ≤ ∆𝑐. Now, Using the characterizations of 𝛽

and 𝑏 above, one can rewrite the inequality as

𝜉2 ≤ 2𝜇∆𝑐 .

Since we want to maximize 𝜉, we conclude that 𝜉 =
√

2𝜇∆𝑐.

• With the choices of 𝛼, 𝛽, 𝑏 as above, one can easily check that 𝐶2 = 0 and

𝐶1 = 𝛽2𝑏− (1− 𝜉)𝑏− 𝜇
2

𝛼2

(1−𝛼)2
(1− 𝜉) ≤ −𝜇

2
𝛼2

(1−𝛼)2
≤ 0.

Summarizing the calculations thus far, we obtain the following result.

Theorem III.1. For 𝑐 ∈ (0, 2/𝐿), let ∆𝑐 := 𝑐(1− 𝐿𝑐/2). Let us choose parameters

as follows:

1. Choose 𝜉 :=
√

2𝜇∆𝑐.

2. Choose step sizes based on 𝜉: 𝜂 = 1
𝜇

𝜉
1−𝜉

and ̃︀𝜂 = 1
𝐿

1
𝜉
.

Then, given 𝑥𝑡, 𝑧𝑡, the next iterates 𝑥𝑡+1, 𝑥𝑡+1 computed as per the constant step

version (III.10) satisfy

𝑓(𝑦𝑡+1)− 𝑓(𝑥*) +
𝜇

2
· ‖𝑧𝑡+1 − 𝑥*‖2 ≤ (1− 𝜉) ·

[︀
𝑓(𝑦𝑡)− 𝑓(𝑥*) +

𝜇

2
· ‖𝑧𝑡 − 𝑥*‖2

]︀
.

To conclude, this shows the convergence rate of 𝑂((1−
√

2𝜇∆𝑐)
𝑇 ) of the constant

step size version (III.10). In particular, if we choose 𝛼 = 1
𝐿
, we have ∆𝑐 = 1

2𝐿
and

𝜉 = 1/
√
𝜅, thereby achieving the well known convergence rate of 𝑂((1 − 1/

√
𝜅)𝑇 ).

Also, we get 𝜂 = 1
𝜇

𝜉
1−𝜉

= 𝜇−1(
√
𝜅− 1)−1 and ̃︀𝜂 = 1

𝐿
1
𝜉

= 𝜇−1(
√
𝜅)−1, which is precisely

the choice (III.6).
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III.3 Analysis based on PPM perspective: general

version

Now we move onto analyzing the general version (III.3). For the general version, we

use the general Lyapunov function (III.8) as we recall below:

Φ𝑡 :=
𝑡∏︁

𝑖=1

(1− 𝜉𝑡)−1 ·
[︀
𝑓(𝑧𝑡)− 𝑓(𝑥*) + 𝑏𝑡 · ‖𝑥𝑡 − 𝑥*‖2

]︀
, (III.8)

for some 𝜉𝑡 ∈ (0, 1) and 𝑏𝑡 ≥ 0. Also, following the previous analysis for the constant

step version, we rewrite (III.3) using simpler notations:

Simper representation of (III.3):

𝑦𝑡 = 𝑧𝑡 + 𝛼𝑡(𝑥𝑡 − 𝑧𝑡) , (III.16a)

𝑥𝑡+1 = 𝑦𝑡 + 𝛽𝑡+1(𝑥𝑡 − 𝑦𝑡)− (1−𝛽𝑡+1)
𝜇
∇𝑓(𝑦𝑡) , (III.16b)

𝑧𝑡+1 = 𝑦𝑡 − 𝑐∇𝑓(𝑦𝑡) . (III.16c)

Here 𝛼𝑡 :=
1/𝐿

1/𝐿+̃︀𝜂𝑡 , 𝛽𝑡+1 =
1/𝜇

1/𝜇+𝜂𝑡+1
. For later application, we will in general consider

𝑐 ∈ (0, 2/𝐿).

Hence, the main goal now is to choose the parameters 𝜉𝑡+1, 𝑏𝑡+1, 𝛼𝑡, 𝛽𝑡+1 so that

Φ𝑡+1 − Φ𝑡 ≤ 0, or equivalently,

𝑓(𝑧𝑡+1)− 𝑓(𝑥*) + 𝑏𝑡+1 · ‖𝑥𝑡+1 − 𝑥*‖2 − (1− 𝜉𝑡+1) ·
[︀
𝑓(𝑧𝑡)− 𝑓(𝑥*) + 𝑏𝑡 · ‖𝑥𝑡 − 𝑥*‖2

]︀
(III.17)

is less than equal to zero. To that end, we first upper bound (III.17) following §III.2.1.

III.3.1 Upper bounding the Lyapunov difference

We use the same notation ∆𝑐,∇, 𝑉,𝑊 as in §III.2.1. Moreover, since we only consider

a single iteration, we drop the subscripts of 𝛼𝑡, 𝛽𝑡+1, 𝜉𝑡+1 and simply write them
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𝛼, 𝛽, 𝜉. Then, the same derivation as before, except for the fact that now 𝑏𝑡+1 and 𝑏𝑡

could be different, we obtain the following upper bound on Φ𝑡+1 − Φ𝑡:

Φ𝑡+1 − Φ𝑡 ≤ 𝐶1 · ‖𝑊‖2 + 𝐶2 · ‖𝑉 ‖2 + 𝐶3 ‖∇‖2 + 𝐶4 · ⟨𝑊,𝑉 ⟩+ 𝐶5 · ⟨𝑊,∇⟩+ 𝐶6 · ⟨𝑉,∇⟩ ,

(III.18)

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐶1 := 𝛽2𝑏𝑡+1 − (1− 𝜉)𝑏𝑡 − 𝜇

2
𝛼2

(1−𝛼)2
(1− 𝜉) , 𝐶2 := 𝑏𝑡+1 − (1− 𝜉)𝑏𝑡 − 𝜇

2
𝜉 ,

𝐶3 := (1−𝛽)2

𝜇2 𝑏𝑡+1 −∆𝑐 , 𝐶4 := 2(𝛽𝑏𝑡+1 − (1− 𝜉)𝑏𝑡) ,

𝐶5 := 𝛼
1−𝛼

(1− 𝜉)− 2𝛽 1−𝛽
𝜇
𝑏𝑡+1 , 𝐶6 := 𝜉 − 21−𝛽

𝜇
𝑏𝑡+1 .

III.3.2 Ensuring decrease in Lyapunov function

In order to ensure that (III.18) is non-positive. we again make the coefficients 𝐶4, 𝐶5,

𝐶6 of the cross terms 0, while making 𝐶1, 𝐶2, 𝐶3 non-positive. Similarly to §III.2.2,

this strategy fully determines the parameters.

� Coefficients of cross terms characterize 𝛼, 𝛽, 𝑏𝑡+1 in terms of 𝜉, 𝑏𝑡:

• 𝐶4 = 0 and 𝐶6 = 0 characterize 𝛽, 𝑏𝑡+1 in terms of 𝜉, 𝑏𝑡: From 𝐶4 = 0, we get

𝛽𝑏𝑡+1 = (1− 𝜉)𝑏𝑡, and from 𝐶6 = 0, we get (1− 𝛽)𝑏𝑡+1 = 𝜇
2
𝜉. Adding them

up we obtain

𝑏𝑡+1 =
𝜇

2
𝜉 + (1− 𝜉)𝑏𝑡. (III.19)

Plugging this back to 𝛽𝑏𝑡+1 = (1− 𝜉)𝑏𝑡, we also obtain

𝛽 =
(1− 𝜉)𝑏𝑡

𝜇
2
𝜉 + (1− 𝜉)𝑏𝑡

. (III.20)

• 𝐶5 = 0 characterizes 𝛼 in terms of 𝜉, 𝑏𝑡: From 𝐶5 = 0, we get 𝛼
1−𝛼

(1− 𝜉) =

2𝛽 1−𝛽
𝜇
𝑏𝑡+1 = 𝛽𝜉. Hence,

𝛼

1− 𝛼
=

𝜉𝑏𝑡
𝜇
2
𝜉 + (1− 𝜉)𝑏𝑡

. (III.21)
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� Coefficients of squared terms determines 𝜉 based on given 𝑏𝑡:

• From 𝐶3 ≤ 0, we get (1−𝛽)2

𝜇2 𝑏𝑡+1 ≤ ∆𝑐. Now, since we already have char-

acterized 𝛽 and 𝑏𝑡+1 in terms of 𝜉 and 𝑏𝑡, this inequality can be rewritten

completely in terms of 𝜉 and 𝑏𝑡. Concretely, using (1− 𝛽)𝑏𝑡+1 = 𝜉𝜇
2

, one can

rewrite the inequality as

𝜉2 ≤ 4∆𝑐𝑏𝑡+1 . (III.22)

Now, using (III.19), we obtain

𝜉2 − 2𝜇∆𝑐𝜉

1− 𝜉
≤ 4∆𝑐𝑏𝑡 . (III.23)

In (III.23), note that the RHS is a nonnegative constant and the LHS is an

increasing function on [2𝜇∆𝑐, 1) whose value is 0 at 2𝜇∆𝑐 and approaches

+∞ as 𝜉 → 1. Hence, the largest 𝜉 satisfies (III.23) with equality.

• One can then easily verify that with these choices, we get 𝐶2 = 0 and 𝐶1 ≤ 0.

III.3.3 Summary of analysis

Although the overall derivations and calculations are similar to those in §III.2, the

resulting parameter choices are quite complicated as 𝛼, 𝛽, 𝜉, 𝑏 now depend on 𝑡. Here

we parse the expressions into more interpretable forms. For clarity, we recover the

subscripts for the parameters 𝛼, 𝛽, 𝜉, 𝑏 .

To summarize, we have concluded that given 𝑏𝑡 from the previous iteration,

𝜉𝑡+1 ∈ [2𝜇∆𝑐, 1) is chosen so that

𝜉2𝑡+1 − 2𝜇∆𝑐𝜉𝑡+1

1− 𝜉𝑡+1

= 4∆𝑐𝑏𝑡. (III.24)

Using this relation, or equivalently (1−𝜉𝑡+1)𝑏𝑡 =
𝜉2𝑡+1

4Δ𝑐
− 𝜇

2
𝜉𝑡+1, one can in fact eliminate

the appearances of 𝑏𝑡 in the expressions (III.19), (III.20) and (III.21) and express
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them solely in terms of 𝜉𝑡+1 as follows:

𝑏𝑡+1 =
𝜇

2
𝜉𝑡+1 + (1− 𝜉𝑡+1)𝑏𝑡 =

𝜉2𝑡+1

4∆𝑐

,

𝛽𝑡+1 =
(1− 𝜉𝑡+1)𝑏𝑡

𝜇
2
𝜉𝑡+1 + (1− 𝜉𝑡+1)𝑏𝑡

=
𝜉2𝑡+1/4Δ𝑐 − 𝜇𝜉𝑡+1/2

𝜉2𝑡+1/4Δ𝑐

= 1− 2𝜇∆𝑐𝜉
−1
𝑡+1,

𝛼𝑡

1− 𝛼𝑡

=
𝜉𝑡+1𝑏𝑡

𝜇
2
𝜉𝑡+1 + (1− 𝜉𝑡+1)𝑏𝑡

=
𝜉𝑡+1 · 𝜉2𝑡+1−2𝜇Δ𝑐𝜉𝑡+1/4Δ𝑐(1−𝜉𝑡+1)

𝜉2𝑡+1/4Δ𝑐

=
𝜉𝑡+1 − 2𝜇∆𝑐

1− 𝜉𝑡+1

.

For 𝛼𝑡, one can solve the expression to 𝛼𝑡 = 𝜉𝑡+1−2𝜇Δ𝑐

1−2𝜇Δ𝑐
. From these expressions, one

can easily check that 𝛼𝑡, 𝛽𝑡+1 both lie in [0, 1] since 𝜉𝑡+1 ∈ [2𝜇∆𝑐, 1). For coherency,

let us write 𝑏𝑡 =
𝜉2𝑡
4Δ𝑐

for some 𝜉𝑡 ≥ 0. Then our findings can be succinctly written as

follows.

Theorem III.2 (Parameter choice for decrease in Lyapunov function). For 𝑐 ∈

(0, 2/𝐿), let ∆𝑐 := 𝑐(1− 𝐿𝑐/2). Given 𝜉𝑡 ≥ 0, let us choose parameters as follows:

1. Compute 𝜉𝑡+1 ∈ [2𝜇∆𝑐, 1) satisfying

𝜉𝑡+1(𝜉𝑡+1 − 2𝜇∆𝑐)

1− 𝜉𝑡+1

= 𝜉2𝑡 . (III.25)

2. Choose parameters as 𝛼𝑡 = 𝜉𝑡+1−2𝜇Δ𝑐

1−2𝜇Δ𝑐
and 𝛽𝑡+1 = 1− 2𝜇∆𝑐𝜉

−1
𝑡+1.

Then, given 𝑥𝑡, 𝑧𝑡, the next iterates 𝑥𝑡+1, 𝑧𝑡+1 computed as per (III.16) satisfy

𝑓(𝑧𝑡+1)− 𝑓(𝑥*) +
𝜉2𝑡+1

4Δ𝑐
· ‖𝑥𝑡+1 − 𝑥*‖2 ≤ (1− 𝜉𝑡+1) ·

[︀
𝑓(𝑧𝑡)− 𝑓(𝑥*) +

𝜉2𝑡
4Δ𝑐
· ‖𝑥𝑡 − 𝑥*‖2

]︀
.

Remarkably the parameter choices obtained by Theorem III.2 exactly match those

of Nesterov’s “General Scheme for Optimal Method” [Nes18, (2.2.1)]. Hence, our

approach recovers Nesterov’s optimal method that encompasses both strongly and

non-strongly convex costs. Another byproduct of our analysis is the convergence of

𝑥𝑡 to 𝑥* for 𝜇 > 0 (in which case, 𝜉 > 0), a property otherwise proved via additional

analysis (see, e.g., [GN18, Corollary 1]). This convergence will play a crucial role in

the Riemannian setting. Observe that upon applying Theorem III.2 recursively, we
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can deduce that

𝑓(𝑧𝑇 )− 𝑓(𝑥*) = 𝑂 ((1− 𝜉1)(1− 𝜉2) · · · (1− 𝜉𝑇 )) . (III.26)

Thus, to identify the convergence rate of iteration (III.3) with parameters chosen via

Theorem III.2, we only need to study how the sequence {𝜉𝑡} evolves. This evolution

is the focus of the next subsection.

III.3.4 Identifying the convergence rate via fixed-point itera-

tion

Let us study the evolution of {𝜉𝑡}. Our approach offers an alternative to its counterpart

in Nesterov’s book [Nes18, Lemma 2.2.4]. In contrast to Nesterov’s analysis based on

clever algebraic manipulations, our approach directly analyzes the evolution of the

sequence by studying a simple fixed point iteration. More importantly, our fixed-point

based approach generalizes better to the Riemannian setting.

Now let us examine the recursive relation satisfied by 𝜉𝑡. Recall from Theorem III.2

the following nonlinear recursive relation on 𝜉𝑡’s:

𝜉2𝑡+1 − 2𝜇∆𝑐𝜉𝑡+1

1− 𝜉𝑡+1

= 4∆𝑐𝑏𝑡. . (III.24)

Our objective is to characterize the evolution of 𝜉𝑡. Intuitively, (III.24) can be construed

as a recursive relation for computing the root of 𝜑(𝑣) = 𝜓(𝑣), where 𝜑(𝑣) := 𝑣(𝑣−2𝜇Δ𝑐)
(1−𝑣)

and 𝜓(𝑣) := 𝑣2. Since the root is equal to 𝑣 =
√

2𝜇∆𝑐, one can guess that 𝜉𝑡 →
√

2𝜇∆𝑐.

See Figure III-3 for illustration. The following lemma confirms this guess.

Lemma III.1 (Evolution of (III.24)). For an arbitrary initial value 𝜉0 ≥ 0, let 𝜉𝑡

(𝑡 ≥ 1) be the sequence of numbers defined as per (III.24). Then, 𝜉𝑡 ∈ [2𝜇∆𝑐, 1) for

all 𝑡 ≥ 1. Furthermore, if⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜉0 >

√
2𝜇Δ𝑐 ,

𝜉0 =
√
2𝜇Δ𝑐 ,

𝜉0 <
√
2𝜇Δ𝑐 ,

then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜉𝑡 ↘

√
2𝜇Δ𝑐 as 𝑡→∞ .

𝜉𝑡 ≡
√
2𝜇Δ𝑐 .

𝜉𝑡 ↗
√
2𝜇Δ𝑐 as 𝑡→∞ .

In particular, the convergences are geo-

metric.
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Figure III-3: An illustration of the evolution of (III.24) for 2𝜇∆𝑐 = 0.25. We plot
𝜑 = 𝑣(𝑣−2𝜇Δ𝑐)

(1−𝑣)
in blue and 𝜓(𝑣) = 𝑣2 in red.

Proof. The proof and the formal statement (Lemma III.2) are provided in §III.4.

Lemma III.1 delivers the desired accelerated convergence rate:

Corollary III.1. If 𝜉0 ≥
√

2𝜇∆𝑐, then 𝑓(𝑧𝑡) − 𝑓(𝑥*) = 𝑂(
∏︀𝑡

𝑖=1(1 −
√

2𝜇∆𝑐)) =

𝑂(exp(−𝑡
√

2𝜇∆𝑐)). In particular, setting 𝑐 = 1/𝐿, 𝑓(𝑧𝑇 )− 𝑓(𝑥*) = 𝑂(exp(−𝑇
√︀

𝜇/𝐿)).

Remark III.1 (Removing technical conditions in Nesterov’s analysis). Nesterov’s

original analysis requires a technical condition on the initial value 𝜉0:
√︀

𝜇/𝐿 ≤ 𝜉0 ≤
(2(3+𝜇/𝐿))/(3+

√
21+4𝜇/𝐿) [Nes18, (2.2.21)]. In contrast, our analysis reveals that the upper

bound on 𝜉0 is not needed; the lower bound is also not needed in the sense that 𝜉𝑡

converges to
√︀
𝜇/𝐿, the accelerated rate.

III.4 Analysis of the key recursive relations

To ease notation, we replace 2𝜇∆𝑐 with a constant 𝑎 ∈ (0, 1) and consider:

𝜉𝑡+1(𝜉𝑡+1 − 𝑎)

1− 𝜉𝑡+1

=
1

𝛿
· 𝜉2𝑡 . (III.27)

In particular, when 𝛿 = 1 and 𝑎 = 2𝜇∆𝑐, equation (III.27) recovers (III.24). The

parameter 𝛿 > 1 is present to cover the recursion for the Riemannian case (see (IV.5)).

Below, we state and prove the following general statement of Lemma III.1.
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Lemma III.2. For any constants 𝛿 ≥ 1 and 𝑎 ∈ (0, 1), and an initial value 𝜉0 ≥ 0,

the followings properties are true about the recursive relation (III.27):

1. 𝜉(𝛿) := 1
2

√︀
(𝛿 − 1)2 + 4𝛿𝑎− 1

2
(𝛿 − 1) is the unique fixed point of (III.27).

2. lim
𝑡→∞

𝜉𝑡 ↓ 𝜉(𝛿) if 𝜉0 > 𝜉(𝛿); 𝜉𝑡 ≡ 𝜉(𝛿) if 𝜉0 = 𝜉(𝛿); and lim
𝑡→∞

𝜉𝑡 ↑ 𝜉(𝛿) if 0 ≤ 𝜉0 <

𝜉(𝛿).

3. |𝜉𝑡 − 𝜉(𝛿)| ≤
(︁

1√
𝛿

(︁
1− 4

5+
√
5
· 𝑎√

𝛿

)︁)︁𝑡−1

|𝜉1 − 𝜉(𝛿)| for all 𝑡 ≥ 1.

Proof. Define 𝜑(𝑣) := 𝑣(𝑣−𝑎)
1−𝑣

and 𝜓(𝑣) := 1
𝛿
𝑣2. Then, recursion (III.27) can be

rewritten as

𝜑(𝜉𝑡+1) = 𝜓(𝜉𝑡) . (III.28)

Now, in order to understand (III.28), let us study the properties of the two functions.

First, note that 𝜓 is increasing on R≥0 and 𝜑 is increasing on [𝑎, 1) with 𝜑(𝑎) = 0 and

lim𝑣→1− 𝜑(𝑣) =∞. Indeed, 𝜑 is increasing since 𝑑
𝑑𝑣
𝜑(𝑣) = 1−𝑎

(1−𝑣)2
− 1 ≥ 1

1−𝑎
− 1 > 0.

Hence, one can consider the inverse function of the restriction 𝜑|[𝑎,1). We will

simply denote the inverse function by 𝜑−1. Letting 𝜏 := 𝜑−1 ∘ 𝜓, (III.28) can be

rewritten as:

𝜉𝑡+1 = 𝜏(𝜉𝑡) . (III.29)

Note that 𝜏 : R≥0 → [𝑎, 1), and hence, 𝜉𝑡 ∈ [𝑎, 1) for all 𝑡 ≥ 1. Since 𝜏 is increasing,

there is at most one fixed point, i.e., 𝑣 ≥ 0 s.t. 𝜏(𝑣) = 𝑣. Solving 𝜏(𝑣) = 𝑣, or

equivalently, 𝜑(𝑣) = 𝜓(𝑣) on 𝑣 ∈ [𝑎, 1) yields 𝑣 = 𝜉(𝛿). Hence, 𝜉(𝛿) is the unique fixed

point of (III.29).

From this observation and the fact that 𝜑 and 𝜓 are both increasing on the

respective domains, we have 𝜑 < 𝜓 for 𝑥 ∈ [𝑎, 𝜉(𝛿)), and 𝜑 > 𝜓 for 𝑥 ∈ (𝜉(𝛿), 1).

Consequently, {𝜉𝑡} is increasing if 𝜉0 ∈ [0, 𝜉(𝛿)) and decreasing if 𝜉0 > 𝜉(𝛿).

Now we prove the geometric convergence of (III.29) to 𝜉(𝛿). To that end, let us

first express 𝜏 explicitly. One can easily verify that the closed form expression of 𝜑−1
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is equal to

𝜑−1(𝑣) =
1

2

(︁√︀
(𝑣 − 𝑎)2 + 4𝑣 − (𝑣 − 𝑎)

)︁
.

Therefore, we have

𝜏(𝑣) = 𝜑−1(𝜓(𝑣)) = 𝜑−1(𝑣2/𝛿) =
1

2

(︁√︀
(𝑣2/𝛿 − 𝑎)2 + 4𝑣2/𝛿 − (𝑣2/𝛿 − 𝑎)

)︁
.

Due to mean value theorem, the key ingredient for showing the geometric convergence

is to bound the derivative of 𝜏 . Indeed, if we can establish that |𝜏 ′(𝑣)| ≤ 𝐾 < 1 for

𝑣 ∈ [𝑎, 1), then we have

|𝜉𝑡+1 − 𝜉(𝛿)| = |𝜏(𝜉𝑡)− 𝜏(𝜉(𝛿))| ≤ 𝐾 · |𝜉𝑡 − 𝜉(𝛿)| . (III.30)

Letting 𝜃(𝑣) := 𝑣(𝑣2−𝑎)+2𝑣√
(𝑣2−𝑎)2+4𝑣2

− 𝑣, one can express the derivative 𝜏 ′ in terms of 𝜃:

𝜏 ′(𝑣) =
𝑣
𝛿
(𝑣2/𝛿 − 𝑎) + 2𝑣

𝛿√︀
(𝑣2/𝛿 − 𝑎)2 + 4𝑣2/𝛿

− 𝑣

𝛿
=

1√
𝛿
·

(︃
𝑣√
𝛿
(𝑣2/𝛿 − 𝑎) + 2 𝑣√

𝛿√︀
(𝑣2/𝛿 − 𝑎)2 + 4𝑣2/𝛿

− 𝑣√
𝛿

)︃
=

1√
𝛿
· 𝜃(𝑣/

√︀
𝛿)

Hence, it suffices to show that 𝜃(𝑣) < 1 for 𝑣 ∈ (0, 1). Proposition III.1 below shows

this claim.

Proposition III.1. 0 ≤ 𝜃(𝑣) < 1− 4
5+

√
5
· 𝑣 holds for 𝑣 ∈ (0, 1).

Proof. 𝜃(𝑣) ≥ 0 trivially holds since 𝜏 is increasing (recall that 𝜏 is a composition of

increasing functions). Now let us prove the upper bound. We first consider the case

𝑎 < 𝑣 ≤
√
𝑎. Since 𝑣2 ≤ 𝑎,

𝜃(𝑣) =
−𝑣(𝑎− 𝑣2) + 2𝑣√︀

(𝑣2 − 𝑎)2 + 4𝑣2
− 𝑣 ≤ 2𝑣√︀

(𝑣2 − 𝑎)2 + 4𝑣2
− 𝑣 ≤ 1− 𝑣 .
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Next, consider the case 𝑣 >
√
𝑎. Then, 𝑣2 > 𝑎, and hence

𝜃(𝑣) =
𝑣(𝑣2 − 𝑎) + 2𝑣√︀
(𝑣2 − 𝑎)2 + 4𝑣2

− 𝑣 =
2𝑣√︀

(𝑣2 − 𝑎)2 + 4𝑣2
− 𝑣 ·

√︀
(𝑣2 − 𝑎)2 + 4𝑣2 − (𝑣2 − 𝑎)√︀

(𝑣2 − 𝑎)2 + 4𝑣2

=
2𝑣√︀

(𝑣2 − 𝑎)2 + 4𝑣2
− 𝑣 · 4𝑣2√︀

(𝑣2 − 𝑎)2 + 4𝑣2
(︁√︀

(𝑣2 − 𝑎)2 + 4𝑣2 + (𝑣2 − 𝑎)
)︁

=
2𝑣√︀

(𝑣2 − 𝑎)2 + 4𝑣2
− 𝑣 · 4𝑣2

(𝑣2 − 𝑎)2 + 4𝑣2 + (𝑣2 − 𝑎)
√︀

(𝑣2 − 𝑎)2 + 4𝑣2

(♣)

≤ 1− 𝑣 · 4𝑣2

𝑣2 + 4𝑣2 + 𝑣
√
𝑣2 + 4𝑣2

= 1− 4

5 +
√

5
· 𝑣 .

where (♣) follows since 𝑣 ∈ (
√
𝑎, 1); in particular, we have 0 ≤ 𝑣2 − 𝑎 ≤ 𝑣2 ≤ 𝑣.

Combining the two cases, we complete the proof.

From Proposition III.1 and inequality (III.30), the proof of the geometric conver-

gence follows.

III.4.1 Justification of Remark IV.1

In this section, we verify that for any fixed 𝑎 ∈ (0, 1),

𝜉(𝛿) :=

√︀
(𝛿 − 1)2 + 4𝛿𝑎− (𝛿 − 1))

2
is decreasing in 𝛿 ≥ 1.

Note that for 𝛿 ≥ 1 we have

𝑑

𝑑𝛿
𝜉(𝛿) =

2(𝛿 − 1) + 4𝑎

4
√︀

(𝛿 − 1)2 + 4𝛿𝑎
− 1

2
=

2(𝛿 − 1) + 4𝑎− 2
√︀

(𝛿 − 1)2 + 4𝛿𝑎

4
√︀

(𝛿 − 1)2 + 4𝛿𝑎

=
2
√︁

((𝛿 − 1) + 2𝑎)2 − 2
√︀

(𝛿 − 1)2 + 4𝛿𝑎

4
√︀

(𝛿 − 1)2 + 4𝛿𝑎

=
2
√︀

(𝛿 − 1)2 + 4𝑎(𝛿 − 1) + 4𝑎2 − 2
√︀

(𝛿 − 1)2 + 4𝛿𝑎

4
√︀

(𝛿 − 1)2 + 4𝛿𝑎
< 0 ,

where the last inequality is due to the fact that −4𝑎+ 4𝑎2 < 0 since 𝑎 < 1.
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III.5 Related work for Chapter III

Another prominent approaches related to our Lyapunov function analysis are developed

based on solving semidefinite programmings (SDP) [DT14, LRP16, TVSL18, TB19].

The primary distinction between our approach and most SDP-based approaches is that

our analysis is analytical, whereas the analyses therein are numerical. More specifically,

the existing works require numeric values of parameters (e.g., 𝛼, 𝛽, 𝐿, 𝜇) because they

find suitable Lyapunov functions via solving SDPs. Note that one cannot solve SDPs

unless the numeric coefficients are given. Abstractly, our choice of parameters in

Theorem III.2 can be interpreted as an analytical solution to the symbolic versions of

SDPs formulated in the prior works.

Notable exceptions are [KF16, HL17, SJFB18, CHVSL18, AFGO20], in which small

SDPs are solved analytically. Specifically, some optimized step sizes for Nesterov’s

method are derived via solving small SDPs explicitly in [KF16, SJFB18]; robust

versions of gradient methods are derived analytically via classical control-theoretic

arguments in [CHVSL18, AFGO20], and Nesterov’s method is reinterpreted using

dissipativity theory in [HL17].
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Chapter IV

Globally accelerated gradient method

on Riemmanian manifolds

The goal of this chapter is to generalize the result in Chapter III to the case where

the cost is define on a Riemannian manifold. Without going into the details, we first

informally state the main result of this chapter as follows; the formal statement is

Theorem IV.3.

Theorem IV.1 (Informal). Let 𝑓 be 𝐿-smooth and 𝜇-strongly convex in a “geodesic”

sense. Then, there exists a computationally tractable optimization algorithm satisfying

𝑓(𝑥𝑡)− 𝑓(𝑥*) = 𝑂 ((1− 𝜉1)(1− 𝜉2) · · · (1− 𝜉𝑡)) ,

where {𝜉𝑡} satisfies (i) {𝜉𝑡}𝑡≥1 > 𝜇/𝐿 (strictly faster than gradient descent); and (ii)

∃𝜆 ∈ (0, 1) such that ∀𝜖 > 0, |𝜉𝑡 −
√︀

𝜇/𝐿| ≤ 𝜖, for 𝑡 ≥ Ω
(︀ log(1/𝜖)
log(1/𝜆)

)︀
(eventually achieves

full acceleration).

Paralleling Chapter III, our approach is based on Lyapunov function analysis.

There is, however, one fundamental hurdle inherent to Lyapunov function analysis in

the Riemannian setting: we need to handle the incompatibility of metrics between

two different points.

To overcome such a difficulty, we consider two important concepts: “projected

distances” (Definition IV.3) and “metric distortion” (Definition IV.4). First, we
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introduce a crucial but a priori non-obvious modification to the Euclidean Lyapunov

function using projected distances. With this modification, the main difficulty caused

by Riemannian geometry is localized into metric distortion. Already for the simplified

setting of constant metric distortion, our analysis implies the local acceleration results

of [ZS18] (Corollary IV.2). To tackle global acceleration, we establish a novel metric

distortion inequality based on comparison theorems in Riemannian geometry (§IV.3.1).

We then show how distortion can be estimated at each iteration, which proves critical

to obtain a computationally tractable algorithm (Algorithm IV.1). We show that

distortion decreases over iterations (§IV.3.2), which ultimately leads to Theorem IV.1

(formal result, Theorem IV.3). One notable aspect of our analysis is that for negatively

curved spaces, we do not assume that the iterates of the algorithm lies in some bounded

domain, unlike previous works [ZS18, AOBL20, AOBL21].

We begin by recalling some basic concepts from Riemannian geometry, and defer

to textbooks (e.g., [Car92, Jos08, BBB+01]) for more.

IV.1 Brief background on Riemannian geometry

A Riemannian manifold is a smooth manifold 𝑀 equipped with a smoothly varying

inner product ⟨·, ·⟩𝑥 (the Riemannian metric) defined for each 𝑥 ∈𝑀 on the tangent

space 𝑇𝑥𝑀 . With the concept of length of curves, one can introduce a distance 𝑑

on 𝑀 , and consequently, view (𝑀,𝑑) as a metric space. Length also allows us to

define analogs of straight lines, namely geodesics : A curve is a geodesic if it is locally

distance minimizing. The notion of curvature that we will need is sectional curvature,

which characterizes curvature by measuring Gaussian curvatures of 2-dimensional

submanifolds of 𝑀 . We make the following key assumption:

Assumption IV.1. We assume that the sectional curvature is lower bounded by

−𝜅 for some nonnegative constant 𝜅. This is a widely used standard assumption in

Riemannian geometry; see e.g., [BBB+01, Chapter 10] and [Per95].

Operations on manifolds. We can define analogs of vector addition and subtraction

on Riemannian manifolds via exponential maps. An exponential map Exp𝑥 : 𝑇𝑥𝑀 →
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𝑀 maps 𝑣 ∈ 𝑇𝑥𝑀 to 𝑔(1) ∈𝑀 for a geodesic 𝑔 with 𝑔(0) = 𝑥 and 𝑔′(0) = 𝑣. Notice

that Exp𝑥 (𝑣) ∈ 𝑀 is an analog of vector addition “𝑥 + 𝑣.” Similarly, the inverse

map Exp−1
𝑥 (𝑦) ∈ 𝑇𝑥𝑀 is an analog of vector subtraction “𝑦 − 𝑥.” For Exp−1

𝑥 to be

well-defined for each 𝑥, we assume that any two points on 𝑀 are connected by a unique

geodesic. This property is called uniquely geodesic, and is valid locally for general

Riemannian manifolds and globally for non-positively curved manifolds (more precisely,

manifolds with globally non-positive sectional curvatures). We assume further that

Exp𝑥,Exp−1
𝑥 can be computed at each 𝑥, as is the case for many widely used matrix

manifolds [AMS09].1

Convexity. The notion of convexity can be extended to Riemannian manifolds

using geodesics where convex combinations of two points are defined along geodesics

connecting them. This generalized notion of convexity is called geodesic convexity

(g-convexity for short) [Gro78]. One can also define geodesic-smoothness and (strong)

g-convexity akin to their Euclidean counterparts. For simplicity, we assume that the

function 𝑓 : 𝑀 → R is differentiable throughout the definitions, and we denote by

∇𝑓(𝑥) ∈ 𝑇𝑥𝑀 the gradient of 𝑓 at 𝑥.

Definition IV.1 (Geodesic (strong) convexity). 𝑓 is said to be geodesically 𝜇-strongly

convex if

𝑓(𝑦) ≥ 𝑓(𝑥) +
⟨︀
∇𝑓(𝑥),Exp−1

𝑥 (𝑦)
⟩︀
𝑥

+
𝜇

2
· 𝑑 (𝑥, 𝑦)2 for any 𝑥, 𝑦 ∈𝑀 ,

where ⟨·, ·⟩𝑥 denotes the inner product in the tangent space of 𝑥 induced by the

Riemannian metric.

Definition IV.2 (Geodesic smoothness). 𝑓 : 𝑀 → R is said to be geodesically

𝐿-smooth if

𝑓(𝑦) ≤ 𝑓(𝑥) +
⟨︀
∇𝑓(𝑥),Exp−1

𝑥 (𝑦)
⟩︀
𝑥

+
𝐿

2
· 𝑑 (𝑥, 𝑦)2 for any 𝑥, 𝑦 ∈𝑀 .

1For computational reasons, exponential maps are often approximated by cheaper approximations
(e.g., retractions). Analyzing the effect of such approximations is not addressed in this paper and is
left as an open question.
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Assumption IV.2. We assume that the cost function 𝑓 is geodesically 𝐿-smooth

and 𝜇-strongly convex.

IV.2 Riemannian Lyapunov function analysis

Using the exponential maps, one can write a Riemannian analog of (III.16).

Riemannian analog of (III.16):

𝑦𝑡 = Exp𝑧𝑡

(︀
𝛼𝑡Exp−1

𝑧𝑡 (𝑥𝑡)
)︀
, (IV.1a)

𝑥𝑡+1 = Exp𝑦𝑡

(︀
𝛽𝑡+1Exp−1

𝑦𝑡 (𝑥𝑡)− (1−𝛽𝑡+1)
𝜇
∇𝑓(𝑦𝑡)

)︀
, (IV.1b)

𝑦𝑡+1 = Exp𝑦𝑡 (−𝑐∇𝑓(𝑦𝑡)) . (IV.1c)

Here 𝛼𝑡 :=
1/𝐿

1/𝐿+̃︀𝜂𝑡 , 𝛽𝑡+1 =
1/𝜇

1/𝜇+𝜂𝑡+1
, and 𝑐 ∈ (0, 2/𝐿).

Note that updates (IV.1b) and (IV.1c) are well-defined since ∇𝑓(𝑦𝑡) lies in the

tangent space 𝑇𝑦𝑡𝑀 . See Figure IV-1 for an illustration of (IV.1).

Exp−1
𝑦𝑡

(𝑥𝑡)

Exp−1
𝑦𝑡

(𝑥𝑡+1)

𝛽𝑡+1Exp
−1
𝑦𝑡 (𝑥𝑡)

Exp−1
𝑦𝑡

(𝑧𝑡)

0 (= Exp−1
𝑦𝑡

(𝑦𝑡))
Exp−1

𝑦𝑡
(𝑧𝑡+1)

− (1−𝛽𝑡+1)

𝜇
∇𝑓(𝑦𝑡)

−𝑐∇𝑓(𝑦𝑡)

1− 𝛼𝑡

𝛼𝑡

1− 𝛽𝑡+1

𝛽𝑡+1

Figure IV-1: An illustration of the update rule (IV.1) on the tangent space 𝑇𝑦𝑡𝑀 .

We are now ready to analyze the Riemannian iteration (IV.1).
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IV.2.1 Riemannian Lyapunov function analysis and metric dis-

tortion

Since (IV.1) is a direct analog of its Euclidean counterpart (III.16), one may be tempted

to use the Lyapunov function Ψ𝑡 :=
∏︀𝑡

𝑖=1(1 − 𝜉𝑡)−1 · [𝑓(𝑧𝑡)− 𝑓(𝑥*) + 𝑏𝑡 · 𝑑(𝑥𝑡, 𝑥*)
2]

that is a direct analog of the Lyapunov (III.8). However, it turns out that the following

less direct choice is much more advantageous: for 𝑡 ≥ 1,

Ψ𝑡 :=
𝑡∏︁

𝑖=1

(1− 𝜉𝑡)−1 ·
[︁
𝑓(𝑧𝑡)− 𝑓(𝑥*) + 𝑏𝑡 ·

⃦⃦
Exp−1

𝑦𝑡−1
(𝑥𝑡)− Exp−1

𝑦𝑡−1
(𝑥*)

⃦⃦2
𝑦𝑡−1

]︁
.

(IV.2)

Here, Ψ0 = 𝑓(𝑥0)− 𝑓(𝑥*) + 𝑏0 · 𝑑 (𝑥0, 𝑥*)
2. The distance term in (IV.2) is preferable to

𝑑(𝑥𝑡, 𝑥*)
2 because it lets us use Euclidean geometry (since it is defined on the tangent

space 𝑇𝑥𝑡𝑀
∼= R𝑛) to control it. To simplify notation, we define:

Definition IV.3 (Projected distance). For any three points 𝑢, 𝑣, 𝑤 ∈𝑀 , the projected

distance between 𝑣 and 𝑤 with respect to 𝑢 is defined as

𝑑𝑢(𝑣, 𝑤) :=
⃦⃦

Exp−1
𝑢 (𝑣)− Exp−1

𝑢 (𝑤)
⃦⃦
𝑢
.

There is, however, one fundamental hurdle inherent to comparing distances in the

Riemannian setting: we need to handle the incompatibility of metrics between two

different points. A key advantage of the Lyapunov function analysis is that one only

needs to focus on comparing the distances appearing in adjacent terms, namely Ψ𝑡 and

Ψ𝑡+1, which simplifies the argument considerably. Motivated by the Lyapunov (IV.2),

we define the following quantity for comparing distances:

Definition IV.4 (Valid distortion rate). We say 𝛿𝑡 is a valid distortion rate for

iteration 𝑡 ≥ 2 if the following inequality holds: 𝑑𝑦𝑡−1(𝑥𝑡−1, 𝑥*)
2 ≤ 𝛿𝑡 · 𝑑𝑦𝑡−2(𝑥𝑡−1, 𝑥*)

2.

Assuming the existence of valid distortion rates at each iteration, we can analyze

iteration (IV.1) analogously to the analysis in Chapter III to obtain the main result

of this section.
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Theorem IV.2 (Riemannian analog of Theorem III.2). For 𝑐 ∈ (0, 2/𝐿), let ∆𝑐 :=

𝑐(1− 𝐿𝑐/2). Assume that 𝛿𝑡+1 > 1 is a valid distortion rate for iteration 𝑡+ 1. Given

𝜉𝑡 ≥ 0, let us choose parameters as follows:

1. Compute 𝜉𝑡+1 ∈ [2𝜇∆𝑐, 1) satisfying

𝜉𝑡+1(𝜉𝑡+1 − 2𝜇∆𝑐)

1− 𝜉𝑡+1

=
1

𝛿𝑡+1𝛿𝑡+1𝛿𝑡+1

𝜉2𝑡 . (IV.3)

2. Choose parameters as 𝛼𝑡 = 𝜉𝑡+1−2𝜇Δ𝑐

1−2𝜇Δ𝑐
and 𝛽𝑡+1 = 1− 2𝜇∆𝑐𝜉

−1
𝑡+1.

Then, given 𝑥𝑡, 𝑧𝑡, the next iterates 𝑥𝑡+1, 𝑧𝑡+1 computed as per (IV.1) satisfy

𝑓(𝑧𝑡+1)− 𝑓(𝑥*) +
𝜉2𝑡+1

4Δ𝑐
· 𝑑𝑦𝑡(𝑥𝑡+1, 𝑥*)

2 ≤ (1− 𝜉𝑡+1) ·
[︀
𝑓(𝑧𝑡)− 𝑓(𝑥*) +

𝜉2𝑡
4Δ𝑐
· 𝑑𝑦𝑡−1(𝑥𝑡, 𝑥*)

2
]︀
.

The proof is essentially identical to that of Theorem III.2, except for the appearance

of valid distortion rates in (IV.3). We consider analogous notations to Chapter III.

Notations: we denote the recurring vectors as follows:

∇̃ := ∇𝑓(𝑦𝑡), �̃� := Exp−1
𝑦𝑡 (𝑥𝑡) , 𝑉 := −Exp−1

𝑦𝑡 (𝑥*) .

Note that the above three vectors lie in the same tangent space 𝑇𝑦𝑡𝑀 .

With these vectors, akin to (III.18), it is again straightforward to derive the

following upper bound on Ψ𝑡+1−Ψ𝑡 in terms of the vectors ∇̃, 𝑉 , �̃� (here, ‖·‖ denotes

‖·‖𝑥𝑡+1
and ⟨·, ·⟩ denotes ⟨·, ·⟩𝑥𝑡+1

):

Ψ𝑡+1 −Ψ𝑡 ≤ 𝐶1 · ‖�̃�‖2 + 𝐶2 · ‖𝑉 ‖2 + 𝐶3‖∇̃‖2 + 𝐶4 · ⟨�̃� , 𝑉 ⟩+ 𝐶5 · ⟨�̃� , ∇̃⟩+ 𝐶6 · ⟨𝑉 , ∇̃⟩,

(IV.4)

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐶1 := 𝛽2𝑏𝑡+1 − (1− 𝜉) 𝑏𝑡

𝛿𝑡+1𝛿𝑡+1𝛿𝑡+1
− 𝜇

2
𝛼2

(1−𝛼)2
(1− 𝜉) , 𝐶2 := 𝑏𝑡+1 − (1− 𝜉) 𝑏𝑡

𝛿𝑡+1𝛿𝑡+1𝛿𝑡+1
− 𝜇

2
𝜉 ,

𝐶3 := (1−𝛽)2

𝜇2 𝑏𝑡+1 −∆𝑐 , 𝐶4 := 2(𝛽𝑏𝑡+1 − (1− 𝜉) 𝑏𝑡
𝛿𝑡+1𝛿𝑡+1𝛿𝑡+1

) ,

𝐶5 := 𝛼
1−𝛼

(1− 𝜉)− 2𝛽 1−𝛽
𝜇
𝑏𝑡+1 , 𝐶6 := 𝜉 − 21−𝛽

𝜇
𝑏𝑡+1 .
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Notice the similarity between (IV.4) and (III.18): the only difference is that the 𝐵𝑡’s

in (III.18) are replaced with 𝑏𝑡/𝛿𝑡+1’s here. This difference is precisely attributed to the

definition of valid distortion rate (Definition IV.4). In the derivation of (IV.4), we use

−𝑏𝑡 · 𝑑𝑦𝑡−1(𝑥𝑡, 𝑥*)
2 ≤ − 𝑏𝑡

𝛿𝑡+1
· 𝑑𝑦𝑡(𝑥𝑡, 𝑥*)2, which precisely accounts for the appearance

of 𝑏𝑡/𝛿𝑡+1 instead of 𝑏𝑡.

Having this counterpart (IV.4) of (III.18), the rest of the proof follows identically.

It turns out that due to similarity between (IV.4) and (III.18), the same derivation

holds modulo the appearance of 𝛿𝑡+1 in the denominator of (IV.3).

As before, we can deduce from Theorem IV.2 the suboptimality gap bound (III.26).

Hence, to identify the convergence rate we only need to determine the evolution of {𝜉𝑡}.

We provide an illustrative example below, before moving onto the full accelerated

algorithm in §IV.3.

Illustrative example: constant distortion rate. Assume that 𝜇 is positive, and

consider the simplified case where 𝛿𝑡 ≡ 𝛿 ≥ 1 for all 𝑡 ≥ 0. Under this constant

distortion condition, similarly to recursion (III.24), one can obtain a recursive relation

on {𝜉𝑡}:
𝜉𝑡+1(𝜉𝑡+1 − 2𝜇∆𝑐)

1− 𝜉𝑡+1

=
1

𝛿𝛿𝛿
𝜉2𝑡 . (IV.5)

Analogously to Lemma III.1, we can establish geometric convergence of 𝜉𝑡 to the fixed

point 𝜉(𝛿) of (IV.5) (see Lemma III.2). Solving for 𝜉(𝛿) explicitly, we obtain the

following analog of Corollary III.1:

Corollary IV.1. Assume 𝜇 > 0. If 𝜉0 ≥ 𝜉(𝛿) := 1
2

√︀
(𝛿 − 1)2 + 8𝛿𝜇∆𝑐− 1

2
(𝛿−1), then

the following convergence rate holds: 𝑓(𝑧𝑡)−𝑓(𝑥*) = 𝑂
(︀∏︀𝑡

𝑖=1(1−𝜉(𝛿))
)︀

= 𝑂
(︀

exp(−𝑡 ·

𝜉(𝛿))
)︀
. In particular, setting 𝑐 = 1/𝐿, 𝑓(𝑧𝑡)−𝑓(𝑥*) = 𝑂

(︀
(exp

(︀
− 𝑡

2
{
√︀

(𝛿 − 1)2 + 4𝛿𝜇/𝐿−
𝑡
2
(𝛿 − 1)}

)︀)︀
.

A notable aspect of Corollary IV.1 is that it characterizes a trade-off between the

metric distortion and the convergence rate of the resulting algorithm. This point is

elaborated by the following remark:
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Remark IV.1 (Properties of 𝜉(𝛿)). When there is no distortion, i.e., 𝛿 = 1, then

𝜉(1) =
√

2𝜇∆𝑐 since (IV.5) becomes (III.24). Moreover, one can verify that 𝜉(𝛿) is

(strictly) decreasing in 𝛿, implying that the algorithm’s performance gets worse as the

distortion gets severer (see §III.4.1 for verification). Hence, 𝜉(𝛿) > lim𝛿→∞ 𝜉(𝛿) = 2𝜇∆𝑐

for all 𝛿 > 1, implying that the convergence rate is always strictly better than gradient

descent no matter how severe the distortion is.

The above example already recovers the local acceleration result of [ZS18]. More

specifically, they showed that if 𝑑(𝑥0, 𝑥*) is bounded by 1/20 · 𝜅1/2(𝐿/𝜇)−3/4, then the

distortion is bounded by 𝛿 = 1+1/5 ·(𝐿/𝜇)−1/2; see Appendix F therein. Simplifying 𝜉(𝛿)

for this choice of 𝛿, we obtain the following strengthening of their main result [ZS18,

Theorem 3]:

Corollary IV.2 (Local acceleration). Let 𝛿 = 1 + 1
5
· (𝜇/𝐿)1/2, 𝑐 = 1/𝐿 and 𝜉0 ≥ 𝜉(𝛿).

Then, assuming 𝑑 (𝑥0, 𝑥*) ≤ 1
20
·𝜅1/2(𝜇/𝐿)3/4, we have 𝑓(𝑧𝑡)−𝑓(𝑥*) = 𝑂(exp(− 9

10
𝑡
√︀

𝜇/𝐿)).

In particular, 𝜉𝑡 = 𝜉(𝛿) for all 𝑡 ≥ 0, recovers [ZS18, Algorithm 2].

IV.3 Riemannian Accelerated Gradient Method

Thus far, the analysis assumed existence of valid distortion rates. But the key question

is: are valid distortion rates available to the method? We provide a positive answer

below and therewith propose a new Riemannian accelerated gradient method. For

clarity, we will focus on Riemannian manifolds with globally non-positive sectional

curvatures. In Appendix A.1, we discuss how one can extend our result to positively-

curved manifolds under an appropriate assumption.

IV.3.1 Valid distortion rates and Riemannian accelerated gra-

dient method

We estimate metric distortion by first invoking a classical comparison theorem

of [Rau51].
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Proposition IV.1. Let 𝑥, 𝑦, 𝑧 ∈ 𝑀 , a Riemannian manifold with curvature lower

bounded by −𝜅 < 0. Let 𝑆𝜅(𝑟) :=
(︀ sinh(√𝜅𝑟)√

𝜅𝑟

)︀2; then, we have

𝑑 (𝑦, 𝑧)2 ≤ 𝑆𝜅(max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑧)}) · 𝑑𝑥(𝑦, 𝑧)2.

Proof. A direct consequence of the Rauch comparison theorem; see §IV.4.

Applying Proposition IV.1 to the points 𝑦𝑡−1, 𝑥𝑡, 𝑥*, it is straightforward to

conclude:

𝑑𝑦𝑡(𝑥𝑡, 𝑥*)
(♣)

≤ 𝑑 (𝑥𝑡, 𝑥*)
2

(♠)

≤ 𝑆𝜅(max{𝑑 (𝑦𝑡−1, 𝑥𝑡) , 𝑑 (𝑦𝑡−1, 𝑥*)}) · 𝑑𝑦𝑡−1(𝑥𝑡, 𝑥*)
2 ,

where (♣) is due to Topogonov’s comparison theorem (see e.g., [BBB+01, Section 6.5]);

and (♠) is due to Proposition IV.1. Hence, 𝛿𝑡 = 𝑆𝜅(max{𝑑 (𝑦𝑡−1, 𝑧𝑡) , 𝑑 (𝑦𝑡−1, 𝑥*)}) is a

valid distortion rate. Unfortunately, this distortion rate depends on 𝑑(𝑥𝑡, 𝑥*), which is

in general unavailable to the algorithm. We overcome this crucial issue by developing

a new distortion inequality.

Lemma IV.1 (Improved metric distortion inequality). Let 𝑥, 𝑦, 𝑧 be points on Rie-

mannian manifold 𝑀 with sectional curvatures lower bounded by −𝜅 < 0. Then for

𝑇𝜅 : R≥0 → R≥1 defined as

𝑇𝜅(𝑟) :=

⎧⎪⎨⎪⎩max
{︁

1 + 4
(︀ √

𝜅𝑟
tanh(

√
𝜅𝑟)
− 1
)︀
,
(︀ sinh(2√𝜅·𝑟)

2
√
𝜅·𝑟

)︀2}︁
, if 𝑟 > 0,

1, if 𝑟 = 0,
(IV.6)

the following inequality holds: 𝑑 (𝑦, 𝑧)2 ≤ 𝑇𝜅(𝑑 (𝑥, 𝑦)) · 𝑑𝑥(𝑦, 𝑧)2.

Proof. The proof uses Proposition IV.1 and a Riemannian trigonometric inequality

due to [ZS16, Lemma 6]. See §IV.4 for a formal statement and the proof.

Note that 𝑇𝜅 behaves similarly to 𝑆𝜅. Most importantly, lim𝑟→0+ 𝑇𝜅(𝑟) = 1,

implying that the effect of distortion diminishes as the distance decreases. Hence,

one can essentially regard Lemma IV.1 as a version of Proposition IV.1 in which the

term max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑧)} is replaced with 𝑑 (𝑥, 𝑦). Thanks to Lemma IV.1, now we
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have 𝑇𝜅(𝑑 (𝑦𝑡−1, 𝑥𝑡)) as a valid distortion rate, which is accessible to the algorithm at

iteration 𝑡. Therefore, we propose the following algorithm:

Algorithm IV.1 (Riemannian accelerated gradient method). Input: 𝑥0 = 𝑦0 = 𝑧0 ∈

𝑀 ; constant 𝜉0 > 0; 𝑐 ∈ (0, 2/𝐿); ∆𝑐 := 𝑐(1− 𝐿𝑐/2); integer 𝑇 .

for 𝑡 = 0, 1, 2, . . . , 𝑇 :

Compute the distortion rate 𝛿𝑡+1 := 𝑇𝜅(𝑑 (𝑦𝑡−1, 𝑥𝑡)) as per (IV.6).

Find 𝜉𝑡+1 ∈ [2𝜇∆𝑐, 1) such that 𝜉𝑡+1(𝜉𝑡+1 − 2𝜇∆𝑐)/(1− 𝜉𝑡+1) = 𝜉2𝑡 /𝛿𝑡+1.

Compute 𝛼𝑡 := 𝜉𝑡+1−2𝜇Δ𝑐

1−2𝜇Δ𝑐
and 𝛽𝑡+1 := 1− 2𝜇∆𝑐𝜉

−1
𝑡+1.

Update the next step iterates as per (IV.1).

end for

Remark IV.2 (Innovations relative to previous methods). A noticeable innovation

in Algorithm IV.1 lies in its use of the adaptive metric distortion rate 𝑇𝜅(𝑑 (𝑦𝑡−1, 𝑥𝑡)).

This is in stark contrast with previous approaches [ZS16, ZS18, AOBL20] that use a

global metric distortion rate based on the diameter of the domain. As we shall we in

§IV.3.2, our adaptive metric distortion control is a crucial ingredient for achieving full

acceleration.

Remark IV.3. Note that 𝑇𝜅(𝑑 (𝑦𝑡−1, 𝑥𝑡)) is a worst-case upper bound on the valid

distortion rate, and hence, if additional information on local geometry is accessible,

one can possibly come up with a better estimate and replace 𝑇𝜅(𝑑 (𝑦𝑡−1, 𝑥𝑡)) in

Algorithm IV.1 with the estimate.

IV.3.2 Convergence rate analysis of the proposed method

Having proposed the algorithm, our final task is to analyze its convergence rate. From

Remark IV.1, we know the algorithm achieves a full acceleration when 𝛿𝑡 is close to 1.

Due to the property lim𝑟→0+ 𝑇𝜅(𝑟) = 1, one therefore needs to show that 𝑑 (𝑦𝑡−1, 𝑥𝑡)

is close to 0. Although 𝑑 (𝑦𝑡−1, 𝑥𝑡) = 0 for 𝑡 = 0, one can quickly notice that it is not

true for 𝑡 ≥ 1.

Now one natural follow-up question is whether 𝑑 (𝑦𝑡−1, 𝑥𝑡) shrinks over iterations.

As we have seen in §III.2.2, the convergence of the iterates to the optimal point is a
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direct consequence of our Lyapunov function analysis. Similarly, one can immediately

see that 𝑑𝑦𝑡−1(𝑥𝑡, 𝑥*) → 0. It turns out that from this shrinking projected distance,

one can also deduce 𝑑 (𝑦𝑡−1, 𝑥𝑡)→ 0 under mild conditions:

Lemma IV.2 (Shrinking 𝑑 (𝑦𝑡−1, 𝑥𝑡)). Assume 𝜇 > 0 and let Ψ0 := 𝑓(𝑥0)− 𝑓(𝑥*) +

𝜉20
4Δ𝑐
· 𝑑 (𝑥0, 𝑥*)

2. If 1 < 𝑐𝐿 < 2 − 𝜉𝑡 and 𝜉𝑡 > 2𝜇∆𝑐 hold at iteration 𝑡 ≥ 1, then

Algorithm IV.1 satisfies:

𝑑 (𝑦𝑡−1, 𝑥𝑡) ≤ 𝒞𝜇,𝐿,𝑐
[︀
Ψ0

𝑡−1∏︁
𝑗=1

(1− 𝜉𝑗)
]︀1/2

,

where 𝒞𝜇,𝐿,𝑐 > 0 is a constant depending only on 𝜇, 𝐿, 𝑐.

Proof. See §IV.5.

Note that the assumption 𝑐𝐿 ∈ (1, 2− 𝜉𝑡] can be roughly read as “𝑐𝐿 ∈ (1, 2−
√︀

𝜇/𝐿]”

because Remark IV.1 ensures that 𝜉(𝛿) ≤
√

2𝜇∆𝑐 <
√︀

𝜇/𝐿 for all 𝛿 ≥ 1. More precisely,

since 𝜉𝑡 quickly converges to the fixed point, one can easily ensure 𝜉𝑡 ≤
√︀

𝜇/𝐿 after

few iterations. Formalizing this argument, we finally obtain our main theorem (which

formalizes Theorem IV.1):

Theorem IV.3 (Global acceleration of Algorithm IV.1). Assume 0 < 𝜇 < 𝐿 and

𝑐𝐿 ∈ (1, 2−
√︀

𝜇/𝐿]. Let ∆𝑐 := 𝑐(1− 𝐿𝑐/2) and 𝜆 := 1− 8𝜇Δ𝑐/(5+
√
5) ∈ (0, 1). Then for

any 𝜉0 > 0, Algorithm IV.1 satisfies the following accelerated convergence:

𝑓(𝑧𝑡)− 𝑓(𝑥*) = 𝑂 ((1− 𝜉1)(1− 𝜉2) · · · (1− 𝜉𝑡)) , (IV.7)

where {𝜉𝑡} is a sequence such that (i) 𝜉𝑡 > 2𝜇∆𝑐 ∀𝑡 ≥ 0 and (ii) for all 𝜖 > 0,

|𝜉𝑡 −
√

2𝜇∆𝑐| ≤ 𝜖 whenever 𝑡 = Ω
(︁

log(1/𝜖)
log(1/𝜆)

)︁
, where the constant involved in Ω(·)

depends only on 𝜇, 𝐿, 𝑐, 𝜅.

Proof. (IV.7) is immediate from Theorem IV.2. For the convergence of {𝜉𝑡}, see

§IV.6.

Since ∆𝑐 → 1/(2𝐿) as 𝑐→ 1/𝐿, one can achieve the convergence rate arbitrarily close

to the full acceleration rate by choosing 𝑐 bigger but sufficiently close to 1/𝐿. This

concludes our main results.
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IV.4 Proof of geometric inequalities

This section is devoted to proving Lemma IV.1. The proof requires two ingredients:

Proposition IV.1 and a (Riemannian) trigonometric inequality due to [ZS16, Lemma

6]. We begin with the first key ingredient: Proposition IV.1. Its proof is based on the

following version of the Rauch comparison theorem [Cha06, Theorem IX.2.3]:

Proposition IV.2 (Rauch comparison theorem). Let 𝑀 be a Riemannian manifold

with sectional curvatures lower bounded by −𝜅 < 0. Then, for any 𝑥 ∈ 𝑀 and

𝑢 ∈ 𝑇𝑥𝑀 , the following upper bound on the operator norm of the differential of the

exponential map holds:

‖𝑑(Exp𝑥)𝑢‖op ≤
sinh(

√
𝜅 ‖𝑢‖)√

𝜅 ‖𝑢‖
.

Proof. Let 𝑢0 := 𝑢/ ‖𝑢‖. First, it follows from the definition that the exponential

map is radially isometric, i.e., ‖𝑑(Exp𝑥)𝑢(𝑢0)‖ = 1. Next, due to Rauch comparison

theorem [Cha06, Theorem IX.2.3], for any 𝑣 orthogonal to 𝑢, we have ‖𝑑(Exp𝑥)𝑢(𝑣)‖ ≤
sinh(

√
𝜅‖𝑢‖)√

𝜅‖𝑢‖ ‖𝑣‖. Since any vector in 𝑇𝑢(𝑇𝑥𝑀) can be represented as a linear combination

of 𝑢0 and vectors orthogonal to 𝑢0, the proof follows.

Now, we are ready to prove Proposition IV.1:

Proposition IV.3 (Restatement of Proposition IV.1). Let 𝑥, 𝑦, 𝑧 be points on Rie-

mannian manifold 𝑀 with sectional curvatures lower bounded by −𝜅 < 0. Then, the

following inequality holds:

𝑑 (𝑦, 𝑧) ≤ sinh(
√
𝜅max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑧)})√

𝜅max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑧)}
· 𝑑𝑥(𝑦, 𝑧) .

Proof. To upper bound the distance 𝑑 (𝑦, 𝑧) in terms of the projected distance 𝑑𝑥(𝑦, 𝑧),

consider a path 𝑝 : [0, 1]→ 𝑇𝑥𝑀 defined as 𝑝(𝑡) = (1− 𝑡) · Exp−1
𝑥 (𝑦) + 𝑡 · Exp−1

𝑥 (𝑧).

Then, its image Exp𝑥(𝑝) is a path on 𝑀 connecting 𝑦 to 𝑧. By definition of the distance

on the manifold, 𝑑 (𝑦, 𝑧) is clearly upper bounded by the length of Exp𝑥(𝑝). On the

other hand, using Proposition IV.2, the length of Exp𝑥(𝑝) can be upper bounded as

66



follows (since ‖𝑝′(𝑡)‖ =
⃦⃦

Exp−1
𝑥 (𝑦)− Exp−1

𝑥 (𝑧)
⃦⃦

= 𝑑𝑥(𝑦, 𝑧)):

∫︁ 1

0

⃦⃦⃦⃦
𝑑

𝑑𝑡
Exp𝑥

(︀
𝑝(𝑡)

)︀⃦⃦⃦⃦
𝑑𝑡 ≤

∫︁ 1

0

⃦⃦
𝑑(Exp𝑥)𝑝(𝑡)

⃦⃦
op · ‖𝑝

′(𝑡)‖ 𝑑𝑡

≤ sinh(
√
𝜅max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑧)})√

𝜅max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑧)}
· 𝑑𝑥(𝑦, 𝑧) ,

where the last inequality follows from the fact that ‖𝑝(𝑡)‖ is upper bounded by

max{‖𝑝(0)‖ , ‖𝑝(1)‖} = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑧)}.

We now move on to the second key ingredient, namely a Riemannian trigonometric

inequality:

Proposition IV.4 (Riemannian trigonometric inequality). Let 𝑀 be a Riemannian

manifold with sectional curvatures lower bounded by −𝜅 < 0. Let 𝑥, 𝑦, 𝑧 be the vertices

of a geodesic triangle with the lengths of the opposite side being 𝑎, 𝑏, 𝑐, respectively, and

𝐴 be the angle of the triangle at the vertex 𝑥, then we have the following inequality:

𝑎2 ≤
√
𝜅𝑐

tanh(
√
𝜅𝑐)
· 𝑏2 + 𝑐2 − 2𝑏𝑐 cos𝐴 .

Proof. See [ZS16, §3.1] and [CEMS01, Lemma 3.12].

With these ingredients we now prove Lemma IV.1; we actually prove the following

stronger version.

Lemma IV.1. Let 𝑥, 𝑦, 𝑧 be points on Riemannian manifold 𝑀 with sectional curva-

tures lower bounded by −𝜅 < 0. Define the function ̂︁𝑇𝜅 : R≥0 → R≥1 as

̂︁𝑇𝜅(𝑟) :=

⎧⎪⎪⎨⎪⎪⎩
min𝜖>0 max

{︃
1 + (1 + 𝜖−1)

2
(︁ √

𝜅𝑟
tanh(

√
𝜅𝑟)
− 1
)︁
,

(︂
sinh((1+𝜖)

√
𝜅·𝑟)

(1+𝜖)
√
𝜅·𝑟

)︂2
}︃

if 𝑟 > 0,

1, if 𝑟 = 0.

Then, the following inequality holds: 𝑑 (𝑦, 𝑧)2 ≤̂︁𝑇𝜅(𝑑 (𝑥, 𝑦)) · 𝑑𝑥(𝑦, 𝑧)2.

Note that ̂︁𝑇𝜅(𝑟) ≤ 𝑇𝜅(𝑟) for all 𝑟 ≥ 0 (𝑇𝜅 is equal to choosing 𝜖 = 1 in the definition

of ̂︁𝑇𝜅.) Hence, Lemma IV.1 immediately implies Lemma IV.1.
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Proof. [Proof of Lemma IV.1] Let us fix an arbitrary constant 𝜖 > 0. We will separately

handle two cases: (i) (1 + 𝜖) · 𝑑 (𝑥, 𝑦) < 𝑑 (𝑥, 𝑧); and (ii) (1 + 𝜖) · 𝑑 (𝑥, 𝑦) ≥ 𝑑 (𝑥, 𝑧).

Case (i). Applying Proposition IV.4 to △𝑥𝑦𝑧, and letting 𝜁 :=
√
𝜅𝑑(𝑥,𝑦)

tanh(
√
𝜅𝑑(𝑥,𝑦))

, we obtain:

𝑑 (𝑦, 𝑧)2 ≤ 𝑑 (𝑥, 𝑦)2 + 𝜁 · 𝑑 (𝑥, 𝑧)2 − 2
⟨︀
Exp−1

𝑥 (𝑦) ,Exp−1
𝑥 (𝑧)

⟩︀
= (𝜁 − 1) · 𝑑 (𝑥, 𝑧)2 + 𝑑 (𝑥, 𝑦)2 + 𝑑 (𝑥, 𝑧)2 − 2

⟨︀
Exp−1

𝑥 (𝑦) ,Exp−1
𝑥 (𝑧)

⟩︀
= (𝜁 − 1) · 𝑑 (𝑥, 𝑧)2 + 𝑑𝑥(𝑦, 𝑧)2 ,

where the last line follows from the Euclidean law of cosines. On the other hand, from

the Euclidean triangle inequality (consider the triangle △𝑥𝑦𝑧 in the tangent space

𝑇𝑥𝑀), 𝑑𝑥(𝑦, 𝑧) ≥ (𝑑 (𝑥, 𝑧)− 𝑑 (𝑥, 𝑦)) > 𝜖
1+𝜖
· 𝑑 (𝑥, 𝑧). Hence, combining these two, we

get

𝑑 (𝑦, 𝑧)2 ≤ (𝜁 − 1) · 𝑑 (𝑥, 𝑧)2 + 𝑑𝑥(𝑦, 𝑧)2

≤
(︀
1 + 𝜖−1

)︀2 · (𝜁 − 1) · 𝑑𝑥(𝑦, 𝑧)2 + 𝑑𝑥(𝑦, 𝑧)2

=
[︁
1 +

(︀
1 + 𝜖−1

)︀2 · (𝜁 − 1)
]︁
· 𝑑𝑥(𝑦, 𝑧)2 . (IV.8)

Case (ii). For the case (1 + 𝜖) · 𝑑 (𝑥, 𝑦) ≥ 𝑑 (𝑥, 𝑧), Proposition IV.3 implies:

𝑑 (𝑦, 𝑧)2 ≤
(︂

sinh ((1 + 𝜖)
√
𝜅 · 𝑑 (𝑥, 𝑦))

(1 + 𝜖)
√
𝜅 · 𝑑 (𝑥, 𝑦)

)︂2

· 𝑑𝑥(𝑦, 𝑧)2 . (IV.9)

Therefore, combining (IV.8) and (IV.9), the proof is completed.

IV.5 Proof of shrinking distance lemma

In this section, we prove the distance shrinking lemma (Lemma IV.2). We first analyze

the convergence distances (which is a direct consequence of Theorem IV.2) below.

Proposition IV.5. Let 𝑀 be a Riemannian manifold with sectional curvatures lower

bounded by −𝜅 < 0 and upper bounded by 0. Assume that 𝜇 > 0 and let Ψ0 :=

𝑓(𝑥0)−𝑓(𝑥*)+
𝜉20
4Δ𝑐
·𝑑 (𝑥0, 𝑥*)

2. Then, for 𝑥𝑡, 𝑦𝑡, 𝑧𝑡 (𝑡 ≥ 1) generated by Algorithm IV.1
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the following bounds hold:

1. 𝑑𝑦𝑡−1(𝑥𝑡, 𝑥*) ≤
√︁

Ψ0

∏︀𝑡
𝑗=1(1− 𝜉𝑗) ·

√︁
1

𝜇2Δ𝑐
.

2. 𝑑 (𝑧𝑡, 𝑥*) ≤
√︁

Ψ0

∏︀𝑡
𝑗=1(1− 𝜉𝑗) ·

√︁
2
𝜇
.

3. 𝑑𝑦𝑡−1(𝑧𝑡, 𝑥𝑡) ≤
√︁

Ψ0

∏︀𝑡
𝑗=1(1− 𝜉𝑗) ·

(︁√︁
2
𝜇

+
√︁

1
𝜇2Δ𝑐

)︁
.

Proof. By recursively applying Theorem IV.2, we have the following for any 𝑡 ≥ 1:

𝑓(𝑧𝑡)− 𝑓(𝑥*) +
𝜉2𝑡

4∆𝑐

· 𝑑𝑦𝑡−1(𝑥𝑡, 𝑥*)
2 ≤

𝑡∏︁
𝑗=1

(1− 𝜉𝑗) ·Ψ0 .

Hence, the bound on 𝑑𝑦𝑡−1(𝑥𝑡, 𝑥*) follows immediately due to 𝜉𝑡 ∈ [2𝜇∆𝑐, 1), while

the bound on 𝑑 (𝑧𝑡, 𝑥*) follows from the 𝜇-strong g-convexity of 𝑓 (Definition IV.1),

which implies 𝜇
2
· 𝑑 (𝑧𝑡, 𝑥*)

2 ≤ 𝑓(𝑧𝑡)− 𝑓(𝑥*). Lastly, the bound on 𝑑𝑦𝑡−1(𝑧𝑡, 𝑥𝑡) follows

upon noting that

𝑑𝑦𝑡−1(𝑧𝑡, 𝑥𝑡) ≤ 𝑑𝑦𝑡−1(𝑧𝑡, 𝑥*) + 𝑑𝑦𝑡−1(𝑥𝑡, 𝑥*) ≤ 𝑑 (𝑧𝑡, 𝑥*) + 𝑑𝑦𝑡−1(𝑥𝑡, 𝑥*) , (IV.10)

which is a consequence of the (Euclidean) triangle inequality together with the fact

that the projected distances are shorter than the actual distances (a property of

non-postively curved manifolds; see e.g. [BBB+01, §6.5]).

Proposition IV.5 above establishes that the projected distance 𝑑𝑦𝑡−1(𝑧𝑡, 𝑥𝑡) is

shrinking over iterations. From this, we can also show that 𝑑 (𝑧𝑡, 𝑥𝑡) is shrinking under

mild conditions:

Proposition IV.6. Let Ψ0 := 𝑓(𝑥0)−𝑓(𝑥*)+
𝜉20
4Δ𝑐
·𝑑 (𝑥0, 𝑥*)

2. If 𝑐𝐿 > 1, 𝑐𝐿 ≤ 2−𝜉𝑡+1

and 𝜉𝑡+1 > 2𝜇∆𝑐 hold for 𝑡 ≥ 0, then Algorithm IV.1 satisfies:

𝑑 (𝑧𝑡, 𝑥𝑡) ≤
1− 2𝜇∆𝑐

1− 2𝜇∆𝑐𝜉
−1
𝑡+1

·

⎯⎸⎸⎷Ψ0

𝑡∏︁
𝑗=1

(1− 𝜉𝑗) ·

(︁√︁
2
𝜇

+
√︁

1
𝜇2Δ𝑐

+ 𝐿
𝜇

√︁
2
𝜇

)︁
(𝑐𝐿− 1)(𝑐𝐿− 1 + 2𝜇∆𝑐)

.

Remark IV.4. A careful reader might realize that the appearance of the term

1− 2𝜇∆𝑐𝜉
−1
𝑡+1 in the denominator of the bound could be potentially problematic since
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this term could be arbitrarily small in general when 𝜉𝑡+1 is very close to 2𝜇∆𝑐. However,

as we shall see shortly, this term gets canceled out with the algorithm parameter

𝛽𝑡+1 = 1− 2𝜇∆𝑐𝜉
−1
𝑡+1 (see Algorithm IV.1) when we use Proposition IV.6 to bound the

distance of our interest 𝑑 (𝑦𝑡−1, 𝑥𝑡).

Proof. We first recall the following assumption from the proposition statement:

1 < 𝑐𝐿 < 2− 𝜉𝑡+1 and 𝜉𝑡+1 > 2𝜇∆𝑐. (IV.11)

Let 𝛾𝑡+1 := (1−𝛽𝑡+1)
𝜇

= 2∆𝑐𝜉
−1
𝑡+1. First, from (IV.1b) and (IV.1c) together with the

triangle inequality (also see Figure IV-1),

𝑑𝑦𝑡(𝑧𝑡+1, 𝑥𝑡+1) =
⃦⃦

Exp−1
𝑦𝑡 (𝑧𝑡+1)− Exp−1

𝑦𝑡 (𝑥𝑡+1)
⃦⃦
𝑦𝑡

=
⃦⃦
−𝑐∇𝑓(𝑦𝑡)− 𝛽𝑡+1Exp−1

𝑦𝑡 (𝑥𝑡) + 𝛾𝑡+1∇𝑓(𝑦𝑡)
⃦⃦
𝑦𝑡

≥ 𝛽𝑡+1

⃦⃦
Exp−1

𝑦𝑡 (𝑥𝑡)
⃦⃦
𝑦𝑡
− |𝛾𝑡+1 − 𝑐| · ‖∇𝑓(𝑦𝑡)‖𝑦𝑡

= 𝛽𝑡+1 · 𝑑 (𝑦𝑡, 𝑥𝑡)− |𝛾𝑡+1 − 𝑐| · ‖∇𝑓(𝑦𝑡)‖𝑦𝑡 .

Rearranging the above inequality we have

𝛽𝑡+1 · 𝑑 (𝑦𝑡, 𝑥𝑡) ≤ 𝑑𝑦𝑡(𝑧𝑡+1, 𝑥𝑡+1) + |𝛾𝑡+1 − 𝑐| · ‖∇𝑓(𝑦𝑡)‖𝑦𝑡 . (IV.12)

We first simplify the left hand side with the update rules (IV.1). First, note that

(IV.1a) implies that 𝑦𝑡 lies on the geodesic connecting 𝑧𝑡 and 𝑥𝑡. Therefore, when

representing the iterates on the tangent space 𝑇𝑦𝑡𝑀 , the points Exp−1
𝑦𝑡 (𝑥𝑡), Exp−1

𝑦𝑡 (𝑧𝑡)

and 0 (= Exp−1
𝑦𝑡 (𝑦𝑡)) on the same line as depicted in Figure IV-1. Therefore, it is easy

to see from Figure IV-1 that

𝑑 (𝑦𝑡, 𝑥𝑡) = 𝑑𝑦𝑡(𝑦𝑡, 𝑧𝑡) = (1− 𝛼𝑡)𝑑𝑦𝑡(𝑧𝑡, 𝑥𝑡) = (1− 𝛼𝑡) · 𝑑 (𝑧𝑡, 𝑥𝑡) .
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Substituting this identity to the left hand side of (IV.12), (IV.12) becomes:

𝛽𝑡+1(1− 𝛼𝑡) · 𝑑 (𝑧𝑡, 𝑥𝑡)

≤ 𝑑𝑦𝑡(𝑧𝑡+1, 𝑥𝑡+1) + |𝛾𝑡+1 − 𝑐| · ‖∇𝑓(𝑦𝑡)‖𝑥𝑡+1

(♣)

≤ 𝑑𝑦𝑡(𝑧𝑡+1, 𝑥𝑡+1) + 𝐿|𝛾𝑡+1 − 𝑐| · 𝑑 (𝑦𝑡, 𝑥*)

(♠)
= 𝑑𝑦𝑡(𝑧𝑡+1, 𝑥𝑡+1) + 𝐿(𝛾𝑡+1 − 𝑐) · 𝑑 (𝑦𝑡, 𝑥*)

(♡)

≤ 𝑑𝑦𝑡(𝑧𝑡+1, 𝑥𝑡+1) + 𝐿(𝛾𝑡+1 − 𝑐) · 𝑑 (𝑦𝑡, 𝑧𝑡) + 𝐿(𝛾𝑡+1 − 𝑐) · 𝑑 (𝑧𝑡, 𝑥*) ,

= 𝑑𝑦𝑡(𝑧𝑡+1, 𝑥𝑡+1) + 𝐿𝛼𝑡(𝛾𝑡+1 − 𝑐) · 𝑑 (𝑧𝑡, 𝑥𝑡) + 𝐿(𝛾𝑡+1 − 𝑐) · 𝑑 (𝑧𝑡, 𝑥*) ,

where (♣) follows from the geodesic 𝐿-smoothness of 𝑓 : ‖∇𝑓(𝑦𝑡)‖𝑦𝑡 ≤ 𝐿 · 𝑑 (𝑦𝑡, 𝑥*);

and (♠) is due to the fact that 𝛾𝑡+1 − 𝛾 = 2∆𝑐𝜉
−1
𝑡+1 − 𝑐 = 𝑐𝜉−1

𝑡+1(2 − 𝐿𝑐 − 𝜉𝑡+1) > 0

since 2 − 𝜉𝑡+1 − 𝑐𝐿 > 0 from (IV.11); (♡) follows from the Riemannian triangle

inequality 𝑑 (𝑦𝑡, 𝑥*) ≤ 𝑑 (𝑦𝑡, 𝑧𝑡) + 𝑑 (𝑧𝑡, 𝑥*); and the last line follows from the identity

𝑑 (𝑦𝑡, 𝑧𝑡) = 𝛼𝑡 · 𝑑 (𝑧𝑡, 𝑥𝑡) (see Figure IV-1).

Moving the term 𝐿𝛼𝑡(𝛾𝑡+1 − 𝑐) · 𝑑 (𝑧𝑡, 𝑥𝑡) to the LHS, we then obtain:

[𝛽𝑡+1(1− 𝛼𝑡)− 𝐿𝛼𝑡(𝛾𝑡+1 − 𝑐)] · 𝑑 (𝑧𝑡, 𝑥𝑡)

≤ 𝑑𝑦𝑡(𝑧𝑡+1, 𝑥𝑡+1) + 𝐿(𝛾𝑡+1 − 𝑐) · 𝑑 (𝑧𝑡, 𝑥*) .
(IV.13)

Since we have seen from Proposition IV.5 that the both terms on the right hand side

of (IV.13) are shrinking, one can prove that 𝑑 (𝑧𝑡, 𝑥𝑡) is shrinking as long as one can

guarantee that 𝛽𝑡+1(1− 𝛼𝑡)−𝐿𝛼𝑡+1(𝛾𝑡+1 − 𝑐) > 0. More formally, Proposition IV.6 is

a direct consequence the following two statements:

1. The RHS of (IV.13) is upper bounded by
√︁

Ψ0

∏︀𝑡
𝑗=1(1− 𝜉𝑗)·

(︁√︁
2
𝜇

+
√︁

1
𝜇2Δ𝑐

+ 𝐿
𝜇

√︁
2
𝜇

)︁
.

2. 𝛽𝑡+1(1−𝛼𝑡)−𝐿𝛼𝑡(𝛾𝑡+1− 𝑐) ≥
1−2𝜇Δ𝑐𝜉

−1
𝑡+1

1−2𝜇Δ𝑐
· (𝑐𝐿− 1)(𝑐𝐿− 1 + 2𝜇∆𝑐). Indeed, with

this lower bound one can guarantee that 𝛽𝑡+1(1− 𝛼𝑡)−𝐿𝛼𝑡(𝛾𝑡+1 − 𝑐) is positive

due to (IV.11): 𝑐𝐿 > 1 and 1− 2𝜇∆𝑐𝜉
−1
𝑡+1 > 1− 2𝜇∆𝑐 · (2𝜇∆𝑐)

−1 = 0.

Now let us prove the above two statements. From the third conclusion of Proposi-

tion IV.5, we have 𝑑𝑦𝑡(𝑧𝑡+1, 𝑥𝑡+1) ≤
√︁

Ψ0

∏︀𝑡+1
𝑗=1(1− 𝜉𝑗) ·

(︁√︁
2
𝜇

+
√︁

1
𝜇2Δ𝑐

)︁
. Moreover,
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from the second conclusion of Proposition IV.5, we have:

𝐿(𝛾𝑡+1 − 𝑐) · 𝑑 (𝑧𝑡, 𝑥*) ≤ 𝐿𝛾𝑡+1 · 𝑑 (𝑧𝑡, 𝑥*) ≤ 𝐿𝛾𝑡+1 ·
√︁

Ψ0

∏︀𝑡
𝑗=1(1− 𝜉𝑗) ·

√︁
2
𝜇

≤
√︁

Ψ0

∏︀𝑡
𝑗=1(1− 𝜉𝑗) ·

𝐿
𝜇

√︁
2
𝜇
,

where the last inequality uses 𝐿𝛾𝑡+1 = 2𝐿∆𝑐𝜉
−1
𝑡+1 < 2𝐿∆𝑐(2𝜇∆𝑐)

−1 ≤ 𝐿
𝜇
. Hence, the

first statement follows.

Now, let us prove the second statement. We first recall the parameters in Algo-

rithm IV.1 for reader’s convenience: For ∆𝑐 := 𝑐(1− 𝐿𝑐/2), 𝛼𝑡 = 𝜉𝑡+1−2𝜇Δ𝑐

1−2𝜇Δ𝑐
, 𝛽𝑡+1 =

1 − 2𝜇∆𝑐𝜉
−1
𝑡+1, and we also defined 𝛾𝑡+1 = 2∆𝑐𝜉

−1
𝑡+1 for simplicity. Now substituting

these parameters to the coefficient, we have:

𝛽𝑡+1(1− 𝛼𝑡)− 𝐿𝛼𝑡(𝛾𝑡+1 − 𝑐)

=(1− 2𝜇∆𝑐𝜉
−1
𝑡+1)

1− 𝜉𝑡+1

1− 2𝜇∆𝑐

− 𝐿𝜉𝑡+1 − 2𝜇∆𝑐

1− 2𝜇∆𝑐

(︀
2∆𝑐𝜉

−1
𝑡+1 − 𝑐

)︀
=

1− 2𝜇∆𝑐𝜉
−1
𝑡+1

1− 2𝜇∆𝑐

· [1− 𝜉𝑡+1 − 2𝐿∆𝑐 + 𝑐𝐿𝜉𝑡+1]

Further simplifying the last expression, one obtains the second statement:

𝛽𝑡+1(1− 𝛼𝑡)− 𝐿𝛼𝑡(𝛾𝑡+1 − 𝑐) =
1− 2𝜇∆𝑐𝜉

−1
𝑡+1

1− 2𝜇∆𝑐

·
[︀
(𝑐𝐿− 1)2 + (𝑐𝐿− 1)𝜉𝑡+1

]︀
>

1− 2𝜇∆𝑐𝜉
−1
𝑡+1

1− 2𝜇∆𝑐

·
[︀
(𝑐𝐿− 1)2 + (𝑐𝐿− 1) · 2𝜇∆𝑐

]︀
.

where the last line follows from the facts 𝜉𝑡+1 > 2𝜇∆𝑐 and 𝑐𝐿− 1 > 0.

Now, we are finally ready to provide the formal statement and the proof of

Lemma IV.2:
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Lemma IV.3 (Formal statement of Lemma IV.2). Assume that 𝜇 > 0. Let Ψ0 :=

𝑓(𝑥0) − 𝑓(𝑥*) + 1
4Δ𝑐

𝜉20 · 𝑑 (𝑥0, 𝑥*)
2. If 𝑐𝐿 > 1, 𝑐𝐿 ≤ 2 − 𝜉𝑡+1 and 𝜉𝑡+1 > 2𝜇∆𝑐, then

Algorithm IV.1 satisfies:

𝑑 (𝑦𝑡, 𝑥𝑡+1) ≤ 𝒞𝜇,𝐿,𝑐 ·

⎯⎸⎸⎷Ψ0

𝑡∏︁
𝑗=1

(1− 𝜉𝑗) ,

where 𝒞𝜇,𝐿,𝑐 =

(︁√︁
2
𝜇
+
√︁

1
𝜇2Δ𝑐

+𝐿
𝜇

√︁
2
𝜇

)︁
(2𝐿Δ𝑐+1−2𝜇Δ𝑐)

(𝑐𝐿−1)(𝑐𝐿−1+2𝜇Δ𝑐)
+ 𝐿

𝜇

√︁
2
𝜇
.

Proof. We again recall the parameters in Algorithm IV.1 for reader’s convenience: For

∆𝑐 := 𝑐(1− 𝐿𝑐/2), 𝛼𝑡 = 𝜉𝑡+1−2𝜇Δ𝑐

1−2𝜇Δ𝑐
, 𝛽𝑡+1 = 1− 2𝜇∆𝑐𝜉

−1
𝑡+1, and 𝛾𝑡+1 = 2∆𝑐𝜉

−1
𝑡+1. Now,

one can use the Euclidean triangle inequality on 𝑇𝑦𝑡𝑀 (see Figure IV-1) to obtain:

𝑑 (𝑦𝑡, 𝑥𝑡+1) = 𝑑𝑦𝑡(𝑦𝑡, 𝑥𝑡+1)

≤ 𝛽𝑡+1 · 𝑑 (𝑦𝑡, 𝑥𝑡) + 𝛾𝑡+1 · ‖∇𝑓(𝑦𝑡)‖𝑦𝑡
(♣)

≤ 𝛽𝑡+1 · 𝑑 (𝑦𝑡, 𝑥𝑡) + 𝐿𝛾𝑡+1 · 𝑑 (𝑦𝑡, 𝑥*)

(♠)

≤ 𝛽𝑡+1 · 𝑑 (𝑦𝑡, 𝑥𝑡) + 𝐿𝛾𝑡+1 · 𝑑 (𝑦𝑡, 𝑧𝑡) + 𝐿𝛾𝑡+1 · 𝑑 (𝑧𝑡, 𝑥*)

(♡)
= (𝛽𝑡+1(1− 𝛼𝑡) + 𝐿𝛾𝑡+1𝛼𝑡) · 𝑑 (𝑧𝑡, 𝑥𝑡) + 𝐿𝛾𝑡+1 · 𝑑 (𝑧𝑡, 𝑥*)

(♢)
= (1− 𝜉𝑡+1 + 2𝐿∆𝑐)

1− 2𝜇∆𝑐𝜉
−1
𝑡+1

1− 2𝜇∆𝑐

· 𝑑 (𝑧𝑡, 𝑥𝑡) + 2𝐿∆𝑐𝜉
−1
𝑡+1 · 𝑑 (𝑧𝑡, 𝑥*) ,

where (♣) is due to the geodesic 𝐿-smoothness of 𝑓 , which implies ‖∇𝑓(𝑦𝑡)‖𝑦𝑡 ≤

𝐿 · 𝑑 (𝑦𝑡, 𝑥*); (♠) is due to Riemannian triangle inequality; (♡) is due to (IV.1a) (see

Figure IV-1); and (♢) follows from the choice of parameters in Algorithm IV.1.

Now after we apply Propositions IV.5 and IV.6 to the last upper bound, and

use the fact 𝜉𝑡+1 ∈ [2𝜇∆𝑐, 1) to upper bound 𝜉𝑡+1’s in the resulting upper bound,

Lemma IV.3 readily follows.

IV.6 Proof of main theorem

We first recall the assumptions in the theorem statement for reader’s convenience:
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0 < 𝜇 < 𝐿 and 𝑐𝐿 ∈ (1, 2−
√︀

𝜇/𝐿].

We first demonstrate that regardless of what initial value 𝜉0 > 0 we choose, 𝜉𝑡

becomes less than
√︀
𝜇/𝐿 after a few iterations. Before the demonstration, we denote

by 𝜉𝑡+1 = 𝜏𝑡+1(𝜉𝑡) the recursion {𝜉𝑡} in Algorithm IV.1 follows. In other words, given

𝜉𝑡 > 0, 𝜉𝑡+1 = 𝜏𝑡+1(𝜉𝑡) is defined as the unique 𝜉𝑡+1 > 0 satisfying:

𝜉𝑡+1(𝜉𝑡+1 − 2𝜇∆𝑐)

(1− 𝜉𝑡+1

=
𝜉2𝑡
𝛿𝑡+1

.

Proposition IV.7. If 𝜉0 >
√︀
𝜇/𝐿, then 𝜉𝑡 ≤

√︀
𝜇/𝐿 for all 𝑡 whenever

𝑡 ≥
log
(︀
(𝜉0 −

√
2𝜇∆𝑐)/(

√︀
𝜇/𝐿−

√
2𝜇∆𝑐)

)︀
log
(︁

1/
(︀
1− 8𝜇Δ𝑐

5+
√
5

)︀)︁ . (IV.14)

If 𝜉0 <
√︀

𝜇/𝐿, then 𝜉𝑡 ≤
√︀

𝜇/𝐿 for all 𝑡 ≥ 0.

Proof. At some iteration 𝑡, we consider two cases depending on whether 𝜉𝑡 ≤
√

2𝜇∆𝑐

or not:

1. First, if 𝜉𝑡 ≤
√

2𝜇∆𝑐, then we evidently have 𝜉𝑡′ ≤
√

2𝜇∆𝑐 for all 𝑡′ ≥ 𝑡. This

is due to the fact that the fixed point 𝜉(𝛿𝑡) is always less than
√

2𝜇∆𝑐 together

with Lemma III.2.

2. Next, consider the case 𝜉𝑡 >
√

2𝜇∆𝑐. We may assume that 𝜉𝑡+1 >
√

2𝜇∆𝑐

(otherwise, 𝜉𝑡′ ≤
√

2𝜇∆𝑐 for 𝑡′ ≥ 𝑡 + 1 due to the first case). Then, the mean

value theorem implies:

𝜉𝑡+1 −
√︀

2𝜇∆𝑐 = 𝜏𝑡+1(𝜉𝑡)− 𝜏𝑡+1(𝜏
−1
𝑡+1(

√︀
2𝜇∆𝑐))

(♣)

≤ 1√︀
𝛿𝑡+1

(︃
1− 4

5 +
√

5
· 2𝜇∆𝑐√︀

𝛿𝑡+1

)︃
·
(︁
𝜉𝑡 − 𝜏−1

𝑡+1(
√︀

2𝜇∆𝑐)
)︁

(♠)
<
(︁

1− 4
5+

√
5
· 2𝜇∆𝑐

)︁
·
(︁
𝜉𝑡 −

√︀
2𝜇∆𝑐

)︁
,
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where (♣) is due to Proposition III.1 together with 𝜉𝑡+1 >
√

2𝜇∆𝑐 ⇒ 𝜉𝑡 >

𝜏−1
𝑡+1(
√

2𝜇∆𝑐); (♠) follows since 1√
𝛿
(1− 4

(5+
√
5)
· 2𝜇Δ𝑐√

𝛿
) for 𝛿 ≥ 1 is maximized when

𝛿 = 1 and
√

2𝜇∆𝑐 < 𝜏−1
𝑡+1(
√

2𝜇∆𝑐) due to
√

2𝜇∆𝑐 ≥ 𝜉(𝛿𝑡+1) and Lemma III.2.

Hence, the distance between 𝜉𝑡 and
√

2𝜇∆𝑐 shrinks geometrically.

Combining the two cases, we conclude the proof.

We now study the rate of convergence of {𝜉𝑡}. To that end, we first study the con-

vergence of {𝜉(𝛿𝑡)}. For simplicity, we assume that 𝜉0 ≤
√︀
𝜇/𝐿. By Proposition IV.7,

the arguments below remain true for 𝜉0 >
√︀
𝜇/𝐿 after we replace 𝑡 with 𝑡+ (IV.14).

We first characterize 𝜉(𝛿) near 𝛿 = 1:

Proposition IV.8. Let 𝜉(𝛿) := 1
2

(︁√︀
(𝛿 − 1)2 + 8𝛿𝜇∆𝑐 − (𝛿 − 1)

)︁
for 𝛿 ≥ 1. Then,

0 ≤
√

2𝜇∆𝑐 − 𝜉(𝛿) ≤ 1
2
(𝛿 − 1) for 1 ≤ 𝛿 ≤ 1 + 3/(1 + (4𝜇∆𝑐)

−1).

Proof. For simplicity, let us write 𝛿 = 1+𝑑. Then, 𝜉(1+𝑑) = 1
2

(︁√︀
𝑑2 + 8𝜇∆𝑐(1 + 𝑑)− 𝑑

)︁
.

Using the inequality
√

1 + 𝑟 ≥ 1 + 1
3
𝑟 for 0 ≤ 𝑟 ≤ 3, we get the following as long as

𝑑+ 1
8𝜇Δ𝑐

𝑑2 ≤ 3:

𝜉(1 + 𝑑) ≥
√︀

2𝜇∆𝑐 ·
(︂

1 +
1

3
𝑑+

1

24𝜇∆𝑐

𝑑2
)︂
− 1

2
𝑑

≥
√︀

2𝜇∆𝑐 −
(︂

1

2
−
√

2𝜇∆𝑐

3

)︂
𝑑 .

Now all we need to check is that 𝑑 ≤ 3/(1 + 1
4𝜇Δ𝑐

) implies 𝑑 + 1
8𝜇Δ𝑐

𝑑2 ≤ 3. Indeed,

if 𝑑 ≤ 3/(1 + 1
4𝜇Δ𝑐

), then we have 𝑑 ≤ 3/(1 + 1
4𝜇Δ𝑐

) ≤ 3/(3/2) = 2, and hence

𝑑+ 1
8𝜇Δ𝑐

𝑑2 = 𝑑
(︀
1 + 𝑑

8𝜇Δ𝑐

)︀
≤ 𝑑
(︀
1 + 1

4𝜇Δ𝑐

)︀
≤ 3.

Next, we characterize the behaviour of the function 𝑇𝜅(𝑟) near 𝑟 = 1.

Proposition IV.9. 𝑇𝜅(𝑟) ≤ 1 + 2𝜅𝑟2 for 0 ≤ 𝑟 ≤ 1
2
√
𝜅

.

Proof. Using Taylor expansion, one easily easily verify for 0 ≤ 𝑟 ≤ 1
2
√
𝜅

that

√
𝜅𝑟

tanh(
√
𝜅𝑟)
≤ 1 +

𝜅

2
𝑟2 and

(︂
sinh(2

√
𝜅𝑟)

2
√
𝜅𝑟

)︂2

≤ 1 + 2𝜅𝑟2 .

Hence, from the definition of 𝑇𝜅 (see (IV.6)), we obtain the desired bound on 𝑇𝜅.
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Combining Propositions IV.8 and IV.9, we obtain the following results:

Proposition IV.10.
√

2𝜇∆𝑐 − 𝜉(𝑇𝜅(𝑟)) ≤ 𝜅𝑟2 for 0 ≤ 𝑟 ≤
√︁

3
1+(4𝜇Δ𝑐)−1 · 1

2
√
𝜅
.

Proof. Note that 3
1+(4𝜇Δ𝑐)−1 ≤ 3

1+2𝐿/𝜇
≤ 1, and hence,

√︁
3

1+(4𝜇Δ𝑐)−1 · 1
2
√
𝜅
≤ 1

2
√
𝜅
. Thus,

one can apply Proposition IV.9 for 0 ≤ 𝑟 ≤
√︁

3
1+(4𝜇Δ𝑐)−1 · 1

2
√
𝜅
, and obtain 𝑇𝜅(𝑟) ≤

1+2𝜅𝑟2. Hence, 𝑇𝜅(𝑟) ≤ 1+ 1
2
· 3
1+(4𝜇Δ𝑐)−1 within the range. Hence, by Proposition IV.8,

one then obtains
√

2𝜇∆𝑐 − 𝜉(𝑇𝜅(𝑟)) ≤ 𝜅𝑟2 for 0 ≤ 𝑟 ≤
√︁

3
1+(4𝜇Δ𝑐)−1 · 1

2
√
𝜅
.

Let 𝒟𝜅,𝜇,𝑐 :=
√︁

3
1+(4𝜇Δ𝑐)−1 · 1

2
√
𝜅
. Then by Lemma IV.3, we can deduce that

𝑑 (𝑥𝑡+1, 𝑧𝑡+1) ≤ 𝒟𝜅,𝜇,𝑐 whenever 𝑡 ≥ 2
log(𝒞𝜇,𝐿,𝑐·

√
𝐷0/𝒟𝜅,𝜇,𝑐)

log(1/(1−2𝜇Δ𝑐))
. Therefore, Proposition IV.10

implies that for 𝑡 ≥ 2
log(𝒞𝜇,𝐿,𝑐·

√
𝐷0/𝒟𝜅,𝜇,𝑐)

log(1/(1−2𝜇Δ𝑐)))
, the following bound holds:

√︀
2𝜇∆𝑐 − 𝜉

(︀
𝑇𝜅
(︀
𝑑 (𝑥𝑡+1, 𝑧𝑡+1)

)︀)︀
≤ 𝜅𝒞2𝜇,𝐿,𝑐𝐷0(1− 2𝜇∆𝑐)

𝑡 .

From this bound, it follows that 𝜉
(︀
𝑇𝜅
(︀
𝑑 (𝑥𝑡+1, 𝑧𝑡+1)

)︀)︀
∈ [
√

2𝜇∆𝑐 − 𝜖/2,
√

2𝜇∆𝑐] when-

ever

𝑡 ≥ max

{︂
2

log(𝒞𝜇,𝐿,𝑐 ·
√
𝐷0/𝒟𝜅,𝜇,𝑐)

log(1/(1−2𝜇Δ𝑐)))
,

log(2𝜅𝒞2𝜇,𝐿,𝑐𝐷0/𝜖)

log(1/(1−2𝜇Δ𝑐)))

}︂
.

Now having established the convergence rate of {𝜉(𝛿𝑡)}, we translate it into the

convergence rate of {𝜉𝑡}. Similarly to the proof of Proposition IV.7, one can prove

that for any 𝑇 ≥ 0,

|𝜉𝑇+𝑡 − 𝜉(𝛿𝑇 )| ≤
(︂

1− 8𝜇∆𝑐

5 +
√

5

)︂𝑡

|𝜉𝑇 − 𝜉(𝛿𝑇 )| .

From this, one can conclude that 𝜉𝑡+1 ∈ [
√

2𝜇∆𝑐 − 𝜖,
√

2𝜇∆𝑐] whenever

𝑡 ≥ max

{︂
2

log(𝒞𝜇,𝐿,𝑐 ·
√
𝐷0/𝒟𝜅,𝜇,𝑐)

log(1/(1−2𝜇Δ𝑐)))
,

log(2𝜅𝒞2𝜇,𝐿,𝑐𝐷0/𝜖)

log(1/(1−2𝜇Δ𝑐)))

}︂
+

log(2
√

2𝜇∆𝑐/𝜖)

log
(︁
1/

(︁
1− 8𝜇Δ𝑐

5+
√
5

)︁)︁ ,
concluding the proof of the the convergence rate of {𝜉𝑡} in Theorem IV.3.
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IV.7 Related work for Chapter IV

A few works also seek to develop an accelerated methods on Riemannian manifolds.

The first attempt by Liu et al. [LSC+17] reduces the task to solving nonlinear equa-

tions [LSC+17, (4),(5)]; unfortunately, it is unclear whether these equations are even

feasible or tractably solvable, and hence this attempt has been regarded incomplete.

Subsequently, Zhang and Sra [ZS18] made a concrete progress by proving an acceler-

ated convergence, albeit only locally in a neighborhood whose radius vanishes as the

condition number and the curvature bound grow. They do not characterize how the

algorithm behaves outside such a local neighborhood, in stark contrast with our global

acceleration result. Alimisis et al. [AOBL20] establish a Riemannian analog of the

differential-equation approach to acceleration [SBC16], and they analyze second-order

ODEs on Riemannian manifolds. Then, they employ discretization from the Euclidean

case [BJW18, SDSJ19] to derive first-order methods. But it is unclear whether these

methods achieve acceleration, as such discretization does not directly yield Nesterov’s

method even in the Euclidean case. Moreover, as we discussed in Remark IV.2,

their global control of metric distortion cannot capture full acceleration; one must

control metric distortions locally. Another work by Alimisis et al. [AOBL21] considers

relaxed settings such as geodesically convex costs and weakly-quasiconvex costs and

demonstrates the advantage of their momentum-based algorithm over (plain) gradient

descent.

We also summarize noticeable follow up works to our result after our result

was published [AS20]. Hamilton and Moitra [HM21] investigate a lower bound for

Riemannian acceleration. More specifically, they show that in negatively curved

spaces any first-order methods based on a noisy gradient oracle cannot achieve full

acceleration, even when the noise of oracle is exponentially small. Their finding

suggests that an eventual acceleration like our result might be the best one can hope

for in negatively curved space. Lastly, Martínez-Rubio [MR20] considers the special

case of constant sectional curvature manifolds and develops accelerated methods based

on a nontrivial reduction to an Euclidean optimization problem.
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Chapter V

Conclusion and future directions

In this thesis, we establish the first global Riemannian accelerated gradient method for

geodesically strong convex costs. Our approach is based on the two steps: 1 Revisit

Nesterov’s acceleration in the Euclidean setting and develop a simple derivation and

analysis for it; 2 Extend our approach to the Riemannian setting.

The first part of this thesis (Chapters II and III) addresses 1 by developing a

simple derivation and analysis for Nesterov’s accelerated method based on the proximal

point method. We demonstrate that our approach derives several different forms of

accelerated methods appeared in the literature and provides simple analyses for them.

The second part of this thesis (Chapter IV) then extends our approach to the Rie-

mannian setting. Two important components of the extension are the use of projected

distance for the Lyapunov function and the utilization of metric distortion rate in the

analysis. With these components together with novel geometric inequalities, we prove

that our proposed algorithm is always faster than Riemmanian gradient descent and

quickly achieves the full accelerated convergence rate within a few iterations.

We believe our results mark fundamental progress toward understanding accelera-

tion in non-Euclidean settings. We hope that our work motivates a richer study of

Riemannian acceleration, which will eventually bring our understanding of Riemannian

optimization at par with the Euclidean setting.

We conclude this thesis with future directions. First open question is a “direct”

development of an accelerated method for non-strongly geodesically convex costs. We
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consider strongly geodesically convex costs, i.e., 𝜇 > 0, and our current technique does

not directly apply to the case of 𝜇 = 0. In the Euclidean case, there is a standard

reduction argument from acceleration for strongly convex costs to that for non-strongly

convex costs (see e.g., [GN18, Theorem 4]). However, it turns out this standard

reduction requires additional assumptions, as we discuss in Appendix A.2. Hence,

discovering a direct approach to acceleration for non-strongly convex costs remains

an interesting open question. Note that for the special case of constant sectional

curvature manifolds, a recent work by Martínez-Rubio [MR20] develops an accelerated

method for the non-strongly convex case with the help of line search. However, even

in the constant sectional curvature case, characterizing a tight convergence rate seems

to be open.

Another direction is to consider a different notion of distance than the projected

distance. For our version of Riemannian AGM (IV.1), a suitable notion of distance for

the Lyapunov function is the projected distance (IV.2). This motivates the question

of whether considering a different notion of distance results in a better version of

Riemannian accelerated method than the one considered in this work. More generally,

it is relevant to investigate the proximal point method with different choices of distance

in the Riemannian setting. Based on our findings in the Euclidean case, a better

understanding of Riemannian proximal point method might lead to a better version

of Riemannian accelerated method.
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Appendix A

Appendix

A.1 Extension to positively-curved manifolds

Let us now assume that the sectional curvatures of 𝑀 is upper bounded by 𝜎 ≥ 0.

In particular, the case with 𝜎 = 0 corresponds to the non-positively curved case. We

first pinpoint the main differences: unlike the the non-positively curved case, 𝑀 now

may not be uniquely geodesic. Instead, one can only guarantee the property within

a local neighborhood of 𝑀 . Consequently, the notion of geodesic convexity can be

guaranteed only within a local neighborhood of 𝑀 . For instance, manifolds with

positive sectional curvatures (e.g. spheres) are compact, and hence, they do not admit

globally geodesically convex functions other than the constant functions. Following

the prior arts [DVW15, ZS18], we make the following assumptions to avoid any further

complications:

Assumption A.1. The domain 𝑁 ⊂𝑀 of 𝑓 is uniquely geodesic with the diameter

bounded by 𝜋
2
√
𝜎
.

Assumption A.2 (Bounded iterates assumption). All the iterates of Algorithm IV.1

(whose parameters will be chosen later) remain in 𝑁 .

The analysis for the positively curved case is identical to that for the non-positively

curved case, modulo an additional geometric inequality due to [ZS18]:
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Proposition A.1 ([ZS18, Lemma 7]). Let 𝑥, 𝑦, 𝑧 be points on Riemannian manifold

𝑀 with sectional curvatures upper bounded by 𝜎 ≥ 0. If 𝑑(𝑥, 𝑧) ≤ 𝜋
2
√
𝜎
, then

𝑑𝑥(𝑦, 𝑧)2 ≤ (1 + 2𝜎 · 𝑑 (𝑥, 𝑦)2) · 𝑑 (𝑦, 𝑧)2 .

Applying Proposition A.1 to Lemma IV.1, we obtain the following metric distortion

inequality:

Lemma A.1 (Modification of Lemma IV.1). Let 𝑥, 𝑥′, 𝑦, 𝑧 be points on Riemannian

manifold 𝑀 with sectional curvatures upper and lower bounded by 𝜎 and −𝜅 < 0,

respectively. If 𝑑(𝑥′, 𝑧) ≤ 𝜋
2
√
𝜎
, then for ̂︁𝑇𝜅 : R≥0 → R≥1 defined as in Lemma IV.1, we

have

𝑑𝑥′(𝑦, 𝑧)2 ≤̂︁𝑇𝜅(𝑑 (𝑥, 𝑦)) · (1 + 2𝜎 · 𝑑 (𝑥′, 𝑦)
2
) · 𝑑𝑥(𝑦, 𝑧)2 .

From Lemma A.1, one can conclude that at iteration 𝑡 ≥ 1,

𝑇𝜅(𝑑 (𝑦𝑡−1, 𝑥𝑡)) · (1 + 2𝜎 · 𝑑 (𝑧𝑡, 𝑥𝑡)
2) (A.1)

is a valid distortion rate. Thus, one can use (A.1) in lieu of 𝑇𝜅(𝑑 (𝑦𝑡−1, 𝑥𝑡)) for the

valid distortion rate in Algorithm IV.1. Then, one can invoke Theorem IV.2 with the

chosen valid distortion rate (A.1) to guarantee the Lyapunov decrease. To show that

Algorithm IV.1 with (A.1) eventually achieves full acceleration, the last ingredient

is to show that the distances 𝑑 (𝑦𝑡−1, 𝑥𝑡) and 𝑑 (𝑧𝑡, 𝑥𝑡) shrink over iterations. Indeed,

one can prove that the distances shrink following the arguments in §IV.5. The only

difference is that in proving Proposition IV.5, one now has the following in place of

(IV.10):

𝑑𝑦𝑡−1(𝑧𝑡, 𝑥𝑡) ≤ 𝑑𝑦𝑡−1(𝑧𝑡, 𝑥*) + 𝑑𝑦𝑡−1(𝑥𝑡, 𝑥*) ≤ (1 + 𝜋2/2) · 𝑑 (𝑧𝑡, 𝑥*) + 𝑑𝑦𝑡−1(𝑥𝑡, 𝑥*) ,

(A.2)

where the last inequality is due to Proposition A.1 together with the bounded iterates

assumption (Assumption A.2). Hence the third statement of Proposition IV.5 now
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holds with an additional multiplication constant of 1 + 𝜋2/2. With this modification,

the rest follows in exactly the same manner. We skip the details as they significantly

overlap with the non-positively curved case.

A.2 Proof-of-concept result for the non-strongly geodesi-

cally convex case

In the Euclidean case, it is well-known that one can obtain acceleration guarantees for

the non-strongly convex case from the strongly convex case; see e.g., [GN18, Theorem

4]. In this section, we extend such an argument to the Riemannian setting and use

it to discuss accelerated guarantees for the non-strongly g-convex case. Importantly,

the reduction argument requires an additional assumption that all iterates stay in a

bounded domain and hence does not yield a complete result.

Remark A.1. A recent work by Martínez-Rubio [MR20] also extends the reduction

argument to the Riemannian setting. We refer readers to §3 therein for the details.

We first invoke the following properties of the distance function:

Proposition A.2. Let 𝑀 be a Riemannian manifold with sectional curvatures lower

bounded by −𝜅 < 0. Then, for a fixed 𝑝 ∈𝑀 , the distance function 𝑑(𝑥) := 1
2
𝑑 (𝑥, 𝑝)2 :

𝑀 → R satisfies:

1. 𝑑 is 1-strongly g-convex in the entire 𝑀 with ∇𝑑(𝑥) = −Exp−1
𝑥 (𝑝).

2. For 𝐷 ≥ 0, 𝑑 is geodesically
√
𝜅𝐷

tanh(
√
𝜅𝐷)

-smooth within the domain {𝑢 ∈𝑀 : 𝑑 (𝑢, 𝑝) ≤

𝐷}.

Proof. Let us first verify the strong g-convexity. Let 𝑥, 𝑦 be arbitrary points on 𝑀 .

Then,

𝑑 (𝑦, 𝑝)2 ≥ 𝑑𝑥(𝑦, 𝑝)2 = 𝑑 (𝑥, 𝑝)2 + 𝑑 (𝑥, 𝑦)2 − 2
⟨︀
Exp−1

𝑥 (𝑝) ,Exp−1
𝑥 (𝑦)

⟩︀
𝑥
.
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Using the notation 𝑑(·) and noting that ∇𝑑(𝑥) := −Exp−1
𝑥 (𝑝), we get

𝑑(𝑦) ≥ 𝑑(𝑥) +
⟨︀
∇𝑑(𝑥),Exp−1

𝑥 (𝑦)
⟩︀
𝑥

+
1

2
· 𝑑 (𝑥, 𝑦)2 ,

which is precisely the definition of geodesic 1-strong convexity (see Definition IV.1).

Next, we verify the geodesic smoothness. From the global trigonometry inequality

(Proposition IV.4),

𝑑 (𝑦, 𝑝)2 ≤ 𝑑 (𝑥, 𝑝)2 +

√
𝜅𝑑 (𝑥, 𝑝)

tanh(
√
𝜅𝑑 (𝑥, 𝑝))

· 𝑑 (𝑥, 𝑦)2 − 2
⟨︀
Exp−1

𝑥 (𝑝) ,Exp−1
𝑥 (𝑦)

⟩︀
𝑥
,

which can be rewritten as

𝑑(𝑦) ≤ 𝑑(𝑥) +
⟨︀
∇𝑑(𝑥),Exp−1

𝑥 (𝑦)
⟩︀
𝑥

+

√
𝜅𝑑 (𝑥, 𝑝)

2 tanh(
√
𝜅𝑑 (𝑥, 𝑝))

· 𝑑 (𝑥, 𝑦)2 .

From this, one can deduce geodesic
√
𝜅𝐷

tanh(
√
𝜅𝐷)

-smoothness of 𝑑 (see Definition IV.2).

The next ingredient is the extension of the folklore reduction argument to the

Riemannian case:

Proposition A.3 (Reduction argument). Given an accuracy 𝜖 > 0, a Riemannian

manifold 𝑀 , and a point 𝑥0 ∈ 𝑀 , let 𝜇 > 0 be a constant satisfying 𝜇 ≤ 𝜖/𝑑(𝑥*,𝑥0)
2.

Suppose that 𝑥sol ∈𝑀 is an 𝜖/2-suboptimal solution to minimize
𝑥∈𝑀

(︀
𝑓(𝑥)+𝜇/2·𝑑 (𝑥, 𝑥0)

2 )︀.
Then, 𝑓(𝑥sol)− 𝑓(𝑥*) ≤ 𝜖.

Proof. By the definition of 𝑥sol, we have 𝑓(𝑥sol) ≤ 𝑓(𝑥*) + 𝜇
2
𝑑 (𝑥*, 𝑥0)

2 + 𝜖
2
≤ 𝜖.

Using Propositions A.2 and A.3, Corollary IV.1 can be extended to the non-strongly

𝑔-convex case by perturbing the cost function. More specifically, when 𝑓 is geodesically

𝐿-smooth, then 𝑓 + 𝜇
2
· 𝑑 (𝑥, 𝑥0)

2 is geodesically 𝐿+ 𝜇
√
𝜅𝐷

tanh(
√
𝜅𝐷)

-smooth and 𝜇-strongly

convex within {𝑢 ∈𝑀 : 𝑑 (𝑢, 𝑥0) ≤ 𝐷}. Hence, as long as the algorithm iterates stay

within the bounded domain, one can use the reduction argument to obtain accelerated

rate for non-strongly convex costs:
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Corollary A.1. Let 𝜖 ∈ (0, 1) be an arbitrary accuracy, and 𝑓 be a geodesically

𝐿-smooth function. Assume that there exists 𝐷 > 0 such that

1. 𝜖 < 𝐿
2
· 𝑑 (𝑥*, 𝑥0)

2 · tanh(
√
𝜅𝐷)√

𝜅𝐷
.

2. All iterates of (IV.1) with parameters chosen as per Theorem IV.2 with 𝑐 = 1/𝐿,

𝜇 = 𝜖
𝑑(𝑥*,𝑥0)

2 and 𝛿𝑡 ≡ 𝑆𝜅(2𝐷) =
(︀ sinh(√𝜅2𝐷)√

𝜅2𝐷

)︀2 stay within {𝑢 ∈𝑀 : 𝑑 (𝑢, 𝑥0) ≤

𝐷}.

Then, one can find an 𝜖-suboptimal solution to minimize
𝑥∈𝑀

𝑓(𝑥), within 𝑂
(︀
𝜖−1/2 log(1/𝜖)

)︀
iterations, where the constant involved in 𝑂 (·) depends only on 𝜅,𝐷,𝐿.

Remark A.2. It is important to note that Corollary A.1 is not a complete result

but rather a proof of concept as it assumes that all iterates with a certain parameter

choices stay within a bounded domain. In particular, it would be interesting to see if

such an assumption can be guaranteed following the arguments in §IV.5.

Proof. Let us take 𝜇 = 𝜖/𝑑(𝑥*,𝑥0)
2. Then, Proposition A.3 implies that arbitrary 𝜖/2-

suboptimal solution 𝑥sol ∈ 𝑀 to minimize
𝑥∈𝑀

(︀
𝑓(𝑥) + 𝜇/2 · 𝑑 (𝑥, 𝑥0)

2 )︀ satisfies 𝑓(𝑥sol) −

𝑓(𝑥*) ≤ 𝜖.

On the other hand, note that 𝑓+ 𝜇
2
·𝑑 (𝑥, 𝑥0)

2 is geodesically 𝐿+𝜇
√
𝜅𝐷

tanh(
√
𝜅𝐷)

-smooth

and 𝜇-strongly convex within {𝑢 ∈𝑀 : 𝑑 (𝑢, 𝑥0) ≤ 𝐷}. Hence, by choosing 𝑐𝑡 ≡ 1/𝐿,

we have

∆𝑐 =
1

𝐿

⎛⎝1−
𝐿+ 𝜖

𝑑(𝑥*,𝑥0)
2 ·

√
𝜅𝐷

tanh(
√
𝜅𝐷)

2𝐿

⎞⎠ ≥ 1

𝐿

(︃
1−

𝐿+ 𝐿
2

2𝐿

)︃
=

1

4𝐿
,

where the inequality follows due to the assumption 𝜖 < 𝐿
2
· 𝑑 (𝑥*, 𝑥0)

2 · tanh(
√
𝜅𝐷)√

𝜅𝐷
.

Since all the iterates stay within a subset of diameter 𝐷, Rauch comparison

theorem (Proposition IV.1) implies that the constant distortion condition holds with

𝛿 = 𝑆𝜅(2𝐷). Hence, Corollary IV.1 implies that (IV.1) finds an 𝜖/2-suboptimal
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solution within iterations bounded by

𝑂

⎛⎝(︃√︃(𝛿 − 1)2 + 𝜖 · 𝛿

𝐿𝑑 (𝑥*, 𝑥0)
2 − (𝛿 − 1)

)︃−1

log(2/𝜖)

⎞⎠ ,

which is of 𝑂
(︀
𝜖−1/2 log(1/𝜖)

)︀
.
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