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Abstract

Infectious disease is a persistent and substantial threat to human health, with conse-
quences that include widespread mortality, suffering, and economic disruption. This
thesis presents several algorithmic advances that, when coupled with biotechnologies
for data collection and perturbation, are aimed at understanding infectious disease
and using this knowledge to fight it. First, this thesis develops geometric algorithms
that enable a panoramic understanding of the systems biology of the human immune
system and of infectious pathogens at single-cell resolution. Next, this thesis will
show how state-of-the-art Bayesian machine learning can explore complex biological
spaces to search for new therapies that fight infectious disease. Finally, this thesis
develops neural language models that can predict how pathogens mutate to evade
human immunity, potentially enabling more broadly effective vaccines and therapies.
Taken together, this thesis outlines a highly interdisciplinary, algorithmic approach
to infectious disease research, with broader implications for computation and biology
more generally.
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Chapter 1

Introduction

Ils se croyaient libres et personne ne sera jamais libre

tant qu’il y aura des fléaux.

(They thought they were free and no one will ever be free

as long as there are plagues.)

—Albert Camus, La Peste (1947)

1.1 Overview: Old scourge, new hope

Humans have been dealing with infectious disease for our entire biological history.

Scientific breakthroughs in understanding the biology of infectious disease and the

human immune response has led to antibiotics and vaccines, which have enabled better

control or even the eradication of once formidable diseases like plague, polio, and

smallpox [HSS+19]. Still, infectious disease remains a persistent and global threat. The

leading cause of infectious disease in modern times has been tuberculosis, caused by a

bacterial infection that leads to ~1 million deaths a year [FCP19]. Viral pandemics

including flu, AIDS, and COVID-19 have also collectively claimed many millions of

lives [KWW18, DOPB15].

Part of the reason why infectious disease remains such a difficult challenge is

biological complexity. For example, much is still unknown about how infection with
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the bacteria Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis

disease, progresses from latent disease (in ~90% of infected individuals) to active and

potentially fatal disease [FCP19]. Many pathogens, like influenza virus and HIV, are

constantly evolving to evade immune responses like those induced by vaccines. And

even if all currently known infectious pathogens were eliminated, the emergence of

novel pathogens with unknown biology is always a possibility.

Fortunately, the twenty-first century has seen a rapid growth in biological knowl-

edge and computational advances that can expand this knowledge, driven by two

major recent trends. The first is an exponential increase in the generation of biological

data using new biotechnologies that enable high-throughput, massively-parallel inter-

rogation of biological systems. The second is the increasing sophistication of computer

algorithms that learn patterns from these large biological datasets and translate them

into new insights and predictions. A promise of these two technological revolutions is

that, together, they might lead to new interventions that reduce human suffering due

to infectious disease.

This thesis makes a number of novel algorithmic contributions to infectious disease

research, as well as to computation and biology more broadly. There are two main

motifs that recur throughout this thesis, the first of which is:

Question 1: How do we simplify immense biological complexity?

Understanding the biology of infectious disease involves understanding the host, the

pathogen, and the host-pathogen interactions. Biological systems are combinatorially

complex at multiple levels, from genetic sequence to genetic interactions to multicellular

organization. Biological complexity quickly overwhelms the capacity of an individual

scientist to understand the full picture all at once.

In this thesis, we will see how algorithms can help researchers distill very complex

information into a simpler set of abstractions. This often takes the form of unsupervised

learning algorithms that find shared, common patterns across large biological datasets.

Algorithms can also highlight significant relationships among a large number of

variables, allowing researchers to reason about correlation or causality in a system.
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Furthermore, computers can analyze terabytes of otherwise unintuitive data, like large

corpuses of biological sequences, and thereby complement the human biologist’s ability

to formulate creative, biological hypotheses using a more limited amount of data. This

leads to the second, high-level theme in this thesis:

Question 2: How can algorithms discover new biology?

New biology can come in the form of new knowledge about a fundamental biological

mechanism or a new way to prevent or treat disease. The gold standard in com-

putational biology is when an algorithm makes a prediction about some biological

phenomenon that is then validated by (reproducible) experimentation. For example,

an algorithm can predict that a certain mutation gives rise to a given physical trait,

which can be validated by actually making the mutation in the laboratory. Or, an

algorithm can identify a potential drug for a given disease, which is then advanced

into the clinical trial process.

The goal of this thesis, ultimately, is to design computational models (i.e., models

that exist in silico) that can make predictions that agree with or complement biological

models inside a laboratory test environment (i.e., in vitro) or inside a living organism

(i.e., in vivo). A fundamental reason why in silico models are preferable to in vitro or

in vivo models is that it is much easier to evaluate a computational model (e.g., by

running a program on a compute cluster) than it is to perform the experiment in the

laboratory (e.g., experimenting on laboratory mice or human tissue). An algorithm

that goes beyond a human’s capacity for processing biological information, yields

creative biological insight, and comes with a lower resource cost than traditional

wetlab biology would be a very useful tool for infectious disease research and biology

more broadly.

The challenge for the computer scientist, therefore, is to make the computational

model as good at capturing real biology as the best biological models. This means

that different types of computation will be better suited to different problems, e.g.,

depending on resource constraints or data types. The complexity of biological problems

requires a broad computational toolkit that spans multiple subfields within computer
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science. This thesis likewise reflects the breadth of modeling techniques required to

make advances against complex, real-world problems.

1.2 Thesis organization

This thesis begins with some basic background, then describes our algorithmic contri-

butions to understanding and fighting disease, and then ends with a perspective on

future directions. The computational methods presented throughout the thesis cover a

breadth of topics—from geometric algorithms to quadratic programming to Bayesian

machine learning to neural language models—and are meant to arm a computational

reader with the diverse technical skills required to do biological research, especially

in the complex settings associated with infectious disease. Each chapter describing

algorithmic results can be read somewhat independently of the rest of thesis (though

Chapters 6 and 7 are more closely linked). However, all of the ideas do form a coherent

narrative from the beginning to the end, and reading the thesis this way should

hopefully facilitate better appreciation for some of the higher-level ideas described in

this introduction.

The thesis begins with a chapter providing general background on fundamentals

in both biology and computation that are relevant to this thesis. Biological basics

can be helpful to those coming to this thesis from a more computational background

and include overviews of topics in biochemistry, molecular biology, immunology,

microbiology, and pharmacology. For those coming to this thesis from a more biological

background, we also provide high-level overviews of algorithms, machine learning, and

computational geometry.

We then begin an extended discussion of how to better understand infectious

disease using modern high-throughput biology. In Chapter 3, we discuss a fundamental

problem in these analyses: how do you compare complex patterns across different

experiments and studies? Our proposed solution uses pattern matching techniques

inspired by algorithms from computer vision for panoramic stitching, which we use to

integrate multiple biological datasets. The bulk of this chapter is based on the paper:
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∙ Brian Hie, Bryan Bryson, and Bonnie Berger. “Efficient integration of heteroge-

neous single-cell transcriptomes using Scanorama.” Nature Biotechnology, 37:6

(2019) [HBB19].

Integrating and combining multiple large-scale biological datasets into a single

panorama leads to problems with scalability, so in Chapter 4, we discuss an algorithm

for accelerating data analysis. In particular, we propose a method for downsampling

or “sketching” a dataset such that more redundant information is removed while

preserving biological diversity. We then show how this approach can accelerate

otherwise time-consuming biological analyses. This chapter is based on the paper:

∙ Brian Hie, Hyunghoon Cho, Benjamin DeMeo, Bryan Bryson, and Bonnie Berger.

“Geometric sketching compactly summarizes the single-cell transcriptomic land-

scape.” Cell Systems, 8:6 (2019) [HCD+19].

We then move from a discussion on comparing patterns across experiments to

instead comparing patterns across data modalities in Chapter 5. This work addresses an

increasingly common biological experiment in which multiple data types are measured

for the same biological sample within the same experiment, e.g., simultaneously

measuring the gene expression, protein expression, and spatial localization of a single

cell. We develop a general approach for synthesizing information across biological

data types and modalities, which is based on the paper:

∙ Rohit Singh, Brian Hie, Ashwin Narayan, and Bonnie Berger. “Metric learn-

ing enables synthesis of heterogeneous single-cell modalities.” bioRxiv (2020)

[SHNB20].

To make progress against infectious disease, we ultimately need to translate

knowledge about the disease into tangible ways to control or eradicate the disease.

This thesis therefore pivots from a focus on understanding infectious disease to an

extended discussion on fighting infectious disease, i.e., algorithms that propose new

interventions or aid therapeutic design. In Chapters 6 and 7, we lay out different

algorithmic approaches for drug discovery. Beginning in Chapter 6, we describe the
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drug-target interaction prediction problem and develop an initial approach based on a

neural network, which is described in the paper:

∙ Brian Hie, Hyunghoon Cho, and Bonnie Berger. “Realizing private and practical

pharmacological collaboration.” Science, 362:6417 (2018) [HCB18].

We show that our model achieves state-of-the-art performance while enabling scalability

to millions of training examples, but also highlight some shortcomings especially when

the algorithm is used to make predictions for experimental validation. We therefore

revisit the biomolecular interaction prediction problem in Chapter 7 but with a

different approach that enables a machine learning model to quantify the uncertainty

of its predictions. Using this new approach, we discover a number of novel, potent

biomolecular interactions that include compounds that inhibited the growth of Mtb,

suggesting molecular structures that could be useful for tuberculosis drug development.

These results are based on the paper:

∙ Brian Hie, Bryan Bryson, and Bonnie Berger. “Leveraging uncertainty in

machine learning accelerates biological discovery and design.” Cell Systems, 11:5

(2020) [HBB20].

Even after a therapy has been developed, however, a pathogen can acquire resistance

to the therapy through evolution. In Chapter 8, we therefore discuss how algorithms

might also mitigate this threat as well. We develop a machine learning algorithm for

predicting viral resistance to immune selection, or viral escape. Our approach could

be used to predict resistance before it occurs and therefore design better therapies

and vaccines. These results are based on the papers:

∙ Brian Hie, Ellen Zhong, Bryan Bryson, and Bonnie Berger. “Learning mutational

semantics.” Neural Information Processing Systems (2020) [HZBB20].

∙ Brian Hie, Ellen Zhong, Bonnie Berger, and Bryan Bryson. “Learning the

language of viral evolution and escape.” Science, 371:6526 (2021) [HZBB21].

In the final chapter, we reflect on the overall themes throughout the thesis and lay

out ways these themes can drive further scientific discovery. We discuss ideas that are
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both near-term extensions and remixes of the work done in this thesis as well as ideas

that are longer-term or more general research directions. Throughout the entirety of

the thesis, we hope to convey that computational biology, especially in the context of

infectious disease research, is a highly interdisciplinary and exciting field with much

room for novel contributions.

1.2.1 Computational contributions

This thesis makes a number of contributions to computational biology, algorithms,

and machine learning methods, which are summarized below:

∙ In Chapter 3, we contribute an efficient algorithm for heterogeneous data in-

tegration, implemented with randomized singular value decomposition and

approximate nearest neighbors search, that has empirical performance (in terms

of both speed and accuracy) within the top tier of similar methods according to

a comprehensive, independent benchmark (Section 3.5.6).

∙ In Chapter 4, we develop a novel algorithm for diversity-preserving random

subsampling with near-linear scalability and that can efficiently process datasets

with millions of examples with high dimensionality.

∙ In Chapter 5, we contribute an elegant conceptual model of multimodal data

analysis based on a quadratic programming approach to metric learning.

∙ In Chapter 6, we advance the state-of-the-art in compound-target interaction

prediction and demonstrate scalability that also enables cryptographically secure

neural network training.

∙ In Chapter 7, we demonstrate the value of uncertainty in biological discovery and

are the first to apply Gaussian process regression to the compound-target inter-

action prediction problem, which we validate using multiple rounds of laboratory

experiments and discover novel, high-affinity biomolecular interactions.
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∙ In Chapter 8, we introduce the problem of finding the single-token mutation

to a sequence, constrained by a grammar, that induces the highest semantic

change, which we call a “constrained semantic change search”; we implement

this problem using a novel interpretation of language models that combines both

“grammaticality” and “semantic change”; and we use this problem formulation

to achieve state-of-the-art prediction of viral escape mutations.

1.3 Chapter organization

Each of the main chapters, i.e., Chapters 3 through 8, is organized similarly. The

chapter begins with a high-level overview, followed by a glossary that is meant to

highlight some of the most important concepts of that chapter and provide useful

information and definitions. The glossary is followed by chapter-specific preliminary

information on the greater context of the work described in the chapter (both biological

and computational) and also includes important technical content, e.g., reviews on key

subroutines or concepts leveraged by the algorithm. The glossary and the preliminaries

section are meant to facilitate better appreciation of the contributions in the chapter

but do stand apart somewhat from the main chapter narrative.

Then, each chapter presents the main algorithm, motivates the specific algorithmic

approach, discusses some of the theory and modeling assumptions behind the algorithm,

and then provides empirical benchmarking of the algorithm on simulated and real

data. Each chapter concludes with a special application note, meant to highlight how

the algorithm described in the chapter can be used to discover biological insights in an

infectious disease context. These application notes are chosen to reflect a wide array

of topics within the study of infectious disease and host-pathogen interactions. They

also help root each chapter, which can often involve a lot of theoretical description,

more firmly in the ultimate goal of this thesis, which is to be practically useful to

infectious disease biology.
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1.4 Who is this thesis for?

While I hope this thesis is useful for all readers, when writing this thesis I particularly

had in mind an interested scientist very early in their career, like a first-year graduate

student, who is deciding on their graduate research topic. Or, perhaps, a later-stage

scientist wishing to pivot to a new research direction. This thesis is meant to be a

helpful primer into the current state of the field and will hopefully lead its readers into

academically fertile areas. I do also hope this thesis can inspire others, particularly

those from computational backgrounds, to see that computation can be directed at

improving human lives in a fairly direct way, and that computational biology has

matured to a level where algorithms are beginning to regularly drive substantive

biological discovery.
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Chapter 2

Background

Let’s start at the beginning,

A very good place to start.

—Julie Andrews, “Do-Re-Mi” (1965)

The biology of infectious disease is intimidatingly complex, so any computational work

aimed at understanding and fighting infection will necessarily sit at the intersection of

a host of fields, subfields, disciplines, and philosophies. This thesis is no exception

and its contents move across many areas within biology, especially immunology and

microbiology, as well as within computation, especially machine learning and geometric

algorithms.

The goal of this background chapter is to provide very brief essential knowledge

within the fields fundamental to this thesis to aid readers coming from different areas

of expertise. Each chapter also begins with a section of preliminaries specific to that

chapter. References in each section also point the reader to helpful books and review

articles that offer deeper surveys of the discussed topics. Readers should feel free to

read only the sections they deem relevant, or to skip this chapter entirely.
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2.1 Biology basics

While a full picture of biology is not required to understand this thesis, biological

knowledge should help a reader better appreciate some of the thesis’s results, par-

ticularly in its practical applications. A high-level survey of fundamental biological

knowledge relevant to this thesis is provided here, which may be especially useful for

those coming to this thesis from a computational background.

2.1.1 Biochemistry

Living organisms are sustained by and influence their environments through chemical

processes. The most important element in biochemistry is carbon, which has the

ability to form strong covalent bonds with many atoms including itself, allowing carbon

to form a chemical “backbone” for many molecules. Organic chemistry is the subfield

of chemistry that deals with these carbon-based molecules [RUC+10].

Organic compounds with a low molecular weight are referred to as small molecules.

Small molecules are important in biomedicine because they are often used as drugs

that interfere with normal or disordered biological processes. Carbon can also form

very large molecules, some of which achieve highly complex biological functions:

∙ Nucleic acids are large macromolecules composed of nucleotides that encode the

information of all known life. Deoxyribonucleic acid (DNA) is composed of four

nucleotide bases: adenine, cytosine, guanine, and thymine, commonly known as

“A,” “C,” “G,” and “T,” respectively. Ribonucleic acid (RNA) replaces thymine

with the nucleotide base uracil.

∙ Amino acids are biomolecules that can be combined into a chain called a

polypeptide; a large polypeptide is called a protein. Proteins accomplish a vast

diversity of functions and are critical to more complex forms of life.

∙ Lipids are biomolecules that do not easily dissolve in water and are therefore

used as the main component of cell and viral membranes; they are also used for

energy storage in fat.
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∙ Carbohydrates are biomolecules that play an important role in energy storage

and metabolism. The carbohydrate sugars ribose and deoxyribose form the

molecular backbones of RNA and DNA, respectively.

Biochemistry studies how these molecules are generated and interact in the context

of living organisms [RUC+10]. Biomolecules bind when two or more molecules are

more energetically favorable together than apart. Binding interactions are critical

in biology; for example, a small molecule drug will bind a protein target to inhibit

that protein’s function, or a protein called a transcription factor will bind DNA to

initiate gene expression. We discuss biomolecular binding interactions in the context of

transcription factor binding in Chapter 5, in the context of drug discovery in Chapters

6 and 7, and in the context of antibody neutralization in Chapter 8.

2.1.2 Molecular biology and the central dogma

Molecular biology is based on a central dogma that describes the information flow

observed in all living organisms [RUC+10]. In nearly all life, DNA molecules form a

central repository for all the information required for that organism to maintain life

and to reproduce [WC53]. Subsequences of a DNA molecule called genes encode the

information required to make a protein. The full DNA sequence within an organism

is called the genome.

Information from DNA then flows through an intermediate RNA molecule. A

gene is “transcribed” by copying the subsequence of the DNA molecule into a single

messenger RNA (mRNA) molecule [JM61]. In eukaryotic cells, mRNA molecules must

pass through a membrane separating the nucleus, where DNA is stored, from the

rest of the cell. When passing through the nuclear membrane, subsequences of the

mRNA molecules can be removed in a process called splicing. The totality of mRNA

molecules inside a biological sample is called the transcriptome. Transcriptomics (i.e.,

the study of transcriptomes) makes up the bulk of our discussion in Chapters 3, 4,

and 5.

These mRNA molecules are then “translated” into protein. A part of a cell
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called a ribosome will sequentially read an mRNA sequence in order to biochemically

synthesize a sequence of amino acid residues that eventually becomes a protein. A

key biochemical property of proteins is that the amino acid residue sequence will fold

into a three-dimensional structure, enabling complex biological function. The totality

of protein inside a biological sample is called the proteome.

The information encoded by nucleic acids is referred to as a genotype, whereas

the information corresponding to the structure and function of proteins is referred

to as a phenotype. In its most general form, the central dogma of molecular biology

states that information can flow from nucleic acid to protein (i.e., from genotype to

phenotype), but not back from protein to nucleic acid. Typically, information also

flows only from DNA to RNA, but in rarer instances information encoded as RNA

can be re-encoded as DNA through a process called reverse transcription, which is

a strategy used by some viruses like HIV to encode their genetic material into a

host genome. The information link between genotype and phenotype dictated by the

central dogma is critical to the analytic assumptions in much of this thesis, described

further in Section 3.2.1.

In some settings, gene expression refers to the entire process in which the informa-

tion in a gene goes from DNA to RNA to protein. In this thesis, we use gene expression

to refer to the DNA to RNA transcription step and we use protein expression to refer

to the RNA to protein translation step.

2.1.3 Microbes and pathogens

Microbes are small biological agents that are difficult to see with the naked eye. When

they infect a larger host and cause disease, microbes become pathogenic. The three

most important microbiological pathogens, which we focus on in this thesis, are viruses,

bacteria, and protozoa.
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Viruses

Viruses are efficient replication machines. Their primary job is to enter a host cell,

hijack the cell’s machinery for building proteins and other macromolecules, and create

new copies of the virus that exit the cell and go on to infect other cells. Importantly,

viruses do not have a cellular structure and cannot reproduce without the help of a host

organism. Viruses do have RNA or DNA genomes that are packaged by a protein coat

called a capsid. The viruses that are particularly relevant to this thesis, particularly

to Chapter 8 are “enveloped viruses”: influenza virus, HIV, and coronavirus. These

viruses are surrounded by a lipid membrane envelope (using material taken from the

host cell membrane) with surface proteins embedded in the envelope that are key to

attaching to new host cells [EK01].

A scientific debate concerns whether or not viruses can be classified as living

organisms, since they share many characteristics with organisms accepted as living (e.g.,

they have genes and evolve through natural selection) but lack other characteristics

(e.g., they cannot replicate outside a host, they lack a metabolism, and they do not

have a cellular structure). This thesis holds to the commonly accepted notion that

viruses are not fully “alive,” but we still use terms associated with life for linguistic

convenience (e.g., a drug can “kill” a virus or affect viral “viability”) [RUC+10].

Bacteria

Bacteria are single-celled organisms that are more complex than viruses. While

viruses are typically parasitic, many bacteria have a neutral (commensal) or positive

(symbiotic) benefit on their hosts. Nearly all bacteria can reproduce outside a host via

cell division. Bacteria have DNA genomes and are prokaryotic in that their genomes

are not separated from the rest of the cell by a nuclear membrane; bacterial genes are

therefore translated into mRNA molecules that are then immediately translated into

protein. Bacteria surround their cell membranes with a cell wall that makes it more

difficult for foreign substances, including antibiotic drugs, to enter the cell [RUC+10].

Pathogenic bacteria pose a substantial threat to human health. One bacterial

35



disease we focus on in this thesis in Chapter 7 is tuberculosis, caused by Mycobacterium

tuberculosis (Mtb), which has been the leading cause of infectious disease death in

modern times [FCP19]. Mtb infects cells in the lungs called alveolar macrophages,

where they establish long-lasting infection. While some hosts can control Mtb infection

as part of latent disease, uncontrolled infection leads to active tuberculosis disease,

respiratory failure, and death.

Protozoa

Protozoa are single-celled eukaryotic microbes that can, like bacteria, become pathogenic.

Protozoa reproduce via cell division and establish infection in different human organs

and physiological systems. Eukaryotes differ from bacteria in that their DNA genomes

are encased by a nuclear membrane within the cell itself (most multicellular life,

including plants and animals, consists of eukaryotic cells) [RUC+10].

In Chapter 3, we focus on two important protozoal pathogens. The first is

Toxoplasma gondii, which infects most birds and mammals and causes the disease

toxoplasmosis, which can be deadly for immunocompromised humans [XTR+20].

Toxoplasma has also been shown to have neurological effects, causing reduced fear

in laboratory mice and potentially making them more vulnerable to predation; it

therefore may make sense that Toxoplasma is often found in cat feces [TM17].

The second is Plasmodium, a genus of protozoa that causes the disease malaria,

which continues to be extremely deadly worldwide [HRA+19]. Plasmodium is typically

transmitted between humans via mosquitoes, where it infects red blood cells and

cells in the liver called hepatocytes as part of its reproductive lifecycle. In humans,

the main species of Plasmodium that cause malaria are Plasmodium falciparum and

Plasmodium vivax.

2.1.4 The immune system

Fortunately, the human body has an intricate and mostly effective defense against

potential microbial invaders. This task is nontrivial, as the lungs and the digestive
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system must process gallons of unsterile air, water, and food on a daily basis. The

immune system is composed of a variety of biochemical processes and types of cells

that work in concert to prevent infection.

Innate versus adaptive immunity

The first important distinction in immunology is between innate and adaptive immunity

[MW16]. Innate immunity is a nonspecific defense directed against foreign invasion

in general. Anatomical barriers that prevent pathogens from entering the body, like

skin, are considered a part of innate immunity. Innate immunity also consists of

different types of cells, of which the most important for the purposes of this thesis

are cells called phagocytes. Phagocytes engulf foreign pathogens by extending their

cell membranes to envelop the pathogen, forming a compartment in the cell called

a phagosome; enzymes, acids, and other toxic material is then transported into the

phagosome to kill and digest the pathogen. An important type of phagocyte is the

macrophage, a cell type that is highly efficient at phagocytosis and is present in many

major organs, including the blood, lungs, and brain. The application note in Chapter

4 discusses how we might better understand macrophage function, much of which is

still unknown.

Adaptive immunity builds up a specific immune response against a particular

antigen [MW16]. The first step in adaptive immunity is antigen presentation, in which

cells throughout the body present potentially foreign material to adaptive immune

cells. Foreign material could either be from inside a cell (e.g., following infection) or

from outside a cell (e.g., following phagocytosis). Most of this material is displayed

on the surface of the cell by a complex of proteins called the major histocompatibility

complex (MHC). Then, adaptive immune cells called lymphocytes learn to recognize

foreign material displayed as antigens; an important job of these lymphocytes is to

distinguish foreign material from self, where imperfect classification could lead to

autoimmunity. Once a foreign antigen has been identified, lymphocytes will build up

specific defenses against that antigen and a memory lymphocyte will store information

about that antigen for a prolonged period of time (some memory lasts for a lifetime).
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Different components of adaptive immunity, described below, are interrogated at

multiple points in this thesis, including in Chapters 5 and 8.

Humoral versus cell-mediated immunity

The second important distinction in immunology is between humoral and innate

adaptive immunity [MW16]. Humoral immunity builds up a biomolecular response

to pathogens. The most important component of both humoral immunity is the

generation of antibodies, which are proteins that have a highly variable segment that

is meant to bind diverse antigens. Antibodies are produced by lymphocytes known as

B cells. Each B cell produces a unique antibody sequence; during infection, B cells

that have stronger binding affinity for a foreign antigen are selected for multiplication

by the immune system. Some of these B cells are longer lasting memory B cells that

can persist for years after an infection event. The innate immune system also assists

with humoral immunity by the production of proteins that can enhance antibody

binding; this innate, humoral system is called the complement system. Antibody-based

immunity is an important part of our discussion of viral escape in Chapter 8.

Cell-mediated immunity is driven by lymphocytes called T cells [MW16]. A type of

T cell called the killer T cell will recognize foreign antigens displayed by infected cells

and then kill those infected cells, thereby removing a place for a pathogen to replicate.

Other types of T cells called helper T cells and regulatory T cells do not directly

kill infected cells but coordinate different immunological mechanisms, including the

activation of B cells. Memory T cells, like their B-cell analogs, also persist for a long

period of time after an initial pathogen exposure. We go into more detail into how T

cells sense foreign antigens, a process that is still not completely understood, in the

application note of Chapter 5.

2.1.5 Cell types

Throughout our discussion on the immune system, we have described different cell

types like macrophages, T cells, and B cells. Different cell types accomplishing varied
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functions are present throughout the human body. While some cell type divisions are

clear, e.g., the difference between a T cell and a macrophage, the general definition of

a cell type is still a matter of scientific debate [CRE+17], which readers should keep

in mind as they encounter the term “cell type” throughout this thesis, particularly in

our exploration of algorithms for single-cell biology in Chapters 3, 4, and 5.

A developmental definition of cell type is based on an understanding of how cells

mature, where different developmental processes and chemical stimuli lead to different

“types” or “lineages” of cells. This definition is complicated by our current lack of

insight into the full complexity of cellular development. Mapping these cell lineages

and understanding how they are produced is a major open area of biological research.

A functional understanding of cell type says that cells are defined by the set

of functions they accomplish; for example, red blood cells transport hemoglobin

while neurons conduct electrical signals. This definition is more ambiguous since it

also requires a formal definition of “function” and is complicated by cells that are

traditionally thought to be of the same type but that, on closer inspection, have large

amounts of functional heterogeneity; for example, macrophages can have different

functions beyond phagocytosis depending on tissue and disease context.

A descriptive definition of cell type is similar to the functional definition but with

less definitional ambiguity; here, cell types are defined based on the measurement of

a set of features, and cells that quantitatively share similar features are assigned to

the same cell type. Traditional immunology relies on a descriptive understanding of

cell type by measuring the expression of different proteins on the surface of immune

cells in order to distinguish, e.g., a CD4+ helper T cell from a CD8+ killer T cell.

More modern, high-throughput techniques define cell types similarly, e.g., based on

single-cell gene expression measurements. A shortcoming of this understanding of cell

type is that the set of measured properties may be incomplete, so two cells may appear

to be similar but might profoundly disagree in modalities that are not measured.

All three approaches to cell type—developmental, functional, and descriptive—are

useful in understanding what a cell type is. There is probably not a single neat

definition of cell type given the complexity of biological systems, but some definitional
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clarity may emerge as our understanding of cell biology matures, especially using

modern techniques for profiling millions of cells within a biological system.

2.1.6 Pharmacology

Antivirals and antibiotics

An antiviral is defined broadly as anything that slows or prevents viral infection,

replication, or transmission at a biochemical level. Antibiotics are defined similarly

but for living pathogenic microorganisms like bacteria and protozoa [JCP18]. These

drugs can take the form of small molecules (e.g., that bind to and inhibit a virus’s

replication machinery) or larger biomolecules like proteins (e.g., an artificial antibody

that binds to and neutralizes a virus’s surface protein). A drug cocktail refers to a

mixture of distinct drugs used as a combination therapy [BFW+20]. Examples of

potential new small molecule antibiotics appear in Chapter 7.

Vaccines

Vaccines exploit the long-term memory of adaptive immunity by exposing the immune

system to antigens from a pathogen [HSS+19]. Ideally, adaptive immunity (e.g.,

antigen presentation followed by antibody generation and T-cell-mediated immunity)

should then be triggered against the vaccine antigen(s), including the generation of

longer term memory. In theory, this memory should enable the immune system to

respond quicker to future exposure to that antigen and therefore prevent or mitigate

future disease. The oldest type of vaccine simply involves inoculating a person with a

low dose of the pathogen or a weakened form of the pathogen, but this has the danger

of actually causing disease. Modern approaches to vaccination expose the immune

system to a whole inactivated virus, just the viral protein antigen, or to mRNA

encoding a viral antigen (where the body then manufactures the antigen from the

mRNA); these vaccines also typically include a substance called an adjuvant aimed at

inducing a stronger immune response upon vaccination. We focus on the relationship

between this immunity and viral evolution in Chapter 8.

40



2.2 Computation basics

A substantial amount of computational preliminaries are deferred to the individual

chapters, which may be of more interest to those from computational backgrounds.

However, since we hope this thesis will be useful to disciplines outside of computation,

we include a very high-level overview of the computational ideas that are essential to

this thesis, though we do assume some degree of mathematical maturity.

2.2.1 Algorithms

In computer science, an algorithm is a list of instructions to be performed by a

computer [Knu97, CLRS09]. Computer scientists are often interested in whether an

algorithm is correct, i.e., to what degree it achieves a specified objective, and also how

long an algorithm takes to complete (or whether it terminates at all) and how much

memory it requires. Runtime analysis looks at how much an algorithm’s time depends

on the size of the input data as it asymptotically approaches infinity. For example, if

an algorithm is given a data input of size 𝑁 and the algorithm’s runtime is based on

2𝑁 + 4 operations, the 𝑁 term dominates asymptotically and the runtime is said to

grow linearly with the input size, denoted as a runtime of 𝑂(𝑁). If the algorithm’s

runtime has a quadratic asymptotic dependence on the input size (e.g., a runtime

based on 3𝑁2 + 5𝑁 + 7 operations), then the runtime is 𝑂(𝑁2). If the algorithm’s

runtime is constant and does not depend on the input size, then the runtime is 𝑂(1).

Similar analysis can be performed for memory usage in addition to runtime. We use

this “big-𝑂 notation” throughout the thesis to describe how time and memory usage

of an algorithm grows with the amount of input data.

2.2.2 Machine learning

Supervised learning

Machine learning uses “training data” combined with an objective function to determine

the rules of an algorithm with the goal of making predictions or decisions [Ng, GBC16,
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TCwC+07]. In supervised machine learning, the training data consists a set of samples

where each sample has a set of features (e.g., the pixels in an image) paired with a set

of labels (e.g., whether that image is of a cat or not a cat). A supervised machine

learning algorithm is trained to predict the correct label(s) given a set of features.

Predicting discrete labels is referred to as classification and predicting continuous

labels is referred to as regression. Once trained, this algorithm can then assign labels

to new, unlabeled data (e.g., given a new image, is it a cat or not?). Chapters 6 and 7

perform supervised learning in the context of drug discovery.

Unsupervised learning

An unsupervised learning algorithm only has access to training data where samples

are described by a set of features but there are no labels available to the algorithm.

Instead, the goal of unsupervised learning is to identify structures based on patterns

in the dataset alone. A common unsupervised learning problem is clustering, in which

an algorithm assigns a cluster label to a dataset such that “similar” samples are

assigned to the same cluster. Clustering can help reduce the complexity of further

analysis; rather than reason about millions of datapoints, a data analyst can spend

time reasoning about tens of clusters. Unsupervised structure-finding is a key part of

our discussions on understanding infectious disease, particularly in Chapters 3 and 4.

We also use unsupervised learning to extract data related to viral escape from large

unlabeled protein sequence corpuses in Chapter 8.

Representation learning

While we discussed that samples in a training set are described by a set of features, a

lot of the success of a machine learning algorithm is determined by what these features

are. Anything provided to a machine learning algorithm must be encoded in a way

that is intelligible to a computer; for example, a natural scene can be encoded by

red-green-blue color intensities in a two-dimensional coordinate system, i.e., an image.

A similar encoding must happen for physical objects like an organic small molecule or

a nucleic acid. The computational representation of an entity is called an embedding.
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Representation learning constructs these embeddings based on data [BCV13],

mostly using unsupervised learning approaches. Often, samples will first be encoded

using relatively simpler, human-crafted features that make intuitive sense, e.g., a

tensor of pixel values or a one-hot-encoded sequence matrix. Then, a machine learning

algorithm will use patterns identified across a large training set to learn more general

properties that are encoded into a learned embedding. A common modern technique

for learning these embeddings is to train a neural network “autoencoder” that takes a

sample as input and tries to reconstruct the same sample in its output; internal-layer

outputs of the neural network can be interpreted as a learned embedding. We take

a similar approach to constructing embeddings in Chapter 8. Learned embeddings

can also be used as features in supervised learning, particularly when the embeddings

can be extracted from a large unlabeled dataset and then reused in a supervised

setting with limited labeled data. We rely on this approach, referred to as pretraining

[EBC+10], in our methods in Chapter 7.

Active learning

Standard formulations of supervised and unsupervised learning assume that the

training data is fixed. In active learning, not only does an algorithm make predictions,

but it also interacts with a teacher that provides the algorithm with the labels of

new samples during the training process. Often, queries to the teacher are expensive,

so an active learning algorithm must decide what new samples to query based on

an objective function. The most important consideration of this objective function

is whether to query the teacher about new samples that are more similar or more

different to those in the training data, which is called the exploration/exploitation

trade-off. For example, consider the gold mining problem: given a geographic location,

an algorithm tries to predict how much gold there is at that location. At first, it might

be desirable to explore an entire geography for any signs of gold at all; then, if some

sites yield a small amount of gold, it may make more sense to exploit regions close to

those sites to see if an even greater amount of gold exists nearby. Active learning can

also be applied to searching for biomolecular interactions, as described in Chapter 7.
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2.2.3 Computational geometry

Many data-driven algorithms can be understood through a geometric interpretation

[CLRS09]. A dataset can often be described as points in a geometric space; typically, a

sample that is described by 𝑁 real-valued features can be thought of as a point in R𝑁 .

The most intuitive geometric space is R3, which can be used to describe the everyday

physical space that we inhabit. The similarity of two points can be defined as the

distance in the geometric space between those two points, where distance “metrics”

are discussed in greater detail in Section 3.2.3.

A very common problem in computational geometry is how to efficiently process a

large number of datapoints. Solutions often require recognizing patterns in the data to

make it easier to search for one or more datapoints of interest. A common technique

for doing so is to construct a data structure that organizes the points according to some

property. For example, a data structure could partition the geometric space such that

similar datapoints are grouped together within a partition, enabling locality-based

search.

Another common problem is the “curse of dimensionality” when dealing with very

high-dimensional data [AHK01]. As the number of dimensions increases linearly, the

volume of the space increases exponentially, leading to problems that arise due to

the complexity of the space and sparsity of observed datapoints within that space.

A number of observations help to mitigate problems with high-dimensional datasets.

First, while a dataset can have seemingly high dimension, the dataset could be described

exactly or almost exactly using a much smaller number of “effective” dimensions.

Data from many natural systems often “lie close to a low-dimensional manifold” in

that a given point is often close to only a few other datapoints, so most of the

geometric structure in the dataset can be captured by just considering these nearest-

neighbor relationships [YDDB15]. This manifold assumption underlies dimensionality

reduction, a common technique in computational geometry that attempts to preserve

the “information” in a set of points but in a lower dimensional space.

There are many areas in which machine learning and computational geometry
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intersect. For example, finding nearest neighbors, a geometric task described further in

Section 3.2.4, is used as a subroutine as part of classification or regression in supervised

learning. Or, as another example, unsupervised learning techniques that find axes of

maximum variation can be used to perform dimensionality reduction.
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Chapter 3

Understanding Disease I:

Integration

What dependence maintaines any relation, between that arm which

was lost in Europe, and that legge that was lost in Afrique or Asia,

scores of yeers between? And still, still God knows in what part of

the world every graine of every mans dust lies; and he whispers, he

hisses, he beckens for the bodies of his Saints, and in the twinckling

of an eye, that body that was scattered over all the elements, is

sate down at the right hand of God, in a glorious resurrection.

—John Donne, marriage sermon (1627)

Before fighting an enemy, it helps to understand what the enemy is and how it operates.

In the context of infectious disease, this looks like understanding the biology of the

pathogen and how it infects and interacts with its host. Much of the systems biology

underlying host-pathogen interactions is still unknown, but recent biotechnologies

promise to advance biological knowledge by augmenting the traditional experimental

lifecycle. Traditional biology relies on a set of targeted, reproducible experiments

aimed at supporting or disproving a given expert hypothesis [Bac20, Pop59]. In

contrast, modern biology often first conducts a massive, high-throughput experiment
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that measures many features of many biological samples. Statistical analysis of the

resulting massive, high-dimensional dataset highlights significant phenomena for more

traditional experimental follow-up.

In systems biology, one of the most influential high-throughput technologies of the

past five years is the ability to sequence the mRNAs within a single cell and to do so in

a massively parallel way, producing expression profiles of all genes in the genome across

~103–106 cells in a single experiment [HPN+20]. This technology, called single-cell

RNA-sequencing (scRNA-seq), has enabled researchers to characterize different types

of cells in a biological sample based on their transcriptomes. The scRNA-seq dataset

could then, for example, reveal new cell types or unknown transitional states that

appear during cellular development that can be confirmed using orthogonal, traditional

experiments.

This chapter first provides preliminary background on common computational tasks

in single-cell data analysis and then expands on a fundamental problem: how do you

compare transcriptomes from different datasets? For example, scRNA-seq technologies

that differ in their underlying chemistry could have small yet systematic differences

even when profiling the same tissue, resulting in downstream analysis confounded by

technical biases. This chapter then describes Scanorama1, a computational tool we

developed based on efficient dimensionality reduction and nearest neighbors search

[HBB19]. Scanorama constructs an embedding space in which cells from similar cell

types are close, despite coming from disparate studies or experimental conditions, while

dissimilar cells are kept far apart—a problem termed “integration” [HBB19]. Then, as a

concrete application note, this chapter describes how data integration with Scanorama

highlights unexpected transcriptomic similarities between the lifecycles of two single-

celled eukaryotic pathogens: Toxoplasma gondii, which causes toxoplasmosis disease

and altered neurological behavior, and Plasmodium berghei, which causes malaria in

mice and is a model organism for the study of human malaria [XTR+20].

1Software available at http://scanorama.csail.mit.edu and at https://github.com/
brianhie/scanorama.
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3.1 Glossary

∙ Single-cell RNA-sequencing (scRNA-seq). A technology that measures gene

expression within each of potentially millions of single cells.

∙ scRNA-seq integration. The problem of learning a shared representation across

single cells, separated by confounding variables like experimental batch or

donor-specific differences, such that similar cell types are close in representation

embedding space and disparate cell types are far in embedding space.

∙ Nearest neighbor search. Given a set of points in a geometric space and a new

query point, a nearest neighbor search algorithm will return the closest point in

the set to the query point according to some distance metric.

∙ Mutual nearest neighbors matching. Points 𝑥 in dataset 𝒳 and 𝑦 in dataset 𝒴

are mutual nearest neighbors if 𝑥 is among the closest points in 𝒳 to 𝑦 and if 𝑦

is among the closest points in 𝒴 to 𝑥; when 𝒳 and 𝒴 are single-cell datasets,

mutual nearest neighbors matches help reduce matches involving dataset-specific

cell types.

3.2 Preliminaries

3.2.1 scRNA-seq technologies and preprocessing

Though a deep dive into the biochemistry of scRNA-seq is out of the scope of this thesis,

a few high-level preliminaries into the technology are useful for understanding the

underlying data. RNA-sequencing (RNA-seq) leverages modern technologies referred to

as next generation sequencing (NGS) that allows researchers to read massive amounts

of nucleic acid sequences from a biological sample [HPN+20, ZTB+17]. RNA-seq is

often used to gain insight into the functional state of a biological sample based on which

genes are or are not expressed. Though function is almost completely determined by

proteins, protein expression is more difficult to measure in a high-throughput way, so
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researchers leverage the central dogma to use RNA abundances as an approximation

of protein abundances.

While a typical “bulk” RNA-seq experiment simply measures aggregate RNA in a

biological sample, a scRNA-seq experiment aims to measure the RNA abundances for

each cell in a sample individually. The goal of a scRNA-seq experiment is to produce

a gene expression matrix describing gene abundances per cell. To do so, single cells

from a biological sample (e.g., a bacterial colony or a tissue sample) must first be

physically segregated. The two most popular technologies separate cells into nanoliter

oil droplets or into microwells on a plate [ZTB+17, GWH+17]. Within each droplet

or microwell is a unique RNA sequence, or a “barcode,” that gets attached to each of

the mRNAs within that droplet or microwell. After mRNAs are barcoded, they can

then be sequenced using NGS technologies to yield a set of reads. A read is assigned

to a gene based on its mRNA sequence and is assigned to a cell based on its barcode

sequence. The result is a cell-by-gene matrix where the values are gene expression

abundances that are based on the number of reads that map to a cell-gene pair. We

will denote this matrix as X ∈ R𝑁×𝑀
≥0 where 𝑁 is the number of cells and 𝑀 is the

number of genes.

3.2.2 Standard scRNA-seq data analysis

Single-cell data analysis relies of a number of computational techniques to facilitate

biological interpretation. The high dimensionality of cellular profiles (e.g., ~20K

genes for a human) complicates intuitive interpretation of the data and increases the

computational burden of data analysis. Many dimensionality reduction techniques

combine information across multiple genes into a compact set of features. Many such

techniques are based on matrix decomposition models like principal component analysis

(PCA; finds orthogonal features of maximum variation), independent component

analysis (ICA; finds statistically independent features that best reconstruct the original

data), or nonnegative matrix factorization (NMF; finds features, often interpreted

as gene modules, that combine expression across multiple correlated genes); these

methods are reviewed in the context of genomic data in reference [SOAC+18].
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An important dimensionality reduction problem is visualization, i.e., learning a

two- or three-dimensional embedding of each cell that captures some of the dataset

structure in a more human-intuitive feature space [HPN+20, NBC21]. Visualizations of

scRNA-seq data must then take the form a scatterplot in which each point corresponds

to a single cell, which in many instances results in beautiful, pointillistic displays.

A common visualization approach based on PCA plots cells along the two axes of

maximum variation across cells. Nonlinear algorithms like t-SNE [vdMH08] and UMAP

[MH18], both reviewed in reference [NBC21], aim to preserve “neighborhoods” of locally

proximal datapoints from the original embedding space within the visualization space

while allowing for greater distance distortion if two points are distal in the original

embedding space.

Clustering is used to separate cells into these groups to allow for downstream

comparison between groups, i.e., a clustering algorithm learns a function 𝑓cluster :

R𝑀
≥0 → 𝒞 that maps a gene expression profile x𝑖 to a cluster in 𝒞 , {𝑐1, . . . , 𝑐𝐿}; some

clustering algorithms (e.g., 𝑘-means clustering) leave 𝐿, the number of clusters, as

a user parameter, while others (e.g., Louvain clustering) also try to learn a value

of 𝐿 based on various heuristics. Different clustering algorithms for single-cell data

are reviewed in reference [HPN+20]. Clusters obtained via unsupervised learning

approaches are often interpreted as computationally-defined “cell types,” since cells

within the same cluster have more similar transcriptomes, which approximates more

similar function.

3.2.3 Distance metrics

In reasoning about high-dimensional data, a very useful concept is the notion of a

distance metric. A distance metric is a function 𝑑 defined with respect to some set

𝒳 that takes in two members of the set 𝒳 and outputs a non-negative number, i.e.,

𝑑 : 𝒳 × 𝒳 → [0,∞) and where the following three axioms are satisfied:

1. Identity of indiscernibles: 𝑑(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦.

2. Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).
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3. Triangle inequality: 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦).

The most intuitive distance metric is the three-dimensional Euclidean distance,

which we use to measure physical distance in everyday life. For the Euclidean distance,

𝒳 = R3 and 𝑑(x, y) =
√︁

(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + (𝑥3 − 𝑦3)2, where a point x is a

vector of three coordinates, 𝑥1, 𝑥2, and 𝑥3, and y is defined similarly. A low distance

means two points are close together, and a high distance means two points are far

apart.

In high-dimensional data analysis, a given measurement is often represented by

a vector R𝑀 . While perhaps less intuitive, it is possible to generalize the Euclidean

distance to arbitrary dimensions as

𝑑(x, y) = ‖x− y‖2 ,

(︃
𝑀∑︁

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2

)︃ 1
2

for points x, y ∈ R𝑀 . The Euclidean norm ‖·‖2 is also called the ℓ2 norm. A

generalization of the Euclidean distance takes the form

𝑑(x, y) = ‖x− y‖𝑝 ,

(︃
𝑀∑︁

𝑖=1
|𝑥𝑖 − 𝑦𝑖|𝑝

)︃ 1
𝑝

for 𝑝 ≥ 1. Another widely used distance metric is when 𝑝 = 1, which is called the

Manhattan distance or the ℓ1 norm.

3.2.4 Nearest neighbors search

For the work presented in this chapter, a particularly important algorithmic subroutine

is nearest neighbors search. Given a set 𝒳 of 𝑁 points in R𝑀 , the goal of nearest

neighbors search is to build a data structure that, given any point y ∈ R𝑀 , returns a

point in 𝒳 that is closest to y, i.e., its “nearest neighbor” in 𝒳 , based on a distance

metric 𝑑. In single-cell analysis, 𝑑 is typically induced by the ℓ1 or the ℓ2 norm (i.e.,

the “Manhattan” or the “Euclidean” distance, respectively) and is used to measure

transcriptomic similarity. An extension of this problem is to return the top 𝑘 nearest
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neighbors (instead of the single nearest neighbor neighbor).

Naively, a single nearest neighbor query requires 𝑁 comparisons each considering

𝑀 dimensions, which is often an impractical computational cost. To reduce time,

memory, or both, we can instead use approximate nearest neighbors (ANN) search

where the goal is to return a point x′ ∈ 𝒳 such that 𝑑(x′, y) ≤ 𝑐 · minx∈𝒳 𝑑(x, y)

for some constant 𝑐 ≥ 1; intuitively, the point returned by the ANN algorithm is

similar in its distance to the query point y as the actual nearest neighbor. An

influential approach underlying many ANN search algorithms is to partition R𝑀 to

enable recursive elimination of large portions of the search space [DF08]. ANN search

is reviewed at length in reference [AIR18]. ANN search is critical for nearest neighbor

search in single-cell applications since both 𝑁 and 𝑀 are often very large.

3.3 Toward single-cell panoramics

While individual scRNA-seq experiments can already provide insight into novel cell

states or cellular differentiation trajectories, global efforts like the Human Cell Atlas

are now generating large collections of scRNA-seq datasets that profile cells from

diverse tissues, disease states, or organisms. Assembling large, unified reference

datasets, however, may be compromised by differences due to experimental batch,

sample donor, or experimental technology. Initial attempts at integrating scRNA-seq

studies across multiple experiments assumed that all datasets share at least one cell

type in common [HLMM18] or that the gene expression profiles share largely the same

correlation structure across all datasets [BHS+18]. These methods are therefore prone

to overcorrection, especially when integrating collections of datasets with considerable

differences in cellular composition.

We therefore developed Scanorama, a strategy for efficiently integrating multiple

scRNA-seq datasets, even when they are composed of heterogeneous transcriptional

phenotypes. Our approach is inspired by computer vision algorithms for panorama

stitching that identify images with overlapping content and merge these into a larger

panorama [DOR+15]. Analogously, Scanorama automatically identifies scRNA-seq
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Figure 3-1: Panoramic dataset integration.
(A) A panorama stitching algorithm finds and merges overlapping images to create a larger,
combined image. (B) A similar strategy can also be used to merge heterogeneous scRNA-seq
datasets.

datasets containing cells with similar transcriptional profiles and can leverage those

matches for batch-correction and integration, without also merging datasets that do

not overlap (Figure 3-1). Scanorama is robust to different dataset sizes and sources,

preserves dataset-specific populations, and does not require that all datasets share at

least one cell population.

Our approach generalizes mutual nearest neighbors matching, a technique which

finds similar elements between two datasets, to instead find similar elements among

many datasets. Originally developed for pattern matching in images [DOR+15],

finding mutual nearest neighbors has also been used to identify common cell types

between two scRNA-seq datasets at a time [HLMM18]. However, to align more than

two datasets, existing methods [BHS+18, HLMM18] select one dataset as a reference

and successively integrate all other datasets into the reference, one at a time, which

may lead to suboptimal results depending on the order in which the datasets are

considered (Figure A-1). Although Scanorama takes a similar approach when aligning

a collection of two datasets, on larger collections of data, it is insensitive to order

and less vulnerable to overcorrection, because it finds matches between all pairs of
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datasets.

To optimize the process of searching for matching cells among all datasets, we

introduce two key procedures. Instead of performing the nearest neighbor search in

the high-dimensional gene space, we compress the gene expression profiles of each

cell into a low-dimensional embedding using an efficient, randomized singular value

decomposition (SVD) [HMT11] of the cell-by-gene expression matrix, which also helps

improve the method’s robustness to noise. Additionally, we use an approximate

nearest neighbor search based on hyperplane locality sensitive hashing [Cha02] and

random projection trees [DF08] to greatly reduce the nearest neighbor query time

both asymptotically and in practice. We describe these procedures in greater detail in

the algorithm overview in the next section.

3.4 Scanorama: Algorithm details

3.4.1 Preprocessing and dimensionality reduction

We are given a collection of single-cell RNA-seq (scRNA-seq) datasets𝒟 , {D1, . . . , D𝑑}.

Each dataset D𝑖 is represented by a gene expression matrix X𝑖 ∈ R𝑁𝑖×𝑀𝑖
≥0 and a set of

genes 𝒢𝑖 where |𝒢𝑖| = 𝑀𝑖 and 𝑁𝑖 is the number of cells in D𝑖, where 𝑖 ∈ [𝑑]. Our goal is

to identify datasets with similar cell types and optionally apply a batch correction that

removes confounding differences in expression between these datasets. The expression

values can either be relative expression values (e.g., RPKM or TPM) or absolute

transcript counts (e.g., DGE from UMI experiments).

We merge the expression values into a matrix X ,
[︂
XT

1 · · · XT
𝑑

]︂T
∈ R𝑁×𝑀

≥0

where 𝑁 = 𝑁1 + · · · + 𝑁𝑑 and 𝑀 = |𝒢1 ∩ · · · ∩ 𝒢𝑑|. For scale-invariant comparison

between cells, we normalize the expression profiles of each cell to have a unit ℓ2 norm,

i.e.,

X𝑖,: ,
X𝑖,:

‖X𝑖,:‖2

for all 𝑖 ∈ [𝑁 ]. We reduce the dimensionality of the search space for our nearest

neighbors queries by computing the SVD X = UΣVT to obtain the lower dimensional
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matrix X̃ ≈ U:,1:𝜅Σ1:𝜅,1:𝜅 where X̃ ∈ R𝑁×𝜅. We choose 𝜅 = 100 in our experiments

as a conservative cutoff that preserves most of the variation in the data.

Since taking the full SVD is impractical for large values of 𝑀 and 𝑁 , we use a

randomized SVD [HMT11] that only requires a constant number of linear passes,

including a constant number of power iterations to improve approximation accuracy,

over the full dataset of size 𝑂(𝑁𝑀). Our experiments use only 2 power iterations to

obtain the 𝜅+𝛿 most dominant components of the SVD, where 𝛿 is a small oversampling

parameter also designed to improve the approximation accuracy, which we set to 2

in our experiments. We note that randomized SVD is generally insensitive to these

parameters and is very accurate, with regard to the spectral norm approximation

error, even after one power iteration and no oversampling [HMT11]. As a result, we

obtain dataset-specific matrices with gene expression profiles all in a common low

dimensional space, from which we obtain X̃1, . . . , X̃𝑑 where X̃ ,
[︂
X̃T

1 · · · X̃T
𝑑

]︂T
.

3.4.2 Mutual nearest neighbors search and matching

We identify datasets with shared functional patterns using a “mutual nearest neighbors”

strategy originally developed for pattern matching in images, which has been shown

to be robust to outliers and even nonlinear geometric distortions [DOR+15]. Mutual

nearest neighbors matching has also been successful at aligning two biologically similar

datasets from different batches [HLMM18], but we newly generalize this strategy to a

large collection of biologically diverse datasets by searching for the nearest neighbors

of the cells in one dataset among the cells in the remaining datasets.

More specifically, let X̃𝑖 denote the low rank-approximated expression matrix of

dataset D𝑖 and let X̃∖𝑖 ,
[︂
· · · X̃T

𝑖−1 X̃T
𝑖+1 · · ·

]︂T
be the expression matrix produced

by the concatenation of all other expression matrices. We search for the nearest

neighbors of cells in D𝑖 (corresponding to the rows in X̃𝑖) among the cells in 𝒟 ∖ {D𝑖}

(corresponding to the rows of X̃∖𝑖 by invoking the procedure

𝒩𝑖 , NearestNeighbors(X̃𝑖, X̃∖𝑖, 𝑘)
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where 𝒩𝑖 is a set of directed links (x𝑖, x𝑗) such that x𝑖 ∈ X𝑖, x𝑗 ∈ X𝑗, 𝑗 ̸= 𝑖, and x𝑗

is a 𝑘-nearest neighbor of x𝑖, i.e., |y′ ∈ X𝑗,∀𝑗 ̸= 𝑖 : |x𝑖 − y′‖ < ‖x𝑖 − y‖| < 𝑘. We set

𝑘 to a default value of 20 in our experiments as a balance between robustness to noise

and overly permissive matching.

We repeat this procedure for each D𝑖 ∈ 𝒟, obtaining sets of nearest neighbor links

𝒩1, . . . ,𝒩𝑑. We then match cells between two datasets iff they were mutually linked

in the above procedure, i.e., we match x𝑖 with x𝑗 iff (x𝑖, x𝑗) ∈ 𝒩𝑖 and (x𝑗, x𝑖) ∈ 𝒩𝑗,

where we denote such a matching {x𝑖, x𝑗} and the set of all matchings between datasets

D𝑖 and D𝑗 (where 𝑖 ̸= 𝑗) as

ℳ𝑖𝑗 =ℳ𝑗𝑖 = {{x𝑖, x𝑗} : (x𝑖, x𝑗) ∈ 𝒩𝑖 ∧ (x𝑗, x𝑖) ∈ 𝒩𝑗}

noting the symmetry in these matching sets. While computing the value of ℳ𝑖𝑗

would naively take time in 𝑂(𝑘2𝑁𝑖𝑁𝑗), we apply hashing to query for the presence of

a pair of cells in 𝒩𝑖 and 𝒩𝑗 in constant time, reducing the time to compute ℳ𝑖𝑗 to

𝑂(𝑘 min{𝑁𝑖, 𝑁𝑗}), which we do for 𝑂(𝑑2) possible matchings.

Since nearest neighbor queries are naively exponential in the size of the dimension,

we improve the efficiency of our algorithm with an approximate nearest neighbors

search that combines hyperplane locality sensitive hashing (LSH) [Cha02] and random

projection trees [DF08]. The algorithm builds a search index over a reference dataset by

randomly choosing two points in the reference and bisecting them with a hyperplane;

doing this recursively on divided subsets of points forms a tree with a random

hyperplane at each node, where multiple random trees can be constructed to increase

the accuracy of a given query. Increasing the number of trees (which we set to 10)

or increasing the search radius (which we set to 200 points) further decreases the

approximation error. We make 𝑂(𝑁) such queries over the entire alignment procedure.

After matching cells between datasets, we put two datasets in the same panorama

iff at least one of them has a large percentage of matched cells; specifically, we put D𝑖
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and D𝑗 in the same panorama iff

𝑟𝑖𝑗 , max
{︃

𝑁match
𝑖

𝑁𝑖

,
𝑁match

𝑗

𝑁𝑗

}︃
≥ 𝛼,

where 𝑁match
𝑖 , |{x𝑖 : x𝑖 ∈ X𝑖, x𝑖 ∈ ℳ𝑖𝑗}| and 𝑁match

𝑗 , |{x𝑗 : x𝑗 ∈ X𝑗, x𝑗 ∈ ℳ𝑖𝑗}|

and where we set 𝛼 to a nominal value of 10% based on observations of alignment

scores across a large number of experiments and datasets. We note that 𝛼 can be

varied to be stricter or more permissive when merging panoramas. It may also be

possible to learn a value of 𝛼 from the data if some datasets are known to be similar or

disparate. Once datasets have been matched, panoramas are formed by the connected

components of the graph where each node is a dataset and an edge between two

dataset nodes exists iff the 𝑟𝑖𝑗 alignment score threshold is met.

3.4.3 Panorama merging and batch correction

Once we identify panoramas, our method can optionally perform batch correction

of the gene expression values using the cell matchings to guide the correction by

using matched cell types to merge datasets together. Our merging procedure builds

upon the technique in reference [HLMM18] that computes a set of Gaussian-smoothed

translation vectors that can be added to expression values of one of the datasets that

“corrects” for the difference between them.

More specifically, given two datasets D𝑖 and D𝑗 and a set of matchings ℳ𝑖𝑗, we

denote the expression values as Xmatch
𝑖 ∈ R|ℳ𝑖𝑗 |×𝑀

≥0 and Xmatch
𝑗 ∈ R|ℳ𝑖𝑗 |×𝑀

≥0 where the

rows of Xmatch
𝑖 and Xmatch

𝑗 correspond to pairs of cells in ℳ𝑖𝑗. The matching vectors

are therefore the rows of Xmatch
𝑗 −Xmatch

𝑖 . Let D𝑖 be the dataset for which we want

to correct expression values. We compute weights between the cells in D𝑖 and the

matched cells in D𝑖 as

[Γ𝑖]𝑎𝑏 , exp
{︂
−𝜎

2 ‖[X𝑖]𝑎,: − [Xmatch
𝑖 ]𝑏,:‖2

2

}︂

where [·]𝑎𝑏 indicates the element in the 𝑎th row and 𝑏th column of a matrix, [·]𝑎:
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indicates the 𝑎th row of a matrix, and Γ𝑖 ∈ R𝑁𝑖×|ℳ𝑖𝑗 | is a matrix of weights given by a

Gaussian kernel function parameterized by 𝜎, which we set to a nominal default value

of 15, although we find our algorithm to be generally insensitive to this parameter.

Finally, we construct the translation vectors as an average of the matching vectors

with Gaussian-smoothed weights, where

v𝑎 ,
[Γ𝑖]𝑎,:(Xmatch

𝑗 −Xmatch
𝑖 ))

(∑︀𝑏∈[|ℳ𝑖𝑗 |][Γ𝑖]𝑎,𝑏

and [X′
𝑖]𝑎,: , [X𝑖]𝑎,: + 𝑣𝑎

for all 𝑎 ∈ [𝑁𝑖]. The X′
𝑖 matrices are then returned by the algorithm as the corrected

data.

Intuitively, the translation vector v𝑎 for a cell 𝑎 in D𝑖 is computed as a linear

combination of the matching vectors where the Gaussian kernel upweights the matching

vectors closest to 𝑎. In addition to the batch correction described above, Scanorama

also integrates the low dimensional embeddings in X̃ using the exact same procedure

based on the same sets of matched cells ℳ𝑖𝑗 (but where we substitute X̃match
𝑖 for

Xmatch
𝑖 ).

Rather than hold the entire Γ𝑖 matrix in memory, Scanorama can instead calculate

the matching vectors v𝑎 in a batched fashion that reduces a key memory bottleneck

when aligning very large datasets. Scanorama can split up the matching matrix Xmatch
𝑖

into batches of size 𝐵 so that the new weight matrix has dimension 𝑁𝑖 × 𝐵. The

numerator and denominator of the v𝑎 weighted average computation are accumulatively

summed after each batch and the final normalization takes place only after all batches

have been processed. The resulting matching vectors are equivalent in the full and the

batched settings. We turn off the batched implementation of the matching vectors by

default, but set 𝐵 to 10,000 in our million-cell dataset experiment.

Each merge requires 𝑂(𝑀𝑖𝑁𝑖|ℳ𝑖𝑗|) computation and is therefore the most com-

putationally expensive portion of our procedure. This runtime could be reduced

by limiting the number of batch corrected genes, i.e., 𝑀𝑖, to a constant number of

highly variable genes or by down-sampling to lower the number of matching vectors

involved, i.e., |ℳ𝑖𝑗|. In our experiments, we use all matching vectors, apply batch
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correction to the top 10,000 most highly variable genes according to their dispersion

(mean-to-variance ratio), and use a vectorized implementation that takes advantage of

system parallelism, where we distribute our computation across 10 cores.

Once we have this merging procedure, we can use it to build up a set of panoramas

by considering pairs of datasets D𝑖 and D𝑗 in decreasing order of the 𝑟𝑖𝑗 alignment

scores. The first D𝑖 and D𝑗 are merged together to initialize a panorama and successive

pairs are considered. If a successive D𝑖 and D𝑗 are not in any panorama, they are

merged and placed in a new panorama. If D𝑖 is in a panorama but D𝑗 is not, then

D𝑗 is merged into D𝑖’s panorama, or vice versa. If both D𝑖 and D𝑗 are already in

panoramas, then their matchings ℳ𝑖𝑗 are used to merge D𝑖’s panorama with D𝑗’s

panorama (this occurs even if D𝑖’s panorama is the same as D𝑗’s panorama). This

continues until all pairs of aligned datasets have been considered, after which we

terminate and return the batch corrected datasets D1, . . . , D𝑑.

3.5 Empirical performance of Scanorama

The bulk of our evaluation of the Scanorama algorithm leverages empirical benchmarks

on real scRNA-seq datasets. We compare Scanorama to its preceding integration

algorithms, Seurat CCA and scran MNN, as well as to unintegrated data. We compare

both the ability for Scanorama to integrate similar cell types across studies while

preserving biological differences; we also compare runtime and memory usage to the

preceding algorithms. We also reference an independent, comprehensive benchmarking

study [LBC+20] that compared Scanorama to nine other integration methods (many

which appeared after the publication of Scanorama) across seven diverse datasets. In

all cases, we demonstrate strong empirical performance, which is described in the

remainder of this section.

3.5.1 Simulations and toy datasets

To verify the merit of our approach, we first tested Scanorama on simulated data and

a small collection of scRNA-seq datasets. We simulated three datasets with four cell
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Figure 3-2: Scanorama does not depend on integration order.
(A) We apply Scanorama to a collection of three datasets: one entirely of Jurkat cells, one
entirely of 293T cells and a 50/50 mixture of Jurkat and 293T cells. (B) Our method
correctly identifies Jurkat cells (orange) and 293T cells (blue) as two separate clusters. (C,
D) Existing methods for scRNA-seq dataset integration are sensitive to the order in which
they consider datasets (Figure A-1) and can incorrectly merge disparate cell types.

types in total but where the first and third datasets had no cell types in common

(Figure A-2A,E). We also obtained three previously-generated real datasets: one of

293T cells, one of Jurkat cells, and one with a 50:50 mixture of 293T and Jurkat cells

(Figure 3-2A).

In both cases, we were able to merge common cell types across datasets (Figure

3-2B; Figure A-2B,F) without also merging disparate cell types together. In contrast,

existing integration methods are either sensitive to the order in which datasets are

considered or are highly prone to overcorrection (Figure 3-2C,D; Figure A-2C,D,G,H).

Scanorama’s improved performance on the simulated datasets and the real 293T/Jurkat

collection, while relatively idealized or simple cases, led us to consider if we could also

achieve improved performance on larger and more complex collections of scRNA-seq

datasets.

3.5.2 105,476 cells across 26 diverse datasets

We then sought to demonstrate the ability of Scanorama to assemble a larger and

more diverse set of cell types. In total, we ran our pipeline on 26 scRNA-seq datasets

representing nine different technologies and containing a total of 105,476 cells (Figure

3-3A and Table A.1), each dataset coming from a different scRNA-seq experiment

from a total of 11 different studies. Scanorama identifies datasets with the same cell
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Figure 3-3: Panoramic integration of 26 heterogeneous single-cell datasets.
(A) t-SNE visualization of 105,476 cells after batch correction by our method, with cells
clustering by cell type instead of by batch. (B, C) Other methods for scRNA-seq dataset
integration are not designed for heterogeneous dataset integration and therefore naively
merge all datasets into a single large cluster (Figure A-9). (D, E) Scanorama efficiently
integrates 105,476 cells across 26 datasets in less than 6 min and in under 12 GB of RAM.
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types and merges them together such that they cluster by cell type instead of by

experimental batch (Figures 3-3A,B,C and A-3). In contrast with existing methods,

our algorithm does not merge disparate cell types together (Figure 3-3B,C) and

identifies a “negative control” dataset of mouse neurons as distinct from the cell types

of all other datasets (Figure 3-3A).

One of the panoramas identified by Scanorama consists of two datasets of hematopoi-

etic stem cells (HSCs) [PAG+15, NHP+16] which, once corrected for batch effects

and plotted along the first two principal components, reconstruct the expected HSC

differentiation hierarchy (Figure A-4). We also observe cell type-specific clusters

within panoramas of pancreatic islet cells (Figures A-5 and A-6) and peripheral blood

mononuclear cells (Figure A-7) [ZTB+17] but now have greater power to detect rare

cell populations. For example, in the pancreatic islet panorama, we observe a cluster of

cells consistent with a previously-reported rare subpopulation of pancreatic beta cells

marked by increased expression of endoplasmic reticulum (ER) stress genes GADD45A

and HERPUD1 (Figure A-5).

We also note that datasets are aligned according to biological similarity instead of

confounding differences in transcriptional quiescence such as dataset-specific dropouts

(Figure A-8). Scanorama also aligns biologically similar datasets across experiments

that use absolute transcript counts or relative expression values; e.g., the pancreatic

islet panorama consists of UMI experiments [BVW+16, MDG+16, GMB+16] and

datasets with TPM and RPKM values [LGB+17, SPE+16].

3.5.3 Quantifying integration performance

We sought to quantify the integration performance of our algorithm on the collection

of 26 datasets by calculating a Silhouette Coefficient [Rou87] for each cell. Silhouette

Coefficient computation first requires cluster label assignments 𝒞 , {𝑐1, . . . , 𝑐𝐿}. The

Silhouette Coefficient first makes use of the mean of the distances from cell x to all
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other cells of the same type, i.e., when x ∈ 𝑐𝑖, 𝑖 ∈ [𝐿],

𝜇(x) , 1
|𝑐𝑖| − 1

∑︁
y∈𝑐𝑖,x ̸=y

𝑑(x, y)

for a distance metric 𝑑. The Silhouette Coefficient compares 𝜇(x) to the mean

nearest-cluster distance to x, more precisely,

𝜈(x) , min
𝑐∈𝒞,𝑐 ̸=𝑐𝑖

1
|𝑐|
∑︁
y∈𝑐

𝑑(x, y).

The Silhouette Coefficient 𝑠(x) for x is then

𝑠(x) , 𝜈(x)− 𝜇(x)
max{𝜇(x), 𝜈(x)} ,

taking values between 1 and -1, inclusive, where higher values indicate better clustering

performance. Intuitively, the Silhouette Coefficient improves if a cell is close to other

cells of the same type and far from all other cells of different types.

On the above collection of 26 datasets, the distribution of Silhouette Coefficients

was significantly higher (two-sided, independent 𝑡-test 𝑃 < 4×10−6; 𝑛 = 105,476 cells)

after Scanorama integration (median of 0.17) compared to scran MNN (median of

−0.03), Seurat CCA (median of −0.18), and no integration (median of 0.14) (Figure

A-9). Clustering analyses of Scanorama-integrated data found structure related to cell

type and orthogonal to dataset-specific batch (Figure A-6A,B,C), with comparable

integration performance to existing methods when all datasets have similar cell type

compositions (Figure A-4) and significantly better integration performance than

existing methods on collections of datasets with cell type heterogeneity (Figures 3-3,

A-1, and A-2).

In addition to integration performance, we can also quantify the batch correction

performance of our algorithm by looking at the similarity of the gene expression

distributions across datasets before and after batch correction. On five pancreatic islet

datasets, for each gene, we calculated the one-way ANOVA 𝐹 -value testing the null

hypothesis that there are equal gene expression means among all five datasets, where
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lower 𝐹 -values indicate more similar means. We computed 𝐹 -values for each gene in

the uncorrected data and after batch correction by Scanorama and scran MNN (we

note that this analysis is not applicable to the output of Seurat CCA since it only

does integration, not batch correction, and therefore does not modify gene expression

values).

We found that 89% of the genes have lower 𝐹 -values after Scanorama correction

(Figure A-6D) compared to only 76% of the genes after scran MNN correction (Figure

A-6E), while the variances across genes after Scanorama or scran MNN correction

are still very similar to those of the uncorrected data (Scanorama Pearson 𝜌 = 0.97;

scran MNN Pearson 𝜌 = 0.99; 𝑃 < 5× 10−324 for both methods; 𝑛 = 15,369 genes),

indicating that either method is not achieving lower 𝐹 -values by trivially homogenizing

gene expression.

3.5.4 Scalability: Integrating 1 million cells

Due to our algorithmic optimizations, our tool is also substantially more efficient

than existing methods for scRNA-seq dataset integration or batch correction. In

particular, to integrate our collection of 26 datasets containing 105,476 cells, Scanorama

can integrate datasets in roughly five minutes and performs batch-correction of all

panoramas in under 20 minutes. In contrast, existing methods require more than

27 hours to integrate the same collection of datasets (Figure 3-3D) using more than

three times the amount of memory (Figure 3-3E) yet perform poorly at preserving

real biological heterogeneity in the integrated result (Figure 3-3B,C).

We further demonstrate the scalability of our method by applying Scanorama to

integrate 1,095,538 cells from two large-scale single-cell transcriptomic studies of the

central nervous system (CNS) in mouse, including samples taken from the mouse spinal

cord and from different regions of the mouse brain [ZHL+18, SMW+18]. Scanorama

aligns functionally similar cells across different regions of the brain, where we can

identify cell types using known marker genes (Figure 3-4). Scanorama integrates this

collection of 1,095,538 cells in 9.1 hours with a peak memory usage of 95 GB, though

additional optimizations may improve the efficiency of our method further. In contrast,
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Figure 3-4: Scanorama scales to more than a million cells.
(A) Scanorama integrates a collection of 1,095,538 cells from the mouse brain and spinal
cord. (B) Marker gene expression reveals cell type-specific clusters including Syt1, Meg3,
Gabra1, Gabra6 and Gabrb2 in neurons, Gja1 in astrocytes, Flt1 in endothelial cells, Mbp
in oligodendrocytes, and Rgs5 in mural cells.

other methods exceed the maximum memory capacity of our benchmarking hardware

when run on this data, illustrating the advantage of our algorithm’s computational

efficiency when integrating large-scale datasets containing millions of cells.

3.5.5 Robustness to overcorrection

Theoretically, Scanorama relaxes the requirement in scran MNN that all datasets share

at least one cell type in common, instead only requiring that each dataset shares at

least one cell type with at least one other dataset. However, in practice, we find that

even this assumption is often too strict and that Scanorama can avoid overcorrection

when a dataset has no overlapping cell types with any other dataset (e.g., mouse

neurons among the collection of 26 diverse datasets; Figure 3-3A). Although Scanorama

essentially reduces to the algorithm used in scran MNN when aligning a single pair of

datasets together (although with much greater computational efficiency), we observe

that Scanorama can be robust to overcorrection when integrating a larger collection
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of datasets even when none of the datasets being integrated have overlapping cell

types (Figure A-10). In principle, forming spurious mutual links between biologically

disparate cell types becomes less likely as the number of cells or the number of

datasets being integrated increases, so that Scanorama’s approach becomes more

robust to overcorrection with more data. Some amount of supervision, however, is still

recommended when integrating heterogeneous datasets, and further minimizing the

likelihood of overcorrection is an important concern for future integrative approaches.

3.5.6 Top performance in a comprehensive benchmark

Comprehensive independent evaluation by Luecken et al. [LBC+20] of Scanorama

alongside nine other scRNA-seq integration tools and strategies showed that Scanorama

occupies the top tier of integration methods, and is one of three integration methods

that they recommend to practitioners. On a benchmark dataset of immune cells,

different configurations of Scanorama occupied four out of the seven top method

configurations, including the top-ranked position. Overall, across seven different real

and simulated scRNA-seq datasets, different configurations of Scanorama occupied

the second and fifth positions out of 38 total integration method configurations. This

benchmarking study in particular highlighted the ability of Scanorama to preserve

dataset-specific, biological signal in addition to removing confounding variation. These

results helped highlight the strong empirical performance of Scanorama, particularly

as a way of removing technical biases while preserving biological variation, which was

an important emphasis of the benchmarking study.

3.6 Application note: Aligning pathogen

lifecycles

The empirical benchmarks that establish Scanorama as a state-of-the art integration

approach have mostly focused on human or mammalian cells, but since the central

dogma of molecular biology extends across all cellular life, Scanorama can just as
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easily be applied to better understand cellular pathogens as well. One particularly

compelling application of Scanorama integration [XTR+20] looked for commonalities

in the asexual reproductive lifecycle of two different protozoan pathogens: Toxoplasma

gondii (T. gondii) and Plasmodium berghei (P. berghei).

In humans, T. gondii infection rarely leads to disease but does establish latent

infection in an estimated 30–50% of the global population. However, serious or fatal

disease, called toxoplasmosis, does occur particularly in severely immunocompromised

individuals, like those with acquired immunodeficiency syndrome (AIDS). Interestingly,

T. gondii has been shown to alter the behavior of mice so that they are less averse

to cat urine, potentially making mice more susceptible to predation. Identifying if

T. gondii infection in humans also leads to neurological effects is an active area of

research [TM17].

P. berghei is part of the genus Plasmodium that is the cause of malaria disease,

which led to an estimated ~400K human deaths in 2018 primarily in sub-Saharan

Africa [Wor19]. While the primary parasite involved in human malaria is Plasmodium

falciparum, P. berghei is a widely used model organism since it causes malaria in

laboratory mice. Many drug and vaccine screening platforms therefore also use P.

berghei as an experimental model [HRA+19].

While T. gondii and P. berghei are different organisms with different mechanisms

of reproduction (Toxoplasma undergoes “endodyogeny,” a simpler cell division process,

whereas Plasmodium undergoes “schizogony,” a more complex dividing process),

they are still both protozoan (more specifically, apicomplexan) human pathogens.

Similarities in cellular state between these pathogens could in turn reveal common

mechanisms of reproduction and potentially lead to drugs that target shared replication

biology in both pathogens.

Xue et al. performed Scanorama integration of scRNA-seq data from T. gondii

[XTR+20] and P. berghei [HRA+19] based on a set of 1,830 orthologous genes, revealing

striking similarity in the lifecycles of both pathogens (Figure 3-5). Xue et al. identified

correspondences in all stages of cell division: for example, Scanorama aligns the

“schizont” stage of P. berghei replication with the “M” and “C” stages of T. gondii
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Figure 3-5: Comparative analysis of Toxoplasma and Plasmodium.
(A) Scanorama integration of Plasmodium berghei (red, left) and Toxoplasma gondii (blue,
right). (B) Cell cycle of Toxoplasma is well-aligned to the erythrocytic cycle of Plasmodium
berghei, despite fundamental differences in cell cycle progression between these two apicom-
plexans. Each cell is colored by the original cluster assignment in the corresponding dataset.
(C) Normalized cluster similarity between the original cluster assignment of Plasmodium
berghei and Toxoplasma. Cluster similarity is calculated by quantifying the fraction of
cells that overlap in topological network in each cluster of the corresponding dataset. (D)
Heatmap of concerted gene sets expression normalized to one within each cluster of cells in
Plasmodium (left) and Toxoplasma (right).
From Xue et al., eLife (2020) [XTR+20], used with permission and under a Creative
Commons Attribution license.
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replication, in which both they show a transcriptomic program in both pathogens

consistent with active intracellular remodeling. Correspondences in other states

are visualized in Figure 3-5C,D. These results offer an excellent illustration of how

Scanorama can help researchers understand common patterns in pathogen biology

that could ultimately lead to shared therapeutic strategies.

More generally, Scanorama provides a powerful and efficient integrative framework

that is robust to differences in cell type and sensitive to subtle functional changes

across a diversity of tissues, organisms, biological conditions, technologies, dataset

sizes and different levels of data quality and noise. Many other infectious disease

systems could be analyzed using Scanorama, including bacterial pathogens or immune

cells at different stages of viral infection. As researchers work to assemble a more

complete picture of diverse biological function at a single-cell resolution, the need to

integrate heterogeneous experiments also increases. Scanorama provides a robust and

efficient solution to this problem.
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Chapter 4

Understanding Disease II:

Sketching

It took me four years to paint like Raphael, but a lifetime to paint

like a child.

—Pablo Picasso, paraphrase (1958)

In the previous chapter, we developed a state-of-the-art method for integrating millions

of high-dimensional biological samples (e.g, single-cell transcriptomes). The ability to

assemble large single-cell panoramas, however, introduces another problem, namely

that complex downstream analysis often has difficulty scaling to large dataset sizes

and prevents rapid exploratory data analysis. Moreover, large amounts of information

redundancy may bias analysis to the abundant information while ignoring less abundant

but significant signal in the data. For example, unsupervised clustering of a single-cell

dataset that is dominated by a common cell type might fail to identify structure from

rare cell types or states. In the host-pathogen setting, for example, most of the immune

cells in a blood sample could be inactivated or anti-inflammatory, but a researcher is

particularly interested in the rarer populations of activated or inflammatory cells.

In this chapter, we continue to develop algorithms for improving our understanding

of complex, heterogeneous biological systems. We are particularly concerned with the

71



setting in which we want to analyze a large of amount of data, e.g., that generated

by a high-throughput technology like scRNA-seq. In such cases, rather than consider

all the data, a sketching algorithm first selects a representative subset, or a sketch,

of the data for downstream analysis. The remaining computational analysis would

then need to consider a much smaller number of datapoints, improving computational

scalability.

This chapter first uses the problem of rare cell type discovery in scRNA-seq

to motivate a diversity-preserving sketching algorithm. Our approach is based on

the insight that the volume of a cell type in transcriptomic space approximates its

biological diversity. This leads to the geometric sketching1 algorithm [HCD+19], which

achieves efficient (near-linear time scalability) by leveraging this insight and combining

it with the realization that biological data actually has a low “intrinsic” dimension,

i.e., it lies close to a manifold with a dimension much lower than the superficially high

original dimension. We analyze our algorithm theoretically, apply it to sketch large

transcriptomic datasets, and demonstrate a practical application in rare, inflammatory

cell type discovery in a dataset of immune cells from the umbilical cord blood.

4.1 Glossary

∙ Scalability. How a system responds to increasing amounts of work; in compu-

tational settings, this is often thought of in terms of the amount of time and

memory a program requires, and how time and memory relate to the size of the

program’s input data.

∙ Sketch. A smaller subset of elements from a larger dataset. Typically used to

accelerate a given analysis while preserving the accuracy of the analysis results.

∙ Cover, covering. In the geometric sketching setting, a set of shapes in the

transcriptomic space that collectively contains all of the cells in a dataset.

1Software available at http://geosketch.csail.mit.edu and at https://github.com/
brianhie/geosketch.
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∙ Hypercube. A generalization of a cube (with equal side lengths) to many dimen-

sions.

4.2 Preliminaries

(Preliminaries related to scRNA-seq technologies and standard data analysis, described

in Section 3.2, may also be helpful to read alongside the preliminary information

below.)

4.2.1 The scalability challenge

scRNA-seq experiments routinely profile hundreds of thousands of cells, with billions of

cells likely to be profiled in the near future. Deriving biological insights from single-cell

datasets requires computationally intensive operations such as clustering, visualization,

and nonlinear data integration. Clustering analyses assign more similar cells to groups,

or clusters, that may correspond to biologically meaningful structure. Visualization lets

researchers develop an intuition about variation in a dataset by highlighting important

variability within an interpretable, usually two-dimensional, plot. Data integration

requires searching for similar transcriptomic structure across two or more datasets

and removing confounding differences like batch effects. Performing these analyses

on very large datasets is already not feasible for many researchers without expensive

computational infrastructure, and is still time consuming for researchers with enough

compute power. Instead, researchers often perform initial analysis on a random subset

of cells chosen with uniform probability for each cell, which is prone to removing rare

cell types and negates the advantage of performing large-scale experiments.

4.2.2 A geometric interpretation

In this chapter, we leverage an understanding of a single-cell dataset as a collection

of points in a multidimensional “transcriptomic space.” Each point in a dataset

corresponds to a single cell and its location is determined by measuring gene expression.
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The abstraction of points within a multidimensional space enables us to reason about

the “geometry” of a scRNA-seq dataset, including the particularly useful concepts

of distance and volume. Cells with closer distances in the transcriptomic space have

greater transcriptomic similarity. Similarly, a shape that occupies a greater volume of

the transcriptomic space represents greater transcriptomic variation.

4.3 Sketching: Motivation and overview

Improvements in the throughput of single-cell profiling experiments, especially droplet-

based single-cell RNA-sequencing (scRNA-seq), have resulted in datasets containing

hundreds of thousands of cells or even millions of cells [AST+17, ZTB+17, COP+20],

with hundreds to thousands of gene expression measurements per cell. As these

sequencing pipelines become cheaper and more streamlined, experiments profiling

tens of millions of cells may become ubiquitous in the near future [AST+17], and

consortium-based efforts like the Human Cell Atlas plan to profile billions of cells

[RTL+17].

Leveraging this data to improve our understanding of biology and disease will re-

quire merging and integrating many cells across diseases and tissues [HBB19], resulting

in reference datasets with massive numbers of cells. Unfortunately, the sheer volume of

scRNA-seq data being generated is quickly overwhelming existing analytic procedures,

requiring prohibitive runtime or memory usage to produce meaningful insights. This

bottleneck limits the utility of these emerging large datasets to researchers with access

to expensive computational infrastructure, and makes quick exploratory analyses

impossible even for these researchers.

4.3.1 Current approaches

This chapter develops an approach that intelligently selects a small subset of data

(referred to as a “sketch”) that comprehensively represents the transcriptomic het-

erogeneity within the full dataset. Because of their vastly reduced computational

overhead, our sketches can be efficiently shared among researchers and be used to
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quickly identify important patterns in the full dataset to be followed up with in-depth

analyses. Currently, by far the most common approach is to uniformly downsample a

dataset to obtain a small subset to accelerate the initial data analysis. Although this

simple approach could be used to generate sketches of single-cell datasets, it is highly

prone to removing rare cell types and negates the advantage of performing large-scale

scRNA-seq experiments in the first place.

Alternative sampling approaches that better consider the structure of the data,

including 𝑘-means++ sampling [AV07] and spatial random sampling (SRS) [RA17],

have not yet been applied to the problem of obtaining informative sketches of scRNA-

seq data to our knowledge. However, these data-dependent sampling techniques not

only lack the ability to efficiently scale to large datasets, but also lack robustness

to different experimental settings and produce highly unbalanced sketches that are

ill-suited for downstream scRNA-seq analyses as we demonstrate in our experiments.

4.3.2 Geometric insight

The key insight behind our sampling approach is that common cell types form dense

clusters in the gene expression space, while rarer subpopulations may still inhabit

comparably large regions of the space but with much greater sparsity. Rather than

sample cells uniformly at random, we sample evenly across the transcriptomic space,

which naturally removes redundant information within the most common cell types

and preserves rare transcriptomic structure contained in the original dataset. We refer

to our sampling method as “geometric sketching” because it obtains random samples

based on the geometry, rather than the density, of the dataset (Figure 4-1).

Geometric sketching is extremely efficient, sampling from datasets with millions of

cells in a matter of minutes and with an asymptotic runtime that is close to linear

in the size of the dataset. We empirically demonstrate that our algorithm produces

sketches that more evenly represent the transcriptomic space covered by the data.

We further show that our sketches enhance and accelerate downstream analyses by

preserving rare cell types, producing visualizations that broadly capture transcriptomic

heterogeneity, facilitating the identification of cell types via clustering, and accelerating
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Figure 4-1: Geometric sketching overview.
We first cover the data points with equal-sized boxes (which we refer to as a “plaid covering”)
to approximate their geometry, then sample data points by first spreading the desired total
sample count over the boxes as evenly as possible, followed by choosing the assigned number
of samples within each box uniformly at random. The resulting sketch more evenly covers
the landscape of the data compared to uniform sampling of points, where the latter is more
prone to omitting rare cell types or transcriptomic patterns.
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integration of large scRNA-seq datasets. Moreover, we demonstrate how the sensitivity

of geometric sketching to rare transcriptomic states allows us to identify a previously

unknown rare subpopulation of inflammatory macrophages in a human umbilical cord

blood dataset, providing insight into a fundamental immunological process. As the

size of single-cell data grows, geometric sketching will become increasingly crucial

for the democratization of large-scale single-cell experiments, making key analyses

tractable even for researchers without expensive computational resources.

4.4 Geometric sketching: Algorithm details

4.4.1 Problem definition

We first give a mathematical formulation of the sketching problem to elucidate the

theoretical insights underlying our approach. Let 𝒳 , {x1, . . . , x𝑁} be a representation

of a single-cell dataset, consisting of 𝑀 -dimensional measurements x𝑖 ∈ R𝑀 from 𝑁

individual cells. In the case of very large 𝑁 (e.g., millions of cells) [COP+20], it is

often desirable to construct a sketch 𝒮 ⊂ 𝒳 (i.e., a downsampled dataset), which can

be more easily shared with other researchers and be used to quickly understand the

salient characteristics of 𝒳 without paying the full computational price of analyzing

𝒳 .

Drawing insight from computational geometry, we measure the quality of a sketch

𝒮 with respect to a dataset 𝒳 via the Hausdorff distance 𝑑𝐻 [Hau37] defined as

𝑑𝐻(𝒳 ,𝒮) , max
x∈𝒳
{min

s∈𝒮
𝑑(x, s)},

where 𝑑 denotes the distance function of the underlying metric space (i.e., a notion of

dissimilarity between two cells). Intuitively, 𝑑𝐻 measures the distance of the cell in the

original dataset that is farthest away from any of the cells included in the sketch. The

lower this distance, the more comprehensively our sketch covers the original dataset.

We are interested in developing an efficient algorithm for obtaining 𝒮 of a predeter-

mined size 𝑘 (i.e., |𝒮| = 𝑘) that minimizes 𝑑𝐻(𝒳 ,𝒮). A key property of our approach
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is that it is agnostic to local density of data points, since only the maximum distance

is taken into account. As a result, our sketches more evenly cover the space of gene

expression spanned by the original dataset. In contrast, approaches based on uniform

sampling or distance-based sampling (e.g., 𝑘-means++ [AV07]) are biased toward

selecting more cells in densely populated regions at the expense of other regions of

interest with fewer data points, as we demonstrate in our experiments.

4.4.2 Theoretical connection to covering problems

Our problem of finding a high-quality sketch 𝒮 of size 𝑘 that minimizes 𝑑𝐻(𝒳 ,𝒮)

is closely related to the concept of covering numbers in information theory and

combinatorics. Informally, internal covering number is defined as the smallest number

of equal-sized shapes (e.g., spheres or boxes) centered at individual data points that,

together, “cover” all points in a dataset. To relate our covering to the Hausdorff

distance, we provide the following lemma:

Lemma 1. Let 𝒳 , {x1, . . . , x𝑁} be a representation of a single-cell dataset, con-

sisting of 𝑀-dimensional measurements x𝑖 ∈ R𝑀 from 𝑁 individual cells. Let 𝑑*
𝐻 be

the minimal Hausdorff distance 𝑑𝐻(𝒳 ,𝒮) obtained by a sketch 𝒮 ⊂ 𝒳 where |𝒮| = 𝑘.

Then, 𝑑*
𝐻 , 𝑁−1

int (𝑘), where 𝑁−1
int (𝑘) , min{𝑟 : 𝑁int(𝒳 , 𝑟) ≤ 𝑘}.

Proof. Since 𝑑𝐻 bounds the maximum distance of a data point from 𝒮, placing a sphere

of radius 𝑑𝐻 at every point in 𝒮 gives a covering of 𝒳 , which implies 𝑁int(𝒳 , 𝑑*
𝐻) ≤ 𝑘.

Thus, 𝑁−1
int (𝑘) ≤ 𝑑*

𝐻 . If 𝑁−1
int (𝑘) < 𝑑*

𝐻 , then there exists a cover with 𝑘 spheres of

radius 𝑑′ < 𝑑*
𝐻 . Taking the center points of this cover as our sketch 𝒮 ′, we obtain

𝑑𝐻(𝒳 , 𝑆 ′) ≤ 𝑑*
𝐻 , a contradiction. Hence, 𝑑*

𝐻 = 𝑁−1
int (𝑘)s.

Lemma 1 shows that the minimum radius for covering spheres that gives an

internal covering number of at most 𝑘 on a given dataset is in fact equal to the optimal

Hausdorff distance achievable by a sketch of size 𝑘. An important insight given by

this observation is that the problem of finding a high-quality sketch reduces to finding

a minimum-cardinality cover of a dataset given a certain radius. In particular, if one

were to have access to an oracle that could find the optimal covering of a dataset for
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any radius, our problem could be solved by finding the minimum radius that gives the

desired number of covering spheres (e.g., via binary search). Unfortunately, finding

the minimum-cardinality cover is NP-complete [ANS16], and although algorithms for

a variety of simplified settings have been studied [ABD+11, Chv79], none scales to the

high-dimensional and large-scale data that we need to handle in single-cell genomics.

Given the hardness of the covering problem, we aimed to devise an approximate

covering algorithm that readily scales to large-scale single-cell data while maintaining

good sketch quality.

4.4.3 Plaid coverings

At the core of our geometric sketching algorithm is a plaid covering, which approximates

the geometry of the given single-cell data as a union of equal-sized hypercubes. To

enable scalability to large datasets, we restricted our attention to covering the data

points with a simple class of covering sets—plaids—whose structure is amenable to

fast computation. Formally, we define a length-ℓ plaid cover 𝒞 of a dataset 𝒳 as a

collection of points c1, . . . , c𝑘 ∈ R𝑀 such that two properties hold:

i. Either 𝑐𝑖𝑗 = 𝑐𝑖′𝑗 or |𝑐𝑖𝑗 − 𝑐𝑖′𝑗| ≥ ℓ for all 𝑖, 𝑖′ ∈ [𝑗] and 𝑗 ∈ [𝑀 ].

ii. 𝒳 ⊂ ⋃︀𝑘
𝑖=1 𝑅(c𝑖, ℓ), where 𝑅(c𝑖, ℓ) , [𝑐𝑖1, 𝑐𝑖1 + ℓ]× · · · × [𝑐𝑖𝑚, 𝑐𝑖𝑚 + ℓ].

Intuitively, 𝒞 represents a collection of 𝑀 -dimensional square boxes of side length ℓ

that cover 𝒳 and can be generated by placing a grid (with potentially uneven intervals)

over the space and selecting a subset of grid cells. An example plaid cover is illustrated

in Figure 4-1. Our greedy algorithm for finding a plaid cover of a given dataset is

shown in Algorithm 1.

To see that the plaid cover found by our algorithm uses the smallest number of

intervals in each coordinate (although it may not achieve the smallest cardinality

overall) consider the following lemma:

Lemma 2. Algorithm 1 is optimal in each dimension separately.
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Proof. To see this, fix a dimension 𝑑 ∈ [𝑁 ], and consider covering the projection

𝜋𝑑(𝒳 ) , {𝑥1𝑑, 𝑥2𝑑, . . . , 𝑥𝑁𝑑} ⊂ R

with a one-dimensional plaid cover of length ℓ. Let 𝑄 , {𝑞1, . . . , 𝑞𝑘} be any such cover,

and let 𝑌 , {𝑦1, . . . , 𝑦𝑀} denote the cover produced by our algorithm on iteration

𝑑. We show that 𝑘 ≥ 𝑚, i.e., 𝑌 has the smallest size of any length-ℓ cover. Assume

without loss of generality that 𝑞1 < 𝑞2 < · · · < 𝑞𝑘 and 𝑦1 < 𝑦2 < · · · < 𝑦𝑀 . Let 𝑧𝑖

denote the 𝑖th-smallest element of 𝜋𝑑(𝒳 ). Our algorithm sets 𝑦1 , 𝑧1. We must have

𝑞1 ≤ 𝑧1, or else 𝑧1 is not covered by 𝑄. Thus, 𝑞1 ≤ 𝑦1. Proceeding inductively, we see

that

𝑞𝑖+1 ≤ min{𝑧𝑖 : 𝑧𝑖 > 𝑞𝑖 + ℓ} ≤ min{𝑧𝑖 : 𝑧𝑖 > 𝑦𝑖 + ℓ} = 𝑦𝑖+1

where the final equality holds because our algorithm defines 𝑦𝑖+1 exactly this way.

Thus, we have 𝑞𝑖 ≤ 𝑦𝑖 for all 𝑖 ∈ {1, 2, . . . , min{𝑘, 𝑀}}. If |𝑄| ≤ |𝑌 |, then 𝑦𝑀−1 and

𝑦𝑀 are both greater than all elements in 𝑄. But because 𝑄 covers all the points 𝑧𝑖,

this implies that 𝑦𝑀 covers no points, a contradiction because our algorithm does

not construct empty covering sets. Thus, we must have |𝑄| ≥ |𝑌 |, and because 𝑄 is

arbitrary, 𝑌 has the smallest possible size.

Algorithm 1: Greedy Plaid Cover
Data: Data set 𝒳 = {x1, . . . , x𝑁} where x𝑖 ∈ R𝑀 , length ℓ
Result: Length-ℓ plaid cover 𝒞 of 𝒳
y𝑖 ← 0 ∈ R𝑀 ,∀𝑖 ∈ [𝑁 ]
for 𝑗 ∈ [𝑀 ] do

𝑧1, . . . , 𝑧𝑁 ← Sort({𝑥1𝑗, . . . , 𝑥𝑁𝑗}) // in ascending order
𝑝← 1
while 𝑧𝑝 + ℓ < 𝑧𝑁 do

Find smallest 𝑖 > 𝑝 where 𝑧𝑝 + ℓ < 𝑧𝑖

𝑦𝑖′𝑗 ← 𝑧𝑝,∀𝑖′ ∈ {𝑝, . . . , 𝑖− 1}
𝑝← 𝑖

end
𝑦𝑖′𝑗 ← 𝑧𝑝, ∀𝑖′ ∈ {𝑝, . . . , 𝑁}

end
return {y1, . . . , y𝑁} // only unique points are returned
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The main intuition behind our choice of a plaid pattern is that it generalizes grid-

based approximation of geometric shapes while maintaining computational efficiency

in assigning points to their respective covering box. Note our plaid covering algorithm

has time complexity in each dimension of 𝑂(𝑁 log 𝑁) in general—the main bottleneck

being the sorting of each coordinate—and uses 𝑂(𝑁) space. In practical scenarios

where each coordinate requires only a small constant number of intervals to cover,

we achieve 𝑂(𝑁) time complexity by taking linear scans to find the next interval

without sorting. This is a substantial improvement over other approaches for tackling

the covering problem, which typically require 𝑂(𝑁2) time for all pairwise distance

calculations. A greedy approach to building a cover could require only 𝑂(𝑘𝑁) pairwise

distance calculations where 𝑘 is the number of covering objects [Chv79], yet 𝑘 is still

typically much larger than log 𝑛 for our applications in single-cell analysis.

The cardinality of the cover returned by our plaid cover algorithm generally

decreases as the length parameter ℓ increases, although pathological cases that deviate

from this pattern exist. We empirically confirmed the near-monotonic relationship

between number of covering boxes and ℓ on all our single-cell benchmark datasets

(Figure A-11). Based on this observation, we perform binary search (with graceful

handling of potential exceptions) to find the value of ℓ that approximately produces a

desired number of covering boxes. By default, we choose the same number of boxes as

the desired sketch size 𝑘. A sketch is then constructed by sampling the boxes in a

plaid cover and choosing a point at random from each box. The quality of our sketch

is given by the following theorem:

Theorem 1. Given a dataset 𝒳 of 𝑁 points in 𝑀 dimensions, let 𝑁plaid(ℓ) be the

number of boxes in the plaid cover returned by our algorithm as a function of length

parameter ℓ. Let 𝑁−1
plaid(𝑘) , inf{ℓ : 𝑁plaid(ℓ) ≤ 𝑘}. Let 𝑘 be a desired sketch size and

assume 𝑘 = 𝑁plaid(𝑁−1
plaid(𝑘)) for simplicity (if not take a nearby 𝑘 where this holds).

Let 𝑆plaid(𝑘) be a sketch of size 𝑘 obtained by randomly choosing a point from each

box in the plaid cover. Let 𝑑*
𝐻(𝑘) , min𝒮:|𝒮|=𝑘 𝑑𝐻(𝒳 ,𝒮). Then, the following holds:

1
2𝑁−1

plaid(2𝑀𝑘) ≤ 𝑑*
𝐻(𝑘) ≤ 𝑑𝐻(𝒳 ,𝒮plaid(𝑘)).
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Proof. For the first inequality, Let 𝒫 = {𝑃1, 𝑃2, . . . , 𝑃𝐿} be any covering by plaid sets

of side length 2𝑑*
𝐻(𝑘), such that all covering sets contain at least one point. We show

that 𝒫 has cardinality at most 2𝑀𝑘. Let ℬ be a covering of 𝒳 by 𝑘 balls 𝐵1, 𝐵2, . . . , 𝐵𝑘,

each with radius 𝑑*
𝐻(𝑘). The definition of 𝑑*

𝐻 ensures that such a covering exists.

Define

𝐼𝒫(𝐵𝑖) , |{𝑃𝑗 : 𝑃𝑗 ∩𝐵𝑖 ̸= ∅}|.

That is, 𝐼𝒫(𝐵𝑖) is the number of sets in 𝒫 that intersect 𝐵𝑖.

Because 𝒫 and ℬ are both covering sets, each plaid square in 𝒫 is intersected by

at least one ball in ℬ. Therefore,

|𝒫| ≤
𝑘∑︁

𝑖=1
𝐼𝒫(𝐵𝑖).

On the other hand, we see that 𝐼𝒫(𝐵𝑖) is bounded above by 2𝑀 , because any ball

overlaps at most two plaid intervals in each dimension. Thus,

|𝒫| ≤ 2𝑀𝑘

as desired. The second inequality is immediate, because 𝑑*
𝐻(𝑘) is an infimum of

Hausdorff distances of all sets of size 𝑘 with 𝒳 , and 𝒮plaid(𝑘) is such a set.

Theorem 1 gives us a way to bound the optimal Hausdorff distance 𝑑*
𝐻(𝑘) relative

to the solution obtained by plaid covering. Although the 2𝑀 factor in the lower bound

appears substantial, on real data we expect the exponent to depend on the fractal

dimension 𝑑frac ≪𝑀 of the data instead, which is typically very small for biological

datasets [YDDB15]. We empirically observed that the fractal dimension of single-cell

data is around 2 at our working scale. Hence, the performance of a plaid-based

sketch makes use of the low intrinsic dimensionality to achieve a highly efficient and

empirically well-performing sketching algorithm.

Moreover, we first project the data down to a relatively low-dimensional space

(100 dimensions for single-cell data) using a fast randomized PCA [HMT11] before

applying our plaid covering algorithm. We note that much work has been done in
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obtaining algorithms for computing an approximate PCA of very large datasets with

provable bounds on approximation error that are also highly efficient in runtime and

memory.

The two parameters needed for our algorithm are the sketch size 𝑘 and the number

of covering boxes |𝒞|. The desired sketch size is chosen depending on the amount of

compute resources available and the algorithmic complexity of downstream analyses;

smaller sketches omit more cells but will accelerate analysis while preserving much of

the transcriptomic heterogeneity. The number of covering boxes converges to uniform

sampling as parameter increases; a number of covering boxes less than 𝑘 may yield a

coarser picture of the transcriptomic space, including over-representation of rare cell

types, at the cost of an increased Hausdorff distance. We make 𝑘 a parameter that

the user selects and we set |𝒞| by default to 𝑘.

4.5 Empirical performance of geometric sketching

4.5.1 Hausdorff distance benchmarking

We first sought to quantify how well geometric sketching is able to evenly represent

the original transcriptomic space by measuring the Hausdorff distance,

𝑑𝐻(𝒳 ,𝒮) , max
x∈𝒳
{min

s∈𝒮
𝑑(x, s)},

from the full dataset 𝒳 to a geometric sketch 𝒮 (Section 4.4.1). Intuitively, a low

Hausdorff distance indicates that the points in a sketch are close to all points in the

remainder of the dataset within the transcriptomic space, while a high Hausdorff

distance indicates that there are some cells in the full dataset that are not well

represented within the sketch.

The classical Hausdorff distance (HD), however, is highly sensitive to even a

few number of outliers [HKR93]. We therefore use a robust HD measure proposed

by Huttenlocher et al. called the partial HD measure, defined as 𝑑𝐻𝐾(𝒳 ,𝒮) ,

𝐾th
x∈𝒳{mins∈𝒮 𝑑(x, s)} where 𝐾th

x∈𝒳 denotes the 𝐾th largest value; partial HD re-
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quires a parameter 𝑞 , 1−𝐾/|𝒳 | between 0 and 1, inclusive, which is equivalent to

classical HD when 𝑞 = 0 [HKR93]. We set 𝑞 = 1× 10−4, which obtains a measurement

that is very close to the value obtained by classical HD but is robust to the most

extreme outliers. We achieved similar results for different values of 𝑞 (Figure A-12).

We benchmarked geometric sketching against uniform sampling as well as more

complex, data-dependent strategies:

∙ Uniform sampling returns a random sample of the cells, where every cell is given

equal probability. We use the random choice function provided by the numpy

Python package [Oli07].

∙ Spatial random sampling (SRS) [RA17] first projects the data points onto the

unit hypersphere, then each sample is obtained by uniformly sampling a point

on the unit hypersphere and selecting the closest point in the projected dataset

according to the cosine distance.

∙ 𝑘-means++ sampling [AV07] randomly chooses an initial sample, then repeatedly

samples the next point by giving each point a weight proportional to the minimum

distance from previous samples. This procedure continues until the desired

number of samples have been obtained. We used the 𝑘-means++ implementation

from the scikit-learn package [PV11].

Note that, to our knowledge, none of these non-uniform sampling approaches had

been previously considered for the problem of downsampling single-cell datasets.

We used four scRNA-seq datasets of varying sizes and complexities to assess our

method:

∙ A 293T/Jurkat mixture with 4,185 cells [ZTB+17] (Table A.2).

∙ A peripheral blood mononuclear cell (PBMC) dataset with 68,579 cells [ZTB+17]

(Table A.3).

∙ A developing and adolescent mouse central nervous system (CNS) dataset with

465,281 cells [ZHL+18] (Table A.4).
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Figure 4-2: Hausdorff distance profiling.
Geometric sketching results in consistently lower Hausdorff distances than other sampling
methods across a large number of sketch sizes and datasets. We use a robust Hausdorff
distance that is less sensitive to small numbers of outlier observations. Solid lines indicate
means and shaded areas indicate standard error across 10 random trials for geometric
sketching and uniform sampling.

∙ An adult mouse brain dataset with 665,858 cells [SMW+18] (Table A.5).

In all cases, we observed that geometric sketching obtains substantially better im-

provement under the robust Hausdorff distance measure than uniform sampling and

the other data-dependent sampling methods, SRS and 𝑘-means++ (Figure 4-2). The

improvement in Hausdorff distance was consistent across sketch sizes ranging from 2%

to 10% of the full dataset, providing quantitative evidence that our algorithm more

evenly samples over the geometry of the dataset than do other methods.

4.5.2 Visualizing sketch diversity

We next set out to assess the ability of our geometric sampling approach to improve

the low-dimensional visualization of scRNA-seq data, a common exploratory (and

often computationally expensive) initial step in single-cell genomic analysis. From our

two largest datasets of mouse nervous system, containing 465,281 and 665,858 cells

each, we used a 2-dimensional t-SNE [vdMH08] to visualize a sketch containing 2% of

the total dataset (sampled without replacement) obtained by geometric sketching.

The results, shown in Figure 4-3, illustrate that the relative representations of

cell types in geometric sketches can have striking differences compared to uniformly

downsampled datasets. For instance, when obtaining a sketch of 2% of the dataset of

adult mouse neurons [SMW+18], clusters of macrophages, endothelial tip cells, and
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Figure 4-3: Sketch visualizations.
t-SNE visualizations of sketches containing 2% of the cells from the adult mouse brain
[SMW+18] and from the developing and adolescent mouse CNS A.5 using uniform random
sampling and geometric sketching, with increased representation of rare cell types in the
geometric sketch. Visualizations based on other sampling approaches as well as a different
visualization method are provided in Figures A-13 and A-14.

mural cells have only 59, 117, and 336 cells, respectively, in the uniform sample out

of 1,695, 3,818, and 12,083 cells in the full data, respectively. In contrast, these cell

types have 326, 1,022, and 875 cells, respectively, in the geometric sketch of the same

size. Although these cell types are rare compared to neurons (428,051 cells in the

full dataset), their substantially increased representation in our sketch suggests they

inhabit a comparatively large portion of the transcriptomic space. Similarly, on a

dataset of 465,281 cells from the developing and adolescent mouse central nervous

system (CNS) [ZHL+18], we also observed a more balanced composition of cell types

as determined by the original study’s authors (Figure 4-3). The rarest cell types are

also more consistently represented in a geometric sketch than in sketches obtained

by SRS or 𝑘-means++ (Figure A-13, Tables A.6 and A.7). We also visualize the

data with Uniform Manifold Approximation and Projection (UMAP), an alternative

method for computing 2-dimensional visualization embeddings [MH18], with similar

results as those produced by our t-SNE experiments (Figure A-14).

We note that our sampling algorithm is completely unsupervised and has no

knowledge of the cell type labels, but naturally obtains a balanced composition of

cell types by sampling more evenly across the entire transcriptomic space. Indeed,

on artificial data in which we controlled the relative volumes and densities of the

clusters, geometric sketching samples the clusters proportionally to their relative
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Figure 4-4: Rare cell type preservation.
Geometric sketches preserve rare cell types in the subsampled data. In sketches containing
2% of the total dataset, we counted the number of cells that belong to the rarest cell type
in each dataset: 293T cells (0.66% of total cells) in a 293T and Jurkat mixture, dendritic
cells (0.38% of total) in a dataset of 68K PBMCs, macrophages (0.25% of total) in a dataset
of adult mouse brain cells, and ependymal cells (0.60% of total) in a dataset of developing
and adolescent mouse CNS cells. Higher count indicates increased representation of the rare
cell type in the sketch. Bar height indicates means and error bars indicate standard error
across 10 random trials for geometric sketching and uniform sampling. Comparison of rare
cell-type representation over different sketch sizes is shown in Figure A-15B.

volumes rather than their frequencies in the full dataset (Figure A-15A), suggesting

that the composition of different cell types in a geometric sketch more closely reflects

the transcriptomic variability of individual clusters rather than their frequency in

the overall population. Our visualizations therefore reflect a geometric “map” of the

transcriptomic variability within a dataset, allowing researchers to more easily gain

insight into rarer transcriptomic states.

4.5.3 Rare cell type preservation

As suggested by the above results, one of the key advantages of our algorithm is that it

naturally increases the representation of rare cell types with sufficient transcriptomic

heterogeneity in the subsampled data. Using the four datasets mentioned above, which

include cell type labels provided by the original study authors, we evaluated the ability

of our method to preserve the rarest cell type within each dataset. In particular,

we focused on 28 293T cells (0.66% of the total number of cells in the dataset) in

the 293T/Jurkat mixture, 262 dendritic cells (0.38%) in the PBMC dataset, 1695

macrophages (0.25%) among the adult mouse brain cells, and 2,777 ependymal cells

(0.60%) among the mouse CNS cells.
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Figure 4-5: Cluster preservation.
Louvain clustering was applied to a subsample of the dataset, cluster labels were transferred
to the full dataset using a k-nearest-neighbor classifier fit to the sketch, and the BAMI was
measured between the unsupervised cluster labels and the labels corresponding to biological
clusters provided by each previous study. Higher score indicates greater agreement between
unsupervised clustering and biological cell-type labels. Solid lines indicate means and shaded
areas indicate standard error across 10 random trials for geometric sketching and uniform
sampling.

In all datasets, the rare cell types are substantially more represented in the sketch

obtained by our algorithm compared to other sampling techniques (Figure 4-4). For

example, a sketch that is 2% the size of the 665,858 mouse brain cells contains

an average of 281 macrophages compared to only 31 cells from uniform sampling.

Geometric sketching is able to better preserve rare cell types because the extent of

transcriptomic variation among rare cells is similar to that of common cells. To this

end, we used the differential entropy of a multivariate Gaussian fit to each cell type as

a proxy to its transcriptomic diversity (Tables A.2, A.3, A.4, and A.5). We also note

that, within the geometric sketch, almost all of the rare cell types in each dataset have

increased representation compared to the full data, where the representation of rare

cell types gradually converges to that of uniform sampling as the sketch size increases

(Figure A-15B).

4.5.4 Preserving all cell types

Since the samples produced by our algorithm consist of a more balanced composition

of cell types, including rare cell types, we also reasoned that clustering analyses should

be able to better distinguish these cell types within a geometric sketch compared

to uniform downsampling. To assess this capability, we first clustered the sketches
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using the standard graph-based Louvain clustering algorithm [BGLL08]. Then, we

transferred cluster labels to the rest of the dataset via k-nearest-neighbor classification

and assessed the agreement between our unsupervised cluster labels and the biological

cell type labels provided by the original studies. We quantified the clustering accuracy

via balanced adjusted mutual information (BAMI), our proposed metric for evaluating

clustering quality when the ground truth clusters are highly imbalanced, which is

often the case for scRNA-seq datasets. BAMI balances the terms in adjusted mutual

information [VEB10] to equally weight each of the ground truth clusters, preventing

rare cell types from having only negligible contribution to the performance metric. We

also provide results for adjusted mutual information, without our balancing technique,

which are largely consistent with our comparisons based on BAMI (Figure A-15C).

On a variety of real scRNA-seq datasets, our algorithm’s sketches recapitulate

the biological cell types consistently better than uniform sampling (Figure 4-5).

Although two other data-dependent sampling methods, SRS and 𝑘-means++, achieve

performance comparable to our method in a few cases, only geometric sketching obtains

competitive performance across all datasets, suggesting that our method is reasonably

robust to different experimental settings. Notably, because our sketches are drawn

without replacement, clustering scores can become closer to those of uniform samples

as the size of the sketch increases; this may explain the diminishing performance of

our method with increasing sketch size on the mixture of 293T cells and Jurkat cells

(Figure 4-5). Still, we note our substantial advantage even on this dataset using very

small sketches that select as low as 2% of the full dataset. Moreover, the overall

improvement in clustering consistency could become more pronounced as more fine-

grain clusters become available as ground truth in light of the enhanced representation

of rare transcriptomic states within geometric sketches.

4.5.5 Improved scalability

Not only does geometric sketching lead to more informative sketches of the single-cell

data, it is also dramatically faster than other non-uniform sampling methods, which is

imperative since researchers stand to gain the most from sketches of very large datasets.

89



Figure 4-6: Runtime benchmarks.
Geometric sketching is substantially more efficient than other data-dependent subsampling
approaches, SRS and 𝑘-means++. Solid lines indicate means and shaded areas indicate
standard error across 10 random trials for geometric sketching and uniform sampling and 4
random trials for 𝑘-means++ and SRS (due to long run times). Geometric sketching has a
practical runtime of around 67 min when sampling 20,000 cells from a simulated dataset
with 10 million cells, which was obtained by resampling from a dataset of mouse CNS cells
[ZHL+18].

Geometric sketching has an asymptotic runtime that is close to linear in the size of the

dataset and, when benchmarked on real datasets, is more than an order of magnitude

faster than non-uniform methods and has a negligible dependence on the number of

samples specified by the user, unlike 𝑘-means++ and SRS (Figure 4-6). On our largest

dataset of 665,858 cells, our sampling algorithm takes an average of around 5 minutes

(Figure 4-6); in contrast, 𝑘-means++ takes 3 hours and spatial random sampling

(SRS) takes 5.5 hours when subsampling 10% of the cells. On a simulated benchmark

dataset of 10 million data points, geometric sketching subsamples 20,000 cells after

an average time of 67 minutes, demonstrating practical scalability to datasets with

hundreds of millions of cells (Figure 4-6).

Although uniform sampling is trivially the most efficient technique since it does

not consider any properties of the underlying dataset, our algorithm is both efficient

and produces high quality samples that more accurately represent the underlying

transcriptomic space as we demonstrated above. Notably, our runtime comparison

does not include the standard preprocessing step of (randomized) principal component

analysis (PCA), which we uniformly applied to all methods and whose runtime as well

as scalability are comparable to our geometric sketching step (Figure A-16A).
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4.5.6 Accelerating data integration

Because of its efficiency, geometric sketching can also accelerate other downstream

algorithms for scRNA-seq analysis. One such problem involves integration of multiple

scRNA-seq datasets across different batches or conditions [BHS+18, HLMM18, HBB19,

KMF+19]. Here, we consider an approach to accelerating scRNA-seq data integration

by applying the integration algorithm only to geometric sketches instead of the full

datasets.

We assume an integration function that takes in a list of datasets and returns

modifications to the datasets that removes differences to due batch effect etc. Let

X ∈ R𝑁×𝑀 denote one of the datasets, X𝒮 ∈ R|𝒮|×𝑀 denote the subset of X obtained

by geometric sketching, and X′
𝒮 ∈ R|𝒮|×𝑀 denote the modified version of X𝒮 returned

by the integration function. Our goal is to apply a transformation to X that puts it

into the same integrated space as X′
𝒮 . At a high level, we use a nearest-neighbors-based

method to compute alignment vectors from X to X𝒮 , we use Gaussian smoothing

to combine these alignment vectors into translation vectors, and then we apply the

translation to X to obtain an “integrated” full dataset X′.

Formally, for each cell in X𝒮 , we find its 𝑘 nearest neighbors in X and we denote

the set of all matches between a cell in X𝒮 and X asℳ where |ℳ| = 𝑘|X𝒮 |. Now we

define the alignment vectors as the rows of the matrix X(match) −X(match)
𝒮 where the

rows of X(match), X(match)
𝒮 ∈ R|ℳ|×𝑀 correspond to the pairs of matching cells in ℳ.

We want to combine these alignment vectors to obtain our translation vectors, which

we do using Gaussian smoothing. We compute weights via a Gaussian kernel as

[Γ]𝑎,𝑏 , exp
{︂
−𝜎

2
⃦⃦⃦
[X]𝑎,: − [X(match)]𝑏,:

⃦⃦⃦2

2

}︂

where Γ ∈ R𝑁×|ℳ| and [·]𝑎,𝑏 denotes the value in the 𝑎th row and 𝑏th column of a

matrix and [·]𝑎,: denotes the 𝑎th row of a matrix. Finally, we construct the translation
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vectors as an average of the alignment vectors with Gaussian-smoothed weights, where

v𝑎 ,
[Γ]𝑎,:

(︁
X(match) −X(match)

𝒮

)︁
∑︀

𝑏∈[|ℳ|][Γ]𝑎,𝑏

and we translate

[X′]𝑎,: , [X]𝑎,: + v𝑎

for all 𝑎 ∈ [𝑁 ] where [𝑁 ] denotes the set of all natural numbers up to 𝑁 . We repeat

this for all datasets integrated by the “black-box” integration function; in our study,

we used the Scanorama [HBB19] and Harmony [KMF+19] algorithms for integration.

We use geometric sketches of size 4,000 (around 1% of the total data) and parame-

ters 𝑘 = 3 and 𝜎 = 15. We used Harmony version 0.0.0.9000 and Scanorama version

1.0. For all methods, we measured the runtime required for integration and translation,

not including the initial PCA step for computing low dimensional embeddings (100

PCs). We quantify dataset mixing by clustering the integrated embeddings using

𝑘-means, varying the number of clusters, and computing the average negative Shannon

entropy normalized to a maximum value of 1 on the dataset labels averaged across all

clusters, an approach taken by recent work [PPY+19].

Since the integration step is more computationally intensive than the latter inter-

polation step, our geometric sketch-based integration offers a speedup that becomes

especially dramatic when integrating large numbers of cells. Moreover, because geo-

metric sketching better preserves rare transcriptomic states, as demonstrated above,

rare cell types are also more likely to be integrated during the procedure compared to

using sketches from other sampling approaches.

We applied geometric sketch-based acceleration to two existing algorithms, Scanorama

[HBB19] and Harmony [KMF+19], for scRNA-seq data integration (Figure 4-7). How-

ever, we note that our acceleration procedure is agnostic to the underlying integration

method and can easily interface with similar algorithms [BHS+18, HLMM18]. We

benchmarked the runtime improvement using geometric sketching on a dataset of

534,253 human immune cells from two different tissues (umbilical cord blood and

adult bone marrow). On this data, Scanorama and Harmony require 2.1 and 1.9 hours
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Figure 4-7: Faster data integration with sketching.
Geometric sketching can help accelerate existing tools for scRNA-seq data integration. We
use two existing algorithms for scRNA-seq integration, namely Harmony [KMF+19] and
Scanorama [HBB19], but note that our approach works for other integrative algorithms
as well. Learning alignment vectors among geometric sketches, which are then used to
transform the full datasets to remove tissue-specific differences, decreases integration time of
534,253 human immune cells from hours to minutes while achieving comparable integration
quality (Figure A-16B).
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of computation, respectively, to obtain integrations that remove tissue-specific differ-

ences. In contrast, the integration procedure with geometric sketching (which includes

finding the geometric sketches, integrating the sketches, and then transforming the

full datasets based on the sketches) requires just 8 minutes of computation with either

Scanorama or Harmony. Moreover, using geometric sketching-based acceleration has

integration performance comparable to the full integration (Figure 4-7) and better than

sketch-based integration using other sampling strategies (Figure A-16B), providing yet

another example of how geometric sketching can be used to accelerate other algorithms

for large-scale scRNA-seq analysis.

4.6 Application note: Discovering rare

inflammatory immune states

Because geometric sketching of large datasets highlights rare transcriptomic states,

certain subpopulations of cells that are difficult to identify when analyzing the full

dataset may become discoverable within a geometric sketch. This property of geometric

sketching is particularly relevant in understanding host-pathogen interactions and

immunity, since many immune responses to infection are driven by only a small subset

of cells, particularly in early or latent infection.

To illustrate this concept, we analyzed a dataset of 254,941 immune cells from

human umbilical cord blood. We computed a geometric sketch of 20,000 cells and

clustered the sketch via the Louvain community detection algorithm. We were

particularly interested in putative macrophage clusters with elevated expression of

macrophage-specific marker genes, including CD14 and CD68 [KMT+05]. Among

these clusters, we found a comparatively rare cluster of macrophages defined by the

marker genes CD74, HLA-DRA, B2M, and JUNB (AUROC > 0.90) (Figure 4-8).

We hypothesized that this cluster corresponds to inflammatory macrophages since

each of its marker genes has been implicated in macrophage activation in response to

inflammatory stimuli: CD74 encodes the receptor for macrophage migration inhibitory
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Figure 4-8: Sketching identifies activated macrophage states.
(A–C) A geometric sketch of 20,000 cells was obtained from a full dataset of 254,941 cells
from human umbilical cord blood. Analysis of clusters obtained by the Louvain community
detection algorithm reveals multiple clusters of macrophages (A), defined by CD14 and
CD68 marker gene expression (B). A rare subpopulation of these macrophages is in turn
defined by inflammatory marker gene expression (CD74, HLA-DRA, B2M, and JUNB) (C),
providing insight into an important but comparatively rarer immunological process. Violin
plots are generated by fitting a kernel density estimate to the gene expression values across
cells. Black dots indicate gene expression values of individual cells with random jitter along
the horizontal axis.
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factor (MIF) [LMF+03], a pro-inflammatory signal [MLB06]; HLA-DR and B2M are

hallmarks of the antigen presentation in activated macrophages (Section 2.1.4); and

JUNB has been implicated as a key transcriptional modulator of macrophage activation

[FBP+15] and is upregulated by MIF [CR03]. We did not observe major differences in

the number of unique genes between this rare cluster and the rest of the macrophages,

so these differences in gene expression are most likely not an artifact of variable data

sparsity or dropout.

We sought further confirmation of this rare expression signature in macrophages

by conducting a separate scRNA-seq study of an in vitro model of macrophage

inflammation in which human CD14+ monocytes were polarized with GM-CSF to

induce an inflammatory response. We compared this data to a similar scRNA-seq

dataset of macrophages but with M-CSF stimulation [HBB19] to induce an anti-

inflammatory polarization. Expression of all four marker genes we identified (CD74,

HLA-DRA, B2M, and JUNB) was significantly elevated in GM-CSF-derived (𝑛 = 354

cells) macrophages compared to the M-CSF-derived (𝑛 = 1,107 cells) macrophages

(one-sided Welch’s 𝑡-test 𝑃 = 4 × 10−34 for CD74, 𝑃 = 1 × 10−29 for HLA-DRA,

𝑃 = 3× 10−46 for B2M, and 𝑃 = 1× 10−13 for JUNB), increasing our confidence in

these marker genes as a signature of inflammation.

When we applied the same clustering procedure to either the full dataset or a

uniform subsample, the clustering algorithm did not assign a separate cluster to

inflammatory macrophages but rather placed all macrophages into a single cluster,

likely because of the relative scarcity of this cell type compared to the large cluster of

inactive macrophages.

These results are important since macrophages activated during inflammation play

a crucial role in the immune system: macrophages ingest or “phagocytose” foreign

invaders, present parts of those invaders on the cell surface so that other components

of the immune system (like T cells) can recognize those foreign parts in the future,

and stimulate other immune cells to respond to infection via signaling molecules called

“cytokines” [MW16]. While researchers do understand macrophage activation in broad

terms, inflammatory macrophages have been shown to be highly heterogeneous in
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their response to infection and much is still unknown about this heterogeneity or how

it is controlled. Thus, scRNA-seq coupled with tools for like geometric sketching can

play a role in revealing rare macrophage types. More in-depth study of macrophage

subpopulations, in part through intelligent computational analyses that highlight

cellular diversity, will help reveal insight into inflammation and ways to modulate

inflammatory processes in response to disease.
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Chapter 5

Understanding Disease III:

Synthesis

Tena hi bhan. e jaccandhānaṁ hatthiṁ dasseh̄ı’ ti.

(Very well then, I say, show the blind people an elephant.)

—Udāna 6.4 (c. 1st century B.C.)

The past two chapters have described algorithmic contributions to the analysis of

modern, high-dimensional biological data, in particular single-cell transcriptomics.

Biological systems, however, are more complex than what gene expression alone can

describe. Increasingly, high-throughput assays measure multiple data modalities within

the same experiment [SS19]. For example, a multimodal assay of bacterial infection

could not only measure the human mRNA within a single cell but also the intracellular

bacterial mRNA, the expression of human protein cell surface markers, and the time

elapsed since initial infection; in this experiment, human mRNA, bacterial mRNA,

human surface proteins, and time can each be thought of as a separate data modality.

Two fundamental (and related) questions when analyzing multimodal data are:

i. How do we weigh the contribution of different modalities when performing data

analysis? While each modality could be given equal weight, in some instances

a researcher may have good reason to trust some modalities over others (e.g.,
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due to different levels of noise), or a researcher may be more interested in one

modality over the others.

ii. How do we reconcile different information across modalities? For example,

a transcriptomic modality might indicate that two cells are similar, while a

proteomic modality might indicate that two cells are different.

Fundamentally, these questions underlie a fundamental problem of synthesizing infor-

mation from multiple data streams into a coherent whole. We therefore refer to this

problem as multimodal synthesis.

This chapter develops a unifying conceptual approach, which we call Schema1

[SHNB20], to multimodal synthesis based on ideas from metric learning and imple-

mented with a quadratic programming formulation. Schema is designed to be highly

general—it works for any modality on which one can define a distance metric and it

extends to arbitrarily many modalities. Since our method is general, we highlight a

breadth of applications, with a special attention to multimodal single-cell analysis.

This chapter ends with an application note describing how multimodal data enables

new insight into the variability in T-cell recognition of foreign antigens, which is a fun-

damental immunological problem. More broadly, because the study of host-pathogen

interactions is inherently multimodal, we anticipate these techniques will serve as a

powerful analytic tool for better understanding the immune system and infectious

disease.

5.1 Glossary

∙ Data modality: A distinct type of (potentially multidimensional) data; for

example, RNA expression, protein expression, and time are different modalities.

∙ Multimodal synthesis: Data analysis that weighs and reconciles the information

contribution of each modality.
1Software available at http://schema.csail.mit.edu and at https://github.com/rs239/

schema
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∙ Quadratic programming: A mathematical optimization problem in which a

quadratic function involving potentially many variables is optimized with respect

to linear constraints on the variables.

∙ Metric learning: Using a set of training examples indicating data points that

are similar or different, a metric learning algorithm learns general patterns of

data similarity or difference.

5.2 Preliminaries

(Preliminaries related to scRNA-seq technologies and standard data analysis, described

in Section 3.2, may also be helpful to read alongside the preliminary information

below.)

5.2.1 Multimodal biological assays

While a detailed primer on modern, multimodal biological assays is left to reference

[SS19], introductory detailis on a few important modalities will be useful for immedi-

ately appreciating the work in this chapter. In the past two chapters, we have been

concerned primarily with a high-dimensional transcriptomic readout of a given cell,

but there are many aspects of biological systems beyond mRNA.

Modern techniques also enable high-dimensional readouts of different aspects of the

central dogma, in particular, proteomics and epigenomics. Many of these techniques

leverage the same general nucleic acid barcoding strategy described in our discussion of

scRNA-seq (Section 3.2). For example, surface protein expression can be measured with

a collection of antibodies, where each antibody is designed to bind a specific surface

protein and where a unique DNA barcode attached to the antibody indicates which

protein it binds [SHS+17]. A popular epigenomic readout is “chromatin accessibility,”

which identifies regions of the genome that are “open” and those that are “closed”;

genes in open regions are accessible to transcription factors and are more likely to be

expressed, while closed regions are generally not expressed. A popular high-throughput
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method called single-cell ATAC-seq, or assay for transposase-accessible chromatin

using sequencing, also uses barcodes to tag DNA fragments that come from open

regions, with a unique barcode for each single cell [CCR+18]. Multimodal data would

then look like, for example, simultaneous measurements of single-cell transcriptomes,

proteomes, and accessibility-defined epigenomes.

Other data modalities of note are space and time. A common strategy that enables

spatial single-cell analysis is to associate a barcode with its two-dimensional (or,

increasingly, three-dimensional) coordinates; e.g., in spatial transcriptomics, barcodes

define both the cellular identity of an mRNA molecule and its location in space

[RSG+19]. Time often corresponds to the physical time elapsed relative to a start

time, e.g., hours since stimulation with an inflammatory molecule. In some instances,

some studies also try to assign a continuous order to a set of samples based on some

property (e.g., based on increasing average expression of a set of genes) and thereby

order the cells according to “pseudotime” [TCG+14]; however, because pseudotime is

often inferred based on the information from a different modality, care must be taken

when reasoning about pseudotime in a multimodal setting.

5.2.2 Metric learning

(A primer on distance metrics, a fundamental concept in metric learning and in this

chapter, is provided in Section 3.2.3.)

The goal of metric learning is to learn an appropriate distance metric for a

problem of interest using information from a set of training examples. Through weak

supervision, these training examples provide information on how the distance metric

behaves. Broadly, consider a distance metric 𝑑 defined according to a set of parameters

Θ. Most metric learning approaches uses a set of paired or tripleted training points of

the form
𝒮 , {(𝑥, 𝑦) : 𝑥 and 𝑦 should be similar},

𝒟 , {(𝑥, 𝑦) : 𝑥 and 𝑦 should be dissimilar}, and

ℛ , {(𝑥, 𝑦, 𝑧) : 𝑥 should be more similar to 𝑦 than to 𝑧}.
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A metric learning algorithm can then be formulated as an optimization algorithm that

finds

Θ* , arg min
Θ

ℒ(Θ;𝒮,𝒟,ℛ)

where ℒ is a loss function that penalizes values of Θ that violate the constraints in 𝒮,

𝒟, and ℛ. Intuitively, rather than use a traditional distance metric like Euclidean

distance directly on a dataset, an algorithm learns a distance metric with respect to a

set of training examples. Metric learning approaches are reviewed in further depth in

reference [BHS14].

5.3 The rise of multimodal biology

5.3.1 Challenges and opportunities

High-throughput assays can now measure diverse cellular properties, including tran-

scriptomic [ZTB+17, HPN+20], epigenomic [CCR+18], proteomic [SHS+17], functional

[Gen19], and spatial [RSG+19] data modalities. Excitingly, single-cell experiments

increasingly profile multiple modalities simultaneously within the same experiment

[SS19], enabling researchers to investigate covariation across modalities; for instance,

researchers can study epigenetic gene regulation by correlating gene expression and

chromatin accessibility across the same population of cells. Importantly, since the

underlying experiments provide us with multimodal readouts, we do not need to

integrate modalities across different populations of cells, which was the problem we

focused on in Chapter 3 [HBB19].

Simultaneous multimodal experiments present a new analytic challenge of syn-

thesizing agreement and disagreement across modalities. For example, how should

one interpret the data if two cells look similar transcriptomically but are different

epigenetically? While some multimodal analysis accommodates only specific modalities

(e.g., special tools for spatial transcriptomics), is aimed at just gene-set estimation

[AAB+20], or is limited only to a pair of modalities [DY20], a general multimodal

analysis paradigm that applies and extends to any data modality holds the promise
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of unifying these observations to inform biological discovery. Importantly, given the

rapid biotechnological progress that continues to enable novel measurement modalities

and easier simultaneous multimodal profiling, such a paradigm should scale to massive

single-cell datasets and be robust to noise and sparsity in the data. Furthermore, the

ability to synthesize more than just two modalities provides deeper insights and more

robust (accurate) inferences, as we demonstrate.

5.3.2 A key insight from metric learning

Before the advent of multimodal single-cell experiments, computational analysis has

focused on variation within a single modality. A critical problem brought about by the

advent of multimodal single-cell experiments is how to reason about information across

modalities in a mutually consistent way. The key insight underlying our approach to

multimodal synthesis, which we call Schema, is that each modality gives us information

about the biological similarity among cells in the dataset, which we can mathematically

interpret as a modality-specific distance metric. For example, in RNA-seq data, cells

are considered biologically similar if their gene expression profiles are shared; this may

be proxied as the Euclidean distance between normalized expression vectors, with

shorter distances corresponding to greater similarity.

To synthesize these distance metrics, we draw inspiration from metric learning

[BHS14]. Given a reference modality, Schema transforms this modality such that its

Euclidean distances agree with a set of supplementary distance metrics from the other

modalities, while also limiting the distortion from the original reference modality.

Analyses on the transformed data will thus incorporate information from all modalities

(Figure 5-1).

In our approach, the researcher starts by designating one of the modalities as the

primary (i.e., reference) modality, consisting of observations that are mapped to points

in a multi-dimensional space. In the analyses presented here, we typically designate

the most informative or high-confidence modality as the primary (i.e., reference), with

RNA-seq being a frequent choice. The coordinates of points in the primary modality

are then transformed using information from secondary modalities. Importantly, the
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Figure 5-1: Schema overview and intuitions.
(A) Schema is designed for assays where multiple modalities are simultaneously measured
for each cell. The researcher designates one high-confidence modality as the primary (i.e.,
reference) and one or more of the remaining modalities as secondary. (B) Each modality’s
observations are mapped to points in a multi-dimensional space, with an associated distance
metric that encapsulates modality-specific similarity between observations. Across the
three graphs, the dashed lines indicate distances between the same pairs of observations.
(C) Schema transforms the primary-modality space by scaling each dimension so that the
Euclidean distances in the transformed space have a higher correlation with corresponding
distances in the secondary modalities; arbitrary distance metrics are allowed for the latter.
Importantly, the transformation is guaranteed to limit the distortion of the original space.
(D) The new point locations represent information synthesized from multiple modalities
into a coherent structure. To compute the transformation, Schema weights features in the
primary modality by their importance to its objective.
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transformation is constrained to limit the distortion to the primary modality below a

researcher-specified threshold. This acts as regularization, preventing Schema from

overfitting to other modalities and ensuring that the high-confidence information

contained in the primary modality is preserved. We found this constraint to be

crucial to successful multimodal syntheses. Without it, an unconstrained alignment

of modalities using, for instance, canonical correlation analysis (a common approach

in statistics for inferring information from cross-covariance matrices), is prone to

overfitting to sample-specific noise, as we show in our results.

To see how Schema’s transformation synthesizes modalities, consider the case

where the primary dataset is gene expression data. While the points close in Euclidean

space are likely to be biologically similar cells with shared expression profiles, longer

Euclidean distances are less informative. Schema’s constrained optimization framework

is designed to preserve the information contained in short-range distances, while

allowing secondary modalities to enhance the informativity of longer distances by

incorporating, for example, cell-type metadata, differences in spatial density, or

developmental relationships. To facilitate the representation of complex relationships

between modalities, arbitrary distance metrics and kernels are supported for secondary

modalities.

Schema’s measure of inter-modality alignment is based on the Pearson correlation of

distances, which is optimized via a quadratic programming algorithm, for which further

details are provided in the following section. An important advantage of Schema’s

algorithm is that it returns coefficients that weight features in the primary dataset

based on their agreement with the secondary modalities (for example, weighting genes

in a primary RNA-seq dataset that best agree with secondary developmental age

information). In this study, we demonstrate this interpretability in our applications of

Schema.
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5.4 Schema: Algorithm details

5.4.1 Problem formulation

Suppose we have 𝑁 observations across 𝑟 datasets X𝑗, 1 ≤ 𝑗 ≤ 𝑟, where X𝑗 = {x(𝑗)
𝑖 :

1 ≤ 𝑖 ≤ 𝑁} contains data (categorical or continuous) for each observation. We

will refer to X1 as the primary dataset and the rest as secondary. Each dataset’s

dimensionality and domain may vary. In particular, we assume X1 is 𝑘-dimensional.

Each dataset X𝑗 should also have some notion of distance between observations

attached to it, which we will denote 𝜌𝑗, so 𝜌𝑗(x(𝑗)
𝑛 , x(𝑗)

𝑚 ) is the distance between the

𝑛th and 𝑚th observations in X𝑗. Since our entire framework below deals in squared

distances, for notational convenience we will let 𝜌𝑗 be the squared distances between

points in 𝐷𝑗; also, we drop the superscript in x(1)
𝑗 when referring to the primary

dataset 𝐷1 and its data.

The goal is to find a transformation Ω such that Ω(X) generates a dataset X* such

that the Euclidean metric 𝜌* on X* “mediates” between the various metrics 𝜌𝑗, each

informed by its respective modality. Note that none of the 𝜌𝑗s need to be Euclidean.

The above setup is quite general, and we now specify the form of the transformation Ω

and the criteria for balancing information from the various metrics. Here, we constrain

Ω to a scaling transform. That is, Ω(X) , X ·diag(𝜔) for some 𝜔 ∈ R𝑘, where diag(𝜔)

denotes a 𝑘 × 𝑘 diagonal matrix with 𝜔 as its diagonal entries. The scaling transform

𝜔 acts as a feature-weighting mechanism: it chooses the features of X1 that align the

datasets best (i.e., 𝜔𝑖 being large means that the 𝑖th coordinate of X1 is important).

We note here that a natural extension would be allowing general linear transformations

for Ω; however, in that context, the fast framework of quadratic programming would

need to be substituted for the much slower framework of semidefinite programming.

Here, our approach to integration between the metrics 𝜌𝑗 is to learn a metric 𝜌*

that aligns well with all of them. Our measure of the alignment between 𝜌* and 𝜌𝑗

is given by the Pearson correlation between pairwise squared distances under two

metrics. Intuitively, maximizing the correlation coefficient encourages distances under
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𝜌* to be large when the corresponding 𝜌𝑗 distances are large and vice versa. This can

be seen from the formula:

Corr(𝜌*, 𝜌𝑗) = Cov [𝜌*, 𝜌𝑗]
(Var [𝜌*] Var [𝜌𝑗])1/2 (5.1)

To deal with multiple modalities, we try to maximize the correlation between 𝜌* and

the distances on each of the metrics, allowing the user to specify how much each

modality should be weighted. We also allow hard constraints, whereby the correlation

between the transformed data and some X𝑗 has to be at least some value. Our goal is

thus to find

max
𝜔∈R𝑘

𝑟∑︁
𝑗=1

𝛾𝑗Corr(𝜌*(𝜔), 𝜌𝑗) (5.2)

subject to Corr(𝜌*(𝜔), 𝜌𝑗) ≥ 𝜑𝑗 for 𝑗 ∈ {1, . . . , 𝑟}

where 𝛾𝑗 and 𝜑𝑗 are hyperparameters that determine the importance of the various

metrics. We have also highlighted that 𝜌* is a function of 𝜔 and is determined entirely

by the solution to Equation (5.2). In the rest of our discussion, we will primarily

refer to 𝜔, rather than 𝜌*. In order to make this optimization feasible, we use the

machinery of quadratic programming.

5.4.2 Setting up the quadratic program

Quadratic programming (QP) is a framework for constrained convex optimization

problems that allows a quadratic term in the objective function and linear constraints.

The general form is:

min
v∈R𝑠

vTQv + qTv (5.3)

subject to

Gv ⪯ h

Av = b
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where Q is a positive semidefinite (psd) matrix, and the notation y ⪯ z means the

inequality is true for each coordinate (i.e., 𝑦𝑖 ≤ 𝑧𝑖 for all 𝑖).

To put our optimization in Equation (5.2) in a QP formulation, we expand the

covariance and variance terms in Equation (5.1), and show that the covariance is

linear in the transformation and variance is quadratic, i.e., we show

Cov(w, 𝜌ℓ) =
(︁

1
|𝒫|aℓ − 1

|𝒫|2 bℓ

)︁
w and Var(w) = wT

(︁
1

|𝒫|S−
1

|𝒫|2 T
)︁

w (5.4)

where w ∈ R𝑘 such that 𝑤𝑖 , 𝜔2
𝑖 , aℓ and bℓ are 𝑘-dimensional vectors that depend

only on Xℓ, S and T are 𝑁 × 𝑘 matrices that depend only on X1, and 𝒫 is the set of

pairs of observations. It is also not hard to show that (|𝒫|−1S− |𝒫|−2T) is psd, as

required. For details of the derivation, see Section B.1.

There is one more difficulty to address. The correlation is the quotient of the

covariance and the standard deviation, and the QP framework cannot handle quotients

or square roots. However, maximizing a quotient can be reframed as maximizing the

numerator (the covariance), minimizing the denominator (the variance), or both.

We now have the ingredients for the QP and can frame the optimization problem

as:

max
w∈R𝑘

𝑟∑︁
𝑗=1

𝛾𝑟Cov(w, 𝜌2
𝑗)− 𝛼Var(𝜌*)− 𝜆‖w− 1‖2 (5.5)

subject to

Cov(w, 𝜌𝑗) ≥ 𝛽𝑗 for 1 ≤ 𝑗 ≤ 𝑟

w ⪰ 0

where 0 and 1 are the all-zeros and all-ones vectors (of the appropriate length)

respectively. Here, 𝜆 is the hyperparameter for regularization of w, which we want

to penalize for being too far away from the all-ones vector (i.e. equal weighting of

all the features). One could also regularize the ℓ2 norm of w alone (i.e. incorporate

−𝜆‖w‖2) which would encourage w to be small; we have found that empirically the

choices yield similar results.
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This program can be solved by standard QP solvers (see Section B.1 for the

full details of how to put the above program in canonical form for a solver), and

the solution w* can be used to transform unseen input data, using 𝜔* ∈ R𝑘, where

𝜔*
𝑖 =
√

𝑤*
𝑖 .

5.4.3 Implementation details

A well-known challenge for machine learning algorithms is interpretability of hyperpa-

rameters. Here, the QP solver needs values for 𝜆, 𝛼, and 𝛽, and specifying these in

a principled way is a challenge for users. Our approach is thus to allow the user to

specify more natural parameters. Specifically, we allow the user to specify minimum

correlations between the pairwise distances in X* and each of the X𝑖; and also the

ratio of the largest value of w to its average value, Formally, the user can specify 𝑠𝑖

such that

Corr(𝜌*, 𝜌𝑖) ≥ 𝑠𝑖 for 1 ≤ 𝑖 ≤ 𝑟

and 𝑞 such that
‖w‖∞

‖w‖1
≤ 𝑞

𝑘

The quantity 𝑞 thus controls the maximum weight that any one feature can take.

While these quantities are not directly optimizable in our QP formulation, we can

access them by varying the hyperparameters 𝜆, 𝛼, and 𝛽.

Intuitively, we note that the choice of 𝜆 controls whether w satisfies 𝑞 and that

𝛼 and 𝛽 control whether the correlation constraint 𝑠 is satisfied. To satisfy these

constraints, we simply grid search across feasible values of 𝜆, 𝛼, and 𝛽. We solve the

QP for fixed values of 𝜆, 𝛼, and 𝛽, keeping only the solutions for which the 𝑠 and

𝑞 constraints are satisfied. Of these, we choose the most optimal. The efficiency of

quadratic programming means that such a grid search is feasible, which gives users

the benefit of more easily interpretable and natural hyperparameters.

We recommend that only 𝑠 (minimum correlation) and not 𝑞 (maximum feature

weight) be used to control Schema’s optimization. The default value of 𝑞 in our

implementation is set to be very high (103) so that it is not a binding constraint in
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most cases. We recommend not changing it and in future versions of Schema we may

reformulate the QP so that 𝑞 is entirely removed. To limit the distortions in the

primary modality, we recommend that 𝑠 be set close to 1: the default setting of 𝑠 is

0.99 and we recommended values ≥ 0.9. When Schema is used for feature selection,

we recommend aggregating results across an ensemble of runs over a range of 𝑠 values

(a wide range is recommended here) to increase the robustness of the results.

Standard linear decompositions, like PCA or NMF are useful as preprocessing

steps for Schema. PCA is a good choice in this regard because it decomposes along

directions of high variance; NMF is slower, but has the advantage that it is designed

for data that is non-negative (e.g., transcript counts) [SOAC+18]. The transform 𝜔

that we generate can be interpreted as a feature-weighting mechanism, identifying

the directions (in PCA) or factors (in NMF) most relevant to aligning the datasets.

The user can also employ a feature-set that is a union of features from two methods

(e.g., PCA and CCA) or those generated by another single-cell analysis method like

MOFA+.

5.4.4 Correlation as an objective

As a measure of the alignment between our transformation and a dataset, correlation

of pairwise distances is a flexible and robust measure. An expanded version of

arguments in this paragraph is available in the appendices. Given a pair of dataset,

the connection between their pairwise-distance Spearman rank correlation and the

neighborhood-structure similarity is deep: if the correlation is greater than 1 − 𝜖,

the fraction of misaligned neighborhood-relationships will be less than 𝑂(
√

𝜖). There

is a manifold interpretation that is also compelling: assuming the high-dimensional

data lie on a low-dimensional manifold, small distances are more accurate than large

distances, so the local neighborhood structure is worth preserving. We can argue

intuitively that optimizing the correlation aims to preserve local neighborhood structure

(Appendix B.2). Using correlation in the objective also affords the flexibility to broaden

Corr(w, 𝜌𝑗) in Equation (5.2) to any function 𝑓𝑗 of the metric: i.e., Corr(w, 𝑓𝑗 ∘ 𝜌𝑗);

this allows us to invert the direction of alignment or more heavily weigh local distances.
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As scRNA-seq dataset sizes reach millions of cells, even calculating the 𝑂(𝑁2) pairwise

distances becomes infeasible. In this case, we sample a subset of the pairwise distances.

As an estimator, sample-correlation is a robust measure. This allows Schema to

perform well even with relatively small subsets; in fact, we only need a sample-size

logarithmic in our desired confidence level to generate high-confidence results (Section

5.4.6). This enables Schema to continue scaling to more massive scRNA-seq datasets.

5.4.5 Connections to linear decomposition methods

Like popular linear decomposition techniques, e.g., principal component analysis

(PCA) or canonical correlation analysis (CCA) [Hot36], Schema runs quickly and

performs only linear transformations of the data. However, there is a gap between

methods like PCA, which explain the variance in a single dataset, and those like

CCA, which focus on explaining the covariance between datasets. The former cannot

integrate information across datasets; the latter de-emphasize structure within a

dataset. The assumption underlying Schema is that both the variance within a dataset

and covariance across datasets carry important biological information. Specifically, our

focus on the importance of preserving neighborhood structure in the primary dataset

explicitly emphasizes the within-dataset relationships we care about.

Schema effectively complements these existing decomposition techniques. As

discussed earlier, one can use a change-of-basis transform as a preprocessing step, so

that the QP-derived scaling transform puts weights on the transformed features in

a way that preserves neighborhood structure. This allows, for example, principled

dimensionality reduction by choosing the heaviest weighted features instead of just an

arbitrary number of principal components.

Our correlation-based alignment approach does parallel kernel CCA [Aka01], a

generalization of CCA where arbitrary distance metrics can be specified when corre-

lating two datasets. While Schema offers similar flexibility for secondary modalities,

it limits the primary modality to Euclidean distances. Introducing this restriction

enhances scalability, interpretability and robustness. Unlike kernel CCA, the opti-

mization in Schema operates on matrices whose size is independent of the dataset’s
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size, enabling it to scale sub-linearly to massive single-cell datasets. Also, the optimal

solution is a scaling transform that can be naturally interpreted as a feature-weight

vector. Perhaps most importantly, Schema differs from kernel CCA in performing

a constrained optimization, thus reducing the distortion of the primary dataset and

ensuring that sparse and low-confidence secondary datasets do not drown out the

primary signal.

5.4.6 Efficiency and approximation

Schema’s efficiency stems from our mathematical formulation. Deviating from standard

metric learning approaches, we formulate the synthesis problem as a quadratic-program

optimization, which can be solved much faster than the semi-definite program formula-

tions typically seen in these approaches. Additionally, while the full Schema algorithm

has quadratic scalability in the number of cells, our formulation allows us to obtain

good approximations with provably bounded error using only a logarithmic subsample

of the dataset, enabling sublinear scalability in the number of cells that will be crucial

as multimodal datasets increase in size.

Our approach is to show that, given a �̂� that has been calculated based on a

random sample, the correlation coefficient between all pairwise distances cannot be

too different than the correlation coefficient computed on the sample. To do this, we

use Chernoff bounds, which bound how far away a random variable can be from its

expectation, on the covariance and variance terms of correlation coefficient given by

Equation (5.1). This gives us a bound on how far away the correlation coefficient on

the whole population can be from the one calculated on the sample.

Let 𝒫 be a random subset of all possible interactions. For now, we assume that

interactions are chosen uniformly at random. Solving the optimization problem in

Equation (5.2) with our sample 𝒫 yields �̂�, an estimator for the true optimal transform

𝜔. We show that �̂� approximates 𝜔 well by showing that the pairwise distances

among cells in X followed by a transformation by �̂� have high correlations with the

secondary datasets as long as �̂� has high correlations on the subsample.

Formally, we will guarantee, for any 𝛼, 𝛿 > 0 and sample size at least |𝒫| =
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𝑂
(︁

log(1/𝛼)
𝛿2

)︁
,

⃒⃒⃒
Corr(ŵ, 𝜌𝑗)− ̂︂Corr(ŵ, 𝜌𝑗)

⃒⃒⃒
< 𝛿 with probability at least 1− 𝛼, (5.6)

where ̂︂Corr( · , · ) is the sample correlation coefficient.

This is a powerful result, made possible by our restriction to scaling transforms,

which are easy to analyze. First of all, note that we only need a sample-size logarithmic

in our desired confidence level in order to get strong concentration, allowing analysis

of massive scRNA-seq datasets.

To begin our analysis, let W ⪰ 0 be a 𝑘× 𝑘 psd matrix. We also assume randomly

draw pairwise distances 𝛿 uniformly from the set of pairs of points in our primary

dataset. Here, we focus on the correlation between the transformed dataset and the

primary dataset (i.e., the one that appears in the constraint in all of our examples).

Analyses for correlations between the transformed data and the secondary datasets

will be similar.

Consider the form of the (population) correlation

Corr(W, 𝜌1) ,

𝐴⏞  ⏟  
E[𝛿TW𝛿𝛿T𝛿]−

𝐵⏞  ⏟  
E[𝛿TW𝛿]

𝐶⏞  ⏟  
E[𝛿T𝛿]

Var1/2(W)⏟  ⏞  
𝐷

Var1/2(𝜌1)⏟  ⏞  
𝐸

. (5.7)

If, for our samples, we can determine confidence intervals of size 2𝜖 for each of the

terms 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, then we can bound the distance away from the correlation on

the entire set of pairwise distances. This distance is maximized when 𝐴 is as small as
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possible, and 𝐵, 𝐶, 𝐷, and 𝐸 is as large as possible. So

̂︂Corr(W, 𝜌1) ≥
(𝐴− 𝜖)− (𝐵 + 𝜖)(𝐶 + 𝜖)

(𝐷 + 𝜖)(𝐸 + 𝜖)

≈ 𝐴−𝐵𝐶 − (1 + 𝐵 + 𝐶)𝜖
𝐷𝐸(1 + 𝜖/𝐷)(1 + 𝜖/𝐸)

≈
(︂

𝐴−𝐵𝐶

𝐷𝐸
− 𝐵 + 𝐶 + 1

𝐷𝐸
𝜖
)︂

(1− 𝜖/𝐷)(1− 𝜖/𝐸)

≈
(︂

𝐴−𝐵𝐶

𝐷𝐸
− 𝐵 + 𝐶 + 1

𝐷𝐸
𝜖
)︂

(1− 𝜖/𝐷 − 𝜖/𝐸)

≈
(︂

𝐴−𝐵𝐶

𝐷𝐸

)︂(︂
1 + 𝐷 + 𝐸

𝐷𝐸
𝜖
)︂
− 𝐵 + 𝐶 + 1

𝐷𝐸
𝜖

= Corr(W, 𝜌1)
(︃

1− Var1/2(W) + Var1/2(𝜌1)
Var1/2(W)Var1/2(𝜌1)

𝜖

)︃
− 1 + E[𝛿TW𝛿] + E[𝛿T𝛿]

Var1/2(W)Var1/2(𝜌1)
𝜖.

Thus, for a desired overall confidence level 𝜂,

𝜖 =
⎛⎝ Var1/2(W)Var1/2(𝜌1)

max
{︁
Var1/2(W) + Var1/2(𝜌1), 1 + E[𝛿TW𝛿] + E[𝛿T𝛿]

}︁
⎞⎠ 𝜂.

To show that we can bound each of the terms 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 we use Hoeffding’s

inequality [Hoe63] to limit how far away the terms can be from their expectations. Let

x1, . . . , x𝑛 be i.i.d. random variables drawn from bounded range [𝑎, 𝑏], let 𝑠 , 𝑏− 𝑎,

and let x̄ , 1
𝑛

∑︀𝑛
𝑖=1 x𝑖. Then Hoeffding’s inequality states

Pr [x̄ − E[x ] ≥ 𝑡] ≤ exp
(︃
−𝑛𝑡2

𝑠2

)︃
.

This can be converted into giving a (one-sided) confidence interval of length 𝑡 by

substituting the probability on the left with a desired confidence level 𝛼, and solving

for 𝑛, which gives

E[x ] ≥ x̄ − 𝑡 with confidence 1− 𝛼 for 𝑛 ≥ 𝑠2 log(1/𝛼)
𝑡2 . (5.8)

We begin by applying the inequality on term 𝐴 , E[𝛿TW𝛿𝛿T𝛿] by bounding

𝛿TW𝛿𝛿T𝛿. It is clear that
⃒⃒⃒
𝛿TW𝛿𝛿T𝛿

⃒⃒⃒
≤
⃒⃒⃒
𝛿TW𝛿

⃒⃒⃒ ⃒⃒⃒
𝛿T𝛿

⃒⃒⃒
, so we can bound each

individually. Note that we can assume without loss of generality that W is diagonal
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here, because otherwise (since it is psd), we could write W = UDUT, where D is

diagonal and U is unitary; setting y , U𝛿 yields
⃒⃒⃒
𝛿TW𝛿

⃒⃒⃒
=
⃒⃒⃒
yTDy

⃒⃒⃒
, and, by unitarity,

‖𝛿‖ = ‖y‖.

Then, by Cauchy-Schwarz,

⃒⃒⃒
𝛿TW𝛿

⃒⃒⃒
≤
⃒⃒⃒∑︁

𝛿𝑖𝑊𝑖𝑖𝛿𝑖

⃒⃒⃒
≤ ‖W‖‖𝛿‖2 (5.9)

where ‖W‖ is the matrix-norm, i.e., ‖W‖ ,
√︁

Tr(WTW). So for a diagonal matrix,

‖W‖2 = ∑︀
𝑊 2

𝑖𝑖. We can bound ‖𝛿‖ ≤ max𝑥𝑖,𝑥𝑗∈X{‖𝑥𝑖 − 𝑥𝑗‖} , diam(X).

Thus,
⃒⃒⃒
𝛿TW𝛿𝛿T𝛿

⃒⃒⃒
≤ ‖W‖diam4(X).

To get a confidence interval of size 𝜖, we plug into Equation (5.8), so we require

𝑁 ≥ ‖W‖diam8(X) log(1/𝛼)
𝜖2 .

Note that the diameter is an extremely coarse bound for the above bound. Morally,

one can replace “diameter” with “variance”, and the user has control over ‖W‖ by

choice of hyperparameters.

The same analysis can be used for terms 𝐵 and 𝐶 in Equation (5.7), but the

dependency on the diameter is not as bad for those terms, so term 𝐴 is the worst case.

Now, we consider the variance terms 𝐷 and 𝐸. For term 𝐸, note that

Var(𝛿T𝛿) = E[(𝛿T𝛿 − E[𝛿T𝛿])2].

Again,
⃒⃒⃒
𝛿T𝛿 − E[𝛿T𝛿]

⃒⃒⃒
is bounded by the maximum squared distance in the dataset,

i.e., diam2(X), so we can use the Hoeffding inequality from above in the same way.

And term 𝐷 takes the same form as above, but with 𝛿TW𝛿 instead of 𝛿T𝛿. As

noted in Equation (5.9), this is a bounded random variable as well, but here with

bound ‖W‖2diam4(X).

Thus, in order to get a uniform confidence interval across all the terms, we require

𝑁 ≥ ‖W‖
2diam8(X) log(1/𝛼)

𝜖2 . (5.10)
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5.5 Empirical performance and generality

When evaluating the performance of Schema, we wanted to demonstrate not only its

ability to reveal biological insights but also its generality across many modalities and

analytic scenarios. In this section, we apply Schema across to a host of problems in

single-cell genomics and then, in our application note, we apply it in a particularly

creative way to immune sequence variation data in the following section.

5.5.1 Inferring cell types

We first sought to demonstrate the value of Schema by applying it to the increasingly

common and broadly interesting setting in which researchers simultaneously profile

the transcriptome and chromatin accessibility of single cells [CCR+18]. Focusing on

cell type inference, a key analytic step in many single-cell studies, we applied Schema

on a dataset of 11,296 mouse kidney cells with simultaneously assayed RNA-seq and

ATAC-seq modalities and found that synthesizing the two modalities produces more

accurate results than using either modality in isolation (Figure 5-2F).

With RNA-seq as the primary (i.e., reference) dataset and ATAC-seq as the

secondary, we applied Schema to compute a transformed dataset in which pairwise

RNA-seq distances among cells are better aligned with distances in the ATAC-seq peak

counts data while retaining a very high correlation with primary RNA-seq distances

(≥ 99%). We then clustered the cells by performing Leiden community detection

[TWvE19] (a recently introduced modification of the Louvain algorithm [BGLL08])

on the transformed dataset and compared these clustering assignments to the Leiden

clusters obtained without Schema transformation. We used the expertly defined-labels

from Cao et al. [CCR+18] as the ground truth cluster labels and quantified clustering

agreement with the adjusted Rand index (ARI) [Ran71], which has a higher value if

there is greater agreement between two sets of labels.

Leiden clustering on Schema-transformed data better agrees with the ground

truth annotations of cell types (ARI of 0.46) than the corresponding Leiden cluster
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Figure 5-2: Clustering of synthesis of RNA-seq and ATAC-seq.
(A) Leiden clustering of cellular profiles results in greater ARI agreement with ground-truth
cell type labels when featurizing cells by RNA-seq profiles alone compared to featurizing
with ATAC-seq profiles alone. ATAC-seq does provide relatively more information when
distinguishing PT cells. (B) Ground truth labels from Cao et al. (C, D) To assess the
ground-truth accuracy of Leiden clustering, we assigned each cluster to the cell type most
frequently seen in the ground-truth labels of its members. Clusters where labels are more
mixed will thus have lower accuracy. Clustering on RNA-seq profiles alone results in many
PT cells assigned to such clusters. (E) Schema synthesis of RNA- and ATAC-seq features,
followed by Leiden clustering, results in significantly greater concordance with ground-truth
cell types when compared to Leiden clustering on the RNA-seq features alone (One-sided
binomial test, 𝑃 = 6.7 × 10−15). (F) ARIs of clusters from synthesized data are higher,
especially for PT cells. Synthesizing the modalities using canonical correlation analysis
(CCA) or a “pseudocell” approach described in the original study results in lower ARI scores.
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labels using just RNA-seq or ATAC-seq datasets individually (ARIs of 0.40 and 0.04,

respectively, Figure 5-2F). Here, Schema facilitated a biologically informative synthesis

despite limitations of data quality or sparsity in the ATAC-seq secondary modality. We

observed that using only ATAC-seq data to identify cell types leads to poor concordance

with ground-truth labels, likely because of the sparsity of this modality (for example,

only 0.28% of the peaks were reported to have non-zero counts, on average); this

sparsity was also noted by the original study authors. We note that an unconstrained

synthesis of the modalities using canonical correlation analysis (CCA) resulted in

an ARI of 0.31, lower than what is achieved by using just the RNA-seq modality

(Figure 5-2F). However, since Schema constrains the ATAC-seq modality’s influence

when synthesizing it with RNA-seq data, we could extract additional signal provided

by ATAC-seq while preserving the rich information provided by the transcriptomic

modality. We also evaluated a heuristic approach described in the original study:

group cells into small clusters (“pseudocells”) by RNA-seq similarity and compute an

average ATAC-seq profile per pseudocell, using these profiles for the final clustering.

This approach also underperformed Schema (ARI of 0.20).

To further analyze why combining modalities improves cell type clustering, we

obtained Leiden cluster labels using either the RNA-seq or the ATAC-seq modalities

individually. We then evaluated these cluster assignments by iterating over subsets of

the data, each set covering only a pair of ground-truth cell types, and used the ARI

score to quantify how well the cluster labels distinguished between the two cell types.

While RNA-seq clusters have higher ARI scores overall, indicating a greater ability to

differentiate cell types, ATAC-seq does display a relative strength in distinguishing

proximal tubular (PT) cells from other cell types (Figure 5-2A). PT cells are the most

numerous cells in the kidney dataset and many of the misclassifications in the RNA-seq

based clustering relate to these cells (Figure 5-2B,C,D). When the two modalities are

synthesized with Schema, a significant number of these PT cells are correctly assigned

to their ground truth cell types (one-sided binomial 𝑃 = 6.7× 10−15), leading to an

overall improvement in clustering quality (Figure 5-2E).
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5.5.2 Developmental differential expression

Aside from cell type inference, another important single-cell analysis task that stands

to benefit from multimodal synthesis is the identification of differentially expressed

marker genes. To illustrate how, we explored a mouse gastrulation single-cell dataset

[PSGG+19], consisting of 16,152 epiblast cells split over three developmental timepoints

(E6.5, E7.0, and E7.25) and with two replicates at each timepoint, resulting in six

distinct batches (Figure 5-3A). Applying Schema to this dataset, we sought to identify

differentially expressed genes that are consistent with the developmental time course

while being robust to batch effects between the replicate pairs. To perform differential

expression analysis with Schema, RNA-seq data should be used as the primary

modality, while the distance metrics of the secondary modalities specify how cells

should be differentiated from each other. Here, we used batch and developmental-age

information as secondary modalities, configuring Schema to maximize RNA-seq data’s

agreement with developmental age and minimize its agreement with batch information.

We weighted these co-objectives equally; results were robust to ±25% variations in

these weights. We used RNA-seq data as the primary dataset, representing it by its

top ten principal components.

We evaluated Schema alongside MOFA+, a recently introduced single-cell multi-

modal analysis technique [AAB+20]. Schema and MOFA+ approach the data synthesis

problem from complementary perspectives: while the emphasis in Schema is to identify

important features of the primary dataset and its corresponding transformation that

reflects a synthesis of the various modalities, MOFA+ focuses on de novo identifica-

tion of features that explain the covariation across modalities. In Argelaguet et al.’s

MOFA+ analysis of this dataset, the authors identified 10 factors that capture similar

information to the top principal components. To identify differentially expressed genes

with MOFA+, we selected the top genes from two factors (MOFA1 and MOFA4)

reported by Argelaguet et al. as capturing developmental variation.

In addition to accounting for batch effects, we could also configure Schema to

reduce the weight of transient changes in expression, thus identifying genes with
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Figure 5-3: Developmental differential expression.
(A) We obtained a dataset of developing mouse epiblast cells spanning three timepoints, with
two experimental batches per timepoint. PCA and MOFA+ components show significant
within-timepoint variability. In this panel, loadings of each principal component (PC)
were normalized to zero mean and unit standard deviation. (B, C) Weights computed
by Schema after accounting for batch effects and developmental age with two different
distance metrics, one that provides Schema with temporal-ordering and another that does
not provide this order. When incorporating order information, Schema down-weights PC5,
which shows substantial within-timepoint, batch-related variability, and up-weights PC9,
which has higher correlation with time. Correspondingly identified PCs reflect the effect
of these metric. (D, E) Schema identifies genes with monotonically changing expression.
For each gene identified by Schema or MOFA+, we regressed its expression (normalized to
zero mean and unit standard deviation) against developmental time, encoding stages E6.25,
E7.0 and E7.25 as timepoints 1, 2 and 3, respectively. Consistent with stage-dependent
monotonicity in expression, the fitted slopes for Schema genes were significantly different
from zero (two-sided 𝑡-test, 𝑃 = 3.8 × 10−6); this was not true of MOFA+ (𝑃 = 0.77).
(F) Schema has stronger overlap with batch-effect adjusted benchmark sets of differentially
expressed genes (hypergeometric test with Bonferroni correction, 𝑃 = 5.9× 10−12 for the
benchmark set of size 188).
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monotonically changing expression along the time course (Figure 5-3B,C,D). To do so,

we encoded developmental age as a distance metric by specifying zero distance between

cells at the same timepoint, unit distance between directly adjacent timepoints, and an

additive sum of the unit distances across more separated timepoints. As a control, we

also tested a metric that did distinguish between the stages but did not increase in time,

finding that the highest-weighted feature (PC5) in that case was indeed non-monotonic

(Figure 5-3B,C). To encode batch effect as a distance metric, we specified zero distance

between cells in the same replicate and unit distance otherwise. We estimated the set

of differentially expressed genes as the top-loading genes of the principal components

up-weighted by Schema. Seeking to evaluate if the Schema or MOFA+ genes did

show time-dependent monotonicity in expression, we linearly regressed each identified

gene’s normalized expression against an ordering of the three developmental stages.

We found that the Schema genes corresponded to regression coefficients significantly

different from zero (Figure 5-3D,E), consistent with time-dependent monotonicity

(two-sided 𝑡-test 𝑃 = 3.83× 10−6); this was not true of MOFA+ (𝑃 = 0.77).

Next, we evaluated the batch-effect robustness of Schema and MOFA+ gene sets.

Our configuration of Schema balances batch-effect considerations against differential

expression considerations. For instance, introducing the batch-effect objective in

Schema reduces the weights associated with the first and second principal components

(PC1 and PC2), which show substantial within-timepoint batch-effect variations

without a compensating time-dependent monotonicity, by 11% and 17%, respectively.

In comparison, explicitly up-weighting “good” variation or down-weighting “bad”

variation is difficult when using MOFA+. To systematically evaluate the batch-effect

robustness of Schema and MOFA+ gene sets, we constructed benchmark sets of

differentially expressed genes by applying a standard statistical test, adjusting for

batch effects by exploiting the combinatorial structure of this dataset. Specifically, we

aggregated over computations that each considered only one replicate per timepoint.

We then measured the overlap of Schema and MOFA+ gene sets with these

benchmarks (Figure 5-3F) and found that, compared to MOFA+, the Schema gene set

shows a markedly higher overlap with the benchmarks that is statistically significant
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(Bonferroni-corrected hypergeometric 𝑃 = 5.9× 10−12 for the benchmark set of size

188). Schema allows us to express the intuition that variation attributable to batch

effects should be ignored while variation attributable to developmental age should be

highlighted.

5.5.3 Spatial differential expression

We performed some preliminary analysis with Schema of spatial transcriptomics data

[RSG+19], another increasingly important multimodal scenario, here encompassing

gene expression, cell-type labels, and spatial location. We obtained Slide-seq data

containing 62,468 transcriptomes that are spatially located in the mouse cerebellum.

In the original study, these transcriptomes were assigned to putative cell types (noting

that these transcriptomes are not guaranteed to be single-cell), and thus cell types are

located throughout the tissue [RSG+19, SMW+18]. Interestingly, we observed spatial

density variation for certain cell types; specifically, transcriptomes corresponding to

granule cell types are observed in regions of both high and low spatial density (Figure

5-4B). We therefore reasoned that we could use Schema to identify genes that are

differentially expressed in granule cells in high density areas versus granule cells in

low density areas.

Schema is well suited to the constrained optimization setting of this problem: we

want to optimize for genes expressed specifically in granule cells and in dense regions,

but not all granule cells are in dense regions and not all cells in dense regions are

granule cells. We specified RNA-seq data as the primary modality and spatial location

and cell-type labels as the secondary modalities, with spatial density controlled by

a distance metric that scores two cells as similar if their spatial neighborhoods have

matching densities. The densely-packed granule cell genes identified by Schema are

strongly enriched for GO terms and REACTOME pathways [FJM+18] related to

signal transmission, e.g., ion-channel transport (REACTOME FDR 𝑞 = 1.82× 10−3),

ion transport (GO:0022853, FDR 𝑞 = 1.8× 10−17), and electron transfer (GO:009055,

FDR 𝑞 = 2.87× 10−11). This finding suggests potentially greater neurotransmission

activity within these cells.
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Figure 5-4: Spatial differential expression.
(A) Rodriques et al. [RSG+19] simultaneously assayed spatial and transcriptomic modalities
of cells in mouse cerebellum tissue (here, data from puck 180430_1 is shown). In addition,
they labeled beads (each corresponding to a cell) with putative cell-type by comparing
gene expression profiles with known cell-type markers. (B) Spatial distribution of the
most common cell types in the tissue section: granule cells, Purkinje cells, interneurons,
and oligodendrocytes. Note the variation in spatial density for granule cells. (C) We
quantified this spatial density variation by computing a two-dimensional Gaussian-kernel
density estimate, with cells in dense regions assigned a higher score. (D) Schema is able to
identify a ranked set of genes that are highly expressed only in densely-packed granule cells.
The four figures here show mutually disjoint sets of cells: granule cells with high expression
of the gene set, granule cells with low expression of the gene set, other cells with high
expression, and other cells with low expression. Here, a cell is said to have high expression
of the gene set if the cell’s loading on this gene set ranks in the top quartile. (E) Evaluation
of the stability of gene rankings computed by Schema, canonical correlation analysis (CCA),
SpatialDE and Trendsceek on three replicates sourced from mouse cerebellum tissue. The
black points indicate the Spearman rank correlation of gene scores across pairs of replicates.
The grey points show the cross-replicate gene-rank correlation of the intermediate results.
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We sought to benchmark our method on spatial transcriptomics data by comparing

the robustness of Schema’s results with those based on canonical correlation analysis

(CCA) [Hot36] and with two methods specifically intended for spatial transcriptomics,

namely SpatialDE [STS18] and Trendsceek [EJS18].

An important point is that CCA, SpatialDE, and Trendsceek are less general

than Schema and therefore require non-trivial modifications to approximately match

Schema’s capabilities. CCA is limited in that it can correlate only two datasets at a

time, whereas here we seek to synthesize three modalities: gene expression, cell-type

labels, and spatial density. We adapted CCA by correlating two modalities at a

time and combining the sub-results. In the case of SpatialDE and Trendsceek, their

unsupervised formulation does not allow the researcher to specify the spatial features

to pick out (we focus on spatial density variation). To adapt these, we collated their

results from separate runs on granule and non-granule cells. Notably, the ad hoc

modifications required to extend existing methods beyond two modalities underscore

the benefit of Schema’s general analytic formulation that can be naturally extended

to incorporate any number of additional data modalities.

To evaluate the stability and quality of spatial transcriptomic analysis across

different techniques, we analyzed three replicate samples of mouse cerebellum tissue

(coronal sections prepared on the same day; pucks 180430_1, 180430_5, 180430_6)

and compared the results returned separately for each replicate. While both Schema

and CCA identify a gene set that ostensibly corresponds to granule cells in dense

regions (Figure 5-4D), the gene rankings computed by Schema are more consistently

preserved between pairs of replicates than those computed by CCA, with the median

Spearman rank correlation between sample pairs being 0.68 (Schema) versus 0.46

(CCA). Likewise, with Schema, 69.1% of enriched GO biological-process terms are

observed in all three samples and 78% are in at least two samples. The corresponding

numbers for CCA were 35.7% and 59.5%, respectively (FDR 𝑞 < 0.001 in all cases).

We therefore find that Schema’s results are substantially more robust across the three

replicates. We also find that Schema, in not seeking an unconstrained optimum, is

more robust to overfitting to sample-specific noise than CCA (Figure 5-4E).
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When performing the same gene list robustness analysis with SpatialDE and Trend-

sceek, while also looking at the stability of their gene rankings specific to the precursor

cell type (gray points in Figure 5-4E), we found that SpatialDE produced slightly

more stable gene rankings than Trendsceek, with median sample-pair correlations of

0.089 and −0.002, respectively, but these were still much lower than those for Schema.

We also observed that SpatialDE and Trendsceek had substantially longer running

times and we performed our analysis of the two methods on subsets of the overall

dataset (see Section 5.5.6). These results demonstrate the robustness and efficiency of

Schema’s supervised approach.

5.5.4 Epigenomics informs expression

We next sought to demonstrate the flexibility of Schema to analyses beyond cell

type clustering and differential expression analysis. We turned to a study that

simultaneously profiled gene expression and chromatin accessibility from 3,260 human

A549 cells [CCR+18]. Using Schema, we characterized the genomic regions (relative

to a gene’s locus) where chromatin accessibility strongly correlates with the gene’s

expression variability, i.e., regions whose accessibility is differentially important for

highly variable genes. Schema assigned the highest weight to features associated with

chromatin accessibility over long ranges, i.e., ~10 megabase (Mb) regions (Figure

5-5C). Searching for an explanation, we investigated if highly variable genes share

genomic neighborhoods and mapped gene loci to topologically associated domains32

(TAD) of this cell type. We found strong statistical evidence that highly variable genes

are indeed clustered together in TAD compartments (Figure 5-5D), supporting our

findings from Schema and suggesting an epigenetic role in controlling gene expression

variability.

This demonstration illustrates how Schema’s generality facilitates innovative explo-

rations of multimodal data beyond, for example, cell type clustering or differential gene

expression analysis. Here we chose genes to be the unit of observation, allowing us to

design a primary dataset that links each gene’s RNA-seq measurements to ATAC-seq

peak counts in its neighborhood. Specifically, each primary feature corresponds to a
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Figure 5-5: Highly variable genes are related to genome topology.
(A) We investigated expression variability in the context of chromatin accessibility, evaluating
if highly variable genes display differential accessibility around their genomic loci. With genes
as the units of observation, we used Schema to analyze simultaneously assayed ATAC-seq and
RNA-seq data [CCR+18]. The primary modality captured peak counts while the secondary
modality corresponded to gene expression profiles, normalized and sorted so that short
Euclidean distances correspond to similar levels of expression variability. (B) Each feature
of the primary modality corresponded to a genomic region near the gene, scoring how its
expression covaries with peak counts in the region. The feature’s range is defined by a
Gaussian radial basis function, of the form exp{−(𝑑/𝜆)2}, that weighs the contribution of
a peak by its distance 𝑑 from the gene. We defined features upstream and downstream of
the gene’s transcription start and end sites, respectively. (C) Schema identifies long-range
features (~10 Mb) as being the most relevant in correlating chromatin accessibility with
expression variability. (D) To further explore this result, we investigated the organization of
highly variable genes in topologically associating domains (TADs). We divided genes into
quartiles by expression variability. For each quartile, we plotted the fraction of genes that
are in TADs containing 𝑘 or more genes from the set (𝑘 is on the 𝑥-axis). The gray region
and the black line represent the 95% range and median, respectively, of random baselines
generated by shuffling genes between TADs.
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genomic window relative to the gene’s locus and is scored as the sum over all cells of

peak counts in the window, each cell weighted by the gene’s expression. We created

multiple features, each corresponding to a specific window size and placement (Figure

5-5B). Reusing RNA-seq as the secondary modality, we designed a distance metric

that captures similarity in expression variability: for each gene, we normalize and

sort the vector of its expression values across cells so that identical vectors imply an

identical pattern of gene expression variation. We used Schema as a feature-selection

mechanism, where up-weighted features correspond to genomic windows important

for explaining gene expression variability.

We then benchmarked this feature selection approach against a ridge regression

where features of the primary modality were specified as the explanatory variables

and the standard deviation of each gene’s expression (summarized from the secondary

modality) was the response variable. Both analyses agreed in assigning the highest

weights to features corresponding to long-range (~10 Mb) genomic regions upstream

and downstream of a gene. However, Schema’s regularization mechanism helps produce

more consistent and stable feature weights, as evaluated on subsets of genes grouped

by strand orientation or chromosome (Figure 5-5C).

To further investigate the connection between chromatin accessibility and gene

expression variability, we analyzed gene membership in TADs, hypothesizing that gene

expression variability is likely to be influenced by the organization of TADs in the

genome. We analyzed the clustering of highly variable genes (HVGs) on TADs within

A549 cells (inferred from Hi-C data, ENCODE accession ENCFF336WPU) and found

that HVGs are indeed more likely to be clustered together in TADs (Figure 5-5D). By

two independent permutation-based tests, we were able to reject the null hypothesis

that genes in the top quartile of variability are dispersed randomly across TADs

(𝑃 < 0.004 in both cases, with Bonferroni correction). Schema-based feature weighting

therefore revealed an association between genomic architecture and gene variability.

Notably, these results show how synthesis of multimodal RNA- and ATAC-seq data

not only benefits standard analyses like cell type inference, but also enables creative

and diverse exploratory data analysis.
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Figure 5-6: Incorporating temporal metadata into visualizations.
UMAP visualization of RNA-seq profiles of D. melanogaster neurons at 0, 1, 3, 6, 9,
15, 30, and 50 days after birth, representing the full range of a typical D. melanogaster
lifespan. (A) The transcriptomic data (primary modality) was transformed to a limited
extent using Schema by correlating it with the temporal metadata (secondary modality)
associated with each cell. (B) UMAP visualization of the original transcriptomic data. (C,
D, E) Visualizations of transformed data with varying levels of distortion. As the value of
the minimum correlation constraint 𝑠 approaches 1, the distortion of the original data is
progressively limited. Decreasing 𝑠 results in a UMAP structure that increasingly reflects
an age-related trajectory.

5.5.5 Visualization

Another powerful use of Schema is to infuse information from other modalities into

RNA-seq data while limiting the data’s distortion so that it remains amenable to a

range of standard RNA-seq analyses. Having demonstrated this capability for cell type

inference, we now explore another use case. Since widely-used visualization methods

such as UMAP [MH18] do not allow a researcher to specify aspects of the underlying

data that they wish to highlight in the visualization, we sought to apply Schema to

improve the informativity of single-cell visualizations.

We leveraged Schema to highlight the age-related structure in an RNA-seq dataset

of Drosophila melanogaster neurons [DJK+18] profiled across a full lifespan, while

still preserving most of the original transcriptomic structure. We chose RNA-seq as

the primary modality and temporal metadata as the secondary modality, configuring

Schema to maximize the correlation between distances in the two while constraining

the distortions induced by the transformation. We then visualized the transformed

result in two dimensions with UMAP.

While some age-related structure does exist in the original data, Schema-based
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transformation of the data more clearly displays a cellular trajectory consistent with

biological age (Figure 5-6). Importantly, accessing this structure required only a limited

distortion of the data, corresponding to relatively high values (≥ 0.99) of the minimum

correlation constraint (Figure 5-6C). To verify that Schema was able to infuse additional

age-related structure into RNA-seq data, we performed a diffusion pseudotime analysis

of the original and transformed datasets and found that the Spearman rank correlation

between this pseudotime estimate and the ground-truth cell age increased from 0.365 in

the original data to 0.405 and 0.436 in the transformations corresponding to minimum

correlation constraints of 0.999 and 0.99, respectively. In contrast, an unconstrained

synthesis by CCA leads to a lower correlation (0.059) than seen in the original RNA-seq

dataset. Schema thus enables visualizations that synthesize biological metadata, while

preserving much of the distance-related correlation structure of the original primary

dataset. With Schema, researchers can therefore investigate single-cell datasets that

exhibit strong latent structure (e.g., due to secondary metadata like age or spatial

location), needing only a small transformation to make that structure visible.

5.5.6 Scalability

We have designed Schema to process large single-cell datasets efficiently, with modest

memory requirements. On average, Schema processes data from a Slide-seq replicate

[RSG+19] (three modalities, 20,823 transcriptomes and 17,607 genes) in 34 minutes,

requiring less than 5 GB of RAM in the process. The runtime includes the entire set

of Schema sub-runs performed over an ensemble of parameters, as well as the time

taken for the pre-processing transformation.

Schema’s efficiency stems from our novel mathematical formulation. Deviating

from standard metric learning approaches, we formulate the synthesis problem as a

quadratic-program optimization, which can be solved much faster than the semi-definite

program formulations typically seen in these approaches. Additionally, while the full

Schema algorithm has quadratic scalability in the number of cells, our formulation

allows us to obtain good approximations with provably bounded error using only a

logarithmic subsample of the dataset (Section 5.4.6), enabling sublinear scalability in
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the number of cells (with small amounts of error) that will be crucial as multimodal

datasets increase in size.

5.6 Application note: Synthesizing immune

sensing

To showcase how Schema can reveal insight into a fundamental immunological problem,

as well as a domain beyond gene expression, we turn to an exciting multimodal setting

in which the sequence of a T-cell receptor (TCR) can be linked to its antigens at

massively parallel, single-cell resolution. T cells are an crucial part of adaptive, cell-

mediated immunity (Section 2.1.4). When foreign proteins, like those from an infecting

virus or bacterium, enter a human cell, those proteins are digested into smaller pieces

called peptides; then, the cell has machinery that can the expose those peptides on its

surface using a set of proteins called the major histocompatibility complex (MHC).

Ideally, T cells can recognize a peptide-MHC (pMHC) antigen that is not from the host

and become “activated,” which signals to the immune system that the cell expressing

the foreign protein should be killed, thereby preventing pathogens from using that

cell to replicate. Each T cell has a unique TCR sequence that recognizes a specific

pMHC. To sense different foreign antigens, TCR sequences vary immensely across T

cells; however, much is still unknown about how the TCR sequence affects antigen

binding [MW16].

We therefore integrated multimodal proteomic and functional data with Schema to

better understand how sequence diversity in the hypervariable CDR3 segments of TCRs

relates to pMHC binding. We analyzed a single-cell dataset [Gen19] that recorded

clonotype data for 62,858 T cells and their binding specificities against a panel of 44

pMHCs that come from different viruses [cytomegalovirus (CMV), Epstein-Barr virus

(EBV), influenza, human T-cell lymphotropic virus (HTLV), human papillomavirus

(HPV), and HIV] and known cancer antigens.

We used Schema’s feature-selection capabilities to estimate the sequence locations
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and residues in the complementarity-determining region (CDR) 3 segment of 𝛼 and

𝛽 chains important to binding specificity. To do so, we ran Schema with the CDR3

peptide sequence data as the primary modality and the binding specificity information

as the secondary modality, performing separate runs for 𝛼 and 𝛽 chains. In the

primary modality, each feature corresponds to a CDR3 sequence location and we

used the Hamming distance metric [Ham50] between observations (i.e., the number of

locations at which two sequences differ). In the secondary modalities, we used the

Euclidean distance between the binary vector indicating the antigen(s) that bound a

given sequence, with 1 indicating binding and 0 otherwise.

Schema assigned low feature weights to the location segments 3–9 in 𝛼-chain CDR3

and to and 5–12 in 𝛽-chain CDR3. This suggests that those regions can tolerate

greater sequence variability while preserving binding specificity. To evaluate these

results, we compared them to estimates based on CDR3 sequence motifs sourced from

VDJdb [SBZ+18], a curated database of TCRs with known antigen specificities. In

VDJdb, TCR motifs are scored using an adaptation of the relative-entropy algorithm

[MMWC12] that assigns a score for each location and amino acid in the motif. We

aggregated these scores into a per-location score, allowing a comparison with Schema’s

feature weights (Figure 5-7). While the comparison at locations 11–20 is somewhat

complicated by VDJdb having fewer long sequences, there is agreement between Schema

and VDJdb estimates on locations 1–10 where both datasets have good coverage

(Spearman rank correlations of 0.38 and 0.92 for the 𝛼 and 𝛽 chains, respectively;

Figure 5-7C-D). We note that weight estimation using Schema required only a single

multimodal dataset; in contrast, extensive data collection, curation, and algorithmic

efforts underlie the VDJdb annotations.

Next, we used Schema to investigate the selection pressure on the actual amino acid

values at the variability-prone locations identified above. We first selected a sequence

location (e.g., location 4 in 𝛼 chain CDR3) and constructed a primary modality where

each cell was represented by a one-hot encoding of the amino acid at the location (i.e.,

a 20-dimensional boolean vector). The secondary modality was binding specificity

information, as before. We performed separate Schema runs for each such location of
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Figure 5-7: Sequence affect on TCR binding specificity.
(A) We analyzed a multi-modal dataset to understand how TCR binding specificity relates
to the sequence variability in the CDR3 regions of its 𝛼 and 𝛽 chains. The primary modality
consisted of CDR3 peptide sequence data which we correlated with the secondary modality,
the binding specificity of the cell against a panel of 44 antigens. (B) We performed two
Schema analyses: (B.1) To infer location-wise selection pressure, the feature vector of
the primary modality was the CDR3 sequence, with the Hamming distance between two
sequences as the metric. (B.2) The second analysis aimed to understand amino acid selection
pressure at locations that showed high variability. For each such location, a one-hot encoding
of the amino acid at the location was used as the feature vector. (C, D) Schema identifies
sequence locations 3–9 (𝛼 chain) and 5–12 (𝛽 chain) as regions where sequences can vary
with a modest impact on binding specificity. We compared Schema’s scores to statistics
computed from motifs in VDJdb [SBZ+18]. (E) Schema and VDJdb agree on the relative
importance of amino acids in preserving binding specificity (Spearman correlation of 0.74,
two-sided 𝑡-test 𝑃 = 2× 10−4).
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interest on the two chains, computing the final score for each amino acid as the average

score across these runs. These scores are in good agreement with the corresponding

amino acid scores aggregated from the VDJdb database (Spearman rank correlation

= 0.74, two-sided 𝑡-test 𝑃 = 2× 10−4).

As T-cell engineering improves and designing a custom TCR for an antigen of

interest becomes an increasingly viable therapeutic strategy [DFGH+17], it is also

important to focus on the the key sequence locations and amino acids that govern

antigen binding. The location and amino acid preferences estimated by Schema

in this application note can be used directly in any algorithm for computational

design of epitope-specific CDR3 sequences to bias search towards more functionally

plausible candidate sequences. Our analysis shows that, with Schema, it is possible to

recover from a single experiment fundamental patterns of T-cell sensing that had only

previously been available by combining information across many studies and labs.
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Chapter 6

Fighting Disease I: Discovery

There is a balm in Gilead

To make the wounded whole;

There is a balm in Gilead

To heal the sin-sick soul!

—African-American spiritual (19th century)

Ultimately, to end disease, we need the tools to fight it. Antivirals and antibiotics can

help manage or cure disease, whereas, through a miracle of modern medicine, vaccines

enable disease prevention. Perhaps the most direct contribution that algorithms can

make to therapeutic discovery is to actually propose new drugs or to repurpose existing

drugs for new problems.

We now shift from trying to understand infectious disease to leveraging this

knowledge to fight disease. In this chapter and the next, we focus on the problem of

drug-target interaction (DTI) prediction [YAG+08, HCB18]. The concept is simple:

a supervised machine learning algorithm, given information about a drug (e.g., a

small-molecule antibiotic) and a biological target (e.g., a protein critical for bacterial

replication), is trained to predict if the drug-target pair interacts. Traditionally,

DTI prediction refers to a binary classification problem (i.e., the algorithm predicts

a positive or negative interaction), but more general variants involving multiclass
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classification (e.g., predicting different kinds of interaction, like inhibition or induction)

or involving regression (e.g., predicting a continuous binding score) also exist.

DTI prediction can be used to repurpose existing drugs for a target of interest or to

find new targets (or side effects) of an existing drug. A DTI prediction algorithm can

also be used to evaluate the properties of a new drug. The most immediate application

of DTI prediction therefore is drug discovery.

In this chapter, we first review some of the initial approaches to DTI prediction and

lay out their problems, including poor scalability to large pharmacological datasets.

We then describe a more efficient approach to DTI prediction based on neural networks

that not only outperforms these initial approaches but also enables efficient training

and prediction [HCB18]. Our approach is so efficient that it has a practical runtime

even when implemented in a privacy-preserving secure computation framework, which

reveals no information about the underlying data to the computing parties but also

incurs a large cryptographic computational overhead1.

However, when we evaluated this approach in a practical setting to suggest new

interactions that we then experimentally validated, we observed a much higher false

positive rate than anticipated. The experiments and results presented in this chapter,

therefore, set up the work in the subsequent chapter that also looks for DTIs with

machine learning, but which does so in a way that improves the certainty and the

quality of new predictions. These two chapters are therefore meant to be read together,

with the background and the methods described in this chapter primarily meant to

motivate the next. We also defer a practical infectious disease-related application note

to the end of the next chapter.

6.1 Glossary

∙ Drug-target interaction (DTI) prediction: Given a drug and a target, predict

whether they interact or not (and, optionally, what kind of interaction and how

1Software for the work described in this chapter is available at https://github.com/brianhie/
secure-dti.
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strong the interaction is).

∙ Recommender system: An algorithm that recommends products to users (e.g.,

recommending Netflix movies to viewers).

∙ Sparsity: Describes the amount of zero values in a matrix, where more zero

values indicates greater sparsity.

∙ Matrix factorization: An algorithm that decomposes a matrix into the product

of two lower dimensionality matrices; useful to uncover potential low-dimensional

structure in the initial matrix.

∙ Network diffusion: An algorithm that intuitively simulates the flow or “diffusion”

of information through a network, where edge weights and the network topology

dictate how much information flows to each node.

6.2 Preliminaries

In this section, we summarize some of the earliest machine learning approaches to DTI

prediction. Given a dataset of drugs 𝒳𝐷 and a dataset of targets 𝒳𝑇 , the goal of DTI

prediction learns a function 𝑓 : 𝒳𝐷 ×𝒳𝑇 → 𝒴 where the 𝒴 describes the interactivity

between a drug-target pair. In this chapter, we are primarily concerned with the

binary classification setting, i.e., 𝒴 = {0, 1}, though a regression setting where 𝒴 = R

is also possible.

6.2.1 Recommender systems

The earliest attempts at DTI prediction borrowed from the large machine learning

literature on recommender systems [KBV09]. These systems were built to address a

common commercial need: given a set of users and a set of products (e.g., books on

Amazon or movies on Netflix), how do you recommend new products to a user based

on that user’s consumption history?
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A first challenge is that of sparsity. A user might provide explicit ratings (e.g.,

“like” or “disklike”) for a few products, but leave many products unrated. There is

thus incomplete information as to user preferences, so the recommender system is

tasked with imputing this information from existing patterns.

A second challenge is when a new user arrives who has not provided feedback on

any products, which is referred to as the cold start problem [KBV09]. The simplest

solution is to simply recommend a random set of products to the user, or the most

popular products across the general population. A more intelligent solution is to also

collect side information about all users (e.g., demographic information) that can then

be used to compare users even with no previous consumption history and recommend

items to users in this cold start setting. For example, a new 18-year-old user can be

recommended a different set of products than a new 68-year-old user.

The connection to the DTI setting is straightforward. Rather than recommend

products to potential users, the same algorithms can recommend drugs to potential

targets. Moreover, similar challenges involving sparsity and cold start also apply;

typically, a drug has positive or negative interaction information for just a few targets

and new drugs start with no interaction information at all.

6.2.2 Matrix factorization

A common approach to recommender systems and DTI prediction leverages a linear

algebra technique called collaborative matrix factorization (CMF) [SG08, ZDMZ13,

CLH+13]. The input to the algorithm is a matrix X ∈ {0, 1}𝑁×𝑀 , in which the rows

correspond to unique drugs and the columns correspond to unique targets. The entry

in the 𝑖th row and 𝑗th column is 1 if drug 𝑖 positively interacts with target 𝑗, or 0

otherwise (i.e., a negative or unknown interaction). In most settings, X is a sparse

matrix.

The idea in CMF is to impute missing values in X by exploiting low-rank structure.

By decomposing X into the matrix product of two low-dimensional matrices Z𝐷 ∈

R𝑁×𝑘 and Z𝑇 ∈ R𝑀×𝑘, CMF learns a more general notion of interactivity that it can

138



use to predict new interactions via the objective function

min
Z𝐷,Z𝑇

{︁
‖X− Z𝐷ZT

𝑇‖2
F + 𝜆𝑚(‖Z𝐷‖2

F + ‖Z𝑇‖2
F)
}︁

where ‖·‖F denotes the Frobenius norm of a matrix and 𝜆𝑚 is a constant controlling a

regularization term. Predicted DTIs are those with high imputed values in X̃ , Z𝐷ZT
𝑇 .

To deal with the cold start problem, CMF introduces side information in the form

of similarity matrices S𝐷 ∈ R𝑁×𝑁 and S𝑇 ∈ R𝑀×𝑀 such that, e.g., an entry 𝑠𝑖𝑗 in

S𝐷 encodes a measure of chemical structure similarity between the 𝑖th and 𝑗th drugs.

Side information can be incorporated into the CMF objective as

min
Z𝐷,Z𝑇

{︁
‖X− Z𝐷ZT

𝑇‖2
F + 𝜆𝑚(‖Z𝐷‖2

F + ‖Z𝑇‖2
F)
}︁

+𝜆𝐷‖S𝐷−Z𝐷ZT
𝐷‖2

F+𝜆𝑇‖S𝑇−Z𝑇 ZT
𝑇‖2

F

where 𝜆𝐷 and 𝜆𝑇 are also regularization constants [CLH+13]. Intuitively, CMF learns

embeddings of drugs and targets that reconstruct known interaction information while

also sharing information across similar drugs and similar targets.

6.2.3 Network diffusion

CMF is based on the more general intuition that we observe a sparse subset of the full

drug-target space 𝒳𝐷 ×𝒳𝑇 and that the goal of DTI prediction is to impute values

that “fill in” the information corresponding to unobserved interactions. This intuition

is not limited to a linear algebraic formulation but also has connections to graph

theory. In a graph theoretic approach to DTI prediction based on “network diffusion”

[MKY+13, WYZL14], each drug and each target forms a node in a network. Edges in

the network can be drawn between known drug-target pairs.

The goal of network diffusion is “transfer” information from known DTIs to

unknown drug-target pairs. A common algorithm for doing this information transfer is

called random-walk-with-restart (RWR) [CBP16]. RWR starts off with an adjacency

matrix A ∈ R𝑑×𝑑
≥0 that is used to construct a transition probability matrix P ∈ [0, 1]𝑑×𝑑
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such that

𝑝𝑖,𝑗 ,
𝑎𝑖,𝑗∑︀
𝑗′ 𝑎𝑖,𝑗′

where 𝑎𝑖,𝑗 is the element in the 𝑖th row and 𝑗th column of A and 𝑝𝑖,𝑗 is defined similarly.

Let s𝑖 ∈ [0, 1]𝑑 store in each element the probability of a node being visited from the

𝑖th node. RWR relies on iterative updates to s𝑖 in the form

s(𝑡+1)
𝑖 , (1− 𝜃𝑟)Ps(𝑡)

𝑖 + 𝜃𝑟e𝑖,

where 𝜃𝑟 ∈ [0, 1] is a “restart probability” parameter and e𝑖 ∈ {0, 1}𝑑, ‖e𝑖‖2 = 1 is a

standard basis vector. RWR returns a fixed point s(∞)
𝑖 . Intuitively, RWR starts off

with a unit of information on each node that “diffuses” to other nodes based on the

adjacency matrix A.

In one RWR-inspired DTI prediction method [WYZL14], an initial sparse drug-

target adjacency matrix X(0) ∈ {0, 1}𝑁×𝑀 is created. To incorporate side information,

edges can also be drawn between drugs where the weight on each edge is related to

the similarity of those drugs, with higher weight placed on more similar drugs, and

edges are drawn between targets based on target similarity (essentially forming the

S𝐷 and S𝑇 matrices described for CMF above). These go into an iterative update rule

X(𝑡+1) , 𝛼PX(𝑡) + (1− 𝛼)X(0)

where P ∈ [0, 1]𝑁×𝑁 is the normalized matrix computed based on X(𝑡)S𝑇 X(𝑡)TS𝐷

and 𝛼 ∈ [0, 1] is the restart parameter. DTI predictions are obtained in X(∞) after

convergence.

6.2.4 DTI prediction challenges

As is probably apparent from the above discussion, there are many similarities between

approaches based on linear algebra and those based on graph theory. More complex

approaches for DTI prediction are built off of similar concepts. One of the most

influential approaches is DTINet [LZZ+17], which uses RWR combined with matrix
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factorization and optimization approaches to synthesize drug-drug and target-target

similarity matrices across multiple modalities (e.g., structural similarity and functional

similarity).

An important limitation of DTI prediction based on matrix factorization, network

diffusion, or some combination of these approaches is that they are infeasible on

modern datasets primarily because their computations scale quadratically with the

number of drugs 𝑁 and the number of targets 𝑀 in the dataset (e.g., 𝑂(𝑁2) or

𝑂(𝑁𝑀)), which is prohibitive for realistic datasets with millions of compounds.

A different approach is to use a supervised machine learning model to directly

learn the function 𝑓 : 𝒳𝐷 ×𝒳𝑇 → 𝒴 using, e.g., a support vector machine or a neural

network. Side information is provided to the model as features and the model therefore

implicitly learns the similarity information during training. Importantly, this approach

enables linear time scalability in the number of observed drug-target training pairs,

which is typically much less than the full space of all possible interactions. It is this

approach that we describe in the sections below.

6.3 Neural network for DTI prediction

6.3.1 Motivation

Scalability to large DTI datasets and improving prediction performance are the primary

motivating reasons for a neural approach to DTI prediction Scalability is especially

important as collaborative efforts to develop new, life-saving drug therapies have

recently begun to take shape among pharmaceutical companies and academic labs,

despite the highly competitive nature of the industry [Rea14, Wil17]. Driving this

transformation is the stalled or declining productivity of existing drug development

pipelines amidst growing financial and regulatory pressures. Many in industry and

academia are realizing that the difficult task of identifying novel drug candidates would

be more successful if they leveraged pooled experimental datasets and knowledge that

go beyond any single organization, resulting in datasets with millions of DTIs.
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6.3.2 Neural network model

To achieve scalable computation while maintaining high accuracy, we draw from

recent advances in deep learning [GBC16] to train a neural network model for DTI

prediction. Our neural network takes feature representations of a compound and a

target as input, and predicts the interactivity of the given pair. Although we used

chemical structure fingerprints and protein domain annotations as input features in our

computational experiments, our framework readily generalizes to alternative features.

We circumvent the quadratic complexity of existing methods by training our neural

network over a dataset consisting of only the observed DTIs and a comparable number

of putatively non-interacting drug-target pairs, which is typically vastly smaller than

the full drug-by-target matrix.

We now define our neural network model. We are given a feature matrix X ∈ R𝑁×𝑀 ,

where each row corresponds to a single training example and each column corresponds

to a single data feature. We are also given a label vector y ∈ {−1, +1}𝑀 where

𝑦𝑖 = +1 if X:,𝑖 is a positive training example and 𝑦𝑖 = −1 otherwise. While we assume

binary labels in our work, our framework easily generalizes to continuous interaction

scores.

Our neural network model is a standard multilayer perceptron [GBC16], con-

sisting of real-valued weight matrices W(1), . . . , W(𝐿+1) and column vector biases

b(1), . . . , b(𝐿+1), where 𝐿 is the number of hidden layers and where each hidden layer

consists of neurons Z(1), . . . , Z(𝐿). During the forward-propagation phase, certain

neurons are “activated” according to

Z(1)
:,𝑖 , 𝑓act(W(1)X:,𝑖 + b(1)) and (6.1)

Z(𝑙)
:,𝑖 , 𝑓act(W(𝑙)Z(𝑙−1)

:,𝑖 + b(𝑙−1)) (6.2)

for 𝑙 = 2, . . . , 𝐿 and 𝑖 = 1, . . . , 𝑀 . For our purposes, we assume each hidden layer has

the same number of neurons, which we denote 𝐻, where Z(𝑙) ∈ R𝐻×𝑀 . The function

𝑓act is known as an activation function, which in our neural network is the rectified
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linear unit (ReLU) [GBB11], which takes the form 𝑓act(𝑥) , max{0, 𝑥}. After the

final hidden layer, our model outputs scores s ∈ R𝑀 where

s𝑖 = W(𝐿+1)Z(𝐿)
:,𝑖 + b(𝐿+1)

for 𝑖 = 1, . . . , 𝑀 . Note that in our single output setting, W(𝐿+1) ∈ R1×𝐻 and

b(𝐿+1) ∈ R. We evaluate the predictive performance of the model using the hinge loss

function,

𝒥 (s, y) , 1
𝑀

𝑀∑︁
𝑖=1

max{0, 1− 𝑠𝑖𝑦𝑖}.

Next, we use these errors to compute derivative updates to the weights and biases,

starting with the output layer, where

𝛿(𝐿+1)T = y⊙ 1
𝑀

1{1− s⊙ y > 0}, (6.3)
𝜕𝒥

𝜕W(𝐿+1) = 𝛿(𝐿+1)Z(𝐿)T + 𝜆W(𝐿+1), and (6.4)
𝜕𝒥

𝜕b(𝐿+1) = 𝛿(𝐿+1)1 (6.5)

where ⊙ is the component-wise, or Hadamard, product. Note that we add a regular-

ization term to the weight updates parameterized by the constant 𝜆. Following the

standard back-propagation algorithm for training neural networks, these derivatives

are recursively propagated through each hidden layer using

𝛿(𝑙) =
(︁
W(𝑙+1)T𝛿(𝑙+1)

)︁
⊙ 1{Z(𝑙) > 0}, (6.6)

𝜕𝒥
𝜕W(𝑙) = 𝛿(𝑙)Z(𝑙−1)T + 𝜆W(𝑙), and (6.7)

𝜕𝒥
𝜕b(𝑙) = 𝛿(𝑙)1 (6.8)

for hidden layers 𝑙 = 2, . . . , 𝐿. For the input layer 𝑙 = 1, we compute

𝜕𝒥
𝜕W(1) = 𝛿(1)XT + 𝜆W(1) and (6.9)

𝜕𝒥
𝜕b(1) = 𝛿(1)1. (6.10)
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Finally, we update the model weights and biases using Nesterov momentum updates

[BBLP13]

Θ(𝑡+1)
𝑣 , 𝜇Θ(𝑡)

𝑣 − 𝛼
𝜕𝒥

𝜕Θ(𝑡) , (6.11)

Θ(𝑡+1) , Θ(𝑡) − 𝜇Θ(𝑡)
𝑣 + (1 + 𝜇)Θ(𝑡+1)

𝑣 (6.12)

for parameters Θ ∈ {W(1), . . . , W(𝐿+1), b(1), . . . , b(𝐿+1)}, successive time steps 𝑡 =

1, . . . , 𝑇 , and constants 𝜇 and 𝛼 which are the momentum and learning rates, respec-

tively.

Once these parameters are learned and the neural network is used to infer a

prediction value from some observed data, only the forward-propagation steps are

taken and the parameters are no longer updated.

In practice, we do not use all training examples for each parameter update

iteration or even during inference, but rather a random subset referred to as a

“mini-batch,” which we denote Xbatch ∈ R𝑁×𝑀batch and the corresponding labels

ybatch ∈ {−1, +1}𝑀batch. In our protocol, Xbatch and ybatch are sampled randomly

without replacement until all training examples have been considered, after which we

restore all training data and repeat. We use these randomly sampled mini-batches

to iteratively compute the unbiased estimate of the gradient and update our model

parameters, a procedure referred to as stochastic gradient descent (SGD).

6.4 Interlude: Adding security

One of the foremost advantages of our neural network is that it can be efficiently

implemented in a “secure computation” framework which enables the training data

information to be completely hidden from the computing parties that perform the

training protocol. While security is not the main point of this chapter, it is still an

important aspect of our DTI prediction efforts and we therefore devote a brief mention

of it in this section and leave additional details to Appendix C.

Secure multiparty computation (MPC) protocols [CDN15] from modern cryptog-
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raphy allow multiple entities to compute over their private datasets without revealing

any information about the underlying raw data, except for the final computational

output. Unfortunately, existing secure computation frameworks typically have trouble

scaling to complex computations over large datasets, e.g., training a complex model

over a large amount of experimental data to predict new therapeutic interactions.

The scalability of our neural network approach to DTI prediction enables a secure

MPC version of the algorithm. Conceptually, our protocol divides computation across

collaborating entities while ensuring that none of the entities has any knowledge about

the private data (Figure A-17). We achieve this using a cryptographic framework

known as secret sharing [BOGW88] in which a private value (“secret”) is collectively

represented by multiple entities. Each entity is given a random number (“share”) in

a finite field (i.e., integers modulo some prime number 𝑝) such that the sum of all

shares modulo 𝑝 equals the secret. Any strict subset of entities cannot extract any

information about the underlying secret using their shares. Various protocols have

been developed for performing elementary operations (e.g., addition or multiplication)

over secret-shared inputs [BOGW88, CS10], which taken together form the building

blocks for a general purpose MPC framework.

Although secret sharing-based MPC typically requires overwhelming amounts of

data communication between entities for complex and large-scale computations, very

recent optimizations have leveraged techniques such as generalized Beaver triples and

shared pseudorandom number generators to significantly reduce communication cost,

enabling practical secure computation for challenging problems such as genome-wide

association studies for a million individuals [CWB18]. Even with these advances,

however, secure MPC is still infeasible for existing DTI prediction methods [NIW+13]

primarily because their computations scale quadratically with the number of drugs

and the number of targets in the dataset, which is prohibitive for pooled datasets with

millions of compounds.

We circumvent the quadratic complexity of existing methods by training our neural

network over a dataset consisting of only the observed DTIs and a comparable number

of putatively non-interacting drug-target pairs, which is typically vastly smaller than
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the full drug-by-target matrix. Furthermore, we greatly reduce the cryptographic

overhead of secure neural network training by optimizing our architectural choices for

efficient MPC, such as using the rectifier [GBB11] as our activation function and hinge

loss as our loss function, both of which require only a single data-oblivious comparison

to evaluate. These operations can be more efficiently implemented in MPC than

alternatives such as the sigmoid function, which requires many such comparisons to

accurately approximate. Full MPC training details are provided in Appendix C.1.

Taken together, our efficient protocol allows our neural network to securely train over

a wide area network (WAN) in under four days on a dataset with more than a million

training instances. In contrast, a recently proposed protocol for privacy-preserving

neural network training [MZ17] requires months of communication time over a WAN

to train on an image dataset of smaller scale (60K examples, 784 features).

We wanted to develop a secure version of our DTI neural network since, until now,

collaboration among pharmaceutical companies and academic labs, including open-

access data sharing partnerships like the Structural Genomics Consortium, have been

of limited scope because pharmacological data sharing is fundamentally restricted

by concerns about intellectual property and other financial interests. Currently,

entities have to moderate the amount of data they share in order to maintain the

confidentiality of drugs under development or the set of potential targets being tested,

both of which may contain sensitive information about underlying research or business

strategies. Instead, our approach enables data sharing that mitigates the risk of

leaking confidential information.

Because the secure version of our neural network introduces just a tolerable amount

of cryptographic overhead that is not too different from the plaintext version of the

neural network, our results are reported for the secure version and we refer to our

neural network DTI prediction method as Secure-DTI.
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6.5 Cross-validation: Advancing the

state-of-the-art

6.5.1 DrugBank dataset

We wanted to compare the accuracy of our securely trained neural network for

DTI prediction (Secure-DTI) to state-of-the-art DTI prediction techniques, including

those based on matrix factorization with side information (CMF) [ZDMZ13], network

diffusion (NetLapRLS, BLMNII, HNM) [XWZW10, MKY+13, WYZL14], and hetero-

geneous data integration (DTINet) [LZZ+17] on DrugBank 3.0, a standard benchmark

dataset [KLJ+11] with 708 drugs, 1,512 targets and 1,923 interactions.

DrugBank includes structure information for its chemicals, including a representa-

tion specified by the simplified molecular-input line-entry system (SMILES) [Wei88].

We used JChem Base (version 17.28.0, 2017, ChemAxon, http://www.chemaxon.com)

to convert SMILES to an extended connectivity fingerprint with diameter 4 (ECFP4)

[RH10], which hashes SMILES to a bit vector in {0, 1}1,024. Each protein in DrugBank

had an associated Ensembl [YAA+16] protein identifier, which we used to query the

Ensembl protein dataset via the Ensembl REST server for the Pfam domain families

[FCE+16] associated with each protein. For DrugBank 3.0, we observed 1,129 unique

Pfam families, resulting in a feature vector in {0, 1}2,153. Our method can easily

incorporate alternative feature representations of drugs and targets. We expect the

precise feature set to be determined by the collaborating entities given a specific study

setting.

On the DrugBank 3.0 dataset, we compared our secure neural network model to

existing DTI prediction methods as reported in Luo et al. [LZZ+17], which introduces

the DTINet model and compares it to previous state-of-the-art methods BLMNII,

NetLapRLS, HNM, MF, and CMF. The authors of the study tested their methods

using 10-fold cross validation (CV) on a balanced test set, an imbalanced test set with

a 1:10 ratio of positive to negative examples, and the entire drug-target interaction

space. As in Luo et al., we used two metrics to evaluate classification accuracy. The
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Figure 6-1: Prediction of DTIs.
(A) Predictions from the DrugBank 3.0 dataset. Bar height corresponds to mean AUPR
(area under the precision-recall curve), and error bars indicate SD. We compared Secure
DTI to the plaintext methods BLMNII, NetLapRLS, HNM, MF, CMF, and DTINet, as
reported in Luo et al. (15), by means of 10-fold cross-validation on balanced training and
test sets. (B) Predictions form the STITCH 5 dataset with more than 1 million drug–target
pairs. Secure DTI is compared with matrix factorization with (CMF) and without (MF) side
information (see Figure A-18 for other evaluation settings). Solid lines, sampling negative
examples randomly; dashed lines, sampling negative examples while matching the relative
frequencies of drugs and targets to those in the positive examples, representing a more
challenging test case. Reported AUPRs are for the solid curves. (C) Runtime of our training
protocol, over a local area network (LAN), for different dataset sizes. Box height represents
SD.

first is the receiver-operating characteristic (ROC) curve, which plots the true positive

rate and the false positive rate at various thresholds for the predicted scores. To

summarize the ROC curve in a single statistic, we take the area under the ROC curve

(AUROC) using the trapezoidal rule. We also used the precision-recall curve, which

plots the precision and recall at various scoring thresholds. We use the area under the

precision-recall curve (AUPR) as our precision-recall summary statistic [BEP13].

Secure-DTI surpasses the performance of all baseline methods in cross validation

accuracy (Figure 6-1A), a surprising result in light of the optimizations we made

to achieve practical scalability. Our improvement over the best-performing baseline

(DTINet) is statistically significant (one-sided Wilcoxon rank-sum 𝑃 -value of 0.006).
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6.5.2 STITCH dataset

We next set out to demonstrate the scalability and predictive performance of Secure-

DTI on a much larger dataset that more accurately represents the scale of cross-

institutional collaboration. We obtained 969,817 interactions from the STITCH 5

human dataset [SSV+16], to our knowledge the largest publicly available DTI dataset.

Chemicals in STITCH were featurized based on ECFP4s using the same procedure for

DrugBank. For the STITCH target features, we observed 5,879 unique Pfam families,

which we encoded as a bit vector in {0, 1}5,879 where a 1 at a position in the vector

indicates that a given protein sequence contained the Pfam family associated with

that position. The chemical and protein features were concatenated to produce a

feature vector in {0, 1}6,903.

As described in the main text, out of the 969,817 total interactions we randomly

chose 290,946 interactions (~30%) as a held-out test set, and further divided the re-

maining interactions into a training set of 484,908 interactions (~50%) and a validation

set of 193,963 interactions (~20%), which we used to tune model parameters. We

compared the performance of our secure neural network model to collaborative matrix

factorization (CMF) and matrix factorization without side information (MF), both of

which were implemented in plaintext.

Other baseline methods that we considered for DrugBank could not be applied to

the STITCH dataset due to their lack of scalability. In particular, with hundreds of

thousands of chemicals represented in STITCH, the drug-by-drug similarity matrix

required by these methods creates a significant computational bottleneck. Furthermore,

most of the drug data used in DTINet is unavailable for a much larger set of chemicals

and proteins in STITCH 5. Although CMF also requires the similarity matrix, we were

able to train the model in plaintext (albeit inefficiently) by recomputing only small

portions of the similarity matrix, rather than storing the entire matrix in memory or

on disk.

We trained the secure neural network, CMF, and MF on training and validation

sets where the number of negative interaction examples was the same as the number of
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positive interactions. We assessed cross-validated model performance in four different

evaluation settings. First, we chose a random subset of interactions as a positive test

set and sampled an equal number of negative pairs (a balanced test set). Second,

we sampled ten-times the number of negative pairs compared to positive DTIs (an

imbalanced test set). Third, we separated out a group of 131,767 chemicals involved

in ~30% of all interactions, which we used as positive test examples, and used the

remaining interactions as training data. We again used an equal number of random

pairs as negative examples but enforced the division of chemicals between training and

testing sets (a divided-chemical test set). Fourth, we repeated the divided-chemical

experiment but forcing the negative training examples to have an equal representation

of drugs and targets as the positive training examples by using random edge-swaps of

the drug-target interaction graph.

Model training was done using secure MPC and the resulting model parameters

were used to make predictions in the plaintext setting, equivalent to the setting when

collaborating entities reveal the model as the final output of the secure protocol.

Classification accuracy was measured using the AUROC and AUPR statistics.

We evaluated the cross validation performance of Secure-DTI on STITCH 5. Even

on the challenging task of predicting DTIs of previously unseen compounds, Secure-

DTI achieved high accuracy (AUPR of 0.95), which substantially outperforms matrix

factorization methods (AUPRs of 0.50 and 0.43; Figure 6-1B and A-18). Other baseline

methods could not be reasonably applied to a dataset of this size (even in plaintext)

due to their quadratic scalability.

In contrast, Secure-DTI took less than four days to train on millions of interac-

tions over a WAN and efficiently scaled with a linear dependence on the number of

interactions in the dataset (Figure 6-1C). Even training on two million interactions,

we extrapolate the total runtime for one epoch (one linear pass over the full, shuffled

training set) to be around 2.2 days.
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6.6 Experimental validation: Room for

improvement

We wanted to go beyond cross validation and demonstrate the potential for novel

discoveries that can result from our machine learning algorithm. We therefore trained

Secure-DTI on all STITCH 5 interactions and scored the remaining possible drug-

target pairs for interactivity, which is closer to how our pipeline would be used in

a real-world setting. We controlled for bias toward highly represented drugs and

targets in the dataset by either (i) filtering out any prediction involving both a drug

and target highly represented in the original dataset (Secure-DTI-A) or (ii) sampling

negative examples (i.e., non-interactions) during model training such that each drug

or target was seen at the same relative frequency in the negative examples as in the

positive examples (Secure-DTI-B) (Figure 6-1B).

In both cases, many of our top predictions (5/12 for Secure-DTI-A and 9/12 for

Secure-DTI-B) were validated by our own targeted assay experiments (see Appendix

C.2 for experimental validation details) or by published experimental studies that

have not yet been deposited into the STITCH database (Table 6.1). Our validation

experiments suggest a novel interaction between imatinib and ErbB4, for which we

could not find any existing experimental support. It will be interesting to see if this

interaction is confirmed by other studies.

The top prediction from both methods was an interaction between the estrogen

receptor (ER) and droloxifene, which had reached phase III clinical trials as an

ER modulator for advanced breast cancer [BHEK+02]. Similarly, the predicted

interaction between the vitamin D receptor (VDR) and seocalcitol has been clinically

well-established [TVRWM04]. Furthermore, some predictions without direct activity

have strong evidence for an indirect functional interaction; for example, nutlin-3 has

been shown to inhibit PARP1 protein levels through p53-dependent proteasomal

degradation in mouse fibroblasts [MOO+11].
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The ability to discover new DTIs was an exciting result, especially given the

efficiency (even with cryptographic overhead) of our learning algorithm. Still, we

realized that there was room for improvement when applying machine learning to

DTI prediction in a drug discovery context. First, the false positive rate (10 out

of 24 pairs tested, or ~42%) was higher than that suggested by our cross-validation

experiments (~10%). Second, many of the validated interactions were relatively weak;

for example, the interaction between imatinib and ErbB4 had a dissociation constant

in the micromolar range, whereas kinase inhibitors are typically considered successful

when their activity in the the nanomolar range, up to three orders of magnitude more

potent than what we observed.

Reflecting on these results, we realized there were computational remedies for

these issues. We hypothesized that the increase in false positives may be a result

of the test dataset being different from the training dataset, leading the model to

be confused on test examples that were unlike anything it had seen before. Our

feature representations based on ECFP4s and one-hot-encoded Pfam domains were

also relatively simplistic and discarded a lot information about both the chemical

structure and the target protein. And because we only trained a binary classifier, our

model does not distinguish a weak interaction from a potent one.

Therefore, while Secure-DTI was a good first step to learning-based DTI prediction,

we knew that there were many ways to improve our ability to discover new biology.

Those efforts are described in the following chapter.
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Chapter 7

Fighting Disease II: Uncertainty

There are known knowns: there are things we know we know. We

also know there are known unknowns, that is to say we know there

are some things we do not know. But there are also unknown

unknowns: the ones we don’t know we don’t know.

—Donald Rumsfeld, press conference (2002)

In the last chapter, we laid out an initial attempt to use machine learning algorithms to

predict how well a drug and target interact, a common problem in the drug discovery

process. In this chapter, we again focus on this discovery process, but also on improving

the quality of our algorithm’s predictions where the ultimate test of performance is

not cross validation but actually discovering novel interactions.

A very common problem when using a machine learning model to make new

discoveries is that the additional data that you provide to the model may be very

different from the training data, i.e., the test data comes from a different distribution.

When encountering data unlike anything it has seen before, a standard machine

learning model could become confused and output a nonsensical prediction. Moreover,

because a standard algorithm does not report how certain or uncertain it is about

a given prediction, we have no way of knowing if the model is operating in the well

defined in-distribution setting or in the poorly defined out-of-distribution setting.
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This chapter describes our attempts at improving biochemical activity prediction,

with a particular focus on designing a machine learning algorithm that knows when it is

uncertain. We test different ways of quantifying uncertainty and find good uncertainty

prediction from a class of Bayesian machine learning algorithms called Gaussian

processes. Not only do we achieve state-of-the-art cross validation performance, but

we also achieve strong experimental validation (and discover new nanomolar-range

kinase inhibitors) even when the test data comes from a different distribution than

the training data. We end with an application note where we build on the discoveries

made by our algorithm and find new growth inhibitors of Mycobacterium tuberculosis1.

7.1 Glossary

∙ Epistemic uncertainty: Uncertainty that arises from a lack of knowledge and

therefore challenging to quantify; often contrasted with aleatoric uncertainty

due to statistical variability, which is easier to quantify.

∙ Sample efficiency: In machine learning, the ease with which a model adapts its

beliefs based on new data.

∙ Unsupervised pretraining: A machine learning strategy in which, first, an unsu-

pervised learning model extracts features from a large dataset and, then, those

features are used as input to a supervised model; often, the unsupervised model

leverages large neural architectures.

∙ Gaussian process (GP) regressor : A supervised learning algorithm that, given

a test example 𝑥, outputs a prediction in the form of a Gaussian distribution

that resembles the distribution of the training labels of points close to 𝑥 or, if

𝑥 is far away from any training points, outputs a Gaussian that resembles a

prior distribution; both the notion of distance to the training set and the prior

distribution are GP parameters (specified by a user or learned from data).
1Software for the work described in this chapter is available at https://github.com/brianhie/

uncertainty.
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∙ Dissociation constant (Kd): Measures the binding strength between two molecules

in a chemical reaction in units of concentration, where smaller values indicates

higher binding affinity.

7.2 Preliminaries

7.2.1 Uncertainty

When leveraging existing data to test new hypotheses, biologists often find themselves

in what machine learning researchers refer to as an “out-of-distribution” paradigm.

For example, a researcher may be interested in finding a small molecule that inhibits

a kinase, a problem of biochemical and pharmacological importance. The researcher

may have existing data (for example, from a high throughput screen) or have domain

expertise (for example, knowledge of previously successful inhibitors). When searching

for new inhibitors, some chemical structures might be similar to well-studied structures,

and therefore might also have similar behavior. However, there is an enormous space

of chemical structures with uncertain or unknown biochemistry. While notions of

biochemical “similarity” or “uncertainty” might be obvious to a human expert, a

standard machine learning algorithm has no corresponding notion of uncertainty.

Similar problems exist in many other biological settings as well.

In the “in-distribution” paradigm, which is what most machine learning methods

assume, the test data comes from the same data distribution as the training data.

However, when the test data does not come from the same distribution, i.e., it is “out-

of-distribution,” a fundamental assumption underlying most methods breaks (Figure

7-1A,B). Most modern models, including state-of-the-art “deep learning” methods,

are susceptible to bias, overconfidence, and other pathologies when making out-of-

distribution predictions [NYC15, AOS+16, AOS+16, CJS18, GPSW17, LPB17]. As a

result, some researchers manually or heuristically remove out-of-distribution prediction

examples, but these approaches fail to address the root of the problem, which is a

fundamental limitation of the learning algorithms themselves.
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Figure 7-1: Robust uncertainty prediction for machine-guided discovery.
(A) When a machine learning model encounters an example like nothing in its training set,
its behavior is usually undefined. A way to improve robustness is for the model to report
high uncertainty on such examples. Rather than output a single point prediction for each
example in a given domain, more robust methods, such as a Gaussian process (GP), model
the aleatoric (or statistical) uncertainty of observations and the epistemic (or systematic)
uncertainty that comes from a lack of data. In a GP, the epistemic uncertainty of unexplored
regions of the domain is explicitly encoded as a prior probability. (B) GPs can readily update
their beliefs with just a handful of new data points. (C) Using modern, neural pre-trained
feature representations, a GP can achieve state-of-the-art prediction performance even with
limited data. Knowing uncertainty helps guide a researcher when prioritizing experiments
and, when combined with sample efficiency, enables a tight feedback loop between human
data acquisition and algorithmic prediction.
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Instead, it is also possible for a machine learning model to output both a prediction

and an associated confidence score, where in-distribution predictions are assigned high

confidence and out-of-distribution predictions are assigned high uncertainty (Figure

7-1A,B) [BS09, GPSW17, Nea12]. A principled approach to uncertainty prediction

is based on Bayesian statistics. A Bayesian machine learning model will output a

probability distribution for each prediction (for example, a Gaussian distribution),

rather than a single point estimate (Figure 7-1C). A location-related summary statistic

of the distribution, like the mean or the median, can then be used as the prediction

value; a dispersion-related summary statistic, like the variance or standard deviation,

can be used as the uncertainty score. Importantly, a user can specify a prior distribution

with high uncertainty such that, if a model has little knowledge about a given training

example, the model prediction will be close to the prior.

Types of uncertainty

The kind of uncertainty associated with novel biological discovery is typically called

epistemic, or systematic, uncertainty (Figure 7-1A). Epistemic uncertainty, as its Greek

root suggests, is due to a lack of knowledge; in the machine learning setting, epistemic

uncertainty arises due to a lack of training data. This is the kind of uncertainty

captured by the prior distribution in the Bayesian machine learning setting mentioned

above. Another kind of uncertainty is called aleatoric, or statistical, uncertainty

(Figure 7-1B). Aleatoric uncertainty occurs when repeated experiments are run, each

producing different results. This kind of uncertainty is also an important consideration

and can be learned from data using standard statistical approaches.

7.2.2 Sample efficiency

Another important concept in this chapter, “sample efficiency” (Figure 7-1B) [GWH14,

MRDJ17], is the ability to make use of and quickly adapt to new data. In contrast,

providing a small amount of new data to a sample inefficient algorithm would not

substantially change its predictions. Sample efficiency is especially critical in domains
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where new data collection is limited or slow (for example, synthesizing and testing

novel customized small-molecule drugs [LBB18]). A typical criticism of modern deep

learning methods is that they are not sample efficient, but instead require many training

examples to achieve reasonable performance [Ng, GBC16]. In contrast, humans can

learn from only a few examples; for example, after a single instance of touching a hot

stove, a human typically does not need any additional information to exercise greater

caution in the future.

7.2.3 Pretraining

Another import concept is the notion of “pretraining” [EBC+10]. Pretraining auto-

matically extracts relevant, general features in a task-agnostic, or an unsupervised,

way; machine learning models can subsequently leverage pretrained features on a

variety of more specific downstream tasks. In the kinase activity prediction setting,

pretrained features might be extracted from training an unsupervised algorithm on a

large database of small molecules or on a large corpus of protein sequences (Figure

7-1C). These compound and protein features can then be used as input to a supervised

machine learning algorithm that learns the specific task of predicting compound-kinase

interactions.

7.2.4 Review of Gaussian process regression

GPs are prime candidates for machine learning-based hypothesis generation since

they naturally quantify prediction uncertainty [RW05], are highly sample-efficient

[GWH14], and can readily incorporate a rich set of features like those obtained by

pretraining. GPs allow a researcher to specify a prior distribution encoding high

epistemic uncertainty when the training distribution provides little information on

unseen test examples (Figure 7-1) [BS09, MRDJ17]. As datapoints become more

distal to the training set, GP uncertainty also grows to approach the prior uncertainty,

analogous to human uncertainty increasing on examples that deviate from existing

knowledge (Figure 7-1).
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Below, we go into more depth into how Gaussian process regression works, since

we rely heavily on it throughout this chapter. Readers who already have a good

appreciation for how GP regression works, or those comfortable with the high-level

intuition, can feel free to skip ahead.

To begin, first consider an 𝑀 -dimensional multivariate Gaussian g ∼ Normal(𝜇, Σ)

where g𝑖 is the 𝑖th element in g, with 𝜇𝑖 and 𝜎𝑖𝑗 defined similarly for 𝜇 and Σ,

respectively. We will forgo a deeper review of all the (beautiful) theoretical properties

of multivariate Gaussians and assume some amount of familiarity with them; they are

also characterized extensively in [RW05].

We can interpret a multivariate Gaussian as a distribution over functions. Let

𝒳 , {𝑥1, . . . , 𝑥𝑀} and let f : 𝒳 → R be a random function such that

⎡⎢⎢⎢⎢⎢⎢⎢⎣
f (𝑥1)

...

f (𝑥𝑀)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∼ Normal

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝜇1

...

𝜇𝑀

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝜎11 · · · 𝜎1𝑀

... . . . ...

𝜎𝑀1 · · · 𝜎𝑀𝑀

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Note that g𝑖 = f (𝑥𝑖) is a random variable and there is a one-to-one mapping between

the values of g and the values of f (x).

Gaussian processes are often thought of as an extension of the random function

interpretation of a multivariate Gaussian to infinitely many functions. To see how,

now let 𝒳 be infinite (and potentially uncountably so, e.g., R𝑁). Now, we define two

important functions

𝑚 : 𝒳 → R and 𝐾 : 𝒳 × 𝒳 → R.

If, for any nonempty subset {𝑥1, . . . , 𝑥𝑀} ⊆ 𝒳 ,

⎡⎢⎢⎢⎢⎢⎢⎢⎣
g1

...

g𝑀

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
f (𝑥1)

...

f (𝑥𝑀)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∼ Normal

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑚(𝑥1)

...

𝑚(𝑥𝑀)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝐾(𝑥1, 𝑥1) · · · 𝑘(𝑥1, 𝑥𝑀)

... . . . ...

𝐾(𝑥𝑀 , 𝑥1) · · · 𝐾(𝑥𝑀 , 𝑥𝑀)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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then we can define

g = f (x) ∼ GP(𝑚, 𝐾),

i.e., g is a Gaussian process (intuitively, an infinite-dimensional multivariate Gaussian).

A Gaussian process is therefore fully described by a mean function 𝑚 and a

covariance function 𝐾. For example, a popular covariance function is the Gaussian, or

squared exponential, kernel scaled by a constant 𝑘prior related to the prior uncertainty

𝐾(x𝑖, x𝑗) = 𝑘2
prior exp

{︂
−1

2𝛾‖x𝑖 − x𝑗‖2
2

}︂

where ‖·‖2 denotes the ℓ2-distance between feature vectors x𝑖 and x𝑗.

To see how GPs can be used in supervised learning, consider their functional

interpretation. In regression, we want to learn a function that predict labels from

some input data, i.e.,

y (𝑖) = f (x (𝑖)) + 𝜖(𝑖).

In GP regression, f has a GP prior and 𝜖(𝑖) ∼ Normal(0, 𝜎2I) is some noise perturba-

tion.

Now, we can put this all together to derive the inference equations for GP regression.

Assuming we have some training data x ,
(︁
x (1), . . . , x (𝑀 ′)

)︁
and some test data

x̃ ,
(︁
x̃ (1), . . . , x̃ (𝑀 ′′)

)︁
. Also we define y as the training labels (that we know) and ỹ as

the test labels (that we do not know). We therefore want to obtain

𝑝ỹ|y,x,x̃(ỹ|y, x, x̃).

Using block matrix form to express the multivariate Gaussian defined by the GP,

we know that ⎡⎢⎢⎣y
ỹ

⎤⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒ x, x̃ =

⎡⎢⎢⎣f (x)

f (x̃)

⎤⎥⎥⎦+

⎡⎢⎢⎣𝜖

�̃�

⎤⎥⎥⎦
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is distributed as

Normal

⎛⎜⎜⎝
⎡⎢⎢⎣𝑚(x)

𝑚(x̃)

⎤⎥⎥⎦ ,

⎡⎢⎢⎣𝐾(x, x) + 𝜎2I 𝐾(x̃, x)

𝐾(x, x̃) 𝐾(x̃, x̃) + 𝜎2I

⎤⎥⎥⎦
⎞⎟⎟⎠ .

By the rules for conditioning on Gaussians, we get

ỹ|y, x, x̃ ∼ Normal
(︁
�̃�, Σ̃

)︁

where

�̃� , 𝑚(x̃) + 𝐾(x̃, x)
(︁
𝐾(x, x) + 𝜎2I

)︁−1
(y−𝑚(x)) and (7.1)

Σ̃ , 𝐾(x̃, x̃) + 𝜎2I−𝐾(x̃, x)(𝐾(x, x) + 𝜎2I)−1𝐾(x, x̃). (7.2)

This result has an elegant interpretation: the predicted mean is equal to the mean

function evaluated on the test data 𝑚(x̃) modified by additional information on how

“different” the test data is from the training data. An analogous argument is also the

case for the predicted covariance.

While inference is often dominated by the matrix inversion step, i.e., calculating

(𝐾(x, x) + 𝜎2I)−1, which scales cubically in the size of the training data, in practice,

there has been a large amount of work on exploiting sparsity to accelerate exact

inference or on doing approximate inference with good empirical performance. These

approaches have enabled GPs to scale to datasets with billions of training examples

[LOSC20].

7.3 Cross validation: Uncertainty redux

7.3.1 Setup

As a test case for machine-guided discovery, we predicted binding affinities between

small molecule compounds and protein kinases. We select this particular application
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since kinases have diverse pharmacological implications that include infectious disease

therapeutics [ASP+14, LOS+11, WWS+09, WID09] and comprehensive compound-

kinase affinity training data exists for a limited number of compounds [DHH+11].

We first set up an in silico simulation of the prediction and discovery process.

We obtained a publicly-available dataset [DHH+11] containing binding affinity mea-

surements, within a 0.1 to 10,000 nanomolar (nM) range, of the complete set of

kinase-compound pairs among 72 compounds and 442 unique kinase proteins (the

dataset contained 379 unique kinase genes with multiple mutational variants for some

of the genes). We set up a cross-validation-based simulation by separating the known

data into training and test data (Figure A-19A). To simulate out-of-distribution

prediction, we ensured that approximately one-third of the test data contained inter-

actions involving compounds not in the training data, one-third contained interactions

involving kinase genes not in the training data, and one-third contained interactions

involving compounds and kinase genes not in the training data (Figure A-19A).

Our main set of benchmarking methods leverages unsupervised pretraining via

state-of-the-art neural graph convolutional-based compound features (pretrained by

the original study authors on ~250K small molecule structures) [JBJ18] and neural

language model-based protein sequence features (pretrained by the original study

authors on ~21M protein sequences) [BB19]. Subsequent regression models use a

concatenation of these features to predict Kd binding affinities (Figure 7-2A).

7.3.2 Benchmark methods

We benchmark three baseline methods without uncertainty:

Multilayer perceptron (MLP)

Also known as a densely-connected neural network [HCB18, ÖÖO18], we test an MLP

architecture similar to that described in Chapter 6, but trained with mean square

error loss since we are performing regression rather than classification.
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Figure 7-2: Computational prediction of compound-kinase affinity.
(A) We desire to predict compound-kinase affinity based on features derived from compound
structure and kinase sequence and use these predictions to acquire new interactions. Incor-
porating uncertainty into predictions is especially useful when the data distributions of the
training and test sets are not guaranteed to be the same. (B) True Kds of the top five and
twenty-five prioritized compound-kinase pairs for each model over five model initialization
random seeds. Bar height indicates mean Kd; statistical significance was assessed with a
one-sided Welch’s 𝑡-test 𝑃 -value at FDR < 0.05. (C) Predictions augmented with uncertainty
scores enable a researcher to perform experiments in high confidence, high desirability regions
(“exploitation”) or to probe potentially high desirability regions with less model confidence
(“exploration”). (D) Each point represents a compound in the ZINC-Cayman library (Table
A.8) with an associated predicted Kd (with PknB) and uncertainty score outputted by a GP
(normalized by the prior uncertainty), colored by the order the compound appears according
to our acquisition function. We use an acquisition function that prioritizes high confidence,
low Kd predictions.
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Collective matrix factorization (CMF)

We performed CMF, which we review in Section 7.3.2 in the previous chapter, using the

compound-kinase Kds as the explicit data matrix and the neural-encoded compound

and kinase features as side-information [SG08, ZDMZ13, CLH+13]. Briefly, the CMF

loss function used here is

ℒ(A, B, C, D; M, X1, X2, 𝜆1, 𝜆2) , ‖M−ABT‖2
F+𝜆1‖X1−ACT‖2

F+𝜆2‖X2−BDT‖2
F

with respect to latent variable matrices A, B, C, and D. M is the compound-

by-kinase binding affinity matrix; X1 is a side-information matrix where each row

contains compound features; X2 is a side-information matrix where each row contains

kinase features; ‖·‖F denotes the Frobenius norm of a matrix; and 𝜆1 and 𝜆2 are

user-specified optimization constants (we set these values to the default value of 1,

but observed that cross-validated performance metrics were robust to changes in

this parameter). The number of components (i.e., the number of columns in A, B,

C, and D) was set to the default value of 30, but we also noticed robustness of

cross-validated metrics to changes in this parameter. The CMF objective was fit using

the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) via the

cmfrec Python package version 0.5.3 (Cortes, 2018) (https://cmfrec.readthedocs.

io/en/latest/).

DGraphDTA

We also used DGraphDTA [JLZ+20] to predict compound-kinase Kds. DGraphDTA

leverages a graph neural network based on the compound molecular structure and

the protein residue contact map. We wanted to benchmark against DGraphDTA to

assess the benefit of our unsupervised pretraining-based features, since DGraphDTA

trains a graph convolutional neural network designed specifically to train = on a

simpler set of features. We used the implementation provided at https://github.

com/595693085/DGraphDTA with default model architecture hyperparameters. For

compound features, we provided the model with chemical SMILE strings [Wei88] that
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the model transforms into a graph convolutional representation; for kinase features,

we use the protein contact maps provided by the original study.

We also benchmark methods that learn some notion of prediction uncertainty:

Gaussian process (GP)

Our first uncertainty model fits a GP regressor [RW05] to the training set. The

GP provides a Kd prediction in the form of a Gaussian distribution, where we use

the mean of the Gaussian as the prediction value and the standard deviation as the

measure of uncertainty. For the kinase experiments, 𝑘prior is set to 10,000 nM; for

the protein fluorescence experiments. Each prediction takes the form of a (scalar)

Gaussian distribution; we use the mean as the prediction value and the variance as the

uncertainty estimate. We use the Gaussian process regressor implementation provided

by the scikit-learn Python package.

Gaussian process fit to residuals of a multilayer perceptron (MLP + GP)

Since much of the interest in machine learning has been on improving the performance

of neural network models, a simple way to augment neural networks with uncertainty

is to combine the predictions made by a neural network and predictions made by a GP

[QMM20]. We use an MLP regressor with the same architecture and hyperparameters

as the standalone MLP model described above. The GP fit to the residuals of the

MLP regressor has the same form as described for the regular GP above but where

the regression problem is formulated as

𝑦𝑖 −MLP(x𝑖) ∼ GP(x𝑖)

for training example x𝑖 and training label 𝑦𝑖. To calculate the prediction value, we

evaluate both the MLP and the GP and sum the MLP prediction and the GP mean

[QMM20], i.e.,

𝑦
(𝑖)
pred = MLP(x̃𝑖) + E [GP(x̃𝑖)] .
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To calculate the uncertainty estimate, we can simply use the GP standard deviation,

i.e.,

𝜎
(𝑖)
pred = (Var (GP(x̃𝑖))1/2 .

We used the same software (a combination of the scikit-learn, GPyTorch, keras, and

tensorflow Python packages) to implement the hybrid model.

Bayesian multilayer perceptron (BMLP)

A more involved, Bayesian approach to augmenting neural networks with uncertainty

is to impose a Bayesian prior on the parameters of the neural network. We train an

MLP regressor with the same architecture described above (two hidden layers with

200 neurons per layer and ReLU non linearities) but with a unit-variance Gaussian

prior on each weight and bias entry [Nea12]. Within the respective biological task,

the Gaussian prior mean for each entry corresponds to a Kd of 10,000 nM (i.e., no

biochemical affinity) or a log-fluorescence of 3 (i.e., a dark protein). Optimization was

performed under a mean-field independence assumption with gradient descent-based

variational inference [TKD+16]. When making predictions, we sample 100 neural

networks and evaluate each neural network on each prediction example. We use

the mean prediction across the 100 neural networks as the prediction value and the

variance across the 100 neural networks as the uncertainty estimate. To implement

the BMLP, we used the Edward Python package (version 1.3.5) for probabilistic

programming [TKD+16] with a tensorflow CPU (version 1.5.1) backend.

Gaussian negative log-likelihood-trained MLP ensemble (GMLPE)

Rather than a Bayesian approach to uncertainty, another group of uncertainty methods

is based on model ensembles. Ensembling involves fitting multiple models to a training

dataset; then, variation in the predictions of the models can be used to estimate uncer-

tainty. For our ensemble method, we use the model described by Lakshminarayanan et

al. [LPB17]. We train an MLP regressor with the same architecture described above

(two hidden layers with 200 neurons per layer and ReLU non linearities) but, instead
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of mean square error loss, with Gaussian negative log-likelihood loss

ℒ
(︂

𝑦
(𝑖)
pred, 𝜎

(𝑖)
pred; 𝑦

(𝑖)
true

⃒⃒⃒𝑁
𝑖=1

)︂
,

𝑁∑︁
𝑖=1

⎛⎜⎝log
(︂(︁

𝜎
(𝑖)
pred

)︁2
)︂

+

(︁
𝑦

(𝑖)
true − 𝑦

(𝑖)
pred

)︁2

(︁
𝜎

(𝑖)
pred

)︁2

⎞⎟⎠

where 𝑦
(𝑖)
pred is the predicted value and 𝜎

(𝑖)
pred is the predicted uncertainty (both outputted

by the neural network), and 𝑦
(𝑖)
true is the ground truth value for training example

𝑖 ∈ {1, 2, . . . , 𝑁}. We train five such models to create a neural network ensemble and

we combine prediction distributions across the ensemble as with a Gaussian mixture.

As an implementation detail, we trained the neural network to output the log variance

to enforce positivity. We implemented the GMLPE with the keras Python package

using a tensorflow backend with CUDA-based GPU acceleration.

Acquisition function

For models that output uncertainty scores, an acquisition function is used to rank

compound-kinase pairs for acquisition, which in the biological setting often corresponds

to further experimental validation, in a way that balances both the prediction value

and the associated uncertainty.

A standard acquisition function is the upper confidence bound (UCB). When low

prediction values are desirable, UCB acquisition takes the form

𝑎UCB(𝑖) , 𝑦
(𝑖)
pred + 𝛽

(︁
𝜎2

pred

)︁(𝑖)
,

where 𝑦
(𝑖)
pred and

(︁
𝜎2

pred

)︁(𝑖)
are the predicted Kd and the uncertainty score, respectively,

for the 𝑖th training example and where 𝛽 is a parameter controlling the weight

assigned to the uncertainty score. An acquisition function with a high 𝛽 prioritizes

low uncertainty; in contrast, a low 𝛽 deprioritizes uncertainty, and 𝛽 = 0 ignores

uncertainty.

In practice, we use a rank-based modification to the above UCB function, which

169



we call rank-UCB, with the form

𝑎(𝑖) , rank
(︁
𝑦

(𝑖)
pred

)︁
+ 𝛽rank

(︁
(𝜎2

pred)(𝑖)
)︁

where rank(·) denotes the low-to-high rank index of the respective score across all

predictions. Rank transformation makes 𝛽 easier to calibrate, especially across different

uncertainty models. When high prediction values are desirable (for example, in our

fluorescence prediction and gene imputation experiments), we can reverse the sign

of 𝑦
(𝑖)
pred while keeping the rest of the function the same. When acquiring the top 𝑘

examples for further experimentation, we simply take the examples with the 𝑘 lowest

values of the acquisition function, i.e., we acquire the set

{x̃𝑖 : rank(𝑎(𝑖)) ≤ 𝑘}

which is a subset of the full unknown test set {x̃1, . . . , x̃𝑁}.

7.3.3 Results

The results of our cross-validation experiment using standard, average-case performance

metrics show that GP-based models are consistently competitive with, and often

better than, other methods based on average-case performance metrics. The Pearson

correlations between the predicted Kds and the ground truth Kds for our GP and

MLP + GP models over all test data are 0.35 and 0.38, respectively (𝑛 = 24, 048

compound-kinase pairs), in contrast with 0.26, 0.23, and 0.21 for the MLP, CMF, and

DGraphDTA baselines, respectively (Figure A-19B). Good regression performance

of GP-based methods is also consistent across all our metrics (Pearson correlation,

Spearman correlation, and mean square error) when partitioning the test set based on

exclusion of observed compounds, kinases, or both (Figure A-19B).

We also observed that, in this relatively data-limited training setting, rich pre-

trained features combined with a relatively lightweight regressor (e.g., a GP or MLP)

outperformed a more complex regressor architecture (i.e., DGraphDTA) trained end-to-
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end on simpler features (Figure A-19B). This provides evidence that pretraining with

state-of-the-art unsupervised models contributes valuable information in a data-limited

setting. Where robust GP-based prediction has a substantially large advantage is in

prioritizing compound-kinase pairs for further study.

In contrast to average-case metrics, focusing on top predictions directly mimics

biological discovery, since researchers typically choose only a few lead predictions

for further experimentation rather than testing the full, unexplored space. In GP-

based models, we observed that predictions with lower uncertainty are more likely

to be correct, whereas high-uncertainty predictions have worse quality (Figure A-

19C), allowing us to prioritize compound-kinase pairs with high predicted affinity

and low prediction uncertainty. In contrast, models without uncertainty like the

MLP do not distinguish confident and uncertain predictions (Figure A-19C). The top

compound-kinase pairs acquired by the GP-based models have strong, ground-truth

affinities, while the other methods with poorly calibrated or nonexistent uncertainty

quantification struggle to prioritize true interactions and acquire interactions with

significantly higher Kds (Figures 7-2B and A-20A). Performance of the GP-based

models decreases when ignoring uncertainty (Figure A-20B), suggesting that GP

uncertainty helps reduce false-positives among top-acquired samples; however, other

methods (BLMP and GMLPE) seem to have trouble learning meaningful uncertainty

estimates (Figure A-20B).

7.4 Experimental validation with uncertainty:

Breakthrough

7.4.1 Setup

We then sought to perform machine learning-guided biological discovery of previously

unknown compound-kinase interactions. We use all information across the pairs of

72 compounds and 442 kinases [DHH+11] as the model training data. For the test

set, we use a collection of 10,833 compounds from the ZINC database [IS05] that is
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Figure 7-3: Compound feature space visualized.
(A) A t-SNE visualization of the compound feature space reveals regions of the compound
landscape without any representative compounds with known PknB affinity measurement.
(B) A GP assigns lower uncertainty to regions of the compound landscape close to the
observed data. (C) A subset of the low uncertainty compounds is prioritized for experimental
acquisition based on predicted binding affinity to PknB. (D) The MLP assigns high predicted
PknB binding to a large number of out-of-distribution compounds. (E) CMF predictions for
PknB appear to lack any meaningful structure with regards to the compound landscape.
Example acquisition for other kinases is provided in Figure A-21.

commercially available through the Cayman Chemical Company. Chemicals were

selected solely based on commercial availability, regardless of potential associations

with kinases or any other biochemical property. The resulting “ZINC/Cayman library”

consists of heterogeneous compounds (molecular weights range from 61 to 995 Da)

with a median Morgan fingerprint Tanimoto similarity of 0.09; additional statistics for

this library can be found in Table A.8.

7.4.2 Intuition check

We first wanted to test our intuition that test set compounds very different from

any compound in the training set would also have high associated uncertainty. To

do so, we visualized the 72 compounds from the training set [DHH+11] and the
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10,833 unknown-affinity compounds using a two-dimensional t-SNE [vdMH08] of the

structure-based compound feature space. The embedding shows large regions of the

compound landscape that are far from any compounds with known affinities (Figure

7-3A).

Consistent with our intuition, a GP trained on just 72 compounds assigns uncer-

tainty scores that are lower in regions near compounds with known affinities (Figure

7-3B), with high correlation between the uncertainty score and test compound distance

to its Euclidean nearest neighbor in the training set (Spearman 𝑟 = 0.87, 𝑛 = 10, 833

compounds). The GP prioritizes compounds within the low uncertainty regimes that

also have high predicted binding affinity (Figures 7-3C and A-21). In contrast, the

MLP assigns high priority to many compounds far from the known training examples

(Figures 7-3D and A-21), which is most likely due to pathological behavior on out-

of-distribution examples. For comparison, CMF seems unable to learn generalizable

patterns from the small number of training compounds (Figures 7-3E and A-21).

7.4.3 Results: New nanomolar interactions

We then performed machine-guided discovery of compound-kinase interactions. Since

our in vitro binding assays are optimized to screen many compounds for a given

kinase, we focused our validation efforts on a set of four diverse kinases: human

IRAK4, a serine/threonine kinase involved in Toll-like receptor signaling [WWS+09];

human c-SRC, a tyrosine kinase and canonical proto-oncogene [WID09]; human

p110δ, a lipid kinase and leukocytic immune regulator [ASP+14]; and Mtb PknB,

a serine/threonine kinase essential to mycobacterial viability [FSJB+06]. These

kinases have well-documented roles in cancer, immunological, or infectious disease

[ASP+14, LOS+11, WWS+09, WID09].

We used either our GP or MLP models to acquire compounds from the ZINC/Cayman

library with high predicted affinity for each of the four kinases of interest. We vali-

dated the top five predictions returned by the GP or MLP for each kinase using an

in vitro biochemical assay to determine the Kd. Training our models on information

from 72 compounds to make predictions over a 10,833-compound library is a more
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imbalanced train/test split than other reported drug-target interaction prediction

settings [CLH+13, ZDMZ13, LZZ+17, HCB18, ÖÖO18, JLZ+20]. More details on

how we did the biochemical validation of our prediction can be found in Appendix

D.1.

We observed that none of the predictions acquired by the MLP had a Kd of less

than the top tested concentration of 10 μM (Figure 7-4 and Table A.9), consistent

with out-of-distribution prediction resulting in pathological model bias (Figure A-21).

In contrast, the GP yielded 18 compound-kinase pairs with Kds less than 10 μM

(out of 20 pairs tested, or a hit rate of 90%), 10 of which are lower than 100 nM

(Figure 7-4 and Table A.9). Notably, GP acquisition yielded sub-nanomolar affinities

between K252a and IRAK4 (Kd = 0.85 nM) and between PI-3065 and p110δ (Kd =

0.36 nM), automating discoveries that previously had been made with massive-scale

screens or expert biochemical reasoning [ASP+14, OSM+09]. Some compounds had

predicted and validated affinities for multiple kinases, such as K252a, a member of

the indolocarbazole class of compounds, many of which have broad-spectrum kinase

inhibition [DHH+11]. Other compounds were only acquired for one of the kinases,

including PI-3065 for p110δ, WS3 for c-SRC (Kd = 4 nM), and SU11652 for PknB

(Kd = 76 nM). Interestingly, the latter two of these interactions do not seem to have

existing experimental support; WS3 was developed as an inducer of pancreatic beta

cell proliferation [STD+13] and SU11652 was developed for human receptor tyrosine

kinase inhibition [LCS+02].

To further assess the impact of uncertainty on prediction quality, we also performed

PknB acquisition with another GP-based model (MLP + GP) and varied the weight

𝛽 on the uncertainty. We validated the top five predictions from the GP and MLP

+ GP at 𝛽 = 1 (tolerates some uncertainty) and 𝛽 = 20 (prefers lowest Kds with a

very low tolerance for uncertainty), as well as the top five predictions from the GP at

𝛽 = 0 (i.e., ignoring uncertainty). At 𝛽 = 20, the MLP + GP acquired a similarly

potent set of compounds as the GP. Tolerating greater amounts of uncertainty, or

ignoring it completely, led to more false-positive predictions (Figure 7-4B).

GP-based uncertainty quantification also enables an absolute assessment of predic-
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Figure 7-4: Acquisition of potent compound-kinase interactions.
(A) Binding affinity Kd for top five acquired compounds for three human kinases using a
model with uncertainty (GP) (Figure A-22) and without (MLP). Asterisks after compound
names indicate compounds incompatible with the validation assay. Mean Kd values are
provided in Table A.9. (B) We validated the top five compound predictions at different
acquisition 𝛽 parameters for the models with uncertainty (GP and MLP + GP) and the
top five compound predictions provided by the MLP. Incorporating uncertainty information
(Figure A-22) reduces false-positive predictions. Asterisks after compound names indicate
compounds incompatible with the validation assay. Mean Kd values are provided in Table
A.9. (C) The structures of the compounds prioritized by the GP for PknB-binding affinity
with acquisition 𝛽 = 20. (D) The structures of the compounds prioritized by the MLP for
PknB-binding affinity, none of which have a strong affinity (Kd ≥ 10,000 nM).
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tion quality. For example, all predictions with a mean less than 10 μM (our top-tested

concentration) and an interquartile range less than 2 μM resulted in true positive hits

(Figure A-22). In contrast, more dispersed prediction distributions had higher vari-

ability in the potency of the true binding interaction including false positives (Figure

A-22), suggesting that our GP-based models make better predictions when they are

more confident. Uncertainty adds an interpretable dimension to machine-generated

predictions, so a researcher with a low tolerance for false positives might ignore a

generated hypothesis with a low predicted Kd but a high uncertainty.

The ability to discover new nanomolar-range interactions provided excellent valida-

tion for our uncertainty-based approach. Not only did a consideration of uncertainty

help fill the gap between a ~50% hit rate in the previous chapter to a 90% hit rate in

this chapter, but it also helps us reason about an exploration/exploitation trade-off in

which a lower hit rate might be tolerated for greater biological novelty.

7.5 Application note: Discovering potential

tuberculosis drugs

7.5.1 Novel anti-Mtb activity

Given the potent interactions discovered by our models, we wanted to further probe

the implications of our findings in an infectious disease setting, especially since we

discovered new nanomolar binders of PknB, a kinase that is essential to Mtb viability

[FSJB+06]. Bacterial kinases are less well studied than human (or mammalian)

kinases [JCP18] but are nonetheless important therapeutic targets [FSJB+06, LOS+11,

OLA+14]. Tuberculosis remains the leading cause of infectious disease death globally

[FCP19], underscoring the importance of further therapeutic development. Given the

essentiality of PknB and our in silico identification of PknB-binding compounds, we

sought to examine if the compounds with high binding affinity to PknB would have

any impact on mycobacterial growth. This would not be guaranteed since factors

like cell wall permeability or intracellular stability were not explicitly encoded in the
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training data.

We focused on the compounds with a Kd less than 100 nM: K252a (Kd = 11

nM), TG101209 (Kd = 71 nM), and SU11652 (Kd = 76 nM). Using the colorimet-

ric, resazurin microtiter assay (alamar blue) [LOS+11, Ram12], we determined the

minimum inhibitory concentration (MIC) of these compounds as well as rifampicin, a

frontline antibiotic for tuberculosis [FCP19] (Appendix D.2); the MICs for these com-

pounds with H37Rv are shown in Table A.10. We observed that K252a and SU11652

inhibited the growth of H37Rv compared to a dimethyl sulfoxide (DMSO) vehicle

control (one-sided 𝑡-test 𝑃 -value of 7.0× 10−8 for K252a and 3.9× 10−8 for SU11652,

𝑛 = 3 replicate cultures per condition) (Figures 7-5A). SU11652 is a well-documented

inhibitor of human receptor tyrosine kinases including PDGFR, VEGFR, and Kit

[LCS+02]. TG101209 did not inhibit growth of H37Rv (one-sided 𝑡-test 𝑃 -value of

0.11, 𝑛 = 3 replicate cultures per condition) (Figures 7-5A), perhaps due to low

cell permeability [Bre03, HLN+08]. These results were corroborated using additional

validation where Mtb expressing the luxABCDE cassette (luxMtb) was incubated

with increasing concentrations of K252a, SU11652, and TG101209 (Appendix D.2).

We further validated these results in a more complex, host-pathogen model.

Macrophages were infected with luxMtb and luminescence is measured as a proxy of

bacterial growth [AZF+10, BTZ+17] (see Appendix D.2). We infected macrophages

with luxMtb for 4 hours prior to the addition of compounds dissolved in cell culture

media. Consistent with our axenic culture experiments, treatment with K252a and

SU11652 resulted in less luminescence as compared to DMSO (one-sided 𝑡-test 𝑃 -value

of 2.9 × 10−6 for K252a and 2.8 × 10−6 for SU11652; 𝑛 = 3 replicate cultures per

condition) (Figure 7-5B,C). In examining the literature for prior work on compounds

targeting PknB, we identified support for K252a as an inhibitor of PknB kinase

activity and Mtb growth [FSJB+06, OLA+14]. These previous studies and our results

nominate future experiments to further investigate the biochemistry of PknB and the

potential use of K252a and SU11652 as scaffolds for PknB- and Mtb-related drug

development.
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Figure 7-5: Anti-Mtb whole-cell activity and an out-of-distribution inhibitor.
(A) Growth of axenic Mtb measured via alamar blue absorbance after 5 days of axenic
incubation in media treated with compounds, or a DMSO vehicle control, at 50 μM. Statistical
significance was assessed with a one-sided 𝑡-test 𝑃 -value at FDR < 0.05. (B) Luminescence
of luciferase-expressing Mtb from within infected human macrophages cultured in media
treated with compounds at 50 μM. Statistical significance was assessed with a one-sided
𝑡-test 𝑃 -value at FDR < 0.05. (C) Dose-response of K252a, SU11652, rifampicin, or a
DMSO vehicle control on the luminescence of luciferase-expressing Mtb from within infected
human macrophages after 5 days of culture post-infection. (D) IKK-16 was ranked 24 by
the GP during the first round of compound acquisition. Six of the compounds above IKK-16
in the first-round GP ranking were acquired for experimental validation (the sixth-ranked
compound was in the top five for the MLP + GP). Following model retraining on first-round
PknB-binding acquisitions across all models, IKK-16 was the second-ranked compound. (E)
All 72 compounds in the original training set have a Morgan fingerprint (radius 2, 2,048
bits) Tanimoto similarity of 0.31 or less with IKK-16 (structure shown). See also Table
A.11. (F) An additional follow-up assessment of Mtb growth via alamar blue absorbance
after five days of axenic incubation in media treated with IKK-16, other compounds, or a
DMSO vehicle control, at 50 μM. Statistical significance was assessed with a one-sided 𝑡-test
𝑃 -value at FDR < 0.05.
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7.5.2 Active learning

We then pushed this even further with a follow-up analysis in which we incorporated the

results of the initial kinase inhibition experiments to make new predictions, a setting

in which sample-efficiency is paramount. This iterative cycle involving prediction,

acquisition, model retraining, and subsequent prediction and acquisition is referred to

as “active learning” [Eis20, SC17]. We conducted a second round of PknB binding

affinity predictions after training on both the original dataset and the results from our

first round of in vitro affinity experiments (Figure 7-4B). We trained GP and MLP

models on this data and again acquired the top five predictions made by each.

All MLP-acquired compounds again had a PknB Kd greater than 10 μM. Although

the GP uncertainty scores increased by as much as a factor of 2 from the first round

(Figure A-22), indicating hypotheses that explored riskier, more distal regions of the

compound landscape, we still found that one of the GP-acquired compounds, IKK-16

[WBB+06], binds PknB with a Kd of 22 nM, the second lowest PknB Kd over all our

experiments (Table A.9). IKK-16 had an acquisition ranking of 24 during the first

round but a ranking of 2 in the second round (Figure 7-5D), indicating that the GP

efficiently adapted its beliefs based on a handful of new datapoints to make a successful

second-round prediction. Notably, among all training compounds in both the first

and second prediction rounds, the most similar structure to IKK-16 is imatinib with a

Tanimoto similarity of 0.31 (Figure 7-5E and Table A.11), indicating that IKK-16 is

structurally remote to any compound in the training data; for reference, a recently

used threshold was a Tanimoto similarity of 0.40 [SYS+20].

Follow-up experiments also revealed whole-cell activity of IKK-16 against H37Rv

Mtb in axenic culture (Figure 7-5F and Table A.10), with significant growth inhibition

compared to a DMSO vehicle control (one-sided 𝑡-test 𝑃 -value of 6.9× 10−9, 𝑛 = 3

replicate cultures per condition). We could not find existing literature linking IKK-16

to PknB or Mtb in general. These results also illustrate how uncertainty combined

with an active learning strategy can explore regions of the compound space that are

more distal to the original training set.
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More broadly, these experiments provide an example of how machine learning

can help accelerate the drug discovery process. Here, we identified drugs that could

be repurposed for Mtb inhibition in a matter of a few weeks through the help of

machine learning, in particular leveraging prediction uncertainty through GPs and

modern neural pretraining. We hope that the work on DTIs and uncertainty in the

last two chapters provides a roadmap for future algorithms hoping to translate good

cross-validated performance into new biological discoveries.
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Chapter 8

Fighting Disease III: Resistance

We will now discuss in a little more detail the Struggle for Existence.

—Charles Darwin, On the Origin of Species (1859)

Once a therapy or vaccine has been developed for a given pathogen, one may be

tempted to assume that all is well. Unfortunately, over time, pathogens can acquire

resistance to a drug or to immunity, reducing or eliminating efficacy. This happens

due to simple evolution: pathogens randomly mutate their genomes across many

generations and widespread drug use or vaccination in the host will select mutations

that confer resistance to the drug or vaccine.

In this chapter, we focus on viruses that mutate their surface proteins to acquire

resistance to a neutralizing antibody response, a problem known as immune escape.

Escape is a tremendous problem when developing effective vaccines against some of

the world’s deadliest pathogens, including influenza and HIV. We therefore develop a

cutting edge approach based on neural language models that learns patterns of viral

sequence variation in order to predict escape mutations from sequence data alone

[HZBB21]1. The work described in this chapter is, to the best of our knowledge, the

first computational approach directly designed to predict escape.

Predicting escape is useful because it could inform therapeutic design that antic-
1Software related to this chapter is available at https://github.com/brianhie/

viral-mutation.
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ipates escape before it occurs. For example, it may be possible to design a vaccine

that elicits an immune response against regions of a viral protein that are less prone

to escape, or to vaccinate against future forms of a virus. This chapter and its impli-

cations are exciting because they open up many new lines of research; for example, in

theory, our approach can generalize to any form of selection pressure, including drug

selection. Moreover, this work gives us hope that, while many pathogens have so far

largely evaded human attempts to eradicate them, we can ultimately gain the upper

hand.

8.1 Glossary

∙ Resistance: In infectious disease, pathogens can gain resistance to a therapy or

to immunity by mutating their genome so that the therapy/immune response no

longer works, but also so that the pathogen preserves viability and infectivity.

∙ Immune escape: A form of resistance where a pathogen mutates to evade an

immune response, usually in the context of humoral immunity and antibody

neutralization.

∙ Language model: A machine learning model that predicts the probability of a

token given some sequence context, e.g., the probability of the next word given

the preceding words in a sentence.

∙ Constrained semantic change search (CSCS): An algorithm that searches for

mutations to an entity that preserves a notion of “grammaticality” but also

induces high “semantic change.”

8.2 Preliminaries

(Background on the human immune system helpful for this chapter, including on

humoral immunity and antibodies, is provided in Section 2.1.4.)
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8.2.1 Distributional semantics

Key concepts in this chapter come from the field of linguistics. The first is the

notion that information encoded about the meaning or the “semantics” of a word is

encoded in how different words appear together or “co-occur.” The idea now known

as the “distributional hypothesis” was introduced by Zellig Harris in 1954 [Har54] and

summarized well by J.R. Firth in 1957 [Fir57]:

You shall know a word by the company it keeps.

This observation—that word co-occurence patterns have insight into the meaning of

words—has been tremendously productive in the field on natural language processing

(NLP).

The idea behind distributional semantics also makes a lot of intuitive sense. Humans

are quite good at inferring missing words based on sequence context. For example

consider the sentences below with the same missing word:

∙ Let’s keep the kitchen .

∙ The new design has lines.

∙ I forgot to out the cabinet.

Usually, native English speakers can come up with the correct missing word, “clean,”

fairly easily.

Distributional semantics has been particularly influential in machine learning

because it is data friendly. Word co-occurences can be learned from a large sequence

corpus and similarities in co-occurence patterns can define semantic similarity. There-

fore, “semantics,” an abstract concept can be expressed in the language of mathematics

and probability.

8.2.2 Language models

An important machine learning algorithm built on the distributional hypothesis is the

language model [MSC+13, DL15, PNI+18, DCLT18, RWC+19a]. A language model
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learns a distribution of sequence continuations given an initial sequence prefix as

input. For example, given the sequence “Let’s keep the kitchen”, a language model

might assign high probability to the single-word continuation “clean” and a lower

probability to the continuation “telescope.” Neural language models use a neural

network architecture, especially those designed for sequences like recurrent neural

networks, to learn the function from sequence context to the distribution over tokens.

Language models can also learn a latent variable, from which it predicts the

word continuations; these latent variables can be interpreted as an embedding of the

input sequence. Because of the distributional hypothesis, distance in this embedding

space can capture semantic similarity. For example, the sequences of words “the

men advance,” “the soldiers advance,” and “the three advance” have a similar set

of possible word continuations and would have similar embeddings, while “the cash

advance” has a nearly disjoint set of continuations and thus a different embedding.

Learning continuous semantic embeddings has been a large area of work in NLP

[MSC+13, PNI+18].

8.3 Viral escape and mutational semantics

8.3.1 Motivation

In this chapter, we are motivated by the problem of viral escape. Viral mutation that

escapes from recognition by neutralizing antibodies has prevented the development of

a universal antibody-based vaccine for influenza [EK01, KWW18, Kra19, KLR+15] or

human immunodeficiency virus (HIV) [EK01, AJS12, RWLP03, RKK01] and remains

a concern in the development of therapies for COVID-19 [BFW+20], caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection [ARL+20,

WPT+20]. Obtaining a better understanding of viral escape has motivated high-

throughput experimental techniques, such as deep mutational scans (DMS), that

perform causal escape profiling of all single-residue mutations to a viral protein

[DAW+19, DLB18, LEZ+19, GSG+20]. Such techniques, however, require substantial
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effort to profile even a single viral strain, so empirically testing the escape potential of

all (combinatorial) mutations in all viral strains remains infeasible.

A more efficient model of viral escape could be achieved computationally. One of

our key initial insights is that it may be possible to train an algorithm to learn to model

escape from existing viral sequence data alone. Such an approach is not unlike recent

algorithmic successes in learning properties of natural language from large text corpuses

[DCLT18, PNI+18, RWC+19a]; like viral evolution, natural languages like English or

Japanese use linear sequence to encode complex concepts (e.g., semantics) and are

under complex constraints (e.g., grammar). We pursued the intuition that critical

properties of a viral escape mutation have linguistic analogs: first, the mutation must

preserve viability and infectivity, i.e., it must be grammatical; second, the mutation

must be antigenically altered to evade immunity, i.e., it must have substantial semantic

change.

Currently, computational models of viral protein evolution focus on viral fitness

[LKB+18, HGS+19] or on functional/antigenic similarity [MYD+11, AKB+19, BB19,

RBT+19] alone. The novel concept critical to our study is that computationally

predicting viral escape requires modeling both fitness and antigenicity (Figure 8-1A).

Moreover, rather than developing two separate models of fitness and function, we

reasoned that we could develop a single model that simultaneously achieves both

these tasks. To do so, we leverage state-of-the-art machine learning algorithms

(originally developed for natural language understanding) called language models

[MSC+13, DL15, PNI+18, DCLT18, RWC+19a], which learn the probability of a

token (e.g., an English word) given its sequence context (e.g., a sentence) (Figure

8-1B). As done in natural language tasks, we can use a hidden layer output within a

neural language model as a semantic embedding [PNI+18] and the language model

output to quantify mutational grammaticality (Figure 8-1B); moreover, the same

principles used to train a language model on a sequence of English words can be used

to train a language model on a sequence of amino acids.

The main hypothesis underlying this whole chapter, therefore, is that

i. language model-encoded semantic change corresponds to antigenic change,
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Figure 8-1: Semantic change and grammaticality for escape prediction.
(A) Constrained semantic change search (CSCS) for viral escape prediction is designed
to search for mutations to a viral sequence that preserve fitness while being antigenically
different. This corresponds to a mutant sequence that is grammatical (conforms to the
structure and rules of a language) but has high semantic change with respect to the original
(e.g., wildtype) sequence. (B) A neural language model with a bidirectional long short-term
memory (BiLSTM) architecture is used to learn both semantics (as a hidden layer output)
and grammaticality (as the language model output). CSCS combines semantic change and
grammaticality to predict escape (12). (C) CSCS-proposed changes to a news headline
(implemented using a neural language model trained on English news headlines) makes large
changes to the overall semantic meaning of a sentence or to the part-of-speech structure. The
semantically closest mutated sentence according to the same model is largely synonymous
with the original headline.
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ii. language model grammaticality captures viral fitness, and

iii. both high semantic change and grammaticality help predict viral escape.

Searching for mutations with both high grammaticality and high semantic change is a

newly formulated task that we call constrained semantic change search (CSCS) and

which we describe in detail in the next section.

8.3.2 Problem formulation

Intuitively, our goal is to identify mutations that induce high semantic change (e.g.,

a large impact on biological function) while being grammatically acceptable (e.g,

biologically viable). More precisely, we are given a sequence of tokens defined as

x , (𝑥1, ..., 𝑥𝑁 ) such that 𝑥𝑖 ∈ 𝒳 , 𝑖 ∈ [𝑁 ], where 𝒳 is a finite alphabet (e.g., characters

or words for natural language, or amino acids for protein sequence). Let �̃�𝑖 denote a

mutation at position 𝑖 and the mutated sequence as x[�̃�𝑖] , (..., 𝑥𝑖−1, �̃�𝑖, 𝑥𝑖+1, ...).

We first require a semantic embedding z , 𝑓𝑠(x), where 𝑓𝑠 : 𝒳𝑁 → R𝐾 embeds

discrete-alphabet sequences into a continuous space, where, ideally, closeness in

embedding space would correspond to semantic similarity. We denote semantic change

as the distance in embedding space, i.e.,

Δz[�̃�𝑖] , ‖z− z[�̃�𝑖]‖ = ‖𝑓𝑠(x)− 𝑓𝑠(x[�̃�𝑖])‖ (8.1)

where ‖·‖ denotes a vector norm. The grammaticality of a mutation is described by

𝑝(�̃�𝑖|x), (8.2)

which takes values close to zero if x[�̃�𝑖] is not grammatical and close to one if it is

grammatical.

Our objective combines semantic change and grammaticality as a linear combination

𝑎(�̃�𝑖; x) , Δz[�̃�𝑖] + 𝛽𝑝(�̃�𝑖|x)
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for each possible mutation �̃�𝑖 and a user-specified parameter 𝛽 ∈ [0,∞). Mutations �̃�𝑖

are prioritized based on 𝑎(�̃�𝑖; x). We refer to ranking mutations based on semantic

change and grammaticality as CSCS.

8.4 Algorithms

8.4.1 Language modeling

Algorithms for CSCS could potentially take many forms; for example, separate

algorithms could be used to compute Δz[�̃�𝑖] and 𝑝(�̃�𝑖|x) independently, or a two-step

approach might be possible that computes one of the terms based on the value of the

other.

Instead, we reasoned that a single approach could compute both terms simultane-

ously, based on learned language models that learn the probability distribution of a

word given its context [MSC+13, DL15, PNI+18, DCLT18, RWC+19a]. The language

model we use throughout our experiments considers the full sequence context of a

word and learns a latent variable probability distribution 𝑝 and function 𝑓𝑠, where,

for all 𝑖 ∈ [𝑁 ],

𝑝(𝑥𝑖|x[𝑁 ]∖{𝑖}, ẑ𝑖) = 𝑝(𝑥𝑖|ẑ𝑖) and ẑ𝑖 = 𝑓𝑠(x[𝑁 ]∖{𝑖}),

i.e., latent variable ẑ𝑖 encodes the context x[𝑁 ]∖{𝑖} , (..., 𝑥𝑖−1, 𝑥𝑖+1, ...) such that 𝑥𝑖 is

conditionally independent of its context given the value of ẑ𝑖.

We use different aspects of the language model to describe semantic change and

grammaticality by setting terms (8.1) and (8.2) as

Δz[�̃�𝑖] , ‖ẑ− ẑ[�̃�𝑖]‖1 and 𝑝(�̃�𝑖|x) , 𝑝(�̃�𝑖|ẑ𝑖),

where ẑ ,
[︂
ẑT

1 · · · ẑT
𝑁

]︂T
is the concatenation of embeddings for each token, ẑ[�̃�𝑖]

is defined similarly but for the mutated sequence, and ‖·‖1 is the ℓ1 norm, chosen

because of more favorable properties compared to other standard distance metrics,

188



though other metrics could be empirically quantified in future work [AHK01].

Effectively, distances in embedding space are used to approximate semantic change

and the emitted probability approximates grammaticality. We note that these modeling

assumptions are not guaranteed to be perfectly specified, since, in the natural language

setting for example, antonyms may also be close in embedding space and the language

model output can also encode linguistic pragmatics in addition to grammaticality.

However, we still find these modeling assumptions to have good empirical support.

Training or parameterizing the language model is separate from CSCS, and the

novelty of CSCS is in leveraging these models in a new way. An advantage of this

approach is that it does not require any bespoke modifications to the general language

modeling framework, other than requiring a continuous latent variable. CSCS can

therefore leverage the noted multitask generality of language models [RWC+19a].

Importantly, this approach to CSCS is completely unsupervised. Rather than

assume access to labels explicitly encoding semantics or grammaticality, the model

instead extracts this information from a large unlabeled corpus. This is critical

in domains, like viral genomics, in which large sequence corpuses are available but

functional profiling is limited. These corpuses implicitly contain information related

to grammaticality or infectivity (e.g., all sequences are grammatically acceptable or

come from infectious virus), but the algorithm must learn these rules from data.

8.4.2 Architecture

Based on the success of recurrent architectures for protein-sequence representation

learning [BB19, RBT+19, AKB+19], we use similar encoder models for viral protein

sequences (Figure 8-1). Our model passes the full context sequence into bidirectional

long-short-term-memory (BiLSTM) hidden layers. We used the concatenated output

of the final LSTM layers as the semantic embedding, i.e.,

ẑ𝑖 ,
[︂
LSTM𝑓 (𝑔𝑓 (𝑥1, ..., 𝑥𝑖−1))T LSTM𝑟(𝑔𝑟(𝑥𝑖+1, ..., 𝑥𝑁))T

]︂T
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where 𝑔𝑓 is the output of the preceding forward-directed layer, LSTM𝑓 is the final

forward-directed LSTM layer, and 𝑔𝑟 and LSTM𝑟 are the corresponding reverse-

directed components. The final output probability is a softmax-transformed linear

transformation of ẑ𝑖, i.e.,

𝑝(𝑥𝑖|x[𝑁 ]∖{𝑖}) , softmax(Wẑ𝑖 + b)

for some learned model parameters W and b. In our experiments, we used a 20-

dimensional dense embedding for each element in the alphabet 𝒳 , two BiLSTM layers

with 512 units, and categorical cross entropy loss optimized by Adam with a learning

rate of 0.001, 𝛽1 = 0.9, and 𝛽2 = 0.999. Additional details on hyperparameter selection

are given in Appendix E.2.1.

8.4.3 Rank-based acquisition

Rather than acquiring mutations based on raw semantic change and grammaticality

values, which may be on very different scales, we find that selecting 𝛽 is much easier in

practice when first rank-transforming the semantic change and grammaticality terms,

i.e., acquiring based on

𝑎′(�̃�𝑖; x) , rank(Δz[�̃�𝑖]) + 𝛽 rank(𝑝(�̃�𝑖|x)).

All possible mutations �̃�𝑖 are then given priority based on the corresponding values

of 𝑎′(�̃�𝑖; x), from highest to lowest. Our empirical results have consistently good

performance by simply setting 𝛽 = 1 (equally weighting both terms), which we used

in all experiments below unless otherwise noted. In this study, we deal with the

unsupervised setting where 𝛽 is a parameter but note that adding some supervision

could learn 𝛽 (or other, non-rank, transformations) from data.
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8.4.4 Connection to viral escape

A language model is a probability distribution over sequences learned from a corpus

of data. For any sequence x, the model will output a predicted probability 𝑝(x) of

observing that sequence in the training data distribution. We call 𝑝(x) “grammaticality”

because in natural language tasks, 𝑝(x) tends to be high for grammatically correct

sentences. In the case of viral sequences, the training distribution consists of viral

proteins that have evolved for high fitness/virality, so we hypothesize that high

grammaticality corresponds to high viral fitness.

However, high fitness alone does not indicate an escape mutation. For example,

a viral protein with a neutral mutation will have equally high fitness but may not

look different enough to escape detection by the immune system, i.e., it will have no

“antigenic” change. To identify mutations that do lead to large antigenic changes,

we exploit the internal sequence embeddings learned by the language model. If two

sequences have similar embeddings, then they have similar distributions over sequence

continuations given the input tokens. We hypothesize that neutral mutations should

not affect the distribution over amino acids at other positions, while mutations that

affect antigenicity do affect the distribution over other positions. Thus, the combination

of high sequence probability (high fitness) and a large change in embedding (antigenic

change) indicates an escape mutation. The natural language analogy is to find

the single-token change that induces the highest semantic change while preserving

grammaticality (Figure 8-1C).

We propose, to our knowledge, the first general computational model of viral

escape. Notably, our neural language model implementation of CSCS is based on

sequence data alone (beneficial since sequence is easier to obtain than structure) and

requires no explicit escape information (i.e., it is completely unsupervised), does not

rely on multiple sequence alignment (MSA) preprocessing (i.e., it is alignment-free),

and captures global relationships across an entire sequence (e.g., since word choice at

the beginning of a sentence can influence word choice at the end).
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8.4.5 Extension to combinatorial mutations

The above exposition is limited to the setting in which mutations are assumed to be

single-token. We perform a simple extension to handle combinatorial mutations. We

denote such a mutant sequence as x̃ = (�̃�1, . . . , �̃�𝑁), which has the same length as x,

where the set of mutations that consists of the tokens in x̃ that disagree with those at

the same position in x is

ℳ(x, x̃) , {�̃�𝑖|�̃�𝑖 ̸= 𝑥𝑖}.

The semantic embedding can simply be computed as 𝑓𝑠(x̃) from which semantic change

can be computed as above. For the grammaticality score, we make a simple modeling

assumption and compute grammaticality as

∏︁
�̃�∈ℳ(x,x̃)

𝑝(�̃�𝑖|x),

i.e., the product of the probabilities of the individual point-mutations (implemented

in the log domain for better numerical precision). Other ways of estimating joint,

combinatorial grammaticality terms while preserving efficient inference are also worth

considering in future work.

While we do not consider insertions or deletions in this study, we do note that,

in viral sequences, insertions and deletions are rarer than substitutions by a factor

of four or more (49) and the viral mutation datasets that we considered exclusively

profiled substitution mutations alone. Extending our algorithms to compute semantic

change of sequences with insertions or deletions would be essentially unchanged from

above. The more difficult task is in reasoning about and modeling the grammaticality

of an insertion or a deletion. While various grammaticality heuristics based on the

language model output may be possible, this is also an interesting area for further

methodological development.
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8.4.6 Related work

The CSCS problem is related to work focused on identifying the best interventions

to structured data to produce a desired outcome [MRDJ17, PBM16]. Such work

often assumes a dataset that includes both the observed features and corresponding

outcomes, which allows for supervised learning. In contrast, we assume no explicit

labels of semantic change and must resort to unsupervised learning to extract this

information. This is because in domains like viral mutation, data that directly measures

viral fitness is very limited, while unlabeled sequence data is abundant.

Importantly, our CSCS task is distinct from representation learning tasks that

construct semantically meaningful embeddings, but CSCS does stand to benefit from

innovation in representation learning. Using hidden states in a language model to

represent natural language semantics has been an influential and productive idea

[PNI+18]. Rather than acquiring mutations based on greatest semantic change as in

CSCS, acquisition based instead only on lowest Δz[�̃�𝑖] essentially performs semantic

similarity search among all sequences that differ by a single token.

In biological applications, neural language models have been developed to learn

unsupervised or weakly supervised protein sequence embeddings that encode generic

protein similarity [BB19, RBT+19, AKB+19]. To our knowledge, however, no previous

work has considered how mutations affect these embeddings, nor have such methods

been applied to evolutionary change. Furthermore, while many variants of recurrent

or transformer-based architectures have been proposed for protein sequence modelling

tasks, we note any such current or future language model architecture could be used

in CSCS.

Some work in computational biology has focused on identifying deleterious muta-

tions in human or mammalian genomes with clinical relevance [SGP+18, RWC+19b].

However, these approaches are based on direct supervision under the assumption that

rare or poorly conserved mutations are deleterious. Such an assumption, however,

does not apply to escape mutations, which could be both frequent or infrequent in a

population. Viral genomes are also more highly variable than mammalian genomes
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(e.g., “Drake’s rule”), so aligning mutations across viral strains is more difficult

[Dra91, CDCPGS09, SNC+10].

Most computational analyses specific to viral mutation require rich metadata

beyond raw sequence or make virus-specific assumptions [BRB+15, YLD+20] (for ex-

ample, vaccine-related temporal patterns in influenza, which are absent for HIV). Most

similar to our approach, models exist for learning viral fitness from a large sequence

corpus [HIP+17, HGS+19]. These approaches, however, requires time-consuming and

error-prone multiple sequence alignment (MSA) preprocessing [KS13] and only con-

sider pairwise information couplings among residues, which, as demonstrated below,

limit performance when predicting escape. To our knowledge, our work is the first

to effectively model viral escape that generalizes to any relevant genomic sequence

from diverse viruses, without the need for sequence alignment, complex metadata, or

special assumptions on mutational processes.

8.5 Learning the language of viral escape

8.5.1 Experimental setup

We wanted to assess the empirical performance of CSCS and assess generality across

viruses by analyzing three important proteins: influenza A hemagglutinin (HA), HIV-1

envelope glycoprotein (Env), and SARS-CoV-2 spike glycoprotein (Spike). All three

are found on the viral surface, are responsible for binding host cells, are targeted

by antibodies, and are important drug targets given their role in pandemic disease

events and widespread human mortality [EK01, KWW18, Kra19, KLR+15, AJS12,

RWLP03, RKK01, BFW+20, ARL+20, WPT+20]. We trained a separate language

model for each protein using a large corpus of virus-specific amino acid sequences.

Influenza HA amino acid sequences were downloaded from the “Protein Sequence

Search” section of https://www.fludb.org. We only considered complete hemagglu-

tinin sequences from virus type A. We trained an amino acid residue-level language

model on a total of 44,851 unique influenza A HA amino acid sequences observed in
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animal hosts from 1908 through 2019.

HIV Env protein sequences were downloaded from the “Sequence Search Interface”

at the Los Alamos National Laboratory (LANL) HIV database (https://www.hiv.

lanl.gov). All complete HIV-1 Env sequences were downloaded from the database,

excluding sequences that the database had labeled as “problematic.” We additionally

only considered sequences that had length between 800 and 900 amino acid residues,

inclusive. We trained an amino acid residue-level language model on a total of 57,730

unique Env sequences.

Coronavidae spike glycoprotein sequences were obtained from the Gene/Protein

Search portal of the ViPR database (https://www.viprbrc.org/brc/home.spg?

decorator=corona) across the entire Coronavidae family. We only included amino

acid sequences with “spike” gene products. SARS-CoV-2 Spike sequences were ob-

tained from the Severe acute respiratory syndrome coronavirus 2 datahub at NCBI

Virus (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/). Betacoronavirus spike

sequences from GISAID also used in Starr et al.’s analysis [SGH+20] were obtained

from the accompanying GitHub repository. Across all coronavirus datasets, we fur-

thermore excluded sequences with a protein sequence length of less than 1,000 amino

acid residues. We trained an amino acid residue-level language model on a total of

4,172 unique Spike (and homologous protein) sequences.

8.5.2 Semantics predicts antigenicity

We initially sought to investigate the first part of our hypothesis, namely that the

semantic embeddings produced by a viral language model would be antigenically

meaningful. We computed the semantic embedding for each sequence in the influenza,

HIV, and coronavirus corpuses; we then visualized the semantic landscape by learn-

ing a two-dimensional approximation of the high-dimensional semantic embedding

space using Uniform Manifold Approximation and Projection (UMAP) [MH18]. The

semantic landscape of each protein shows clear clustering patterns corresponding to

subtype, host species, or both (Figure 8-2), suggesting that the model was able to

learn functionally meaningful patterns from raw sequence alone.

195

https://www.hiv.lanl.gov
https://www.hiv.lanl.gov
https://www.viprbrc.org/brc/home.spg?decorator=corona
https://www.viprbrc.org/brc/home.spg?decorator=corona
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
https://github.com/jbloomlab/SARS-CoV-2-RBD_DMS/blob/master/data/alignments/Spike_GISAID/spike_GISAID_aligned.fasta


UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

Phylo

Louvain
Phylo

Louvain
75%

100%

C
lu

st
er

 p
u

rit
y

Subtype Host
species

A

H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
H12
H13
H14
H15
H16

B C D

Avian
Human
Swine

A
A1
A1A2
A1C
A1D
A2
A3
A6
AE
AG
B
BC
C
D

F
F1
F2
G
H
J
K
L
N
O
P
U
Other

B

C

AE

UMAP 1

U
M

A
P

 2

Influenza HA subtype Influenza HA host species

HIV Env subtypeE

75%

100%

C
lu

st
er

 p
u

rit
y

Subtype

Phylo

Louvain

F
SARS-CoV-2

UMAP 1

U
M

A
P

 2
Coronavirus spike host species

Avian
Bat
Bovid
Camelid
Canine
Cetacean
Civet
Feline
Giraffe
Horse
Human

Hyena
Mustelid
Non-human
primate
Pangolin
Rabbit
Rodent
Shrew
Swine
Ursid
Unknown

MERS-CoV

G

1918 pandemic
Avian resevoir for

2009 pandemic

Pangolin

Bat
Camel

SARS-CoV-1
Civet

Bat

Figure 8-2: Semantic embedding landscape is antigenically meaningful.
(A, B) UMAP visualization of the high-dimensional semantic embedding landscape of
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also contains the 1918 pandemic flu sequence, consistent with their antigenic similarity
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mean; error bars: 95% confidence. (G) Sequence proximity in the semantic landscape of
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MERS-CoV, and SARS-CoV-2.
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We can quantify these clear clustering patterns, which are visually enriched for

particular subtypes or hosts, by using Louvain clustering [BGLL08] to group sequences

based on their semantic embeddings (Figure A-23), followed by measuring the clustering

purity based on the percent composition of the most represented metadata category

(sequence subtype or host species) within each cluster. Average cluster purities for

HA subtype, HA host species, and Env subtype are 99%, 96%, and 95%, respectively,

which are comparable to or higher than the clustering purities obtained by more

traditional MSA-based phylogenetic reconstruction [BMM+19, KS13] (Figure 8-2D,F).

Within the HA landscape, clustering patterns suggest interspecies transmissibil-

ity. Interestingly, the sequence for 1918 H1N1 pandemic influenza belongs to the

main avian H1 cluster, containing sequences from the avian reservoir for 2009 H1N1

pandemic influenza (Figures 8-2C and A-23). Our model’s suggested antigenic sim-

ilarity between H1 HA from 1918 and 2009, though nearly a century apart, has

well-established structural and functional support [WBD+10, XEK+10]. Within the

HIV Env landscape, unlike in HA, clusters corresponding to a few subtypes dominate

the landscape (Figure 8-2E), perhaps due to the absence of vaccine pressure leading

to abundant representation of similar viral strains.

Within the landscape of SARS-CoV-2 Spike and homologous proteins, clustering

proximity is consistent with the suggested zoonotic origin of several human coron-

aviruses (Figure 8-2G), including bat and civet for SARS-CoV-1 [WE07]; camel for

Middle East respiratory syndrome-related coronavirus (MERS-CoV) [CPG+14]; and

bat and pangolin for SARS-CoV-2 [ARL+20]. Analysis of these semantic landscapes

strengthens our hypothesis that our viral sequence embeddings encode functional and

antigenic variation.

8.5.3 Grammaticality predicts fitness

Not only does escape prediction stand to benefit from modeling antigenic change, but

from modeling viral fitness as well. Therefore, in line with the second part of our

hypothesis, we assessed the relationship between viral fitness and language model

grammaticality using high-throughput DMS characterization of hundreds or thousands
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Figure 8-3: Biological interpretation of language models predicts escape.
(A) While grammaticality is positively correlated with fitness, semantic change has negative
correlation, suggesting that most semantically altered proteins lose fitness. (B, C) However,
a mutation with both high semantic change and high grammaticality is more likely to induce
escape. Considering both semantic change and grammaticality enables identification of
escape mutants that is consistently higher than that of previous fitness models or generic
functional embedding models. (D) Across 891 surveilled SARS-CoV-2 Spike sequences, only
three have both higher semantic change and grammaticality than a Spike sequence with four
mutations that is associated with a potential re-infection case.

of mutants to a given viral protein. We obtained datasets measuring replication fitness

of all single-residue mutations to A/WSN/1933 (WSN33) HA H1 [DB16], combinatorial

mutations to antigenic site B in six HA H3 strains [WOT+20], or all single-residue

mutations to BG505 and BF520 HIV Env [HDH+18], as well as a dataset measuring

the dissociation constant (Kd) between combinatorial mutations to SARS-CoV-2

Spike receptor binding domain (RBD) and human ACE2 [SGH+20], which we use to

approximate the fitness of Spike.

We found that language model grammaticality was significantly correlated with
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viral fitness consistently across all viral strains and across studies that performed

single or combinatorial mutations (Figure 8-3A and Table A.12), even though our

language models were not given any explicit fitness-related information and were not

trained on the DMS mutants. Strikingly, when we instead compared viral fitness to

the magnitude of mutant semantic change (rather than grammaticality), we observed

significant negative correlation in nine out of ten strains tested (Figure 8-3A and Table

A.12). This makes sense biologically, since a mutation with a large effect on function

is on average more likely to be deleterious and result in a loss of fitness. These results

suggest that, as hypothesized, grammatical “validity” of a given mutation captures

fitness information, and adds an additional dimension to our understanding of how

semantic change encodes perturbed protein function.

8.5.4 CSCS predicts escape

Based on these promising analyses of viral semantics and grammaticality, we therefore

sought to test the third part of our hypothesis, namely that combining semantic

change and grammaticality enables escape mutation prediction. Our experimental

setup initially involves making, in silico, all possible single-residue mutations to a

given viral protein sequence; then, each mutant is ranked according to the CSCS

objective that combines semantic change and grammaticality. We validate this ranking

based on enriched CSCS acquisition of experimentally verified mutants that causally

induce escape from neutralizing antibodies. Three of these causal escape datasets

used DMS followed by antibody selection to identify escape mutants to WSN33 HA H1

[DLB18], A/Perth/16/2009 (Perth09) HA H3 [LEZ+19], and BG505 Env [DAW+19].

The fourth identified escape mutations to SARS-CoV-2 Spike using natural replication

error after in vitro passages under antibody selection (5), while the fifth performed a

DMS to identify mutants that affect antibody binding to yeast-displayed Spike RBD

[BFW+20].

We computed the area under the curve (AUC) of acquired escape mutations versus

the total acquired mutations. In all five cases, escape prediction with CSCS resulted

in both statistically significant and strong AUCs of 0.83, 0.77, 0.69, 0.85, and 0.71 for
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H1 WSN33, H3 Perth09, Env BG505, Spike, and Spike RBD, respectively (one-sided

permutation-based 𝑃 < 1 × 10−5 in all cases) (Figure 8-3B and Table A.13). We

emphasize that none of the escape mutants are present in the training data, and we

did not provide the model with any explicit information on escape, a challenging

problem setup in machine learning referred to as “zero-shot prediction” [RWC+19a].

Crucially, in support of our hypothesis, the escape AUC strictly decreases when

ignoring either grammaticality or semantic change, evidence that both are useful in

predicting escape (Figures 8-3C, A-24, and Table A.13). Note that while semantic

change is negatively correlated with fitness, it is positively predictive (along with

grammaticality) of escape (Table A.13); the analogous biological interpretation is that

functional mutations are often deleterious but, when fitness is preserved, they are

associated with antigenic change and subsequent escape from immunity.

For a benchmark comparison, we also tested how well alternative models of fitness

(each requiring MSA preprocessing) or of semantic change (pretrained on generic

protein sequence) predict escape, noting that these models were not explicitly designed

for escape prediction. Additional details regarding these benchmark methods are

provided in Appendix E.1. We found that CSCS with our viral language models was

substantially more predictive of causal escape mutants in all four viral proteins (Figure

8-3B). Moreover, the individual grammaticality or semantic change components of

our language models often outperformed the corresponding benchmark models (Table

A.13), demonstrating the value of nonlinear, high-capacity fitness models or of virus-

specific, finetuned semantic embedding models, respectively. In total, our results

provide strong empirical support for the hypothesis that both semantic change and

grammaticality are useful for escape prediction.

8.5.5 Structural patterns from sequence alone

A notable aspect of our results is that, though viral escape is mechanistically linked to

a viral protein’s structure, our models are trained entirely from sequence and bypass

explicit structural information altogether (which is often difficult to obtain). Given

our validated escape prediction capabilities, we wanted to look at our model’s escape
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Figure 8-4: Structural localization of predicted escape potential.
(A, B) HA trimer colored by escape potential. (C) Escape potential 𝑃 -values for HIV Env;
gray dashed line indicates statistical significance threshold. (D) The Env trimer colored
by escape potential, oriented to show the V1/V2 regions. (E, F) Potential for escape in
SARS-CoV-2 Spike is significantly enriched at the N-terminal domain and receptor binding
domain (RBD) and significantly depleted at multiple regions in the S2 subunit; gray dashed
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predictions in the context of three-dimensional protein structure to see if our model

was able to learn structurally relevant patterns from sequence alone. We used CSCS to

score each residue based on predicted escape potential, from which we could visualize

escape potential across the protein structure and quantify significant enrichment or

depletion of escape potential based on a null distribution constructed by permuting

CSCS acquisition scores across positions.

For both HA H1 and H3, we found that escape potential is significantly enriched

in the HA head and significantly depleted in the HA stalk (Figures 8-4A,B and

A-25), consistent with existing literature on HA mutation rates and supported by

the successful development of anti-stalk broadly neutralizing antibodies [EBE+09,

KCC+16]. Also consistent with existing knowledge is the significant enrichment of

escape mutations in the V1/V2 hypervariable regions of Env (Figure 8-4C,D and A-25)

[SWLO06]. An important point is that our model only learns escape patterns that

can be linked to mutations, rather than post-translational changes like glycosylation
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that contribute to HIV escape [WDW+03], which may explain the lack of statistically

significant escape potential assigned to Env glycosylation sites (Figure 8-4C).

8.6 Application note: Escape potential of

SARS-CoV-2 re-infection

One highly practical and very important question about controlling COVID-19 is how

often re-infection occurs, since a high rate of re-infection would raise questions about

vaccine efficacy. We therefore estimated the antigenic change and fitness of a set of

four mutations to the SARS-CoV-2 Spike associated with a reported re-infection event

[THI+20]. In doing so, we show how language modeling can characterize sequence

changes beyond single-residue mutations, e.g., from accumulated replication error or

recombination [SC20], though our approach is agnostic to how a sequence acquires its

mutations.

To do so, we obtained the Spike sequences from the reported first and second

rounds of SARS-CoV-2 infection of a single patient from To et al. [THI+20]. We

computed the re-infection sequence’s grammaticality as the average log language

model probability across the individual mutant positions and the semantic change

(relative to the first infection sequence) as the ℓ1 distance between the original and

mutant language model embeddings. The re-infection Spike sequence has four mutated

positions relative to the first infection sequence. We note that the re-infection sequence

was not present in the training corpus. We compared the predicted semantic change

and grammaticality of the re-infection sequence to those of 891 unique SARS-CoV-2

Spike sequences from our training corpus, where semantic change was similarly defined

with respect to the first infection sequence from To et al.

Additionally, we compared the re-infection sequence to a null distribution of 100

million sequences with four mutations compared to the first infection sequence. The

mutations were chosen uniformly at random across each position and across the amino

acid alphabet. A sequence from the null distribution was considered to have higher
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escape potential than the re-infection sequence if it had both higher fitness and higher

semantic change.

As positive controls, we performed the same analysis on sequences in which SARS-

CoV-2 Spike RBD was artificially replaced in silico with the RBD-ACE2 contacts of

bat coronavirus RaTG13 (eight mutated positions relative to wildtype) or of SARS-

CoV-1 (twelve mutated positions relative to wildtype), creating antigenically dissimilar

sequences while preserving ACE2 binding, albeit with lower affinity [SGH+20]. We

note these in silico “recombinant” sequences are also not present in the training corpus.

We again compared the semantic change and grammaticality of these recombinant

sequences to the 891 surveilled Spike sequences in our training corpus (Figure A-24B),

as described in the previous paragraph; here, semantic change was defined relative to

the wildtype Spike sequence.

Among 891 other unique, surveilled Spike sequences, we found that only three

(0.34%) represent both higher semantic change and grammaticality (Figure 8-3D). We

estimate significant escape potential of these four mutations (random mutant null

distribution 𝑃 < 1× 10−8) and we observed similar patterns for known antigenically

dissimilar sequences (Figure A-24B). Our analysis suggests a way to quantify the

escape potential of interesting combinatorial sequence changes, like those from possible

re-infection [THI+20], and calls for more information relating combinatorial mutations

to re-infection and escape.

More broadly, we anticipate that more complex models of the distribution of viral

sequence evolution (like language models) will play an important role in understanding

and controlling viral pandemics. A distributional approach to viral evolution may

yield additional insight over current approaches based on phylogenetic reconstruction,

which assumes sequence divergence. Phylogenetic assumptions fall short when viruses

have more complex evolutionary strategies, like influenza and HIV. More complex

models, therefore, give hope that they can lead to better vaccine design that can

ultimately eradicate pandemic viruses.
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Chapter 9

Perspectives

Yes, she thought, laying down her brush in extreme fatigue,

I have had my vision.

—Virginia Woolf, To the Lighthouse (1927)

In this thesis, we have seen that intelligent algorithms, in concert with old and new

biological techniques, can make a nontrivial contribution to understanding and fighting

infectious disease. We have also, hopefully, conveyed some sense of the excitement

that permeates the field of computational biology as we enter the third decade of the

twenty-first century. The possibilities for creative new approaches are endless; the

problems are complex but many solutions seem within reach; and the opportunity to

benefit the global human population offers a strong guiding force.

In this final chapter, we hope to outline ways to move the field forward using the

ideas outlined in this thesis as a launching pad. We organize these future directions

from the most immediate to the long-term. In particular, we start with ways to remix

themes in this thesis into new projects like influenza forecasting, antibody cocktail

selection, and mosaic vaccine design. We then discuss higher-level research topics in

computational biology, with implications not only for infectious disease but also many

other areas as well, like evolution and systems biology.
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Figure 9-1: Examples of near-term directions.
(A) Language models (LMs) learn functional properties from sequence variation. (B) LMs
can iteratively propose point mutations to simulate drift. (C) Antigenic embeddings can
guide therapies that maximize diversity. (D) LMs enable a global notion of the “maximum
likelihood” sequence that avoids the unnatural discontinuities of current design strategies.
(E) Quantifying antigenic diversity can also inform design of polyvalent vaccines.

9.1 The near term

Many of the ideas described in this thesis can be combined and remixed into new

projects with high impact. In the near term, there are many exciting applications for

understanding evolutionary diversity of pathogens.

In Chapter 8, we saw that a machine learning algorithm called a language model

(LM) can learn functional patterns from viral sequence variation alone. For a sequence

𝑆, an LM learns a probability 𝑝(𝑆) where a high 𝑝(𝑆) means that 𝑆 has sequence

patterns that are commonly observed in the training data (e.g., among surveilled

sequences), whereas a low 𝑝(𝑆) indicates a less likely sequence. We also saw how 𝑝(𝑆)

significantly correlates with viral fitness (12), since fitter sequences are more commonly

observed. A second important capability provided by a neural LM is that it learns a

sequence “embedding,” which is a vector of numbers where more similar embeddings

encode more similar proteins, providing a way to quantify antigenic diversity (12). We

used both the LM probabilistic output and the LM semantic embeddings to predict

viral escape mutations with high accuracy and without any prior information about

protein structure or function [HZBB21] (Figure 9-1A). Language modeling of viral

sequences is a powerful new technique and has the potential to inform antiviral and

vaccine design.
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In Chapter 4, we also saw an algorithm that can select a combinatorial subset of a

massive dataset in a way that maximizes the diversity of the subset [HCD+19]. While

this was originally applied to sampling diverse transcriptomes, the same principles

can also sample diverse viral states. And in Chapter 7, we saw algorithms that

enable closer human-algorithm experimental cooperation [HBB20] so that even if a

given machine learning prediction fails, it can be reincorporated into the algorithm to

improve future predictions. This feedback loop facilitates principled exploration of

combinatorially large biological spaces.

Listed below are some practical examples of projects that make use of some or

all of these principles. This by no means an exhaustive list, as the ideas are general,

can be applied beyond the realm of infectious disease, and the number of possible

extensions is only bounded by creativity.

9.1.1 Forecasting antigenic drift

One extension of the viral LM work is to simulate antigenic drift. In each in silico

“generation,” the LM proposes a point mutation that preserves fitness but induces high

antigenic change. These point mutations will accumulate over multiple generations

(Figure 9-1B). Adding randomness into each generation enables many simulated

mutational paths that all start at the same sequence. To validate, we will start the

simulation at a historical influenza HA sequence and run many (~106) simulations for

many (~102 to 103) generations.

In silico cross validation would train on sequences from a given time period and test

on a separate period, with success determined as high sequence/antigenic similarity

between simulated drift and actual drift. Such an approach is not unlike weather

forecasting, which also runs many simulations to determine the probability of an

outcome (e.g., chance of rain). Accurately forecasting mutational dynamics could

then inform vaccine development, e.g., vaccinating against a likely future mutant of a

current viral strain.
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9.1.2 Designing antiviral cocktails

Quantifying antigenic diversity with viral LMs also enables therapeutic design that

maximizes coverage of this diversity. In LM embedding space, more similar antigens

cluster closer together, and preliminary follow-up data suggests that such clusters

have significant differential binding to various monoclonal antibodies. These patterns

can therefore help design antibody cocktails that are robust to escape [BFW+20,

GSG+20]. First, different antigenic variants will be linked to different antibodies,

e.g., by identifying mutants that affect binding [GSG+20]. These variants can be

embedded into the LM’s antigenic landscape in which, building off of previous work

on diversity-preserving subsampling [HCD+19], we can select a subset of antibodies

that maximizes diversity of neutralized antigens.

Metrics from computational geometry [Hau37] can quantify diversity in antigenic

space (Figure 9-1C). The antibody subset should ideally be small to enable easier

clinical translation, leading to a constrained optimization problem: maximize diversity

with a minimal set of antibodies. Validation would passage a virus in vitro with the

cocktail [BFW+20, GSG+20] followed by sequencing to identify escape mutations.

Ideally, no escape should occur even after many passages.

9.1.3 Engineering polyvalent mosaic vaccines

Finding the sequence 𝑆* that maximizes the LM probability 𝑝(𝑆), i.e., the “maximum

likelihood” sequence, could be used as a better way to engineer mosaic vaccines

[FPT+07, SLZ+10, BOS+10, BSB+13, BTW+18] than current heuristics. These cur-

rent strategies are based on local sequence variation, e.g., a mosaic based on 9-mer or

15-mer sequence fragments, whereas neural network LMs can capture global patterns

across an entire sequence, leading to more natural sequence designs (Figure 9-1D).

The maximum likelihood sequence reflects the most frequently observed viral sequence

patterns and might therefore elicit a broader immune response. Finding 𝑆* would

naively require brute-force enumeration of all possible sequences, but combinatorial

search algorithms like a genetic algorithm [FPT+07] or Monte Carlo tree search,
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famously used to search for game playing strategies in chess and Go [SHM+16], will

eliminate large spaces of improbable sequences. Importantly, LMs generalize to any

viral sequence, enabling the same strategy to be used for different antigens (e.g., HIV

Gag, Env, or Pol). As a sanity check, in silico models that flag biochemically invalid

protein sequences will also be applied to the maximum likelihood sequence designs.

We also expect that mosaic vaccine candidates that have been confirmed to elicit

broad immune responses in primates would have a significantly high 𝑝(𝑆), though

perhaps not as high as 𝑝(𝑆*).

Most mosaic vaccines are polyvalent [FPT+07], i.e., composed of multiple unique

antigens. Because LMs give us a continuous, multidimensional representation of

antigenic diversity, we can use a geometric approach to select diverse mosaic antigens.

Rather than returning a single 𝑆*, a search algorithm can also return multiple sequences

with high 𝑝(𝑆), e.g., the top three sequences based on 𝑝(𝑆) are used as a trivalent

mosaic vaccine. We would also want to select antigens such that no naturally observed

antigen is too far away from any vaccine antigen in the LM antigenic embedding space;

in computational geometry, this is formalized by minimizing the Hausdorff distance

[Hau37] from a set of surveilled antigens to the set of vaccine antigens. Algorithms can

efficiently select a diversity-preserving subset of a larger dataset and can be combined

with a maximum likelihood antigen design strategy to select a polyvalent vaccine

composed of diverse mosaic antigens (Figure 9-1E).

A maximum likelihood polyvalent mosaic vaccine will need to be evaluated in vivo,

e.g., with rhesus macaque models for an HIV vaccine candidate. The evaluation pipeline

will leverage previously reported methods for determining vaccine immunogenicity

and protection [FPT+07, SLZ+10, BOS+10, BSB+13, BTW+18]. Should the initial

mosaic show no improvement or worse performance, failure can be incorporated as

prior information in the model [HBB20], which will then propose a sufficiently different

new mosaic.
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9.2 The long term

The work in this thesis is also part of a longer term vision for computational biology

as a driving force for biological discovery. There are a number of areas in which

algorithms can make a particularly effective contribution, which are (briefly) discussed

here.

9.2.1 Making sense of combinations

Biology achieves tremendous complexity through combinations; for example, just

four nucleotides are sequentially combined to encode all of nature’s biodiversity.

Solving biological problems requires understanding combinatorial complexity, but most

systematic/high-throughput strategies for biological exploration do not scale beyond

singleton perturbations (e.g., point mutations, single-gene knockouts, monoclonal

antibodies). Exploring combinatorially-large biological search spaces will require

intelligent search algorithms, particularly those that can learn from data.

One particular application is in combinatorial drug design with the goal of pre-

venting resistance mutations. A particularly notable success of HIV research since the

beginning of the AIDS epidemic in the 1980s is the development of drug cocktails that

can push a patient’s viral load below the limit-of-detection of antigen or even RNA

tests. Similar strategies based on combinations of drugs are used to treat bacterial

infections like tuberculosis or to treat cancer via chemotherapy. Selecting the compo-

nents of a drug cocktail is time-consuming; often, the efficacy of each component must

be established individually, followed by additional studies on the drugs in combination.

Rapid generation of combination therapy is an area in which algorithms can make

a real contribution. For example, combinatorial diversity of a disease (e.g., different

viral strains or tumor types) can be distilled into discrete modes by an unsupervised

learning algorithm (e.g., via clustering of a continuous sequence embedding). Each

mode of a diverse disease might then have a corresponding drug, e.g., each disease

“cluster” is defined by a similar pattern of mutations that is targetable by the same
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small molecule. These drugs might also be recommended by data-driven algorithms.

Finally, the drug combination is thus selected according to the distribution of disease

diversity.

Active learning algorithms can also guide rounds of biological experimentation

that explore a large, combinatorially complex search space in a principled way. These

algorithms would make use of the property that desirable biological phenotypes often

have low-dimensional inherent structure and can therefore benefit from an exploration-

followed-by-exploitation strategy. As an analogy, gold mining often requires large

amounts of exploration to find an area with a small amount of gold, but this often

leads to a large gold vein nearby; similarly, existing combinatorial drug treatments

might also be refined by an active learning algorithm.

9.2.2 Gamification

Many advances in artificial intelligence research have been driven by the goal of

meeting or surpassing human-level performance at games like chess, Go, or StarCraft

[SHM+16, VBC+19]. Evolution in a pathogenic context can be thought of as a game,

but with much more dire consequences. Viral escape and antibiotic resistance are

persistent challenges and demand better ways to respond to adversarial evolution.

Thinking of pathogen-drug co-evolution as a game can lead to new biotechnologies

and algorithms. In particular, there is increasing interest in using machine learning

to help guide directed evolution. It may be possible to simulate co-evolution in

the laboratory such that an algorithm is pitted against an in vitro (or even an in

vivo) model as an adversary. For example, algorithmic generation of viral antigens

can be pitted against in vitro technologies that simulate antibody generation via

recombination and somatic hypermutation. Over multiple experimental rounds, in

vitro evolution can therefore guide in silico exploration of an evolutionary landscape

that could in turn provide insight into how escape occurs in vivo.
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9.2.3 Greater human-algorithm cooperation

Routine cooperation between algorithmic predictions and biological data generation is

the ultimate goal of research in computational biology. Importantly, algorithm-guided

prediction provides an efficient alternative, in both time and resources, to large-scale

screening or manual trial and error. Focused experimental decision-making is especially

important in settings where high-throughput screens are not easy or even tractable. For

example, a researcher might first obtain a training dataset with a tractable experiment

(for example, a biochemical assay, or a single-gene reporter readout) and follow up a few

machine-guided predictions with more complex experiments (for example, involving

pathogenic models like Mtb-infected macrophages, or more complex designs like a

high-throughput single-cell profiling experiment).

The work in this thesis dealing with algorithmic biological discovery (Chapter 7)

has mostly focus on “exploitation,” i.e., prioritizing more confident examples that

are likelier to yield positive results. However, researchers can also use algorithms to

guide “exploration” of highly novel biological regimes. Techniques like uncertainty will

help researchers control the “exploration/exploitation” tradeoff to choose experiments

that tolerate a higher risk of failure in order to probe novel regimes. For example,

in the drug discovery setting, novelty is important since human-designed drugs are

often appraised based on their creativity (in addition to effectiveness). Novelty is also

important across biological domains, such as designing artificial proteins not found in

nature or discovering new transcriptional circuits.

Although initializing a model with some training data is helpful, it is also possible

to begin with zero training data (all predictions might therefore begin as equally

uncertain). As more data is collected, a sample-efficient model with uncertainty can

progressively yield better and more confident predictions. This is the iterative cycle of

computation and experimentation at the heart of active learning, for which we provide

a proof-of-concept in this thesis.

More generally, we anticipate that iterative experimentation and computation will

have a transformative effect on the experimental process. In addition to learning from
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high-throughput datasets, we also envision learning algorithms working intimately

alongside bench scientists as they acquire new data, even on the scale of tens of

new datapoints per experimental batch. This line of work may ultimately lead to

algorithms that propose biological hypotheses that are competitive with (or even

exceed) those generated by human creativity.
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Figure A-1: Previous methods are sensitive to integration order.
(A) When a mixture dataset of 293T cells and Jurkat cells is chosen as the first reference
dataset (𝑛 = 3,388 cells), scran MNN correctly integrates a second dataset of Jurkat cells
(𝑛 = 3,257) and a third dataset of 293T cells (𝑛 = 2,885 cells). (B) When given the two
datasets of 293T cells and Jurkat cells first, scran MNN incorrectly merges the two cell types
together into a single cluster. Integration by scran MNN requires its first dataset to share at
least one cell type with all other datasets that are successively integrated, which may not be
a reasonable assumption. Seurat CCA was unsuccessful at integrating these three datasets
in both cases. (C) Without correction, Jurkat cells cluster by batch instead of by cell type.
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Figure A-2: Comparison of scRNA-seq integration methods on simulations.
(A-H) We use the Splatter package to simulate three datasets with four cell types in total,
where dataset 1 has cell types A and B, dataset 2 has cell types B and C, and dataset
3 has cell types C and D. In each dataset, we assign cells to a cell type with a 50/50
probability. Each dataset contains 1,000 cells. The Splatter simulation also generates batch
effects between datasets such that without batch correction cells cluster by both dataset
and batch (A, E). For Seurat CCA and scran MNN, datasets are aligned in numerical
order. Scanorama correctly aligns the same cell types together (B, F), whereas scran MNN
incorrectly merges cell types A and D and does not merge cell type C across batches (D,
H). Seurat CCA is unableto merge the datasets together (C, G). (I) Scanorama alignment
scores find the correct pairwise matches between the simulated cell types. (J) Scanorama has
significantly improved Silhouette scores than the uncorrected data (independent, two-sided
𝑡-test 𝑃 < 5 × 10−324; 𝑛 = 3,000 cells), scran MNN (𝑃 = 1 × 10−40), and Seurat CCA
(𝑃 = 3 × 10−37). An asterisk (*) indicates a significantly higher Silhouette Coefficient
distribution (Bonferroni corrected 𝑃 < 0.05) between Scanorama and no correction, a dagger
(†) indicates significance over scran MNN, and a double dagger (‡) indicates significance
over Seurat CCA. Boxplot boxes extend from lower to upper quartiles with an orange line
at the median and green triangle at the mean; whiskers show the range.
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Figure A-3: Scanorama alignment scores across 26 datasets.
Scanorama alignment scores from aligning 26 heterogeneous scRNA-seq datasets reveal high
amounts of alignment among biologically similar datasets and alignments scores close to or
at zero for datasets that are not biologically similar. Heatmap rows and columns correspond
to different datasets and diagonal entries are set to 1.
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Figure A-4: Comparison of scRNA-seq integration methods on HSCs.
(A, E) Two datasets of HSCs plotted on the first two principal components (PCs) shows cell
separated by batch effects along the second PC; granulocyte-macrophage progenitors (GMP)
and megakaryocyte-erythrocytes (MEP) are derived from common myeloid progenitors
(CMP). (B, F) Scanorama removes any significant difference due to experimental batch
(natural log likelihood-ratio = −902; 𝑛 = 3, 175 cells). (C, G) Seurat CCA overcorrects and
places all cell types into a single cluster. (D, H) scran MNN obtains a similar result to that
of Scanorama. (I) Scanorama alignments consists of a substantial percentage of the cells
in both datasets, as expected. (J) Scanorama and scran MNN have similar performance
and the same median Silhouette Coefficient (median of 0.28; independent, two-sided 𝑡-test
𝑃 = 0.14; 𝑛 = 3, 175 cells), but Scanorama has significantly better performance than no
correction (median of 0.22; 𝑃 = 8×10−10) and Seurat CCA (median of 0.07; 𝑃 = 2×10−132).
An asterisk (*) indicates a significantly higher Silhouette Coefficient distribution (Bonferroni
corrected 𝑃 < 0.05) between Scanorama and no correction and a double dagger (‡) indicates
significance over Seurat CCA. Boxplot boxes extend from lower to upper quartiles, whiskers
indicate range, an orange line indicates the median, and a green triangle indicates the
mean(𝑛 = 3,175 cells).
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Figure A-5: Comparison of integration methods on pancreas cells.
(A, E) Pancreatic islets cluster by cell type and batch in the uncorrected setting. (B-D, F-H)
Visually, Scanorama, Seurat CCA, and scran MNN have similar performance in merging
cell-type specific clusters together across datasets. (I) Scanorama finds substantial overlap
among all five pancreatic islet datasets. (J) All methods have relatively similar performance,
but Seurat CCA has a higher Silhouette Coefficient distribution (compared to Scanorama,
independent, two-sided 𝑡-test 𝑃 = 5× 10−3; 𝑛 = 15,921 cells) followed by Scanorama, scran
MNN (𝑃 = 5× 10−4), and the uncorrected data (𝑃 = 1× 10−4). An asterisk (*) indicates
a significantly higher Silhouette Coefficient distribution (Bonferroni corrected 𝑃 < 0.05)
between Scanorama and no correction and a dagger (†) indicates significance over scran
MNN. Boxplot boxes extend from lower to upper quartiles, whiskers indicate range, an
orange line indicates the median, and a green triangle indicates the mean (𝑛 = 15,921 cells).
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Figure A-6: Batch correction quality on pancreatic islets.
(A-C) 𝑘-means clustering of datasets integrated with Scanorama result in clusters that are
orthogonal to differences due to batch, noting that even smaller sub-clusters do not find
dataset-specific structure. (D, E) Scanorama batch correction of five pancreas datasets
results in lower one-way ANOVA 𝐹 -values compared to scran MNN (we note that this
analysis is not applicable to Seurat CCA, which finds integrated embeddings and does not
modify gene expression values). Each point represents a gene; results are for 15,369 genes.
Closer to the left is better, indicating more similar gene expression distributions after batch
correction. The red dashed line indicates equal 𝐹 -values between uncorrected and corrected
datasets.
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Figure A-7: Comparison of scRNA-seq integration methods on PBMCs.
(A,E) Without batch correction, PBMC datasets cluster by both cell type and dataset.
(B, F) Scanorama integration results in cells clustering by cell type. (C, G) Seurat CCA
integration results in overcorrection. (D, H) scran MNN obtains a similar result as that of
Scanorama because a large dataset of PBMCs was chosen as the first dataset. We expect
performance to degrade if the large dataset were not chosen first. (I) Scanorama alignment
scores capture relationships between the datasets. (J) Scanorama has the highest distribution
of Silhouette Coefficients compared to scran MNN (independent, two-sided 𝑡-test 𝑃 = 0.0011;
𝑛 = 47,994 cells), the uncorrected data (𝑃 = 1× 10−51), and Seurat CCA (𝑃 = 9× 10−194).
An asterisk (*) indicates a significantly higher Silhouette Coefficient distribution (Bonferroni
corrected 𝑃 < 0.05) between Scanorama and no correction and a double dagger (‡) indicates
significance over Seurat CCA. Boxplot boxes extend from lower to upper quartiles, whiskers
indicate range, an orange line indicates the median, and a green triangle indicates the mean.
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Figure A-8: Twenty-six-dataset quality control.
(A) Cells in our experiment integrating 26 diverse datasets (𝑛 = 105,476 cells) cluster
according to cell type instead of by relative differences in the number of unique genes. E.g.,
the two HSC datasets are aligned despite different dataset-specific gene percentages (the
MARS-Seq dataset has a relatively low average percentage of nonzero genes at 30% versus
the Smart-seq2 dataset with an average of 79% nonzero genes), as are the pancreas datasets.
(B) We observe a bimodal distribution of cells according to their number of unique genes.
(C) We compute the SVD of the concatenation of the 26 datasets and visualize the top
300 singular values in a bar plot. (D) Integrating datasets (𝑛 = 105,476 cells) based on
the union of all genes (setting unobserved gene expression values to zero) results in similar
results as with taking the intersection.
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Figure A-9: Silhouette coefficient distributions across 26 datasets.
For our experiment in which we integrate 26 diverse scRNA-seq datasets, we compute
Silhouette Coefficients based on Scanorama’s integrated embeddings. Scanorama has a
significantly higher Silhouette Coefficient distribution compared to scran MNN (𝑃 < 5×
10−324), Seurat CCA (𝑃 < 5× 10−324), and no correction (𝑃 = 4× 10−6) when integrating
our collection of 26 datasets containing 105,476 cells. Notably, scran MNN and Seurat CCA
have lower median Silhouette Coefficients than if no correction had been applied, indicating
large amounts of overcorrection. Boxplot boxes extend from lower to upper quartiles with an
orange line at the median and green triangle at the mean; whiskers show the range. 𝑃 -values
are determined using an independent, two-sided 𝑡-test (𝑛 = 105,476 cells). An asterisk
(*) indicates a significantly higher Silhouette Coefficient distribution (Bonferroni corrected
𝑃 < 0.05) between Scanorama and no correction, a dagger (†) indicates significance over
scran MNN, and a double dagger (‡) indicates significance over Seurat CCA.
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Figure A-10: Integration of datasets with no overlapping cell types.
Boxplot box: lower to upper quartiles; orange line: median; green triangle: mean; whiskers:
range; dagger (†): significantly higher Silhouette Coefficient distribution (Bonferroni 𝑃 <
0.05) between Scanorama and scran MNN; double dagger (‡): significance over Seurat
CCA. (A, B, G, H) No spurious Scanorama alignments between three disparate datasets.
(C, D, I, J) Other methods prone to overcorrection. (E, K) Scanorama alignment scores.
(F) Uncorrected and Scanorama corrected data have the highest Silhouette Coefficients
compared to scran MNN (independent, two-sided 𝑡-test 𝑃 = 7× 10−252) and Seurat CCA
(𝑃 < 5 × 10−324). (L) Scanorama has the least overcorrection compared to scran MNN
(𝑃 = 5× 10−98) and Seurat CCA (𝑃 < 5× 10−324).
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Figure A-11: Near monotonicity of covering boxes with box length.
Cardinality of plaid covering near-monotonically decreases with respect to the length
parameter. For PBMC and adult mouse brain datasets, we plotted the number of boxes
returned by our plaid covering algorithm as a function of box length provided as input. The
overall monotonic relationship allows us to use binary search to find the length at which the
plaid cover contains roughly the desired number of boxes.
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Figure A-12: Partial Hausdorff distance at different parameter cutoffs.
We measured the partial Hausdorff distance at different values of the parameter 𝑞 (Section
4.5.1), including 𝑞 = 1× 10−4 (Figure 4-2), 𝑞 = 1× 10−3 and 𝑞 = 0 (the last corresponding
to the classical Hausdorff distance). Geometric sketching outperforms all other sampling
methods when measured with a robust, partial Hausdorff distance with positive 𝑞. Under
the classical Hausdorff distance, geometric sketching also outperforms all other sampling
methods in almost all cases except for larger sketches in the adult mouse brain dataset due
to a single outlier cell, but the anomalous cell was removed when computing more robust
Hausdorff distance measures.
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Figure A-13: t-SNE visualizations of large datasets.
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Figure A-14: UMAP visualizations of large datasets.
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Figure A-15: Additional benchmark comparisons.
(A) Sampling with geometric sketching better reflects differences in cluster volume instead
of density. Geometric sketching samples from clusters according to the volume of space
occupied by each cluster. Bar height indicates means and error bars indicate standard error
across 10 random seeds. The 𝑦-axis indicates the KL divergence of expected cluster represen-
tation based on known cluster volumes compared to observed cluster representation in the
subsampled data. Closer to 0 is better (indicates less bias introduced by density). (B) Rarest
cell types are more represented within a geometric sketch. We assessed overrepresentation
of cell types within a sketch by computing the ratio of the observed number of cells over the
expected number of cells (assuming uniform sampling probability) for each cell type; we
then took the geometric mean of the ratios for the rarest half of all cell types within each
dataset. Geometric sketching consistently overrepresents rare cell types and does so more
than other sampling strategies in almost all cases. Because we set the number of covering
boxes equal to the desired sketch size, as the sketch size increases, the overrepresentation
ratio with respect to uniform sampling will converge to unity. (C) Unbalanced measurement
of clustering recapitulation of biological cell types. Louvain clustering was applied to a
sketch, transferred to the full dataset, and then measured for agreement with biological
cluster labels using adjusted mutual information.
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Figure A-16: Scalability and downstream acceleration.
(A) PCA runtime versus dataset size. The time required to learn a 100-dimensional
representation of a scRNA-seq dataset using a randomized PCA scales linearly with the
size of the dataset and has reasonable scalability to large-scale scRNA-seq experiments in
the future. Each point given in the above plot corresponds to the time taken to compute a
100-dimensional embedding on each of the four main benchmark datasets used in the study.
(B) Integration quality of methods with and without geometric sketching-based acceleration.
Closer to 1 indicates more dataset mixing within clusters. Geometric sketching-based
acceleration of integration methods yields integrations with comparable or better quality
than applying the integration methods to the full dataset. Both geometric sketching and
uniform sampling have comparable integration quality, but based on our other results, it is
likely that geometric sketching would better align rare cell types in addition to common cell
types. Using SRS and 𝑘-means++ sampling produces worse integration quality.
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Figure A-17: Secure pipeline for pharmacological collaboration.
Collaborating entities (e.g., pharmaceutical companies or research laboratories) have large
private datasets of DTIs, as well as corresponding chemical structures and protein sequences.
In our protocol, the entities first use secret sharing to pool their data in a way that reveals no
information about the underlying drugs, targets, or interactions (step 1). The collaborating
entities then jointly execute a cryptographic protocol that trains a predictive model (e.g., a
neural network) on the pooled dataset (step 2). The final model can be made available to
participating entities or may be used to distribute DTI predictions to participants in a way
that encourages greater data sharing (step 3).

232



Balanced dataset

Balanced dataset Imbalanced dataset

Imbalanced dataset Divided chemicals

Divided chemicalsA

B

C

D

E

F

Figure A-18: ROC and precision-recall performance on STITCH.
Our secure neural network (Secure DTI) outperforms the secure SVM and plaintext CMF
using the receiver-operator characteristic and precision-recall on a held-out test set consisting
of (A, B) an equal number of positive interactions and negative pairs, (C, D) a 1:10 ratio
of positive interactions to negative pairs, and (E, F) interactions involving chemicals not in
the training or tuning datasets.
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Figure A-19: Out-of-distribution cross validation experiments.
(A) Compound-kinase Kds among all pairs of 72 compounds and 442 kinases from Davis et
al. was partitioned such that portions of the test set would have compounds not seen in the
training data (“drug discovery”), kinases not seen in the training data (“drug repurposing”),
and entire compound-kinase pairs not seen in the training data (“de novo”). (B) Performance
within each out-of-distribution test set quadrant was measured with average-case metrics.
Bar height indicates mean. (C) Scatter plots show the relationship between predicted Kd
and model uncertainty, colored by the ground truth Kd, for all items in the test set. A
normal MLP does not output uncertainty estimates.
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Figure A-20: Lead prioritization from cross validation experiments.
(A) Performance within each out-of-distribution test set quadrant was measured based on
lead-prioritization (the true Kd of the top 5 acquired compounds in each random seed).
Bar height indicates mean; statistical significance was assessed with a one-sided Welch’s
𝑡-test 𝑃 -value (FDR < 0.05). (B) The true Kd of the top 5 acquired compounds for each
uncertainty model with (𝛽 = 1) and without uncertainty (𝛽 = 0). Bar height indicates mean;
statistical significance was assessed with a one-sided Welch’s 𝑡-test 𝑃 -value (FDR < 0.05).
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Figure A-21: Visualization of ZINC-Cayman acquisition priority.
Each compound in the ZINC-Cayman library is visualized as a two-dimensional t-SNE of
the chemical embedding space, colored according to acquisition priority for high predicted
binding affinity (and, if available, low uncertainty) to four kinases. GP-based acquisition
prioritizes regions of the compound space close to available training data (Figure 7-3A,B).
In contrast, MLP-based acquisition consistently prioritizes compounds that are out-of-
distribution, indicating potentially pathological predictions. CMF predictions appear to lack
any meaningful structure with regards to the compound landscape. PknB visualizations are
the same as in Figure 7-3 and reproduced here for comparison.
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Figure A-22: Prediction uncertainty distributions and true values.
Violin plots and box plots correspond to the GP output for a given compound/kinase
pair; the box extends from the first to third quartile, the whiskers extend from the min
to max, and the white dot indicates the median. Horizontal red lines correspond to the
true experimentally determined Kd. Note that uncertainty in addition to the prediction
value adds interpretability; for example, the GP-outputted distributions corresponding to
p110δ/K252a and PknB/phenylacetic acid have similar means but different variances, with
greater tolerance for a false positive prediction in the latter.
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Figure A-23: Visualization of semantic landscape Louvain clustering.
(A-C) Louvain cluster labels, used to evaluate cluster purity of HA subtype, HA host species,
and HIV subtype, are visualized with the same UMAP coordinates as in Figure 8-2. Part of
HA cluster 30 was highlighted in Figure 8-2C. Coronavirus Louvain clusters 0 and 2 were
highlighted in Figure 8-2G. (D) Cluster purities of Louvain clustering on language model
(LM) semantic embeddings were compared to those of clustering with either the max clade
(MC) or single linkage (SL) algorithms applied to phylogenetic trees constructed by MAFFT,
Clustal Omega (ClustalO), MrBayes, RAxML, or FastTree. Results for Louvain compared
to MAFFT with MC clustering are also shown in Figure 8-2. Bar height: mean; error bars:
95% confidence over 𝑁 = 74 clusters for HA and 𝑁 = 28 clusters for Env.
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Figure A-24: Mutant semantic change and grammaticality.
(A) Each point in the scatter plot corresponds to a single-residue mutation of the indicated
viral protein or protein domain. Points are colored by CSCS acquisition priority and a red X
is additionally drawn over the points that correspond to escape mutations. (B) Across 891
unique, surveilled SARS-CoV-2 Spike sequences, ten (1.1%) have higher semantic change
and grammaticality compared to a Spike sequence modified to have RaTG13 RBD-ACE2
contact residues and two (0.22%) have higher semantic change and grammaticality compared
to a Spike sequence with a SARS-CoV-1 RBD-ACE2 contact residues.
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Figure A-25: Additional protein structure visualizations.
Cartoon illustration of HA H1 and HA H3; view of HIV Env as cartoon and surface oriented
to illustrate the semantically important inner domain; and views of SARS-CoV-2 Spike in
monomeric (surface) and trimeric form (cartoon) illustrating S2 escape depletion.
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Dataset # high-quality cells Technology Panorama
293T cells 2885 10X 1
Jurkat cells 3257 10X 1
Jurkat:293T 50:50 mixture 3388 10X 1
Jurkat:293T 99:1 mixture 4185 10X 1
Mouse neurons 9032 10X 2
Mtb infected macrophages 10827 SeqWell 3
Partially infected macrophages 212 SeqWell 3
Macrophages (donor 1) 4510 SeqWell 3
Macrophages (donor 2) 90 SeqWell 3
Mouse HSCs 2401 MARS-Seq 4
Mouse HSCs 774 Smart-seq2 4
Pancreatic islet cells 8569 inDrop 5
Pancreatic islet cells 2449 CEL-Seq 2 5
Pancreatic islet cells 1276 CEL-Seq 5
Pancreatic islet cells 638 Fluidigm C1 5
Pancreatic islet cells 2989 Smart-seq2 5
PBMCs 18018 10X 6
CD19+ B cells 2261 10X 6
CD14+ monocytes 295 10X 6
CD4+ helper T cells 3713 10X 6
CD56+ NK cells 6657 10X 6
CD8+ cytotoxic T cells 3990 10X 6
CD4+/CD45RO+ memory T cells 3628 10X 6
CD4+/CD25+ regulatory T cells 3365 10X 6
PBMCs 3774 Drop-seq 6
PBMCs 2293 10X 6

Table A.1: 26 datasets used in the panoramic integration experiments.
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Cell Type Number of cells % of total Differential Entropy
293T 28 0.669056 −461.66
Jurkat 4157 99.33094 −270.88

Table A.2: Statistics for 293/Jurkat mixture data.

Cell Type Number of cells % of total Differential Entropy
CD14+ Monocyte 3817 5.565844 −228.419
CD19+ B 3306 4.820718 −213.47
CD4+/CD25+ T 2812 4.100381 −238.942
CD4+/CD45RA+/CD25−

Naive T
3126 4.558247 −230.899

CD4+/CD45RO+ Mem-
ory T

5859 8.543432 −223.313

CD4+ Helper T 11445 16.68878 −222.592
CD56+ NK 14112 20.57773 −232.116
CD8+/CD45RA+ Naive
Cytotoxic

21975 32.04334 −232.351

CD8+ Cytotoxic T 1865 2.719491 −219.693
Dendritic 262 0.382041 −281.506

Table A.3: Statistics for PBMC data.
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Cell Type Number of cells % of total Differential Entropy
Astrocyte 54444 8.176518 −285.773
Endothelial Stalk 39298 5.901859 −271.857
Endothelial Tip 3818 0.573396 −277.978
Ependymal 2157 0.323943 −282.046
Macrophage 1695 0.254559 −290.916
Microglia 4614 0.692941 −275.472
Mural 12083 1.814651 −270.937
Neurogenesis 2372 0.356232 −257.468
Neuron 428051 64.28563 −232.534
Oligodendrocyte 104773 15.73504 −342.73
Other (unlabeled) 379 0.056919 −281.542
Polydendrocyte 12174 1.828318 −260.35

Table A.4: Statistics for adult mouse brain data.

Cell Type Number of cells % of total Differential Entropy
Astrocyte 34915 7.504067 −293.16
Ependymal 2777 0.596844 −274.99
Immune/Blood 14081 3.026343 −289.20
Neuron 147059 31.60649 −243.09
Oligodendrocyte 219220 47.11561 −338.52
Peripheral Glia 16066 3.452967 −328.23
Vascular 31163 6.697673 −265.75

Table A.5: Statistics for developing mouse brain data.
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Cell Type Uniform 𝑘-means++ SRS Geometric sketching
Astrocyte 1088 1090 389 1277
Endothelial Stalk 761 782 533 556
Endothelial Tip 84 107 175 815
Ependymal 33 68 102 165
Macrophage 43 31 47 262
Microglia 86 75 99 397
Mural 247 297 346 519
Neurogenesis 47 89 171 151
Neuron 8655 9746 10821 7975
Oligodendrocyte 2031 747 53 627
Other (unlabeled) 5 10 24 49
Polydendrocyte 237 275 557 524

Table A.6: Statistics for adult mouse brain sketch.

Cell Type Uniform 𝑘-means++ SRS Geometric sketching
Astrocyte 697 949 905 1194
Ependymal 49 115 339 614
Immune/Blood 265 418 350 466
Neuron 2982 4823 3911 4533
Oligodendrocyte 4371 1649 2273 1098
Peripheral Glia 332 322 259 230
Vascular 609 1029 1268 1170

Table A.7: Statistics for developing mouse brain sketch.
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Property # Samples Min Median Max Mean S. Dev.
Exact molecular
weight (Da) 10,833 61.0 352.2 994.5 367.9 140.3

SSSR 10,833 0 2 12 2.4 1.7
Balaban J 10,833 0.7 2.0 6.3 2.2 0.8
Bertz CT 10,833 17.2 661.3 2850.1 734.0 399.1
Tanimoto similarity
(RDK Fingerprint,
2048 bits)

58,671,528 0.00 0.18 1.00 0.20 0.11

Tanimoto similar-
ity (Morgan Finger-
print, 2048 bits, ra-
dius = 2)

58,671,528 0.00 0.09 1.00 0.11 0.07

Table A.8: Statistics for ZINC-Cayman dataset.
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Compound PknB IRAK4 c-SRC p110δ
(1′S,2′S)-Nicotine-1′-
oxide >10000

3-O-methyl-N-acetyl-
D-Glucosamine >10000

8-iso Prostaglandin
E2 >10000

AB-BICA >10000
Abacavir >10000
AD57 >10000
ALK-IN-1 620 13
AP26113 1300 83 370
Atracurium >10000
AVL-292 5500
CAY10625 >10000
Epinastine >10000
Evodiamine >10000
GLYX 13 >10000
GP-NEPEA >10000
HM61713 5100
IKK-16 22
K145 >10000
K252a 11 0.85 500 3700
Lovastatin >10000
LY2886721 >10000
Mevastatin >10000
NVP-TAE226 9900
Oxymatrine >10000
Phenylacetic Acid >10000
PI-3065 0.36
PX 1 >10000
Ro 4929097 >10000
Ro 67-7476 >10000
S-(5′-Adenosyl)-L-
methionine chloride >10000

Stauprimide 670
SU11652 76
TG101209 71 810 79
Toceranib 1000 37
WAY-161503 >10000
WS3 4
ZSTK474 >10000

Table A.9: Summary of tested interactions
Kd values are in nM. Blank cells indicate an interaction that was not tested.

246



Compound MIC (μM)
IKK-16 25
K252a 25

Rifampicin 1.25
SU11652 25

TG101209 >50

Table A.10: MIC values for axenic Mtb.

Compound Target (Kd < 100 nM) Closest compound Tanimoto sim.
IKK-16 PknB Imatinib 0.31
PI-3065 p110δ GDC-0941 0.46

ALK-IN-1 IRAK4 TAE-684 0.55
TG101209 PknB, c-SRC TG-101348 0.68
Toceranib PknB, c-SRC Sunitinib 0.72
AP26113 IRAK4 TAE-684 0.73

WS3 c-SRC AST-487 0.73
K252a PknB, IRAK4 CEP-701 0.77

SU11652 PknB Sunitinib 0.81

Table A.11: Closest training set compounds.
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Model HA H1 HA H3 Env BG505 Spike Spike RBD
MAFFT 0.697* 0.598* 0.523 0.618 0.526
EVcouplings (ind.) 0.706* 0.691* 0.536 0.689 0.527
EVcouplings (epi.) 0.726* 0.687* 0.552 0.713 0.610*
Grammaticality (our model) 0.820* 0.684* 0.667* 0.820* 0.704*
Bepler 0.660* 0.644* 0.561 0.534 0.664*
TAPE transformer 0.584* 0.526 0.574* 0.667 0.556
UniRep 0.482 0.452 0.534 0.745* 0.606*
Semantic change (our model) 0.664* 0.709* 0.622* 0.660 0.584*
CSCS (our model) 0.834* 0.771* 0.692* 0.854* 0.709*

Table A.13: Escape prediction normalized AUC values.
An asterisk (*) indicates a significant AUC based on a Bonferroni-corrected one-sided
permutation-based 𝑃 -value of less than 0.05.
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Appendix B

Deferred details from Chapter 5

B.1 Details of the quadratic program

We introduce some notation to condense the expressions. Define w ∈ R𝑘 where

𝑤𝑖 , 𝜔2
𝑖 , 𝛿𝑖𝑗 ∈ R𝑘 with [𝛿𝑖𝑗]𝑠 , ([x𝑖]𝑠 − [x𝑗]𝑠)2 (i.e., squared elements of x𝑖 − x𝑗) and,

for convenience, let 𝒫 be the set of pairs of observations 𝒫 = {{𝑖, 𝑗} : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁}.

Using the fact that the covariance between random variables x and y is given by

Cov(x , y) , E[xy ]−E[x ]E[y ] and the variance as Var(x) , E[x2]−E2[x ], we have that

Cov(w, 𝜌ℓ) = 1
|𝒫|

∑︁
{𝑖,𝑗}∈𝒫

𝜌ℓ(x(ℓ)
𝑖 , x(ℓ)

𝑗 )𝛿T
𝑖𝑗w−

1
|𝒫|2

⎛⎝ ∑︁
{𝑖,𝑗}∈𝒫

𝛿T
𝑖𝑗w

⎞⎠⎛⎝ ∑︁
{𝑖,𝑗}∈𝒫

𝜌ℓ(x(ℓ)
𝑖 , x(ℓ)

𝑗 )
⎞⎠

=
(︃

1
|𝒫|

aℓ −
1
|𝒫|2

bℓ

)︃T

w and

Var(w) = 1
|𝒫|

∑︁
{𝑖,𝑗}∈𝒫

wT𝛿𝑖𝑗𝛿
T
𝑖𝑗w−

1
|𝒫|2

⎛⎝ ∑︁
{𝑖,𝑗}∈𝒫

𝛿T
𝑖𝑗w

⎞⎠2

= wT
(︃

1
|𝒫|

S− 1
|𝒫|2

T
)︃

w
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where

aℓ ,
∑︁

{𝑖,𝑗}∈𝒫
𝜌ℓ(x(ℓ)

𝑖 , x(ℓ)
𝑗 )𝛿𝑖𝑗,

bℓ ,

⎛⎝ ∑︁
{𝑖,𝑗}∈𝒫

𝜌ℓ(x(ℓ)
𝑖 , x(ℓ)

𝑗 )
⎞⎠ ∑︁

{𝑖,𝑗}∈𝒫
𝛿𝑖𝑗,

S ,
∑︁

{𝑖,𝑗}∈𝒫
𝛿𝑖𝑗𝛿

T
𝑖𝑗, and

T ,

⎛⎝ ∑︁
{𝑖,𝑗}∈𝒫

𝛿𝑖𝑗

⎞⎠⎛⎝ ∑︁
{𝑖,𝑗}∈𝒫

𝛿T
𝑖𝑗

⎞⎠ .

Note that aℓ and bℓ depend only on dataset Xℓ while S and T depend only on the

primary dataset X1.

Recall the general optimization problem in Equation (5.5) and the framework

for quadratic programming in Equation (5.3). Using the notation defined there, the

mapping is now straightforward, i.e.,

v , w,

Q ,
1
|𝒫|

S− 1
|𝒫|2

T + 𝜆I𝑘, and

q , −2𝜆1−
𝑟∑︁

𝑗=1
𝛾ℓ

(︃
1
|𝒫|

aℓ + 1
|𝒫|2

bℓ

)︃
.

To see that Q is psd, note that

Q = 𝜆I𝑘 + 1
|𝒫|

∑︁
{𝑖,𝑗}∈𝒫

(𝛿𝑖𝑗 − 𝜇)(𝛿𝑖𝑗 − 𝜇)T

where 𝜇 = 1
|𝒫|
∑︀

{𝑖,𝑗}∈𝒫 𝛿𝑖𝑗, so Q is a sum of psd matrices.

For the linear constraint, we express G in block form

G =

⎡⎢⎢⎣H 0

0 −I𝑘

⎤⎥⎥⎦
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where each row in H is given by

H𝑗 , −
1
|𝒫|

a𝑗 −
1
|𝒫|2

b𝑗 for 1 ≤ 𝑗 ≤ 𝑟.

For the right side of the inequality constraint, we have a (𝑟 + 𝑘)-dimensional vector h

where each element is

ℎ𝑗 =

⎧⎪⎪⎨⎪⎪⎩
−𝛽𝑗 for 1 ≤ 𝑗 ≤ 𝑟

0 for 𝑟 + 1 ≤ 𝑗 ≤ 𝑟 + 𝑘

where if 𝛽𝑗 = 0 for some 𝑗 (i.e., no correlation constraint) the corresponding rows can

be deleted from H and h. We have no equality constraints in our optimization, so A

and b from Equation (5.3) are not needed.

B.2 Correlation and neighborhood structure

We first introduce some notation. X1 and X2 are the two datasets under consideration,

each covering the same set of points 𝒮, with |𝒮| = 𝑁 . Each dataset has associated

metrics 𝜌1 and 𝜌2, respectively. We denote the Spearman rank correlation between the(︁
𝑁
2

)︁
pairwise distances within each of X1 and X2 as pwcs(𝜌1, 𝜌2). Also, we will often

refer to point-triplets (𝐴, 𝐵, 𝐶) ∈ 𝒮. We recapitulate that the Spearman correlation

is analogous to the more popular Pearson correlation with the distinction that the

former works with ranks while the latter works with actual values.

Below, we assume WLOG that the
(︁

𝑁
2

)︁
pairwise distances in a dataset are distinct.

If they are not, it is easy to break the ties in a way that preserves the ordering of all

non-distinct distances. For example, let 𝛿 be the smallest non-zero difference between

two pairwise distances; for each point in 𝒮, we pick a random direction and move it
𝛿

100 units along that direction.

Lemma 3. pwcs(𝜌1, 𝜌2) = 1 ⇐⇒ the neighborhood structures of X1 and X2 are

identical.
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Proof. If pwcs(𝜌1, 𝜌2) = 1, then the pairwise distances in X1 and X2 are ranked

identically; this follows from the definition of Spearman correlation. In other words,

𝜌1(𝐴, 𝐵) < 𝜌1(𝐴, 𝐶) ⇐⇒ 𝜌2(𝐴, 𝐵) < 𝜌2(𝐴, 𝐶). This, in turn, implies that, for each

𝐴, its distance to the remaining 𝑁 − 1 points is in the same order in both datasets.

Thus, the neighborhood-structures are identical.

The other direction also follows directly from our definition of identical neighbor-

hood structures. If X1 and X2 have identical neighborhood structures, then for any

point 𝐴 ∈ 𝒮 and any 𝑘, the set of 𝑘-nearest neighbors of 𝐴 are the same in X1 and

X2. This is equivalent to stating that the 𝑗-th nearest point to 𝐴 is the same in X1

and X2, for all 𝑗. Repeating this for all points establishes that the pairwise distances

are ranked identically in X1 and X2.

We now describe a more general connection between pwcs(𝜌1, 𝜌2) and neighborhood

similarity in the case when there are some mis-alignments between X1 and X2.

Lemma 4. pwcs(𝜌1, 𝜌2) > 1−𝜖 =⇒ mismatch(X1, X2) <
√

2𝜖, where mismatch(X1, X2)

is the fraction of point-triplets that are misaligned, i.e., 𝜌1(𝐴, 𝐵) < 𝜌1(𝐴, 𝐶) but

𝜌2(𝐴, 𝐵) > 𝜌2(𝐴, 𝐶).

Proof. We first convert pairwise distances in X1 and X2 to ranks, i.e., 1, . . . , 𝑁(𝑁−1)
2 .

The rank-ordering ℛ2 for X2 is a permutation of the rank-ordering ℛ1 for X1. The

lemma above is essentially relating two measures of distance between these permuta-

tions: the Spearman distance and the Kendall Tau distance. The latter counts the

number of inversions, i.e., the number of pairs 𝑝𝐴𝐵, 𝑝𝐴𝐶 ∈ ℛ1 whose order is inverted

in ℛ2. We appeal to a well-known result from Durbin and Watson [DW51] that states

𝑟𝑆 ≤ 1− 1− 𝑟𝐾

2(𝑀 + 1)[(𝑀 − 1)(1− 𝑟𝐾) + 4]

where 𝑟𝐾 is the Kendall Tau correlation and the 𝑟𝑆 is the Spearman correlation

between the permutations, and 𝑀 is their length (here, 𝑀 , 𝑁(𝑁−1)
2 ). For large 𝑁 ,

this simplifies to
(1− 𝑟𝐾)2

2 ≥ 1− 𝑟𝑆
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The inequality stated in the lemma directly follows from this.

The results above provide support to our intuition that Spearman rank correlation of

pairwise distances is a direct way of measuring distortions of neighborhoods. However,

while rank correlation is hard to compute especially in a QP framework and the

Pearson correlation can be quite different than the rank correlation in general settings,

on low-metric-entropy biological datasets we find that empirically it captures the right

intuition.
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Appendix C

Deferred details from Chapter 6

C.1 Secure-DTI

C.1.1 Secure computation preliminaries

We consider the simplest setting with two collaborating entities (academic labs or

pharmaceutical companies), denoted CP1 and CP2 (“computing parties”). Our

protocol also involves a third auxiliary entity CP0 that is involved only during an

offline pre-computation phase. As we require CP0 to not collude with other entities in

the protocol for our security guarantee to hold, we expect a trusted party (e.g., NIH)

to play the role of CP0. Using a cryptographic technique called secret sharing, each

of CP1 and CP2 shares its DTI data (i.e., drug- and target-specific input features and

observed interaction scores) with the other participant in such a way that enables

privacy-preserving computation over the pooled data. During this computation, CP1

and CP2 leverage pre-computed data from CP0 (which is input-agnostic) to greatly

speed up the computation using a technique called generalized Beaver partitioning

(12). Finally, CP1 and CP2 combine their outputs to reconstruct the final results (e.g.,

neural network weights or predicted DTIs).

We adopt the “honest-but-curious” security model in which the protocol partic-

ipants are assumed to follow the protocol exactly as specified, but at the end of
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the protocol execution, a party may try to infer additional information about other

parties’ private inputs based on their view of the protocol. Under this setting, our

protocol is secure as long as CP0 and at least one of the other CPs remains honest.

We also assume all communication occurs over a secure and authenticated channel

(e.g., over the TLS protocol). This work generally follows the paradigm of computing

on secret-shared data first formalized by Ben-Or et al. [BOGW88].

For our notation we adopt the notation and definitions given in the supplementary

materials for Cho et al. [CWB18], which we refer to throughout this supplement

although we restate essential descriptions as necessary. Our protocol relies on a

two-party additive secret sharing scheme where a value 𝑥 ∈ Z𝑞 is shared between

CP1 and CP2, where we denote a secret sharing of 𝑥 between CP1 and CP2 as

[𝑥] , ⟨[𝑥]1, [𝑥]2⟩, where the notation ⟨[𝑥]1, [𝑥]2⟩ means that [𝑥]1 and [𝑥]2 are shares of

𝑥 in Z𝑞 individually owned by CP1 and CP2, respectively, such that 𝑥 = [𝑥]1 + [𝑥]2.

Adding two secret shared values [𝑥] and [𝑦] can be done by having each party add their

own shares, i.e., ⟨[𝑥]1 + [𝑦]1, [𝑥]2 + [𝑦]2⟩. Adding by a public field element 𝑎 ∈ Z𝑞 can

be written as ⟨[𝑥]1 + 𝑎, [𝑥]2⟩. Multiplying by a public field element is also simple and

can be written as ⟨𝑎[𝑥]1, 𝑎[𝑥]2⟩. Multiplying two secret shared values is more involved

but, as described in Cho et al., it is possible to obtain secure protocols that generalize

a tool known as Beaver multiplication triples [Bea91] for efficiently computing many

multiplications, including matrix multiplications.

We use a fixed-point representation of signed real numbers that uses 𝑘 total bits,

of which 𝑓 is the number of bits allocated to the fractional domain, referred to as

the “precision.” We denote a secret shared fixed-point encoding of 𝑥 ∈ R as [𝑥](𝑓).

Multiplication of two fixed point numbers outputs a result with precision of 2𝑓 instead

of 𝑓 , so we use the truncation routine from Catrina and Saxena [CS10] to rescale the

precision, which we denote

[𝑥trunc]← Truncate([𝑥], 𝑏, 𝑠)

as defined in Cho et al., where 𝑏 is the number of bits to mask, which is chosen such
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that a sufficient level of statistical security is guaranteed, and 𝑠 is the number of least

significant bits to truncate. We also use the data oblivious sign test (i.e., a comparison

with zero) as proposed by Nishide and Ohta [NO07], which as defined in Cho et al.,

takes the form

[1{𝑥 > 0}]← IsPositive([𝑥](𝑓))

where [1{𝑥 > 0}] is a secret shared integer value equal to 1 if 𝑥 is positive, and 0

otherwise. This comparison protocol requires 𝑂(1) rounds of communication and 𝑂(𝑘)

invocations of multiplication protocols, where 𝑘 is the bit length.

C.1.2 Secure neural network computation

We are now ready to define our secure protocols for neural network training, described

in the plaintext setting in Section 6.3.2. First, we implement the GradientDescent

protocol (Algorithm 2), which takes as input [Xbatch](𝑓), [ybatch](𝑓),

[W](𝑓) , [W(1)](𝑓), . . . , [W(𝐿+1)](𝑓), [W(1)
𝑣 ](𝑓), . . . , [W(𝐿+1)

𝑣 ](𝑓), and (C.1)

[b](𝑓) , [b(1)](𝑓), . . . , [b(𝐿+1)](𝑓), [b(1)
𝑣 ](𝑓), . . . , [b(𝐿+1)

𝑣 ](𝑓), (C.2)

and then outputs the updated model parameters [W](𝑓) and [b](𝑓) after performing a

single stochastic gradient update.

Multiple rounds of GradientDescent are invoked in which a new Xbatch and

corresponding ybatch are randomly sampled from the full dataset, which we repeat

until reaching the max number of iterations 𝑇 . Finally, after the training procedure is

finished, the two collaborating entities CP1 and CP2 combine their shares to jointly

reconstruct W(1), . . . , W(𝐿+1) and b(1), . . . , b(𝐿+1) in plaintext. If the entities wish

to keep the trained model private, an alternative is to only reveal new predictions

obtained by securely evaluating the model on a test set.

Notably, our model is kept private during the entire gradient descent training

procedure and can remain private when making novel predictions. This is in contrast

to existing approaches for privacy-preserving neural networks that are developed for

259



the simpler setting where the model is trained in plaintext, and only the evaluation of

the trained model on new data instances is performed in a privacy-preserving manner.

Such approaches are not able to make use of the higher-quality models that can

be obtained by training on a much larger set of data securely pooled from multiple

entities, as enabled by our framework.

The model that we report in the main text for the DrugBank and STITCH

dataset experiments has hyperparameters 𝑀batch = 50, 𝐿 = 2, 𝐻 = 250, 𝑇 = 20, 000,

𝜆 = 0.001, 𝜇 = 0.9, and 𝛼 = 0.01, chosen based on a small-scale grid search. We

Algorithm 2: GradientDescent
Input: Mini-batch features [Xbatch](𝑓), label vector [ybatch](𝑓), weight

parameters [W](𝑓), bias parameters [W](𝑓), velocity parameters
[W𝑣](𝑓) and [b𝑣](𝑓)

Output: Updated parameters [W](𝑓), [b](𝑓), [W𝑣](𝑓), [b𝑣](𝑓)

/* Forward propagation. */
for 𝑙 = 1, . . . , 𝐿 do

if 𝑙 = 1 then[︁
Z(1)

]︁(𝑓)
← Truncate

(︁
[W(1)](𝑓)[Xbatch](𝑓), 𝑘 + 𝑓, 𝑓

)︁
else[︁

Z(𝑙)
]︁(𝑓)
← Truncate

(︁
[W(𝑙)](𝑓)[Z(𝑙−1)](𝑓), 𝑘 + 𝑓, 𝑓

)︁
end
for 𝑖 = 1, . . . , 𝑀 do[︁

Z(𝑙)
:,𝑖

]︁(𝑓)
← [Z(𝑙)

:,𝑖 ](𝑓) + [b(𝑙)](𝑓)

end[︁
1{Z(𝑙) > 0}

]︁
← IsPositive

(︁
[Z(𝑙)](𝑓)

)︁
[︁
Z(𝑙)

]︁(𝑓)
← [Z(𝑙)](𝑓) ⊙ [1{Z(𝑙) > 0}]

end

if 𝐿 = 0 then
[s](𝑓) ← Truncate

(︁
[W(1)](𝑓)[Xbatch](𝑓), 𝑘 + 𝑓, 𝑓

)︁
else

[s](𝑓) ← Truncate
(︁
[W(𝐿+1)](𝑓)[Z(𝐿)](𝑓), 𝑘 + 𝑓, 𝑓

)︁
end
for 𝑖 = 1, . . . , 𝑀 do

[s𝑖](𝑓) ← [s𝑖](𝑓) + [b(𝐿+1)](𝑓)

end
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/* Loss function evaluation. */
[−s⊙ ybatch](𝑓) ← Truncate

(︁
−[s](𝑓) ⊙ [ybatch](𝑓), 𝑘 + 𝑓, 𝑓

)︁
[1− s⊙ ybatch](𝑓) ← CP2: [−s⊙ ybatch](𝑓) + 1
[1{1− s⊙ ybatch}]← IsPositive

(︁
[1− s⊙ ybatch](𝑓)

)︁
[︁

1
𝑀batch

1{1− s⊙ ybatch}
]︁(𝑓)
← 1

𝑀batch
· [1{1− s⊙ ybatch}][︁

𝛿(𝐿+1)
]︁(𝑓)
← Truncate

(︂
−[ybatch](𝑓) ⊙

[︁
1

𝑀batch
1{1− s⊙ ybatch}

]︁(𝑓)
, 𝑘 + 𝑓, 𝑓

)︂

/* Backpropagation. */
for 𝑙 = 𝐿 + 1, . . . , 1 do

if 𝑙 = 1 then[︁
𝜕𝒥

𝜕W(1)

]︁(𝑓)
← Truncate

(︁
[𝛿(1)](𝑓)[XT

batch](𝑓), 𝑘 + 𝑓, 𝑓
)︁

else[︁
𝜕𝒥

𝜕W(𝑙)

]︁(𝑓)
← Truncate

(︁
[𝛿(𝑙)](𝑓)[Z(𝑙−1)T](𝑓), 𝑘 + 𝑓, 𝑓

)︁
[︁
W(𝑙)T𝛿(𝑙)

]︁(𝑓)
← Truncate

(︁
[W(𝑙)T](𝑓)[𝛿(𝑙)](𝑓), 𝑘 + 𝑓, 𝑓

)︁
[︁
1{Z(𝑙−1) > 0}

]︁
← IsPositive

(︁
[Z(𝑙−1)T](𝑓)

)︁
[︁
𝛿(𝑙−1)

]︁(𝑓)
← [W(𝑙)T𝛿(𝑙)](𝑓) ⊙ [1{𝑍(𝑙−1) > 0}]

end[︁
𝜕𝒥

𝜕W(𝑙)

]︁(𝑓)
← [ 𝜕𝒥

𝜕W(𝑙) ](𝑓) + Truncate
(︁
𝜆[W(𝑙)](𝑓), 𝑘 + 𝑓, 𝑓

)︁
[︁

𝜕𝒥
𝜕b(𝑙)

]︁(𝑓)
← [𝛿(𝑙)](𝑓)1

end

/* Parameter updates. */
for 𝑙 = 1, . . . , 𝐿 + 1 do

[(W(𝑙)
𝑣 )prev](𝑓) ← [W(𝑙)

𝑣 ](𝑓)

[W(𝑙)
𝑣 ](𝑓) ← Truncate

(︂
𝜇[W(𝑙)

𝑣 ](𝑓) − 𝛼
[︁

𝜕𝒥
𝜕W(𝑙)

]︁(𝑓)
, 𝑘 + 𝑓, 𝑓

)︂
[W(𝑙)](𝑓) ←
[W(𝑙)](𝑓) + Truncate

(︁
−𝜇[(W(𝑙)

𝑣 )prev](𝑓) + (𝜇 + 1)[W(𝑙)
𝑣 ](𝑓), 𝑘 + 𝑓, 𝑓

)︁
[(b(𝑙)

𝑣 )prev](𝑓) ← [b(𝑙)
𝑣 ](𝑓)

[b(𝑙)
𝑣 ](𝑓) ← Truncate

(︂
𝜇[b(𝑙)

𝑣 ](𝑓) − 𝛼
[︁

𝜕𝒥
𝜕b(𝑙)

]︁(𝑓)
, 𝑘 + 𝑓, 𝑓

)︂
[b(𝑙)](𝑓) ← [b(𝑙)](𝑓) + Truncate

(︁
−𝜇[(b(𝑙)

𝑣 )prev](𝑓) + (𝜇 + 1)[b(𝑙)
𝑣 ](𝑓), 𝑘 + 𝑓, 𝑓

)︁
end

return [W](𝑓), [b](𝑓), [W𝑣](𝑓), [b𝑣](𝑓)
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observed that our model performance is only minorly affected by small changes

to the parameters. Although we considered all hyperparameters as fixed at the

beginning of our secure protocol, additionally performing parameter selection in a

secure computation framework would take only a few weeks over a WAN based on our

estimates and thus remains practical. This procedure can be further sped up with

parallelism or more advanced search strategies.

C.2 Experimental validation details

We obtained the compounds droloxifene, imatinib, nutlin-3, actinomycin D, and

Hoescht 33258 from Abcam and the compounds GW-501516 and CHEMBL2332055

from Sigma-Aldrich, which were sent to commercial contract research organizations

(CROs) for experimental validation.

Predictions for ERα, ERβ, and PgR were validated using Indigo Bioscience’s nuclear

receptor assay service. First, a suspension of Reporter Cells was prepared in INDIGO’s

Cell Recovery Medium (CRM; containing 10% Charcoal-stripped FBS). Immediately

prior to assay setup, test compound master stocks were diluted in DMSO to generate

solutions at 1,000x-concentration relative to each final treatment concentration. These

intermediate stocks were subsequently diluted directly into INDIGO’s Compound

Screening Medium (CSM; containing 10% Charcoal-stripped FBS) to generate 2X-

concentration treatment media. 100 μl of each prepared treatment medium was

dispensed into duplicate assay wells pre-dispensed with a 100 μl suspension of Reporter

Cells, thereby achieving the desired final treatment concentrations. The concentration

of residual DMSO in all assay wells was 0.1%. Assay plates were incubated for 22–24

hours in a cell culture incubator (37∘C, 5% CO2, 85% humidity). The reporter cell

suspension was first supplemented with a 2X-EC80 concentration of the appropriate

reference agonists, and then 100 μl of the cell suspension was dispensed into wells

of a white 96-well assay plate. Wells were rinsed once with LCM buffer, then LCM

substrate was added. Following incubation at 37∘C for 30 minutes, fluorescence was

measured to determine relative number of live cells per assay well. LCM Substrate

262



was then discarded and 100 μl/well of Luciferase Detection Reagent was added. RLUs

were quantified from each assay well to determine antagonist activity.

Predictions for PARP1 were made using BPS Bioscience’s PARP1 biochemical

assay and screening service. The enzymatic reactions were conducted in duplicate at

room temperature for 1 hour in a 96 well plate coated with histone substrate. 50 μL

of reaction buffer (Tris·HCl, pH 8.0) contains NAD+, biotinylated NAD+, activated

DNA, a PARP enzyme and the test compound. After enzymatic reactions, 50μl of

Streptavidin-horseradish peroxidase was added to each well and the plate was incubated

at room temperature for an additional 30 minutes. 100 μl of developer reagents were

added to wells and luminescence was measured using a BioTek SynergyTM 2 microplate

reader. The luminescence data were analyzed using the computer software, Graphpad

Prism. In the absence of the compound, the luminescence in each data set was defined

as 100% activity. In the absence of the PARP, the luminescence in each data set was

defined as 0% activity. The IC50 value was determined by the concentration causing

a half-maximal percent activity.

Predictions for ERBB3 and ERBB4 were validated using DiscoverX’s KINOMEscan

profiling service. Kinase-tagged T7 phage strains were prepared in an E. coli host

derived from the BL21 strain. E. coli were grown to log-phase and infected with T7

phage and incubated with shaking at 32∘C until lysis. The lysates were centrifuged

and filtered to remove cell debris. The remaining kinases were produced in HEK-293

cells and subsequently tagged with DNA for qPCR detection. Streptavidin-coated

magnetic beads were treated with biotinylated small molecule ligands for 30 minutes

at room temperature to generate affinity resins for kinase assays. The liganded beads

were blocked with excess biotin and washed with blocking buffer [SeaBlock (Pierce),

1% BSA, 0.05% Tween 20, 1 mM DTT] to remove unbound ligand and to reduce

nonspecific binding. Binding reactions were assembled by combining kinases, liganded

affinity beads, and test compounds in 1X binding buffer (20% SeaBlock, 0.17X PBS,

0.05% Tween 20, 6 mM DTT). Test compounds were prepared as 111X stocks in 100%

DMSO. Kds were determined using an 11-point 3-fold compound dilution series with

three DMSO control points. All compounds for Kd measurements are distributed by
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acoustic transfer (non-contact dispensing) in 100% DMSO. The compounds were then

diluted directly into the assays such that the final concentration of DMSO was 0.9%.

All reactions performed in polypropylene 384-well plate. Each was a final volume of

0.02 ml. The assay plates were incubated at room temperature with shaking for 1

hour and the affinity beads were washed with wash buffer (1X PBS, 0.05% Tween 20).

The beads were then re-suspended in elution buffer (1X PBS, 0.05% Tween 20, 0.5

μM non-biotinylated affinity ligand) and incubated at room temperature with shaking

for 30 minutes. The kinase concentration in the eluates was measured by qPCR. Kd

calculation was performed by fitting a standard Hill curve to the measured kinase

concentrations.

Predictions for GRM1 and GRM5 were validated using DiscoverX’s gpcrSCAN

profiling service. PathHunter cell lines were seeded in a total volume of 20 μl into

black-walled, clear-bottom, Poly-D-lysine coated 384-well microplates and incubated

at 37∘C for the appropriate time prior to testing. Assays were performed in 1X

Dye Loading Buffer consisting of 1X Dye, 1X Additive A and 2.5 mM Probenecid

in HBSS or 20 mM Hepes. Probenicid was prepared fresh. Cells were loaded with

dye prior to testing. Media was aspirated from cells and replaced with 20 μl Dye

Loading Buffer. Cells were incubated for 30-60 minutes at 37∘C. For antagonist

determination, cells were pre-incubated with sample followed by agonist challenge at

the EC80 concentration. Intermediate dilution of sample stocks was performed to

generate 3X sample in assay buffer. After dye loading, cells were removed from the

incubator and 10 μl 3X sample was added. Cells were incubated for 30 minutes at

room temperature in the dark to equilibrate plate temperature. Vehicle concentration

was 1%. Compound antagonist activity was measured on a FLIPR Tetra (MDS).

Calcium mobilization was monitored for 2 minutes and 10 μl EC80 agonist in HBSS

or 20 mM Hepes was added to the cells 5 seconds into the assay.
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Appendix D

Deferred details from Chapter 7

D.1 Biochemical validation details

Machine learning models were trained on all compound-kinase pairs from Davis et al.

[DHH+11]. For IRAK4, c-SRC, and p110δ, we trained a GP with high uncertainty

weight (𝛽 = 20) and an MLP. For PknB, the model/acquisition parameter settings

were: (1) a GP without considering uncertainty (𝛽 = 0), (2) a GP with moderate

uncertainty weight (𝛽 = 1), (3) a GP with high uncertainty weight (𝛽 = 20), (4) an

MLP without uncertainty, (5) an MLP + GP with moderate uncertainty weight (𝛽 =

1), and (6) an MLP + GP with high uncertainty weight (𝛽 = 20). Compounds from

the ZINC/Cayman dataset were featurized using the same pretrained JTNN-VAE

as in the cross-validation experiment and concatenated with the feature vector for

the corresponding kinase (PknB, IRAK4, c-SRC, or p110δ). Trained models were

evaluated on these concatenated features. The top five predictions for each kinase from

each of the above models were acquired for binding affinity determination. Predictions

involving lipids only commercially available as ethanol solutions were incompatible

with the binding assay, excluded from validation, and reported as not interactive.

Compounds were acquired directly from Cayman Chemical. All supplied com-

pounds were tested to ensure ≥ 98% purity. We leveraged the kinase affinity assays

provided by the DiscoverX CRO. Kd determination was done using the KdELECT
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assay, which measures the ability for test compounds to compete with an immobilized,

active-site directed ligand using DNA-tagged kinase, where competition is measured

via quantitative polymerase chain reaction (qPCR) of the DNA tag. Kinase-tagged

T7 phage strains were prepared in an Escherichia coli (E. coli) host derived from

the BL21 strain. E. coli were grown to log-phase and infected with T7 phage and

incubated with shaking at 32∘C until lysis. The lysates were centrifuged and filtered

to remove cell debris. Streptavidin-coated magnetic beads were treated with biotiny-

lated ligand for 30 minutes at room temperature to generate affinity resins for kinase

assays. The liganded beads were blocked with excess biotin and washed with blocking

buffer [SeaBlock (Pierce), 1% bovine serum albumin (BSA), 0.05% Tween 20, 1 mM

dithiothreitol (DTT)] to remove unbound ligand and to reduce non-specific binding.

Binding reactions were assembled by combining kinases, liganded affinity beads, and

test compounds in 1× binding buffer [20% SeaBlock, 0.17× phosphate-buffered saline

(PBS), 0.05% Tween 20, 6 mM DTT]. Test compounds were prepared as 111X stocks

in 100% DMSO. Kds were determined using an 11-point 3-fold compound dilution

series with three DMSO control points with a top test compound concentration of

10,000 nM. All compounds for Kd measurements are distributed by acoustic transfer

(non-contact dispensing) in 100% DMSO. The compounds were then diluted directly

into the assays such that the final concentration of DMSO was 0.9%. All reactions

performed in polypropylene 384-well plate. Each was a final volume of 0.02 mL.

The assay plates were incubated at room temperature with shaking for 1 hour and

the affinity beads were washed with wash buffer (1× PBS, 0.05% Tween 20). The

beads were then re-suspended in elution buffer (1× PBS, 0.05% Tween 20, 0.5 μM

non-biotinylated affinity ligand) and incubated at room temperature with shaking for

30 minutes. The kinase concentration in the eluates was measured by qPCR.

Kds were calculated with a standard dose-response curve using the Hill equation

Response = Background + Signal− Background
1 + KdHill slope

DoseHill slope

.

Curves were fitted using a non-linear least square fit with the Levenberg-Marquardt
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algorithm. The Hill slope was set to −1; a deviation from this Hill slope in the

dose-response pattern was used to identify possible aggregation, but no such deviation

was observed.

D.2 Microbiological validation details

D.2.1 Mycobacterium tuberculosis model

We utilized wild-type H37Rv and H37Rv expressing an integrated copy of the lux-

ABCDE cassette which enables mycobacteria to endogenously produce light [AZF+10];

monitoring luminescence of the latter strain has been demonstrated to correlate well

with the standard colony forming unit assay [BTZ+17].

D.2.2 Human macrophage model

Human monocytes were isolated from human buffy coats purchased from the Mas-

sachusetts General Hospital blood bank using a standard Ficoll gradient (GE Health-

care) and subsequent positive selection of CD14+ cells (Stemcell Technologies). Se-

lected monocytes were cultured in ultra-low-adherence flasks (Corning) for 6 days

with RPMI media (Invitrogen) supplemented with hydroxyethylpiperazine ethane sul-

fonic acid (HEPES) (Invitrogen), L-glutamine (Invitrogen), 10% heat-inactivated fetal

bovine serum (FBS) (Invitrogen) and 25 ng/mL human macrophage colony-stimulating

factor (M-CSF) (Biolegend).

D.2.3 Axenic Mtb growth inhibition assay

H37Rv Mtb growth was evaluated using the resazurin viability assay (alamar blue).

Mtb was grown to an optical density (OD) corresponding to early log phase (OD 0.4)

and back-diluted to an optical density of 0.003 in 7H9 media supplemented with oleic

albumin dextrose catalase (OADC) prior to incubation with a range of concentrations

of K252a, TG101209, SU11652, and rifampicin or vehicle control in a 96 well plate

with shaking at 37∘C. Bacteria were incubated with drug alone for 72 hours prior to
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the addition of alamar blue. After addition of alamar blue, H37Rv was incubated

for an additional 48 hours and alamar blue absorbance was measured using a Tecan

Spark 10M. Normalized alamar blue absorbance was calculated as

(𝑜2 × 𝑎1)− (𝑜1 × 𝑎2)
(𝑜2 × 𝑝1)− (𝑜1 × 𝑝2)

where 𝑜1 = 80586 is the molar extinction coefficient of oxidized alamar blue at 570

nm; 𝑜2 = 117216 is the molar extinction coefficient of oxidized alamar blue at 600

nm; 𝑎1 and 𝑎2 are the measured absorbance of the test well at 570 nm and 600 nm,

respectively; and 𝑝1 and 𝑝2 are the measured absorbance of a positive growth control

well at 570 nm and 600 nm, respectively. For each compound, we assessed bacterial

growth at 1.25, 2.5, 5, 10, 25, and 50 μM to determine the MIC.

Additionally, Mycobacterium tuberculosis strain H37Rv bacteria expressing an

integrated copy of the luxABCDE cassette (Andreu et al., 2010) were grown to mid-log

phase and diluted to an optical density of 0.006. Mycobacteria were added to wells of

a 96-well solid white polystyrene plate and incubated with a vehicle control (DMSO)

or rifampicin, TG101209, or SU11652 (Cayman Chem) for 5 days. Plates were sealed

with breathable film (VWR) and incubated at 37∘C for 4 days with shaking. On day

5, we measured luminescence as a proxy for total bacterial burden.

D.2.4 Primary human macrophage culture

Deidentified buffy coats from healthy human donors were obtained from Massachusetts

General Hospital. Peripheral blood mononuclear cells (PBMCs) were isolated from

buffy coats by density-based centrifugation using Ficoll (GE Healthcare). CD14+

monocytes were isolated from PBMCs using a CD14 positive-selection kit (Stemcell).

Isolated monocytes were differentiated to macrophages in RPMI 1640 (ThermoFisher

Scientific) supplemented with 10% heat-inactivated fetal FBS (ThermoFisher Sci-

entific), 1% HEPES, and 1% L-glutamine. Media was further supplemented with

25 ng/mL M-CSF (Biolegend, MCSF: 572902). Monocytes were cultured on low-

adhesion tissue culture plates (Corning) for 6 days. After 6 days, macrophages were
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detached using a detachment buffer of 1X Ca-free PBS and 2 mM ethylenediaminete-

traacetic acid (EDTA), pelleted, and recounted. Macrophages were plated in tissue

culture-treated 96-well solid white polystyrene plates at a density of 50,000 cells per

well in maintenance media (RPMI, 10% heat-inactivated FBS, 1% HEPES, and 1%

L-glutamine) and allowed to re-adhere overnight.

D.2.5 Intra-macrophage Mtb growth inhibition assay

H37Rv Mtb expressing the luxABCDE cassette were grown to an optical density

of 0.4 and centrifuged briefly. Mtb were resuspended in pre-warmed maintenance

media and filtered through a 5 μM filter to remove clumped bacteria and generate a

single-cell suspension. Macrophages were infected at a multiplicity of infection of 3

bacteria to 1 macrophage in 100 μL per well and phagocytosis was allowed to proceed

for 4 hours prior to washing macrophages twice with pre-warmed maintenance media

to remove extracellular bacteria. Following phagocytosis and washing, cells were

incubated with media containing a vehicle control (DMSO) or rifampicin, K252a, or

SU11652 (Cayman Chem) for 5 days. On day 5, we measured luminescence as a proxy

of intracellular bacterial burden as previously described [AZF+10, BTZ+17] using a

high-throughput luminometer.
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Appendix E

Deferred details from Chapter 8

E.1 Additional baseline method details

We benchmark our escape prediction experiments against models that try to estimate

the evolutionary fitness of a viral protein based on some assumptions. Notably, viral

fitness models are not equivalent to escape prediction, since mutations that preserve

fitness may be neutral with respect to escape (fitness models better correspond to the

“grammaticality” term in CSCS). However, in the absence of existing unsupervised

models that are directly built to perform unsupervised escape prediction, viral fitness

models are the most related that attempt to solve a conceptually close problem.

E.1.1 Alignment-based frequency fitness model

This baseline model for viral fitness assumes that higher mutational frequencies in

a corpus correspond to higher fitness and that residue-level fitness information is

independent across the viral sequence; this fitness model is widely adopted due to its

simplicity [CS07, KBB+13, AAG+05, FKG+11].

We first perform MSA with the MAFFT software package (version 7.453) within

the respective corpuses (influenza or HIV sequences). After sequence alignment was

performed, we considered each position in the viral sequence of interest (influenza
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strains A/Perth/16/2009 or A/WSN/1933, or HIV strain BG505). At a given position,

we computed the frequency of other amino acids that were aligned to that position

across all other sequences in the corpus. Sequences were acquired based on the highest

observed frequencies across all possible single-residue mutations.

For influenza, we found that performance (in terms of normalized AUC) improved

when restricting sequence alignment to the corresponding subtype (H1 sequences

for A/WSN/1933 and H3 sequences for A/Perth/16/2009) For HIV, we found that

performance improved when only restricting alignments to the local neighborhood

of BG505.T332N, defined by sequences that differ by a maximum of 15 residues. In

general, we found that sequence alignment is dramatically affected by the sequences

that are included in the corpus. For a best-case comparison, we report the highest

performance over different sequence inclusion strategies.

We also used a conceptually similar implementation of this strategy provided by the

EVcouplings pipeline [HGS+19] (https://github.com/debbiemarkslab/EVcouplings)

using default parameters. We trained the EVcouplings independent model on the

same corpus of viral sequences used to train our language models.

E.1.2 Alignment-based Potts model

A common critique of the above strategy for modelling viral fitness is that the

independence assumption is limiting. Biologically, two residues can co-evolve, especially

if they are physically and biochemically related in the three-dimensional structure

of the protein, a phenomenon referred to as “epistasis.” A solution is to incorporate

pairwise residue information by learning a probabilistic model in which each residue

position corresponds to a random variable and pairwise potentials can encode epistatic

relationships.

Hopf et al. learned such a model based on a Potts model formulation; we describe

the general formulation here and leave implementation details to the original paper

[HIP+17]. Given a sequence x = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) where 𝑥𝑖 comes from an alphabet 𝒳

that is the set of all amino acids and a gap character, the model assigns an energy
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score to each sequence as

𝐸(x; h, J) ,
𝑁∑︁

𝑖=1
ℎ𝑖𝑥𝑖 +

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝐽𝑖𝑗𝑥𝑖𝑥𝑗.

This term is scaled to be a valid probability distribution

𝑝(x; h, J) = 1
𝑍

exp {−𝐸(x; h, J)}

where 𝑍 = ∑︀
x′ exp {−𝐸(x′; h, J)}. The parameters are learned by a maximum

likelihood procedure using a number of critical heuristics that Hopf et al. use to

allow for efficient inference and parameter regularization [HIP+17, HGS+19]. We

use the pipeline provided by Hopf et al. at https://github.com/debbiemarkslab/

EVcouplings with default parameters. We trained the EVcouplings epistatic model

on the same corpus of viral sequences used to train our language models.

E.1.3 Pretrained sequence embedding models

We tested if the sequence embeddings produced by models trained on generic protein

sequence corpuses [BB19, RBT+19, AKB+19] would be informative with respect to

escape. We used the pretrained transformer model from Rao et al. [RBT+19] and the

pretrained UniRep model from Alley et al. [AKB+19], both obtained through https:

//github.com/songlab-cal/tape. We used the pretrained model with full soft sym-

metric alignment and protein structure information from Bepler et al. [BB19], available

through https://github.com/tbepler/protein-sequence-embedding-iclr2019.

Rather than training exclusively on a large viral sequence corpus, as we did, these

methods trained on corpuses containing generic protein sequences. Each single-residue

escape mutant was embedded using the pretrained model and mutant sequences were

acquired based on the largest changes to the embedding based on the ℓ1-distance.
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E.2 Additional experimental details

E.2.1 Language model hyperparameter selection

We performed a small-scale grid search using categorical cross entropy loss after 20

training epochs on the headline and influenza datasets to select the language model

architecture and hyperparameters based on a random 80%/20% cross-validation split

of the training set. Hyperparameter ranges were influenced by previous applications of

recurrent architectures to protein sequence representation learning [BB19]. We tested

hidden unit dimensions of 128, 256, and 512. We tested architectures with one or two

hidden layers. We tested three hidden-layer architectures: a densely connected neural

network with access to both left and right sequence contexts, an LSTM with access

to only the left context, and a BiLSTM with access to both left and right sequence

contexts. We tested two Adam learning rates (0.01 and 0.001). All other architecture

details described in Section 8.4.2 were fixed to reasonable defaults. In total, we tested

36 conditions and ultimately used a BiLSTM architecture with two hidden layers

of 512 hidden units each, with an Adam learning rate of 0.001. We used the same

architecture for all experiments. In general, we noted that increasing model capacity

only served to improve performance.
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