
Tolerant Testing of Regular Languages in Sublinear
Time

by

Linda Gong

B.S. Computer Science and Engineering, Massachusetts Institute of
Technology, 2020

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2021

Certified by. .
Ronitt Rubinfeld

Edwin Sibley Webster Professor of Electrical Engineering and Computer
Science

Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Tolerant Testing of Regular Languages in Sublinear Time

by

Linda Gong

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

A classic problem in property testing is to test whether a binary input word 𝑤 is in
regular language 𝐿. Such testers distinguish the case that 𝑤 is in 𝐿 from the case
where 𝑤 is 𝜖-far from 𝐿 (𝜖-far means that at least 𝜖 fraction of the bits in 𝑤 must
be modified to change 𝑤 into a word in 𝐿. Otherwise, 𝑤 is 𝜖-close). When it is
known that 𝑤 is noisy, it can be useful to provide tolerant testers: algorithms that
accept when 𝑤 is 𝛿-close and reject when 𝑤 is 𝜖-far, for 𝛿 < 𝜖. We build on the
work of Alon, Krivelevich, Newman and Szegedy [1] to provide a tolerant, constant
time property tester for regular languages. Our main result is that given a regular
language 𝐿 ∈ {0, 1}* and an integer 𝑛, there exists a randomized algorithm which
accepts a word 𝑤 of length 𝑛 if it is 𝛿-close (𝛿 < 𝜖) to a word in 𝐿 and rejects with
high probability if 𝑤 is 𝜖-far from a word in 𝐿. The algorithm queries polynomial in
1
𝜖

bits in 𝑤.

Thesis Supervisor: Ronitt Rubinfeld
Title: Edwin Sibley Webster Professor of Electrical Engineering and Computer Sci-
ence

3

4

Acknowledgments

I would like to thank my advisor Prof. Ronitt Rubinfeld for all her guidance over

my years at MIT. Ronitt introduced me to the first research paper that I ever read.

Ronitt made algorithms seem less daunting; without her, I may have never viewed

myself as capable of theoretical research. She helped me explore the field of sublinear

algorithms and was supportive in every step of the problem-solving process.

I would also like to extend a hearty thanks to my mentor, collaborator and coau-

thor on this project – Talya Eden. Talya provided direction in the research and

steered me away from many mathematical pitfalls. This paper certainly would not

be what it is without Talya.

Thank you to the members of the Sublinear Algorithms research group. Through

reading groups and friendship, these people have provided a warm environment, con-

ducive to learning in the field.

Finally, thank you to my friends and family for supporting me through my five

years at MIT. In particular, I would like to thank my mother and brother. Thank

you for always believing me and providing me love when I need it most.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 11

1.1 Prior Work . 12

1.2 Contributions . 13

2 Preliminaries 15

2.1 Standard Definitions . 15

2.2 Useful Theorems . 16

3 Main Theorems 19

3.1 Gap in the Basic Case . 19

3.2 Extending Beyond the Basic Case . 23

3.2.1 Definitions for the General Case 26

4 The Algorithm 29

5 Conclusion and Future Work 37

7

THIS PAGE INTENTIONALLY LEFT BLANK

8

List of Figures

3-1 An admissible triplet is a generalized possible accepting computation

history of an input word 𝑤. 𝐴 = (𝐶𝑖1 , ..., 𝐶𝑖𝑡) is the path of strongly

connected components that the computation of 𝑤 goes through. 𝑃 =

(𝑝1𝑗𝑝
2
𝑗)

𝑡
𝑗=1 (small circles) is entry and exit "portals" of the accepting

path through each strongly connected component. Finally, Π = (𝑛𝑗)
𝑡+1
𝑗=1

(dotted lines) corresponds to the the number bits 𝑛𝑗 it takes for 𝑤 to

arrive at strongly connected component 𝐶𝑖𝑗 . You can calculate the path

lengths through each strongly connected component with Π. Note that

𝑤 always starts at state 𝑞1 in strongly connected component 𝐶1 and

must end in an accept state 𝑝2𝑗 . 25

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

Chapter 1

Introduction

The field of property testing relaxes the notion of a standard decision problem [13] [6].

A typical decision problem asks whether or not an input satisfies property 𝑃 . First

formulated by Rubinfeld and Sudan, a property testing algorithm for property 𝑃 is

given oracle access to the tested function 𝑓 . The algorithm must then distinguish

between the case that 𝑓 has property 𝑃 or that 𝑓 is far from having property 𝑃

[13] [6]. An input is said to be 𝜖-far from 𝑃 if 𝜖-fraction of the input needs to be

modified to obtain 𝑃 . This relaxation of decision problems allows for very efficient

algorithms with sublinear time and oracle query-complexity. There are many natural

applications of property testing, especially in the context of PAC learning, program-

checking, approximation algorithms and more [4] [13] [6]. Testing algorithms have

been developed for functions, graphs, strings, geometric objects and more [6] [5].

In the following thesis, we refer to the above notion of property testing as standard

property testing. Standard property testing is allowed to reject when an input is very

close to a given property. For example, in the context of regular languages, Alon et

al. [1] developed an algorithm that accepts when an input word 𝑤 of length |𝑤| = 𝑛

is in regular language 𝐿 and rejects when 𝜖𝑛 bits need to be modified to obtain a

word in 𝐿. However, this algorithm is allowed to reject when only one bit of the word

𝑤 needs to be modified to obtain a word in 𝐿.

Thus, we consider a generalized notion of property testing that requires the tester

to be tolerant with respect to inputs that are close to having a property [12]. Specifi-

11

cally, a tolerant property tester is required to accept inputs that are 𝛿-close to having

a property and reject inputs that are 𝜖-far from having the property, 0 ≤ 𝛿 ≤ 𝜖 ≤ 1.

Ideally, the tolerant property tester works for all choices of 𝛿 and 𝜖 with runtime

sublinear in input size. Note that when 𝛿 = 0, we achieve the standard notion of a

property tester.

Tolerant property testing is a natural extension to standard property testing.

Especially when it is known that the input is noisy, we may care for an algorithm

that accepts inputs close to a given pattern. In this thesis, we focus on tolerant testing

regular languages. Regular languages are exactly equivalent to the class of languages

recognized by finite automata and state machines. In addition, regular languages are

equivalent to those recognized by regular expressions (also known as regexp), which

are commonly used in pattern matching programs. A tolerant testing algorithm for

regular languages will accept all words for which at most 𝛿𝑛 bits need to be flipped

in order to obtain a word in regular language 𝐿 and will reject all words for which

at least 𝜖𝑛 bits need to be flipped to obtain a word in 𝐿. The algorithm presented in

this thesis is adaptable for choices of 𝛿 and 𝜖 for 𝛿 < 2−12 𝑐𝜖
log(1

𝜖
)
, where the constant 𝑐

is a property of the regular language 𝐿.

1.1 Prior Work

This work is a continuation off the work done in [1]. The main result from that paper

is a randomized algorithm that accepts a word 𝑤 if it is in regular language 𝐿 and

rejects with probability at least 2
3

if 𝑤 is 𝜖-far from 𝐿. The query complexity of their

algorithm is �̃�(1
𝜖
), which is optimal up to a poly-logarithmic factor in 1

𝜖
. The authors

make many observations about the periodicity and connectivity of deterministic finite

automata (DFAs) that we will use in our paper. In addition, the authors introduce the

very useful concept of "Admissible Triplets", which we make use of in our algorithm,

too.

Subsequent work has either considered testers for more general classes of lan-

guages, such as context free languages [7] or attempts to make the algorithm more

12

efficient with respect to the regular language’s underlying automata (vs. input size)

[10]. To our knowledge, the question of tolerantly testing regular languages has not

been considered.

1.2 Contributions

In this thesis, we address the tolerant testability of formal languages in {0, 1}*. 1 For

general references on languages, see [15] [8]. A language is a property which can be

viewed as a set of strings or a sequence of Boolean functions 𝑓𝑛 : {0, 1}𝑛 → {0, 1},

where 𝑓−1
𝑛 (1) = 𝐿 ∩ {0, 1}𝑛 = 𝐿𝑛. Our main result shows that regular languages

are tolerantly testable with parameters 𝛿, 𝜖, 𝛿 < 2−12 𝑐𝜖
log(1

𝜖
)

with query complexity

polyonomial in 𝑂(1
𝜖
). The 𝑐 in the bound on 𝛿 is a constant and dependent on

properties of the regular language 𝐿.

In Chapter 2, we specify and frame the problem by going over useful definitions

and theorems. In Chapter 3, we provide two main ideas: one of them explores the

gap between 𝛿 and 𝜖 for a single basic case and the other one expands the first idea

to cover all automata. In Chapter 4, we provide algorithm and prove its correctness.

Finally, in Chapter 5 we conclude and provide further steps.

1The * operator is the Kleene Star

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

Chapter 2

Preliminaries

In this chapter, we review some preliminary definitions and previously obtained the-

orems that are useful for our algorithm.

2.1 Standard Definitions

We start with the standard definition of a regular language, based on a finite automata

Definition 2.1.1. A deterministic finite automata (DFA) over {0, 1} with states

𝑄 = {𝑞1, .., 𝑞𝑚} is given by a function 𝛿 : 𝑄× {0, 1} → 𝑄 together with a set 𝐹 ⊆ 𝑄.

The state 𝑞1 is called the start state. The states belonging to 𝐹 are the accepting

states and 𝛿 is the transition function.

Given an input word, the computation starts at 𝑞1 and follows the transition

functions to different states for each symbol in the word. An automata accepts an

input if, after reading the entire input, it is in an accept state. Else, it rejects. In this

paper, as in [1], we extend the transition function 𝛿 to {0, 1}* recursively as follows:

let 𝛾 denote the empty string, then

𝛿(𝑞, 𝛾) = 𝑞

𝛿(𝑞, 𝑢0) = 𝛿(𝛿(𝑢, 𝑞), 0)

𝛿(𝑞, 𝑢1) = 𝛿(𝛿(𝑢, 𝑞), 1)

15

If an automata 𝑀 is at position 𝑞 and it processes string 𝑢, it ends up in state

𝛿(𝑞, 𝑢). Then, we say 𝑀 accepts word 𝑢 if 𝛿(𝑞1, 𝑢) ∈ 𝐹 . Else, 𝛿(𝑞1, 𝑢) ∈ 𝑄 ∖ 𝐹 . The

language of an automata 𝐿(𝑀) is the set of words that it accepts.

Definition 2.1.2. A language is regular iff there exists a DFA that accepts it.

In this paper, we write 𝑑𝑖𝑠𝑡(𝑤,𝐿) to be the distance of word 𝑤 from regular

language 𝐿. This is the minimum number of bits in 𝑤 that need to be flipped in

order to make a word in 𝐿. We also write 𝑑𝑖𝑠𝑡(𝑤,𝑤′) to be the distance of word 𝑤

from word 𝑤′. This is the number of bits in 𝑤 that need to be flipped to reach 𝑤′.

2.2 Useful Theorems

Note that every deterministic finite automata 𝑀 has an underlying directed graph

𝐺(𝑀) = (𝑉 (𝐺(𝑀)), 𝐸(𝐺(𝑀))) where 𝑉 (𝐺(𝑀)) = 𝑄 and 𝐸(𝐺(𝑀)) = {(𝑞𝑖, 𝑞𝑗) |

𝛿(𝑞𝑖, 0) = 𝑞𝑗} ∪ {(𝑞𝑖, 𝑞𝑗) | 𝛿(𝑞𝑖, 1) = 𝑞𝑗}. The period 𝑔(𝐺) of a directed graph 𝐺 is the

greatest common divisor of cycle lengths in 𝐺. If 𝐺 is acyclic we set 𝑔(𝐺) = ∞. Our

algorithm relies on heavily on the properties of strongly connected components and

periodicity. We reproduce the following lemma from below [1] (it is "Lemma 2.3" in

the paper):

Lemma 2.2.1. Let 𝐺 = (𝑉,𝐸) be a nonempty, strongly connected directed graph

with finite period g(G). Then, there exist a partition 𝑉 (𝐺) = 𝑉0 ∪ ...𝑉𝑔−1 and a

constant 𝑚 = 𝑚(𝐺) which does not exceed 3|𝑉 |2 such that

1. For every 0 ≤ 𝑖, 𝑗 ≤ 𝑔 − 1 and for every 𝑢 ∈ 𝑉𝑖, 𝑣 ∈ 𝑉𝑗 the length of every

directed path from 𝑢 to 𝑣 in 𝐺 is (𝑗 − 𝑖) mod 𝑔;

2. For every 0 ≤ 𝑖, 𝑗 ≤ 𝑔 − 1 and for every 𝑢 ∈ 𝑉𝑖, 𝑣 ∈ 𝑉𝑗 and for every integer

𝑟 ≥ 𝑚 if 𝑟 = (𝑗 − 𝑖) mod 𝑔, then there exists a directed path from 𝑢 to 𝑣 of

length 𝑟

We will not reproduce the entire proof here, but the main observation is that

any closed walk in 𝐺 is the disjoint union of cycles (informally, imagine "taking out"

16

cycles from the closed walk) and thus, the length of any closed walk is divisible by

the period 𝑔 [1]. This forms a disjoint partition of nodes based on the period and

condition 1 follows quite naturally. The second condition follows from a well-known

number theory result that for any set of positive integers {𝑎𝑖} whose gcd is 𝑔, there is

a smallest number 𝑡 such that for all integers 𝑠 ≥ 𝑡, 𝑠 can be expressed as an integer

linear combination of {𝑎𝑖}. Moreover, we know that [9], 𝑡 is smaller than the square

of max({𝑎𝑖}). Then, setting 𝑚 = 3|𝑉 |2 (to give enough time to traverse each cycle

as many times as desired) provides condition 2. 1

Definition 2.2.1. We call the constant 𝑚 as defined in 2.2.1 the reachability constant

of a strongly connected graph 𝐺. We assume that 𝑚 is divisible by 𝑔.

In other words, we know that if a graph is strongly connected, we can start at any

node and reach any other node with a sufficiently long enough path. This is a key

component to our algorithm. We introduce another definition:

Definition 2.2.2. Given a word 𝑤 ∈ {0, 1}𝑛, a continuous sub-word or run 𝑤′ of 𝑤

starting at position 𝑖 is called feasible for language 𝐿(𝑀) if there exists state 𝑞 such

that 𝑞 is reachable from 𝑞1 in 𝐺(𝑀) in exactly 𝑖 − 1 steps and if there is a path of

length 𝑛− (|𝑤′| + 𝑖− 1) in 𝐺 from the state 𝛿(𝑞, 𝑤′) to at least one of the accepting

states. Otherwise 𝑤′ is infeasible. [1]

Note that the feasibility of a run depends on the position 𝑖 that it starts at. A

run 𝑤′ starting at index 𝑖 is only infeasible if there are no viable prefixes (of length

𝑖) or suffixes of length (𝑛 − (|𝑤′| + 𝑖 − 1)) that can be attached to i at all such that

the DFA will accept. This means that if a word contains an infeasible run, it is not

in the regular language 𝐿.

Finally, we provide the following definition [1] as the most simple case to consider:

Definition 2.2.3. An automata 𝑀 is essentially strongly connected if

1. 𝑀 has a unique accepting state 𝑞𝑎𝑐𝑐

1For a more precise proof, please read [1]

17

2. 𝑀 ’s set of states 𝑄 can be partitioned into disjoint sets 𝐶 and 𝐷 such that

• 𝑞1, 𝑞𝑎𝑐𝑐 ∈ 𝐶

• The subgraph of 𝐺(𝑀) induced on 𝐶 is strongly connected

• No edges in 𝐺(𝑀) go from 𝐷 to 𝐶 (edges may go from 𝐶 to 𝐷). 𝐷 may

be empty.

Essentially, an automata is essentially strongly connected if it contains a strongly

connected component 𝐶 and a set of garbage states 𝐷, where if the garbage states

are reached, the input can no longer be accepted.

Definition 2.2.2 and Lemma 2.2.1 motivate our algorithm. We hope to show that

if an input is 𝛿-close, there are a limited number of short, infeasible runs it may have

and if an input is 𝜖-far, then it must have many short, infeasible runs. Thus, if we

sample some amount of runs from our input and test them efficiently, we should be

able to test 𝑤’s approximate membership in 𝐿. The efficient tester is motivated by

the periodicity of the strongly connected components of the automata. If our run 𝑤′

starts and ends in positions that are length 𝑚 away from the beginning and end of

word 𝑤, we do not need to test all possible prefixes and suffixes to the run in order

to see if 𝑤′ is feasible.

What remains in the paper is prove that 𝛿-close and 𝜖-far result in a testable

gap in the number of infeasible runs, show how we handle automata with multiple

strongly connected components, and provide the algorithm for tolerant testability.

18

Chapter 3

Main Theorems

In this chapter, we show that regular languages can be tolerantly tested in the basic

case where the automata for the language is essentially strongly connected. Then, we

provide the framework to extend the testing to the general set of regular languages.

3.1 Gap in the Basic Case

In this thesis, we only consider testing nontrivial languages. This means that 𝐿 ∩

{0, 1}𝑛 ̸= ∅. If the intersection is empty, there is already an algorithm to calculate

the intersection of the DFAs and to test for emptiness of a DFA. These algorithms

are polynomial in terms of the automata but constant in terms of the input size 𝑛.

Now, we present a lemma that provides a condition to distinguish between 𝛿-close

and 𝜖-far inputs, for 𝛿 < 𝜖.

Lemma 3.1.1. Let 𝐺 = 𝐺(𝑀) and 𝐿 = 𝐿(𝑀) and 𝐿∩{0, 1}𝑛 ̸= ∅. Let the automata

𝑀 be essentially strongly connected as described in Definition 2.2.3. Let 𝑚 be the

reachability constant of 𝐺[𝐶]. Assume that 𝜖𝑛 ≥ 64𝑚 log(4𝑚
𝜖

). Then, given a word

𝑤 of length |𝑤| = 𝑛

1. If 𝑤 is 𝜖-far from 𝐿, then, there is some integer 1 ≤ 𝑖 ≤ log(4𝑚
𝜖

) such that the

number of infeasible runs of length 2𝑖+1 is at least 2𝑖−4𝜖𝑛
𝑚 log(4𝑚

𝜖
)

[1]

19

2. If 𝑤 is 𝛿-close to 𝐿, then for all 1 ≤ 𝑖 ≤ log(4𝑚
𝜖

) there are at most 2𝑖+1𝛿𝑛

infeasible runs of length 2𝑖+1

Proof outline: We provide a brief outline of the proof. The general claim we are

making is there exists a length for which the difference between the number of infea-

sible runs in words that are 𝛿-close to 𝐿 and 𝜖-far from 𝐿 is significant. To prove the

lemma, we first establish that if 𝑤 is 𝜖-far, then there are many disjoint, infeasible

runs. However, when sampling for runs in our algorithm, we must know the size of the

runs. Thus, we choose to partition the guaranteed number of infeasible runs by size.

By the pigeonhole principle, we see that if a word is 𝜖-far from 𝐿, then some partition

must have many runs of a certain constant size independent of 𝑛. The second claim

about 𝛿 is proven very naturally. We can see that if 𝛿 < 2𝑖−6𝜖𝑛
𝑚 log(4𝑚

𝜖
)
, we will achieve a

significant gap in the expected number of runs if a word is 𝛿-close vs. 𝜖-far.

This proof can be separated into three parts:

1. Prove that if a word is 𝜖-far, then there are many disjoint, infeasible runs

2. In the case where the word is 𝜖-far, we show that there exists a size for which

there are many infeasible runs. We do this by showing that there are a limited

number of size buckets (the "holes" in the pigeonhole principle) that the runs

can fit into.

3. We show that if a word is 𝛿-close, there are not that many infeasible runs.

This proof makes use of the concept of minimally infeasible runs defined here

Definition 3.1.1. A run, or continuous sub-word, 𝑅 of 𝑤 starting at position 𝑖 is

considered minimally infeasible if it is the shortest infeasible run starting at position

𝑖. This implies that 𝑅(−) obtained by discarding the last bit of 𝑅 is feasible. This

also implies that 𝑅′ obtained by flipping the last bit of 𝑅 is feasible.

Proof. The first two parts of the proof are adapted from [1], but reproduced and

modified here to fit our algorithm.

20

We begin by showing that if a word is 𝜖-far from being in a language, then there

are many disjoint infeasible runs (𝑅𝑗)
ℎ
𝑗=1. We do so by deliberately constructing these

runs to be consecutive and minimally infeasible [1] in the sense that all of the prefixes

of the run 𝑅 are feasible, but adding the last bit makes 𝑅 infeasible. Then, we lower

bound the number of minimally infeasible runs by showing a method that can "fix"

them all to be feasible.

We only want to find the runs in interval [𝑚 + 1, 𝑛 − 𝑚] (Recall that 𝑚 is the

connectivity constant from Definition 2.2.1. Our method of "fixing" these infeasible

runs relies on being able to modify the 𝑚 bits before and after the run.). We wish to

find the runs in order, so we start at index 𝑚 + 1. Let 𝑅1 be the shortest infeasible

run starting at 𝑤[𝑚 + 1] and ending before 𝑤[𝑛−𝑚 + 1]. If there is no such run, we

stop. Otherwise, we continue to find the next run starting the index one after where

𝑅1 ended. Let 𝑅1, ..., 𝑅𝑗−1 end at index 𝑐𝑗−1. 𝑅𝑗 is the next minimally infeasible run

starting at 𝑤[𝑐𝑗−1 + 1] and ending before 𝑤[𝑛 −𝑚 + 1]. If there is no such run, we

stop.

Assume we have constructed ℎ disjoint, minimally infeasible runs 𝑅1, ..., 𝑅ℎ this

way. Note that the concatenation of all of these runs forms a continuous subword

of 𝑤. Additionally, each 𝑅𝑗 is minimally infeasible, so its prefix 𝑅
(−)
𝑗 obtained by

removing its last bit is feasible. And, so is 𝑅′
𝑗, obtained by flipping the last bit in 𝑅𝑗.

Using this information, we now provide an method to "fix" 𝑤 into word 𝑤* ∈ 𝐿 and

𝑑𝑖𝑠𝑡(𝑤,𝑤*) ≤ ℎ𝑚+2𝑚+2. This provides a lower bound on ℎ since 𝜖𝑛 ≤ 𝑑𝑖𝑠𝑡(𝑤,𝑤*).

The general idea of this method is to fix each subrun individually and "glue" them

together to make a feasible word. However, in order to "glue" the subruns together,

we may need to change an additional 𝑚 bits per run, since 𝑚 is the connectivity

constant.

We construct 𝑤* inductively. Our inductive hypothesis is that for each 𝑗 = 0, ...

the constructed word 𝑤𝑗 is feasible starting at position 1 and ending at position 𝑐𝑗.

For the base case, we let 𝑐0 = 𝑚 and 𝑤0 be any feasible word of length 𝑚 starting

at position 1. Assume that we have defined 𝑤𝑗−1 that is feasible from position 1

and ends at 𝑐𝑗−1. We will "glue" 𝑤𝑗−1 with fixed run 𝑅′
𝑗 obtained by flipping the

21

last bit of minimally infeasible run 𝑅𝑗. Let 𝛿(𝑞1, 𝑤𝑗−1) = 𝑝𝑗. Since 𝑅′
𝑗 is feasible

(Definition [2.2.2]), we know that there is some 𝑞𝑖𝑗 ∈ 𝐶 such that 𝛿(𝑞𝑖𝑗 , 𝑅
′
𝑗) ∈ 𝐶 and

𝑞𝑖𝑗 is reachable in 𝑐𝑗−1 + 1 steps. Then, 𝑝𝑗 and 𝑞𝑖𝑗 are both reachable in 𝑐𝑗−1 + 1 steps

from position 1, so we can change the last reachability constant 𝑚 bits in 𝑤𝑗−1 to get

a word 𝑢𝑗 such that 𝛿(𝑞1, 𝑢𝑗) = 𝑞𝑖𝑗 . Now, we can define the feasible subword 𝑤𝑗 by

concatenating 𝑢𝑗 and 𝑅′
𝑗.

Since 𝑅ℎ is the last minimally infeasible run, 𝑤ℎ is the final word inductively

created and ends at position 𝑐ℎ. Recall that the reason we stopped with 𝑅ℎ is either

because 1) there are no more infeasible runs, in which case changing the last 𝑚 bits

of 𝑤ℎ and concatenating it to the remaining suffix of 𝑤 will achieve 𝑤* ∈ 𝐿 or 2) The

next minimally infeasible run 𝑅ℎ+1 starts at index 𝑐ℎ + 1 and ends after 𝑛 −𝑚 + 1.

Then, 𝑅′
ℎ+1 is feasible starting at 𝑐ℎ + 1. 𝑅′

ℎ+1 ends within the last 𝑚 bits of 𝑤 and

𝑅′
ℎ+1 is feasible, so there must be some word 𝑢 of length 𝑛− 𝑐ℎ where at most 𝑚 bits

are modified such that 𝛿(𝑞𝑖ℎ , 𝑢) = 𝑞𝑎𝑐𝑐. Then, we construct 𝑤* by concatenating 𝑤ℎ

with 𝑢 the same way we did above.

In the construction of 𝑤* ∈ 𝐿, we changed at most 𝑚 bits per run and modified

an additional max 2𝑚 + 2 bits for the ends of the word. Thus 𝜖𝑛 ≤ 𝑑𝑖𝑠𝑡(𝑤,𝑤*) ≤

ℎ𝑚 + 2𝑚 + 2. Then, the number of minimally infeasible runs ℎ ≥ 𝜖𝑛−2
𝑚

− 2 ≥ 𝜖𝑛
2𝑚

,

where the last inequality comes from our assumption that 𝜖𝑛 ≥ 64𝑚 log(4𝑚/𝜖).

Now, we have a lower bound in the number of minimally infeasible runs. Note

that these runs are disjoint. Using this information, we will find a lower bound on

the number of runs a certain size. We bucket the runs into 𝑎 = log(4𝑚/𝜖) different

size buckets and use the pigeonhole principle to obtain the lower bound.

For 1 ≤ 𝑖 ≤ 𝑎, let 𝑠𝑖 be the number of disjoint, minimally infeasible runs whose

length falls into the interval [2𝑖−1 + 1, 2𝑖]. We know that the number of runs of

length ≥ 4𝑚
𝜖

must be < 𝜖𝑛
4𝑚

(otherwise, the word would be longer than 𝑛 bits). By the

pigeonhole principle, some size bucket 𝑖 must have at least 𝑠𝑖 ≥ 𝜖𝑛
4𝑎𝑚

disjoint, infeasible

runs. We use these 𝑠𝑖 runs of variable length to obtain a lower bound on the number of

infeasible runs of an exact 2𝑖+1 length. Notice that if a run 𝑅 contains a subrun that is

infeasible, 𝑅 itself is infeasible. Each minimally infeasible run in bucket 𝑖 is a subword

22

of at least 2𝑖 infeasible runs of length 2𝑖+1 (except maybe the first 2 and last 2). Since

the minimally infeasible runs are disjoint, at most 3 𝑅𝑗’s fit into one infeasible run of

length 2𝑖+1. Thus, there are at least 2𝑖

3
(𝑠𝑖 − 4) ≥ 2𝑖

3
(𝜖𝑛
4𝑎𝑚

− 4) ≥ 2𝑖−4𝜖𝑛
𝑚 log(4𝑚/𝜖)

infeasible

runs of length 2𝑖+1.

Now, we have shown that if a word 𝑤 is 𝜖-far from a language 𝐿, for some bucket

1 ≤ 𝑖 ≤ log(4𝑚/𝜖) = 𝑎, there are at least 2𝑖−4𝜖𝑛
𝑚 log(4𝑚/𝜖)

infeasible runs of length 2𝑖+1. To

show a gap between an input word 𝑤 being 𝛿-close and 𝜖-far, we wish to show that for

all possible buckets 1 ≤ 𝑖 ≤ 𝑎, there are at most a certain number of infeasible runs of

length 2𝑖+1. To do so, we consider the definition of 𝛿-close. In the worst case scenario,

we would have to modify 𝛿𝑛 bits to obtain a word in 𝐿. That means that there are at

most 𝛿𝑛 "bad" bits, or at most 𝛿𝑛 bits that can make the word infeasible. Every run

that does not contain these 𝛿𝑛 bits ought to be feasible. Let us consider infeasible

runs of length 2𝑖+1. Each "bad" bit can participate in at most 2𝑖+1 infeasible runs

(from the run starting with the bit to the run ending with the bit). Then, since there

are 𝛿𝑛 bad bits, we have at most 2𝑖+1𝛿𝑛 infeasible runs of length 2𝑖+1. This upper

bound works across all 𝑖 and so we have proven our claims.

In the basic case, where the automata is essentially strongly connected, we have

shown there to be a gap between 𝛿 and 𝜖. Already, a basic tolerant tester becomes

apparent in the basic case. For each 𝑖, we randomly sample a constant amount

(polynomial in 1
𝛿
) of runs of length 2𝑖. Using the upper and lower bounds, we can

calculate how many samples we’ll need to confidently differentiate between the two

cases using the Chernoff or Chebyshev bounds. We can Union bound across the

possible buckets to achieve the confidence levels that we need. Now, the question is

how we extend the basic case to the general case.

3.2 Extending Beyond the Basic Case

To extend beyond the basic case, we note that each automata 𝑀 with underlying

graph 𝐺 can be viewed as a group of strongly-connected components. Thus, we

define 𝒞(𝐺) to be the graph of components whose vertices correspond to the maximal

23

by inclusion strongly connected components of 𝐺 [1]. To be "maximal by inclusion"

means that adding any more nodes of 𝐺 to the component would violate the strong

connectivity property. Some of the vertices of 𝒞(𝐺) may correspond to single vertices

of 𝐺 with no self loops that do not belong to any strongly connected component of

𝐺 with at least two vertices. We reserve 𝑘 to be the number of vertices of 𝒞(𝐺) and

set 𝑉 = 𝑉 (𝐺). We may assume that the underlying DFA 𝑀 is the minimal DFA [8],

which means that all nodes much be reachable from 𝑞1. Then, since 𝒞(𝐺) is consisted

of maximal by inclusion connected components, 𝒞(𝐺) is an acyclic graph. Strongly

connected component 𝐶1 contains start state 𝑞1 there is a path from 𝐶1 to every other

component in the graph.

We make heavy use of a construction used in [1] – admissible triplets. An admissi-

ble triplet is analogous to an accepting computation history (similar to a computation

history used in [15]) of a word 𝑤 of length 𝑛 by a DFA 𝑀 . It describes the high-level

path that a word may take through 𝑀 . Admissible triplets (𝐴,𝑃,Π) consist of three

parts: an admissible path of components, a path of portals, and a list of path lengths.

Admissible Path of Components 𝐴: We call a path 𝐴 = (𝐶𝑖1,...,𝐶𝑖𝑡
) of vertices

in 𝒞(𝐺) admissible if it starts in component 𝐶1 and ends in a component in an

accepting state. The path must traverse along existing edges in 𝒞(𝐺).

Portals 𝑃 : An admissible sequence of portals 𝑃 = (𝑝1𝑗 , 𝑝
2
𝑗)

𝑡
𝑗=1 is defined given a

length 𝑡 path of components 𝐴. 𝑃 describes how a word 𝑤 moves from component

to component. The word enters component 𝐶𝑖𝑗 at state 𝑝1𝑗 ∈ 𝑄 (𝑄 is the set of states

of the underlying DFA 𝑀) and exits component 𝐶𝑖𝑗 at 𝑝2𝑗 . Formally, 𝑃 is defined as

such [1]:

1. 𝑝1𝑗 , 𝑝
2
𝑗 ∈ 𝐶𝑖𝑗∀1 ≤ 𝑗 ≤ 𝑡

2. 𝑝11 = 𝑞1

3. 𝑝2𝑡 ∈ 𝐹 (recall 𝐹 is the set of accepting states of 𝑀)

4. For every 2 ≤ 𝑗 ≤ 𝑡, (𝑝2𝑗−1, 𝑝
1
𝑗) ∈ 𝐸(𝐺)

24

Figure 3-1: An admissible triplet is a generalized possible accepting computation
history of an input word 𝑤. 𝐴 = (𝐶𝑖1 , ..., 𝐶𝑖𝑡) is the path of strongly connected
components that the computation of 𝑤 goes through. 𝑃 = (𝑝1𝑗𝑝

2
𝑗)

𝑡
𝑗=1 (small circles)

is entry and exit "portals" of the accepting path through each strongly connected
component. Finally, Π = (𝑛𝑗)

𝑡+1
𝑗=1 (dotted lines) corresponds to the the number bits

𝑛𝑗 it takes for 𝑤 to arrive at strongly connected component 𝐶𝑖𝑗 . You can calculate
the path lengths through each strongly connected component with Π. Note that 𝑤
always starts at state 𝑞1 in strongly connected component 𝐶1 and must end in an
accept state 𝑝2𝑗 .

Admissible Partition Π: Given an admissible path of components 𝐴 and a cor-

responding admissible sequence of portals 𝑃 , we define Π = (𝑛𝑗)
𝑡+1
𝑗=1 to be a sequence

of integers that indicates when the word 𝑤 arrives at component 𝐶𝑖𝑗 . Specifically,

after 𝑛𝑗 bits, the word 𝑤 arrives at 𝐶𝑖𝑗 in in its computation. Increasing sequence of

integers Π = (𝑛𝑗)
𝑡+1
𝑗=1 is defined to be an admissible partition if

1. 𝑛1 = 0

2. ∀1 ≤ 𝑗 ≤ 𝑡 there exists a path from 𝑝1𝑗 to 𝑝2𝑗 in component 𝐶𝑖𝑗 of length

𝑛𝑗+1 − 𝑛𝑗 − 1

3. 𝑛𝑡+1 = 𝑛 + 1

If a word 𝑤 ∈ 𝐿, then clearly there is an admissible triplet associated with 𝑤.

Therefore, it suffices to check how close or far 𝑤 is from an admissible triplet to

determine whether it is 𝛿-close or 𝜖 far. We may use the ideas shown in basic case here

by testing a word in the connected components indicated by an admissible triplet. We

almost have all the tools for the algorithm now, we just need a few more definitions.

25

3.2.1 Definitions for the General Case

Given an admissible triplet (𝐴,𝑃,Π), we define language 𝐿𝑗 corresponding with com-

ponent 𝐶𝑖𝑗 to be all the words accepted by the DFA 𝑀𝑗 whose underlying graph is

the underlying graph in 𝐶𝑖𝑗 union with a garbage state 𝑓𝑗. Specifically, 𝑀𝑗 has start

state 𝑝1𝑗 and only one accepting state 𝑝2𝑗 . The set of states in 𝑀𝑗 is the set of states

in 𝐶𝑖𝑗 and its transition function 𝛿𝑀𝑗
is defined as such:

1. For every 𝑞 ∈ 𝐶𝑖𝑗 and 𝜎 ∈ {0, 1} if 𝛿𝑀(𝑞, 𝜎) ∈ 𝐶𝑖𝑗 , then 𝛿𝑀𝑗
(𝑞, 𝜎) = 𝛿𝑀(𝑞, 𝜎)

2. Else if 𝛿𝑀(𝑞, 𝜎) /∈ 𝐶𝑖𝑗 , 𝛿𝑀𝑗
(𝑞, 𝜎) = 𝑓𝑗

3. 𝛿𝑀𝑗
(𝑓𝑗, 𝜎) = 𝑓𝑗

Then, 𝑀𝑗 is essentially strongly connected as defined in Definition 2.2.3. Let 𝐿𝑗 be

the language of 𝑀𝑗. Given an admissible triplet with a path length of 𝑡 components,

we define subwords 𝑤1, ..., 𝑤𝑡 by setting 𝑤𝑗 = 𝑤[𝑛𝑗 + 1]...𝑤[𝑛𝑗+1− 1] corresponding to

the part of 𝑤 that traverses through component 𝐶𝑖𝑗 .

We restate this lemma from [1] without proof.

Lemma 3.2.1. Let (𝐴,𝑃,Π) be an admissible triplet, where 𝐴 = (𝐶𝑖1 , ..., 𝐶𝑖𝑡), 𝑃 =

(𝑝1𝑗 , 𝑝
2
𝑗)

𝑡
𝑗=1, Π = (𝑛𝑗)

𝑡+1
𝑗=1. Let 𝑤 be a word of length 𝑛 where 𝑑𝑖𝑠𝑡(𝑤,𝐿) ≥ 𝜖𝑛. Let

languages (𝐿𝑗)
𝑡
𝑗=1 and words (𝑤𝑗)

𝑡
𝑗=1 be described above. Then, there exists an index

𝑗, 1 ≤ 𝑗 ≤ 𝑡 for which 𝑑𝑖𝑠𝑡(𝑤𝑗, 𝐿𝑗) ≥ 𝜖𝑛−𝑘
𝑘

.

This leads us to the key idea in the proof, we would like to test if 𝑤 is close to

any admissible triplet by sampling runs from 𝑤. If not too many infeasible runs are

found, we say that 𝑤 is 𝛿-close. Otherwise, we say that 𝑤 is 𝜖-far.

The only problem is that the number of admissible triplets depends on 𝑛, so we

can’t test each admissible triplet without our algorithm running in at least linear

time. This is solved by transition intervals [1]. From 1, ..., 𝑛 we place a small number

of evenly distributed, constant length transition intervals and say that the transitions

between components must happen within these intervals. Since the length of each

transition interval will be a function of the maximum connectivity constant 𝑚 across

26

all components, we can prove that if 𝑤 is 𝛿-close to 𝐿, then only a small modification

will allow 𝑤 to fit an admissible triplet. On the high level, at each transition between

strongly connected components, we can use the connectivity constant to modify 𝑤 to

spend a fewer or more steps in any component of our choosing. If 𝑤 is 𝜖-far from 𝐿,

it will still be far from any admissible triplet.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

Chapter 4

The Algorithm

In this chapter, we provide the tolerant testing algorithm for regular languages and

prove its correctness. First, we will provide some preconditions necessary for the

algorithm. Then, we will provide the algorithm itself. Finally, we will prove the

correctness of the algorithm.

Let connectivity constant 𝑚 = max𝑗 𝑚(𝐶𝑗) and 𝑙 = 𝑙𝑐𝑚({𝑔(𝐺[𝐶𝑗])}) (lowest

common multiple of the periods of the connected components). Recall that 𝑘 is the

number of strongly connected components in 𝐺, the underlying graph of 𝑀 . Let

𝑆 = 129𝑘𝑚 log(1
𝜖
). We place 𝑆 transition intervals 𝑇𝑠 = {[𝑎𝑠, 𝑏𝑠]}𝑆𝑠=1 evenly in [𝑛],

where the length of each transition interval 𝑇𝑠 is |𝑇𝑠| = (𝑘 − 1)(𝑙 + 𝑚).

In the following algorithm, let 𝑝𝑖𝛿 be the maximum probability for a single sample

of finding an infeasible run of length 2𝑖+1 if 𝑤 is 𝛿-close and let 𝑝𝑖𝜖 be the minimum

probability for a single sample of finding an infeasible run of length 2𝑖+1 if 𝑤 is 𝜖-far.

The probability of finding an infeasible run of length 2𝑖+1 with a single uniformly

random sample is the number of runs of length 2𝑖+1

𝑛
. 𝑝𝑖𝜖 = 2𝑖−7𝜖

𝑘𝑚 log(1
𝜖
)

for 1 ≤ 𝑖 ≤ log(8𝑘𝑚
𝜖

).

With the preconditions below, we can guarantee that 𝑝𝑖𝛿 ≤ 𝑝𝜖/4 for 1 ≤ 𝑖 ≤ log(8𝑘𝑚
𝜖

).

For 1 ≤ 𝑖 ≤ log(8𝑘𝑚/𝜖), we define the number of samples drawn to be 𝑟𝑖 =
64(1−𝑝𝑖𝜖)(2+log(1

𝜖

2𝑘
)+log(log(8𝑘𝑚

𝜖
)))

3(𝑝𝑖𝜖)
2

We also place the following preconditions on 𝜖, 𝑛 and 𝛿. This guarantees that 𝑛

is long enough relative to 𝑚 and that there is a large enough gap between 𝜖 and 𝛿.

Preconditions:

29

1. 𝜖𝑛
2𝑘

≥ 64𝑚 log(8𝑚𝑘
𝜖

)

2. 𝜖𝑛 > 8𝑘𝑚

3. 𝜖 log(1
𝜖
) < 1

258𝑘2|𝑉 |2𝑚(𝑙+𝑚)

4. 𝛿 < 2−12𝜖
𝑘𝑚 log(1

𝜖
)

Algorithm 1: Tolerant Tester for Regular Languages
Input: word 𝑤 of length 𝑛

1. for 1 ≤ 𝑖 ≤ log(8𝑘𝑚
𝜖

) do
1. Choose 𝑟𝑖 random runs in 𝑤 of length 2𝑖+1

end

2. for each admissible triplet (𝐴,𝑃,Π), where 𝐴 = (𝐶𝑖1 , ..., 𝐶𝑖𝑡),

𝑃 = (𝑝1𝑗 , 𝑝
2
𝑗)

𝑡
𝑗=1, Π = (𝑛𝑗)

𝑡+1
𝑗=1 and for all 2 ≤ 𝑗 ≤ 𝑡, 𝑛𝑗 ∈ 𝑇𝑠 do

1. Form automata 𝑀𝑗, 1 ≤ 𝑗 ≤ 𝑡;

2. Initialize counters for each bucket 1 ≤ 𝑖 ≤ log(8𝑘𝑚
𝜖

)

3. Discard the random runs which end or begin at place 𝑝 where

|𝑝− 𝑛𝑗| ≤ 𝜖𝑛
128𝑘𝑚 log 1

𝜖

;

4. For each remaining run 𝑅, if 𝑅 falls between 𝑛𝑗 and 𝑛𝑗+1, check to see

if 𝑅 is feasible in 𝑀𝑗. If 𝑅 is infeasible, increment the counter for 𝑖 if

|𝑅| = 2𝑖+1.

5. If all counters 𝑖 are less than 𝑍𝑖 =
𝑝𝑖𝛿+𝑝𝑖𝜖

2
· 𝑟𝑖, this admissible triplet

matches 𝑤. Halt the algorithm and output "YES".
end

3. If all admissible triplets have too many infeasible runs, output "NO".
Before proving the correctness of our algorithm, we would like to provide some

information on the process of checking the feasibility of a run 𝑅 starting at index 𝑖.

This process takes in constant time relative to the size of the input word 𝑤. The

main idea is that we make heavy use of Lemma 2.2.1, which specifies the behavior

of reachability constant 𝑚. First, we use the path lengths defined in admissible

partition Π to determine which component 𝐶𝑖𝑗 of 𝐴 we should be be in. We know

that component 𝐶𝑖𝑗 is either a singular node with no self loops or a essentially strongly

connected component. We will focus on the latter case (in the former case, the step

30

2.3 of the algorithm removes the run from our consideration). Within 𝐶𝑖𝑗 , we use

associated 𝑛𝑗 ∈ Π to discover how many steps past the start state of the associated

automata 𝑀𝑗 the run 𝑅 begins its computation. Recall by Definition 2.2.2, we must

search across all possible prefixes and suffixes to ascertain if 𝑅 is feasible. Since the

size of automata 𝑀𝑗 is constant, this search happens in constant time.

Lemma 4.0.1. If 𝑤 is 𝜖-far from 𝐿, then our algorithm outputs "NO" with probability

at least 3
4
. If 𝑤 is 𝛿-close to 𝐿, then our algorithm outputs "YES" with probability

at least 3
4
.

Proof Outline: The following proof has been split into two parts. First, we will show

the case when 𝑤 is 𝜖-far from 𝐿, then we will show the case where 𝑤 is 𝜖-close to 𝐿.

In the case where 𝑤 is 𝜖-far, we show that we don’t remove too many runs in line 2.3

of the algorithm so that there is still significant enough of a gap between 𝜖 and 𝛿 that

can be tested. In the case where 𝑤 is 𝛿-close to 𝐿, we must show that 𝑤 matches

well enough to at least one of the admissible triplets within the chosen transition

intervals. This is technique is adapted from [1] and the main idea is that because

the components are strongly connected with connectivity constant 𝑚, we can choose

to spend more or less time in a connected component to reach the correct transition

interval.

We also make significant use of the multiplicative Chernoff bound reproduced

here:

P(𝑋 ≥ (1 + ∆)𝜇) ≤ 𝑒
−Δ2𝜇

3

Proof. First, let’s consider the case that 𝑤 is 𝜖-far from 𝐿. Then, in order for the

algorithm to be correct, every single admissible triplet must be found to be infeasible.

In order for that to happen, some bucket 1 ≤ 𝑖 ≤ log(8𝑘𝑚/𝜖) must have greater

than 𝑍𝑖 infeasible runs. First, let’s calculate the number of admissible triplets. The

number of admissible triplets is bounded by this number [1] 1:

1An admissible triplet is (𝐴,𝑃,Π).We calculate multiply the number of possible paths by the
number of possible portals by the number of possible partitions. The number of admissible paths in

31

2𝑘|𝑉 |2𝑘(𝑆(𝑘 − 1)(𝑙 + 1))𝑘−1 (4.1)

= 2𝑘|𝑉 |2𝑘(
128𝑘𝑚 log 1

𝜖

𝜖
(𝑘 − 1)(𝑙 + 𝑚))𝑘+1 (4.2)

= 2|𝑉 |2(
2 · 129|𝑉 |2𝑘𝑚 log(1

𝜖
)(𝑘 − 1)(𝑙 + 𝑚)

𝜖
)𝑘−1 (4.3)

< 2|𝑉 |2(1

𝜖
· 1

𝜖
)𝑘−1 (4.4)

= 2|𝑉 |2(1

𝜖
)2𝑘−2 (4.5)

< (
1

𝜖
)2𝑘 (4.6)

Where lines 4.4 and line 4.6 come from the precondition 3.

Now, let’s consider how an 𝜖-far 𝑤 behaves in a single admissible triplet (𝐴,𝑃,Π),

where 𝐴 = (𝐶𝑖1 , ..., 𝐶𝑖𝑡), 𝑃 = (𝑝1𝑗 , 𝑝
2
𝑗)

𝑡
𝑗=1, Π = (𝑛𝑗)

𝑡+1
𝑗=1. Lemma 3.2.1 tells us that there

is some component 𝐶𝑖𝑗 with corresponding essentially strongly connected automata

𝑀𝑗 and the corresponding subword 𝑤𝑗 of 𝑤 is 𝜖𝑛
2𝑘

far from 𝐿𝑗 = 𝐿(𝑀𝑗). Then, by

lemma 3.1.1, for some 1 ≤ 𝑖 ≤ log(8𝑘𝑚
𝜖

), there are at least 2𝑖−6𝜖𝑛
𝑘𝑚 log(1

𝜖
)

infeasible runs of

length 2𝑖+1. Since we discard random runs that are too close to the transition points

of each component in the admissible triplet, there are at most 2 · 𝜖𝑛
128𝑘𝑚 log(1

𝜖
)

runs that

touch the first and last bits of [𝑛𝑗, 𝑛𝑗+1 − 1] (corresponding with 𝑀𝑗). Thus, there

are at least 2𝑖−7𝜖𝑛
𝑘𝑚 log(1

𝜖
)

infeasible runs of length 2𝑖+1. Then, as defined above for some 𝑖

𝑝𝑖𝜖 = 2𝑖−7𝜖
𝑘𝑚 log(1

𝜖
)
.

We model each sample 𝑥𝑖
𝑎 of length 2𝑖+1 as an indicator random variable with

probability 𝑝𝑖𝜖. Then, let 𝑋𝑖 =
∑︀𝑟𝑖

𝑎=1 𝑥
𝑖
𝑎. The probability for each 𝑖 that we believe

the word 𝑤 to be in 𝐿 when it is not is P(𝑋𝑖 ≤ 𝑍𝑖), where 𝑍𝑖 =
𝑝𝑖𝜖+𝑝𝑖𝛿

2
· 𝑟𝑖. We bound

𝒞 is at most 2𝑘. The number of possible portals is at most |𝑉 |2𝑘, then for each (𝐴,𝑃), the number
of admissible paths is at most 𝑆|𝑇𝑠| for each 𝑛𝑗 2 ≤ 𝑗 ≤ 𝑡, 𝑡 ≤ 𝑘 − 1).

32

this with the Chernoff bound. Let 𝑌𝑖 = 𝑟𝑖 −𝑋𝑖

P(𝑋𝑖 ≤ 𝑍𝑖) = P(𝑌𝑖 ≥ 𝑟𝑖 − 𝑍𝑖) (4.7)

≤ P(𝑌𝑖 ≥ 𝑟𝑖(1 − 5

8
)𝑟𝑖) (4.8)

= P(𝑌𝑖 ≥ (1 + ∆)E(𝑌𝑖)) (4.9)

= P(𝑌𝑖 ≥ (1 + ∆)(1 − 𝑝𝑖𝜖𝑟𝑖)) (4.10)

≤ 𝑒−
Δ2(1−𝑝𝑖𝜖)𝑟𝑖

3 (4.11)

≤ 𝑒−(2+log(log(8𝑘𝑚/𝜖))+log(1
𝜖

2𝑘
)) (4.12)

= 𝑒−2 1

log(8𝑘𝑚/𝜖)

1

𝜖2𝑘
(4.13)

Where ∆ =
1− 5

8
𝑝𝑖𝜖

1−𝑝𝑖𝜖
and line 4.8 comes from Precondition 4. We use the Union

Bound across all buckets 1 ≤ 𝑖 ≤ log 8𝑘𝑚
𝜖

and then the Union Bound across all

triplets. Then, we achieve that the probability of our algorithm failing when 𝑤 is 𝜖

far is at most 𝑒−2 ≤ 1
4

Now, we consider the case where 𝑤 is 𝛿-close to 𝐿. First, we will show that if

some 𝑤* is in 𝐿, then there is an admissible triplet that passes successfully. We need

to show that although we are limiting the triplets with transition intervals, there is

still some triplet that is close enough that will pass 𝑤* in the process described by

our algorithm. After showing that there exists such a triplet, we will show that if 𝑤

is 𝛿-close to 𝐿, 𝑤 will be 𝛿 close to the admissible triplet in question. In particular,

we will show for that admissible triplet, there is a low probability that more than 𝑍𝑖

infeasible runs will be found for all buckets 𝑖.

First let’s consider 𝑤* which we will say is the closest word to 𝑤 in 𝐿. Then,

we know 𝑑𝑖𝑠𝑡(𝑤,𝑤*) ≤ 𝛿𝑛. Since 𝑤* is in 𝐿, then we know there is a path that 𝑤*

traverses through finite automata 𝑀 which naturally defines an admissible triplet

(𝐴,𝑃,Π). 𝐴 = (𝐶𝑖1 , ..., 𝐶𝑖𝑡) which is the components through 𝒞(𝐺) in the order that

𝑤* traversed them. 𝑃 = (𝑝1𝑗 , 𝑝
2
𝑗)

𝑡
𝑗=1, where 𝑝1𝑗 and 𝑝2𝑗 are respectively the first and last

states that 𝑤 visited in 𝐶𝑖𝑗 . Finally, Π = (𝑛𝑗)
𝑡+1
𝑗=1, where 𝑛1 = 0 and 𝑛𝑡+1 = 𝑛 + 1.

For all other 𝑗, 𝑛𝑗 is represents the first time 𝑤* enters component 𝐶𝑖𝑗 . However, the

33

issue here is that the admissible triplet which the traversal of 𝑤* defines may not have

transitions in the transition intervals. We will show that an (𝐴,𝑃,Π) associated with

𝑤* ∈ 𝐿 can be modified in Π only so that the modified triplet (𝐴,𝑃,Π′) is associated

with another 𝑤′ ∈ 𝐿 (very close to 𝑤*) that follows the same path of components as

𝑤* [1]. Then, as long as we make sure that no query is made to bits of 𝑤′ that differ

from 𝑤* (Step 2.3 of the algorithm discards runs that are too close to the transition

intervals), 𝑤 should look 𝛿 close to 𝑤′ as well.

Let’s consider (𝐴,𝑃,Π) as defined above for 𝑤*. Let’s say for some 1 ≤ 𝑗 ≤ 𝑡,

𝑛𝑗 is not in any of the randomly selected transition intervals. Intuitively, using the

connectivity constant 𝑚 of the automata 𝑀 , we can make it so that we either spend

fewer or more steps inside component 𝐶𝑖𝑗−1
so that we exit the component within

transition interval [1] (which is (𝑘−1)(𝑙+𝑚) long to guarantee our ability to do this).

We do this as follows: Π′ = (𝑛′
𝑗)

𝑡+1
𝑗=1, where 𝑛′

1 = 𝑛1 = 0 and 𝑛′
𝑡+1 = 𝑛𝑡+1 = 𝑛 + 1.

For every other 𝑗, we choose transition interval 𝑇𝑠 closest to 𝑛𝑗. If the underlying 𝑀𝑗

for 𝐶𝑖𝑗 is essentially strongly connected, we choose 𝑛′
𝑗 such that a) 𝑛′

𝑗 ≡ 𝑛𝑗 mod 𝑙

(recall 𝑙 is the lcm of all the periods of the 𝑀𝑗’s) and b) 𝑛′
𝑗 − 𝑛′

𝑗−1 > 𝑚. If 𝐶𝑖𝑗 is a

singleton without loops, we set 𝑛′
𝑗 = 𝑛′

𝑗−1 + 1. As |𝑇𝑠| = (𝑘 − 1)(𝑙 + 𝑚), we know 𝑛′
𝑗

always exists. Thus, we obtain modified triplet (𝐴,𝑃,Π′) [1].

We claim (𝐴,𝑃,Π′) is admissible [1]. For all 1 ≤ 𝑗 ≤ 𝑡, we have 𝑛′
𝑗+1 − 𝑛′

𝑗 ≡

𝑛𝑗+1 − 𝑛𝑗 mod 𝑙 =⇒ 𝑛′
𝑗+1 − 𝑛′

𝑗 ≡ 𝑛𝑗+1 − 𝑛𝑗 mod 𝑔(𝐺[𝐶𝑖𝑗]) if 𝑀𝑗 is essentially

strongly connected. Then, by Lemma 2.2.3, if there exists a path of length 𝑛𝑗+1−𝑛𝑗−1

through 𝑀𝑗, there exists a path of length 𝑛′
𝑗+1−𝑛′

𝑗 − 1. This implies that if (𝐴,𝑃,Π)

is admissible, then (𝐴,𝑃,Π′) is admissible.

Now we show that our procedure in step 2.3 of the algorithm only queries bits

of 𝑤* that are identical to bits of 𝑤′. We want to show that our algorithm does not

query the differences between 𝑤* and 𝑤′ [1]. Let 𝑅 be a run that is 𝜖𝑛
128𝑘𝑚 log 1

𝜖

close

to a transition interval. In particular, 𝑅 ∈ [𝑛′
𝑗 + 𝜖𝑛

128𝑘𝑚 log 1
𝜖

, 𝑛′
𝑗+1 − 𝜖𝑛

128𝑘𝑚 log 1
𝜖

]. Let 𝑏

be the first index of 𝑅. Since we placed the 𝑆 transition intervals evenly apart in [𝑛],

we have |𝑛′
𝑗 − 𝑛𝑗| ≤ 𝑛

𝑆
+ |𝑇𝑠| = 𝜖𝑛

128𝑘𝑚 log 1
𝜖

+ (𝑘 − 1)(𝑙 + 𝑚). Then, 𝑅 falls completely

in [𝑛𝑗 +𝑚,𝑛𝑗+1− 1] and 𝑅 is feasible for 𝑀𝑗. Therefore, we delete only the runs that

34

have one of the ends too close to the transition interval because it may be that 𝑅

starts in a place where 𝑤* is in 𝐶𝑖𝑗−1
and ends in a place where 𝑤* is in 𝐶𝑖𝑗 . Thus,

discarding the marginal runs too close to the transition intervals will ensure that there

is no query difference in the algorithm between 𝑤* and 𝑤′ on triplet (𝐴,𝑃,Π′). Then,

lemma 2.2.3 guarantees that if we were sampling from 𝑤*, all runs sampled (except

those removed) would be feasible in (𝐴,𝑃,Π) [1].

Since our input 𝑤 is 𝛿-close to 𝑤*, there are at most 𝛿𝑛 infeasible runs that have

ends that are not too close to the transition intervals (i.e. we don’t remove these

infeasible runs from consideration in step 2.3 of the algorithm). We show that for

the correct admissible triplet (𝐴,𝑃,Π′), we do not find more than 𝑍𝑖 infeasible runs

for each bucket 1 ≤ 𝑖 ≤ log 8𝑘𝑚
𝜖

. Once again, let 𝑋𝑖 be the sum of the indicator

variables 𝑥𝑖
𝑎 for each sample 𝑎. 𝑥𝑖

𝑎 is 1 if an infeasible run is found. Thus, 𝑥𝑖
𝑎 is 1 with

probability 𝑝𝛿.

P(𝑋𝑖 ≥ 𝑍𝑖) = P(𝑋𝑖 ≥
𝑝𝛿 + 𝑝𝜖

2
𝑟𝑖) (4.14)

= P(𝑋𝑖 ≥
𝑝𝜖4 + 𝑝𝜖

2
𝑟𝑖) (4.15)

= P(𝑋𝑖 ≥
5

8
𝑝𝜖𝑟𝑖) (4.16)

= P(𝑋𝑖 ≥ (1 + ∆)𝑟𝑖
𝑝𝜖
4

) (4.17)

≤ 𝑒−((3
2
)2𝑟𝑖𝑝𝜖/4/3) (4.18)

= 𝑒−
3
16

𝑟𝑖𝑝𝜖 (4.19)

= 𝑒−(4· 1
𝑝𝜖

(1−𝑝𝜖)(2+log(1
𝜖

2𝑘
+log log 8𝑘𝑚

𝜖
))) (4.20)

≤ 𝑒−4(2+log log 8𝑘𝑚
𝜖

) (4.21)

≤ 𝑒−8 1

log 8𝑘𝑚
𝜖

(4.22)

Where ∆ from line 4.17 is 3
2
. Union Bound across all 𝑖, the probability of failure is

at most 𝑒−8 ≤ 1
4
. Thus if 𝑤 is 𝛿-close to 𝐿, we say "YES" with probability at least 3

4
.

35

Now, we consider the query complexity of the algorithm. There are
∑︀log 8𝑘𝑚

𝜖
𝑖=1 2𝑖+1𝑟𝑖

queries, which is polynomial in 1
𝜖
.

Thus, we have proven the theorem below.

Theorem 4.0.2. For every regular language 𝐿, every integer 𝑛, every small enough

𝜖 > 0 and 𝛿 > 0, there exists a tolerant testing algorithm with query complexity

polynomial in 1
𝜖

for 𝐿 ∪ {0, 1}𝑛.

Note that in our preconditions, our algorithm works for 𝛿 bounded by Precondition

4. Our method would actually work for any 𝛿, as long as 𝑝𝛿 < 𝑝𝜖; however, 𝑟𝑖 would

be chosen to be a different number (the query complexity). We chose 𝛿 such that

𝑝𝛿 = 𝑝𝜖/4 for simplicity of analysis.

36

Chapter 5

Conclusion and Future Work

The main technical achievement of our thesis provides the first tolerant tester for

regular languages. We believe that an interesting direction to look into is a local

computation algorithm (LCA) for fixing the input word 𝑤 so that it belongs in regular

language 𝐿 [14] [2]. A local computation algorithm would support user queries to a set

of locations in input word 𝑤, responding with the fixed values of 𝑤 in those locations.

If the sample of 𝑤 was an infeasible run, the values returned by the LCA would be

feasible runs. The local computation algorithm must "fix" the query to 𝑤 in a manner

such that it is consistent regardless of the past and future queries.

It may also be interesting to consider testing the class of context-free languages

(CFLs), which are languages recognized by pushdown automata [15] and context-free

grammars. To our knowledge, there are no known testers, tolerant or otherwise, for

CFLs. However, we do know that there exists a lower bound of Ω(
√
𝑛) to test CFLs

[1]. Since tolerant testing is usually a harder question than nontolerant testing, we

believe more reasonable open questions involve the tolerant testing Dyck languages [3]

or the tolerant testing of parenthesis languages [11]. We could also consider tolerant

testing of specific CFLs, for example those of the form 𝑢𝑢𝑅𝑣𝑣𝑅 [1].

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

Bibliography

[1] Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular lan-
guages are testable with a constant number of queries. Foundations of Computer
Science, 1975., 16th Annual Symposium on, 30, 05 2001.

[2] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local
computation algorithms, 2011.

[3] Eldar Fischer, Frédéric Magniez, and Tatiana Starikovskaya. Improved bounds
for testing dyck languages, 2017.

[4] Peter Gemmell, Richard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi
Wigderson. Self-testing/correcting for polynomials and for approximate func-
tions. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory
of Computing, STOC ’91, page 33–42, New York, NY, USA, 1991. Association
for Computing Machinery.

[5] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorod-
nitsky. Testing monotonicity. Combinatorica, 20(3):301–337, 2000.

[6] Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its
connection to learning and approximation. J. ACM, 45(4):653–750, July 1998.

[7] Oded Goldreich, Tom Gur, and Ron D. Rothblum. Proofs of proximity for
context-free languages and read-once branching programs. Information and
Computation, 261:175–201, 2018. ICALP 2015.

[8] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., USA, 2006.

[9] Mordechai Lewin. A bound for a solution of a linear diophantine problem. Jour-
nal of the London Math Society, 1972.

[10] Antoine Ndione, Aurélien Lemay, and Joachim Niehren. Approximate mem-
bership for regular languages modulo the edit distance. Theoretical Computer
Science, 487:37–40, 2013.

[11] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Testing membership in paren-
thesis languages. Random Struct. Algorithms, 22(1):98–138, January 2003.

39

[12] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and
distance approximation. Journal of Computer and System Sciences, 72(6):1012–
1042, 2006.

[13] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials
withapplications to program testing. SIAM J. Comput., 25(2):252–271, February
1996.

[14] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation
algorithms, 2011.

[15] Michael Sipser. Introduction to the Theory of Computation. International Thom-
son Publishing, 3rd edition, 2013.

40

	Introduction
	Prior Work
	Contributions

	Preliminaries
	Standard Definitions
	Useful Theorems

	Main Theorems
	Gap in the Basic Case
	Extending Beyond the Basic Case
	Definitions for the General Case

	The Algorithm
	Conclusion and Future Work

