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Abstract

Recent work with radar-based detection systems has demonstrated its efficacy in iden-
tifying [10], classifying [6] [8] [2] humans and animals, and even recognizing gestures
[5] in low-light environments and through walls, cases where conventional vision-based
systems fail. Most previous research has involved onsite (edge) gathering of data and
offsite (non-edge) processing to produce detections, i.e. the experimental platforms
have not been productionized nor tested live in applicable environments. Further,
many of the proposed architectures rely on the specific motion paths of subjects to
identify them. MIT Lincoln Laboratory’s (MITLL) Group 45 has designed a proto-
type portable radar system capable of producing similar radar data to that collected
in the aforementioned research and then identifying individuals in-frame, solely based
on vital-signs and regardless of motion. I propose a computational architecture which
can incorporate some of the previous advances with tracking in computer vision to
detect and identify individuals while operating on the edge under the compute and
power constraints of the handheld radar system in which it will be embedded.

Thesis Supervisor: Dr. Raoul Ouedraogo
Title: Assistant Group Leader, MIT Lincoln Laboratory Group 45
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Chapter 1

Introduction

In security and disaster-relief applications, situational awareness–particularly the abil-

ity to locate, detect, and identify other individuals–is paramount. Extensive research

has been conducted into computer-vision (CV) based detection and classification

platforms capable of providing such awareness by recognizing humans, animals, and

objects in video and images. However, even with higher quality cameras and models,

the performance of such platforms quickly falls off in environments where ideal condi-

tions cannot be satisfied, e.g. due to low-light, dust, occlusion, etc. - characteristics

commonplace in, say, disaster-relief scenarios where such platforms would be most

useful.

In particular, when conducting security and rescue operations in urban environ-

ments, it would be highly advantageous to be able to detect individuals across solid

barriers to provide a headcount without first needing to dig through the rubble or

check the inside of urban structures. As such, radar based alternatives for detection,

capable of overcoming such barriers, have garnered much interest in recent years.

Such systems have been shown to be successful in tasks such as detecting humans [8],

gesture detection [5], posture estimation [12], transport classification [3], and even

facial recognition [7].
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1.1 Radar System

MIT LL has developed a handheld system (the user interface of which can be seen

in Figure 1-1) capable of producing signal-based detections of stationary/moving in-

dividuals through concrete barriers, as well as the ranges from the radar at which

these detections occur. Its novelty stems largely from its application: much of the

prior work thus far assumes ideal conditions and thus operates with relatively noise-

less signals. Group 45’s system leverages novel denoising methods to provide binary

classification of signals in realistic environments and at the edge.

At a high level, the radar system works by passing data from process to process

through a series of messages. This message-passing system allows multiple types of

computation to be conducted in parallel and in real-time. A visual overview can be

seen in Figure 1-2.

Raw pulses from the radar are emitted and reflected off of objects in the scene it

is facing. These pulses are received and denoised by our signal processing process,

and then filtered to sproduce clean breathing and walking moving target indication

(MTI) signals.

This processed signal is then fed into our detection process, which seeks to map

our signal to a list of detections (if there are any targets in the scene). Some conven-

tional methods of producing these detections involved finding the max peak of our

signal above a certain threshold (for single-target detection), finding multiple peaks

(for multi-target detection), and using 1-D Constant False Alarm Rate (1D CFAR)

detection. At the time of this thesis’ writing, there was machine learning (ML) in-

frastructure in place which could reliably produce a binary classification of whether

or not there was at least one person in frame, but a reliable ML-based object detec-

tion system which could identify targets alongside their range from the radar was in

development. Detections were fed into the tracker, which would associate detections

to a unique track ID based on characteristics about their position and movement.

Also at the time of this thesis’ writing, the tracker consisted of a Kalman filter and

some straightforward extensions of the filter to track targets solely based on posi-
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tional information (henceforward referred to as the "Vogl tracker"). The results of

this tracker are shown in Chapter 4.

1.2 Problem Formulation

We decided that the system, while robust in its current state, would benefit immensely

from improvement to its detection and target-tracking processes. More specifically,

detections could be more reliable and detailed (i.e. more specific in their classification

of targets), and the tracker could leverage more than just positional information to

inform and associate long-term tracks. Our research aims to augment the existing

radar system with a number of features which will aid in improvement across the

board, but specifically focuses on concrete improvement of the tracking system.

The problem we set forth to solve, then, was to expand upon existing infrastructure

to create a detection and tracking pipeline which was 1) competitively performant

2) quantitatively evaluated and 3) easily iterated upon. For this, we refactored our

data pipeline, implemented evaluation and metric-producing systems, reworked how

detections are handled, and created a new tracker which could incorporate more

information for more informed results.
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Figure 1-1: Example screengrabs of the Radar’s current GUI. Relatively clean syn-
thetic data of an individual walking away from the radar is shown on the top, in
contrast with the noisier real data of an individual moving and sitting at a roughly
fixed distance on the bottom.
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Figure 1-2: High-level overview of radar architecture
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Chapter 2

Related Work

There has been much recent work exploring the ability of radar based systems to

perform classification and detection tasks where standard computer vision systems

fail. Radar devices transmit electromagnetic signal and receive the reflections of these

signals off of objects the waves collide with. These reflections contain information

about the motions of the objects with which they collide due to the Doppler effect.

In the case of identifying human presence and motion, for example, we can combine

the Doppler signals of all moving parts of the human body to generate a unique

micro-Doppler (MD) signature. These signatures can then be passed as input to

more complex classification pipelines to detect and classify humans and animals.

Otero [8] was able to create a binary classifier which could identify humans through

walls and in low light conditions with a low power/cost commercial-off-the-shelf

(COTS) X-band microwave motion sensing module by analyzing the unique doppler

signatures of various moving components of the body when walking (i.e. the cadence

of the swing of the arms or legs). Through this unique doppler signature, he was also

able to demonstrate the differences and classification potential in discerning human

from animal presence. In this work, targets were required to walk to or from the

radar at fixed speed.

Garreau et al. were able to employ a similar system to identify 13 distinct in-

dividuals and classify their gender with near perfect (≥ 90%) accuracy. Their ar-

chitecture, designed to be highly computationally efficient, combined several simple
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pre-processing steps with k-means clustering to classify individuals and predict gen-

der by comparing euclidean distance to ground truth clusters. Similar to Otero, this

work required all subjects to walk on a treadmill facing the radar with varying speed.

Much of the earlier work using gait analysis to detect humans required subjects to

walk in specific, predetermined motion paths during data collection. Vandersmissen

et al. [10] removed this restriction in their study, permitting subjects to walk freely

in any direction within a room, using Deep Convolutional Neural Networks (DCNNs)

to identify 5 separate individuals based on their MD signatures.

Additionally noting that much of the previous work relied on manual feature engi-

neering to achieve relatively high levels of accuracy, Le, Phung et al. [6] implemented

a deep autoencoder to learn these features autonomously and run classification based

on these hidden encodings.

Several other studies have demonstrated the efficacy of such platforms to classify

humans even without macro-level translational motion. An MITLL study from 2012,

Peabody et al. [9], proposed a vehicle-mounted radar sensor which was demonstrated

to detect stationary humans even through 20cm of concrete.

MIT’s own CSAIL (Zhao et al [12]) explored the advantages of multimodal training

in producing a model which could successfully estimate pose even when the detected

individual travelled behind walls or was otherwise occluded from the frame.

MIT LL has synthesized much of this work and has been focused on its application

in producing a handheld (roughly laptop sized) sensor capable of acting as a portable

through-wall sensor for human and animal detection. The novelty of such a system

rests not just on its synthesis of existing work but also its real-world implementation

into a system expected to function in environments far more dynamic than the static

testing environments of nearly all previous studies in this area. Currently, it relies on

vital signs to run binary classification on signal, determining presence and range of

humans in frame. In order to successfully classify and/or associate these detections

through time, more information may be required.

Building off of the SORT Algorithm [1], Wojke et al. [11] incorporated some kind

of encoded appearance information to augment the positional prediction to compen-
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sate for lost tracks after occlusion. With this intrinsic, non-positional information

included in the tracker’s predictions, they were able to see a marked decrease in

identity-swaps across large scale object detection and tracking experiments.

23



24



Chapter 3

Methodology

3.1 Data Collection

A significant portion of this effort was the generation and collection of new data.

Particularly data with specific enough labels that algorithmic performance could be

evaluated in a quantitative sense and without strict human verification.

Data collection for this specific endeavor began at the end of 2020 using the

handheld radar device at Lincoln Laboratory, and existing radar data encompassing

a wide variety of different contexts and scenarios was provided, dating back several

years.

3.1.1 Manual Collection

We devised a series of scenario partitions that would encompass key use cases of the

radar system. These partitions can be located in Table 3.1.

Data collected during this project was either accompanied by a text file describ-

ing the subject in frame (for scenarios involving subjects remaining still), or orally

annotated with an audio file synchronized to the start of radar data collection (for

scenarios involving more complex movement).

Other radar data was centralized from a number of different sources spanning

several years, geographical locations, subjects, and scenarios. An initial challenge
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Poses Actions Wall Material Actors
Sitting: Breathing: Wood Male

Standing Not Breathing Concrete Female
Lying Walking Door Single Target

Crouching Running Plaster Multi-Target
Still Metal

Gesturing
Talking

Exercising

Table 3.1: Scenario partitions we sought to collect in our data

arose with how this data was labelled: some data was described with an accompanying

text file, though start/end times of certain actions were not exact, and some data was

only described with a title. These inconsistencies in the labelling of this data made

their use somewhat cumbersome: they were useful for qualitative assessment of the

radar platform in a binary sense (either the target is or is not mostly there, and doing

what they are predicted to be doing), but less so for quantitative analysis.

How the collected raw data and the miscellaneous existing raw data were converted

into a central, consistent, and usable format is described in chapter 3.1.3.

3.1.2 Synthetic Generation

While nothing quite compares to real world data, the signals we were processing

could also be reasonably simulated by synthetically generating the pulse data we

would expect to receive from the radar itself.

To this end, we created a tool which could take high level features, such as "One

target walking from 3m to 10m starting at 5s and then ending at 15s, another target

starting at 20m and walking to 7m starting at 10s and ending at 25s" and convert

them into pulse data which could then be ingested and processed by other pieces of

the radar’s detection pipeline. These "scenes" encompassed both an abstract under-

standing of the figures and actions going on in-frame, as well as the ground-truth

signals and labels that accompanied them. A visual depiction of the additions to

existing infrastructure is shown in Figure 3-1.

In our implementation, scenes were composed of even more fundamental building
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Figure 3-1: The additional components added to the radar processing pipeline to
facilitate training and evaluation of algorithmic performance

blocks: targets. Our targets, described in more depth in Table 3.2, each represented

specific motion patterns which could be combined together to form complex scenarios

in relatively few lines of code.

3.1.3 Labeling for Object Detection

A helpful feature of these scenes were that they produced pulse-by-pulse labels which

could then be used to assess the predicted detections of the existing (and proposed)

radar infrastructure. This property allowed them to not just describe–and then pro-

duce data for–artificial scenarios, but the trove of existing data as well. The labels

and titles associated with the previously collected samples could be used to inform

the creation of a scene which mimicked the samples themselves, and could output

labels which very nearly resembled ground truth. Exact pulse alignment proved to

be a nearly impossible challenge without extensive manual effort for each sample,

but label/prediction discrepancies existing at the edges of their overlap were written

off under the assumption that the relatively overwhelming overlap would prove such
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Target Type Description

Noise The generation of random noise in our output signal on
each pulse

Clutter A sub-type of Noise where the per-pulse signal is fixed,
instead of random

Stationary A non-moving target that still reflects pulses, e.g.
inanimate objects, perfectly still people

Linear A target moving from point A to B linearly, e.g. a person
walking in its most trivial case

Sinusoidal
A target moving according to a sinusoidal motion pattern
about a fixed center, e.g. a person breathing regularly and

consistently

LinearSinusoidal

A target moving linearly from point A to B while their
exact position oscillates about their moving center

according to a fixed center, e.g. a more true-to-form
representation of a human walking motion

CompoundMotion
A target whose motion is some compounded combination

of any of the target motion patterns above, e.g. an
irregular breathing rhythm

MultiMotion
A target whose motion is some sequence of any of the
target motion patterns above, e.g. a person who walks,

stops, then starts walking again

Table 3.2: A description of the various targets of our data generation system, imple-
mented as part of the detection and tracking system creation.

discrepancies negligible in faithfully evaluating performance.

3.2 Metrics and Evaluation

With a pipeline in place to accrue data samples and generate their associated ground

truth, the next step was to develop infrastructure to quantitatively evaluate our

system’s performance.

3.2.1 Detection Evaluation

The two most important metrics that we focused on from an object detection per-

spective were precision (if the radar predicts that there is a person in frame, how

likely is that to be true?) and recall (if a person is in frame, how likely is our radar
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to detect them?).

We calculate these metrics by organizing our labels and predictions into two sets

𝒟𝐿 and 𝒟𝑃 . We consider 𝐷𝐿
𝑡 ∈ 𝒟𝐿 and 𝐷𝑃

𝑡 ∈ 𝒟𝑃 to be the set of all ground truth and

predicted detections, respectively, at timestep 𝑡. We then compute our true positives,

false positives, and false negatives and further compute precision, recall, and fscore

values with Algorithm 1.

3.2.2 Tracking Evaluation

Tracking performance, while very dependent on the efficacy of the detection sys-

tem it is built over, requires a different perspective. In our tracking evaluation, our

ground truth tracks keep a record of which predicted tracks overlap temporally and

positionally throughout the course of the datastream. A ground truth track 𝑡𝑔 has

knowledge of its intended length and start/end times, as well as a set of predicted

subtracks 𝑃 = {𝑡𝑝}. At evaluation time, each track calculates the percentage of up-

time, 𝑢𝑎 = Σ𝑃 |𝑡𝑝|
|𝑡𝑔 | , as well as computing a continuity score for the predicted tracks.

Our continuity score 𝑐 is computed with:

𝑐 =

∑︀
𝑖=1 𝛾

𝑖−1|𝑡(𝑖)𝑝 |
|𝑡𝑔|

(3.1)

where 𝛾 is some decay factor and 𝑃 is presorted in descending order by track

length before computing continuity.

3.3 Target Detection

Detection and tracking are two sides of the same coin. Without a solid and reliable

detection architecture running under the hood, no tracker will ever produce useful

tracks. As such, work was done to tweak existing detection platforms as well as

support the development of more robust detection methods.
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Algorithm 1: Our detection evaluation algorithm. Interpolation is de-
scribed in Section 3.4.3
Result: Returns a precision, recall, and f1 score value for these predictions
// Initialize evaluation parameters
𝜖𝑖 ← ... // Number of frames to skip up front
𝜎 ← ... // Count every other 𝜎 frames
𝜖𝑓 ← ... // Frame overlap threshold
𝜖𝑐 ← ... // Confidence threshold
𝜖𝑟 ← ... // Range overlap threshold
// Initialize our data
𝒟𝐿 ← ... // Label data
𝒟𝑃 ← ... // Predicted data
if 𝜖𝑓 > 1 then
𝒟𝑃 ← INTERPOLATE(𝒟𝑃 , 𝜖𝑓 );

end
𝑝𝑡 ← // True positives
𝑝𝑓 ← // False positives
𝑛𝑓 ← // False negatives
for 𝐷𝐿

𝑖 ∈ 𝒟𝐿 do
if 𝑖 < 𝜖𝑖 OR 𝑖 mod 𝜎 ̸= 0 then

CONTINUE
end
if 𝐷𝑃

𝑖 ̸∈ 𝒟𝑃 then
𝑛𝑓 ← 𝑛𝑓 + |𝐷𝐿

𝑖 |;
CONTINUE;

end
for 𝑑𝐿 ∈ 𝐷𝐿

𝑖 do
𝑝𝑡 ← 𝑝𝑡 + 1(∃𝑑𝑃 ∈ 𝐷𝑃

𝑖 . 𝑑𝑃 == 𝑑𝐿);
𝑛𝑓 ← 𝑛𝑓 + 1(@𝑑𝑃 ∈ 𝐷𝑃

𝑖 . 𝑑𝑃 == 𝑑𝐿);
end
for 𝑑𝑃 ∈ 𝐷𝑃

𝑖 do
𝑝𝑓 ← 𝑝𝑓 + 1(𝑑𝑃 ̸∈ 𝐷𝐿

𝑖 );
end

end
precision ← 𝑝𝑡/(𝑝𝑡 + 𝑝𝑓 );
recall ← 𝑝𝑡/(𝑝𝑡 + 𝑛𝑓 );
fscore ← 2 * ((precision * recall)/(precision + recall))
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3.3.1 Clustering

Due to the reflection of our pulses off of targets and our environment, correct detec-

tions of moving or breathing targets would often be accompanied by several weaker

detections mirrored (more-or-less) on either side. This phenomenon would result in

levels of predicted detections roughly five times higher than what is truthfully there,

dramatically reducing the evaluated precision of the system.

To remedy this, we modified our detection process to cluster detections imme-

diately following their prediction and before being passed to our tracking process

and subsequently delivered to the end user via the attached GUI. Detections–acting

as nodes in our graph–would be clustered according to a raw, thresholded distance.

Nodes within this distance would be labelled as one detection, combined into a single

all-encompassing detection predicted to be at the average range of all involved nodes.

Figure 3-2: The difference between no clustering (top) and clustering (bottom) when
applied immediately after detection and before tracking.

3.4 Tracking: RadarSORT

Our contributions to the tracking architecture were largely inspired by the Simple On-

line and Realtime Tracking (SORT) algorithm [1] and its successor, DeepSORT [11].

The premise of the latter’s novelty essentially being the addition of some appearance-

based similarity metric to associate tracks.
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In situations where our targets were "occluded" (to use the equivalent computer

vision term) when two or more targets were superimposed, tracks were lost as the

detections all fused into one. This would often result in a brand new track ID being

assigned after the individuals involved passed or started moving again. To mitigate

this, we proposed a separate extension of SORT, based largely on the same premise

and adapted for use in this radar detection domain.

The high level concept of RadarSORT is sketched out in Figure 3-3.

3.4.1 State Estimation

We define our tracking scenario on the relatively simple three-dimensional space

(𝑥, 𝑥̇, 𝑥̈) representing a target’s position 𝑥, their velocity 𝑥̇, and their acceleration

𝑥̈. We simply use the detected positions 𝑥 as direct observations of our object’s state.

On each update at timestep 𝑡, we propagate all of our live tracks forward in time

to retrieve their predicted Kalman states at 𝑡. Tracks keep track of their time since

update, or 𝑡𝑢𝑝𝑑𝑎𝑡𝑒. If a track is associated at a given timestep, it is considered "active."

If it was not associated but its 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 is under a provided threshold, it is considered

"stale", but still live. Unlike many other computer vision tracking systems, we do not

ever fully drop tracks, and stale tracks can be re-associated with detections if they

are found to be an optimal match.

3.4.2 Linear Assignment

We define a composition of two similarity metrics to generate a cost matrix and then

solve the corresponding linear assignment problem. As in [11], the first of these simi-

larity metrics describes the relative position of detections as they pertain to predicted

positions of our tracks, and the second similarity metric describes properties intrinsic

to both the detection and our track, something representative of the target, agnostic

of position: gait.

The first of these metrics we represent as the Mahalanobis distance between de-

tections and predicted Kalman states:
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𝑑𝑝𝑜𝑠(𝑦𝑝, 𝑥𝑝) = 𝛾* + (𝑥𝑝 − 𝑦𝑝)
𝑇𝑆−1(𝑥𝑝 − 𝑦𝑝) (3.2)

where 𝑥𝑝 represents the position of some detection 𝑥, 𝑦𝑝 represents the predicted

position of some track 𝑦, and 𝑆 is the corresponding covariance matrix of 𝑦. 𝛾*

represents some temporal discount factor defined as:

𝛾* = 𝛾|𝑡𝑦 − 𝑡𝑥| (3.3)

with 𝛾 being some predefined temporal discount, 𝑡𝑦 being the last update time of

track 𝑦, and 𝑡𝑥 being the time of detection for 𝑥.

Alternatively, Euclidean distance was also used to produce a distance-based cost:

𝑑′𝑝𝑜𝑠(𝑦𝑝, 𝑥𝑝) = 𝛾* + |𝑦𝑝 − 𝑥𝑝| (3.4)

For any given track-detection pairing 𝑖, 𝑗, we create an indicator variable

𝑏𝑖,𝑗𝑝𝑜𝑠 = 1(𝑑𝑝𝑜𝑠(𝑖, 𝑗) ≤ 𝜏𝑝𝑜𝑠) (3.5)

where 𝜏𝑝𝑜𝑠 is a predefined threshold value.

Now for the second of these metrics. For any detection 𝑥𝑗, we also retrieve its

local neighborhood in the processed signal 𝑛𝑗. For any given track 𝑦𝑖, we also store a

history of up to the previous 100 neighborhoods 𝑁 (𝑖)
ℎ . When comparing the similarity

between track 𝑖 and detection 𝑗, we define our second similarity metric as follows:

𝑑𝑠𝑖𝑚(𝑥𝑗, 𝑦𝑖) = min{1− 𝑛𝑖𝑛𝑗
𝑇 | 𝑛𝑖 ∈ 𝑁

(𝑖)
ℎ } (3.6)

or, in other words, the minimum cosine distance between the neighborhood of

our detection and the neighborhood history of our track. In this case, our encoder

function is just a normalizing function for the input vectors. In theory, this could be

any function 𝐸 : R|𝑛| → R𝑁 . More generally, our similarity metric would be:

𝑑𝑠𝑖𝑚(𝑥𝑗, 𝑦𝑖) = min{1− ˆ𝐸(𝑛𝑖) ˆ𝐸(𝑛𝑗)
𝑇
| 𝑛𝑖 ∈ 𝑁

(𝑖)
ℎ } (3.7)
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Once again, we define an indicator for this similarity metric, as well:

𝑏𝑖,𝑗𝑠𝑖𝑚 = 1(𝑑𝑠𝑖𝑚(𝑖, 𝑗) ≤ 𝜏𝑠𝑖𝑚) (3.8)

Our cost matrix is formed as a weighted sum of both of these distance metrics.

We can define the elements of our cost matrix 𝐶 as:

𝑐𝑖,𝑗 = 𝜆𝑑𝑝𝑜𝑠 + (1− 𝜆)𝑑𝑠𝑖𝑚 (3.9)

Increasing 𝜆 places more weight on the position-based similarity criterion, and

decreasing it places more weight on the intrinsic similarity-based criterion. Unless

otherwise stated, we use a 𝜆-value of 0.75 in our experiments.

3.4.3 Detection Interpolation

Even in successful relatively successful cases, our detection system often had several-

pulse gaps in multi-pulse tracks of a target. While virtually unrecognizable to the

human eye, such gaps posed issues in how machines evaluated the accuracy of our

predicted tracks or how summaries of scenes were generated after the fact. We were

able to retroactively interpolate detections based on high-confidence measurements

within our tracks.

For some track 𝑖 with position 𝑝
(𝑖)
𝑡 at timestep 𝑡, we define some arbitrary inter-

polation bound 𝜖 such that if 𝑡 has high-confidence measurements at timestep 𝑡1 and

𝑡2, 𝑡2 − 𝑡1 < 𝜖, and 𝑡2 > 𝑡1, we can interpolate positions with the following equation:

𝑝
(𝑖)
𝑡 = 𝑝

(𝑖)
𝑡1 + (𝑡− 𝑡1)(𝑝

(𝑖)
𝑡2 − 𝑝

(𝑖)
𝑡1 ) (3.10)

This is particularly useful for smoothing out predictions in a way that can be

evaluated consistently with expected prediction formats.
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3.5 MetaTracking

Even the most robust trackers are prone to identity switches or lost tracks if the un-

derlying detection platform breaks down. Especially in this domain, where detection

architectures in austere environments are not thoroughly established, such errors are

rampant.

In realtime, it is impossible to discern the ground truth underlying such events.

But in retrospect, when all the tracks are laid out, a human can reasonably infer which

tracks actually belong to a single target, though this is more difficult for a machine.

Such an exercise is useful for self-correction and scene summarizing on frequencies

just below realtime.

To tackle this particular problem, we propose MetaTracking, or the formation

of new tracks based not off of detections, but whole tracks. MetaTracking turns

our problem into a Meta-Clustering problem, where we must connect entire clusters

(tracks) of detections with one another to yield the most optimal result.

3.5.1 Potency

At the onset of any uncertain clustering, there are a number of different states that the

graph (and each of its nodes) could be in. Until it has been reasonably checked, our

clustering could evolve into any one of a number of different ground-truth clusterings.

We have taken this concept and called it graph potency, after a similar property

possessed by stem cells.

Potency is calculated by determining how many other existing clusters a specific

cluster could be, and graph potency is just the cluster-wise sum of this value.

Take some Meta Cluster ℳ(𝑖) which keeps track of 𝒮(𝑖), the set of other Meta

Clusters that belong to the same ground truth cluster as itself, 𝒞(𝑖), the set of other

Meta Clusters that could belong to the same ground truth cluster as itself, and 𝒟(𝑖),

the set of other Meta Clusters that do not belong to the same ground truth cluster as

itself. Mathematically, we define the potency 𝜋𝐺
(𝑡) of graph 𝐺 at any given timestep 𝑡

as:
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𝜋𝐺
(𝑡) = Σ𝑖|𝒞(𝑖)(𝑡) | (3.11)

for allℳ(𝑖) ∈ 𝐺.

3.5.2 Meta-Clustering Algorithm

We first take all of our tracks and segment them into their components by breaking full

motion tracks down into a disjoint set of relatively continuous points. In an example

case where a track is lost for some amount of time and then regained, resulting in

a gap neighbored on either side by an otherwise uninterrupted track, we could form

two segments from the full track.

Then, we take each segment and create a new one-segment track out of it. We

further assign each new track to a corresponding meta-track. These meta-tracks can

be thought of as abstract clusters, monitoring which other clusters it is, could be, and

could not be related to.

Next, we iterate through all possible combinations of these segments until the

potency of our track alignment is 0. At each timestep, we randomly suggest a pairing

of two tracks that could be related to one another, and compare them by some

objective function 𝑑𝑠𝑒𝑔. If 𝑑𝑠𝑒𝑔 is under some acceptable threshold, we consider the

pairing to be good. Otherwise, we consider it to be bad.

In a good pairing, we merge the information of both meta-tracks into one, meaning

that all of the information about what tracks a specific track could or could not be

related to is transferred to its new paired track, and vice versa. In a bad pairing,

we simply update the "could not be" sets of both meta-tracks and their connected

tracks.

Upon completion of our loop, we prune out tracks that fall below a certain size

threshold and then return a list of our newly merged tracks. A more succinct expla-

nation of this process can be found in Algorithm 2.
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Algorithm 2: Our MetaTracking algorithm
Result: Segment and merge existing tracks into smoother meta-tracks
𝒯 ← tracks 𝑡1, ...𝑡𝑁 // Initialize tracks
𝒮 ← SEGMENT(𝒯 ) // Segment tracks
𝒯 ← {𝑇 (𝑠𝑖) | 𝑠𝑖 ∈ 𝒮} // Create tracks from new segments
ℳ← {𝑀𝑖(𝑇𝑖) | 𝑇𝑖 ∈ 𝒯 } // Create meta-tracks
𝜋 ← Σ𝑖|𝒞(𝑖)| // Set potency
while 𝜋 > 0 do

𝑀𝑖,𝑀𝑗 ← SUGGEST_PAIRING();
if 𝑑𝑠𝑒𝑔(𝑀𝑖,𝑀𝑗) ≤ 𝜖 then

MARK_GOOD_PAIRING(𝑀𝑖,𝑀𝑗);
else

MARK_BAD_PAIRING(𝑀𝑖,𝑀𝑗);
end
𝜋 ← Σ𝑖|𝒞(𝑖)| // Set potency

end
PRUNE_TRACKS();
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Figure 3-3: RadarSORT’s internal architecture.
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Chapter 4

Results

We compared our proposed detection and tracking system with some existing op-

tions as a baseline on both real and synthetically generated scenes. We describe an

interesting subset of these experiments here to highlight various improvements and

drawbacks of RadarSORT with alternative infrastructure.

Currently, these results are visualized in realtime in the GUI shown in Figure 1-1.

For analysis, we plot our tracks over time to evaluate relative performance of our

algorithm.

4.1 Synthetic Experiments

4.1.1 Experiment 1: Single Target Mutli-Motion Path

In this experiment, a synthetic target walks from 5m to 15m, stands still while breath-

ing, and then returns to the original 5m position. The challenge in this scenario is the

inconsistency in the target’s movement throughout. For a tracker to be successful, it

must adjust over time to the changing motion function that our target exhibits. Fig-

ure 4-1 shows RadarSORT’s performance while Figure 4-2 shows the Vogl Tracker’s

performance.

The results of this first experiment show clear trends that we see persist through-

out all experiments: Vogl is generally a lot tighter of a track positionally, but is
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highly prone to dropping a target and forcing an identity switch. RadarSORT, on

the other hand, is quite good at approximating a target’s motion path, reducing

identity switches, and even reassociating lost tracks as the target exhibits familiar

motion patterns through similar regions of the scene (so the neighborhood’s encoded

similarity contributes to the reassociation).

In this experiment, we see the Vogl tracker very nearly mimic the ground truth,

but across roughly 20 separate tracks. In other words: rather high f1 score and

rather low continuity. RadarSORT, on the other hand, has an alright f1 score (it

still approximates the motion to a significant degree), while keeping with a far more

continuous track.

Figure 4-1: All tracks visualized of the single target’s motion path. On the left is the
ground truth, with the three components of motion highlighted in different colors.
On the right is RadarSORT’s predicted path, with colors representing track IDs. The
x-axis represents the pulse number of a particular detection, and the y-axis represents
range from the radar in meters.
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Figure 4-2: All tracks visualized of the single target’s motion path. On the left is the
ground truth, with the whole of the motion in red. On the right is the predicted path
using the Vogl tracker, with colors representing track IDs. NOTE: Due to matplotlib’s
own color rotation, the colors on the right of the motion plot do not correspond to
the same track as their respective colored track on the left. The x-axis represents
the pulse number of a particular detection, and the y-axis represents range from the
radar in meters.

4.1.2 Experiment 2: Two Targets Crossing

In this experiment, two synthetic targets walk from opposite extremes of the radar (far

and near, respectively) and walk to the opposite extreme (near and far, respectively).

They cross at a common midpoint. The true challenge here is that the tracker must

infer which motion path corresponds to which subsequent direction at the cross.

The visualized results of the SORT-based tracker can be found in Figure 4-3 and

the visualized results of the Vogl tracker can be found in Figure 4-4.

Once again, we see the Vogl tracker produce many identity switches. Overall, the
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Figure 4-3: All tracks visualized of the two-target motion paths. On the left is the
ground truth, with each ground truth track as a distinct color. On the right are
the predicted tracks of RadarSORT. The x-axis represents the pulse number of a
particular detection, and the y-axis represents range from the radar in meters.
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Figure 4-4: All tracks visualized of the two-target motion paths. On the left is the
ground truth, with each ground truth track as a distinct color. On the right are the
predicted tracks of the Vogl tracker. The x-axis represents the pulse number of a
particular detection, and the y-axis represents range from the radar in meters.
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Figure 4-5: All tracks visualized of the three-target motion paths. On the left is
the ground truth, with each ground truth track as a distinct color. On the right
are the predicted tracks of RadarSORT. The x-axis represents the pulse number of a
particular detection, and the y-axis represents range from the radar in meters.

positions of both tracks are roughly equivalent, although both seemingly incorrect.

The SORT tracker predicted tracks corresponding to a scenario where the targets

turned around, instead of kept on going. It is unclear what "decision" was made by

the Vogl tracker, as there are too many identity switches.

4.1.3 Experiment 3: Three Targets Walking in Sequence

In this experiment, three targets walk from 5m to 15m in separate and distinct time

segments, with 5s of no movement in between each path.

The visualized results can be seen in Figures 4-5 and 4-6 for the SORT and Vogl

trackers, respectively.
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Figure 4-6: All tracks visualized of the three-target motion paths. On the left is the
ground truth, with each ground truth track as a distinct color. On the right are the
predicted tracks of the Vogl tracker. The x-axis represents the pulse number of a
particular detection, and the y-axis represents range from the radar in meters.
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RadarSORT was able to form three distinct motion paths that are more-or-less

whole in their tracks. RadarSORT also seems to have cross-associated much of the

paths from both the 1st and 2nd ground-truth target, though the third is entirely

distinct and whole. The Vogl tracker tracked the first target exceptionally well, and

then performance fell off. It missed the middle target almost entirely, and the latter

two targets were rife with identity switches. There was also an erroneous track very

far away from any ground-truth track towards the end of the scene’s duration.

4.2 Real Experiments

4.2.1 Experiment 4: Walking and Holding Breath

In this experiment, a single target walks roughly 4m away from the radar, pauses,

holds their breath, and then comes back.

The visualized results can be seen in Figures 4-7 and 4-8 for the SORT and Vogl

trackers, respectively.

RadarSORT is able to encompass the entirety of the ground-truth track in just

one predicted track. It does not handle multipathing well, which is the phenomenon

where a target appears to exist in intervals at distances farther than its true range

due to the excess reflections of pulses on the scene. While it still includes them as

tracks, it considers them to be separate tracks.

The Vogl tracker actually tracks the one target, and just the one target, rather

tightly. It switches identity many times, however, and appears to fall off randomly.

4.2.2 Experiment 5: Standing Still

In this experiment, a single target stands roughly 4m away from the radar for the

duration of the trial.

The visualized results can be seen in Figures 4-9 and 4-10 for the SORT and Vogl

trackers, respectively.
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Figure 4-7: All tracks visualized of the one-target motion path. On the left is the
ground truth, with each component of the single ground-truth track as a distinct
color. On the right are the predicted tracks of the RadarSORT tracker. The x-axis
represents the pulse number of a particular detection, and the y-axis represents range
from the radar in meters.
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Figure 4-8: All tracks visualized of the one-target motion path. On the left is the
ground truth, with each component of the single ground-truth track as a distinct
color. On the right are the predicted tracks of the Vogl tracker. The x-axis represents
the pulse number of a particular detection, and the y-axis represents range from the
radar in meters.
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Figure 4-9: All tracks visualized of the single target’s stationary path. On the left is
the ground truth. On the right are the predicted tracks of the RadarSORT tracker.
The x-axis represents the pulse number of a particular detection, and the y-axis
represents range from the radar in meters.

RadarSORT does a poor job of tightly tracking the stationary target, though it

does approximate its position and associate a single track for it.

The Vogl tracker is unable to hold a solid track on the target for any stretch of

the scene.

4.2.3 Experiment 6: Walking and Holding Breath II

In this Experiment, as in Section 4.2.1, a target walks away from the radar to roughly

4.5m and then remains stationary, holding their breath for a brief period. While

stationary, the target gestures and crouches.

The visualized results can be seen in Figures 4-11 and 4-12 for the SORT and Vogl

49



Figure 4-10: All tracks visualized of the single target’s stationary path. On the left
is the ground truth. On the right are the predicted tracks of the Vogl tracker. The
x-axis represents the pulse number of a particular detection, and the y-axis represents
range from the radar in meters.
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Figure 4-11: All tracks visualized of the one-target motion path. On the left is the
ground truth, with each component of the single ground-truth track as a distinct
color. On the right are the predicted tracks of the RadarSORT tracker. The x-axis
represents the pulse number of a particular detection, and the y-axis represents range
from the radar in meters.

trackers, respectively.

RadarSORT is able to approximate the track somewhat well, suffering the same

multipath issues as before but compartmentalizing tracks well.

The Vogl tracker struggled much more with holding a consistent track with the

additional motion. As can be seen in the Figure, there are many gaps and identity

switches throughout the duration of the scene.

4.2.4 Experiment 7: Sitting Still

In this last experiment, we have one target simply sitting at roughly 4.5m, breathing

normally.
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Figure 4-12: All tracks visualized of the one-target motion path. On the left is the
ground truth, with each component of the single ground-truth track as a distinct
color. On the right are the predicted tracks of the Vogl tracker. The x-axis represents
the pulse number of a particular detection, and the y-axis represents range from the
radar in meters.
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Figure 4-13: All tracks visualized of the single target’s stationary path. On the
left is the ground truth. On the right are the predicted tracks of the RadarSORT
tracker. The x-axis represents the pulse number of a particular detection, and the
y-axis represents range from the radar in meters.

The visualized results can be seen in Figures 4-13 and 4-14 for the SORT and Vogl

trackers, respectively.

RadarSORT is able to approximate the track somewhat well, suffering the same

multipath issues as before but compartmentalizing tracks well.

As is consistent with the trends we have seen thus far, RadarSORT appears to

track the stationary target better, with zero identity swaps and relatively few gaps.
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Figure 4-14: All tracks visualized of the single target’s stationary path. On the left
is the ground truth. On the right are the predicted tracks of the Vogl tracker. The
x-axis represents the pulse number of a particular detection, and the y-axis represents
range from the radar in meters.
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Chapter 5

Conclusion

5.1 Limitations

As is shown in results, RadarSORT makes improvements on the existing detection

system’s tracker, though it does not solve them entirely. Some critical limitations

identified thus far:

1. Sometimes-shoddy positional tracking. While RadarSORT is empirically able

to approximate the position of a tracked target over the course of their track,

the existing Vogl tracker was always able to produce tighter tracks, even if the

tracks themselves were short-lived.

2. No identity-switching when there should be. While it is nice in some circum-

stances that our system is able to re-associate tracks it has not seen in a while

over some kind of similarity metric, this is not always the correct decision.

3. Identity-switching when there shouldn’t be. Certain ground-truth tracks are

broken up into multiple predicted sub-tracks. As an opposite, but equally in-

correct, mistake to the previous limitation, this results in our system predicting

more individuals are in a scene than is actually true.

The impact of these limitations can be mitigated with the utilization and im-

provement of the meta-tracking procedure to double-check tracks with short delay, as
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well as by improving the internal prediction system of our tracker. We lay out some

suggestions for how to approach these improvements in Section 5.3

5.2 Ethics

As development continues on this endeavor to create a robust and versatile hand-

held radar detection platform, it is vital that the very real experiences of its future

users remain central to the design process throughout. [4] sets out a paradigm for

approaching such problems with three key criteria: functionality, transparency, and

potential. The first, functionality, demands that the system either works according to

the designer’s intent, or that when it does not, it fails in a manner that is acceptably

ethical. The second, transparency, demands that how a system arrives at an answer

is well-defined and clearly conveyed. The third, potential, demands that, even when

assumed to be perfectly functioning (which is never), a system amplifies the efforts

of the ethical over those of the unethical.

Without delving into the vast and nuanced philosophy driving such decisions,

we will briefly address ways that future work can address these three criteria and

reinforce a commitment to ethical development.

5.2.1 Functionality

Simply put, the system must work. The surest way to assess that the system does

work is to quantitatively verify that it does across large-scale and rigorous testing,

with concrete data and results behind it. Much of the work in this paper actively

contributes to this endeavor, setting the stage for consistent evaluation of our system

moving forward.

Further, if and when the system fails, the system must be deliberate in how it

chooses to communicate uncertainty over detections or the lack thereof. As described

in Section 3.2.1, precision and recall are the two overarching measures of a detection

system’s performance. It is the opinion of this author that recall is the far more

important of the two in matters of uncertainty. In other words, it is better for our
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system to predict there is someone, say, under the rubble following a natural disaster,

than to not predict it over some low certainty value. In development, efforts should

be made to raise both values as close to 100% as possible, but if there is ever a need

to choose one over the other, recall should be optimized.

5.2.2 Transparency

Our system must convey information about its predictions in a manner that is non-

distracting in stressful situations, but highly informative if the user chooses to see

more detail. Information from every phase of the detection/tracking pipeline must be

made available to the user on demand, and confidence scores should be clearly visible

alongside detections.

5.2.3 Potential

At the end of the day, this system is an intelligence augmentation for its users. It

makes no autonomous decisions, it simply ingests and processes information before

providing its results to some user. As far as potential goes, it is incapable of harm

in a vacuum, and so long as it strives to satisfy the previous two constraints to a

reasonable level, it has a capacity for good far, far greater than any capacity for

harm.

5.3 Future Work

5.3.1 VoglSORT

While the actual tracking of RadarSORT was generally more performant than the

existing Vogl Tracker, we can extract the positional state prediction of the Vogl

tracker for use with RadarSORT’s pipeline. This should give the best of both worlds,

providing tight and continuous predicted tracks.
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5.3.2 Live-Clustering

Just as the proposed MetaTracking algorithm was a clustering problem, we can boil

down tracking to essentially just that, as well. It would be interesting to see the

labelling of new detections as a live-clustering problem, with something like the

STREAM algorithm applied to decide track IDs.

5.3.3 Realtime Meta-Tracking

A performant (both accuracy- and speed-wise) meta-tracking algorithm would help

to establish more accurate summaries of what exactly is happening in a scene in

near-realtime. Such functionality, if verifiably more accurate, is undoubtedly useful.
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Appendix A

Tables

In this appendix, we provide a comprehensive breakdown of various metrics across

selected experiments.
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Table A.1: Result Table
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