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Abstract

Due to the increase in popularity of satellite constellations, some altitudes in LEO
have experienced a large increase in number of satellites. This is a trend expected to
continue in the future, which could potentially lead to an increased risk of collision
between satellites. Collision avoidance is therefore paramount to maintain normal
operations and to prevent runaway growth of space debris in LEO. To that end, this
thesis develops state-space LQR and tube MPC controllers for LEO satellites oper-
ating in near-circular orbits with low-thrust engines. This is done using a linearized
model of the dynamics under the Earth gravitational potential and the atmospheric
drag.
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Chapter 1

Introduction

As many in the aerospace field know, satellite constellations [5,6,8,12,22,26,31,38] are

quickly becoming a very popular space architecture for space missions. This is due to

the numerous benefits that they provide when compared to individual spacecrafts. In

general, satellite constellations are able to improve the response of the system while

providing more optimal and lower cost solutions to the mission goals. For example,

the ESA’s Sentinel-1 mission [33] consists of a two satellites aimed at providing data

continuity for the Sentinel program by using a configuration that optimizes coverage

of the Earth. Additionally, there are some situations, for instance, in global coverage

missions, that can only be achieved by large satellite constellations. Two examples

of this kind of mission are SpaceX’s Starlink [35] and Amazon’s Project Kuiper [13],

which aim to provide constant and global internet coverage. Other situations in

which constellations have proven advantageous are when coordinated measurements

can produce more useful data than when compared with sole satellites. An example of

this is NASA’s A-Train constellation [36], which consists of multiple satellites taking

measurements over the same Earth regions, which improves our knowledge of Earth’s

environment and climate. However, with the rise in popularity comes the increased

risk of collisions between satellites or satellite constellations. There is also a danger

that satellites not operating with adequate collision avoidance will result in a future

where orbits are dictated by random collisions with debris rather than with controlled

satellites [14]. Collision avoidance is therefore paramount in order to ensure the safety
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of current and future missions in the Low Earth Orbit (LEO) region.

In that regard, extensive research has been performed by a large number of authors

in the field of collision avoidance [17, 21, 29] and orbit maintenance [4, 19, 37] for

satellite constellations. Research performed in that direction includes the assessment

of the probability of collision [27, 28], autonomous control [40], the definition of a

complete slotting architecture for the LEO region [7], the minimization of the ∆𝑉

needed to maximize the likelihood that a collision would be avoided [10, 34], or the

use of differential drag to perform the control maneuvers of the formation [18,24,32].

Related to this, it is the control strategies used in formation flying. Examples of

that include the helix formation of the TandemX mission [15], or the control box

strategy [1, 9] for Flex mission [25].

This work deals with the generation and study of control law strategies for LEO

satellites compliant with a constellation slotting architecture as the one proposed

in Ref. [7]. In these kind of architectures, satellites are deployed in slots, which

are zones in which only one satellite is allowed to operate in. These slots assure

that there will be no conjunction between slots under a normal operation of the

architecture. Therefore, ensuring that satellites stay within their slots ensures that no

conjunctions will occur. In particular, this thesis focuses on the application of different

control laws to deal with satellite maneuvers while maintaining the safety of the

constellation as a whole. This means that the control system proposed in this thesis

assures a minimum distance between the satellites of the constellation even under a

worst case scenario where a spacecraft must perform a collision avoidance maneuver,

as long as that maneuver stays within the slot. To that end, a control scheme is

proposed based on Linear Quadratic Regulator (LQR) techniques [16] applied to a

linearized model of the dynamics of a satellite located in LEO under the perturbation

of the Earth’s gravitational potential and the atmospheric drag [2]. A tube model

predictive controller (MPC) based on bounded disturbances, state constraints, and

control constraints is also applied [23]. In particular, for both controllers, a state-

space system is created using the position of a satellite in altitude and along-track

distance as states. This control scheme assumes that the satellites are using low thrust
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engines in a near-circular Low Earth Orbit and that continuous information about

the satellites’ states is available. The main advantage of the proposed control scheme

is that it is specially suitable for real time on board control of spacecraft due to its

very low computational requirements. In addition, the tube MPC also has the benefit

of ensuring the satellite does not exit the slot at the expense of less slot area. By

ensuring the satellite does not exit the slot, the tube MPC guarantees that collisions

between satellites in a slot-based constellation will not occur.

The work in this thesis is organized as follows. First, the methods used to generate

a linear, simplified model of a satellite subjected to the perturbation produced by the

Earth gravitational potential and the atmospheric drag while operating within a slot

in Low Earth Orbit is described. A summary of the LQR and tube MPC methods for

determining the controllers is also discussed. Following this, the results are presented

for an example of a LEO satellite maintaining its reference altitude, implementing an

altitude change, and trying to follow along-track commands using both the LQR and

tube MPC control schemes. A discussion of the advantages and limitations of these

controllers is included afterwards. Finally, a conclusion section summarizing the work

and discussing possible improvements is presented.1

1Much of the work regarding the introduction to this problem and the development, results, and
discussion surrounding the LQR controllers presented here is adapted from a manuscript from the
author. This manuscript can be found in Ref. [11]
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Chapter 2

Methods

2.1 Linearized Model

In order to create a state-space model of the dynamics of a satellite subjected to

orbital perturbations, a linear model is required. To that end, we make use of the

approximated analytical model from Ref. [2] to simplify the system of differential

equations obtained from the orbital perturbations. In this model, it is assumed that

the satellites are in near-circular orbits and subjected to the effects of the perturbation

produced by the Earth gravitational potential and the atmospheric drag. Other

perturbations such as the solar radiation pressure or the third body are considered

negligible compared to the considered perturbations. Therefore, following Ref. [2] we

can derive that the evolution of the semi-major axis of the orbit can be approximated

by

9𝑎 “ ´𝜌
𝑆

𝑚
𝐶𝑑
?
𝜇𝑎

1
2 `

2
?
𝜇
𝑎

3
2𝑇𝜃 (2.1)

where 𝑎 is the semi-major axis of the satellite, 𝜌 is the atmospheric density, 𝑆 is

the cross-sectional area of the satellite, 𝑚 is the mass of the satellite, 𝐶𝑑 is the drag

coefficient of the satellite, 𝜇 is the Earth’s gravitational constant, 𝑇𝜃 is the acceleration

produced by the thrusters in the direction opposite to the motion, and 9𝑎 is the rate

of change of the semi-major axis with respect to time. Note that it is assumed

that the variation in the semi-major axis is small compared to its value, and that the
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atmospheric density experienced by the satellite is not affected by these small changes

in its altitude. On the other hand, the equation for the motion of the along-track

time delay between the satellite and its nominal position is

9∆𝑇 “ ´
3

2

p𝑎´ 𝑎0q

𝑎0
(2.2)

where 9∆𝑇 is the rate of change of along-track time delay and 𝑎0 is the nominal semi-

major axis of the satellite orbit, that is, the semi-major axis defined under the effects

of the perturbation produced by the Earth gravitational potential [2,3]. To simplify

the notation used in this thesis, 𝑘1 and 𝑘2 are defined as

𝑘1 “ ´𝜌
𝑆

𝑚
𝐶𝑑
?
𝜇; 𝑘2 “

2
?
𝜇
. (2.3)

Since the state-space model for control requires the dynamic equations to be com-

pletely linear, a Taylor series expansion is performed on Equation 2.1 to linearize

it around the operating point of 𝑎0, while retaining the first order terms of the ex-

pansion. This results in a linearized equation for the rate of altitude change given

by

9𝑎linear “ 𝑘1𝑎
1
2
0 ` 𝑘2𝑎

3
2
0 𝑇𝜃 `

ˆ

1

2
𝑘1𝑎

´ 1
2

0 `
3

2
𝑘2𝑎

´ 1
2

0 𝑇𝜃

˙

p𝑎´ 𝑎0q (2.4)

In that regard, and in order to check the precision of the linearization performed in

Equation 2.4, a series of numerical comparisons are performed with respect to the

analytical solution from Equation 2.1. In particular, Figure 2-1 shows the result of

this comparison for an orbit with a nominal altitude of 705 km. The parameters

used in this equation are given in Table 2.1. As can be seen, the linearization has a

percentage error of less than 0.008% for an altitude deviation of 105 km. This altitude

deviation is more than 3 orders of magnitude higher than what is considered in this

problem and as a result the linearization performed is valid for the problem that is

considered here.
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Figure 2-1: Linearization error

Table 2.1: Satellite and orbit parameters
Variable Name Value Unit

𝜌 Atmospheric density 10´14 kg/m3

𝑆 Cross-sectional area 8.5 m2

𝑚 Mass 1000 kg
𝐶𝑑 Coefficient of drag 2.2 -
𝜇 Earth gravitational constant 3.98600441188*10´14 m3{𝑠2

𝑎 Semi-major axis 7076*103 m

2.2 State-Space Formulation

The goal of this section is to generate a state-space representation of the dynamics

presented in the previous subsection in order to apply LQR and tube MPC techniques

to control the altitude and along-track states. In order to accomplish this, the states

of the system and their derivatives are first defined. Afterwards, the state-space model

is centered around the operating point of the nominal semi-major axis and position

of the satellite. Then, the controllability and observability matrices are determined

to ensure that the system is controllable and observable for the parameters chosen.

In the state-space formulation, a control matrix 𝐾 governs the closed-loop eigen-

values of the system, meaning that the control matrix will govern the response of the

system. To create a state-space system, the states and their derivatives are defined

as

𝑥 “

»

–

𝑎

∆𝑇

fi

fl ; 9𝑥 “

»

–

9𝑎

9∆𝑇

fi

fl . (2.5)

This results in a state-space formulation where the derivative of the state vector can
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be described as

9𝑥 “ 𝐴𝑥`𝐵𝑢 (2.6)

where 𝐴 and 𝐵 are matrices that relate the effects of the states and control inputs to

the future states respectively. We can also describe an output 𝑌 that is defined as

𝑌 “ 𝐶𝑥`𝐷𝑢 (2.7)

where 𝐶 and 𝐷 are matrices that describe the effects of the states and control inputs

on the output. In general, the output 𝑌 simply tracks the states we are interested

in. In order to create a state-space formulation centered around the operating point

of 𝑎0, it is necessary to obtain the equilibrium thrust that makes 9𝑎linear equal to zero.

This results in an equilibrium thrust of

𝑇𝜃𝑒𝑞 “
´𝑘1
𝑘2𝑎0

(2.8)

which represents the thrust required to cancel out the drag loss of the satellite. The

𝐴 and 𝐵 matrices necessary for the state-space formulation are found by taking the

partial derivatives of Equation 2.2 and Equation 2.4 with respect to the states and

plugging in the equilibrium thrust. This results in the following 𝐴 and 𝐵 matrices:

𝐴 “

»

–

´𝑘1
2
?
𝑎0

0

´3
2𝑎0

0

fi

fl ; 𝐵 “

»

–

𝑘2𝑎
3
2
0

0

fi

fl . (2.9)

As mentioned above, the 𝐶 matrix relates the effects of the states to the output.

For the problem considered in this thesis we are simply interested in determining

the states themselves as the output, so it is assumed that both states are directly

measured. Therefore, the 𝐶 matrix is set to
”

1 1
ı

. The 𝐷 matrix is often zero for

many physical systems. For this controller formulation, we are interested in the state

variables as our output, so it is possible to simply set the 𝐷 matrix to zero. In other

complex systems this is not possible and the 𝐷 matrix must be non-zero to define the
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output. The complete state-space formulation therefore is defined as

»

–

9𝑎

9∆𝑇

fi

fl “

»

–

´𝑘1
2
?
𝑎0

0

´3
2𝑎0

0

fi

fl

»

–

𝑎

∆𝑇

fi

fl`

»

–

𝑘2𝑎
3
2
0

0

fi

fl𝑇𝜃; (2.10)

𝑌 “
”

1 1
ı

»

–

𝑎

∆𝑇

fi

fl . (2.11)

It is important to note that this state-space formulation is only related to the dif-

ference in value from the operating point. Any change in semi-major axis is really a

change from the nominal semi-major axis 𝑎0. The same idea is applied to the along-

track and to the thrust. To recoup these values one must simply add the deviation

to the nominal operating point values.

2.2.1 Controllability and Observability of State-Space System

The controllability and observability matrices are important in modern control theory.

The controllability matrix, if full rank, guarantees that it is possible to transfer our

system from any initial state to any final state in a finite period of time. In a similar

way, the observability matrix, if full rank, guarantees that we are able to determine

the values of our states at any point in time. Without this guarantee, it is possible

that certain satellite states would not available or observable, making control an

irrelevant question. To ensure that the system is controllable and observable the

controllability and observability matrices are checked to ensure they are full rank.

The controllability matrix is defined as 𝑀𝑐 “

”

𝐵 𝐴𝐵
ı

, and the observability matrix

is defined as𝑀𝑜 “

”

𝐶 𝐶𝐴
ı𝑇

. Both of these matrices are full rank in this formulation.

This is an important conclusion because in the Results section of this thesis it is shown

that certain controllers do not possess the ability to reach certain states in a timely

manner or at all. This is not due to the inherent dynamics of the problem because

the observability and controllability matrices are full rank. Instead, as is shown later,

the controllers are not able to reach these states due to other limitations which are

discussed.
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Chapter 3

Control

3.1 LQR Methods

Once the controllability and observability have been ensured to be full rank, the

control matrix 𝐾 is calculated. This is done using the LQR technique. In this

technique, the control matrix is generated as an optimization problem. We aim to

produce the best performance with as little cost as possible. Weights are applied to

states, such as the semi-major axis and along-track delay, and control inputs. The

relative weight between these variables determines the control matrix. The 𝑄 matrix

represents the weights applied to the states. If the 𝑄 matrix is larger, the controller

will work harder to fix the state errors. The 𝑅 matrix represents the weight applied

to the control input. If the 𝑅 matrix is larger, the controller will minimize control

input at the expense of state error. Bryson’s Rule is used to determine the weights of

the 𝑄 and 𝑅 matrices. Bryson’s Rule is a common first-pass method to determine the

weights of an LQR controller. This method results in choosing the 𝑄 and 𝑅 matrices

as

𝑄 “

»

—

—

–

𝛼2
1

p𝑥1𝑚𝑎𝑥q
2

0

0
𝛼2
2

p𝑥2𝑚𝑎𝑥q
2

fi

ffi

ffi

fl

; 𝑅 “

„

𝜓

ˆ

𝛽2
1

𝑢21𝑚𝑎𝑥

˙

; (3.1)

where 𝑥1𝑚𝑎𝑥 and 𝑥2𝑚𝑎𝑥 refer to the maximum semi-major axis and along-track delay

states that are expected while 𝑢1𝑚𝑎𝑥 represents the maximum control input that the
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thrusters are able to produce. 𝛼1 and 𝛼2 represent the relative weights on the states.

𝛽1 represents the weight on the control input and 𝜓 represents the weight between the

states and the control input. The maximum control input, 𝑢1𝑚𝑎𝑥, varies depending on

the engine so a variety of thrusts for low-thrust engines are collected from Ref. [39].

The thrust is divided by the satellite mass to determine the acceleration of the engines

since Equation 2.1 is written in terms of engine acceleration and not engine thrust.

Table 3.1 and Table 3.2 show thrust values for bi-propellant and ion engines.1

Multiple controllers with varying performance can be designed by adjusting the

weights in Equation 3.1. This thesis explored two main controller weightings: altitude

focused and along-track focused. These two controllers were both fed two different

reference signals to track: the altitude and the along-track. These different controllers

and their references are discussed in the Results section. The weighting values for

these controllers are shown in Table 3.3, along with the values for 𝑥1𝑚𝑎𝑥 and 𝑥2𝑚𝑎𝑥.

Table 3.1: Thrust values for bipropellant engines
Engine Thrust (Newtons)

10N Biprop Thruster 10
5LbCb AMPAC 22

Leros 9
Monarc-5 4.5
Monarc-90 90

DOT-5 5
MR-103G 1.13
MR-11C 5.3

Solenoid Actuated 58-118 Thruster 3.5

Table 3.2: Thrust values for ion engines
Engine Thrust (milliNewtons)

XIPS-13 17.2
XIPS-25 80-166
NSTAR ă 92
NEXFS ă 500
NEXT ă 236

T-6 145
RIT-XT 150
ETS-8 22

To determine the maximum values of the altitude, 𝑥1𝑚𝑎𝑥, and along-track, 𝑥2𝑚𝑎𝑥,

we must first determine the size of the slot the satellite is expected to be within. To

that end, we use the formulation proposed in Ref. [2] to relate the maximum variation
1The maximum value of the thrust range is used in the calculations for the results section.
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Table 3.3: Bryson’s rule values
Variable Altitude Along-Track Unit
𝑥1𝑚𝑎𝑥 112.75 112.75 m
𝑥2𝑚𝑎𝑥 4.6635 4.6635 s
𝛼1 100 1 -
𝛼2 1 100 -
𝜓 1 1 -
𝛽1 10 10 -

in the semi-major axis with the variation in along-track distance. This relationship

is used to define a maximum slot boundary for a satellite in a constellation. This

relation can be summarized as:

∆𝑎 “
4
?

3

c

∆𝜆𝑠
𝜔C

𝜌
𝑆

𝑚
𝑐𝑑

b

𝜇𝑎30 (3.2)

where the variables ∆𝜆𝑠 and 𝜔C are the total along-track size in radians and the

Earth spin rate in radians per second. First, from a mission analysis study of the

worst case scenario in solar activity and taking into account the ballistic coefficient

of satellites currently operating, we derive an along-track slot size of ∆𝐿 “ 70 km

at 700 km of altitude imposing a maximum of 1 orbital maneuver each two weeks.

This distance is converted to radians by dividing by the semi-major axis of the orbit,

∆𝜆𝑠 “ ∆𝐿{𝑎0. This results in ∆𝜆𝑠 “ 0.009893 radians or 0.5668˝. Introducing this

result into Equation 3.2, results in a semi-major axis change of ∆𝑎 “ 225.5 m. The

along-track size is also desired in time units. The equation

∆𝑡 “
∆𝐿

𝑣
“ ∆𝐿

c

𝑎0
𝜇

(3.3)

converts the along-track into time by using the orbital velocity. The along-track slot

size in time is then ∆𝑡 “ 9.327 seconds. Our slot is defined to have this sizing for semi-

major axis and along-track deviation. However, the linearization assumes that the

satellite is in the center of this rectangle. Therefore, when 𝑥1𝑚𝑎𝑥 and 𝑥2𝑚𝑎𝑥 are defined,

the values must be halved so that the total size of the slot is equal to the slot sizes,

that is 𝑥1𝑚𝑎𝑥 “ ∆𝑎{2 and 𝑥2𝑚𝑎𝑥 “ ∆𝑡{2. Other satellite constellations, depending on

their operating conditions, mission goals, satellite parameters, and other factors, will

25



have to go through this calculation to determine their own slot dimensions.1

After determining the 𝑄 and 𝑅 matrices, the control gain matrix 𝐾𝐿𝑄𝑅 is found

for each thruster case using MATLAB’s lqr() command. A closed-loop controller

was created using these 𝐾 matrices and applied to the state-space system. The

solution was propagated using a custom propagation program. In this program a

saturation limit was implemented to ensure that the engine could only output the

maximum thrust possible if the controller requests more thrust than is physically

possible. The control action is calculated discretely so if the controller frequency is

too low, the controller will output an outdated control input which has the ability to

cause instabilities or overshoot. The control frequencies are included in the Results

section.

3.2 Tube MPC Methods

The tube model predictive controller (MPC) is a type of controller that combines

robustness in the form of a tube with a model predictive controller [23]. The model

predictive controller performs optimization using a system model and can "look into

the future" by performing the optimization using a finite horizon. How far it looks

into the future can be tuned by adjusting how many steps it calculates. The tube

portion of the tube MPC is a disturbance rejection controller that helps to constrain

the states of the system within a bounded region or "tube".

The tube MPC takes into account the constraints of the system and actuators

[23]. Because of the nature of the problem discussed here this makes the tube MPC

a promising candidate for control. The linear system has constraints in the control

action in that the thrusters cannot give infinite thrust. It has constraints in the states

in that the satellite is not allowed to leave the slots. The tube MPC can also deal

with bounded disturbances. In the problem proposed here, some error in the sensing

of the state is expected. This sensor error can be implemented as a disturbance

1More information about slotting, satellite constellations proposals, and station-keeping can be
found in Ref. [2,3,4,7].
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on the state. It is important to note that any disturbance implemented within the

tube MPC must be bounded to ensure the states do not exceed their limits. Once

again, the maximum thrusts for the engines considered are provided in Table 3.1 and

Table 3.2. The maximum states, 𝑥1𝑚𝑎𝑥 and 𝑥2𝑚𝑎𝑥, are given in Table 3.3. In addition,

the thruster is also assumed to have a disturbance. If the thruster is commanded to

input a certain amount of acceleration, errors in the actuation system are assumed

to change the actual control input seen by the satellite.

The tube is generated through an algorithm found in Ref. [30]. The algorithm

uses the state and actuation constraints, as well as the uncertainty of the disturbance

to calculate the tube. Because different engines have different thrust values some

engines will be better at rejecting disturbances because they have sufficient thrust to

do so. Some engines were able to reject up to a 5% error on the state whereas others

were only able to reject up to a 1% error. This all depends on the thrust value, the

specific state setpoint, and the assumed disturbance bounds. The uncertainty bounds

for the state used for results will be noted since a uniform uncertainty percentage was

not applied to all engines and all cases. The disturbance percentage on the control

action will also be noted for the cases.

The disturbance rejection controller or tube also needs its own disturbance rejec-

tion gain. This was determined by using Bryson’s rule as shown in Equation 3.1. The

weighting values used are the same as the altitude controller shown in Table 3.3.

The MPC portion of the controller also needs a gain. The gains for both parts

of the controller can be adjusted independently but in this case the tube and the

MPC shared the same values. The MPC controller had a prediction horizon of 𝑁 “

10. Any results which differ in the prediction horizon will be explicitly called out.

It is also important to note that the tube MPC is implemented discretely so the

MATLAB command dlqr() was used to calculate the discrete gains. The controller

is implemented at a frequency of 1 Hz unless otherwise specified. The code used

to generate these results also makes use of the YALMIP optimization toolbox for

MATLAB [20].

An example of the tube MPC is shown in Figure 3-1. The frequency of the
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controller and the prediction horizon are different in this example to more easily

highlight its function. The outer box represents the limits of the states and the

smaller boxes which encapsulate the state are the tubes. The state is guaranteed

to land within the tube at any point in time despite uncertainties. The satellite is

commanded to raise its altitude to the maximum state and the controller moves the

state in that direction. However, once the outer-part of the tube lines up with the

state limit, it no longer changes. This is because if the tube were to move more to

the right then the state would not be guaranteed to stay within the slot. Once at this

new location, the state moves around due to uncertainty in the state and disturbance

with the control action. Despite these uncertainties, the state stays within the tube

and ensures the satellite does not leave the slot.

Adjusting the uncertainty of the state will adjust the size of the tube. If the

uncertainty is increased too much, the tube will grow to a point where many satellite

maneuvers will not be possible since the tube will line up with the state limits. Larger

uncertainties will limit the amount of states that are reachable within the greater slot.

Smaller uncertainties will allow the satellite to reach more states. The gains on the

disturbance rejection and the MPC will also affect this, as well as the total thrust

available to the controller.

Figure 3-1: Tube MPC Example
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Chapter 4

Results

4.1 LQR Methods

4.1.1 Altitude Controller

The altitude controller consists of an LQR controller that is weighted to penalize

the semi-major axis state1 10 times more than the control input and 100 times more

than the along-track state. The control thrusts generated from this controller are

also limited by the maximum thrust that is physically possible to be generated from

each engine. The controller is applied to both ion engines and bipropellant engines.

Since the bipropellant engines have much higher thrusts when compared to the ion

engines, the bipropellant engine controller updates its control input at a rate of 1 kHz

in order to avoid instability. The ion engine controllers, on the other hand, are able

to run only at 1 Hz to retain stability. The tests in this section are done to determine

what a nominal collision avoidance maneuver looks like in this slot and determine

its performance metrics in terms of error, settling time, and fuel costs. After these

results, the specific use case of an example maneuver of a satellite trying to avoid a

collision while remaining within the slot is explored.

Figure 4-1 depicts the LQR altitude tracking response of a 𝑥1𝑚𝑎𝑥 (112.75 m)

1This is a notice to the reader that semi-major axis state and altitude state will be used inter-
changeably in this thesis.
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Figure 4-1: Altitude tracking with LQR control gains for ion engines

Figure 4-2: Along track delay response with LQR control gains for ion engines

step of satellites with different ion engines. The satellite parameters are provided

in Table 2.1. This step size is chosen to demonstrate that the controller is able to

handle large step inputs in the altitude state. The satellite starts at the bottom of

the slot boundary ´𝑥1𝑚𝑎𝑥 to simulate an initial position after avoiding a collision.

The satellite is commanded to upward to reach the desired steady-state semi-major

axis position of zero. Once again, these values of altitude, along-track, and control

input are differences from the equilibrium values used when generating the state-space

system. Engines with a larger thrust value converged to the nominal altitude faster

than those with a smaller value. Satellites with these higher thrust engines are also

able to generate less error in the along-track delay because more thrust allows the

satellite more quickly reach the setpoint altitude. This is seen in Figure 4-2.
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Figure 4-3: Control effort for LQR control gains for ion engines

Figure 4-4: ∆𝑉 for ion engines

Figure 4-3 shows the control input needed to track the reference input. All the

engines start at their maximum thrust and begin to throttle afterwards. The more

the altitude state error is penalized, the longer the engines will function at maximum

thrust. Engines with larger thrust operate at maximum thrust for less time since

they provide greater amounts of acceleration, while weaker engines have to work at

maximum thrust longer for the equivalent ∆𝑉 . The engine thrusts are tabulated in

Table 3.1 for the bipropellant engines and Table 3.2 for the ion engines. NEXFS,

the most powerful ion engine evaluated, takes about 3 minutes to reach the altitude

reference using 500 mN of thrust. Figure 4-4 compares the ∆𝑉 of the maneuver,

showing that these engines required the same ∆𝑉 . This is because none of the

solutions overshoot the setpoint, so excess thrust is not used. These results show that
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a satellite with these parameters can use low-thrust ion engines to avoid collisions as

long as there is advance notice and the trajectory within the slot is properly planned.

This 𝑥1𝑚𝑎𝑥 (112.75 m) step was also applied to satellites using bipropellant engines.

The thrust for these engines is much higher than that of the ion engines, as can be

seen when comparing Table 3.1 and Table 3.2. Figure 4-5 shows the altitude tracking

for the bipropellant engines. As a result of their higher thrust, the bi-propellant

engines reach the nominal altitude much faster than their ion counterparts. Even the

bipropellant engine with the least thrust, the MR-103G, reaches the nominal altitude

in about 1 minute. The timescale on the along-track delay is similarly quick and is

depicted in Figure 4-6. The error in the along-track delay is less than 7 milliseconds.

Since these engines have much higher thrusts, they are operating at their maximum

setpoint for a lower amount of time. This is shown in Figure 4-7. The ∆𝑉 is the

same in this bipropellant case as the ion case. The ∆𝑉 for each engine is displayed

in Figure 4-8. This is because none of the bipropellant controllers exhibit dynamics

in which they overshoot the setpoint. If a satellite constellation is in need of faster

responses these low-thrust bi-propellant engines are an option.

Figure 4-5: Altitude tracking with LQR control gains for bipropellant engines

Now we expand on the more specific situation of collision avoidance for the NEXFS

engine. The NEXFS engine is selected for having the highest thrust in the class of

ion engines examined here. We simulate a satellite in the nominal configuration

raising its altitude to perform a collision avoidance maneuver. After being in the
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Figure 4-6: Along track delay response with LQR control gains for bipropellant en-
gines

Figure 4-7: Control effort for LQR control gains for bipropellant engines

Figure 4-8: ∆𝑉 for bipropellant engines
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raised altitude state the satellite is commanded to return to the nominal altitude.

The satellite is commanded to keep zero along-track delay throughout the maneuver.

The altitude and along-track responses are displayed in Figure 4-9 and Figure 4-10

respectively. Figure 4-11 shows the control action implemented by the controller. The

satellite tracks the altitude command well and minimizes the along-track error to 0.09

seconds, which is less than 1% of the total slot size. The movement of the maneuver

relative to the slot size is shown in Figure 4-12. The maneuver is also plotted relative

to time in Figure 4-13.

Figure 4-9: NEXFS engine altitude step response with altitude controller

Figure 4-10: NEXFS along-track response with altitude controller

The altitude controller is used to avoid a collision by varying the satellite’s altitude

in the slot. It is also possible to avoid a collision by moving left or right in the slot

by changing the along-track delay. Due to the dynamics shown in Equation 2.10,
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Figure 4-11: NEXFS control input response with altitude controller

Figure 4-12: NEXFS slot maneuver with altitude controller

Figure 4-13: NEXFS maneuver with time

the along-track rate of change is related only to the semi-major axis. This means

that the along-track delay can only be influenced by the means of adjusting the

semi-major axis. This presents a difficulty in control because if a specific along-track
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delay is needed in the slot, the altitude needs to be planned carefully to achieve that

along-track position. The current controller does not have the capability to plan the

trajectory to achieve this. Depending on the controller weights, the satellite might

leave the slot due to the weights being too high or it might not be able to execute the

maneuver due to the weights being too low. Both of these issues were seen while using

the altitude controller and applying non-zero along-track references. An example of

applying an along-track command to this altitude controller is shown in Figure 4-14.

The satellite was commanded to keep the altitude at the nominal value and to move

the along-track to the maximum value, 𝑥2𝑚𝑎𝑥. The satellite remains in the slot but

only because the satellite fails to follow the command response at all. This is due to

the dynamics. Without being able to directly influence the along-track, the controller

must adjust the altitude and with the weighting penalizing altitude error it does not

react.

Figure 4-14: NEXFS maneuver using altitude controller and along-track command

4.1.2 Along Track Controller

The along-track controller consists of an LQR controller that is weighted to penalize

the along-track state 10 times more than the control input and 100 times more than

the altitude state. The control thrusts are capped the same way as the altitude

controller. These controllers were only applied to the ion engines as the performance of

these controllers was worse than the altitude controllers as applied to the ion engines.
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These controllers run at 1 Hz. In general, the along-track controllers overshot the

setpoint, took longer to reach the setpoint, and used more ∆𝑉 to perform the same

maneuver when compared to the altitude controller. The same test maneuvers are

done in this section in order to compare the altitude and along-track controllers.

Figure 4-15: Altitude response using an along-track controller with altitude inputs

Figure 4-16: Along-track response using an along-track controller with altitude inputs

To make a comparison, we set the satellite at an initial condition at the bottom

of the slot with the altitude set to ´𝑥1𝑚𝑎𝑥 and the along-track set to 0. The altitude

trajectories of the ion engines are depicted in Figure 4-15. NEXFS, the engine with

the largest thrust, reaches the setpoint in around 200 minutes, whereas the engines

with the least thrust take over 600 minutes. This is because the controllers are now

prioritizing the along-track error rather than the altitude error. The along-track error

37



is shown in Figure 4-16. Even though the along-track controller weighs the along-track

error more heavily than the altitude controller, the along-track errors for the along-

track controller are higher than the altitude controller demonstrated in Figure 4-2.

This is due to the dynamics of the system. Since the controller seeks to minimize

the along-track error, it neglects the altitude. However, since the altitude directly

controls the along-track state, larger errors in the along-track are generated due to

the altitude error. This overshoot also results in larger ∆𝑉 costs as seen in Figure 4-

18. Figure 4-17 shows the control input of the engines. The ∆𝑉 costs vary between

engines; those with larger overshoot expend more fuel to counteract the overshoot

and thus have higher costs. It is immediately seen that the along-track controller

is inferior to the altitude controller. It has a longer settling time, overshoots the

setpoint, has larger along-track error, and higher ∆𝑉 costs.

Figure 4-17: Control effort for engines using along-track controller with altitude inputs

Other avenues explored included using along-track inputs to the controller, and

using the natural dynamics to save ∆𝑉 . Using along-track inputs to the controller

rather than altitude inputs resulted in worse performance, and even, in some cases,

taking the satellite out of the slot. As mentioned before, the different gains of the

controller will cause this behavior in the closed-loop and should be closely examined

and tested before implementation. Using the natural dynamics of orbital decay re-

sulted in matching the ∆𝑉 costs of the altitude controller but resulted in a longer

time to reach the setpoint since the altitude state was not weighted most heavily. In
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Figure 4-18: ∆𝑉 for ion engines using along-track controller

all metrics the altitude controller outperformed the along-track controller so the rest

of this study is focused on the altitude controller.

4.1.3 Errors and Disturbances

The simulation of the effects of errors and disturbances is of utmost importance

since real systems do not have exact and perfect information. Tests were done to

determine how robust these LQR altitude controllers was to errors and disturbances.

A simulated +/-5% error of the total slot size (112.75 m) was applied to the sensing

of the state. The thruster experienced a +/-10% disturbance of its commanded value

while not being able to exceed its maximum thrust capability. Errors and disturbances

were generated using a uniform distribution. The controller read the state input with

error and generated a thrust command. The thrust command was sent to the engine

and then experienced the disturbance.

Tests were conducted using this method of generating errors and disturbances.

A satellite was left at the nominal orbit altitude and along-track and the thrusters

were set to maintain this nominal position. Note that the controller is linearized

at the nominal orbit altitude so all of the ∆𝑉 in use here is to combat errors and

disturbances. There is a very small error in the altitude and along-track states, as

can be seen in Figures 4-19 and 4-20. The dashed lines in these figures represent the

slot boundaries. Note that larger errors are seen in engines with higher thrust since
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Figure 4-19: Satellite altitude with errors and disturbances

Figure 4-20: Satellite along-track with errors and disturbances

disturbances are applied as a percentage of the thrusters’ commanded input.

Figure 4-21: Percentage error of satellite altitude

The disturbances and errors are also applied to a maneuver where the satellite is
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Figure 4-22: Percentage error of satellite along-track

Figure 4-23: Altitude maneuver with error

commanded to move from the nominal position to the top of the slot. The maneuver

is applied to two ion engines, NSTAR, which has a maximum 92 mN of thrust, and

NEXFS, which has a maximum of 500 mN of thrust. The solutions without error and

the solutions with error are compared by creating a percentage error. The altitude

percentage error is less than 0.05% for both the NEXFS and NSTAR engines. The

along-track errors for both engines measure less than 0.007%. The figures for the

altitude and along-track percent errors are shown in Figure 4-21 and Figure 4-22.

Despite the controller being able to reject these errors, the controller does not guar-

antee that response of the satellite will stay within the slot. For instance, Figure 4-23

shows the control of a satellite that was commanded to the edge of the slot. Despite

reaching this setpoint, the errors and disturbances push the satellite out of the slot

at times. The dashed line represents the edge of the altitude slot. It is possible that
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these types of controllers keep the satellite within the slot but it is not guaranteed.

Due to this issue, we turn our attention to the tube MPC method.

4.2 Tube MPC Methods

The tube MPC controller consists of a disturbance-rejection controller and an MPC

to ensure the satellite stays within the slot [23]. The controller uses LQR gains that

were found via Bryson’s rule and used the same weights as the altitude controller in

Table 3.3. The controllers were applied to both ion and bipropellant engines. First,

the controller as applied to a specific ion engine is examined and then to a specific

bipropellant engine.

The NEXFS ion engine is selected for having the highest thrust in its class of ion

engines examined here. The controller is running at a 1 Hz with a prediction horizon

of 10 steps. The uncertainty in the state for this simulation is 1% of the total slot

size. This uncertainty is applied as a uniform distribution. The thruster experiences

disturbances in the control input equal to +/-10% of the requested control action.

All of these uncertainties and disturbances are applied using a standard distribution.

The first simulation is meant to simulate an avoidance maneuver for the satellite.

It begins the simulation at the middle of the slot and is commanded to reach the

maximum altitude state while maintaining zero along-track delay. The simulation is

run for 150 seconds. The tube plots are omitted from the figure to keep the figure

clean. The simulation can be found in Figure 4-24. The controller raises the altitude

of the satellite but is unable to reach the setpoint. This is because the tube MPC

ensures that the satellite cannot leave the slot. We see that the altitude settles

at around 100 meters, which is 12.75 m less than the commanded altitude of the

maximum state. The satellite’s movement at the end of the maneuver is due to the

uncertainty in the state. The controller is still calculating control action at this point

but the thrusts values are an order of magnitude smaller than when the controller

was actively trying to change the altitude. At this point in the maneuver the thrust

is being used solely to manage the uncertainty and disturbances.
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The next simulation is to quantify the amount of error in the controller maintaining

the satellite’s position in the middle of the slot. The simulation parameters are

the same except that the simulation is only run for 100 seconds and the satellite is

commanded to stay at the center of the slot. The percentage error was calculated by

dividing the altitude by 𝑥1𝑚𝑎𝑥 and dividing the along-track by 𝑥2𝑚𝑎𝑥 and multiplying

by 100. The simulation is shown in Figure 4-25. The initial tube is shown in the figure

and the setpoint of [0,0] is omitted to maintain visibility. The controller acts against

the disturbances and uncertainty to maintain the satellite at the setpoint. Figure 4-

26 and Figure 4-27 show the percent error of the maneuver. Both the altitude and

along-track maintain less than a 5% error throughout the simulation.

It is also important to quantify if the tube MPC controller has the ability to

follow along-track commands. Due to the dynamics described in Equation 2.10 the

along-track delay can only be influenced by the altitude. In order for the controller

to follow along-track commands, it must adjust the altitude state. To ensure that the

controller has enough time to complete these commands, the theoretical time it takes

to complete the maneuver is calculated. It is known from Equation 2.10 that:

9∆𝑇 “
´3

2𝑎0
𝑎 (4.1)

The maximum rate for 9∆𝑇 is reached when the altitude is set to 𝑥1𝑚𝑎𝑥. Therefore,

the maximum rate can be described by:

9∆𝑇𝑚𝑎𝑥 “
´3

2𝑎0
𝑥1𝑚𝑎𝑥 (4.2)

Now to find the time it takes to reach the maximum along-track state 𝑥2𝑚𝑎𝑥, we divide

the maximum along-track state by the maximum rate and take the absolute value.

𝑡𝑟𝑒𝑞 “ |
𝑥2𝑚𝑎𝑥

9∆𝑇𝑚𝑎𝑥

| (4.3)

This results in 𝑡𝑟𝑒𝑞 being equal to 1.9512 ˚ 105 seconds. The simulation is set to

4.0 ˚ 105 seconds to allow the controller enough time to act. This is more than double
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the required amount of time the controller would need to raise the orbit, wait for the

along-track to change, and then lower the orbit altitude to reach the setpoint. The

frequency of the controller is decreased to 0.005 Hz reduce computation time. The

prediction horizon is also increased to N = 200 to ensure the controller can "see"

sufficiently far enough ahead. The controller is commanded to reach the setpoint of

r0,´𝑥2𝑚𝑎𝑥s. The controller should increase the altitude, wait for the natural dynamics

to change the along-track, and then decrease the altitude back to the central position.

The simulation is shown in Figure 4-28. The controller is not able to foresee the

movements it needs to take to reach the desired along-track position. The satellite

state drifts over time due to the accumulation of state uncertainty.

Figure 4-24: NEXFS tube MPC altitude command response

Now similar tests are run but for the Monarc-90 bipropellant engine which has

90 Newtons of thrust. The controller is running at 1 Hz with a prediction horizon

of 10 steps. The thruster experiences disturbances in the control input of +/-10%

of the requested control action. Two simulations were run with different uncertainty

percentages in the state. Figure 4-29 shows the controller’s response with a state

uncertainty of 2.5% of the total slot size. Figure 4-30 shows the controller’s response

with a state uncertainty of only 1%. Comparing these two figures shows the influence

of the state uncertainty on the tube. Figure 4-30 shows how much closer the satellite

can get to the commanded input when there is less uncertainty. The satellite’s altitude

is about 100m, as compared to Figure 4-29 where the satellite is only about to reach

about 80m.
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Figure 4-25: NEXFS tube MPC maintaing position in center of slot

Figure 4-26: NEXFS tube MPC altitude error

Simulations are also run to quantify the percentage error for the Monarc-90 engine.

Once again, the simulation parameters are the same except that this simulation is

only run for 100 seconds and the satellite is commanded to stay at the center of the

slot. The state uncertainty error is left at 1% to be able to compare results to the ion

engine previously examined. The percentage error was calculated in the same way,

simply by dividing the altitude by 𝑥1𝑚𝑎𝑥 and the along-track by 𝑥2𝑚𝑎𝑥 and multiplying

by 100. The maintenance maneuver is shown in Figure 4-31 and the errors in altitude

and along-track are shown in Figure 4-32 and Figure 4-33 respectively. The controller
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Figure 4-27: NEXFS tube MPC along-track error

Figure 4-28: NEXFS tube MPC along-track test

is able to maintain the altitude error under 1% throughout the simulation. The along-

track error grows to above 5% but this is due to uncertainty in the position rather

than the controller’s response.

Another simulation is done to determine if the bipropellant engine controller used

for the Monarc-90 engine has the capability to complete along-track commands with-

out planning. The simulation is once again set to 4.0 ˚ 105 seconds, the frequency

of the controller is set to 0.005 Hz, and the prediction horizon is also increased to

N = 200. The controller is commanded to reach the setpoint of r0,´𝑥2𝑚𝑎𝑥s. This

simulation is shown in Figure 4-34. Once again the controller is not able to foresee

the control action it needs to take to reach the desired along-track position. The

movement in the figure is not due to any control action, but rather drift due to the
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uncertainty of the satellite’s state.

Figure 4-29: Monarc-90 tube MPC altitude command response - 2.5% state error

Figure 4-30: Monarc-90 tube MPC altitude command response - 1% state error

Figure 4-31: Monarc-90 tube MPC maintaing position in center of slot
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Figure 4-32: Monarc-90 tube MPC altitude error

Figure 4-33: Monarc-90 tube MPC along-track error

Figure 4-34: Monarc-90 tube MPC along-track test
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Figure 4-35: Along-track example maneuver

4.3 Discussion

This research focused on testing both LQR controllers with different weighting schemes

and tube MPC controllers to the problem of maintaining satellite orbits and collision

avoidance while in satellite constellations frameworks. To that end, five different LQR

based controller configurations were tested. 1. An altitude-weighted controller that

took altitude commands. 2. An altitude-weighted controller that took along-track

commands. 3. An along-track weighted controller that took altitude commands. 4.

An along-track weighted controller that took along-track commands. 5. An along-

track weighted controller that utilized the natural dynamics of the system to save

on ∆𝑉 that took altitude commands. These tests will be described but the results

ultimately informed of a need to develop tube MPC controllers to ensure that the

satellite is mathematically guaranteed to stay within the slot, even when it is com-

manded to go to the edge of the slot. The tube MPC controllers accomplished this

goal but ultimately lack the ability to track along-track commands without prior tra-

jectory planning. The assurance of staying within the slot also comes at the cost of

other metrics that will be described later in this section.

The LQR altitude controller exhibited the fastest and most accurate altitude track-

ing, as a result had the lowest along-track error, and consumed the least fuel. The

altitude controller responded best when taking only altitude inputs and does not
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overshoot the setpoint. The altitude controller using along-track inputs did not leave

the slot in testing but theoretically could leave the slot depending on the specific

controller weights. In this testing, the controller simply did not respond due to its

inability to utilize the inherent dynamics of the problem to adjust the along-track

state through manipulating the altitude state. The controller is also not guaranteed

to keep satellites within the slot.

The along-track controller had multiple issues. It had poor response time, over-

shoot issues, large along-track errors when compared to the altitude controller, and

larger fuel costs. It also left the slot when commanded to the edge of the slot. When

this controller was combined with along-track inputs, it responded with even worse

performance and left the slot even further than when the controller took altitude

inputs. When the controller used the natural orbital decay to minimize ∆𝑉 , the

controller had a poor response time when compared to the altitude controller but did

not overshoot and had the same fuel costs as the altitude controller. The along-track

error increased due to the controller’s poor response time. In addition, since the

controller is prone to overshooting and there is no guarantee of satellite placement

within the slot, it is not safe to use for satellite constellations as it has the possibility

to cause conjunctions.

The altitude controller was robust to errors and disturbances. A continuous uni-

form distribution was used to create errors in the sensed state and output thrust.

A +/-5% state error and a +/-10% thruster disturbance was reduced to a less than

0.05% error in the altitude and less than 0.007% error in the along-track for the

thrusters tested. The along-track errors are a function of the altitude errors in this

particular simulation as a satellite keeping its position in the middle of the slot will

result in a zero along-track state due to the dynamics. Despite this error rejection,

the controller does not provide a guarantee that the satellite will not exit the slot

despite these errors.

The altitude controller emerged as the best controller for the purpose of avoiding

collisions and having accurate movement within the slot. However, there could be

some modifications to the controller to improve it. First, if a collision is avoided and
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the satellite does not need to return to its nominal setpoint immediately, it should

take advantage of the natural dynamics to minimize fuel costs. Another issue with

the altitude controller is that it does not allow robust control of the along-track state.

Although all states in the slot are reachable as shown by the controllability and ob-

servability matrices in Section 2.2.1, the along-track state can only be influenced

through the altitude state and this presents a difficulty in control. Along-track com-

mands are desirable because they expand the types of maneuvers that are possible

within the slot. If an object is passing through the slot vertically the controller will

not be able to dodge the movement without a human planning the trajectory. The

planner could raise or lower the orbit of the satellite and let the along-track delay

increase or decrease to avoid the collision before the object comes into the slot. This

requires planning and knowledge of the potential collision in advance.

In order to improve upon these problems of the LQR altitude controller, multiple

tube MPC controllers were developed and applied to various engines. The NEXFS

engine was selected as the main ion engine and the Monarc-90 was selected as the

main bipropellant engine to run simulations with. This is because these engines have

the highest thrust capacities in their class and generally will be better at rejecting

disturbances and reaching the setpoints. In addition, the same engines were used

to classify the error rejection of the LQR controller so the same engines must be

used to compare. The most important result from the tube MPC controller is that

the controller successfully guarantees that the satellite is constrained within the slot.

This is shown in Figure 4-24, Figure 4-29, and Figure 4-30. Despite the controller

being commanded to reach the maximum altitude position, the controller stops short

to ensure that the satellite does not leave the slot. The uncertainty in the controller’s

position influences the stopping point for the satellite. When Figure 4-29 is compared

to Figure 4-30, it is easy to see the difference. Although the tube MPC can ensure the

satellite does not leave the slot at a state error of 2.5%, the range of reachable states

is decreased as a payment for this assurance. Compare this to when the controller

assumes the state error is 1%. The controller is able to maintain a closer position to

the setpoint because there is less error in the states. Many different errors were used
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while producing this work, some even up to 5%. However, only these were included

in this thesis as errors as large as 5% resulted in a reachable workspace that was very

small, sometimes less than half the maximum state values. This can also be adjusted

by adjusting the gains of both the disturbance rejection controller (the tube) and

the nominal MPC. In this work, the gains were implemented using Bryson’s Rule

weights from Table 3.3. Different weights will certainly have an effect on the effective

reachable states within the tube MPC framework. As a result of this, specific mission

objectives and which states the satellite needs to access will be the main factors that

influence how accurate and precise the state measurements must be, as well as the

control devices chosen for the satellite and the controller gains.

The tube MPC controllers were also tested by commanding them to maintain

their position in the center of the slot and quantifying the error in both altitude

and along-track. The results for the NEXFS controller’s simulation can be found in

Figure 4-25 and the errors for the maneuver are shown in Figure 4-26 and Figure 4-

27. The controller is able to maintain the satellite’s position around the center and

maintains the altitude error below 5%. The along-track error is less important in

these simulations as the along-track is indirectly controlled by the altitude state. The

along-track error is almost purely a result of the error in the state estimation as the

satellite is trying to maintain its position in the center of the slot, which would result

in no along-track delay under the dynamics considered here. The results for the

Monarc-90 simulation are found in Figure 4-31 and the errors are shown in Figure 4-

32 and Figure 4-33. The controller is able to keep the satellite in the center of the

slot and maintains the satellite’s altitude error below 1%. This improved performance

as compared to the ion engine is most likely due to the higher thrust of the engine,

meaning that the controller is able to better compensate for errors. The error of the

along-track exceeds 5% at times but it is important to note that the errors in along-

track delay are a result of errors in state estimation. In fact, because the estimation

errors are generated using a standard distribution, some simulations would show less

percentage error in the along-track. Despite that, the controller was able to maintain

the altitude error around the area of 1%.
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It was also of interest to determine if the tube MPC was capable of following

along-track commands. The results of these tests are depicted in Figure 4-28 for the

ion engine and in Figure 4-34 for the bipropellant engine. For these simulations, the

simulation time was increased to 4.0 ˚ 105 seconds to give the controller enough time

to respond. The frequency was decreased to 0.005 Hz and the prediction horizon was

increased to N = 200. This means that the controller is able to see 4˚104 seconds into

the future, which is 10% of the total simulation time. The satellite was commanded

to reach the setpoint of r0,´𝑥2𝑚𝑎𝑥s. Both controllers failed to respond to the along-

track command. An ideal maneuver would result in the satellite raising its altitude,

waiting for the dynamics to adjust the along-track, and then lower the altitude to

reach the desired input. Depending on the maneuver, the satellite could also lower

its altitude, wait, and then raise the altitude to reach the desired along-track state.

This deficiency points to a need for a trajectory generator. Since the along-track

dynamics are only influenced by the altitude, planning out the altitude trajectory

with a trajectory generator would give the controller the ability to reach the states

required by along-track commands. An example of this type of maneuver is provided

in Figure 4-35. Instead of letting the controller plan the maneuver, the controller

was fed two different setpoints with higher level planning. First, the controller was

commanded to reach the first-setpoint at [𝑥1𝑚𝑎𝑥

2
,0] and wait while the along-track

state changed. Once the along-track state reached about ´3𝑥2𝑚𝑎𝑥

4
, the controller was

commanded to decrease the altitude. The controller was able to reach the overall

setpoint of [0,´3𝑥2𝑚𝑎𝑥

4
] but it required higher level planning. A trajectory generator

would give the controller the ability to reach along-track states by segmenting the

setpoints in this fashion.

There are many improvements that could be made to make this controller frame-

work more robust and prepared for real operation. For future work, a trajectory gen-

erator should be implemented to allow the controller to fully access the along-track

states. The controller is also measuring the state each time it calculates a control ac-

tion. In real life usage, the controller might not be able to receive state measurements

at high frequencies so an estimator could be applied to deal with incomplete informa-
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tion. Not only that, the estimator could also improve the errors within the sensors as

repeated measurements and internal calculations by the satellite could drive the esti-

mated state closer to reality. A model of applying the controller to an entire satellite

constellation could demonstrate the use of this controller in an actual constellation

framework, such as a slotting architecture to optimize orbital volume [7]. Satellites

could be commanded to move around within the slots to demonstrate this. Having

knowledge of potential collisions in advance will allow engineers to opt for low-thrust

engines in their designs, potentially reducing weight, cost, mass, and volume. How-

ever, the quick reaction time proven by some of the simulations also points to the

possibility of satellites being equipped with low-range sensors that sense the proxim-

ity of other objects within the satellites’ area. These sensors might be able to see

debris or objects too small to be observed from Earth and could enable the satellite

to avoid collisions that would otherwise be unavoidable.
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Chapter 5

Conclusion

The work in this thesis describes a linearized, simplified model for satellite altitude

control and applies two known controller methods to that end. Both an LQR con-

troller and a tube MPC controller are applied to the problem of satellite altitude

control and collision avoidance within a satellite constellation framework and evalu-

ated. The controllers are shown to control the altitude of the satellite well but lack

the ability to carry out along-track commands without a proper trajectory. The tube

MPC controller is able to guarantee the placement of the satellite within the slot.

It is also shown that is is possible to linearize the dynamics model by performing a

Taylor series expansion around the operating point while maintaining extraordinary

accuracy in the model.

The performance of the LQR controller is assessed for different study cases. Mul-

tiple LQR controllers for multiple engines are generated using different weights on the

along-track and the altitude states. It was found that the altitude weighted controller

resulted in the most accurate altitude tracking, least along-track error, and had the

lowest ∆𝑉 costs. In addition, the altitude controller is robust to input and output

errors. The introduction of a +/-5% error on the state and a +/-10% disturbance on

the thrust resulted in a less than 0.05% error on the altitude state and 0.007% error on

the along-track state for the thrusters and maneuvers tested. Despite these benefits,

none of the LQR controllers could guarantee placement within the slot and depended

on the user to intelligently plan maneuvers. In addition, the LQR controllers could
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not follow along-track commands.

This resulted in the need to develop a tube MPC controller for the problem of

satellite collision avoidance and orbit maintenance within a slot satellite constellation

framework. The tube MPC guaranteed placement within the slot. Decreasing the

uncertainty in the state estimation allowed the satellite to access more of the slot.

Increasing the uncertainty in the state estimation lowered the satellite’s access to

the slot. Two engines were examined to quantify the error. The NEXFS ion engine

controller resulted in a percent error of around 3% while maintaining its position

whereas the Monarc-90 engine controller, which has more thrust, resulted in a 1%

error. It is important to understand these results are dependent on the tuning of

the controller and on the random behavior of the error implemented in the state

estimation. The tube MPC controller was not able to follow along-track commands

unless they were segmenting, which points to a need for a trajectory generator.

Future work will include the development of a trajectory generator so that the

controller is able to follow along-track references. Developing an estimator to go

along with the controller will ensure that the satellite does not need constant state

measurements as it can be estimated. The estimator will also allow the satellite to

lower the error of the state if it has the ability to make repeated measurements. The

fast response of these controllers also point to the satellite’s possible ability to avoid

collisions that are caused by small debris or objects unable to be observed from Earth

if equipped with sensors that can sense objects within a close proximity.
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