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Abstract

Cardiac mechanics reflects the precise interplay between myocardial structure and
contraction essential for sustaining the blood pumping function of the heart. Ejec-
tion fraction is the usual index of function, yet mechanical impairment and even heart
failure may occur without changes in this measure. Strain analysis provides more
meaningful measures through non-invasive evaluation of myocardial deformation from
cardiac magnetic resonance imaging data, and can therefore identify dysfunction be-
fore reduction in ejection fraction. Diagnosis based on strain measures requires highly
accurate and repeatable cardiac tissue detection, labelling, and tracking. These are
very challenging and time-consuming tasks requiring extensive technical and clinical
expertise, and have many sources of error that limit the wider clinical adoption of
strain analysis.

In this thesis, a novel deep learning workflow termed DeepStrain was developed
and validated to provide automated strain analysis from standard magnetic resonance
data. DeepStrain integrates three convolutional neural networks designed specifically
for accurate and precise myocardial tissue detection, labelling, and tracking. These
networks were trained using data from healthy subjects and cardiac patients. In
healthy subjects, accuracy was evaluated using the gold standard strain analysis tech-
nique, and repeatability was assessed using data from subjects imaged multiple times.
Finally, DeepStrain was tested in a prospective cross-sectional study in asymptomatic
young adults with a mixture of cardiovascular disease risks factors, i.e., overweight,
hypertension, and type 2 diabetes mellitus. In summary, DeepStrain automatically
provides very precise measures of strain two orders of magnitude faster than current
technology, enabling more accurate and comprehensive characterization of cardiac
mechanics.

Thesis Supervisor: Ciprian Catana
Title: Associate Professor in Radiology, Harvard Medical School

3



4



Acknowledgments

It takes a community to raise good citizens, and it takes the collective effort of men-

tors, friends, and family to transform them into great scientists. I am honored and

humbled to have received so much unwavering and unconditional support from so

many wonderful people during this long journey.

I am deeply grateful to my advisor Ciprian Catana: for the many hours we have

spent together thinking and writing about medicine and science; for inspiring me to

pursue bigger goals; and for supporting and believing in my potential to do impactful

research. All these experiences have taught me many lessons, and given me many

valuable tools I will carry with me throughout my career.

I am truly thankful to my thesis committee for their enduring support and knowl-

edgeable advice over the past half decade: Bruce Rosen, who has been a source of

wisdom to me even before I started graduate school, and whose kind leadership have

made the Martinos Center a home away from home throughout my training; Collin

Stultz, for patiently guiding me through many challenging milestones, and for mak-

ing me a more rigorous researcher in cardiology; Jayashree Kalpathy-Cramer, whose

expertise, passion, and excitement about deep learning and medical imaging made

every discussion as consequential to my research as it was fun.

I also want to thank all the people whose expertise in cardiac imaging made this

work possible. I owe a great debt of gratitude to my friend and colleague David

Izquierdo-Garcia, whose valuable advice pointed me in this research direction. This

work would not be nearly as complete without the assistance of our Groningen collab-

orators, Niek Prakken and Gert Jan Snel. My sincerest gratitude to David Sosnovik,

Chris Nguyen, and Maaike van den Boomen for offering their invaluable support over

many years.

Many thanks to the members of the Martinos Center family: to my desk mate

Michael Levine for all the fun conversations we had over the years; to Christin Sander,

for all the advice and for being a source of inspiration; to Grae Arabasz, for offering

his scanning know-how, logistical, and technical support; and to Donna Crowe, for

5



playing a key role in the success of many graduate students in the center.

My deepest gratitude to my friends and classmates, Ang Cui and John Samuelsson,

who I greatly admire and respect. Our 24 hour pset marathon, practice presentations,

and just plain having fun, are some of my most cherished memories at MIT.

None of this work would have been possible without my mother, Maria, whose

own journey paved the road for mine. Words cannot describe how incredibly proud I

feel of being her son.

To my best friend, confidant, and wife, Paola. Thank you for making our lives

more colorful, for making me a kinder person, and for pushing me to become the best

version of myself. I love you.

6



Contents

1 Introduction 19

1.1 Cardiac Disease in the Twenty-First Century . . . . . . . . . . . . . . 19

1.2 Evaluating Cardiac Mechanics in The Modern Era . . . . . . . . . . . 20

1.2.1 Diastolic Dysfunction . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.2 Systolic Dysfunction . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Technologies to Characterize Cardiac Mechanics . . . . . . . . . . . . 24

1.3.1 Morphological, functional, and strain measures . . . . . . . . . 24

1.3.2 Cardiac magnetic resonance . . . . . . . . . . . . . . . . . . . 26

1.4 Technical Challenges in Characterization of Cardiac Mechanics . . . . 28

1.5 Role of Deep Learning in cardiac MR . . . . . . . . . . . . . . . . . . 30

1.6 Aims and Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . 32

1.6.1 Aim 1: To develop a deep learning method capable of cardiac

motion estimation using a widely-available cardiac MR sequence. 33

1.6.2 Aim 2: To develop and validate an automated cardiac MR

workflow for clinically-feasible quantification of cardiac mechan-

ics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6.3 Aim 3: Test the proposed workflow in asymptomatic subjects

without known but suspected cardiac dysfunction to determine

the clinical value of deep learning characterization of cardiac

mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Learning Cardiac Motion 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7



2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Mathematical Representation of Cine MR Data . . . . . . . . 36

2.2.2 Convolutional Neural Network for Motion Estimation . . . . . 38

2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 CarMEN for Multiresolution Motion Estimation . . . . . . . . 38

2.3.2 Loss Functions for Unsupervised Learning of Motion . . . . . 39

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.2 CarMEN Implementation . . . . . . . . . . . . . . . . . . . . 42

2.4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6.1 Limitations to Address . . . . . . . . . . . . . . . . . . . . . . 48

2.6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Learning Myocardial Strain 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Mathematical Representation of Myocardial Strain . . . . . . 50

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Centering, Segmentation, and Motion Estimation . . . . . . . 51

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 DeepStrain Implementation . . . . . . . . . . . . . . . . . . . 57

3.4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Centering, Segmentation and Motion Estimation . . . . . . . . 63

3.5.2 Strain validation against tagging-MRI . . . . . . . . . . . . . 65

3.5.3 Strain Intra-Scanner Repeatability . . . . . . . . . . . . . . . 66

3.5.4 Evaluation in Cardiac Patients . . . . . . . . . . . . . . . . . 67

8



3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.2 Normal range of strain in healthy subjects . . . . . . . . . . . 72

3.6.3 Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6.4 Potential Clinical Applications . . . . . . . . . . . . . . . . . . 73

3.6.5 Study Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Prospective Study in Asymptomatic Young Adults 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Study Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Cardiac MR Data Acquisition . . . . . . . . . . . . . . . . . . 80

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 DeepStrain Analysis . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Global Strain and Strain Rate . . . . . . . . . . . . . . . . . . 82

4.4.2 Regional Strain . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.1 Asymptomatic diastolic dysfunction . . . . . . . . . . . . . . . 85

4.5.2 Asymptomatic systolic dysfunction . . . . . . . . . . . . . . . 86

4.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Concluding Remarks and Future Directions 89

5.1 Summary of Technological Developments . . . . . . . . . . . . . . . . 90

5.2 Future Innovation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Cardiac Mechanics in Humans and Animals . . . . . . . . . . 91

5.2.2 Positron Emission Tomography . . . . . . . . . . . . . . . . . 94

5.2.3 Evaluate Pulmonary Artery Area: a UK Biobank Study . . . 97

5.2.4 The Future of DeepStrain . . . . . . . . . . . . . . . . . . . . 98

9



A Tables 101

10



List of Figures

1-1 Human heart anatomy. Highlighted in red is the left-ventricular my-

ocardium. Double arrow indicates blood in-flow and out-flow across

the mitral valve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1-2 Mitral valve blood-inflow. . . . . . . . . . . . . . . . . . . . . . . . . 23

1-3 Deformation of myocardial fibers. The end-diastolic phase is shown on

the left. End-systolic phase is shown on the right. . . . . . . . . . . . 25

1-4 Motion tracking techniques . . . . . . . . . . . . . . . . . . . . . . . . 25

1-5 Global measures of myocardial strain. . . . . . . . . . . . . . . . . . . 26

1-6 Magnetic resonance imaging of the myocardium across a mid-ventricular

plane. The tagging sequence is shown on top, and cine is shown at bot-

tom. From left to right, each plane acquisition collects data across one

complete cardiac cycle. . . . . . . . . . . . . . . . . . . . . . . . . . 28

1-7 Reported normal (mean and 95% confidence interval) global circum-

ferential strain in healthy subjects for different imaging modalities and

methods. Adapted from Amzulescu et al. [3]. . . . . . . . . . . . . . 30

1-8 (a) Deep learning computing (a) and healthcare datasphere in the mod-

ern era. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1-9 The role of deep learning in cardiac MR. . . . . . . . . . . . . . . . . 32

2-1 Motion estimation from cine MR frames using convolutional networks. 39

2-2 CarMEN architecture for multiresolution motion estimation . . . . . 40

11



2-3 ACDC Dataset. Representative cine MR end-diastolic images at mid-

ventricle for three subjects from the train set with manually delineated

contours of the right-ventricular cavity (green), and left-ventricular

cavity (red) and myocardium (magenta). Left to right: healthy, dilated

and hypertrophic cardiomyopathy, myocardial infarction, and abnor-

mal right ventricle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2-4 Pediatric dataset. Representative cine MR end-diastolic images at mid-

ventricle with manually delineated contours of the left-ventricular cav-

ity (red) and myocardium (magenta). . . . . . . . . . . . . . . . . . . 43

2-5 Evaluation of CarMEN using five different image similarity metrics rep-

resented with nonparametric violin plots. Violin plots are essentially

mirrored density plots. Higher values for all metrics is considered good.

𝑃 values are relative to CarMEN and were obtained by using two-sided

Wilcoxon signed-rank tests. . . . . . . . . . . . . . . . . . . . . . . . 46

2-6 CarMEN outperforms non-learning methods across various diseases

and ages. First and second columns correspond to heart at end-systole

and end-diastole, accordingly. Moving image is warped to fixed po-

sition using the predicted motion. Two healthy participants and two

patients are shown. CarMEN is more robust to image artifacts rel-

ative to other methods such as ITK B-Spline 1 and Vampire (black

arrows). Papillary muscles disappear in some non-learning methods

but are preserved by proposed method (white arrows). CarMEN does

a better job at preserving anatomy relative to ITK B-Spline 1 (arrow-

heads). COART = coarctation of the aorta . . . . . . . . . . . . . . . 47

3-1 Overview of proposed DeepStrain workflow. . . . . . . . . . . . . . . 51

12



3-2 Representative subject from the CMAC dataset with tagging- and cine

images at end-diastole (top) and end-systole (bottom). Landmarks

(green) were defined at end-diastole and manually-tracked throughout

the cardiac cycle by the CMAC challenge organizers. Left to right:

septal, mid, and basal landmarks. . . . . . . . . . . . . . . . . . . . . 56

3-3 Representative cine end-diastolic images at mid-ventricle from six sub-

jects from the Martinos dataset from acquisition 1 (top) and 2 (bottom). 57

3-4 Effect of anatomical regularization of motion estimates on strain. Reg-

ularization with multiclass Dice coefficient (MDC) and categorical crossen-

tropy (CCE) functions result in different strain values in healthy sub-

jects, shown as mean and standard deviation. . . . . . . . . . . . . . 58

3-5 First row shows the predicted (black) motion estimates when the anatom-

ical regularization is set to 0.5 and smoothing is set to 0. Relative to

the ground-truth (red), these estimates are highly irregular. Increas-

ing (third colum) the smoothness to 0.1 and setting anatomical to 0.1

improves the direction of the estimates, but the magnitude is reduced.

This is corrected by increasing anatomical regularzation to 0.5 (fourth

column). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3-6 Qualitative effects of smoothing and anatomical regularization on the

accuracy of motion estimates. First row shows the predicted (black)

motion estimates when the anatomical regularization is set to 0.5 and

smoothing is set to 0. Relative to the ground-truth (red), these esti-

mates are highly irregular. Increasing (third column) the smoothness

to 0.1 and setting anatomical to 0.1 improves the direction of the esti-

mates, but the magnitude is reduced. This is corrected by increasing

anatomical regularzation to 0.5 (fourth column). . . . . . . . . . . . . 60

13



3-7 Validation of motion and strain. (a) Landmarks at end-diastole (un-

filled green) are manually-tracked (green) and deformed with CarMEN

to endsystole (red). Yellow arrow indicates a banding artifact. (b)

Average end-point-error (AEPE) at end-systole between manual and

CarMEN-deformed landmarks was assessed and compared to other

methods. (c) MEVIS- and DeepStrain-based strain (top) and strain

rate (SR, bottom) measures are compared. . . . . . . . . . . . . . . . 65

3-8 Intra-scanner repeatability of (a) global and (b) regional myocardial

strain measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3-9 Radial strain and strain rate measures on the ACDC train set. . . . . 69

3-10 Regional strain in healthy and patients with MI. Myocardial infarction

can result in diffused (center) and focal (right) strain reduction. . . . 70

4-1 Risk Factor Group (RFG) classification decision tree. . . . . . . . . . 79

4-2 Representative cine images of 3 subjects for each risk factor group

(RFG). Images are shown at mid-ventricle at both end-diastole (left)

and end-systole (right). Top to bottom: controls, RFG1, RFG2, and

RFG3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4-3 Global measures of (a) circumferential and (b) radial end-systolic strain

in controls and risk factor groups (RFG). Data are reported as mean

[95% confidence interval]. * 𝑃 < 0.05 Post-hoc test by Bonferroni. . . 82

4-4 Global measures of (a) circumferential and (b) radial end-systolic strain

rate (SR) in controls and risk factor groups (RFG). Data are reported

as mean [95% confidence interval]. * 𝑃 < 0.05; ** 𝑃 < 0.01; *** 𝑃 <

0.001 Post-hoc test by Bonferroni. . . . . . . . . . . . . . . . . . . . . 83

4-5 Regional measures of (a) circumferential and (b) radial end-systolic

strain by wall (i.e., anterior, septal, inferior, and lateral) in controls and

risk factor groups (RFG). Data are reported as mean [95% confidence

interval].* 𝑃 < 0.05; ** 𝑃 < 0.01; *** 𝑃 < 0.001 Post-hoc test by

Bonferroni. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

14



5-1 Reported normal (mean and 95% confidence interval) global circum-

ferential strain in healthy subjects for different imaging modalities and

methods compared to DeepStrain. Adapted from Amzulescu et al. [3]. 91

5-2 DeepStrain based right-ventricular strain . . . . . . . . . . . . . . . . 92

5-3 CarSON model trained with human data directly applied to automated

tissue labeling of a pig’s myocardium. . . . . . . . . . . . . . . . . . . 94

5-4 Effect of motion correction using CMR-based, CarMEN-derived motion

estimates on lesion quantification in a patient with dilated (DCM) and

hypertrophic (HCM) cardiomyopathy. . . . . . . . . . . . . . . . . . . 95

5-5 CarSON-enabled automated PET analysis. . . . . . . . . . . . . . . . 96

5-6 CarSON-enabled automated PET analysis. . . . . . . . . . . . . . . . 98

5-7 DeepStrain applications across different levels of cardiac medicine. . . 99

15



16



List of Tables

3.1 State-of-the-art methods for left-ventricular segmentation shown at

end-diastole (ED) and end-systole (ES) on the ACDC test set com-

pared to proposed approach. Red are the best results for each metric. 65

3.2 Normal ranges of strain with DeepStrain in healthy subject. Tagging-

based measures are shown for the CMAC cohort. DeepStrain repeata-

bility is shown for two acquisitions (ACQ) . . . . . . . . . . . . . . . 67

3.3 Intra-scanner repeatability of global circumferential (CIRC) and radial

(RAD) strain measures. . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Clinical characteristics of controls and risk factor groups (RFG). . . . 82

4.2 Independent correlates of strain measures. . . . . . . . . . . . . . . . 84

A.1 Metrics Comparison for the pediatric dataset. Data are medians, with

interquartile ranges in parentheses. Image metrics included the Dice

Similarity Coefficient (DSC), peak signal-to-noise ratio (PSNR), nor-

malized cross-correlation (NCC), and the multiscale structural similar-

ity metric index (MS-SSIM). High values of DSC, PSNR, NCC, and

MS-SSIM are considered good. 𝑃 values are relative to CarMEN and

were obtained by using two-sided Wilcoxon signed-rank tests. ITK =

Insight Segmentation and Registration Toolkit. . . . . . . . . . . . . . 101

A.2 Left ventricular parameters of controls and risk factor groups (RFG). 102

A.3 Left-ventricular strain measures of controls and risk factor groups (RFG)

as mean [95% confidence interval]. . . . . . . . . . . . . . . . . . . . . 102

17



18



Chapter 1

Introduction

1.1 Cardiac Disease in the Twenty-First Century

Twentieth century advances in prevention, diagnostics, and treatment of cardiovascu-

lar disease resulted in a dramatic reduction in cardiovascular-related mortality during

the second half of the century, which at the beginning was steadily rising from 21%

of all deaths in 1933 to 39% of all deaths in 1963 in the United States. These ad-

vances were instrumental for the reversal of this trend, and by the year 2000 overall

mortality rate had declined by 62% [31]. This downward trend initially continued

into the twenty-first century but has remained stagnant since 2012 [117], and rapidly

increasing prevalence of cardiovascular disease and heart failure have emerged as new

alarming trends [49].

Cardiovascular disease is currently the leading cause of death in the United States

[8], and its prevalence is projected to grow from 37% to 41% during the 2010-2030

time period. Similarly, heart failure prevalence is projected to grow from 2.8% to

3.5%, reflecting a 25% rise over the same time period [49]. Further, worrisome stud-

ies suggest cardiovascular disease prevalence and morality rates in young adults are

increasing, which could also exacerbate the future burden of heart failure as this

population segment ages [39, 36].

Several factors have emerged as the main drivers of these trends, including age-

ing of the post-war baby-boom generation that is now reaching the age at which

19



risk of heart failure increases [17]. Another factor is the higher survival rate among

patients after acute coronary events, since adverse myocardial remodeling following

these events is the most common cause of heart failure [34]. Worldwide shifts towards

sedentary lifestyles and suboptimal diets are major factors as well, since these shifts

have lead to an increase of obesity and diabetes in the population. Both obesity and

diabetes are strong independent risk factors for increased cardiovascular morbidity

and mortality, and are suspected to contribute to increased incidence of heart failure

in the young [39]. In the modern era, these risks factors represent significant chal-

lenges in cardiovascular medicine, since both conditions are potentially the largest

epidemics of the twenty-first century [164, 131, 48].

Prevention and management of obesity and diabetes, as well as other other cardio-

vascular risk factors such as hypertension, could be effective strategies in the preven-

tion of cardiac disease. More generally, advances in prevention are expected to play

a significant role in re-establishing downward trends in cardiovascular disease preva-

lence and mortality in the future. Nevertheless, it has become evident that twentieth

century measures of cardiac function are increasingly limited in the modern era, es-

pecially relating to earlier recognition of cardiac dysfunction.

1.2 Evaluating Cardiac Mechanics in The Modern

Era

The cardiac cycle is essentially a repeating pattern of contraction and relaxation

of the heart, consisting of a systolic (i.e., contracting) and a diastolic (i.e., relaxing)

phase. Cardiac mechanics are determined by the precise interplay between myocardial

contractility, architecture, and loading conditions during the cardiac cycle. Preload is

related to the stretch of the myocardial fibers before contraction. Afterload is related

to the load against which the ventricle contracts. A brief summary of the cardiac

cycle is provided below. For a more comprehensive description we recommend the

book Pathophysiology of Heart Disease by Leonard S. Lilly [75]
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The contracting phase normally lasts 0.3s, and the relaxing phase lasts 0.5s. This

cycle begins and ends when the left-ventricular myocardium is fully relaxed, oth-

erwise known as end-diastole (Fig. 1-1). The volume of the left-ventricular cavity

at this point is known as the end-diastolic volume. Contraction of the ventricle at

the onset of systole forces the closure of the mitral valve, the opening of the aortic

valve, and ultimately the ejection of blood from the left ventricle to the body. The

conclusion of the ventricular ejection, signaling the end of the contracting phase, is

known as end-systole. At this point, the aortic valve closes, starting the process of

left-ventricular isovolumetric relaxation. When the mitral valve re-opens, due to a

differential pressure gradient between the left atrium and ventricular cavity, blood

oxygenated by the lungs flows passively yet rapidly through the mitral valve into the

left-ventricular cavity. Seventy percent of the left-ventricular cavity re-filling occurs

during this passive filling stage, otherwise known as early-diastole. In late-diastole,

contraction of the left atrium propels a final bolus of blood into the ventricle. This

contraction contributes 20%–30% of total left-ventricular cavity filling volume. Fi-

nally, filling of the ventricle ends at end-diastole, and contraction of the ventricle

begins a new cycle.

1.2.1 Diastolic Dysfunction

In normal subjects, myocardial isovolumetric relaxation and suction should precede

atrial filling, therefore it should be relatively load independent. However, several dis-

eases such as hypertrophic cardiomyopathy, myocardial fibrosis and ischemic disease

can result in altered relaxation (Fig. 1-2). In these diseases, myocardial diastolic func-

tion and motion reflect movement that is secondary to atrial filling, i.e., the ventricle

is actively pushed by incoming blood. In stage I diastolic dysfunction, this impaired

relaxation results in increased reliance on the left atrium kick to fill the ventricle.

Other stages include pseudonormal and irreversible impaired relaxation. In any case,

measures of the isovolumetric relaxation rate of the heart during the early-diastolic

phase are good indicators of diastolic dysfunction.
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Figure 1-1: Human heart anatomy. Highlighted in red is the left-ventricular my-
ocardium. Double arrow indicates blood in-flow and out-flow across the mitral valve.

1.2.2 Systolic Dysfunction

Several conditions affecting myocardial contractility can result in systolic dysfunc-

tion, such as coronary artery disease, chronic volume overload, and dilated cardiomy-

opathies. Hypertension can also lead to systolic dysfunction by increasing the after-

load. Ejection fraction is the usual index of left-ventricular systolic function, defined

as

Ejection Fraction (%) =
End-diastolic Volume − End-Systolic Volume

End-diastolic Volume
(1.1)

A low ejection fraction may be due to a decrease in the numerator term in (1.1),

or due to an increase in end-diastolic volume, therefore it may not always provide

an appropriate description of systolic function. In addition, mechanical impairment

and even heart failure may occur without changes in this measure. In some ways, the

ejection fraction is an oversimplification of the complex heart failure syndrome, and

several calls to action have been made by the clinical community about the need for
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Figure 1-2: Mitral valve blood-inflow.

more sophisticated measures of cardiac mechanics [67, 88, 136]. This is particularly

important in the modern era where the majority of new cases of heart failure occur

in the setting of preserved ejection fraction, which already accounts for more than

50% of all cases. More alarmingly, the specific pathological processes that result in

heart failure in both the elderly, obese, and diabetic populations in many cases occur

without changes in the ejection fraction, which complicates diagnosis and treatments

in these populations [136].
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1.3 Technologies to Characterize Cardiac Mechanics

1.3.1 Morphological, functional, and strain measures

Morphological and functional measures

Standard morphological measures of cardiac mechanics include the end-diastolic and

end-systolic cavity volumes, and the left-ventricular mass. Using the ventricular cav-

ity volumes, measures of systolic function such as the ejection fraction can be evalu-

ated using (1.1). Metrics of diastolic function can also be assessed with tissue Doppler

imaging by measuring the mitral blood in-flow (Figures 1-1 and 1-2), including the

peak filling rate during the early-diastolic phase (i.e., E peak), and the peak filling rate

during the late-diastolic phase (i.e., A peak). The E/A ratio is a common indication

of diastolic dysfunction.

Strain measures

Motion tracking techniques for strain analysis provide a more thorough character-

ization of left-ventricular mechanics through non-invasive evaluation of myocardial

deformation along multiple directions (Fig. 1-3). These techniques could be based on

echocardiography and cardiac magnetic resonance (MR) imaging data (Fig. 1-4), and

could be used to identify systolic dysfunction before ejection fraction is reduced. In

addition, although it is traditionally held that diastolic dysfunction precedes systolic

dysfunction, recent work suggested that asymptomatic systolic dysfunction detected

by strain may instead be the first sign of diabetic heart disease [27]. Furthermore,

strain imaging studies in patients with type 2 diabetes mellitus have shown that

asymptotic systolic dysfunction is associated with adverse long-term prognosis, and

provides incremental prognostic value to diastolic dysfunction. [52, 80, 98]. Thus,

strain characterization of the cardiac mechanics could give a more complete picture

of the underlying biomechanical status of the left ventricle, complementary to the

usual measures of morphology and function.

Strain is defined as percent change in myocardial fiber length per unit length (Fig.

24



Figure 1-3: Deformation of myocardial fibers. The end-diastolic phase is shown on
the left. End-systolic phase is shown on the right.

Figure 1-4: Motion tracking techniques

1-3). During contraction of the myocardium, shortening of circumferential fibers 𝑐(𝑡)

from a relaxed length 𝑐0 results in a normally negative circumferential strain 𝜖𝑐.

Lengthening of radial and longitudinal fibers leads to positive radial strain 𝜖𝑟 and

longitudinal strain 𝜖𝑙. The time derivative 𝑑𝜖/𝑑𝑡 is known as the strain rate.

𝜖𝑟(𝑡) =
𝑟(𝑡) − 𝑟0

𝑟0
> 0

𝜖𝑐(𝑡) =
𝑐(𝑡) − 𝑐0

𝑐0
< 0

𝜖𝑙(𝑡) =
𝑙(𝑡) − 𝑙0

𝑙0
> 0

(1.2)

Once strain and strain rate have been measured for the entire cardiac cycle, different
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Figure 1-5: Global measures of myocardial strain.

parameters can be extracted (Fig. 1-5). These parameters can be based on timing and

magnitude: end-systolic strain is defined as the global strain value at end-systole and

is the recommended default parameter for the description of myocardial deformation

[143]; systolic strain rate is defined as the peak (i.e., maximum) absolute value of

global strain rate during systole and is an index of contractility [37]; early-diastolic

strain rate is defined as the peak absolute value of global strain rate during diastole

and is a marker of diastolic dysfunction [62].

1.3.2 Cardiac magnetic resonance

Echocardiography is commonly the first-line imaging modality used to assess cardiac

function, yet these data remain limited for strain mapping tasks by their low repro-

ducibility of acquisition planes [3] and temporal stability of tracking patterns [143].

In non-diagnostic or cases with inconclusive echocardiography findings, cardiac MR

imaging plays an important complementary role and is often requested [108] to pro-

vide the most accurate and reproducible assessment of cardiac function, structure,
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and tissue properties [120]. This thesis thus focuses on the most advanced methods

for motion tracking, i.e., tagging and cine MR.

Tagging

Tagging MR alters the magnetization the myocardial tissue in a specific geometric

pattern. Regions with altered magnetization appear as dark lines in the images. Be-

cause the magnetization is a property of the tissue, the tag lines move along with the

tissue in which they are created, deforming during contraction. In other words, tag-

ging MR establishes an intrinsic grid in the myocardial tissue that deforms according

to myocardial motion. Deformation of grid lines across the myocardial form the ideal

condition for motion tracking (Fig. 1-6).

Tissue tracking of tagging images has been widely accepted as the reference stan-

dard imaging modality for strain quantification with extensive validation in vitro[155]

and in vivo[33, 154, 154, 77, 134, 81, 90]. However, tagging images have low tempo-

ral resolution which could result in inaccurate measures of strain rate. Furthermore,

tagging requires dedicated acquisition sequences and time-consuming post-processing

steps using specific software tools not widely available. Therefore, tagging has mainly

remained a research tool.

Cine

In contrast to tagging, cine techniques apply a homogeneous magnetic field across the

entire field-of-view. As a consequence, the tissue intensity within the myocardium is

relatively uniform, lacking any obvious patters to facilitate motion tracking. This

is not necessarily a limitation of cine acquisitions. On the contrary, acquisition and

processing of these images is fast and straightforward, and therefore they are ubiqui-

tously acquired and used in clinical practice to evaluate morphological and functional

measures. Despite these strengths, motion tracking from cine data is quite challeng-

ing. In addition to the homogeneous tissue intensity, the anisotropic resolution of

cine data further complicates estimation of three-dimensional motion. A typical cine

dataset has 1.5 mm resolution in the x-y-plane and between 5-10 mm along the z
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Figure 1-6: Magnetic resonance imaging of the myocardium across a mid-ventricular
plane. The tagging sequence is shown on top, and cine is shown at bottom. From
left to right, each plane acquisition collects data across one complete cardiac cycle.

direction (Fig. 1-6).

1.4 Technical Challenges in Characterization of Car-

diac Mechanics

Irrespective of modality or algorithm, accurate and precise cardiac motion tracking

is a very challenging task with multiple sources of discrepancies that have limited

its wide clinical adoption [3]. Operator-related discrepancies are introduced when

the myocardial wall borders are delineated manually, a time-consuming process that

requires considerable expertise and results in significant inter- and intra-observer vari-

ability [124]. Automatic delineation approaches have been implemented within com-

putational pipelines [148], but other factors related to the motion tracking algorithms

itself can also influence strain assessment, including the appropriate selection of tune-

able parameters whose optimal values can differ between patient cohorts and acqui-

sition protocols (e.g., the size of the search region in block-matching methods [105]).

Further, these algorithms often make assumptions about the properties of the my-

ocardial tissue (e.g., incompressible and elastic [18, 86]), or use registration methods
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to drive the solution towards an expected geometry. However, recent evidence has

shown the validity of these assumptions varies between healthy and diseased my-

ocardium [70], suggesting these approaches may not accurately reflect the underlying

biomechanical motion. Modality-related image quality could also complicate inter-

pretation of abnormal strain values since these could reflect either real dysfunction or

artifact-related inaccuracies, leading to some degree of subjectivity or non-conclusive

results. Lastly, although automated segmentation and motion tracking commercial

software is available for cine MR, manual correction of delineated contours used for

tracking is often required, resulting in significant variations in strain depending on

segmentation method and type of commercial software [76].

In an excellent review article on the various sources of discrepancies in strain anal-

ysis, Amzulescu et al [3]. highlighted that reported normal (i.e., healthy) ranges of

strain vary largely between the different motion tracking modalities and algorithms,

albeit to a lesser extend for tagging methods (Fig. 1-7). These wide ranges may be ex-

plained by patient-related factors (i.e., age, gender, and ethnicity) and haemodynamic

factors (heart rate and blood pressure), but more likely reflect a lack of precision in

existing technology due to the technical factors described above. Addressing these

technical sources of variations is crucial for wide clinical adoption since application of

myocardial strain to quantify deformation in pathological states requires the accurate

and precise definition of normal strain.

In this dissertation we describe a novel myocardial strain analysis workflow with

specific technical and practical attributes that aims to address most of these sources

of discrepancies. For operator-related factors, we propose a method that is scanner

to radiology-report fully-automatic. This approach has the added advantage that,

in addition to strain, other morphological and functional parameters such as left-

ventricular mass, end-diastolic and end-systolic volumes, and ejection fraction can also

be automatically evaluated. For motion algorithm factors, our method is data-driven

and does not make assumptions about the underlying physiology, and is parameter-

free at inference. Finally, we show that our method is robust to various kinds of

modality-related image artifacts.
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Figure 1-7: Reported normal (mean and 95% confidence interval) global circumferen-
tial strain in healthy subjects for different imaging modalities and methods. Adapted
from Amzulescu et al. [3].

1.5 Role of Deep Learning in cardiac MR

Deep learning methods refer to machine learning, a branch of artificial intelligence,

using multiple layers of adjustable computing elements that, over the last decade,

have achieved remarkable success in several tasks, starting with speech and visual

recognition. The success of deep learning and the pace at which ever more complex

models are developed relies is part on equally remarkable powerful graphic processing

units. Since 2012, the amount of computations on these graphic processing units

used by the largest deep learning models has been increasing exponentially, growing

by more than 300,000x from AlexNet to AlaphaGoZero (Fig. 1-8a). The availability

of vast amounts of data has also been crucial in the success of deep learning methods,

some arguing that the improvement in performance obtained from increasing the size

or quality of the data outweighs any improvement that can be obtained from tweak-

ing the deep learning algorithm. Fortunately, digitization of various industries has

resulted in expansion of the global datasphere, with the healthcare industry expected

to grow faster than the rest (Fig. 1-8b). Many hospitals are heavily investing in high-

performance graphic processing unit clusters in anticipation of this trend, enabling
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Figure 1-8: (a) Deep learning computing (a) and healthcare datasphere in the modern
era.

vast amounts of local storage for data processing, faster experimentation, larger deep

learning models, and ultimately more productive and significant clinical discoveries.

Cardiac MR is in many ways an ideal imaging modality for cardiovascular focused

deep learning. From an instrumentation perspective, innovations in scanning technol-

ogy are still pushing MR to new limits of magnetic strength [100]. Stronger magnets

are producing higher resolution images, which means more data are stored per scan

[55]. These innovations could synergize with deep learning techniques that have been

successfully applied to MR image acquisition and reconstruction tasks [161, 162]. For

instance, they could be used to reconstruct high-quality cardiac MR images from un-

dersampled k-space measurements to reduce scanning time [123, 44]. They could also

accelerate the reconstruction of useful but complex cardiac MR sequences that were

previously clinically unfeasible due to lengthy optimization times during reconstruc-

tion [42] (Fig. 1-9a). With the advent of these technologies, more scans can be done

in less time, potentially leading to higher volumes and quality of cardiac MR data.

However, since these data must be carefully analyzed to quantify any evidence of

disease, this growing volume and complexity of imaging data could exacerbate occu-

pational fatigue in radiologists, potentially resulting in worse diagnostic performance

[46, 133]. From a quantification perspective, recent deep learning models for cardiac

MR have been proposed that may help shoulder the increasing workload by provid-

ing more automated workflows. These include preprocessing [122], segmentation and
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Figure 1-9: The role of deep learning in cardiac MR.

analysis of morphology and function [118], and more recently scar quantification [26]

(Fig. 1-9b).

From a patient-cohort point of view, applications to large databases (e.g., UK

Biobank, >500,000 cases) could enable quick and automatic definition of normal

value ranges of various cardiac parameters (e.g., strain), or comparisons between

large populations [119](Fig. 1-9c). Lastly, in aggregate medicine applications, a fully-

automatic deep learning workflow could leverage different kinds of cardiac MR data to

offer an incredibly rich set of cardiac MR imaging features describing the mechanical

status of the heart. New and exciting deep learning methods could combine these

cardiac MR imaging features with other clinical and genetic information to generate

insightful and actionable information (Fig. 1-9d). Nevertheless, care must be taken

both by clinicians and deep learning developers to avoid wrong measurements and

subsequently incorrect interpretations. Therefore, the lifecycle of any deep learning

workflow must include a thorough validation of each component.

1.6 Aims and Thesis Overview

The overall goal of this dissertation project was to develop a novel cardiac MR deep

learning workflow to characterize the cardiac mechanics. This workflow was designed
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with specific technical and practical attributes to make it available for immediate

and wide research use. Validation and comprehensive assessment of the accuracy and

repeatability of the workflow was also performed. In the last chapter, we also discuss

how the proposed workflow could be used for several other quantitative, patient-

cohort, and aggregate medicine applications.

The overall goal was split into three aims.

1.6.1 Aim 1: To develop a deep learning method capable of

cardiac motion estimation using a widely-available car-

diac MR sequence.

In Chapter 2 we describe a novel deep learning method for three-dimensional cardiac

motion estimation trained using data from healthy and cardiovascular disease adults.

The model is based on clinically-standard cine MR data and could be integrated

in routine studies without modifications to the standard cardiac MR protocol. The

proposed technique was evaluated on a pediatric dataset using several intensity-based

and binary metrics, and the performance was compared to several state-of-the-art

non-learning registration methods.

1.6.2 Aim 2: To develop and validate an automated cardiac

MR workflow for clinically-feasible quantification of car-

diac mechanics.

In Chapter 3 we describe the design and validation of a fully-automatic cardiac MR

workflow for strain analysis using some of the techniques developed in section 1.6.1.

The proposed workflow enables quantification of morphological, functional, and strain

measures. Each of the workflow components was benchmarked against learning and

non-learning techniques, and was validated against a reference tagging MR method.

The intra-scanner repeatability of global and regional strain measures was also as-

sessed. In this chapter we also describe global and regional applications and discuss
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the potential clinical utilization of our approach. This work is the first to report within

a single study the characterization, validation, and repeatability of a learning-based

method for strain analysis.

1.6.3 Aim 3: Test the proposed workflow in asymptomatic

subjects without known but suspected cardiac dysfunc-

tion to determine the clinical value of deep learning char-

acterization of cardiac mechanics.

In chapter 4 the proposed technique was tested in a prospective cross-sectional study

in asymptomatic young adults with a mixture of cardiovascular disease risks factors,

i.e., overweight, hypertension, and type 2 diabetes mellitus. We focused on these pop-

ulations because of the immediate high clinical impact, although conceivably future

studies could characterize other populations.

Finally, in chapter 5 the key implications of the proposed techniques are discussed,

including remaining challenges to overcome for full clinical adoption.
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Chapter 2

Learning Cardiac Motion

2.1 Introduction

Characterizing the motion of the heart using noninvasive imaging techniques such as

cardiac MR is challenging but potentially very important. On the technical side, this

information could be used to improve the quality of the cardiac MR data acquired by

using cardiac gating techniques [9], or to minimize the unwanted effects of motion on

the positron emission tomography (PET) data acquired simultaneously in integrated

PET-MR scanners [65]. From a more clinical perspective, detailed knowledge of the

complex three-dimensional motion of the heart during the cardiac cycle (e.g., myocar-

dial strain) would inform us about its mechanical status, with potential diagnostic

implications [129]

Ideally, the motion estimates should be obtained from cardiac MR sequences such

as cine that are routinely used for clinical purposes. This breath-hold sequence al-

lows the acquisition of data corresponding to each specific time point in the car-

diac cycle (i.e., systole, diastole). Characterizing the three-dimensional motion of

the whole heart across time from these images is challenging because the tissue in-

tensity is relatively homogeneous and morphological details to facilitate the tem-

poral correspondence search are limited. Furthermore, because a cine volume in a

time frame is technically a two-dimensional stack of independently acquired sections,

rather than an actual three-dimensional volume where the whole heart is simultane-
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ously acquired, out-of-plane motion during the cardiac cycle makes the derivation of

three-dimensional estimates challenging.

Deep learning methods have demonstrated the advantage of allowing real-world

data guide learning of abstract representations that can be used to accomplish pre-

specified tasks, and have been shown to be more robust to image artifacts than non-

learning techniques for some applications [163, 23]. Promising learning methods for

cardiac motion estimation from cine MR data have been proposed [110, 112, 111, 156].

These learning methods usually consist of an intensity-based loss function and a

constrain term [112, 20], the latter using common machine learning techniques (e.g.,

L2 regularization of all learnable parameters) or direct regularization of the motion

estimates (e.g., smoothness penalty [112], anatomy-aware [15]). However, only two-

dimensional formulations have been proposed to-date, and motion predicted using

these approaches could be influenced by out-of-plane motion during the cardiac cycle,

resulting in overestimation of in-plane motion and reduced reproducibility [78].

In this chapter we present the first unsupervised three-dimensional cardiac motion

estimation network (CarMEN) for deformable motion modeling from cine MR data.

Although we used the method to register cardiac cine MR images here, CarMEN is

in principle broadly applicable to other cardiac image registration tasks.

Our aims were to train and test CarMEN by using data from adult and pediatric

participants, and to compare its accuracy to that of several popular state-of-the-art

registration packages in the presence of out-of-plane three-dimensional movement,

acquisition artifacts, and pathological changes. We hypothesized that CarMEN would

achieve better accuracy compared to non-learning techniques.

2.2 Background

2.2.1 Mathematical Representation of Cine MR Data

Let 𝑉𝑡 denote a grayscale cine MR frame at time 𝑡 defined over an 𝑛-Dimensional

(𝑛D) domain Ω ⊂ R𝑛, and let 𝑣 ∈ Ω. Similarly, let 𝑀𝑡 denote the corresponding
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labeled frame at time 𝑡 defined over an 𝑛D domain Ω𝐾 ⊂ N0, and let 𝑣𝑘 ∈ Ω𝐾 denote

all 𝑣 ∈ Ω with label 𝑘.

When 𝑛 = 2, 𝑣 is a pixel and 𝑉𝑡 is an image at frame 𝑡. When 𝑛 = 3, 𝑣 is a

voxel and 𝑉𝑡 is a “volume”, in the sense that it represents a stack of independently

acquired images at frame 𝑡 covering the heart from apex to base. By independently

acquired we mean the collection of images across a specific ventricular section (e.g.,

mid-ventricle) at multiple frames covering a complete cardiac cardiac cycle (Fig. 1-6).

This is in contrast to more recent free-breathing MR sequences where data from the

whole heart can be acquired simultaneously [139].

In standard image registration formulation, a moving frame 𝑉𝑡 : R𝑛 → R is

registered onto a fixed reference frame 𝑉𝑡=0 : R𝑛 → R, yielding the transformation

𝑢𝑡 : R𝑛 → R𝑛. For cardiac motion estimation, 𝑢𝑡 denotes the myocardial displacement

from a fully-relaxed end-diastolic phase at 𝑡 = 0, to a contracted phase at 𝑡 > 0.

Formally, for each 𝑣 ∈ Ω, 𝑢𝑡(𝑣) is an approximation of the myocardial displacement

during contraction such that 𝑉𝑡=0(𝑣) and (𝑢𝑡 ∘ 𝑉𝑡)(𝑣) correspond to similar cardiac

regions. The operator ∘ refers to application of a spatial transform to 𝑉𝑡 using 𝑢𝑡 via

bilinear (for 𝑛 = 2) or trilinear (for 𝑛 = 3) interpolation to approximate 𝑉𝑡=0.

Most existing non-learning registration algorithms iteratively estimate 𝑢𝑡 by solv-

ing

�̂�𝑡 = arg min
𝑢𝑡

ℒ𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑉𝑡=0, 𝑢𝑡 ∘ 𝑉𝑡) + 𝜆𝑠ℒ𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠(𝑢𝑡), (2.1)

where ℒ𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 is an intensity-based term that measures the image dissimilarity be-

tween 𝑉𝑡=0 and 𝑢𝑡 ∘ 𝑉𝑡, the regularization term ℒ𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 enforces smoothness in 𝑢𝑡,

and 𝜆𝑠 is the regularization parameter. In this study, we reformulate this optimiza-

tion as a learning task by modeling a function 𝑔(𝑉𝑡=0, 𝑉𝑡) = 𝑢𝑡 as a convolutional

neural network (section 2.3.1), and by recasting the terms in (2.1) as differentiable

loss functions (section 2.3.2).

37



2.2.2 Convolutional Neural Network for Motion Estimation

The function 𝑔(𝑉𝑡=0, 𝑉𝑡) = 𝑢𝑡 could be modeled using two potential convolutional

neural network formulations. The first uses two separate, yet identical encoders for

the two frames to combine them at a later stage as shown in Fig. 2-1b. With this

formulation the network is constrained to first produce meaningful representations of

the two frames separately and then combine them on a higher level. This roughly re-

sembles the standard matching approach when one first extracts features from patches

of both images and then compares those feature vectors. A decoder is then used to

estimate the motion from the combined representation. One potential benefit of this

approach for cardiac imaging is that it enables joint optimization of segmentation

and motion estimation tasks [113]. However, studies in computer vision have shown

that this formulation tends to generalize poorly to variations in motion, and has dif-

ficulty with large displacements [30]. An alternative formulation is to concatenate

both input frames together and feed them through a single encoder-decoder pipeline,

allowing the network to decide itself how to process the pair to extract the motion

information (Fig. 2-1c). This formulation has been shown to generalize better to

different datasets and motions relative to the separate encoder approach [30].

Throughout this dissertation, we refer to CarMEN as an encoding-decoding net-

work that uses the single encoder formulation with concatenated inputs [30]. In

section 2.3.1 we describe the first three-dimensional CarMEN implementation spe-

cific to cine MR data, and in section 3.3.1 we improve upon this original design by

leveraging simulated data and weak labels of the myocardium using a segmentation

network.

2.3 Method

2.3.1 CarMEN for Multiresolution Motion Estimation

The input to CarMEN was the pair 𝑉𝑡, 𝑉𝑡=0 concatenated into a two-channel volume.

This volume was passed through several encoding and decoding layers to derive a
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Figure 2-1: Motion estimation from cine MR frames using convolutional networks.

three-channel volume 𝑢𝑡 at multiple resolutions, each channel representing the 𝑥, 𝑦, 𝑧

components of motion. Specifically, the decoding layers generate coarse predictions

𝑢𝑡,𝑗, each representing 𝑢𝑡 downsampled by 2𝑗 (Fig. 2-2). The encoder has eight

convolutional layers with stride of two in three of them and a leaky rectified linear

unit after each layer. Convolutional filter sizes were 3 × 3 × 3 for all layers. The

number of feature maps increased in the deeper layers, roughly doubling every second

layer with a stride of two. The decoder has four upconvolutional layers consisting of

unpooling followed by convolution. We applied the upconvolution to feature maps

and concatenated it with corresponding feature maps from the contractive part of

the network and an upsampled coarse motion prediction. Each step increases the

resolution twice, and a convolutional filter of 3 × 3 × 3 was used to generate a coarse

prediction 𝑢𝑡,𝑗 at each layer, where 𝑗 = 4, . . . , 0. Thus, the resolution of the estimates

𝑢𝑡,0 of the final layer is equal to that of the input.

2.3.2 Loss Functions for Unsupervised Learning of Motion

The intensity and smoothness terms in 2.1 were implemented as the mean absolute

difference loss function

ℒ𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 := ℒ𝑀𝐴𝐸(𝑉𝑡=0, 𝑢𝑡 ∘ 𝑉𝑡) =
1

|Ω|
∑︁
𝑣∈Ω

⃒⃒
𝑉𝑡=0(𝑣) − (𝑢𝑡 ∘ 𝑉𝑡)(𝑣)

⃒⃒
, (2.2)
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Figure 2-2: CarMEN architecture for multiresolution motion estimation

and a diffusion regularizer

ℒ𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 := ℒ∇(𝑢𝑡) =
∑︁
𝑣∈Ω

‖∇𝑢𝑡(𝑣)‖2 (2.3)

The gradient operator ∇ was approximated using differences between neighboring

voxels. These loss terms were evaluated for each output 𝑢𝑡,𝑗, an approach akin to

a multiresolution pyramid strategy used in conventional optimization techniques to

improve the capture range and robustness of the registration [74]. Thus, the loss

function used to train CarMEN was

𝐿 =
4∑︁

𝑗=0

ℒ𝑀𝐴𝐸(𝑉𝑡=0,𝑗, 𝑢𝑡,𝑗 ∘ 𝑉𝑡,𝑗) + 𝜆𝑠ℒ∇(𝑢𝑡,𝑗) (2.4)

2.4 Experiments

2.4.1 Datasets

In this study, the Automated Cardiac Diagnosis Challenge Dataset (ACDC) was used

for development, and a pediatric dataset was used for evaluation. Both datasets were

publicly available.
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Automated Cardiac Diagnosis Challenge Dataset

The ACDC dataset consists of cine MR data from 150 subjects acquired at the Uni-

versity Hospital of Dijon, France [10]. The datasets were acquired with two MR

scanners of different magnetic strengths (1.5 T - Manetom Aera, and 3.0 T - Mag-

netom Trio TIM, Siemens Medical Solutions, Germany). The subjects were evenly

divided into five groups: healthy and patients with hypertrophic cardiomyopathy,

abnormal right ventricle, myocardial infarction with reduced left-ventricular ejection

fraction, and dilated cardiomyopathy. These data were available as train (n=100)

and test (n=50) sets, with manual segmentations of the left and right ventricular

cavities and left-ventricular myocardium included for the train set only (Fig. 2-3).

Manual segmentations and group classification of the test set were privately held by

the challenge organizers for evaluation and ranking of segmentation and diagnoses

challenges.

Pediatric Dataset

The pediatric dataset consists of cine MR data from 33 subjects (aged 2-17 years)

acquired at the Department of Diagnostic Imaging of the Hospital for Sick Children in

Toronto, Canada [4]. The datasets were acquired with a GE Genesis Signa MR scan-

ner (GE Healthcare, Milwaukee, Wisconsin, USA). Most of the subjects displayed a

variety of heart abnormalities such as cardiomyopathy, aortic regurgitation, enlarged

ventricles, and ischemia. A smaller number displayed left ventricle related abnor-

malities, and two subjects had normal cardiac anatomy and function. This dataset

is unique in the sense that it includes manual segmentations of the left-ventricular

cavity and myocardium for all cardiac phases in subjects with a wide range of heart

abnormalities, providing us with a realistic and challenging performance benchmark

for evaluation (Fig. 2-4).
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Figure 2-3: ACDC Dataset. Representative cine MR end-diastolic images at mid-
ventricle for three subjects from the train set with manually delineated contours of
the right-ventricular cavity (green), and left-ventricular cavity (red) and myocardium
(magenta). Left to right: healthy, dilated and hypertrophic cardiomyopathy, myocar-
dial infarction, and abnormal right ventricle.

Preprocessing

Only the ACDC train set and pediatric datasets were used for training and evaluation,

accordingly. The ACDC test set was not used in this study but it was used in chapter

4. All cine MR frames and corresponding manual segmentations were resampled to a

256×256×16 volume grid with 1.5 mm×1.5 mm in-plane resolution and variable slice

thickness (4-7 mm). Each frame was subsequently manually centered and cropped to

80×80×16 using the manual segmentations as reference. This step was required to

fit the three-dimensional frames into the memory of the graphic processing unit.

2.4.2 CarMEN Implementation

We used TensorFlow (version 1.6; Google, Mountain View, Calif) to implement and

train CarMEN. For training, a sample was defined as the pair (𝑉𝑡=0, 𝑉𝑡); therefore,
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Figure 2-4: Pediatric dataset. Representative cine MR end-diastolic images at mid-
ventricle with manually delineated contours of the left-ventricular cavity (red) and
myocardium (magenta).

for a subject with 𝑇 frames, we had a total of 𝑇 samples available for training:

{(𝑉𝑡=0, 𝑉𝑡)}{𝑡=0,1,...,𝑇}

We trained CarMEN with 2,512 samples from 100 subjects (ACDC train set)

using minibatches of 10 pairs. Data augmentation included random z-axis rotations

and x, y translations. A step decay learning rate schedule initialized at 1 × 10−4 and

reduced by half every 10 epochs was used. The regularization parameter 𝜆𝑠 was set

to 1×10−7. CarMEN was trained for 100 epochs, each corresponding to one complete

pass through the 2,512 samples. To reduce overfitting to one particular anatomy or

frame property, the 2,512 samples were randomized at the beginning of each epoch

(i.e, each batch was made up of different subjects and different cardiac phases). The

training time was 4 hours and motion estimates at inference were generated in 9

seconds. A 12 GB graphic processing unit from Nvidia was used to train the models.
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2.4.3 Evaluation Metrics

CarMEN was evaluated on the pediatric dataset with 627 samples from 33 subjects.

Pairs (𝑉𝑡=0, 𝑉𝑡) ∀𝑡 > 0 were included in the evaluation. The accuracy of the motion

estimates was assessed indirectly by evaluating ℒ𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑉𝑡=0, 𝑢𝑡 ∘ 𝑉𝑡) using multiple

functions for ℒ𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦. Although some of the most common functions such as peak

signal-to-noise ratio are used because they are fast and easy to implement, these

correlate poorly with registration quality as perceived by a human observer [157].

Thus, we also evaluated our method by using the multiscale structural similarity

index metric, a state-of-the-art metric that accounts for changes in local structure and

correlates with the sensitivity of the human visual system [159]. We also evaluated

the normalized cross-correlation function because it is less sensitive to linear changes

in the MR signal intensity in the compared images.

The manual segmentations included in the pediatric dataset enabled us to evaluate

CarMEN using a non-intensity metric. Let 𝑀𝑡,𝑀𝑡=0 correspond to manual segmenta-

tions of frames 𝑉𝑡, 𝑉𝑡=0, and let 𝑢𝑡 = 𝑔(𝑉𝑡, 𝑉𝑡=0). If the motion estimates 𝑢𝑡 represent

accurate myocardial displacements, the anatomical labels in 𝑀𝑡=0 and 𝑢𝑡 ∘𝑀𝑡 corre-

sponding to the same anatomical structure should overlap well. The overall overlap

of the left-ventricular myocardium labels was quantified by measuring the Dice Simi-

larity Coefficient (Dice) between 𝑀𝑡=0 and 𝑢𝑡 ∘𝑀𝑡, where a Dice score of 1 indicates

the myocardium labels are identical and is a proxy for the accuracy of the predicted

motion. We compared the performance of CarMEN to that of five state-of-the-art

non-learning methods for image registration: two B-spline approaches with the In-

sight Segmentation and Registration Toolkit, or ITK, package (https://www.itk.org)

[83]; a B-spline Elastix variation; a mass-preserving approach termed Vampire [35];

and the Diffeomorphic Demons, or dDemons, algorithm [142].

Statistical Analysis

Data were treated as nonparametric and presented as median and interquartile range

and compared by using two-sided Wilcoxon signed-rank tests. Statistical analysis

44



was performed in Python (version 2.7; Python Software Foundation, Wilmington,

Del; https://www.python.org). A two-sided 𝑃 < .001 was considered to indicate

statistical significance. All 𝑃 values reported in the next sections refer to comparisons

between a non-learning registration method and CarMEN.

2.5 Results

CarMEN and Vampire showed significantly (P<0.001; n = 627) better performance

relative to the other four state-of-the-art methods for all the metrics except Dice

score (Fig. 2-5 and Table A.1). CarMEN had a significantly higher Dice score (0.77

[interquartile range: 0.72–0.81]) relative to Vampire (0.71 [0.58–0.80]), dDemons (0.74

[0.69–0.78]), and ITK B-Spline 2 (0.76 [0.71–0.80]). There was no significant difference

in the Dice score between CarMEN and the other two methods. Relative to CarMEN,

Vampire had a significantly higher peak signal-to-noise ratio (38.2 [32.9–40.2] vs 30.2

[27.5–33.8]), higher normalized cross-correlation (1.00 [0.99–1.0] vs 0.99 [0.98–0.99]),

and higher multiscale structural similarity index metric (0.99 [0.99–1.0] vs 0.96 [0.95–

0.98]). Representative images of patients with various diseases are shown in Figure

2-6. A common feature of the non-learning methods is the disappearance of the

papillary muscles in the warped images, i.e., in 𝑢𝑡 ∘ 𝑉𝑡. In contrast, these structures

are preserved in most of the images obtained with CarMEN. CarMEN is also more

robust to acquisition artifacts, and better preserves anatomic features.

2.6 Discussion

We developed a novel deep learning method for three-dimensional cardiac motion

estimation using data from healthy subjects and cardiac patients for training. Our

model is based on clinically-standard data and could be integrated in routine cardiac

MR studies without modifications to the standard cardiac MR protocol. The pro-

posed technique was evaluated on a pediatric dataset using several intensity-based

and binary metrics, and the performance was compared to several state-of-the-art
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Figure 2-5: Evaluation of CarMEN using five different image similarity metrics repre-
sented with nonparametric violin plots. Violin plots are essentially mirrored density
plots. Higher values for all metrics is considered good. 𝑃 values are relative to
CarMEN and were obtained by using two-sided Wilcoxon signed-rank tests.

non-learning registration methods. We demonstrated that the deep learning model

of cardiac motion learned from one dataset was capable of generalizing to new data

with better accuracy than that of non-learning techniques.

Vampire performed significantly better than CarMEN in all intensity-based met-

rics, which would sugggest at first glance that it is a better technique. However,

Vampire had the lowest average Dice score among all methods and had several Dice

scores below 0.4, indicating large errors in the estimated motion vectors. The culprit

of this apparent paradox is a mass-preserving term det(∇𝑢𝑡) used in the Vampire al-

gorithm, which is used to replace the registration term (𝑢𝑡∘𝑉𝑡) with (𝑢𝑡∘𝑉𝑡) ·det(∇𝑢𝑡)

during optimization. This term accurately modulates the intensities of the MR im-

ages, but fails when applied to integer-valued images (i.e., labeled frames). Thus,

although 𝑉𝑡=0 and (𝑢𝑡 ∘ 𝑉𝑡) · det(∇) look similar, the underlying transformation 𝑢𝑡 is

inaccurate. In contrast, CarMEN had a significantly better performance relative to

all other methods across all intensity-based metrics, and equal or better Dice score.

We found CarMEN to be reliable across multiple diseases and capable of preserving

fine-detailed pathological features, which is essential to assess the mechanical status

of the heart since these pathological features are often associated with abnormal wall

motion. In contrast, most other methods were unable to handle highly abnormal
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Figure 2-6: CarMEN outperforms non-learning methods across various diseases and
ages. First and second columns correspond to heart at end-systole and end-diastole,
accordingly. Moving image is warped to fixed position using the predicted motion.
Two healthy participants and two patients are shown. CarMEN is more robust to
image artifacts relative to other methods such as ITK B-Spline 1 and Vampire (black
arrows). Papillary muscles disappear in some non-learning methods but are pre-
served by proposed method (white arrows). CarMEN does a better job at preserving
anatomy relative to ITK B-Spline 1 (arrowheads). COART = coarctation of the aorta

left-ventricular anatomy. We note that compared to the training data, the pediatric

dataset originated from a different institution, was acquired with a scanner from a

different vendor, and came from a distinct patient population. Despite these notable

challenges, our method better handled off-section three-dimensional movement as ev-

ident by the accurate mapping of papillary muscles. Furthermoe, CarMEN was more

robust to acquisition artifacts, and better preserved abnormal anatomic information

(i.e., it did not overfit to a healthy adult heart). Thus, these results suggest CarMEN

does not memorize any particular anatomy or phase, instead learning a more general

model of cardiac anatomy and motion.
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2.6.1 Limitations to Address

The current implementation was only a first step towards a fully-automatic method for

motion estimation since manual centering and cropping of the heart was required. In

section 3.3.1 we propose a convolutional neural network to automate this step as well.

We also found that indirect measures of motion estimation accuracy using registration

techniques (e.g., intensity-based and binary metrics to compare transformed images)

are prone to error, potentially resulting in incorrect interpretations of the results.

In section 3.4.3 we evaluate the motion estimates directly using manual tracking

landmarks as labels. Lastly, our method had an unfair advantage in that it was

designed specifically to address challenges related to three-dimensional cardiac motion

estimation, whereas the non-learning methods could be applied to general registration

tasks. Thus, in the next chapter we compare CarMEN to state-of-the-art methods

for cardiac motion estimation that were designed and optimized by domain experts

specifically for cardiac MR data.

2.6.2 Conclusion

We have developed the first unsupervised learning–based approach for deformable

three-dimensional cardiac MR image registration. We validated our approach com-

prehensively and demonstrated higher registration accuracy relative to several popular

state-of-the-art image registration methods.
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Chapter 3

Learning Myocardial Strain

3.1 Introduction

Myocardial strain analysis from cine data is an exciting and promising technique for

earlier detection of asymptomatic left-ventricular dysfunction prior to reduction in

ejection fraction, but several concerns have been raised regarding its robustness in

wider clinical settings as described in section 1.4. Besides the imaging modality-

related factors, the main technical sources of error are segmentation and motion

estimation.

Deep learning segmentation methods have been proposed [128, 165, 12] and imple-

mented within strain computational pipelines [45, 110], and we and others have shown

that cardiac motion estimation can be recast as a learnable problem as well. However,

none of these methods have considered the accuracy of myocardial strain as a design

factor or have been applied to strain analysis, and none have been validated against

reference tagging techniques. In chapter 2 we demonstrated that CarMEN produces

more accurate estimates than various non-learning registration techniques. Thus, in-

corporating our method within a strain analysis framework could potentially enable

accurate, user-independent, and quantitative characterization of cardiac mechanics

both globally and regionally.

We propose DeepStrain, a fast, automated workflow that derives global and re-

gional strain measures from cine data by decoupling the motion estimation and seg-

49



mentation tasks. With decoupling, segmentations are not used for motion estimation

but rather to derive clinical parameters and to identify a cardiac coordinate system

for strain analysis, further reducing the variability in strain directly related to seg-

mentation. This chapter describes a carefully designed strain quantification-specific

CarMEN implementation that handles challenges associated with the anisotropic res-

olution of cine data. Our loss weighting strategy to find the optimal balance between

motion regularization terms also differs from previous methods which have tradition-

ally relied on registration techniques as indirect measures of motion accuracy. Instead,

we simulated cine data with corresponding ground-truth cardiac motion to identify

the hyperparameters yielding accurate motion and strain estimates. The optimally

trained configuration is available online at https://github.com/moralesq. Finally, this

chapter also provides a comprehensive assessment of the accuracy and repeatability

of DeepStrain measures, a task that has been mostly ignored in the deep learning

literature but is critical to clinical adoption [3].

3.2 Background

3.2.1 Mathematical Representation of Myocardial Strain

Strain represents percent change in myocardial length per unit length. The 3D analog

for MR is given by the Lagrange strain tensor

𝜖𝑡 =
1

2

(︀
∇𝑢𝑡 + ∇𝑢𝑇

𝑡 + ∇𝑢𝑇
𝑡 + ∇𝑢𝑡

)︀
(3.1)

where 𝑢𝑡 denotes myocardial displacement as defined in section 2.2.1. Radial and cir-

cumferential strain are the diagonal components of the tensor evaluated in cylindrical

coordinates. Strain rate is the time derivative of (3.1). Global strain is defined as the

average of 𝜖 over the whole left-ventricular myocardium volume. Regional strain is

defined as the average of 𝜖 over the volume of specific myocardium segments defined

by the American Heart Association polar map. Specific parameters based on timing

and magnitude are extracted from the measures evaluated over a whole cardiac cycle:
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Figure 3-1: Overview of proposed DeepStrain workflow.

end-systolic strain, defined as the global strain value at end-systole; systolic strain

rate, defined as the peak (i.e., maximum) absolute value of global strain rate during

systole; early-diastolic strain rate, defined as the peak absolute value of global strain

rate during diastole.

3.3 Method

3.3.1 Centering, Segmentation, and Motion Estimation

DeepStrain consists of a series of convolutional neural networks that perform three

tasks: a ventricular centering network (VCN) for automated centering and cropping,

a cardiac segmentation network (CarSON) to generate tissue labels, and CarMEN to

generate 𝑢𝑡 using the formulation described in section 2.2.2. The estimates 𝑢𝑡 are used

to calculate myocardial strain, and segmentations are used to calculate morphological

and functional parameters of cardiac function, identify a cardiac coordinate system

and regions-of-interest necessary for strain analysis, and generate tissue labels from

unlabeled cine frames that can be leveraged for anatomical regularization of motion

estimates at training time (Fig. 3-1).
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Shared Architecture

DeepStrain decouples segmentation and motion estimation tasks, enabling inspection

of sources of error from each task independently. However, inspection of potential

sources of error would be challenging if each task was formulated using drastically dif-

ferent network architectures. Thus, building upon our first implementation described

in section 2.3.1, CarMEN was modified such that all networks in the DeepStrain

workflow have a common encoder-decoder architecture.

Let 𝐶𝑘 denote a Convolution-BatchNorm-PReLU layer with 𝑘 filters. 𝐶𝐷𝑘 denotes

an Upsampling-Convolution-BatchNorm-PReLU layer with upsampling applied using

nearest-neighbor interpolation of stride 2 × 2 × 2. Unless specified, all convolutions

are 3 × 3 × 3 spatial filters applied with 1 × 1 × 1 stride. An encoding layer 𝐸𝑘

consists of a 𝐶𝑘 layer followed by a second 𝐶𝑘 layer with stride 2× 2× 2. A third 𝐶𝑘

layer follows but without BatchNorm-PReLU. The output is the residual connection

made by element-wise addition of the second 𝐶𝑘 layer before BatchNorm-PReLU are

applied, and the third 𝐶𝑘 layer. A decoding layer 𝐷𝑘 consists of a 𝐶𝑘 layer with

(1 × 1 × 1)-sized filters followed by 𝐶𝐷𝑘 and 𝐶𝑘 layers. Thus, the 2 × 2 × 2 strided

convolution in 𝐸𝑘 downsamples by a factor of 2, whereas the upsampling operation

with stride 2 × 2 × 2 in 𝐷𝑘 upsamples by a factor of 2.

With this notation, the encoder-decoder architecture common to all three net-

works consists of an encoder with E64-E128-E256-E512-E512-E512-E512 layers, and

a decoder with D512-D512-D512-D256-D128-D64 layers. After the last layer in the

decoder, a final 𝐶𝐷𝑘 layer without BatchNorm -PReLU and with (1 × 1 × 1)-sized

filters is applied to map to the number of output channels (k=1 for VCN, 4 for Car-

SON, and 3 for CarMEN). Exceptions to the rules above are: (1) CarSON consists

of two-dimensional operations, i.e., convolutions are 3 × 3 spatial filters applied with

1 × 1 stride. (2) For CarMEN, we experimented with another implementation where

all filters and strides were of size 1 along the third dimension, motivated by the fact

that subjects had variable resolution along that dimension.
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VCN

Let 𝑉 denote a cine frame with 𝑛 = 3 as defined in section 2.2.1. VCN uses a

single-channel array 𝑉 with size 256 × 256 × 16 to generate a single-channel array

𝐺𝑝𝑟𝑒𝑑 of equal size, where 𝐺𝑝𝑟𝑒𝑑 corresponds to a Gaussian distribution with mean

defined as the left-ventricular myocardium center of mass. This approach models the

uncertainty associated with the center location, especially in pathological cases, and

enables automated generation of ground-truth labels when manual segmentation of

uncropped images is available. VCN was trained using the mean square error loss

function

ℒ𝑀𝑆𝐸(𝐺𝑔𝑡, 𝐺𝑝𝑟𝑒𝑑) =
1

|Ω|
∑︁
𝑣∈Ω

(︀
𝐺𝑔𝑡(𝑣) −𝐺𝑝𝑟𝑒𝑑(𝑣)

)︀2 (3.2)

At inference, the input volume 𝑉𝑡 is centered and cropped around the voxel with

the highest value in 𝐺𝑝𝑟𝑒𝑑 to generate a new cropped array of size 128 × 128 × 16,

which is the input to CarSON and CarMEN.

CarSON

Let 𝑉,𝑀 denote corresponding grayscale and labeled cine frames with 𝑛 = 2 as defined

in section 2.2.1. CarSON is a two-dimensional architecture that uses single-channel

images 𝑉 of size 128× 128 to generate a 4-channel labeled images 𝑀𝑝𝑟𝑒𝑑 of equal size,

each channel corresponding to a label of a cardiac structure. We experimented with

two different variations of a loss function ℒ𝑠𝑒𝑔 to train CarSON using the manual

segmentations 𝑀𝑔𝑡 as the ground-truth labels. First, the multi-class Dice coefficient

loss function

ℒ𝑠𝑒𝑔 := ℒ𝑀𝐷𝐶(𝑀𝑔𝑡,𝑀𝑝𝑟𝑒𝑑) = −1

4

3∑︁
𝑘=0

2
|𝑣𝑘𝑔𝑡 ∩ 𝑣𝑘𝑝𝑟𝑒𝑑|
|𝑣𝑘𝑔𝑡| + |𝑣𝑘𝑝𝑟𝑒𝑑|

, (3.3)

where 𝑘 ∈ [0, 3] represents each of the tissue labels (i.e., background, right-

ventricular cavity, left-ventricular myocardium, and left-ventricular cavity), and 𝑣𝑘 ∈

Ω𝐾 denotes all the pixels with label 𝑘. Second, the pixel-wise categorical cross-
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entropy:

ℒ𝑠𝑒𝑔 := ℒ𝐶𝐶𝐸(𝑀𝑔𝑡,𝑀𝑝𝑟𝑒𝑑) = − 1

4Ω𝐾

3∑︁
𝑘=0

∑︁
𝑣∈Ω𝐾

𝑣𝑘𝑔𝑡 log(𝑣𝑘𝑝𝑟𝑒𝑑) (3.4)

CarMEN

Let 𝑉𝑡,𝑀𝑡 denote corresponding grayscale and labeled cine frames with 𝑛 = 3 as

defined in section 2.2.1. Although the current implementation of CarMEN shares

some similarities with that presented in section 2.3.1, both having the same convo-

lutional neural network formulation discussed in section 2.2.2, we have made several

design modifications that were specific for accurate strain quantification. Specifically,

in addition to the unsupervised loss functions (2.2) and (2.3), we used a supervised

function ℒ𝑎𝑛𝑎𝑡𝑜𝑚𝑖𝑐𝑎𝑙 that leverages segmentations of the input volumes at training time

to impose an anatomical constrain on the estimates

ℒ𝑎𝑛𝑎𝑡𝑜𝑚𝑖𝑐𝑎𝑙(𝑀𝑡=0, 𝑢𝑡 ∘𝑀𝑡) = ℒ𝑠𝑒𝑔(𝑀𝑡=0, 𝑢𝑡 ∘𝑀𝑡) (3.5)

This loss term is useful when manual segmentations of various cardiac tissues are

available during training but not during testing, or when weak labels can be quickly

derived using an automated technique (e.g., CarSON). We experimented with dif-

ferent function variations of the anatomical constrain (3.5), namely (3.3) and (3.4).

Thus, the semi-supervised loss function for CarMEN is a linear combination of (2.2),

(2.3), and (3.5), weighted by 𝜆𝑖, 𝜆𝑠, 𝜆𝑎, accordingly:

𝐿 = 𝜆𝑖ℒ𝑀𝐴𝐸(𝑉𝑡=0, 𝑢𝑡 ∘ 𝑉𝑡) + 𝜆𝑠ℒ∇(𝑢𝑡) + 𝜆𝑎ℒ𝑎𝑛𝑎𝑡𝑜𝑚𝑖𝑐𝑎𝑙(𝑀𝑡=0, 𝑢𝑡 ∘𝑀𝑡) (3.6)

Other variations were exclusive to estimation of motion from three-dimensional

cine frames. Convolution, pooling, and upscaling was implemented with 3 × 3 × 𝑘𝑧

operations, where 𝑘𝑧 could be set to either 1 or 3. For 𝑘𝑧 = 1, operations were carried

out only in the x-y-plane to account for the low and varying z resolution, different
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from three-dimensional architectures for segmentation with 3 × 3 × 3 convolutions

and in-plane-only pooling and upscaling [56]. Thus, context in the z-dimension is

aggregated through trilinear interpolation of 𝑉𝑡 and 𝑀𝑡 volumes in (2.2) and (3.5),

and through application of three-dimensional spatial gradients to 𝑢𝑡 in (2.3). At

inference, the entire cycle of a single subject can be analyzed using sequential inputs

{(𝑉𝑡=0, 𝑉𝑡)}{𝑡=0,1,...,𝑇}.

3.4 Experiments

3.4.1 Datasets

In this study, the ACDC dataset introduced in section 2.4.1 was used for development,

and the publicly available cardiac motion analysis challenge (CMAC) dataset was used

for evaluation of motion and strain accuracy. Additionally, we acquired cine data at

the A.A. Martinos Center for Biomedical Imaging to assess intra-scanner repeatability

of strain measures.

Cardiac Motion Analysis Challenge Dataset

The CMAC dataset consists of paired tagging- and cine data from 15 healthy subjects

(three female, aged 28 ± 5 years) acquired at the Division of Imaging Sciences and

Biomedical Engineering, King’s College London, United Kingdom [135]. The datasets

were acquired using a 3T Philips Achieva System (Philips Healthcare, Best, The

Netherlands). Each dataset included 12 landmarks defined at end-diastolic on the

tagging grid and manually-tracked throughout the cardiac cycle by the challenge

organizers (Fig. 3-2). The purpose of these landmarks is to assess the accuracy

of motion estimates derived from either tagging- or cine data as detailed in section

3.4.3.
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Figure 3-2: Representative subject from the CMAC dataset with tagging- and cine
images at end-diastole (top) and end-systole (bottom). Landmarks (green) were de-
fined at end-diastole and manually-tracked throughout the cardiac cycle by the CMAC
challenge organizers. Left to right: septal, mid, and basal landmarks.

Intra-Scanner Repeatability Dataset

This dataset consists of 10 healthy subjects recruited to undergo repeated scans.

Standard cardiac MR protocols were acquired on a 3 T MR system (Biograph mMR,

Siemens Healthiness, Germany, Erlangen) in healthy volunteers during two separate

consecutive scan sessions on the same day (Fig. 3.4.1). Written consent was obtaining

from all volunteers with approval of the Institutional Review Board (2018P002912)

and in agreement with the Health Insurance Portability and Accountability Act at

the Massachusetts General Hospital. The major inclusion criteria were >21 years old,

no history of cardiovascular disease, and no MR contradictions. Each MR protocol

included standard localizer scans and a single slice cine acquisition in a long cardiac

axis view, followed by a stack of short axis cines covering the heart from the base

to the apex using a retrospectively ECG gated balanced steady-state gradient echo

sequence with the following parameters; repetition time=38.61ms, echo time=1.26ms,

flip angle=28 degrees, field-of-view=277 mm×340 mm, matrix size=208×170, slice

thickness=6mm, slice gap=6mm. After each full protocol, the volunteers were asked

to leave the scanner room before going back in for a second acquisition of exactly the

same protocol.

56



Figure 3-3: Representative cine end-diastolic images at mid-ventricle from six subjects
from the Martinos dataset from acquisition 1 (top) and 2 (bottom).

Preprocessing

All frames were resampled to a 256×256×16 volume grid with 1.25 mm×1.25 mm

in-plane resolution and variable slice thickness (4-7 mm).

3.4.2 DeepStrain Implementation

For optimization experiments and final model training, all networks were trained in

TensorFlow ver. 2.0 with Adam optimizer parameters beta1,2 = 0.9,0.999, random

initialization, batchsize = 80 (5 for CarMEN), and learning rate = 1 × 10−4.

Design of a strain quantification-specific CNN

Reported normal ranges of strain in healthy individuals using non-learning methods

vary largely between the different deformation methodologies, limiting the clinical

utility of strain measures. We used this concept as a heuristic in updating Car-

MEN, i.e., a useful design should minimize the variation in strain values in healthy

individuals. To assess the impact of design choices on this heuristic, we separated

the ACDC training set into two group-balanced train and test subsets, each with

50 subjects. We trained CarMEN for 300 epochs using two different layer operation

sizes (i.e., 3 × 3 × 𝑘𝑧 with 𝑘𝑧 ∈ {1, 3}), and two different implementations of ℒ𝑠𝑒𝑔

in (3.5), namely the multi-class Dice coefficient and categorical cross entropy losses.
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Figure 3-4: Effect of anatomical regularization of motion estimates on strain. Regu-
larization with multiclass Dice coefficient (MDC) and categorical crossentropy (CCE)
functions result in different strain values in healthy subjects, shown as mean and stan-
dard deviation.

With 𝑘𝑧 = 3 comparison of loses showed that categorical cross entropy leads to in-

creased standard deviation in radial end-systolic strain in healthy train (n=10) and

test (n=10) subjects, and large differences in the average radial end-systolic strain

between training and testing sets (Fig. 3-4). Multiple experiments with different

regularization parameters showed similar results, and that setting 𝑘𝑧 = 1 reduces

deviations in healthy strain. Thus, the new CarMEN design used 3×3×1 operations

and was regularized using the multi-class Dice coefficient loss function.

Novel loss weighting strategy for accurate motion and strain estimation

Most proposed networks to-date have used registration terms such as (2.2) and (3.5)

to indirectly assess the accuracy of 𝑢𝑡 on validation or test datasets, including our own

evaluation in section 2.4.3. However, this approach is prone to errors since inaccurate

and even unrealistic 𝑢𝑡 solutions can minimize these terms. To find an optimal bal-

ance between loss terms, we simulated cardiac cine frames with known ground-truth

motion. Specifically, we used the established extended cardiac-torso (XCAT) phan-

tom software to generate three-dimensional anatomy masks at multiple time frames

with size 128 × 128 × 16 and average resolution set to 1.5 × 1.5 × 5 mm3 [125].

We used the XCAT extension, MRXCAT [150], to simulate the MR acquisitions on
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Figure 3-5: First row shows the predicted (black) motion estimates when the anatom-
ical regularization is set to 0.5 and smoothing is set to 0. Relative to the ground-truth
(red), these estimates are highly irregular. Increasing (third colum) the smoothness
to 0.1 and setting anatomical to 0.1 improves the direction of the estimates, but the
magnitude is reduced. This is corrected by increasing anatomical regularzation to 0.5
(fourth column).

the anatomy masks. Each simulation consisted of three frames approximately at

end-diastole, mid-systole, and end-systole. We then trained CarMEN with various

regularization parameters for 300 epochs using 100 subjects from the ACDC train

set, and tested the models on the MRXCAT data by evaluating the end-point er-

ror between ground-truth and predicted motion estimates within the left ventricle

myocardium.

Setting 𝜆𝑠 = 0 leads to highly irregular motion vectors (e.g., off by more than 90

degrees) relative to ground-truth (Fig. 3-5). Setting the smoothness and anatomical

weights to 𝜆𝑠 = 𝜆𝑎 = 0.1 leads to smoother and better aligned vectors, albeit with a
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Figure 3-6: Qualitative effects of smoothing and anatomical regularization on the
accuracy of motion estimates. First row shows the predicted (black) motion estimates
when the anatomical regularization is set to 0.5 and smoothing is set to 0. Relative to
the ground-truth (red), these estimates are highly irregular. Increasing (third column)
the smoothness to 0.1 and setting anatomical to 0.1 improves the direction of the
estimates, but the magnitude is reduced. This is corrected by increasing anatomical
regularzation to 0.5 (fourth column).

slightly decreased magnitude. Increasing the anatomical weight to 𝜆𝑎 = 0.5 further

improves the estimates by generating vectors with similar magnitude and orientation

to the ground-truth. Quantitative measures of motion accuracy showed similar results

across various regularization values, and these changes in motion estimation accuracy

were reflected as bias changes in strain values (Fig. 3-6). We found the optimal

parameters to be 𝜆𝑖 = 0.01, 𝜆𝑎 = 0.5, 𝜆𝑠 = 0.1.
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Final model training

Ground-truth distributions for VCN were created using the manual segmentations.

VCN and CarSON were trained using the end-diastolic and end-systolic frames of

the train set, as only these included ground-truth segmentations. This provided 200

training samples for VCN and 3200 for CarSON, the latter having more samples

since it is a 2D architecture and all frames were resampled to a volume with 16

slices. VCN was tested by five-fold cross-validation, whereas the accuracy of CarSON

was assessed by submitting the results to the challenge website. Once CarSON was

trained, we generated segmentations of the test set to train CarMEN using the entire

ACDC dataset, i.e., 100 subjects from the train set with manual segmentations and

50 from the test set with CarSON-predicted segmentations. Only the ED-ED and

ED-ES pairs were used for training. The former pair is useful for the network to

learn the identity transformation. Data augmentation included random rotations

and translations, random mirroring along the x and y axes, and gamma contrast

correction. All data augmentation was performed only in the x-y plane.

3.4.3 Evaluation Metrics

Evaluation of CarSON

The CarSON-predicted and manual segmentations were compared using the Haus-

dorff distance and Dice score metrics at both end-diastolic and end-systolic phases.

Accuracy of left-ventricular morphological and functional measures derived from seg-

mentations, including end-diastolic volume, ejection fraction, and left-ventricular my-

ocardium, was assessed using the correlation, bias, and standard deviation metrics.

The mean absolute error for the end-diastolic volume and myocardium were also com-

puted for comparison against the intra- and inter observer variability reported by [39].

Right-ventricular labels were not analyzed since they were not used to assess cardiac

function but rather to define the direction of the septal wall, which is needed to con-

struct the left-ventricular strain polar maps with a normalized orientation between

subjects. We compared our results to top-3 ranked methods published for the ACDC
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test set as these appear in the leader-board of the challenge [128, 56, 165, 12].

Evaluation of CarMEN

CMAC organizers defined 12 landmarks at intersections of gridded lines on tagging

images at end-diastole, one landmark 𝑝𝑡=0 per wall (septal, inferior, lateral, interior)

per ventricular level (basal, mid, septal). These landmarks were manually-tracked

on tagging images by two observers over the cardiac cycle, and each position was

transformed from tagging to cine coordinates using DICOM header information (Fig.

3-2). We used the CarMEN motion estimates 𝑢𝑡 to automatically deform the land-

marks from end-diastolic to contracted phases, and the accuracy was assessed using

the in-plane end-point error function 𝐿𝐸𝑃𝐸 between deformed 𝑝′𝑡 = 𝑢𝑡 ∘ 𝑝𝑡=0 and

manually-tracked 𝑝𝑡 landmarks, defined by

𝐿𝐸𝑃𝐸(𝑝, 𝑝′) :=
√︁

(𝑝𝑥 − 𝑝′𝑥)2 + (𝑝𝑦 − 𝑝′𝑦)
2 (3.7)

Due to temporal misalignment between the tagging and cine acquisitions, (3.7) was

evaluated only at end-systole. Specifically, let 𝑝𝑖,𝑗𝑡 denote the landmarks of subject 𝑖

at frame 𝑡 manually-tracked by observer 𝑗. The accuracy of CarMEN was assessed

using the average end-point error

1

2𝑛

𝑛∑︁
𝑖=1

2∑︁
𝑗=1

𝐿𝐸𝑃𝐸(𝑝𝑖,𝑗𝑡=𝐸𝑆, 𝑢𝑡=𝐸𝑆 ∘ 𝑝𝑖,𝑗𝑡=0) (3.8)

Our results were compared to those reported by the four groups that responded

to the challenge [135], MEVIS [132], IUCL [127], UPF [19], and INRIA [85, 89]. All

groups submitted tagging-based motion estimates, but only UPF and INRIA provided

estimates based on cine MR.

Evaluation of DeepStrain

The tagging method with the lowest average end-point error at end-systole was used as

the reference for strain analysis. The tagging-based motion estimates were registered

and resampled to the cine space. Global strain and strain rate values throughout the
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entire cardiac cycle were derived from the resampled estimates, and were compared to

cine based strain measures obtained with DeepStrain using Bland-Altman Analysis.

Repeatability of DeepStrain

Global- and regional-based analyses were performed to assess the repeatability of

measures from two acquisitions using the Martinos dataset described in section 3.4.1.

Relative changes and absolute relative changes were calculated, taking the first ac-

quisition as the reference. End-systolic strain and strain rate were calculated for the

global-based analysis. or region-based analyses, end-systolic strain values were nor-

malized using the polar map, and both relative change and absolute relative change

were evaluated for each of the segments in the polar map.

Statistics

For validation, Bland-Altman analysis was used to quantify agreement between pre-

dicted and tagging strain measures. We used the term bias to denote the mean

difference and the term precision to denote the standard deviation of the differences,

the latter computed with 1-degree of freedom. Differences were also assessed using

a paired t-test with Bonferroni correction for multiple comparisons. For global- and

regional-based analyses of strain intra-scanner repeatability, intraclass correlation co-

efficient (ICC) estimates and their 95% confidence intervals were calculated based

on a single-rating, absolute agreement, 2-way mixed-effects model. Analyses were

performed on Python v3.4 with the statistical pingouin module.

3.5 Results

3.5.1 Centering, Segmentation and Motion Estimation

Centering, segmentation, and motion estimation for an entire cardiac cycle ( 25

frames) was accomplished in <13s on a 12GB graphic processing unit and <2.2 min

on a 32GB RAM CPU. VCN located the left-ventricular center of mass with a median
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error of 1.3 mm. Training with a multi-class Dice coefficient loss function resulted

in slightly more accurate segmentations compared to categorical cross-entropy (Table

3.1), therefore the former model was used for all remaining analyses. With this model,

correlation of CarSON and manual left-ventricular morphological and functional mea-

sures was >0.98 across all measures, and biases in ejection fraction (+0.25 ± 3.2%),

end-diastolic (+0.76 ± 6.7 mL) and end-systolic (+0.19 ± 5.8 mL) volumes, and mass

(+1.4 ± 10.3 g) were not significant. Further, these biases were smaller than those

obtained with other methods, which were positive for end-diastolic volume (1.5 to 3.7

mL), negative for the myocardium (-2.1 to -2.9 g), and close to zero (±0.5%) for EF.

Simantiris et al. [128] obtained the best precision for ejection fraction (2.7 vs. 3.2%

variance with CarSON), end-diastolic volume (4.6 vs. 6.7 mm), and myocardium (6.5

vs. 10.3 g). Isensee et al. [56] obtained the best results on geometric metrics, i.e.,

lower Hausdorff distance for the left-ventricular cavity (end-diastole 5.5 vs. 5.7 mm;

end-systolic 6.9 vs. 7.7 mm) and myocardium (7.0 vs. 8.1 mm; 7.3 vs. 9.2 mm), and

higher Dice score for the myocardium (0.904 vs. 0.898; 0.923 vs. 0.913). The Dice

score for the cavity was similar for all methods ( 0.967, 0.929). The mean absolute

error for the end-diastolic volume and myocardium were 5.3 ± 4.1 mL and 6.8 ± 6.5

g.

Fig. 3-7a illustrates a representative example of the tagging and cine images

from a CMAC subject. Landmarks defined at end-diastolic were deformed to end-

systolic using the CarMEN estimates and compared to manual tracking. Banding

artifacts on cine images showed no clear effect on derived motion estimates or land-

mark deformation at end-systolic or throughout the whole cardiac cycle. The manual

tracking inter-observer variability was 0.86 mm (Fig. 3-7b, dotted line). Within cine-

based techniques, CarMEN (2.89 ± 1.52 mm) and UPF (2.94 ± 1.64 mm) had lower

(p<0.001) absolute end-point error relative to INRIA (3.78 ± 2.08 mm), but there

was no significant difference between CarMEN and UPF. All tagging-based methods

had lower absolute end-point error compared to cine approaches, particularly MEVIS

(1.58 ± 1.45 mm).
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Table 3.1: State-of-the-art methods for left-ventricular segmentation shown at end-
diastole (ED) and end-systole (ES) on the ACDC test set compared to proposed
approach. Red are the best results for each metric.

Figure 3-7: Validation of motion and strain. (a) Landmarks at end-diastole (un-
filled green) are manually-tracked (green) and deformed with CarMEN to endsystole
(red). Yellow arrow indicates a banding artifact. (b) Average end-point-error (AEPE)
at end-systole between manual and CarMEN-deformed landmarks was assessed and
compared to other methods. (c) MEVIS- and DeepStrain-based strain (top) and
strain rate (SR, bottom) measures are compared.

3.5.2 Strain validation against tagging-MRI

Table 3.2 shows the normal ranges (mean [95% confidence interval]) of strain de-

rived from cine data for all healthy subjects, including subjects from the training,
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validation, and repeatability cohorts. Across datasets, DeepStrain generated values

with narrow confidence intervals of end-systolic strain (circumferential: 1.1%, radial:

2.5%), systolic strain rate (0.13 s−1, 0.19 s−1), and early-diastolic strain rate (0.14 s−1,

0.26 s−1). Specifically, circumferential and radial values across datasets were: -16.9%

[-17.4 -16.3] and 23.2% [22 24.4] for end-systolic strain, -1.1 s−1 [-1.2 -1.1] and 1.4 s−1

[1.3 1.5] for systolic strain rate, and 0.80 s−1 [0.73 0.86] and -1.5 s−1 [-1.6 -1.3] for

early-diastolic strain rate, accordingly. These values were similar to tagging-based

ones, although circumferential early-diastolic strain rate from cine data was lower,

mostly in the train set (0.7± 0.2 s−1).

Comparison of tagging- and cine-based strain measures with matched subjects

showed an overall agreement in timing and magnitude of strain and strain rate

throughout the cardiac cycle, although there were visual differences in peak strain

rate parameters (Fig. 3-7c). Visual inspection of image artifacts on cine data showed

no evidence that these artifacts affected strain values derived with DeepStrain. Quan-

titative comparisons of tagging- and cine-based measures showed biases in circumfer-

ential end-systolic strain (-14.2 ± 2.2 vs. -15.3 ± 1.5%; bias -1.17 ± 2.93%), radial

end-systolic strain (18.4 ± 5.1 vs. 19.7 ± 3.4%; +1.26 ± 5.37%) and early-diastolic

strain rate (-1.2 ± 0.5 vs. -1.4 ± 0.3; -0.21 ± 0.52 s−1) were not significantly different

from zero. However, there were larger differences (p<0.01) in radial systolic strain

rate (1.0 ± 0.2 vs. 1.3 ± 0.2 s−1; 0.32 ± 0.34 s−1), and circumferential systolic strain

rate (-0.9 ± 0.1 vs. -1.2 ± 0.2 s−1; 0.30 ± 0.22 s−1) and early-diastolic strain rate

(1.2 ± 0.2 vs. 0.8 ± 0.1 s−1; 0.40 ± 0.23 s−1).

3.5.3 Strain Intra-Scanner Repeatability

Global strain time series derived from repeated acquisitions are shown in Fig. 3-

8a. The overall bias in circumferential and radial end-systolic strain were 0.17%

and -0.16%, accordingly. Average relative change between parameters was less than

± 1% for end-systolic strain and less than ± 5% for peak strain rate (Table 3.3).

Average absolute relative change was 5% for end-systolic strain (circumferential:

3.0 ± 2.0%; radial: 5.1 ± 5.8%), 8% for systolic strain rate (8.0 ± 6.8%; 7.7 ±

66



Table 3.2: Normal ranges of strain with DeepStrain in healthy subject. Tagging-based
measures are shown for the CMAC cohort. DeepStrain repeatability is shown for two
acquisitions (ACQ)

4.0%), and 10% for early-diastolic strain rate (10.2 ± 7.8%; 9.2 ± 8.6%). Mean ICC

values showed repeatability was good to excellent for end-systolic strain (0.75; 0.90),

systolic strain rate (0.77, 0.91), and early-diastolic strain rate (0.83, 0.84). The limits

of agreement, which defines the interval where to find the expected differences in 95%

of the cases assuming normally distributed data, were 2% and 6% for circumferential

and radial end-systolic strain, and 0.5 s−1 for strain rate measures. Average relative

change and absolute relative change across regional segments were within ± 2% for

circumferential and ± 5% for radial end-systolic strain, except in anterior segments

(± 8%) radially (Fig. 3-8b). Regional mean ICC values showed good to excellent

repeatability across all segments, except circumferentially near inferoseptal, inferior,

and inferolateral walls where repeatability was moderate (Supplementary Table 1).

Limits of agreement showed that 95% of differences occurred within 5% and 10%

intervals for circumferential and radial end-systolic strain.

3.5.4 Evaluation in Cardiac Patients

Global values of strain and strain rate across the cardiac cycle (Fig. 3-9) for all 100

subjects in the ACDC train set showed progressive decline in strain values starting
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Figure 3-8: Intra-scanner repeatability of (a) global and (b) regional myocardial strain
measures

Table 3.3: Intra-scanner repeatability of global circumferential (CIRC) and radial
(RAD) strain measures.

with hypertrophic cardiomyopathy, followed by abnormal right ventricle, myocardial

infarction, and dilated cardiomyopathy. Specifically, relative to the healthy group,

radial end-systolic strain was reduced in all patient populations. Radial systolic and

early-diastolic strain rate were also reduced in all patient groups, except for systolic

strain rate in hypertrophic cardiomyopathy. Fig. 3-10 shows both the cine image

and the circumferential end-systolic strain polar map of a healthy subject and two

patients with myocardial infarction. Strain values in the healthy polar map have a

homogeneous distribution. In contrast, in one myocardial infarction patient the map

indicates a diffused reduction, and inspection of the myocardium on the cine image

shows an anteroseptal infarct that coincides in location with segments with more
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Figure 3-9: Radial strain and strain rate measures on the ACDC train set.

prominent decreases in strain. In a different myocardial infarction patient with an

infarct located in a similar septal region, strain changes are focal and localized to the

anteroseptal wall.

3.6 Discussion

In this study we developed a fast deep learning framework for strain analysis based

on cine data that does not make assumptions about the underlying physiology, and

we benchmarked its segmentation, motion, and strain estimation components against

the state-of-the-art. We compared our segmentations to other deep learning methods,

motion estimates to other non-learning techniques, and strain measures to a reference

tagging technique. We also presented the intra-scanner repeatability of DeepStrain-

based global and regional strain measures, and showed that these measures were

robust to image artifacts in all cases were distortions were present. Global and regional

applications were also presented to demonstrate the potential clinical utilization of our

approach. Our work is the first to report within a single study the characterization,

validation, and repeatability of a learning-based method for strain analysis.
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Figure 3-10: Regional strain in healthy and patients with MI. Myocardial infarction
can result in diffused (center) and focal (right) strain reduction.

3.6.1 Validation

Validation of morphological and functional measures

Segmentation from MR data is a task particularly well suited for convolutional neural

networks given the excellent soft-tissue contrast, thus all top performing methods on

the ACDC test set were based on deep learning approaches. Isensee et al. [56]

had remarkable success on geometric metrics, but this and other approaches resulted

in a systematic overestimation of the left-ventricular end-diastolic volume and thus

underestimation of the myocardium mass. In contrast, CarSON generated less biased

measures of volume and mass, which were not significant. Although Simantiris et

al. [128] obtained the most precise measures, possibly due to their extensive use of

augmentation using image intensity transformations, across methods the precision

of ejection fraction was within the 3-5% [49] needed when it is used as an index
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of left-ventricular function in clinical trials [50]. Lastly, we showed that the mean

absolute error in our measures of end-diastolic volume and mass was almost half the

inter-observer ( 10.6 mL, 12.0 g), and comparable to the intra-observer ( 4.6 mL, 6.2

g) reported in [11]. Further investigations are required to assess the performance on

more heterogeneous populations.

Validation of motion tracking

The CMAC dataset enabled us to compare our results to non-learning methods us-

ing a common dataset. We found that the average end-point error at end-systolic

was lower with tagging-based techniques, reflecting the advantage of estimating car-

diac motion from a grid of intrinsic tissue markers (i.e., grid tagging lines). Further,

the tagging techniques also benefited from the fact that landmarks were placed near

the center of the myocardial wall borders, whereas motion estimation from tagging

data at the myocardial walls and in thin-walled regions of the left-ventricular is less

accurate due to the spatial resolution of the tagging grid [3]. In addition, some of

the tagging images did not enclose the whole myocardium and some contained imag-

ing artifacts, which resulted in strain artifacts towards the end of the cardiac cycle.

Nevertheless, MEVIS-based motion estimates achieved the lowest error and thus rep-

resents a reliable reference for strain measures. This performance could be a result

of their image term (2.2) that penalizes phase shifts in the Fourier domain instead of

intensity values, an approach that is less affected by desaturation. The UPF approach

also achieved a low error using multimodal integration and four-dimensional track-

ing to leverage the strengths of both modalities and improve temporal consistency

[18]. Specific differences in motion and strain measures between MEVIS and other

techniques were thoroughly discussed by Tobon-Gomez et al. [135].

Validation of strain

Using MEVIS as the tagging reference standard, we found no significant differences

in measures of circumferential of radial and end-systolic strain. Validation studies

have shown similar (±1%, [47, 5, 94]) or worse (±11% for radial, [5]) biases between

71



cine feature tracking and tagging strain. However, these methods required manual

contouring by an expert, whereas our method is fully-automatic. We found significant

differences in strain rate measures between the two techniques that could be due to

drift errors in the MEVIS implementation, i.e., errors that accumulate in sequential

implementations in which motion is estimated frame-by-frame [135]. Although we

did not observe considerable improvements in average end-point-error compared to

tagging- and cine-based methods, an important advantage of our learning-based ap-

proach is the reduced computational complexity relative to the proposed MEVIS (1-2

h), IUCL (3-6 h), UPF (6 h) and INRIA (5 h) approaches [135]. Specifically, because

once trained our network does not optimize for a specific test subject (i.e., it does

not iterate on the cine-data to generate the desired output), centering, segmentation,

and motion estimation for the entire cardiac cycle can be accomplished much faster

(<2 min in CPU). In addition, DeepStrain was trained on a relatively small dataset

and was evaluated on data from different institutions and vendors, therefore its accu-

racy relative to non-learning methods could substantially improve through training

with larger cohorts or application of data shift correction strategies. Furthermore, a

joint optimization of segmentation and motion estimation networks could potentially

improve the robustness of the workflow to undersampled data [112].

3.6.2 Normal range of strain in healthy subjects

The application of myocardial strain to quantify abnormal deformation in disease

requires accurate definition of normal ranges. However, previously reported normal

ranges vary largely between modalities and techniques, particularly for radial end-

systolic strain [3]. In this study we showed DeepStrain generated strain measures

with narrow confidence interval in healthy subjects across three different datasets.

Although direct comparison with the literature is difficult due to differences in the

datasets, our strain measures generally agreed with several reported results. Specif-

ically, circumferential strain is in agreement with values obtained from studies in

healthy participants based on tagging (-16.6%, n=129) and speckle tracking echocar-

diography (-18%, n=265) datasets [141, 96], as well a recently proposed (-16.7%
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basal, n=386) tagging-based deep learning method [29]. Our radial strain values are

in agreement with those obtained using some tagging-based studies (26.5%, n=129;

23.8% basal, n=386)[29, 141], but are lower than most reported values [3]. This is

a result of the smoothing regularization used during training to prevent overfitting.

However, lowering the regularization without increasing the size of the training set

would lead to increased end-point error and decreased precision. Strain rate measures

derived with DeepStrain were also in good agreement with previous tagging-based

studies [141].

3.6.3 Repeatability

In this study we also evaluated the intra-scanner repeatability of strain measures in 10

healthy subjects, an important aspect to consider when assessing the potential clinical

utility of DeepStrain. Confidence intervals in circumferential and radial end-systolic

strain were 0±1% and 0±3%, better than the intra-observer variability reported us-

ing feature tracking in 10 healthy adults [73]. A more recent study in 100 healthy

individuals reported intra- and inter-observer repeatability for circumferential (ICC

intra: 0.88, ICC inter: 0.88) and radial (0.82, 0.79), which were comparable to our

results for circumferential (0.75) and radial (0.90) despite using only 10 subjects. Fi-

nally, our repeatability of strain rate measures was good to excellent, similar to that

reported for healthy (n=20) and patient (n=60) populations [84]. Thus, without re-

quiring expert operators, DeepStrain achieved better or equal repeatability compared

to feature tracking methods.

3.6.4 Potential Clinical Applications

DeepStrain could be applied in a wide range of clinical applications, e.g., automated

extraction of imaging phenotypes from large-scale databases [91]. Such phenotypes

include global and regional strain, which are important measures in the setting of

existing dysfunction with preserved ejection fraction [129]. DeepStrain generated

measures of global strain and strain rate over the entire cardiac cycle from a cohort
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of 100 subjects in <2 min. These results showed that radial early-diastolic strain rate

was reduced in patients with hypertrophic cardiomyopathy and abnormal right ventri-

cle, despite having a normal or increased left-ventricular ejection fraction. Decreased

early-diastolic strain rate with normal ejection fraction is suggestive of subclinical

left-ventricular diastolic dysfunction, which is in agreement with previous findings

[16, 87].

At an individual level, we showed that in patients with myocardial infarction, po-

lar segments with decreased circumferential strain matched myocardial regions with

infarcted tissue. Further, we showed that the changes in regional strain due to my-

ocardial infarction can be both diffuse and focal. These abnormalities could be used

to discriminate dysfunctional from functional myocardium [41], or as inputs for down-

stream classification algorithms [158]. More generally, DeepStrain could be used to

extract interpretable features (e.g., strain and strain rate) for deep learning diagnostic

algorithms [160], which would make understanding of the pathophysiological basis of

classification more attainable [60].

3.6.5 Study Limitations

A limitation of our study was the absence of important patient information (e.g.,

age), which would be needed for a more complete interpretation of our strain anal-

ysis results, for example to assess the differences in strain values found between the

healthy subjects from the ACDC and CMAC datasets. Nevertheless, using publicly

available data enables the scientific community to more easily reproduce our findings,

and compare our results to other techniques. Another limitation was the absence of

longitudinal analyses, i.e., longitudinal strain was not reported because it is normally

derived from long-axis cine data not available in the training dataset. The size of the

datasets is another potential limitation. The number of patients used for training is

much smaller than the number of trainable parameters, potentially resulting in some

degree of overfitting. To correct this, the training set for motion estimation could be

expanded by validating the proposed segmentation network on more heterogeneous

populations. While our repeatability results were promising despite testing in only
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a small number of subjects, repeatability in patient populations was not evaluated.

Further, reproducibility across sites and vendors was not assessed. Additionally, the

accuracy of the motion estimates on patient populations with regional dysfunction

was not evaluated, and we did not quantify the effect of dataset shift errors that

might occur when applying our method to new datasets.

3.6.6 Conclusion

We developed an end-to-end learning-based workflow for strain analysis that is fast,

operator-independent, and leverages real-world data instead of making explicit as-

sumptions about myocardial tissue properties or geometry. This approach enabled

us to derive strain measures from new data that were repeatable, and comparable to

those derive from dedicated tagging data. These technical and practical attributes

position DeepStrain as an excellent candidate for use in routine clinical studies or

data-driven research.
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Chapter 4

Prospective Study in Asymptomatic

Young Adults

4.1 Introduction

Worldwide shifts towards sedentary lifestyles and suboptimal diets have led to in-

creased prevalence of global obesity and obesity-related comorbidities such as hyper-

tension [40, 1, 48, 92]. Each condition alone is a strong independent risk factor for

type 2 diabetes mellitus [21, 2] and increased cardiovascular morbidity and mortality

[66, 72, 25]. Clustering of obesity, hypertension, and type 2 diabetes mellitus could

further elevate rates and severity of cardiovascular disease [138, 144], and is suspected

to contribute to increased incidence of heart failure in the young [39]. Heart failure

could be preceded by asymptomatic left ventricular diastolic dysfunction [68], a clin-

ically silent disease whose development and transition to symptomatic heart failure

are stimulated by obesity-related comorbidities [32, 61, 152, 24]. Echocardiography

strain imaging studies have further demonstrated that asymptomatic left ventricu-

lar systolic dysfunction [121] can coexist with asymptomatic left ventricular diastolic

dysfunction even when ejection fraction is preserved [79], and is associated with ad-

verse long-term prognosis [52, 98]. Thus, strain imaging tools could provide a more

accurate evaluation of left-ventricular function complementary to ejection fraction,

and identification of both asymptomatic left-ventricular diastolic dysfunction and
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asymptomatic left-ventricular systolic dysfunction at the early onset of non-specific

symptoms using these tools could represent the earliest opportunity for diagnosis and

treatment [108, 68].

In non-diagnostic or cases with inconclusive echocardiography findings, cardiac

MR imaging plays an important complementary role and is often requested [108] to

provide the most accurate and reproducible assessment of cardiac function, struc-

ture, and tissue properties [120]. The automated DeepStrain workflow proposed

in this dissertation could quickly generate advanced strain readouts from clinically-

standard cine images as well. Thus, the application of DeepStrain in routine cardiac

MR studies would offer additional information about the underlying biomechanical

motion, making cardiac MR a one-stop-shop for a more thorough characterization

of disease trajectory towards the heart failure spectrum within a single examina-

tion [107, 14, 120, 136]. Although cine based strain analysis has been used to detect

asymptomatic left-ventricular diastolic dysfunction and asymptomatic left-ventricular

systolic dysfunction in older adults [82, 53, 69], few strain studies have focused on

young adults, and detection of left-ventricular dysfunction in these subjects is poten-

tially more difficult compared to older populations since they are less likely to have

obvious clinical or imaging sings of cardiac disease during examination [151].

The aim of this study was to test DeepStrain as a sensitive tool for the detection of

asymptomatic left-ventricular diastolic dysfunction and asymptomatic left-ventricular

systolic dysfunction through characterization of myocardial strain in asymptotic young

adults with overweight, hypertension, and type 2 diabetes mellitus.

4.2 Study Population

This prospective cross-sectional study was approved by the local medical ethical com-

mittee and conducted in accordance with the Declaration of Helsinki. Subjects aged

18-45 years were voluntarily recruited with public advertisements and signed informed

consent before participation. Exclusion criteria were history or knowledge of cardiac

disease, cardiac risk factors other than overweight, hypertension or type 2 diabetes
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Figure 4-1: Risk Factor Group (RFG) classification decision tree.

mellitus, exercising ≥ 3 hours/week [109], and contraindications for cardiac MR.

Presence of cardiac risk factors was checked using a medical questionnaire, and mea-

surements of weight, blood pressure and hemoglobin A1c. Overweight was defined

as body mass index ≥ 25 kg/m2; hypertension was identified as either actively un-

der clinical treatment or three consecutive blood pressure measurements ≥ 140/90

mmHg; type 2 diabetes mellitus was identified as either actively under treatment or a

measure of hemoglobin A1c ≥ 48 mmol/mol measured prior to the cardiac MR exam.

All subjects were classified into one of the following groups: controls, risk factor

group 1 (RFG1) including all overweight subjects with neither hypertension nor type

2 diabetes mellitus; RFG2 including all hypertensive subjects without type 2 diabetes

mellitus, regardless of the presence or absence of additional overweight risk factor;

RFG3 including all subjects with type 2 diabetes mellitus, regardless of the presence

or absence of additional overweight or hypertension risk factors (Fig. 4-1).
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Figure 4-2: Representative cine images of 3 subjects for each risk factor group (RFG).
Images are shown at mid-ventricle at both end-diastole (left) and end-systole (right).
Top to bottom: controls, RFG1, RFG2, and RFG3.

4.2.1 Cardiac MR Data Acquisition

All subjects underwent cardiac MR with a 3 Tesla scanner (MAGNETOM Prisma,

Siemens Healthineers, Erlangen, Germany) using a 60-element phased-array body

coil. Experienced operators used a steady-state free precession sequence to acquire

cine images using electrocardiographic gating during a series of breath-holds. Short-

axis cines covering the entire heart from atria to ventricular apex were obtained. Each

cine contained 25 cardiac phases with 6 mm slice thickness, and 4 mm interslice gaps.

Short-axis acquisition parameters were: repetition time 38.92-44.52 ms, echo time

1.15-1.31 ms, flip angle 43-46∘, field of view 300-453 mm×225-453 mm, acquisition

matrix 256×192-256. Representative MR images of each RFG are shown in Fig. 4-2.

80



4.3 Method

4.3.1 DeepStrain Analysis

The final DeepStrain model described in Chapter 3 was used to derive the follow-

ing parameters of circumferential and radial strain: global end-systolic strain, global

systolic and early-diastolic strain rate, and regional end-systolic strain for each ven-

tricular wall, i.e., anterior, septal, inferior, and lateral.

4.3.2 Statistical Analysis

Demographic variables were expressed as mean standard deviation, and strain-related

variables as mean [95% confidence interval]. Variables were tested for normal distri-

bution with a Shapiro-Wilk test and for homogeneity of variance using Levene’s test.

One-way analysis of variance (ANOVA) with post-hoc test by Bonferroni was used to

examine differences among groups. Multivariate linear regression analysis was used

to identify the independent association of the clinical variables body surface area,

mean arterial pressure, and hemoglobin A1c on strain measures. A p-value < 0.05

was considered statistically significant. Data were analyzed using Python (version

3.5, Python Software Foundation, www.python.org).

4.4 Results

The study cohort consisted of 119 participants (35 ± 5 years, 50% male) including

the control group with 30 subjects; RFG1 with 39 overweight subjects; RFG2 with

30 hypertensive subjects, including 13 (43%) with additional overweight; RFG3 with

20 type 2 diabetes mellitus subjects, including 11 (55%) with additional overweight,

1 (5%) with additional hypertension and 8 (40%) with both. Age, gender, and height

were not significantly different between groups (Table 4.1), however, the mean heart

rate of RFG3 was significantly higher compared to controls. Furthermore, there

were no significant differences in left-ventricular mass, volumes, and ejection fraction

between groups (supplementary Table A.2).
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Table 4.1: Clinical characteristics of controls and risk factor groups (RFG).

Figure 4-3: Global measures of (a) circumferential and (b) radial end-systolic strain
in controls and risk factor groups (RFG). Data are reported as mean [95% confidence
interval]. * 𝑃 < 0.05 Post-hoc test by Bonferroni.

4.4.1 Global Strain and Strain Rate

Comparisons of global end-systolic strain showed that there were no significant dif-

ferences in circumferential or radial strains between groups, except for a significantly

decreased radial strain in RFG1 (19.4% [18.0 20.8]; p<0.05) relative to controls (21.9%

[20.7 23.1]) (Fig. 4-3b and Table A.3).

Global circumferential early-diastolic strain rate was significantly reduced in RFG1
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Figure 4-4: Global measures of (a) circumferential and (b) radial end-systolic strain
rate (SR) in controls and risk factor groups (RFG). Data are reported as mean [95%
confidence interval]. * 𝑃 < 0.05; ** 𝑃 < 0.01; *** 𝑃 < 0.001 Post-hoc test by
Bonferroni.

(0.70 s-1 [0.64 0.75]; p<0.05), RFG2 (0.62 s-1 [0.56 0.67]; p<0.001), and RFG3 (0.62

s-1 [0.55 0.68]; p<0.01) relative to controls (0.81 s-1 [0.74 0.89]) (Fig. 4-4a). Radial

early-diastolic strain rate was also significantly reduced in RFG3 (-1.34 s-1 [-1.48 -

1.19]; p<0.05) compared to controls (-1.62 s-1 [-1.74 -1.51]) (Fig. 4-4b). We found no

significant differences between controls and RFGs in global systolic strain rate.

Body surface area correlated negatively with both circumferential and radial end-

systolic strain (p<0.001; p<0.001), as well as early-diastolic strain rate (p<0.001;

p=0.009) and systolic strain rate (p<0.001; p=0.002). Mean arterial pressure was a

negative correlate of early-diastolic circumferential strain rate (p=0.007). We found

no significant correlation between hemoglobin A1c and strain measures (Table 4.2).

4.4.2 Regional Strain

Regional comparisons of end-systolic strain by wall showed significantly lower cir-

cumferential strain in the septal wall of RFG1 (-13.7% [-14.2 -13.3]; p<0.001), RFG2

(-14.1% [-14.7 -13.5]; p<0.05), and RFG3 (-12.9% [-13.6 -12.1]; p<0.001) compared

to controls (-15.1% [-15.6 -14.7]) (Fig. 4-5a and Table A.3). Notably, circumfer-
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Table 4.2: Independent correlates of strain measures.

Figure 4-5: Regional measures of (a) circumferential and (b) radial end-systolic strain
by wall (i.e., anterior, septal, inferior, and lateral) in controls and risk factor groups
(RFG). Data are reported as mean [95% confidence interval].* 𝑃 < 0.05; ** 𝑃 < 0.01;
*** 𝑃 < 0.001 Post-hoc test by Bonferroni.

ential strain was significantly increased in the lateral wall of RFG1 (-17.7% [-18.1

-17.3]; p<0.01), RFG2 (-18.1% [-18.5 -17.7]; p<0.001), and RFG3 (-17.9% [-18.3

-17.4]; p<0.01) compared to controls (-16.8% [-17.2 -16.5]). Radial strain was de-

creased in the anterior (p<0.01), inferior (p<0.001), and lateral (p<0.001) walls of

RFG1 and RFG3 compared to controls (Fig. 4-5b).

4.5 Discussion

Cardiac MR DeepStrain analysis of standard cine images identified evidence of asymp-

tomatic left-ventricular diastolic dysfunction and asymptomatic left-ventricular sys-

84



tolic dysfunction in asymptomatic otherwise healthy, young subjects without knowl-

edge or history of cardiovascular disease, but with at least one cardiovascular risk

factor from overweight, hypertension, and type 2 diabetes mellitus. Despite com-

parable left-ventricular mass, volumes, and ejection fraction to controls, all RFGs

showed impairment of left-ventricular circumferential early-diastolic strain rate as

well as regional circumferential end-systolic strain. On multivariate linear regression

analysis, body surface area correlated negatively with all strain measures, and mean

arterial pressure was a negative correlate of circumferential early-diastolic strain rate.

4.5.1 Asymptomatic diastolic dysfunction

The link from obesity, hypertension, and type 2 diabetes mellitus to diastolic dysfunc-

tion has been well established in multiple echocardiography studies [54, 103, 106, 13,

147, 114, 130, 97, 166, 102, 104, 38]. Early-diastolic SR has also been used to identify

asymptomatic left-ventricular diastolic dysfunction in older healthy adults (i.e., >45

years old) [146, 64]. Few studies have been applied to young adults, including obe-

sity, severe obesity [149, 22], and type 2 diabetes mellitus [153, 43]. A recent study

reported reduced early-diastolic strain rate in hypertension [126], and more recently,

a progressive decline was demonstrated from lean to obese to type 2 diabetes mellitus

in adolescents and young adults [43]. Liu et al. also showed progressive deteriora-

tion in cardiac MR-based circumferential and radial early-diastolic strain rate from

controls to newly diagnosed to longstanding type 2 diabetes mellitus, corroborating

previous findings about the cumulative effect of type 2 diabetes mellitus in early

adulthood [64]. In this study we identified asymptomatic left ventricular diastolic

dysfunction in all RFGs as indicated by significantly reduced early-diastolic circum-

ferential and radial strain rate, and we found mean arterial pressure as independent

predictor for circumferential early-diastolic strain rate, providing additional evidence

of the existence of asymptomatic left-ventricular diastolic dysfunction even at a rela-

tively young age. Our results indicate that DeepStrain could become a practical tool

in the evaluation of underlying etiologies of suspected diastolic dysfunction, which in

obesity-related comorbidities is challenging since coexistence of multiple risks factors

85



does not always yield uniform features but instead can present as multiple overlapping

phenotypes [101].

4.5.2 Asymptomatic systolic dysfunction

The first asymptomatic manifestation of disease has traditionally believed to be dias-

tolic dysfunction, as nearly all patients with systolic dysfunction already have some

degree of concomitant diastolic dysfunction [116]. However, some authors suggested

development of asymptomatic systolic dysfunction irrespective of diastolic dysfunc-

tion [28, 93], and reported that detection of systolic dysfunction using strain provides

incremental prognostic value [52, 79, 98]. Multiple studies have reported reduced sys-

tolic strain with preserved ejection fraction in obesity and obesity-related risk factors

using echocardiography [153, 145, 149] and more recently cardiac MR [82]. Although

the majority have focused on global longitudinal strain, a recent study in hypertensive

and heart failure patients with preserved ejection fraction reported that the predic-

tive performance of global circumferential strain for heart failure was greater than

longitudinal or radial strain [63]. Cardiac MR studies have also reported reduced

circumferential strain in obese [53] and hypertensive subjects with type 2 diabetes

mellitus [69], and in the latter all global strain measures were preserved in hyperten-

sive subjects without type 2 diabetes mellitus, suggesting additional burden of type

2 diabetes mellitus to left-ventricular impairment [69]. In our study global measures

of systolic function were reduced, albeit to a lesser extent than diastolic. Circumfer-

ential strain and systolic SR were comparable between groups, and radial strain was

only significantly reduced in RFG1. This result may be explained by the small sample

sizes and inability to achieve statistical significance in post-hoc analyses, but could

also imply global measures are less sensitive than regional to subtle systolic dysfunc-

tion, as previously shown for mild hypertension [6]. Similarly, we found significant

regional alterations in circumferential end-systolic strain in all RFGs characterized

by reduced septal strain and increased lateral strain. Asymmetric septal hypertrophy

due to afterload was long considered to be a consequence of increased wall stress

on the septum compared to the free wall [50], and similar alterations in longitudi-
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nal strain have also been reported in mild to moderate hypertension compared to

controls, namely decreased values in the basal septal wall and increased values in

the lateral wall [6]. A recent pig banding study similarly reported that longitudinal

strain in chronic afterload was significantly more reduced in the septal wall relative

to the lateral [115], and in a more recent animal banding study it was reported that

decreases in septal circumferential strain during afterload augmentation was larger

than in the free wall, a finding that could potentially be explained by a larger com-

pensatory preload recruitment in the free wall compared to the septum [95]. Thus,

our results demonstrate that regional analysis could provide additional insights in the

early disease process.

4.5.3 Conclusion

In young adults with overweight, hypertension, and type 2 diabetes mellitus risks fac-

tors early-diastolic SR suggested asymptomatic left-ventricular diastolic dysfunction,

and regional alterations in end-systolic strain indicated asymptomatic left-ventricular

systolic dysfunction despite preserved ejection fraction. These changes could reflect

early signs of cardiac disease, demonstrating that cardiac MR DeepStrain analysis

could be a valuable tool in early detection and characterization of left-ventricular

dysfunction in these populations.
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Chapter 5

Concluding Remarks and Future

Directions

Deep learning characterization of cardiovascular disease from cardiac MR data has

clinical potential at many levels. The presented dissertation aimed to address most

of the technical challenges related to cine strain analysis to demonstrate the poten-

tial at the quantification level. We showed that the sequential use of the VCN and

CarSON networks accurately and automatically generates measures of cardiac func-

tion that are normally reported in standard cardiac MR protocols. CarMEN was

proposed as a novel three-dimensional network for cardiac motion tracking and was

later integrated with VCN and CarSON into the DeepStrain workflow, enabling ac-

curate and precise measures of myocardial strain from cine data. We also showed

that in healthy subjects these strain measures were repeatable and comparable to

those derived from more complex tagging methods. In asymptomatic young adults

with modern-age cardiovascular disease risk factors, these strain measures were more

sensitive than standard metrics to detect left-ventricular dysfunction. This prelim-

inary study in asymptomatic cardiac disease suggests DeepStrain is able to extract

useful information not commonly reported in existing protocols using standard im-

ages, presenting cardiologists more advance readouts about the mechanical status of

the heart. Furthermore, processing time from raw data to strain readouts took less

than 3 minutes in a standard computer, and less than 2 seconds using a basic graphic
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processing unit, which is dramatically faster than current technology (i.e., 1-6 hours).

Thus, implementation of DeepStrain in routine cardiac MR protocols would speed up

the radiology report and increase the overall value of the imaging study.

A summary of the technical developments that enabled us to deliver DeepStrain is

provided in section 5.1. In section 5.2, we conclude this thesis by presenting potential

and ongoing future innovations related to DeepStrain.

5.1 Summary of Technological Developments

In section 1.4, we summarized the various sources of error influencing strain mea-

surements, and we argued that these sources could lead to inaccurate, imprecise,

and ultimately implausibly wide ranges of normal strain. Several innovations were

presented to provide a method with tagging-level accuracy and precision, yet using

exclusively cine data.

In chapter 2, we developed a three-dimensional convolutional neural network to

reduce overestimation of in-plane motion, a common limitation of two-dimensional

techniques. In chapter 3, we designed an end-to-end learning-based workflow for au-

tomated myocardial tissue detection, labeling, and motion tracking. To accurately

calibrate the design of the networks, we re-designed CarMEN such that all networks

in the DeepStrain workflow had a common encoder-decoder architecture. This ap-

proach was key to efficiently inspecting potential sources of error from each task

independently, and resulted in a more general architecture for cine data tasks. The

presented design is also more optimal than conventional or off-the-shelf networks for

other cardiac MR tasks, which we demonstrate at the conclusion of this thesis in

section 5.2.3.

We additionally implemented an anatomical constrain to train CarMEN with the

aim of minimizing the standard deviation in strain values within healthy individuals,

as well as the differences between training and testing healthy subjects. We also iden-

tified the optimal balance between all the various motion constrains using simulated

motion that was modeled from tagging data, enabling us to find a combination that

90



Figure 5-1: Reported normal (mean and 95% confidence interval) global circumferen-
tial strain in healthy subjects for different imaging modalities and methods compared
to DeepStrain. Adapted from Amzulescu et al. [3].

generates both realistic and accurate motion and strain measures. The end result

of the presented innovations can be seen in Fig. 5-1. In healthy subjects (n=78),

DeepStrain generated precise measures of global circumferential strain from cine data

that were comparable to those from tagging methods, evident by small width 95%

confidence interval. The healthy subjects were imaged at different institutions using

scanners from different vendors (n=78).

5.2 Future Innovation

5.2.1 Cardiac Mechanics in Humans and Animals

DeepStrain extension to right-ventricular strain

Non-learning techniques have primarily been applied to two-dimensional tracking of

pixels along the myocardial borders in the past, mainly because tracking every pixel

in the image or even just within the myocardium is very computationally demand-

ing, and even more so in three dimensions. This means simultaneous tracking of

both left and right ventricles is not easily achieved, and most commercial motion
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Figure 5-2: DeepStrain based right-ventricular strain

tracking applications have remained focused on the left ventricle. For this and other

reasons, such as a complicated geometry and high load dependence, few studies have

focused on right-ventricular morphological, functional, and strain analysis; yet right-

ventricular function plays a critical role in the prediction of adverse cardiovascular

outcomes [51]. In contrast, CarMEN was trained using both right- and left-ventricular

anatomical constrains as described in (3.5), and can quickly track the motion of every

voxel within the cine frame. Thus, the most immediate extension of DeepStrain is

the evaluation of right-ventricular radial and circumferential strain. From an instru-

mentation perspective, improving scanner technology to increase the resolution of the

cine data would provide more anatomically precise features, enabling more accurate

motion tracking of an otherwise relatively thin wall. On the deep learning side, few

labeled data of the right ventricle are currently available for training, limiting learn-

ing in both segmentation and motion tracking tasks. A data-centric approach should

be taken here, i.e., DeepStrain should be trained with large amounts of data that in

most cases contain high-quality labels of the right ventricle. Nevertheless, most of the

challenges related to right-ventricular segmentation occur at the apex and base of the

heart, therefore DeepStrain could be tested now for the evaluation of mid-ventricle

right-ventricular strain (5-2).
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DeepStrain extension to longitudinal strain

One of the main technical challenges of cine-based strain analysis is the anisotropic

resolution of the data, which typically have 1.5 mm resolution in the x-y-plane and be-

tween 5-10 mm along the z direction. This complicates the design of three-dimensional

neural networks by introducing ambiguity in what a convolution with a given kernel

size 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 is actually learning. This is particularly problematic for motion-related

tasks since these require accurately scaled motion features. One simple solution is

resampling the input cine data to isotropic resolution, but this creates very large four-

dimensional volumes which at the moment only few advanced graphical processing

units can process. Further, it is not clear that we can accurately capture longitudinal

motion (i.e., motion along the z direction) even from resampled data, which limits

the ability of DeepStrain to evaluate longitudinal strain. From a data acquisition per-

spective, new sequences are pushing the resolution along the z dimension, and deep

learning methods could accelerate this progress [71]. Another interesting approach is

to leverage multi-task techniques to combine long axis (i.e., base-to-apex) and short

axis (i.e., cross-sectional) images into a unified model of motion, enabling learning of

a more complete model of three-dimensional cardiac motion.

CarSON extension to swine animal study

We have described four levels of clinical potential throughout this thesis, i.e., instru-

mentation, quantification, patient-cohort, and aggregate medicine (Fig. 1-9). Deep-

Strain could find applications in large animal models of cardiovascular disease as well,

which are important for discerning the pathogenesis of human diseases with the pur-

pose of developing novel therapeutic treatments [137]. For instance, Nguyen et al.

used diffusion tensor CMR imaging in swine models of myocardial infarction to study

the myocardial fiber architecture after injury [99], and other swine banding models of

hypertension have been used to study the effects of increased afterload on myocardial

hypertrophy and strain [115, 95]. One challenging aspect of applying deep learn-

ing methods to animal studies is that these studies are usually highly heterogeneous
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Figure 5-3: CarSON model trained with human data directly applied to automated
tissue labeling of a pig’s myocardium.

and include only a small number of animals. Thus, training a deep learning algo-

rithm from scratch using only animal data would be very difficult. Interestingly, deep

learning networks trained with human data could potentially be applied directly to

animal studies. In collaboration with Maaike van den Boomen, PhD, and Christopher

Nguyen, PhD, DeepStrain was tested in cine data from swines to enable automated

myocardial segmentation and strain analysis. As shown in Fig. 5-3, CarSON is able

to accurately delineate all cardiac structures. While these preliminary results require

further validation, CarSON could at the very least generate initial contours that could

then be manually corrected by an operator. More generally, transfer learning tech-

niques requiring only a small set of animals for training could enable translation of

human-based models to animal studies.

5.2.2 Positron Emission Tomography

PET is a noninvasive nuclear imaging modality that uses radioactive tracers to gener-

ate images with many clinical applications across the disease spectrum [140], including

cardiovascular disease [7]. Patient-cohort level deep learning applications have been
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Figure 5-4: Effect of motion correction using CMR-based, CarMEN-derived motion
estimates on lesion quantification in a patient with dilated (DCM) and hypertrophic
(HCM) cardiomyopathy.

demonstrated for direct evaluation and classification of quantitative myocardial perfu-

sion polar maps [59], and others have proposed novel combinations with MR features

[58]. Integrated cardiac MR and PET scanners offer a unique set of features char-

acterizing the myocardium from the most basic epigenetic level, to the most macro

structural and functional level. Below we discus how DeepStrain could be translated

to PET studies at the instrumentation and reading & recording levels, with a special

emphasis on integrated scanners.

CarMEN extension to motion-aware PET correction

Image degradation due to cardiac motion remains a challenge that could hinder the

value PET images in wider clinical practice. For PET data acquired simultaneously in

scanners integrated with MR, CarMEN-based motion estimates could be used to min-

imize the unwanted effects of motion on images. As proof-of-concept we performed

a simulation study. Cine data from subjects with dilated (n=10) and hypertrophic

(n=10) cardiomyopathy were used to generate simulated PET acquisitions and re-
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Figure 5-5: CarSON-enabled automated PET analysis.

constructions, and the CarMEN-derived motion estimates from these data were used

for motion-aware reconstructions. Three reconstruction methods (i.e., uncorrected,

gated and CarMEN-based motion corrected) were evaluated on their ability to quan-

tify small perfusion lesions using the contrast-to-noise ratio metric. Relative to non-

corrected reconstruction methods, the contrast-to-noise ratio of a lesion with 20%

activity decrease is significantly (p<0.01) higher in the motion corrected images for

both cardiomyopathy groups (Fig. 5-4). These preliminary results pave the way for

a new DeepStrain-related motion correction approaches that, when integrated in the

PET reconstruction pipeline, improve the quality of cardiac PET images. However,

as discussed in section 5.2.1, this requires the accurate scaling of motion along all

three dimensions that is matched to the resolution of the PET data - a challenging

technical problem.

CarSON extension to automated PET analysis

Accurate segmentation of cardiac PET images is very challenging due to their lower

spatial resolution and blurred myocardial wall borders boundaries. Several factors

contribute to the overall ambiguity of what constitutes myocardial tissue in these

images, including partial volume effects, respiratory and cardiac motion, and recon-

struction noise and smoothing. In integrated scanners, cine delineation of the cardiac

boundaries could enable more accurate and automated analysis of PET images. In
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collaboration with David Izquierdo, PhD, and David Sosnovik, MD, we have begun

to test the accuracy and usefulness of CarSON-based segmentations in cardiac PET

imaging studies. The general workflow consists of first delineating the myocardial

wall boundaries in the cine data, and then registering the PET images to the cine

coordinates. As shown in 5-5, this is a promising approach that could be used to

streamline the analysis pipeline. In principle, this information could also to be used

to improve the 511 keV photon attenuation map derived from the MR data by offering

a more accurate representation of the cardiac borders.

5.2.3 Evaluate Pulmonary Artery Area: a UK Biobank Study

We conclude our discussion with an example of application of DeepStrain at the

patient-centric and aggregate medicine levels. This project is a collaboration with

Adam Lee Johnson, M.D, Christopher Nguyen, PhD, and Rajeev Malhotra, MD.

The application is aimed at discovering associations between genetic and vascular

markers using the UK Biobank cardiovascular database, which includes more than

40,000 cases with various types of cardiac MR data. Specifically, we would like to

apply CarSON (and in later studies CarMEN) to cardiac MR images of the pulmonary

artery to evaluate its cross-sectional area. A subset of the database (<1,000 cases)

is selected for development, and is manually labeled by operators following a set of

annotation instructions.

Model-centric

From a model-centric perspective, we would like to tailor the design of CarSON

to vessel segmentation. We will also compare its accuracy to that of nnUNet, an

open-source tool that can effectively be used out-of-the-box and represents the state-

of-the-art for several segmentation tasks [57].
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Figure 5-6: CarSON-enabled automated PET analysis.

Data-centric

We also take a data-centric approach by testing both CarSON and nnUNet to detect

any potential difficult or edge cases. To achieve this, labeling and training is done

through phases. In each phase, manual labeling is performed in subsets of the de-

velopment data. Training and testing results are analyzed by both annotators and

deep learning developers. The purpose of this iterative process is to improve the an-

notation instructions (if required), and to determine whether new data-augmentation

approaches are needed.

As shown in Fig. 5-6, preliminary results suggest CarSON outperforms nnUNet

in the vessel segmentation task. Once the final model is trained, CarSON can be

applied to automatically and quickly evaluate several metrics of vessel morphology

and function, and these can then be combined with genetic information available in

database to provide a more complete picture of disease.

5.2.4 The Future of DeepStrain

We have shown DeepStrain has many quantification level applications: automated

evaluation of myocardial morphology and function; automated, fast, accurate, and

precise quantification of left-ventricular strain; automated PET analysis; and many

more. Many of these applications could come together in a synergistic form and be
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Figure 5-7: DeepStrain applications across different levels of cardiac medicine.

applied to large scale studies (Fig. 5-7). Indeed, the development and validation of

this fast and automated tool paves the way for further innovations at other interesting

levels. At the patient-cohort level, DeepStrain could quickly and automatically gen-

erate morphological, functional, and strain measures of cardiac mechanics from tens

of thousands of subjects. Pulmonary artery area quantification in subjects in the UK

Biobank was shown as an example in a current study. At a aggregate medicine level,

ambitious undertakings to integrate clinical and laboratory results with DeepStrain

and genetic features could elucidate novel therapeutic targets and research directions,

making DeepStrain an ideal tool to characterize cardiac disease in the 21st century.
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Appendix A

Tables

Table A.1: Metrics Comparison for the pediatric dataset. Data are medians, with

interquartile ranges in parentheses. Image metrics included the Dice Similarity Coeffi-

cient (DSC), peak signal-to-noise ratio (PSNR), normalized cross-correlation (NCC),

and the multiscale structural similarity metric index (MS-SSIM). High values of DSC,

PSNR, NCC, and MS-SSIM are considered good. 𝑃 values are relative to CarMEN

and were obtained by using two-sided Wilcoxon signed-rank tests. ITK = Insight

Segmentation and Registration Toolkit.
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Table A.2: Left ventricular parameters of controls and risk factor groups (RFG).

Table A.3: Left-ventricular strain measures of controls and risk factor groups (RFG)

as mean [95% confidence interval].
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