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Abstract

Decarbonizing power systems will require introducing renewable sources to the en-
ergy supply mix. Intermittent sources in the supply mix, however, make balancing
energy supply and demand more challenging. Energy storage systems can be used to
balance supply and demand by storing energy when renewable sources generate more
energy than needed, and providing energy when generation is insufficient. Failing to
account for degradation, however, when operating a battery can dramatically reduce
the battery’s life span and increase degradation-related costs. Existing optimization
techniques that account for degradation when determining the optimal battery op-
eration policies are both computationally intensive and time-consuming. Machine
Learning techniques like reinforcement learning, can develop models that calculate
action-policies in milliseconds and account for complicated system dynamics. In this
thesis, we consider the problem of battery operation for energy arbitrage. We ex-
plore the use of reinforcement learning to determine arbitrage policies that account
for degradation. We compare policies learned by reinforcement learning to the opti-
mal policy, as determined by an advanced mixed-integer linear programming (MILP)
model, on NYISO 2013 day-ahead electricity price data. We show that accounting for
reinforcement learning results in learned policies that are comparable to the behavior
of MILP-determined policies with degradation. We then present a case study that
uses reinforcement learning to determine arbitrage policies on PJM 2019 real-time
electricity price data, and we find that the use of reinforcement learning for real-time
battery operations in the case of energy arbitrage, has promise.
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Chapter 1

Introduction

1.1 The Role of Energy Storage in Decarbonization

Climate change poses risks to both human and natural systems around the world.

Mitigating climate change will require substantial decarbonization particularly in the

power generation sector which accounts for 25% [1] of the world’s emissions.

Significant decarbonization of power systems will require replacing carbon-intensive

generation sources with low- or zero-carbon generation sources like wind and solar.

The challenge, however, of integrating renewable sources like wind and solar with the

power system grid is controlling their generated electrical output. The power system,

like any system, must balance the generated power (supply) with the load (demand)

at all times. An imbalance in these two quantities can lead to significant losses and/or

power outages. It is difficult to balance the load with a renewable supply because

both wind and solar generation are weather-dependent and not controllable. Grid

scale energy storage can help reinstate balance in the system by shifting energy from

times of low demand to times of high demand [2].

Therefore, as renewable penetration increases in the electricity supply mix, the

need for integrating grid-scale energy storage to provide load shifting, frequency reg-

ulation, grid stabilization, and energy management services will increase. Energy

storage, however, is expensive [3]. Traditional lithium-ion (Li-ion) batteries, which

are an increasingly popular choice of energy storage due to their lack of geo-spatial
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constraints (i.e. they can be installed anywhere) boast charging and discharging effi-

ciencies of up to 90% [4], but are priced at $500-650/kW and $175-200 per kWh [3] [5].

Energy storage becomes a more compelling investment when it can generate revenue

and offset its costs. One promising avenue for revenue generation is real-time energy

arbitrage. In energy arbitrage, storage asset owners can take advantage of fluctua-

tions in the electricity market to buy electricity (charge battery) when prices are low

and sell (discharge battery) when prices are high, therefore turning a profit.

1.2 Energy Arbitrage Background

There are two main markets that are explored in energy arbitrage literature, the

day-ahead market (DAM) and the real-time market (RTM). To participate in the

day ahead market, the day before trading day, storage asset owners submit bids to

buy energy and offers to sell energy at particular price points for each hour of the

day. After the market operator has received bids and offers from all potential market

participants, the operator balances the supply with the forecasted demand in a process

known as “clearing the market”. After this occurs, the asset owner is told which of

their bids and offers are accepted. During the trading day, however, there is often a

mismatch between the forecasted and actual supply and demand. This discrepancy is

exacerbated in markets with high renewable penetration (since renewables generation

is highly weather dependent, and therefore, difficult to forecast). The imbalance in

the market is rectified via intra-day trading in the real-time market, which often

operates on a smaller interval such as 15 minutes or 5 minutes. The authors of [6]

suggest that a time resolution of one-hour can increase costs associated with balancing

and propose the day ahead market switches to a time resolution of 15 minutes. At

a higher granularity, flexible resources like renewable sources are more valued and

better utilized due to their ability to quickly ramp up/down [7,8] and the variability

in the market is better captured. The trade-off, however, is that high granularity

requires market participants to have more computational power and the ability to

quickly and effectively make arbitrage decisions.
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Thus there is a need for methods that can determine good energy arbitrage policies

quickly.

1.3 Related Works

1.3.1 Methods for Determining Battery Operation Policies

Many studies have been done on optimizing the control of a battery for energy arbi-

trage. In [9–14], mixed integer linear programming (MILP) is used to determine an

optimal energy arbitrage policy under specific electricity market conditions in Aus-

tralia and the United States at a one-hour time interval. The policy is then used to

assess the value of energy storage participation in those markets. [15] uses MILP to

optimize over PJM’s 5 minute interval real-time 2014 market prices and determine

upper and lower bounds on profit from potential market participants. In [16], the

authors propose a stochastic bidding approach for energy arbitrage in the day-ahead

market. Their approach uses an uncertain day-ahead market price forecast and ad-

justs bids in the real-time market for feasibility. In [17], a look-ahead technique is

used to optimize for both clearing the market and maximizing profits from energy

arbitrage in the day ahead market. The research in [9–17], however does not explore

explore more realistic battery models.

1.3.2 Accounting for Battery Degradation in Arbitrage Policy

The studies estimate the most profitable charging and discharging schedule for energy

storage based on electricity market prices, but most of these characterize the efficiency

of the battery as a fixed percentage and do not account for degradation at all [9–13], or

consider the lifetime of the battery [14], but do not degrade the capacity accordingly.

Assumptions about battery lifetime, efficiency, and degradation, however, are critical

for obtaining realistic estimates of profitability [18].

Degradation and efficiency are hard to account for in energy arbitrage models

because most arbitrage models are formulated as linear optimization problems and
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the degradation and efficiency characteristics of a battery are non-linear.

Attempts have been made, however, to capture some of the non-linear behavior

through linearizing behavior over shorter time frames (piece-wise linear segments).

Sakti et al (2017) [18], propose a model that linearizes the non-linear efficiency curves

on smaller time intervals. With this model, the power-limits and efficiency of a bat-

tery are more accurately represented, and the profits generated by the arbitrage model

decreased by as much as 10%, as compared to the profits when the characteristics

of the battery were held constant. Maheshwari et al. (2020) [19] used similar piece-

wise linearzation techniques to develop a degradation model that is compatible with

MILP, but still preserves some non-linearity. They found that accounting for degra-

dation in the charging and discharging schedule yielded approximately 80% of the

maximum revenue possible (without degradation), but the new scheduling reduced

battery capacity degradation by 81.6%.

While such methods can capture some non-linearities, they require special lin-

earization techniques that dramatically increase computation time and resources. The

increased computation time, however, makes it difficult to use such methods in real-

time operation. Use in real-time operation is also made difficult since such methods

cannot easily adapt to changes in market prices and battery state. The model has to

recalculate the optimal battery cycling policy, undergoing a computationally intensive

process, each time a new set of prices or battery parameters is introduced.

The challenge, therefore, is calculating a good arbitrage policy that accounts for

the complicated dynamics of the battery environment, easily handles changes in prices

and battery parameters, and has a small computation time. Reinforcement Learning

has been proposed as method to develop machine learning models that can output

close-to-optimal arbitrage policies while addressing the aforementioned challenges.

1.3.3 Reinforcement Learning (RL) for Energy Arbitrage

Machine Learning models can capture complex non-linear functions and after proper

training, can generalize to changes in price signal data and changes in battery param-

eters. After training, machine learning models take milliseconds to generate close-to-
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optimal policies. This would enable real-time operational decision-making that uses

the most recent and informed forecast.

In [20–22], the authors used reinforcement learning to learn arbitrage policies for

controlling energy storage units for buildings. Authors in [23–26] used reinforcement

learning to control a grid-scale battery for energy arbitrage in the day-ahead hourly

electricity market. In order to simplify the training process, these studies do not

account for non-linear battery degradation or efficiency. In [27], the authors use

reinforcement learning to determine an optimal arbitrage policy with a battery that

does account for non-linear battery degradation. In this study, however, the efficiency

calculation is simplified and the effect of degradation on the arbitrage policy is not

discussed in depth. Furthermore, the authors consider arbitrage on an hourly time

interval in one-market and do not explore how such a model could be applied to

real-time operational decision-making.

1.4 Contributions

This thesis explores how accounting for degradation in reinforcement learning changes

the behavior of the learned policy through operation of a 1MWh battery in NYISO’s

2013 Day Ahead Market. We also compare the RL learned policies to the policies

determined by the advanced MILP model in [28], both with and without degradation.

Finally, we share a case study simulating the use of reinforcement learning to operate

a 1 MWh battery in PJM’s 2019 real-time and day-ahead markets.
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Chapter 2

Methodology

Reinforcement Learning is a type of machine learning that allows one to learn action

policies through trial-and-error. An agent chooses an action to take knowing only the

current state of the environment and its past actions. Depending on how the action

affects the environment, the agent receives a reward (or penalty) (Fig 2-1). Over

time, the agent learns to optimize its cumulative reward. The interactions between

the agent and the environment are modeled after Markov Decision Processes (MDP).

Thus, the agent has a a set of actions it can take in the environment, which are defined

by the action space. It takes these actions based on the state of the environment,

defined by the state space. And based on the state and action, a reward is calculated

using the reward function.

Figure 2-1: Reinforcement Learning Basic Algorithm
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2.1 Battery Environment

2.1.1 State space

The state space is defined using the state of charge of the battery (SoC), the current

price, and the forecasted prices up to a specified time horizon. Thus, the state 𝑠𝑡 at

time 𝑡 with a future forecast horizon of ℎ is defined as 𝑠𝑡 = (𝑆𝑜𝐶𝑡, 𝑝𝑡, 𝑝𝑡+1, . . . 𝑝𝑡+ℎ),

where 𝑝𝑡 is the price of energy at time 𝑡.

The SoC is expressed as a percentage between 0 to 1. In our experiments, we

assumed we were using a 1 MWh Li-ion battery. This allowed us to treat 𝑆𝑜𝐶 as

having units MWh. Changes to the SoC are defined as follows:

𝑆𝑜𝐶𝑡 = 𝑆𝑜𝐶𝑡−1 −
1

𝑆𝑜𝐶𝑚𝑎𝑥,0

𝑃𝑡∆𝑡 (2.1)

where 𝑆𝑜𝐶𝑡(MWh) is the state of charge at time 𝑡, 𝑆𝑜𝐶𝑚𝑎𝑥,0 (MWh) is the initial

maximum state of charge capacity of the battery (Since our battery is a 1MWh

(1MW) battery, 𝑆𝑜𝐶𝑚𝑎𝑥,0 = 1), ∆𝑡 is the time interval (in hours) over which the

power is charged or discharged, and 𝑃𝑡 (MW) is the power from the power source to

the battery at time 𝑡 after considering losses due to imperfect efficiency. When the

battery is charging, 𝑃𝑡 < 0, and when the battery is discharging 𝑃𝑡 > 0.

2.1.2 Action Space

It was assumed that the battery would not be able to both charge and discharge at

the same time. There are five possible actions the battery can take over a given time

interval ∆𝑇 [hours]:

𝑎 ∈ {−𝑃𝑚𝑎𝑥,−0.5𝑃𝑚𝑎𝑥, 0, 0.5𝑃𝑚𝑎𝑥, 𝑃𝑚𝑎𝑥}

The action is set to be the intended power 𝑃𝑡, which is used to calculate the power

before losses, 𝑃𝑔𝑟𝑖𝑑. 𝑃𝑔𝑟𝑖𝑑 is used in financial transactions. Because the battery has

capacity limits, the power 𝑃𝑡 is limited as follows:
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𝑆𝑜𝐶𝑚𝑖𝑛,𝑡 ≤ 𝑆𝑜𝐶𝑡−1 −
1

𝑆𝑜𝐶𝑚𝑎𝑥,0

𝑃𝑡∆𝑡 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥,𝑡 (2.2)

where 𝑆𝑜𝐶𝑚𝑎𝑥,𝑡 and 𝑆𝑜𝐶𝑚𝑖𝑛,𝑡 are the maximum and minimum SoC capacities, respec-

tively, at time 𝑡.

Efficiency To calculate pre-losses power, 𝑃𝑔𝑟𝑖𝑑, of the battery, we implemented a

round-trip efficiency of 𝜂. For a particular charging/discharging power 𝑃𝑡:

𝑃𝑔𝑟𝑖𝑑 =

⎧⎪⎨⎪⎩𝑃𝑡 * 𝜂 if 𝑃𝑡 > 0 (discharging)

𝑃𝑡

𝜂
if 𝑃𝑡 ≤ 0 (charging)

(2.3)

Degradation Upon taking an action 𝑃𝑡, we also decrease 𝑆𝑜𝐶𝑚𝑎𝑥 according to our

degradation model.

Accounting for battery degradation is crucial in the process of energy arbitrage,

since the battery’s operating costs mostly stem from degradation. There are two

kinds of degradation: calendar-based degradation and cycling degradation. Calendar

degradation is the battery’s inherent degradation over time due to environmental

factors like temperature. Cycling degradation is the amount of capacity lost each time

a battery undergoes one charge and discharge cycle. While calendar degradation is

mostly fixed, cycling degradation can vary depending on the depth of charge/discharge

and the power.

We implemented the degradation model as follows:

First we calculate a depth of discharge, which characterizes the change in SoC, a

particular action causes.

𝐷𝑂𝐷𝑡 =
|𝑆𝑜𝐶𝑡 − 𝑆𝑜𝐶𝑡−1| * 100

𝑆𝑜𝐶𝑚𝑎𝑥,0

(2.4)

We then use the depth of discharge to calculate the cycle life 𝑁𝑐𝑦𝑐

𝑁𝑐𝑦𝑐 = 0.0035 *𝐷𝑂𝐷3
𝑡 + 0.2215 *𝐷𝑂𝐷2

𝑡 − 132.29 *𝐷𝑂𝐷𝑡 + 10555 (2.5)
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This relationship between cycle life and DOD was calculated by fitting a third

order polynomial to empirical data of cycle life at different DODs as introduced

in [28]. The cycle life is then used to calculate the new, degraded 𝑆𝑜𝐶𝑚𝑎𝑥,𝑡 at time

step 𝑡. If the battery is at rest (i.e. 𝑃𝑡 = 0), then the battery undergoes calendar

degradation. We assume that the battery capacity due to calendar aging, declines

linearly over time as defined by 2.6.

𝑆𝑜𝐶𝑚𝑎𝑥,𝑡 = 𝑆𝑜𝐶𝑚𝑎𝑥,𝑡−1 −
∆𝑇 * 𝐸𝑜𝐿 * (1− 𝑝) * 𝑆𝑜𝐶𝑚𝑎𝑥,0

Battery Life
(2.6)

where 𝐸𝑜𝐿[%] (End of Life) is defined as the maximum percentage (expressed as a

decimal between 0 and 1) of the battery capacity lost before the battery needs to be

replaced. For our battery environment, we assumed 𝐸𝑜𝐿 = 0.3. Thus, the 1MWh

battery needs to be replaced when it loses 0.3𝑀𝑊ℎ of its capacity. 𝑝 is the ratio

between cyclical degradation and calendar degradation. In our case, we assumed an

even split between cyclical degradation and calendar degradation, so 𝑝 = 0.5. And

both Battery Life and ∆𝑇 are in the same unit, hours. We assumed a battery life of

10 years, so Battery Life = 365 * 24 * 10.

If the battery is not at rest (i.e. 𝑃𝑡 ̸= 0), then the battery undergoes cyclical

degradation. In which case:

𝑆𝑜𝐶𝑚𝑎𝑥,𝑡 = 𝑆𝑜𝐶𝑚𝑎𝑥,𝑡−1 −
∆𝑇 * 𝐸𝑜𝐿 * (1− 𝑝) * |𝑃𝑡|

2 *𝑁𝑐𝑦𝑐

(2.7)

.

2.1.3 Reward Function

The energy arbitrage reward [$] has three components: a revenue component, over-

shooting penalty, and a degradation penalty.

𝑅𝑡 = 𝑝𝑡(
𝑃 𝑖𝑛𝑡
𝑡

𝑃𝑚𝑎𝑥

)−𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐿𝑖𝑓𝑒 * 𝛼𝑑𝑒𝑔 *
𝑙𝑡

𝐸𝑜𝐿
− 𝛼𝑜𝑣𝑒𝑟 * 𝑓(𝑃 𝑖𝑛𝑡

𝑡 ) (2.8)
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where 𝑓(𝑧) is a flag that indicates whether the intended action would cause the battery

to exceed its limits.

𝑓(𝑧) =

⎧⎪⎨⎪⎩0 if 𝑆𝑜𝐶𝑚𝑖𝑛,𝑡 ≤ 𝑆𝑜𝐶𝑡−1 − 1
𝑆𝑜𝐶𝑚𝑎𝑥,0

𝑃𝑡∆𝑡 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥,𝑡

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.9)

The revenue component, 𝑝𝑡(
𝑃 𝑖𝑛𝑡
𝑡

𝑃𝑚𝑎𝑥
), captures the revenue from arbitrage. The over-

shooting penalty is a product of the cost of overshooting, 𝛼𝑜𝑣𝑒𝑟 = 10, and the boolean

flag 𝑓(𝑧), that indicates whether the given action at time 𝑡, would cause the battery

to exceed its limits. The degradation penalty is expressed as the product between

the degradation cost, 𝛼𝑑𝑒𝑔 ($/MWh-year), 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐿𝑖𝑓𝑒 (years), and the fraction of

end-of-life capacity degradation expended, 𝑙𝑡
𝐸𝑜𝐿

= 𝑆𝑜𝐶𝑚𝑎𝑥,𝑡−1−𝑆𝑜𝐶𝑚𝑎𝑥,𝑡

𝐸𝑜𝐿
(MWh), at time

step 𝑡.

2.2 Training with Double Dueling Q Network (DDQN)

The reinforcement learning algorithm is one that trains an agent to select actions that

maximize its cumulative future reward. Specifically, the agent learns the action-value

function, 𝑄(𝑠, 𝑎), of taking an action 𝑎 in state 𝑠. 𝑄(𝑠, 𝑎) is defined as:

𝑄(𝑠, 𝑎) = 𝐸

[︃
ℎ=𝐻∑︁
ℎ=0

𝛾ℎ𝑅𝑡+ℎ|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

]︃
(2.10)

where 𝛾 is a discount factor for future rewards received.

The action-value function is learned and continually estimated from experiences

the agent has in the environment. At each time step 𝑡, the agent decides on an action

𝑎𝑡 to take. With probability 𝜖 the agent decides to take a random action, and all

other times it decides to take the optimal action (as dictated by 𝑎𝑡 = max𝑎 𝑄(𝑠𝑡, 𝑎))

for the current state, 𝑠𝑡. When the action 𝑎𝑡 is taken, the state of the environment

changes to a new state, 𝑠𝑡+1 and a reward 𝑟𝑡 is received. This information is used to

update the action-value function, 𝑄(𝑠, 𝑎), using the Bellman Equation:
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𝑄(𝑠𝑡, 𝑎𝑡)← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼
[︁
𝑅𝑡 −𝑄(𝑠𝑡, 𝑎𝑡) + 𝛾 max

𝑎
𝑄(𝑠𝑡+1, 𝑎)

]︁
(2.11)

where 𝛼 is the learning rate.

𝑄(𝑠, 𝑎) is iteratively updated until it converges to the best action-value function

𝑄*(𝑠, 𝑎). For small action and state-spaces, the action-value function 𝑄, can be

approximated with a look-up table (with dimensions, # of states×# of actions). As

the dimension of states and actions increases, however, the Q-learning task becomes

more difficult.

To address this Google DeepMind [29] proposed approximating the optimal action-

value function 𝑄*(𝑠𝑡, 𝑎𝑡) with a deep neural network with weights 𝜃 (i.e. 𝑄(𝑠𝑡, 𝑎𝑡|𝜃)).

The objective when training the neural network is to minimize the mean squared

error between 𝑄(𝑠𝑡, 𝑎𝑡|𝜃) and the target value [𝑅𝑡 −𝑄(𝑠𝑡, 𝑎𝑡) + 𝛾 max𝑎 𝑄(𝑠𝑡+1, 𝑎|𝜃)],

as shown in (2.12). We used 𝛾 = 0.9999 to reduce the penalty of waiting for future

rewards.

𝑚𝑖𝑛(
[︁
𝑅𝑡 + 𝛾 max

𝑎
𝑄(𝑠𝑡+1, 𝑎|𝜃)

]︁
)−𝑄(𝑠𝑡, 𝑎𝑡|𝜃))2 (2.12)

2.2.1 Network Architecture

For training, we used a noisy double dueling Q network as proposed by [27]. In this,

we decouple the network used to select the action from the network used to generate

the target Q values, as proposed by [30]. The network used to generate the target

Q values is called 𝐷𝑄𝑁𝑡𝑎𝑟𝑔𝑒𝑡 and the network used to select actions is 𝐷𝑄𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡.

The parameters of 𝐷𝑄𝑁𝑡𝑎𝑟𝑔𝑒𝑡 are periodically replaced with the parameters from

𝐷𝑄𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡. In other words, 𝐷𝑄𝑁𝑡𝑎𝑟𝑔𝑒𝑡 serves as a temporally older version of the

current model. Both networks, therefore, have the architecture defined in Figure 2-2,

with parameter count and output sizes defined in Table 2.1. The final output size is

(𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒, 5) because the size of our action space is 5.

We decouple the estimation of the action-independent value function from the

advantage function, as proposed by [31] by using two paths in parallel within our
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Figure 2-2: Architecture of the networks used to estimate the Q action-value function.

network architecture (one path for the value function 𝑉 𝑎𝑙(𝑠) and another for the

advantage function 𝐴𝑑𝑣(𝑠, 𝑎, 𝜃)). The goal of the advantage function is to estimate

the value of taking an action in a particular state, whereas the goal of the value

function is to estimate the value of being in a particular state. The outputs of these

two parallel paths are then combined to approximate the Q-function as follows:

𝑄(𝑠, 𝑎) = 𝑉 𝑎𝑙(𝑠) + 𝐴𝑑𝑣(𝑠, 𝑎, 𝜃) (2.13)

Table 2.1: Output Size and Parameter Count for each layer in network

Layer Name Output Size Parameters

InputLayer (batchsize, 25) 0
Linearnoisy,1 (batchsize, 16) 400
Linearnoisy,value (batchsize, 16) 256
Linearnoisy,advantage (batchsize, 16) 256
Linearnoisy,2 (batchsize, 1) 16
Linearnoisy,3 (batchsize, 5) 80
Combination (batchsize, 5) 0
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The standard fully-connected linear layers are also replaced with noisy linear layers

as proposed by [32]. A noisy linear layer is defined as:

𝑦 = (𝜇𝑤 + 𝑊𝑤 ⊙ 𝜎𝑤)𝑥 + (𝜇𝑏 + 𝑊 𝑏 ⊙ 𝜎𝑏) (2.14)

where 𝜇𝑤,𝑊𝑤, 𝜇𝑏,𝑊 𝑏 are learned parameters of the networks and both 𝜎𝑤 and 𝜎𝑏

are randomly sampled, zero mean noise matrices with fixed statistics (in our case,

sampled from a normal distribution with a standard deviation of 0.017).

2.2.2 Training algorithm

We modified the training algorithm to use a linearly decreasing epsilon-greedy func-

tion for choosing an action, as proposed by [27] to improve convergence time to

a solution. We also changed the initialization of the battery to randomly select a

starting SoC of either 0, 0.5, or 1. The details of the algorithm implementation are

shown in Algorithm 1, and all training processes were implemented using open-source

machine learning framework, PyTorch [33] and the environment was designed using

OpenAI Gym [34]. For all models trained, we used Pytorch’s implementation of the

Adam optimizer with a learning rate of 0.00025, where the learning rate is 𝛼 from

Eqn.2.11. For the epsilon-greedy action selection, we chose an initial 𝜖 = 0.8 and

linearly scaled it down to 𝜖𝑚𝑖𝑛 = 0.001 using

𝜖 = 𝑚𝑖𝑛(𝜖𝑚𝑖𝑛, 𝜖−
𝑐

𝑛𝑢𝑚_𝑒𝑝𝑠
𝜖) (2.15)

where c is a constant used to scale the speed of linear decline. We tried 𝑐 ∈ [0, 10]

and empirically found that 𝑐 = 3 gave the best results with the most consistency.

The training settings used are summarized in Table 2.2.

2.2.3 Utilizing the trained model

To use the trained model, we use the training algorithm (Algorithm 1), but remove

steps that update the model. The process is explained in detail in Algorithm 2.
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Algorithm 1: Training NN-DDQN for Energy Arbitrage
1 Initialize the noise matrices 𝜎𝑏 and 𝜎𝑤;
2 Initialize the current network (𝐷𝑄𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and target (𝐷𝑄𝑁𝑡𝑎𝑟𝑔𝑒𝑡) network

parameters;
3 Initialize Memory, 𝑀 and mini-batch size;
4 Initialize 𝜖 for 𝜖-greedy policy;
5 for Episode e = 1 to num_eps do
6 Reset battery and Initialize battery’s SoC as either 0,0.5, or 1 (randomly);
7 Observe the state of the environment 𝑠𝑡 = (𝑆𝑜𝐶𝑡, 𝑝𝑡, 𝑝𝑡+1, . . . 𝑝𝑡+ℎ) ;
8 for t = 1 to T do
9 Resample zero mean noise matrices 𝜎𝑏 and 𝜎𝑤;

10 With probability 𝜖, select a random action 𝑎𝑡 else select action
𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎(𝐷𝑄𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑠𝑡, 𝑎)) ;

11 Execute action 𝑎𝑡 in the environment to receive reward 𝑟𝑡 and next
state 𝑠𝑡+1 ;

12 Store the transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) as an experience in 𝑀 ;
13 Sample a random mini-batch of experiences from 𝑀 of the form

(𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠𝑘+1);
14 Resample zero mean noise matrices 𝜎𝑏 and 𝜎𝑤;
15 Estimate the target

𝑦𝑘 = [𝑅𝑘 + 𝛾 *𝐷𝑄𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑠𝑘+1,max𝑎𝐷𝑄𝑁𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑘+1, 𝑎))]
16 Do gradient descent with loss (𝑦𝑘 −𝑄(𝑠𝑘, 𝑎𝑘))2

17 Every 𝐶 steps update 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 parameters = 𝜃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 parameters
18 end
19 Update 𝜖 = 𝑚𝑖𝑛(𝜖𝑚𝑖𝑛, 𝜖− 3

𝑛𝑢𝑚_𝑒𝑝𝑠
𝜖)

20 end

Table 2.2: Training Setting Hyperparameters

Name Value

Number of nodes in each layer 16
Learning rate 0.00025
Optimizer Adam optimizer
batchsize 32
initial 𝜖 0.8
𝜖𝑚𝑖𝑛 0.001
Target Model update (C) 1000
Number of Epochs 5000

27



Algorithm 2: Using NN-DDQN for Energy Arbitrage
1 Load the network (𝐷𝑄𝑁);
2 Reset battery and Initialize battery’s SoC to 0 (or SoC required for

comparison to MILP model). ;
3 Observe the state of the environment 𝑠𝑡 = (𝑆𝑜𝐶𝑡, 𝑝𝑡, 𝑝𝑡+1, . . . 𝑝𝑡+ℎ) ;
4 for t = 1 to T do
5 Select action 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎(𝐷𝑄𝑁(𝑠𝑡, 𝑎)) ;
6 Execute action 𝑎𝑡 in the environment and receive next state 𝑠𝑡+1 (no

reward, 𝑟𝑡 needed during testing) ;
7 end
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Chapter 3

Evaluating Reinforcement Learning

Model on Day Ahead Market

We trained reinforcement learning (RL) models both with and without degradation

to operate on the NYISO 2013 wholesale day-ahead electricity prices at a one-hour

resolution. The energy storage asset is a 1MWh, 1MW lithium ion battery with a

roundtrip efficiency of 90% and an assumed annualized degradation penalty, (𝛼𝑑𝑒𝑔),

of $20,0001. The models were trained on one week of data and tested on the following

week of data. Specifically, we trained a model on the first week of January and the

first week in July to explore the model’s performance in both the winter and summer.

Thus, we ultimately present results of four scenarios.

1. Winter Scenario with $20k degradation

2. Winter Scenario with $0k degradation (no degradation penalty)

3. Summer Scenario with $20k degradation

4. Summer Scenario with $0k degradation (no degradation penalty)

The policies were evaluated against mixed-integer-linear programming (MILP) models

with a round-trip efficiency of 90% and degradation penalties of $20,000 and $0.
1The value $20000 was calculated as an estimated annualized cost of replacing the battery after

the battery’s lifespan of 10 years. The total replacement cost of the energy component of the battery
was calculated to be approximately 1𝑀𝑊ℎ× $200/𝑘𝑊ℎ = $200, 000 (For cost basis see [3])
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3.1 Method of Comparison between MILP and RL

policies

The key differences between the MILP model and RL model are:

1. MILP models have a continuous action space, where the power charged or dis-

charged can be any number between [0, 1]. As discussed in section 2.1.2, the

reinforcement learning model only has 5 discrete actions it can take.

2. The reward function of the reinforcement learning algorithm includes and over-

shooting penalty which is unnecessary to include in the MILP objective function

since the MILP model includes a constraint that prevents overshooting. The

MILP objective function also includes an operations and maintenance cost on

the battery which is negligible when compared to the cost of degradation. In

all other aspects, the reward function of the reinforcement learning algorithm,

which is being maximized, and the objective function of the MILP model (also

being maximized), are comparable since both are mainly comprised of a revenue

reward and a degradation penalty.

3. The MILP model uses a linearized form of the non-linear degradation model

used in the Reinforcement learning model.

To minimize any potential effects of these differences, we used the reinforcement

learning battery environment to calculate the effects of taking the actions dictated by

the MILP policies rather than using the revenues and calculated battery degradation

output by the MILP model.

3.2 MILP Policy vs Reinforcement Learning Policy

We compare the policies generated by MILP and Reinforcement Learning in three

aspects: battery degradation, revenue, and the qualitative characteristics of cycling.
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3.2.1 Degradation

We characterize the degradation of the battery through capacity fade (i.e. the slow

decrease in the maximum energy capacity of the battery over time). In Fig 3-1, we

present the capacity fade that results from using Reinforcement Learning policies

and MILP policies over the first two weeks of January (winter) and the first two

weeks of July (summer). The first week of price data in both the winter and summer

scenarios was used to train the agent. In the winter, the difference in capacity fade

between the RL degradation scenario and the no degradation scenario is 0.01%. This

corresponds to a degradation penalty of $66.672. Thus, accounting for degradation

allows us to save $66 in degradation costs. The comparison for winter 0-degradation

penalty scenario is the only comparison with a clear discrepancy between MILP and

RL of 0.02%. Even in this case, however, reinforcement learning learns to degrade

less than MILP. These discrepancies may reduce when provided with more training

data to allow for more robustness to diverse price signals.

3.2.2 Revenue

The reinforcement learning algorithm is able to learn the general charging and dis-

charging strategy of buying energy when the price is low and selling when the price

is high (Fig 3-2, Fig 3-3), as is expected and comparable to MILP’s general strategy.

In both MILP and reinforcement learning we see the battery cycling about once a

day (if it cycles at all).

The reinforcement learning model is able to generate comparable revenues. In the

worst case, the RL model generates 86% of the MILP’s revenue (summer scenario

no degradation). In the best scenario (winter scenario degradation), the RL model

generates 102% of the MILP’s revenue, although this comes at a higher degradation

cost (as seen in Fig 3-1). In the other two scenarios the RL model is able to generate

on average, 96% of the revenue made by the MILP model.

2𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐿𝑖𝑓𝑒 * 𝛼𝑑𝑒𝑔 * 𝑙𝑡
𝐸𝑜𝐿 =10 years* 20000 $/MWh-year * 0.0001 MWh/0.3 MWh = $66.67
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Figure 3-1: Battery Capacity Fade using MILP and Reinforcement Learning

Figure 3-4: Comparison of MILP Revenues with Reinforcement Learning Revenues.
Initial condition of summer degradation scenario differs from initial condition of other
scenarios.
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Figure 3-2: One week of cycling in the winter scenario with degradation. SOC equiv-
alent to battery capacity in MWh when using 1 MWh battery.

Figure 3-3: One week of cycling in the summer scenario with no degradation. SOC
equivalent to battery capacity in MWh when using 1 MWh battery.

3.2.3 Motivation and Justification for Case Study in Real-

Time Market

MILP still outperforms reinforcement learning in all cases. However, reinforcement

learning shows promise. By accounting for degradation, we see that reinforcement

learning is able to change policy to reduce capacity fade. We also see that reinforce-

ment learning in most cases, is able to generate most of the revenue possible by MILP.

Given more computational power and time to better tune the hyperparameters of the

model and training process (as listed in 2.2), the discrepancy between MILP and rein-

forcement learning can be decreased. In particular, by training the model on a longer

and more diverse price signal (e.g. an entire year of price data), we would expect the

performance of the model to dramatically improve. Having used the day-ahead mar-
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ket as a test-bed to assess whether reinforcement learning is capable of changing its

policies to account for degradation in the expected manner, we were motivated to use

similar approaches on the Real-Time Market. This motivation stems from the fact

that the real-time market requires quick operational decision making, on the order of

5 minutes. Thus, traditional approaches to this problem such as using MILP models,

are too computationally intensive to run when also accounting for degradation.
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Chapter 4

Case Study: Using Reinforcement

Learning to Operate a battery in

Real Time

4.1 Methodology Changes for Real-Time Market

Once we showed that reinforcement learning was able to generate comparable results

with MILP with similar degradation trends (i.e. accounting for degradation reduces

capacity fade and can make most of the revenue) with the 2013 NYISO day ahead

market, we explored the use of reinforcement learning on a 5-minute interval real-time

market. For the case study, we used prices from PJM’s 2019 dataset and chose to

train and test our reinforcement learning model on 8 days in the winter and 8 days

in the summer. Specifically, we train on the first 4 days in a given set of days, and

evaluate the model on the last 4 days.

To modify the existing model training framework from day-ahead market use to

real-time market use, we made the following changes.

1. Real Time prices are very uncertain. We assumed that the forecast of prices

over the next hour is always close to true prices. Thus, we used a perfect

forecast of 12 real-time prices (i.e. prices over the course of the next hour) in
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our environment state as opposed to the 24 hour future prices provided in the

day ahead market. This modifies our state vector to be a vector of length 13,

𝑠𝑡 = [𝑆𝑜𝐶, 𝑝𝑡, . . . , 𝑝𝑡+12].

2. Batteries often will participate in the day-ahead market and use the remaining

capacity for the real-time market. To account for this, we used the MILP

model to generate day ahead optimal bids and offers with PJM’s 2019 day-ahead

market prices. At every time-step, we calculate the state of charge available for

use in the real-time market, and provide this adjusted state of charge to the

agent when decision making.

3. We continue to assume that our battery is a 1MWh battery, but we assume that

since it is operating on a smaller time-scale, it has more robust power control

infrastructure, and thus we set the maximum power, 𝑃𝑚𝑎𝑥 to 2MW as opposed

to 1MW, as was the case in the day-ahead comparison with MILP.

4. Since the revenues generated on a single time step in the real-time market

are about 12 times smaller than those generated in the day-ahead market, we

modified the overshooting penalty cost from 𝛼𝑜𝑣𝑒𝑟 = 10 to 𝛼𝑜𝑣𝑒𝑟 = 1. This is

done to prevent the overshooting penalty from overwhelming other components

of the reward function.

5. Because there is more uncertainty in the prices of the real-time market, we

incentivize present rewards more than future rewards (since future rewards have

high uncertainty depending on the prices). We do this by decreasing 𝛾 (the

discount factor as mentioned in Algorithm 2) to 0.95.

All other aspects of the training process and infrastructure remained identical to the

process previously discussed in Section 2.2.
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4.2 Degradation, Revenues, and Cycling Behavior

In Fig 4-1, we show the isolated effect of real-time market arbitrage on the capacity

of the battery over 8 winter days (i.e. the figure does not include any degradation

that stems from taking actions in the day-ahead market). As expected, the model

that accounts for degradation with a $20,000 annualized penalty (correlates to a total

battery replacement cost of approximately $200,000 in 10 years), degrades 0.02% less

than the model that does not account for degradation. This 0.02% capacity fade

results in a degradation cost difference of $133 according to our model’s degradation

penalty calculation as discussed in section 2.1.3. When we include degradation from

the day-ahead market as well, we see a capacity fade difference of 0.06%, which is

equivalent to a degradation cost difference of $400.

Figure 4-1: Degradation from Real-Time Market Arbitrage, Winter days

The difference in revenue, however, between the real-time market profits two sce-

narios is smaller than the difference in their degradation costs. In the case where we

account for degradation, the optimal policy is to not cycle in the day-ahead market

at all. The total revenue from both the real-time and day-ahead markets when ac-

counting for degradation is $75, all from real-time market arbitrage. When we do

not account for degradation, the model acquires a revenue of approximately $150,

where $103 comes from real-time market arbitrage and the remaining amount ($47)
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comes from the day-ahead market arbitrage. Although the model accounting for

degradation makes $75 less in revenue, it also saves a degradation cost of $133, or if

including degradation from day-ahead arbitrage, a cost of $400, as compared to the

other model. It is therefore, more profitable than not-accounting for degradation, in

which, the additional costs of degradation significantly outweigh the gain in revenue

from the additional cycling. In both cases, however, regardless of whether degrada-

tion is accounted for the net profit is negative after accounting for degradation costs

and less money is lost if the battery rests. The battery at rest loses, in total, about

0.028% of its max capacity, and makes no money in revenue. The total profit is just

the degradation cost of -$190. Whereas, in the scenario with degradation, the model

causes the battery to lose 0.05% of the max capacity, which translates to a total profit

of -$258 (degradation cost of -$333 offset by $75 in revenue from real time market).

In the scenario without degradation, the total profit is -$363 ( degradation cost of

-$466 offset by $103 in revenue from real-time market) when ignoring degradation and

revenue from day-ahead arbitrage actions and -$583 (degradation cost of -$733 offset

by $150 revenue from real-time and day-ahead markets) when including degradation

costs associated with day-ahead arbitrage actions.

Figure 4-2: Revenue from Reinforcement Learning Model Policy in Real Time and
Day Ahead Markets, over 8 winter days.
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Thus, we see that accounting for degradation is significant when using reinforce-

ment learning for energy arbitrage. Even though in all cases, the profit is negative,

when accounting for degradation, the battery makes a smaller loss. The model is still

not optimal, since, as we can see, resting would have lost significantly less money.

When we performed a similar study over 8 summer days, our results were different.

We saw that the results from the scenario with degradation and without degradation

were comparable. Although we cannot make a direct comparison between the perfor-

mance of the MILP model in the day-ahead market of 2013 NYISO summer pricing

and the performance of reinforcement learning in the real-time market of 2019 PJM

summer pricing, it is interesting to note that in both cases, the summer scenarios did

not differ significantly when accounting for degradation. The discrepancy in revenue

for the real time market PJM summer scenario is around $5 (No degradation - $705

revenue, degradation - $699 revenue), and the difference in degradation is 0.005%

where the scenario that accounts for degradation degrades slightly more. Based on

the MILP model and RL model comparison in the day-ahead market, we expect

models that account for degradation to degrade less by at least around 0.01%. The

reason for this result which does not match expectation, we hypothesize, is due to the

lower 𝛾 = 0.95. By incentivizing present rewards more, but also placing a penalty on

degradation (including calendar degradation), the model seeks to cut losses from cal-

endar degradation by generating revenue. However, because the 𝛾 is lower and future

rewards are highly discounted, the model is not incentivized to rest. The model is

even more incentivized to avoid resting because when there is a degradation penalty,

resting receives a negative reward. When there is no degradation penalty, however,

the model does not receive negative reward for resting (i.e. it does not account for

losses from calendar degradation), and thus is less incentivized to cycle unnecessarily

and can rest, which results in lower capacity fade overall. This same logic does not

seem to apply to the winter prices because with the winter price signal we used, the

opportunity for arbitrage did not justify the degradation cost because differences in

prices were minimal over time. In the winter the penalty for resting is clearly more ad-

vantageous than the penalty and revenue received through cycling. Thus, accounting
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for degradation has the expected effect on cycling, in that the winter-trained model

with degradation clearly cycles less often than the winter, no-degradation penalty

model (Fig 4-3). In the summer price signal, however, the opportunity for arbitrage

was larger, and the penalty for resting is sometimes worse than the penalty for cycling

(offset with revenue), so the model has more incentive to cycle.

Figure 4-3: Difference in Cycling over 8 winters days with and without degradation
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Chapter 5

Conclusions

Accounting for battery degradation when controlling a battery can increase profits by

cycling wisely and reducing degradation costs. However, accounting for degradation

with traditional methods as part of a mixed integer linear programming model, leads

to large models that have long computation times. Reinforcement Learning can be

used to develop models that can determine close-to-optimal policies in a matter of

milliseconds. This thesis explores the use of reinforcement learning (RL) to train

models that can control a battery for energy arbitrage while accounting for degrada-

tion costs. As is always the case with machine learning, a key challenge is training

the model to achieve solutions that are close to the optimal solution. In this study,

we evaluate the RL model’s performance against the performance of an MILP model

with equivalent degradation and power dynamics. We find that, although RL is un-

able to find the optimal solution, the changes in the policy that stem from different

degradation penalties are comparable to the changes we see between MILP models

that account for degradation and do not account for degradation. Accounting for

degradation in the day-ahead market and real-time market, in most cases, resulted

in less capacity fade by about 0.01%. RL is prone to exploiting loopholes in the en-

vironment to achieve high rewards, but in our scenarios, we found that the reduction

in capacity fade was a result of less cycling, which is the correct learned policy. We

therefore show that using RL to build a model that can operate a battery while ac-

counting for degradation, has potential. There are many ways the performance of Rl
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models that account for degradation can be improved through future work. In this 

study we trained, in the longest instance, on 1 week of price data due to computing 

power limitations. Increasing the amount of price data the RL model has access to 

and training the model on a full year or multiple years of data will allow the agent 

to learn more generalizable policies that are robust to different kinds of price signals. 

Performance can also be improved by differentiating between the forecasted price and 

the true price. In our study we always assumed a perfect forecast, but in reality, fore-

casts are far from perfect.To account for this, a longer study may involve calculating 

the optimal action policy using MILP and RL with forecasted data (as one would do 

in real life), and then apply the action policy to real price data. In this case, we can 

train the reinforcement learning algorithm to be robust to differences b etween the 

forecasted price and the real price. An alternative approach to using RL that could 

be explored is allowing the reinforcement learning agent to use a pre-calculated MILP 

action policy result. The agent would be able to determine when to follow the MILP 

action and when to do something different. Future work c ould a lso g o b eyond the 

scope of energy arbitrage. Because it is easy to implement complicated environments 

with RL, one could easily explore other battery operation problems by allowing the 

environment to participate in different markets, be rewarded with complicated tariff 

structures, account for different battery chemistries, and interact with energy sources. 

This thesis illustrates that using of reinforcement learning to build models that can 

operate a battery has promise. Reinforcement learning models do not always find 

the optimal solution, but they can compute good policies quickly, can appropriately 

account for complicated environmental dynamics like degradation, and with more 

training time and improvements to model robustness, they show potential as models 

that can be used in real-life applications to efficiently and effectively operate batteries.
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