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Abstract

Increased use of data insights to guide ventures have led to an explosion of needs in
data services such as data accessibility, mobility, availability, and protection. Particu-
larly in cloud enterprises, this expansion of data services has led to an increased need
of AIOps, or intelligent systems that can offer consistent operation while dynamically
adjusting their operation for the data services requested. In the field of storage sys-
tems, self-management features include proactive management of resources through
knowledge of demand and their changing patterns. Previous research on classification,
forecasting, trending, and pattern recognition in storage workloads have concluded
that there is no universally best predictor for all workload patterns. In addition, these
researched methods and their comparisons focus more heavily on accuracy without
considering the limitations on overhead and computation power present in a system-
oriented approach. This thesis analyzes design tradeoffs and presents ELF, a generic
forecasting algorithm of storage workload data that optimizes computation costs in
the context of a real-life production system. ELF takes advantage of the fact that the
majority of storage workloads possess activity too simple to warrant complex forecast-
ing models. Using a customized classification approach, ELF selects the appropriate
predictive model based on the workload’s observed activity and produces accurate
forecasts 92 times faster than a generic baseline algorithm while storing 97.5% less
data.
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Chapter 1

Introduction

Data insights have become the cornerstone for business ventures and future designs.

Particularly in enterprise cloud computing, this has led to a sharp increase in various

data services offered. In storage systems, such services can include data accessibility,

mobility, availability, and protection. Due to this explosion of services, a new need

has arisen to aide users and customers in their management. Much of recent storage

management system developments have been in the pursuit of a self-managing, hands-

off system, often in the form of AIOps, or Artificial Intelligence for IT Operations.

The development of such features relies on accurate predictors of workloads, which

can then lead to proactive and automated service responses. As accurate forecasts

by nature include the detection of regular data patterns, the development of more

advanced models should also support the identification of abnormalities and changes

in pattern. Are changes in pattern a transient abnormality or a non-transient change

in activity? In addition, the trend of any particular resource operation may gradually

change over time. Accurate models must be able to detect these changes in trend

and adjust themselves accordingly. Models that can accurately account for these

circumstances are more widely desired in general use cases including self-managing

systems.

As such, most time series predictors are designed for accuracy, but often without

the needs of a system kept in consideration. In particular, for popular forecasting

methods, the more accurate the predictor, the more complex and computationally
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heavy the model is. In a storage system where tens of thousands of workloads are

managed simultaneously, running a computationally complex predictor that requires

large amounts of data for each workload is infeasible. Thus, in designing and choosing

an ideal predictor for all the workloads in an ongoing system, one must optimize

for accuracy while considering scalability as well as storage or computation time

restrictions.

Furthermore, in real-life applications, workload data is presented in streams. The

massive amounts of data at rest that are used in many time series analyses are not

practical for use in online situations, as the data is too large to continuously store in

cache and the time needed to pull the data is too significant. In a real-life system, an-

alytic assessments should also be provided in real-time, without needing to wait hours

for data to be pulled. Consequently, in order to provide real-time forecasts, evaluated

forecasting approaches and predictive analysis techniques should be compatible with

data streams rather than solely using stale data.

1.1 Motivation

The storage system at NetApp on which ELF was developed manages tens of thou-

sands of workloads simultaneously. The large number of workloads meant that scal-

ability was a primary goal in developing this algorithm. Consequently, attributes

such as efficiency, lowered computation costs, and lightweightedness were prioritized.

In evaluating methods on these attributes, we focused on two aspects: computation

time and storage requirements. As ELF must run concurrently with other services,

the amount of memory available for this algorithm was limited. In addition, in con-

sideration of the fact that a majority of the computation time for workload analysis

in the current system is attributed to pulling stale data from the database, meth-

ods revolving around streaming calculations and statistics were studied in order to

minimize the amount of data to be pulled.

The system additionally monitors several different metrics for each workload, such

as IOPS, capacity used, and latency. The different metrics and the potential resulting
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insights motivated a need for a generic algorithm. Rather than a method that can

only be used with one specific metric, a method designed to be generalizable to several

metrics would serve the greatest benefit and versatility.

1.2 Contribution

This thesis studies the problem of efficient forecasting of streaming storage data. The

focus on storage system workloads presents different considerations than generic time

series forecasting problems. It impacts method accuracy, as methods may perform dif-

ferently on data from various environments and sources, while introducing limitations

on computational overhead.

The technique we present, ELF, involves classification of the given workloads to

best utilize various forecasting methods and maximize accuracy while minimizing

computation. With a focus on lightweightedness as well as accuracy, ELF is designed

for use in a real-life production system. In addition, it is created to be generic and

modularizable. Specifically, it allows different portions of the algorithm pipeline to

be detached and used to fulfill other services or analytics. As a whole, ELF can be

run as a parallel service that does not require integration into the environment to

be run. Its generic nature allows it to be used with any metric; although this thesis

primarily studies its use with the I/Os per second (IOPS) metric, ELF’s generaliz-

ability to other metrics such as latency or capacity is further discussed in Section 4.4.

Metric generalizability allows for ELF to be used in many different use cases such as

provisioning, planning, or protection.

As a general overview, ELF classifies workloads based on their activity into four

predefined classes on a 24-hour basis. Given its classification, each workload is then

forecasted using a predictor tailored for workload activity of that class. Generally,

ELF runs simple models on workloads with simple activity and complex models on

workloads with complex or seasonal activity. Using this approach, when run on about

20,000 workloads of real data, ELF performs 92 times faster while storing 97.5% less

data than a generic baseline algorithm that does not utilize a classification approach.

12



Chapter 2

Background

2.1 System Description

The storage system on which ELF was developed is a storage array consisting of

physical and logical components. A physical controller manages drives that provide

the physical storage for data. Drives are logically grouped into pools, which can then

be used to created volumes. Volumes are the logical component through which a

host server can send I/Os and access storage on the storage array. For each volume,

data metrics such as IOPS, capacity, and latency are collected at 5 minute intervals.

The streamed workload data is then stored into a database for future analysis. Then,

every 24 hours, the system pulls the stale data from the database to conduct heavy

analyses and forecasts. ELF was designed in consideration of this current system

process, using a database containing data from about 20,000 volume workloads and

conducting its offline computations every 24 hours.

Throughout this thesis, "cache" will refer to RAM on the controller and "online"

computations will be used to describe calculations that are done while the data is

being streamed every 5 minutes and the results of which would be stored in cache.

"Offline" computations will refer to the heavier calculations and model creations done

every 24 hours, where the input data is the data pulled from the database. With

regard to online computations, as ELF would be running concurrently with other

programs, our goal was to limit cache memory usage to 30 MB of data at a time.

13



2.2 Workload Characterization and Classification

In order to forecast or analyze workloads, understanding the characteristics of the

data is imperative. Workload activity changes in a variety of manners and its anal-

ysis allows for comprehension of demand and existing patterns in storage workloads.

For example, Kim et al. researched I/O workload characteristics by studying differ-

ent metrics of the workloads, such as I/O bandwidth distribution, read to write ratio,

and request size distribution [17]. In this research, metric patterns and distributions

were studied through methods such as CDF and PDF functions and percentile anal-

ysis. Then, when modeling the distributions, it was found that the read and write

I/O bandwidth usage as well as inter-arrival time of requests could be modeled as a

Pareto distribution. Understanding workload characteristics is also important when

recognizing patterns and characteristics that are application or environment specific.

For example, an analysis of disk drive workloads measured in various systems re-

sulted in the discovery of characteristics that were common across all traces as well

as characteristics that were specific to application or to environment [21]. In order to

develop generalized classification techniques, common workload characteristics must

be identified. Thus when designing ELF, characterization of workload activity was

conducted to further understand the common characteristics present in the data.

In addition to understanding the characteristics of I/O workloads, classifying them

into various groups allows for more in-depth analysis. Seo et al. developed a set of

such classifiers by first determining a list of I/O trace features that best represented

the workloads [24]. Using various clustering algorithms, the features were used to

determine representative access patterns of general workloads. Wang et al. studied

clustering based on other certain characteristics of the data, such as trend, seasonality,

and periodicity [26]. Analysis of different kinds of clustering algorithms was also

explored in Chethan et al. [6]. The classes determined by Seo et al. are hierarchical by

nature, allowing them to be organized into a tree-like structure, thereby constructing

a decision-tree-based classifier to classify other I/O trace samples. Another approach

is explored in M. Alshawabkeh et al. [1], which classifies storage workloads into
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tiers of I/O intensity by using Markov chains to form clusters of similarly behaving

workloads. Other studies have also executed storage tiering through a Markovian-

based model to capture patterns of high or low traffic intensities [30]. By capturing

the duration of these patterns, the model also distinguishes temporal patterns such

as weekday/weeknight or day/night activity. In classifying workloads, ELF takes

a computationally simpler approach than most of these algorithms. In a relatively

linear fashion, workloads are classified into four different classes on the basis of the

level, range, and seasonality of its activity.

2.2.1 Characterization

When characterizing our given workloads, we decided to primarily focus first on the

I/Os per second (IOPS) metric of the storage workload data. As ELF is intended

to be generic, once it is fully developed, it can then be generalized to other metrics.

In addition, though information from different metrics can be combined to gather

further insight about a workload [13][3], ELF only considers one metric at a time.

In studying IOPS storage workloads, we detailed characteristic attributes of such

workloads. First, though some workloads possess explicit seasonal activity or pat-

terns, such as a regular burst in activity every 30 minutes, a majority of IOPS work-

loads consistently display little to no activity. In addition, among workloads with

seasonal activity, lengths of detected patterns vary greatly from workload to work-

load. At a time scale of about half a day, pattern length can range from 30 minutes to

6 hours. In increasing the time scale, patterns can also be found at a daily, weekly, or

monthly granularity. Aside from patterned and low activity workloads, other work-

loads may exhibit irregular, nontrivial activity with no observable pattern. These

workloads are characterized with bursty and random activity.

Specifically for the workloads in our system, the activity of almost all the work-

loads falls below 10,000 IOPS. With significant activity (defined as having activity

above 100 IOPS), the total range of operation of individual workloads usually resides

around a few hundred to a few thousand IOPS. Naturally, if the activity is higher,

the range of operation is also larger. However, despite the differences in activity level
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Types of Workload Classes
Type Activity Characteristics

Idle Little to no activity
Constant Narrow range of operation
Seasonal Explicit, repeating patterns
Random No observable pattern; bursty activity; wide range of operation

Table 2.1: Different classes of workloads defined by characteristic activity. Examples
of each type of workload are shown in Figure 3-2.

between individual workloads, workloads themselves generally operate at a consistent

level of activity. For instance, even if the range of operation of a particular workload

is large, the median of the data would stay relatively constant. Though level changes

in the data do occur, they are relatively infrequent (occurring once or less in a month

for any given workload). These observations show that, among IOPS workloads, there

is little to no trend expected in the data.

These characterizations were the justification behind much of the overall algorithm

design. Table 2.1 details workload classes that were defined through consideration of

these observed workload characteristics. The methodology of classifying workloads

into each of these classes is outlined in Section 3.4. In addition, not only did the ob-

served typical activity motivate the classification of the workloads, but the significant

observation that the majority of workloads had either simple or little to no activ-

ity indicated that the majority of workloads did not warrant complicated predictive

algorithms.

2.2.2 Classification

Though there are many different types of characteristics of time series workloads that

we could utilize to classify our workloads, such as trend, skewness, or chaos [28][27], we

focused mainly on seasonality and self-correlation. In classifying workloads based on

their seasonality, the seasonality of the workload must first be detected. Algorithms

that do this utilize a variety of different methods such as auto-correlation functions,

partial correlation functions, or Fourier transforms, to name a few. Though many

of these methods were explored, for logical and computational simplicity, solely a
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combination of auto-correlation functions and heuristics was used in ELF to determine

seasonality.

2.3 Time Series Analyses

While many classification approaches may naturally lend themselves to pattern pre-

diction, there are various time series forecasting techniques that can accurately predict

workload activity, usually through machine learning. Studies comparing the accuracy

of various forecasting strategies have been extensive, including methods from simple

naïve forecasting and moving average to more complicated models such as ARIMA

and TBATS [14] [15] [25] [16]. While naïve methods are quick and lightweight, they

suffer from poor accuracy. Conversely, while complicated models such as ARIMA can

be much more accurate in forecasting, the overhead computation cost is heavy.

In addition, another evaluating factor of an accurate forecasting technique is its

ability to forecast different types of time series. As different models will perform

better with different types of data, it is difficult to know which workload predictor

will work best for any particular workload as there is no set standard [15] [16] [14]. To

combat this issue, Herbst uses a dynamic approach that selects the suitable method

for a given situation based on a decision tree and direct feedback cycles [14]. With

ELF, we take a simplified version of this approach where different classes of workloads

are forecasted with different predictors.

Furthermore, in real-life systems, forecasts are regularly used to fulfill requests

from dynamic use cases such as resource provisioning. This requires time series fore-

casters that are both efficient as well as accurate. The issue of workload prediction for

use in dynamic provisioning has been commonly explored [25][3] and is also examined

in this thesis.

2.3.1 ML Models

In selecting a machine learning model for use, a baseline model must first be deter-

mined. As a model traditionally used in time series forecasting and also commonly
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used as a baseline for other models [29][10], the ARIMA model was used as a baseline

for accuracy and efficiency. ARIMA models are made of an autroregression portion

(AR), a moving average portion (MA), and an integration portion (I). To customize

these three parts for the workload, three parameters (p, d, and q) are passed in. The

seasonal version of the ARIMA model, SARIMA, has twice the number of parameters

(p, d, q, and P, D, Q) to represent the seasonal component.

In addition to the ARIMA model and its variants, other models mentioned in this

thesis include multiple linear regression, Holt-Winters, and Facebook Prophet. A

multiple linear regression model captures relationships between two or more features

and a response variable by fitting a linear equation to the given data. When used

in time series forecasting, features are set as the values at preceding time steps and

the response variable is set as the value at the next time step. Holt-Winters is a

triple exponential smoothing model that models three aspects of time series behavior:

average value, trend, and seasonality. In contrast, Facebook Prophet is a complex

additive regression model best suited for workloads over extended time periods with

multiple seasonalities and irregular events. Depending on the data, ELF uses either

a Holt-Winters or Facebook Prophet model.

2.4 Data Streams

In addition to heavy computation cost, another downside to forecasting using machine

learning models is the large amounts of data needed to train the models. In situations

where methods are studied and compared only for their accuracy, finding and using

extensive datasets for training is inconsequential. However, in a real-life, long-running

system, assessments need to be made in real-time. Thus, storing large quantities of

incoming data for computation is, storage-wise, infeasible, and pulling a dataset of

that size for computation would take an unideal amount of time. In addressing this

issue, methods that operate on streaming data are considered. Past research has

explored time series prediction and analytic methods on streaming data for various

use cases. For example, Rodrigues et al. performs an online prediction of streaming
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sensor data through incremental clustering and neural network training [22]. Ziehn

et al. conducts similarity evaluations on time series in real-time using streaming data

[31].

Using analytic methods that are compatible with data streams are ideal when clas-

sifying data as well. Such analytic methods often involve the computation of counts,

quantiles, and/or histograms. There are several algorithms that allow the computa-

tion of quantiles in one-pass, allowing continual computation in an ongoing system

environment. The most popular of these seems to be the algorithm developed by

Greenwald-Khanna [12][9]. Cormode et al. expands on this algorithm by accounting

for distributions containing skew, a common feature of traffic streams [7]. In addition

to one-pass algorithms, extensive research and development has been done in comput-

ing counts, quantiles, and histograms over sliding windows of data [19][2][8][11]. As

we were limited in memory storage to compute these types of calculations, efficiency

in data storage was also of note. Buragohain and Suri examine various algorithms

that compute quantiles on streams and evaluate them on space efficiency [5]. Ma

et al. [18] study "frugal streaming," in which only one or two units of memory are

needed to estimate quantiles. In terms of calculating counts in one-pass or with win-

dowed streaming data, Welford’s method to calculate variance in one pass [23] is a

commonly known approach. In addition, Becchetti and Papapetrou et al. present

sketches to calculate maxes and mins of windowed data streams [4][20].

2.4.1 Streaming Modules

In the development of ELF, Greenwald-Khanna and Welford’s method were briefly

used to keep counts and statistics over the streamed data. However, we found that

these methods, despite being the simplest out of most algorithms mentioned previ-

ously, were still too complex for our use case. Rather than keeping a complex data

structure to calculate hyper-accurate statistics over streamed data, we sacrificed some

accuracy in statistics to keep a vastly simplified structure instead. In addition, when

considering machine learning models that are compatible with data streams, we found

that most models were infeasible due to our limitation on memory usage.
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Chapter 3

Methodology

3.1 Goals and Considerations

In designing ELF, we considered several trade-offs in computation. A primary one

was deciding which aspects of the method to run online and which to run offline. In

a perfectly optimized algorithm, all computations would be run incrementally online

as data streams in. With this approach, there would be no need to set aside time

each day to pull several gigabytes of data from the database and then run analyses

over them. However, this design is impractical as streaming calculations would thus

be limited to a run time of 5 minutes (the time difference between each data point

collection) and a computation size of about 30 MB, as input data and computed

values from a streaming calculation would have to be stored in cache. While the time

restriction of 5 minutes was not excessively restraining, the size restriction of 30 MB

severely limited the complexity of computations that could be run online. Thus, a

combination of calculations run online with data stored in cache and calculations run

offline with data pulled from the database each day was needed.

To summarize the design goals of ELF, in order to reduce overall computation and

create a more efficient algorithm, we planned to reduce the amount of data needing

to be pulled from the database while also computing as many calculations as possible

online. In forecasting workload activity, the portion that is the most computationally

complex and requires the largest amount of data is the machine learning module. As
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Figure 3-1: Overview of ELF and its different modules. Arrows indicate the workloads
that are sent to each specific module or sub module.

concluded from Chapter 2, the main technique behind reducing overall computation

was to run simplified models over workloads that had simple activity. In doing this,

heavy computational actions would be broken up or minimized simply by running

them fewer times and on smaller sets of data.

Another trade-off to consider was whether to design the system in a modularized

nature, where each module could be used as a separate microservice, but at the

cost of some computational optimization. It was ultimately determined that the

optimizations gained from a fully integrated system did not outweigh the benefits of

a multi-use, versatile modular system.

3.2 Algorithm Overview

The overall design and flow of ELF is summarized in Figure 3-1. The pipeline can

be broken down into four modules: histogram construction, workload classification,

seasonality detection, and prediction. As an overview, the histogram module stores

histogram data for each workload, the classification module classifies each workload

based on its activity, the seasonality detection module is utilized by the classification

module when classifying workloads, and the prediction module forecasts workloads

based on their classifications. Out of the four modules, only the histogram module is

run online. All other modules are run offline every 24 hours.

In general, each successive module in the pipeline requires more computationally

21



intensive calculations and more data than the previous module but is run on fewer

workloads. From the histogram module, which is run on all workloads and is the

least computationally intensive module, to the seasonality detection module, which

is more computationally intensive and requires more data but is only run on 10% of

workloads, to the machine learning model forecast in the prediction module, which

requires the most data and is the most computationally intensive but is only run on

2% of workloads. Though the pipeline is generally linear, modules can interact in

different ways. For example, the classification module utilizes both the histogram

module and the seasonality detection module to classify workloads and assign them

to the appropriate prediction technique.

The following sections will outline each of these four modules and how they co-

operate in order to efficiently classify and forecast tens of thousands of workloads

simultaneously.

3.3 Streaming Histogram Creation

The first module in ELF is histogram creation, where a histogram with 10 bins is

created and stored for each workload every 24 hours. Histograms are useful in that

they can provide several statistics such as quantiles, ranges, or distributions without

needing to store large amounts of data. Due to the considerable number of workloads

in the system, calculating workload statistics from histograms rather than the entire

workload dataset enables the reduction of computation load.

In designing this module, we considered tradeoffs between creating histograms for

each workload incrementally as data was streamed and storing all 20,000 histograms

in cache, or pulling 24 hours of data each day and creating the histograms offline.

We determined that the benefits of redistributing offline computation to online and

reducing the amount of data to be pulled offline outweighed the storage cost of keeping

the histograms in cache. In addition, using a fixed-size histogram with predetermined

ranges kept the cache cost relatively minimal. Another design tradeoff we considered

was whether to integrate the histogram code into the program and system code to
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reap maximum computational efficiency or to separate out the code as an entirely

detachable module. If these histograms were solely used for ELF and nothing else, the

former option might be more attractive. However, as stated previously, histograms

can provide numerous useful data statistics and metrics. Offering this histogram

module as a separate microservice allows it to be utilized by other services as well.

As such, this module was implemented as an independent microservice to expand its

usability and versatility.

Of the four modules outlined in Figure 3-1, this is the only one that operates on

streaming data. For each workload, the system stores a histogram of 10 bins, with

predetermined bin ranges. For the IOPS metric, the bin ranges chosen are outlined

below:

[0− 100] (100− 400] (400− 700]

(700− 1, 000] (1, 000− 2, 000] (2, 000− 4, 000]

(4, 000− 6, 000] (6, 000− 8, 000] (8, 000− 10, 000]

(10, 000−∞)

These bin ranges were defined in consideration of typical IOPS activity in storage

workloads, with further justification for these bin ranges given in Section 3.4. Each

histogram is kept in cache and updated every 5 minutes as each data point is streamed.

Every 24 hours, the histogram for each workload is saved into the database and a

new histogram is constructed over the next day. Thus, at any one point, only one

histogram per workload is kept in cache. Historical records in the database store all

daily histograms constructed from previous days, recording one histogram per day for

each workload. In terms of memory usage, given that a single histogram has a size of

about 144 bytes, with 20,000 workloads, less than 3 MB of data is kept in cache at

any one point.

In the overall pipeline, these histograms are utilized both by the classification

module and the prediction module. Since histograms are created for every workload

and are small in size, they are readily used for simple computations. In fact, the

first step of the classification module is to pull all the histograms of the day and use
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them to filter workloads with simple activity. For workloads classified with simple

activity, the only data pulled from the database throughout the entirety of ELF is

their histogram data.

3.4 Workload Classification

Of the offline processes, the classification module is the first to be run. In order to

best determine which prediction method should be applied to each workload, this

module classifies workloads into one of four groups, or states, based on their activity.

These states were derived from the workload characterization as described in Section

2.2.1 and their computations are defined below:

• Idle: 95% of all points reside in the first bin of the histogram

• Constant: 95% of all points reside in any one bin of the histogram (besides

the first)

• Seasonal: contains a detected seasonality longer than 30 minutes

• Random: not idle, constant, or seasonal

3.4.1 Idle and Constant Workloads

Workloads defined as having simple activity are classified as idle or constant. To

keep computation for these workloads minimal, classification of idle and constant

workloads only require the histogram data of the workloads. The first step of the

classification module is to inspect the histograms of all workloads and classify them

as idle, constant, or neither.

In defining an idle workload from a storage perspective, since an IOPS value

smaller than 100 is considered trivial, a workload that operates primarily in that

range is essentially idle. The first bin range of the histogram (0 - 100) was thus

chosen to allow workloads with little to no activity to be determined quickly. If 95%
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Figure 3-2: Example idle, constant, seasonal, and random IOPS workloads classified
by the definitions stated in Section 3.4. Note that while each workload is an example
of one of the four workload states, their specific activities are not representative of
all workloads of that same type.
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of a workload’s IOPS activity lies within the first bin of the histogram, or under 100

IOPS, for that day, it is classified as idle. The 95% threshold is an empirically derived

benchmark to filter out outliers and abnormalities.

Workloads with constant activity are classified using the remaining bin ranges.

These remaining bin ranges detail thresholds of significantly different workload activ-

ity. For example, though the (8,000 - 10,000] IOPS bucket range is much larger than

the (100 - 400] range, a difference of a few hundred IOPS is much less significant when

the general level of activity is in the several thousands rather than the few hundreds.

Using this rationale, if the majority of a workload’s activity falls within one histogram

bin, it is classified as constant.

Given that the classification and any subsequent computation for these two types

of workloads only require histogram data, the total computation for simple workloads

is relatively trivial. Since idle and constant workloads comprise about 90% of all

workloads, classifying workloads in this manner enables us to save significant amounts

of computation. As a note, since the classification of idle and constant workloads is

the first filtering step in the algorithm pipeline (refer to Figure 3-1), idle and constant

classifications take precedence over seasonal and random. Thus, even if a workload

displays a seasonal pattern, it will not be classified as seasonal unless its range of

activity is significant enough.

3.4.2 Random and Seasonal Workloads

For all non-idle and non-constant workloads, which compose about 10% of the work-

loads, additional data needs to be pulled. In order to classify seasonal workloads,

workload data is run through a seasonality detection algorithm, to be described in

Section 3.5. At a 5-minute data collection granularity, the seasonality detection al-

gorithm requires about a day’s worth of data (288 points). Thus, for the workloads

not classified as idle or constant, the last 24 hours of IOPS data is pulled from the

database to be run through the seasonality detection algorithm.

If a workload possesses a seasonal pattern longer than 30 minutes, it is classified

as seasonal. Of the 20,000 workloads in the system, seasonal workloads comprise
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about 2%. The remaining workloads that do not have a detected seasonality are clas-

sified as random. Random workloads are generally characterized by bursty activity

operating over a large range. Despite having nontrivial activity in contrast to idle

and constant workloads, random workloads are also unfit for complex machine learn-

ing model predictions due to their widely unpredictable nature. Without a general

trend or an established pattern, running random workloads through a machine learn-

ing model results in predictions with high validation error and consequently wasted

computation.

3.4.3 Classification Discussion

Of these four groups of workloads, only workloads classified as seasonal have activity

meaningful enough to be predicted using a machine learning model. Due to triviality

or unpredictability, the remaining three groups are predicted using simpler means. To

maximize efficiency, one of ELF’s design goals is to reduce computation of workload

forecasting by reducing the number of times modules with a high computational load

are run. The histogram module enables this goal by keeping statistics summarizing

the activity of each workload at a low computational and storage cost. Using the

histograms, the classification module then trivially filters out workloads with simple

or unpredictable activity, allowing the computationally heavy machine learning model

to be run on fewer workloads (specifically, about 2%).

When expanding the use of ELF to different metrics, state definitions and bin

ranges must be customized. The relevant classification states will depend on the

metric being analyzed and the bin ranges will consequently follow the defined states.

For IOPS, the first bin range was designed for idle classifications and the remaining

ranges were designed to identify constant workloads. In general, defined classification

states and bin ranges utilize workload characterizations to represent possible workload

activity as well as ranges of significant activity.
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3.5 Seasonality Detection

The seasonality detection module is used solely by the classification module to dis-

tinguish seasonal and random workloads. The seasonality detection algorithm used

is an original method developed through the combination of heuristics and concepts

presented in related work.

For this algorithm, 24 hours of data at a 5 minute granularity, or 288 points, is

passed in as input. From a purely technical standpoint, the algorithm would operate

similarly with almost half as many points, around 180, but a time period of 15 hours

is not as significant as 24 hours when studying patterns in workload activity. And

because much of workload patterns stem from societal time periods, such as a work

day or work week, special care must be taken in choosing the amount of data to

run through the algorithm. In addition, because offline processes are only run once

every 24 hours, passing 24 hours of data as input ensures that all workload activity

is analyzed when detecting patterns.

First, the input data is preprocessed in two steps: filtering and smoothing. Values

smaller than the 1st percentile and greater than the 99th percentile are replaced with

the median of the data, as pure filtering is avoided to keep time sequences constant.

Next, the data is smoothed with a moving average of 3, where the first and last points

are kept as their original value. This smoothing allows peaks formed by the next step

of processing to appear more distinct, as shown in Figure 3-3.

After preprocessing, the data is auto-correlated to a lag of 60. As the auto-

correlation function, or ACF, of a time series shows areas where the data is highly

correlated with itself, lags greater than zero that display high self-correlation likely

indicate the presence of a pattern. Thus, in order to identify patterns in the data, the

algorithm searches for peaks in the ACF. However, since the ACF is only calculated

to a lag of 60, patterns with a length greater than that are difficult to capture. In the

circumstances where the pattern is too long to be captured at a 5 minute granularity,

we look to larger granularities, to be discussed in Section 4.4.2. The number of lags

calculated is a parameter that can be customized, but the specific value of 60 used
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Figure 3-3: Given the workload data displayed in the top plot, the second two plots
show the ACF of the data with and without smoothing. Note that the peaks become
much more apparent after smoothing.
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Figure 3-4: The ACF of a workload and the peaks and peak differences calculated
from it. The resulting calculated seasonality is indicated on the workload data plot.

was determined empirically. As the ACF is a computationally expensive function, a

lag of 60 was found to optimize computation cost without too much sacrifice in the

types of patterns that we wanted to capture. With data at a 5 minute granularity,

since relevant patterns are at most a few hours in length, a lag of 60 is sufficient.

Once the ACF is computed, lags at which peaks occur are detected. Peaks are

defined as the max value in a range of consecutive positive points. Once these lags

are identified, the differences between each of them are calculated, resulting in a

list of potential pattern lengths. The final detected seasonality is the mode of these

potential pattern lengths, provided that the frequency of the mode value is greater

than one and the mode corresponds to a pattern length longer than 30 minutes (at a

5 minute granularity, this corresponds to a value greater than 6). Figure 3-4 displays

example resulting calculations when this process is run on a workload.

Once the seasonality of the workload is determined, the seasonality detection

module returns it to the classification module, which uses it to classify seasonal and
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random workloads. In addition, if a seasonality exists, the length of the pattern is

returned for the classification module to pass to the prediction module.

3.6 Forecast and Prediction

The final module in ELF is the prediction module, which computes a 24 hour forecast

for all workloads. Of the four states in our classification set, only workloads classified

as seasonal are forecasted using a machine learning model. Idle and constant work-

load activity is too trivial to warrant the computation of a machine learning model

and random workload activity is too unpredictable for a machine learning model to

forecast accurately. This section will outline the prediction methods used for each

classification state, particularly the machine learning model chosen to forecast sea-

sonal workloads.

3.6.1 Constant Value Prediction

For workloads classified as any state other than seasonal, the predicted activity for

the next day is a constant value prediction, the value of which as outlined below:

• Idle: zero

• Constant: median of the day’s data

• Random: 75th percentile of the day’s data

As workloads classified as idle have activity that is essentially zero from a storage

management perspective, its prediction follows similarly.

The constant value prediction for constant workloads is the median of all values

from that day. As the full day’s worth of data is only pulled for workloads classified

as random or seasonal, the median of constant workloads must be calculated solely

using data from the histogram or stored in cache. Thus, in order to calculate a more

accurate median, a total sum of values for each bin is stored for each workload. This

means that a total of 20 values for each workload is now stored in cache, 10 histogram
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values and 10 sum values. The median of the day’s data can then be more accurately

estimated by calculating the mean value of the bin in which the 50th percentile would

fall.

As the full day’s worth of data for random workloads has already been pulled

for use in the seasonality detection algorithm, the 75th percentile can be calculated

straight from the data. As the day’s dataset is small (288 points), the computation

is trivial enough to calculate the actual percentile rather than estimate it using the

histogram. The 75th percentile was chosen through a rule-of-thumb heuristic that

the 3-quarter threshold provides a good representation of workload activity for gen-

eral use. However, the prediction percentile could potentially be raised or lowered

depending on specific use case. For example, if the prediction was to be used for

provisioning, the percentile could be raised to 85 or 90. If the use case needed the

most accurate representation of activity, the value could be lowered to return the

mean or median.

3.6.2 Machine Learning Model Forecast

The machine learning model in the prediction module is the most computationally

heavy part of ELF. Not only does the training and forecast of the model require

additional computation time, but the model also requires a large amount of data

in comparison to the previous modules. In order to present a forecast of 24 hours,

an additional 3 days of data is required to train the model. Thus, for all seasonal

workloads, the prediction module pulls the past 72 hours of data from the database.

The following section will outline the different models that were explored and the

ones chosen for use in ELF.

Initial Exploration

The exploration conducted to find the most appropriate machine learning model to

suit our needs was done primarily using open source models and libraries. Models that

were studied more extensively included multiple linear regression (MLR), ARIMA,
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Holt-Winters, and the Facebook Prophet model. As one of the most standard time-

series forecasting models, ARIMA was used primarily as a baseline for timing and

accuracy. Since the ML model would only be run on data that possess heavy seasonal

components, we found that seasonal ARIMA (SARIMA) produced better accuracy

on the seasonal workloads than ARIMA. In comparison to the forecast accuracy

produced by ARIMA, SARIMA forecast accuracy was generally 10% better. However,

due to the additional seasonal parameters that SARIMA needs, the seasonal model

took several orders of magnitude longer to run than the nonseasonal ARIMA model.

Nonetheless, because the primary aim when designing ELF was to find an alternate

model that could match the accuracy of a baseline model while decreasing overall

computation time, the achieved accuracy was of most interest for our baseline model.

The first model to be compared to the ARIMA models was multiple linear regres-

sion. The MLR model was able to match the accuracy of SARIMA and performed

about 70 times faster than ARIMA. However, to achieve this speed and accuracy,

the MLR model required much more data than either of the ARIMA models. With 6

features, where each feature was the value at the preceding timestep up to 6 timesteps

backwards, we would need to input 6 times more data into the MLR model than what

was needed for ARIMA.

However, beyond the problem of input size, both the ARIMA model and MLR

possessed more pressing issues: they forecasted in steps, in which additional data

needed to be provided for each forecast step. With a static set of data, both models

were limited in the length of accurate forecasts they could produce. If the models

were forced to predict for longer steps, their forecasts would become wildly inaccurate.

Since the nature of the system required a model that could take in a static set of data

and produce an accurate forecast of at least 24 hours, or 288 points at a 5 minute

granularity, other models needed to be explored.

Holt-Winters and Facebook Prophet

After additional exploration, the two models chosen were the Holt-Winters model and

the Facebook Prophet model. While both models are seasonal time-series forecasting
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techniques, they differ mainly in the types of seasonalities that are supported and the

degree of customizable parameters. In testing these models, the grid search technique

was utilized to find the parameter combination that resulted in the most accurate

forecast. Grid search takes in multiple inputs for each given parameter, runs the

model with all possible combinations of the inputs, and returns the best result. As

it is a computationally expensive technique, in order to determine the most accurate

model with reasonable computation time, both models were studied with and without

the use of grid search. For both models, the test size, or forecast length, was one full

day (288 points), as necessitated by the system design. In order to gain an accurate

forecast of this length, the training size was 3 full days (864 points).

The Holt-Winters model is a seasonal forecasting method that primarily uses

exponential smoothing. The model takes in seasonality, trend, and level as its three

parameters to fit its three smoothing equations. In using grid search with Holt-

Winters, other than the seasonality returned from the seasonality detection algorithm,

seasonality inputs explored included the given seasonality plus or minus one as well

as other pattern lengths detected by the seasonality detection algorithm that were

not the most frequently occurring. However, most seasonal workloads at a 5 minute

granularity were explicitly patterned (see Figure B-1 for examples) with a stable

seasonality, level, and trend. Thus it was concluded that Holt-Winters could perform

accurately even without the use of grid search, as the stable seasonality and lack of

trend allowed parameters to be accurately set with one value.

The Facebook Prophet model, in contrast to Holt-Winters, is a more complex

model with higher customization capabilities. The benefit of this model is its support

for workloads with multiple seasonalities or irregular seasonalities (such as holidays

in a yearly calendar). As such, its capabilities are preferred in forecasting workloads

with light or more complex seasonal patterns as well as workloads with longer pat-

terns, such as weekly and yearly patterns. Because the Prophet model’s strength is

in its customizable parameters and multiple components, which are used to describe

more complex seasonalities, using grid search with this model to forecast workloads

possessing such qualities is advantageous. Between the Holt-Winters model and Face-
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book Prophet with grid search, due to the nature of workload activity at a 5 minute

granularity, the Holt-Winters model works best, with its comparably lightweight com-

putational load and high accuracy. Section 4.4.2 will detail other circumstances and

use cases where Facebook Prophet will be used in the system.
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Chapter 4

Validation

As the original goal of this thesis was to develop a generic algorithm to forecast

storage workloads that reduced computation but still performed accurately, ELF was

evaluated over four characteristics: accuracy, storage space, computation time, and

flexibility. In the validation experiments, a simulated environment was created where

20,000 workloads streamed 7 days of real data that was previously collected to the

algorithm (either to ELF or the baseline) and validation statistics were recorded.

4.1 Accuracy

Since ELF is comprised of two parts, classification and forecasting, the evaluation of

accuracy was also thus split. In general, workload classification accuracy was deter-

mined trivially or through manual inspection and analysis while workload forecast

accuracy was determined through a variety of error metrics. For manual inspection, a

subset of 200 workloads containing workloads with typical activity as well as special

cases was examined closely. For the remaining workloads, further inspection only

occurred when certain validation metrics or checkpoints revealed unusual activity.
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Figure 4-1: Average workload classification distribution over 7 days

4.1.1 Classification

Figure 4-1 shows the average classification distribution of workloads over a period

of 7 days. From day to day, the distribution percentages varied very little, with the

range of fluctuation remaining around 1%. The validation of these classifications was

mainly conducted manually through graph visualizations and inspections of outliers

or abnormalities. This section will detail the processes for how each individual state

was evaluated for accurate classification.

Idle and Constant classifications

The validation for idle workloads is relatively trivial; since 100 IOPS was predeter-

mined to be the threshold of significant activity, any workload that primarily operates

under that threshold is classified as idle. "Primarily" was defined as 95% of all data

points, a threshold chosen to filter out outliers that influenced the classification. This

threshold was originally 99%, but was changed as it still allowed inactive workloads

to be classified as random due to a few abnormalities.

Constant workloads were classified and validated in a similar fashion, also with

95% of points considered. The additional factor in constant classifications were the
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Figure 4-2: An example of a seasonal workload that operates primarily under 100
IOPS, so it is classified as idle.

bin ranges of the remaining histogram bins. These ranges were tuned according to

both workload characterization and visual validation. Some incorrect classifications of

constant workloads occurred when the level of activity straddled a bin range boundary.

In these cases, since 95% of workload points did not fall into any one bin, the workload

was not classified as constant despite operating within a small range. However, as bin

ranges are generally rather large and successively increase in range, with the latter

few being several thousand IOPS, this circumstance occurred relatively infrequently.

Random and Seasonal classifications

As idle and constant classifications take precedence over random and seasonal classi-

fications, it is possible to have workloads that are explicitly seasonal but are classified

as idle or constant, an example shown in Figure 4-2. As this precedence is intentional,

such classifications are not considered incorrect.

The majority of incorrect classifications are consequently seasonal workloads being

classified as random or random workloads classified as seasonal. The former can occur

due to the workload containing too much noise to be accurately classified as seasonal

or having a pattern that is too long to be detected by the seasonality detection

algorithm. The latter can occur by chance, when a random workload happens to

have points in the right places to be given a seasonality. Due to the consistent

nature of workloads, incorrect classifications due to chance circumstances or noise are

38



Constant Value Prediction Errors
Workload Type Constant Random

Error Metric Mean
MAPE

Median
MAPE

Mean
MAPE

Median
MAPE

Overall 83.5 5.7 >500 111.7
Day 1 3.5 7.2 >500 110.1
Day 2 12.4 6.7 >500 120.1
Day 3 418.0 5.6 >500 102.8
Day 4 7.8 5.0 >500 104.6
Day 5 7.5 4.7 >500 136.5
Day 6 6.6 4.8 >500 107.9
Day 7 6.3 4.9 >500 126.0

Table 4.1: The percent error of the constant value prediction for constant and random
workloads. The error shown is the mean or median of MAPEs across all constant or
random workloads on the day specified. Errors greater than 500% are too large to be
significant and are thus not explicitly listed.

not stably repeated from day to day. Using this observation, modifications to ELF

that address these circumstances will be discussed in Section 5.2.2. Workloads with

patterns too long to be caught with the seasonality detection algorithm will be caught

at higher granularities, to be discussed in Section 4.4.2.

4.1.2 Forecast

ELF forecasts workloads using two different methods: for idle, constant, and ran-

dom workloads, a constant value prediction is used. For seasonal workloads, the

Holt-Winters model is used for forecasting. Since there are different use cases and

considerations for different types of workloads and prediction methods, accuracy eval-

uation for these two prediction methods were conducted separately.

Constant Value Prediction

In validating the prediction for idle workloads, use cases must be considered. Since

the constant value prediction for idle workloads is 0, error metrics do not yield any

additional useful information. It is unlikely for predictions of idle workloads to be

used in additional analysis as idle workloads are likely to be filtered out of most
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Figure 4-3: A workload that was initially constant but became idle during the day
that was predicted. A state change such as this would result in a high error for the
constant value prediction.

analyses, so idle workload predictions were left as is.

In evaluating the accuracy for constant and random workload predictions, we used

the mean absolute percent error (MAPE) over all points in a prediction. Table 4.1

displays the mean or median of all MAPEs calculated for a certain day or type of

workload. These error statistics give the representative MAPE for all workloads of a

certain type that were predicted with a constant value prediction. As a single MAPE

returns the average percent error for a single workload day, the mean or median of

all MAPEs across workloads of the same type displays a metric for how well constant

value predictions perform across workloads of that type. In inspecting the error

statistics for outliers, we found two circumstances that resulted in unusually high

error. The first was the occurrence of abnormalities such as random spikes or dips

that cannot be predicted. The second was state or level changes in the workload,

as shown in Figure 4-3. Due to the nature of 24 hour classification and prediction,

if the level of workload activity changes, it will take a day for the classification and

prediction to adjust.

To account for high errors due to abnormalities, for each MAPE calculated, the

5th and 95th percentile of errors were filtered before taking the mean of the absolute

errors. The mean and median of all such calculated MAPEs are the values shown

in Table 4.1. In considering prediction errors without errors due to state changes,
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we can examine the median of all MAPEs. However, since ability to adapt to level

changes is a desired quality in time series forecasters, the mean of all MAPEs is still a

pertinent evaluation metric. The day-to-day distribution in Table 4.1 of the mean of

MAPEs for constant workloads more prominently displays days in which workloads

undergo an activity level change, indicated by abnormally high percent errors.

After considering these adjustments and circumstances, the error for constant

workload predictions is appropriately acceptable in providing an accurate represen-

tation of activity. However, the error for random workload predictions is consistently

high, even when examining the median of MAPEs. This is to be expected, since we

are predicting workloads characterized with a wide range of activity, often several

thousand IOPS, with a constant value. Because random workloads are difficult to

predict even with an ML model, as shown in Table 4.2, random workloads will always

have to be overprovisioned or dealt with conservatively in certain use cases.

ML Model forecast

Two different types of validation metrics were used when evaluating prediction results

from the ML model. The first, the RMSE, gives a representation of how well the

forecasted result fits the actual data. In order to display a generically comparable

metric, we divided the RMSE of each prediction by the total range of activity of

the validation data. Table 4.2 shows the average percent error of this metric over

all the given workloads for a specific day. To reduce the effect of outlier noise, the

mean or interquartile range could also be used to normalize the RMSE. Since the

appearance of outlier noise did not occur frequently in seasonal workloads, we used

the total range when calculating the error metric. The second error metric is an

up/down classification accuracy metric, which provides a representation of how well

the forecast predicts peaks and valleys in the data. This metric is useful in cases where

on/off classifications are particularly significant, such as provisioning and scheduling.

The accuracy of this metric is given by the percentage of points in the forecast that

are above or below the median value at the same time the equivalent point in the

validation data is above or below the median. A forecast with perfect classification
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ML Model forecast (Holt-Winters)
Validation
Metric

RMSE / Range
Percent Error

Up/Down Classification
Percent Accuracy

Workload
Types
Forecasted

Seasonal
Random
and
Seasonal

All Seasonal
Random
and
Seasonal

All

Total
Average 18.4 264.9 59.4 79.8 67.4 74.3

Day 1
Average 22.7 968.0 48.5 74.6 66.0 73.9

Day 2
Average 15.6 79.3 141.2 80.8 67.4 75.8

Day 3
Average 15.1 95.4 35.5 80.6 66.2 74.9

Day 4
Average 21.7 53.9 37.5 82.8 66.2 73.6

Day 5
Average 15.8 28.6 48.9 83.0 68.0 73.8

Day 6
Average 13.9 26.5 48.1 84.7 71.4 74.0

Day 7
Average 15.0 26.2 19.8 87.0 70.0 73.4

Table 4.2: Validation metrics of workloads forecasted by the Holt-Winters ML model.
The RMSE value represents the mean percent error over all workloads of that type on
the day specified, where the error is the RMSE divided by the total range of activity
that day for that workload. The up/down classification is the percent accuracy of
when the predicted forecast is above or below the median in comparison to the actual.
A 100% up/down classification rate is perfect accuracy.

ARIMA vs Holt-Winters

ML Model RMSE / Range Up/Down
Classification

ARIMA 25.1 75.9
Holt-Winters 18.4 79.8

Table 4.3: The average RMSE and up/down validation metrics as described in Table
4.2 of the prediction given by the ARIMA and Holt-Winters model over all seasonal
workloads classified in the 7 day period.
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accuracy will have a percentage of 100%.

To provide further baselines of validation for classification, two more experiments

were run, where additional non-seasonal workload types were passed to the ML model

to predict. To account for cases where seasonal workloads were incorrectly classified

as random and to demonstrate how accurately the ML model could forecast ran-

dom workloads, a conservative algorithm was run where both random and seasonal

workloads were passed to the ML model. For a generic algorithmic baseline, another

experiment passed all workloads to the model to see how ELF would perform in com-

parison. These baseline results are indicated in Table 4.2. For a validation baseline

for the Holt-Winters model itself, the ARIMA model was used to predict all seasonal

workloads, the results of which are shown in Table 4.3.

First, while examining how well Holt-Winters forecasted only seasonal workloads,

as is originally designed in ELF, we found two types of seasonal workloads, each

resulting in different levels of error. Strongly seasonal workloads similar to those

shown in Figure B-1 usually possessed around 1-5% RMSE error. Weakly seasonal

workloads similar to those shown in Figure B-2 were usually predicted with about

20-30% error, resulting in averages that hovered around 15-20% (see Table 4.2). In

comparison, the ARIMA model baseline performed with 25% error (see Table 4.3),

indicating a stronger performance from the Holt-Winters model.

In comparison to solely forecasting seasonal workloads, the prediction errors for

random and seasonal workloads were unsurprisingly higher. Despite the model gener-

ally performing better on random workloads than the constant value prediction, the

comparison becomes arbitrary as the average error is above 250% even when aver-

aged with errors from seasonal workloads, an error too great for the prediction to be

used reliably. This result reinforces the assumption that random workloads are too

unpredictable for an ML model and are better off predicted with a constant value

to save computation. The cases where this conservative algorithm would perform

better than ELF is in cases of seasonal workloads being incorrectly classified as ran-

dom. For this circumstance, we look to modifications to improve the classification

algorithm instead, as will be discussed in Section 5.2.2.
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Finally, in studying the results from the general algorithm baseline where all work-

loads were passed to the model, errors are also higher in comparison to just forecasting

seasonal workloads. Though an element of the increased error is due to the high er-

ror from predicting random workloads, the general error metric of RMSE divided by

range is ill-suited to represent prediction errors for idle and constant workloads be-

cause their ranges are so narrow. Thus, in properly summarizing the accuracy of idle

and constant predictions, other validation metrics should be considered. In examining

the up/down classification accuracy between only seasonal workloads, seasonal and

random workloads, and all workloads, the comparative accuracy indicates that idle

and constant workloads forecasted by an ML model have around similar accuracy to

just seasonal workloads. Since idle and constant workloads should be trivial for an

ML model to predict, we can conclude that seasonal predictions are well-predicted by

Holt-Winters.

4.1.3 Accuracy Overview

To summarize the accuracy validation findings of ELF, first, we found that about

89% of all classifications were idle, 2% were constant, 7% were random, and 2% were

seasonal. While idle and constant classifications were relatively accurate, additional

modifications can be made to ELF to reduce incorrect classifications between random

and seasonal workloads. In terms of the prediction of these workloads, constant value

predictions worked well and accurately for idle and constant workloads. For random

workloads, neither constant value predictions nor an ML model produce predictions

accurate enough to use reliably. Thus, random workloads must always be dealt with

conservatively and computation time is saved by using a constant value prediction to

report representative activity. When predicting using a ML model, forecasting solely

on seasonal workloads provides the best performance. In addition, the performance of

the Holt-Winters model on seasonal workloads is satisfactorily accurate, performing

better than the baseline ARIMA model and performing similarly to forecasts on trivial

activity.
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Data from online calculations stored in cache
Data structure Size per workload (bytes) Total size (MB)
Histogram 144 2.88
Bin sums 144 2.88
Total 288 5.76

Table 4.4: Size of data stored in cache at any one point in time. Total size was
estimated using 20,000 workloads.

4.2 Storage

For storage validation, ELF was evaluated on the size of data needed for online

computations as well as offline computations. In Chapter 2, it was mentioned that we

were limited to 30 MB of storage in the cache. While there was no such limit for offline

computations, minimizing the amount of data needed for those calculations would

greatly affect the speed of overall computation as pulling data from the database is a

costly operation.

4.2.1 Online Computations

The only online computation that ELF executes is the creation and update of his-

tograms for each workload. In order to have an accurate constant value prediction

for constant workloads, a sum count of values for each bin is also kept. Since the his-

tograms are a fixed size of 10 bins, this results in a total of 20 values stored for each

workload. Table 4.4 lists the size of data kept for each workload and for all 20,000

workloads. Cumulatively, the data stored in cache is less than 6 MB, far below our

30 MB limit.

4.2.2 Offline Computations

The relevant storage evaluation for offline computations is the amount of data needed

to be pulled from the database for each operation. In ELF, for each non-idle and non-

constant workload, a day of data is pulled for the seasonality detection algorithm. For

each classified seasonal workload, three days of data are pulled for the ML model. In
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Data pulled from the database in offline calculations

Operation
Size per
workload
(bytes)

ELF
total size
(MB)

Baseline
total size
(MB)

Seasonality detection
algorithm 9368 18.7 0

ML model 208,112 83.2 4162.2
Total 217,480 101.9 4162.2

Table 4.5: Amount of data pulled from the database in one day of operation. Total
size was estimated using 20,000 workloads and using the percentages that 10% of
workloads are non idle or constant (and run through seasonality detection) and 2%
of workloads are seasonal (and run through the ML mode).

a baseline algorithm without the classification aspect, 3 days of data are pulled for

every workload. Table 4.5 shows the size of data that ELF or the baseline algorithm

would pull from the database in one day of operation. Total size statistics for ELF are

estimated using the percentages that 10% of workloads are non-idle and non-constant

and 2% of workloads are seasonal. In total, it is shown that ELF pulls approximately

40 times less data than the baseline.

4.3 Timing

In validating ELF on the basis of timing, it was compared against two baselines.

The first baseline validated the classification aspect of ELF’s design and the second

baseline validated the machine learning model that was chosen. The classification

baseline algorithm is the same as ELF but differs in that it does not classify workloads

and instead runs all workloads through the ML model. The ML model baseline

algorithm is the same as ELF except for the ML model that was run. Rather than

the Holt-Winters model, seasonal workloads were forecasted with ARIMA.

Table 4.6 details offline process time (not real time) spent doing individual module

operations cumulatively over the 7 days. Note that while the histogram module is

additional computation that ELF executes that the baseline does not, as all computa-

tion for the histograms is online, the computation time of the system as a whole does
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Computation Time of ELF and Baselines (in seconds)

Operation ELF Classification
Baseline

ML Model
Baseline

Idle/Constant classification 1.38 0 -
Pulling 1 day of data
for seasonality detection 92.35 0 -

Random/Seasonal classification 16.24 0 -
Constant value prediction 2.02 0 -
Pulling 3 days of data
for ML model 25.06 1824.76 -

ML model forecast 1871.64 182,680.11 19,168.66
Total 2008.69 184,504.87 -

Table 4.6: Cumulative offline process time spent running each listed module operation
over a period of 7 days. The classification baseline algorithm forecasted all 20,000
workloads directly with the Holt-Winters model without any classification of the
workloads. The ML model baseline ran the ARIMA model over all workloads that
the Holt-Winters model was run on in ELF (seasonal workloads).

not increase due to the histogram module. As such, the computation time for the

histogram module has been excluded from the comparison. In addition, in regards

to pulling data from the database, though the validation experiments were not run

in the actual system mentioned in Section 2.1, both ELF and the baselines were run

in the same simulated environment, which possessed similar environment variables to

the aforementioned system. Thus the time taken to pull data from the database is

comparable between the algorithms.

As shown, a significant portion of the overall computation time is dedicated to

pulling data from the database. With ELF, this is minimized with its classification

portion by allowing data to be pulled from fewer workloads. The additional computa-

tion that ELF completes due to the classification of workloads is trivial in comparison

to the computation saved from neither running the Holt-Winters model over all 20,000

workloads nor pulling all the data needed to do so. In total, ELF runs about 92 times

faster than its baseline. In addition, the chosen model Holt-Winters performs about

10 times faster than its ARIMA baseline when run on the exact same data.
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4.4 Flexibility

Since ELF was designed to be generic, it was also evaluated on its ability to operate

on different types of data. In considering different types of data, we examined the

use of ELF with different metrics as well as with data at different time granularities.

4.4.1 Metrics

As a general workload forecasting algorithm, ELF can be utilized for the various use

cases that come with forecasting workload data of different metrics such as capacity

and latency. However, specific portions of the algorithm need to be tuned to account

for metric characteristics. The design decisions described in Chapter 3 that were made

specifically for the IOPS metric include histogram bin ranges, classification states, and

consequently the values for constant value predictions. In order to customize these

settings for different metrics, workload characterization as well as use case analysis is

needed for each metric.

For example, in considering latency, use cases could include process scheduling or

general usage analysis, in which case it would be useful to detect and predict pat-

terns, similarly to IOPS. Depending on environment, bin ranges could include under

1 millisecond, a few milliseconds, greater than a few milliseconds, etc. Classification

states could mirror the IOPS states, such as low latency, high but constant latency,

and patterned latency, with constant value prediction values following similarly.

In considering capacity, use cases could include capacity planning, in which it

would be useful to know when capacity has reached a certain threshold and at what

rate it is increasing. Bin ranges could be certain percentage thresholds, based on work-

load characterization, and states could include low usage (the IOPS idle equivalent),

high usage (a constant equivalent), and increasing usage (seasonal equivalent). Both

workloads classified as high usage and increasing usage would require the appropriate

additional attention and flags.

Though customizations are required to run ELF with different metrics, the basic

functionality and structure remain the same. In order to efficiently predict various
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workloads for various use cases, workloads are classified into states that allow them

to be forecasted and handled in a systematic and economical manner.

4.4.2 Time Granularities

When evaluating the use of ELF on different time granularities, we considered not

only its ability to operate with such data but also the different use cases and problem

solutions it could fulfill. Throughout the thesis, only data at a 5 minute granularity

was discussed. However, the system on which ELF was developed also processed

hourly and daily data, which were also tested when designing the algorithm. Though

hourly and daily workloads were not studied as deeply as 5 minute workloads, they

were used sufficiently to ensure that ELF functioned properly on alternate time gran-

ularities.

The use of data at different time granularities provides solutions to many different

needs. For example, using multiple granularities, ELF can detect and model different

patterns that occur at different time scales. When utilizing 5 minute data, hourly

patterns can be captured and forecasted. With hourly data, daily or weekly patterns

could be captured and, similarly, with daily data, monthly or quarterly patterns could

be found. In a typical business cycle, since patterns may occur from working hours

to nighttime, from weekday to weekend, or along quarterly deadlines, running the

model at different granularities could capture multiple patterns in a single workload.

Figure 4-4 shows a workload with both hourly and daily patterns.

This feature would also allow workloads with unstable classifications to be more

accurately classified. In the case where a particular workload is lightly seasonal or

possesses a seasonality right on the border of the seasonality detection algorithm’s

maximum pattern length limit, its classification may oscillate between random and

seasonal from day to day. Using a higher granularity in situations such as these

would allow more insight into which classification would be more accurate for that

particular workload. In addition, seasonal workloads that have patterns too long for

the seasonality detection algorithm would be classified as random at a smaller time

granularity, but consequently would be correctly classified as seasonal at a larger
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Figure 4-4: The activity of a workload over three days, from July 1st to July 3rd.
Note that the workload contains both an hourly pattern of about 4 hours as well as
a daily pattern of raised activity around 6am to 12pm.

granularity.

In addition, it was found that different machine learning models would be prefer-

able at larger granularities. Patterns found at an hourly granularity are similar to

those found at a 5 minute granularity, making Holt-Winters the ideal model for hourly

data as well. However, at a daily granularity, we found that patterns are not as explicit

as they are at a 5 minute or hourly granularity. The lightly seasonal workloads that

are typically found in daily data are forecasted more accurately with the Facebook

Prophet model, which allows for more parameters and customizations. In addition

to capturing more difficult patterns, the Prophet model possesses explicit parameters

for custom seasonalities such as holidays or weekends, seasonalities that only apply

at a daily granularity. Though the Prophet model is a more computationally complex

model than Holt-Winters, because forecasts at a daily granularity may not have to be

run as often as forecasts at the other two granularities, the effects of this drawback

can be minimized.
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Chapter 5

Conclusion

5.1 Summary

This thesis presents ELF, an algorithm that addresses the problem of efficient fore-

casting of storage workloads. It was designed to be scalable to tens of thousands of

workloads and flexible to different data metrics and use cases. To achieve this, it

utilizes concepts such as online computation, classification of workloads, and special-

ized prediction methods. Its main approach to efficiency is to reduce computational

overhead by executing complex computations on less data. The basic architecture

consists of four modules: the histogram module, classification module, seasonality

detection module, and prediction module. The histogram module collects compact

statistics about each workload that allow 90% of all workloads to be classified as

idle or constant with trivial computation. The classification module then utilizes the

seasonality detection module to classify the remaining 10% of workloads as random

or seasonal. Finally, the prediction module forecasts the 2% of workloads classified as

seasonal with a machine learning module and the remaining 98% of workloads with a

constant value prediction. With this design, ELF performs 92 times faster and stores

40 times less data than baseline algorithms while still matching their accuracy.

51



5.2 Discussion

5.2.1 Contribution

In addition to providing an efficient, lightweight, and accurate method to forecasting

workloads, our approach provides further benefit with its generic and modularized

nature. Its modularization allows for the multi-use of specific modules, such as the

histogram module and seasonality detection module, in other use cases and services

that do not run the entirety of the algorithm. Its generic nature allows it to be used

with many different data metrics, consequently also fulfilling the additional use cases

that follow. In summary, ELF not only provides an efficient solution to forecasting

storage workloads, but its versatility allows it to be utilized in many different use

cases and solutions.

5.2.2 Future Algorithm Modifications

In moving forward with ELF, there are many different modifications that could be

made to improve efficiency or accuracy. Under different resource constraints, more of

the algorithm could be completed online. If we could store more than 30 MB of data

in the cache at a time, the only limiting factor on online computations would thus be

a computation time limit of 5 minutes or the data collection granularity. With this

change, we would likely be able to run all modules except for the ML model forecast

online, thus increasing efficiency by decreasing both offline computations and the

amount of data to pull from the database.

To address misclassifications between seasonal and random workloads, we consider

both the issue of seasonal workloads misclassified as random and random workloads

misclassified as seasonal. For the former, an initial exploration was completed, coined

as the "conservative approach," that sent all random and seasonal workloads to the

ML model. Though this approach would resolve this particular issue, the costs to

accuracy (Table 4.2), computation time (Table A.1), and storage (Table A.2) were

too great to consider it as a valid modification. Instead, we conducted further studies
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to develop a heuristic that could indicate workloads that are more likely to be seasonal

rather than random.

For misclassifications between seasonal and random workloads not due to the fact

that the seasonal pattern is too long to be detected by the detection algorithm, we

assume that all such misclassified workloads are lightly seasonal or contain activity

that occasionally resemble seasonal patterns. These workloads are characterized with

unstable day-to-day classifications, such as switching between seasonal and random

classifications multiple times within a sequence of days. Because most workloads

have relatively stable activity, this occurrence indicates a workload containing both

random and seasonal characteristics. To properly distinguish seasonal and random

workloads out of these types of workloads, we can use two strategies. The first is

to examine the workload at a greater time granularity. Oftentimes the workload

activity will stabilize and become more distinct once viewed at either hourly or daily

granularities. Combining results from ELF running with 5 minute data and from it

running with hourly or daily data as described in Section 4.4.2 will allow us more

insight into the correct classification of the workload. The second strategy is to

utilize a heuristic based on histogram point concentration, error, and classifications

of a workload throughout multiple days. In analyzing histogram point concentration,

we found that seasonal workloads generally tend to have a higher concentration of

points among one or two histogram bins while random workloads tend to have a larger

distribution among multiple bins. When predicted with a constant value prediction,

seasonal workloads consistently tend to have a smaller error than random workloads.

In combining these two observations, we can develop a heuristic that, given workloads

that have both seasonal and random characteristics, can more accurately distinguish

between workloads that are mainly random and those that are mainly seasonal.

Finally, another adjustment to ELF could be to improve classifications that are

based on histogram distributions, mainly constant workload classifications. In the

case where a constant workload’s activity straddles a bin boundary, it would be

classified as random rather than constant. To combat this issue, we may develop a

heuristic that examines bin distribution or create a second set of histogram bins with
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ranges that straddle the first histogram bin ranges. However, before doubling the

amount of data we would need to store in cache, proper analysis would have to be

conducted to ascertain its need.

5.2.3 Additional Insights

An important aspect of workload analysis and forecasting is abnormality detection.

Abnormalities may include random spikes or dips in usage, changes in state or level

of activity, and changes in pattern or activity type. Many of these changes would

be useful to detect and flag for future inspection or analysis. Though abnormality

detection was not a focus for this thesis, due to the nature of ELF and its validation,

detecting these changes would be simple. For example, changes in state or level of

activity would be indicated by a shift in classification for a particular workload or a

change in its constant value prediction. A change in pattern could be indicated by a

change in seasonality length as returned from the seasonality detection module. The

addition of these features would further expand the versatility and usage of ELF.
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Appendix A

Additional Tables
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Computation Time of ELF vs Conservative Algorithm (in seconds)

Operation ELF Conservative
Algorithm

Idle/Constant classification 1.38 1.41
Pulling 1 day of data for seasonality detection 92.35 -
Random/Seasonal classification 16.24 -
Constant value prediction 2.02 0.02
Pulling 3 days of data for ML model 25.07 108.57
ML model forecast 1871.64 7326.49
Total 2008.70 7436.49

Table A.1: Cumulative offline process time distribution over a period of 7 days be-
tween ELF where only seasonal workloads are sent to the ML model and a conservative
version, where both random and seasonal workloads are sent.

Data pulled from the database in offline calculations

Operation
Size per
workload
(bytes)

ELF
total size

(MB)

Conservative
Algorithm
total size

(MB)
Seasonality detection algorithm 9368 18.7 0
ML model 208,112 83.2 374.6
Total 217480 101.9 374.6

Table A.2: Amount of data to be pulled from the database in one day of operation
between the original algorithm where only seasonal workloads are sent to the ML
model and a conservative version, where both random and seasonal workloads are
sent.
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Appendix B

Additional Figures
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Figure B-1: Examples of strongly or explicitly seasonal workloads. These are charac-
terized by consistent activity with little variation.
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Figure B-2: Examples of lightly or weakly seasonal workloads. The activity of these
workloads could range from seasonal with multiple abnormalities, as shown at the
top, to workloads with slightly ambiguous or changing patterns.
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