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Abstract

The Urysohn 𝑑-width of a metric space quantifies how closely it can be approximated
by a 𝑑-dimensional simplicial complex. Namely, the 𝑑-width of a space is at most 𝑤
if it admits a continuous map to a 𝑑-complex with all fibers of diameter at most 𝑤.
This notion was introduced in the context of dimension theory, used in approximation
theory, appeared in the work of Gromov on systolic geometry, and nowadays it is a
metric invariant of independent interest. The main results of this thesis establish
bounds on the width, relating local and global geometry of Riemannian manifolds in
two contexts. One of them is bounding the global width of a manifold in terms of
the width of its unit balls. The other one is waist-like inequalities, when a manifold
is sliced into a family of (singular) surfaces, and the global width is related to the
supremal width of the slices.
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Chapter 1

Introduction

Almost a century ago Pavel Samuilovich Urysohn, a Soviet mathematician of a dra-

matically short but prolific career, made several contributions that made him one of

the founding fathers of dimension theory and general topology. This thesis is devoted

to one particular notion, introduced by Urysohn in 1923 under the Russian name

poperechnik. Now it is commonly called the Urysohn width.

Roughly speaking, the 𝑑-width measures how well a metric space can be approxi-

mated by a 𝑑-dimensional complex. A compact metric space is said to have 𝑑-width

at most 𝑤, if there is a continuous map from the space to a 𝑑-dimensional simplicial

complex with all fibers having diameter at most 𝑤. Informally, a space is “approxi-

mately 𝑑-dimensional” if its 𝑑-width is small, and it is “essentially (𝑑+1)-dimensional”

if its 𝑑-width is considerable.

The 𝑑-width of a (𝑑 + 1)-dimensional space (named the flattening coefficient by

Urysohn) is perhaps the most interesting metric invariant among the widths. It plays

a role in systolic geometry, and overall it seems to be an upper bound for more or

less any interesting invariant measuring the “size” of a space in length units.

On the other hand, the widths (the flattening coefficient as well as the others)

often behave counterintuitively. As we will see,

∙ the product of two essentially 2-dimensional spaces can be approximately 3-

dimensional;
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∙ the unit balls in an essentially 2-dimensional surface can all be approximately

1-dimensional;

∙ there is an essentially 4-dimensional topological ball that can be sliced into a

1-dimensional family of approximately 2-dimensional fibers.

1.1 Outline

Chapter 2 collects the background on the notion of Urysohn width, including its

history and significance in metric geometry. Several equivalent definitions are given

and their properties are discussed.

Chapter 3 deals with the relation between local Urysohn width bounds in a Rie-

mannian manifold and its global width. The results of this chapter constitute the

preprint [7] joint with Aleksandr Berdnikov. We bound the 1-width of a Rieman-

nian manifold in terms of its first homology and the supremal width of its unit balls.

Answering a question of Larry Guth, we give examples of 𝑛-manifolds of consider-

able (𝑛 − 1)-width in which all unit balls have arbitrarily small 1-width. In other

words, the locality of topological dimension is not robust. We also give examples of

topologically simple manifolds that are locally nearly low-dimensional.

Chapter 4 explains a simple proof of Karasev’s topological centerpoint theorem

(the topological counterpart of Rado’s centerpoint theorem), based on a certain prop-

erty of the Urysohn width, and using little to no topology.

Chapter 5 is dedicated to various questions of the following kind: for a continuous

map 𝑋 → 𝑌 from a compact metric space to a simplicial complex, can one guarantee

the existence of a fiber large in the sense of Urysohn width? The results of this

chapter, which form another joint preprint [8] with Aleksandr Berdnikov, include the

following.

1. Any piecewise linear map 𝑓 : [0, 1]𝑚+2 → 𝑌 𝑚 from the unit euclidean (𝑚 + 2)-

cube to an 𝑚-polyhedron must have a fiber of 1-width at least 1
2𝛽𝑚+𝑚2+𝑚+1

,

where 𝛽 = sup
𝑦∈𝑌

rk𝐻1(𝑓
−1(𝑦)) measures the topological complexity of the map.
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2. There exists a piecewise smooth map 𝑋3𝑚+1 → R𝑚, with 𝑋 a Riemannian

(3𝑚+1)-manifold of large 3𝑚-width, and with all fibers being topological (2𝑚+

1)-balls of arbitrarily small (𝑚+ 1)-width.

1.2 Notation

Symbol Meaning
𝑀𝑛 an 𝑛-dimensional Riemannian manifold (the indication of dimension is often omitted)
𝑈𝑟(𝑆) the open 𝑟-neighborhood of 𝑆 in a metric space
.,& inequalities that hold up to a multiplicative factor depending on dimension only
𝐴 ∼ 𝐵 𝐴 . 𝐵 and 𝐴 & 𝐵

Table 1.1: Notation
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Chapter 2

Urysohn width: history, context,

properties

What we now call the Urysohn width was introduced under the Russian name pop-

erechnik in early 1920s by Pavel Urysohn. Since then it appeared in the literature

translated as “waist”, “diameter” or “width”, and we stick to the latter as the one most

commonly used nowadays.

The 𝑑-width quantifies the failure of a space to be 𝑑-dimensional. The original

definition of Urysohn was given in terms of closed coverings, and we give an overview

of different equivalent ways of defining width in Section 2.3.

The goal of Section 2.1 is to give an overview of different notions of “waist”/“width”

of a space. The earliest publications on the matter were written in 1920s and 1930s,

and they are mostly in French and German. After that, much of the literature on

waists was written in Russian, but even those sources sometimes define and attribute

some of the waists incorrectly. Our hope is to clear out some of the confusion. It was

Gromov who in 1980s brought the Urysohn width to the attention of the English-

speaking mathematical community, and in a completely different context of metric

geometry, which we review in Section 2.2. Nowadays it is considered as a metric

invariant of independent interest.

Section 2.4 explains some simple properties of the width, but also contains a few

examples that might be new; those examples show that the width does not respect
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taking products and covering maps.

Section 2.5 collects very few examples for which we know the width exactly.

2.1 Early notions of waist

I use the word “waist” as an umbrella term for multiple “size” invariants of spaces,

quantifying their dimensional properties.

Pavel Urysohn proposed the historically first notion of waist around 1923, but

it was only published posthumously by Pavel Alexandrov [3], based on Urysohn’s

records and their communication.

Definition 2.1.1. The Urysohn 𝑑-width (or 𝑑-waist, or 𝑑-diameter) of a compact

metric space 𝑋 is

UW𝑑(𝑋) = inf⋃︀
𝐶𝑖=𝑋

sup
𝑖

diam(𝐶𝑖),

where the infimum is taken over all finite closed covers of 𝑆 of multiplicity at most

𝑑 + 1. (A cover is said to have multiplicity, or ply, at most 𝑑 + 1 if no point of the

space belongs to more than 𝑑+ 1 sets of the cover.)

In the publication [3] the new invariant does not carry any specific name, except

for the codimension 1 case, when 𝑑 = dim𝑋 − 1.1 This codimension 1 width is

named coefficient d’aplatissement (the “flattening coefficient”). In the Russian trans-

lation [57] the name poperechnik is added.

Urysohn introduced the waist in the context of dimension theory. There are

several ways to define the dimension of a topological space, introduced and studied

by Lebesgue, Brouwer, Urysohn, and Menger. A theorem of Urysohn [56] says that in

compact metric spaces the notions of inductive dimension (both small and large) and

covering dimension coincide. A topological space is said to have covering dimension2

at most 𝑑 if any open cover admits a refining cover of multiplicity at most 𝑑+ 1. For

compact spaces, one can use finite closed covers instead of open ones. The covering

1The dimension here and everywhere is the topological dimension, see more on that below.
2Also called the Lebesgue dimension or topological dimension.
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dimension of a compact metric space coincides [56] with the metric dimension: it is

at most 𝑑 if for any 𝜀 > 0 there is a cover with multiplicity at most 𝑑+1 consisting of

sets with diameter < 𝜀. Informally, a 𝑑-dimensional space, when covered by “small”

sets, must have a point covered by 𝑑 + 1 sets. Urysohn used this as a starting point

to define the “deficit of the 𝑑-dimensionality” of a space as the infimal size of sets in

the covering that has multiplicity 𝑑 + 1. Alexandrov notes that Urysohn’s idea of

considering finite closed covers was the predecessor for the Lusternik–Schnirelmann

category.

Urysohn used the flattening coefficients in order to formulate the following result

on the “continuity of dimension”.

Theorem 2.1.2 (Urysohn [3]). Let 𝐹1 ⊃ 𝐹2 ⊃ . . . be a nested sequence of 𝑑-

dimensional closed sets in a compact metric space. Then the intersection
⋂︀
𝐹𝑖 has

dimension 𝑑 if and only if lim
𝑖→∞

UW𝑑−1(𝐹𝑖) > 0.

It is folklore that Urysohn’s definition can be equivalently reformulated in terms

of mappings (this is explained in Section 2.3). The equivalence is most likely due to

Alexandrov, who actually invented the machinery for that proof, including the notion

of the nerve of a cover.

Definition 2.1.3. The Alexandrov 𝑑-cowidth (or 𝑑-codiameter) of a compact metric

space 𝑋 is

AW𝑑(𝑋) = inf
𝑝:𝑋→𝑍

sup
𝑧∈𝑍

diam(𝑝−1(𝑧)),

where the infimum is taken over all continuous maps 𝑝 from 𝑋 to any metrizable

topological space 𝑍 of dimension at most 𝑑.

Let me reiterate: UW𝑑(𝑋) = AW𝑑(𝑋), and this is the most common definition

of the Urysohn width in the recent literature. This definition is implicit in [4]; it was

explicitly introduced in [55] as parallel (and dual, in a sense) to the Alexandrov width

(see below), and the word cowidth is my translation of the Russian kopoperechnik

appearing in later publications (e.g., [37], where it is translated as codiameter).

The following definition was given by Alexandrov [4] in the case 𝑌 = R𝑛.
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Definition 2.1.4. Let 𝑋 be a compact metric space isometrically embedded in a

metric space 𝑌 . The (relative) Alexandrov 𝑑-width (or 𝑑-waist, or 𝑑-diameter) of 𝑋

in 𝑌 is

AW𝑑(𝑋, 𝑌 ) = inf
𝑝:𝑋→𝑍

sup
𝑥∈𝑋

dist𝑌 (𝑥, 𝑝(𝑥)),

where the infimum is taken over all continuous maps 𝑝 from 𝑋 to any subspace 𝑍 ⊂ 𝑌

of dimension at most 𝑑.

It is easy to see thatAW𝑑(𝑋) ≤ 2AW𝑑(𝑋, 𝑌 ). Less obvious but true is the inequal-

ity AW𝑑(𝑋, 𝑌 ) ≤ UW𝑑(𝑋) provided that 𝑌 is a Banach space (so that the nerve of

a covering of 𝑋 can be geometrically realized in 𝑌 , possibly with self-intersections).

Together with the equality UW𝑑(𝑋) = AW𝑑(𝑋) these imply that the Alexandrov

width (relative to a Banach space) and cowidth differ by a factor of at most 2.

Some authors [5, 31, 45] use the terms “Alexandrov diameter” and “Alexandrov

width” for slightly different notions but I remark that Alexandrov did not introduce

those.

Alexandrov’s motivation was to introduce the analogues of Urysohn’s concept

building up on the alternative definitions of dimension based on homology with coef-

ficients. Alexandrov used an early version of homology due to Vietoris, and we give

here a counterpart with singular homology, in a general ambient space 𝑌 (Alexandrov

used 𝑌 = R𝑛).

Definition 2.1.5. Let 𝑋 be a compact metric space isometrically embedded in a

metric space 𝑌 . The homological 𝑑-width of 𝑋 in 𝑌 is

HW𝑑(𝑋, 𝑌 ) = sup
𝑍∈ℬ𝑑(𝑋)

inf{𝑟 ≥ 0 | 𝑍 bounds a (𝑑+ 1)-chain of 𝑌 in 𝑈𝑟(supp𝑍)}.

Here ℬ𝑑(𝑋) is the space of 𝑑-boundaries (null-homologous singular 𝑑-cycles) in 𝑋;

supp𝑍 is the subset of 𝑋 where the images of the singular simplices of 𝑍 land; 𝑈𝑟(·)

is the 𝑟-neighborhood taken in 𝑌 .

We do not specify the homology coefficients here; one can consider any coefficients,

and in fact, Alexandrov pays specific attention to the “mod 1” coefficients, Q/Z or
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R/Z. Alexandrov remarks that HW𝑑(𝑋, 𝑌 ) ≤ AW𝑑(𝑋, 𝑌 ) ≤ UW𝑑(𝑋) in his case of

interest (𝑌 = R𝑛), so I think it natural to consider this definition over ambient spaces

𝑌 in which this estimate holds; for example, over Banach spaces.3 He also says that

he is not aware of any inequalities of the form UW𝑑(𝑋) . HW𝑑(𝑋, 𝑌 ).4 The ideas

of this thesis can be used to build an example showing that no such inequality holds

for 𝑑 = 1, 𝑌 = R4, and Z coefficients; this example is a modification of the surface

built in the proof of Theorem 2.4.4; it can be embedded in R4.

Another early notion of waist was introduced by Kolmogorov [38] in the context of

approximation theory.5 It can be regarded as a linear version of Alexandrov’s width.

Definition 2.1.6. Let 𝑌 be a normed space with the unit ball 𝐵. The Kolmogorov

𝑑-width (or 𝑑-waist, or 𝑑-diameter) of a compact set 𝑋 ⊂ 𝑌 is

KW𝑑(𝑋, 𝑌 ) = inf{𝑟 | 𝑋 ⊂ 𝑟𝐵 + 𝐿, for some affine 𝑑-subspace 𝐿}.

It took quite a few years after the work of Kolmogorov until the interest to waists

has resumed. A plethora of other waists, which we do not consider here, were in-

troduced in the ’60s; Tikhomirov’s systematic treatment [55] is a nice reference, but

it only exists in Russian. Tikhomirov distinguishes between waists (arising in ap-

proximation problems) and cowaists (arising in optimal recovery), and establishes a

correspondence between those. For instance, Definition 2.1.4 and Definition 2.1.3 give

such a pair; this parallelism is perhaps one of the reasons why the term “Alexandrov

width” is misused often.

The work of Tikhomirov [54] initiated the study of the dependence of relative

waists, such as the Alexandrov width, on the ambient space 𝑌 . Expanding 𝑌 de-

creases the width, and one can ask whether there is a universal metric extension
3It is easy to show that inf𝑌 HW𝑑(𝑋,𝑌 ) = HW𝑑(𝑋,𝐿∞(𝑋)), where 𝑋 ⊂ 𝐿∞(𝑋) is the Kura-

towski embedding (see below). Indeed, if a 𝑑-cycle of 𝑋 bounds in its 𝑟-neighborhood inside 𝑌 , on

can project the filling cycle via the 1-Lipschitz map 𝑌
Kurat.→ 𝐿∞(𝑌 )

restr.→ 𝐿∞(𝑋). This way one
could define the absolute homological 𝑑-width as HW𝑑(𝑋,𝐿∞(𝑋)).

4In [21] Gromov asked this question for 𝑑 = 1, and 𝑋 = 𝑌 being a path metric space; Aleksandr
Berdnikov constructed counterexamples for several different homology coefficients (for example, with
Z coefficients a certain connected sum of projective planes will do).

5It could be used, for instance, to quantify how well a class of functions can be approximated by
trigonometric polynomials of bounded complexity.
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minimizing the relative width. The following definition is due to Ismagilov [28], ex-

cept that he worked with Banach isometric extensions, but that does not change the

result.

Definition 2.1.7. Let 𝑋 be a compact metric space. The absolute Alexandrov 𝑑-

width of 𝑋 is

AW𝑑(𝑋) = inf
𝑌

AW𝑑(𝑋, 𝑌 ),

where the infimum is taken over metric spaces 𝑌 admitting isometric embedding

𝑋 →˓ 𝑌 .

Theorem 2.1.8. The absolute Alexandrov width of 𝑋 is attained for a specific metric

extension 𝑋 →˓ ̃︀𝑋:

AW𝑑(𝑋) = AW𝑑(𝑋, ̃︀𝑋).

Moreover, ̃︀𝑋 can be taken a Banach space.

If 𝑋 is a subset of a Banach space 𝑌 , one can take ̃︀𝑋 to be the space of bounded

functions on the unit ball of the dual space 𝑌 * ([28, 55]). To apply this for an abstract

metric space 𝑋, one can first use the Kuratowski isometric embedding [39]:

𝑋 → 𝐿∞(𝑋),

𝑥 ↦→ dist𝑋(·, 𝑥),

where 𝐿∞(𝑋) denotes the space of bounded functions on 𝑋 with the sup-norm.

It turns out though that a simpler construction is possible: one can just take ̃︀𝑋 =

𝐿∞(𝑋) with the Kuratowski embedding𝑋 →˓ ̃︀𝑋. The equalityAW𝑑(𝑋) = AW𝑑(𝑋, ̃︀𝑋)

is implicitly proven in [16] as well as the following earlier-known [55] equality, which

can be taken as yet another definition of the Urysohn width. We give an argument

proving both of these.

Theorem 2.1.9.

AW𝑑(𝑋) =
1

2
AW𝑑(𝑋).
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Proof of Theorem 2.1.8 and Theorem 2.1.9. It is clear that AW𝑑(𝑋) ≤ 2AW𝑑(𝑋, 𝑌 )

for any isometric extension 𝑌 ; therefore, AW𝑑(𝑋) ≤ 2AW𝑑(𝑋). We will show that

2AW𝑑(𝑋,𝐿
∞(𝑋)) ≤ AW𝑑(𝑋), and both results will follow. Suppose that AW𝑑(𝑋) <

𝑤, certified by a map 𝑝 : 𝑋 → 𝑍, dim𝑍 ≤ 𝑑, 𝛿 = sup𝑧 diam 𝑝−1(𝑧) < 𝑤.

To show that AW𝑑(𝑋,𝐿
∞(𝑋)) < 𝑤/2 we need to come up with a map 𝑋 →

𝐿∞(𝑋) with at most 𝑑-dimensional image and 𝑤/2-close to the Kuratowski embed-

ding. Here is a naïve attempt. To each 𝑧 ∈ 𝑍 assign the following function in 𝐿∞(𝑋):

𝑓𝑧(·) =
𝛿

2
+ dist(·, 𝑝−1(𝑧)).

The map 𝑥 ↦→ 𝑓𝑝(𝑥)(·) is 𝑤/2-close to the Kuratowski embedding, but the problem is

that the assignment 𝑧 ↦→ 𝑓𝑧(·) is discontinuous. We employ the standard “skeletal”

argument to bypass this issue.

Cover 𝑍 with small open sets 𝑈𝑖 with multiplicity ≤ 𝑑 + 1; “small” here means

that sup𝑖 diam 𝑝−1(𝑈𝑖) < 𝑤. Associated to this cover, we have a map 𝜙 : 𝑋 → 𝑁 to

the nerve of the cover with the property that the preimage of any open star6 𝑆𝑣 of

vertex 𝑣 ∈ 𝑁 has diameter < 𝑤. Under the Kuratowski embedding 𝑋 → 𝐿∞(𝑋), this

preimage 𝜙−1(𝑆𝑣) gets sent to a set of diameter < 𝑤, and in 𝐿∞(𝑋) it is possible to

cover it by a ball of radius 𝑤/2; let 𝑐𝑣 be its center. Now we can define the piecewise

linear map 𝑐 : 𝑁 → 𝐿∞(𝑋) that sends 𝑣 to 𝑐𝑣 and extends linearly to 𝑁 . The

composition 𝑋
𝜙→ 𝑁

𝑐→ 𝐿∞(𝑋) shows that AW𝑑(𝑋,𝐿
∞(𝑋)) < 𝑤/2.

2.2 Waists in metric geometry

As mentioned before, early notions of waists were introduced in the context of di-

mension theory and approximation theory. In the ’80s, Gromov published extremely

influential works [16, 19], in particular, introducing the Urysohn width to the context

of metric geometry. The Urysohn 𝑑-width appears in [16, Appendix 1] under the name

“𝑑-diameter”, and in [19] under the name “codimension 𝑑 diameter”. The Alexandrov

6The open star of a vertex of a simplicial complex is the union of the relative interiors of all faces
containing the given vertex.
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𝑑-width appears in [16, Appendix 1] under the name “𝑑-radius of an embedding”, and

the relation between the Urysohn width and the Alexandrov width of the Kuratowski

embedding is explained there. Another proof of Theorem 2.1.9 can be found in [19].

Among other contributions, works [16, 19] establish relations between the width

and other metric invariants, and pose several interesting questions about the behavior

of the width.

Relation to the filling radius

The (absolute) filling radius of a closed Riemannian manifold𝑀𝑛 is the infimal 𝑟 ≥ 0

such that inside the 𝑟-neighborhood of the Kuratowski image of 𝑀 in 𝐿∞(𝑀), the

fundamental class [𝑀 ] bounds an (𝑛+ 1)-chain.

Lemma 2.2.1 (Gromov [16]).

FillRad(𝑀𝑛) ≤ 1

2
UW𝑛−1(𝑀

𝑛).

For a short proof, see [21, 4.C].

Relation to the systole

The systole of a closed Riemannian manifold 𝑀𝑛 with non-trivial fundamental group

is the length of the shortest non-contractible loop. Gromov proved [16, Section 1.2]

that the systole does not exceed six times the filling radius, provided that the manifold

is essential, that is, the map 𝑀 → 𝐾(𝜋1(𝑀), 1) sends [𝑀 ] to a non-zero class in

𝐻𝑛(𝐾(𝜋1(𝑀), 1)). Together with Lemma 2.2.1 this bounds the systole in terms of

the flattening coefficient. A more direct argument (with a better constant) can be

found in [45]; its idea goes back at least to Švarc [53].

Lemma 2.2.2. In an essential manifold,

sys(𝑀𝑛) ≤ 2UW𝑛−1(𝑀
𝑛).
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Relation to the volume

Larry Guth proved the following estimate conjectured by Gromov.

Theorem 2.2.3 (Guth [25]). For a closed Riemannian manifold,

UW𝑛−1(𝑀
𝑛) . vol(𝑀𝑛)1/𝑛.

Together with Lemma 2.2.2 this gives another proof of Gromov’s systolic inequal-

ity [16]. Nabutovsky gave a transparent proof [45] of this theorem with best known

constants, building on the ideas from [47, 23].

For generalizations of Theorem 2.2.3 with weaker assumptions and relation to the

Hausdorff content, see introduction to Chapter 3.

The following result on the product of widths was conjectured by Gromov [19]

and proved by Perelman [48].

Theorem 2.2.4 (Perelman [48]). For a closed Riemannian 𝑛-manifold with non-

negative sectional curvature,

𝑛−1∏︁
𝑑=0

UW𝑑(𝑀
𝑛) ∼ vol(𝑀𝑛).

Relation to the curvature

Gromov conjectured [19] that a closed Riemannian manifold 𝑀𝑛 whose scalar cur-

vature is everywhere ≥ 𝜎2 has codimension 2 width . 1
𝜎
. For 𝑛 = 2, it was already

understood by Bonnet. For 𝑛 = 3, it is proven in [18] under additional homological

assumptions.7 A complete proof for 𝑛 = 3 follows from the results of [13, 43]. The

first of those papers uses the machinery of 𝜇-bubbles (a generalization of minimal

surfaces), and the second one uses (a version of) mean curvature flow. A simpler

argument, which I learned from Yevgeny Liokumovich, could be given following the

ideas from [21], and I sketch it below. For 𝑛 ≥ 4, the conjecture is open. It is not

even known if the codimension 1 width could be bounded from above.
7Those assumptions are not mentioned in [18] but 𝐻1(𝑀

3;Q) = 0 is enough; see also [16, Corol-
lary E′

2] and [35] for different sufficient assumptions.
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Theorem 2.2.5. For a closed Riemannian manifold 𝑀3 whose scalar curvature is

≥ 1,

UW1(𝑀
3) . 1.

Proof sketch. Step 1 (cf. [21, Section 6]). It is possible to find finitely many non-

intersecting stable minimal surfaces Σ𝑖 such that the homology of the complement

𝐻1(𝑀 ∖
⋃︀

Σ𝑖) is pure torsion. This is done inductively. After picking several surfaces,

cut the manifold along them to get a manifold𝑀 ′ with boundary; if𝐻2(𝑀
′, 𝜕𝑀 ′) ̸= 0,

find a stable minimal surface representing a non-zero class, and take it as the next

Σ𝑖. Since 𝑀 ′ has mean convex boundary, Σ𝑖 does not intersect 𝜕𝑀 ′. It also follows

that the diameter of Σ𝑖 is bounded (since the positive curvature of 𝑀 ′ restricts to

positive curvature of Σ𝑖). Eventually we arrive at the situation 𝐻2(𝑀
′, 𝜕𝑀 ′) = 0,

and so 𝐻1(𝑀
′) is pure torsion (by the Poincaré duality plus the universal coefficients

theorem).

Step 2. Having 𝑀 ′, a manifold with positive curvature and mean convex bound-

ary with 𝐻1(𝑀
′;Q) = 0, one repeats the argument from [18, Corollary 10.11]: con-

sider the distance levels from any point 𝑝 and show that their connected components

have controlled diameter, so that UW1(𝑀
′) is bounded. It might seem at this point

that we are done, since all Σ𝑖 have bounded diameters as well, but there is a caveat

here. It might happen that boundary components of 𝑀 ′ are connected to each other

along the distance levels; then we would have to merge them all in the computation

for UW1(𝑀); it can make it arbitrarily large. A possible solution here might be to

“slow down” the distance function 𝑑(·) = dist𝑀 ′(·, 𝑝) near the boundary components.

Blow up the metric in the small collar neighborhood of the boundary, and let ̃︀𝑑(·) be
the distance function from 𝑝 in this new metric. It can be shown that any level set

of ̃︀𝑑(·) lies in a connected component of 𝑑−1([𝑟 − 𝑐, 𝑟]), for some absolute constant 𝑐

and some number 𝑟 depending on the level set. Such components can be shown to

have bounded diameter (cf. [43, Lemma 4.1]).
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Relation to the hypersphericity

It was observed by Gromov [19, Proposition F1] that a closed Riemannian manifold

𝑀𝑛 with UW𝑛−1(𝑀) < 1 does not admit a 1-Lipschitz map to the unit sphere 𝑆𝑛 of

non-zero degree. I refer to [22, Section 5]) for a detailed explanation of this result.

One defines the hypersphericity [18, 17] of a closed Riemannian manifold 𝑀𝑛 as the

supremal radius 𝑅 ≥ 0 such that the manifold admits a 1-Lipschitz map of non-zero

degree to the round 𝑛-sphere of radius 𝑅. Gromov observed that the hypersphericity

is bounded from above by the codimension 1 width. The argument uses the trick that

I call “fiber contraction”. It will be used repeatedly in the sequel (Lemma 2.2.7, The-

orem 3.0.2, etc.).

Paper [22] explains that for a Riemannian metric on the 2-sphere, the hyper-

sphericity and the 1-width differ by a factor of no more than 7.

The following generalized definition of hypersphericity was suggested to me by

Larry Guth.

Definition 2.2.6. The 𝑘-th hypersphericity of an 𝑛-dimensional manifold 𝑀 , en-

dowed with a metric, is

HS𝑘(𝑀) = sup{𝑅 | ∃1-Lipschitz map 𝑔 :𝑀 → Ell(𝑅, . . . , 𝑅⏟  ⏞  
𝑘

, 𝜀, . . . , 𝜀⏟  ⏞  
𝑛+1−𝑘

)

of non-zero degree, for some 𝜀 > 0}.

Here

Ell(𝜆0, . . . , 𝜆𝑛) =

{︃
(𝑥0, . . . , 𝑥𝑛) ∈ R𝑛+1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=0

(︂
𝑥𝑖
𝜆𝑖

)︂2

= 1

}︃
is the 𝑛-dimensional ellipsoid with the semi-axes 𝜆𝑖 with the intrinsic metric induced

from R𝑛+1.

In the extreme case 𝑘 = 𝑛 the definition of HS𝑛(𝑀
𝑛) matches the conventional hy-

persphericity up to a constant factor, since the ellipsoid Ell(1, . . . , 1⏟  ⏞  
𝑛

, 𝜀) is bi-Lipschitz

diffeomorphic to the unit 𝑛-sphere.
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Lemma 2.2.7 (Folklore).

HS𝑘(𝑀
𝑛) ≤ 30UW𝑘−1(𝑀

𝑛).

Proof. Let 𝑔 : 𝑀 → 𝐸 = Ell(𝑅, . . . , 𝑅⏟  ⏞  
𝑘

, 𝜀, . . . , 𝜀⏟  ⏞  
𝑛+1−𝑘

) be a 1-Lipschitz map of non-zero

degree, for some small 0 < 𝜀 < 𝑅
100

. We will prove that 𝑅 ≤ 30UW𝑘−1(𝑀
𝑛). Assume

the contrary, and let 𝑝 : 𝑀 → 𝑌 𝑘−1 be a map asserting that UW𝑘−1(𝑀
𝑛) < 𝑅/30.

Every fiber 𝑝−1(𝑦), 𝑦 ∈ 𝑌 , is of controlled diameter < 𝑅/30. Since 𝑔 is 1-Lipschitz, the

set 𝑔(𝑝−1(𝑦)) has diameter < 𝑅/30. We will homotope 𝑔 by deformation-retracting

some of the sets 𝑔(𝑝−1(𝑦)) onto certain (𝑛 − 𝑘)-dimensional sets. This will allow us

to break its surjectivity (since dim𝑌 + (𝑛 − 𝑘) < 𝑛), contradicting the assumption

on the degree of 𝑔.

Cover the ellipsoid 𝐸 by open sets

𝑈 =

{︂
(𝑥0, . . . , 𝑥𝑛) ∈ 𝐸 ⊂ R𝑛+1

⃒⃒⃒⃒ √︁
𝑥20 + . . .+ 𝑥2𝑘−1 <

15𝑅

30

}︂
𝑉 =

{︂
(𝑥0, . . . , 𝑥𝑛) ∈ 𝐸 ⊂ R𝑛+1

⃒⃒⃒⃒ √︁
𝑥20 + . . .+ 𝑥2𝑘−1 >

14𝑅

30

}︂

and let functions 𝜙, 𝜓 : 𝐸 → [0, 1] form a subordinate partition of unity, 𝜙 + 𝜓 = 1,

supp𝜙 ⊂ 𝑈 , supp𝜓 ⊂ 𝑉 .

Denote 𝑌𝑈 the subset of those 𝑦 ∈ 𝑌 such that 𝑔(𝑝−1(𝑦)) ∩ 𝑈 ̸= ∅. For each

𝑦 ∈ 𝑌𝑈 introduce an (𝑛− 𝑘)-sphere 𝑆𝑦 ⊂ 𝐸 of the form

𝑆𝑦 =
{︀
(𝑥0, . . . , 𝑥𝑛) ∈ 𝐸 ⊂ R𝑛+1

⃒⃒
𝑥0 = 𝑎0, . . . , 𝑥𝑘−1 = 𝑎𝑘−1

}︀
by choosing the numbers 𝑎0, . . . , 𝑎𝑘−1 so that 𝑆𝑦 and 𝑔(𝑝−1(𝑦)) are close to one an-

other (e.g., they intersect). Ideally, we would like 𝑎(𝑦) = (𝑎0, . . . , 𝑎𝑘−1) to depend

continuously on 𝑦 ∈ 𝑌𝑈 , but a priori this is not true, so we apply a standard argu-

ment to construct 𝑎 : 𝑌𝑈 →
[︀
−19𝑅

30
, 19𝑅

30

]︀𝑘 using a fine cell structure on 𝑌 . Without

loss of generality we can assume that 𝑌 is a simplicial complex: if not, we replace 𝑌

by the nerve of the cover {𝑝−1(𝑊𝑖)}, for a fine enough cover {𝑊𝑖} of 𝑌 . We can refine
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𝑌 further so that 𝑝−1(𝜎) has diameter < 𝑅/30 for every simplex 𝜎 ⊂ 𝑌 . Extend 𝑌𝑈

slightly so that it becomes a simplicial subcomplex of 𝑌 . For each vertex 𝑣 ∈ 𝑌𝑈 ,

contained in 𝑌𝑈 , choose 𝑎(𝑦) arbitrarily (but so that 𝑆𝑦 ∩ 𝑔(𝑝−1(𝑦)) ̸= ∅). Extend 𝑎

onto 𝑌𝑈 linearly. Now 𝑆𝑦 is defined for all 𝑦 ∈ 𝑌𝑈 . It is straightforward to check that

the Hausdorff distance between 𝑆𝑦 and 𝑔(𝑝−1(𝑦)) is less than 8𝑅/30 for each 𝑦 ∈ 𝑌𝑈 .

Indeed, if 𝑦 lies in a simplex 𝜎 ⊂ 𝑌𝑈 with vertices 𝑦1, . . . , 𝑦𝑘, then all the spheres

𝑆𝑦1 , . . . , 𝑆𝑦𝑘 intersect the set 𝑔(𝑝−1(𝜎)) of diameter < 𝑅/30. Then for the Hausdorff

distance we have

dist𝐻(𝑆𝑦, 𝑔(𝑝
−1(𝑦))) ≤ dist𝐻(𝑆𝑦, 𝑆𝑦1)⏟  ⏞  

<2‖𝑎(𝑦)−𝑎(𝑦1)‖R𝑘

+dist𝐻(𝑆𝑦1 , 𝑔(𝑝
−1(𝑦1)))⏟  ⏞  

<𝑅/30

+dist𝐻(𝑔(𝑝
−1(𝑦1)), 𝑔(𝑝

−1(𝑦)))⏟  ⏞  
<𝑅/30

,

and

‖𝑎(𝑦)− 𝑎(𝑦1)‖R𝑘 ≤ max
2≤𝑖≤𝑘

‖𝑎(𝑦𝑖)− 𝑎(𝑦1)‖R𝑘 ≤ max
2≤𝑖≤𝑘

dist𝐻(𝑆𝑦𝑖 , 𝑆𝑦1)

≤ max
2≤𝑖≤𝑘

⎛⎜⎝dist𝐻(𝑆𝑦𝑖 , 𝑔(𝑝
−1(𝑦𝑖)))⏟  ⏞  

<𝑅/30

+dist𝐻(𝑔(𝑝
−1(𝑦𝑖)), 𝑔(𝑝

−1(𝑦1)))⏟  ⏞  
<𝑅/30

+dist𝐻(𝑔(𝑝
−1(𝑦1)), 𝑆𝑦1)⏟  ⏞  

<𝑅/30

⎞⎟⎠ <
3𝑅

30

It follows that the geodesic projection 𝜋𝑦 : 𝑔(𝑝−1(𝑦)) → 𝑆𝑦 is well-defined for every

𝑦 ∈ 𝑌𝑈 . Define Π𝑦 : 𝑔(𝑝−1(𝑦)) × [0, 1] → 𝐸 as the linear homotopy connecting

id : 𝑔(𝑝−1(𝑦)) → 𝐸 and 𝜋𝑦, that is, Π𝑦(𝑧, 𝑡) is the point on the geodesic segment

[𝑧, 𝜋𝑦(𝑧)] dividing it in the ratio 𝑡 : (1− 𝑡).

Finally, we build the homotopy 𝐻 :𝑀 × [0, 1] → 𝐸 as

𝐻(𝑥, 𝑡) = Π𝑝(𝑥)(𝑔(𝑥), 𝜙(𝑓(𝑥))𝑡).

It connects the map 𝑔 of non-zero degree to the map 𝐻(·, 1) : 𝑀 → 𝐸, which is not

surjective, because the points (𝑥0, . . . , 𝑥𝑛) ∈ 𝐸 with max
0≤𝑖≤𝑘−1

|𝑥𝑖| < 𝑅/30 cannot be

covered by a (𝑘 − 1)-dimensional family of (𝑛− 𝑘)-spheres.
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2.3 Equivalent definitions of the Urysohn width

In this section and the following one,𝑋 denotes a compact metric space. The diameter

of a set is measured using the distance function in 𝑋: diam𝐴 = sup
𝑎,𝑎′∈𝐴

dist𝑋(𝑎, 𝑎
′).

For a map 𝑝 : 𝑆 → 𝑍, 𝑆 ⊂ 𝑋, the quantity W(𝑝) = sup
𝑧∈𝑍

diam(𝑝−1(𝑧)) will be called

the width of 𝑝.

Definition 2.3.1. The Urysohn 𝑑-width of a closed subset 𝑆 of a compact metric

space 𝑋 can be defined in either of the following ways.

UW𝑑(𝑆) = inf⋃︀
𝐶𝑖=𝑆

mult.{𝐶𝑖}≤𝑑+1

sup
𝑖

diam(𝐶𝑖), (UC)

where the infimum is taken over all finite closed covers of 𝑆 of multiplicity at most

𝑑+ 1.

UW𝑑(𝑆) = inf⋃︀
𝑈𝑖⊃𝑆

mult.{𝑈𝑖}≤𝑑+1

sup
𝑖

diam(𝑈𝑖), (UO)

where the infimum is taken over all open covers of 𝑆 of multiplicity at most 𝑑+ 1.

UW𝑑(𝑆) = inf
𝑑⋃︀

𝑖=0
𝑊𝑖⊃𝑆

sup
𝑖

sup
𝑈 conn.

comp. of 𝑊𝑖

diam(𝑈), (UO’)

where the infimum is taken over all open covers of 𝑆 colored in at most 𝑑 + 1 colors

so that not two sets of the same color intersect.

UW𝑑(𝑆) = inf
𝑝:𝑆→𝑍
𝑍 simpl.
dim𝑍≤𝑑

W(𝑝), (UMs)

where the infimum is taken over all continuous maps 𝑝 from 𝑆 to any simplicial

complex 𝑍 of dimension at most 𝑑.

UW𝑑(𝑆) = inf
𝑝:𝑆→𝑍

𝑍 metriz.
dim𝑍≤𝑑

W(𝑝), (UMm)

where the infimum is taken over all continuous maps 𝑝 from 𝑆 to any metrizable
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topological space 𝑍 of dimension at most 𝑑.

UW𝑑(𝑆) = inf
𝑝:𝑆→𝑍
𝑍 Hausd.
dim𝑍≤𝑑

W(𝑝), (UMh)

where the infimum is taken over all continuous maps 𝑝 from 𝑆 to any Hausdorff

topological space 𝑍 of (covering) dimension at most 𝑑.

UW𝑑(𝑆) = 2 inf
𝑌

iso

⊃𝑋

inf
𝑝:𝑆→𝑍
𝑍⊂𝑌

dim𝑍≤𝑑

sup
𝑥∈𝑆

dist𝑌 (𝑥, 𝑝(𝑥)), (UA)

where the infimum is taken over all isometric extensions 𝑌 of 𝑋 and all continuous

maps 𝑝 from 𝑆 to any subspace 𝑍 ⊂ 𝑌 of dimension at most 𝑑.

UW𝑑(𝑆) = 2 inf
𝑝:𝑆→𝑍

𝑍⊂𝐿∞(𝑋)
dim𝑍≤𝑑

sup
𝑥∈𝑆

dist𝐿∞(𝑋)(𝑘(𝑥), 𝑝(𝑥)), (UA)

where the infimum is taken over all continuous maps 𝑝 from 𝑆 to any subspace 𝑍 ⊂

𝐿∞(𝑋) of dimension at most 𝑑, and 𝑘(𝑥) denotes the Kuratowski image of 𝑥 in

𝐿∞(𝑋).

Compare (UC) with Definition 2.1.1, (UMm) with Definition 2.1.3, (UA) with

Definition 2.1.7, and (UA) with the conclusion of Theorem 2.1.9 and Theorem 2.1.8.

Proof of the equivalence of different definitions of the Urysohn width.

Denote by 𝑤c, 𝑤o, 𝑤o’, 𝑤s, 𝑤m, 𝑤h, 𝑤a, 𝑤a the width of a set 𝑆 ⊂ 𝑋 measured as

in (UC), (UO), (UO’), (UMs), (UMm), (UMh), (UA), (UA), respectively.

(UO ≤ UC) Given a finite closed covering 𝑆 =
⋃︀
𝐶𝑖, we can use compactness to argue that

𝛿𝑖0,...,𝑖𝑑+1
= min

𝑥∈𝑋
max

0≤𝑘≤𝑑+1
dist(𝑥,𝐶𝑖𝑘)

is attained and positive. Take 𝜀 > 0 smaller then each 𝛿𝑖0,...,𝑖𝑑+1
over all col-

lections of indices 𝑖0 < . . . < 𝑖𝑑+1, and consider the open covering {𝑈𝑖}, where
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𝑈𝑖 = 𝑈𝜀(𝐶𝑖) is the 𝜀-neighborhood of 𝐶𝑖. It has the same multiplicity as the

covering {𝐶𝑖}, and maxdiam𝑈𝑖 ≤ maxdiam𝐶𝑖 + 2𝜀. Taking 𝜀 → 0, we get

𝑤o ≤ maxdiam𝐶𝑖. Therefore, 𝑤o ≤ 𝑤c.

(UC ≤ UMh) Suppose we are given a map 𝑝 : 𝑆 → 𝑍𝑑 to a Hausdorff space. Recall that the

width of 𝑝 is defined as W(𝑝) = sup𝑧∈𝑍 diam(𝑝−1(𝑧)). Fix a small number 𝜀 > 0.

For each point 𝑧 ∈ 𝑝(𝑆), one can select its open neighborhood 𝑉𝑧 such that

diam(𝑝−1(𝑉𝑧)) < diam(𝑝−1(𝑧))+𝜀; one can just pick 𝑉𝑧 = 𝑍∖𝑝(𝑆∖𝑈𝜀/2(𝑝
−1(𝑧))).

Indeed, 𝑆 ∖𝑈𝜀/2(𝑝
−1(𝑧)) is closed, hence compact (as 𝑆 is compact); then 𝑝(𝑆 ∖

𝑈𝜀/2(𝑝
−1(𝑧))) is compact, hence closed (as 𝑍 is Hausdorff). Therefore, 𝑉𝑧 is

an open neighborhood of 𝑧 whose preimage is 𝑈𝜀/2(𝑝
−1(𝑧)). By definition of

dimension and compactness of 𝑝(𝑆), there is a finite open covering {𝑉𝑖} of

𝑝(𝑆), refining {𝑉𝑧}, and with multiplicity at most 𝑑 + 1. Then the open sets

𝑈𝑖 = 𝑝−1(𝑉𝑖) have diameter less than W(𝑝) + 𝜀, and cover 𝑆 with multiplicity

at most 𝑑+ 1. It follows from Lebesgue’s number lemma that there is a closed

covering {𝐶𝑖} of 𝑆 with 𝐶𝑖 ⊂ 𝑈𝑖. Repeating this with arbitrarily small 𝜀, one

gets 𝑤c ≤ W(𝑝). Since this is true for all 𝑝, we conclude 𝑤c ≤ 𝑤h.

(UMh ≤ UMm) 𝑤h ≤ 𝑤m holds trivially.

(UMm ≤ UA) 𝑤m ≤ 𝑤a holds trivially.

(UA ≤ UA) 𝑤a ≤ 𝑤a holds trivially.

(UA ≤ UO) This was essentially shown in the proof of Theorem 2.1.9 and Theorem 2.1.8.

Assume we are given an open cover 𝑆 ⊂
⋃︀
𝑈𝑖 (which we can assume finite by

compactness) with multiplicity at most 𝑑 + 1 and with sup𝑖 diam𝑈𝑖 < 𝑤o + 𝜀,

for an arbitrarily small 𝜀 > 0. Taking any partition of unity subordinate to

this cover, one gets the map 𝜙 : 𝑆 → 𝑁 to the nerve. The vertices of 𝑁

can be labeled so that vertex 𝑣𝑖 corresponds to the set 𝑈𝑖. The preimage of

the open star of 𝑣𝑖 ∈ 𝑁 has diameter < 𝑤o + 𝜀, since it is contained in 𝑈𝑖.

Under the Kuratowski embedding 𝑋 → 𝐿∞(𝑋), the set 𝑈𝑖 gets sent to a set of

diameter < 𝑤o + 𝜀, and in 𝐿∞(𝑋) it is possible to cover it by a ball of radius
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< 1
2
(𝑤o + 𝜀); let 𝑐𝑖 be its center. Now one can define the piecewise linear map

𝑐 : 𝑁 → 𝐿∞(𝑋) that sends 𝑣𝑖 to 𝑐𝑖 and extends linearly to 𝑁 . The composition

𝑆
𝜙→ 𝑁

𝑐→ 𝐿∞(𝑋) shows that 𝑤a ≤ 𝑤o + 𝜀.

(UMm ≤ UMs) 𝑤m ≤ 𝑤s holds trivially.

(UMs ≤ UO) Given an open cover, one considers the mapping to the nerve. The preimage

of every point is entirely contained in some 𝑈𝑖, hence W(𝜙) ≤ sup diam𝑈𝑖.

Therefore, 𝑤s ≤ 𝑤o.

(UO ≤ UO’) 𝑤o ≤ 𝑤o’ holds trivially.

(UO’ ≤ UO) This trick is folklore; the earliest reference I found is [46]. Suppose we are given

an open cover of 𝑆 of multiplicity at most 𝑑. First, consider the mapping to the

nerve, at most 𝑑-dimensional complex. Second, take the barycentric subdivision

of the nerve; its vertices are colored naturally with at most 𝑑+1 colors. Finally,

for each vertex of the subdivision, take the preimage of its open star. This way

we get a refinement of the original cover colored using at most 𝑑 + 1 colors.

Therefore, 𝑤o’ ≤ 𝑤o.

Definition 2.3.1 was given for a compact space. We adopt the following convention:

the width of a (not necessarily compact) space is defined in terms of open covers, (UO).

2.4 Properties of the width

Monotonicity

1. The width is monotone in dimension: UW0(𝑋) ≥ UW1(𝑋) ≥ UW2(𝑋) ≥ · · · .

2. The width is monotone with respect to inclusion: if 𝑆1 ⊂ 𝑆2 then UW𝑑(𝑆1) ≤

UW𝑑(𝑆2) for all 𝑑. More generally, the width is monotone under distance-

increasing maps: if 𝑋 → 𝑌 does not decrease distances, then UW𝑑(𝑋) ≤

UW𝑑(𝑌 ) for all 𝑑.
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Non-triviality

The 𝑛-width of a closed Riemannian 𝑛-manifold is clearly zero. It is less obvious

that the (𝑛− 1)-width of a closed Riemannian 𝑛-manifold is greater than zero, which

is basically the corollary of Brouwer’s invariance of dimension. Explicitly, this can

be deduced from the Lebesgue covering theorem (discovered by Lebesgue [40] and

first proven by Brouwer [12]), or from the Knaster–Kuratowski–Mazurkiewicz theo-

rem [36]. Some tight bounds on the width can be deduced from those theorems, as it

is explained in Section 2.5 below.

Continuity

Urysohn’s argument [3] for the continuity of dimension, Theorem 2.1.2, basically

implies the following statement.

Theorem 2.4.1. Let 𝐹1 ⊃ 𝐹2 ⊃ . . . be a nested sequence of closed sets in a compact

metric space. Then

lim
𝑖→∞

UW𝑑(𝐹𝑖) = UW𝑑

(︁⋂︁
𝐹𝑖

)︁
.

We also state another continuity statement that will be used in Chapter 5.

Lemma 2.4.2. Let 𝑓 : 𝑋 → 𝑌 be a continuous map from a compact metric space 𝑋

to a metrizable topological space 𝑌 . The function

𝑦 ↦→ UW𝑑(𝑓
−1(𝑦))

is upper semi-continuous for any 𝑑. Namely,

UW𝑑(𝑓
−1(𝑦)) ≥ lim sup

𝑦′→𝑦
UW𝑑(𝑓

−1(𝑦′)).

Proof. If a fiber 𝑓−1(𝑦) is covered by open sets 𝑈𝑖 ⊂ 𝑋, with diameters< UW𝑑(𝑓
−1(𝑦))+

𝜀 and multiplicity at most 𝑑+1, then these open sets in fact cover neighboring fibers

𝑓−1(𝑦′) as well (for 𝑦′ ∈ 𝑉 , where 𝑉 is a sufficiently small neighborhood of 𝑦).

This statement remains true with 𝑌 being just Hausdorff instead of metrizable.

34



Behavior with respect to taking products

A well-known “downside” of the topological dimension is that the “sub-logarithmic”

inequality

dim𝑋 × 𝑌 ≤ dim𝑋 + dim𝑌

(proven by Urysohn for compact metric spaces; see [10] for its history) might be strict

in some pathological examples. The first such example with dim𝑋 = dim𝑌 = 2 and

dim𝑋 × 𝑌 = 3 was given by Pontryagin [49]. A version of this example can be used

in order to show the following.

Theorem 2.4.3. For any 𝜀 > 0, there are two-dimensional compact metric spaces 𝑋

and 𝑌 (in fact, finite simplicial complexes) whose 1-width is ≥ 1 while UW3(𝑋×𝑌 ) <

𝜀.

Proof sketch. Start from a large round 2-sphere, and cut many small holes everywhere.

To obtain 𝑋, attach a small cross-cap (a Möbius band) to each hole. To obtain 𝑌 ,

attach a small “triple cross-cap” to each hole; that is, take a cylinder, one of whose

ends is used to attach it to the sphere, while the other is glued to itself via the degree

three self-map. Each of the two can be embedded in R4 roughly preserving the

large-scale geometry of the 2-sphere. We endow 𝑋 and 𝑌 with Riemannian metrics

inherited from these embeddings.

To estimate UW1(𝑋) or UW1(𝑌 ) from below, one can use the “fiber contraction”

argument (which will be explained in Section 3.1), and the fact that 𝑋 and 𝑌 admit

“fundamental” classes in 𝐻2(·;Z/2) and 𝐻2(·;Z/3), respectively (relative to the circle

“boundaries”). Informally, assuming that there is a map with small fibers from 𝑋 (or

𝑌 ) to a graph, one can continuously pinch each of the fibers to a point (depending

on a fiber); this homotopes the identity map 𝑋 → 𝑋 (or 𝑌 → 𝑌 ) to a map with

one-dimensional image, resulting in a contradiction at the level of 𝐻2.

To show that UW3(𝑋 × 𝑌 ) < 𝜀, one starts with a lemma, asserting that the

product “double cross-cap × triple cross-cap” can be embedded in R8 with prescribed

boundary, and avoiding any given 4-plane (it follows from [27, Satz IXa]). Now embed

𝑋 × 𝑌 in R8, and using the lemma perturb the embedding in order to move away
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from the 4-planes of a fine cubical grid of R8. Once it is done, 𝑋 × 𝑌 projects with

small fibers to the 3-dimensional skeleton of the dual grid.

Behavior with respect to covering maps

The methods of Chapter 3 can be used in order to show that the Urysohn width of a

space and of its covering space might have arbitrarily large discrepancy.

Theorem 2.4.4. 1. For any 𝜀 > 0, there is a two-dimensional non-orientable

closed Riemannian manifold 𝑀2 whose 1-width is ≥ 1 while UW1(𝑀) < 𝜀,

where 𝑀 is the orientation double cover of 𝑀 .

2. For any 𝜀 > 0, there is a four-dimensional non-orientable closed Riemannian

manifold𝑀4 whose 2-width is ≥ 1 while UW2(̃︁𝑀) < 𝜀, where ̃︁𝑀 is the universal

cover of 𝑀 .

Construction sketch. I only sketch the construction for the first part. Take a fine

cubical grid with the nodes 1
𝑁
Z3 ⊂ R3, for some large 𝑁 ≫ 1; let 𝑍 be its 1-skeleton,

and let 𝑍 ′ be the 1-skeleton of the dual grid. Define 𝑀0 as the set of points in R3

equidistant from 𝑍 and 𝑍 ′; it is a PL manifold. Take the quotient of 𝑀0 with respect

to the translations 𝑣1 = (10, 0, 0), 𝑣2 = (0, 10, 0), 𝑣3 =
(︀

1
2𝑁
, 1
2𝑁
, 10 + 1

2𝑁

)︀
. This way

we get a closed manifold𝑀 with Riemannian metric inherited from the ambient torus;

it is non-orientable because one of the three translations swaps 𝑍 and 𝑍 ′. Using non-

orientability, it can be shown that UW1(𝑀) > 1 (this is again a corollary of the fiber

contraction argument). But the double cover 𝑀 can be viewed as 𝑀0 modded out

by the translations 𝑣1, 𝑣2, 2𝑣3. This manifold can be projected to 𝑍 or 𝑍 ′ with fibers

of size ∼ 1
𝑁
.

I am not aware of any inequalities of the form UW𝑑(̃︁𝑀) . UW𝑑(𝑀).
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2.5 Exact value in some examples

Euclidean cube

The evident projection map [0, 1]𝑛 → [0, 1]𝑛−1 has width 1. The Lebesgue covering

lemma can be used to give the reverse estimate of cube’s flattening coefficient.

Lemma 2.5.1. Every continuous map 𝑓 : [0, 1]𝑛 → 𝑍𝑑 from the unit euclidean 𝑛-cube

to a 𝑑-dimensional simplicial complex, 𝑑 < 𝑛, has a fiber 𝑓−1(𝑦) meeting some two

opposite facets of the cube.

Therefore, UW𝑛−1([0, 1]
𝑛) = 1. Observing the trivial equality UW0([0, 1]

𝑛) =
√
𝑛,

it is natural to conjecture that UW𝑑([0, 1]
𝑛) =

√
𝑛− 𝑑, but I do not know how to

prove this.

Regular simplex

Let △𝑛 be the regular euclidean 𝑛-simplex with edge length 1. Let 𝑍 be the union

of all straight line segments between the center and the (𝑛 − 2)-skeleton. It is easy

to see that there is a map △𝑛 → 𝑍 with the largest fiber having diameter 1/𝑛.

The Knaster–Kuratowski–Mazurkiewicz lemma can be used to show that this is the

smallest possible width of a map from △𝑛 to a lower dimensional space.

Lemma 2.5.2. Every continuous map 𝑓 : △𝑛 → 𝑍𝑑 from the unit-edge euclidean

𝑛-simplex to a 𝑑-dimensional simplicial complex, 𝑑 < 𝑛, has a fiber 𝑓−1(𝑦) meeting

all facets of the simplex.

Any set meeting all facets must have diameter at least 1/𝑛 by Jung’s theorem8.

Therefore, UW𝑛−1(△𝑛) = 1/𝑛. I do not know if the values UW𝑑(△𝑛), 1 ≤ 𝑑 ≤ 𝑛− 2,

are known.

8Jung’s theorem [30] asserts that a set of diameter 𝐷 in R𝑛 can be covered by a ball of radius

𝐷
√︁

𝑛
2𝑛+2 .
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Euclidean ball

Let 𝐵𝑛 be the radius 1 euclidean 𝑛-ball. The exact value UW𝑛−1(𝐵
𝑛) =

√︁
2𝑛+2
𝑛

is

known [2, Remark 6.10] and can be computed as follows. The “optimal” map 𝐵𝑛 → 𝑍

is similar to the one for simplex; one takes the regular simplex inscribed into 𝐵𝑛, and

defines 𝑍 as the union of all radial segments that intersect its (𝑛 − 2)-skeleton. A

sharp lower bound on UW𝑛−1(𝐵
𝑛) follows from Jung’s theorem together with the

following waist-type estimate.

Theorem 2.5.3 (cf. Sitnikov9 [52]). Every continuous map 𝑓 : 𝐵𝑛 → 𝑍𝑑 from the

unit euclidean 𝑛-ball to a 𝑑-dimensional simplicial complex, 𝑑 < 𝑛, has a fiber 𝑓−1(𝑦)

that cannot be covered by a ball of radius < 1.

The values UW𝑑(𝐵
𝑛) for 𝑛/2 ≤ 𝑑 ≤ 𝑛 − 2 are not known. For 𝑑 < 𝑛/2,

UW𝑑(𝐵
𝑛) = 2, as it follows from the computation of UW𝑑(𝜕𝐵

𝑛) below.

Round sphere

Let 𝑆𝑛 be the sphere of radius 1 in R𝑛+1. For the computation of the width, it does

not matter whether we consider 𝑆𝑛 with the geodesic metric or the extrinsic metric

(there is a monotone bijection between the distances in the two metrics).

Theorem 2.5.4 (Ščepin [58]).

UW𝑑(𝑆
𝑛) = diam𝑆𝑛, for 𝑑 ≤ 𝑛/2;

UW𝑑(𝑆
𝑛) < diam𝑆𝑛, for 𝑑 > 𝑛/2.

This result was rediscovered multiple times in different contexts [29, 51]. The

argument in [58] contains a flaw10 in the estimate for UW2(𝑆
4), so I would like to

outline the idea of a different proof11 that UW𝑑(𝑆
𝑛) = diam𝑆𝑛 when 𝑑 ≤ 𝑛/2. Given

any map 𝑆𝑛 → 𝑍𝑑, one can embed 𝑍𝑑 →˓ 𝑀2𝑑 to a non-compact manifold; 𝑀2𝑑 can
9The closely related result of Sitnikov regards the Alexandrov width of the ball, and the argument

can be adjusted in order to prove this theorem.
10The proof uses that 𝜋2𝑑(

⋁︀
𝑆𝑑) is finite [26], which is false for 𝑑 = 2.

11I learned it from Roman Karasev.
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be obtained as R2𝑑 with a few handles attached [59, Lemma 7.1]. There are versions

of the Borsuk–Ulam theorem [14, Section 33] implying that the map 𝑆𝑛 → 𝑀2𝑑,

2𝑑 ≤ 𝑛, must send a pair of antipodal points to the same image.

For 𝑑 > 𝑛/2, I do not know much about UW𝑑(𝑆
𝑛) apart from the fact that they

are less than diam𝑆𝑛. For UW𝑛−1(𝑆
𝑛), the strongest lower bound I am aware of

is sketched in [2, Remark 6.9]; the method is the same as for the ball: applying

appropriate counterparts of Jung’s and Sitnikov’s theorem to the half-sphere. A

weaker bound follows from the results of [34]. The exact value of the flattening

coefficient seems to be unknown.
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Chapter 3

Local-to-global estimates

of the Urysohn width

In the paper [25] Larry Guth proves that, on a closed Riemannian manifold, local

volume estimates translate into global information about the Urysohn width. This

resolved a conjecture of Gromov [16], and provided an alternative way to prove the

celebrated systolic inequality of Gromov. Guth also conjectured a generalization of

his theorem, dealing with the Hausdorff content on compact metric spaces in place of

volume, and his conjecture was established by Liokumovich, Lishak, Nabutovsky, and

Rotman [42]. Shortly after that, a simple and clever proof was given by Panos Papa-

soglu [47], and the method employed there gives the simplest and cleanest proof [45]

of Gromov’s systolic inequality, with the best dimensional constants known so far.

In the same paper [25], Guth gives an example of a metric on 𝑆3 with locally

small but globally large 2-width [25, Section 4]. Further, he asks if there is a setting

in which local Urysohn width bounds translate into global ones.

Question 3.0.1 ([25, Question 5.3]). Suppose that 𝑀𝑛 is a Riemannian manifold such

that each unit ball 𝐵 ⊂ 𝑀 has UW𝑞(𝐵) < 𝜀. If 𝜀 is sufficiently small, does this

inequality imply anything about UW𝑞′(𝑀) for some 𝑞′ ≥ 𝑞?

We answer this question in the negative (see Theorem 3.0.3 below), and investigate

how additional topological complexity assumptions affect the answer.
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Our first result is an estimate of 1-width of a closed Riemannian manifold 𝑀 ,

depending on its topological complexity as well as the supremal width of its unit

balls.

Theorem 3.0.2. Let 𝑀𝑛 be a closed Riemannian manifold with the first Z/2-Betti

number 𝛽 = rk𝐻1(𝑀 ;Z/2). If every unit ball has 1-width less than 1/15, then

UW1(𝑀) < 𝛽 + 1.

The dependence on 𝛽 does not seem optimal. The best example we know has

UW1(𝑀) ∼ 𝛽1/𝑛 (see Figure 3-1). This example is constructed in our second theorem,

which resolves Guth’s question in the negative.

Theorem 3.0.3. For any 𝜀 > 0, there exists a Riemannian manifold 𝑀𝑛 with all

unit balls of 1-width less than 𝜀, and such that UW𝑛−1(𝑀) ≥ 1.

Figure 3-1: A piece of the surface from Theorem 3.0.3 for 𝑛 = 2. The whole surface
is made by replicating this piece periodically many times and closing up the ends.
Roughly speaking, the left half of this surface has small Urysohn 1-width, as well as
the right half, while the whole surface has large Urysohn 1-width

Note that the negative result with 𝑞 = 1 and 𝑞′ = 𝑛− 1 is the strongest possible

over all choices of 𝑞, 𝑞′. Therefore, the answer to Question 3.0.1 is negative for all

𝑞, 𝑞′.
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The example establishing this theorem has large Betti numbers. If one is looking

for a topologically simple example, our third result gives it with𝑀𝑛 being a ball (but

with a worse dimension in the local width bound).

Theorem 3.0.4. For any 𝜀 > 0, there is a metric on the 𝑛-ball 𝑀𝑛 (or 𝑛-sphere, or

𝑛-torus) such that its (𝑛 − 1)-width is at least 1 but UW⌈log2(𝑛+1)⌉(𝐵) < 𝜀 for every

unit ball 𝐵 ⊂𝑀 .

3.1 Bounding width from below

Before we get to the main results, let us discuss the main tools one can use to show

a space has substantial Urysohn width.

The first tool is the Lebesgue covering lemma (discovered by Lebesgue [40] and

first proved by Brouwer [12]), which can be used to show that the (𝑛 − 1)-width of

the unit euclidean 𝑛-cube equals 1.

Lemma 3.1.1. Every continuous map 𝑓 : [0, 1]𝑛 → 𝑌 𝑑 from the unit 𝑛-cube to an 𝑑-

dimensional simplicial complex, 𝑑 < 𝑛, has a fiber 𝑓−1(𝑦) meeting some two opposite

facets of the cube.

The second tool amounts to the “fiber contraction” argument, which goes back to

Gromov [19, Proposition (F1)]. A detailed exposition can be found in [22, Section 5].

We quote here a version of this argument due to Guth [22, Lemma 5.2].

Lemma 3.1.2. Let 𝑊 be a Riemannian manifold of convexity radius at least 𝜌; that

is, any two points in a ball of radius < 𝜌 are connected by a unique minimal geodesic

within this ball. Let 𝜋 : 𝑋 → 𝑌 be a map from a metric space 𝑋 to a simplicial

complex 𝑌 , such that all fibers of 𝜋 have diameter less than 𝜌. Then any 1-Lipschitz

map 𝑓 : 𝑋 → 𝑊 is homotopic to a map factoring as 𝑔 ∘ 𝜋, for some 𝑔 : 𝑌 → 𝑊 .

Moreover, the homotopy moves each point of 𝑊 by less than 2𝜌.

Corollary 3.1.3. Let 𝑓 : 𝑋 → 𝑊 be a 1-Lipschitz map from a metric space 𝑋 to a

Riemannian manifold 𝑊 of convexity radius at least 𝜌. Suppose one of the following

conditions holds for some 𝑛.
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1. The induced map 𝑓* : 𝐻𝑛(𝑋) → 𝐻𝑛(𝑊 ) is non-trivial.

2. For some closed subsets 𝑋0 ⊂ 𝑋, 𝑊0 ⊂ 𝑊 , 𝑓 sends 𝑋0 to 𝑊0, and the induced

map 𝑓* : 𝐻𝑛(𝑋,𝑋0) → 𝐻𝑛(𝑊,𝑈2𝜌(𝑊0)) is non-trivial. (Here 𝑈2𝜌(𝑊0) is the

neighborhood of 𝑊0 of radius 2𝜌.)

Then UW𝑛−1(𝑋) ≥ 𝜌.

3.2 Surface width estimates

Proof of Theorem 3.0.2. This proof follows closely the ideas from [22, Section 1], [16,

Appendix 1, (E1)-(E′′
1)]. The main theorem in [22, Section 1] says, basically, that in

the case 𝑀 ≃ 𝑆2, there is a universal way to measure the Urysohn 1-width: it is

given by the map to the set of the connected components of distance spheres around

any point. The largest diameter of such a component gives the value UW1(𝑆
2) within

a factor of 7. We adapt this idea to higher dimensions, taking into account the

topological complexity as well.

Pick any point 𝑝 ∈ 𝑀𝑛. Consider the distance spheres 𝑆𝑟(𝑝). We show that

UW0(𝑆𝑟(𝑝)) < 𝛽 + 1 for each 𝑟. For 𝑟 < 1/2 this is clear, so fix 𝑟 ≥ 1/2 and suppose

that UW0(𝑆𝑟(𝑝)) ≥ 𝛽 + 1, so there are points 𝑥 and 𝑦 distance 𝛽 + 1 apart in the

same connected component of 𝑆𝑟(𝑝). Denote by 𝛾 a curve connecting 𝑥 and 𝑦 inside

𝑆𝑟(𝑝) (we can assume it exists by perturbing slightly the distance function dist(·, 𝑝)).

Denote 𝑥0 = 𝑥, 𝑥𝛽+1 = 𝑦, and pick points 𝑥𝑘 ∈ 𝛾, 1 ≤ 𝑘 ≤ 𝛽, so that dist(𝑥, 𝑥𝑘) = 𝑘

(the distance is extrinsic, and not along 𝛾). Notice that dist(𝑥𝑖, 𝑥𝑗) ≥ |𝑖− 𝑗|. Denote

by 𝑔𝑘 a minimal geodesic from 𝑝 to 𝑥𝑘, for 0 ≤ 𝑘 ≤ 𝛽 + 1. Denote by ℓ𝑘, 0 ≤ 𝑘 ≤ 𝛽,

the loop formed by the curves 𝑔𝑘, 𝑔𝑘+1 and the part of 𝛾 between 𝑥𝑘 and 𝑥𝑘+1.

The loops ℓ0, . . . , ℓ𝛽 cannot be independent in 𝐻1(𝑀 ;Z/2); hence, there exist indices

0 ≤ 𝑖1 < . . . < 𝑖𝑟 ≤ 𝛽 such that [ℓ𝑖1 ] + . . .+ [ℓ𝑖𝑟 ] = 0 in 𝐻1(𝑀 ;Z/2).

The concatenation of ℓ𝑖1 , . . . , ℓ𝑖𝑟 bounds a 2-chain 𝐷 in 𝑀 , which we also view

as a closed subset of 𝑀 . Assuming that 1 is a regular value of dist(·, 𝑥𝑖1) on 𝐷

(otherwise perturb this function slightly), one can view the intersection 𝐷′ = 𝐷 ∩
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𝐵1(𝑥𝑖1) as a 2-chain as well. Now consider the map 𝑓 : 𝑀 → R2 given by 𝑓(·) =

(dist(·, 𝑝), dist(·, 𝑥𝑖1)) (see Figure 3-2). Note it is
√
2-Lipschitz. We will show that

𝑓(𝐷′) covers a disk𝑂 of radius
√
2−1
2

in R2; formally speaking, the map 𝑓 : (𝐷′, 𝜕𝐷′) →

(R2,R2 ∖ int𝑂) is of degree 1 (mod 2). Then Corollary 3.1.3 can be applied to 𝑓

(composed with a 1/
√
2-homothety, to make it 1-Lipschitz), implying UW1(𝐷

′) ≥
√
2−1
4
√
2
. On the other hand, UW1(𝐷

′) ≤ UW1(𝐵1(𝑥𝑖1)) < 1/15 since 𝐷′ ⊂ 𝐵1(𝑥𝑖1),

which gives a contradiction.

Figure 3-2: The map 𝑓 covers a substantial triangular region

Observation 1. The image of 𝑓 lies above the straight line 𝜆 connecting points

(𝑟, 0) and (0, 𝑟).

Observation 2. Consider the triangle Δ with the vertices (𝑟, 0), (𝑟, 1), and

(𝑟− 1/2, 1/2), and observe that 𝑓(𝜕𝐷′)∩ intΔ = ∅. Indeed, 𝜕𝐷′ ⊂ 𝜕𝐷 ∪ 𝑆1(𝑥𝑖1), so

the image 𝑓(𝜕𝐷′) is contained in the union of the following curves:

∙ the line 𝜆, where 𝑓(𝑔𝑖1) lies;

∙ the vertical straight line through (𝑟, 0), where 𝑓(𝛾) lies;

∙ the horizontal line through (𝑟, 1), where 𝑓(𝑆1(𝑥𝑖1)) lies;

∙ the curves 𝑓(𝑔𝑘), 𝑘 > 𝑖1, each of which can be viewed as the graph of a 1-

Lipschitz function of argument dist(·, 𝑝); they all lie above the straight line

connecting (𝑟, 1) and (𝑟 − 1/2, 1/2).
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Observation 3. Let 𝑞 = 𝑔𝑖1 ∩ 𝑆1/2(𝑥𝑖1), and observe that the geodesic segment

[𝑞, 𝑥𝑖1 ] ⊂ 𝑔𝑖1 is present in the 1-chain 𝜕𝐷′. The image 𝑓([𝑞, 𝑥𝑖1 ]) is the straight line

segment between (𝑟, 0) and (𝑟 − 1/2, 1/2) (traversed once). Other parts of 𝑓(𝜕𝐷′)

are all contained in the union 𝑓(𝛾) ∪ 𝑓([𝑝, 𝑞]) ∪ 𝑓(𝑆1(𝑥𝑖1)) ∪
⋃︀

𝑘>𝑖1

𝑓(𝑔𝑘), avoiding this

straight line segment. In view of the previous two observations, 𝑓(𝜕𝐷′) winds around

Δ nontrivially. Therefore, the degree of 𝑓 : (𝐷′, 𝜕𝐷′) → (R2,R2 ∖ intΔ) is 1 (mod 2).

Observation 4. The disk 𝑂 inscribed in Δ is of radius
√
2−1
2

.

This concludes the proof.

Remark 3.2.1. Under the same assumptions (every unit ball in the surface 𝑀 has

1-width less than 1/15), one can show that the homological systole (the length of the

shortest loop that is not null-homologous) is less than 2, regardless of genus. One

way to show it is to adjust the proof of [22, Theorem 4.1].

3.3 Manifolds of small local but large global width

The constructions of this section are inspired by the mother of examples [19, Exam-

ple H′′
1].

3.3.1 Local join representation

A crucial ingredient for the constructions below is a decomposition of R2𝑛−1 as the

“local join” of several 1-dimensional complexes.

Lemma 3.3.1. Fix 0 < 𝜀 < 1. It is possible to triangulate R2𝑛−1 by simplices with

the following properties:

1. Each simplex is 𝑐𝑛-bi-Lipschitz to a regular simplex with edge length 𝜀.

2. The vertices of triangulation can be colored by colors 1 through 2𝑛 so that each

simplex receives all distinct colors.

3. The colored triangulation can be taken periodic with respect to 𝑛 almost orthogo-

nal translation vectors of length ≈ 10𝑐𝑛; hence the colored triangulation descends
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to the product 𝑇 𝑛×R𝑛−1, where 𝑇 𝑛 is a flat torus with convexity radius at least

1.

Proof. In fact, one can take all simplices congruent to one another. For instance, one

can take the (scaled) set of alcoves for the affine Weyl group ̃︀𝐴𝑛 (see [50, Chapter 6]);

this will give an example with a good value of 𝑐𝑛 (perhaps, the best). If we are

not chasing after good constants, much simpler constructions are possible. One way

is to consider the cubical subdivision of R2𝑛−1 with the set of vertices 𝜀Z2𝑛−1, split

each 𝜀-size cube into (2𝑛 − 1)! simplices, and then take the barycentric subdivision,

which can be colored naturally. Either of these constructions can be made periodic

easily.

Definition 3.3.2. Let𝑋2𝑛−1 be R2𝑛−1 or 𝑇 𝑛×R𝑛−1. Triangulate it as in Lemma 3.3.1,

and define 𝑍𝑖, 1 ≤ 𝑖 ≤ 𝑛, to be the union of all edges of the triangulation between

the vertices of colors 2𝑖− 1 and 2𝑖. We say that 𝑋 is the 𝜀-local join of 𝑍1, . . . , 𝑍𝑛.

The motivation behind this definition is that every (top-dimensional) simplex 𝜎

of the triangulation can be written as the join (𝜎 ∩ 𝑍1) * . . . * (𝜎 ∩ 𝑍𝑛); that is, any

point 𝑥 ∈ 𝜎 can be written as

𝑥 =
𝑛∑︁

𝑖=1

𝑡𝑖𝑧𝑖, where 𝑧𝑖 ∈ 𝜎 ∩ 𝑍𝑖, 𝑡𝑖 ≥ 0,
𝑛∑︁

𝑖=1

𝑡𝑖 = 1.

The coefficients 𝑡𝑖 are determined uniquely; if 𝑡𝑖 ̸= 0, the corresponding 𝑧𝑖 is deter-

mined uniquely too. This defines a map 𝑥 ↦→ (𝑡1, . . . , 𝑡𝑛) from 𝜎 to the standard

(𝑛 − 1)-dimensional simplex △𝑛−1; for adjacent simplices of the triangulation, those

maps agree on their intersection; hence, we have a well-defined map

𝜏 : 𝑋 → △𝑛−1,

which we call the join map. Note that 𝑍𝑖 = 𝜏−1(𝑣𝑖), where 𝑣1, . . . , 𝑣𝑛 are the vertices

of △𝑛−1. For each vertex 𝑣𝑖, denote the opposite facet of △𝑛−1 by 𝑣∨𝑖 . For each

complex 𝑍𝑖, introduce its dual complex 𝑍∨
𝑖 = 𝜏−1(𝑣∨𝑖 ). In other words, 𝑍∨

𝑖 is the
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union of all (2𝑛 − 3)-dimensional cell of our triangulation that do not intersect 𝑍𝑖.

There are natural retractions

𝜋𝑖 : 𝑋 ∖ 𝑍∨
𝑖 → 𝑍𝑖,

defined by sending 𝑥 =
𝑛∑︀

𝑖=1

𝑡𝑖𝑧𝑖 ∈ 𝜎 to 𝑧𝑖 ∈ 𝜎 ∩ 𝑍𝑖; they are well-defined since 𝑡𝑖 ̸= 0

whenever 𝑥 /∈ 𝑍∨
𝑖 . Note that 𝜋𝑖 moves each point by distance at most sup diam𝜎 ∼ 𝜀.

3.3.2 Manifolds that are locally nearly one-dimensional

Proof of Theorem 3.0.3. Pick a torus 𝑇 𝑛 with convexity radius≥ 1, as in Lemma 3.3.1.

On scale 𝜀, represent 𝑋 = 𝑇 𝑛 × R𝑛−1 as the local join of one-dimensional complexes

𝑍1, . . . , 𝑍𝑛, as in Definition 3.3.2. The goal is to build a manifold 𝑀𝑛 ⊂ 𝑋 so that

on the large scale (∼ 1) it resembles 𝑇 𝑛 homologically, but on the small (∼ 𝜀) scale

it will become porous in a way that makes its local 1-width small.

Recall the join map 𝜏 : 𝑋 → △𝑛−1 arising from the local join structure of 𝑋. In

this proof, it will be convenient to think of the target simplex as a regular simplex of

inradius 3, placed in R𝑛−1 and centered at the origin. We make use of the join map

𝜏 : 𝑇 𝑛 × R𝑛−1 → △𝑛−1 ⊂ R2𝑛−1 to “perturb” the projection 𝑝 : 𝑇 𝑛 × R𝑛−1 → R𝑛−1

onto the second factor:

̃︀𝑝 := 𝑝− 𝜏/2.

The choice of the factor 1/2 is not particularly important as long as it is less than

1. We only use that the 𝑝-term dominates the 𝜏 -term in the sense that ̃︀𝑝 does not

vanish outside of 𝑇 𝑛 × int△𝑛−1.

Finally, define the “perturbation of 𝑇 𝑛 = 𝑝−1(0) by the 𝑍𝑖 = 𝜏−1(𝑣𝑖)”:

𝑀𝑛 := ̃︀𝑝−1(0).

Note: as defined, 𝑀 is a PL-manifold; but we can perturb 𝜏 slightly to make it

smooth and to make 0 a regular value of ̃︀𝑝; then 𝑀 becomes a smooth manifold.
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Observe that 𝑀 is contained in 𝑇 𝑛× int△𝑛−1, so 𝑀 is closed; it is also orientable by

construction. See Figure 3-1 for an illustration of the case 𝑛 = 2.

Now, within a unit ball 𝐵1(𝑥) ⊂ 𝑀 , we want to find a projection on one of the

𝑍𝑖 with 𝜀-small fibers. Recall the notation introduced after Definition 3.3.2: the

dual complexes 𝑍∨
𝑖 = 𝜏−1(𝑣∨𝑖 ), and the retractions 𝜋𝑖 : 𝑋 ∖ 𝑍∨

𝑖 → 𝑍𝑖. One of these

retractions would do if we find 𝑖, depending on 𝑥, so that 𝐵1(𝑥) ∩ 𝑍∨
𝑖 = ∅. Pick 𝑖

maximizing the distance between 𝜏(𝑥) and 𝑣∨𝑖 in △𝑛−1; this distance is at least 3 by

our choice of metric on△𝑛−1. When we move 𝑥 to 𝑥′ ∈ 𝐵1(𝑥), its 𝑝-projection changes

by at most 1, whereas its 𝜏 -projection changes by at most 2 (since the value of ̃︀𝑝 is

fixed), so 𝜏(𝑥′) never reaches 𝑣∨𝑖 . We can now use the retraction 𝜋𝑖 : 𝐵1(𝑥) → 𝑍𝑖,

showing UW1(𝐵1(𝑥)) . 𝜀. (Notation . means inequality that holds up to a factor

depending on dimension only.)

To show that UW𝑛−1(𝑀) ≥ 1, we use our second tool for estimating widths.

Apply Corollary 3.1.3 to the 1-Lipschitz projection map 𝑀 → 𝑇 𝑛 (the composition

𝑀 →˓ 𝑇 𝑛 × R𝑛−1 → 𝑇 𝑛), sending the fundamental class [𝑀 ] ∈ 𝐻𝑛(𝑀) to [𝑇 𝑛] ̸= 0.

Indeed, (the Poincaré duals of) the classes of 𝑀 and 𝑇 𝑛 are the same in 𝐻𝑛−1(𝑇 𝑛 ×

△𝑛−1, 𝑇 𝑛 × 𝜕△𝑛−1) as zero level sets for homotopic mappings ̃︀𝑝 and 𝑝, respectively;

the homotopy 𝑝 − 𝑡𝜏 , 𝑡 ∈ [0, 1/2], does not vanish on 𝑇 𝑛 × 𝜕△𝑛−1 since the 𝑝-term

dominates the 𝜏 -term.

Remark 3.3.3. In this argument, we used a torus as the “base space to be perturbed”.

In fact, this construction can be repeated for any reasonable base space, provided that

it has sufficient convexity radius. One can easily adapt Lemma 3.3.1 for this case,

and the rest of the proof goes unchanged. Morally, the outcome is that any manifold

can be “homologically perturbed” to make its local (on the scale comparable with its

convexity radius) 1-width arbitrarily small.

Remark 3.3.4. The parameters of the construction can be adjusted in order to get a

manifold 𝑀𝑛 of UW𝑛−1(𝑀) & 𝛽1/𝑛, with all unit balls 𝐵 ⊂𝑀 having UW1(𝐵) . 1.

Here 𝛽 is the first Betti number of 𝑀 . The adjustment is to start from a torus of

convexity radius ∼ 𝛽1/𝑛, and pick the triangulation scale 𝜀 ∼ 1.
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Question 3.3.5. Let 𝑀2 be a closed Riemannian surface with the first Z/2-Betti

number 𝛽, and with every unit ball having 1-width less than 𝜀, for some fixed small

absolute constant 𝜀. In the optimal bound UW1(𝑀) . 𝑓(𝛽), what is the order of

magnitude of the right hand side? It must be between 𝛽1/2 (by Remark 3.3.4) and 𝛽

(by Theorem 3.0.2).

3.3.3 Topologically simple 𝑛-manifolds that are locally nearly

log 𝑛-dimensional

The next result is an “amplification” of Guth’s example [25, Section 4] of a 3-sphere

with large 2-width but all unit balls UW2-small. We start by taking a reasonable base

space 𝑋2𝑛−1 equipped with an 𝜀-fine triangulation, as in Lemma 3.3.1. A particular

choice of 𝑋 is not really important; the only assumptions we need are its substantial

codimension 1 width, and the existence of a colored triangulation (local join repre-

sentation). For example, one can take 𝑋 to be a unit cube in the euclidean space

R2𝑛−1; then UW2𝑛−2(𝑋) ≥ 1 by the first tool. If one takes a unit euclidean ball, its

codimension 1 width is known exactly (see [2, Remark 6.10]), but one can use the

second tool to get a weaker bound ≥ 1/2; then one can take 𝑋 to be the ball of radius

2 in order to have UW2𝑛−2(𝑋) ≥ 1. In both examples, a local join structure is given

by Lemma 3.3.1. It is easy to modify the argument in order to take 𝑋 a sphere, or a

torus, etc.

The triangulation of𝑋 comes equipped with one-dimensional complexes 𝑍1, . . . , 𝑍𝑛,

and the join map 𝜏 : 𝑋 → △𝑛−1 mapping 𝑍𝑖 to the 𝑖th vertex of the simplex. Now we

blow up the metric in 𝑋 along the △𝑛−1-direction and leave it unchanged along the

fibers of 𝜏 . Formally speaking, endow △𝑛−1 with an auxiliary metric making △𝑛−1

a regular simplex with inradius 2 (this choice will be explained later), and add its

pullback to the metric of 𝑋. The resulting metric on 𝑋 is piecewise Riemannian, and

after a slight smoothening, we get a Riemannian manifold 𝑋 ′.

Proposition 3.3.6. UW2𝑛−2(𝑋
′) ≥ 1 but UW𝑛(𝐵) . 𝜀 for every unit ball 𝐵 ⊂ 𝑋 ′.

Proof. By assumption, UW2𝑛−2(𝑋) ≥ 1. The metric on𝑋 ′ is even larger, soUW2𝑛−2(𝑋
′) ≥
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1.

Now take a unit ball 𝐵 ⊂ 𝑋 ′, and observe that UW𝑛(𝐵) ≤ UW𝑛(𝜏
−1(𝜏(𝐵))).

By construction of the blown-up metric of 𝑋 ′ (namely, by the choice of the aux-

iliary metric on △𝑛−1), 𝜏(𝐵) misses at least one facet of △𝑛−1, say, the 𝑖th one.

Then the retraction 𝜋𝑖 (in the notation introduced after Definition 3.3.2) gives a map

𝜏−1(𝜏(𝐵)) → 𝑍𝑖, whose fibers are small in the original metric of 𝑋. The map

𝐵 → 𝑍𝑖 ×△𝑛−1

𝑥 ↦→ (𝜋𝑖(𝑥), 𝜏(𝑥))

gives a desired bound on UW𝑛(𝐵).

For 𝑛 = 2 this construction recovers Guth’s example. Let us rephrase this con-

struction once again, since we are going to apply it inductively.

The blow-up construction. Start from a manifold 𝑋 with metric 𝑔𝑋 , and a piece-

wise smooth join map 𝜏 : 𝑋 → △ (obtained from a fine colored triangulation of 𝑋).

Suppose △ is equipped with an auxiliary metric 𝑔△, in which no unit ball 𝐵△ ⊂ △

meets all facets of △. Consider the piecewise Riemannian metric 𝑔𝑋 + 𝜏 *𝑔△, and

perturb it slightly to get a smooth metric 𝑔′𝑋 . We say that 𝑔′𝑋 is obtained from 𝑔𝑋 by

blowing it up along the △-direction, or across the join map, via the auxiliary metric

𝑔△.

Observe that the distances in the blown-up metric 𝑔′𝑋 do not decrease in compar-

ison with the original metric 𝑔𝑋 , hence the Urysohn width does not decrease either.

By the same reason, if the space 𝑋 itself was a simplex with the property “no unit

ball meets all facets”, the same holds true after the blow-up.

In the blow-up in Guth’s example, the auxiliary metric on △𝑛−1 was euclidean,

making it a regular simplex of inradius 2. There is a more clever way to pick this

auxiliary metric to get better estimates. Let 𝑛 = 2𝑚. We will start from a metric

making △𝑛−1 a regular simplex with inradius 2, and blow it up with the goal to have

every unit ball 𝐵△ in △𝑛−1 small in the sense of some width. Repeat the construction

above: pick 𝑚 skeleta, each of dimension 1, in a fine colored triangulation inside
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△𝑛−1, and blow up the metric of △𝑛−1 across the join map in order to have maps

𝐵△ → 𝑌 𝑚 with small fibers, for every unit ball 𝐵△ ⊂ △𝑛−1 (this is the conclusion of

Proposition 3.3.6). Now, using the modified metric on △𝑛−1, we blow up the metric

of 𝑋 along the △𝑛−1-direction. Call the resulting metric space 𝑋 ′′.

Proposition 3.3.7. UW4𝑚−2(𝑋
′′) ≥ 1 but UW𝑚+1(𝐵) . 𝜀 for every unit ball 𝐵 ⊂

𝑋 ′′.

Proof. UW𝑚+1(𝐵) ≤ UW𝑚+1(𝜏
−1(𝜏(𝐵))), where 𝜏(𝐵) lies in a unit ball 𝐵△ ⊂ △𝑛−1,

missing, say, the 𝑖th facet of △𝑛−1. Then there is a map 𝜏−1(𝜏(𝐵)) → 𝑍𝑖 × 𝑌 𝑚 with

small fibers, defined as follows: a point 𝑥 gets mapped to (𝜋𝑖(𝑥), 𝑦) ∈ 𝑍𝑖×𝑌 𝑚, where

𝑦 is the image of 𝜏(𝑥) under the map 𝐵△ → 𝑌 𝑚.

Iterating this procedure ℓ times, we arrive at the following conclusion.

Proposition 3.3.8. For a unit euclidean cube 𝑋 (or a regular simplex of inradius 2,

or a ball, or a sphere, or a torus) of dimension 2ℓ𝑘− 1, there is a way to blow up the

metric in order to get a space 𝑋(ℓ) such that UW2ℓ𝑘−2(𝑋
(ℓ)) ≥ 1 but UW𝑘+ℓ−1(𝐵) . 𝜀

for every unit ball 𝐵 ⊂ 𝑋(ℓ).

Proof. The original metric on 𝑋 satisfies UW2ℓ𝑘−2(𝑋) ≥ 1, and an 𝜀-local join struc-

ture on 𝑋 gives the join map 𝜏 : 𝑋 → △2ℓ−1𝑘−1. We blow up the metric of 𝑋 across 𝜏

using a carefully chosen auxiliary metric on △2ℓ−1𝑘−1. Inducting on ℓ, we may assume

that there is a metric on △2ℓ−1𝑘−1 such that no unit ball meets all its facets, and

every unit ball is small in the sense of UW𝑘+(ℓ−1)−1. We use this metric to blow up

the metric of 𝑋 and this way get 𝑋(ℓ). Arguing as in the proof of Proposition 3.3.7,

one makes sure that every unit ball of 𝑋(ℓ) is small in the sense of UW𝑘+ℓ−1.

Proof of Theorem 3.0.4. Let ℓ = ⌈log2(𝑛 + 1)⌉, and apply Proposition 3.3.8 with

𝑘 = 1 to get a ball 𝑋 (or a sphere, or a torus) of dimension 2ℓ − 1 with large global

(2ℓ−2)-width but small local ℓ-width. Now we can build𝑀𝑛 as a subspace of 𝑋.

Question 3.3.9. Let 𝑀𝑛 be a Riemannian 𝑛-sphere, 𝑛 ≥ 4, with every unit ball

having 𝑑-width less than 𝜀𝑛, for some fixed small dimensional constant 𝜀𝑛. What is the
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smallest 𝑑 = 𝑑(𝑛) such that the assumption on local width would imply UW𝑛−1(𝑀) .

1? Theorems 3.0.2 and 3.0.4 imply 2 ≤ 𝑑(𝑛) < log2(𝑛+ 1).
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Chapter 4

Interlude: topological centerpoint

Throughout this chapter, the word 𝑚-space means “metrizable topological space of

covering dimension at most 𝑚”.

Theorem 4.0.1 (Karasev [31]). Let 𝑛 = (𝑚+ 1)𝑟. Every continuous map 𝑓 : △𝑛 →

𝑌 𝑚 from the 𝑛-simplex to an 𝑚-space has a fiber meeting all 𝑚𝑟-faces of △𝑛.

This theorem subsumes the Knaster–Kuratowski–Mazurkiewicz theorem (for 𝑟 =

1) and the Rado centerpoint theorem (for 𝑌 𝑚 = R𝑚 and affine 𝑓). The original

proof [31] used the topological notion of Z/2-index, and another gorgeous proof [32]

used the symplectic moment map C𝑃 𝑛 → △𝑛 as well as cohomology structure of

C𝑃 𝑛. The goal of this chapter is to give a new proof using only Brouwer’s invariance

of dimension.

We remark that Theorem 4.0.1 holds with 𝑌 𝑚 being just Hausdorff instead of

metrizable. This was noticed in [15], and the proof below applies for this case as well.

4.1 Proof of Karasev’s theorem via Urysohn width

The key fact used in the proof will be the following waist-type estimate.

Theorem 4.1.1 (Gromov [19, Corollary H′
1]). Let 𝑛 = (𝑚+1)(𝑑+1). Every contin-

uous map 𝑓 : 𝑋 → 𝑌 𝑚 from a compact metric space to an 𝑚-space has a fiber 𝑓−1(𝑦)

of Urysohn 𝑑-width UW𝑑(𝑓
−1(𝑦)) ≥ UW𝑛−1(𝑋).
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Proof. The assumptions on 𝑌 𝑚 imply that UW𝑑(𝑓
−1(𝑦)) = inf

open 𝑉 ∋𝑦
UW𝑑(𝑓

−1(𝑉 )).1

Supposing the contrary to the statement of the theorem, and pulling back a fine open

cover of 𝑌 , we obtain an open cover {𝑈𝑖} of 𝑋 of multiplicity at most 𝑚+1, such that

UW𝑑(𝑈𝑖) < 𝑢 := UW𝑛−1(𝑋) for all 𝑖. It follows from the definition of the 𝑑-width

that every 𝑈𝑖 admits an open cover 𝑈𝑖 =
⋃︀
𝑗

𝑈𝑖𝑗 of multiplicity at most 𝑑 + 1, with

diam𝑈𝑖𝑗 < 𝑢. The cover {𝑈𝑖𝑗} of 𝑋 has multiplicity at most (𝑚+1)(𝑑+1), and it can

be assumed finite (by compactness), so we get UW𝑛−1(𝑋) < 𝑢, which is absurd.

Let 𝐵𝑛 be the unit ball in R𝑛 with the euclidean metric. The only topological

ingredient that we need is the fact that UW𝑛−1(𝐵
𝑛) > 0. This follows easily from the

Lebesgue covering theorem2, as it was mentioned in Section 2.4. The exact value of

UW𝑛−1(𝐵
𝑛) is known (see Section 2.5) but we will not need it here.

Lemma 4.1.2 (cf. Lemma 3.3.1). There is a triangulation 𝑇 of R𝑛 satisfying the

following properties:

∙ 𝑇 is preserved under the reflections in the hyperplanes spanned by the (𝑛− 1)-

faces of 𝑇 .

∙ The vertices of 𝑇 split into 𝑛+1 orbits of the group generated by those reflections.

In other words, if an 𝑛-simplex of 𝑇 is being flipped (reflected in its facets)

multiple times so that it ends up at the original place, then its orientation is

unaltered.

Proof. Such a triangulation comes from the type 𝐴 root system and the corresponding

affine Weyl group (see [50, Chapter 6] or [11, Chapter VI, §4]).

Proof of Theorem 4.0.1. We regard the source space △𝑛 as a simplex of the trian-

gulation 𝑇 from Lemma 4.1.2, and we denote 𝐺 the corresponding reflection group.

Suppose that for each fiber 𝑓−1(𝑦), 𝑦 ∈ 𝑌 𝑚, there is an 𝑚𝑟-face 𝐹𝑦 ⊂ △𝑛 such that

𝑦 /∈ 𝑓(𝐹𝑦). Using the reflections in the facets of △𝑛, we extend the map 𝑓 : △𝑛 → 𝑌 𝑚

1This is easy to check when 𝑌 𝑚 is metrizable; but this is still true when 𝑌 𝑚 is just Hausdorff,
as explained in the next section.

2Or any other statement “equivalent” to Brouwer’s fixed point theorem.
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to get the map ̃︀𝑓 : R𝑛 → 𝑌 𝑚; that is, ̃︀𝑓 |△𝑛 = 𝑓 and ̃︀𝑓 is 𝐺-invariant. The set̃︀𝐹𝑦 = 𝐺 · 𝐹𝑦 =
⋃︀
𝑔∈𝐺

𝑔 · 𝐹𝑦 is a certain 𝑚𝑟-subcomplex of 𝑇 . Consider the “dual” sub-

complex ̃︀𝐹∨
𝑦 = 𝐺 · 𝐹∨

𝑦 , where 𝐹
∨
𝑦 is the (𝑟 − 1)-face of △𝑛 disjoint from 𝐹𝑦. Sincẽ︀𝑓−1(𝑦) misses ̃︀𝐹𝑦, there is a 𝐺-equivariant projection 𝑝 : ̃︀𝑓−1(𝑦) → 𝐺 · ̃︀𝐹∨

𝑦 , which

moves every point by a distance at most diam△𝑛. On △𝑛, it is defined as the com-

position 𝑓−1(𝑦) →˓ △𝑛 ∖ 𝐹𝑦 = (𝐹𝑦 * 𝐹∨
𝑦 ) ∖ 𝐹𝑦 → 𝐹∨

𝑦 →˓ ̃︀𝐹∨
𝑦 , and then it is extended

using the 𝐺-equivariance.

Figure 4-1: The projection map 𝑝 in-
side △𝑛

Figure 4-2: The “kaleidoscope” of reflections

Now pick a large number 𝑅 > 2 diam△𝑛

UW𝑛−1(𝐵𝑛)
and consider how ̃︀𝑓 restricts on the

ball 𝑋 = 𝑅𝐵𝑛 of radius 𝑅. The fiber of ̃︀𝑓 : 𝑋 → 𝑌 𝑚 over 𝑦 admits a map of width

≤ 2 diam△𝑛 to the (𝑟−1)-dimensional space ̃︀𝐹∨
𝑦 . But Theorem 4.1.1 outputs a fiber of

the Urysohn width UW𝑟−1( ̃︀𝑓−1(𝑦)∩𝑋) ≥ UW𝑛−1(𝑋) = 𝑅·UW𝑛−1(𝐵
𝑛) > 2 diam△𝑛,

which yields a contradiction.

4.2 Extension for Hausdorff target spaces

Here we show that Theorem 4.1.1 holds true for any Hausdorff space 𝑌 . This gives

another (different from the one in [15]) proof of Theorem 4.0.1 for the case of Hausdorff
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target space.

Recall that a topological space 𝑌 is said to satisfy the Hausdorff separation axiom

if for any two points 𝑦 ̸= 𝑦′ in 𝑌 there are open neighborhoods 𝑉 ∋ 𝑦, 𝑉 ′ ∋ 𝑦′ such

that 𝑉 ∩ 𝑉 ′ = ∅.

Suppose we are given a map 𝑓 : 𝑋 → 𝑌 from a compact metric space to a

Hausdorff space. In order to prove Theorem 4.1.1 in the Hausdorff setting, the only

thing to be checked is UW𝑑(𝑓
−1(𝑦)) = inf

open 𝑉 ∋𝑦
UW𝑑(𝑓

−1(𝑉 )), for any 𝑦 ∈ 𝑌 . By the

definition of width via covers we can assume that 𝑓−1(𝑦) is covered with multiplicity

at most 𝑑+1 by open sets 𝑈𝑖 of diameter at most UW𝑑(𝑓
−1(𝑦)). We need to show that

in fact
⋃︀
𝑈𝑖 covers a “fattened” fiber 𝑓−1(𝑉 ), for some open neighborhood 𝑉 of 𝑦. This

is done as in the proof of (UC ≤ UMh) in Section 2.3. In fact, 𝑌 ∖ 𝑓(𝑋 ∖ 𝑓−1(
⋃︀
𝑈𝑖))

is such a neighborhood.
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Chapter 5

Waist measured via the Urysohn

width

The question raised in this chapter is inspired by another famous Gromov’s inequality,

namely the waist of the sphere theorem [20]. It says that any generic smooth map

𝑓 : 𝑆𝑛 → R𝑚, 𝑚 < 𝑛, has a fiber of (𝑛−𝑚)-volume at least the one of the (𝑛−𝑚)-

dimensional “equatorial” subsphere. The target space can be replaced by any 𝑚-

manifold [33], while it is not clear if one can replace it by an 𝑚-polyhedron 𝑌 𝑚. The

only result in this direction we are aware of is [2, Theorem 7.3], saying that any generic

smooth map 𝑆𝑛 → 𝑌 𝑛−1 has a fiber of length ≥ 𝜋. A non-sharp version of the waist

theorem, however, can be proved for any 𝑚-dimensional target space by induction

using the Federer–Fleming isoperimetric estimate. This type of argument apparently

goes back to Almgren, and it was used by Gromov in [16] (see the exposition in [24,

Section 7], which applies to any target space, or in [1, Section 7]). A discrete version

of this non-sharp estimate is proven in [44] along the same lines. For Riemannian

metrics other than round, the case 𝑛 = 2 is understood [41, 6], and the case 𝑛 = 3 is

investigated under additional curvature assumptions [43].

The Urysohn width itself is a waist-type invariant, in which the size of a fiber

is measured via its diameter, instead of the volume. In this chapter, we investigate

(non-sharp) waist theorems, where the size of a fiber is measured via the Urysohn

width.
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Prototype question. Fix integers 𝑛,𝑚, 𝑑, such that 𝑛 > 𝑚 + 𝑑. Let 𝑓 : 𝑋𝑛 →

𝑌 𝑚 be a continuous map from a compact Riemannian 𝑛-manifold to an𝑚-dimensional

simplicial complex. Let 𝑤 be the supremal Urysohn 𝑑-width of fibers 𝑓−1(𝑦), 𝑦 ∈ 𝑌 ,

viewed as compact metric spaces with the extrinsic metric of 𝑋. Can one bound

𝑤 from below in terms of the (𝑛 − 1)-width of 𝑋? If not, can one bound 𝑤 if the

“topological complexity” of the fibers is restricted?

It is natural to expect that the answer should be affirmative in some sense when

𝑛 > 𝑚+𝑑 (if we hope that the corresponding property of the dimension [9] is robust).

When 𝑑 = 1, and the first Betty number of the fibers is bounded, this is indeed the

case, as we will show in Section 5.2. However, in general this is far from true. In

Section 5.3 it will be shown that even for 𝑛 = (𝑚+1)(𝑑−𝑚)+ 2𝑚 and topologically

trivial fibers the answer is negative. In a sense, this shows the failure of the notion

of the 𝑑-width to measure the “defect of 𝑑-dimensionality”.

Let us describe the answers for the first four non-trivial cases of Prototype ques-

tion. These four claims are the simplest special cases of the theorems explained in

this chapter.

(A) There is a map 𝑓 : [0, 1]3 → [0, 1] with all fibers having arbitrarily small 1-width.

We describe this example ([19, Example H′′
1]) briefly. Consider an 𝜀-fine cubical

grid in R3, and let 𝑍0 be its 1-skeleton. Let 𝑍1 be the 1-skeleton of the dual grid.

Define 𝑓 by setting 𝑓(𝑥) = dist(𝑥,𝑍0)
dist(𝑥,𝑍0)+dist(𝑥,𝑍1)

. It can be checked that every fiber

Σ𝑦 = 𝑓−1(𝑦), 𝑦 ∈ [0, 1), retracts to 𝑍0 with every point moving by distance . 𝜀;

hence it has small 1-width. Similarly, the fibers over 𝑦 ∈ (0, 1] are approximated

by 𝑍1.

In Section 5.1, we explain how this example is generalized to higher dimensions,

see Theorem 5.1.2. This might be known to experts, but we were not able to

locate a reference.

(B) Notice that all regular fibers in the previous example have high genus. What

happens if we bound their topological complexity?
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Suppose that a piecewise linear map 𝑓 : [0, 1]3 → [0, 1] is such that all fibers

𝑓−1(𝑦), 𝑦 ∈ [0, 1], are homeomorphic to [0, 1]2. Then there is a fiber 𝑓−1(𝑦) of

Urysohn 1-width at least 1
3
.

This is the baby case of one of our main results, Theorem 5.2.16. Here is the

idea of the proof that will be developed in Section 5.2. Suppose that every

fiber 𝑋𝑦 = 𝑓−1(𝑦) has width UW𝑑(𝑋𝑦) < 𝑐. So there are maps 𝑋𝑦 → 𝑍𝑦 to

graphs 𝑍𝑦 whose fibers are of diameter less than 𝑐. A naïve idea might be to

assemble them together to get a map [0, 1]3 →
⋃︀
𝑍𝑦. If there was a nice way to

interpret
⋃︀
𝑍𝑦 as a two-dimensional space, then we would be done as long as

𝑐 < UW𝑛−1(𝑋). A careful argument might try to assemble the maps 𝑋𝑦 → 𝑍𝑦

by induction on the skeletal structure of 𝑌 , subdivided finely. The newly built

intermediate maps will have fibers with the size bounded in terms of 𝑐 and the

“topological complexity” of the 𝑋𝑦.

(C) The following is a special case of [19, Corollary H′
1], which we discuss in Sec-

tion 5.1 (see Theorem 5.1.1).

Every continuous map 𝑓 : 𝑋4 → 𝑌 1 from a compact metric space to a graph

has a fiber whose 1-width is at least the 3-width of 𝑋.

(D) Another major result of this paper is Theorem 5.3.1, a family of examples of

maps with small and topologically trivial fibers; here is the simplest case.

There is a Riemannian metric on [0, 1]4 that has substantial 3-width but the

fibers of the coordinate projection 𝑓 : [0, 1]4 → [0, 1] all have small 2-width.

We sketch roughly the idea of the construction. For each 𝑦 ∈ [0, 1], the standard

metric inside the fiber 𝑓−1(𝑦) ≃ [0, 1]3 is modified as follows. Consider the

high-genus surface Σ𝑦 ⊂ 𝑓−1(𝑦), as in the example (A). In its small tubular

neighborhood, blow up the metric in the normal direction; then, squeeze the

metric everywhere outside the tubular neighborhood. The result can be mapped

to the suspension of 𝑍0 or 𝑍1 with small fibers. However, the entire space [0, 1]4

can be shown to have substantial 3-width.
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5.1 Waist of maps with arbitrary fibers

The first waist-type result for the Urysohn width follows directly from the definitions.

It was observed by Gromov [19, Corollary H′
1], and we already saw its proof in the

previous chapter (see Theorem 4.1.1).

Theorem 5.1.1. Let 𝑋 be a compact metric space, and let 𝑌 be a metrizable topo-

logical space of covering dimension 𝑚. Every continuous map 𝑓 : 𝑋 → 𝑌 has a fiber

𝑓−1(𝑦) of 𝑑-width UW𝑑(𝑓
−1(𝑦)) ≥ UW𝑛−1(𝑋), where 𝑛 = (𝑚+ 1)(𝑑+ 1).

The relation between dimensions 𝑛,𝑚, 𝑑 in this theorem is optimal, as the following

result (generalizing example (A) from the introduction) shows.

Theorem 5.1.2. Let 𝑛 = (𝑚 + 1)(𝑑 + 1) − 1, and let 𝜀 > 0 be any small number.

There exists a continuous map 𝑓 : 𝐵𝑛 → △𝑚 from the unit euclidean 𝑛-ball to the

𝑚-simplex, whose fibers all have Urysohn 𝑑-width less than 𝜀.

The crucial tool used in the proof is the local join representation of R𝑛, which will

be also used in Section 5.3.

Lemma 5.1.3 (cf. Lemma 3.3.1). Fix 𝜀 > 0. There is a locally finite triangulation of

R𝑛 by simplices of diameter < 𝜀, admitting a nice coloring: the vertices receive colors

0, 1, . . . , 𝑛 so that each simplex receives all distinct colors.

Proof. In fact, there is such a triangulation with simplices congruent to one another,

via the reflection in the facets. Such a triangulation can be obtained from the type 𝐴

root system and the corresponding affine Coxeter hyperplane arrangement (see [50,

Chapter 6]). (Of course, simpler constructions are also possible.)

Definition 5.1.4 (cf. Definition 3.3.2). Let 𝑛 = (𝑚+ 1)(𝑑+ 1)− 1, and triangulate

R𝑛 by 𝜀-small simplices, as in Lemma 5.1.3. Define 𝑍𝑖, 0 ≤ 𝑖 ≤ 𝑚, to be the union of

all simplices of the triangulation colored by colors (𝑑+ 1)𝑖 through (𝑑+ 1)𝑖+ 𝑑. We

say that R𝑛 is the 𝜀-local join of 𝑑-dimensional complexes 𝑍0, . . . , 𝑍𝑚.
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The name is justified by the following observation: every (top-dimensional) sim-

plex 𝜎 of the triangulation can be written as the join (𝜎 ∩ 𝑍0) * . . . * (𝜎 ∩ 𝑍𝑚); that

is, any point 𝑥 ∈ 𝜎 can be written as

𝑥 =
𝑚∑︁
𝑖=0

𝑡𝑖𝑧𝑖, where 𝑧𝑖 ∈ 𝜎 ∩ 𝑍𝑖, 𝑡𝑖 ≥ 0,
𝑚∑︁
𝑖=0

𝑡𝑖 = 1.

The coefficients 𝑡𝑖 are determined uniquely, giving a well-defined join map

𝜏 : R𝑛 → △𝑚 =

{︃
(𝑡0, . . . , 𝑡𝑚)

⃒⃒⃒⃒
⃒ 𝑡𝑖 ≥ 0,

𝑚∑︁
𝑖=0

𝑡𝑖 = 1

}︃
.

Note that 𝑍𝑖 = 𝜏−1(𝑣𝑖), where 𝑣0, . . . , 𝑣𝑚 are the vertices of △𝑚. For each vertex 𝑣𝑖,

denote the opposite facet of △𝑚 by 𝑣∨𝑖 . For each complex 𝑍𝑖, its dual (𝑚𝑑+𝑚− 1)-

dimensional complex is given by 𝑍∨
𝑖 = 𝜏−1(𝑣∨𝑖 ). There are natural retractions

𝜋𝑖 : R𝑛 ∖ 𝑍∨
𝑖 → 𝑍𝑖,

defined by sending 𝑥 =
𝑚∑︀
𝑖=0

𝑡𝑖𝑧𝑖 ∈ 𝜎 to 𝑧𝑖 ∈ 𝜎 ∩ 𝑍𝑖; they are well-defined since 𝑡𝑖 ̸= 0

whenever 𝑥 /∈ 𝑍∨
𝑖 . Note that 𝜋𝑖 moves each point by distance < 𝜀.

Proof of Theorem 5.1.2. Represent R𝑛 as the 𝜀/2-local join of 𝑑-dimensional com-

plexes 𝑍0, . . . , 𝑍𝑚; let 𝜏 : R𝑛 → △𝑚 be its join map. Take 𝑓 to be the restriction of

𝜏 on the unit ball 𝐵𝑛. Let us check that the 𝑑-width of any fiber 𝐹 = 𝑓−1(𝑡0, . . . , 𝑡𝑚)

is small. Fix any 𝑖 for which 𝑡𝑖 ̸= 0. The (restricted) retraction map 𝜋𝑖|𝐹 : 𝐹 → 𝑍𝑖

has fibers of diameter < 𝜀, so we are done.

5.2 Waist of maps with fibers of bounded complexity

This section generalizes example (B) from the introduction. The main result, Theo-

rem 5.2.16, which in particular implies the following waist inequality.

Any piecewise linear map 𝑓 : 𝑋𝑚+2 → 𝑌 𝑚 from a metric (𝑚 + 2)-polyhedron

to an 𝑚-polyhedron must have a fiber of 1-width at least UW𝑚+1(𝑋)
2𝛽𝑚+𝑚2+𝑚+1

, where 𝛽 =
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sup
𝑦∈𝑌

rk𝐻1(𝑓
−1(𝑦)) measures the topological complexity of the map.

5.2.1 PL maps of polyhedra

We use the word polyhedron to refer to a topological space admitting a structure

of a finite simplicial complex (together with rectilinear structure on each simplex),

though we do not usually specify this structure. We say a continuous map 𝑋 → 𝑌

of polyhedra is a piecewise linear map, or a PL map, if it is simplicial for some fine

simplicial structures on 𝑋 and 𝑌 .

A polyhedron with a metric space structure (giving the same topology) will be

called a metric polyhedron. For example, it could be a polyhedron endowed with a

smooth Riemannian metric on each maximal simplex, so that the metrics on adjacent

simplices match in restriction to their common face.

For a map 𝑓 : 𝑋 → 𝑌 , we sometimes denote the preimage 𝑓−1(𝐴) of a subset

𝐴 ⊂ 𝑌 by 𝑋𝐴, if there is no confusion and 𝑓 is understood from the context. If 𝑋

and 𝐴 ⊂ 𝑌 are polyhedra, and 𝑓 is a PL map, then 𝑋𝐴 is naturally a polyhedron. If

additionally 𝑋 is metric, then 𝑋𝐴 is metric as well (with the extrinsic metric).

Definition 5.2.1. We measure the topological complexity using the first Betty num-

ber. For a space 𝑋, we set tc(𝑋) = rk𝐻1(𝑋;Z) = dim𝐻1(𝑋;Q). For a map

𝑓 : 𝑋 → 𝑌 , we set tc(𝑓) = sup
𝑦∈𝑌

tc(𝑋𝑦).

Remark 5.2.2. In fact, the estimates 5.2.11, 5.2.15, 5.2.16, 5.2.17 of this section hold in

a stronger form, with tc(·) replaced by a smaller quantity. Namely, we define tc′(𝑋) as

the largest number of linearly independent classes in𝐻1(𝑋;Q) with pairwise zero cup-

products. Similarly, for a map 𝑓 : 𝑋 → 𝑌 , we set tc′(𝑓) = sup
𝑦∈𝑌

tc′(𝑋𝑦). We formulate

our results with tc(·) for simplicity, but in the proofs we indicate the adjustments

needed if we use tc′(·).

Example 5.2.3. If 𝑋 is a closed connected oriented surface of genus 𝑔, then tc(𝑋) = 2𝑔

while tc′(𝑋) = 𝑔. If𝑋 is a connected oriented surface of genus 𝑔 with 𝑞 > 0 punctures,

then tc(𝑋) = tc′(𝑋) = 2𝑔 + 𝑞 − 1.
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Lemma 5.2.4. Every PL map 𝑓 : 𝑋 → 𝑌 of polyhedra satisfies the following regu-

larity assumption. Fix a simplicial structure on 𝑌 for which 𝑓 is simplicial. Fix a

simplex △ ⊂ 𝑌 (of any dimension), and let △̊ be its relative interior. Then one can

pick a PL map Ψ△ : △× Σ△ → 𝑋△, for some polyhedron Σ△, such that

∙ Ψ△ is fibered over △:

△× Σ△
Ψ△ //

projection %%

𝑋△

𝑓

��
△ ⊂ 𝑌

∙ the restriction

Ψ△|△̊×Σ△
: △̊ × Σ△ → 𝑋△̊

is a homeomorphism making 𝑓 a fiber bundle over △̊.

Proof. For Σ△, take the fiber over the center of △, and the rest can be verified

easily.

5.2.2 Connected maps

Definition 5.2.5. Let 𝑓 : 𝑋 → 𝑌 be a continuous map of topological spaces. It

is called connected if the fibers 𝑓−1(𝑧), 𝑧 ∈ 𝑍, are (nonempty and) path-connected.

Every map 𝑓 , connected or not, cannot be factored as

𝑋
̃︀𝑓→ ̃︀𝑌 → 𝑌,

with ̃︀𝑓 connected, and with ̃︀𝑌 being the space of path-connected components of the

fibers of 𝑓 (topologized by the finest topology making ̃︀𝑓 continuous). The map ̃︀𝑓 is

called the associated connected map.

If 𝑓 is a PL map of polyhedra, then ̃︀𝑓 is also PL, and ̃︀𝑌 is a polyhedron having

the same dimension as 𝑓(𝑋).

Lemma 5.2.6. Let 𝑓 : 𝑋 → 𝑌 be a connected PL map of polyhedra. If 𝑌 is connected

then 𝑋 is connected.
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Proof. Let 𝛾 : [0, 1] → 𝑌 be a path in the base. Fix a simplicial structure of 𝑌 for

which 𝑓 is simplicial. Let us build a path ̃︀𝛾 : [0, 1] → 𝑋 covering 𝛾 in the following

weak sense: there is a monotone reparametrization map 𝑟 : [0, 1] → [0, 1] such that

𝑓(̃︀𝛾(𝑡)) = 𝛾(𝑟(𝑡)). First, split 𝛾 into arcs each of which belongs to a single cell of 𝑌 .

Without loss of generality, there are finitely many of these arcs (this can be achieved

by homotoping 𝛾 slightly, while fixing endpoints). For each such arc [𝑡′, 𝑡′′] → 𝑌 ,

one can lift 𝛾 by Lemma 5.2.4. If 𝛾 is lifted independently over [𝑡′, 𝑡] and [𝑡, 𝑡′′], the

two lifted patches can be connected inside the fiber 𝑓−1(𝛾(𝑡)). This is how ̃︀𝛾 can be

built. For the assertion of the lemma, having two points 𝑥, 𝑥′ ∈ 𝑋, one can connect

𝑓(𝑥) to 𝑓(𝑥′) in the base, and lift the path as above. The endpoints of the lifted

path can be connected to 𝑥 and 𝑥′ in the corresponding fibers. This proves that 𝑋 is

connected.

5.2.3 Foliations

Definition 5.2.7. Let Σ be a topological space. We use the word foliation to denote

a continuous map 𝑝 : Σ → 𝑍 to a graph (finite 1-dimensional simplicial complex), in

the sense that Σ is foliated by the fibers 𝑝−1(𝑧), 𝑧 ∈ 𝑍 (the leaves).

This is a non-standard use of the word “foliation”. We could have used the word

“slicing” as well in this context.

Definition 5.2.8. Let Σ be a polyhedron. We say a foliation 𝑝 : Σ → 𝑍 is simple if

it is a connected PL map.

For a foliation 𝑝 of a compact metric space Σ, recall the notationW(𝑝) = sup
𝑧∈𝑍

diam 𝑝−1(𝑧)

for its width. The next lemma shows that, in a sense, any its foliation of width < 1

can be “simplified” while keeping its width < 1.

Lemma 5.2.9. If a metric polyhedron Σ admits a foliation of width < 1, then it also

admits a simple foliation width < 1.

Proof. Let 𝑝 : Σ → 𝑍 be a foliation of width < 1. Subdivide 𝑍 finely so that
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the preimage of the open star1 𝑆𝑣 of every vertex 𝑣 ∈ 𝑍 has diameter < 1. Use

the simplicial approximation theorem to approximate 𝑝 by a simplicial (for some

subdivision of Σ) map 𝑝′ such that for each 𝑥 ∈ Σ, 𝑝′(𝑥) belongs to the minimal

closed cell of 𝑍 containing 𝑝(𝑥). It follows that each fiber of 𝑝′ is contained in 𝑝−1(𝑆𝑣)

for some 𝑣 ∈ 𝑍, so 𝑝′ has width < 1.

Next, replacing 𝑝′ by the associated connected map ̃︀𝑝′ (which is also PL), we

arrive at the situation where the leaves (̃︀𝑝′)−1(𝑧) are (nonempty and) connected for

all 𝑧 ∈ 𝑍, and have diameter < 1.

5.2.4 Interpolation lemma

Definition 5.2.10. Let Σ be a topological space, and let 𝑝0 : Σ → 𝑍0, 𝑝1 : Σ → 𝑍1

be its foliations. An interpolation between these is a family of foliations 𝑝𝑡 : Σ → 𝑍𝑡,

𝑡 ∈ [0, 1], continuous in the following sense.

∙ There are 2-dimensional polyhedron 𝑍[0,1] together with a parametrization map

𝜋 : 𝑍[0,1] → [0, 1], such that 𝜋−1(𝑡) = 𝑍𝑡 ⊂ 𝑍[0,1].

∙ There is a continuous map 𝑃 : [0, 1]× Σ → 𝑍[0,1] fibered over [0, 1], and giving

𝑝𝑡 when restricted over {𝑡}:

[0, 1]× Σ 𝑃 //

projection %%

𝑍[0,1]

𝜋

��
[0, 1]

{𝑡} × Σ
𝑝𝑡 //

projection
&&

𝑍𝑡 ⊂ 𝑍[0,1]

𝜋

��
{𝑡}

Lemma 5.2.11. Let Σ be a metric polyhedron of topological complexity 𝛽 = tc(Σ),

and let 𝑝0 : Σ → 𝑍0, 𝑝1 : Σ → 𝑍1 be simple foliations. It is possible to interpolate

between them through simple foliations of width at most (𝛽+2)W(𝑝0)+(𝛽+1)W(𝑝1).

We only outline the proof, since a more general statement will be proved in the

next subsection. However, this outline illustrates the main method of this section.

1Recall that the open star of a vertex of a simplicial complex is the union of the relative interiors
of all faces containing the given vertex. In a graph, the open star of a vertex is the vertex itself
together with all incident open edges.
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Lemma 5.2.12. Given a (finite) connected graph 𝑍 (viewed as a topological space),

there is a filtration by closed subspaces 𝑍(𝑡) ⊂ 𝑍, 𝑡 ∈ [0, 1], such that

∙ 𝑍(𝑡) = 𝛼−1([0, 𝑡]), for some continuous function 𝛼 : 𝑍 → [1/2, 1];

∙ 𝑍(1/2) = 𝛼−1(1/2) consists of a single point;

∙ every preimage 𝛼−1(𝑡), 𝑡 ∈ [1/2, 1], consists of finitely many points (informally,

this condition says that 𝑍(𝑡) depends continuously on 𝑡).

One can also consider a satellite filtration by open subspaces 𝑍(𝑡) =
⋃︀

𝑡′∈[0,𝑡)
𝑍(𝑡′) =

𝛼−1([0, 𝑡)).

Proof. Such a filtration can be constructed using

𝛼(𝑧) =
dist𝑍(𝑧0, 𝑧)

2 sup
𝑧′∈𝑍

dist𝑍(𝑧0, 𝑧′)
+ 1/2

for any fixed point 𝑧0 ∈ 𝑍 and any metrization of 𝑍.

Outline of the proof of Lemma 5.2.11. We can assume Σ connected (by dealing with

each connected component separately).

The graph 𝑍1 is connected, since Σ is connected, and 𝑝1 is simple (hence surjec-

tive). Filter 𝑍1 as in Lemma 5.2.12: 𝑍(0)
1 ⊂ . . . ⊂ 𝑍

(𝑡)
1 ⊂ . . . ⊂ 𝑍

(1)
1 , 𝑡 ∈ [0, 1]. We

interpolate between 𝑝0 and 𝑝1 through foliations 𝑝𝑡 : Σ → 𝑍𝑡, which can be roughly

described as follows. To get a picture of 𝑝𝑡, first you draw the fibers of 𝑝1 over 𝑍(𝑡)
1 .

Then in the remaining room we draw the fibers of 𝑝0 (their parts that fit). The re-

sulting picture is interpreted as a foliation by connected leaves, and we call it 𝑝𝑡 (see

Figure 5-1).

Let us rigorously describe the space of leaves 𝑍𝑡 and the foliation map 𝑝𝑡.

∙ Define 𝑍(𝑡)
0 , 𝑡 ∈ [0, 1], as the minimal closed subspace of 𝑍0 such that 𝑝−1

0 (𝑍
(𝑡)
0 )∪

𝑝−1
1 (𝑍

(𝑡)
1 ) = Σ; in other words,

𝑍
(𝑡)
0 = 𝑝0

(︁
Σ ∖ 𝑝−1

1 (𝑍
(𝑡)
1 )

)︁
.
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Figure 5-1: Interpolation between foliations. Each rectangle represents a foliation of
Σ, given by a map to a graph. The foliations 𝑝0 and 𝑝1 are pictured in green and red,
respectively

We write Σ(𝑡) = Σ ∖ 𝑝−1
1 (𝑍

(𝑡)
1 ) for short.

∙ The map 𝑝0|Σ(𝑡) : Σ(𝑡) → 𝑍
(𝑡)
0 might not have all fibers connected, so we factor

it through its associated connected map:

Σ(𝑡) ̃︀𝑝(𝑡)0→ ̃︀𝑍(𝑡)
0 → 𝑍

(𝑡)
0 .

∙ The graph 𝑍𝑡 is defined as

(︁ ̃︀𝑍(𝑡)
0 ⊔ 𝑍(𝑡)

1

)︁
/

𝑡∼,
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where 𝑡∼ is the following equivalence relation. Let us write 𝑧
𝑡
≈ 𝑧′ if 𝑧 ∈ ̃︀𝑍(𝑡)

0 ,

𝑧′ ∈ 𝑍
(𝑡)
1 , and (̃︀𝑝(𝑡)0 )−1(𝑧) intersects 𝑝−1

1 (𝑧′). Define 𝑡∼ to be the transitive closure

of
𝑡
≈. There are natural maps 𝜄(𝑡)0 : ̃︀𝑍(𝑡)

0 → 𝑍𝑡 and 𝜄
(𝑡)
1 : 𝑍

(𝑡)
1 → 𝑍𝑡.

∙ The map 𝑝𝑡 : Σ → 𝑍𝑡 is defined as

𝑝𝑡(𝑥) =

⎧⎪⎨⎪⎩𝜄
(𝑡)
1 (𝑝1(𝑥)), if 𝑝1(𝑥) ∈ 𝑍

(𝑡)
1

𝜄
(𝑡)
0

(︁̃︀𝑝(𝑡)0 (𝑥)
)︁
, otherwise.

Observe that for 𝑡 = 0, 1 this agrees with the original foliations 𝑝0 and 𝑝1.

This describes the intermediate foliations 𝑝𝑡, but in order to describe the interpola-

tion completely we also need to explain how the graphs 𝑍𝑡 assemble into a 2-complex

𝑍[0,1], and how the maps 𝑝𝑡 assemble into a continuous map 𝑃 : [0, 1]×Σ → 𝑍[0,1]. We

do not give these details here, because a more general construction will be explained

in the next subsection.

To finish the proof, we need to bound the size of the fibers of 𝑝𝑡. Why could it

be possibly large? Because in the process of interpolating some vertices of the target

graph merged under the 𝑡∼-identification, so multiple fibers of 𝑝0 and 𝑝1 might have

been united. Consider a fiber of 𝑝𝑡. For this fiber, consider the longest chain of

identifications

𝑧0
𝑡
≈ 𝑧′1

𝑡
≈ 𝑧1

𝑡
≈ 𝑧′2

𝑡
≈ . . .

with 𝑧𝑗 ∈ ̃︀𝑍(𝑡)
0 , and with 𝑧′𝑗 ∈ 𝑍

(𝑡)
1 all distinct. Suppose it has more than 1 + tc(Σ)

elements of 𝑍(𝑡)
1 . To every subchain 𝑧′𝑗

𝑡
≈ 𝑧𝑗

𝑡
≈ 𝑧′𝑗+1 assign an arc inside (̃︀𝑝(𝑡)0 )−1(𝑧𝑗)

connecting some two points 𝑥 ∈ 𝑝−1
1 (𝑧′𝑗) and 𝑦 ∈ 𝑝−1

1 (𝑧′𝑗+1). This arc represents an

element of relative homology 𝐻1(Σ,Σ1), where we denoted Σ1 = 𝑝−1
1 (𝑍

(𝑡)
1 ). Recall

that Σ1 is connected by Lemma 5.2.6, so rk𝐻1(Σ,Σ1) ≤ tc(Σ). There must be

a relation between the classes of those arcs in 𝐻1(Σ,Σ1). It follows that some 𝑧′𝑗

repeats in the chain, which proves that such a chain has at most 1 + tc(Σ) elements

of 𝑍(𝑡)
1 , hence at most 2 + tc(Σ) elements of ̃︀𝑍(𝑡)

0 . We conclude that the diameter of

a fiber of 𝑝𝑡 is at most (𝛽 + 2)W(𝑝0) + (𝛽 + 1)W(𝑝1). This finishes the proof if we
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measure the topological complexity with tc(·). For the modified complexity tc′(·),

one can assign a class in 𝐻1(Σ) to each element 𝑧′𝑗 (represented by the cochain that

counts intersections with 𝑝−1
1 (𝑧′𝑗)). One needs to verify that there is just one linear

dependence between them (coming from the 0-cochain equal to the characteristic

function of Σ1), and that their products vanish; this will imply that some 𝑧′𝑗 must

repeat.

5.2.5 Parametric interpolation lemma

Definition 5.2.13. Let Σ be a topological space, and let 𝜋 : 𝑍𝐾 → 𝐾 be a map of

polyhedra such that every fiber is a (nonempty and) connected graph. A continuous

map 𝑃 : 𝐾×Σ → 𝑍𝐾 is called a parametric foliation over 𝐾, or a family of foliations

parametrized by 𝐾, if the composition 𝜋 ∘ 𝑃 : 𝐾 × Σ → 𝐾 is the projection onto the

first factor:

𝐾 × Σ 𝑃 //

projection $$

𝑍𝐾

𝜋
��
𝐾

We call 𝑍𝐾 the space of leaves, and 𝜋 the parametrization map. For 𝑠 ∈ 𝐾, the

restriction 𝑃 |{𝑠}×Σ can be viewed as a foliation 𝑝𝑠 : Σ → 𝜋−1(𝑠), and we think of 𝑃

as the family of foliations 𝑝𝑠 parametrized by 𝑠 ∈ 𝐾. We say that 𝑃 is simple if it is

PL and connected.

For a parametric foliation 𝑃 : 𝐾 × Σ → 𝑍𝐾 of a metric space Σ, we keep using

the notation W(𝑃 ) = sup
𝑧∈𝑍𝐾

diam𝑃−1(𝑧) for the width.

Definition 5.2.14. Let Σ be a topological space. Let 𝑃0 : 𝐾×Σ → 𝑍𝐾 be a family of

foliations, and let 𝑝1 : Σ → 𝑍1 be another foliation. An interpolation between them is

a parametric foliation 𝑃 : 𝐶𝐾×Σ → 𝑍𝐶𝐾 over the cone 𝐶𝐾 = ([0, 1]×𝐾)/({1}×𝐾),

restricting to 𝑃0 over the base {0} ×𝐾 of 𝐶𝐾, and to 𝑝1 over the apex of 𝐶𝐾.

We are in position to prove the principal lemma of this section.

Lemma 5.2.15 (Parametric interpolation). Let Σ be a metric polyhedron of topolog-

ical complexity 𝛽 = tc(Σ). Let 𝑃𝐾 : 𝐾×Σ → 𝑍𝐾 be a family of simple foliations over
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a 𝑑-dimensional complex 𝐾, and let 𝑝1 : Σ → 𝑍1 be a simple foliation. It is possible

to interpolate between 𝑃𝐾 and 𝑝1 via a simple family 𝐶𝐾 × Σ → 𝑍𝐶𝐾 of width at

most (𝛽 + 2)W(𝑃0) + (𝛽 + 1)W(𝑝1).

Proof. We can assume Σ connected (by dealing with each connected component sep-

arately).

The parametric foliation 𝑃𝐾 splits into simple foliations 𝑝𝑠 : Σ → 𝑍𝑠, where

𝑍𝑠 = 𝜋−1(𝑠), 𝑠 ∈ 𝐾, 𝜋 : 𝑍𝐾 → 𝐾 is the parametrization of the foliation base.

The proof idea is simple: for each 𝑠 ∈ 𝐾, interpolate between 𝑝𝑠 and 𝑝1 as in

Lemma 5.2.11, and make sure that the interpolation depends nicely on 𝑠, in order

to assemble them altogether to a parametric interpolation. The details are pretty

technical, and now we write them out.

The graph 𝑍1 is finite and connected, since Σ is compact and connected, and 𝑝1

is simple (hence surjective). Filter 𝑍1 as in Lemma 5.2.12: 𝑍(0)
1 ⊂ . . . ⊂ 𝑍

(𝑡)
1 ⊂ . . . ⊂

𝑍
(1)
1 , 𝑡 ∈ [0, 1]. We interpolate between 𝑃𝐾 and 𝑝1 via a family 𝑃 : 𝐶𝐾 × Σ → 𝑍𝐶𝐾

to be described. With a little abuse of notation, we use coordinates (𝑡, 𝑠) ∈ [0, 1]×𝐾

on 𝐶𝐾, with a convention that all points (1, 𝑠) are identified with the apex of 𝐶𝐾.

The restriction 𝑃 |{(𝑡,𝑠)}×Σ is a foliation 𝑝(𝑡,𝑠) : Σ → 𝑍(𝑡,𝑠), which can be pictured as

follows. First, draw the fibers of 𝑝1 over 𝑍(𝑡)
1 ; then fill in the remaining room with

the fibers of 𝑝𝑠 (with their parts that fit). The resulting picture is interpreted as a

foliation by connected leaves, and we call it 𝑝(𝑡,𝑠).

We now describe 𝑃 : 𝐶𝐾 × Σ → 𝑍𝐶𝐾 formally.

∙ Define

𝑃0 : [0, 1)×𝐾 × Σ → [0, 1)× 𝑍𝐾

(𝑡, 𝑠, 𝑥) ↦→ (𝑡, 𝑝𝑠(𝑥))

𝑃1 : 𝐶𝐾 × Σ → 𝐶𝐾 × 𝑍1

(𝑐, 𝑥) ↦→ (𝑐, 𝑝1(𝑥))
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∙ Define

𝒵1 =
⋃︁

(𝑡,𝑠)∈𝐶𝐾

𝑍
(𝑡)
1 ⊂ 𝐶𝐾 × 𝑍1

where we think of 𝑍(𝑡)
1 as sitting in {(𝑡, 𝑠)} × 𝑍1. The interior of 𝒵1 is

𝒵1 =
⋃︁

(𝑡,𝑠)∈𝐶𝐾

𝑍
(𝑡)
1 ⊂ 𝐶𝐾 × 𝑍1.

Define

S = ([0, 1)×𝐾 × Σ) ∖ 𝑃−1
1 (𝒵1) ⊂ [0, 1)×𝐾 × Σ

and

𝒵0 = 𝑃0 (S) ⊂ [0, 1)× 𝑍𝐾 .

∙ The map 𝑃0|S might not be connected, so we factor it through its associated

connected map:

S
̃︀𝑃0→ ̃︁𝒵0 → 𝒵0 .

∙ The space of leaves is

𝑍𝐶𝐾 =
(︁̃︁𝒵0 ⊔ 𝒵1

)︁
/∼,

where ∼ is the following equivalence relation. Let us write 𝑧 ≈ 𝑧′ if 𝑧 ∈ ̃︁𝒵0,

𝑧′ ∈ 𝒵1, and ̃︀𝑃−1
0 (𝑧) intersects 𝑃−1

1 (𝑧′), as subsets of 𝐶𝐾 × Σ. (Recall our

convention for coordinates in a cone, in which [0, 1) ×𝐾 ⊂ 𝐶𝐾.) Define ∼ to

be the transitive closure of ≈. There are natural maps 𝜄0 : ̃︁𝒵0 → 𝑍𝐶𝐾 and

𝜄1 : 𝒵1 → 𝑍𝐶𝐾 .

∙ The parametric foliation 𝑃 is defined as

𝑃 : 𝐶𝐾 × Σ → 𝑍𝐶𝐾

𝜉 ↦→

⎧⎪⎨⎪⎩𝜄1(𝑃1(𝜉)), if 𝑃1(𝜉) ∈ 𝒵1

𝜄0

(︁ ̃︀𝑃0(𝜉)
)︁
, otherwise.

It is easy to see that 𝑃 indeed interpolates between 𝑃𝐾 and 𝑝1.
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Clearly, 𝑃 is connected. It is rather technical but straightforward to make sure

that 𝑃 is PL.

The analysis of the width was already done in Lemma 5.2.11. Any foliation from

the family 𝑃 interpolates between certain 𝑝𝑠, 𝑠 ∈ 𝐾, and 𝑝1, as in the construction

of Lemma 5.2.11. Therefore, W(𝑃 ) ≤ (𝛽 + 2)W(𝑃0) + (𝛽 + 1)W(𝑝1).

5.2.6 Waist of a PL map

Finally, we are ready to prove the main theorem of this section.

Theorem 5.2.16. Let 𝑓 : 𝑋 → 𝑌 𝑚 be a PL map from a metric polyhedron 𝑋 to

an 𝑚-dimensional polyhedron 𝑌 . Let 𝛽 = tc(𝑓) be its topological complexity, that is,

𝛽 = sup
𝑦∈𝑌

tc(𝑓−1(𝑦)). Then there is a fiber 𝑋𝑦 = 𝑓−1(𝑦) of Urysohn width

UW1(𝑋𝑦) ≥ 𝑐(𝑚,𝛽)UW𝑚+1(𝑋),

for some positive constant 𝑐 depending only on 𝑚 and 𝛽.

Proof. Replacing 𝑓 with its associated connected map, we can assume that 𝑓 is

connected. Even if 𝑓 is not a fiber bundle, still locally this is almost the case by

Lemma 5.2.4. For each simplex △ ⊂ 𝑌 (of any dimension) in a fine triangulation of

𝑌 , the map 𝑓 can be “almost” trivialized over △ via a PL map

Ψ△ : △× Σ△ → 𝑋△,

for some polyhedron Σ△; this map is a genuine trivialization over △̊, the relative

interior of △. For each 𝑦 ∈ △̊, this map induces the distance function 𝑑△𝑦 on Σ△

defined as

𝑑△𝑦 (𝑥, 𝑥
′) = dist𝑋(Ψ△(𝑦, 𝑥),Ψ△(𝑦, 𝑥

′)).

Refining the triangulation of 𝑌 if needed, we can assume that all metrics 𝑑△𝑦 over

𝑦 ∈ △̊ are 𝜀-close to one another in the following sense: the “layers” Ψ△(△ × {𝑥})

have diameter less than 𝜀/2 for all 𝑥 ∈ Σ△, hence for any 𝑥, 𝑥′ ∈ Σ△ and any 𝑦, 𝑦′ ∈ △̊
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we have |𝑑△𝑦 (𝑥, 𝑥′)− 𝑑△𝑦′ (𝑥, 𝑥
′)| ≤ 𝜀.

Suppose that UW1(𝑋𝑦) < 𝑤0, for all 𝑦 ∈ 𝑌 , with 𝑤0 = 𝑐(𝑚,𝛽)UW𝑑+1(𝑋) to be

specified later. We get a foliation of 𝑋𝑦 of width less than 𝑤0, which can be assumed

simple by Lemma 5.2.9. The idea of the proof is to pick a dense discrete set of points

in 𝑌 , and use those foliations to build a map 𝐹 : 𝑋 → 𝑍𝑚+1 of controlled width.

This is done inductively on skeleta of 𝑌 .

At the zeroth step, for each vertex 𝑣 of 𝑌 , pick a simple foliation 𝐹𝑣 : 𝑋𝑣 → 𝑍𝑣 of

width less than 𝑤0.

At the 𝑘th step, 1 ≤ 𝑘 ≤ 𝑚, we assume that we already defined 𝐹𝑘−1 : 𝑋𝑌 (𝑘−1) →

𝑍𝑌 (𝑘−1) , over the (𝑘−1)-skeleton of 𝑌 , of width less than 𝑤𝑘−1, and we need to extend

it over 𝑌 (𝑘). Take a 𝑘-simplex △ ⊂ 𝑌 , and consider the corresponding “trivialization”

Ψ△ : △ × Σ△ → 𝑋△. Pick a point 𝑦 in the relative interior of △, and a simple

foliation 𝑝𝑦 of Σ△ of 𝑑△𝑦 -width < 𝑤0. We would like to use Lemma 5.2.15 to build a

parametric foliation 𝑃△ : △× Σ△ → 𝑍△ interpolating between 𝑝𝑦 and the family of

foliations

𝜕△× Σ△
Ψ△→ 𝑋𝜕△

𝐹𝑘−1→ 𝑍𝑌 (𝑘−1)

(here 𝜕 denotes the relative boundary). In order to apply that lemma, we need to

fix a metric on Σ△, so we use 𝑑△𝑦 (recall that they are all 𝜀-close). We get a map

𝑃△ : △ × Σ△ → 𝑍△ of width less than (𝛽 + 2)𝑤𝑘−1 + (𝛽 + 1)𝑤0. The desired map

𝐹△ : 𝑋△ → 𝑍△ that we are looking for is already defined over 𝜕△, so we specify it

over △̊:

𝑋△̊
Ψ−1

△→ △̊× Σ
𝑃△→ 𝑍△.

The resulting map 𝐹△ is continuous. Repeating this over all 𝑘-simplices we get the

map 𝐹𝑘 : 𝑋𝑌 (𝑘) → 𝑍𝑌 (𝑘) of width less than

𝑤𝑘 = (𝛽 + 2)𝑤𝑘−1 + (𝛽 + 1)𝑤0 + 𝜀.
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As 𝜀→ 0, the solution of this recurrence tends to

𝑤𝑘 = (2(𝛽 + 2)𝑘 − 1)𝑤0.

Therefore, UW𝑚+1(𝑋) ≤ (2(𝛽 + 2)𝑚 − 1)𝑐(𝑚,𝛽)UW𝑚+1(𝑋). Hence, for each 𝑐 <

1
2(𝛽+2)𝑚−1

, there is a fiber 𝑋𝑦(𝑐) of width at least 𝑐UW𝑚+1(𝑋). Finally, send 𝑐 →
1

2(𝛽+2)𝑚−1
, pick a limit point 𝑦 of {𝑦(𝑐)}, and note that UW1(𝑋𝑦) ≥ UW𝑚+1(𝑋)

2(𝛽+2)𝑚−1
by

upper semi-continuity of width (Lemma 2.4.2).

This proof gives the value 𝑐 = 1
2(𝛽+2)𝑚−1

. A more careful analysis of the proof

leads to a much better value, namely 𝑐 = 1
2𝛽𝑚+𝑚2+𝑚+1

, which we explain now.

The inductive interpolation step in the proof of Theorem 5.2.16 is done in a manner

that allows us to split 𝑌 into 𝑚-simplices (basically according to the barycentric

subdivision of the triangulation used in induction), so that over each simplex △

we have the following picture. Over the vertices of △, we have simple foliations

𝑝𝑗 : Σ△ → 𝑍𝑗, 𝑗 = 0, 1, . . . ,𝑚. Over a generic point of △, we have a foliation

𝑝 : Σ△ → 𝑍 that looks as follows. First, draw the fibers of 𝑝𝑚 over 𝑍(𝑡𝑚)
𝑚 , a subgraph

of 𝑍𝑚 (connected or empty). In the remaining room, draw (the parts of) the fibers

of 𝑝𝑚−1 over 𝑍
(𝑡𝑚−1)
𝑚−1 , a subgraph of 𝑍𝑚−1. Continue in the same fashion. At the last

step, fill in the remaining room with (the parts of) the fibers of 𝑝0. The touching

fibers of different 𝑝𝑗 get merged to a single fiber of 𝑝. What is the maximal length of

a chain of merged fibers? We show that it can be bounded by 2𝛽𝑚+𝑚2 +𝑚+ 1.

Lemma 5.2.17. Let Σ be a metric polyhedron of topological complexity 𝛽 = tc(Σ).

Let 𝑝𝑗 : Σ → 𝑍𝑗, 𝑗 = 0, 1, . . . ,𝑚, be simple foliations of width at most 1. Suppose a

parametric foliation 𝑃 : △× Σ → 𝑍△ over an 𝑚-simplex (restricting to 𝑝𝑗 over the

𝑗th vertex of △) is obtained by applying Lemma 5.2.15 inductively; that is, one first

interpolates between 𝑝0 and 𝑝1, then between the result and 𝑝2, and so on. Then the

width of 𝑃 is at most 2𝛽𝑚+𝑚2 +𝑚+ 1.

Proof. As explained above, a generic foliation 𝑝 in the family 𝑃 is obtained by drawing

fibers of 𝑝𝑗 over 𝑍(𝑡𝑗)
𝑗 , 𝑗 = 0, 1, . . . ,𝑚. We assume that every 𝑍

(𝑡𝑗)
𝑗 is non-empty,
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otherwise the result follows by induction on 𝑚. Denote by Σ𝑗 the closed subset of Σ

covered (in the foliation 𝑝) by the fibers of 𝑝𝑗, . . . , 𝑝𝑚 (in particular, Σ0 = Σ). Notice

that for 1 ≤ 𝑗 ≤ 𝑚, Σ𝑗 consists of at most 𝑚 − 𝑗 + 1 connected components, since

each set 𝑝−1
𝑗 (𝑍

(𝑡𝑗)
𝑗 ) is connected by Lemma 5.2.6. From the long exact sequence

. . .→ 𝐻1(Σ) → 𝐻1(Σ,Σ𝑗) → �̃�0(Σ𝑗) → . . .

one finds that rk𝐻1(Σ,Σ𝑗) ≤ rk𝐻1(Σ) + rk �̃�0(Σ𝑗) ≤ 𝛽 +𝑚− 𝑗.

We need to bound the number of fibers in a merged chain. Fix two points 𝑥, 𝑦 ∈ Σ

in a single fiber 𝑝−1(𝑧), and connect them by a path 𝛼 : [0, 1] → Σ inside this fiber. For

each 𝑡, notice which of the regions Σ𝑗 ∖Σ𝑗+1 the point 𝛼(𝑡) belongs to, and write down

the corresponding index 𝐽(𝑡) (here Σ𝑚+1 is assumed empty). We have a piecewise

constant function 𝐽 : [0, 1] → {0, 1, . . . ,𝑚}. Denote the number of its discontinuities

by 𝐷; without loss of generality, 𝐷 is finite. Note that dist(𝑥, 𝑦) ≤ 𝐷 + 1. We will

transform 𝛼 (while keeping it inside the same fiber of 𝑝, and fixing its endpoints 𝑥, 𝑦)

to achieve 𝐷 ≤ (2𝛽+𝑚+1)𝑚. Consider the following property, which 𝛼 may or may

not enjoy.

Desired property. For 1 ≤ 𝑗 ≤ 𝑚, we say that a path 𝛼 is 𝑗-nice if the superlevel

set 𝐼≥𝑗 = {𝑡 ∈ [0, 1] | 𝐽(𝑡) ≥ 𝑗} consists of at most 𝛽 +𝑚 − 𝑗 + 1 components. We

say that 𝛼 is nice if it 𝑗-nice for all 1 ≤ 𝑗 ≤ 𝑚.

Suppose first 𝛼 is not nice, and take the smallest index 𝑗 such that 𝛼 is not 𝑗-nice.

Mark a point in each component of 𝐼≥𝑗, so that we have marked points 𝑡1, . . . , 𝑡𝑘,

𝑘 > 𝛽 +𝑚 − 𝑗 + 1. Each arc 𝛼([𝑡𝑖, 𝑡𝑖+1]) represents an element of 𝐻1(Σ,Σ𝑗). Recall

that rk𝐻1(Σ,Σ𝑗) ≤ 𝛽 +𝑚 − 𝑗. It follows that some two points 𝛼(𝑡𝑖), 𝛼(𝑡𝑖′) can be

connected inside 𝑝−1(𝑧) ∩ Σ𝑗. Replace 𝛼([𝑡𝑖, 𝑡𝑖′ ]) with this new curve. We decreased

the number of components of 𝐼≥𝑗. Proceeding in the same fashion, we can make 𝛼

𝑗-nice. Repeating this procedure for larger 𝑗 if needed, we make 𝛼 nice.

Now that 𝛼 is nice, we bound its number 𝐷 of discontinuities. Clearly, 𝐷 is
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bounded by the total number of the endpoints of all 𝐼≥𝑗. Since 𝛼 is nice,

𝐷 ≤
𝑚∑︁
𝑗=1

2(𝛽 +𝑚− 𝑗 + 1) = (2𝛽 +𝑚+ 1)𝑚.

We remark that the improved bound still does not seem sharp. In Gromov’s

example (example (A) of the introduction) the dependence on 𝛽 is of order 𝛽−1/3

while our bound only guarantees 𝛽−1.

Remark 5.2.18. The proof of Theorem 5.2.16 together with the estimate of Lemma 5.2.17

hold with tc(·) replaced by tc′(·). Indeed, in the proof of Lemma 5.2.17, to each con-

nected component of 𝑝−1(𝑧) ∩ Σ𝑗 that 𝛼 meets, one can assign a class in 𝐻1(Σ) in

a way so that their products vanish, and their linear dependencies form at most

(𝑚 − 𝑗 + 1)-dimensional space (since they all arise from 0-cochains that are charac-

teristic functions of the connected components of Σ𝑗).

5.3 Fibered manifolds with topologically trivial fibers

of small width

The following result generalizes example (D) from the introduction.

Theorem 5.3.1. For any non-negative integers 𝑚, 𝑘, and any 𝜀 > 0, there exists a

map 𝑋 → 𝑌 such that

∙ 𝑋 = 𝐹 × 𝑌 , and the map is the trivial fiber bundle 𝐹 × 𝑌 → 𝑌 ;

∙ 𝑌 and 𝐹 are closed topological balls of dimensions 𝑚 and 𝑚𝑘 +𝑚+ 𝑘, respec-

tively;

∙ 𝑋 is endowed with a Riemannian metric with UW𝑛−1(𝑋) ≥ 1, where 𝑛 =

dim𝑋 = 𝑚𝑘 + 2𝑚+ 𝑘;

∙ for each 𝑦 ∈ 𝑌 , the fiber 𝑋𝑦 ≃ 𝐹 has UW𝑘+𝑚(𝑋𝑦) < 𝜀.

78



Remark 5.3.2. Consider the trivial bundle 𝑋 ′ = 𝐹 ′ × 𝑌 ′ → 𝑌 ′, where 𝑌 ′ is the

euclidean 𝑚-ball of radius ∼ 𝜀, and 𝐹 ′ is the euclidean (𝑚𝑘 +𝑚 + 𝑘)-ball of radius

∼ 𝜀. The bundle 𝑋 in the theorem will be constructed in a way so that near its

boundary 𝑋 will look exactly like 𝑋 ′. This allows to modify the construction to

make 𝑋 a closed manifold (e.g., a sphere or a torus), or to take the connected sum

with other fibrations, etc.

Proof. To start with, take 𝑌 = R𝑚, 𝐹 = R𝑚𝑘+𝑚+𝑘, 𝑋 = 𝐹 × 𝑌 = R𝑚𝑘+2𝑚+𝑘, and

ignore for the moment that they are not closed balls. Let 𝑝 : 𝑋 → 𝑌 and 𝑝𝐹 : 𝑋 → 𝐹

be the projection maps. We start from the euclidean metric on 𝑋, modify it, and

then cut 𝑋 to make it compact. Then the (restricted) map 𝑝 will be the one we are

looking for.

On the first factor 𝐹 = R𝑚𝑘+𝑚+𝑘, consider the structure of the 𝜀-local join of

𝑘-dimensional complexes 𝑍0, . . . , 𝑍𝑚 in the sense of 5.1.4. The construction is based

on the idea of blowing up the metric in between the 𝑍𝑖. Let 𝜏 : 𝐹 → △𝑚 be the join

map. We think of △𝑚 as sitting in R𝑚 with the center at the origin, scaled so that

the inradius of △𝑚 equals 3. Consider the “perturbation of the projection via the join

map”

𝑝𝜏 : 𝑋 → 𝑌, 𝑝𝜏 = 𝑝− 𝜏 ∘ 𝑝𝐹 .

It will be useful to look at 𝑋 in the coordinates Φ = (𝑝𝐹 , 𝑝
𝜏 ). Namely, Φ : 𝑋 → 𝑋

is the map given by Φ(𝑥) = (𝑝𝐹 (𝑥), 𝑝
𝜏 (𝑥)) ∈ 𝐹 × 𝑌 = 𝑋; its inverse is given by

𝑥 ↦→ (𝑝𝐹 (𝑥), 𝑝(𝑥) + 𝜏 ∘ 𝑝𝐹 (𝑥)). It follows that the fibers of 𝑝𝜏 are PL homeomorphic

to 𝐹 .

Let 𝜑1 : [0,+∞) → R be a monotone cut-off function that equals 1 on [0, 1] and

0 on [1.1,∞). Denote by 𝜑𝑘
𝑟 : R𝑘 → R an 𝑟-sized bump function 𝜑𝑘

𝑟(𝑥) := 𝜑1(|𝑥|/𝑟);

here | · | is the euclidean norm in R𝑘. Let 𝑔euc𝑋 , 𝑔euc𝑌 be the standard metrics on the

corresponding euclidean spaces, viewed as symmetric 2-forms. To define a new metric

on 𝑋 we take 𝑔euc𝑋 , blow it up transversely to (𝑝𝜏 )−1(𝑥) for 𝑥 close to the origin of
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R𝑚, and squeeze everywhere else. Formally,

𝑔𝑋 = Φ*𝑔′𝑋 , where 𝑔
′
𝑋 = 𝜀𝑔euc𝑋 + (1− 𝜀)(𝜑𝑚

2 𝑔
euc
𝑌 )× (𝜑𝑚𝑘+𝑚+𝑘

2 𝑔euc𝐹 ).

In order for this to be well-defined, one might want to approximate Φ by a smooth

map. From now on, we assume that 𝑋 is endowed with metric 𝑔𝑋 . To make 𝑋

compact, one can replace it by its subset 𝐵𝑔euc𝐹
3 (0) × 𝐵

𝑔euc𝑌
3+𝑚(0). Radius 3 +𝑚 here is

chosen so that the 2.2-neighborhood of △𝑚 is covered by 𝑝(𝑋). We write 𝑋 ′ for the

space Φ(𝑋) with metric 𝑔′𝑋 ; clearly, 𝑋 and 𝑋 ′ are isometric.

Figure 5-2 depicts the case 𝑚 = 1, 𝑘 = 0: there, 𝑋 = R2 is sliced by lines 𝑝−1(𝑦)

(bold black curves in the figure), each of which is the local join of a green point set

𝑍0 and a blue point set 𝑍1. On the left, the geometry of 𝑔𝑋 is depicted by stretching

𝑋 along the vertical direction, so that it corresponds to the value of 𝑝𝜏 . On the right,

one sees 𝑋 in the coordinates Φ = (𝑝𝑓 , 𝑝
𝜏 ), with the pinching in the region where

|𝑝𝜏 (𝑥)| > 2.

Figure 5-2: On the left: the map 𝑝 : 𝑋 → 𝑌 , with 𝑋 stretched vertically according
to the values of 𝑝𝜏 . On the right: 𝑋 viewed in the coordinates (𝑝𝑓 , 𝑝𝜏 )
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Now let us verify the claimed properties of the metric 𝑔𝑋 . To see thatUW𝑛−1(𝑋) ≥

1, note that the unit ball 𝐵𝑔′𝑋
1 (0) is just the usual euclidean ball, and its width is > 1.

Finally, we show that the fibers of 𝑝 have small width. Consider a fiber 𝑋𝑦 =

𝑝−1(𝑦), 𝑦 ∈ 𝑌 , and the restriction of 𝑔𝑋 on it. It equals 𝜀𝑔euc𝐹 plus a term supported

in 𝜏−1(𝐵
𝑔euc𝑌
2.2 (𝑦)). The ball 𝐵𝑔euc𝑌

2.2 (𝑦) does not reach one of the faces 𝑣∨𝑖 of △𝑚. We

would like to use the retraction 𝜋𝑖 (as in the discussion after Definition 5.1.4) to map

𝑝−1(𝑦) to 𝑍𝑖; this is not possible for the points in the dual complex 𝑍∨
𝑖 , which is

entirely contained in the squeezed zone, so we will not lose much if we just send it to

a single point. Here is the map witnessing UW𝑘+𝑚(𝑋𝑦) . 𝜀:

𝑋𝑦 ≃ 𝐹 → (𝑍𝑖 ×△𝑚)/(𝑍𝑖 × 𝑣∨𝑖 )

𝑥 ↦→

⎧⎪⎨⎪⎩(𝜋𝑖(𝑥), 𝜏(𝑥)), if 𝑥 /∈ 𝑍∨
𝑖

⋆, otherwise.

where ⋆ denotes the pinched copy of 𝑍𝑖 × 𝑣∨𝑖 in the quotient. The fiber of this map

over ⋆ is 𝜀-small since the metric is squeezed around 𝑍∨
𝑖 . Consider the fiber over any

other point (𝑧, 𝑡) of the quotient; since it is contained in 𝜏−1(𝑡), its 𝑔𝑋-size does not

exceed its 𝑔𝐹 -size; since it is contained in 𝜋−1
𝑖 (𝑧), its 𝑔𝐹 -size is 𝜀-small.
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