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Abstract 
 Significant advancements in proteome-based analyses stem from innovations in the field 
of mass spectrometry (MS), an analytical method which allows for the sequencing, identification, 
and quantification of peptides and proteins in complex biological mixtures. MS enables a 
molecular and systems-wide understanding of the cell state, capturing post-translational 
modifications, protein turnover rates, protein-protein interactions, and other measurements that 
genetics cannot assess. Still, MS-based methods often require a compromise between 
reproducibility, quantitative accuracy, sensitivity, and depth of coverage, limiting their utility in 
research and translational settings alike. Here, I present a collection of MS-based platforms for 
targeted tyrosine phosphorylation signaling measurements and quantitative immunopeptidomics 
profiling, enabling novel biological findings in the field of cancer research. I describe how 
targeted tyrosine signaling assays can be leveraged to identify activated signaling pathways and 
assess immune infiltration in colorectal cancer. I also demonstrate how small molecules alter 
the peptide major histocompatibility complex repertoire in melanoma, and report copies-per-cell 
estimates of select treatment-modulated antigens using targeted MS, informing the 
development of targeted immunotherapies. Together, these findings highlight how innovations in 
MS-based methods can be used to advance a basic biology understanding of cancer and serve 
to demonstrate the clinical utility of using such assays to inform cancer therapy.  
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“Innovation, automation, and miniaturization. 
 Most advances in biology can usually be traced back to the 
development of a new technique.” 

Peter James 
Protein identification in the post-genome era: the rapid rise of proteomics, 1997	
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CHAPTER 1: Introduction 

 

 

1-1 Therapeutic landscape for cancer patients 

Cancer is driven by mutations, deletions, and amplifications in oncogenes or tumor 

suppressor genes, which can lead to uncontrolled cellular replication, migration, invasion, 

angiogenesis, and immune evasion, among others.1,2 Despite advances in diagnostics and 

therapies, cancer remains the second leading cause of death in the united states, with over 

600,000 deaths reported in 2019.3 Beyond surgical resection, cancer therapies historically have 

been aimed at exploiting these cancer “hallmarks,” such as radiation therapy, which cases DNA 

damage and limits tumor cell replication, or cytostatic chemotherapies which aim to disrupt the 

cell cycle by targeting the cytoskeleton (alkylating agents) and essential metabolic enzymes 

(antimetabolites).4–6 Chemotherapy has demonstrated success in many types of cancer and 

remains the frontline therapeutic option for cancers including ovarian & cervical cancer, however 

chemotherapies have a documented low tumor specificity profile and often result in toxicity with 

serious side effects.7,8 Furthermore, patients can develop resistant to chemotherapy through 

innate/adaptive mechanisms such as cells undergoing epithelial to mesenchymal transition, 

enrichment of cancer stem cells in the tumor, and tumor hypoxia.9–11 A study from 2004 

surveying published literature estimated chemotherapy’s contribution to clinical trials with an 

observed 5-year survival benefit across 22 malignancies at just 2%, highlighting the relatively 

minor contribution of chemotherapy to patient survival.12  
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1-1-1 Targeted Therapy 

Over the past two decades, a shift in the cancer treatment paradigm occurred with the 

emergence of targeted therapies. Targeted therapies come in two flavors:  small molecule 

inhibitors (SMI) and monoclonal antibodies (mAbs), aimed at interfering with oncogenic signal 

transduction in tumor cells specifically, mitigating toxicity. SMI often bind to the ATP binding site 

on tyrosine kinases, which inactivates the kinase domain and halts aberrant downstream signal 

transduction.13 There are a variety of SMIs approved for use across a range of cancer types, 

including gefitinib, a receptor tyrosine kinase inhibitor against the epidermal growth factor 

receptor (EGFR) for use in non-small cell lung carcinoma that demonstrated ~11 month PFS, 

and vemurafenib, a BRAF inhibitor approved in BRAF-mutant melanomas that extended PFS to 

~7 months.14–16  

Targeted mAb therapies have similar efficacies—the anti-EGFR mAb cetuximab 

extended overall survival in colorectal cancer patients by several months, and the anti-

epidermal growth factor receptor 2 (ErbB2) mAb trastuzumab in combination with chemotherapy 

extended PFS to 7.4 months.17,18 While multiple targeted therapies can be combined to further 

improve patient response, as is the case with BRAF/MEK combination therapy in BRAF-mutant 

melanomas, targeted therapies are generally non curative.19 While targeted therapies have led 

to a significant extension of progression-free survival, responses are often transient. Most 

patients progress within a year of therapy due to innate or acquired resistance mechanisms. ,  

At the center of therapeutic success is identifying the right drug & dose for each patient, 

i.e., “precision medicine,” which has been greatly aided by advances in genetics which allow for 

genetic sequencing of large target panels with ease. These data can detect mutations such as 

the BRAF or EGFR mutations previously described, which identify potential therapeutic targets. 

Still, the limited success of targeted therapies highlights a more complicated, less linear 
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relationship between identifying an oncogenic driver mutation and treated with an inhibitor of 

that that particular protein.20 Dysfunctional signaling in cancer can arise not only from mutations, 

but also altered epigenetics and rewired signaling networks. Resistance to targeted therapies 

can similarly stem from the activation of alternate or parallel signaling pathways (by-pass 

signaling) or alterations/mutations of the therapeutic target or driver mutation.21  

Utilizing signaling-level information such as the modification state of proteins (ex. 

phosphorylation), can identify activated signaling networks driving growth or resistance, which 

may be useful in both experimental and clinical applications to characterize/identify disease 

subtypes and biomarkers. Unfortunately, methods to make signaling-level measurements lag 

behind the ease and scale of genetics-based measurements. To improve the ease and 

reproducibility of making phosphorylation-based measurements, this work describes the 

development of SureQuant pTyr, a targeted mass spectrometry-based method for high density, 

quantitative phosphoproteomic measurements. This approach identifies activated signaling 

networks in human tumors, highlighting potential therapeutic targets. 

 

1-1-2 Checkpoint blockade inhibitors 

In recent years, the emergence of immunotherapy has revolutionized the standard of 

care for cancer patients, specifically though identifying cancer “checkpoints,” cell surface 

receptors that control the activation or inhibition of immune response.22 The discovery and 

generation of monoclonal antibody inhibitors against the checkpoints cytotoxic T lymphocyte 

antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) have been so pivotal in the 

field of immuno-oncology that immunologists James Allison and Tasuku Honjo received the 

novel prize in Psychology or Medicine in 2018. Antibodies that block these immune checkpoints 

“release the brakes” on the immune system, initiating anti-tumor immune response.  
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To date, checkpoint blockade immunotherapy (CBI) has had the greatest success in 

melanoma. Unfortunately, immunotherapies are often limited by immune-related adverse events 

(IRAEs), which are common as CBIs are general immune activators (i.e. not tumor-specific). 

While the combination CBI therapy showed increased efficacy in melanoma, the number of 

immune-related adverse events among patients nearly doubled. Furthermore, despite the 

success observed in metastatic melanoma, many cancer types have low objective response 

rates (~15-30%), and some have nearly nonexistent response rates.23 Broadly, tumors that 

response well to immunotherapy have a high mutational burden. Colorectal tumors classified as 

DNA mismatch repair-deficient (dMMR) or microsatellite instable-high (MSI-high) have higher 

objective response rates to PD-1 therapy (34%), whereas microsatellite-stable tumors (MSI-

low)/mismatch repair proficient (pMMR) are unresponsive.24,25  

 

1-1-3 Therapeutic modalities alter tumor immunogenicity 

Loss or downregulation of antigen presentation is a common mechanism used by cancer 

cells to escape immune recognition. This can have two consequences: first, it limits the direct 

priming of T cells by tumor antigen presenting cells, and second, it prevents recognition of tumor 

cells by antigen-specific immune cells.26 As a result, there is a growing interest in identifying 

ways to increase the immunogenicity of “immunologically cold” tumors, or those with low antigen 

presentation and few infiltrating immune cells. One promising avenue is to combine CBI with 

other approved therapeutic modalities such as chemotherapy, radiotherapy, and targeted 

therapies to increase antigen expression and enhance tumor immunogenicity. This may 

sensitize patients to checkpoint inhibitors or other T-cell based immunotherapy by restoring or 

even “forcing” tumor cells to upregulate antigen signals.  
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Chemotherapy has several immuno-modulating effects, including inducing pro-

inflammatory cytokine secretion in macrophages, which recruits and activates effector cells such 

as dendritic, natural killer and T cells, and decreasing the presence of suppressor cells such as 

T-regs.27 Chemotherapy also increases major histocompatibility complex (MHC) class I 

presentation and tumor antigen presentation, increasing the antigenicity of the tumor.28 

Similarly, radiotherapy induces DNA damage, which increases immunostimulatory cytokine 

release, promotes antigen presentation by MHCs, and recruits antigen-presenting and effector 

immune cells.29 Radiotherapy has also been shown to drive neoantigen generation, which may 

further improve CBI efficacy.30  

Cells treated with various small molecule inhibitors have also displayed increased 

immunogenicity. MEK inhibitiors have been shown to increase surface levels of HLA, increase 

PD-L1 expression, reduce immunosuppressive cytokine secretion, an improve T cell killing by 

antibody dependent cellular cytotoxicity.31–33 Other kinase inhibitors, such as EGFR, ErbB2, and 

PI3K inhibitors have also been shown to have similar immunomodulating effects.34–36 In general, 

kinase inhibition has been shown to increase mRNA expression of HLA and other components 

in the antigen presentation pathway, and a knockdown experiment of STAT1 decreased surface 

HLA upregulation following MEKi, suggesting a role for STAT1 in regulating MHC 

upregulation.31,37 Further studies have identified that type II interferons (IFN-g) bind to JAK1, 

which phosphorylates STAT1 and increases transcription of interferon regulated genes, 

including those involved in antigen presentation.38,39 

Cyclin-dependent kinases 4 and 6 (CDK4/6) control cell cycle progression and is often 

dysregulated and overactive, therefore CDK4/6 inhibitors have emerged as promising 

therapeutic candidates across multiple cancer types40,41. In breast cancer, CDK4/6 inhibition has 

been shown to increase antigen presentation and suppress T reg proliferation, enhancing tumor 

immunogenicity.42 CDK4/6 inhibition increased type III interferons instead of type II interferons, 
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but STAT1 signaling was also implicated in driving MHC upregulation. Beyond the examples 

detailed here, HDAC inhibitors, demethylating agents, cytokines, and other agonist therapies 

(toll-like receptors, CD40) have demonstrated enhanced MHC class I expression and other 

immunostimulatory effects upon treatment.26 

These studies establish the therapeutic potential of utilizing traditional anti-cancer agents 

to enhance immunogenicity, and as a result an array of clinical trials evaluating therapies in 

combination with CBI are ongoing, some of which have shown promise.43–45 Still, the 

combination of agents as well as the order and timing of treatment administration remain poorly 

understood, but is likely to be a critical element in clinical trial success. Therefore, to better 

understand how to optimally design synergistic combination regimes that enhance the efficacy 

of ICB, a deeper understanding of how different perturbations alter the cell signaling and 

immune landscape is required. Central to this is measuring how the antigen repertoire 

presented by class I MHCs shifts in response to therapy. Current efforts focus primarily on 

global changes in expression levels, but a precise, molecular understanding of relative and 

absolute quantitative changes in pMHC expression, on a per-antigen basis, is required to best 

understand how to rationally design combination treatments and identify new antigens as 

therapeutic targets. For improved quantitative accuracy over existing pMHC mass-spectrometry 

based methods, this thesis describes a novel platform for quantitative pMHC profiling using 

heavy isotope labeled MHCs (hipMHCs), which is applied to profile repertoire changes to 

CDK4/6 inhibitors and MEK inhibitors in melanoma. Furthermore, hipMHCs are utilized for 

absolute quantification of antigens of interest, which highlight treatment-modulated antigens that 

can be leveraged for targeted immunotherapy.  

 

1-2 Antigen Presentation 
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1-2-1 MHC Class I Peptides 

Major histocompatibility complex (MHC) class I molecules are expressed by all nucleated 

cells types, whose role is to present degraded protein fragments (i.e. peptides) on the cell surface 

for recognition by the immune system (Figure 1-1).46 While the biology behind antigen processing 

is complex and remains an active area of study, most pMHCs are thought to be derived from 

proteins that are degraded by cytosolic and nuclear proteasomes. The degraded peptides are 

next translocated from the cytoplasm into the endoplasmic reticulum aided by the protein TAP 

(transporter associated with antigen presentation). TAP also assists in folding MHC I molecules, 

which are assembled from two subunits, the heavy alpha subunit and light B2-microglobulin 

(B2M).47 MHC and TAP, together with additional chaperone proteins & cofactors, encompass the 

peptide loading complex (PLC), which facilitates peptide loading onto the MHC I molecules. The 

peptide-MHC (pMHC) class I complex is released from the PLC and is transported through the 

ER and golgi apparatus to reach the plasma membrane for surface expression. Cell surface 

complexes are relatively stable and are eventually ubiquinated by MARCH family proteins for 

internalization and degradation. Some fraction of MHC I molecules endocytosed are thought to 

be recycled and loaded with a new peptide for cell surface presentation, though the relative 

contribution of recycled molecules to the immunopeptidome is unknown.48 Peptides that bind to 

class I MHC molecules are typically 9 amino acids in length, but can range from 8-15-mers while 

retaining high binding affinity and immunogenicity properties.49   
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Figure 1-1.Schematic of antigen processing and presentation for MHC-I.  

  

The three genes encoding class I MHCs are highly polymorphic, (HLA-A, HLA-B, and 

HLA-C in humans) with over 15,000 unique alleles identified in the world population.50,51 Different 

alleles have different restricted binding epitopes, allowing for binding of peptides with different 

anchor residues or “binding motifs,” though it should be noted that some alleles share overlapping 

peptide specificities.52 This allelic diversity is important because it diversifies the repertoire of 

peptides presented for recognition by CD8+ T-cells, and consequently HLA allele homozygotes 

may be at an immunological disadvantage over HLA allele heterozygoes.53,54  

 

1-2-2 MHC Class II Peptides 

 Class II MHC molecules are integral to the adaptive immune system maintaining immune 

tolerance. Unlike class I molecules which are ubiquitously expressed on nearly all nucleated cells, 

MHC class II molecules are predominantly presented by professional antigen presenting cells 

(APCs), including dendritic cells, B cells, and macrophages. Class II expression in non-
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professional APCs can be induced by co-stimulatory molecules such as interferon-gamma, and 

class II molecules have been found on a variety of tumor types.55  

Class II molecules also are composed of an alpha and beta chain, and genes encoding 

class II alleles are also highly polymorphic (HLA-DR, HLA-DP, HLA-DQ in human).56 Class II 

molecules are similarly assembled in the endoplasmic reticulum, but unlike class I molecules 

which require a loaded peptide to exit the ER, class II molecules contain a class II associated Li 

peptide (CLIP) to stabilize the complex while exiting the ER.57 In the golgi, the CLIP peptide is 

exchanged with an antigenic peptide aided by chaperone proteins. Molecules are then 

transported to the plasma membrane for recognition by CD4+ T cells. Like class I molecules, 

complexes are stable (with cell-type specific half-lives, and similarly degraded by ubiquitin 

tagging.58 

 Unique to class II molecules is the source of peptide antigens, which are of exogenous 

origin, and originate from proteins degraded in the endocytic pathway. They can also present 

tumor-specific antigens, including differentiation antigens, viral antigens, and neoantigens, similar 

to class I.59 Class II molecules have an open-ended binding grove, which allows for the binding 

of peptides with greater length flexibility versus class I, though typically between 8-25 amino acids 

in length, with a majority being 15-mers.60 

While the bulk of this work focuses on class I peptides, class II peptides are increasingly 

recognized as playing a critical role in the ant-tumor immune response, and related research 

areas such as class II binding prediction, the antigen processing pathway, and cross presentation 

remain active areas of interest in the field.  

 

1-3 Mounting a response with immunotherapy 
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Immunotherapies against cancer can be defined by three categories: active, passive, 

and immunomodulating treatment modalities.61 Active therapies augment a patient’s immune 

system to initiate an immune response by recognizing tumor antigens. This is generally 

accomplished by targeting specific antigens or “epitopes,” and can include polyvalent vaccines 

derived from dendritic cells pulsed with tumor peptides, or DNA/RNA/short peptide vaccines that 

deliver antigenic peptides which are secreted, processed by dendritic cells, and cross presented 

CD8+ T cells, both with the goal of activating an anti-tumor immune response against the 

specific antigen(s).62  

Passive immunotherapies utilize exogenous components such as antibody-based 

therapies which can initiate cell killing through antibody-dependent cell-mediated cytotoxicity 

(ADCC), antibody-drug conjugates, or other antibody-mediated mechanisms.63 

Immunomodulated treatment modalities include checkpoint blockade therapy and other general 

immune activators (adjuvants). Another passive strategy the transfer of activated immune cells, 

such as adoptive T cell transfer, chimeric antigen receptor (CAR) T cell therapy, or activated 

lymphoblasts. 

There are three categories of tumor antigens that have the potential to initiate an anti-

tumor immune response: shared tumor antigens, viral antigens, and neoantigens. Each class 

contains several subtypes, which differ in their tumor specificity, abundance, tumor-type 

expression levels, and uniqueness across individuals. In general, a strong tissue antigen target 

has high tumor specificity, immunogenicity, and detectable expression levels optimal for the 

selected immunotherapy. Both active and passive immunotherapies leverage tumor antigens to 

initiate an anti-tumor immune response. 

 

1-3-1 Shared tumor antigens 
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Cancer germline genes 

The first tumor-specific antigen recognized by T cells was idented in 1991, melanoma 

antigen family A,1 (MAGEA1), was found to expressed in many different tumor types, with no 

expression found in normal tissue.64,65 The exception is in trophoblastic male germline cells 

(thus alternatively referred to as cancer-testis antigens), however these cells do not express 

class I HLA molecules and can therefore not present antigens to the immune system.66 

MAGEA1 belongs to a larger gene family of MAGE proteins, representing 25 different germline 

genes following an analogous pattern of tumor-specific expression. Other common germline 

genes include NY-ESO-1, and BAGE/GAGE gene families.67 Expression of germline genes in 

tumors is thought to be the result of epigenetic mechanisms, specifically DNA demethylation of 

the promoter.68 

 

Differentiation antigens 

Differentiation antigens are derived from proteins overexpressed in tumors, are 

expressed in tumor cells and in the normal tissue of origin. Common in melanoma are 

differentiation antigens related to melanin synthesis, including gp100 (PMEL), MART-1 

(MLANA), and tyrosinase (TYR).69,70 Outside of melanoma, prostate specific antigen (PSA), 

mammoglobin-A, and carcinoembryonic antigen (CEA) are overexpressed in prostate, breast, 

and colon cancers, respectively.62 T cell recognition and melanoma differentiation antigens are 

well documented, however it is thought that many T and B cells are removed due to central 

tolerance, limiting the immune system’s response to this class of antigens.71 

 

Overexpressed antigens 

Proteins that are overexpressed in tumors, relative to healthy tissues including 

oncogenic drives, represent another source of tumor antigens.72 These include growth factor 
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receptors like EGFR and ERBB2 (HER2), overexpressed in epithelial tumors including ovarian 

and breast carcinomas, p53, WT1, MUC173–75. While a myriad of cancer vaccine trials has been 

deployed over previous years, aimed at activating the immune system against shared cancer 

antigens, they have shown little clinical benefit despite promising animal studies. For example, a 

gp100 targeted vaccine was tested in clinical trial with IL-2, an adjuvant, and found only modest 

improvement over IL-2 treatment alone (2.2 months versus 1.6) with low response rates of just 

16%.76 A peptide vaccine against MAGE-A3 failed to demonstrate efficacy over placebo.77  

It is thought that the poor success of tumor antigen vaccines is due to low inherent 

immunogenicity, as these antigens are “self,” increasing the likelihood that high-avidity T cell 

receptors against the tumor antigen targets were deleted from the immune repertoire during 

development to prevent autoimmunity.61,62  Furthermore, cytotoxic T lymphocytes can also 

become anergic when the T cell receptors engage pMHCs on antigen presenting cells when 

costimulatory molecules are absent. These mechanisms of immune tolerance limit the efficacy 

of cancer vaccine efficacy. 

In general, active immunotherapies target shared antigens can result in off-tumor, on-

target toxicities, as many antigen targets are expressed to some degree on normal tissues, and 

T cells are remarkably sensitive, capable of recognizing a cell with a single copy of a peptide 

antigen.78 For example, an adoptive T cell therapy trial using engineered T cells with an anti-

MAGE-A3 TCR, where three of eleven patients experienced neurotoxicity resulting in death in 2 

patients, due to expression of other MAGE family members in the brain, which had overlapping 

epitopes.79 

There is also controversy over whether a single antigen is sufficient. Epitope spreading, 

referring to the development of an immune response against other distinct epitopes, is a 

phenomenon which may overcome limitations in single epitope therapies.80 To circumvent the 

single antigen strategies previously deployed, researches from BioNTech developed FixVac, an 
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RNA vaccine targeting 4 tumor associated antigens (NY-ESO-1, MAGE-A3, TYR, and TMTE). 

Interim reported results from the Phase I clinical trial described a patient cohort of unresectable 

melanomas, almost all of which were previously treated with ICB. One arm of the study 

evaluated FixVac alone, while the other treated patients with FixVac and anti-PD1 therapy. 

Results showed expansion of antigen-specific T cells, with over 75% of patients demonstrating 

an immune response via ELIspot assay against one of the four tumor antigens. While the initial 

results are encouraging, either as a single agent therapy or in combination with immunotherapy, 

the final results have yet to be reported. Nevertheless, this study demonstrated usefulness of 

shared tumor antigens as vaccine targets, which remain attractive targets due to their abundant 

expression across many patients in contrast to patient specific neoantigens, representing an “off 

the shelf” strategy for targeted immunotherapy.  

 

1-3-2 Viral antigens 

It is estimated ~10% of cancers are the result of viral infection, including Hepatitis B and 

C, Epstein-Barr virus, human papilloma virus (HPV), among others.81 Viral antigens integrate 

into the host’s genome, and are subsequently processed and presented as surface antigens. 

Targeting viral cancer antigens has been successful, likely due to the foreign nature of oncolytic 

viruses.82,83 For example, phase III trials of HPV vaccines designed to prevent cervical cancer 

demonstrated excellent safety profiles along with strong immunogenic response to the target 

antigens, leading to FDA approval in 2006.84 Today, a variety of oncolytic viruses are under 

development for cancer therapy across many cancer types, attempting to specifically target and 

replicate in tumor cells (tumor “tropism”) by targeting highly expressed cell surface receptors to 

guide viral antigens presentation on target cells.85,86 
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 One of the first oncolytic virus vaccine approved, T-VEC (Imlygic) is used for 

unresectable melanomas. T-VEC is a genetically modified herpes simplex virus, and Phase III 

trials results (OPTiM) showed encouraging results, with 16% of patients demonstrating durable 

response (>6 months) vs. 2% for the GM-CSF control arm.A87 While 16% is relatively low, a 

majority of patients had previously failed other systemic therapies. Currently, clinical trials are in 

progress evaluating T-VEC’s efficacy in combination with CBI, with Dabrafenib/Trametinib for 

BRAF mutant patients, and in other cancer types.88 

 

1-3-3 Neoantigens 

Mutation containing neoantigens 

Neoantigens arise from non-synonymous mutations occurring in tumor cells, giving rise 

to novel, tumor-specific antigen sequences that can be highly immunogenic, as tolerance 

mechanisms have not eliminated antigen-specific immune cells. Consequently, neoantigen-

based therapies often result in lower toxicity than therapies directed at tumor associated “self” 

antigens and have stronger immunogenicity, as they are not affected by central tolerance.89,90 In 

melanoma, the vast majority (~95%) of mutations in tumors are point mutations, however insert-

deletions and frame-shift mutations have also been identified and can give rise to neoantigen 

peptide sequences.91 One notable exception are oncogenic driver mutations which result in 

shared neoantigens among patients.92,93 

Neoantigens are highly patient-specific and require a personalized therapeutic approach. 

One notable exception are oncogenic driver mutations which result in shared neoantigens 

among patients. Examples include neoantigens identified in TP53 and KRAS, however these 

neoantigens are still specific to a given allele and are therefore still not broadly generalizable 

across patient populations.  
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Neoantigens are commonly identified by performing whole exome sequencing on patient 

samples to identify mutations relative to normal tissue, followed by utilizing prediction algorithms 

to identify potential mutation-containing antigens that are likely to bind to a patient’s allelic 

profile. This is accomplished using a variety of prediction algorithms developed for both HLA 

class I and II, which commonly use machine learning or artificial neural network algorithms 

trained on large experimental mass spectrometry datasets of HLA peptides.94–99  

Beyond predictions, whether mutants materialize into tumor neoantigens depends on 

several criteria, including whether a mutated sequences is actually translated into protein, 

whether that protein is processed and presented as a peptide antigen on the MHC molecules 

(requires binding affinity to a patient’s allelic profile), and whether the pMHC complex can 

initiate an antitumor immune response upon recognition by a T cell receptor.100 Various 

prediction algorithms are capable of identifying thousands of mutations, predicting hundreds of 

potential MHC binders, however a majority of predictions are never validated by mass 

spectrometry and even fewer neoantigens are recognized in T-cell immunogenicity assays.101 It 

remains challenging to validate which epitopes are immunogenic and should be selected for 

vaccine generation.  

Still, immunotherapy vaccine strategies using neoantigens initially demonstrated efficacy 

in two small melanoma clinical trials, both published in 2017.102,103 In a study by Ott et al., six 

patients received a custom neoantigen vaccine of twenty personalized tumor neoantigens, and 

four patients had no disease recurrence after 25 months, while two patients developed recurrent 

disease and were treated with PD-1 therapy, and subsequently regressed. Authors 

hypothesized that this was due to the expansion of neoantigen-specific T-cells generated 

through the neoantigen vaccination, though this cannot be explicitly confirmed. Sahin et al. 

dosed 13 patients with a custom neoantigen RNA vaccine, each containing 10 selected 

mutations. Of note, patients with NY-ESO-1 and/or TYR expression also received a vaccine with 
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the shared antigen. Two of five patients with metastatic disease had objective responses, while 

a third developed a complete response in combination with anti-PD-1 therapy.  

One of the concerns with both neoantigen and shared antigen targeted immunotherapy 

strategies is the possibility of immune editing wherein cancer cells develop mechanisms of 

immune escape by eliminated antigens or downregulating antigen expression entirely.104,105 

Importantly, tumors with higher mutational burdens are correlated with better response to 

immune checkpoint blockade, as it is thought they process either a higher density or higher 

diversity of neoantigens which is particularly important given most neoantigens are unable to 

spontaneously elicit an immune response.106–108 It has also been shown that neoantigen 

vaccines have higher response rates in high mutational burden tumors, such as melanoma, 

whereas tumors with low mutational burdens are not suitable for neoantigen or ICB therapies.89  

This underscores a critical question in immuno-oncology, which is how to modulate antigenicity 

in tumors to increase the number of patients who may benefit from immunotherapy, whether it 

be CBI or targeted methods.  

 

Spliced neoantigen peptides 

Another proposed source of neoantigens contributing to the non-natural, polymorphic 

immunopeptidome are spliced peptides.109 These proteome-catalyzed spliced peptides, wherein 

peptide sequences are “cut and pasted” to generate novel sequences that could not be 

identified by mutation-based search spaces, was first described in 2004. In a study by Vigneron 

et al., researchers identified a T-cell clone which recognized a 9-mer peptide sequence from 

gp100 (RTKQLYPEW) that was a spliced sequence containing gp100 residues 40-42 and 46-

52, excluding residues in the middle region of linear sequence.110 Additional studies identified 

other immunogenic spliced peptides111, however high throughput computational methods to 

probe the immunopeptidome for these sequences were not yet available. 
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In 2016, Liepe et al. reported a strategy to identify proteome-catalyzed peptide splicing, 

wherein peptide sequences are “cut and pasted” to generate novel sequences that could not be 

identified by mutation-based search spaces. Two flavors of spliced peptides are described: “cis-

spliced” occur when peptides from the same protein are spliced, and “trans-spliced,” where 

proteins from two different molecules are combined.112 Liepe et al. utilized a lymphoblastoid cell 

line (GR-LCL) and performed pMHC isolation and peptide fractionation using nearly 1e10 cells 

followed by LC-MS/MS analysis. Next, the mass specta were searched against the human 

proteome, along with all possible cis-spliced peptides between 9-12 amino acids, greatly 

expanding the experimental search space. Over 3000 unique spliced peptides were reported in 

this analysis, which represented 34% of HLA-ligands identified. In 2018, Faridi et al. claimed to 

have identified trans-spliced peptides using de-novo sequencing and reported over 15,000 

spliced peptides contributing to ~29% of the immunopeptidome.113  

These findings were controversial, and an additional investigation into the original 

dataset published by Liepe et al. alternatively reported that spliced peptides contributed to a 

much smaller fraction of the immunopeptidome than the initial report, ~3%, after imposing 

stricter quality control filters and de novo searching techniques.114 The expanded search space 

created by considering all three or six frame translations increases false discovery rates, and 

FDR corrections have not always been rigorously and consistently applied.115 Ultimately, large 

scale experimental confirmations, such as an analysis of isotopically labeled peptide standards 

to validate the “identified” spliced peptides, has not yet been performed beyond a handful of 

examples.116 Still, the identification of spliced epitopes, accompanying software tools, and 

whether they carry immunological relevance remains an active area of research.  

 

1-4 Mass Spectrometry 



 34 

1-4-1 Types of Mass Spectrometers 

Mass spectrometry (MS) has become a central analytical tool in the life sciences, 

analyzing samples across a wide range of industries & applications including pharmaceutical 

drug development, food sciences, petroleum composition, carbon dating, soil composition, as 

well as biomedical applications such as proteomics & metabolomics. Regardless of application, 

a mass spectrometer performs the core function of measuring the mass-to-charge (m/z) ratio of 

analytes of interest. From this measurement, one can determine the exact molecular weight of 

the analyte within a small mass error window, as well the potential to identify the abundance, 

structure or chemical properties of the component. While there are a variety of instrumentation 

configurations that accomplish this basic principle, all mass spectrometers contain three 

common components: an ionization source, a mass analyzer, and a detector.117  

 The ionization source serves to convert molecules to gas phase ions so they can be 

propelled into the mass analyzer. There are two primary methods of ionization: electrospray 

ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). In MALDI analyses, the 

sample is co-crystallized within a matrix and ionized with a pulsed laser beam.118 ESI is 

performed by applying a high voltage charge a solution containing analytes of interest to create 

charged aerosol droplets. These droplets contain the solvent and negatively or positively 

charged analytes (depending on source polarity), and as the ions travel towards the ion source, 

the solvent evaporates leaving naked charged analytes, which enter the mass spectrometer.119 

 This body of work relies on ESI, which has several key advantages. First, ESI allows 

non-covalent interactions to remain intact, permitting analyses of protein complexes, small 

molecule-protein complexes, DNA-drug complexes, and other multi-molecule complexes.120 

Another important feature is the ability to couple MS with liquid-separation techniques such as 

high-performance liquid chromatography (HPLC), which distributes analytes using a stationary 
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phase (packing material) and mobile phase (elutant) for temporal separation of molecules for 

deeper analyiss of complex mixtures.121  

 There are two broad categories of mass analyzers commonly used: beam analyzers, 

where ions move through the ion source in a beam and travel through the analyzing field to the 

detector, and trapping analyzers, where ions are trapped within the analyzing prior to 

detection.117 Popular beam analyzers include time of flight (TOF) mass spectrometers, 

quadrupoles, and common trap analyzers include the quadrupole ion trap, Fourier-transform 

ion-cyclotron resonance (FT-ICR), and orbitrap mass spectrometers. Importantly, these mass 

analyzers can be used in combination to perform tandem mass spectrometry, or MS/MS, which 

has two MS phases.  

In MS/MS, after first measuring the mass of all precursor ions within a mass range 

entering the instrument, ions of a specific m/z are isolated from the ion source, and the 

precursor ion is subsequently disassociated. The most common dissociation method is collision-

induced disassociation (CID), where the parent ion collides with a neutral gas such as 

nitrogen.122 Next, the resulting ions (also referred to as “product ions,” “fragment ions,” or 

“transitions”) are analyzed. Scans of ions that result from MS/MS are called MS2 scans, and in 

some instruments, it is possible to perform additional phases of MS, referred to as multi-stage or 

“MSn” experiments.123  

  Hybrid MS/MS instruments are generally configured as “tandem-in-space” or “tandem-

in-time” instruments. Tandem-in-space instruments use a distinct analyzer for each MS phase, 

whereas tandem-in-time MS/MS performs MS events in the same mass analyzer but separated 

by time. Popular tandem-in-space instruments (usually beam analyzers) include triple 

quadrupoles (QQQ) or quadrupole/time-of-flight (Q/TOF) systems. Tandem-in-time systems are 

commonly quadruple-ion traps and are generally more efficient due to the ions remaining in a 
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single analyzer throughout the analysis. All experiments in this body of work were performed 

using hybrid quadrupole-orbitrap mass spectrometers. 

In quadropole-orbitrapl systems, ions enter the source with ESI and pass through a 

transfer tube, ion funnel, and flatapole before reaching the quadrupole mass filter. Next, ions 

pass through a second isolating quadropole and are stored in the C-trap. Ions are then 

fragmented in a higher-energy collision disassociation (HCD) cell and subsequently analyzed by 

the orbitrap mass analyzer. In this configuration, the orbitrap functions as both analyzer and a 

detector.124 Ions in the orbitrap, a cylindrical outer electrode with a spindle-shaped inner 

electrode, oscillate with frequencies dependent on their respective m/z ratio and produce an 

electric current. The time-varying signal, also called a “transient,” can be analyzed by the 

Fourier transform, from which a mass spectrum is derived.  

The transient length affects the mass resolving power—the longer the ions oscillate in 

the orbitrap, the higher the mass accuracy. A principal benefit of an orbitrap system is that 

longer transient lengths do not affect measurement sensitivity (in contrast to TOF systems), 

however longer transient lengths reduce the number of scans allowed within a given cycle time, 

limiting the number of ions that can be analyzed within an analysis. Consequently, optimizing 

data acquisition parameters to balance data collection with mass accuracy is a critical element 

of developing efficient mass spectrometry methods. 

 

1-4-2 Data Acquisition Modes 

For “bottom-up” proteomics experiments, where peptides are analyzed following 

proteolytic digestion or other peptide-based experiments (ex. peptide-MHC profiling), there are 

three common data acquisition schemes: data dependent acquisition (DDA), data independent 

acquisition (DIA), and selected reaction monitoring (SRM).  
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Data Dependent Acquisition  

 In data dependent acquisition analyses, the MS acquires a full-scan mass spectrum 

(“MS1”) which contains the mass-to-charge ratios of all precursor ions collected within either a 

fixed time window or ion count, whichever is reached first. The instrument next performs MS2 

analyses on a list of precursor ions selected from the first full-scan spectra. The number of MS2 

spectra collected following an MS1 event is dependent on either the specified cycle-time (in a 3 

second cycle-time, MS2 events will be collected until 3 seconds is reached) or until a specified 

number of scans is reached (“topN”), depending on the method structure.  

Precursor ions are selected for fragmentation on the basis of abundance; therefore this 

acquisition scheme may be biased against low-abundance ions.125 Consequently, data-

dependent acquisition incompletely samples among the peptide ions present. Furthermore, this 

introduces a stochastic element into peptide sampling, driven by minor changes in 

chromatography or the order peptides are selected for fragmentation, ensuring variability in 

peptides identified across even analyses of the sample.126 DDA experiments result in “missing 

values” across replicate experiments, which can greatly impact quantitative studies that aim to 

compare the results of multiple analyses.127 In complex mixtures, co-elution of peptides is also 

prevalent, therefore the width of chromatographic peaks, chromatographic gradient, and mixture 

complexity can greatly influence the depth of sample coverage.128 Still, despite these limitations 

DDA remains a routine acquisition strategy for broad coverage, unbiased, discovery analyses. 

MS2 spectrum are simpler to sequence than DIA spectral (discussed next), resulting in high 

confidence peptide-spectrum matches across a wide range of applications.  

 

Data Independent Acquisition  



 38 

 In data independent acquisition (DIA) analyses, all peptides within a m/z window are 

simultaneously fragmented, resulting in a highly complex mass spectrum. This process is 

repeated across additional m/z windows, attempting to fragment all precursor ions in contrast to 

DDA analyses. Common DIA methods include all-ion fragmentation (AIF) and sequential 

window acquisition of all theoretical fragment-ion spectra (SWATH). The primary challenges 

with DIA data is deconvoluting the MS2 spectrum, determining integration boundaries, removing 

background interferences, and controlling for false discovery rates.  

Historically, DIA analysis required collecting sample-specific spectrum DDA to generate 

spectral libraries, which is laborious and spectra do not accurately capture the complexity and 

interferences of the real sample data collected with DIA.129 A variety of tools have been 

developed to search DIA data, the most recent even eliminating the requirement for spectra 

libraries by using pseudo-MS2 spectra from DIA data, yet analysis of the same sample with 

different tools yields vastly different results—a grave concern for maintaining accurate biological 

interpretation.130,131 Additionally, studies comparing DDA to DIA for quantitative analysis have 

demonstrated DDA’s superiority in quantitative accuracy.132 Nevertheless, new data processing 

tools are continually released133,134, which aim to improve peptide identification and 

quantification accuracy to expand the use of DIA across a wide range of suitable applications. 

 

Selected & Parallel Reaction Monitoring (SRM/PRM) 

In contrast to discovery-based acquisition studies, targeted assays aim to reproducibly 

identify and, in some cases, quantify, a panel of m/z targets within an MS analysis. Targeted 

assays can be especially helpful when trying to identify low-abundance ions, which may be 

challenging to identify by shotgun proteomics methods. 

In selected reaction monitoring (SRM) experiments, typically performed in QQQ 

instruments, a specified precursor ion is isolated in the first quadropole, fragmented in the 
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second, and a predefined set of fragment ions (ex. 3-5) are filtered into the third quadrupole and 

transmitted to the detector. The integrated peak areas of transitions are used for quantitation 

and compared relative to other samples or to an isotopically labeled internal standard. While 

SRM approaches are highly sensitive, they often suffer from interfering signal from near-isobaric 

ions that co-elute with the target peptide, interfering with quantitative accuracy which is a 

particular concern in low abundance and/or complex mixtures.135 Furthermore, SRM 

experiments are laborious to generate and optimize, as target masses, charge states, 

transitions, and retention times need be selected prior to analysis which requires iterative survey 

analyses.136  

Using hybrid quadropole-orbitrap instrumentation, an analogous technique called parallel 

reaction monitoring (PRM) was developed, which has demonstrated improved mass filtering for 

increased sensitivity and selectivity, and an improvement in dynamic range limitations.137,138 A 

targeted precursor ion is isolated in the quadrupole, fragmented in the HCD cell, and product 

ions are detected in the orbitrap. In contrast to SRM, a full, high resolution MS/MS spectra is 

acquired for each target that contains all protentional product ions, eliminating the need to pre-

select transitions for isolation. The peak areas of the most abundant transitions are commonly 

used for quantitation, which is supported by targeted MS software platforms like Skyline.139  

Still, despite using tight time scheduling and on-the-fly retention time adjustments, initial 

implementations of PRM were limited to reproducibly targeting ~50 precursor ions within a 

single analysis.140 In its original implementation, expanding the number of targets requires a 

compromise on instrument performance and consequently, accuracy.140 To circumvent these 

limitations, a new technique called internal standard triggered-parallel reaction monitoring (IS-

PRM) was developed, which utilizes stable isotope-labeled (SIL) peptide to guide PRM 

measurements in real time.141 Briefly, the instrument alternates between two modes: a low 

resolution mode (“watch mode”) where SIL peptides are monitored within their 1-minute 
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dynamic monitoring window (guided by landmark peptides), and a high resolution mode 

(“quantification mode”) where SIL and endogenous peptides are monitored with high resolution 

for enhanced data quality. When a SIL peptide is detected in watch mode, quantification mode 

scans are triggered for the SIL and endogenous peptide within the peptide chromatographic 

elutions.  

IS-PRM is similarly laborious to implement, requiring use of an application programming 

interface, retention time scheduling, and identification of optimal charge states for all targets. 

Nevertheless, the first implementation of IS-PRM by Gallien et al. demonstrated an increase in 

sensitivity over PRM and SRM, as well as the reproductible targeting of several hundred SIL-

endogenous peptide pairs. A modified implementation of IS-PRM was recently released by 

Thermo Fisher Scientific, termed SureQuant, which utilizes internal standards to guide the 

reproducible acquisition of hundreds to thousands of endogenous targets without the need for 

retention time scheduling. Custom implementations of SureQuant acquisition software were 

utilized within this body of work, explained in detail within Chapters 2 and 5.  

 

1-4-3 Quantitative Mass Spectrometry 

 While cancer is a historically viewed as a genetic disease, most cancer therapeutics 

target proteins. As a consequence, studying cancer at a systems level to identify overexpressed 

proteins, post-translational modifications, and more requires quantitative data, comparing 

abundances between samples or patients, healthy or diseased states, treated or untreated 

conditions, etc. Quantitative mass spectrometry can enable these measurements with a variety 

of strategies, each of which have strengths and limitations. Determining which technique to use 

requires consideration of throughput (time), quantitative accuracy, sensitivity, reproducibility, 

and cost. 
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Label free quantification 

The most straightforward quantitative method is label-free quantification (LFQ) in 

discovery analyses, which relies on integrating the precursor ion signal over the 

chromatographic elution to obtain an intensity value.142,143 While the “area under the curve” is 

not a representative of the absolute abundance of a given peptide, due to large variance in 

sequence-dependent signal intensities, these data can be used to compare abundances across 

samples. MS2 spectra are used for peptide sequencing and identification but are not required for 

quantitation. Unlike isobaric strategies, LFQ is inexpensive, avoids additional sample handling/ 

chemical modification steps, and allows for theoretically unrestricted number of comparisons 

across analyses (unlike multiplexed analyses, discussed below). Disadvantages to LFQ include 

the requirement to perform individual analyses for each sample in a study, limited throughput, 

missing values and poor quantitative reproducibility due to many factors that vary due to sample 

handling as well as from run-to-run, across instruments, and across laboratories. Furthermore, 

low abundance peptides may be contaminated by neighboring peptide signaling, skewing 

quantitation.144  

 

Targeted label free quantification 

An alternative implementation of LFQ is in targeted analyses (ex. SRM/PRM), where 

quantitation is performed by integrating the area of selected transitions for quantitation. In 

applications that use an isotopically labeled internal standard peptide for triggering via mass 

offset (IS-PRM, SureQuant), quantitation can be performed by determining the ratio of light (“L,” 

endogenous) signal to heavy (“H” peptide signal (L/H ratio).141 This may allow for normalization 

across analyses, depending on the experimental setup.  
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Stable isotope labeling of amino acids in cell culture (SILAC) 

 For improved relative quantitative accuracy between samples, the stable isotope labeling 

by amino acids in cell culture (SILAC) method can be used.145 SILAC uses cell culture medium 

lacking 1 or more standard amino acids and supplemented with heavy-isotope labeled amino 

acids (usually lysine and arginine for tryptic proteomic analyses), which are fully incorporated 

into the cell’s proteome after ~6 doublings. Heavy isotope-labeled peptides (with deuterium as a 

notable exception) have near identical chemistry and elution times as their light peptide 

equivalents but are easily distinguished by their separated m/z ratios. As a result, both the 

isotopically labeled and light peptides can be analyzed and quantitatively compared within a 

single analysis, eliminating an element of run-to-run variability that afflicts LFQ analyses.  

 Notable drawbacks to using SILAC for quantitation is the limited capacity for 

multiplexing—both because of limited combinations of isotopically labeled amino acids, and 

because increasing samples increases complexity and reduces the number of scans measured 

for an individual sample.146 Practically, this limits single experiment comparisons to 2 or 3 

samples. Furthermore, SILAC cannot be used for quantitative analyses of most in vivo derived 

samples, such as human tissue. Outside of traditional applications, SILAC labeling can be a 

useful tool for pulse-chase styled experiments, including identifying newly translated proteins or 

investing how different cell types interact, such as looking at cross presented peptides on 

dendritic cells derived from tumor cells.60,147  

 

Isobaric tags 

 For increased multiplexing capacity and throughput, chemical labeling methods such as 

isobaric tags for relative and absolute quantification (iTRAQ) and tandem mass tags (TMT) have 

become a staple for quantitative proteomic experiments.148,149 Amine-reactive tandem mass tags 

are the most widely used, and consist of three functional groups: the amino reactive group 
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which utilizes NHS chemistry to covalently bind to N-terminal amino acids and lysine residues, 

the isotopic reporter group, and a linker between the two which balances the two groups, 

ensuring each tag has an identical mass. Peptides can be labeled with individual tags and 

combined together prior to analysis. Due to the isobaric nature of the tags, precursor ions of 

multiplexed samples appear as a single peak, however subsequent fragmentation generates 

reporter ion peaks as well as product ion peaks of the peptide. Quantification is accomplished 

by comparing the relative abundance of reporter ions between samples. Despite the minimal 

mass difference between reporter ion isotopologues, high resolution mass spectrometers such 

as hybrid quadrupole orbitrap systems are able to resolve the mass difference  

 The key benefit of multiplexing with TMT is the ability to compare a greater number of 

samples simultaneously without requiring separate scans for each sample, as is required with 

SILAC labeling. However, multiplexing capability is limited to 16 reporter ions with TMT-pro, 

which while representing a dramatic improvement over SILAC or iTRAQ-4plex, is minimal 

compared to sequencing technologies. The number of missing values significantly inflates as 

more multiplexed analyses are combined, and batch effects reduce quantitative precision.150 

Use of a common or “bridge” sample included in all analyses can reduce batch effects by 

normalizing all reporter ions to the common bridge channel, however this utilizes a TMT channel 

and can be subject to error propagation. Other data-driven normalization methods such as 

CONSTANd allow for cross-analysis comparisons without a bridge channel151, but this does not 

address the primary issue of missing values.     

 Other disadvantages of TMT-labeling include additional sample handling steps which 

may result in sample losses. Furthermore, a comparison of TMT and SILAC-based 

quantification strategies of a standard whole cell digest demonstrated MS2-based analysis of 

TMT data was affected by co-isolation, leading to dynamic range suppression and compromised 

quantitative accuracy.152 Using the TMT complementary fragment ions (TMTc), resulting from 



 44 

intact peptide attached to the balancing group, can alternatively be used for quantitation.153 It 

has been suggested TMTc ions, in contrast to low m/z reporter ions, are precursor specific, thus 

co-eluting ions are less likely to interfere with the TMTc reporter ion signal. Quantitation with 

TMTc has been demonstrated to out-perform standard reporter ion quantitation in MS2, though 

with several limitations. These include the inability to distinguish more than 5 isobaric labels, 

lowering multiplexing capacity, and poor complement ion formation.143 Furthermore, software to 

support TMT-c quantitation is not readily available, therefore this approach has not been widely 

adopted. Another alternative is using MS3 for TMT analyses, which have been shown to mitigate 

or even eliminate ion suppression. Unfortunately MS3 can also lead to lower precision & speed, 

along with decreased sensitivity, likely attributed to sample losses taken in the additional mass 

analyzer event.132,154  

 

1-5 Immunopeptidomics  

1-5-1 Mass spectrometry-based methods for peptide MHC identification 

Recognition of antigens presented by MHC molecules by the immune systems represents 

a crucial component of anti-tumor immunity, therefore identifying the collection of pMHCs tumor 

cells present is a fundamental biological question. The most common way to sequence peptide 

MHC repertoires, also referred to as the “immunopeptidome,” relies on mass spectrometry. 

However, unlike standard proteomic workflows which rely on peptides generated from enzymatic 

digestions of proteins, immunopeptidomic workflows pose several unique challenges, including 

how to isolate the peptide antigens first from whole cell lysate, and subsequently from the 

HLA/B2M complex at a level that is detectable by the instrumentation.  

The first documented protocol detailing LC-MS/MS-based identification human MHC 

peptides was published in 1992, and utilized an antibody specific for HLA-A*02:01 to isolate 
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pMHCs by immunoprecipitation, which were further isolated by acid elution to release the peptide 

from complex and molecular weight size-exclusion filtration to further separate the peptides from 

the MHC light/heavy chains.155 This initial protocol utilized 2x109 cells and identified 200 peptides. 

Following this landmark publication, many more analyses followed which commonly utilized a 

pan-specific antibody for MHC immunoprecipitation, allowing for pMHC profiling of any sample, 

regardless of allelic profile.156–158 An alternative strategy for pMHC profiling is incubating cells with 

a mild acid solution, which strips molecules off the surfaces of cells.159 Due to the lack of specificity 

this technique provides, the approach has generally fallen out of favor. Some researchers favor 

using solid phase extraction instead of molecular weight cut off filtration for separating peptides 

from the MHC molecules, however both techniques are effective.160 

An alternative strategy to profiling endogenous pMHCs are engineered, mono-allelic cell 

lines which present a given allele with an affinity purification tag at high expression levels.161 This 

technique impressively identified over 24,000 unique peptide sequences from 16 class I alleles, 

requiring 5x107-1x108 cells as input. While this technique cannot be used to inform 

immunologically relevant epitopes in clinical samples, it has been useful in generating large 

datasets of naturally processed and presented ligands across a range of alleles, which is 

particularly useful in training binding affinity and peptide prediction algorithms for alleles that are 

less commonly expressed.  

One of the major hurdles in pMHC profiling is the large amount of cellular input material 

required for these analyses, (1x109-1x1010 cells) which far exceeds the cellular input required for 

traditional proteomic assays and is well beyond the scope of material obtained in a clinical biopsy 

sample. Over the past decade, advances in pMHC isolation & sample processing, search 

algorithms, and instrumentation speed and sensitivity have dramatically improved the field of 

immunopeptidomics. Aa researchers used to identify only several hundred peptides from an 

analysis, these advances have enabled deeper sequencing of the immunopeptidome in cell line 
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samples using similar amounts of cellular input. Purcell, Ramarathinam, and Ternette detail a 

protocol utilizing up to 1x109 cells to generate 10 peptide fractions for deep LC-MS/MS analysis.162 

Over 10,000 peptides were identified across five melanoma cell lines using 108 cells in Gloger et 

al. and over 22,000 peptides across 5 different cell types in work by Bassani-Sternberg et al. using 

5x108 cells.163 While there has been an effort to reduce sample input, input amounts remain in the 

range of 5x107 to 5x108 cells which is equivalent to ~50 mg of cell lysate for epithelial tumor 

cells.164,165 

 

1-5-2 Clinical pMHC profiling 

Of critical importance in immunopeptidomics is to expand analyses beyond immortal 

cancer cell lines and into patient tissue samples. Again, tissue quantity remains a barrier to 

widespread profiling. Nevertheless, several successful applications of immunopeptidomics have 

been applied in recent years. In melanoma, pMHC repertoires of 25 human melanoma punch 

tissue biopsies were analyzed by LC-MS/MS, resulting in nearly 100,000 identified peptides.158 

These data were collected using 0.1 g to 4 g of tissue, and consequently peptide numbers per 

patients varied accordingly. The analysis using 4 g of tissue identified nearly 25,000 unique 

peptides whereas other analyses using lesser input identified under 1000. While even this minimal 

amount of cellular input exceeds what can be collected using a needle biopsy, this study 

successfully demonstrates the feasibility of using patient biopsies for antigen identifications.  

To circumvent limited in vivo sample availability (as well as to avoid large scale cell 

culture required for deep pMHC profiling), Heather et al. proposed using immunodeficient mice 

as in vivo “bioreactors” to efficiently expand and grow large quantities of a cell sample for 

analysis.166 Researches hypothesized that gene and protein expression, including 

phosphorylation patterns, would be conserved. Using a lymphoblast cell line (JY), Heather et al. 
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showcase peptide length/binding motif similarities between traditional cell culture and in vivo 

derived samples, along with similarity in source proteins of identified peptides. Rijensky et al. 

expand this method to patient samples and demonstrate similarity in pMHCs identified between 

samples (some level of non-overlap is expected due to the stochastic nature of mass 

spectrometry-based discovery analyses).167 Unfortunately, neither study quantitatively 

compared expression levels between samples which would inform which applications this 

system may be effectively leveraged. Still, generating PDX samples weeks of incubation time 

and sometimes multiple mice to generate sufficient material and may not be a feasible solution 

to translating immunopeptidomics into the clinic.  

 

1-5-3 Relative quantification of pMHC repertoires 

There are several ways to obtain relative quantification data, each with strengths and 

limitations.  Because cancer cells undergo a variety of changes that result in the dysregulation 

and mutation of proteins, using relative quantification techniques in mass spectrometry to 

characterize the immunopeptidome’s response to perturbation is of interest, and may provide a 

window into pMHC repertoire changes that can be leveraged for immunotherapy.  

 

Label-free quantification 

Label-free quantification (LFQ) is the most common pMHC quantitative method, 

requiring samples for comparison to be analyzed individually. Quantitation is frequently 

performed by integrating the area under the chromatographic elution of the precursor ion in 

discovery mode analyses, though product ions may be used in the case of targeted analyses (-

Figure 1-2A). While LFQ offers the opportunity to compare quantitation across a theoretically 

unlimited number of samples and is straightforward to implement, it has several notable 
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limitations. First, data dependent acquisition methods suffer from poor overlap in peptide 

identifications across analyses. While the overlap across analyses may be slightly improved by 

calculating abundance values for precursor ions in the absence of an associated MS2 spectrum, 

this can result in false positive data points, particularly because MHC peptides all have similar 

mass to charge ratios and biological properties.168–170 This can be remedied with targeted 

acquisition methods like SureQuant, but requires a-priori knowledge of which peptides to target.  

Relative quantitation among class II MHC peptides adds an additional layer of complexity, as 

class II peptides form typically form nested sets of varying lengths and require peptides to be 

grouped into consensus epitopes to compare quantitation.171,172 As an additional consideration, 

failing to normalizing for variations in sample input and processing across samples can result in 

variable and inaccurate quantitation. 

 

 

Figure 1-2. Schematics of immunopeptidomics workflows. A label-free quantification, B SILAC, C 
multiplexed quantification with isobaric mass-tags. 
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Nevertheless, LFQ data has provided novel insights. In 2011, Caron et al. published a 

quantitative dataset which displayed altered pMHC abundances in response to rapamycin 

therapy and described systems-level evidence for the immunopeptidome serving as an external 

representation of the cells state.173 Several studies have probed how interferon gamma (IFN-γ) 

stimulation, alters the pMHC repertoire across human and mouse studies, and similarly found 

IFN-γ related pMHCs are upregulated in presentation following stimulation.165,169,174,175 Other 

reports explore how perturbations like small molecule inhibitors169 and oncolytic retroviruses176 

shape the immunopeptidome, and how different single-cell derived tumor organoids reveal inter-

clonal variability177. Together, these data reveal therapeutically targetable pMHCs, and serve to 

better inform our understanding of the pMHC repertoire across different samples and conditions.  

 

 

Multiplexed quantification 

Utilizing isobaric labeling strategies can limit the number of “missing values” between 

analyses, as each peptide spectrum match contains quantitative information across all samples 

multiplexed. Traditional isobaric labeling strategies like SILAC (Stable isotope-labeling with 

amino acids of cells in culture)145 may be used, which typically rely on labeling a cell population 

with heavy amino-acid medium and combining that sample with cells grown in light medium 

prior to analysis (Figure 1-2Error! Reference source not found.-B). While this allows for 

comparisons of precursor ion intensities between samples within a single analysis, multiplexing 

capacity is limited to just a few samples and SILAC cannot accommodate most in vivo samples. 

Furthermore, SILAC is not optimized for most immunopeptidomics experiments, as traditional 

heavy K/R medium is unable to fully label peptides across HLA alleles. Still, SILAC media has 

been used in pulse-chase experiments which profile the protein turnover kinetics of MHC 
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molecules and to study the cross presentation of tumor peptides on dendritic cells in 

vitro.60,178,179 In these studies, Leucine is often heavy labeled, as it is an anchor residue in class I 

HLA-A*02:01 peptides. Custom SILAC media can be used to achieve higher labeling coverage 

of anchor residues, though it is challenging to reach complete labeling given the diversity of 

peptide sequences that bind to any given allele.60,161 

Only a handful of studies have been published that utilize isobaric labeling such as 

iTRAQ and TMT in immunopeptidomics, likely because labeling MHC peptides has unique 

challenges not encountered in traditional proteomic workflows. Namely, the labeling must occur 

either before immunoprecipitation, which would require an exorbitant amount of isobaric reagent 

to label 10’s to 100’s of milligrams of cellular input, or alternatively, the peptides can be labeled 

after isolation. Labeling such small concentrations of peptide results in increased sample losses, 

likely attributed to the additional sample handling steps.180 

The first study utilizing isobaric labeling in immunopeptidomics was published in 2010 by 

Bogunovic et al. and utilized iTRAQ isobaric labeling reagent to measure repertoire alterations 

in MHC class II peptides of mouse splenocytes with or without gamma interferon inducible 

lysosomal thiol (GILT).181 In 2012, Shetty et al. utilized iTRAQ to profile the class I 

immunopeptidomes in sensitive and cisplatin-resistant ovarian cancer cells.182 The authors 

identify pMHCs derived from proteins implicated in cancer pathways having increased 

presentation levels in cisplatin-resistant cells compared to the sensitive cells, presenting the first 

multiplexed quantitative pMHC analysis to identify pMHC repertoire alterations.  Recently, a 

third study was reported where Murphy et al. utilized TMT-10plex for labeling pMHCs, 

expanding the multiplexing capacity from 4 samples with iTRAQ to 10 samples.180  

There are several drawbacks to isobaric labeling strategies, including limited 

multiplexing capacity (11 with TMT, 16 with TMT-Pro), greater sample losses, as well as 

increased dynamic range suppression.132 Additionally, quantitative pMHC methods lack a 
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normalization strategy to account for variations in sample input and processing. These losses 

are estimated to be as much as 99.5%, but vary across peptides and samples, further 

underscoring the need for normalization.183  

An alternative approach is to utilize isobaric mass tags, allowing for the multiplexed 

quantitation of up to 18 samples184 within a single analysis by labeling peptides after isolation 

and combining prior to analysis, minimizing missing values (Figure 1-2-C). Early studies by 

Bogunovic et al. and Shetty et al. utilized isobaric tags for relative and absolute quantification 

(iTRAQ) to multiplex up to four samples, demonstrating the utility of measuring repertoire 

alterations across different conditions.181,182 Murphy et al. first extended this approach to tandem 

mass tags (TMT), multiplexing 10 samples to measure the immunopeptidome’s response to 

doxorubicin treatment in vitro and in vivo. Other recent applications of this approach include 

using TMT to investigate the dynamics of HLA presentation following viral infection with SARS-

CoV-2, and how perturbations in expression and degradation alter neoantigen expression.185,186 

Multiplexed relative quantitation with isobaric mass tags like TMT has several unique 

advantages over LFQ, namely increased throughput and higher quantitative accuracy, even 

without hipMHC normalization. Multiplexing is also relatively inexpensive because of the small 

amount of labeling reagent required for immunopeptidomics samples, and may also yield better 

fragmentation due to the formation of multiply charge ions thereby enhancing peptide-spectrum 

matches for pMHC analyses.187 Still, labeling has several drawbacks. First, additional sample 

handling steps to label peptides may result in additional samples losses and decrease data 

quantity. To circumvent this limitation, repeated sampling of a given multiplexed mixture (in 

contrast to running the entire sample in a “single shot” analysis) may increase the total number 

of quantifiable peptides188, though this is likely dependent on the number of multiplexed samples 

and quantity of input material. Another consideration is that multiplexed analyses will always be 
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limited by multiplexing capacity of existing reagents, limiting the number of samples than can be 

easily compared without incorporating a bridge sample.   

An additional concern with TMT multiplexing is that quantitation suffers from ratio 

compression to a greater extent than label-free, which may obscure subtler quantitative 

changes in the immunopeptidome.188 Finally, existing multiplexed quantification strategies lack a 

normalization strategy to account for variations in sample input and processing therefore new 

strategies to mitigate sample losses and control for sample-to-sample variability are required to 

further advance quantitative immunopeptidomics. 

 

1-6 Tyrosine phosphorylation 

Post translational modifications (PTMs) provide an essential mechanism used by cells to 

diversity protein function by modulating protein-protein interactions. While over 200 types of 

PTMs have been identified that alter cell function, phosphorylation is the most common 

experimentally identified PTM.189,190  

Phosphorylation is a reversible PTM, where protein kinases catalyze the transfer of a 

phosphate group to serine, threonine, or tyrosine residue side chains, and protein phosphatases 

hydrolyze the phosphate group to dephosphorylate amino acids (Figure 1-3). Approximately 

90% of phosphorylation events occur on serine residues, 10% on threonine, and < 1% on 

tyrosine residues, as tyrosine phosphorylation (pTyr) is relatively rate and low level by 

comparison, however pTyr plays a critical role in regulating signaling networks that control 

metabolism, proliferation, apoptosis, migration, and more.191–193 As a consequence, 

dysregulation of pTyr signaling though mutations or kinase hyperactivation can lead to and drive 

cancer, therefore a multitude of tyrosine kinase inhibitors have been developed for clinical use, 

as previously described.194 Tyrosine phosphorylation measurements have proven valuable in 
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identifying targetable aberrantly activated signaling pathways and characterizing resistance 

mechanisms195,196, however identifying and quantifying low abundance pTyr peptides remains 

challenging—particularly when sample input material is limited.  

 

 

Figure 1-3. Schematic of protein phosphorylation and dephosphorylation. 

 

1-6-1 Quantification of pTyr signaling networks  

Antibody-based assays (ex. immunoblots, reverse phase protein arrays) require both a 

pre-defined set of targets as well as high quality, modification-specific antibodies. While these 

assays are relatively straightforward, they suffer from limited sensitivity and quantitative 

accuracy, and it remains challenging to distinguish between similar phospho-epitopes on district 

proteins.197,198   

Advances in high sensitivity, mass spectrometry (MS)-based pTyr methods provide an 

attractive alternative, allowing for hundreds to thousands of pTyr measurements within a single 

analysis without requiring phospho-specific antibodies. Generally, pTyr peptides are enriched 

from tryptic peptide digestions using anti-pTyr antibodies or motif-specific antibodies like the 
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SRC homology 2 (SH2) “superbinder” (immunoprecipitation), and this can be coupled with 

strong-cation exchange chromatography (SCX), immobilized metal affinity chromatography 

(Fe3+-NTA), or Titanium dioxide (TiO2) microspheres, for enhanced highest pTyr specificity.199–

203 While MS-based discovery analyses cataloging phosphorylation sites have been informative 

in identifying over 10,000 unique tyrosine phosphorylated peptides in discovery analyses 

utilizing grams of sample input or phosphatase inhibitor treated samples (pervanadate)202,204, 

biological meaning is derived from making quantitative comparisons of pTyr levels: tumor versus 

non-tumor tissue, pre and post cytokine stimulation, drug sensitive versus drug resistant.  

Label free quantitation allows for comparisons across replicates, but with poor run-to-run 

overlap and lower quantitative accuracy due to variable sample processing and chromatography 

across multiple analyses. Utilizing chemical labeling strategies, quantification can be performed 

by comparing abundance values between samples of iTRAQ or TMT, allowing for relative 

comparisons between samples within an analysis.205,206 This enabled identification of activated 

signaling networks relative to a control condition or across a cohort of biological samples. For 

example, Randall et al. explored the pTyr response to erlotinib (EGFR inhibitor) treated GBM 

tumors in mice.207 Hochgrafe et al. profiled a panel of basal and luminal breast cancer cell lines 

to identify biomarker signatures and potential therapeutic targets.208 Each of these approaches 

rely on discovery-based MS and quantitative comparisons between 2 or fewer analyses. While 

this approach is informative for smaller scale studies, it is challenging to perform large studies 

that integrate many analyses together due to significant missing values and heterogeneity in 

sites identified within each analysis. Both systematic approaches as well as clinical applications 

rely on the ability to reproducibly measure the same phosphopeptide across replicate analyses, 

conditions, samples, timepoint, research centers, and more.  
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1-6-2 Targeted pTyr MS methods 

Naturally, targeted methods such as PRM offer an attractive alternative to discovery MS, 

however the inherent challenges of phosphoproteomics (enrichment, low abundance) increases 

the difficulty of such approaches. For this reason, target phosphorylation methods have 

historically been limited to pSer/pThr sites and high abundance pTyr sites (ex. MAPK3/1).193,209–

211 Depth of coverage is also limited—Parker et al. targeted fifteen sites with isotopically labeled 

peptides and 98 with spectral libraries and DIA via LFQ; Lawrence et al. targeted 101 with PRM.  

Studies from the White lab represent the only source of pTyr-specific targeted analyses. 

Wolf-Yadlin et al. quantified 222 pTyr sites across seven timepoints following EGF 

stimulation.212 In this implementation, samples were multiplexed and labeled with iTRAQ, and 

targeted via MRM and retention time scheduling. Quantitation was determined from reporter 

ions intensities, allowing for targeted, relative quantitation. More recently, Curran et al. 

described Multiplex Absolute Regressed Quantification of Internal Standards (MARQUIS), a 

technique which allows for targeted absolute quantification of pTyr peptides via MRM and 

retention time scheduling.213 Isotopically labeled pTyr peptides of targets are added to the tryptic 

peptide digest, labeled with iTRAQ, and endogenous/heavy labeled pTyr peptides were 

subsequently purified with two-step enrichment.   

 While both approaches described by Wolf-Yadlin and Curran offer significant 

advancements in targeted phosphoproteomics, these methods are difficult to implement and 

limited by the number of targets that can be reproducibly quantified.  

 

1-7 Thesis overview 

 The body of this thesis aims to address existing limitations in MS-based methods by the 

development and/or modification of MS platforms, apply these methods to generate data 
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informing our understanding of cancer biology and highlight therapeutic targets, and 

demonstrate the potential utility of using these platforms clinically for personalized medicine.  

 Chapter 2 describes the development of SureQuant pTyr, a targeted tyrosine 

phosphorylation method which utilizes IS-PRM for rapid, reproducible quantitation of over 300 

pTyr peptides in human tumors. I utilize the data to demonstrate the usefulness of pTyr data in 

identifying activated signaling pathways and potential therapeutic targets and use immune cell 

pTyr sites to estimate immune infiltration levels. Using other publicly available “omics” datatypes 

generated on the same tumors, I compare and contrast our findings to those made with 

sequencing and protein expression profiling datasets, identifying novel insights stemming from 

the inclusion of pTyr data.  

 Chapter 3 focuses on the development of a MS-based platform for multiplexed relative 

and absolute quantification of pMHC repertoires. I evaluate the method’s quantitative accuracy 

and benchmark it against other pMHC quantification strategies. I also apply the technique to 

study how pMHC repertoires are altered in response to CDK4/6 inhibitor treatment and find that 

treatment drives quantitative changes in pMHC expression of proteins mapping back to the 

known biological response to CDK4/6 inhibition, connecting intracellular changes to external 

immune presentation.  

This work is expanded on in Chapter 4, where I measure changes in the pMHC 

repertoire in response to MEK inhibitor treatment in NRAS and BRAF mutant melanoma. These 

data demonstrate that melanoma differentiation antigens are selectively upregulated in 

expression following MEK inhibition, and an analysis of other omics datasets identifies E2F 

transcription factor switching and MITF expression as the mechanism responsible for this pMHC 

repertoire response. Tumor antigen upregulation is confirmed in cell line xenograft mouse 

models. Finally, an examination of published TCGA data on BRAF mutant melanoma patients 

identifies patients with lower MITF expression as having significantly lower HLA and tumor 
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antigen expression and experience worse clinical outcomes. Taken together, these data 

suggest that MEK inhibitor treatment may improve patient response by upregulating MHC and 

tumor antigen expression and combining MEK inhibitors with checkpoint blockade or targeted 

immunotherapy may improve therapeutic response.   

Chapter 5 builds on the method developments of Chapter 2 (targeted quantification) and 

Chapter 3 (pMHC profiling), along with biological findings of Chapter 4, describing an improved 

method for absolute quantification of pMHCs. This approach, termed “SureQuant MHC,” uses 

IS-PRM and a series of isotopologues to generate an internal standard curve for targeted, label-

free absolute quantification of eighteen MEK inhibitor modulated antigens of interest. Results 

determine copy-per-cell estimates of pMHC expression levels in cells treated with DMSO or 

MEK inhibitor, highlighting the wide range of endogenous expression in melanoma cell lines. 

Furthermore, we apply this method to estimate pMHC concentrations in human tumors, 

demonstrating the potential for targeted pMHC quantification in clinical settings.  

In Chapter 6, MEK inhibitor-modulated antigen targets from chapter 4 and absolute 

quantification data form chapter 5 are combined for the development of pMHC-specific 

antibodies in collaborating with Nick Rettko and Jim Wells to target highly expressed pMHCs 

modulated by MEK inhibitor treatment. We leverage the antibodies as antibody-drug conjugates 

and highlight the potential of antigens highly expressed specifically on tumor cells as ADC drug 

targets, with the goal of limiting toxicity in non-tumor tissue.  

Chapter 7 explores an emerging methodology in quantitative mass spectrometry, termed 

“boosting,” which aims to reduce sample input while increasing data quantity through the use of 

an isobaric protein carrier channel. This negative quantitative impact of utilizing a protein carrier 

in MS2-based MHC and pTyr analyses is described, along with potential areas of exploration 

which may improve quantitation in these applications. Finally, Chapter 8 describes a 

collaboration with Stefani Spranger’s lab, utilizing a custom SILAC labeling scheme to study 
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cross presentation of peptide antigens between apoptotic tumor cells and dendritic cells. In 

conclusion, Chapter 9 details ongoing studies, and highlights areas for future exploration and 

methodological innovation in both tyrosine phosphorylation and immunopeptidomics workflows, 

along with insights on clinical uses of the described technologies.  
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“If signaling in tumors is so important and determines both the tumor cell 
state and the drugs to which the tumor would likely respond, why then is 
signaling information not being regularly used in clinical decision-making? 
The obvious reason is that these types of measurements are difficult, 
tedious, and nonstandardized and need to be fashioned individually for 
each pathway that is being queried—not exactly conducive to the design 
of personalized cancer treatments.” 

Michael B. Yaffe 
Why geneticists stole cancer research even though  

cancer is primarily a signaling disease, 2019	
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CHAPTER 2: High-density, targeted monitoring of tyrosine phosphorylation 

reveals activated signaling networks in human tumors. 

 

 

2-1 Introduction 

Protein posttranslational modifications (PTMs) provide a fundamental mechanism to 

regulate protein function. The most common PTM, phosphorylation, is reversibly mediated by a 

network of protein kinases and phosphatases. Phosphorylation can cause conformation 

changes that activate or inactivate proteins, while also recruiting adaptor proteins and 

substrates that initiate downstream signaling cascades, thus altering the cell state.214–216 While 

over 250,000 unique phosphorylation sites have been reported, nearly all phosphorylation sites 

occur on serine and threonine residues, and less than ~1% occur on tyrosine residues.193,217,218 

Thus, deep profiling of tyrosine phosphorylation (pTyr)-mediated signaling requires pTyr 

enrichment and substantially higher sensitivity than standard phosphoproteomic or protein 

expression profiling approaches. Despite the rarity of pTyr, tyrosine kinases play a critical role in 

the signal transduction of pathways controlling proliferation, apoptosis, and survival, and their 

dysregulation through mutation, hyperactivation, or overexpression can lead to 

tumorigenesis.191,219 

Many cancer therapeutics target oncogenic tyrosine kinases.194 While kinase inhibitors 

have demonstrated clinical success, identifying patients that may benefit from specific therapies 

remains challenging, as a majority of clinical molecular characterization efforts rely on genomic-

based methods, which do not necessarily reflect protein or pathway activation status and are 

unable to capture the complex dynamics of innate and acquired therapeutic resistance.20,220 

Tyrosine phosphoprotein measurements have proven valuable in identifying aberrantly activated 
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signaling pathways and characterizing therapeutic resistance mechanisms,195,196,221,222 which 

should provide biomarkers to help inform personalized therapies. Unfortunately, measuring low 

abundance tyrosine phosphorylated peptides remains challenging, particularly from limited 

amounts of sample material. 

  Existing methods to profile pTyr levels are well documented, but each requires a 

compromise between sensitivity, reproducibility, broad coverage, and quantitative accuracy. 

Phosphorylation site-specific antibodies have been applied in a variety of formats, including 

multiplex immunoassays and reverse phase protein arrays, among others. While these assays 

are relatively straightforward and reproducible, it remains difficult to measure low abundance 

targets and distinguish between similar phospho-epitopes on distinct proteins due to poor 

antibody specificity.198,223  High sensitivity, mass spectrometry (MS)-based pTyr methods 

provide an attractive alternative, although each of the three typical data acquisition strategies 

has limitations. Data-dependent acquisition (DDA) or “shotgun” MS-methods offer deep 

sequencing of the tyrosine phosphoproteome without requiring previous knowledge of peptide 

targets, enabling novel discovery.195,200,224 However, DDA methods also result in inconsistent 

reproducibility of detected peptides, arising from stochastic sampling of precursor ions, and can 

be biased towards peptides of higher abundance.212,225 Targeted methods like parallel or 

multiple-reaction monitoring (PRM/MRM) are well suited to quantify a known panel of peptides 

with high accuracy and reproducibility, but such traditional targeted acquisition schemes often 

require a tradeoff between the number of peptides that can be reliably measured and the 

sensitivity and selectivity of those measurements, restricting depth of coverage.213 These 

methods also commonly require complex method acquisition structures and peptide retention-

time scheduling, which limits ease of use.212 Finally, pTyr data-independent acquisition (DIA) 

methods aim to improve run-to-run overlap while maintaining depth of coverage.193,210 However 

the complexity of DIA spectra make quantitative accuracy challenging, and DIA methods have 
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demonstrated lower sensitivity than PRM approaches, a critical consideration with low 

abundance, tyrosine phosphorylated peptides.226  

To address these limitations in existing pTyr profiling strategies, we describe a novel, 

high-density, targeted MS approach, termed “SureQuant pTyr,” that leverages isotopically 

labeled, tyrosine phosphorylated internal standard (IS) trigger peptides to efficiently guide MS 

acquisition in real-time. Adapted from traditional IS-PRM,141 the use of trigger peptides 

eliminates the need for retention time scheduling to expand the capacity of targetable nodes, 

allowing for the reliable and accurate quantification of several hundred tyrosine phosphorylated 

peptide targets commonly dysregulated in cancer. This platform accommodates low sample 

input for pTyr enrichment and utilizes commercially available pTyr enrichment reagents, nano-

HPLC columns, and data acquisition method templates for a streamlined, “plug and play” 

implementation.   

We apply this approach to profile the pTyr signatures of human colorectal cancer (CRC) 

tumor specimens to identify dysregulated signaling pathways and reveal potential drug targets 

not identified with genomic or other proteomic measurements, such as tumors susceptible to 

anti-epidermal growth factor receptor (EGFR) therapy. Furthermore, we demonstrate the tumor-

extrinsic nature of pTyr profiling on tumor specimens, quantifying T cell activation levels on low 

abundance immune cell-specific pTyr sites, which may be an effective indicator of immune cell 

infiltration and immunotherapy response. With the reproducibility and sensitivity of SureQuant 

pTyr, we highlight the potential of this approach to be used in clinical settings to rapidly profile 

pTyr signaling as a complementary strategy to enhance biomarker identification and tumor 

characterization for applications in precision medicine.  
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2-2  Results 

2-2-1 Targeted pTyr proteomic workflow utilizing internal standard-driven data 

acquisition  

In order to profile pTyr signaling events in cancer, we selected 340 tyrosine 

phosphorylated peptides to target and synthesized the corresponding synthetic isotope labeled 

(SIL) phosphopeptides to serve as ISs (Figure 2-1). Selected peptides were primarily chosen 

from discovery analyses performed on a cohort of CRC samples with matched adjacent normal 

tissue, with priority given to peptides identified across multiple analyses, sites with differential 

phosphorylation levels between tumor and non-tumor tissue, and sites known to be implicated in 

oncogenic signaling. Of note, the discovery analyses illustrate the central limitation of DDA: 

variation in the number and identify of peptides across multiple discovery analyses. Discovery 

analyses identified between 552 and 297 unique pTyr sites, yet only 127 sites mapping to 102 

unique proteins were identified across all 4 analyses (Supplementary Figure 2-1-A, B). The 

poor reproducibility of this approach restricts depth of analysis across many samples, 

underscoring the need for a targeted approach. Selected pTyr sites from the discovery analyses 

primarily cover two branches of the kinome: tyrosine kinases and CMGC kinases (cyclin-

dependent kinases (CDK), mitogen-activated protein (MAP) kinases, glycogen synthase 

kinases, and CDK-like kinases)191. This list was then supplemented with additional peptides 

from the literature mapping to EGFR and T cell signaling pathway, as EGFR inhibitors and 

immune checkpoint blockade (ICB) are two common therapies within CRC and other cancer 

types 206,227–229.  
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Figure 2-1. Kinome tree. Human kinome tree with peptides selected for SureQuant pTyr analysis colored 
according to kinase group. 

 

For SureQuant pTyr analysis, tumors or cell line samples were first digested into tryptic 

peptides, and stable isotope-labeled, tyrosine phosphorylated IS (i.e., “heavy”) peptides were 

added to the endogenous (i.e., “light”) peptide mixture. (Figure 2-2-A). Both light and heavy 

pTyr peptides were subsequently isolated using two-step enrichment, with an 

immunoprecipitation against pTyr residues, followed by immobilized metal affinity 

chromatography (IMAC). Enriched light and heavy pTyr peptides were next analyzed by LC-

MS/MS using a custom IS-triggered targeted quantitation method, leveraging the “SureQuant” 

acquisition mode native to the Orbitrap Exploris 480 MS (Thermo Scientific).  

During SureQuant acquisition, the MS alternates between a “watch” mode and a 

“quantitative” mode (Figure 2-2-B). In watch mode, the MS continuously monitors for the 
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presence of any heavy IS peptide. If an IS precursor ion is detected above a specified intensity 

threshold, a fast, low resolution MS2 scan is performed and pseudo-spectral matching against 

six pre-selected product ions is applied to verify the presence of the IS for enhanced selectivity. 

If the MS2 spectrum is a positive match, the MS initiates quantitative mode, triggering a high-

quality MS2 scan of the light, endogenous peptide. With this framework, IS-guided acquisition 

ensures high selectivity, high sensitivity measurements of the endogenous peptide for enhanced 

data quality and reproducibility.  

 

 

Figure 2-2. SureQuant pTyr workflow. A Sample processing workflow for pTyr enrichment and analysis. 
B Mass spectrometry acquisition method and analysis workflow for SureQuant pTyr IS-triggered 
quantitation. 

 

Product ions for both the heavy IS and light target peptides are monitored throughout the 

peptides’ chromatographic elution, and signal intensity is quantified by integrating the area 

under the curve for both light and heavy peptide product ions. Next, the ratio of light signal to 

heavy signal (L:H) is calculated, and L:H ratios are used for quantitative comparisons across 

samples. Adding IS peptides at defined concentrations prior to pTyr enrichment provides a 
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number of additional benefits, serving as an embedded standard for concentration or copy 

number estimation using one-point calibration and enabling normalization across a theoretically 

unlimited number of samples and data-collection sites. IS peptides also double as a limit-of-

detection control, as identification of the heavy IS but not the light peptide suggests the 

endogenous peptide was absent or below the limit-of-detection. Importantly, all parameters 

necessary to implement this workflow are readily determined in a single survey run analysis and 

can be used for all subsequent SureQuant analyses of the same peptide panel, streamlining 

assay implementation.  

 

2-2-2 SureQuant pTyr provides reproducible quantitation across replicate analyses 

We first applied this workflow to measure pTyr levels in A549 lung carcinoma cells 

stimulated with epidermal growth factor (EGF) as an in vitro control. We isolated light and heavy 

pTyr peptides from three technical replicate samples while varying the length of 

immunoprecipitation to assess the quantitative reproducibility of the SureQuant pTyr approach 

across replicate samples (Figure 2-3-A). Using a catenin delta-1 (CTTND1-pY904) peptide as 

an example, multiple MS2 scans were captured across the chromatographic peptide elution 

profiles for both the light and heavy peptide (Figure 2-3-B, C). Between replicates, the product 

ion intensities varied, with replicate 3 having over 3-fold higher signal intensity than replicates 1 

and 2, likely due to a longer incubation time during immunoprecipitation (Figure 2-3-D). Despite 

this dissimilarity in intensities, the L:H ratios across replicates remained consistent (Figure 2-3-

E), demonstrating the ability of this workflow to account for variation in sample handling and 

absolute intensities. In fact, across all quantified peptides the correlation coefficient (r2) between 

analyses was 0.96 or greater (Figure 2-3-F).  
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Figure 2-3. Quantitative reproducibility with SureQuant pTyr. A Experimental setup. IS-trigger peptides 
were added to three biological replicates of A549 cell lysate stimulated with epidermal growth factor 
(EGF). Enriched light (L) and heavy (H) pTyr peptides were analyzing using SureQuant pTyr acquisition. 
B MS/MS spectra from analysis #3 of the heavy (left) and light (right) CTTND1 peptide, 
SLDNN[pY]STPNER-pY904, at peak intensity, where [pY] denotes the residue position with pTyr 
modification. Monitored product ions are uniquely colored and labeled with b/y ion. C Ion intensity over 
time for the 6 heavy (upper) and light (lower) product ions from CTTND1 pY904 in analysis #3. Each 

MS/MS event is represented by a point. D Integrated peak area intensities for each product ion in C. Bar 
color corresponds to analysis #. E Ratios of light to heavy signal intensity (L/H) of CTTND1 pY904 for 
each analysis, where each point represents the L/H value of a single product ion. Solid line and error bars 
represent the mean and standard deviation, respectively.  F Correlation of (L/H) signals across 127 
peptides between analysis #1 and #2 (r2=0.96, black) and analysis #1 and #3 (r2=0.97, grey). 
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To benchmark SureQuant pTyr against existing acquisition methods, we analyzed three 

additional EGF stimulated A549 cell line replicates by label-free DDA and three labeled with 

TMT and found that SureQuant pTyr has comparable quantitative reproducibility to TMT-labeled 

DDA (r2=0.97) and superior to label-free analysis (r2=0.88 & 0.90) (Figure 2-4-A). We also 

analyzed three CRC tumor sample replicates with SureQuant pTyr, and found the method had 

equivalent quantitative accuracy in in vivo derived tissue (r2=0.98) (Figure 2-4-B).  

 

 

Figure 2-4. Benchmarking SureQuant pTyr against other MS methods. A Correlation of peptide 
abundances for three label-free DDA analyses (left) and one multiplexed, TMT-labeled DDA (right) 
analysis. R-squared values were 0.88 and 0.90 for the label-free analysis, and r2=0.97 for the TMT-
labeled analysis. B Correlation of peptide L/H ratios between three technical replicate tumor samples, 
r2=0.98.  

 

Finally, we assessed whether the L/H ratios, which can span several orders of 

magnitude, are able to accurately capture known quantitative dynamics, and whether the 

quantitation is comparable to traditional discovery and targeted MS acquisition methods. Three 

replicates of A549 cells were stimulated for 0, 0.5, or 2 minutes with EGF to create quantitative 

dynamics across the samples through activation of EGFR and downstream signaling nodes 

(Figure 2-5-A). These samples were then analyzed in one of three ways: labeled with TMT for 

multiplexed DDA, analyzed with SureQuant pTyr, and analyzed by PRM, where 20 pTyr targets 
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common to the SureQuant pTyr panel and the TMT-DDA analysis were selected for label-free, 

targeted analysis.  

These data follow expected phosphorylation dynamics of EGFR receptor activation, as 

EGFR phosphorylation is greatly increased following EGF-stimulation, which recruits and 

phosphorylates the adapter protein GAB1, creating a docking site for SHP2 (PTPN11), which is 

required for ERK activation (MAPK3/1) (Figure 2-5-B)230. Importantly, the quantitation is highly 

similar between analysis techniques, with only the 0.5 min timepoint of EGFR-pY1197 being 

significant between SQ and TMT-DDA analyses, (21x vs. 24x average fold change, p=0.03), as 

replicates had low standard deviation. Noticeably, there is larger standard deviation between 

replicates in the label-free PRM data, as this acquisition method lacks an internal standard to 

account for variations in sample handling and analysis. Other peptides selected for PRM that 

exhibit dynamic changes in response to EGF stimulation likewise do not have statistically 

significant differences in quantitation across acquisition methods (Figure 2-5-C).   

 

 

Figure 2-5. Method comparison of quantitative dynamics. A, Experimental setup for quantitative 
comparison between TMT-labeled DDA, PRM, and SureQuant pTyr methods. B,C Log2 fold change 
values, relative to the mean peptide abundance at the 0-minute timepoint, of pTyr peptides for three data 
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acquisition methods: PRM (black), TMT-labeled DDA (grey) and SureQuant pTyr (blue). Significant 
differences in quantitation between PRM and TMT-DDA vs. SQ pTyr are represented as *p<0.05 
(Dunnett’s multiple comparisons test). Each sample includes n=3 biological replicates, error bars 
represent the standard deviation. 

 

2-2-3 Human colorectal tumors show distinct pTyr signatures 

Thirty-one human CRC tumors that were previously characterized in a proteogenomic 

analysis by Vasaikar et al.222 were selected for SureQuant pTyr profiling. The previous study did 

include a global phosphorylation analysis, but due to the lack of pTyr-specific enrichment, only 

16/2183 sites (0.07%) measured across all 31 tumors were tyrosine phosphorylated, six of 

which were represented in the SureQuant pTyr panel. Consequently, we hypothesized a pTyr-

targeted analysis could provide an additional dataset for further tumor characterization and may 

reveal novel insights.  

 Using our panel of 340 tyrosine phosphorylated ISs, we collectively detected & 

quantified 336 heavy peptides, representing 99% of the assay panel, and 325 light peptides, 

representing 96% of endogenous peptides from the assay panel across the tumor cohort 

(Figure 2-6-A, B). The four unmeasured heavy peptides exhibited fluctuating signal from run to 

run and did not systematically reach the signal intensity threshold defined in the initial survey 

analysis, while the eleven unquantifiable light peptides are assumed to be below the limit-of-

detection, as the corresponding heavy peptide was detected. Across all tumors, an average of 

91% of heavy peptides and 78% of light peptides were identified, highlighting the reproducibility 

of the method. While we did not see complete coverage of our panel in every tumor, this result 

was expected as pTyr peptides are often present at low levels, and some of the peptides 

included in the panel were hypothesis driven. For example, we included a T cell signaling 

peptide from ZAP70 (pY292) which was not identified in the discovery analyses but was 
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quantifiable in 16/31 tumors. Due to the tumor-specificity of some of the signaling nodes, we 

analyzed the pTyr signaling in two ways. First, L:H ratios of peptides identified across all 31 

tumors were quantified and z-score normalized. Second, the L:H ratios for all sites identified in 

at least 50% of tumors were z-score normalized to expand the datasets for individual tumor 

signaling analyses. 

 

 

Figure 2-6. pTyr sites quantified in human tumors. A Peptides identified and quantified across 31 tumors. 
B Number of unique heavy (black) and light (grey) peptides identified in each tumor. 

 

Approximately 97% of identified peptides had a L:H ratio between 1:1 and 1:104, with 

just 0.7% of sites having a L:H ratio above 1 (Figure 2-7). These highly abundant sites (L:H > 1) 

include MAPK3/1 (ERK1/2), EGFR, and MAPK14 (p38a), each of which is implicated in 

oncogenesis 191,194. Sites with the lowest L:H ratios include several T cell signaling associated 

peptides (CD3ζ, CD3δ, ZAP70), consistent with our hypothesis that a minority of cells in these 

tumors are infiltrating immune cells.  
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Figure 2-7. Range of L/H ratios across tumors. Distribution of tumor L/H ratios with peptides rank ordered 
from highest to lowest maximum abundance. Annotated peptides labeled by source protein and residue 
position with pTyr modification have the maximum and minimum abundances. 

 

The biological variation in peptide pTyr levels between tumors is evident upon 

comparing the L:H ratios measured by this platform. For example, EGFR and ErbB3, two 

receptor tyrosine kinases (RTKs) in the epidermal growth factor receptor family, appear to have 

coordinated levels of receptor phosphorylation in some tumors (Tumor 2 (T2), T7, T8, T21, 

T25), while others have differential levels (Figure 2-8-A). ErbB3 is a non-autonomous receptor, 

requiring dimerization with another ErbB family member or RTK for phosphorylation. Thus, the 

higher ErbB3 and lower EGFR phosphorylation levels of T5 and T6 suggest ErbB3 may be 

dimerizing with another ErbB family member or activated RTK. Alternatively, T1, T26, and T30 

show the opposite trend, implying ErbB3 is playing a less dominant role in driving ErbB family 

signaling in these tumors. To assess whether observed pTyr abundance differences could be 

explained by variation in the overall amount of pTyr signal among tumors, potentially due to 

differences in protein loading or sample processing, we evaluated the distribution of L:H ratios 

across tumors (Figure 2-8-B). Only two tumors, T9 and T10 had a significantly higher and lower 

distribution, respectively, of L:H ratios from the mean signal across tumors, suggesting 
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differences in pTyr levels are indicative of biological variation as opposed to experimental 

variation.  

 

 

Figure 2-8. L/H ratio distributions across tumors. A Light to heavy signal intensity ratios (L/H) for ErbB3 
peptide (black), SLEATDSAFDNPD[pY]WHSR, and EGFR peptide (red), GSTAENAE[pY]LR, where [pY] 
denotes the residue position with pTyr modification. B Distributions of light to heavy signal ratios (L/H) for 
each tumor. Data is displayed as a box and whiskers plot, where the box describes the interquartile range 
and the whiskers define the 10-90 percentile of data. * Indicates significantly increased (red) or decrease 
(blue) from the mean distribution using Dunnett’s multiple comparison test for significance. **p<0.01, 
****=p<0.0001. 

 

To visualize the pTyr signaling profiles across tumors, phosphorylation sites quantified in 

all tumors were analyzed by hierarchical clustering (Figure 2-9). Two clear findings emerge 

from this analysis: each tumor possesses a unique pTyr signature, and tumor clustering is not 

readily explained by phenotypic information such as gender, histological subtype, or tumor 

stage (data file S5). Previous work by Vasaikar et al. assigned each tumor in our panel to one of 
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three unified multi-omics subtypes (UMS), characterizing tumors with microsatellite instability 

and hypermutation (“MSI”), chromosomal instability (“CIN”), and evidence of epithelial-to-

mesenchymal transition (“mesenchymal”), based off of previous proteomic, genomic, and 

transcriptomic-based classifications developed for CRC tumors 222,231,232. These classifications 

revealed some stratification with hierarchical clustering: CIN tumors are primarily located in 

clusters one and two, whereas a majority of mesenchymal and MSI tumors group together in 

clusters three and four, respectively. Still, hierarchical clustering of tumors with the same UMS 

illustrates the high degree of individuality in each tumor’s pTyr signature, even within co-

clustering subtypes (Supplementary Figure 2-2).   

 

 

Figure 2-9. Clustering of pTyr peptides in tumors. Peptide and tumor hierarchical clustering (distance 
metric = correlation), where pTyr abundance values are z-score normalized light to heavy signal ratios 
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To understand which pTyr sites drive the UMS clustering of tumors, we utilized principal 

component analysis (PCA) (Fig. 3E).  Principal component 1 (PC1), explaining 24% of the total 

variance, primarily separates T9 from the remaining tumors and is driven by T9’s high pTyr 

levels of EGFR signaling peptides (Fig. 3F, fig. S1D). Interestingly, PC2, explaining 11% of the 

total variance, separates CIN tumors from the MSI and mesenchymal tumors. The 20 highest 

scoring pTyr peptides derived from unique proteins on PC2 show enrichment for pathways 

related to innate immunity (Fig. 3F, fig. S1E). Vasaikar et al. found that MSI and mesenchymal 

tumors had higher levels of immune cell infiltration, in agreement with our pTyr findings.  

 

 

Figure 2-10. PCA analysis of pTyr peptides in tumors. A Tumors plotted by principal component 1 (PC1) 
and PC2 score, colored according to unified multi-omics subtype. B Significantly enriched reactome 

pathways from the top 20 peptides derived from unique proteins on PC1 (top, black) and PC2 (bottom, 
grey). Significance values are FDR adjusted.  

 

2-2-4 Tumor-specific pathway analysis reveals enriched signaling pathways  

We next performed a correlation analysis on the full peptide matrix and clustered 

peptides on this basis to identify groups of co-regulated peptides across tumors (Figure 2-11-

A). A protein-protein interaction network analysis on selected clusters revealed significantly 

enriched pathways and processes (Supplementary Figure 2-4-A). These included pathways 



 76 

related to immunity in cluster 1 (Figure 2-11-B), as well as cytoskeletal and actin binding 

proteins in cluster 2 (Figure 2-11-C). Cluster 3 maps to ErbB and Ras signaling pathways, 

(Figure 2-11-D), along with migration signaling pathways like adherins junctions, focal 

adhesions, and RAP1 signaling (Figure 2-11-E).  Using these findings, we curated a custom 

library of twelve gene sets and performed a tumor-specific pathway enrichment analysis 

(TPEA).  

Phosphorylation site source proteins from the expanded values matrix were rank 

ordered and used to identify tumors with positive or negative enrichment in the selected 

pathways and biological processes relative to the other tumors (Figure 2-11-F), showcasing the 

pathway level information obtained with SureQuant pTyr. For example, T16 and T10 have 

significant positive and negative enrichment in actin binding phosphopeptides, respectively, and 

correspondingly have the highest and lowest phosphorylation levels of peptides identified in 

cluster 2 (Supplementary Figure 2-4-B). While some findings were redundant with insights 

obtained with hierarchical clustering, TPEA also identified signaling level similarities between 

tumors that were not obvious with clustering. For instance, T13 and T29 both have significant 

positive enrichment of RAP1 signaling but clustered separately in Figure 2-9.   

Additionally, we applied kinase-substrate enrichment analysis (KSEA) to each tumor 

which, in contrast to TPEA, uses site-specific information to identify the enrichment of 

phosphorylated kinase substrates to infer kinase activity (Figure 2-11-G).233 The results were 

complementary in some cases, with T9 showing an enrichment in ErbB signaling pathways with 

TPEA and ErbB substrates with KSEA, but KSEA also revealed novel findings. T1 did not 

contain any significantly enriched pathways, but showed significant enrichment in several 

kinase-substrate datasets, including SRC, LCK, and FYN, which have been explored as 

therapeutic targets in metastatic CRC.234  



 77 

We subsequently combined the pTyr data with the global phosphorylation data 

generated by Vasaiker et al. and performed KSEA against a wider kinase-substrate library to 

evaluate whether this larger phospho-dataset might reveal additional kinase targets. Results 

identified CDK1/CDK1, previously reported by Vasaiker et al., along with ERK1/2, AKT1/MTOR, 

and PKCA, among others (Supplementary Figure 2-4-C). While some pathways contained a 

combination of pTyr/pSer/pThr sites (i.e., ERK1/2), SRC kinase enrichment was only identifiable 

using pTyr data (Supplementary Figure 2-4-D). SRC is a protein tyrosine kinase therefore all 

substrates have phosphorylated tyrosine residues, underscoring the importance of profiling the 

tyrosine phosphoproteome for deeper signaling network coverage. To better understand each 

tumor’s unique pTyr signature and identify therapeutically targetable nodes, we next examined 

the sites driving pathway enrichment, focusing first on ErbB signaling and EGFR 

phosphorylation status. 

 

 

Figure 2-11. Tumor-specific enrichment analysis. A Hierarchical clustering based on the correlation 
coefficients between phosphosites across all tumors (distance metric = correlation). B-E Protein-protein 
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interaction network of peptides within cluster 1 (B), cluster 2 (C) and cluster 3 (D-E). Node color(s) maps 
peptides to enriched pathway(s). F Significantly enriched pathways among tumors using tumor-specific 
pathway enrichment analysis. G Significantly enriched kinase-substrate interactions within tumors.  
Significance (p-value) and directionality indicated by color, q < 0.25 for all enrichment analyses. Tumors 
that did not have any significant enrichment are not shown. 

 

2-2-5 ErbB phosphorylation levels identify candidates for anti-EGFR therapy 

EGFR is expressed in a majority of CRC, and its overexpression in many cancer types 

has been tied to more aggressive phenotypes and poor clinical prognosis, highlighting EGFR 

inhibitors as a promising therapeutic target.235 Indeed, several anti-EGFR agents have been 

approved for CRC clinical use, though treatment is currently only recommended for patients with 

wild type KRAS/NRAS/BRAF, as mutations in these genes have been shown to confer EGFR 

inhibitor resistance.236–238 Disappointingly, anti-EGFR agents are only effective in a fraction of 

qualifying patients, and those that do respond often still develop therapeutic resistance.239 As 

EGFR expression levels have not been shown to correlate with clinical response to EGFR 

inhibitors240 and RAS mutational status remains the principle biomarker for EGFR inhibitor 

efficacy, we hypothesized that measuring pTyr levels on EGFR and ErbB family signaling 

pathways could provide a more direct readout of EGFR activation status, thereby improving 

identification of those who may benefit from EGFR inhibition.  

We identified three tumors with significant positive enrichment of the ErbB signaling 

pathway (T19, T25, and T9), and two with significant negative enrichment (T16 and T22). T19 

had low pTyr levels of the ErbB family receptors, with pathway enrichment instead driven by 

common downstream signaling nodes including ERK1/2 phosphorylation (Supplementary 

Figure 2-5-A). As a result, T19 was excluded from subsequent analyses. Neither T25 nor T9 

contained a RAS/RAF mutation, making both potentially eligible for anti-EGFR therapy under 

existing biomarker criteria. T25 displayed high levels of EGFR phosphorylation relative to the 



 79 

other tumors, suggesting T25 may be a good candidate for an EGFR-inhibiting antibody like 

cetuximab (Figure 2-12). Alternatively, T9 had high levels of three ErbB RTKs: EGFR, ErbB2, 

and ErbB3, indicating EGFR inhibition alone may not be sufficient for T9, as ErbB2 amplification 

is predictive of anti-EGFR therapy resistance 229,240.  Instead, T9 may benefit from treatment with 

a pan-ErbB inhibitor like lapatinib, or combination therapy with cetuximab and the ErbB2 

inhibitor, pertuzumab.  

 

 

 

Figure 2-12. ErbB pathway enrichment. Enrichment plots (left) of ErbB signaling pathway in T25 (purple) 
and T9 (teal). Peptide rank (x-axis) versus pTyr abundance is plotted on the left y-axis, and the running 
enrichment score is plotted on the right y-axis. Each hit signifies a pTyr source protein present in the ErbB 
signaling pathway library. All pTyr peptides identified in the ErbB signaling pathway and their 

corresponding pTyr abundance (right), with ErbB family receptors annotated in bold. pTyr abundance 
values are z-score normalized light to heavy signal ratios. 
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We next sought to determine whether these findings were predictable based on 

available transcriptomics and proteomics data for these same tumors 222. Looking specifically at 

the sites driving ErbB enrichment, we observed a weak positive correlation between pTyr levels 

and corresponding gene expression levels in T9 but found no correlation with protein expression 

(Figure 2-13-A, B). T16 had no correlation between pTyr levels and gene/protein expression, 

whereas T25 and T22 surprisingly showed a weak negative correlation.  

 

 

Figure 2-13. Correlation between ErbB pathway pTyr and RNA/protein. A Z-score normalized pTyr 
abundance, protein expression and transcript expression levels of ErbB signaling pathway members. B 
Correlation between pTyr abundance and protein (red) or transcript (blue) expression of ErbB signaling 
pathway members. Protein and transcript abundance values are z-score normalized. Correlation 

coefficients for pTyr vs. protein for T9, T16, and T22 are r2= 0.06, 0.05, 0.29, respectively. Correlation 
coefficients for pTyr vs. gene expression for T9, T16, T22, and T25 are r2= 0.35, 0.01, 0.38, and 0.43, 
respectively. Protein expression data for T25 was unavailable. 
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In line with these findings, gene set enrichment analysis (GSEA) of RNA-seq data from 

T9 identified significant enrichment in EGFR signaling genes, along with downstream pathways 

of EGFR activation including SHC1 and GAB1 signaling (Figure 2-14-A, Supplementary 

Figure 2-5-B). However, GSEA from T25, T16, and T22 showed no significant enrichment in 

EGFR/ErbB related signaling pathways using protein or gene expression data. In fact, an 

analysis of all pTyr sites and their corresponding protein and gene expression levels yielded no 

correlation (Figure 2-14-B), which taken together demonstrates the difficulty of using transcript 

expression or protein expression data to infer pTyr signaling dynamics and pathway activation.  

 

 

Figure 2-14. Global pTyr/RNA/protein correlation. A Normalized enrichment score (NES) for positively 
enriched reactome pathways in T9 using RNA-seq data. *= p<0.05, **= p<0.01, FDR q-value < 0.05 for 
all. B Correlation between all pTyr sites in the full matrix and corresponding protein expression (top) and 
gene expression (bottom) levels. All values are z-score normalized. 

 

Identifying anti-EGFR therapy candidates using TPEA requires enrichment among 

multiple nodes within the ErbB signaling pathway to achieve significance. To identify anti-EGFR 

therapy candidates that may have been missed using TPEA, we focused on two EGFR peptides 

containing autophosphorylation sites, pY1172 and pY1197 (pY1148 and pY1173, mature 

human isoform), which were most commonly quantified across tumors as an analogous 

approach. We identified twelve tumors with EGFR phosphorylation levels at least 1.5-fold higher 
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than the mean in either or both pTyr sites, termed “EGFR-high” (Figure 2-15). Half of EGFR-

high tumors have a RAS mutation rendering them ineligible for anti-EGFR therapy, but the 

remaining six wild-type EGFR-high tumors (T3, T4, T21, T24, and previously identified T9 and 

T25) may be appropriate candidates. Similar to earlier findings, GSEA of transcriptomic and 

proteomic datasets for T3, T4, T21, and T24 did not identify enrichment in EGFR signaling 

pathways, highlighting the novel insight provided by pTyr profiling.  

 

 

Figure 2-15. EGFR pTyr signature across patients. Cumulative pTyr signal, calculated as the ratio of 
tumor light to heavy pTyr signal (x) to the mean light to heavy signal (μ) across tumors, log2 transformed 
for two EGFR phosphopeptides rank ordered from highest to lowest signal. Tumor specific annotations 
are indicated by color, and pY1148 and pY1173 denote the EGFR residue position with pTyr modification. 

 

Beyond RAS mutational status, several other genomic and phenotypic classifications 

have been correlated with response to EGFR inhibitors, including tumors with a mutation in both 

TP53 and APC, microsatellite stable (MSS) status, distally located CRC tumors, and those 

classified as consensus molecular subtype 2 (CMS2), an additional CRC molecular 

classification  system 229,232,241. Of the six wild-type EGFR-high tumors, only T21 matches these 

additional genomic criteria. In contrast, T18 and T16 possess all of the described biomarkers, 
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but also have lower levels of EGFR phosphorylation, indicating an alternative therapy has the 

potential to be more efficacious. These results suggest that pTyr analysis can provide critical 

information regarding target activation. When combined with genomic characterization, this 

information provides the potential to improve patient stratification for targeted therapeutics.   

 

2-2-6 T cell phosphorylation suggests tumor immune cell activation & infiltration status 

Following the demonstrated success of ICB in other solid tumors, immunotherapy has 

emerged as another therapeutic avenue in CRC with several ICB therapies approved for clinical 

use 24,25,242. However, efficacy of ICB in CRC has been limited to mismatch-repair deficiency and 

microsatellite instability classified tumors (dMMR-MSI), which typically have higher immune cell 

infiltration and mutational burden than MMR proficient, microsatellite stable (pMMR-MSS) 

tumors, increasing their susceptibility to ICB therapy 243,244. Nevertheless, dMMR-MSI tumors 

represent a minority (~15%) of CRCs 245 and overall response rates in recent clinical trials 

ranged from 30-55%, emphasizing the need for additional biomarkers of ICB efficacy 24,25,242. 

Unlike other cancers, PD-L1 expression is not predictive of ICB response in CRC 25. Still, better 

response rates have been observed in tumors with higher levels of CD8+ tumor-infiltrating 

lymphocytes, regardless of microsatellite status 246. With this in mind, we investigated whether 

we could identify patients with high CD8+ T cell infiltration using the pTyr levels of immune cell-

specific peptides to estimate ICB responsiveness.  

The SureQuant pTyr IS panel contained T cell signaling-specific peptides derived from 

the T cell receptor CD3δ/γ, along with the T cell co-receptor CD3ζ (CD247) and zeta-chain 

associated protein kinase (ZAP70). These sites and other downstream signaling nodes 

comprised the T cell signaling pathway gene set used for TPEA; using this gene set we 
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identified six tumors with significant enrichment: four positive (T8, T19, T23, and T29) and two 

negative (T30 and T17) (Figure 2-16).  

 

 

Figure 2-16. Tumor-specific pTyr signatures of T cell signaling peptides. pTyr abundance (z-score 
normalized light to heavy signal ratios) of T cell signaling peptides in tumors with significant pathway 
enrichment. Peptides are annotated by source protein. 

 

Examining the phosphosites driving enrichment, we observed high levels of CD3ζ 

phosphorylation across multiple pTyr sites and increased ZAP70 phosphorylation in T8 and 

T29, relative to the other tumors (Figure 2-17). Both tumors also show elevated LCK 

phosphorylation, a SRC kinase which phosphorylates immunoreceptor tyrosine-based activation 

motifs (ITAMS) on TCR/CD3 substrates including CD3ζ and ZAP70. Similarly, KSEA identified 
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significant positive enrichment of LCK substrate phosphorylation in T8 and T29 (Figure 2-11-G). 

In contrast, T cell signaling enrichment in T19 and T23 was primarily driven by downstream 

signaling nodes non-specific to T cells (p38 and ERK), which highlights the importance of 

evaluating pathway enrichment on a site-specific level.  

 

 

Figure 2-17. pTyr signal of T-cell signaling peptides, calculated as the ratio of tumor light to heavy pTyr 
signal (x) to the mean light to heavy signal (μ), for T8 and T9. Phosphorylation levels on the signaling 
diagram (colored circles) correspond to T8, and pY denotes the residue position with pTyr modification. 

 

Consequently, we applied a parallel, site-specific framework as used in the phospho-

EGFR analysis to evaluate three CD3ζ phosphosites as a marker for T cell infiltration. We 

identified ten tumors with at least a 1.5-fold increase in CD3ζ phosphorylation relative to the 

mean, similarly termed “CD3ζ-high,” and twelve tumors with at least 1.5-fold lower 

phosphorylation, “CD3ζ-low” (Figure 2-18). Only two CD3ζ-high tumors (T29 and T5) were 
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classified as dMMR-MSI, while the others were pMMR-MSS. Mutations in DNA polymerase 

epsilon (POLE) have also been correlated with increase CD8+ T cell infiltration 247, but 

assessing POLE mutational status only identifies one additional tumor (T20) classified as CD3ζ-

high. Other tumors including negatively enriched T cell signaling T17 and CD3ζ-low T4 may 

have been considered for ICB based on dMMR-MSI status, but low pTyr levels of CD3ζ suggest 

that they may not be strong candidates for ICB based on lack of activated T cell signaling within 

the tumor.   

 

 

Figure 2-18. Cumulative CD3ζ pTyr levels (light to heavy signal) from three CD3ζ pTyr peptides. Tumor-
specific biomarker statuses are indicated by color. 

 

We examined whether transcript expression or protein expression datasets would 

similarly identify T cell signaling pathway enrichment among positively enriched T8/T29 and 

negatively enriched T30/T17, but this analysis yielded no significant findings. However, GSEA 
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against the cancer hallmarks database using RNA-seq data identified interferon-γ (IFN-γ), IFN-

α, and immune response pathways as significantly positively enriched in T8 and T29, and 

significantly negatively enriched in T30 (Figure 2-19-A, B). Tumor-infiltrating lymphocytes are 

the primary source of IFN-γ production in tumors and stimulates IFN response genes and 

immune activation, in agreement with our T cell signaling TPEA results 248. We next looked at 

expression levels of antigen presentation machinery, hypothesizing that expression levels would 

mirror the directionality of T cell signaling and IFN-γ enrichment. Supporting this notion, we see 

corresponding increased (T8, T29) or decreased (T30) gene and protein expression levels of 

class I major histocompatibility complex (MHC-I) genes (HLA-A/B/C, β2M) and both transporters 

associated with antigen processing (TAP1/2) subunits (Figure 2-19-C, D).  

 

 

Figure 2-19. Antigen presentation enrichment. A Gene set enrichment analysis (GSEA) plots for IFN-γ 
response, with gene rank (x-axis) versus running enrichment score (y-axis). Each hit signifies a gene 
present in the gene set. B Normalized enrichment scores (NES) from GSEA for selected significantly 
enriched pathways *p<0.05, **p<0.01, q<0.25 for all. C Z-scored normalized protein and transcript 
expression levels of antigen presentation genes. D GSEA NES for antigen processing and presentation 
gene ontology gene set (GO:0019882), *p<0.05, **p<0.01, q<0.25 for all. 
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Intriguingly, negative T cell signaling enriched T17 has positive enrichment of IFN-γ/α, 

inflammatory response, and antigen processing and presentation genes, in contrast to the trend 

observed in the other tumors. Analysis of antigen presentation protein expression levels shows 

increased β2M and TAP1/2, but lower levels of classical HLA-A/B/C alleles with high expression 

of the non-classical allele, HLA-E. Similar to classical HLAs, HLA-E can be modulated by IFN-γ 

249, but high expression of HLA-E can function as an inhibitory signal towards other immune cell 

types, attenuating tumor cell susceptibility to T cell mediated killing as a mechanism of immune 

escape 250,251. Therefore, despite T17’s enrichment for IFN-γ/antigen presentation and 

biomarker status, a deeper analysis of the genomic and proteomic data aligns with our pTyr-

based assessment of T17 being a poor candidate for ICB therapy.  

Previous analyses by Vasaikar et al. provided their own estimate of immune infiltration 

by using a gene expression signature to assign each tumor an “immune score,” (Figure 2-20-A) 

representative of the fraction of immune cells within a tumor sample 222,252. Tumors with the 

highest immune scores were largely dMMR-MSI and/or hypermutated, including negative T cell 

signaling enriched T17, while positively enriched T8 had an average score. Still, other tumors 

were similarly categorized. Both analyses predicted T29 to have the highest level of immune 

infiltration, whereas T2, T26, and T30 all have low predicted immune infiltration. To determine 

whether specific pTyr sites in our data were associated with tumor immune score, we assessed 

the correlation between these data. Although two CD3ζ pTyr sites were significantly correlated 

with the immune score, the correlations were weak, and other significantly correlated sites were 

not directly associated with T cell or immune function (Figure 2-20-B, C). Collectively, these 

data further highlight the additional information provided by directly measuring activation status 

with SureQuant pTyr and suggest pTyr measurements applied in conjunction with genomic 

and/or proteomic data may improve identification of potential ICB or other immunotherapy 

responders, beyond classical MMR/MSI biomarkers.  
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Figure 2-20. Immune score of tumors. A Immune score of tumors from Vasaikar et al., * = positively 
enriched # = negatively enriched in pTyr T cell signaling peptides. B Unique pTyr peptides with significant 
positive correlation to immune score (p < 0.05). C Correlation between immune score and the L/H signal 
of CD3ζ-pY111, r2 = 0.19. 

 

2-3 Discussion 

pTyr measurements are well suited to directly read out signaling network activation 

status and have the potential to identify therapeutically targetable protein kinases or signaling 

pathways in disease. To address the limitations of traditional shotgun and targeted MS-based 

pTyr approaches which require compromise between reproducibility, broad coverage, and 

quantitative accuracy, we developed SureQuant pTyr. This approach leverages isotopically 

labeled IS trigger peptides, similar to previously described methods, but here adapted to guide 

the acquisition of low abundance pTyr peptides in real-time for enhanced sensitivity and 

selectivity. In addition, SureQuant pTyr addresses significant analytical challenges compared to 

other MS-based approaches, as it does not rely on retention time scheduling, thus maximizing 

the number of targetable peptides and reducing the complexity of assay development. Here, we 
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utilized a panel of 340 tyrosine phosphorylated IS peptides to obtain highly reproducible, high-

density coverage of pTyr signaling pathways implicated in cancer, while achieving accurate 

quantitation.  

We established the quantitative reproducibility of SureQuant pTyr, by performing 

targeted pTyr profiling on three replicate in vitro samples. While peptide intensity responses 

varied across analyses and thus may have confounded label-free analysis, L:H ratios were 

consistent. The high quantitative reproducibility achieved with the SureQuant IS-triggered 

targeted workflow has many benefits, including the ability to readily analyze signaling network 

dynamics under various conditions 227, or to compare the signaling state of a patient derived 

tissue over time as therapeutic resistance or metastases develop 207. Furthermore, using a set 

of reference standards for quantitation enables comparisons across research projects and data 

collection sites, paving the way for large scale, multi-site studies using pTyr levels for disease 

characterization.   

To highlight the potential clinical utility of this platform, we applied SureQuant pTyr to 

measure pTyr signaling levels in CRC patient tumor tissues. Our analyses identified tumors with 

elevated ErbB signaling levels, as well as tumors with high levels of innate and adaptive 

immune cell infiltration. While some of our results reinforced complementary genomics-based 

classifiers used for treatment selection, in other cases our pTyr signaling data revealed 

therapeutic opportunities in tumors that would have been missed by traditional biomarkers.  

These results demonstrate the power of pTyr characterization as a complementary approach for 

selecting treatment strategies. Furthermore, this platform only requires 800 μg of total protein as 

sample input material, less than a standard 14G needle biopsy, making it highly amenable to 

clinical sample profiling 225.  

While our initial study utilized just 340 pTyr targets selected with CRC application in 

mind, the current method framework could be applied to an alternate or expanded panel of 
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peptides for deeper profiling of the tyrosine phosphoproteome. This may include additional 

targets for applications in cancer research, such as broader coverage of receptor tyrosine 

kinases, or could incorporate other targets associated with non-oncological settings where 

dysregulated kinase signaling also plays a role. Implementing additions to the panel is easily 

accommodated by performing a new survey run analysis and importing the new acquisition 

parameters to the existing method structure. Furthermore, the same general framework could 

be applied to other non-tyrosine phosphosite panels to provide additional information regarding 

a sample’s signaling status. Examples include peptides with pSQ/pTQ motifs for DNA damage 

response analysis, or other low-abundance PTMs such as lysine acetylation. Future studies 

may evaluate whether antibody enrichment is required for SureQuant-based analyses of these 

low abundance targets, or whether IMAC-only (in the case of pTyr) or possibly no enrichment is 

sufficient given the high specificity triggering of the SureQuant method. Finally, coupling 

SureQuant acquisition with isobaric labeling would greatly increase assay throughput, allowing 

for up to 16 samples analyzed simultaneously 253 while further decreasing sample input material 

required 207.  

Though this assay is not approved by the Clinical Laboratory Improvement Amendments 

(CLIA) for clinical use at this time, implementation of targeted MS in clinical settings is beginning 

to emerge 254. Importantly, while many targeted workflows require complex method structures 

and customized MS platforms, all aspects of pTyr SureQuant were performed with commercially 

available nano-HPLC columns, enrichment reagents, method templates, and instrumentation, 

thereby allowing for simplified implementation in other research or clinical settings. Executing 

this workflow simply requires the IS peptide mixture and a single survey analysis to determine 

intensity thresholds for IS peptide triggering, offering a turn-key solution for targeted pTyr 

profiling. 
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Improvements to assay accuracy, reproducibility, and ease of use may open new doors 

in the clinical setting to use utilize pTyr signatures in conjunction with existing technologies to 

obtain novel insights. Overall, we propose the broad application of targeted pTyr profiling with 

SureQuant pTyr in research and clinical settings, either as a standalone strategy or in 

combination with proteogenomic data, can aid in improving patient stratification and biomarker 

characterization, identification of drug targets, and designing personalized therapies in the 

context of oncology and beyond.  

 

 

2-4 Materials and Methods 

2-4-1 Cell lines 

Lung cancer cell line A549 (CCL-185) was purchased from ATCC and routinely tested 

for mycoplasma contamination (Lonza). Cells were cultured in RPMI-1640 (Gibco) 

supplemented with 10% FBS (Gibco), 1% penicillin/streptomycin (Gibco) and maintained at 

37°C, 5% CO2. Prior to harvesting (passages 4-6), cells were stimulated with 5 nM EGF 

(PeproTech), and early time point samples (0, 0.5, and 2 minutes stimulation) were flash frozen 

in liquid nitrogen, as previously described.227  

 

2-4-2 Tumor samples 

Tumor samples were collected by several tissue source sites in strict accordance to the 

CPTAC-2 colon procurement protocol with an informed consent from the patients. The 

Washington University in St. Louis Institutional Review Board (IRB) reviewed the individual 

informed consent documents at each tissue source site and determined that the materials sent 

to the CPTAC biospecimen core resource met the requirements. All other information related to 
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procurement of these samples is detailed in Vasaikar et al. In this analysis, samples were 

obtained as tumor curls through the Clinical Proteomic Tumor Analysis Consortium (CPTAC) 

Biospecimen Core Resource and stored at -80°C prior to analysis.  

 

2-4-3 Sample processing 

Cell line samples/ frozen tissues samples were lysed/homogenized in lysis buffer [8 M 

urea, 1x HALT Protease/Phosphatase Inhibitor Cocktail (Thermo Scientific)]. Lysates were 

cleared by centrifugation at 5000 g for 5 min at 4°C and protein concentration was measured by 

bicinchoninic acid assay (BCA) (Pierce). In our hands, protein yield for frozen tumors is ~10% of 

the tumor wet weight. Proteins were reduced with 10 mM dithiothreitol for 30 min at 56°C, 

alkylated with 55 mM iodoacetamide for 45 min at room temperature (RT) protected from light, 

and diluted 4-fold with 100 mM ammonium acetate, pH 8.9. Proteins were digested with 

sequencing grade modified trypsin (Promega) at an enzyme to substrate ratio of 1:50 overnight 

at RT. Enzymatic activity was quenched by acidifying with glacial acetic acid to 10% of the final 

solution volume, and peptides were desalted using C18 solid phase extraction cartridges (Sep-

Pak Plus Short, Waters). Peptides were eluted with aqueous 60% acetonitrile in 0.1% acetic 

acid and dried using vacuum centrifugation.  

Protein concentration was again measured by BCA to account for variation in sample 

processing, and peptides were subsequently lyophilized in 800 μg aliquots for label-free DDA, 

PRM, & SureQuant analysis and stored at -80°C until analysis. Samples for TMT-labeled 

analyses were lyophilized in 150 ug aliquots and resuspended in 50 mM hepes (pH 8.5).  TMT 

10-plex (0,4 mg) (Thermo Scientific) was resuspended in 15uL of anhydrous acetonitrile and 

subsequently added to each sample, followed by a 1-hour incubation at RT. Reactions were 
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quenched with 0.3% hydroxylamine, pooled, dried by vacuum centrifugation, and stored at -

80°C prior to analysis.  

 

2-4-4 Peptide Synthesis 

Peptides were purchased from Thermo Scientific Custom Peptide synthesis service. All 

synthetic peptides used in this study were produced as a PEPotec Custom Peptide Libraries 

using FMOC solid-phase technology. The peptides were synthesized with the following 

specifications: crude purity, synthetic isotope-labeled c-terminal lysine (K) or arginine (R) or 

proline (P) or alanine (A) or isoleucine (I) or valine (V). The crude peptides after synthesis were 

dissolved in 0.1% TFA in 50% (v/v) acetonitrile/water and stored at −20 °C. A pool of first heavy 

peptide mixture was prepared by mixing an equimolar amount of each peptide with the final 

concentration at 1pmol /µl in 0.1% TFA and 3% (v/v) acetonitrile and subjected to nanoLC-

MS/MS analysis to determine the intensity response of 340 peptides. A final heavy peptide 

mixture was prepared by increasing the concentration of the 58 “low-intensity” heavy peptides 

with low intensity response values. The final concentration of 58 heavy peptides ranged from 

1.8 to 5.5 pmol /µl. Exact concentrations are specified in Table 2-1. To avoid batch effects or 

repeated freeze/thaw cycles, upon receival the final heavy peptide mixture was divided into 

individual analyses aliquots and stored at -80 °C prior to use.      

 

2-4-5 Tyrosine phosphorylated peptide enrichment 

Lyophilized tryptic peptide aliquots were resuspended in 400 μL of immunoprecipitation 

(IP) buffer [100 mM Tris-HCl, 0.3% NP-40, pH 7.4] and supplemented with a mixture of ~1 pmol 

of each IS peptide standard. The light/heavy peptide mixture was incubated with 60 μL protein 

G agarose bead slurry (Calbiochem) conjugated to an antibody cocktail containing 12 μg 4G10 



 95 

(Millipore), 12 μg PT66 (Sigma) and 6 μg of pY100 (Cell Signaling Technologies), rotating 

overnight at 4°C. Of note, samples 1 and 2 of the A549 enrichment analysis were only 

incubated for 6h at 4°C, whereas sample 3 followed the described protocol with overnight 

incubation. Beads were washed 1x with IP buffer, 3x with 100 mM Tri-HCl, pH 7.4, and eluted in 

2 rounds of 25 μL 0.2% TFA. Phosphopeptides were further enriched using High-Select Fe-NTA 

Phosphopeptide Enrichment Kit (Thermo Scientific) following manufacturer’s instructions with 

minor adjustments. Modifications include reducing the peptide volume initially added to the Fe-

NTA column (50 μL) and reducing the elution volume to 2 rounds of 20 µL elutions. Peptide 

elutions were dried down using vacuum centrifugation to <2 μL total volume and resuspended in 

5% acetonitrile in 0.1% formic acid for a total volume of 10 μL.  

 

2-4-6 LC-MS/MS Analysis 

Samples for SureQuant analyses were analyzed using an Orbitrap Exploris 480 mass 

spectrometer (Thermo Scientific) coupled with an Easy-nLC 1200 (Thermo Scientific) or 

UltiMate 3000 RSLC Nano LC system (Dionex), Nanospray Flex ion source (Thermo Scientific), 

and column oven heater (Sonation). A 10 μL injection volume of sample was directly loaded 

onto a 25 cm Aurora Series emitter column (IonOpticks) with a column oven temperature of 

40°C. Peptides were eluted at a flow rate of 400 nL/min across a linear gradient consisting of 

0.1% formic acid (buffer A) and 80% acetonitrile in 0.1% formic acid (buffer B). The gradient is 

as follows: 3-19% B from 1-37 mins, 19-29% B from 37-51 mins, 29-41% B from 51-60 mins, 

41-95% B from 60-63 mins, and 95-3% B from 70-70:05 mins.   

 

2-4-7 Survey MS analyses 
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A flowchart describing the pTyr SureQuant method build and analysis workflow can be 

found in Supplementary Figure 2-6. Prior to SureQuant acquisition, the IS peptides were first 

characterized by data dependent acquisition (DDA) with an inclusion list of the precursor ions 

under +2, +3, and +4 charge states for each IS trigger peptide to select optimal charge states 

and product ions for subsequent targeted experiments. For this analysis, a mixture containing 

approximately 700 fmol of each IS peptide was directly injected. Next, a “survey run” was 

performed, still based on directed DDA but with an inclusion list focused on the optimal charge 

state for each peptide, to capture the precursor ion intensity responses and derive the intensity 

thresholds for MS2 scan triggering in subsequent SureQuant analyses. To take sample losses 

from pTyr enrichment steps into account in determining triggering thresholds, a nominal amount 

(~1 pmol) of each IS peptide was added to 800 ug of the A549 processed cell line standard, 

followed by pTyr enrichment as a representative sample.  Parameters obtained in these survey 

analyses were used in all subsequent pTyr SureQuant analyses. MS parameters can be found 

in the supplementary methods.   

 

2-4-8 Targeted MS analyses for A549 and tumor samples 

The SureQuant method combines various scan events and filters, depicted in 

Supplementary Figure 2-7-A. During SureQuant analyses, a high resolution MS1 scan is 

acquired to monitor the predefined optimal precursor ions of the IS heavy peptides, based on 

the list of associated m/z values and intensity thresholds. If any targeted m/z from the inclusion 

list is detected and meets the minimum intensity threshold specified, a short fill time, low 

resolution MS2 scan of the IS peptide is performed in the subsequent MS cycle. If the scan 

contains at least 5 of 6 specified product ions, a high resolution MS2 scan of the endogenous 

peptide at the defined mass offset is performed with longer fill times to improve measurement 
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sensitivity. In the current implementation of SureQuant acquisition on the Exploris 480 MS, all 

trigger peptides scans are performed first, followed by target peptide scans in any given MS 

cycle in order to optimize parallelization of trapping and Orbitrap-FT processing in sequential 

scans (Supplementary Figure 2-7-B).  

To implement this method, the custom SureQuant acquisition template available in 

Thermo Orbitrap Exploris Series 1.0 was utilized. The template is structured such that the 

acquisition parameters for each unique isotopically labeled amino acid and charge state 

(defining the m/z offset) is contained within a distinct 4-node branch stemming from the full scan 

node (Supplementary Figure 2-8). We utilized the default template, which contains 6 branches 

for the +2, +3, and +4 charge states of SIL lysine and arginine residues and added four 

additional branches for the +2 charge states of SIL proline, valine, isoleucine, and alanine for a 

total of 10 branches. In each branch, the peptide m/z and intensity thresholds are defined in the 

“Targeted Mass” filter node. Next, parameters for the low resolution, IS peptide MS2 scan are 

defined, followed by the “Targeted Mass Trigger” filter node, which defines the 6 product ions 

used for pseudo-spectral matching. To connect each set of product ions within the targeted 

mass trigger node to a given precursor mass, we utilize the group ID feature to define the 

precursor m/z associated with each group of product ions is related to. Finally, along with the 

scan parameters for the second MS2 scan of the endogenous peptide, we define the isolation 

offset (m/z) within each node.  

Standard mass spectrometry parameters for SureQuant acquisition are as follows: spray 

voltage: 1.5kV, no sheath or auxiliary gas flow, heated capillary temperature: 280°C. Full-scan 

mass spectra were collected with a scan range: 300-1500 m/z, AGC target value: 300% (3e6), 

maximum IT: 50 ms, resolution: 120,000. Within a 5 second cycle time per MS1 scan, heavy 

peptides matching the m/z (within 10 ppm) and intensity threshold defined on the inclusion list 

were isolated [isolation width of 1.0 m/z] and fragmented [nCE: 28%] by HCD with a scan range: 
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100-1700 m/z, maximum IT: 10 ms, AGC target value: 1000% (1e6), resolution: 7,500. A product 

ion trigger filter next performs pseudo-spectral matching, only triggering an MS2 event of the 

endogenous, target peptide at the defined mass offset if n ≥ 5 product ions are detected from 

the defined list. If triggered, the subsequent light peptide MS2 scan has the same CE, scan 

range, and AGC target as the heavy trigger peptide, with a higher maximum injection time and 

resolution (for example, max IT: 180 ms, resolution, 60,000), however these parameters vary 

slightly across samples in order to optimize acquisition speed and sensitivity. Additional data 

acquisition parameters for the discovery colorectal tumor samples and DDA/PRM A549 

analyses can be found in the Supplementary methods.  

  

2-4-9 SureQuant data analysis 

Peak area ratios of endogenous light peptides and corresponding heavy IS peptides for 

the 6 selected product ions were exported from Skyline, and peptides were filtered according to 

the following criteria: First, only IS peptides with an integrated peak area > 0 for n ≥ 5 product 

ions were considered. Of these remaining targets, only endogenous targets with an integrated 

peak area > 0 for n ≥ 3 product ions were considered. For quantification, the peak area values 

of the 3 highest intensity product ions present for both the light/heavy peptides were summed, 

and the ratio of light endogenous to heavy IS peptide signal was taken across samples. We 

selected 3 product ions for quantitation to balance specificity with the ability to retain lowly 

abundant targets. For tumor sample analysis, L:H ratios of peptides quantifiable in all tumors 

were included in the full matrix, and peptides quantifiable in ≥ 16/31 tumors were included in the 

expanded matrix. Both matrixes were z-score normalized for specified analyses. Analyses were 

performed using Python 3.6.0.   
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2-4-10 RNA-sequencing  

RNA-sequencing data was analyzed by Vasaikar et al., as previous described 222. RSEM 

upper-quartile normalized values for the tumor panel used in this study were extracted and z-

score normalized for subsequent analyses.  

 

2-4-11 Principal component analysis 

PCA was performed in Matlab R2019b using z-score normalized L:H ratios of the 26 

tumors with a defined unified molecular subtype. Only peptides identified across all tumors were 

used (165 unique sites).  

 

2-4-12 Enrichment analysis  

For tumor-specific pathway enrichment analyses (TPEA), Source proteins of 

phosphorylated peptides were rank ordered from highest to lowest z-score. In cases where 

more than one peptide mapped to the same source protein, the maximum/minimum was 

selected, depending on the directionality of the enrichment analysis. We utilized gene set 

enrichment analysis (GSEA) 4.0.3 255 pre-ranked tool against a custom database of 12 

pathways, obtained from gene ontology (GO) biological processes terms, Reactome pathways, 

and KEGG pathways with 1000 permutations, weighted enrichment statistic (p=1), and a 

minimum gene size of 12. Results were filtered according to p < 0.05, FDR q-value < 0.25.   

Similarly, for pTyr-specific kinase-substrate enrichment analysis (KSEA) all peptides 

were ranked ordered by z-score and pre-ranked GSEA was performed using a custom library of 

12 phosphosite specific kinase-substrate sets from the Substrate Kinase Activity Inference 
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(SKAI) library 233 using parameters listed above and a minimum gene set size of 10. Global 

phosphorylation/pTyr KSEA analysis used a minimum gene set size of 15, using the full kinase-

substrate human library from Strasser et al. Results were filtered according to p < 0.1 and 

datasets with FDR q-value < 0.25. 

GSEA using RNA-sequencing and protein-expression profiling data was similarly 

performed by rank-ordering genes by z-score and analyzed against the Molecular Signatures 

Database hallmarks gene sets with parameters listed for TPEA and a minimum gene size of 15. 

Results were filtered according to p < 0.05, FDR q-value < 0.25.  

 

2-4-13 Protein-protein interaction network analysis 

Significantly enriched pathways and biological processes (FDR q-value < 0.05) were 

identified within clusters of co-regulated phosphopeptides using STRING v11 and visualized 

using Cytoscape v3.7 256,257. Nodes are annotated by pTyr peptide gene name, and edges 

represent protein-protein associations experimentally determined.  
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2-5 Supplementary Information 

 

 

Supplementary Figure 2-1. A Number of unique pTyr peptides in each discovery analysis. B Overlap in 
identified peptides between the four analyses. 

 

 

 

Supplementary Figure 2-2. Hierarchical clustering of pTyr peptides within each unified multi-omics 
subtype defined by Vasaikar et al. Distance metrics for clustering of peptides and tumors, respectively, 
are Euclidean and correlation. 



 102 

 

 

 

Supplementary Figure 2-3. A Peptides with the top 20 loadings scores for PC1, pY denotes the residue 
position with pTyr modification. B Top 20 loadings scores of the peptides derived from unique proteins for 
PC2, ranked from highest to lowest PC2 score with corresponding pTyr abundance levels (z- score 
normalized L/H) across tumors.  
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Supplementary Figure 2-4. A Selected significantly enriched pathways identified in Figure 2-11. 
K=Kegg pathway, G=Gene Ontology term, R=reactome pathway. Significance values are FDR-adjusted, 
and a cutoff of p < 0.05 was used for filtering. B pTyr peptides from cluster 2, rank ordered from highest to 
lowest cumulative pTyr abundance, where abundance values are z-score normalized light to heavy signal 
ratios. C Significantly enriched kinase-substrate interactions within tumors using pTyr and pSer/pThr 
datasets.  Significance (p-value) and directionality indicated by color, FDR q-value < 0.25 for all 
enrichment analyses. Tumors without any significant enrichment are not shown. D SRC kinase-substrate 
enrichment signature for T9. Normalized abundance corresponds to z-score normalized light to heavy 
signal ratios. 
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Supplementary Figure 2-5. A Tumor 19 pTyr abundance of peptides in the ErbB signaling pathway. All 
peptides are annotated by source protein, with peptides in the enrichment core colored in black. B Tumor 
9 positively enriched reactome pathways with corresponding transcript abundance levels (z-score 
normalized). *= p<0.05. **=p<0.01 FDR q-value < 0.05 for all.  
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Supplementary Figure 2-6. Flowchart of SureQuant pTyr workflow. SureQuant pTyr pipeline for 
method building, data acquisition, and data analysis. 
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Supplementary Figure 2-7. A Decision tree for SureQuant acquisition method framework. B Scan 
sequence for SureQuant analyses on the Exploris 480 MS. For example, if three internal standard (IS) 
peptides are detected in the MS1 scan of cycle (n-1), an MS2 scan of each IS peptide is added to the 
scan sequence in cycle (n). If each IS MS2 scan contains ≥5 pre-defined product ions, MS2 scans of each 
endogenous peptide at the defined m/z offset are added to the scan sequence in cycle (n). This scan 
structure repeats for each cycle. 
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Supplementary Figure 2-8. Method scan structure and parameters to import for SureQuant acquisition 
illustrated for three branches, however SureQuant pTyr uses ten branches. [pY] denotes the residue 

position with pTyr modification, and R10 and K8 denote stable isotope labeled (SIL) arginine (+10) and 
lysine (+8), respectively.  
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2-6 Supplementary Methods 

 

Internal standard peptide characterization and survey run analysis 

All analyses were processed using Skyline software (version 20.1, daily build) 139. The IS 

peptides properly detected in initial directed DDA analysis, i.e., those for which at least one 

precursor ion yielded several MS2 scans including at least 6 theoretical y- or b-type fragment 

ions, were retained for SureQuant method development. For peptides detected under multiple 

charge states, only the precursor ion yielding the highest signal response was retained. For 

each peptide, 6 associated optimal fragments ions were selected for psudo-spectral matching 

(typically the most intense ones showing sufficient specificity, i.e., without neutral loss or low 

m/z value). Individual intensity thresholds for each IS peptide was set to 1% of the precursor 

MS1 intensity value at the apex of its chromatographic profile in the survey run analysis. 

 

 

Mass spectrometry data acquisition parameters 

Survey analysis 

The mass spectrometry parameters used for these preliminary analyses were as follows: 

spray voltage: 1.9kV, no sheath or auxiliary gas flow, heated capillary temperature: 280°C. DDA 

analyzes collected full-scan mass spectra with m/z range 300-1200, AGC target value: 1000% 

(1e7), maximum injection time (IT): 50 ms, resolution: 120,000. For every scan, the top 40 most 

intense ions on the inclusion list (if above a 1e5 intensity threshold) were isolated [isolation 

width of 1.0 m/z] and fragmented [normalized collision energy (nCE): 28%] by higher energy 

collisional dissociation (HCD), scan range: 100-1700 m/z, maximum IT: 10 ms, AGC target 

value: 1000% (1e6), resolution: 7,500. 
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Multiplexed discovery analysis of colorectal tumors 

Peptides were resuspended in 10 μL 0.1% acetic acid and onto an analytical capillary 

column with an integrated electrospray tip (~1 μm orifice) prepared in house ((50 μm ID × 12 cm 

with 5 μm C18 beads (YMC gel, ODS-AQ, 12 nm, S-5 μm, AQ12S05)). Peptides were eluted 

using a 140 minute gradient with 13-42% buffer B (70% Acetonitrile, 0.2M acetic acid) from 10-

105 minutes and 42-60% buffer B from 105-115 minutes, 60-100% B from 115-122 minutes, 

and 100-0% B from 128-130 minutes at a flow rate of 0.2 mL/min for a flow split of 

approximately 10,000:1. Peptides were analyzed using a Thermo Fisher Q Exactive Plus Hybrid 

Quadrupole-Orbitrap mass spectrometer, and data was acquired using Thermo Fisher Scientific 

Xcalibur version 2.5.0.2042. Standard mass spectrometry parameters were as follows: spray 

voltage, 2 kV; no sheath or auxiliary gas flow; heated capillary temperature, 250 °C. 

The Q Exactive Plus was operated in data-dependent acquisition (DDA) mode with the 

following scan settings:  Full-scan mass spectrometry spectra (mass/charge ratio (m/z), 350 to 

2,000; resolution, 70,000) were detected in the Orbitrap analyzer after accumulation of ions at 

3e6 target value with a maximum injection time (IT) of 50 ms. For every full scan, the top 15 

most intense ions were isolated (isolation width of 0.8 m/z) and fragmented (collision energy 

(nCE): 33%) by higher energy collisional dissociation (HCD) with a maximum IT 350 ms, AGC 

target 1e5, and 35,000 resolution. Unassigned and +1 charge states were excluded, and 

dynamic exclusion was set to 30 seconds.  

Crude peptide analysis was performed on a Q Exactive Plus mass spectrometer to 

correct for variation in peptide loadings across TMT channels. Approximately 30 ng of the 

supernatant from pTyr IP was loaded onto an in-house packed precolumn (100 um ID x 10 cm) 

packed with 10 μm C18 beads (YMC gel, ODS-A, AA12S11) connected in series to an 

analytical column (as previously described) and analyzed with a 75 min LC gradient [0-30% B 
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from 0-40 minutes, 30-60% B from 40-50 minutes, 60-100% B from 50-55 minutes, and 100-0% 

B from 60-65 minutes]. MS1 scans were performed with m/z range: 350-2000; resolution: 

70,000; AGC target: 3x106; maximum IT: 50 ms. The top 10 abundant ions were isolated 

(isolation width 0.8 m/z) and fragmented (nCE = 33%) with 35,000 resolution, maximum IT 350 

ms, AGC target 1e5. Unassigned and +1 charge states were excluded, and dynamic exclusion 

was set to 30 seconds.  

 

Label-free DDA analysis of A549 cells 

Three label-free replicate samples of A549 cells stimulated with 5 nM EGF were 

analyzed using an Orbitrap Exploris 480 mass spectrometer (Thermo Scientific) coupled with an 

UltiMate 3000 RSLC Nano LC system (Dionex), Nanospray Flex ion source (Thermo Scientific), 

and column oven heater (Sonation). A 10 μL injection volume of sample was directly loaded 

onto a 25 cm Aurora Series emitter column (IonOpticks) with a column oven temperature of 

40°C. Peptides were eluted at a flow rate of 400 nL/min across a linear gradient consisting of 

0.1% formic acid (buffer A) and 80% acetonitrile in 0.1% formic acid (buffer B). The gradient is 

as follows: 2-8% B from 2-15 mins, 8-35% B from 15-95 mins, 35-60% B from 95-105 mins, 60-

100% B from 105-110 mins, and 100-2% B from 112-114 mins.  Standard MS parameters were 

as follows: 1.5 kV; no sheath or auxiliary gas flow; heated capillary temperature, 275 °C. 

The Exploris 480 was operated in DDA mode with the following scan settings: full-scan 

mass spectra were collected with m/z range 300-1600, AGC target value: 300% (3e6), maximum 

IT: auto. For every MS1 scan, peptides were isolated during a 3 s cycle time [isolation width 0.4 

m/z] and fragmented [nCE 30%] by HCD with 60,000 resolution, 150 ms maximum IT, AGC 

target 100% (1e5). Charge states < 2 and > 6 were excluded., and peptides were excluded from 

MS2 analysis for 30 s duration after fragmentation n=2 times within 20 s duration.   
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TMT-labeled DDA analysis of A549 cells stimulated with EGF  

Multiplexed, A549 cells stimulated with 5 nM EGF for 0, 0.5, or 2 mins were analyzed 

using the Exploris 480 and UltiMate 3000 RSLC Nano LC system as previously described, using 

the SureQuant gradient.  

Standard MS parameters were as follows: 2.5 kV; no sheath or auxiliary gas flow; heated 

capillary temperature, 275 °C. 

The Exploris 480 was operated in DDA mode with the following scan settings: full-scan 

mass spectra were collected with m/z range 350-1600, AGC target value: 300% (3e6), maximum 

IT: auto. For every MS1 scan, peptides were isolated during a 3 s cycle time [isolation width 0.4 

m/z] and fragmented [nCE 33%] by HCD with 60,000 resolution, 150 ms maximum IT, AGC 

target 100% (1e5). Exclusion parameters are as described with label-free DDA analysis of A549 

cells.  

Crude peptide analysis of the immunoprecipitation supernatant was performed on a Q 

Exactive Plus mass spectrometer to correct for variation in peptide loadings across TMT 

channels. Approximately 30 ng of the supernatant from pTyr IP was loaded onto an in-house 

packed precolumn (100 um ID x 10 cm) packed with 10 μm C18 beads (YMC gel, ODS-A, 

AA12S11) connected in series to an analytical column(as previously described) and analyzed 

with a 70 min LC gradient, as previously described. MS1 scans were performed with m/z range: 

350-2000; resolution: 70,000; AGC target: 3x106; maximum IT: 50 ms. The top 10 abundant 

ions were isolated (isolation width 0.4 m/z) and fragmented (nCE = 33%) with 70,000 resolution, 

maximum IT 150 ms, AGC target 1e5. Unassigned, >8, and +1 charge states were excluded, 

and dynamic exclusion was set to 30 seconds.  

 

Label-free PRM analysis of A549 cells stimulated with EGF 
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A549 cells stimulated with 5 nM EGF for 0, 0.5, or 2 mins with analyzed by PRM using 

the Exploris 480 MS and UltiMate 3000 RSLC Nano LC system as previously described, using 

the SureQuant gradient. Standard MS parameters were as follows: 1.5 kV; no sheath or 

auxiliary gas flow; heated capillary temperature, 275 °C. 

The Exploris 480 was operated using a targeted inclusion mass list, with an MS1 

resolution of 60,000, scan range 3350-1600, AGC target value: 300% (3e6). During a 3 s cycle 

time, targeted peptides were isolated [isolation width 0.4 m/z] and fragmented [nCE 30%] by 

HCD with 60,000 resolution, 150 ms maximum IT, AGC target 100% (1e5).  

 

Additional search space, filtering, and analysis details for MS analyses.  

Multiplexed discovery analysis of colorectal tumors 

Mass spectra were processed with Proteome Discoverer version 2.2 (PD 2.2) (Thermo 

Fisher) and searched against the human SwissProt database (2018_4) using Mascot version 

2.4 (Matrix Science). Spectra were searched using the following parameters: enzyme: trypsin, 

maximum missed cleavages: 2, precursor mass tolerance: 10 ppm, fragment mass tolerance: 

20 mmu. Static modifications included TMT-10-labeled lysine and N-terminal residues, as well 

as cysteine carbamidomethylation. Dynamic modifications included methionine oxidation, and 

tyrosine, serine, and threonine phosphorylation.  

Peptide spectrum matches (PSMs) with phosphorylated tyrosine residues and no 

reporter ion missing values were filtered according to search engine rank = 1, ion score ≥ 20. 

Reporter ion intensities were summed across matching PSMs. Phosphotyrosine peptide 

reporter ion areas were corrected for variations in sample loading within each analysis using the 

median of peptide ratios in the crude peptide analysis for each channel relative to channel. 

Quantitation is represented as the fold change between the tumor and normal phosphorylation 

levels.  
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TMT-labeled DDA analysis of A549 cells stimulated with EGF  

Mass spectra were processed with PD 2.5 and searched against the human SwissProt 

database (2020_4) using Mascot version 2.4. Spectra were searched and analyzed using the 

same parameters described in the multiplexed discovery analysis of colorectal tumors.  

To evaluate the quantitative reproducibility of the SureQuant method, the three 2-minute EGF 

stimulated samples were used.   

 

Label-free DDA analysis of A549 cells 

Mass spectra were processed with PD 2.5 and searched against the human SwissProt 

database (2020_4) using Mascot version 2.4. Spectra were searched using the following 

parameters: enzyme: trypsin, maximum missed cleavages: 2, precursor mass tolerance: 10 

ppm, fragment mass tolerance: 20 mmu. Cysteine carbamidomethylation was set as a static 

modification, and dynamic modifications included methionine oxidation, and tyrosine, serine, 

and threonine phosphorylation. MS1 integrated peak area quantitation was performed using the 

minora feature detector in PD 2.5 with match between runs enabled and filtered for ion score ≥ 

20, search engine rank = 1. Only peptides containing phosphorylated tyrosine residue(s) were 

included in subsequently analyses.  

 

Label-free PRM analysis of A549 cells stimulated with EGF 

Mass spectra were processed with Proteome Discoverer version 2.5 (Thermo Fisher) 

and searched against a custom library containing the SureQuant pTyr panel, with precursor 

mass tolerance: 10, fragment mass tolerance: 20 mmu, along with the modifications as 

described in the label-free DDA analysis of A549 cells. MS1 integrated peak area quantitation 

was similarly performed using the minora feature detector. Spectra for targeted peptides were 
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verified by looking for the presence of the 6 preselection product ions using in the SureQuant 

pTyr analyses using Skyline software.  

 

Protein expression profiling 

LC-MS/MS raw files from the TMT-labeled global proteome analysis performed by 

Vasaikar et al. (15) were re-processed using Proteome Discoverer (version 2.2). All mass 

spectra were searched using Mascot (version 2.4) against the human SwissProt database 

(version 2019_6) with a tryptic enzymatic digestion, allowing for 2 missed cleavages, +/- 10 ppm 

parent ion tolerance. Static modifications of Cys carbamidomethylation and TMT on N-terminus 

and Lys residues were included, along with variable Met oxidation. Peptide spectrum matches 

(PSMs) were filtered according to the following criteria: Search engine rank = 1, isolation 

interference ≤ 30, ion score ≥ 20, peptide length ≥ 6. Relative protein abundance was calculated 

as the ratio of tumor abundance to reference channel abundance (TMT-131) using the summed 

TMT reporter ion intensities from all peptides uniquely mapped to a gene. Relative abundances 

were next divided by the median relative abundance ratio from each TMT channel to correct for 

sample loading variation within each analysis. Adjusted relative abundances for proteins 

quantified across all 31 tumors were z-score normalized for subsequent analyses. 

 

SureQuant pTyr peptide panel selection 

Discovery analysis data of colon cancer tumor samples and adjacent normal tissue 

identified nearly 800 unique pTyr peptides. This data was prioritized for panel selection by 

considering the following criteria: peptides identified across multiple analyses, sites with 

differential phosphorylation levels between tumor and non-tumor tissue, and sites known to be 

implicated in oncogenic signaling. Positional isomers were avoided, and sequences with a 

single pTyr phosphorylation event were prioritized over those with pTyr and a pSer/pThr 
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modification in most cases (MAPK3/1 peptides being a notable exception.  We did not employ a 

set of strict criteria for panel selection, rather we considered the features described above and 

then manually curated the final list based on experience generating and analyzing tyrosine 

phosphorylation data. Additional peptides were then added to this list using EGFR and T cell 

signaling data previously generated by mass spectrometry in our group. For example, we did 

not identify ZAP70 in our discovery analyses, but we know from the literature ZAP70 is critical 

for T-cell signaling. Therefore, we selected a tyrosine phosphorylated tryptic sequence 

previously identified by mass spectrometry to add to our panel.  
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2-8 Tables 

Table 2-1. Tyrosine phosphorylated peptides in SureQuant pTyr panel 

Peptide # Heavy Peptide Sequence 
 pmol 
added Gene 

Rresidue 
number  

Peptide1 ADY[+80]DTLSLR[+10] 1.00 PKP3 pY176 

Peptide2 AEDGSVIDY[+80]ELIDQDAR[+10] 1.00 ANXA2 pY188 

Peptide3 AEFAEY[+80]ASVDR[+10] 1.00 PAG1 pY227 

Peptide4 AEGSDVANAVLDGADC[+57]IMLSGETAKGDY[+80]PLEAVR[+10] 1.00 PKM pY370 

Peptide5 AESGPDLRY[+80]EVTSGGGGTSR[+10] 1.00 DSP pY28 

Peptide6 AGSLPNY[+80]ATINGK[+8] 1.00 TNS1 pY1404 

Peptide7 AHY[+80]THSDYQYSQR[+10] 1.00 PKP2 pY161 

Peptide8 ALDY[+80]YMLR[+10] 1.00 TLN1 pY70 

Peptide9 ALELDPNLY[+80]R[+10] 1.00 MYH10 pY761 

Peptide10 ALELDSNLY[+80]R[+10] 1.00 MYH9 pY754 

Peptide11 ALMDEEDMDDVVDADEY[+80]LIPQQGFFSSPSTSR[+10] 1.00 EGFR pY1016 

Peptide12 ALPQNDDHY[+80]VMQEHR[+10] 1.00 TNK2 pY284 

Peptide13 ANDTQEFNLSAY[+80]FER[+10] 3.47 DUSP3 pY101 

Peptide14 APTNEFY[+80](A) 1.00 SDC4 pY197 

Peptide15 APYTC[+57]GGDSDQY[+80]VLMSSPVGR[+10] 1.00 IRS2 pY823 

Peptide16 AQQGLY[+80]QVPGPSPQFQSPPAK[+8] 1.00 BCAR1 pY128 

Peptide17 AQY[+80]EDIANR[+10] 1.00 KRT75 pY327 

Peptide18 ARPSEY[+80]DLLWVPGR[+10] 1.00 PARD3B pY1056 

Peptide19 AY[+80]EFAER[+10] 1.00 CLTC pY1096 

Peptide20 AY[+80]TNFDAER[+10] 1.00 ANXA2P2 pY30 

Peptide21 AY[+80]TNFDAERDALNIETAIK[+8] 1.00 ANXA2P2 pY30 

Peptide22 DASSQDC[+57]Y[+80]DIPR[+10] 1.00 GAB1 pY406 

Peptide23 DDAQY[+80]SHLGGNW(A) 1.00 CD3D pY160 

Peptide24 DDGMEEVVGHTQGPLDGSLY[+80]AK[+8] 1.00 TNS1 pY366 

Peptide25 DGHPLSPERDHLEGLY[+80]AK[+8] 1.00 PARD3B pY1000 

Peptide26 DGNGY[+80]ISAAELR[+10] 1.00 CALM1 pY100 

Peptide27 DGSSQQLQGY[+80]IPSNYVAEDR[+10] 1.00 FRK pY99 

Peptide28 DHLEGLY[+80]AK[+8] 1.00 PARD3B pY1000 

Peptide29 DIEQVPQQPTY[+80]VQALFDFDPQEDGELGFR[+10] 1.00 GRB2 pY160 

Peptide30 DLEQPTY[+80]RYESSSYTDQFSR[+10] 1.00 TJP1 pY1059 

Peptide31 DLEY[+80]LDLK[+8] 1.00 PLEKHA7 pY665 

Peptide32 DNEVDGQDY[+80]HFVVSR[+10] 1.00 DLG3 pY673 

Peptide33 
DPHYQDPHSTAVGNPEY[+80]LNTVQPTC[+57]VNSTFDSPAHWA
QK[+8] 1.00 EGFR pY1138 
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Peptide34 DQEAPSTTEY[+80]SEIK[+8] 1.00 SIGLEC5 pY544 

Peptide35 DQY[+80]LMWLTQK[+8] 1.00 PIK3R1 pY580 

Peptide36 DSQMQNPY[+80]SR[+10] 1.00 MUC13 pY501 

Peptide37 DSSTC[+57]PGDY[+80]VLSVSENSR[+10] 1.00 CRKL pY48 

Peptide38 DSSTSPGDY[+80]VLSVSENSR[+10] 1.00 CRK pY47 

Peptide39 DSTY[+80]DLPR[+10] 1.00 GAB2 pY266 

Peptide40 DTY[+80]DALHMQALPPR[+10] 1.00 CD247 pY153 

Peptide41 DVTIGGSAPIY[+80]VK[+8] 2.60 PARD3 pY489 

Peptide42 DWSHY[+80]FK[+8] 2.91 KRT18 pY129 

Peptide43 DY[+80]HFVTSR[+10] 1.00 DLG1 pY760 

Peptide44 DY[+80]LIDGSR[+10] 3.46 VCL pY107 

Peptide45 DY[+80]SNFDQEFLNEK[+8] 1.00 PRKCD pY630 

Peptide46 DY[+80]STLTSVSSHDSR[+10] 1.00 ITGB4 pY1510 

Peptide47 DYEVDGRDY[+80]HFVTSR[+10] 1.00 DLG1 pY760 

Peptide48 DYSHY[+80]YTTIQDLR[+10] 1.00 KRT19 pY130 

Peptide49 EAAY[+80]HPEVAPDVR[+10] 1.00 TLN1 pY2224 

Peptide50 EATQPEPIY[+80]AESTK[+8] 2.25 PRAG1 pY413 

Peptide51 EC[+57]DY[+80]SIDGINR[+10] 1.00 TLN2 pY1665 

Peptide52 EDDQY[+80]SHLQGNQLR[+10] 1.00 CD3G pY171 

Peptide53 EEPEALY[+80]AAVNK[+8] 1.00 ITSN2 pY968 

Peptide54 EEPIY[+80]IITEYMAK[+8] 1.00 LYN pY316 

Peptide55 EEY[+80]DVLDK[+8] 1.00 CD247 pY83 

Peptide56 EGSDSY[+80]AITFR[+10] 1.00 PLCG2 pY680 

Peptide57 EIDVSY[+80]VK[+8] 1.00 EPHB4 pY614 

Peptide58 EIENLTQQY[+80]EEK[+8] 1.00 MYH11 pY1408 

Peptide59 EILDEAY[+80]VMASVDNPHVC[+57]R[+10] 1.00 EGFR pY764 

Peptide60 EKPAQDPLY[+80]DVPNASGGQAGGPQRPGR[+10] 1.00 RIN1 pY36 

Peptide61 ELGEY[+80]GFHEYTEVK[+8] 1.00 ALDH1A1 pY481 

Peptide62 ELPPDQAEY[+80]C[+57]IAR[+10] 1.00 ACTN1 pY859 

Peptide63 ELY[+80]GEVIR[+10] 1.00 INPP5D pY221 

Peptide64 ENDY[+80]ESISDLQQGR[+10] 1.00 PAG1 pY417 

Peptide65 EQY[+80]DVPQEWR[+10] 1.00 MUC12 pY5413 

Peptide66 ERDY[+80]AEIQDFHR[+10] 1.00 PARD3 pY1080 

Peptide67 ERPPPVPNPDY[+80]EPIR[+10] 1.00 CD3E pY188 

Peptide68 ESMC[+57]STPAFPVSPETPY[+80]VK[+8] 2.89 TNS3 pY855 

Peptide69 EVPIY[+80]ANR[+10] 2.82 ADAM9 pY769 

Peptide70 EYDQLY[+80]EEYTR[+10] 1.00 PIK3R2 pY464 

Peptide71 EYDRLY[+80]EEYTR[+10] 1.00 PIK3R1 pY467 

Peptide72 FANY[+80]IDK[+8] 1.00 VIM pY117 
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Peptide73 FANY[+80]IEK[+8] 2.61 DES pY122 

Peptide74 FASEASGY[+80]QDNIAR[+10] 1.00 DES pY363 

Peptide75 FASQQGMTAY[+80]GTR[+10] 2.56 CNN1 pY182 

Peptide76 FAVPTY[+80]AAK[+8] 2.62 ADAM9 pY778 

Peptide77 FEEPAPLSY[+80]DSRPR[+10] 1.00 TJP1 pY1140 

Peptide78 FELSC[+57]Y[+80]SLAPQIK[+8] 1.00 ASS1 pY133 

Peptide79 FHPEPY[+80]GLEDDQR[+10] 1.83 CTNND1 pY280 

Peptide80 FIHQQPQSSSPVY[+80]GSSAK[+8] 2.08 PXN pY88 

Peptide81 FLEDDPSDPTY[+80]TSSLGGK[+8] 2.08 EPHB3 pY792 

Peptide82 FQKEIENLTQQY[+80]EEK[+8] 1.00 MYH11 pY1408 

Peptide83 GAY[+80]SLSIR[+10] 1.00 YES1 pY194 

Peptide84 GDKQVEY[+80]LDLDLDSGK[+8] 1.00 GAB1 pY627 

Peptide85 GDY[+80]PLEAVR[+10] 3.91 PKM pY370 

Peptide86 GEGLY[+80]ADPYGLLHEGR[+10] 2.74 SRCIN1 pY396 

Peptide87 GEPNVSY[+80]IC[+57]SR[+10] 1.00 GSK3A pY279 

Peptide88 GGGPYDAPGGDDSY[+80](I) 1.00 CDHR5 pY844 

Peptide89 GHDGLY[+80]QGLSTATK[+8] 1.00 CD247 pY142 

Peptide90 GHEY[+80]TNIK[+8] 1.00 PTPN11 pY546 

Peptide91 GIVVY[+80]TGDR[+10] 1.00 ATP1A1 pY260 

Peptide92 GKVSYQDY[+80]EIEISDASEVEK[+8] 1.00 MX1 pY129 

Peptide93 GLC[+57]TSPAEHQYFMT[+80]EY[+80]VATR[+10] 1.00 MAPK7 
pT219; 
pY221 

Peptide94 GLC[+57]TSPAEHQYFMTEY[+80]VATR[+10] 1.00 MAPK7 pY221 

Peptide95 GLIDRDLY[+80]R[+10] 1.00 DSP pY2159 

Peptide96 GMSVY[+80]GLGR[+10] 1.00 CNN3 pY261 

Peptide97 GMTVY[+80]GLPR[+10] 1.00 CNN1 pY261 

Peptide98 GNFNY[+80]VEFTR[+10] 1.00 MYL9 pY156 

Peptide99 GNPPHSAPC[+57]VPNGSALLLSNPAY[+80]R[+10] 1.00 DDR1 pY513 

Peptide100 GPAVGIY[+80]NDNINTEMPR[+10] 1.00 CDCP1 pY707 

Peptide101 GPAY[+80]GLSAEVK[+8] 1.00 CNN1 pY12 

Peptide102 GQEATDTEY[+80]SEIK[+8] 1.00 SIGLEC9 pY456 

Peptide103 GQESEY[+80]GNITYPPAMK[+8] 1.00 PTPN6 pY536 

Peptide104 GQY[+80]HTLQAGFSSR[+10] 1.00 PKP3 pY84 

Peptide105 GSHQIS[+80]LDNPDY[+80]QQDFFPK[+8] 1.00 EGFR pY1172 

Peptide106 GSLVDY[+80]LR[+10] 1.00 CSK pY277 

Peptide107 GSTAENAEY[+80]LR[+10] 1.00 EGFR pY1197 

Peptide108 GTGY[+80]IKTELISVSEVHPSR[+10] 1.00 STAT1 pY701 

Peptide109 GTPTAENPEY[+80]LGLDVP(V) 1.00 ERBB2 pY1248 

Peptide110 GVITDQNSDGY[+80]C[+57]QTGTMSR[+10] 1.00 DSP pY56 

Peptide111 GY[+80]AYVEFENPDEAEK[+8] 2.05 RNPS1 pY205 
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Peptide112 GY[+80]FFLDER[+10] 1.00 PDLIM4 pY293 

Peptide113 GY[+80]VPATIK[+8] 4.83 STAT6 pY641 

Peptide114 HADAEMT[+80]GY[+80]VVTR[+10] 1.00 MAPK13 
pT180; 
pY182 

Peptide115 HADAEMTGY[+80]VVTR[+10] 1.00 MAPK13 pY182 

Peptide116 HAQDY[+80]VLTYNYEGR[+10] 1.00 DSC2 pY853 

Peptide117 HELQANC[+57]Y[+80]EEVKDR[+10] 1.00 CFL1 pY140 

Peptide118 HFDTY[+80]HR[+10] 1.00 PKP2 pY217 

Peptide119 HLLAPGPQDIY[+80]DVPPVR[+10] 1.00 BCAR1 pY249 

Peptide120 HPAGVY[+80]QVSGLHNK[+8] 1.00 TNS1 pY1254 

Peptide121 HPDIY[+80]AVPIK[+8] 1.00 TJP2 pY1118 

Peptide122 HTDDEMT[+80]GY[+80]VATR[+10] 1.00 MAPK14 
pT180; 
pY182 

Peptide123 HTDDEMTGY[+80]VATR[+10] 1.00 MAPK14 pY182 

Peptide124 HYEDGYPGGSDNY[+80]GSLSR[+10] 1.00 CTNND1 pY228 

Peptide125 IADPEHDHTGFLT[+80]EY[+80]VATR[+10] 1.00 MAPK3 
pT202; 
pY204 

Peptide126 IADPEHDHTGFLTEY[+80]VATR[+10] 1.00 MAPK3 pY204 

Peptide127 IAIY[+80]ELLFK[+8] 1.00 RPS10 pY12 

Peptide128 IDTLNSDGY[+80]TPEPAR[+10] 1.00 ZAP70 pY292 

Peptide129 IEGVY[+80]AR[+10] 1.00 RPL35A pY34 

Peptide130 IEGY[+80]PDPEVVWFKDDQSIR[+10] 1.00 MYLK pY1835 

Peptide131 IFPLRPDY[+80]QEPSR[+10] 1.00 DDR2 pY481 

Peptide132 IGEGT[+80]Y[+80]GVVYK[+8] 1.00 CDK2 
pT14; 
pY15 

Peptide133 IGEGTY[+80]GVVYK[+8] 1.00 CDK2 pY15 

Peptide134 IGTAEPDY[+80]GALYEGR[+10] 1.00 PLCG1 pY771 

Peptide135 IIQLLDDY[+80]PK[+8] 1.00 RPLP0 pY24 

Peptide136 INLPIQTY[+80]SALNFR[+10] 1.00 DES pY423 

Peptide137 IQNTGDY[+80]YDLYGGEK[+8] 1.00 PTPN11 pY62 

Peptide138 IY[+80]DEILQSK[+8] 1.00 CD84 pY296 

Peptide139 IY[+80]EPLDVK[+8] 1.00 PLA2G4A pY535 

Peptide140 IY[+80]IDPFTYEDPNEAVR[+10] 1.00 EPHB1 pY594 

Peptide141 IYIDPFTY[+80]EDPNEAVR[+10] 1.00 EPHB1 pY600 

Peptide142 IYNGDY[+80]YR[+10] 1.00 AXL pY702 

Peptide143 IYQY[+80]IQSR[+10] 1.00 DYRK1B pY273 

Peptide144 KNPQEGLY[+80]NELQK[+8] 1.00 CD247 pY111 

Peptide145 KPTY[+80]DPVSEDQDPLSSDFKR[+10] 1.00 TNK2 pY518 

Peptide146 LC[+57]DFGSASHVADNDITPY[+80]LVSR[+10] 3.60 PRPF4B pY849 

Peptide147 LDNGGY[+80]YITTR[+10] 1.00 YES1 pY222 

Peptide148 LEDYFETDSSY[+80]SDANNFIR[+10] 1.00 FRK pY497 

Peptide149 LEPQIASASEY[+80]AHR[+10] 1.00 PLIN3 pY95 
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Peptide150 LGEGTY[+80]ATVYK[+8] 2.06 CDK17 pY203 

Peptide151 LGLDY[+80]EER[+10] 1.00 PHB2 pY128 

Peptide152 LHEY[+80]NTQFQEK[+8] 1.00 PIK3R1 pY452 

Peptide153 LIEDNEY[+80]TAR[+10] 1.00 LCK pY394 

Peptide154 LIKDDEY[+80]NPC[+57]QGSK[+8] 1.00 FGR pY412 

Peptide155 LIY[+80]LVPEK[+8] 2.62 ITSN2 pY553 

Peptide156 LLDDFDGTY[+80]ETQGGK[+8] 3.05 EPHA1 pY781 

Peptide157 LPQDDDRPADEY[+80]DQPWEWNR[+10] 1.00 SHB pY336 

Peptide158 LPSSPVY[+80]EDAASFK[+8] 1.00 CTTN pY421 

Peptide159 LQQY[+80]IAPGMK[+8] 3.32 EPHB3 pY600 

Peptide160 LSLEGDHSTPPSAY[+80]GSVK[+8] 1.00 ANXA2P2 pY24 

Peptide161 LVNEAPVYSVY[+80]SK[+8] 3.37 STAM2 pY374 

Peptide162 LVQAAQMLQSDPYSVPARDY[+80]LIDGSR[+10] 2.60 VCL pY107 

Peptide163 LY[+80]AVVTR[+10] 1.00 LYN pY306 

Peptide164 LY[+80]DFVK[+8] 1.00 INPP5D pY865 

Peptide165 LY[+80]EEYTR[+10] 1.00 PIK3R1 pY467 

Peptide166 LYDAY[+80]ELK[+8] 1.00 ANXA5 pY94 

Peptide167 LYEEY[+80]TR[+10] 1.00 PIK3R1 pY470 

Peptide168 LYGDADY[+80]LEER[+10] 2.48 CTPS1 pY473 

Peptide169 LYPELSQY[+80]MGLSLNEEEIR[+10] 1.00 SDCBP pY56 

Peptide170 LYSNAY[+80]LNDLAGC[+57]IK[+8] 2.91 ALDH1A1 pY119 

Peptide171 MAEAY[+80]SEIGMK[+8] 1.00 CD247 pY123 

Peptide172 MDKNASTFEDVTQVSSAY[+80]QK[+8] 1.00 CTTN pY334 

Peptide173 MDY[+80]VEINIDHK[+8] 1.00 HDLBP pY437 

Peptide174 MHLPSPTDSNFY[+80]R[+10] 3.90 EGFR pY998 

Peptide175 NASTFEDVTQVSSAY[+80]QK[+8] 1.00 CTTN pY334 

Peptide176 NDQVY[+80]QPLR[+10] 1.00 CD3D pY149 

Peptide177 NHQLY[+80]C[+57]NDC[+57]YLR[+10] 1.00 LMO7 pY1667 

Peptide178 NKDQGTYEDY[+80]VEGLR[+10] 1.00 MYL6 pY89 

Peptide179 NLDNGGFY[+80]ISPR[+10] 1.00 LCK pY192 

Peptide180 NLIAFSEDGSDPY[+80]VR[+10] 1.00 ESYT2 pY824 

Peptide181 NLIY[+80]DNADNK[+8] 1.00 PKP3 pY390 

Peptide182 NPGFY[+80]VEANPMPTFK[+8] 1.00 PLCG1 pY783 

Peptide183 NPGNQAAY[+80]EHFETMK[+8] 1.00 VCL pY692 

Peptide184 NPQEGLY[+80]NELQK[+8] 1.00 CD247 pY111 

Peptide185 NQALNTDNY[+80]GHDLASVQALQR[+10] 1.00 SPTAN1 pY1261 

Peptide186 NQETY[+80]ETLKHEK[+8]PPQ 3.28 FCER1G pY76 

Peptide187 NQGAHDPDY[+80]ENITLAFK[+8] 2.37 MCEMP1 pY38 

Peptide188 NY[+80]VTPVNR[+10] 3.11 GRB2 pY209 
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Peptide189 NYQSSSPLPTVGSSYSSPDY[+80]SLQHFSSSPESQAR[+10] 1.00 TNS1 pY1149 

Peptide190 QADEEMTGY[+80]VATR[+10] 1.00 MAPK11 pY182 

Peptide191 QADSEMTGY[+80]VVTR[+10] 1.00 MAPK12 pY185 

Peptide192 QAWFIENEEQEY[+80]VQTVK[+8] 5.49 ANXA1 pY21 

Peptide193 QDVY[+80]GPQPQVR[+10] 1.00 CTNND1 pY257 

Peptide194 QEEAEY[+80]VR[+10] 1.00 CRK pY136 

Peptide195 QEMMEY[+80]R[+10] 1.00 DES pY324 

Peptide196 QESTVSFNPY[+80]EPELAPWAADKGPQR[+10] 1.00 SYK pY323 

Peptide197 QISEGVEY[+80]IHK[+8] 1.00 MYLK pY1575 

Peptide198 QLHEY[+80]ETELEDER[+10] 1.00 MYH11 pY1601 

Peptide199 QLLY[+80]SENK[+8] 1.00 FRK pY132 

Peptide200 QLVRGEPNVSY[+80]IC[+57]SR[+10] 1.00 GSK3A pY279 

Peptide201 QNLLSQSHAY[+80]QQFLR[+10] 1.00 SPTBN1 pY1171 

Peptide202 QSPEDVY[+80]FSK[+8] 1.00 EPHA2 pY575 

Peptide203 QTLLPNDQLY[+80]QPLK[+8] 3.35 CD3G pY160 

Peptide204 QVEELY[+80]HSLLELGEK[+8] 1.00 SPTAN1 pY1073 

Peptide205 QVEY[+80]LDLDLDSGK[+8] 1.00 GAB1 pY627 

Peptide206 QVY[+80]DAHTK[+8] 1.00 CAV1 pY42 

Peptide207 QYFEQY[+80]SR[+10] 2.05 TJP1 pY1195 

Peptide208 REEPEALY[+80]AAVNK[+8] 1.00 ITSN2 pY968 

Peptide209 RGVITDQNSDGY[+80]C[+57]QTGTMSR[+10] 1.00 DSP pY56 

Peptide210 RIEY[+80]IEAR[+10] 1.00 BRK1 pY63 

Peptide211 RPAGSVQNPVY[+80]HNQPLNPAPSR[+10] 1.00 EGFR pY1110 

Peptide212 RPGPGTLY[+80]DVPR[+10] 3.96 BCAR1 pY387 

Peptide213 RSDSASSEPVGIY[+80]QGFEK[+8] 1.00 PRKCD pY313 

Peptide214 SADAPAYQQGQNQLY[+80]NELNLGR[+10] 1.00 CD247 pY72 

Peptide215 SAEEAPLY[+80]SK[+8] 1.00 PTPN18 pY389 

Peptide216 SAIY[+80]QLEEEYENLLK[+8] 1.00 DSP pY249 

Peptide217 SDSASSEPVGIY[+80]QGFEK[+8] 1.00 PRKCD pY313 

Peptide218 SDVY[+80]SDLNTQRPYYK[+8] 1.00 TYROBP pY102 

Peptide219 SEDIY[+80]ADPAAYVMR[+10] 1.00 PLEKHA6 pY492 

Peptide220 SEQENPLFPIY[+80]ENVNPEYHR[+10] 1.00 PTPRB pY1981 

Peptide221 SFLDSGY[+80]R[+10] 1.00 VCL pY822 

Peptide222 SGDLPY[+80]DGR[+10] 1.00 LSR pY586 

Peptide223 SGQSLTVPESTY[+80]TSIQGDPQR[+10] 1.00 PAG1 pY341 

Peptide224 SGY[+80]IPSGHSLGTPEPAPR[+10] 1.00 TNS1 pY766 

Peptide225 SLDNGGYY[+80]ISPR[+10] 1.00 LYN pY194 

Peptide226 SLDNNY[+80]STPNER[+10] 2.83 CTNND1 pY904 

Peptide227 SLEATDSAFDNPDY[+80]WHSR[+10] 3.16 ERBB3 pY1328 



 123 

Peptide228 SLY[+80]HDISGDTSGDYR[+10] 1.00 ANXA11 pY482 

Peptide229 SLY[+80]SMIK[+8] 3.02 ANXA6 pY302 

Peptide230 SLYASSPGGVY[+80]ATR[+10] 1.00 VIM pY61 

Peptide231 SLYYY[+80]IQQDTKGDYQK[+8] 1.00 ANXA2P2 pY318 

Peptide232 SNHY[+80]DPEEDEEYYR[+10] 1.00 TJP1 pY1346 

Peptide233 SNHY[+80]DPEEDEEYYRK[+8] 1.00 TJP1 pY1346 

Peptide234 SNTSPEELGPLANQLTSDY[+80]GR[+10] 3.91 TLN1 pY1893 

Peptide235 SNY[+80]YDAYQAQPLATR[+10] 1.00 CLDN2 pY194 

Peptide236 SQERPGNFY[+80]VSSESIR[+10] 1.00 PIK3AP1 pY570 

Peptide237 SQSSHSY[+80]DDSTLPLIDR[+10] 1.00 CTNND1 pY865 

Peptide238 SREYDQLY[+80]EEYTR[+10] 3.82 PIK3R2 pY464 

Peptide239 SSGSGSSVADERVDY[+80]VVVDQQK[+8] 1.00 GAB1 pY659 

Peptide240 SSPEQSYQGDMY[+80]PTR[+10] 1.00 GPRC5C pY317 

Peptide241 SSSAGGQGSY[+80]VPLLR[+10] 1.00 LSR pY372 

Peptide242 STGPGASLGTGY[+80]DR[+10] 1.00 CLDN3 pY214 

Peptide243 STTNY[+80]VDFYSTK[+8] 3.00 PKP4 pY1168 

Peptide244 SVLEDFFTATEGQY[+80]QPQ(P) 2.88 LCK pY505 

Peptide245 SVNESLNNLFITEEDY[+80]QALR[+10] 1.00 CLTC pY1477 

Peptide246 SYSPY[+80]DMLESIR[+10] 1.00 ANXA2P2 pY238 

Peptide247 TAC[+57]TNFMMT[+80]PY[+80]VVTR[+10] 1.00 MAPK9 
pT183;pY
185 

Peptide248 TAC[+57]TNFMMTPY[+80]VVTR[+10] 1.00 MAPK9 pY185 

Peptide249 TAGTSFMMT[+80]PY[+80]VVTR[+10] 1.00 MAPK10 
pT221;pY
223 

Peptide250 TAGTSFMMTPY[+80]VVTR[+10] 4.77 MAPK10 pY223 

Peptide251 TASDTDSSY[+80]C[+57]IPTAGMSPSR[+10] 2.58 GAB1 pY373 

Peptide252 TATESFASDPILY[+80]RPVAVALDTK[+8] 1.00 PKM pY105 

Peptide253 TEELIY[+80]LSQK[+8] 1.00 ARHGEF5 pY1370 

Peptide254 TGVAGEDMQDNSGTY[+80]GK[+8] 2.99 PRKCD pY334 

Peptide255 THAVSVSETDDY[+80]AEIIDEEDTYTMPSTR[+10] 1.00 PTK2 pY397 

Peptide256 TLDNGGFY[+80]ISPR[+10] 2.89 HCK pY209 

Peptide257 TMQFEPSTMVY[+80]DAC[+57]R[+10] 1.00 TLN1 pY26 

Peptide258 
TPLVLAAPPPDSPPAEDVY[+80]DVPPPAPDLY[+80]DVPPGLR[+1
0] 1.00 BCAR1 

pY362; 
pY372 

Peptide259 TPSSY[+80]GAGELLDFSLADAVNQEFLTTR[+10] 1.00 DES pY83 

Peptide260 TRDQY[+80]LMWLTQK[+8] 1.00 PIK3R1 pY580 

Peptide261 TSIDAY[+80]DNFDNISLAQR[+10] 1.00 CLTC pY1487 

Peptide262 TTAVEIDY[+80]DSLK[+8] 1.00 FYB1 pY571 

Peptide263 TTENNYC[+57]PHY[+80]EK[+8] 1.00 EFNB1 pY317 

Peptide264 TVHDMEQFGQQQYDIY[+80]ER[+10] 2.12 PKP4 pY372 

Peptide265 TY[+80]DMLK[+8] 1.00 PKP2 pY108 
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Peptide266 TY[+80]VDPHTY[+80]EDPNQAVLK[+8] 1.00 EPHA2 
pY588; 
pY594 

Peptide267 TY[+80]VDPHTYEDPNQAVLK[+8] 1.00 EPHA2 pY588 

Peptide268 TYVDPHTY[+80]EDPNQAVLK[+8] 3.29 EPHA2 pY594 

Peptide269 VADPDHDHTGFLT[+80]EY[+80]VATR[+10] 2.29 MAPK1 
pT185; 
pY187 

Peptide270 VADPDHDHTGFLTEY[+80]VATR[+10] 1.00 MAPK1 pY187 

Peptide271 VAEDLESEGLMAEEVQAVQQQEVY[+80]GMMPR[+10] 1.00 SPTAN1 pY1176 

Peptide272 VC[+57]AYGAQGEGPY[+80]SSLVSC[+57]R[+10] 1.00 ITGB4 pY1207 

Peptide273 VDLGSEVY[+80]R[+10] 1.00 PDLIM4 pY191 

Peptide274 VDNEDIY[+80]ESRHEIK[+8] 1.00 FRK pY387 

Peptide275 VDY[+80]VVVDQQK[+8] 1.00 GAB1 pY659 

Peptide276 VEFGVY[+80]ESGPR[+10] 1.00 PIK3AP1 pY694 

Peptide277 VENC[+57]PDELY[+80]DIMK[+8] 1.00 LYN pY473 

Peptide278 VGEEEHVY[+80]SFPNK[+8] 1.00 PXN pY118 

Peptide279 VGFQY[+80]EGTYK[+8] 1.00 G6PD pY503 

Peptide280 VGQGYVYEAAQPEQDEY[+80]DIPR[+10] 1.00 BCAR1 pY234 

Peptide281 VGWFPANY(V)EEDYSEY[+80]C[+57] 1.00 VAV1 pY844 

Peptide282 VIEDDPEAVY[+80]TTTGGK[+8] 3.13 EPHA7 pY791 

Peptide283 VIEDNEY[+80]TAR[+10] 1.00 LYN pY397 

Peptide284 VIY[+80]DFIEK[+8] 1.00 WASL pY256 

Peptide285 VLEDDPEAAY[+80]TTR[+10] 1.00 EPHA4 pY779 

Peptide286 VLEDDPEATY[+80]TTSGGK[+8] 1.00 EPHA2 pY772 

Peptide287 VQIY[+80]HNPTANSFR[+10] 1.00 VASP pY39 

Peptide288 VSEKPSADY[+80]VLSVR[+10] 1.00 PTK6 pY114 

Peptide289 VTIADDY[+80]SDPFDAK[+8] 1.00 SHB pY246 

Peptide290 VTPPEGY[+80]EVVTVFPK[+8] 1.00 PDLIM1 pY321 

Peptide291 VVQEYIDAFSDY[+80]ANFK[+8] 3.05 PTPRA pY798 

Peptide292 VVY[+80]SAPR[+10] 1.00 CLDN3 pY198 

Peptide293 VY[+80]AENAIR[+10] 1.92 CHMP1A pY48 

Peptide294 VY[+80]APASTLVDQPYANEGTVVVTER[+10] 3.04 DSG2 pY968 

Peptide295 VY[+80]ENVGLMQQQK[+8] 1.00 PTPN11 pY584 

Peptide296 VY[+80]IDPFTY[+80]EDPNEAVR[+10] 1.00 EPHB4 
pY590; 
pY596 

Peptide297 VY[+80]SEDGAC[+57]R[+10] 1.00 GRB7 pY107 

Peptide298 VYNDGYDDDNY[+80]DYIVK[+8] 1.00 DYRK1A pY145 

Peptide299 VYTY[+80]IQSR[+10] 1.00 DYRK2 pY382 

Peptide300 WDSYDNFSGHRDDGMEEVVGHTQGPLDGSLY[+80]AK[+8] 1.00 TNS1 pY366 

Peptide301 WDSYENLSADGEVLHTQGPVDGSLY[+80]AK[+8] 1.00 TNS3 pY354 

Peptide302 WDTGENPIY[+80]K[+8] 1.00 ITGB1 pY783 

Peptide303 WTAPEAALY[+80]GR[+10] 1.00 YES1 pY446 
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Peptide304 WTAPEAIAY[+80]R[+10] 1.00 EPHA6 pY850 

Peptide305 Y[+80]AALSDQGLDIK[+8] 1.00 PALLD pY1348 

Peptide306 Y[+80]AAPELEIAR[+10] 1.00 SERINC5 pY345 

Peptide307 Y[+80]ANVIAYDHSR[+10] 1.00 PTPRF pY1381 

Peptide308 Y[+80]ATPQVIQAPGPR[+10] 1.00 TNK2 pY827 

Peptide309 Y[+80]GDGIQLTR[+10] 3.24 DSP pY95 

Peptide310 Y[+80]IDLDK[+8] 2.68 MXRA8 pY429 

Peptide311 Y[+80]LAEFATGNDR[+10] 1.00 YWHAE pY131 

Peptide312 Y[+80]LAEVAAGDDK[+8] 1.00 YWHAZ pY128 

Peptide313 Y[+80]LAEVAC[+57]GDDR[+10] 1.00 YWHAQ pY128 

Peptide314 Y[+80]LAEVATGEK[+8] 1.00 YWHAG pY133 

Peptide315 Y[+80]LPRPANPDEIGNFIDENLK[+8] 1.00 CDH1 pY797 

Peptide316 Y[+80]LVIQGDER[+10] 1.00 EGFR pY978 

Peptide317 Y[+80]QQPFEDFR[+10] 1.00 PLCG1 pY1253 

Peptide318 Y[+80]QTLPGR[+10] 1.00 PLEKHA7 pY1011 

Peptide319 Y[+80]RPSMEGYR[+10] 1.00 CTNND1 pY241 

Peptide320 Y[+80]SISDR[+10] 1.00 SOS1 pY1196 

Peptide321 Y[+80]SSDPTGALTEDSIDDTFLPVPEY[+80]INQSVPK[+8] 1.00 EGFR 
pY1069; 
pY1092 

Peptide322 Y[+80]SSDPTGALTEDSIDDTFLPVPEYINQSVPK[+8] 1.00 EGFR pY1069 

Peptide323 Y[+80]SSMAASFR[+10] 1.00 PDZK1IP1 pY83 

Peptide324 Y[+80]VDILPYDYNR[+10] 2.55 PTPRC pY683 

Peptide325 Y[+80]VLC[+57]PSTTPSPAQPADR[+10] 2.49 AXL pY866 

Peptide326 Y[+80]VLDDQY[+80]TSSSGAK[+8] 1.00 TEC 
pY513; 
pY519 

Peptide327 YADIESSNY[+80]MAPYDNYVPSAPER[+10] 1.00 PDGFRB pY771 

Peptide328 YAGEVY[+80]GMIR[+10] 1.00 PI4KA pY1154 

Peptide329 YC[+57]RPESQEHPEADPGSAAPY[+80]LK[+8] 1.00 STAT3 pY705 

Peptide330 YGTC[+57]IY[+80]QGR[+10] 2.95 DEFA1 pY85 

Peptide331 YHGHSMSDPGVSY[+80]R[+10] 1.00 PDHA1 pY301 

Peptide332 YIEDEDYY[+80]KASVTR[+10] 1.00 PTK2B pY580 

Peptide333 YLSEMNY[+80]VHR[+10] 1.00 EPHB3 pY754 

Peptide334 YSQNIY[+80]IQNR[+10] 1.00 PKP2 pY631 

Peptide335 YSSDPTGALTEDSIDDTFLPVPEY[+80]INQSVPK[+8] 3.79 EGFR pY1092 

Peptide336 YTEFY[+80]HVPTHSDASK[+8] 1.00 PDLIM5 pY251 

Peptide337 YTY[+80]SEWHSFTQPR[+10] 1.00 DSC3 pY818 

Peptide338 YVDSEGHLY[+80]TVPIR[+10] 1.00 CAV1 pY14 

Peptide339 YVLDDEY[+80]TSSVGSK[+8] 1.00 BTK pY551 
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CHAPTER 3: Platform for multiplexed, quantitative pMHC profiling  

 

 

3-1 Introduction 

Cells present signals on the extracellular surface that serve as targets for immune cell 

recognition. These signals, peptides presented by class I MHCs, are typically derived from 

intracellular source proteins, and may therefore provide an external representation of the 

internal cell state.258 As a reflection of this, the peptide MHC (pMHC) repertoire, or 

“immunopeptidome”, of cancer cells may contain tumor-associated or mutation-containing 

antigens that serve as tumor-specific markers to activate T cells and initiate an anti-tumor 

immune response. This interaction can be strengthened with checkpoint blockade (CB) 

immunotherapies, however low response rates and toxicity remain barriers to their broad clinical 

success.259,260 A growing body of evidence suggests that combining CB with other treatments 

such as small molecule inhibitors, cytotoxic agents, and radiotherapy could potentiate the 

response to CB, in part by augmenting tumor immunogenicity through increased surface pMHC 

expression.31,261–263 While clinical trials in this space have shown promise44,45, the optimal 

combination of agents, as well as the order and timing of administration, are only beginning to 

be understood. In order to improve combinatorial strategies, a quantitative, molecular 

understanding of how different perturbations shift the immunopeptidome is required. 

Furthermore, achieving absolute quantification of presented antigens is necessary to inform 

immunotherapy drug design, as targeted strategies have varying thresholds of antigen 

expression required for an optimal antitumor response. 

Traditional data-dependent acquisition methods to profile pMHC repertoires using mass 

spectrometry (MS) are well-documented155,157,264 but quantitative methods have critical 
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limitations. Specifically, most common relative quantification pMHC methods lack a 

normalization strategy to account for variations in sample input and processing.168,170,180–182,265 

Peptide losses during processing vary across peptide sequences, concentrations, and samples, 

underscoring the need for  normalization.164,183 Absolute quantification of pMHCs to date is most 

commonly performed by comparing endogenous levels of pMHCs to exogenous peptide 

standards, again failing to account for sample losses.266–269 Losses can be accounted for with 

internal pMHC standards, but require laborious refolding of pMHCs for every target of 

interest.183,270 Nevertheless this approach relies on single point calibration, ignoring the effects 

of ion suppression, thereby inaccurately estimating absolute pMHC levels in quantitative 

analyses. 

To combat these challenges in quantitative immunopeptidomic profiling, we present a 

platform that utilizes ultraviolet (UV)-mediated peptide exchange of recombinant MHC 

monomers to generate on demand heavy isotope-labeled pMHCs for relative and absolute 

quantification of pMHC repertoires using low sample input. We demonstrate that the addition of 

heavy isotope pMHCs (hipMHCs) spiked into sample lysates for normalization improves 

quantitative accuracy between samples for both label-free and multiplexed (TMT-labeled) 

analyses and provides an estimate of ion suppression through regression against a titrated 

internal calibrant. Furthermore, we utilize hipMHC multipoint embedded standard curves 

coupled with isobaric mass tags to accurately quantify the absolute number of copies per cell of 

target antigens within a single analysis. We apply this platform to profile immunopeptidomic 

changes in melanoma cell lines, comparing treatment with palbociclib (a small molecule CDK4/6 

inhibitor) and interferon-gamma (IFN-g), both known modulators of antigen presentation.263,271 

Peptides derived from proteins implicated in the biological response to palbociclib and IFN-g 

were selectively enriched in the pMHC repertoire following treatment, connecting the 
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intracellular response to extracellular immune presentation. Furthermore, peptides derived from 

the metabolic response to palbociclib, along with known tumor-associated antigens (TAAs), 

displayed significantly increased presentation with palbociclib treatment. We propose this 

platform can be broadly applied to profile immunopeptidomic changes in a high-throughput, low-

input format across sample types and treatments to inform combination therapy strategies and 

can be used to identify and quantify treatment-modulated antigen targets for targeted 

immunotherapy.  

 

3-2 Results 

3-2-1 Platform for relative and absolute peptide MHC quantitation 

We set out to develop a platform to provide accurate relative and absolute quantification 

of pMHCs across multiple samples while controlling for losses associated with sample 

processing and enrichment.  Accurate quantitative analysis is best performed with internal 

standards and multi-point internal calibration curves.  To generate internal standards, heavy 

isotope labeled MHC peptides of interest were synthesized and loaded onto biotinylated MHC 

monomers through UV-mediated peptide exchange (Figure 3-1-A).272 To control for loading 

efficiency of synthetic peptides into recombinant MHC proteins, the concentration of stable 

hipMHC complexes was determined by an enzyme-linked immunosorbent assay (ELISA). 

Stable hipMHC complexes were then used in two ways:  selected hipMHC complexes were 

spiked at the same concentration into whole cell lysate from each sample to provide a 

normalization correction for relative quantification across samples, while other hipMHC 

complexes were titrated at different concentrations into each sample to verify correction 

parameters, estimate dynamic range suppression for quantification, and/or create an internal 

standard curve for absolute quantification of a specific peptide. After adding hipMHCs, 
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endogenous and exogenous pMHCs were isolated by immunoprecipitation, acid elution, and 

molecular weight size exclusion filtration.  

 

 

Figure 3-1. Platform for quantitative immunopeptidomics using hipMHCs. A hipMHCs were generated 
through UV-mediated peptide exchange of HLA*A2:01 monomers with a heavy leucine HLA-A*02:01 
binding peptide. Stable hipMHCs concentrations were measured with an ELISA, and hipMHC complexes 
were added to lysate samples prior to immunoprecipitation (IP), at the same concentration for 
quantification correction (blue/teal) or titrated in to create an internal standard curve (red). Heavy and light 
pMHCs were isolated with IP, acid elution, and molecular weight cut-off (MWCO) filters. B Peptides were 
analyzed by LC MS/MS three ways. Relative quantification label-free analyses were quantified by 

integrating the area under the curve (AUC) of the chromatographic elution across samples, and 
quantification was normalized by applying correction factors determined by hipMHC AUC intensity ratios 
between samples. Samples for multiplexed analysis were TMT-labeled and relative quantification was 
implemented using reporter ion intensities. Normalization was performed using hipMHC reporter ion 
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intensity ratios across TMT channels. For absolute quantification, TMT-labeled samples containing a 
hipMHC internal standard curve were used to calculate the endogenous copies per cell of the pMHC of 
interest. 

 

Peptide mixtures were next analyzed by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) in three different ways (Figure 3-1-B). For label-free (LF) analyses, 

samples were analyzed individually, and peptides were quantified by integrating the area under 

the curve (AUC) for the chromatographic elution of precursor masses for each peptide-spectrum 

match (PSM). Relative AUC intensities of quantification correction hipMHCs were used to 

normalize AUC intensities of endogenous peptides across analyses. To analyze multiple 

samples simultaneously, we labeled samples with tandem mass tags (TMT) and relative TMT 

ion intensity ratios of hipMHCs were used for normalization to correct the relative quantification 

in multiplexed samples. TMT-labeled titrated hipMHCs were also used for absolute 

quantification of endogenous peptides. Apex TMT intensities of hipMHCs generated a peptide 

specific multipoint calibration curve to calculate the average number of copies per cell. As a 

control, heavy isotope-coded synthetic peptides not complexed to MHC were spiked into whole 

cell lysate prior to immunoprecipitation.  These peptides were not detected in the subsequent 

LC-MS/MS analysis, demonstrating that only peptides in stable complexes were isolated in our 

workflow and that excess free peptides did not displace endogenously presented peptides. 

 

3-2-2 HipMHC standards improve quantitative accuracy  

To demonstrate the improved quantitative accuracy obtained with hipMHCs, we used 

five LF and six TMT-labeled technical replicates of 1x107 MDA-MB-231 breast cancer cells to 

measure variance between replicates before and after hipMHC correction (Figure 3-2-A). In 

both LF and TMT-labeled workflows, we spiked 30 fmol of two quantification correction 
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hipMHCs into each sample, as adding additional correction hipMHCs gave minimal 

improvement in quantitative accuracy. We also added 30-300 fmol of a titrated hipMHC across 

samples (Figure 3-2-B). A total of 2,369 unique pMHCs were identified in total across five LF 

analyses, 1,352 of which were quantifiable via AUC integration (Figure 3-2-C). Of these 

quantifiable peptides, only 589 were quantified in all five analyses, highlighting the poor run-to-

run overlap of LF analyses, even with replicate samples (Supplementary Figure 3-1-A). By 

comparison, 1,754 unique peptides were quantifiable with TMT-labeled analyses.  
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Figure 3-2. hipMHCs improve quantitation in LF and TMT-labeled samples. A Experimental design. Five 
LF (orange) and six TMT (blue) technical replicates of 1x107 cells + hipMHCs were used to compare LF & 
TMT quantification. B Peptide sequence and amount of hipMHC added into each sample. L7 denotes 
heavy isotope-labeled leucine (+7). ALNEQIARL and SLEEPIGHL were used as quantification correction 
hipMHCs, and SVVESVKFL was titrated in across samples. For LF analysis, sample #6 was omitted. C 
2,369 unique LF peptides identified across five analyses (black), 1,352 of which were quantifiable (grey) 
via AUC quantification, and 589 quantifiable peptides which were identified in all five analyses (orange). 
1,754 unique peptides were quantified with TMT-labeled analyses combining six TMT fractions (blue). D 
92% of TMT, 82% of LF, and 5.6% of random peptide 9-mers derived from the proteome (grey) are 
predicted to bind to an HLA allele in MDA-MB-231 cells with an affinity < 500 nM 
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The extra sample handling steps associated with TMT labeling can result in losses, so to 

achieve high coverage of the immunopeptidome, labeled samples were divided into six separate 

analyses, thereby increasing the number of unique identifications (Figure 3-3-A). In both LF and 

TMT analyses, peptides matched expected length distributions of 8 to 11 amino acids (Figure 

3-3-B), and 82% of LF and 92% of TMT 9-mers were predicted to be binders with less than 500 

nM predicted affinity (Figure 3-2-D).99 The peptides were similarly apportioned across alleles 

between LF and TMT analyses, and the allele motifs aligned with those previously reported 

(Figure 3-3-C,D).273 Further reducing the input material to 5x106 cells still resulted in 86% of the 

number of unique peptides identified with 1x107 cells in a single LF analysis, establishing the 

sensitivity of this method for low-input pMHC analyses (Supplementary Figure 3-1-B).  

 

 

Figure 3-3. MDA-MB-231 MHC peptide properties. A Total peptides identified combining the results from 
n=1 to n=6 independent analyses of TMT-labeled MDA-MB-231 cells, analyzing 15-20% of the peptide 
elution per analysis.  B Length distribution of MDA-MB-231 peptides for LF and TMT-labeled samples. 
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Unique peptides are identified from the union of n=5 LF technical replicates and n=6 TMT-labeled elution 
fractions. C Distribution of 9-mer peptides across HLA alleles with a predicted affinity < 500 nM for LF 
(top) and TMT-labeled (bottom) analyses. D Binding motifs of alleles containing ≥ 5% of predicted binders 
for LF (top) and TMT-labeled (bottom) analyses 

 

To normalize LF and TMT-labeled datasets, we applied correction parameters calculated 

from the quantification correction hipMHCs. The titrated peptide, SVVESVKFL7, displayed an 

improved linear fit after correction, with an even more pronounced effect in the LF samples 

(Figure 3-4). We observed dynamic range suppression for this peptide in TMT-labeled (4.7x) 

and LF (2.7x) datasets, demonstrating in both cases that quantitative differences are likely 

larger than what is measured.  

 

 

Figure 3-4. Ion suppression in titrated hipMHC. Linear fit of titrated hipMHC peptide for LF (left) and TMT 
(right). Raw r2 = 0.48 (LF) and r2=0.91 (TMT), hipMHC adjusted (adj) r2=0.99 (LF) and r2=0.96 (TMT). 

 

In both analyses, hipMHC quantification correction reduced variation, for example, 

peptides from TMT-labeled sample 5 have lower intensities than the other samples, which was 

corrected by hipMHC normalization (Figure 3-5-A). The standard deviation from the mean for 

replicate samples decreased in LF and TMT-labeled samples (Figure 3-5-B), though TMT 

labeling showed lower variation between replicates (Figure 3-5-C), allowing for higher 
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confidence in small shifts within the immunopeptidome. We investigated whether peptides with 

lower abundance had higher quantitative variation across samples but found no correlation in 

LF or TMT-labeled analyses (Supplemental Fig. 1G).   

 

 

Figure 3-5. hipMHC correction improves CV. A Distribution of the log2 fold change (FC) of each peptide’s 
quantification (x) over the mean (μ) peptide quantification across samples for raw (left) and hipMHC 
adjusted (right). B Gaussian fit of the frequency distribution of log2(FC) of (x) over (μ) for raw and hipMHC 
adjusted LF and TMT samples. 99.7% of variance between peptide quantitation (3x SD) is captured 
within a 1.65 (raw) and 1.52 (adj) FC from the mean for LF samples, and 1.30 (raw) and 1.23 (adj.) for 
TMT samples. C Median coefficient of variation (CV) for LF (24.27% raw, 20.99% adj) & TMT (14.00% 

raw, 7.48% adj). Error bars represent the interquartile range. 

 

3-2-3 Absolute quantification of endogenous peptide MHCs 

To demonstrate the ability of hipMHCs to quantify pMHC copies per cell, we selected 

two peptides identified in TMT-labeled MDA-MB-231 cells for absolute quantification: 

KLDVGNAEV derived from B cell receptor associated protein 31 (BCAP31) and KQVSDLISV 

from DEAD-box RNA helicase 5 (DDX5). BCAP31 regulates the transport of membrane proteins 

from the endoplasmic reticulum to the Golgi, a central component of antigen processing, and is 

a known TAA peptide.163 DDX5 is important in gene expression regulation and has been 

implicated in proliferation, metastasis, and tumorigenesis in cancer.274 These peptides were 
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detected at differing levels with the highly abundant BCAP31 peptide falling in the 98th percentile 

and DDX5 falling in the 33rd percentile of abundance (Figure 3-6-A). Both peptides were 

synthesized with heavy-isotope labeled leucine (+7), and hipMHC normalization standards were 

added to three replicates of 1x107 MDA-MB-231 cells along with titrated amounts of BCAP31 

and DDX5 hipMHC (Figure 3-6-B). We then labeled samples with TMT and performed LC-

MS/MS analysis using an inclusion list, so only targeted peptides of interest were selected for 

fragmentation.  

Chromatographic traces of the three TMT reporter ions for heavy BCAP31 and DDX5 

peptides displayed increasing ion intensities with increasing amount of hipMHC added (Figure 

3-6-C). In order to quantify peptide expression, the apex intensities of reporter ions were 

adjusted based on the normalization hipMHCs, and a linear fit was used to pMHC concentration 

present in the sample. Cells had an average of 1,740 copies per cell of the BCAP31 peptide, 

and 81 copies per cell of the DDX5 peptide (Figure 3-6-D). Concentrations of the DDX5 

hipMHC as low as 100 attomole were detected (six copies per cell) showcasing the broad range 

of pMHC expression levels quantifiable by our method (Supplementary Figure 3-3). 

Furthermore, BCAP31 and DDX5 had a dynamic range suppression of 1.9x and 2.5x, 

respectively, illustrating that the ion suppression is not uniform across peptides and that 

peptide-specific internal standards may be required for absolute quantification of each pMHC of 

interest.  
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Figure 3-6. Absolute quantification of pMHCs with hipMHC standards and isobaric labeling. A Peptide 
intensities for TMT-labeled MDA-MB-231 cells from Fig. 2 determined by AUC quantification. Percentile of 
abundance represents a peptide’s rank relative to the most abundant peptide. B Experimental design. 
Normalization standards along with 5, 15, and 50 fmol of BCAP31 and 0.3, 1, and 3 fmol of DDX5 
hipMHCs were added to three biological replicates of 1x107 MDA-MB-231 cells, and peptides from MHC 
complexes were isolated, labeled, and analyzed via LC-MS/MS. C Chromatographic elution profiles for 
the three TMT reporter ion intensities of the hipMHC standard curve (colored), along with the average 
(n=3) TMT reporter ion intensity trace of the endogenous peptide (black). Each MS2 scan is represented 
as a single point, and elution profiles are fitted with a gaussian distribution (line). D Adjusted (hipMHC 
normalized) apex intensity versus fmol of hipMHC added creates a standard curve from which the 
endogenous concentration of antigen is calculated. For both linear fits of BCAP31 and DDX5, r2 > 0.999. 
The endogenous peptide is presented as the mean value +/- SD for n=3 biological replicates. 
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3-2-4 CDK4/6 inhibition alters the pMHC repertoire in melanoma  

Cyclin-dependent kinases 4 and 6 (CDK4/6) control cell cycle progression by 

phosphorylating Rb1, thereby releasing the E2F family of transcription factors that drive 

progression through the G1 checkpoint.275 CDK4/6 is often dysregulated and overactive in 

cancer, leading to uncontrolled proliferation (Figure 3-7).40  

 

 

Figure 3-7. CDK4/6 mediated cell cycle control. Schematic of CDK4/6 mediated cell cycle control (black) 
and the effects of CDK4/6 inhibition (red). 

 

As such, CDK4/6 inhibitors have emerged as a potentially powerful class of anticancer 

agents, active against a spectrum of tumor types including melanoma.41 In recent years, 

CDK4/6 inhibitors have also been shown to enhance tumor immunogenicity by increasing 

surface MHC class I expression and boosting T cell activation and infiltration.42,263 These data 

highlight CDK4/6 inhibitors as an attractive candidate to combine with CB or other 

immunotherapies to augment immunotherapy response rates in melanoma. However, to date, 

the effect of CDK4/6 inhibition on the MHC class I peptide repertoire has not been 
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characterized.  We therefore applied our platform to quantify how pMHC repertoires in 

melanoma change in vitro upon treatment with the CDK4/6 inhibitor, palbociclib, to better 

understand how CDK4/6 inhibitors could be leveraged in combination therapy regimes to 

improve patient outcomes.   

We selected four melanoma cell lines for analysis: SKMEL5 and SKMEL28 (BRAF 

mutant), and SKMEL2 and IPC298 (NRAS mutant).  Based on sensitivity analyses for each cell 

line (Figure 3-8-A), we selected two doses of palbociclib for further study: a low dose of 1 μM, 

below the IC50 of all four cell lines, and a high dose of 10 μM, near the IC50. Three biological 

replicates of 1x107 cells of each cell line were then treated with DMSO, low-dose, or high-dose 

palbociclib for 72h (Figure 3-8-B). Low-dose treatment increased surface class I MHC 

presentation, as measured by flow cytometry, by 1.5-2x across cell lines, whereas high-dose 

treatment had a milder effect (Figure 3-8-C). 
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Figure 3-8. Changes in HLA expression with CDK4/6i. A Viability at 72h after drug treatment, data is 
represented as a fraction (%) of the DMSO control. Calculated IC50s: for SKMEL5= 12.74 μM, 
SKMEL28=14.62 μM, SKMEL2=16.98 μM, IPC298=10.62 μM. Data is presented as mean values +/- SD 
for n=3 experimental replicates for all cell lines except SKMEL5 (n=4).  B Experimental setup of TMT-
labeled immunopeptidomics experiments in melanoma cell lines. C Flow cytometry measurements of 
surface HLA expression. Data is represented as % of maximum signal, and the distributions are 
representative of three independent experiments. 

 

To characterize the pMHC repertoire alterations induced by palbociclib, multiplexed 

relative quantitation was performed comparing low- and high-dose palbociclib to DMSO for each 

cell line, and data was normalized using hipMHC standards (Supplementary Figure 3-4-A,B). 

As with our previous analysis, identified peptides matched expected length distributions, and a 

majority were predicted to be MHC class I binders (Supplementary Figure 3-4-C,D). 

Immunopeptidomic analysis for each cell line and treatment showed a similar trend to the flow 

cytometry data: low-dose palbociclib shifted mean pMHC expression higher than DMSO 
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treatment in all cell lines, and a high dose showed a small increase in mean expression for 

SKMEL5 compared to DMSO and no significant change for the other cell lines (Figure 3-9). We 

measured a wider distribution of changes in peptide presentation following low dose treatment, 

with several peptides increasing eight to ten-fold, even before considering the effect of dynamic 

range suppression.  

 

 

Figure 3-9. pMHC response to CDK4/6i. Top: histogram distribution of log2 fold change (FC) of 
(palbociclib/DMSO) for unique pMHCs, where FC is calculated from the mean intensity of n=3 biological 
replicates per condition. Data is represented as a % of total unique peptides identified. Bottom: volcano 
plots representing log2 fold change (FC) of pMHC presentation of (palbociclib/DMSO) versus significance 
(mean adjusted p-value, unpaired two-sided t test). Data points are colored by treatment, 1 μM (grey) and 
10 μM (black). 

 

To gain insight into the biology underlying palbociclib modulated pMHC alterations, we 

analyzed our data in two ways. First, we determined which peptides and source proteins were 

significantly increased with palbociclib treatment over DMSO. Because many peptides were 
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significantly increased with low-dose treatment, we also identified the peptides and source 

proteins that were significantly enriched in presentation with treatment relative to the mean fold 

change of all peptides, highlighting peptides preferentially modulated by palbociclib.    

 

Using these data, we performed GO term enrichment on the 127 peptides significantly 

enriched in low-dose treated SKMEL5 cells (Figure 3-10-A), and identified enriched biological 

processes of interest including ribosomal biogenesis, glucose metabolic process, and antigen 

processing, a reflection of the expected biological response to palbociclib (Figure 3-10-

B,C).263,276,277 We performed the same analysis with the raw, non-normalized values, and found 

only 66 of these peptides were significantly enriched without hipMHC quantification correction, 

altering the GO-term pathway analysis results (Figure 3-10-D). While peptides mapping to 

ribosomal biogenesis were still significantly enriched, the other two biological processes were 

not, underscoring the importance of using hipMHCs for quantification correction to accurately 

interpret alterations in pMHCs repertoires.  
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Figure 3-10. Enriched biological processes following CDK4/6i. A Volcano plot displaying log2(FC) of 1μM 
treated SKMEL5 cells versus significance (mean adjusted p-value, unpaired two-sided t-test). Colored 
points (p < 0.05, Log2(FC) > 1.56) correspond to processes in 4f. B Log2(FC) of significantly enriched 
peptides from GO term enrichment processes labeled with source protein name. FDR adj. p-value < 0.05. 
C Significantly enriched biological processes (GO term enrichment, FDR-adjusted p < 0.05) in SKMEL5 
cells + 1 μM palbociclib using significantly enriched peptides from the raw data (grey) and hipMHC 
adjusted data (blue). D Number of significantly enriched peptides in raw data (grey) versus hipMHC 
adjusted data (blue) for SKMEL5 cells +/- 1 μM Palbociclib. 

 

To determine if the measured pMHC alterations to SKMEL5 cells were common across 

cell lines, we compared the source proteins of peptides that were significantly enriched with low-

dose treatment compared to DMSO across all four cell lines. Surprisingly, a majority (72-88%) 

of enriched source proteins were unique to each cell line, and we discovered only three proteins 

in common: vimentin (VIM), putative beta-actin-like protein 3 (POTEKP), and SIL1 nucleotide 

exchange factor (SIL1) (Figure 3-11-A, B). Even when comparing source proteins of all 

peptides significantly increasing to any extent, just 17 proteins in common were identified, 
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further illustrating the uniqueness of the proteins altered by palbociclib in each 

immunopeptidomic landscape (Figure 3-11-C).  We investigated whether the commonality of 

these 17 proteins could be explained by having high abundance in the peptide mixtures, but in 

SKMEL5 cells they were scattered throughout the distribution of AUC intensities (Figure 3-11-

D).  

 

 

Figure 3-11. Peptides identified across all 4 analyses. A 4-way Venn-diagram of the number of source 
proteins of peptides significantly enriched or significantly increasing with 1 μM palbociclib. B Source 
proteins of peptides significantly enriched (mean adjusted p-value) following palbociclib treatment, **= 
significantly upregulated in four cell lines, *= three lines, all others were seen in at least two cell lines. C 
17 common source proteins significantly increasing in all four cell lines. D Average peptide AUC 
integrated abundance vs. percentile rank of abundance of all SKMEL5 +/- 1 μM palbociclib peptides. Blue 
points are peptides labeled by their source protein that are significantly increased in all four cell lines. 

 

While the list of shared pMHCs and source proteins in common is limited, of interest is 

the serine-phosphorylated IRS2 (pIRS2) peptide, RVA[pS]PTSGVK. This post-translationally 

modified sequence has previously been shown to be restricted to malignant cells, with only the 

phosphorylated form demonstrating immunogenic potential278,279 Even though there are no 

alleles in common across the four cell lines (Supplementary Fig. 3k)280, we observed the pIRS2 

peptide increasing across all cell lines with low dose treatment (Fig. 4h). Furthermore, 

RVApSPTSGVK has high expression among pMHCs (Figure 3-11-D), and can be isolated 

without phospho-enrichment.158 As a result, this peptide may be uniquely positioned as a 
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broadly targetable antigen whose expression can be modulated by CDK4/6 inhibition. As a 

general effect of palbociclib treatment, TAAs derived from proteins like MLANA (MART1), PMEL 

(gp100), and TYR, among others, also increased in presentation following treatment (Fig. 4i). 

While these antigens and their source proteins are not universally conserved across our cell 

lines, the effect of increased TAA presentation following 1 μM palbociclib treatment could be 

applied to increase antigen presentation prior to immunotherapies targeting these well-

documented antigens.   

 

 

Figure 3-12. TAA expression changes with CDK4/6i. A Log2(FC) of pIRS2 peptide following 1 μM (grey) 
or 10 μM (black) palbociclib, *p < 0.05, unpaired two-sided t-test. B Gene name, peptide sequence, and 
log2(FC) of TAAs in SKMEL5 (left) and IPC298 (right) cells. 

 

3-2-5 Response to palbociclib is reflected in the immunopeptidome 

To further assess whether quantitative differences in the immunopeptidome after 

palbociclib treatment are reflective of the cell signaling response to a perturbation, we 

performed a nonparametric test to identify positively- and negatively-enriched pathways. Gene 

names for source proteins were rank ordered according to fold change with treatment and 

searched against the MSigDB Hallmarks gene set database using Gene Set Enrichment 

Analysis (GSEA).255,281,282 This analysis did not reveal any significantly enriched pathways for 

the low dose treatment, but high dose palbociclib showed significant enrichment among 
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downregulated pMHCs of E2F targets, G2M checkpoint, DNA repair, mitotic spindle, and 

MTORC1 signaling pathways in one or more cell lines (Figure 3-13).  

 

 

Figure 3-13. Enriched pathways using pMHC expression changes with CDK4/6i. Normalized enrichment 
score (NES) of significantly enriched pathways with 10 μM palbociclib, where +/- NES scores reflect 
enrichment directionality. For all, q < 0.25, and *p < 0.05, **p < 0.01, ***p < 0.001. 

 

These findings reflect the known biological effects of CDK4/6 inhibition. For instance, 

inhibiting CDK4/6 decreases expression of E2F targets, and peptides derived from E2F targets 

like Ki-67, a proliferation marker, were depleted in all four cell lines (Figure 3-14-A). E2F also 

controls genes involved in DNA damage repair, and consistently, γH2AX levels, a marker of 

DNA double-strand breaks, increased at 72h with palbociclib treatment in a dose dependent 

manner (Supplementary Figure 3-6-A).283 Although similar biological processes are enriched 

across the four cell lines, source proteins for significantly depleted E2F peptides showed little 
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overlap between the cell lines (Figure 3-14-A), again emphasizing the individuality of the source 

proteins contributing to each cell line’s detected pMHC repertoire.  

Only one pathway, oxidative phosphorylation (OxPhos), was significantly upregulated in 

SKMEL28 cells. However, all cell lines presented peptides derived from the OxPhos pathway 

that increased significantly with palbociclib treatment, though this effect was more prominent 

with low-dose treatment in SKMEL5, IPC298, and SKMEL2 cells, in contrast to the results of 

SKMEL28 cells (Figure 3-14-B). OxPhos has been shown to increase with CDK4/6 inhibition 

due to increased ATP levels and mitochondrial mass, elevating metabolic activity. Comparably, 

all samples showed elevated mitochondrial levels following treatment, suggesting that enriched 

pMHC presentation of OxPhos derived peptides reflects a change in the metabolic cell state 

(Figure 3-15-A). 

 

 

Figure 3-14. Interaction networks of enriched E2F proteins. String network of protein-protein interactions 
of all source proteins from E2F peptides (A) significantly decreasing with 10 μM palbociclib, and OxPhos 
peptides (B) significantly increasing with 1 μM palbociclib for all cell lines except SKMEL28, where 
peptides from 10 μM are depicted. Node color corresponds to cell line. 
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Because alterations to the pMHC repertoire align with previously characterized biological 

responses to CDK4/6 inhibition, we tested whether changes in RNA expression could predict 

the quantitative immunopeptidome changes.  No bulk correlation (r2=0.04) was observed 

between pMHC expression and RNA expression (Figure 3-15-B). This was unsurprising, as 

many mechanisms beyond gene expression regulate pMHC presentation, including protein 

synthesis, degradation, post-transitional modifications, processing, and more. Despite this poor 

correlation, significantly enriched gene sets in the immunopeptidome were also present in our 

RNA sequencing analysis (Figure 3-15-C). While E2F pMHCs significantly depleted in SKMEL5 

cells correlated with significantly decreased gene expression of the same source proteins, 

(Supplementary Figure 3-6-B), only five of the 15 positively enriched OxPhos peptides 

displayed significantly higher gene expression with palbociclib treatment, with three decreasing 

in expression, and seven remaining unchanged (Figure 3-15-D). Collectively, these data 

suggest that while changes in gene expression and pMHC repertoires map to the same 

biological pathways, individual gene expression changes are not necessarily predictive of 

alterations in the immunopeptidome. 
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Figure 3-15. pMHC changes reflect known response to CDK4/6i. A Quantification (n=9) of MitoTraker 
green intensity normalized to cell number following 72h palbociclib treatment. Data is represented as a 
box and whiskers plot with whiskers displaying minimum and maximum signal. Significance was 
determined using Dunnett’s multiple comparisons test for each condition vs. DMSO. *p < 0.05, ****p < 
0.0001. B Correlation between log2 fold change (FC) of (palbociclib/DMSO) for RNA expression (y-axis) 
and pMHC presentation (x-axis) of SKMEL5 cells treated for 72h with 1 μM palbociclib, r2 = 0.04. FC is 
calculated from the mean intensity of n=3 biological replicates per condition. C Significantly enriched 
pathways using RNA-seq data (p < 0.05, q < 0.25). Annotated pathways reflect pathways also identified 

in the immunopeptidome analysis (blue), and those that match with previous reported data (red).263 D 
Log2(FC) for SKMEL5 OxPhos peptides significantly increasing (p < 0.05, blue) with 1 μM palbociclib, and 
matched log2(FC) of RNA expression (black). Significant differences in RNA-expression (palbociclib vs. 
DMSO) is indicated **p < 0.01, ****p < 0.0001 (Wald test, BH adjusted). 

 

3-2-6 IFN-y induced pMHC alterations are distinct from palbociclib  
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Previous work has demonstrated that CDK4/6 inhibition stimulates interferon signaling, 

augmenting antigen presentation levels.15 We also observed upregulation of IFN-γ response 

genes with low-dose palbociclib treatment, as well as increased expression of genes relating to 

antigen presentation (Figure 3-16Error! Reference source not found.-A). Consequently, we 

tested whether direct IFN-γ stimulation would shift the repertoire similarly to CDK4/6 inhibition. 

Cells were stimulated with DMSO or 10 ng mL-1 IFN-γ for 72h and the resulting pMHC 

repertoires were quantified using our multiplexed hipMHC platform. IFN-γ increased surface 

pMHC levels greater than 2x for each cell line (Figure 3-16-B), a trend that was reflected in the 

immunopeptidome, as nearly every identified pMHC increased in presentation with stimulation 

(Figure 3-16-C-D).  
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Figure 3-16. pMHC repertoire response to IFN-γ. A RNA-seq (black) and pMHC (blue) log2 fold change 
(FC) of (1 μM Palbociclib/ DMSO), calculated from the mean intensity of n=3 biological replicates per 
condition, for antigen processing genes. B Surface HLA expression via flow cytometry (left) of cells 
treated with 72h IFN-γ shown as log2(FC) (IFN-γ/DMSO). Errors bars represent +/- SD, biological 
replicates are n=8, 11, 9, and 9 for SKMEL5, SKMEL28, SKMEL2, and IPC298, respectively. C 
Immunopeptidome log2(FC) (right), dotted lines display quartiles, and mean fold changes (solid line) are 
2.42, 2.50, 2.08, and 3.04 for SKMEL5, SKMEL28, SKMEL2, and IPC298 cells, respectively. D Volcano 
plots of the IFN-γ regulated peptides. Data points display the log2 fold change (FC) of IFN-γ stimulated 
pMHC abundances over DMSO versus significance (mean adjusted p-value, unpaired two-sided t-test). 

 

To determine the similarity of response to palbociclib treatment, we again performed 

GSEA against the hallmark gene sets. The most significantly upregulated pathway in SKMEL5 

cells with IFN-γ stimulation was the “IFN-γ response,” including peptides derived from proteins 

involved in antigen processing like STAT1 and HLA-A, in line with previous findings (Figure 
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3-17-A,B).165 In fact, IFN-γ response was the top enriched pathway in every cell line, reiterating 

that the cellular response to stimulus is reflected in quantitative differences in pMHC 

presentation, and that IFN-γ related peptides are preferentially upregulated by IFN-γ stimulation 

(Figure 3-17-C). Other pathways such as G2M checkpoint and mitotic spindle were positively 

enriched in IFN-γ stimulated cells, in contrast to the results of palbociclib treatment.  

 

 

Figure 3-17. IFN-γ-related pMHCs upregulated following IFN-γ stimulation. A Significantly enriched 
pathways in SKMEL5 cells with 72h IFN-γ, q < 0.25, *p < 0.05, **p < 0.01. B Enrichment plot of IFN-γ 
response enrichment in SKMEL5 cells displays running enrichment score (green, right y-axis), and the 
log2(FC) (left y-axis) vs. rank (x-axis) for each peptide (grey). Open circles show significantly enriched 
IFN-γ peptides. C Significantly enriched pathways of IFN-γ stimulated cells. Plots represent normalized 
enrichment score (NES), q < 0.25, *p < 0.05, **p < 0.01, ***p < 0.001. No pathways were negatively 
enriched. 

 

Although the cell lines showed differential pMHC pathway enrichment upon CDK4/6 

inhibition with palbociclib and IFN-γ stimulation, we tested whether any pMHCs or source 

proteins were commonly enriched in response to these perturbations. In SKMEL5 cells we 
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identified just 20 peptides and 31 source proteins significantly enriched in both conditions (Fig. 

6f-g), which primarily map to the cytoplasm and contain multiple ribosomal and translation 

initiation proteins frequently overrepresented in immunopeptidomic datasets (i.e., DRiPs) (Fig. 

6h).178 These data demonstrate that while CDK4/6 inhibition may induce an IFN-γ response, 

stimulating cells with IFN-γ does not recapitulate the distinct peptide repertoire alterations 

observed with palbociclib treatment. Instead, IFN-γ stimulation alters the repertoire by 

augmenting the presentation of IFN-γ related peptides.  

 

 

Figure 3-18. Minimal overlap in IFN-γ and CDK4/6i induced pMHC changes. A Volcano plot of IFN-γ 
induced changes in SKMEL5 cells. Peptides are presented as the log2(FC) versus mean adjusted p-value 
(unpaired two-sided t-test). Red points represent peptides significantly enriched, (p < 0.05, fold change > 
2.42). B Venn diagram of significantly enriched source proteins (black) or peptides (grey) between IFN-γ 
and 1 μM palbociclib treated SKMEL5 cells. C Protein-protein interaction network of significantly enriched 
source proteins in common, annotated by enriched gene ontology cellular components (CC) and/or 
biological professes (BP). 

 

3-3 Discussion 

The addition of hipMHCs as internal standards improves relative quantitative accuracy 

for both LF and multiplexed labeled analyses, though multiplexed labeling with TMT showed 

superior accuracy and peptide binding specificity and yielded a higher number of quantifiable 
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unique peptides using equivalent sample input. These internal hipMHC standards, which travel 

through the entire pMHC workflow, also account for variation across samples and provide an 

estimate for dynamic range suppression, which varies across peptides. We demonstrate that 

hipMHC correction alters the biological interpretation of quantitative pMHC repertoire changes, 

even in a relatively simple, in vitro system. Utilizing hipMHCs will be increasingly beneficial in 

accounting for variation in sample losses across heterogenous in vivo samples, and in large 

studies to compare and correct quantitation across many multiplexed analyses or clinical sites. 

While we use TMT 6-plex in our analyses, this method is compatible with other isobaric labeling 

strategies, including iTRAQ, TMT 11-plex and TMTpro, to analyze up to 16 samples 

simultaneously. 

 For rapid profiling of immunopeptidome changes, we elected to use minimal sample 

input, making this protocol easily translatable for in vivo-derived tissue (e.g., clinical and animal) 

samples. While further reductions in sample input mirroring the amount obtained with a 14-

gauge needle biopsy225 resulted in a notable decrease in the number of unique peptides 

identified (Supplementary Fig. 1F), we believe advancements in the speed and sensitivity of 

mass spectrometers, as well as in sample preparation techniques to reduce sample losses will 

enable pMHC profiling at even lower sample inputs in the future. Alternatively, using this same 

general platform of hipMHCs and isobaric multiplex labeling, the sample amount could be 

increased and coupled with fractionation for deeper sequencing of the pMHC repertoire, 

including neoantigen identification.162 

In addition to improved relative quantification, we also demonstrated the utility of 

hipMHCs for pMHC absolute quantification by generating an embedded multipoint standard 

curve. Using targeted mass spectrometry to detect attomole levels of antigen from just 1x107 

cells and regressing this signal against the titrated hipMHC standard, we were able to extract 

accurate absolute quantification in terms of copies per cell for two pMHC’s with ~20-fold 
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difference in abundance.  While absolute quantification is limited to just two peptides in this 

study, applying advanced targeted MS methods could enable the quantitation of hundreds of 

peptides in a single analysis.141 The ability to readily determine the absolute quantification of 

detectable antigens of interest without the need for a pMHC-specific antibody will aid in targeted 

immunotherapy design.  For instance, peptides of lower abundances may be better suited for 

engineered TCR-based therapies, as TCRs have been shown to be incredibly sensitive with as 

few as one pMHC complex being capable of initiating detectable T cell activation.284 

Alternatively, antibody-based therapies targeting specific pMHCs, e.g., bi-specific T cell 

engagers (BiTES) or antibody-drug conjugates (ADCs), may benefit from higher antigen 

expression levels, though results vary across antigen targets and antibody affinities.285   

Moreover, absolute quantification of pMHC expression can help to untangle the 

biological relationships among antigen processing, epitope abundances, immunogenicity, and 

off-target toxicity (e.g., tumor vs. non-tumor abundance).  

It is worth noting that one existing restriction to using hipMHCs is the commercial availability of 

UV-mediated MHC monomers and ELISA control reagents, which are limited to a handful of 

common human class I alleles. While matched allele hipMHCs are not required for 

normalization correction if MHC molecules are isolated using a pan-specific antibody, they are 

necessary for accurate absolute quantification with embedded standard curves.  An analogous 

technology, disulfide-stabilized HLA molecules, could be used in place of UV-mediated 

exchange.286 These HLA-B2M complexes show increased stability and higher exchange 

efficiency of lower-affinity peptides, potentially eliminating the need for an ELISA to quantify 

exchange efficiency and simplifying MHC refolding to expand this protocol to other alleles and 

species. 

We applied our quantitative multiplexed hipMHC normalization to determine the pMHC 

repertoire response to CDK4/6 inhibition with palbociclib treatment in melanoma.  These results 
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indicate that extracellular changes in pMHC abundance are reflective of the intracellular 

response to CDK4/6 inhibition. Moreover, palbociclib treatment increased the presentation of 

TAAs and peptides derived from metabolic processes. Recently, high tumor antigen and 

metabolic protein expression levels have been shown to be predictive of checkpoint inhibitor 

response in melanoma, suggesting that palbociclib could be used in conjunction with checkpoint 

blockade or TIL-based therapies to increase tumor immunogenicity.287 As an alternate 

therapeutic strategy, peptide antigens whose surface expression was selectively increased by 

palbociclib could be utilized for targeted immunotherapy, either alone or in combination.  

Indeed, the landscape of clinical trials exploring combination treatment regimens 

coupling checkpoint blockade with other therapies is rapidly expanding.43,288,289 Quantifying the 

molecular consequences of these combination regimes with our platform could provide insight 

into these trials and enable the informed design of new therapeutic combinations, potentially 

with targeted immunotherapies.   Taken together, our relative and absolute quantitative 

immunopeptidomic data demonstrate the utility of quantitative immunopeptidomics in evaluating 

the pMHC repertoire response to therapy. The multiplexed nature of this platform allows for 

analyses of many samples in a short timescale, an important feature in the context of clinical 

trials.  Further analyses of pMHC repertoire changes will be useful in understanding the order 

and timing of therapies to achieve optimal success and may enable predictions as to how to 

tune the immunopeptidome to be most applicable to immunotherapy targeting.  
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3-4 Materials and methods 

3-4-1 Human cell lines 

SKMEL5, SKMEL28, and MDA-MB-231 cell lines were obtained from ATCC [ATCC 

HTB-70, ATCC HTB-72, and HTB-26, respectively] and maintained in DMEM medium 

(Corning). IPC298 and SKMEL2 cells were provided by Array Biopharma and maintained in 

RPMI 1640 (Gibco) and MEM-a (Gibco) mediums, respectively. All medium was supplemented 

with 10% FBS (Gibco) and 1% penicillin/streptomycin (Gibco). Cells were routinely tested for 

mycoplasma contamination, and maintained in 37 °C, 5% CO2.  

 

3-4-2 Phenotypic assays 

Half-maximal inhibitory concentrations (IC50) of palbociclib (Selleckchem, PD-0332991) 

were determined for each cell line using CellTiter-Glo luminescent cell viability assay 

(Promega). Cells were seeded at density of 10,000 (SKMEL2, SKMEL28, IPC298) or 5,000 

(SKMEL5) cells/well in a 96 well plate and allowed to adhere overnight. Cells were then treated 

with palbociclib or DMSO as a vehicle control in fresh medium for 72h and assayed. Data was 

acquired using a Tecan plate reader Infinite 200 with Tecan icontrol version 1.7.1.12. IC50 

values were calculated using a 4-parameter logistic curve in Prism 8.4.1. 

Mitochondrial content was measured using a fluorescent mitochondrial stain. Cells were 

seeded at a density of 20,000 cells per well in a 24 well plate and allowed to adhere overnight. 

Cells were then treated with 1 μM or 10 μM palbociclib or DMSO vehicle control in fresh 

medium for 72h. Cells were assayed by incubating 200 nM of MitoTracker Green FM (Thermo 

Scientific) and a 1:1000 dilution of NuclearID Red DNA stain (Enzo Life Biosciences) for 15 

minutes in serum free medium at 37 °C. After staining medium exchange, cells were imaged 

and analyzed using the Incucyte live cell analysis system (IncuCyte Zoom version 6.2.9200.0, 
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Essen BioScience). The integrated intensity of MitoTracker dye was calculated for each image 

(n=3 experimental replicates, n=3 images per sample) and divided by the number of cells 

(counted using Nuclear counterstain) to determine the mitochondrial intensity per cell. A one-

way ANOVA followed by Dunnett’s multiple comparisons statistical test was performed in Prism 

to compare significance of treated cells versus vehicle DMSO control. Significance values 

represent multiplicity-adjusted p-values.   

 

3-4-3 Flow cytometry 

For analysis of cells by flow cytometry, cells were lifted with 0.05% Trypsin-EDTA and 

106 cells/mL were spun at 300 g for 3 minutes, washed with ice cold PBS supplemented with 1% 

FBS and 0.1% sodium azide (flow buffer) and incubated with fluorophore-conjugated antibody at 

0.5 μg mL-1 in flow buffer for 30 minutes on ice. After incubation, cells were washed again, and 

resuspended in flow buffer plus 5 μL of propidium iodide staining solution (10 μg mL-1, 

Invitrogen) per sample. Analyses were performed on an LSRII (BD Biosciences) and data 

analyzed using FlowJo (version 10.6.2). All antibodies were purchased from Biolegend: Alexa 

Fluor 488 HLA-A, B, C, clone W6/32 [cat # 311413], Alexa Fluor 488 anti-H2A.X Phospho 

(Ser139), clone 2F3 [cat # 613406]. The gating strategy used for all experiments is provided in 

Supplementary Figure 3-7. 

 

3-4-4 UV-mediated peptide exchange for hipMHCs 

UV-mediated peptide exchange was performed using recombinant, biotinylated Flex-T 

HLA-A*02:01 monomers (BioLegend), using a modified version of the commercial protocol. 

Briefly, 4 μL of 500 μM peptide stock, 2 μL of Flex-T monomer, and 32 μL of 1X PBS were 

combined in a 96-well U bottom plate. On ice, plates were illuminated with ultraviolet light (365 
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nm) for 30 minutes, followed by a 30 minute incubation at 37 °C protected from light. 

Concentration of stable complexes following peptide exchange was quantified using the Flex-T 

HLA class I ELISA assay (Biolegend) per manufacturer’s instructions for HLA-A*02:01. ELISA 

results were acquired using a Tecan plate reader Infinite 200 with Tecan icontrol version 

1.7.1.12.  

 

3-4-5 Peptide MHC isolation  

Cultured cells were seeded in 10 cm plates, allowed to adhere overnight, and treated for 

72h with palbociclib, 10 ng mL-1 human recombinant IFN-γ (ProSpec Bio), or DMSO vehicle 

control. At the time of harvest, cells were washed with 1x PBS, and lifted using 0.05% Trypsin-

EDTA (Gibco). Cells were pelleted at 500 g for 5 minutes, washed twice more in 1x PBS, and 

pelleted again. Cells were resuspended in 1 mL lysis buffer [20 nM Tris-HCl pH 8.0, 150 mM 

NaCl, 0.2 mM PMSO, 1% CHAPS, and 1x HALT Protease/Phosphatase Inhibitor Cocktail 

(Thermo Scientific)], followed by brief sonication (3 x 10 second microtip sonicator pulses) to 

disrupt cell membranes. Lysate was cleared by centrifugation at 5000 g for 5 minutes and 

quantified using bicinchoninic acid protein assay kit (Pierce).  

Peptide MHCs were isolated from 1x107 cells per condition with immunoprecipitation (IP) 

and size exclusion filtration, as previously described.169 Briefly, for each condition 0.5 mg of pan-

specific anti-human MHC Class I (HLA-A, HLA-B, HLA-C) antibody (clone W6/32, Bio X Cell [cat 

# BE0079]) was bound to 20 μL FastFlow Protein A Sepharose bead slurry (GE Healthcare) for 

3 hours rotating at 4 °C. Beads were washed 2x with IP buffer (20 nM Tris-HCl pH 8.0, 150 mM 

NaCl) prior to lysate and hipMHC addition, and incubated rotating overnight at 4 °C to isolate 

pMHCs. Beads were washed with 1x TBS and water, and pMHCs were eluted in 10% formic 

acid for 20 minutes at room temperature (RT). Peptides were isolated from antibody and MHC 
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molecules using a passivated 10K molecule weight cutoff filters (PALL Life Science), 

lyophilized, and stored at -80 °C prior to analysis.  

 

3-4-6 pMHC labeling with Tandem Mass Tags and SP3 cleanup 

For labeled analyses, 100 μg of pre-aliquoted Tandem Mass Tag 6-plex (TMT) was 

resuspended in 30 μL anhydrous acetonitrile, and lyophilized peptides were resuspended in 100 

μL 150 mM triethylammonium bicarbonate, 50% ethanol. Both were gently vortexed, centrifuged 

at 13,400 g for 1 minute, and combined. TMT/peptide mixtures were incubated on a shaker for 1 

hour at RT, followed by 15 minutes of vacuum centrifugation. After combining labeled samples, 

we washed tubes 2x with 25% acetonitrile (MeCN) in 0.1% acetic acid (AcOH) and added it to 

the labeled mixture, which was subsequently centrifuged to dryness.  

Sample cleanup was performed using single-pot solid-phase-enhanced sample 

preparation (SP3) as previously described.290 Briefly, a 1:1 mix of hydrophobic/hydrophilic Sera-

mag carboxylate-modified speed beads (GE Healthcare) was prepared at a final bead 

concentration of 10 μg μL-1. Labeled samples were resuspended in 30 μL of 100 mM 

ammonium bicarbonate (pH 7-8) and added to 500 μg of bead mix with 1 mL MeCN. Peptides 

were allowed to bind for 10 minutes at RT, washed 2x with MeCN, and eluted with 2% DMSO 

for 1 minute of sonication in a bath sonicator. TMT-labeled peptides were transferred to a fresh 

microcentrifuge tube and centrifuged to dryness.  

 

3-4-7 Synthetic peptide standards 

Heavy leucine-containing peptides were synthesized at the MIT Biopolymers and 

Proteomics Lab using standard Fmoc chemistry using an Intavis model MultiPep peptide 

synthesizer with HATU activation and 5 μmol chemistry cycles. Starting resin used was Fmoc-
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Amide Resin (Applied Biosystems). Cleavage from resin and simultaneous amino acid side 

chain deprotection was accomplished using: trifluoroacetic acid (81.5% v/v); phenol (5% v/v); 

water (5% v/v); thioanisole (5% v/v); 1,2-ethanedithiol (2.5% v/v); 1% triisopropylsilane for 1.5 

hr. Standard Fmoc amino acids were procured from NovaBiochem and Fmoc-Leu (13C6, 

15N) was obtained from Cambridge Isotope Laboratories.  

Peptides were quality controlled by mass spectrometry and reverse phase 

chromatography using a Bruker MiroFlex MALDI-TOF and Agilent model 1100 HPLC system 

with a Vydac C18 column [300 angstrom, 5 micron, 2.1 x 150 mm] at 300 µL/min monitoring at 

210 and 280 nm with a trifluoroacetic acid/ H2O/MeCN mobile phase survey gradient. All 

peptides contain c-terminal amidation, with the exception of the BCAP31 and DDX5 peptides 

used for absolute quantification. For amidated peptides, we observe c-terminal amidation and c-

terminal carboxyl groups on peptides synthesized with an amide group. Therefore, both are 

considered in downstream analyses. 

 

3-4-8 RNA sequencing 

RNA was isolated from 10 cm plates of SKMEL5 cells with 3 biological replicates per 

condition. Prior to harvest, cells were washed with ice-cold 1X PBS over ice and lysed in TRIzol 

reagent (Thermo Fisher Scientific). Total RNA was isolated from each sample using Direct-zol 

RNA miniprep kit (Zymo Research) according to manufacturer’s instructions.  

RNA were confirmed for quality using the Agilent Fragment Analyzer and 300 ng of 

material was polyA-selected using NEBNext Poly(A) mRNA Magnetic Isolation Module (E7490) 

modified to include two rounds of polyA binding and 10 minute incubations. cDNA was 

generated using the NEB Ultra II directional kit (E7760) following manufacturers protocol using 

12 cycles of PCR and an 0.9X SPRI clean. The resulting libraries were quality assessed using 
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the Fragment Analyzer and quantified by qPCR prior to be sequenced on the Illumina 

HiSeq2000. The 40nt single-end reads with an average depth of 5 million reads per sample 

were sequenced for all conditions. 

RNAseq reads were aligned to the human transcriptome prepared with the hg38 primary 

assembly and the Ensembl version 95 annotation using STAR version 2.5.3a.291 Gene 

expression was summarized with RSEM version 1.3.0 and SAMtools version 1.3.292,293 

Differential expression analysis was performed with DESeq2 version 1.24.0 running under R 

version 3.6.0 with normal log fold change shrinkage.294 Significance values (adjusted p value) 

are determined using the Wald test, and are multiple hypothesis corrected using Benjamini-

Hochberg (BH) method. The resulting data were parsed and assembled using Tibco Spotfire 

Analyst version 7.11.1. 

 

3-4-9 Mass spectrometry data acquisition 

For MS analysis, peptides were resuspended in 0.1% acetic acid and loaded on a 

precolumn packed in-house (100 μm ID × 10 cm packed with 10 μm C18 beads (YMC gel, 

ODS-A, 12 nm, S-10 μm, AA12S11)). The precolumn was then washed with 0.1% acetic acid 

and connected in series to an analytical capillary column with an integrated electrospray tip (~1 

μm orifice) with 5μM C18 beads, prepared in house ((50 μm ID × 12 cm with 5 μm C18 beads 

(YMC gel, ODS-AQ, 12 nm, S-5 μm, AQ12S05)).  

Peptides were eluted using a 130 minute gradient with 10-45% buffer B (70% 

Acetonitrile, 0.2M acetic acid) from 5-100 minutes and 45-55% buffer B from 100-120 minutes at 

a flow rate of 0.2 mL/min for a flow split of approximately 10,000:1. Peptides were analyzed 

using a Thermo Q Exactive HF-X Hybrid Quadrupole-Orbitrap mass spectrometer, and data 

was acquired using Thermo Fisher Scientific Xcalibur version 2.9.0.2923. Standard mass 
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spectrometry parameters were as follows: spray voltage, 2.5 kV; no sheath or auxiliary gas flow; 

heated capillary temperature, 250 °C. 

The HF-X was operated in data-dependent acquisition (DDA) mode for LF and TMT 

analyses. LF: Full-scan mass spectrometry spectra (mass/charge ratio (m/z), 350 to 2,000; 

resolution, 60,000) were detected in the Orbitrap analyzer after accumulation of ions at 3e6 

target value with a maximum IT of 50 ms. For every full scan, the top 20 most intense ions were 

isolated (isolation width of 0.4 m/z) and fragmented (collision energy (CE): 28%) by higher 

energy collisional dissociation (HCD) with a maximum injection time of 300 ms, AGC target 1e5, 

and 60,000 resolution. Charge states < 2 and > 4 were excluded, and dynamic exclusion was 

set to 30 seconds. TMT: Full-scan mass spectrometry spectra (mass/charge ratio (m/z), 400 to 

2,000; resolution, 120,000) were detected in the Orbitrap analyzer after accumulation of ions at 

3e6 target value with a maximum IT of 50 ms. For every full scan, the 20 most intense ions were 

isolated (isolation width of 0.4 m/z) and fragmented (collision energy (CE): 29%) by higher 

energy collisional dissociation (HCD) with a maximum injection time of 350 ms, AGC target 1e5, 

and 30,000 resolution. Charge states < 2 and > 4 were excluded, and dynamic exclusion was 

set to 60 seconds. To ensure fragmentation of normalization standards, one fraction may be 

analyzed using targeted selected ion monitoring (t-SIM) used in tandem with DDA with an 

inclusion list of hipMHC standards. For absolute quantification, the HF-X was operated in DDA 

mode with inclusion list enabled. Parameters mirror those of the TMT DDA method, with several 

exceptions. Full scan mass spectra m/z range: 300-1200, maximum MS2 injection time 200 ms, 

only charge states of 2 and 3 were considered. Inclusion list masses and charge states are 

located in (Table 3-1).  

 

3-4-10 Mass spectrometry search space and filtering 
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All mass spectra were analyzed with Proteome Discoverer (PD, version 2.2) and 

searched using Mascot (version 2.4) against the human SwissProt database. No enzyme was 

used, and variable modifications included oxidized methionine for all analyses and 

phosphorylated serine, threonine, and tyrosine for cell treatment analyses. Treatment analyses 

were also searched against a previously published catalog of over 40,000 predicted antigenic 

mutations in cancer cell lines.295 Heavy leucine-containing peptides were searched for 

separately with heavy leucine (+7), c-terminal amidation, and methionine oxidation as dynamic 

modifications against a custom database of the synthetic peptide standards. All analyses were 

filtered with the following criteria: search engine rank =1, isolation interference ≤ 30%, and 

length between 8 and 15 amino acids. Label-free analyses were filtered with ion score ≥ 20, and 

labeled samples were filtered with ion score ≥ 15 and percolator q-value ≤ 0.05. Area under the 

curve (AUC) quantitation was performed using the minora feature detector in PD with match 

between runs enabled and filtered for ion score ≥ 20. For targeted, absolute quantification 

analyses, total ion count (TIC) values for each scan and peak intensities were extracted using 

Skyline (version 19.1.0.193).139 

 

3-4-11 Mass spectrometry data analysis with hipMHC correction 

For LF analyses, correction parameters were determined by calculating the ratio of AUC 

intensities in each sample against a reference sample and taking the mean across hipMHCs. 

For TMT-labeled samples, ratios against a reference channel (usually TMT126) were calculated 

and the median of all ratios for correction hipMHCs was used to determine the final correction 

parameters. Only PSMs of heavy leucine-coded peptides with an average reporter ion intensity 

within 10-fold of the interquartile range of endogenous PSM reporter ion intensities were used 

for correction, as we observed drift in the correction factors when PSM TMT intensities were 
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well beyond endogenous levels. For absolute quantification analyses, correction factors were 

generated as described for TMT analyses, and used to normalize maximum peak intensity 

values for DDX5 and BCAP31. Notably, with mean fold changes greater than 2x between 

samples (ex. IFN-γ stimulation), in our hands hipMHCs are no longer able to correct between 

conditions despite narrow isolation window (0.4 m/z). This inaccuracy may be due to co-

isolation, as the calculated correction factors reflect median fold-changes of endogenous 

peptides. In this case, we generated correction factors for each treatment condition separately.   

Correction factors were applied to AUC values in label-free analyses for all peptides that 

were quantifiable across samples.  For labeled samples, ion intensities of PSMs for each unique 

peptide across analyses of the same sample were summed, after which normalization factors 

were applied. To evaluate differences between conditions, the log2 transformed ratio of 

arithmetic mean intensity for drug- and DMSO-treated samples (n=3) was calculated. To 

determine if peptides were significantly increasing, an unpaired, 2-sided t-test was performed, 

and peptides with p £ 0.05 were considered significantly increasing. To evaluate which peptides 

were significantly enriched above the mean, treated samples were mean centered by dividing 

the ion intensity of each peptide by the mean fold-change across all peptides, after which a 

student’s 2-tailed t-test was performed on adjusted values. Peptides with a mean-adjusted p-

value £ 0.05 were considered significantly enriched. Mean centering was not performed on 

samples where the mean log2 fold change was between -0.07 and 0.07.  Data analyses were 

performed using Matlab version R2019b, and Microsoft Excel version 16.34. 

 

3-4-12 Peptide MHC binding affinity 

Binding affinity of pMHCs was estimated using NetMHCpan-4.0 against each cell line’s 

allelic profile (Supplementary Fig. 3k).99,280 Only 9-mers were evaluated, and the minimum 
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predicted affinity (nM) of each peptide was used to assign peptides to their best predicted allele. 

The threshold for binding was set to 500 nM. Binding motifs for the alleles were generated using 

9-mers with predicted affinity < 500nM, and visualized using WebLogo 2.8.2.296 To estimate the 

proportion of peptides predicted to be binders by chance, 10 sets of 2,000 random 9-mers were 

created by selecting with equal probability any amino acid (aa) more than 8aa from a protein C-

terminus as a start site from human proteins in SwissProt version 2019_2, and binding affinity 

prediction was performed against the alleles of MDA-MB-231 cells. Data presented in Fig. 2d is 

a representative example.  

 

3-4-13 Enrichment analyses 

For pMHC pathway enrichment analyses, gene names from peptide source proteins 

were extracted and rank ordered according to the average log2 fold change over DMSO treated 

cells. In cases where more than one peptide mapped to the same source protein, the 

maximum/minimum was chosen, depending on the directionality of enrichment analysis. For 

RNAseq data, gene sets were rank ordered according to the mean log2 fold change value with 

only protein encoding genes considered. We utilized gene set enrichment analysis (GSEA) 

4.0.3 pre-ranked tool against the Molecular Signatures Database hallmarks gene sets with 1000 

permutations, weighted enrichment statistic (p=1), and a minimum gene size of 8 for pMHC 

analyses and 15 for RNAseq.255,281,282 Results were filtered for FDR q-value £ 0.25, and nominal 

p-value £ 0.05.  

Significantly enriched peptides (mean-adjusted p-value £ 0.05) were analyzed using 

STRING v11 for Gene Oncology (GO) term enrichment against biological processes and cellular 

components datasets.256,297 Enriched categories were filtered according to FDR-q value £ 0.05. 
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3-4-14 Data availability 

RNA-sequencing data have been deposited into the NCBI Gene Expression Omnibus 

(GSE144373). The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier 

PXD017407. 
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3-6 Supplementary Information 

 

Supplementary Figure 3-1. A LF analyses (n=5 technical replicates) of MDA-MB-231 cells show poor 
overlap of quantifiable peptides observed across multiple analyses (orange) compared to the number of 
peptides identified in any given single analysis (black). B Number of unique peptides identified using 
different amounts of MDA-MB-231 cells as sample input. Values represent a single analysis using 20% of 
the peptide elution. 

 

 

 

 

Supplementary Figure 3-2. Correlation of each peptide’s coefficient of variation (CV) versus abundance 
for LF (left) and TMT-labeled (right) analyses. 
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Supplementary Figure 3-3. Calibration curve of the DDX5 peptide (KLDVGNAEV) added into 1x107 
MDA-MB -231 cells from 0.1 fmol to 1 fmol. 0.1 fmol corresponds to ~6 copies per cell. 

 
 

 

Supplementary Figure 3-4. A Applying hipMHC correction factors decreases the coefficient of variation 
in both DMSO and 1 μM palbociclib SKMEL5 cells, where data are presented as mean values +/- SD for 
n=3 biological replicates. B The titrated peptide, SVVESVFKL, displays 3.6x dynamic range suppression. 
C Length distribution of peptides identified in each cell line and treatment. Data is represented as % of 
total peptides identified. D Predicted binding affinity of 9-mer peptides in SKMEL5 cells with DMSO or 1 
μM palbociclib. 93.3% have a predicted affinity of <500 nM. 
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Supplementary Figure 3-5. Class I allelic profiles of each cell line. 

 

 

 

 
 
Supplementary Figure 3-6. A Histogram of γ-H2AX levels determined by flow cytometry in cells treated 
with DMSO or 1 μM / 10 μM palbociclib for 72h. Data is represented as % of maximum signal, and results 
are representative of those obtained in a second independent experiment. B Log2 fold change (FC) for 
SKMEL5 E2F peptides significantly decreasing in presentation (blue) with 10 μM palbociclib for 72h and 
matched RNA expression of SKMEL5 cells treated with 1 μM palbociclib for 72h (black). 
Immunopeptidomics and RNA-sequencing experiments each contained n=3 biological replicates for each 
condition. RNA sequencing was not performed on SKMEL5 cells treated with 10 μM palbociclib.  
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Supplementary Figure 3-7. Gating strategy for all flow cytometry experiments. FSC-A/SSC-A gating was 
used to eliminate debris, and doubles were discarded with FSC-W/FSC-H gating followed by SSC-W and 
SSC-H gating. Living cells were gated by propidium iodide exclusion using FSC-A/PerCP-CY5-5A. FITC 
positive cells were gated against TX-red, using unstained cells to distinguish FITC positive vs. FITC 
negative cells. 
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Tables 

Table 3-1. Peptides used for hipMHCs. L7 denotes heavy isotope labeled peptides with heavy leucine 
(+7), N denotes amidated peptides. 

 

 

 

 

 

 

 

 

 

 

 

  

m/z charge peptide 

723.9510 2 DDX5 

701.9200 2 BCAP31 

727.4596 2 DDX5-L7 

705.4276 2 BCAP31-L7 

615.3600 2 SLPEE 

615.8540 2 SLPEE-N 

631.8960 2 ALNE-N 

632.3890 2 ALNE 
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CHAPTER 4: MEK inhibition enriches TAA presentation in NRAS/BRAF 

mutant melanomas 

 

 

4-1 Introduction 

4-1-1 MAPK pathway mutation are key drivers in melanoma  

Melanomas arise from melanocytes, neural crest-derived cells that produce pigment, 

and are found in the skin, eyes, and other tissues throughout the body.298 Many different 

phenotypes of melanomas exist, but the most common cutaneous melanomas are categorized 

into two groups: chronically sun damaged (CSD) or non-CSD melanomas. UV rays are known 

to damage DNA in cells, resulting in gene mutations that are responsible for unchecked 

proliferation of melanocytes leading to cancer metastasis. Non-CSD melanomas may be due to 

a combination of factors including environmental and genetic influences. While melanomas 

account for less than one percent of skin cancer diagnoses, melanomas are responsible for the 

majority of skin cancer deaths.299 In the past, melanomas were treated with traditional 

chemotherapeutics including Dacarbazine, but achieved limited success due to low object 

response rates of ~20% and minimal impact on progression free survival (PFS).300  

In 2002, the Cancer Genome Project/Sanger Institute identified an activating mutation in 

the serine/threonine BRAF kinase in ~50% of melanoma patients, thereby revolutionizing the 

course of treatment strategies by enabling targeted therapeutic-based approaches. The 

identified mutation was a single amino acid substitution, switching a valine (V) to glutamic acid 

(E) at position 600 (e.g., V600E) in the BRAF kinase, a kinase present in the MAPK pathway.301 

Signaling through the MAPK pathway (i.e., Ras-Raf-MEK-ERK pathway) is critical for regulating 

the balance between melanocyte proliferation, differentiation, and survival, and dysregulation 
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occurring through mutations or other mechanisms can drive oncogenesis. While BRAF 

mutations at codon 600 are the most common, occurring in over 90% of reported instances, 

other RAF mutations have been implicated as oncogenic drivers, allowing for unchecked growth 

independent of upstream stimulation.302 The V600E mutation occurs on the activation loop of 

the BRAF kinase domain, locking BRAF into a constitutively active position, leading to hyper-

activation of the MAPK pathway as BRAF become insensitive to negative feedback and 

regulation.303 Other reported mechanisms of BRAF mutations implicated in melanoma 

progression include evasion of apoptosis and sentences, unchecked proliferation & migration, 

metastasis, as well as angiogenic and invasive phenotypes.304 

The second most common activating mutation occurs in NRAS, a small GTPase, which 

is mutated in ~20% of patients.305 NRAS mutations typically increase the ratio of active GTP-

bound RAS to the inactive GDP-bound RAS, leading to constitutive activation of downstream 

pathways that drive amplified proliferation and migration, and can give rise to therapeutic 

resistance. While a variety of mutations have been reported, over 80% frequently occur at 

codon 61 (Q61K).306307 Active NRAS also stimulates the MAPK pathway, along with the 

phosphatidylinositol 3-inase (PI3K/ protein kinase B (AKT) signaling pathways. While melanoma 

patients are typically stratified into the BRAF mutant, NRAS mutant, and wild type populations, it 

should be noted that other subgroups exist, including ~10% with a loss of PTEN which activates 

PI3K/AKT and 12% with a NF1 mutation, a negative regulator of RAS308–310. With a vast majority 

of patients harboring MAPK pathway mutations, much attention has been put into developing 

kinase inhibitors of mutant BRAF and downstream nodes such as MEK and ERK. 

 

4-1-2 Targeting MAPK driver mutations in BRAF mutant melanoma 

FDA approved BRAF small molecule kinase inhibitor therapies such as vemurafenib and 

dabrafenib both target V600E BRAF mutations by binding to the ATP pocket, and obstructing 
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BRAF activation which causes decreased proliferation and increased apoptosis in cell lines, 

along with tumor growth delay in mouse studies.311,312 Both of these compounds have shown 

impressive ~50% response rates in clinical trials for BRAF mutant patients with median PFS of 

5.1 to 5.3 months, and a median overall survival of 13.6 months.313 MEK inhibitor (MEKi) 

monotherapies such as trametinib had a lower response rate, though still an improvement over 

standard chemotherapy with PFS times of 4.8 months vs. 1.5 months.314 In BRAF patients, 

intrinsic resistance is rare (~10% of patients), but acquired resistance is almost universal with 

the majority of patients developing resistance within ~6 months of BRAF inhibitor (BRAFi) 

treatment.315 Similarly, 70% of MEKi monotherapy patients experienced disease progression 

within a year.313  

Many studies have investigated the resistance mechanisms associated with BRAF 

mutant melanoma patients on BRAF or MEK inhibitors, reactivation of ERK through NRAS 

mutations, or loss of the RAS suppressor NF1. Additionally, overexpression or mutation of MEK 

activators such as CRAF and COT have been shown to bypass BRAF inhibition.313,316 

Reactivation of the MAPK pathway through other receptor tyrosine kinases (RTKs) like PDGFR, 

MET, IGF-1R, and EGFR is found in relapsed melanomas as well. 

Activation of alternative signaling networks or reactivation of the MAPK pathway has 

prompted combination treatment with BRAF and MEK inhibitors in the hopes of delaying MAPK-

driven acquired resistance and to extend response rates. Dabrafenib and trametinib was the 

first combination in clinical trials, and phase II data yielded a PFS of 9.4 months on BRAFi/MEKi 

vs. 5.8 months for patients on dabrafenib monotherapy.19,314 Two subsequent phase III trials 

gave similarly encouraging results, with median PFS of ~11 months in both trials on the 

combination treatment, versus 7-8 months on dabrafenib monotherapy.317,318 Overall response 

rates also improved with combination therapy versus monotherapy, at ~70% versus ~50%, 

respectively. Intriguingly, sequential dosing with MEKi following progression on a BRAFi was not 
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a beneficial strategy, yielding a PFS of only 1.8 months, suggesting the dosing sequences is a 

critical for therapeutic efficacy.319 

While several other trials have been performed over the past decade with different MEK 

and BRAF inhibitors320, the best results to date were reported from the Phase III COLUMBUS 

trial combining binimetinib (MEKi) & encorafenib (BRAFi), reporting a 14.9 month median PFS 

versus 7.3 months on vemurafenib monotherapy.321 These combinations prolong responses, but 

unfortunately patients commonly develop resistance in 50% of patients within 9-10 months.320,322 

In fact, a 5-year follow up of the COMBI-d/v trials suggest that only one third of patients had 

durable responses to the MEKi/BRAFi combination.323 Mechanisms of resistance mirror those 

observed in monotherapy studies, including BRAF amplifications, MEK1/2 mutations and 

oncogenic NRAS mutations.324 Nevertheless, BRAF/MEK inhibitor combinations are now 

accepted as a standard of care treatment for BRAF-mutant advanced melanoma. Further 

investigation of biomarkers indicative of certain resistance mechanisms and exploring other 

combination therapy regimes may further enhance overall survival while decreasing or 

prolonging the emergence of resistance.  

 

4-1-3 Targeting MEK in NRAS mutant melanoma 

NRAS mutant melanoma patients have fewer options than BRAF mutant patients, as 

there are no approved targeted therapies presently available. NRAS mutant patients also 

appear to take on a more aggressive disease course than BRAF mutant patients, with thicker 

primary tumors, increased mitotic rate, and poorer overall survival.313 Current approaches are 

focused on targeting downstream signaling nodes from RAS, as RAS initiates the MAPK 

cascade through RAF, activating MEK and ERK. Blocking RAF in wild type or NRAS mutant 

tumors is ineffective, as BRAF inhibitors initiate a paradoxical activation of ERK signaling 
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through transactivation of CRAF dimerization.311,325 As a result, efforts to halt MAPK signaling 

have focused on MEK inhibition. 

First generation MEK inhibitors were promising in preclinical models, but yielded high 

toxicity and low objective response rates (~10%), conferring minimal clinical benefit.326 Newer 

MEKi show a more favorable safety profile, but clinical trials did not stratify by NRAS mutational 

status, instead only excluding BRAF mutant patients, and results showed no clinical benefit over 

standard chemotherapies.327,328 Third generation MEK inhibitors, including trametinib and 

binimetinib, have favorable pharmacokinetic profiles, though still have yet to demonstrate strong 

efficacy. A Phase I trial of trametinib showed no clinical benefit in NRAS mutant patients.329  

In 2016, Array BioPharma’s phase III clinical trial NEMO of binimetinib demonstrated an 

improved mean PFS of 2.8 months over dacarbazine (1.5 months).330 Still, only 41% of patients 

responded to the drug. Despite the statistically significant improvement of patients on 

binimetinib, overall survival (OS) did not improve and Array eventually withdrew its new drug 

application (NDA) due to a lack of observed clinical benefit.331 These findings have led to 

interest in combination therapies, including with CDK4/6 and PI3K inhibitors.305 In an ongoing 

clinical trial with ribociclib (CDK4/6i) plus binimetinib, 33% of patients demonstrating a partial 

response and 52% with no response. PI3K inhibitor combination results show minimal efficacy 

and high toxicity, despite promising pre-clinical studies.332 Taken together, the lack of approved, 

targeted therapies for NRAS-mutant patients underscores the substantial unmet need for 

NRAS-mutant patients. Consequently, immunotherapy is the recommended first-line treatment 

for NRAS mutant melanoma and is often used as second line or even first line in BRAF mutant 

melanoma treatment strategies.  
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4-1-4 Checkpoint blockade immunotherapy in melanoma  

The first attempt to use immunotherapy for advanced melanoma patients used high-

dose interleukin-2 treatment (HD IL-2), a cytokine known to induce T-cell activation and 

proliferation. Promising success was seen in mouse models of HD IL-2 treatment, but phase III 

clinical trials showed low response rates of ~6% and high toxicity, therefore is rarely used 

today.333–335 Identification of the immune checkpoints, cytotoxic T-lymphocyte antigen-4 (CTLA-

4) and programmed death 1/ligand-1 (PD-1/PD-L1), are the targets of current checkpoint 

blockade immunotherapies (CBI) today and have revolutionized melanoma standard of care. In 

antitumor immunity, a T-cell is first activated by binding an antigen presented by MHCs. A 

second stimulating signal is needed to initiate T-cell proliferation. CTLA-4 inhibits activation by 

binding to stimulatory molecules on antigen presenting cells.336 Similarly, PD-1 is an inhibitory 

receptor expressed on activated T-cells, and PD-L1 is its ligand expressed on epithelial, 

endothelial, and immune cells. These checkpoints serve to prevent the immune system from 

attacking healthy cells. Tumors are thought to exploit this regulatory function and express PD-L1 

to evade a T-cell response. CTLA-4 signals are required early in the lymph node during the 

initiation of an immune response, and PD-1 acts later at the tissue site to decrease T-cell 

activity.337  

The first therapeutic checkpoint inhibitors were monoclonal antibodies (mAbs) against 

CTLA-4, including ipilimumab which showed survival benefit in melanoma patients (57.5% PFS 

after 4 months of ipilimumab), leading to FDA approval in 2011.338 Unfortunately, treatment also 

resulted in significant and sometimes lethal autoimmune toxicity, likely due to the general 

immune activating nature of CTLA-4 inhibition.339  
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Soon thereafter, a mAb against PD-1, nivolumab, was developed and tested across a 

range of malignancies including colon and non-smell lung cancer, melanoma, and renal cell 

carcinoma, and showed promising tumor regression.340 Studies aimed at evaluating nivolumab 

in melanoma specifically demonstrated superiority over dacarbazine in BRAF wild-type patients 

(PFS 5.1 vs. 2.2 months).341 Nivolumab, along with a second PD-1 mAb, pembrolizumab, both 

demonstrated an improvement in toxicity profiles over anti-CTLA-4 therapies, and both were 

FDA approved in 2014.  

The differences in timing and location of CTLA-4 and PD-1 signals suggest co-targeting 

these checkpoints is non-redundant and potentially synergistic. In a 2015 Phase III clinical trial 

comparing combination nivolumab (PD-1 inhibitor) and ipilimumab (CTLA-4 inhibitor) versus 

monotherapy, results showed a median PFS of 11.5 with the combination, compared to 2.9 on 

ipilimumab and 6.9 months on nivolumab.342 In a separate study evaluating the same 

compounds in combination or with ipilimumab-monotherapy, BRAF wild-type tumors had a 

median PFS of 5.7 months vs. 2.8 with monotherapy, and BRAF V600E mutant patients had a 

median PFS of 8.5 months versus 2.7 on monotherapy.343 Despite conferring an additional 

clinical benefit, the combination was associated with high immune-related toxicity, drawing into 

question the feasibility of administer the combination therapy over either agent alone. Ultimately, 

a subset of melanoma patients have achieved remarkable and durable results on ICB therapy, 

not all patients respond (10-15% response rates with anti-CTLA-4 and 30-50% with anti-PD-1, 

50-60% with combo), and those that do suffer from toxicity and side effects.344 Furthermore, 

approximately half of patients treated with ICIs will develop resistance, either primary or 

acquired, and/or relapse within several years, with no accurate biomarkers to predict such a 

response.345,346 

As a result, there is a growing interest in combining checkpoint immunotherapy in 

synergistic combinations to improve patient response and expand the population benefiting from 
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the immunotherapy. Two primary avenues are being explored: combining ICB with other 

targeted immunotherapies such as anti-cancer vaccines, and with small molecule inhibitors for 

optimal anti-tumor efficacy. 

 

4-1-5 Immunotherapy + kinase inhibitors in melanoma 

 Due the inherent limitations of targeted therapy & immunotherapy namely that 

targeted tends to be associated with a high response rate but short term efficacy, and 

immunotherapies tend to have a low response rate with long term efficacy in patients who do 

respond, it has been proposed that the most effective strategy may be to combine the two.347 

This is especially true due to an increasing pool of evidence suggesting that oncogenes may 

affect the immune environment, and thus optimal combinations may prove synergistic.  

For example, BRAF V600E cell lines secrete immunosuppressive factors like IL-10, IL-6, 

and VEGF and suppressed TNF-a production by dendritic cells. These effects were reversed 

with MEK inhibition in vitro.32,348 Furthermore, BRAF inhibition on BRAF mutant cell lines and 

tumors have been found to upregulate antigen expression via major histocompatibility complex 

(MHC) expression, increase melanoma differentiation antigen expression, and elevated 

interferon gamma gene expression.349–351 BRAF and MEK inhibitors were shown to increase 

recognition of these antigens by antigen specific T lymphocytes, though the literature has 

conflicting findings on how MEK alters MHC expression.349,352 While an initial 2010 study found 

that MEK inhibition adversely impacts T-cell function, more recent studies have indicated that 

MEK inhibitors increase expression of MHCs, enhance antigen recognition by T-cells, and 

increase CD8+ T cell infiltration.31,315,353 Importantly, MEK inhibition did not alter HLA expression 

on normal peripheral blood mononuclear cells which suggests MEKi modulation is limited to 

cells with activated MAPK signaling, though this remains to be exhaustively explored.31 
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 Several preclinical models demonstrated that BRAF and MEK inhibitors could be 

effectively combined with CBI and highlighted the potential for a triple combination. A small 

clinical trial combining dabrafenib, trametinib, and pembrolizumab was undertaken to explore 

the triplet therapy efficacy, and initial results demonstrated high objective response rates (73%), 

however 73% of patients also experienced grade immune-related adverse events.354 Still, 

median PFS was 15.4 months, substantially longer than MEKi/BRAFi or anti-PD-1 therapies 

alone. Analysis of patient biopsies demonstrated an increase in CD8+ T cells in tumors 

following therapy, as well as MHC expression. These data support the preclinical data and 

confirm MEK inhibition does not negatively impact intratumoral immune response. Still, the 

toxicity observed is of concern, thus several trials are in progress testing different dosing 

sequences of the same agents, in both wild type and BRAF mutant melanomas.     

 In NRAS mutant patients, a retrospective analysis found that NRAS mutant patients, 

despite having more aggressive disease course versus wild-type and BRAF mutant 

melanomas355, had superior disease control rates of 50% vs. 31% in patients treated with either 

CTLA-4 or PD-1 inhibitors.356 A separate retrospective analysis found the survival benefit in 

NRAS mutant and wild-type melanoma patients on ipilimumab to be more comparable, with 

equivalent response rates of ~40% in both treatment groups.357 A striking finding was observed 

in the binimetinib NEMO study, which found that NRAS mutant patients that had received prior 

immunotherapy had a superior survival benefit over patients without prior immunotherapy (5.5 

vs. 2.8 months).330 A separate study had a similar finding, though not statistically significant.357 

Intriguingly, patients in this clinical trial failed immunotherapy, but it appeared to confer some 

benefit during the MEK inhibitor treatment, suggesting efficacy for an “immunotherapy then 

kinase inhibitor” treatment regimen. One possibility is that prior immunotherapy increased T-cell 

infiltration so that when kinase inhibitors were given the increase antigen expression, the 
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immune system was primed for attack. Another possibility is that the benefit seen was due to 

delayed onset of ICB. 

In contrast, in a 2016 study, authors designed a supramolecular MEK inhibitor (SPI), 

increasing selumetinib’s stability and treated mice with two schedules. In the “immediate” 

schedule, PD-1 inhibitors were administered on alternating days with the SPI.35 In the “after” 

schedule, the PD-1 inhibitor was given after the 5-day SPI treatment cycle was complete. 

Interestingly, the after schedule was more efficacious, resulting in significantly lower tumor 

volume after treatment and a longer average survival time. 35 This result suggests that kinase 

inhibition increases antigen expression, so secondary immunotherapy is more effective. As is 

demonstrated by these two examples, optimal sequencing of these agents remains 

controversial and poorly understood. Consequently, a plethora of clinical trials are ongoing, 

looking at various permutations and combinations of available approved therapies.358   

Ultimately, despite the promising initial results in both BRAF and NRAS mutant 

melanomas combining targeted therapies with ICB, there remains much to learn about how 

exposure of cells to kinase inhibitors alters the immune system, and how these alterations can 

be leveraged to confer the largest clinical benefit.359  

 

 

4-2 Results 

4-2-1 MEK inhibition increases MHC-I expression in melanoma cell lines 

 To evaluate how MEK inhibition alters pMHC expression in NRAS and BRAF mutant 

melanomas, we selected 2 NRAS and 4 BRAF mutant cell lines (V600E) are treated cells for 72 

hours with the MEK inhibitor binimetinib, at two doses: 100 nM or 1 µM. Cell lines exhibited a 

range of sensitivities to binimetinib: NRAS mutant lines IPC298 and SKMEL2, along with BRAF 



 183 

V600E SKMEL28 had half maximal inhibitor concentrations of approximately 120 nM, whereas 

other BRAF mutant lines had higher IC50 values, and RPMI-7951 was largely unresponsive at 

even 10 µM of binimetinib (Supplementary Figure 4-1).  

We next measured class-I MHC surface expression by flow cytometry and found that 72 

hours of treatment resulted in a maximal increase in expression over a DMSO treated control 

without requiring cell passaging (Supplementary Figure 4-3), therefore we selected 72 hours 

as the timepoint for all subsequent immunopeptidomics experiments. As measured by flow 

cytometry, all cell lines showed elevated surface MHC-I expression with binimetinib treatment at 

72 hours, and increases were dose-dependent in most cases (Figure 4-1, Supplementary 

Figure 4-3). This stands in contrast to our previously reported results with palbociclib, a CDK4/6 

inhibitor, where a lower, sub-cytotoxic dose increased expression to a greater extent than a 

higher concentration.188 Of note, previously reported results demonstrated that treatment of 

normal PBMCs with trametinib did not affect surface HLA expression, demonstrating that this 

effect is specifically seen in cells with activated signaling31 
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Figure 4-1. Changes in surface HLA expression with MEKi. Fold change in median surface expression 
levels (over average DMSO control condition) of HLA-A/B/C in cell lines treated with vehicle control or 
binimetinib (MEKi) for 72hr. Error bars represent standard deviation of n=3 biological replicates. 

  

We next sought to investigate quantitatively how the pMHC repertoires presented on 

these six cell lines were altered in response to MEKi treatment. Do this end, we employed our 

previously described framework for multiplexed, quantitative profiling of pMHC repertoires 

utilizing isobaric labeling (TMT) and heavy isotope-labeled peptide MHCs (hipMHC) standards 

for accurate relative quantitation of endogenous pMHCs. In triplicate, 1x107 cells were treated 

with DMSO, 100 nM, or 1 µM (BRAF mutant only) binimetinib for 72 hours (Figure 4-2-A). Cells 

were lysed, and three hipMHC standards were spiked into the lysate mixture prior to 

immunoprecipitation. Isolated endogenous and isotopically labeled normalization standards 

were subsequently labeled with TMT, combined together, and analyzed with LC-MS/MS for 

quantitative immunopeptidomic profiling.  

 We identified between 1470 and 4,982 unique peptides per analysis (Figure 4-2-B), 

totaling 15,450 unique peptides derived from 6,292 unique proteins. Peptides matched expected 

class I length distributions, and a majority of peptides were predicted to be binders of each cell 



 185 

line’s allelic profile (Supplementary Figure 4-4. Intriguingly, nearly 80% of peptides were 

identified in only a single analysis, despite several cell lines having some allelic overlap (Figure 

4-2-C, Supplementary Figure 4-5). Unsurprisingly, highly abundant proteins like vimentin and 

beta-actin were the source of many unique pMHCs across analyses, however most unique 

source proteins (60%) produced just 1 or 2 MHC peptides (Figure 4-2-D). These data highlight 

the uniqueness of the immunopeptidome, as not only the peptides sequences but also the 

proteins they are derived from are highly variable, despite the cell type and disease phenotype 

similarities.  

  

 

Figure 4-2. Quantitative immunopeptidomics experiments in vitro. A Experimental setup for quantitative 
immunopeptidomics experiments. B Number of unique peptides identified in each sample. C Distribution 
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of the number of times each peptide was observed across analyses. D Distribution of the number of 
peptides derived from each gene across analyses.   

  

In most cases, there was a median increase in pMHC expression levels with binimetinib 

treatment (Figure 4-3). Some cell lines mirrored the flow cytometry data such as RPMI-7951s 

and SKMEL28s, with had similar expression level changes, ~2x and ~1.4x respectively with 

both 100 nM and 1 µM binimetinib treatment. Alternatively, A375 cells showed larger changes in 

expression with the immunopeptidomics analysis than by flow cytometry, however flow 

cytometry measurements represent an average change in signal, whereas MS data measures 

each peptide’s altered expression. Notably, there was a wide distribution in expression level 

changes (Supplementary Figure 4-6). While the average fold change of A375 cells treated with 

1 µM binimetinib was 2.45x, some peptides increased 16-fold or higher, while others decreased 

4-fold. Even in SKMEL2 cells where there was no mean fold change in expression, some 

peptides increased and decreased 3-4x in expression. We examined whether increase pMHC 

presentation with binimetinib was also observed trametinib, a more potent MEK inhibitor than 

binimetinib. We find trametinib similarly increases presentation, though to a greater extent, in 

line with the dose-dependent response observed with binimetinib (Supplementary Figure 4-7-

A). Furthermore, we treated SKMEL5 cells with 100 nM binimetinib for 10 days, and find that 

expression remains elevated, and to a further extent than treatment for 72 hours (µ=2x change), 

(Supplementary Figure 4-7-B). 
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Figure 4-3. Changes in pMHC expression with MEKi. Violin plot of relative changes in pMHC expression 
for each cell line. Black dashed line = median, colored dotted lines = quartiles.  

  

As ratio compression is a known feature of multiplexed, MS2-based analyses, we 

performed an additional analysis of SKMEL5 cells treated with DMSO or 100 nM MEKi (n=3) 

and performed six label-free LC-MS/MS analyses. We find that while the mean change in 

expression is similar between unlabeled and TMT-labeled analyses (1.88x vs. 1.65x), there was 

a much wider distribution in expression levels in the label-free analysis (Figure 4-4-A). There 

were also more quantifiable peptides identified in total, 3354, however only 1087 peptides were 

quantifiable across all six replicates (Figure 4-4-B). This represents nearly half the number of 

peptides quantified in the labeled analysis (2033), highlighting a significant benefit of 

multiplexing.  
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Figure 4-4. Comparison of LF and TMT-labeled pMHC analyses for SKMEL5 +/- MEKi. A (Left) Volcano 
plot of the average fold change in pMHC expression with 100 nM binimetinib treatment in SKMEL5 cells 
(n=3 biological replicates for DMSO and MEKi treated cells) versus significance (mean-adjusted p value, 
unpaired two-sided t test). (Right) Frequency distributions of changes in pMHC expression in TMT-labeled 
and unlabeled analyses of SKMEL5 +/- 100 nM binimetinib. B Distribution of the number of analyses each 
peptide was observed in for the six label-free analyses of SKMEL5 +/- 100 nM binimetinib. 

 

4-2-2 TAAs are selectively enriched in presentation with MEK inhibition 

 We next investigated which peptides were significantly increasing relative to the median 

change in expression, to determine if any pMHCs were selectively enriched following MEK 

inhibition. We noticed two peptides derived from known tumor antigens, DCT (TRYP2) and 

PMEL (gp100) were two pMHCs in the SKMEL5 + 100 nM MEKi analysis that had the largest 

increase in expression, increasing 2.8 and 5.3-fold, respectively (Figure 4-5-A). These peptides 

were also two of the most abundant pMHCs in the analysis, ranking in the 99th percentile of 

precursor ion abundance (Figure 4-5-B).  
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Figure 4-5. TYRP2/gp100 pMHCs increase following MEKi. A Volcano plot of the average fold change in 
pMHC expression for SKMEL5 cells treated with 100 nM binimetinib for 72hr (n=3 biological replicates for 
DMSO and MEKi treated cells) versus significance (mean-adjusted p value, unpaired two-sided t test).  
B pMHCs ranked by precursor ion area abundance. 

 

To determine whether this observation of enriched presentation of DCT and PMEL 

peptides transcends to TAA-derived peptides broadly, we performed a non-parametric test to 

determine TAA enrichment significance in response to MEK inhibitor treatment. For this 

analysis, we complied a custom tumor associated antigen library derived from the literature in 

mass spectrometry analyses and immunogenicity assays as well as and online 

databases.163,360–362 This list, featuring over 1000 unique pMHC sequences, was biased towards 

more well studied alleles (ex. HLA-A2*01), therefore we utilized the peptide’s source proteins to 

generate a protein-based TAA library (Table 4-1, Table 4-2).  

We next rank-ordered peptide source proteins by fold change in presentation with MEKi. 

In cases where multiple peptides were derived from the same source protein, the maximal fold 

change was selected. Enrichment was assessed using the Gene Set Enrichment Analysis 

(GSEA) algorithm against the custom TAA library. In both SKMEL5 and SKMEL28 cells with 

100 nM MEKi, we see significant enrichment (p = 0.003 & p<0.001, respectively) of known 

tumor antigens (Figure 4-6-A). These TAAs include the previously noted examples (DCT and 
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PMEL) along with many others, including melanoma differentiations from the MAGE family, 

MLANA (MART-1), and TYR (Supplementary Figure 4-8). Of interest, these antigens showed 

increasing expression with increasing MEK inhibitor dosing, with peptides derived from TRYP1, 

DCT (TRYP2), and PMEL (gp100) increasing over 10-fold with 1 µM binimetinib treatment 

(Figure 4-6-B). This is particularly exciting, as these antigens are well studied, have known 

immunogenicity, and are existing targets for targeted immunotherapies which may benefit from 

increase expression.363,364 Furthermore, this dose dependent response occurs regardless of 

whether bulk expression increases proportionally: SKMEL5 cells have increasing expression 

with increasing MEKi, whereas SKMEL28 cells have little variation in mean expression between 

the two MEKi doses (Figure 4-6-C). When we applied the enrichment analysis framework to all 

cell lines and binimetinib treatment doses, binimetinib significantly enriched (p<0.05) tumor 

associated antigen presentation in all cases (Figure 4-7), suggesting a mechanistic basis for 

this response. 
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Figure 4-6. TAAs are significantly enriched following MEKi. A Enrichment plots of TAA enrichment in 
SKMEL5 +/- 100 nM MEKi (top, pink) and SKMEL28 +/- 100 nM MEKi (bottom, orange), displaying 

running enrichment scores (green, right y-axis), and fold change in pMHC presentation (left y-axis) versus 
rank (x-axis) for each peptide (gray). Hits denote TAA peptides, and colored hits represent enriched 
TAAs. B Selected enriched TAA peptides in SKMEL5 (top) and SKMEL28 (bottom) analyses. C 
Frequency distribution of pMHC fold change with MEK inhibition. SKMEL5: 10 nM: μ=0.01, 100 nM: 
μ=0.70, 1μM: μ=1.47. SKMEL28: 100 nM: μ=0.21, 1μM = μ=0.28.  
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Figure 4-7. MEKi robustly enriches for TAA pMHC expression. Significance values for TAA pathway 
enrichment. Values greater 4 (Log10 adjusted) represent p<0.0001. 

 

We performed the same enrichment analysis on SKMEL5 +/- 100 nM MEKi peptides 

rank ordered by precursor abundance (Supplementary Figure 4-9-A), and again found that 

TAAs were enriched amongst the peptides of highest abundance. Interestingly, there was no 

correlation between pMHC fold change in expression and peptide abundance, suggesting that 

TAAs are both some of the most abundant peptide presented and change the most in 

presentation with MEK inhibition (Supplementary Figure 4-9-B). We also applied the same 

analysis to the label free data of 100 nM SKMEL5 cells and discover significant TAA enrichment 

(Supplementary Figure 4-9-C). Finally, we used the TAA peptide database (not source 

proteins) and curated a sub library of TAA peptides predicted to bind to SKMEL5’s allelic profile 
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(<500 nM predicted affinity. Again, TAA peptides were significantly enriched in pMHCs ranked 

according to expression fold change and abundance, underscoring the robustness of this finding 

(Supplementary Figure 4-9-C).  

 We also compared the results of the multiplexed SKMEL5 +/- 100 nM MEKi analysis to 

the label free data, to assess whether the unlabeled analyses showed similar or greater 

changes in TAA presentation provided the known impact of ratio compression. The changes in 

expression levels of TAAs was correlated (r=0.63), however as previously described the TMT-

labeled samples showed lower relative changes in pMHC expression (Figure 4-8-A). For 

example, a DCT-derived peptide had a 12-fold change in the unlabeled analysis compared to a 

2.85-fold change in the TMT-labeled analysis (Figure 4-8-B), suggesting that TAA expression 

level changes may be much larger across cell lines than what is reported in the multiplexed 

analyses.  
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Figure 4-8. TMT-labeled analyses underestimate fold changes in expression. A Correlation between the 
fold change in pMHC expression (Log2(MEKi/DMSO)) between unlabeled and TMT-labeled analysis of 
SKMEL5 cells +/- 100 nM binimetinib. B Selected pMHCs from A. C Ranked median abundance 
(integrated precursor area) of selected TAAs in DMSO and 100 nM binimetinib treated SKMEL5 cells 
from the label free analysis. 

  

Finally, the label-free data of SKMEL5 cells +/- 100 nM binimetinib provided a unique 

dataset to assess whether enrichment of TAAs amongst peptide abundances was a result of 

high endogenous expression, or whether MEK inhibition further drove increases in TAA 

abundance, above median changes. This cannot be assessed in the labeled data, as the 

precursor ion intensity is the summed intensity of the replicates. We determine that in both the 

DMSO and binimetinib treated cells, TAAs were of high abundance. However, most TAAs were 

of higher ranked abundance, relative to other peptides within the same treatment condition, in 

the binimetinib treated cells (Figure 4-8-C). For some pMHCs the difference was small—the 

SLC45A2 peptide RLLGTEFQV” is one of the top 5 most abundant peptides in untreated 
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SKMEL5 cells, and while binimetinib further increases expression, it does significant change its 

already high ranked order. Alternatively, the PMEL peptide “KTWGQYWQV” moves from the 

77th percentile in DMSO treated cells to the 97th percentile with MEK inhibition, consistent with 

our finding that tumor antigens are selectively enriched. 

 

4-2-3 IFN-γ and MEKi drive distinct pMHC repertoire alterations 

It has been proposed that ERK is a negative regulator for IFN- γ/STAT1 signaling, and 

that inhibition of ERK via MEK inhibitors can drive an interferon regulatory factor resonse.365,366 IFN-

g binds to the Janus kinase 1 and 2 receptors, phosphorylating STAT1, which can then bind to IFN-g 

activated site (GAS) located at the promoter region of primary interferon response genes, increasing 

their transcription. Interferon-regulatory factor 1 (IRF1) can subsequently bind to the interferon-

stimulated response element (IRSE), which increases transcription of response genes involved in 

immunomodulatory functions including HLA-A/B/C and B2M.367,368  It has also been proposed that 

MEK inhibitors drive IRF1-mediated upregulation of pMHCs via STAT3 or NF-kB.365,369 Interestingly, 

siRNA knockdowns of STAT1, STAT3, and RelA (NF-kB component), all of which show increase 

transcription following MEKi, all suppressed MEK inhibitor-induced upregulation of HLA expression, 

though to varying degrees.31,37 In two separate studies, STAT1 knockdown had the largest effect, 

though MEKi was still able to upregulate expression to some degree. This suggests MEK inhibitors 

can upregulate pMHC expression through multiple or overlapping routes.  

Previous work profiled the pMHC repertoire’s response to IFN-γ stimulation in SKMEL2, 

IPC298, SKMEL5, and SKMEL28 cells188, therefore we investigated whether TAAs were also 

selectively enriched following IFN-γ treatment. In 3 cell lines TAA’s were not significantly 

enriched, with SKMEL5 cells being the only exception. Upon closer inspection, even when IFN-

γ stimulation increases pMHC expression to a greater extend than MEK inhibition (Figure 4-9-

A), melanoma differentiation tumor antigens like TRYP1, DCT, and PMEL all show a larger 
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change in expression with MEK inhibition (Figure 4-9-B). Interestingly, peptides derived from 

STAT1 and HLA show a large increase in presentation in IFN-g treated cells, but very little 

change in MEK inhibitor treated cells Figure 4-9-C). Our previously results demonstrate that 

quantitative alterations in the immunopeptidome are reflective of cells state changes, so the 

IFN-γ mediated response makes sense, and the lack of response with binimetinib treatment 

suggests MEK inhibition drives MHC upregulation through a mechanism district from IFN-γ 

/STAT1.  

An enrichment analysis of the MSigDB cancer hallmarks pathways showed significant 

enrichment of IFN-g response in IFN-γ stimulated cells (described in Stopfer et al.), however 

cell lines treated with binimetinib did not show positive IFN-γ response pathway enrichment 

among upregulated pMHCs, further contrasting the biological response between the two drivers 

of MHC presentation. Furthermore, upregulated expression of the TAAs highlighted here were 

not significantly enriched above the mean increase in expression, highlighting a MEK inhibitor 

specific mechanism driving TAA presentation. CDK4/6 inhibitor treatment, such as palbociclib, 

has also been shown to increase antigen presentation, including TAAs (Stopfer et al.).188,263 We 

again performed the TAA enrichment analysis, and found that in just a few cases (IPC298 cells, 

SKMEL28 + 10 uM palbociclib), there was significant enrichment. In most cases, including both 

SKMEL5 treatment conditions, TAAs were not significantly enriched in presentation. Taken 

together, we find MEK inhibitors uniquely drive upregulation of TAAs, district from other 

perturbations known to alter pMHC expression levels.  
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Figure 4-9. Comparison of MEKi/IFN-g induced pMHC changes. A Distribution of pMHC changes in 
expression with binimetinib (100 nM) or IFN-g (10 ng/mL) for 72hr. B. Changes in pMHC expression for 
selected TAA peptides.  C Changes in pMHC expression for STAT1 and HLA-derived peptides. 

 

4-2-4 ZEB2/SNAIL2 expression drives melanoma differentiation antigen expression  

 In melanoma cell lines treated with the CDK4/6 inhibitor palbociclib, quantitative changes 

in pMHC peptides reflected the known biological response to CDK4/6 inhibition. For example, 

peptides derived from proteins involved in E2F transition and G2M checkpoints were decreased 

in presentation following treatment, whereas peptides derived from oxidative phosphorylation 

proteins showed increased presentation. To this end, we looked at the enrichment results 

against the MSigDB cancer hallmarks pathways to identify groups of peptides derived from 

signaling pathways that showed significant enrichment with binimetinib treatment (Table 4-3). In 

SKMEL5, A375, and RPMI-7951 cells, epithelial to mesenchymal transition (EMT)-derived 

peptides were positively enriched (p<0.05, q<0.25) in presentation (Figure 4-10-A). IPC298, 
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SKMEL28, and SKMEL2 cells also showed positive enrichment at p < 0.01, with pMHCs derived 

from EMT peptides increasing in each condition regardless of significance value 

(Supplementary Figure 4-10).  

 Across all cell lines/conditions, enriched EMT pMHCs were derived from 51 unique 

source proteins, including pMHCs derived from SNAI2 (Slug), an EMT transcription factor (EMT-

TF), as well as Integrin αv (ITGAV) and Vimentin (VIM), which showed enrichment across 7 and 

8 multiplexed pMHC analyses, respectively (Figure 4-10-B). At first glance, increased pMHC 

expression of these sites appears to be consistent with an epithelial to mesenchymal transition. 

Slug is an EMT transcription factor (EMT-TF) that has been shown to regulate expression of 

genes responsible for EMT and serve as a transcriptional repressor of e-cadherin.370,371 

Integrins are cell surface receptors mediating cell attachment to the ECM. Previous work has 

shown that Integrin signaling potentiate TGF-B1 dependent down regulation of e-cadherin, a 

critical component of the epithelial to mesenchymal transition.372 Increased vimentin expression 

is a mesenchymal marker, and correlates with loss of E-cadherin, more invasive phenotypes, 

and poor clinical outcomes.373 EMT is a known adaptive response/resistance mechanism to 

MEK inhibition in KRAS mutant lung cancer, therefore we similarly hypothesized MEK inhibition 

of NRAS/BRAF mutant melanoma cell lines was inducing EMT.374,375  
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Figure 4-10. EMT enrichment among pMHCs in MEKi treated cells. A Enriched pMHCs derived from 
EMT source proteins with their change in expression for SKMEL5 and A375 cells +/- 100 nM binimetinib. 
B Change in pMHC expression for peptides derived from SNAI2, ITGAV, and VIM in 100 nM treated cells. 
*denotes pMHC not significantly enriched 1 µM MEKi. C Protein expression of vimentin, e-cadherin 

expression in SKMEL5 cells +/- 100 nM binimetinib. D Enrichment plot of EMT genes using for RNA-seq 
data, SKMEL5 cells +/- 100 nM binimetinib. p & q-values < 0.0001. E RNA and protein expression of EMT 
genes/proteins enriched in pMHC presentation (A).  
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To assess this hypothesis, we first measured E-cadherin and vimentin protein 

expression in SKMEL5 cells +/- 100 nM binimetinib. Intriguingly, Vimentin protein expression 

decreased, and e-cadherin expression increased with MEK inhibition, in contrast to our 

hypothesis (Figure 4-10-C).  We next examined transcript expression data for SKMEL5 cells +/- 

100 nM or 1 µM binimetinib and found the EMT cancer hallmarks pathway to be significantly 

negatively enriched in both treatment conditions (Figure 4-10-D). We next compared the source 

gene and protein expression levels of enriched EMT pMHCs and found that, in agreement with 

the western blot data, vimentin expression decreases with MEKi, along with ITGAV and others, 

in contrast to the pMHC data (Figure 4-10-E). Intriguingly, SNAI2 (slug) and CD59 expression 

are the only proteins/genes to increase in expression with MEKi, matching the pMHC data.  

Of note, while traditionally classified as an EMT-TF responsible for loss of e-cadherin, 

Slug expression does not always correlate with complete EMT and regulation of EMT-TFs in 

malignant melanoma may be uniquely regulated compared to other epithelial tumors.376,377 In 

2013, Caramel et al. proposed a new EMT program in melanoma, where the expression of 

EMT-TFs are under the control of oncogenic signaling pathways.378,379 During 

melanomagenesis, SNAI2 and ZEB2 act as oncosuppressive proteins during melanocyte 

differentiation under MITF control. In response to MAPK pathway activation, EMT-TFs undergo 

a reorganization and ZEB1 and TWIST are upregulated to promote dedifferentiation and 

tumorigenesis. This change in EMT-TF expression, termed “EMT-TF switching” correlates with 

pERK levels. Consequently, we next assessed changes in gene expression of these key EMT-

TF switch markers, and found that in addition to SNAI2, ZEB2, E-cadherin, and MITF 

expression were all increased following MEKi and TWIST, ZEB1, N-cadherin, and vimentin were 

all decreased (Figure 4-11-A) Under this mechanism, treatment with binimetinib inhibited pERK 

which likely initiated the switch back to the “differentiation” phenotype.  
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MITF expression induces gene expression patterns of melanocyte differentiation and 

pigment production/melanin biosynthesis, therefore in this “differentiation” phenotype expression 

of differentiation antigens such as Tyrosinase (TYR) , Dopachrome tautomerase (DCT or 

TRYP2), Tyrosinase-related protein 1 (TYRP1),  premelanosome protein (PMEL), and SLC45A2 

have been shown to increase in expression.378,380 As previously described, pMHCs derived from 

these proteins are also known tumor associated antigens. Using RNA-seq and protein 

expression profiling data, we found that MEK inhibitor treatment increased expression of these 

differentiation genes/proteins, which correlates with pMHC expression (Figure 4-11-B). As 

previously highlighted, vimentin pMHC expression increases with MEKi, whereas gene/protein 

expression decreases, suggesting that elevated pMHC expression is a likely due to other post-

translational processing.  

To assess this, we performed a quantitative analysis of the “ubiquitylome”, which 

measures peptides tagged for degradation with ubiquitination modifications by purifying 

peptides containing two remnant glycine residues (di-Gly) of ubiquitin on lysine residues 

peptides following tryptic digestion (Supplementary Figure 4-11).381 We found that while the 

tumor antigens displayed increased degradation tagging following MEKi, so did vimentin, 

therefore increased vimentin pMHCs may be the result of higher degradation rates rather than 

protein/gene expression (Figure 4-11-C). Taken together, these data highlight a likely 

mechanism responsible for the select enrichment of TAAs following MEKi, driven by elevated 

ZEB2/SNAI2/MITF expression, which coordinates the upregulation of differentiation antigens 

expression and translates to elevated pMHC levels.  

 

 

 

 



 202 

 

Figure 4-11. Proposed mechanism of EMT-TF switching. A Schematic of EMT-TF switching, with 
changes in transcription with MEK inhibitor treatment in SKMEL5 cells shown next to gene names. B,C 
Changes in RNA, protein, ubiquitination, and pMHC expression of selected targets. 

 

4-2-5 Predicting pMHC expression from central dogma 

 Previous work has demonstrated that HLA-I sampling for pMHC presentation correlates 

with source protein length (longer proteins result in more unique pMHCs presented, with protein 

abundance (more abundant proteins lead to more unique pMHCs), and protein half-life (faster 

turnover rates leader to a higher concentration of pMHCs).157 However, whether changes in 

protein or transcript abundance in response to a perturbation such as MEKi can predict changes 

in pMHC expression remain poorly understood. Furthermore, the previous work focused on the 

number of peptides derived from a particular protein rather than focusing on protein and pMHC 
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abundances. Given the data presented in Figure 4-11-B, where melanoma differentiation 

antigen pMHC expression correlates with protein/transcript/ubiquitin abundances, we 

investigated whether there was a broader correlation across up and down-regulated pMHCs.  

To this end, SKMEL5 cells treated with 100 nM binimetinib were processed four different 

ways, with three replicates for each condition (Figure 4-12-A). First, cells were lysed in Trizol, 

and RNA was isolated for RNA-sequencing. Next cells were treated for 1 hour with 100 nM 

Bortezomib, a protease inhibitor, lysed, and di-gly residues were immunoprecipitated using an 

anti-di-gly antibody (Supplementary Figure 4-11). Di-gly modified peptides were next TMT-

labeled, combined, and analyzed by LC-MS/MS. Next, pMHCs were lysed in the MHC lysis 

buffer, and pMHCs were isolated and labeled as previously described. The unbound fraction 

(global protein expression) following anti-HLA-A/B/C IP was then digested into tryptic peptides, 

processed with C18 cleanup, labeled with TMT, distributed between twenty fractions, and 

analyzed by LC-MS/MS. Together, data is presented as the change in expression of the MEK 

inhibitor samples versus the DMSO treated samples (Figure 4-12-B). We quantified nearly 

20,000 protein encoding genes, 5,183 proteins, and obtained ubiquitination data on 701 unique 

proteins. We used this data in combination with the pMHC data for SKMEL5 cells +/- 100 nM 

binimetinib for quantitative comparisons.  
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Figure 4-12. Probing central dogma for global understanding of MEKi induced pMHC changes. A 
Experimental setup for investigating relationship between pMHC expression and central dogma. B 
Volcano plots of changes in RNA and protein expression, and abundance of ubiquitin tagged peptides. 
The y-axis represents significance values. Significance: RNA: Wald test, Benjamini Hochberg adjusted. 
Protein and Ubiquitin: unpaired two-sided T-test. 

 

Generally, there was no bulk correlation between changes in gene/protein expression 

and changes in pMHC expression in response to MEK inhibitor treatment (Figure 4-13-A), 

whereas protein and transcript expression do have a weak positive correlation (Figure 4-13-B). 

To visualize whether there were groups of pMHCs with similar patterns of pMHC/RNA/protein 
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expression, we first performed hierarchical clustering of the combined dataset. In this analysis, 

RNA/protein abundances are matched to pMHCs based on their source protein/gene, therefore 

some RNA/protein values are duplicated if there are multiple pMHCs derived from the same 

protein. As not all pMHCs had protein expression values, the matrix contained values for 1,483 

unique pMHCs.  

At first glance, while most pMHC levels increase in presentation, many corresponding 

transcript and protein expression levels remain unchanged, or do not show coordinates 

expression level changes (Figure 4-13-C) . Several clusters emerge, including the orange 

cluster (Supplementary Figure 4-12-A), containing primarily TAA peptides, which have 

increased expression across pMHC/RNA/ and protein expression, consistent with the examples 

highlighted earlier (Figure 4-11-B). Alternatively, the blue cluster shows significant positive 

increases in pMHC expression, with small changes in RNA or protein expression, and contains 

tumor antigens NISCH, pIRS2, NONO, as well as vimentin (Supplementary Figure 4-12-B). 

The green cluster shows high pMHC expression, with lower RNA expression and unchanging 

protein expression. This cluster contains EMT-related ITGAV, as well as multiple PRKDC 

peptides (Supplementary Figure 4-12-C). It has previously been shown that MEK inhibition 

can lead to phosphorylation of the kinase PRKDC, involved in cell cycle regulation and DNA 

damage response, therefore PRKDC may be upregulated by pMHCs through alterations in 

protein phosphorylation or another processing mechanism not captured in these datasets.382  

As TAAs were one of the most prominent clusters with coordinating changes in 

pMHC/RNA/protein expression, we next assessed whether all tumor associated antigens 

(including TAAs derived from overexpressed proteins, germline genes, etc.) all showed strong 

correlation. We found that broadly, most RNA and protein levels did not predict changes in 

pMHC expression beyond those derived melanocyte differentiation genes likely due to their 

upregulation via ZEB2/SNAIL2/MITF (Figure 4-13-D). This suggests that while transcript or 
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protein expression assays may be used to predict upregulated pMHC expression in MEKi 

treated cells, changes in abundance of other tumor antigen targets of interest cannot 

necessarily be predicted using protein/transcript abundance data alone.  

We next compared the pMHC/RNA/protein expression data to the ubiquitination data, 

however only 192 source proteins of pMHCs had ubiquitination quantitation. Still, this 

comparison revealed similar findings to the analyses between RNA/protein expression data—a 

majority of quantitative pMHC changes cannot be explained by changes in ubiquitination 

(Supplementary Figure 4-13-A, B). The only notable exception are melanoma differentiation 

antigens, which showed increased degradation tagging in addition to increased RNA/protein 

(Supplementary Figure 4-13-C). Other pMHCs increasing in presentation showed no change 

or decreased degradation (Supplementary Figure 4-13-D, E), with decreased RNA/protein 

expression well. Together, this suggests that other post translational modifications, turnover 

rates, peptide processing, or other mechanisms are likely responsible for the bulk of changes in 

pMHC, as these three datasets fail to comprehensively explain alterations beyond the 

melanoma differentiation antigens.  



 207 

 

Figure 4-13. Correlation between pMHC/RNA/protein expression changes with MEKi. A Correlation 
between pMHC expression and transcript (top) and protein (expression levels) for unique pMHCs in 
SKMEL5 cells +/- 100 nM MEKi. B Correlation between protein and transcript expression levels for 
SKMEL5 cells +/- 100 nM MEKi. C Hierarchical clustering of pMHC, RNA, and protein expression, 

represented as the change in expression following 100 nM MEKi. D Changes in expression (color bar 
from C) for TAAs, where every other pMHC is labeled by the corresponding source protein.  

 

4-2-6 In vivo analyses of MEKi induced pMHC alterations 

 While enrichment of TAAs, specifically melanoma differentiation antigens, was enriched 

upon MEK inhibition in vitro, we wanted to see if these findings translated in vivo. Four 

melanoma cell lines were inoculated in immunocompromised mice, IPC298/SKMEL2 (NRAS 

mutant) and SKMEL5/SKMEL28 (BRAF mutant), and mice were treated with vehicle control or 

binimetinib for 1, 2, 3, or 5 days in triplicate prior to tumor harvesting (Figure 4-14-A). For BRAF 

mutant lines, three additional mice were treated for 3 days with encorafinib (BRAF inhibitor) or 
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encorafinib and binimetinib as a combination therapy, as is common in the clinic for BRAF 

mutant melanomas. Harvested tumors were homogenized, and class-I MHCs were isolated by 

immunoprecipitation, purified by molecular weight size exclusion, labeled with TMT-Pro to 

accommodate labeling of 15 samples within a single analysis, and analyzed by LC-MS/MS. 

Encorafinib and combination treated tumors for SKMEL5/SKMEL28 were run in a separate 

analysis and utilized either replicate control samples or a bridge channel for comparison 

between the analyses (Table 4-4). A time course of early response to these two kinase 

inhibitors was selected to better understand when expression levels reach their peak, and how 

long the duration of that response lasts. While the time courses are not expansive, this 

information is useful in understanding how and when to combine targeted therapies like kinase 

inhibitors with other types of immunotherapies for optimal efficacy.   

 

 

Figure 4-14. In vivo CLX MEKi-induced pMHC expression changes. A Experimental setup for cell line 
xenograft studies of mice + binimetinib or encorafinib. BRAF inhibitor (BRAFi, encorafinib) treated mice 
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treated mice are subsequently labeled “3B” for BRAFi and encorafinib/binimetinib combination mice are 
subsequently labeled “3B/M” (BRAFi/MEKi). 

  

Combined, we identified a total of 6,767 unique pMHCs derived from 3,653 source 

proteins, which followed the expected class I length distribution (Supplementary Figure 4-14). 

Across cell lines, treatment with binimetinib for just 1 or 2 days showed a minimal effect on bulk 

increases to HLA presentation levels. In IPC298, SKMEL2, and SKMEL5 cells, on average 

pMHC levels actually slightly decreased. (Figure 4-14-B,C). For IPC298 and SKMEL5 cells, the 

peak change in expression with MEKi only was observed at 5 days of dosing, whereas the 

maximum increase was seen at 3 days for SKMEL2 and SKMEL28 cells. This suggests that 

longer treatment may continue to increase expression in some cases, but in others pMHC levels 

may actually start to decline. In BRAF mutant melanoma cell lines treated with a BRAF inhibitor 

or MEKi/BRAFi combo, the median fold change was highest with the combination therapy 

compared to any other treatments or time points in SKMEL5 cells, and about equivalent in 

SKMEL28 cells. These data suggest that the combination therapy may further improve 

antigenicity of tumors in some cases, or at the very least not hinder pMHC upregulation.  

 We next performed an enrichment analysis for TAAs but found that only SKMEL28 cells 

robustly demonstrated TAA enrichment at all timepoints except the 3d encorafinib condition (p < 

0.05), while the other CLXs each had a single condition with significant enrichment (Figure 

4-15-A). Nevertheless, melanoma differentiation antigens showed positive increases in 

presentation following MEK and BRAF inhibition, often above median fold-changes (Figure 

4-15-B,C). For example, the PMEL peptide “ALDGGNKHFL” had a nearly four-fold increase in 

presentation after 5 days of MEKi treatment, far exceeding the median pMHC fold-change value 

of 1.15x. Still, changes in expression generally followed the trends of bulk expression—SKMEL2 

CLXs showed the highest change in presentation levels at 3d of MEKi, and correspondingly 
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TAAs also show the largest change at 3d. SKMEL5 cells were a notable exception, as TAAs 

showed the highest expression at 5d despite the 3d MEKi/BRAFi combo giving the median 

change in expression, suggesting that continued MEKi treatment continues to increase 

differentiation tumor antigens, regardless of bulk expression. Furthermore, it’s possible that the 

combination treatment at 5d may have a similar expression profile, and the duration of MAPK 

pathway inhibition rather than the drug itself may be primary driver or select upregulated TAAs. 

 

 

Figure 4-15. CLX TAA enrichment. A TAA enrichment significance values for each analysis.  Black dotted 
line represents p ≥ 0.05, grey = p ≥ 0.01. M = MEKi treated, B = BRAFi treated. B,C Changes in pMHC 
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expression for select melanoma differentiation antigens. Errors bars represent standard deviation when 
>1 peptide from each source protein was identified.  

  

We next rank ordered the pMHCs in SKMEL5 and SKMEL28 CLXs by integrated peak 

area abundance, and found that for both analyses, TAAs were significantly enriched in 

abundance (p<0.0001), comparable to the in vitro analyses of the same cell lines (Figure 4-16-

A). Some of the most abundant enriched TAAs mapped to sequences and source proteins that 

also had the highest changes in expression, further confirming our initial observations of TAAs 

being the most abundant and differentially expression pMHCs in tumors following MEK inhibition 

Figure 4-16-B). 

 

 

Figure 4-16. TAAs are of high abundance in CLX models. Rank-ordered abundance of pMHCs in 
SKMEL5 + MEKi (top) and SKMEL28 + MEKi (bottom) analyses. Positively enriched TAAs are highlighted 
in color. B Select TAA peptide rank-ordered abundance.  
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4-3 CLX models show evidence of EMT-TF switching  

 We next assessed whether upregulation of melanoma differentiation antigens was driven 

by ZEB2/SNAI2 EMT-TF switching and upregulated MIF, as was suggested by the in vitro 

SKMEL5 analyses. While enrichment analysis did not identify the EMT pathway as significantly 

enriched in any of the CLX analyses, EMT-related sites highlighted in the cell line analysis 

showed pMHC upregulation following MEKi. Increased pMHC expression of ZEB2-derived 

peptides was seen across all four CLXs, however this pMHC, “GSYSSHISSK,” has sequence 

homology to ZEB1, therefore we are unable to verify it solely came from ZEB2 (Figure 4-17-A). 

SKMEL28 cells contained a second ZEB2-derived pMHC (no sequence homology with ZEB1) 

that had comparable quantitation. Similarly, SKMEL28 and IPC298 cell line samples contained 

additional specific ZEB2-derived pMHCs (3 and 2, respectively) that increased in presentation 

with MEKi with similar dynamics to the non-specific “GSY” peptide (Figure 4-17-B), however the 

“GSY” peptide had the highest quantitation of the ZEB2 pMHCs. As a result, it is likely that the 

increases in pMHC presentation of the “GSY” peptide in the CLXs is at least partially ZEB2-

derived, as increases mirror those of the specific pMHCs. We also observed increases in vitro 

and in vivo of MITF-derived pMHCs (Figure 4-17-C, Supplementary Figure 4-15-A), as well as 

SNAI2 peptides (Supplementary Figure 4-15-B), further suggesting an EMT-TF switch that 

leads to select TAA upregulation following MAPK pathway inhibition with either MEKi or BRAFi. 

Other significantly enriched pathways include negatively enriched E2F targets and G2M 

checkpoints (Table 4-5), which have some overlap with the cell line negative enrichment results 

(Supplementary Figure 4-16).  
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Figure 4-17. EMT-TF switching in CLX models. A Changes in ZEB2-derived pMHC expression levels 
with treatment for 1-5 days in CLX models. M = MEK inhibitor treated, B = BRAF inhibitor treated, M/B = 
combination therapy. B Change in expression of ZEB2-derived pMHCs in SKMEL28 (left) and IPC298 
(right) in vitro. Grey data point represents the “GSYSSHISSK” peptide. C Changes in expression of MITF-
derived peptide in SKMEL5 cell lines treated with MEKi (left) for 3 days or SKMEL5 CLX treated with 
MEKi, BRAFi, or combo for 1-5days.   

 

4-4 Correlation of TAAs and MITF expression in human melanoma 

 In vitro and in vivo analyses have highlighted an increase in MHC expression and 

provided evidence of EMT-TF switching as a mechanism that selectively drives increased 

melanoma differentiation antigen expression. We next queried transcriptional data from a TCGA 

study of cutaneious melanoma to investigate whether there was a relationship between tumor 

antigen expression and EMT-TF phenotypes.383 Previous work by Akbani et al. performed a 

hierarchical clustering analysis of differentially regulated gene and identified three subclasses 

termed “immune” for those with high immune infiltration, “MITF-low” for tumors with low MITF 

expression of MITF target genes including pigmentation and epithelial expression, and a 

“keratin” subtype. Interestingly, MITF-low tumors had a higher proportion of BRAF mutations, 
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which aligns with the predicted phenotype for MAPK mutant, high pERK tumors as described in 

the EMT-TF switching model.  

 We investigated the 150 BRAF mutant tumors and found that the MITF-low tumors had a 

lower probability (p=0.07) of survival compared to the “immune” tumors, though not as 

statistically significant as the analysis reported by Akbani et al. comparing all ~300 tumors in the 

study ( 

 

Figure 4-18-A). The MITF-low classified tumors had low expression of genes mapping to the 

“differentiation” phenotype (MITF, E-cadherin, ZEB2, and SNAI2), with higher expression of the 

“invasion/tumorigenesis” phenotype (N-cadherin, ZEB1, TWIST1) ( 

 

Figure 4-18-B). In line with this finding, “immune” classified tumors had significantly higher 

expression of SNAI2, E-cadherin, and MITF, and significantly lower expression of N-cadherin 

than MITF- tumors ( 

 

Figure 4-18-C). Tumors with higher immune infiltration scores also have significantly higher 

HLA expression, and HLA expression is significantly positively correlated with MITF expression 

& E-cadherin, and negatively correlated with N-cadherin ( 

 

Figure 4-18-D,E, Supplementary Figure 4-17), While the treatment courses for each patient 

aren’t available, it is possible that treatment with a MAPK pathway inhibitor (BRAFi or MEKi) in 

BRAF mutant patients with low MITF expression may drive an increase in HLA expression and 

tumor antigen presentation and increase tumor immunogenicity and susceptibility to cancer 

immunotherapy.  
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Figure 4-18. EMT-TF switching evidence in TCGA melanoma tumors. A Kaplan Meier curve of BRAF 
mutant melanomas from TCGA subcutaneous melanoma study. B Heatmap of select genes from BRAF 
mutant melanoma TCGA patients. Normalized expression is z-scored against all tumors in the study. C 

Normalized expression of EMT genes and MITF. D Normalized expression of HLA-A/B/C in Immune and 
MITF-low tumors. E Correlation in expression of MITF and average TAA Z-scored expression.  
**p<0.01, ****p<0.0001. 
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4-5 Discussion 

 Mitogen activated pathway kinase (MAPK) inhibitors such as MEK and BRAF inhibitors 

have demonstrated success at extending progression free survival in BRAF and NRAS mutant 

melanoma patients, however the therapeutic response is often short lived, and resistance 

quickly develops. Immunotherapies have longer lasting efficacy, but only a subset of patients 

respond. To expand therapeutic efficacy, combining targeted therapies like MEK and BRAF 

inhibitors with and immunotherapy, though the optimal dosing and timing remains an open area 

of research. Previous work has demonstrated that MEK and BRAF inhibitors can increase the 

gene and protein expression of some tumor antigens, and class-I MHC expression is 

upregulated. However, how the pMHC repertoire is altered in response to MEK inhibition has 

not been robustly explored.  

 Here, we apply multiplexed, quantitative pMHC profiling to determine the expression 

level changes of thousands of pMHCs within a single analysis. We confirm that MEK inhibition 

increases pMHC expression levels with mass spectrometry and flow cytometry across a panel 

of six cell lines, even if the dose is substantially below the half maximal inhibitory concentration 

(100 nM treatment in SKMEL5 cells increased pMHC expression 1.65x with a 12 µM IC50.)  We 

found that TAAs were significantly upregulated in expression compared to the median change 

following MEK inhibition, and that the TAAs represented some of the most abundant pMHCs 

presented. An in vivo analysis of CLXs found the same results.  

 We next explored potential mechanisms of selective TAA upregulation and found 

evidence of EMT-TF switching, with increased levels of epithelial markers and SNAI2/ZEB2 

following MEKi. This is suspected to increase MITF expression, which drives expression of 

differentiation antigens like TYRP1, gp100, and TYR. Of interest, high ZEB2 expression is 

associated with better clinical outcomes in an analysis of 178 primary melanomas, and similarly 
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low MITF expression is associated with worse clinical outcomes and tumors have lower levels of 

immune infiltration in BRAF mutant tumors from the TCGA study.380,383 Together, this suggests 

that MEK inhibitor treatment in MAPK-mutant melanomas may drive increases in pMHCs and 

TAA presentation, as well as increase immune cell infiltration. These changes may improve the 

efficacy of immunotherapy, however future studies, including the release of data from ongoing 

clinical trials exploring dosing schedules, will be important in evaluating how to combine these 

therapies together.  

While pMHC changes in expression mirrors transcriptional and protein expression 

changes for melanoma differentiation antigens, most pMHC changes did not correlate with 

RNA/protein data, suggesting other mechanisms including post translational modifications, 

protein processing and turnover, protein cellular compartment, etc. that may dictate pMHC 

presentation differences. We explored degradation rates, using qualitative ubiquitination mass 

spectrometry to measure peptides tagged for degradation, and highlight Vimentin as a protein 

that’s increase in pMHC expression levels may be explained by altered degradation rather than 

transcription/translation. Still, this remains an open area of research, and combining quantitative 

pMHC datasets with other quantitative data types may further elucidate how pMHC presentation 

is regulated, and whether other datatypes may predict pMHC changes. This could be useful 

clinically, as pMHC analyses require large sample input, so a targeted assay for transcript or 

protein expression to predict upregulated antigens would be advantageous.  

Ultimately, MEK inhibitor-induced upregulation of known melanoma antigens provides 

compelling evidence to combine MEKi treatment with checkpoint blockage or other targeted 

immunotherapies which target these antigens. Relative and absolute quantitative pMHC 

analyses exploring different durations of treatment, dosing schedules, and how the repertoire is 

altered when therapeutic resistance emerges will enable a deeper understanding of repertoire 

alterations that can be leveraged.  



 218 

4-6 Materials and Methods 

4-6-1 Human cell lines 

SKMEL5, SKMEL28, A375, and RPMI-7951 cell lines were obtained from ATCC [ATCC 

HTB-70, ATCC HTB-72, CRL1619, and HTB-66, respectively] and maintained in DMEM 

medium (Corning). IPC298 and SKMEL2 cells were provided by Array Biopharma and 

maintained in RPMI 1640 (Gibco) and MEM-a (Gibco) mediums, respectively. All medium was 

supplemented with 10% FBS (Gibco) and 1% penicillin/streptomycin (Gibco). Cells were 

routinely tested for mycoplasma contamination, and maintained in 37 °C, 5% CO2. Experiments 

were performed on passages 4-8.  

 

4-6-2 Cell line xenografts 

SKMEL5, SKMEL28, SKMEL2, and IPC298 cell lines were used for cell line xenograft (CLX) 

analyses in collaboration with Array Biopharma. 100 µL containing 5x106 cells in 50% Matrigel via 

subcutaneous injection was implanted into 30 NCr nu/nu mice on the right flank. Tumors were allowed to 

grow to a starting size of ~200-400mg, after which animals were measured/weighed and randomized into 

study groups based on tumor volume.  BID and QD dosing orally was subsequently initiated: Binimetinib 

(MEK162): 3.5 mg/kg, Vehicle (1% CMC/0.5% Tween80), Encorafenib: 20 mg/kg. Compound doses were 

prepared (MEK162: 0.35 mg/mL, LGX818: 2.0mg/mL) and resuspended in 1% CMC/ 0.5% Tween80, 

vortexed, and sonicated for 10 minutes prior to dosing. Dosing continued for 5 days, and at the end of 

each time course tumors were harvested and flash frozen in liquid nitrogen. Animals were housed in 

groups of 3.  Food, water, temperature and humidity are according to Pharmacology Testing Facility 

performance standards (SOP’s) which are in accordance with the 1996 Guide for the Care and Use of 

Laboratory Animals (NRC) and AAALAC-International. Dosing schedules are listed in Table 4-6. 

 

4-6-3 Dose response assays 



 219 

Half-maximal inhibitory concentrations (IC50) of binimetinib (Selleckchem, MEK162) were 

determined for each cell line using CellTiter-Glo luminescent cell viability assay (Promega). 

Cells were seeded at density of 10,000 (SKMEL2, SKMEL28, IPC298) or 5,000 (SKMEL5, 

A375, RPMI-7951) cells/well in a 96 well plate and allowed to adhere overnight. Cells were then 

treated with binimetinib or DMSO as a vehicle control in fresh medium for 72h and assayed. 

Data was acquired using a Tecan plate reader Infinite 200 with Tecan icontrol version 1.7.1.12. 

IC50 values were calculated using a 4-parameter logistic curve in Prism 9.0.0. 

 

4-6-4 Flow cytometry 

For analysis of cells by flow cytometry, cells were lifted with 0.05% Trypsin-EDTA and 

106 cells/mL were spun at 300 g for 3 minutes, washed with ice cold PBS supplemented with 1% 

FBS and 0.1% sodium azide (flow buffer) and incubated with fluorophore-conjugated antibody at 

0.5 μg mL-1 in flow buffer for 30 minutes on ice. After incubation, cells were washed again, and 

resuspended in flow buffer plus 5 μL of propidium iodide staining solution (10 μg mL-1, 

Invitrogen) per sample. Analyses were performed on an LSRII (BD Biosciences) and data 

analyzed using FlowJo (version 10.6.2). Antibodies: Alexa Fluor 488 HLA-A, B, C, clone W6/32 

[Biolegend, cat # 311413].The gating strategy used for all experiments is located in the 

supplemental information in Stopfer et al.188 

 

4-6-5 UV-mediated peptide exchange for hipMHCs 

UV-mediated peptide exchange was performed using recombinant, biotinylated Flex-T 

HLA-A*02:01 monomers (BioLegend), using a modified version of the commercial protocol. 

Briefly, 4 μL of 500 μM peptide stock, 2 μL of Flex-T monomer, and 32 μL of 1X PBS were 

combined in a 96-well U bottom plate. On ice, plates were illuminated with ultraviolet light (365 
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nm) for 30 minutes, followed by a 30 minute incubation at 37 °C protected from light. 

Concentration of stable complexes following peptide exchange was quantified using the Flex-T 

HLA class I ELISA assay (Biolegend) per manufacturer’s instructions for HLA-A*02:01. ELISA 

results were acquired using a Tecan plate reader Infinite 200 with Tecan icontrol version 

1.7.1.12.  

 

4-6-6 Peptide MHC isolation  

Cultured cells were seeded in 10 cm plates, allowed to adhere overnight, and treated for 

72h with binimetinib or DMSO vehicle control. At the time of harvest, cells were washed with 1x 

PBS, and lifted using 0.05% Trypsin-EDTA (Gibco). Cells were pelleted at 500 g for 5 minutes, 

washed twice more in 1x PBS, and pelleted again. Cells were resuspended in 1 mL lysis buffer 

[20 nM Tris-HCl pH 8.0, 150 mM NaCl, 0.2 mM PMSO, 1% CHAPS, and 1x HALT 

Protease/Phosphatase Inhibitor Cocktail (Thermo Scientific)], followed by brief sonication (3 x 

10 second microtip sonicator pulses) to disrupt cell membranes. Lysate was cleared by 

centrifugation at 5000 g for 5 minutes and quantified using bicinchoninic acid protein assay kit 

(Pierce). For in vitro analyses, 1x107 cells were used for each condition. Frozen CLX tumor 

samples were homogenized in lysis buffer, cleared by centrifugation, and quantified using BCA 

as described in the in vitro analyses.  For each sample, 7 mg of lysate was used.  

Peptide MHCs were isolated by immunoprecipitation (IP) and size exclusion filtration, as 

previously described.188 Briefly, for each condition 0.5 mg of pan-specific anti-human MHC 

Class I (HLA-A, HLA-B, HLA-C) antibody (clone W6/32, Bio X Cell [cat # BE0079]) was bound 

to 20 μL FastFlow Protein A Sepharose bead slurry (GE Healthcare) for 3 hours rotating at 4 °C. 

Beads were washed 2x with IP buffer (20 nM Tris-HCl pH 8.0, 150 mM NaCl) prior to lysate and 

hipMHC addition (in vitro analyses), and incubated rotating overnight at 4 °C to isolate pMHCs. 
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For hipMHCs: 30 fmol of the following isotopically labeled pMHC standards were added prior to 

IP for quantification correction: ALNEQIARL7, SLPEEIGHL7, and SVVESVKFL7. Beads were 

washed with 1x TBS and water, and pMHCs were eluted in 10% formic acid for 20 minutes at 

room temperature (RT). Peptides were isolated from antibody and MHC molecules using a 

passivated 10K molecule weight cutoff filters (PALL Life Science), lyophilized, and stored at -

80°C.  

 

4-6-7 pMHC labeling with Tandem Mass Tags and SP3 cleanup 

For labeled analyses, 100 μg of pre-aliquoted Tandem Mass Tag (TMT) 6-plex, 10-plex, 

or TMT-pro was resuspended in 30 μL anhydrous acetonitrile, and lyophilized peptides were 

resuspended in 100 μL 150 mM triethylammonium bicarbonate, 50% ethanol. Both were gently 

vortexed, centrifuged at 13,400 g for 1 minute, and combined. TMT/peptide mixtures were 

incubated on a shaker for 1 hour at RT, followed by 15 minutes of vacuum centrifugation. After 

combining labeled samples, we washed tubes 2x with 25% acetonitrile (MeCN) in 0.1% acetic 

acid (AcOH) and added it to the labeled mixture, which was subsequently centrifuged to 

dryness.  

Sample cleanup was performed using single-pot solid-phase-enhanced sample 

preparation (SP3) as previously described.290 Briefly, a 1:1 mix of hydrophobic/hydrophilic Sera-

mag carboxylate-modified speed beads (GE Healthcare) was prepared at a final bead 

concentration of 10 μg μL-1. Labeled samples were resuspended in 30 μL of 100 mM 

ammonium bicarbonate (pH 7-8) and added to 500 μg of bead mix with 1 mL MeCN. Peptides 

were allowed to bind for 10 minutes at RT, washed 2x with MeCN, and eluted with 2% DMSO 

for 1 minute of sonication in a bath sonicator. TMT-labeled peptides were transferred to a fresh 

microcentrifuge tube and centrifuged to dryness.  
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4-6-8 Global protein expression profiling sample preparation 

 For a quantitative global proteomics analysis, 300 ug of supernatant from DMSO and 

100 nM MEKi sample for SKMEL5 cells was diluted 8-fold in 8M urea, reduced with 10 mM 

dithiothreitol in 100 mM ammonium acetate (pH 8.9) at 56°C for 45 minutes, and subsequently 

alkylated with 50 mM iodoacetamide for 45 minutes rotating at RT in the dark. Lysates were 

diluted 4-fold with 100 mM ammonium acetate and digested with sequence-grade trypsin 

(Promega) overnight at RT at an enzyme:substrate ratio of 50:1 (w/w). The reaction was 

quenched with formic acid (5% total volume) and desalted on C18-based STAGE tips. Solvents: 

0.1% formic acid, 90% acetonitrile (MeCN) in 0.1% formic acid, and 60% acetic MeCN in 0.1% 

formic acid. Volumes were reduced with vacuum centrifugation and lyophilized in 150 ug 

aliquots. Peptide aliquots were labeled with TMT10-plex reagents in 70% ethanol/150 mM 

triethylammonium bicarbonate (TEAB) for 1 hour at room temperature, pooled, brought to 

dryness with vacuum centrifugation, and stored at -80°C.  

 The labeled mixture was resuspended in 0.1% formic acid, and 25% was loaded onto an 

Agilent Zorbax 300Extend‐C18 5 μm 4.6 × 250 mm column on an Agilent 1200 operating at 

1 ml/min for fractionation, as previously described.384 Briefly, peptides were eluted with the 

following gradient: 1% B to 5% B for 10 mins, 5–35% B for 60 mins, 35-70% B for 15 min, held 

at 70% B for 5 mins, and was followed by equilibration back to 1% B. Fractions were collected 

with a Gilson FC203B fraction collector at 1 minute intervals and fractions 10-90 were 

concatenated to 20 fractions. The fraction volumes were next reduced by vacuum 

centrifugation, lyophilized, and stored at -80°C prior to analysis.  

 

4-6-9 Ubiquitination sample preparation 
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 SKMEL5 cells were seeded in 10 cm plates and allowed to adhere overnight. Cells were 

then treated with DMSO or 100 nM binimetinib for 72 hours. Prior to harvest, cells were treated 

with 100 nM bortezomib (PS-341, SelleckChem) to halt protease activity. Cells were next 

washed with ice cold 1X PBS and lysed in 8M Urea. Lysates were processed to tryptic peptides 

as described in the global protein expression methods and desalted using SepPak plus 

cartridges. Five mg aliquots per sample were lyophilized and stored at 80 °C prior to analysis.  

 PRMScan ubiquitin remnant motif (anti–K-ɛ-GG) antibody beads (Cell Signaling 

Technology, #5562) were crosslinked as previously described.385 Briefly, beads were washed 3x 

with 100 mM sodium borate pH 9, incubated in cross linking buffer (20 mM DMP in 100 mM 

sodium borate pH9) for 30 mins (RT, rotation). Beads were next washed 3x with blocking buffer 

(200 mM ethanolamine, pH 8) and incubated for 2 hours at 4°C rotating. Crosslinked beads 

were washed 3x with immunoprecipitation buffer (100 mmol/l Tris–HCl, 1% Nonidet P‐40 at pH 

7.4) and stored in 1X PBS with 0.02% sodium azide at 4°C prior to use.  

 Each sample was resuspended in 1 mL IP buffer and added to 40 uL bead slurry of 

conjugated anti–K-ɛ-GG beads and incubated for 2 hours rotating at 4°C.386 Peptides were 

washed 2x with IP buffer and 3x with 1X PBS, and diGly peptides were eluted 2x with 0.2% TFA 

for 5 minutes. To improve specificity, each lysate was IP’d twice, following the same IP protocol 

with the first elution. Finally, peptides were dried with vacuum centrifugation and lyophilized.  

 Lyophilized samples were next labeled with 100 ug of TMT-6plex, as described in the 

MHC labeling methods section. A high pH reverse-phase peptide fraction kid was used to 

separate labeled peptides into six fractions, according to manufacturer’s instructions (17.5%, 

20%, 22.5%, 25%, 30%, and 70% MeCN). Volumes of peptide fractions was reduced with 

vacuum centrifugation, lyophilized and stored at -80°C prior to analysis.  

4-6-10  
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4-6-11 RNA-sequencing 

RNA was isolated from 10 cm plates of SKMEL5 cells with 3 biological replicates per 

condition (DMSO, 100 nM binimetinib, 1 µM binimetinib). Prior to harvest, cells were washed 

with ice-cold 1X PBS over ice and lysed in TRIzol reagent (Thermo Fisher Scientific). Total RNA 

was isolated from each sample using Direct-zol RNA miniprep kit (Zymo Research) according to 

manufacturer’s instructions.  

RNA were confirmed for quality using the Agilent Fragment Analyzer and 300 ng of 

material was polyA-selected using NEBNext Poly(A) mRNA Magnetic Isolation Module (E7490) 

modified to include two rounds of polyA binding and 10 minute incubations. cDNA was 

generated using the NEB Ultra II directional kit (E7760) following manufacturers protocol using 

12 cycles of PCR and an 0.9X SPRI clean. The resulting libraries were quality assessed using 

the Fragment Analyzer and quantified by qPCR prior to be sequenced on the Illumina 

HiSeq2000. The 40nt single-end reads with an average depth of 5 million reads per sample 

were sequenced for all conditions. 

RNAseq reads were aligned to the human transcriptome prepared with the hg38 primary 

assembly and the Ensembl version 95 annotation using STAR version 2.5.3a.291 Gene 

expression was summarized with RSEM version 1.3.0 and SAMtools version 1.3.292,293 

Differential expression analysis was performed with DESeq2 version 1.24.0 running under R 

version 3.6.0 with normal log fold change shrinkage.294 Significance values (adjusted p value) 

are determined using the Wald test, and are multiple hypothesis corrected using Benjamini-

Hochberg (BH) method. The resulting data were parsed and assembled using Tibco Spotfire 

Analyst version 7.11.1. 
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4-6-12 HF-X LC-MS/MS data acquisition 

Chromatography: 

 Peptides were resuspended in 0.1% acetic acid and loaded on a precolumn packed in-

house (100 μm ID × 10 cm packed with 10 μm C18 beads (YMC gel, ODS-A, 12 nm, S-10 μm, 

AA12S11)). The precolumn was then washed with 0.1% acetic acid and connected in series to 

an analytical capillary column with an integrated electrospray tip (~1 μm orifice) with 5μM C18 

beads, prepared in house ((50 μm ID × 12 cm with 5 μm C18 beads (YMC gel, ODS-AQ, 12 nm, 

S-5 μm, AQ12S05)).  

 

Labeled pMHC analyses: 

Peptides were eluted using a 130 minute gradient with 10-45% buffer B (70% 

Acetonitrile, 0.2M acetic acid) from 5-100 minutes and 45-55% buffer B from 100-120 minutes at 

a flow rate of 0.2 mL/min for a flow split of approximately 10,000:1. Peptides were analyzed 

using a Thermo Q Exactive HF-X Hybrid Quadrupole-Orbitrap mass spectrometer, and data 

was acquired using Thermo Fisher Scientific Xcalibur version 2.9.0.2923. Standard mass 

spectrometry parameters were as follows: spray voltage, 2.5 kV; no sheath or auxiliary gas flow; 

heated capillary temperature, 250 °C. 

The HF-X was operated in data-dependent acquisition (DDA) mode for LF and TMT 

analyses. LF: Full-scan mass spectrometry spectra (mass/charge ratio (m/z), 350 to 2,000; 

resolution, 60,000) were detected in the Orbitrap analyzer after accumulation of ions at 3e6 

target value with a maximum IT of 50 ms. For every full scan, the top 20 most intense ions were 

isolated (isolation width of 0.4 m/z) and fragmented (collision energy (CE): 28%) by higher 

energy collisional dissociation (HCD) with a maximum injection time of 350 ms, AGC target 1e5, 
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and 30,000 resolution. Charge states < 2 and > 4 were excluded, and dynamic exclusion was 

set to 45 seconds. TMT: Full-scan mass spectrometry spectra (mass/charge ratio (m/z), 400 to 

2,000; resolution, 60,000) were detected in the Orbitrap analyzer after accumulation of ions at 

3e6 target value with a maximum IT of 50 ms. For every full scan, the 20 most intense ions were 

isolated (isolation width of 0.4 m/z) and fragmented (collision energy (CE): 31%) by higher 

energy collisional dissociation (HCD) with a maximum injection time of 350 ms, AGC target 1e5, 

and 30,000 resolution. Charge states < 2 and > 4 were excluded, and dynamic exclusion was 

set to 60 seconds. 

 

Global protein expression profiling: 

Peptides were analyzed using a Thermo Q Exactive HF-X Hybrid Quadrupole-Orbitrap 

mass spectrometer. Standard mass spectrometry parameters were as follows: spray voltage, 

2.5 kV; no sheath or auxiliary gas flow; heated capillary temperature, 250°C. Peptides were 

eluted with 80% acetonitrile in 0.1% formic acid (solvent B) in following gradient: 0–10% buffer B 

for 5 min, 10–30% for 100 min, 30–40% for 14 min, 40–60% for 5 min, 60–100% for 2 min, held 

at 100% of 10 mins, and equilibrated back to 0.1% formic acid. All twenty fractions were 

analyzed back-to-back to minimize effects from instrument performance variation. 

The HF-X was operated in data-dependent acquisition (DDA) mode. Full-scan mass 

spectrometry spectra (mass/charge ratio (m/z), 300 to 2,000; resolution, 60,000) were detected 

in the Orbitrap analyzer after accumulation of ions at 3e6 target value with a maximum IT of 50 

ms. For every full scan, the 15 most intense ions were isolated (isolation width of 0.4 m/z) and 

fragmented (collision energy (CE): 31%) by HCD with a maximum injection time of 350 ms, 

AGC target 1e5, and 30,000 resolution. Charge states of 1 and >7 were excluded, and dynamic 

exclusion was set to 20 seconds. 
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Ubiquitination analyses: 

The same gradient and standard instrument parameters from global protein expression 

profiling were used for ubiquitination analyses. The HF-X was operated in data-dependent 

acquisition (DDA) mode. Full-scan mass spectrometry spectra (mass/charge ratio (m/z), 400 to 

1,250; resolution, 60,000) were detected in the Orbitrap analyzer after accumulation of ions at 

5e5 target value with a maximum IT of 100 ms. For every full scan, the 20 most intense ions 

were isolated (isolation width of 0.4 m/z) and fragmented (collision energy (CE): 33%) by HCD 

with a maximum injection time of 300 ms, AGC target 1e5, and 60,000 resolution. Charge states 

of <3 and >7 were excluded, and dynamic exclusion was set to 30 seconds. The six fractions 

were analyzed back-to-back to minimize effects from instrument performance variation. 

 

4-6-13 Exploris 480 LC-MS/MS data acquisition 

pMHC samples were analyzed using an Orbitrap Exploris 480 mass spectrometer 

(Thermo Scientific) coupled with an UltiMate 3000 RSLC Nano LC system (Dionex), Nanospray 

Flex ion source (Thermo Scientific), and column oven heater (Sonation). Samples were 

resuspended in 0.1% formic acid and directly loaded onto a 10-15 cm analytical capillary 

chromatography column with an integrated electrospray tip (~1 μm orifice), prepared and 

packed in house (50 μm ID × 20 cm & 1.9 μM C18 beads, ReproSil-Pur). pMHC elutions were 

injected in 15-25% fractions for improved coverage of the immunopeptidome. 

TMT-6/10: Peptides were eluted using a gradient with 8-25% buffer B (70% Acetonitrile, 

0.1% formic acid) for 50 minutes, 25-35% for 25 minutes, 35-55% for 5 minutes, 55-100% for 2 

minutes, hold for 1 minutes, and 100% to 3% for 2 minutes. 
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TMT-Pro: Peptides were eluted using a gradient with 8-25% buffer B (70% Acetonitrile, 

0.1% formic acid) for 50 minutes, 25-45% for 30 minutes, 45-100% for 2 minutes, hold for 1 

minutes, and 100% to 3% for 2 minutes. 

Standard mass spectrometry parameters were as follows: spray voltage, 2.0 kV; no 

sheath or auxiliary gas flow; heated capillary temperature, 275 °C. The Exploris was operated in 

data dependent acquisition (DDA) mode. Full scan mass spectra (350-1200 m/z, 60,000 

resolution) were detected in the orbitrap analyzer after accumulation of 3e6 ions (normalized 

AGC target of 300%) or 25 ms. For every full scan, MS2 were collected during a 3 second cycle 

time. Ions were isolated (0.4 m/z isolation width) for a maximum of 150 ms or 75% AGC target 

and fragmented by HCD with 32% CE (TMT-6/10) or 30% (TMT-pro) at a resolution of 45,000. 

Charge states < 2 and > 4 were excluded, and precursors were excluded from selection for 30 

seconds if fragmented n=2 times within 20 second window.  

 

4-6-14 LC-MS/MS data analysis: 

All mass spectra were analyzed with Proteome Discoverer (PD, version 2.5) and 

searched using Mascot (version 2.4) against the human SwissProt database. MS/MS spectra 

were matched with an initial mass tolerance of 10 ppm on precursor masses and 20 mmu for 

fragment ions. Data analyses were performed using Matlab version R2019b, and Microsoft 

Excel version 16.34 

pMHC analyses: No enzyme was used, static modifications included N-terminal and 

lysine TMT, and variable modifications included oxidized methionine for all analyses and 

phosphorylated serine, threonine, and tyrosine for cell treatment analyses. Treatment analyses 

were also searched against a previously published catalog of over 40,000 predicted antigenic 

mutations in cancer cell lines.295 Heavy leucine-containing peptides were searched for 
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separately with heavy leucine (+7), c-terminal amidation, and methionine oxidation as dynamic 

modifications against a custom database of the synthetic peptide standards. All analyses were 

filtered with the following criteria: search engine rank =1, isolation interference ≤ 30%, and 

length between 8 and 15 amino acids. Label-free analyses were filtered with ion score ≥ 20, and 

labeled samples were filtered with ion score ≥ 15 and percolator q-value ≤ 0.05. Area under the 

curve (AUC) quantitation was performed using the minora feature detector in PD with match 

between runs enabled and filtered for ion score ≥ 20. 

For TMT-labeled in vitro samples, ratios against a reference channel (usually TMT126) 

were calculated and the median of all ratios for correction hipMHCs was used to determine the 

final correction parameters. Only PSMs of heavy leucine-coded peptides with an average 

reporter ion intensity within 10-fold of the interquartile range of endogenous PSM reporter ion 

intensities were used for correction. To evaluate differences between conditions, the log2 

transformed ratio of arithmetic mean intensity for drug- and DMSO-treated samples (n=3) was 

calculated. To determine if peptides were significantly increasing, an unpaired, 2-sided t-test 

was performed, and peptides with p £ 0.05 were considered significantly increasing/decreasing. 

To evaluate which peptides were significantly enriched above the mean, treated samples were 

mean centered by dividing the ion intensity of each peptide by the mean fold-change across all 

peptides, after which a student’s 2-tailed t-test was performed on adjusted values. Peptides with 

a mean-adjusted p-value £ 0.05 were considered significantly enriched. Mean centering was not 

performed on samples where the mean log2 fold change was between -0.07 and 0.07.   

 Global protein expression profiling: Enzyme: trypsin, allowing for up to 2 missed 

cleavages. Cysteine carbamidomethylation, TMT‐labeled lysine, and peptide N‐termini were 

searched as fixed modifications, and oxidated methionine was set as a variable modification. 

PSMs from all fractions were filtered according to search engine rank = 1, ion score ≥ 20, 
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precursor isolation interference ≤30%. Reporter ion abundances for peptides mapping to the 

same protein were summed, and quantification was corrected by normalizing with the median 

fold change in TMT abundances over TMT-126 to account for variations in sample input. To 

determine differences in protein expression, an unpaired, 2-sided t-test was performed, and 

peptides with p ≤ 0.05 were considered significantly changing. 

 Ubiquitination analysis: Enzyme: trypsin, allowing for up to 2 missed cleavages. Cysteine 

carbamidomethylation was set as a static modification, and dynamic modifications were set as 

diGly-TMT on lysine residues (monoisotopic: 343.20), and N-terminal TMT. PSMs from 6 

fractions were filtered to the following criteria: di-Gly modification, search engine rank = 1, ion 

score ≥ 15, precursor isolation interference ≤ 30%. Reporter ion intensities were summed for 

PSMs mapping to the same peptide, and the fold change in abundance was calculated by 

taking the average reporter ion abundance for n=3 replicates per condition. Variation in sample 

input was account for by normalizing each reporter channel to the median fold change over 

TMT-126 across all peptides. When multiple peptides mapped to a source protein, the maximal 

fold change value was used for pMHC comparisons. Significance values were calculated using 

an unpaired, 2-sided t-test was performed, and peptides with p ≤ 0.05 were considered 

significantly changing. 

 

4-6-15 Peptide MHC binding affinity 

Binding affinity of 9-mer pMHCs was estimated using NetMHCpan-4.0 against each cell 

line’s allelic profile (Supplementary Figure 4-5).99,280 The minimum predicted affinity (nM) of 

each peptide was used to assign peptides to their best predicted allele. The threshold for 

binding was set to 500 nM.  
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4-6-16 Enrichment analyses 

For pMHC pathway and TAA enrichment analyses, gene names from peptide source 

proteins were extracted and rank ordered according to the average log2 fold change over DMSO 

treated cells. In cases where more than one peptide mapped to the same source protein, the 

maximum/minimum was chosen, depending on the directionality of enrichment analysis. For 

RNAseq & protein expression data, data sets were rank ordered according to the mean log2 fold 

change value with only protein encoding genes considered.  

We utilized gene set enrichment analysis (GSEA) 4.0.3 pre-ranked tool against the 

Molecular Signatures Database hallmarks gene sets with 1000 permutations, weighted 

enrichment statistic (p=1), and a minimum gene size of 15.255,281,282 Results were filtered for 

FDR q-value £ 0.25, and nominal p-value £ 0.05. P-values > 0.05 in reported analyses are 

noted. Significantly enriched peptides (mean-adjusted p-value £ 0.05) were analyzed using 

STRING v11 for Gene Oncology (GO) term enrichment against biological processes and cellular 

components datasets.256,297 Enriched categories were filtered according to FDR-q value £ 0.05. 

 

4-7 TCGA data analysis 

 mRNASeq normalized gene expression data (MD5) from the TCGA skin cutaneous 

melanoma study (SKCM) for was obtained from Firebrowse (Broad Institute).383 Expression for 

all tumors was z-score normalized, and BRAF mutant tumor data was extracted for subsequent 

analyses. Pairwise gene expression significance comparisons were calculated using an un-

paired, two-taled T test, and significance values for HLA expression between MITF-low and 

immune subtypes were calculated using Sidak’s multiple comparisons test.  
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4-9 Supplementary Information 

 

 

Supplementary Figure 4-1. Viability assessment (fraction of DMSO control) for cell lines treated with 
binimetinib for 72hr.  
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Supplementary Figure 4-2. Surface MHC expression following 100 nM binimetinib treatment in SKMEL5 
cells. Significance: *p<0.05, **p<0.01, Dunnett’s multiple comparisons test against DMSO control. 

 

 

 

Supplementary Figure 4-3. Flow cytometry analysis of HLA-ABC expression in melanoma cell lines 
treated with DMSO, 100 nM or 1 µM binimetinib for 72h.  
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Supplementary Figure 4-4. A Peptide length distribution for each cell line. B Predicted binding affinity of 
9-mer peptides, rank ordered. Dotted line represents threshold for binding at ≤500 nM. Percentage of 
peptides ≤500 nM are listed on each plot.  
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Supplementary Figure 4-5. HLA alleles for each cell line.  
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Supplementary Figure 4-6. Volcano plots of the average fold change in pMHC expression with 
binimetinib treatment (n=3 biological replicates for DMSO and MEKi treated cells) versus significance 
(mean-adjusted p value, unpaired two-sided t test). 

 



 238 

 

Supplementary Figure 4-7. A Volcano Plot for SKMEL5 cells +/- Trametinib, plotted as described in 
Supplementary Figure 4-6. B Histogram of fold changes in pMHC expression for SKMEL5 cells +/- 100 
nM MEKi for 10 days. µ=2.0 fold change.  
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Supplementary Figure 4-8. Enriched tumor associated antigen pMHC expression changes with 100 nM 
MEKi. 
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Supplementary Figure 4-9. A Tumor associated antigen (TAA) enrichment plot of SKMEL5 cells +/- 100 
nM MEKi, ranked by precursor ion abundance (peak area). B Correlation between fold change in pMHC 
expression and precursor ion abundance for SKMEL5 +/- 100 nM binimetinib. C Significance value of 
TAA enrichment analysis, where LF = label free analysis, TMT = multiplexed analysis, AUC = ranked 
according to precursor ion abundance (area under the curve, AUC), peptide = ranked by peptide fold 
change and searched against SKMEL5 peptide MHC database, gene = ranked by maximal fold change 
for each source protein. Significance values at 4 represent p<0.0001.  
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Supplementary Figure 4-10. Enriched pMHCs derived from EMT-related proteins. 

 

 

 

Supplementary Figure 4-11. Proteomics LC-MS/MS workflow for quantitative protein expression profiling 
(top) and ubiquitination analysis (bottom).  
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Supplementary Figure 4-12. Changes in pMHC, RNA, and protein expression following 100 nM 
binimetinib treatment for 72 hours. 
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Supplementary Figure 4-13. A Clustergram of maximum changes in pMHC expression and 
corresponding changes in ubiquitination (maximum if >1 peptide quantified), RNA, and protein 
expression. B Correlation of maximum change (Log2(MEKi/DMSO)) in ubiquitination and pMHC for each 
source peptide. C-E, select clusters from A. 
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Supplementary Figure 4-14. A Number of unique pMHCs identified in each analysis. B Length 
distribution of pMHCs represented as a percentage of the total pMHCs identified. 

 

 

 

 

Supplementary Figure 4-15. A Change in pMHC expression with MEKi of MITF-derived peptides in 
SKMEL2 CLX model after 1-5d of treatment. B SKMEL28 cell line (left) and CLX (right) changes in pMHC 
expression of an SNAI2-derived pMHC.  
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Supplementary Figure 4-16. Source proteins of negatively enriched E2F targets in the in vitro (black) 
and CLX (grey) analyses.  

 

 

 

 

 

 

Supplementary Figure 4-17. Correlation between HLA-A expression and E-cadherin (CDH1) and N-

cadherin (CDH2) expression.  
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4-10 Tables 
Table 4-1. Custom library of tumor associated antigen source proteins.  

ABCA1 BING4 CLTC DUSP22 GNTK IMP3 
ABCA6 BIRC5 CLYBL EEF2 GPC3 INPP5D 
ABCC3 BIRC7 CML28 EFTUD2 GPCPD1 INS 
ABCD3 BIRC8 CNMD EGFR GPNMB INSM2 
ABL1 BIRC9 COA1 EHD2 GPR143 INTS11 
ACPP BRAF COL2A1 EIF2S3 HAO2 INTS13 
ACRBP BST2 COL4A3 EIF3D HAUS3 IQGAP2 
ACTB BTBD2 COL6A2 ELAC2 HBD IRS2 
ACTN4 BTG1 CORO1A ELAVL1 HCG ITGAL 
ADAM17 BTK COX2 ELAVL4 HDAC1 ITGAM 
ADAMTSL5 C18orf21 CPSF EML6 HDGF ITGB2 
ADRP C2CD4A CPSF1 ENAH HEPACAM ITGB8 
AFP C5 CPVL EPCAM HHAT KAAG1 
AIM2 CA9 CR2 EPHA2 HIFPH3 KCNAB1 
AIMP1 CACNG CRABP1 ERAP1 HIST4H4 KDM2B 
AKAP13 CADH3 CRNKL1 ERBB2 HIVEP1 KDM5B 
ALDH1A1 CALCA CSAG2 ERVK3-1 HLA-A KDM5C 
ALDOA CALR CSF1 ETV5 HLA-B KDM5D 
ALK CAMP CSF3R EVI2B HLA-DOB KDR  
ALYREF CASP5 CSNK1A1 EZH2 HLA-DPA1 KIAA1551 
AML1 CASP8 CSPG4 EZR HMMR KIF20A 
AMZ2 CCDC110 CT83 FAM136A HMOX1 KLK10 
ANKRD30A CCL3 CTAG1A FASN HMSD KLK3 
ANO7 CCL3L1 CTDP1 FBXW11 HNF4G KLK4 
ANXA1 CCLA2 CTNNB1 FCER1A HNRNPL KRAS 
APOBEC3H CCNA1 CTPS1 FDPS HNRNPLL KRI1 
ARF1 CCNB1 CTSH FGF5 HNRNPR KRT16 
ARHGAP15 CCND1 CYP1B1 FGF6 HOXD3 KRT18 
ARHGAP25 CCNI CYP21A2 FLT3 HPN KRT6C 
ARHGAP4 CD19 CYP2A6 FLT3LG HPSE KTN1 
ARHGAP45 CD274 CYP2A7 FMOD HSDL1 LAGE1 
ARL4D CD33 CYP2C8 FMR1NB HSP90AB1 LAGE3 
ART4 CD48 CYP2C9 FNDC3B HSPA1A LAS1L 
ART5 CD69 CYP2D6 FOLH1 HSPA1B LCK 
ASH1L CD79B CYPB FOXO1 HSPA1L LCP2 
ATIC CDC5L DAPK2 G3BP1 HSPA6 LGALS1 
ATP2A3 CDCA7L DCT G6PC2 HSPB1 LGALS3BP 
ATXN10 CDH13 DDX21 GAD2 HSPD1 LGSN 
B2A2 CDK12 DDX3Y GAGE1 ICAM3 LPGAT1 
B3A2 CDK4 DDX5 GAS7 ICE LRMP 
BA46 CDKN1A DKK1 GATA2 IDNK LRRC8A 
BAD CDKN2A DLAT GC IDO1 LTB 
BAGE1 CDR2 DMD GCGR IER3 LY6K 
BCAP31 CEACAM5 DMXL1 GEMIN4 IFG2BP3 LYN 
BCHE CELF6 DNAJC2 GFAP IFI30 MAG 
BCL2 CELSR1 DNMBP GINS1 IFI6 MAGEA1 
BCL2A1 CENPM DNMT1 GLRX3 IGF2BP2 MAGEA12 
BCL2L4 CEP55 DOCK2 GLS IGF2BP3 MAGEB2 
BFAR CLCA2 DOK2 GNAO1 IL13RA2 MAGEC1 
BID CLP DSE GNL3L IL2RG MAGEC2 
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Table 4-1 continued 
MAGEC2 NELFA PSMB1 SIRT2 UBE2C 
MAGED2 NFYC PSMB10 SLC25A5 UBE2D2 
MAGEE1 NISCH PTHLH SLC30A8 UGT2B17 
MAGEF1 NLRP5 PTPN11 SLC41A3 UQCR10 
MAGEF1 NOB1 PTPN21 SLC45A2 UQCRH 
MALL NONO PTPRC SLC45A3 USP11 
MAP4K1 NPM1 PTPRN SLCO2A1 USP9X 
MARK3 NQO1 PTTG1IP SNRNP70 USP9Y 
MATN2 NRAS PUM3 SNRPD1 UTY 
MBP NUDCD1 PWWP3A SNX14 VEGFA 
MC1R NUF2 PXDN SOX10 VENTXP1 
MCF2 NUF3 RAB38 SP110 VGF 
MCM5 NUP210 RAN SPA17 VIM 
MCMBP NUP37 RASGRF1 SPARC VIPR1 
MDK OCA2 RASGRP2 SPATA5L1 VPS13B 
MDM2 OGT RASSF10 SSX1 VSIG10L 
MDN1 OS9 RBAF600 SSX2 WNK2 
ME1 P2RX5 RBBP4 STAT1 WT1 
MED23 PAK2 RBL2 STEAP1 XAGE1B 
MED24 PARP10 RFA1 SUGT1 XBP1 
MET PARP3 RGS5 SUPT5H ZFAND5 
METTL21A PASD1 RHOC SYNGR1 ZFHX3 
MFGE8 PAX3 RINT1 TAG1 ZFP36L1 
MICA PAX5 RNF19B TALDO1 ZFY 
MLANA PCDH11Y RNF43 TBC1D22A ZMYM4 
MMP2 PCDH20 RPA1 TCHH ZNF395 
MMP7 PDGFRA RPL10A TEK  
MOK PFKM RPL19 TEP1  
MPL PGK1 RPS2 TERT  
MRPL19 PHB RPS4Y1 TG  
MS4A1 PHRF1 RPSA TGRBR2  
MSCP PIM1 RUBCNL THEM6  
MSLN PLAC1 SAGE1 TMCO1  
MT-ATP6 PLIN2 SART1 TMED4  
MT-CO2 PLP1 SART3 TMSB10  
MTRR PMEL SASH1 TMSB4Y  
MUC1 POP1 SCGB2A2 TOP1  
MUC16 PP2A SCGB2A7 TOP2A  
MUC5AC PPFIBP1 SCRN1 TP53  
MUM2 PPIB SEC31A TP53I11  
MUM3 PPP1R3B SELL TPBG  
MYH1 PRAME SELPLG TPO  
MYH2 PRDM1 SEPT2 TRIM22  
MYH9 PRDX2 SEPT6 TRIM68  
MYO1G PRDX5 SERPINB5 TTK  
N4BP2 PRELID1 SF1 TTN  
N4BP2L1 PRKCB SFMBT1 TYMS  
NACA2 PRTN3 SGT1B TYR  
NCF4 PSD4 SH3GLB2 TYRP1  
NECTIN4 PSMA3 SIRPD UBD  
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Table 4-2. Tumor associated antigen peptide library for enrichment analyses.  

AAAAAIFVI ALIHHNTHL AMLDLLKSV AVFDGAQVTSK DLTSFLLSL ESDPIVAQY 
AAANIIRTL ALISKNPV AMLERQFTV AVLTKQLLH DLWKETVFT ESFSGSLGHL 
AAFDGRHSQTL ALKDSVQRA AMLGTHTMEV AVMALENNYEV DNGAKSVVL ESLFRAVITK 
AAGIGILTV ALKDVEERV AMLGTHTMEVTV AVQEFGLARFK DPARYEFLW ESVMINGKY 
AARAVFLAL ALLALTSAV AMTKDNNLL AVTNVRTSI DPKDAEKAI ETAGPQGPPHY 
AAVEEGIVLGGG ALLAVGATK AMVGAVLTA AVVDLQGGGHSY DPSTDYYQEL ETFTEGQKL 
ACDGERPTL ALLEIASCL AMYDKGPFRSK AVVGILLVV DPYKATSAV ETHLSSKRY 
ACDPHSGHFV ALLESSLRQA ANADLEVKI AVYGQKEIHRK DQYPYLKSV ETILTFHAF 
AEEAAGIGIL ALLKDTVYT ANDPIFVVL AWISKPPGV DRASFIKNL ETLGFLNHY 
AEEAAGIGILT ALLMPAGVPL APAGRPSAS AWLVAAAEI DSDPDSFQDY ETVELQISL 
AEEHSIATL ALLNIKVKL APAGRPSASR AYACNTSTL DSFPMEIRQY ETVSEQSNV 
AEHIESRTL ALLPSLSHC APAGVREVM AYDFLYNYL DSFPMEIRQYL EVAPDAKSF 
AEINNIIKI ALLPTALDAL APDGAKVASL AYGLDFYIL DTEFPNFKY EVAPPASGTR 
AELESKTNTL ALMDKSLHV APLLRWVL AYIDFEMKI DVNGLRRVL EVDPASNTY 
AELLNIPFLY ALMEQQHYV APLQRSQSL AYTKKAPQL DVTSAPDNK EVDPIGHLY 
AELVHFLLL ALMVRQARGL APNTGRANQQM AYVPQQAWI DVWSFGILL EVDPIGHLYIF 
AEPINIQTW ALNFPGSQK APRGVRMAV CHILLGNYC DYIGPCKYI EVDPIGHVY 
AFLPWHRLF ALPPPLMLL APVIKARMM CIAEQYHTV DYKSAHKGF EVFEGREDSVF 
AFLRHAAL ALPSFQIPV AQAEHSITRV CILGKLFTK DYLQCVLQI EVFPLAMNY 
AGDGTTTATVLA ALQDIGKNIYTI AQCQETIRV CITFQVWDV DYLQYVLQI EVFPLAMNYL 
AGFKGEQGKGEP ALQKAKQDL AQDPHSLWV CLAFPAPAKA DYLRSVLEDF EVFQNANFRSF 
AGYLMELCC ALRCASPWL AQPDTAPLPV CLGHNHKEV DYPSLSATDI EVHNLNQLLY 
AHVDKCLEL ALREEEEGV AQYEHDLEVA CLLSGTYIFA DYSARWNEI EVIGRGHFGCVY 
AIDELKECF ALSDHHIYL ARGPESRLL CLLWSFQTSA EAAGIGILTV EVIPYTPAM 
AIIDPLIYA ALSEDLLSI ARGQPGVMG CLVFLAPAKA EADPTGHSY EVIPYTPAMQR 
AIISGDSPV ALSVMGVYV ARHRRSLRL CLVFPAPAKA EAFIQPITR EVIPYTPAMQRY 
AISANIADI ALTAVAEEV ARSVRTRRL CLVFPAPAKAV EEFGRAFSF EVIQWLAKL 
AIYDHINEGV ALTDIDLQL ARTDLEMQI CMHLLLEAV EEKLIVVLF EVISCKLIKR 
AIYDHVNEGV ALTEHSLMGM ASERGRLLY CMLGDPVPT EEYLQAFTY EVISSRGTSM 
AIYKQSQHM ALTERSLMGM ASFDKAKLK CMTWNQMNL EEYNSHQSL EVITSSRTTI 
AKYLMELTM ALTPVVVTL ASGPGGGAPR CQWGRLWQL EFKRIVQRI EVKLSDYKGKYV 
ALAGLSPV ALVDAGVPM ASLDSDPWV CTACRWKKACQ EFQKMRRDL EVLDSLLVQY 
ALAPAPAEV ALVSIIKV ASLIYRRRLMK CTACRWKKACQR EGDCAPEEK EVLLRPGLHFR 
ALARGAGTVPL ALWGPDPAAA ASSTLYLVF CYMEAVAL EILGALLSI EVMSNMETF 
ALASHLIEA ALWGPDPAAAF ASYLDKVRA CYTWNQMNL ELAEYLYNI EVRGDVFPSY 
ALAVLSVTL ALWKEPGSNV ATAGDGLIELRK DAKNKLEGL ELAGIGILTV EVTFVPGLY 
ALCQNGYHGT ALWMRLLPL ATAGIIGVNR DALVLKTV ELAPIGHNRMY EVTSSGRTSI 
ALCQNGYHGTI ALWMRLLPLL ATAQFKINK DCLVFLAPA ELFQDLSQL EVVEKYEIY 
ALCRWGLLL ALWPWLLMA ATATPCWTWLL DEKQQHIVY ELHLLQDEEV EVVHKIIEL 
ALDEKLLNI ALWPWLLMA(T) ATFSSSHRYHK DELEIKAY ELHLLQDKEV EVVRIGHLY 
ALDGGNKHFL ALWPWLLMAT ATGFKQSSK DEVYQVTVY ELSDSLGPV EVYDGREHSA 
ALDVYNGLL ALYGDIDAV ATIIDILTK DFMIQGGDF ELTLGEFLK EYILSLEEL 
ALEEANADL ALYLVCGER ATLPLLCAR DIKAKMQAS ELTLGEFLKL EYLQLVFGI 
ALENNYEVL ALYSGVHKK ATQIPSYKK DLDVKKMPL ELVRRILSR EYLSLSDKI 
ALFDIESKV ALYVDSLFFL ATSPPASVR DLILELLDL ELWKNPTAF EYRGFTQDF 
ALGDLFQSI AMAPIKVRL ATTNILEHY DLKGFLSYL EPLARLEL EYSKECLKEF 
ALGGHPLLGV AMAQDPHSL ATVGIMIGV DLLSHAFFA EQYEQILAF EYSRRHPQL 
ALIDCNPCTL AMAQDPHSLWV AVAANIVLTV DLPAYVRNL ERGFFYTPK EYTAKIALL 
ALIEVGPDHFC AMARDPHSL AVASLLKGR DLPPPPPLL ERLERQERL EYYLQNAFL 
ALIGGPPV AMARDPHSLWV AVCPWTWLR DLSPGLPAA ERSPVIQTL FALQLHDPSGY 
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Table 4-2 continued 
FATPMEAEL FLPETEPPEM FVGEFFTDV GLWRHSPCA HTMEVTVYHR IMIHDLCLA 
FATPMEAELAR FLPETEPPEML FVSGSGIAIA GLYDGMEHL HTRTPPIIHR IMIHDLCLV 
FAWERVRGL FLPHFQALHV FVSGSGIATA GMVTTSTTL HTYLEPGPVTAQ IMIHDLCLVFL 
FEITPPVVL FLPRNIGNA FVWLHYYSV GMWESNANV HVDSTLLQ IMLCLIAAV 
FGLATEKSR FLQDVMNIL FYTPKTRRE GPFGAVNNV HVDSTLLQV IMNDMPIYM 
FGLFPRLCPV FLRAENETGNM GADGVGKSA GPFGPPMPLHV HVYDGKFLAR IMPGQEAGL 
FIASNGVKLV FLRNFSLML GADGVGKSAL GPRESRPPA HYTNASDGL IMPKAGLLI 
FIDKFTPPV FLRNFSLMV GAFEHLPSL GQHLHLETF IALNFPGSQK IPSDLERRIL 
FIDNTDSVV FLRNLVPRT GAIAAIMQK GRAPQVLVL IARNLTQQL IPSNPRYGM 
FIDSYICQV FLSSANEHL GASGVGSGL GSHLVEALY ICLHHLPFWI IQATVMIIV 
FIFPASKVYL FLSTLTIDGV GCELKADKDY GSPATWTTR IESRTLAIA IRRGVMLAV 
FIFSILVLA FLTGNQLAV GDFGLATEK GSSDVIIHR IEVDGKQVEL ISGGPRISY 
FIIENLKAA FLTKRGGQV GEISEKAKL GTAAIQAHY IIGGGMAFT ISKPPGVAL 
FILPVLGAV FLTKRGRQV GERGFFYT GTADVHFER IIMFDVTSR ISSVLAGASCPA 
FINDEIFVEL FLTKRSGQV GEVDVEQHTL GTATLRLVK IISAVVGIL ISTQQQATFLL 
FIQVYEVERA FLTKRSGQVCA GFKQSSKAL GTMDCTHPL IITEVITRL ITARPVLW 
FKNIVTPRT FLTKRSRQV GIMAIELAEL GTMDCTHSL ILAKFLHWL ITDFGLAKL 
FLAELAYDL FLTPKKLQCV GIPPAPHGV GTSSVIVSR ILAKFLHWLE ITDFGLARL 
FLAKLNNTV FLTPLRNFL GIPPAPRGV GTWESNANV ILAVDGVLSV ITDQVPFSV 
FLALIICNA FLTSGTQFSDA GIVEQCCTSI GTYEGLLRR ILDEKPVII ITKKVADLVGF 
FLAPAKAVV FLWGPRALA GLAPPQHLIRV GVALQTMKQ ILDFGLAKL ITQPGPLAPL 
FLAPAKAVVYV FLWGPRALV GLASFKSFLK GVFIQVYEV ILDKKVEKV ITQPGPLVPL 
FLASESLIKQI FLWGPRAYA GLCEREDLL GVLVGVALI ILDKVLVHL IVDCLTEMY 
FLDEFMEGV FLWSVFMLI GLEALVPLAV GVNPVVSYAV ILDSSEEDK IVDSLTEMY 
FLDRFLSCM FLWSVFWLI GLEKIEKQL GVRGRVEEI ILDTAGREEY IYMDGTADFSF 
FLEGNEVGKTY FLYDDNQRV GLFDEYLEMV GVYDGREHTV ILFGISLREV KAFLTQLDEL 
FLFAVGFYL FLYGALLLA GLFGDIYLA GYCASLFAIL ILGALLSIL KAFQDVLYV 
FLFDGSPTY FLYTLLREV GLGLPKLYL GYDQIMPKI ILHNGAYSL KAKQDLARL 
FLFLLFFWL FMHNRLQYSL GLGNRWTSRT GYDQIMPKK ILIDWLVQV KALRLSASALF 
FLGMESCGI FMNKFIYEI GLGPVAAV HAIPHYVTM ILKDFSILL KASEKIFYV 
FLGYLILGV FMTRKLWDL GLIEKNIEL HIAGSLAVV ILLEAPTGLA KAYGASKTFGK 
FLHHLIAEIH FMTSSWWGA GLKAGVIAV HLCGSHLVEA ILLEAPTGLV KCDICTDEY 
FLIIWQNTM FMTSSWWRA GLLDKAVSNV HLFGYSWYK ILLRDAGLV KCQEVLAWL 
FLIVLSVAL FMTSSWWRAPL GLLDQVAAL HLLTSPKPSL ILLWAARYD KEADPTGHSY 
FLLDILGAT FMVEDETVL GLLETTVQKV HLSTAFARV ILMEHIHKL KEAGNINTSL 
FLLENAAYL FMVELVEGA GLLGQEGLVEI HLSYHRLLPL ILMEHIHKLK KECVLHDDL 
FLLENAAYLD FPALRFVEV GLLQVHHSCPL HLSYHWLLPL ILMEHIHKLKA KECVLRDDL 
FLLFIFKVA FPSDSWCYF GLMDVQIPT HLVEALYLV ILMHCQTTL KEFEDDIINW 
FLLGLIFLL FPYGTTVTY GLPAGAAAQA HLWVKNMFL ILNAMIAKI KEFEDGIINW 
FLLKAEVQKL FQRQGQTAL GLPGQEGLVEI HLWVKNVFL ILPLHGPEA KEFKRIVQR 
FLLKLTPLL FRSGLDSYV GLPPDVQRV HLYQGCQVV ILSAHVATA KEFTVSGNILTI 
FLLQMMQICL FSIDSPDSL GLPPDVQRVH HMYHSLYLK ILSLELMKL KELEGILLL 
FLLQMMQVCL FSYMGPSQRPL GLPPPPPLL HPLVFHTNR ILTVILGVL KELPSLHVL 
FLLSLFSLWL FTHNEYKFYV GLQHWVPEL HPRQEQIAL ILVLASTITI KEPSEIVEL 
FLMLVGGSTL FTWAGKAVL GLQLGVQAV HPRYFNQLST ILYENNVITV KEWMPVTKL 
FLMSSWWPNL FTWAGQAVL GLREDLLSL HQILKGGSGTY ILYENNVIV KFHRVIKDF 
FLNQTDETL FTWEGLYNV GLREREDLL HRWCIPWQRL IMAIELAEL KFLDALISL 
FLPATLTMV FVEHDDESPGL GLRRVLDEL HSATGFKQSSK IMDQVPFSV KGSGKMKTE 
FLPEFGISSA FVEHDLYCTL GLSPNLNRFL HSSSHWLRLP IMFDVTSRV KIADPICTFI 
FLPETEPPEI FVFLRNFSL GLSTILLYH HSWITRSEA IMIGVLVGV KIDEKTAELK 
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Table 4-2 continued 

KIFDEILVNA KLQELNYNL KTWDQVPFS LLDGTATLRL LLMPAGVPL LMLGEFLKL 
KIFGSLAFL KLQQKEEQL KTWDQVPFSV LLDKAVSNVI LLMPAGVPLT LMLQNALTTM 
KIFSEVTLK KLQVFLIVL KTWDQVPFSVSV LLDRFLATV LLMWITQCF LMVLMLAAL 
KILDAVVAQK KLSEGDLLA KTWGQYWQ LLDTNYNLF LLNAFTVTV LMWAKIGPV 
KINKNPKYK KLSEQESLL KTWGQYWQV LLDTNYNLFY LLNATIAEV LNIDLLWSV 
KIQEILTQV KLTQINFNM KVAELVHFL LLDVAPLSL LLNLPDKMFL LNIYEKDDKL 
KIQRNLRTL KLVERLGAA KVAELVRFL LLDVPTAAV LLNLPVWVL LNLPDKMFL 
KIWEELSVLE KLVMSQANV KVFGSLAFV LLEAPTGLV LLNQPDKMFL LPAVVGLSPGEQ 
KIWEELSVLEV KLVVVGAVGV KVHPVIWSL LLEEMFLTV LLPENNVLSPV LPGEVFAI 
KIYSENLKL KLYSENLKL KVIDQQNGL LLESAFPGGL LLPPLLEHL LPHAPGVQM 
KIYSENLKLA KLYSENLKLA KVLEFLAKL LLFETVMCDT LLQAEAPRL LPHNHTDL 
KIYSENLTL KLYSENLTL KVLEHVVRV LLFGLALIEV LLQDSVDFSL LPHSEITTL 
KIYSENLTLA KLYSENLTLA KVLEYVIKV LLFLLQMMQI LLQEEEEEL LPHSSSHWL 
KLADQYPHL KMAAFPETL KVLHELFGMDI LLFLLQMMQV LLQEYNWEL LPLLALLAL 
KLAEAERVGLHK KMAELVHFL KVNIVPVIAK LLFPYILPPKA LLQGWVMYV LPMEVEKNSTL 
KLAKPLSSL KMDAEHPEL KVSAVTLAY LLFSFAQAV LLQLGYSGRL LPPPPPLLDL 
KLATAQFKI KMFVKGAPDSV KVVEFLAML LLGATCMFV LLQLYSGRL LPQKKSNAL 
KLCKVRKITV KMFVKGAPESV KYDCFLHPF LLGCPVPLGV LLQMMQICL LPRWPPPQL 
KLCPVQLWV KMISAIPTL KYIQESQAL LLGDLFGV LLQMMQVCL LPSSADVEF 
KLDETGNSL KMLDHEYTT KYLATASTM LLGNCLPTV LLQVHHSCPL LQSRGYSSL 
KLDETGNSLK KMLKSFLKA KYLKLSSSEL LLGPGRPYR LLRGYHQDAY LRAGRSRRL 
KLDETGNSLKV KMNVFDTNL KYVGIEREM LLGPTVML LLSAEVQQHL LRRYLENGK 
KLDVGNAEV KMQASIEKA LAALPHSCL LLGRFELIGI LLSAVLPSV LSIGTGRAM 
KLEGLEDAL KMRRDLEEA LAAQERRVPR LLGRNSFEV LLSDDDVVV LSRLSNRLL 
KLFGSLAFV KMVELVHFL LALWGPDPAA LLHVHHSCPL LLSDEDVAL LTLGEFLK 
KLFGVLRLK KMYAFTLES LAMPFATPM LLIADNPQL LLSDEDVALM LTLGEFLKL 
KLGDCIWTYL KMYAFTLESV LAPAKAVVYV LLIDLTSFL LLSDEDVALMV LTLTTGEWAV 
KLGDCIWTYLS KNKRILMEH LASEKVYTI LLIDLTSFLL LLSDEDVEL LTYNDFINK 
KLGDCIWTYPS KPIVVLHGY LATEKSRWS LLIGATIQV LLSDEDVELM LTYVSFRNL 
KLIETYFSK KPQQKGLRL LATEKSRWSG LLIGATIQVT LLSDEDVELMV LVALLACLTV 
KLIGDPNLEFV KPRQSSPQL LAVDGVLSV LLIGATMQV LLSETVMCDT LVALLVCLTV 
KLIKDGLIIRK KPSGATEPI LCGSHLVEAL LLIGATMQVT LLSGQPASA LVCGERGFFY 
KLKHYGPGWV KPSPPYFGL LDKVRALEE LLIGGFAGL LLSHGAVIEV LVFGIELMEV 
KLLDISELDMV KQDFSVPQL LEEKKGNYV LLIKKLPRV LLSILCIWV LVFLAPAKAVV 
KLLEYIEEI KQDNSTYIMRV LEEYNSHQSL LLLDDLLVSI LLSLFSLWL LVHFLLLKY 
KLLGPHVEGL KQLPEEKQPLL LEKQLIEL LLLEAVPAV LLSPLHCWA LVLKRCLLH 
KLLGPHVLGV KQPAIMPGQSY LGYGFVNYI LLLELAGVTHV LLSPLHCWAV LVMAPRTVL 
KLLMVLMLA KQSSKALQR LGYGFVNYV LLLGIGILV LLSSGAFSA LVQENYLEY 
KLLQIQLCA KRIQEIIEQ LHHAFVDSIF LLLGPLGPL LLTSRLRFI LVVVGAVGV 
KLLQIQLCAKV KRTLKIPAM LIAHNQVRQV LLLGTIHAL LLTTLSNRV LWMRLLPLL 
KLLQIQLRA KSEMNVNMKY LIFDLGGGT LLLHCPSKTV LLVALAIGCV LYATVIHDI 
KLLQIQLRAKV KSLNYSGVK LIFDLGGGTFD LLLLDVAPL LLVSEIDWL LYAWEPSFL 
KLLSSGAFSA KSMNANTITK LIYDSSLCDL LLLLTVLTV LLWWIAVGPV LYLVCGERGF 
KLMPPDRTAV KTCPVQLWV LIYRRRLMK LLLPAEVQQHL LLYKLADLI LYSACFWWL 
KLMSPKLYVW KTIHLTLKV LKLSGVVRL LLLPALAGA LMAGCIQEA LYSDPADYF 
KLNVPATFML KTLGKLWRL LLAAVAALL LLLPGPSAA LMALPPCHAL LYVDSLFFL 
KLPNSVLGR KTLTSVFQK LLAGIGTVPI LLLRSPAGV LMASSPTSI LYVDSLFFLC 
KLQAPVQEL KTPFVSPLL LLAGPPGV LLLSAEVQQHL LMETHLSSK MALENNYEV 
KLQATVQEL KTVDLILEL LLASSMSSQL LLMEGVPKSL LMFWSPSHSCA MAQKRIHAL 
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KLQEELNKV KTVNELQNL LLDDSLVSI LLMEKEDYHSL LMGDKSENV MAVPPCCIGV 
 
Table 4-2 continued 

MEGEVWGL NLFDTAEVYA PLTSIISAV RAPPTTPAL RLLYPDYQI RTFHHGVRV 
MEIFIEVFSHF NLFDTAEVYAA PPSACSPRF RASHPIVQK RLMKQDFSV RTGEVKWSV 
MEKEDYHSL NLFETPVEA PTLDKVLEL RAYQQALSR RLNAALREK RTIAPIIGR 
MEVDPIGHLY NLFLFLFAV PTLDKVLEV RCHELTVSL RLPRIFCSC RTIPTPLQPL 
MFPEVKEKG NLIKLAQKV QCSGNFMGF RELEETNQKL RLQGISPKI RTKQLYPEW 
MGNIDSINCK NLKLKLHSF QFITSTNTF REPVTKAEML RLQREWHTL RTLAEIAKV 
MIAVFLPIV NLLDSLEQYI QGQHFLQKV REQFLGALDL RLQTPMQVGL RTLDKVLEV 
MIHDLCLAFPA NLLEREFGA QIAKGMSYL RESEEESVSL RLQVPVEAV RTNWPNTGK 
MIHDLCLVFL NLLGRFELI QIEGLKEEL RFEEKHAYF RLRAPEVFL RTTEINFKV 
MIMQGGFSV NLLGRFELIGI QILKGGSGT RFKMFPEVK RLRPLCCTA RVFQGFFTGR 
MLAVISCAV NLPDKMFLPGA QILPLHGPEA RIAECILGM RLSCPSPRA RVHAYIISY 
MLGDPVPTPT NLQGSPVYV QIRPIFSNR RIDITLSSV RLSCSSPRA RVKAPNKSL 
MLGTHTMEV NLSALGIFST QLARQQVHV RIGQRQETV RLSSCVPVA RVLRQEVAAPL 
MLLAVLYCL NLSSAEVVV QLCAKVPLL RIKDFLRNL RLTSTNPTM RVLRQEVEAPL 
MLLDKNIPI NLVRDDGSAV QLCPICRAPV RILGPGLNK RLTSTNPTT RVPGVAPTL 
MLLKTSEFL NLWDLTDASVV QLEERTWLL RILMEHIHKLK RLVDDFLLV RVQEAVESMVK 
MLLSVPLLLG NLYPFVKTV QLFEDNYAL RINEFSISSF RLVELAGQSLLK RVRFFFPSL 
MLMAQEALAFL NMQDLVEDL QLFNHTMFI RIVQRIKDF RLWQELSD RVSLPTSPR 
MLPSQPTLL NMVAKVDEV QLFNKHTMFI RLAEYQAYI RLWTTTRPRV RVTSIRLFEV 
MLTNSCVKL NPATPASKL QLGPTCLSSL RLARLALVL RLYDEKQQHI RVWDLPGVLK 
MLVGGSTLCV NPIVVFHGY QLGPVGGVF RLASFYDWLP RLYDEKQQHIVY RWPSCQKKF 
MLWSCTFCRI NPKAFFSVL QLGRISLLL RLASSVLRCGK RLYEMILKR RYAMTVWYF 
MLWSCTFCRM NSELSCQLY QLIMPGQEA RLASYLDKV RLYPWGVVEV RYCNLEGPPI 
MLYYPSVSR NSQPVWLCL QLLALLPSL RLDFNLIRV RMFPNAPYL RYGSFSVTL 
MMKMMCIKDL NTDSPLRY QLLDGFMITL RLDQLLRHV RMLPHAPGV RYMPPAHRNF 
MMLPSQPTL NTYASPRFK QLLDQVEQI RLFAFVRFT RMMEYGTTMV RYQLDPKFI 
MMLPSQPTLL NTYASPRFKf QLLIKAVNL RLFFYRKSV RMMLPSQPTL RYQQWMERF 
MMLPSQPTLLT NVIRDAVTY QLLKLNVPA RLFVGSIPK RMPEAAPPV SACDVSVRV 
MMLPSRPTL NVLHFFNAPL QLLNSVLTL RLGGAALPRV RMTDQEAIQ SACDVSVRVV 
MMLPSRPTLL NVMPVLDQSV QLMAFNHLV RLGLQVRKNK RMTDQEAIQDL SAFPTTINF 
MMLPSRPTLLT NYARTEDFF QLQGLQHNA RLGNSLLLK RNGYRALMDKS SAGPPSLRK 
MMQICLHHL NYKHCFPEI QLSLLMWIT RLGPTLMCL RPHVPESAF SASVQRADTSL 
MMQVCLHHL NYKRCFPVI QLSSGVSEIRH RLGPVARTRV RPKSNIVL SAWISKPPGV 
MMSEGGPPGA NYNNFYRFL QLVFGIEVV RLIDLGVGL RPKSNIVLL SAYGEPRKL 
MMYKDILLL NYSVRYRPGL QLVIQCEPL RLIGDAAKNQV RQAGDFHQV SEHLDTQKELL 
MPFATPMEA PAFSYSFFV QLYALPCVL RLLASLQDL RQFVTQLY SEIWRDIDF 
MPFATPMEAEL PLADLSPFA QMFFCFKEL RLLCALTSL RQKKIRIQL SEIWRDIDFd 
MPGEATETV PLALEGSLQK QMMQICLHHL RLLDLAQEGL RQKRILVNL SELFRSGLDSY 
MQLIYDSSL PLDGGVAAA QMMQVCLHHL RLLIKKLPRV RQLAQEQFFL SESIKKKVL 
MSLQRQFLR PLFDFSWLSL QQITKTEV RLLKEYQEL RQVGDFHQV SESLKMIF 
MTSALPIIQK PLFQVPEPV QQLDSKFLEQV RLLPLLALL RRFFPYYV SFSYTLLSL 
MTVDSLVNK PLHCWAVLL QRPYGYDQIM RLLPLLALLAL RRKWRRWHL SGMGSTVSK 
MVIGIPVYV PLHCWVVLL QVFPGLLERV RLLPLWAAL RRQRRSRRL SHETVIIEL 
MVKISGGPR PLLALLALWG QVLDLRLPSGV RLLPLWAALPL RRRWHRWRL SHLVEALYLV 
MVWESGCTV PLLENVISK QYSWFVNGTF RLLQETELV RSCGLFQKL SIFDGRVVAK 
MVYDLYKTL PLPEAPLSL RAGLQVRKNK RLLSDEDVAL RSDSGQQARY SIFTWAGKAVL 
MYIFPVHWQF PLPPARNGGL RALAETSYV RLLSDEDVALM RSKFRQIV SIFTWAGQAVL 
NCLKLLESL PLPPARNGGLg RALAKLLPL RLLSDEDVEL RSRRVLYPR SILEDPPSI 
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NLAQDLATV PLQPEQLQV RALEEANADLEV RLLSDEDVELM RSYHLQIVTK SIQNYHPFA 
NLATYMNSI PLTEYIQPV RALRLTAFASL RLLVPTQFV RSYVPLAHR SISVLISAL 

 
Table 4-2 continued 

SIVKIQSWFRM SLMSWSAIL SQGFSHSQM THFPDETEI TMTRVLQGV VLHDDLLE 
SLAAGVKLL SLNYSGVKEL SQKTYQGSY TIADFWQMV TPGNRAISL VLHDDLLEA 
SLAAYIPRL SLPGGTAS SQLTTLSFY TIHDSIQYV TPNQRQNVC VLHELFGMDI 
SLADEAEVYL SLPKHSVTI SQQAQLAAA TILLGIFFL TPRLPSSADVEF VLHWDPETV 
SLADTNSLAV SLPPPGTRV SRASRALRL TIMIHDLCLA TPRTPPPQ VLLESAFPGGL 
SLADTNSLAVV SLPRGTSTPK SRDSRGKPGY TINPQVSKT TQPGPLAPL VLLESAFPGRL 
SLAMLDLLHV SLQALKVTV SRFGGAVVR TIPTPLQPL TQPGPLVPL VLLGMEGSV 
SLASLLPHV SLQDVPLAAL SRFTYTALK TIRYPDPVI TRPWSGPYIL VLLLVLAGV 
SLAVVSTQL SLQEEIAFL SSADVEFCL TLADFDPRV TRVLAMAIY VLLQAGSLHA 
SLCPWSWRAA SLQEKVAKA SSDNYEHWLY TLAKYLMEL TSALPIIQK VLLRHSKNV 
SLDDYNHLV SLQKRGIVEQ SSDYVIPIGTY TLDEKVAELV TSDQLGYSY VLMIKALEL 
SLDDYNHLVTL SLQPLALEG SSFGRGFFK TLDSQVMSL TSEHSHFSL VLNSLASLL 
SLDKDIVAL SLQRMVQEL SSKALQRPV TLDWLLQTPK TSEKRPFMCAY VLNSVASLL 
SLEEEIRFL SLQRTVQEL SSLSLFFRK TLEEITGYL TSTTSLELD VLPDVFIRC 
SLEENIVIL SLQSMVQEL SSPGCQPPA TLEGFASPL TTINYTLWR VLPDVFIRCV 
SLFEGIDIYT SLQSTVQEL SSSGLHPPK TLGEFLKL TTLITNLSSV VLPDVFIRCV 
SLFEGVDFYT SLRILYMTL SSVPGVRLL TLITDGMRSV TTNAIDELK VLQELNVTV 
SLFGKLQLQL SLSKILDTV STALRLTAF TLKCDCEIL TVASRLGPV VLQVGLPAL 
SLFLGILSV SLSPLQAEL STAPPAHGV TLKKYFIPV TVFDAKRLIGR VLQWLPDNRL 
SLFPNSPKWTSK SLSRFSWGA STAPPVHNV TLLASSMSSQL TVSGNILTIR VLQWLSDNRL 
SLFRAVITK SLVEELKKV STDPQHHAY TLLIGATIQV TYACFVSNL VLRDDLLEA 
SLFVSNHAY SLWGGDVVL STIKFQMKK TLLIGATIQVT TYLPTNASL VLRENTSPK 
SLGEQQYSV SLWSSSPMA STLCQVEPV TLLIGATMQV TYSEKTTLF VLRKEEEKL 
SLGIMAIEL SLWSSSPMAT STLQGLTSV TLLIGATMQVT VAANIVLTV VLRQEVAAPL 
SLGSPVLGL SLWSSSPMATT STMPHTSGMNR TLLLEGVMAA VAELVHFLL VLSVNVPDV 
SLGWLFLLL SLYHVYEVNL STPPPGATRV TLLNLPDKMFL VAVKAPGFGD VLTSESMHV 
SLIAAAAFCLA SLYKFSPFPL STSQEIHSATK TLLNQPDKMFL VCGERGFFYT VLVEGSTRI 
SLIKQIPRI SLYQLENYC STVASRLGPV TLLPATMNI VCLHHLPFWI VLVPPLPSL 
SLKLLESLTPI SLYSFPEPEA STVASWLGPV TLLSNIQGV VEETPGWPTTL VLWDRTFSL 
SLLDRFLATV SMCRFSPLTL SVAQQLLNGK TLMSAMTNL VEGSGELFRW VLYGPDAPTV 
SLLGLALLAV SMLIRNNFL SVASLLPHV TLPGYPPHV VEIEERGVKL VLYPRVVRR 
SLLGQLSGQV SMPPPGTRV SVASTITGV TLPPAWQPFL VFLPCDSWNL VLYRYGSFSV 
SLLKFLAKV SMPQGTFPV SVGSVLLTV TLPPRPDHI VIMPCSWWV VLYRYGSFSVTL 
SLLLELEEV SMSKEAVAI SVHSLHIWSL TLRTGEVKWSV VISNDVCAQV VMALENNYEV 
SLLMWITQA SMSSQLGRISL SVKPASSSF TLSSRVCCRT VIVMLTPLV VMIIVSSLAV 
SLLMWITQC SNDGPTLI SVPQLPHSSSHW TLTNIAMRPGL VIWEVLNAV VMLDKQKEL 
SLLMWITQCFL SPASSRTDL SVQGIIIYR TLTTGEWAV VLAGGFFLL VMNILLQYV 
SLLNLPVWV SPAVDKAQAEL SVSPVVHVR TLWVDPYEV VLAGVGFFI VMNILLQYVV 
SLLNLPVWVLM SPGSGFWSF SVVKIQSWFRM TLYEAVREV VLASIEAEL VPGWGIALL 
SLLPAIVEL SPHPVTALL SVYDFFVWL TLYNPERTITV VLASIEAELPM VPLDCVLYRY 
SLLQHLIGL SPLFQRSSL SYLDKVRA TMASTSVSRSA VLASIEPEL VPRSAATTL 
SLLQSREYSSL SPQNLRNTL SYLDSGIHF TMESMNGGKLY VLASIEPELPM VPYGSFKHV 
SLLQSRGYSSL SPRFSPITI SYRNEIAYL TMGGYCGYL VLCSIDWFM VRIGHLYIL 
SLLSGDWVL SPRPPLGSSL SYTRLFLIL TMHSLTIQM VLDFRLPSGV VRLGSLSTK 
SLLSLPVWV SPRWWPTCL TALRLTAFASL TMKIYSENLTL VLDGLDVLL VRSRRCLRL 
SLLSLPVWVLM SPSKAFASL TCQPTCRSL TMKLYSENLTL VLEGMEVV VSDFGGRSL 
SLLSPLHCWA SPSSNRIRNT TEAASRYNL TMLARLASA VLFGLGFAI VSLLSLPVWV 
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SLLSPLHCWAV SPSVDKARAEL TETEAIHVF TMLGRRAPI VLFSSDFRI VTLLIGATIQV 
SLLTSSKGQLQK SPTSSRTSSL TFDYLRSVL TMLGRRPPI VLFYLGQY VTLLIGATMQV 
SLMASSPTSI SQFGGGSQY TFPDLESEF TMNGSKSPV VLFYLGQYI VTTDIQVKV 

 
Table 4-2 continued 

VVEGTAYGL YLDPAQQNL YVDPVITSI 
VVHFFKNIV YLEPGPVTA YVFTLLVSL 
VVLGVVFGI YLEYRQVPV YVIPIGTYGQM 
VVMSWAPPV YLFSEEITSG YYNAFHWAI 
VVMVNQGLTK YLGSYGFRL YYSVRDTLL 
VVPCEPPEV YLIELIDRV YYWPRPRRY 
VVPEDYWGV YLLKPVQRI RVASPTSGVK 
VVQNFAKEFV YLLLRVLNI  
VVTGVLVYL YLLPAIVHI  
VVVGAVGVG YLLPEAEEI  
VYDFFVWLHY YLLQGMIAAV  
VYDYNCHVDL YLMDTSGKV  
VYFFLPDHL YLNDHLEPWI  
VYGIRLEHF YLNKEIEEA  
VYLDKFIRL YLQGMIAAV  
VYSDADIFL YLQLVFGIEV  
VYVKGLLAKI YLQQNTHTL  
WATLPLLCAR YLSGANLNL  
WGPDPAAA YLSGANLNLG  
WLDEVKQAL YLSGANLNV  
WLDPNETNEI YLVGNVCIL  
WLEYYNLER YLVPQQGFFC  
WLLPLWAAL YLYDRLLRI  
WLLPLWAALPL YLYGQTTTY  
WLPFGFILI YMDGTMSQV  
WLPKILGEV YMFDVTSRV  
WLQYFPNPV YMFPNAPYL  
WLSLKTLLSL YMIAHITGL  
WLSLLFKKL YMIDPSGVSY  
WMRLLPLLAL YMIMVKCWMI  
WQYFFPVIF YMIPSIRNSI  
WYEGLDHAL YMMPVNSEV  
WYQTKYEEL YMNGTMSQV  
YAVDRAITH YMNSIRLYA  
YEDIHGTLHL YPFKPPKV  
YEGSPIKVTL YQGSYGFRL  
YGHSGQASGLY YQLDPKFIV  
YGYDNVKEY YRPRPRRY  
YIDEQFERY YRYGSFSVTL  
YIFAVLLVCV YSDHQPSGPYY  
YIGEVLVSV YSLEYFQFV  
YLAMPFATPME YSLKLIKRL  
YLAPENGYL YSWMDISCWI  
YLCDKVIPG YTCPLCRAPV  
YLCDKVVPG YTDFHCQYV  
YLCSGSSYF YTDFVGEGL  
YLCSGSSYFV YTDQPSTSQIAY  
YLDLFGDPSV YTLDRDSLYV  
YLDLLFQIL YTMKEVLFY  
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YLDLLFQILL YVDFREYEYY  
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Table 4-3. Enriched signaling pathways in melanoma cells +/- MEKi. Positively & negatively enriched 
cancer hallmarks signaling pathways in pMHC analyses of melanoma cell lines + binimetinib. + NES 
scores are positively enriched, - NES scores are negatively enriched. 

 NES p-val 
q-value 
< 0.25?   NES p-val 

q-value 
< 0.25? 

SKMEL5-100 nM     IPC298-100 nM     

EMT 1.77 0.011 y  EMT 1.39 0.069 n 

         

A375-100 nM     SKMEL28-100 nM    

EMT 1.65 0.003 y  Apical junction 1.77 0.002 y 

Glycolysis 1.58 0.001 y  Androgen response 1.74 0.002 y 

     Cholesterol homeostasis 1.56 0.018 y 

A375-1 uM     Myogenesis 1.45 0.032 y 

EMT 1.82 0.001 y  EMT 1.29 0.117 n 

Hypoxia 1.63 0.009 y      

     SKMEL28-1 uM    

RPMI-7951 100 nM     Apical junction 1.71 0.015 y 

EMT 3.15 <0.0001 y  Androgen response 1.56 0.006 y 

MYC targets 2.08 <0.0001 y  Myogenesis 1.46 0.02 y 

Unfolded protein response 2 0.002 y  Oxidative phosphorylation 1.45 0.009 y 

Protein Secretion 1.81 0.011 y  Protein Secretion 1.42 0.039 y 

Androgen response 1.79 0.011 y  Hypoxia 1.39 0.041 y 

MTORC1 signaling 1.65 0.023 y  EMT 1.37 0.061 n 

Myogenesis 1.62 0.037 y      
Apical Junctioln 1.58 0.046 y  SKMEL2-100 nM    

     Myogenesis 2.16 <0.0001 y 

RPMI-7951 1uM     EMT 1.45 0.064 n 

EMT 3.12 <0.0001 y      
MYC targets 2.08 <0.0001 y      

Unfolded protein response 1.95 0.003 y      
Androgen response 1.77 0.017 y      
Protein Secretion 1.76 0.016 y      

MTORC1 signaling 1.68 0.016 y      
Myogenesis 1.63 0.029 y      

Apical Junction 1.59 0.041 y      
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Table 4-3 continued. 

 
SKMEL28- 1 uM NES p-val 
E2F TARGETS -1.63 <0.0001 
TNFA SIGNALING VIA NFKB -1.61 0.04 
G2M CHECKPOINT -1.52 <0.0001 

   
A375- 100 nM NES p-val 
E2F TARGETS -2.06 <0.0001 
G2M CHECKPOINT -1.38 <0.0001 

   
SKMEL2- 100 nM NES p-val 
E2F TARGETS -2.13 <0.0001 
G2M CHECKPOINT -1.96 <0.0001 
MTORC1 SIGNALING -1.68 0.002 
INTERFERON GAMMA RESPONSE -1.56 0.014 

   
SKMEL5- 100 nM NES p-val 
MTORC1 SIGNALING -1.68 <0.0001 
E2F TARGETS -1.64 <0.0001 
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Table 4-4. Labeling scheme for CLX tumors. 

SKMEL2, IPC298  SKMEL5   SKMEL28  
Treatment Label  Treatment Label  Treatment Label 

C1 126  C1 126  C1 126 
C2 127N  1d1  128N  C2 127N 
C3  127C  1d2  128C  C3  127C 
1d1  128N  1d3  129N  1d1  128N 
1d2  128C  2d1  129C  1d2  128C 
1d3  129N  2d2  130N  1d3  129N 
2d1  129C  2d3  130C  2d1  129C 
2d2  130N  3d1  131N  2d2  130N 
2d3  130C  3d2  131C  2d3  130C 
3d1  131N  3d3  132N  3d1  131N 
3d2  131C  5d1  132C  3d2  131C 
3d3  132N  5d2  133N  3d3  132N 
5d1  132C  5d3  133C  5d1  132C 
5d2  133N     5d2  133N 
5d3  133C  SKMEL5   5d3  133C 

   C3 126    
   C4  127N  SKMEL28  
   C5  127C  C1 126 

   3d1  128N  C2  127N 
   3dB1  128C  C3  127C 
   3dB2  129N  3d1  128N 
   3dB3  129C  3dB1  128C 
   3dBM1  130N  3dB2  129N 
   3dBM2  130C  3dB3  129C 
   3dBM3  131N  3dBM1  130N 
      3dBM2  130C 
   Bridge channel  3dBM3  131N 
        
      Bridge channel 
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Table 4-5. Cancer hallmarks enrichment results for CLX analyses. All reported results are q < 0.25, 
conditions with no listed results did not have any significant findings. 

SKMEL28 - Positive enrichment p-vals 
PATHWAY 1d 2d 3d 5d 3dB 3dB/M 
HYPOXIA 0 0.001         
ESTROGEN RESPONSE LATE 0.029           
P53 PATHWAY 0.026           
GLYCOLYSIS 0.022           
MTORC1 SIGNALING 0.012           
DNA REPAIR 0.042           
PROTEIN SECRETION     0.001 0.002     
ALLOGRAFT REJECTION     0.029       
APICAL JUNCTION       0.024     
       
SKMEL28- Negative enrichment p-vals 
PATHWAY 1d 2d 3d 5d 3db 3dbm 
ESTROGEN RESPONSE LATE   0.012   0.044     
E2FTARGETS       <0.0001 <0.0001 <0.0001 
G2MCHECKPOINT       <0.0001   0.009 
MTORC1SIGNALING       <0.0001   0.012 
ANDROGENRESPONSE       0.009     
MITOTICSPINDLE       0.009     
GLYCOLYSIS       0.015     
MYCTARGETSV1       0.006     
HYPOXIA       0.031   0.095 
ESTROGENRESPONSEEARLY       0.043     
IL2 STAT5 SIGNALING           0.021 

       
SKMEL5 - Positive enrichment p-val      
PATHWAY 3dB      
UV-RESPONSE 0.016             
SKMEL5 - Negative enrichment p-val      
PATHWAY 3dB      
G2MCHECKPOINT <0.0001      
E2FTARGETS <0.0001      
APOPTOSIS 0.027      
       
SKMEL2- Negative enrichment p-vals   
PATHWAY 1d 2d 3d 5d   
DNA REPAIR 0.002         
G2M CHECKPOINT   0.017       
HYPOXIA     0.047     
MITOTIC SPINDLE       <0.0001   
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Table 4-6. CLX treatment groups and dosing schedule. Groups 6 and 7 were not included in 
SKMEL2/IPC298 studies.  

Study groups: Schedule Route Animal # 
1.     Vehicle (1%CMC/0.5%Tween80) BID1-3, 2hr PO 3 
2.     3.5 mg/kg MEK162 QD, 2hr PO 3 
3.     3.5 mg/kg MEK162 BID1-2, 2hr PO 3 
4.     3.5mg/kg MEK162 BID1-3, 2hr PO 3 
5.     3.5mg/kg MEK162 BID1-7, 2hr PO 3 
6.     20mg/kg LGX818 QD1-3, 2hr PO 3 
7.     3.5 mg/kg MEK162/ BID1-3, 2hr PO 3 
       20 mg/kg LGX818 QD1-3     
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CHAPTER 5: Absolute quantification of pMHCs with isotopologues 

 

 

5-1 Introduction 

Achieving absolute quantification of presented peptide antigens is necessary to inform 

immunotherapy drug design, as targeted strategies have varying thresholds of antigen 

expression required for an optimal antitumor response. For example, it has been reported that T 

cells can recognize and elicit an anti-tumor immune response against a single pMHC, and just 

~100-200 pMHCs are required for cytokine secretion to activate/stimulate T cells.78,387–389 

Engineered pMHC-specific therapies like ImmTACs (immune-modulizing monoclonal TCRs 

against cancer) require 15-45 pMHCs for cytokine release and ~50% specific lysis, whereas 

TCR-like ADCs require tens of thousands of pMHCs for a similar level of cytotoxicity.390–392 It is 

thought that neoantigens are lowly expressed, and many tumor antigens derived from germline 

or differentiation genes have much higher expression levels in tumor cells, though this has not 

been thoroughly characterized (Figure 5-1). Nevertheless, the expression level of an antigen 

may dictate which type of targeted immunotherapy may be most efficacious, however 

methodologies to accurately and robustly quantify pMHC expression levels have significant 

limitations.  

 

 

Figure 5-1. Schematic of proposed antigen presentation scale. 
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To date, absolute quantification of pMHCs with mass spectrometry is most commonly 

performed by comparing endogenous levels of pMHCs to exogenous peptide standards, which 

fail to account for losses taken throughout the pMHC workflow. The initial 1992 publication by 

Hunt and colleagues attempts to quantify copies-per-cell of endogenous peptides using 

exogenous synthetic standards. They estimated the lower limit of detection on their instrument 

at 30 fmol, and estimated 10% of identified peptides were present at 150-600 fmol, whereas the 

rest were present at 30-150 fmol, representing a range of peptide presentation levels from ~100 

to 3000 complexes/cell.155  

Hogan et al. similarly performed copy number estimations of three HLA-A*02:01 

peptides, but utilized exogenous deuterated peptide standards and SRM, which do not co-elute 

with endogenous peptides and therefore are not optimal for use as internal standards.266 

Bozzacco et al. used a similar strategy for absolute quantification of MHC II peptides presented 

on mouse dendritic cells by generating 7 synthetic, isotopically labeled peptides added 

exogenously prior to DDA LC-MS/MS analysis.269 Similar to previous work, estimations were 

generated through single-point calibration, which rely on a linear intensity response across 

pMHC concentrations. Authors estimate concentrations ranging from to 13-20,000 copies per 

cell. Wu et al apply a similar technique, and like Hunt, Hogan, and Bozzacco, fail to consider 

losses incurred throughout sample processing. Consequently, reported values are inaccurate 

and likely underestimations of the true presentation levels.268  

These suspected losses were first estimated by Hassan et al. using a set of two 

isotopologue peptides (termed heavy and medium-labeled) for two different peptides the 

authors identify as HLA-A*02:01 binders.183 The authors folded recombinant HLA alpha chain 

and β2m with the isotopically labeled peptides to generate pMHC complexes with the heavy-

labeled peptide. These complexes were added to cell lysates prior to immunoprecipitation, and 
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the medium labeled peptide was exogenously added prior to LC-MS/MS analysis. Using SRM 

acquisition, authors estimated pMHC losses by calculating the ratio of heavy to medium peptide 

signal across three replicates. While this study failed to capture measurements across a 

diversity of sequences or pMHC concentrations, these data highlight pMHC losses ranging from 

~97.2-99.5%, underscoring the need for internal reference standards to make copy number 

estimations. An optimized experimental system for pMHC absolute quantification has not yet 

been developed and would ideally utilize internal standards and an embedded multipoint 

calibration curve for quantification.  

It is worth noting that an alternate technique has been previously employed to estimate 

pMHC surface levels, utilizing pMHC-specific antibodies or TCR-mimic antibodies which 

specifically bind pMHC epitopes.31,389,393,394 The antibodies, bound to pMHCs, are detected by 

microscopy or more commonly, flow cytometry, where a linear curve can be generated using 

QuantiBRITE calibration beads to estimate copies per cell. This technique relies on having a 

high-affinity pMHC-specific antibody for each target of interest and is limited to the dynamic 

range of QuantiBRITE beads (~1,700-133,000 molecules/cell) and the sensitivity of a flow 

cytometer for quantitative estimates. As a result, this technique is not scalable for high-

throughput, high sensitivity quantification, and cannot capture low abundance pMHCs. 

 We previously reported a technique to perform absolute quantification with an embedded 

internal standard curve, combining heavy isotope-labeled MHCs (hipMHCs) with TMT.188 While 

this method was successful in capturing endogenous expression levels of target pMHCs, it has 

several limitations. First, it requires running three replicate samples to generate three internal 

standard data points. This is not an obstacle for renewable samples like immortalized cell lines, 

however for in vivo animal or patient-derived samples there may not be enough material to 

perform three replicates. The method, which utilizes an inclusion list, is also less sensitive as 

many MHC peptides have similar amino acid compositions and molecular weights and there are 
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frequently false triggering events. Finally, due to significant ion suppression with TMT-MS2 

analyses of the immunopeptidome, standard curves can only span a 10-fold range therefore it is 

challenging to determine the range required to capture the endogenous peptide. 

 To circumvent these limitations, we have developed SureQuant MHC, a method that 

uses a series of isotopologues and SureQuant internal standard (IS)-triggered PRM to generate 

an embedded standard curve along with sensitive and selective measurements of the 

endogenous peptide for 18 peptide targets. This label-free analysis utilizes less than 1e7 cells 

for protein input and utilizes a 100-fold standard curve range, eliminating the requirement for 

tedious range-finding. We apply this method to profile changes in pMHC expression levels in 

melanoma cell lines treated with binimetinib, a MEK inhibitor, and translate the approach to 

profiling antigen levels in human tumors. 

 

5-2 Results 

5-2-1 Peptide panel selection  

 Peptides selected for absolute quantification with isotopologues were identified from 

discovery analyses of SKMEL5 cells treated with MEK inhibitors. Initially, SKMEL5 +/- 100 nM 

binimetinib that were predicted to be HLA-A2*01 binders (< 500 nM predicted affinity) were 

considered. Synthetic standards of 50 possible targets (Table 5-1). were synthesized and 

binding affinity was tested T2 cells, which are defective in presenting exogenous antigens due 

to a deletion in genes encoding transporters associated with antigen presentation (TAP1/TAP2). 

As a result, addition of exogenous peptide is taken up by cells and loaded onto newly 

synthetized MHC molecules. As control peptides, we synthesized a known high affinity flu 

peptide binder (GILFGVFTL) and a low affinity MART1-derived binder (AAGIGILTV). Most 

peptides demonstrated an increase in fluorescent intensity over DMSO treated T2 cells, with 
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expected MFI increases corresponding to an increase in peptide loading (Figure 5-2). Several 

peptides were initially selected that we saw large increases in pMHC expression with like the 

serine phosphorylated IRS2-derived peptide “RVASPTSGVK,” which showed little change in 

MFI compared to the DMSO T2 vehicle control.  

 

 

Figure 5-2. pMHC binding in T2 cells. Increase in median fluorescent intensity (MFI) of synthetic peptide 
stimulated T2 cells over DMSO treated T2 cells. Positive control Flu peptide is shown in red, negative 
control MART1 in blue.  

 

Using this data, eighteen peptides (termed “Iso18” panel) were selected, most of which 

are known tumor associated antigens and follow the previously defined criteria of being nine or 

ten amino acids in length, predicted high affinity HLA-A2*01 binders (Table 5-2), and had at 

least a 2-fold change in expression with MEK inhibition (Figure 5-3-A). Of note, several were 

selected that were no included in the T2 analysis. Priority was given to peptides that were of 

high abundance relative to the other peptides, including peptides derived from PMEL, DCT, 

PRUNE2, SLC45A2 and BCAP31, all of which were in the 99th percentile of abundance across 

multiple analyses (Figure 5-3-B). While many of the Iso18 peptides are well studied tumor 

antigens (ex. PMEL/gp100 and DCT/TRYP2), several were selected that are less well studied.  
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 One set of targets of particular interest was derived from SLC45A2, a highly tissue-

specific melanocyte membrane associated transporter protein. A previous study by Park et al. 

identified pMHCs derived from SLC45A2 in a 16/ 55 melanoma cell line lines screened for tumor 

antigens.395 Two peptides, SLYSYFQKV and RLLGTEFQV, were predicted HLA-A2*01 binders 

and were identified in 6 and 8 cell lines, respectively, in the study. We similarly identified both 

epitopes and noted that RLLGTEFQV was one of the top 10 most abundant peptides in our 

analyses. Park et al. also detected CD8+ T cells specific to SLC45A2 peptides, and showed 

immunogenicity using a chromium 51 release assay. Of particular interest, authors showed that 

BRAF inhibitors in BRAF V600 E mutant melanomas increased SLC45A2 gene expression by 

q-PCR, and this led to enhanced tumor cell recognition and killing by SLC45A2-specific CD8+ 

T-cells. Together, this highlights peptide derived from SLC45A2 as promising candidates for 

targeted immunotherapy, particularly due to their high tissue specificity, high expression, and 

ability to be modulated by MEK inhibition.  

 PRUNE2-derived peptides were also of interest due to similar features, however 

PRUNE2 is poorly studied. PRUNE 2 is a tumor suppressor gene first identified in prostate 

cancer, wherein prostate cancer antigen 3 (PCA3) is thought to downregulate PRUNE2 

expression, promoting malignant growth.396  Another study reported expression in melanoma 

cell lines in association with the AP2 protein and describes an involvement for vesicle 

trafficking.397,398 It is not been investigated a tumor-antigen target; however, these mass 

spectrometry analyses highlight it’s potential due to high abundance (99%) and high changes in 

expression (4-fold or more) in cells treated with a MEK inhibitor. Achieving absolute quantitation 

estimates of copies-per-cell with and without MEK inhibition will provide better resolution as to 

which targeted immunotherapies may be best exploited to target antigens such as SLC45A2, 

PRUNE2, and other well described antigens.  
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Figure 5-3. Changes in pMHC expression of Iso18 peptides. A Fold change in pMHC expression 
measured with multiplexed LC-MS/MS with binimetinib or trametinib (MEK inhibitors) for peptides in the 
Iso18 panel. B Ranked abundance (integrated precursor area) values of peptides across three analyses, 
where 100% is the most abundant peptide.   
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5-2-2 SureQuant MHC platform for absolute quantification of pMHCs 

For absolute quantification of the Iso18 panel, we combined our previous framework of 

utilizing hipMHCs as internal standards with SureQuant internal standard (IS)-based triggering 

(SureQuant MHC). In contrast to SureQuant pTyr, a series of four isotopologue peptides is 

synthesized per target rather than one. Each set of isotopologues contained a differing number 

of heavy isotopically labeled amino acids (usually one to four), therefore all “heavy” peptides as 

well as the endogenous peptide co-elute but are still distinguishable by their unique mass-to-

charge (m/z) ratio (Figure 5-4). Ten amino acids were used for heavy labeling: I, L, F, Y, K, V, 

A, G, R and P (  
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Table 5-3), where the isotopologue with a single heavy labeled amino acid is referred to 

as “1H,” two heavy amino acids, “2H,” etc.  Three isotopologues create an internal standard 

curve for absolute quantification of endogenous targets, and the fourth is used as the IS trigger 

peptide for SureQuant triggered quantitation. Amino acid compositions for all Iso18 peptides can 

be found in Table 5-4. 

 

 

Figure 5-4. Isotopologue series for DCT peptide "SLDDYNHLV" 

 

The workflow for SureQuant MHC is follows (Figure 5-5): three isotopologue peptides 

(1H, 2H and 3H) are loaded into HLA-A2*01 MHC complexes via UV-mediated peptide 

exchange (hipMHCs). Concentrations of stable hipMHCs are determined by ELISA for each 

peptide, and hipMHCs are subsequently titrated into whole cell lysate. As pMHCs have a broad 

range of expression, peptides were commonly titrated in at 1 (1H), 10 (2H), and 100 (3H) fmol 

for each peptide. For a cellular input of 7.5e6 cells, as was used with SKMEL5, this results in a 

range of ~80-8000 copies-per-cell for a given pMHC target. Several peptides of high expression 

in SKMEL5 cells (ex. SLC45A2) required a range of 10-1000 fmol or higher, though broadly 1-

100 fmol captured most peptides in the pMHC target panel. For endogenous peptides with lower 

expression than 1 fmol, results were interpolated. Next, endogenous and hipMHCs were 

isolated by pan-HLA immunoprecipitation, acid elution, and molecular weight size exclusion 

filtration. Prior to SureQuant analysis, ~250 fmol of the trigger peptide (4H) is spiked into the 
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peptide elution. This allows for consistent intensity levels of the trigger peptide for reproducible 

triggering with the SureQuant method.  

 

 

Figure 5-5. Sample preparation and experimental workflow for SureQuant MHC. 

 

 SureQuant MHC acquisition follows a similar framework to SureQuant pTyr, where the 

target peptides are monitored with MS1 scans. When a target reaches a defined intensity 

threshold, a low-resolution MS2 scan is performed. If six pre-defined product ions are present 

(pseudo-spectral matching), this triggers the acquisition of the endogenous target, as well as the 

3H, 2H, and 1H peptides at defined m/z offsets (Table 5-4). To accomplish this, a custom 

acquisition method of SureQuant was implemented. 

First, all 4H trigger peptides were analyzed with a targeted analysis containing the +2 

and +3 charge states for each peptide to determine the most abundant charge state for 

targeting (Figure 5-6).  
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Figure 5-6. Selecting optimal charge states. Peak heights for +2 (black) and +3 (grey) charge states for 
each peptide in the panel. 

 

Next, the six transitions were for each charge state were selected for pseudo-spectral 

matching in a survey analysis targeting each peptide’s optimal charge state (Table 5-5). Here, 

4H peptides were analyzed against a representative matrix of SKMEL5 pMHCs to mirror the 

background interference from other MHC peptides in SureQuant MHC analyses. The 6 most 

abundant product ions were selected using Skyline software and templates generously provided 

by Sebastien Gallien. Additionally, intensity thresholds were set at 1% of the precursor ion apex 

intensity.  

 These data were added to a custom SureQuant method build (Figure 5-7), where the 

“targeted mass” and “targeted mass trigger” nodes mirror those for SureQuant pTyr. In this 

implementation however, each branch contains the parameters for a unique peptide, as m/z 

triggering offsets are unique for each series of isotopologues. As a result, four MS2 scans are 

triggered following identification of the trigger peptide at m/z offsets for the 1H, 2H, 3H, and 

endogenous peptides.  
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Figure 5-7. SureQuant MHC acquisition schematic. Method built and import parameters for SureQuant 
MHC for implementation on the Exploris 480 mass spectrometer. 

  

Data is acquired using the standard SureQuant framework (Figure 5-8), alternating 

between “watch mode’ for the trigger peptide and “quantification mode” for high resolution scans 

of the target peptides (1-3H, endogenous). For quantification, the area of selected transitions is 

integrated and summed, and endogenous concentrations can be subsequently determined 

using a linear fit of the internal standard curve containing the 1-3H isotopologues.  

 

 

Figure 5-8. SureQuant MHC LC-MS/MS acquisition and data analysis for pMHC absolute quantification. 
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5-3 Method validation of SureQuant MHC 

 After the method was built, the method was first tested by exogenously adding 1-4H 

peptides at a 1:1:1:1 concentration (125 fmol) to a background matrix of SKMEL5 pMHCs 

(Figure 5-9-A). The 4H trigger peptide successfully initiated scans of the endogenous and 1H-

3H peptides (Figure 5-9-B), with similar intensity values in both the precursor ions (CV = 9.0%), 

as well as the summed transitions (CV = 10.7%) (Figure 5-9-C). To determine whether peptides 

could similarly be detected when added to cell lysate as hipMHCs prior to the 

immunoprecipitation, 60 fmol of 1-3H hipMHCs of each target were added to SKMEL5 cell 

lysate, and the 4H peptide was spiked in as the trigger prior to analysis (Figure 5-9-D). 

Reassuringly, all endogenous and 1-3H peptides were successfully targeted and quantified, and 

intensities between the isotopologues were comparable (Figure 5-9-E). 

  

 

Figure 5-9. SureQuant pMHC validation with exogenous peptides. A Exogenously added 1-4H peptides 
for method validation. B Product ion traces for 1-4H KLDVGNAEV peptides. C Integrated precursor ion 
intensities and product ions for KLDVGNAEV. D Experimental setup for hipMHC method validation. E 
Integrated product ions of 1-3H peptides added as hipMHCs. 
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We next sought to characterize the linearity of peptide intensity response and limit of 

detection (LOD) for peptides in the target panel. To this end, we built another method where only 

the 1H peptide was targeted and analyzed all 1H peptides added exogenously to the SKMEL5 

pMHC matrix at 0.1, 1, 10, and 100 fmol concentrations in triplicate. All peptides were quantifiable 

at 0.1 fmol with the exception of GLFDQHFRL We integrated and summed the transition areas 

for each peptide and assessed the intensity response linear fit for each peptide (Figure 5-10). All 

peptides had a coefficient of determination (r2) 0.95 or higher with the exception of 

AMLGTHTMEV, which had an r2 value 0.94. All peptides were quantifiable at 0.1 fmol, with 

GLFDQHFRL being the only exception.  

 

 

Figure 5-10. Intensity response of 1H peptide added exogenously with 4H trigger peptide, n=3. Error bars 
(if visible) represent the standard deviation.  
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As it’s been previously established that immunoprecipitations and sample processing 

result in substantial sample losses (up to 99%), we sought to assess the limit of detection and 

linearity of response with hipMHCs.399 We assessed the quantitation in half of the isotopologue 

panel (n=9), where 0.1 to 1000 fmol of the 2H hipMHC was added to an immunoprecipitation of 

7.5e6 SKMEL5 cells (5mg) and analyzed by a modified SureQuant MHC method, where only the 

2H peptide was targeted by the 4H trigger (Figure 5-11-A). All concentrations were performed 

in triplicate with the exception of the 100 fmol condition (n=2). The concentration range was 

selected as it spans 10-fold higher and lower than the range used in SureQuant MHC 

experiments, and spans ~8-80,000 pMHC copies/cell. In a case where the endogenous peptide 

falls outside the 1-100 fmol range, we sought to determine whether interpolation at higher or 

lower concentrations would be accurate.  

 We find that in each case, increased concentrations of hipMHC lead to a higher intensity 

response, and all coefficients of determination for the 1-100 fmol linear fit are r2=0.92 or higher 

(Figure 5-11-B). In most cases, the peptides exhibited a linear response at the higher (1000 

fmol) and lower (0.1 fmol) concentration (ex. RLLGTEFQV), allowing for high confidence in 

estimating pMHC concentrations 10-fold outside the standard curve. Exceptions include 

SLADTNSLAVV and SLDDYNHLV, where these additional data points do not exhibit the same 

linear response. Consequently, interpolated values should be viewed cautiously, with a replicate 

experiment performed with an adjusted standard isotopologue standard curve if possible, for the 

most accurate quantitation. As all peptides in this panel were quantifiable at 0.1 fmol, we 

performed a separate analysis to determine whether we could quantify hipMHCs at 10 attomol 

concentration. In 15 peptides, all six transitions were quantifiable, 2 had five transitions, and 1 

had four, suggesting that for a majority of peptides in this panel, attomole sensitivity can target 

peptides at ~1 copy/cell (Table 5-6).  
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Figure 5-11. SureQuant pMHC hipMHC intensity response of 2H. A Experimental setup for 2H hipMHC 
intensity response analyses. B Intensity responses for 2H hipMHCs. Solid line represents linear fit of 1-
100 fmol peptides (r2, upper left), and dotted line the liner fit of 0.1-1000 fmol peptides. Magnitude of ratio 
compression for the exprected 100-fold difference of the 1 and 100 fmol peptides is reported in the upper 
left corner. Error bars represent the standard deviation.  

 

 We have also previously reported the varying effects of ion suppression, even in label 

free analyses, therefore we next assessed the magnitude of ratio suppression from the 

expected 100-fold intensity difference between the 1 and 100 fmol pMHCs.188 Across the nine 

peptides, ratio compression varies greatly, from 1.75x in TLAEIAKVEL to 9.35x in 

GVYDGEEHSV, suggesting there are peptide-specific variations that cannot be estimated with 

a single value. Together, these data further underscore that need for pMHC-specific multipoint 

calibration curves for absolute quantification, as even one-point calibration estimates are likely 

to be inaccurate.  

 

5-3-1 Absolute quantification of pMHCs in SKMEL5 cells  
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 To assess copy number expression levels of peptides in the Iso18 panel, SKMEL5 cells 

were treated with DMSO, 100 nM binimetinib, or 1 µM binimetinib for 72h. Cells were 

subsequently lysed, and Iso18 hipMHCs were titrated into 5 mg of cell lysate (7.5e6 SKMEL5 

cells) at 1-100 fmol with the exception of HVDSTLLQV (10-1000 fmol) and RLLGTEFQV (20-

2000 fmol) for the MEK inhibitor treated conditions. Endogenous and hipMHCs were purified by 

immunoprecipitation and size exclusion filtration, and the 4H trigger peptide was added 

exogenously to the peptide mixture prior to SureQuant MHC analysis.  

 Similar to method validation experiments, the 1-3H and endogenous (L, light) peptides 

were triggered by the 4H peptide (Figure 5-12-A). The area of each peptide’s product ions was 

integrated and summed, and for SLDDYNHLV, isotopologue intensities roughly followed 

expected ratios (Figure 5-12-B, Supplementary Figure 5-1). A linear fit of these intensities was 

used to generate a standard curve from which the endogenous concentration was interpolated 

(Figure 5-12-C). For the first DMSO replicate, SLDDYNHLV was present at 15.5 fmol, or ~1200 

molecules/cell (Equation 5-1).  

When comparing the transition areas of endogenous peptides between treatment 

conditions, it is evident that pMHC expression of SLDDYNHLV increases with MEK inhibition, in 

line with our discovery pMHC analyses (Figure 5-12-D). Of note, replicate 1 of the 100 nM 

MEKi treated condition had about half the signal intensity as replicate 3. However, replicate 1 

had lower signal across isotopologue standards as well, and because each L peptide’s 

concentration is determined using the embedded standard curve from the same analysis, the 

peptides concentration estimates were comparable across the three replicates (Figure 5-12-E). 

This feature accounts for variation in signal intensity across analyses, which can result from 

variations in sample processing, immunoprecipitation efficiency, or chromatography. This is in 

stark contrast to analyses which utilize calibration curves generated through separate injections 
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of a single isotopically labeled peptide, which does not allow for such run-to-run variation to be 

accounted for.  
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Figure 5-12. Absolute quantitation of SLDDYNHLV.  A Product ion traces for SLDDYNHLV 1-3H and 
endogenous (L) peptides for DMSO treated cells (replicate #1). B Summed intensities of 1-3H and L 
peptides (DMSO, replicate #1). C Linear fit of summed intensities (r2=0.997) of the 1-3H standards, and 
quantification of endogenous level from standard curve. D Transition abundance for DMSO, 100 nM and 
1 µM binimetinib treated cells, numbered by replicate. E Estimated abundance of endogenous peptides. 
Error bars represent standard deviation.  

 

Equation 5-1. Equation for determining molecules/cell. 

 

 

 Standard curves were similarly generated for all peptides in the Iso18 panel across 

treatment conditions in SKMEL5 cells (Supplementary Figure 5-2), and endogenous levels 

were calculated using a linear fit. Four DMSO treated peptides (SLQDLIEKV, TLAEIAKVEL, 
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GQVEIVTKV, and GLFDQHFRL) had endogenous peptide signals below the 1 fmol 1H peptide, 

therefore values were interpolated using the linear fit of the 1-3H standard curve. Importantly, 

while discovery analyses of 1 µM binimetinib-treated cells did not identify the two least abundant 

peptides (SLQDLIEKV and TLAEIAKVEL, Figure 5-3-A), every peptide was identified and 

quantified with SureQuant MHC, showcasing the sensitivity and reproducibility of utilizing 

targeted methodologies for monitoring targets of interest.  

 Endogenous pMHC levels spanned a wide range. PRUNE2 peptide, “GQVEIVTKV,” had 

an estimated 20 molecules/cell in DMSO treated cells, whereas SLC45A2 peptide, 

“RLLGTEFQV,” had approximately 150,000 molecules-per-cell in SKMEL5 cells treated with 1 

µM binimetinib. This represents nearly 4 orders of magnitude, highlighting the wide diversity in 

expression levels of tumor antigens in the immunopeptidome.  

As expected, MEK inhibition increased the expression of every peptide in the panel, 

though to carrying degrees (Figure 5-14). On the low end, 100 nM of binimetinib increased the 

BCAP31 peptide, “KLDVGNAEV” 1.7-fold, and 1 µM of binimetinib increased the PRUNE2 

peptide, “GQVEIVTKV” 19-fold. The array of endogenous expression coupled with the 

perturbagen-induced expression changes showcase the wide range of expression levels and 

patterns the immunopeptidome can possess. Next, we were curious has to how calculated 

changes in quantification of the Iso18 peptides, performed label-free, compared to the 

multiplexed discovery datasets quantitation, as we’ve previously characterized the dynamic 

range suppression prevalent in TMT-MS2 analyses of the immunopeptidome. We find that in 

cases where the SureQuant-based quantitation showed fold changes up to 4-fold, the 

quantitation between the two analyses was comparable. However, in peptides with SureQuant 

MHC-measured fold changes higher than 4x, ex. HVDSTLLQV and GQVEIVTKV, the 

multiplexed fold changes were much smaller than the SureQuant MHC measured, suggesting a 

limited dynamic range of the multiplexed assay. As ratio compression has been demonstrated in 
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label-free and multiplexed analyses, the only accurate way to measure changes in expression is 

through multipoint calibration curves described here. This allows for a wider dynamic range in 

measurements of absolute levels of expression and changes in expression.  

 

 

Figure 5-13. SKMEL5 endogenous copies-per-cell estimates of peptides in the Iso18 panel for DMSO 
(grey), 100 nM (blue) and 1 µM binimetinib treated cells (n=3). Error bars represent standard deviation. 
Dotted line = 1 fmol, lower limit of quantitation of the standard curve.  
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Figure 5-14. DDA and SQ-MHC quantitative comparison of MEKi-induced expression changes. Fold 
change in expression of pMHCs in SureQuant MHC and multiplexed DDA-based quantitation strategies. 

 

5-3-2 Iso18 quantitation in other melanoma cell lines 

 We next wanted to utilize the Iso18 panel, generated from peptides identified in the 

SKMEL5 cell line, to determine if we could quantify endogenous levels of pMHCs with and 

without MEK inhibition in other melanoma cell lines. We selected A375 and RPMI-7951, both 

BRAF V600E mutant lines that are HLA-A2*01 positive. In discovery analyses, we identified 7 of 

the Iso18 peptides in A375 cells and 9 in RPMI-7951 cells (Figure 5-15). Though we would not 

expect all Iso18 peptides to be present in each cell line due to differences in their proteomes, 

we anticipated that due to the sensitivity of SureQuant MHC, if the peptide was present, we 

would be able to detect and quantify it. In a similar setup to SKMEL5 experiments, cell lines 

were treated with DMSO, 100 nM or 1µM binimetinib for 72h, and each condition was analyzed 

with SureQuant MHC in triplicate.  
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Figure 5-15. A375/RPMI-7951 pMHC changes in Iso18 peptides. Mean fold change (n=3) in pMHC 
expression of Iso18 panel peptides in multiplexed, DDA analyses of cells treated with 100 nM or 1 µM 
binimetinib. 

 

 We quantified 13 of the Iso18 peptides in A375 cells and 11 in RPMI cells (Figure 5-16, 

Supplementary Figure 5-3,4). The abundances again spanned a wide range: 6-1730 pMHCs-

per-cell in RPMI-7951 cells and 5-8500 in A375 cells. Several of the least abundant 

endogenous peptides in A375 cells (derived from MAGEB2 and SLC45A2) were not detected in 

discovery analyses, again illustrating the sensitivity of SureQuant MHC in detecting low-

abundance pMHCs with IS-PRM. The same trend was observed in RPMI-7951 cells: two of the 

three peptides present at levels below 1 fmol were not detected in discovery analyses. 

However, the remaining RPMI-7951 peptides were detected. Upon further investigation, RPMI-

7951 cells had much lower absolute quantification values than A375 and SKMEL5 cells 

(maximum expression detected was ~1700 copies/cell in a MED23 peptide). Higher abundance 

peptides dominate discovery analyses, so in the case of RPMI-7951, where there were not 

really high abundant peptides present, discovery analyses were able to pick up more peptides 

of low abundance. Of note, neither cell line detected endogenous levels of any of the three 
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PMEL (gp100) peptides, suggesting the cells did not present pMHCs derived from PMEL at 

levels above ~1 copy-per-cell.  

 One peptide of particular interest was the PRUNE2 derived epitope, “ALFDGDPHL,” 

which showed the highest change in expression in A375 cells in discovery, TMT-labeled 

analyses (2.6x with 100 nM and 10.5x with 1 µM MEKi). In SureQuant MHC analysis, 

endogenous levels of this epitope were below the 1 fmol limit of detection (<80 copies/cell) and 

interpolated to be ~22 copies/cell. With 100 nM MEKi, endogenous levels were measured at 

~1050 copies/cell, and ~8,500 copies/cell with 1µM MEKi, representing 46x and 377x increases 

in expression, respectively. If these data are accurate, it would suggest that the dynamic range 

limitations in multiplexed analyses of A375 cells is about 10-fold, therefore one would not be 

able to determine the true magnitude in expression change with discovery analyses.  

This substantial change in expression is striking, and MEK inhibition of these cells could push 

this antigen into being able to be targeted by certain antibody-based therapies requiring higher 

expression. Utilizing SureQuant MHC can capture such dynamic changes, highlighting novel, 

therapy-induced targets for immunotherapy targeting.  
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Figure 5-16. Absolute quantification in A375 and RPMI-791 cells. Copies-per-cell estimates of pMHCs in 
A375 (A) and RPMI-7951 (B) cells. Dotted line represents limit of quantitation (1 fmol).  
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 We quantified 13 of the Iso18 peptides in A375 cells and 11 in RPMI cells (Figure 5-16). 

The abundances again spanned a wide range: 6-1730 pMHCs-per-cell in RPMI-7951 cells and 

5-8500 in A375 cells. Several of the least abundant endogenous peptides in A375 cells (derived 

from MAGEB2 and SLC45A2) were not detected in discovery analyses, again illustrating the 

sensitivity of SureQuant MHC in detecting low-abundance pMHCs with IS-PRM. The same 

trend was observed in RPMI-7951 cells: two of the three peptides present at levels below 1 fmol 

were not detected in discovery analyses. However, the remaining RPMI-7951 peptides were 

detected. Upon further investigation, RPMI-7951 cells had much lower absolute quantification 

values than A375 and SKMEL5 cells (maximum expression detected was ~1700 copies/cell in a 

MED23 peptide). Higher abundance peptides dominate discovery analyses, so in the case of 

RPMI-7951, where there were not really high abundant peptides present, discovery analyses 

were able to pick up more peptides of low abundance. Of note, neither cell line detected 

endogenous levels of any of the three PMEL (gp100) peptides, suggesting the cells did not 

present pMHCs derived from PMEL at levels above ~1 copy-per-cell.  

 One peptide of particular interest was the PRUNE2 derived epitope, “ALFDGDPHL,” 

which showed the highest change in expression in A375 cells in discovery, TMT-labeled 

analyses (2.6x with 100 nM and 10.5x with 1 µM MEKi). In SureQuant MHC analysis, 

endogenous levels of this epitope were below the 1 fmol limit of detection (<80 copies/cell) and 

interpolated to be ~22 copies/cell.  

 

5-3-3 Iso18 quantitation in human tumors 

 To evaluate whether the absolute quantitation levels measured in vitro in human cell 

lines were comparable to levels present in patient tumors, we applied the SureQuant MHC 

Iso18 method to a human HLA-A2*01+ melanoma punch biopsy. The biopsy was homogenized, 
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and 5 mg of tumor lysate was used, equivalent to the protein quantity used in cell line 

experiments (Figure 5-17).  1-3H Iso18 hipMHCs were added to the lysate, followed by an 

immunoprecipitation & size exclusion filtration of endogenous and heavy isotope labeled 

pMHCs. The isolated peptides were then split and analyzed two ways: a SureQuant MHC 

targeted analysis for quantification of the Iso18 peptide panel, and a label-free discovery 

analysis to profile a larger portion of the immunopeptidome.  

 

 

Figure 5-17. Experimental setup for SureQuant MHC and discovery analyses of human tumors. 

 

 In a single injection comprised of just 25% of the peptide mixture, 5,039 unique pMHCs 

were identified which demonstrated the characteristic length distribution for class I MHCs 

(Figure 5-18-A). Of interest, 8 peptides in the Iso18 panel were identified, a majority of which 

were in the top 25% of peptide abundances (Figure 5-18-B). The two most abundant epitopes, 

ALFDGDPHL (PRUNE2) and RLLGTEFQV (SLC45A2), were also two of the most abundant in 

SKMEL5 cells. We investigated whether, similar to discovery analyses of melanoma cell lines, 

pMHCs derived from known tumor associate antigens (TAAs) exhibited significant enrichment 

among all pMHCs. pMHCs were rank ordered by precursor ion abundance, and we identified 

significant (p<0.001) TAA enrichment in highly abundant pMHCs (Figure 5-18-C). To verify this 
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result was not due to an overrepresentation of TAA-derived peptides in the dataset, we 

randomly scrambled the peptide’s ranked order and performed the same analysis. The results 

were not significant (p=0.21), conforming that TAA-derived peptides are enriched among 

peptides of the highest abundances in this patient tumor sample. 

 

 

Figure 5-18. Discovery data of tumor pMHC analysis.A Length distribution of tumor pMHCs. B Discovery 
pMHCs, rank ordered by integrated precursor ion peak area. Highlighted red nodes represent Iso18 panel 
peptides. PRUNE2_1 = ALFDGDPHL, SLC45A2_1 = RLLGTEFQV, PMEL_2 = ALDGGNKHFL, PMEL_3 
= SLADTNSLAVV, NONO_1 = TLAEIAKVEL. C Enrichment plot for tumor associated antigen (TAA)-
derived peptides within the discovery analysis, rank ordered by abundance. Enriched TAAs are shown in 
red, and a randomized analysis of the ranked list is shown in grey. 

  

We next performed the targeted SureQuant MHC analysis of the Iso18 panel. In line with 

the in-vivo analyses, summed abundances of transition areas roughly follow expected ratios 

(Figure 5-19-A). For RLLGTEFQV, the endogenous level falls within the standard curve, for a 

concentration of 16.7 fmol (Figure 5-19-B).  
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Figure 5-19. SLC45A2 absolute quantification in tumor sample. A Product ion traces for 1-3H and 
endogenous (L) SLC45A2-derived peptide, RLLGTEFQV. B Linear fit of summed intensities (r2=0.994) of 
the 1-3H standards, and quantification of endogenous level from standard curve for RLLGTEFQV.  

 

As tumors represent a heterogenous composition of cell types including antigen presenting 

immune cells, it is challenging to accurately discern the number of tumor cells in each punch biopsy. 

Therefore, we elected to express the total amount of each peptide as a fraction of the bulk sample to 

enable comparison across patients and to SKMEL5 cells, which similarly utilized 5 mg cell lysate.   

Between 2 and 17 pMHCs were quantifiable across tumors, with only 2 peptides identified across 

the entire tumor cohort (Figure 5-20-A). A comparison of pMHC concentrations both across and within 

tumors highlight the heterogeneity of antigen presentation. For example, the BCAP31 peptide ranged 

from 1-44 fmol across tumors, whereas both NONO-derived peptides were detected below 10 fmol in all 

instances. Perhaps most striking are the 8 peptides that were only identified in four or fewer tumors, 

particularly those derived from common TAAs like “SLADTNSLAVV”, a PMEL peptide identified in just 3 

tumors. As all tumors were HLA-A2*01+, these data showcase the diversity of endogenous pMHC 

presentation among tumors even with a common allele. The inter-patient heterogeneity revealed by our 

analysis points to the need for targeted assays like SureQuant-IsoMHC to verify and quantify expression 

of antigens used in targeted immunotherapies which may serve to better stratify eligible patients and 

enhance personalized therapeutic approaches. 

To assess the sensitivity of SureQuant-IsoMHC in clinical samples, we performed data 

dependent acquisition (DDA) on another aliquot of the isolated tumor peptides to determine whether the 
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Iso18 targets could have been identified in discovery-mode workflows (Dataset S4). While 8 Iso18 targets 

were identified in discovery mode in T1 (Figure 5-20-B), most tumors had between 0 and 2 Iso18 target 

identifications (Figure 5-20-C). Indeed, most peptides quantified below 1 fmol with SureQuant-IsoMHC 

were not identified in the discovery analyses (Figure 5-20-B), confirming the bias of DDA towards higher 

abundant epitopes. Moreover, T8, which used just 1.1 mg of tumor lysate input, had 0 Iso18 

identifications with DDA and 7 with SureQuant-IsoMHC, highlighting the method’s sensitivity in detecting 

and quantifying low-abundance epitopes.  

 

 

Figure 5-20. SureQuant quantification in human tumors. A Peptide concentration per 5 mg lysate. B T1 
Iso18 concentrations. Dotted line is lowest calibration point, *=pMHCs identified with DDA. C Number of 
unique peptides (left, black) and Iso18 panel peptides (right, red) identified with DDA.   

 

Of interest, tumor levels of the SLC45A2-derived peptide, RLLGTEFQV, are higher than 

A375 and RPMI-7951 levels (even with MEK treatment), but not nearly as high as the levels 

identified in SKMEL5 cells (Figure 5-21). Under the assumption that 5 mg of tumor lysate 

contains approximately the same number of cells as an in vitro sample, this amounts to ~1500 

molecules/cell. Treatment with a MEK inhibitor may have increase expression several fold, 
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making it potentially targetable by antibody-based immunotherapies. The PRUNE2 derived 

peptide, ALFDGDPHL, has expression levels of similar to those seen in DMSO treated SKMEL5 

cells, again suggesting that MEK inhibition may increase the expression to augment its ability to 

be targeted by immunotherapies requiring high expression.  

 

 

Figure 5-21. Iso18 concentration estimates in tumor sample. A Iso18 pMHC concentrations in human 
tumor sample. Dotted notes the lower limit of quantitation at 1 fmol. *pMHCs identified in the discovery 
analysis. B Cell line and tumor concentrations of SLC45A2 and PRUNE2-derived peptides. 
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5-4 Discussion 

 Accurate absolute quantification of endogenous pMHCs is critical for informing what type 

of targeted immunotherapy may be most effective. Furthermore, profiling how expression levels 

change with different perturbagens can identify treatment-modulated antigen targets whose 

expression levels can be selectively modulated for optimal therapeutic targeting. Previous 

estimates have relied on exogenous standards or pMHC-specific antibodies for quantitative 

estimates, both of which have limitations. To enable high sensitivity, reproducibility, and 

quantitative accuracy in measuring pMHC expression levels, we utilized a panel of 72 

isotopologues, profiling 18 TAA pMHC targets that were previously identified in multiplexed 

discovery analyses as peptides modulated by MEK inhibitor treatment. Using IS-PRM, enabled 

by SureQuant acquisition, we utilized one isotopologue as a trigger peptide and the remaining 

three were incorporated into hipMHCs to generate an embedded standard curve for each 

analysis. Validation of this methodology demonstrated its robust sensitivity, quantifying pMHCs 

at 10 attomole concentration and application to in vitro and in vivo samples showcased 

successful targeting of lowly abundant endogenous pMHCs not identified in discovery analyses.  

 This work highlighted the broad range of expression levels between pMHCs within a 

single cell line and across cell lines. Furthermore, this data challenges the literature’s reports of 

cell line expression of class I molecules being 500,000 copies/cell.46,400 In SKMEL5 cells, a 

single pMHC (RLLGTEFQV) had untreated, endogenous expression levels of 40,000 

copies/cell, representing 8% of the proposed immunopeptidome. MEK inhibition further 

increases expression levels to 150,000 copies/cell. While we did not find this peptide to be 

presented at as high of expression levels in the other analyzed samples, it does suggest that 

there is wide variability in cell expression levels, and perturbagens can greatly modulate total 
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and pMHC-specific expression. Characterization of pMHC expression across more targets and 

a wider cell line and in-vivo derived panel will further elucidate the upper and lower bounds of 

pMHC expression.   

Generally, using IS- PRM is an effective approach for identifying lowly abundant pMHCs, 

and this general framework could be applied to identify predicted neoantigens or viral epitopes 

with high confidence. Other future uses of the isotopologue SureQuant-MHC approach may be 

to use absolute quantification estimates to better define thresholds of antigen presentation 

required for optimal targeted immunotherapy responses. For example, TAP-deficient T2 

lymphoblast cells could be loaded with different concentrations of peptide, and SureQuant MHC 

could be applied to determine the number of molecules on average presented by each cell. This 

characterized range of expression could then be used it evaluate optimal pMHC presentation 

levels for various types of targeted immunotherapies, including bi-specific T cell engagers 

(BiTES), or antibody-drug conjugates (ADCs).  
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5-5 Materials & Methods 

5-5-1 Cell culture 

SKMEL5, A375, and RPMI-7951cell lines were obtained from ATCC [ATCC HTB-70, 

CRL-1619, and HTB-66, respectively] and maintained in DMEM medium (Corning 

supplemented with 10% FBS (Gibco) and 1% penicillin/streptomycin (Gibco). Cells were 

routinely tested for mycoplasma contamination, and maintained in 37 °C, 5% CO2. Cultured 

cells were seeded in 10 cm plates, allowed to adhere overnight, and treated for 72h with 

binimetinib (Selleck Chemicals), or DMSO vehicle control. At the time of harvest, cells were 

washed with 1x PBS, and lifted using 0.05% Trypsin-EDTA (Gibco). Cells were pelleted at 500 g 

for 5 minutes, washed twice more in 1x PBS, and pelleted again. Cells were resuspended in 1 

mL MHC lysis buffer [20 nM Tris-HCl pH 8.0, 150 mM NaCl, 0.2 mM PMSO, 1% CHAPS, and 

1x HALT Protease/Phosphatase Inhibitor Cocktail (Thermo Scientific)], followed by brief 

sonication (3 x 10 second microtip sonicator pulses) to disrupt cell membranes. Lysate was 

cleared by centrifugation at 5000 g for 5 minutes and quantified using bicinchoninic acid (BCA) 

protein assay kit (Pierce). 

  

5-5-2 Human Tumors 

Frozen tumor punch biopsies were generously provided by Dr. Ryan Sullivan. Tumors 

were homogenized in 1 mL MHC lysis buffer, cleared by centrifugation (5000 g for 5 min at 

4°C), and protein concentration was measured by BCA assay. 

 

5-5-3 Peptide synthesis 

Isotopologue peptides were purchased from Thermo Scientific Custom Peptide 

synthesis service. All synthetic peptides used in this study were produced as a PEPotec Custom 
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Peptide Libraries using FMOC solid-phase technology. Peptides were stored in either 1% 

DMSO for UV-mediated peptide exchange or 5% acetonitrile for peptides exogenously added. 

Heavy isotope labeled amino acids used for synthesis are listed in   
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Table 5-3, and labeled amino acids and mass shifts are listed in Table 5-4. 

 Peptides used for HLA-A2*01 binding affinity assay were were synthesized at the MIT 

Biopolymers and Proteomics Lab using standard Fmoc chemistry using an Intavis model 

MultiPep peptide synthesizer with HATU activation and 5 μmol chemistry cycles. Starting resin 

used was Fmoc-Amide Resin (Applied Biosystems). Cleavage from resin and simultaneous 

amino acid side chain deprotection was accomplished using: trifluoroacetic acid (81.5% v/v); 

phenol (5% v/v); water (5% v/v); thioanisole (5% v/v); 1,2-ethanedithiol (2.5% v/v); 1% 

triisopropylsilane for 1.5 hr. Standard Fmoc amino acids were procured from NovaBiochem. 

Peptides were quality controlled by mass spectrometry and reverse phase 

chromatography using a Bruker MiroFlex MALDI-TOF and Agilent model 1100 HPLC system 

with a Vydac C18 column [300 angstrom, 5 micron, 2.1 x 150 mm] at 300 µL/min monitoring at 

210 and 280 nm with a trifluoroacetic acid/ H2O/MeCN mobile phase survey gradient.  

 

5-5-4 Flow cytometry 

T2 cells were seeded at a concentration of 1e6 cells/mL in round bottom plates, and 

media was supplemented with synthetic peptide standard at defined concentrations. Cells were 

incubated with peptide at 37 °C for 16-8 hours. Next, cells were harvested, washed 1x with ice 

cold PBS supplemented with 1% FBS and 0.1% sodium azide (flow buffer) and incubated with 

fluorophore-conjugated HLA-A2*01 specific antibody (BB7.2, Biolegend, cat # 343303) at 0.5 μg 

mL-1 in flow buffer for 30 minutes on ice. Cells were washed 1x with flow buffer and 

resuspended with propidium iodide. Analyses were performed on an LSRII (BD Biosciences) 

and data analyzed using FlowJo (version 10.6.2). 

 

5-5-5 UV-mediated peptide exchange for hipMHCs 
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UV-mediated peptide exchange was performed using recombinant, biotinylated Flex-T 

HLA-A*02:01 monomers (BioLegend), using a modified version of the commercial protocol. 

Briefly, 2 μL of 500 μM peptide stock, 2 μL of Flex-T monomer, and 34 μL of 1X PBS were 

combined in a 96-well U bottom plate. On ice, plates were illuminated with ultraviolet light (365 

nm) for 30 minutes, followed by a 30 minute incubation at 37 °C protected from light. 

Concentration of stable complexes following peptide exchange was quantified using the Flex-T 

HLA class I ELISA assay (Biolegend) per manufacturer’s instructions for HLA-A*02:01. ELISA 

results were acquired using a Tecan plate reader Infinite 200 with Tecan icontrol version 

1.7.1.12.  

 

5-5-6 Peptide MHC isolation 

Peptide MHCs were isolated from 5 mg of cell lysate (~5-7.5e6 cells) per condition with 

immunoprecipitation (IP) and size exclusion filtration, as previously described.188 Briefly, for 

each condition 0.25 mg of pan-specific anti-human MHC Class I (HLA-A, HLA-B, HLA-C) 

antibody (clone W6/32, Bio X Cell [cat # BE0079]) was bound to 20 μL FastFlow Protein A 

Sepharose bead slurry (GE Healthcare) for 3 hours rotating at 4 °C. Beads were washed 2x with 

IP buffer (20 nM Tris-HCl pH 8.0, 150 mM NaCl) prior to lysate and isotopologue hipMHC 

addition, and incubated rotating overnight at 4 °C to isolate pMHCs. Beads were washed with 1x 

TBS and water, and pMHCs were eluted in 10% formic acid for 20 minutes at room temperature 

(RT). Peptides were isolated from antibody and MHC molecules using a passivated 10K 

molecule weight cutoff filter (PALL Life Science), lyophilized, and stored at -80 °C. Prior to 

analysis, 250 fmol of each 4H trigger peptide was exogenously added to the peptide mixture, 

with the exception of GLFDQHFRL and AMLGTHTMEV, where 2.5 pmol was added due to poor 

intensity response.  
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5-5-7 Mass spectrometry data acquisition 

For all SureQuant MHC analyses, samples were analyzed using an Orbitrap Exploris 

480 mass spectrometer (Thermo Scientific) coupled with an UltiMate 3000 RSLC Nano LC 

system (Dionex), Nanospray Flex ion source (Thermo Scientific), and column oven heater 

(Sonation). The injection volume of pMHC sample was directly loaded onto a 10-15 cm 

analytical capillary chromatography column with an integrated electrospray tip (~1 μm orifice), 

prepared and packed in house (50 μm ID × 20 cm & 1.9 μM C18 beads, ReproSil-Pur).  

 

Survey analyses 

 Peptides were eluted using a gradient with 6-25% buffer B (70% Acetonitrile, 0.1% 

formic acid) for 53 minutes, 25-45% for 12 minutes, 45-97% for 3 minutes, and 97% to 3% for 1 

minute. Standard mass spectrometry parameters were as follows: spray voltage, 2.0 kV; no 

sheath or auxiliary gas flow; heated capillary temperature, 275 °C. The Exploris was operated in 

data dependent acquisition (DDA) mode with an inclusion list. Full scan mass spectra (300-1500 

m/z, 120,000 resolution) were detected in the orbitrap analyzer after accumulation of 3e6 ions 

(normalized AGC target of 300%) or 50 ms. For every full scan, up to 20 ions were 

subsequently isolated if the m/z was within +/- 5 ppm of targets on the inclusion list (4H peptide 

precursor ions, Table 5-5) and reached a minimum intensity threshold of 1e6. Ions were 

collected with a maximum injection time of 10s, normalized AGC target = 1000%, and 

fragmented by higher energy collisional dissociation (HCD) with a collision energy (CE): 30%.  

 

SureQuant MHC targeted analyses 
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The custom SureQuant acquisition template available in Thermo Orbitrap Exploris 

Series 2.0 was utilized for this method build. All the acquisition parameters for each series of 

isotopologues are located within a distinct 4-node branch stemming from a full scan node, 

therefore 18 branches are included in the method. MS1 scan parameters. In each branch, the 

peptide m/z and intensity thresholds are defined in the “Targeted Mass” filter node. Next, 

parameters for the low resolution, IS peptide MS2 scan are defined, followed by the “Targeted 

Mass Trigger” filter node, which defines the 6 product ions used for pseudo-spectral matching. 

To connect each set of product ions within the targeted mass trigger node to a given precursor 

mass, we utilize the group ID feature to define the precursor m/z associated with each group of 

product ions is related to. Finally, along with the scan parameters for the four MS2 scans of the 

endogenous and 1-3H peptides, we define the isolation offset (m/z) within each node.  

Standard mass spectrometry parameters for SureQuant acquisition are as follows: spray 

voltage: 1.6kV, no sheath or auxiliary gas flow, heated capillary temperature: 280°C. Full-scan 

mass spectra were collected with a scan range: 350-1200 m/z, AGC target value: 300% (3e6), 

maximum IT: 50 ms, resolution: 120,000.  

4H peptides matching the m/z (within 6 ppm) and exceeding the intensity threshold 

defined on the inclusion list were isolated [isolation window 1 m/z] and fragmented [nCE: 27%] 

by HCD with a scan range: 150-1700 m/z, maximum IT: 10 ms, AGC target value: 1000% (1e6), 

resolution: 7,500. A product ion trigger filter next performs pseudo-spectral matching, only 

triggering an MS2 event of the endogenous, target peptide at the defined mass offset if n ≥ 5 

product ions are detected from the defined list. If triggered, the subsequent light,1H, 2H, and 3H 

peptides MS2 scans are initiated at the defined mass offsets, and scan parameters have the 

same CE, scan range, and AGC target as the heavy trigger peptide, with a higher maximum 

injection time and resolution (for example, max IT: 250 ms, resolution, 120,000). Triggered MS2 

scans are performed in the following order: Light, 1H, 2H, and 3H.  
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Discovery tumor analyses 

Standard mass spectrometry parameters were as follows: spray voltage, 2.0 kV; no 

sheath or auxiliary gas flow; heated capillary temperature, 275 °C. The Exploris was operated in 

data dependent acquisition (DDA) mode. Peptides were eluted using a gradient with 6-25% 

buffer B (70% Acetonitrile, 0.1% formic acid) for 75 minutes, 25-45% for 5 minutes, 45-100% for 

5 minutes, hold for 1 minutes, and 100% to 3% for 2 minutes. 

Full scan mass spectra (350-1200 m/z, 60,000 resolution) were detected in the orbitrap 

analyzer after accumulation of 3e6 ions (normalized AGC target of 300%) or 25 ms. For every 

full scan, MS2 were collected during a 3 second cycle time. Ions were isolated (0.4 m/z isolation 

width) for a maximum of 150 ms or 75% AGC target, and fragmented by HCD with 30% CE at a 

resolution of 45,000. Charge states < 2 and > 4 were excluded, and precursors were excluded 

from selection for 30 seconds if fragmented n=2 times within 20 second window. 

 

5-5-8 SureQuant MHC data analysis 

Peak area ratios of the endogenous light peptides and corresponding 1-3H isotopologue 

internal standards for the 6 selected product ions were exported from Skyline (version 

20.2.1.28).139 Transition areas were summed for all ions that that were quantifiable across L and 

1-3H peptides. 1-3H peptides were used to generate a standard curve with a linear fit, from 

which endogenous pMHC concentrations were calculated.  
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5-7 Supplementary Figures 

 

 

Supplementary Figure 5-1. Transitions for 1-3H and L peptides for 100 nM (top) and 1 uM MEKi treated 
SKMEL5 cells (left). Summed product ion abundances for each peptide (right).  
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Supplementary Figure 5-2. Standard curves with linear fit for each Iso18 peptide/treatment condition in 
SKMEL5 cells. Error bars represent standard deviation. 
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Supplementary Figure 5-3. Standard curves with linear fit for each Iso18 peptide/treatment condition in 
A375 cells. Error bars represent standard deviation. 
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Supplementary Figure 5-4. Standard curves with linear fit for each Iso18 peptide/treatment condition in 
RPMI-7951 cells. Error bars represent standard deviation. 
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5-8 Tables 

Table 5-1. HLA-A2*01 peptides synthesized for T2 binding analysis. Yield is in in mg, as measured by the 
biopolymers core facility.  
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Table 5-1 continued.  
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Table 5-2. Iso18 peptide panel and predicted pMHC binding affinities to HLA-A2*01. 

Gene Peptide Length Predicted affinity [nM] 

PMEL1 ALDGGNKHFL 10 243.8 

DCT SLDDYNHLV 9 3.9 

DDX5 KQVSDLISV 9 19.7 

NISCH GLFDQHFRL 9 4.7 

NONO TLAEIAKVEL 10 66.3 

OCA2 HVDSTLLQV 9 479.1 

PRUNE2 ALFDGDPHL 9 6.4 

SLC45A2 SLYSYFQKV 9 5.1 

SLC45A2 RLLGTEFQV 9 9.8 

SOX10 KLADQYPHL 9 7.2 

NONO RTLAEIAKV 9 218.2 

BCAP31 KLDVGNAEV 9 22.6 

PRUNE2 GQVEIVTKV 9 66.9 

MAGEB2 GVYDGEEHSV 10 386.5 

PMEL SLADTNSLAVV 11 86.7 

PMEL AMLGTHTMEV 9 13.9 

SEC31A SLQDLIEKV 9 12.7 

MED23 VLHDRIVSV 9 7.4 
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Table 5-3. Heavy isotope labeled amino acids used for synthesis. 

Amino acid (s) Modification 

Mass 

offset 

I 13C6, 15N1 7.017 

L 13C6, 15N1 7.017 

F 13C9, 15N1 10.027 

Y 13C9, 15N1 10.027 

K 13C6, 15N2 8.014 

V 13C3, 15N1 4.007 

A 13C3, 15N1 4.007 

G 13C2, 15N1 3.004 

R 13C6, 15N4 10.008 

P 13C5, 15N1 6.014 
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Table 5-4. Isotopologue m/z and mass offsets for triggering. 

Peptide Name Sequence MW 
Mass 
shift 

Heavy Amino 
acid MW 

Mass 
Offset 

m/z 
offset 

Charge           3   
Endogenous      32.076 -10.692 
Peptide 1 - 1H ALDGGNKHF(L) 1077.567 +7 L: 13C6, 15N1 539.284 25.059 -8.353 
Peptide 1 -2H ALDGGNKH(F)(L) 1087.595 +17 F: 13C9, 15N1 544.297 15.031 -5.010 
Peptide 1 - 3H ALDGGN(K)H(F)(L) 1095.609 +25 K: 13C6, 15N2 548.304 7.017 -2.339 
Peptide 1 - 4H A(L)DGGN(K)H(F)(L) 1102.626 +32 L: 13C6, 15N1 551.813     
Charge           3   
Endogenous      28.069 14.034 
Peptide 2 - 1H SLDDYNHL(V) 1080.511 +6 V: 13C3, 15N1 540.756 24.062 12.031 
Peptide 2 -2H SLDDYNH(L)(V) 1087.529 +13 L: 13C6, 15N1 544.264 17.044 8.522 
Peptide 2 - 3H S(L)DDYNH(L)(V) 1094.546 +20 L: 13C6, 15N1 547.773 10.027 5.014 
Peptide 2 - 4H S(L)DD(Y)NH(L)(V) 1104.545 +30 Y: 13C9, 15N1 552.773     
Charge           2   
Endogenous      23.046 11.523 
Peptide 3 - 1H KQVSDLIS(V) 993.573 +6 V: 13C3, 15N1 497.287 19.038 9.519 
Peptide 3 -2H KQVSD(L)IS(V) 1000.590 +13 L: 13C6, 15N1 500.795 12.021 6.011 
Peptide 3 - 3H KQ(V)SD(L)IS(V) 1006.604 +19 V: 13C3, 15N1 503.802 8.014 4.007 
Peptide 3 - 4H (K)Q(V)SD(L)IS(V) 1014.618 +27 K: 13C6, 15N2 507.809     
Charge           2   
Endogenous      37.080 12.360 
Peptide 4 - 1H GLFDQHFR(L) 1138.599 +7 L: 13C6, 15N1 569.800 30.063 10.021 
Peptide 4 -2H GLFDQHF(R)(L) 1148.607 +17 R: 13C6, 15N4 574.804 20.054 6.685 
Peptide 4 - 3H GLFDQH(F)(R)(L) 1158.635 +27 F: 13C9, 15N1 579.817 10.027 3.342 
Peptide 4 - 4H GL(F)DQH(F)(R)(L) 1168.662 +37 F: 13C9, 15N1 584.831     
Charge           2   
Endogenous      26.056 13.028 
Peptide 6 - 1H TLAEIAKVE(L) 1092.650 +7 L: 13C6, 15N1 546.825 19.038 9.519 
Peptide 6 -2H TLAEIAK(V)E(L) 1098.664 +13 V: 13C3, 15N1 549.832 15.031 7.516 
Peptide 6 - 3H TLAEIA(K)(V)E(L) 1106.678 +21 K: 13C6, 15N2 553.839 7.017 3.509 
Peptide 6 - 4H TLAE(I)A(K)(V)E(L) 1113.695 +28 I: 13C6, 15N1 557.347     
Charge           2   
Endogenous      22.049 11.024 
Peptide 7 - 1H HVDSTLLQ(V) 1016.553 +6 V: 13C3, 15N1 508.776 18.041 9.021 
Peptide 7 -2H HVDSTL(L)Q(V) 1023.570 +13 L: 13C6, 15N1 512.285 11.024 5.512 
Peptide 7 - 3H HVDST(L)(L)Q(V) 1030.587 +20 L: 13C6, 15N1 515.794 4.007 2.004 
Peptide 7 - 4H H(V)DST(L)(L)Q(V) 1036.601 +26 V: 13C3, 15N1 518.800     
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Table 5-4 continued 

Peptide Name Sequence MW 
Mass 
shift 

Heavy Amino 
acid m/z 

Mass 
Offset 

m/z 
offset 

Charge           2   
Endogenous      30.075 15.038 
Peptide 8 - 1H ALFDGDPH(L) 990.488 +7 L: 13C6, 15N1 495.744 23.058 11.529 
Peptide 8 -2H ALFDGD(P)H(L) 996.502 +13 P: 13C5, 15N1 498.751 17.044 8.522 
Peptide 8 - 3H AL(F)DGD(P)H(L) 1006.529 +23 F: 13C9, 15N1 503.764 7.017 3.509 
Peptide 8 - 4H A(L)(F)DGD(P)H(L) 1013.546 +30 L: 13C6, 15N1 507.273     
Charge           2   
Endogenous      29.066 14.533 
Peptide 9 - 1H SLYSYFQK(V) 1139.589 +6 V: 13C3, 15N1 570.294 25.059 12.529 
Peptide 9 -2H SLYSYFQ(K)(V) 1147.603 +14 K: 13C6, 15N2 574.302 17.044 8.522 
Peptide 9 - 3H SLYSY(F)Q(K)(V) 1157.630 +24 F: 13C9, 15N1 579.315 7.017 3.509 
Peptide 9 - 4H S(L)YSY(F)Q(K)(V) 1164.648 +31 L: 13C6, 15N1 582.824     
Charge           2   
Endogenous      28.069 14.034 
Peptide 10 - 1H RLLGTEFQ(V) 1067.600 +6 V: 13C3, 15N1 534.300 24.062 12.031 
Peptide 10 -2H RLLGTE(F)Q(V) 1077.627 +16 F: 13C9, 15N1 539.314 14.034 7.017 
Peptide 10 - 3H RL(L)GTE(F)Q(V) 1084.644 +23 L: 13C6, 15N1 542.822 7.017 3.509 
Peptide 10 - 4H R(L)(L)GTE(F)Q(V) 1091.662 +30 L: 13C6, 15N1 546.331     
Charge           2   
Endogenous      28.062 14.031 
Peptide 11 - 1H KLADQYPH(L) 1090.588 +7 L: 13C6, 15N1 545.794 21.045 10.523 
Peptide 11 -2H KLADQY(P)H(L) 1096.602 +13 P: 13C5, 15N1 548.801 15.031 7.516 
Peptide 11 - 3H K(L)ADQY(P)H(L) 1103.619 +20 L: 13C6, 15N1 552.309 8.014 4.007 
Peptide 11 - 4H (K)(L)ADQY(P)H(L) 1111.633 +28 K: 13C6, 15N2 556.317     
Charge           2   
Endogenous      29.047 14.523 
Peptide 12 - 1H RTLAEIAK(V) 1005.621 +6 V: 13C3, 15N1 503.310 25.040 12.520 
Peptide 12 -2H RTLAEIA(K)(V) 1013.635 +14 K: 13C6, 15N2 507.318 17.025 8.513 
Peptide 12 - 3H RT(L)AEIA(K)(V) 1020.652 +21 L: 13C6, 15N1 510.826 10.008 5.004 
Peptide 12 - 4H (R)T(L)AEIA(K)(V) 1030.661 +31 R: 13C6, 15N4 515.830     
Charge           2   
Endogenous      23.046 11.523 
Peptide 13 - 1H KLDVGNAE(V) 949.511 +6 V: 13C3, 15N1 475.255 19.038 9.519 
Peptide 13 -2H KLD(V)GNAE(V) 955.524 +12 V: 13C3, 15N1 478.262 15.031 7.516 
Peptide 13 - 3H K(L)D(V)GNAE(V) 962.542 +19 L: 13C6, 15N1 481.771 8.014 4.007 
Peptide 13 - 4H (K)(L)D(V)GNAE(V) 970.556 +27 K: 13C6, 15N2 485.778     
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Table 5-4 continued 

Peptide Name Sequence MW 
Mass 
shift 

Heavy Amino 
acid m/z 

Mass 
Offset 

m/z 
offset 

Charge           2   
Endogenous      23.046 11.523 
Peptide 14 - 1H GQVEIVTK(V) 977.578 +6 V: 13C3, 15N1 489.289 19.038 9.519 
Peptide 14 -2H GQVEIVT(K)(V) 985.593 +14 K: 13C6, 15N2 493.296 11.024 5.512 
Peptide 14 - 3H GQVEI(V)T(K)(V) 991.606 +20 V: 13C3, 15N1 496.303 7.017 3.509 
Peptide 14 - 4H GQVE(I)(V)T(K)(V) 998.624 +27 I: 13C6, 15N1 499.812     
Charge           2   
Endogenous      21.045 10.523 
Peptide 15 - 1H GVYDGEEHS(V) 1096.470 +6 V: 13C3, 15N1 548.735 17.038 8.519 
Peptide 15 -2H (G)VYD(G)EEHS(V) 1102.477 +12 G: 13C2, 15N1 551.739 14.034 7.017 
Peptide 15 - 3H (G)(V)YD(G)EEHS(V) 1108.491 +18 V: 13C3, 15N1 554.746 10.027 5.014 
Peptide 15 - 4H (G)(V)(Y)D(G)EEHS(V) 1118.491 +28 Y: 13C9, 15N1 559.745     
Charge           2   
Endogenous      22.049 11.024 
Peptide 16 - 1H SLADTNSLAV(V) 1094.585 +6 V: 13C3, 15N1 547.792 18.041 9.021 
Peptide 16 -2H SLADTNSLA(V)(V) 1100.598 +12 V: 13C3, 15N1 550.799 14.034 7.017 
Peptide 16 - 3H SLADTNS(L)A(V)(V) 1107.615 +19 L: 13C6, 15N1 554.308 7.017 3.509 
Peptide 16 - 4H S(L)ADTNS(L)A(V)(V) 1114.633 +26 L: 13C6, 15N1 557.816     
Charge           2   
Endogenous      21.045 10.523 
Peptide 17 - 1H AMLGTHTME(V) 1094.513 +6 V: 13C3, 15N1 547.756 17.038 8.519 
Peptide 17 -2H AM(L)GTHTME(V) 1101.530 +13 L: 13C6, 15N1 551.265 10.021 5.010 
Peptide 17 - 3H (A)M(L)GTHTME(V) 1105.537 +17 A: 13C3, 15N1 553.268 6.014 3.007 
Peptide 17 - 4H (A)M(L)GTHT(M)E(V) 1111.490 +23 M: 13C5, 15N1 556.245     
Charge           2   
Endogenous      26.056 13.028 
Peptide 18 - 1H SLQDLIEK(V) 1049.599 +6 V: 13C3, 15N1 525.300 22.049 11.024 
Peptide 18 -2H SLQDLIE(K)(V) 1057.614 +14 K: 13C6, 15N2 529.307 14.034 7.017 
Peptide 18 - 3H SLQD(L)IE(K)(V) 1064.631 +21 L: 13C6, 15N1 532.815 7.017 3.509 
Peptide 18 - 4H SLQD(L)(I)E(K)(V) 1071.648 +28 I: 13C6, 15N1 536.324     
Charge           3   
Endogenous      22.030 7.343 
Peptide 20 - 1H VLHDRIVS(V) 1042.616 +6 V: 13C3, 15N1 521.808 18.022 6.007 
Peptide 20 -2H VLHDRI(V)S(V) 1048.630 +12 V: 13C3, 15N1 524.815 14.015 4.672 
Peptide 20 - 3H VLHD(R)I(V)S(V) 1058.638 +22 R: 13C6, 15N4 529.819 4.007 1.336 
Peptide 20 - 4H (V)LHD(R)I(V)S(V) 1064.652 +28 V: 13C3, 15N1 532.826     
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Table 5-5. Targeted mass and product ions for SureQuant MHC method build. Group IDs are the 
precursor mass for each target.  

Modified Sequence m/z Charge Ion 
AL[+7]DGGNK[+8]HF[+10]L[+7] 368.549 3 precursor 

797.469 1 y7 
569.383 1 y4 
433.274 1 y3 
456.751 2 y8 
399.238 2 y7 
370.727 2 y6 

SL[+7]DDY[+10]NHL[+7]V[+6] 553.294 2 precursor 
898.448 1 y7 
783.421 1 y6 
668.394 1 y5 
495.303 1 y4 
381.260 1 y3 
438.194 1 b4 

K[+8]QV[+6]SDL[+7]ISV[+6] 508.317 2 precursor 
370.257 1 b3 
457.289 1 b4 
572.316 1 b5 
692.417 1 b6 
805.502 1 b7 
892.534 1 b8 

GLF[+10]DQHF[+10]R[+10]L[+7] 390.561 3 precursor 
842.469 1 y6 
727.442 1 y5 
599.383 1 y4 
462.324 1 y3 
500.286 2 y7 
421.738 2 y6 

TLAEI[+7]AK[+8]V[+6]EL[+7] 557.855 2 precursor 
900.571 1 y8 
829.534 1 y7 
700.491 1 y6 
580.390 1 y5 
509.353 1 y4 
373.244 1 y3 

HV[+6]DSTL[+7]L[+7]QV[+6] 519.308 2 precursor 
358.175 1 b3 
445.207 1 b4 
546.255 1 b5 
666.356 1 b6 
786.458 1 b7 
914.516 1 b8 
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Table 5-5 continued 

Modified Sequence m/z Charge Ion 

AL[+7]F[+10]DGDP[+6]HL[+7] 507.781 2 precursor 
943.517 1 y8 
823.416 1 y7 
666.320 1 y6 
551.293 1 y5 
494.271 1 y4 
379.245 1 y3 

SL[+7]YSYF[+10]QK[+8]V[+6] 583.331 2 precursor 
958.522 1 y7 
795.459 1 y6 
708.427 1 y5 
545.363 1 y4 
388.268 1 y3 
458.236 1 b4 

RL[+7]L[+7]GTEF[+10]QV[+6] 546.838 2 precursor 
397.311 1 b3 
454.332 1 b4 
555.380 1 b5 
684.423 1 b6 
841.518 1 b7 
969.577 1 b8 

K[+8]L[+7]ADQYP[+6]HL[+7] 556.824 2 precursor 
976.532 1 y8 
856.431 1 y7 
785.393 1 y6 
542.308 1 y4 
379.245 1 y3 
734.404 1 b6 

R[+10]TL[+7]AEIAK[+8]V[+6] 516.338 2 precursor 
388.266 1 b3 
459.303 1 b4 
588.345 1 b5 
701.429 1 b6 
772.466 1 b7 
908.576 1 b8 

K[+8]L[+7]DV[+6]GNAEV[+6] 486.285 2 precursor 
372.245 1 b3 
477.327 1 b4 
534.348 1 b5 
648.391 1 b6 
719.428 1 b7 
848.471 1 b8 
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Table 5-5 continued. 

Modified Sequence m/z Charge Ion 
GQVEI[+7]V[+6]TK[+8]V[+6] 500.319 2 precursor 

814.551 1 y7 
715.483 1 y6 
586.440 1 y5 
466.339 1 y4 
361.257 1 y3 
414.198 1 b4 

G[+3]V[+6]Y[+10]DG[+3]EEHSV[+6] 560.267 2 precursor 
954.419 1 y8 
781.328 1 y7 
666.301 1 y6 
606.276 1 y5 
477.234 1 y4 
477.713 2 y8 

SL[+7]ADTNSL[+7]AV[+6]V[+6] 558.324 2 precursor 
394.205 1 b4 
495.252 1 b5 
609.295 1 b6 
696.327 1 b7 
816.428 1 b8 
496.778 2 b10 

A[+4]ML[+7]GTHTM[+6]EV[+6] 556.783 2 precursor 
906.474 1 y8 
786.373 1 y7 
729.351 1 y6 
628.304 1 y5 
622.321 1 b6 
723.369 1 b7 

SLQDL[+7]I[+7]EK[+8]V[+6] 536.832 2 precursor 
872.540 1 y7 
744.481 1 y6 
629.454 1 y5 
509.353 1 y4 
389.252 1 y3 
444.209 1 b4 

V[+6]LHDR[+10]IV[+6]SV[+6] 355.891 3 precursor 
424.250 2 y7 
356.232 1 b3 
637.369 1 b5 
750.453 1 b6 
375.730 2 b6 
428.271 2 b7 
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Table 5-6. Quantifiable transitions in 10 attomol 1H hipMHC experiment. 

Peptide 

# of quantifiable 

transitions Area 

ALDGGNKHFL 6 1.49E+05 

ALFDGDPHL 5 1.37E+06 

AMLGTHTMEV 6 3.81E+04 

GLFDQHFRL 6 2.13E+05 

GQVEIVTKV 6 2.52E+06 

GVYDGEEHSV 6 1.27E+05 

HVDSTLLQV 6 1.90E+05 

KLADQYPHL 6 9.31E+05 

KLDVGNAEV 4 6.09E+05 

KQVSDLISV 6 5.50E+06 

RLLGTEFQV 6 1.12E+05 

RTLAEIAKV 6 2.01E+07 

SLADTNSLAVV 5 6.79E+04 

SLDDYNHLV 6 2.15E+06 

SLQDLIEKV 6 8.82E+04 

SLYSYFQKV 6 1.71E+06 

TLAEIAKVEL 6 1.79E+04 

VLHDRIVSV 6 1.56E+07 
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CHAPTER 6: Selective antibody-based targeting of MEK inhibitor 

modulated peptide MHCs  

 

 

6-1 Introduction 

Antibody-based therapies have shown remarkable clinical success as cancer therapies 

over the past several decades due to their high target specificity, and more antibody (Ab) 

therapies continue to move through clinical development.401 After binding to their target antigen 

through their variable fragment antigen-binding (Fab) regions, Abs can mediate Anti-tumor 

effects through a variety of different mechanisms. These include direct binding to receptors or 

ligands to block receptor activation and/or downstream signaling (ex. Herceptin, anti-HER2 Ab), 

complement or antibody dependent cellular cytotoxicity (CDC or ADCC) (ex. rituximab, anti-

CD20 Ab), immune cell activation and recruitment (ex. Keytruda, anti-PD1), or toxicity from 

antibody-drug conjugate (ADC)-mediated toxin delivery (Kadcyla, anti-HER2 ADC). The major 

clinical advantage of therapeutic antibodies is that they can target antigens that are expressed 

at higher levels on tumor cells than non-tumor cells, however key limitations are that only 

surface antigens can be targeted, and if differential expression between tumor/healthy cells is 

not significant, antibodies can induce toxicity in healthy cells. 402 

Targeting peptide MHCs that present tumor associated antigens on the cell surface is an 

attractive application of antibody-based therapies, as non-tumor cells express much lower levels 

of tumor antigens. Antibodies targeting pMHCs are also referred to as TCR-like antibodies and 

can be utilized in a variety of ways to induce cytotoxicity. These include ADCC, CDC, and ADC, 

as previous described, along with strategies that redirect cytotoxic T cells. This can be 

accomplished by engineering chimeric antigen receptor (CAR) T cells, which combine signaling 
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TCR domains and Fv Ab regions to confer target specificity, or alternatively cytotoxic T cells can 

be recruited using bispecific T-cell engagers (BiTEs), which contain an anti-pMHC region and 

an anti-CD3 region to engage T cells and direct them against the TAA target.403,404 

In 2000, Chames et al. reported the first antibody targeting a pMHC, also called a TCR-

like antibody. This TCR-like antibody targeted a MAGE-A1 pMHC, generated using phage 

display.405 The same technique was subsequently applied to develop TCR-like Abs against 

pMHCs derived from other well studied tumor antigens including gp100 (PMEL), MART-1, 

Tyrosinase (TYR), and viral epitopes like HIV, among others.394,401,404,406–408 While initially used 

for pMHC visualization and flow-cytometry based quantitation of expression levels, a variety of 

therapeutic applications of TCR-like antibodies have now been developed. For each therapeutic 

strategy, assessment of optimal antigen expression levels/threshold for cytotoxicity is required, 

and in many studies increased antigen expression may improve therapeutic efficacy.  

 

6-1-1 Bi-specific T cell engagers (BiTES) 

  BiTES therapies force the formation of an immunological synapse between tumor cells 

and T cells by binding CD3, an invariant signaling domain on the T cell receptor, one side of the 

molecule, and to a cell surface tumor antigen on the other side of the molecule.409 This allows 

for cell lysis independent of the T cells’ intrinsic antigen specificity and bypassing several 

common mechanisms of immune escape on the immune and tumor antigen fronts.  One BiTE 

example is the FDA approved therapey, Blincyto, which reacts with the B-cell antigen CD19 for 

treatment of B-cell neoplasms.410 One significant benefit of BiTEs over other TCR-mimic Abs is 

that they have a lower thresholds of epitope density for efficacy, though not as sensitive as CAR 

T therapies.403  
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 A pMHC-specific BiTE described by Dao et al. targeted a WT1 epitope (ESK1) which 

has a low density of expression.411 In vitro and in vivo, the ESK1-BiTE demonstrated T-cell 

cytotoxicity against WT1+ tumor cells and WT1+ NOD-SCID mice. The data also suggested 

ESK1-BiTE therapy may induce epitope spreading, providing a more durable therapeutic 

response than other pMHC-specific Ab therapies. BiTEs against melanoma tumor antigens with 

higher expression (NY-ESO-1) have also been developed and demonstrated specific lysis, 

however expression level thresholds for optimal BiTE efficacy have not thoroughly explored.412  

 

6-1-2 Antibody dependent cellular cytotoxicity (ADCC) 

 ADCC occurs when antibodies bind antigens on the cell surface, and natural killer (NK) 

cells expressing CD16 FC receptors recognize and crosslink to the antibody bound to the 

antigen.413 This activates NK cells, which allows them to lyse the target cells and initiates 

cytokine secretion like interferon gamma, which recruits additional adaptive immune cells. While 

NK cells are the main effector cell type, other Fc-receptor cells like monocytes, macrophages, 

granulocytes, and eosinophils also contribute to ADCC-mediated killing of target cells.414  

 Generally, studies have shown that higher expression levels of the target antigen 

improve cytotoxicity via ADCC. Niwa et al. generated a panel of tumor cell lines with CCR4 

antigen expression levels ranging from ~1000 to 500,000 and evaluated ADCC-mediated 

cytotoxicity using anti-CCR4 IgG antibody and PBMCs from two healthy donors.392 The 

cytotoxicity (51Cr release assay) was dependent on concentration of IgG1 used and the CCR4 

expression levels, with the highest cytotoxicity observed with 3 ug/mL IgG and the highest 

expression level tested of 54,000 binding sites per cell. Another assay was performed testing 

CD20 expression levels (~1000-600,000 sites/cell) and data showed similar findings. In both 

examples, cytotoxicity at 50% or better was not observed without 10,000 copies of the target 
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antigen per cell.  ADCC activity of cetuximab, an IgG1 monoclonal antibody against EGFR, 

demonstrated improved activity in cells with higher surface expression of EGFR.415 Together, 

these results suggest that higher antigen expression levels improve antibody-based 

therapeutics.  

In 2006, Wittman et al. utilized a TCR-like Ab against an HLA-A2*01 restricted peptide 

derived from human chorionic gonadotropin beta (hCG-β), overexpressed in many breast 

cancer patients, to mediate ADCC.416 Similar to the CCR4 and CD20 studies, cytotoxicity was 

dependent on the antibody concentration and antigen presentation levels. Several other TCR-

like antibodies have been recently developed targeting pMHCs derived from tumor protein 53, 

macrophage migration inhibitor factor (MIF) and WT1, all overexpressed in tumor cells.417–419 

Several of these studies have shown a maximum lysis in endogenous cells (not peptide pulsed) 

of ~20%, suggesting higher expression levels are required for increased cell lysis.417,419 Still, this 

work demonstrates the potential for ADCC with TCR-like Abs, and may favor highly abundant 

pMHCs such as the TAAs modulated by MEK inhibitor treatment previously described in this 

thesis.   

 

6-1-3 Antibody-drug conjugates 

Antibody-drug conjugates traditionally consist of three parts: The antibody (selective 

targeting unit), the drug (cytotoxic agent), and the chemical linker which connects the two. While 

there are different mechanisms of action, generally the Ab binds the target antigen, after which 

the entire ADC is endocytosed. Inside the cell, the linker is cleaved which releases the drug and 

induces apoptosis.420 This mechanism of action suggests that the higher the antigen expression, 

the better the efficacy of the ADC due to increased drug payload being endocytoses into 
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cells.421,422 Still, studies evaluating the relationship between target expression levels and ADC 

efficacy are limited.  

A Phase II study in metastatic breast cancer of T-DM1, a MMAE conjugated HER2 

targeting antibody (trastuzumab), showed a high objective response rate (36% vs 28%) in 

patients with HER2 expression levels high than the mean expression of the patient cohort, via 

reverse-transcriptase polymerase chain reaction.423 Furthermore, the overall response rate was 

33.8% in patients with HER2 positivity with an immunohistochemistry score 3+ versus 4.8% in 

patients with normal HER2 expression.424 A study by Sharma et al. assessed the efficacy T-

DM1 using a panel of HER2+ cell lines with expression levels ranging from 10,000-800,000 

receptors/cell (assayed by QuantBrite beads) and found a strong linear relationship between 

HER2 receptor expression and released MMAE exposure inside cancer cells.422 Another study 

showed that cytotoxicity of T-DM1 was 61% in cells with “high” expression of HER2 and 3% in 

low expressors, however the receptor levels per cell were not defined.425  

Improved efficacy of ADCs has also been shown in vivo by combining ADCs with 

targeted therapy. For example, in melanoma BRAF/MEK inhibitors have been shown to 

increase AXL expression, thereby increasing efficacy of the anti-AXL ADC in a melanoma PDX 

model.426  This further highlights the importance of high antigen expression for ADC efficacy, 

and supports the hypothesis that non-tumor cells with lower target antigen expression would not 

be susceptible to ADC-mediated cytotoxicity, whereas tumor cells with high expression may be. 

This feature makes targeting tumor antigen pMHCs attractive, as expression is substantially 

higher on tumor cells than normal cells, and can be further modulated with perturbagens, 

including targeted therapies like MEK inhibitors.  

Interestingly, there is some debate regarding whether antigen-dependent internalization 

is required via the “bystander” effect, which describes the diffusible free drug cleaved by 

extracellular enzymes being internalized through FC-mediated phagocytosis by neighboring 
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cells, resulting in cell death.421 This has been proposed in response to clinical data of the ADC 

targeting CD30, where CD30 surface expression is not predictive of response.427 The 

“bystander” effect can also result in toxicity if healthy cells endocytose the drug. Different ADCs 

and payloads have different mechanisms of action, therefore the ADC properties, receptor 

expression levels, and receptor turnover all likely impact therapeutic efficacy, though this 

remains to be exhaustively explored. 

Targeting of pMHCs with pMHC-specific ADCs was first described in a 1997 study using 

an hemagglutinin (HA)-specific Fab conjugated to the pseudomonas exotoxin (PE38), which 

showed specific killing of influenza infected cells in vitro.428 The first tumor antigen application 

utilized gp100 specific Fabs fused to PE38 and targeted JY cells loaded with the gp100 peptide, 

which authors estimate to reach 150,000 copies/cell.363,393 In this experiment, the IC50 was 0.5 

ng/mL. In FM3D melanoma cells pulsed with peptide (expression level estimated 10,000 

copies/cell), the IC50 was 200 ng/mL, highlighting the importance of higher antigen expression 

levels for improved cytotoxicity with ADCs. When applied to melanoma cell lines with 

endogenous expression, IC50s were 20-100 ng/mL, though absolute expression levels on the 

cell lines utilized were not evaluated.  

Lowe et al. explored the impact of target copy numbers on ADC efficacy by using two 

cell lines: MDA-MB-231 and SW620 which both express the target antigens of two ADCs at 

varying concentrations.390 Expression levels as low as 40,000 copies/cell resulted in cell viability 

between 50-65% of the untreated control. However, expression levels of 2,000 to 20,000 

copies/cell showed a smaller effect (~80% viability of control) and 1,000 copies/cell showed no 

change in viability. This suggests that expression levels of 2,000+ copies/cell are required to 

see an effect with an ADC, however high expression results in a larger effect. Cohen et al. 

estimated 20,000 copies/cell were required for ADC-mediated toxicity.393 Of note, expression 
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levels in both studies were measured using flow cytometry, which may be less accurate than 

mass spectrometry-based platforms like SureQuant MHC.  

While in vitro analyses of TCR-like Ab targeting have been well documented, in vivo 

studies remain limited. Recently, Lai et al. reported the development and use of a MART-1 

targeting TCR-like ADC and displayed tumor-specific killing in vitro and in in vivo xenograft 

mouse models.429 Of Note, authors demonstrate that a low dose of the ADC (5mg/kg) is more 

efficacious in reducing tumor burden when combined with trametinib, which increases 

expression of the targeted MART1 antigen. Unfortunately, this study did not determine copy 

numbers of the MART-1 peptide pre/post trametinib treatment in vitro or in vivo, however these 

data provide additional evidence that increased pMHC presentation improves ADC-pMHC 

mediated killing of tumor cells.  

Taken together, ADCs targeting pMHCs have the potential to be highly effective but 

require high antigen expression levels for optimal results. Previous work described in this thesis 

describes the identification and quantification of tumor antigens with high expression levels. We 

hypothesized that these antigens may make for compelling ADC targets, and co-treatment with 

MEK inhibitors to upregulate expression may further improve therapeutic efficacy. To this end, 

we collaborated with Jim Wells and Nick Rettko from UCSF to develop pMHC-specific Abs 

against four selected targets and evaluated their use as ADCs in BRAF mutant melanoma. 

 

6-2 Results 

6-2-1 Target selection for pMHC-specific antibody development 

We selected four peptide targets for pMHC-specific Ab development, which were chosen 

based on several factors that incorporated data from previous discovery and targeted analyses. 

“RLLGTEFQV” from SLC45A2, “ALFDGDPHL” from PRUNE2, “MLGTHTMEV” from PMEL 
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(gp100), and “SLDDYNHLV” from DCT (TYRP2). All four targets selected are predicted HLA-

A2*01 binders and are 9 amino acids in length. Next, we prioritized targets that showed large 

changes in expression following MEK inhibitor treatment in SKMEL5 cells, as this was our cell 

line model system. With 1 µM binimetinib, the targets increased 3.4 to 6.4-fold in multiplexed 

discovery analyses (Figure 6-1). Previous results highlight the impact of ion suppression in 

labeled MHC analyses, therefore changes in expression may actually be quite a bit higher. A 

comparison of label free (LF) and TMT-labeled analyses of SKMEL5 cells +/- 100 nM MEKi 

showed that LF analyses had high fold changes in expression than labeled analyses, though to 

varying degrees (Supplementary Figure 6-1). The DCT peptide had a 2.46x change with TMT 

and a slightly larger 3.46x change with LF data, however the PMEL peptide had a much larger 

quantitative difference: 1.85x with TMT and 6.65x with LF. While some of dynamics of these 

differences may be attributed to the differences between samples analyzed, this data and our 

previous results show a significant role of ratio compression in multiplexed and LF pMHC data, 

underscoring that dynamic changes are likely larger than measured with mass spectrometry.  

We also explored how other perturbagens that increase HLA expression alter the 

presentation levels of the selected pMHCs. We utilized results from previous analyses 

evaluating the pMHC repertoire response of IFN-γ stimulation and palbociclib treatment 

(CDK4/6 inhibitor) and found that MEK inhibition still had the largest effect on these antigens 

over IFN-γ stimulation, despite IFN-γ having a larger effect on bulk expression changes. 

Interestingly, CDK4/6 inhibitors minimally increased presentation of the target antigens, 

suggesting that MEK inhibitor treatment is the most robust way to selectively increase 

expression of our pMHC targets.  
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Figure 6-1. Change in pMHC expression of select targets across treatment conditions in multiplexed, 
discovery analyses. Palbo = palbociclib, CDK4/6 inhibitor. Bini = binimetinib, MEK inhibitor. Tramet = 
trametinib, MEK inhibitor. 

  

We also evaluated abundance levels by integrating the area under the curve of the 

precursor ion and found that in the SKMEL5 +/- 100 nM MEKi SLC45A2, DCT, and PRUNE2 all 

had abundances in the 99th percentile, and the PMEL peptide was in the 90th percentile of 

abundance (Figure 6-2-A, Supplementary Figure 6-2). This result was consistent across other 

SKMEL5 analyses, confirming all four peptides have high abundance relative to the other 

peptides identified in discovery analyses (Figure 6-2).  
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Figure 6-2. A Ranked abundance of pMHCs in SKMEL5 cells +/- 100 nM binimetinib. Antibody targets 
are highlighted in color, along with their % rank. B Mean ranked abundance of Ab targets across 4 
discovery analyses: 10 nM, 100 nM, and 1 µM binimetinib, along with the 100 nM/ 1 µM trametinib 
analysis. µ=99.96%, 99.44%, 99.37%, and 88.75% for SLC45A2, DCT, PRUNE2, and PMEL, 
respectively. Error bars represent +/- standard deviation.  

 

 Finally, we utilized data from the Iso18 panel for absolute quantification of target pMHCs 

and found the four selected had a wide range in presentation levels, spanning over three orders 

of magnitude (Figure 6-3-A). PMEL peptides had the largest change in presentation levels with 

MEKi, with approximately 200 copies/cell with DMSO treatment, and 1000+ with MEK inhibition, 

marking a 5-fold change. DCT and PRUNE2-derived peptides had similar expression levels, 

with 1000-2000 copies/cell with DMSO and 5000-7000 copies/cell with 100 nM or 1 µM MEKi. 

The SLC45A2 peptide had the highest level of expression, with ~36,000 copies/cell with DMSO 

treatment and over 105 with MEKi. These range in expression will allow for testing of different 

types of antibody-based pMHC therapies and aid in determining optimal thresholds therapeutic 

efficacy.  

Not all target peptides were identified in the other HLA-A2*01+ BRAF mutant cell lines, 

implying either they were below the limit of detection (<1 copy/cell) or there was not sufficient 
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expression of the proteins the peptide was derived from. For example, no PMEL peptides were 

detected in A375 cells suggesting the PMEL protein is either absent or has low expression. 

SLC45A2 pMHC levels were the only peptide that showed an inverse trend in expression levels 

following MEKi in A375 cells, but expression increased in RPMI-7951 cells, though the 

copies/cell were substantially lower than SKMEL5 cells (~1000 copies/cell) (Figure 6-3-B,C). 

Both DCT and PRUNE2 peptides showed a substantial increase in copies/cell following MEKi, 

with DCT increasing from ~18 to ~1300 copies/cell and PRUNE2 from ~22 to ~8500 copies/cell 

following 1µM MEKi. The multiplexed discovery data showed mean increases in presentation of 

8.5x and 10.5x of DCT and PRUNE2 peptides, respectively, which is much lower than the 74x 

and 378x changes in expression measured with SureQuant MHC analyses (Supplementary 

Figure 6-4). This further underscores the substantial impact of ion suppression in this dataset 

and identifies DCT and PRUNE2 as pMHCs whose expression is modulated by MEK inhibition 

to a much greater extent than originally anticipated and may be suitable targets for antibody-

based therapies requiring high expression levels if primed with MEK inhibitor treatment.  
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Figure 6-3. Copies per cell estimates of target peptides for SKMEL5 cells (A), A375 cells (B), and RPMI-
7951 cells (C) treated with 100 nM MEKi or 1 µM MEKi for 72 hours. Error bars represent +/- standard 
deviation from n=3 replicates.  

 

6-2-2 Generation of pMHC-specific Abs  

 To generate pMHC-specific Abs against the four targets of interest, we collaborated with 

Nick Rettko and Jim Wells, PhD. At UCSF. The work and methodology within this section is 

solely their contribution. First, we synthesized crude, synthetic peptides of the four targets and 

combined them with HLA-A2*01 and β2-Microglobulin for 3 days at 10°C to generate stable 

pMHC complexes. The pMHCs contained a TEC protease cleavage site and an AviTag for 

biotinylation, and refolded complexes were purified with size exclusion chromatography.  
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 The Ab selection process is driven by a phage display library containing 1010 unique 

antibody fragment (Fab) clones (Figure 6-4). In the first round of selection, a negative selection 

is performed against a known HLA-A2*01 binding Flu peptide (“GILFGVFTL”) and remove all 

the phage that do not bind the flu peptide. Next, a positive selection in the depleted library is 

performed against the antigen of interest. Elution of the Fab-phage is performed by using the 

TEV protease, and E. coli are then infected with whatever binds the target antigen so Fab-

phage propagate to generate a new library enriched for antigen-binding Fab-phage.  

 

 

Figure 6-4. Schematic of phage display selection for pMHC-specific Fabs.  

 

In rounds 2-4 of selection, a negative selection with the Flu peptide is again performed 

first, With the remaining phage, 2 selections are performed in parallel (flu peptide and target 

antigen), and binding phage are amplified. Titers are measured to determine how many Fab-

phage were eluted off of each antigen vs flu peptide to assess the level of enrichment. After 4 
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rounds of selection, phage are diluted such that a single phage clone infects a bacteria cell, 

allowing for propagation of single phage clones.   

 Next, an ELISA screen is performed on remaining single cell clones (four for each 

target). Briefly, 20 nM of the pMHC antigen target or flu peptide is immobilized on the plate, and 

the Fab-phage are added to each well and incubated for 30 minutes. An anti-phage HRB 

secondary is added to produce the ELISA signal, which is recorded to assess direct binding. For 

the competition ELISA, 20 nM pMHC are incubated with Fab-phage before adding the phage to 

the plate. If the ELISA signal from the competition assay is equal or less than the ELISA result 

from the direct binding experiment, the Fab affinity for the pMHC target is 20 nM or less. The 

clone with the highest direct binding score plus affinity ratio (competition/direct binding) for each 

target was selected as the optimal pMHC-specific Ab. The phage are then sequenced to 

determine the CDR sequences, and can be developed into full length IgGs.  

  

6-2-3 pMHC-specific Abs demonstrate high specificity  

 To assess the pMHC specificity of selected clones, T2 cells were utilized which are 

defective in presenting exogenous antigens due to a deletion in genes encoding transporters 

associated with antigen presentation (TAP1/TAP2). The addition of exogenous peptide is taken 

up by cells and loaded onto newly synthetized MHC molecules, therefore T2 cells can be used 

to specifically present a single pMHC target. Target peptide or Flu peptide loaded T2 cells were 

assayed with flow cytometry using the pMHC-specific IgGs and Alexa-fluor 488 secondary 

antibodies. Impressively, only T2 cells loaded with the Ab targeted showed a substantial shift in 

fluorescence compared to DMSO or flu peptide loaded T2 cells, and antibodies did not show 

cross reactivity among the pMHC targets (Figure 6-5). N. Rettko performed an analogous 

experiment and found the results comparable.  
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Figure 6-5. Flow cytometry analysis of T2 cells loaded with 100 nM target peptide or flu peptide and 
assayed with the pMHC-specific antibodies.  
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6-2-4 pMHC-specific Ab recognition of SKMEL5 cells  

 We next investigated whether the pMHC-Abs could recognize target expression on 

SKMEL5 cells, and whether the signal would increase with MEKi treatment. We first verified the 

increase in expression with MEKi treatment of HLA-A2*01 peptides using flow cytometry 

(Supplementary Figure 6-5). Next, SKMEL5 cells treated with DMSO or 1 µM binimetinib for 

72 hours were stained with pMHC specific Abs and measured by flow cytometry. No change in 

expression over the DMSO control was observed in for DCT, PMEL, and PRUNE2 peptides, but 

an increase in median fluorescence intensity was seen with the SLC45A2-specific pMHC and 

when a combination of all four antibodies was used (Figure 6-6-A, B). This result is consistent 

is with the SLC45A2 peptide having the highest expression levels.  

 

 

Figure 6-6. Flow cytometry analysis using pMHC-Abs on SKMEL5 cells. A Median fluorescent intensity 
(MFI) for SKMEL5 cells stained with the pMHC specific Abs, n=3 for each condition. B Representative 
histograms from Figure 6-6-A. 

  



 332 

 

6-2-5 Antibody drug conjugate targeting of pMHCs  

 We next sought to determine whether targeting specific pMHCs with an antibody-drug 

conjugate (ADC) approach would be efficacious. In liu of a true ADC, we utilized the full length 

pMHC-specific IgGs with an IgG conjugated monomethyl auristatin F (MMAF) secondary 

antibody with a cleavable linker (Figure 6-7-A). MMAF is a cytotoxic small molecule which 

inhibits cell division by blocking tubulin polymerization.430 The cleavable linker connecting 

MMAF to the Ab is stable in extracellular fluid, but can be cleaved by endosome cathepsins 

upon entering cells. 

 

 

Figure 6-7. pMHC-ADC targeting scheme. A Schematic of ADC targeting using pMHC specific primary 
antibody and MMAF-conjugated secondary. B Schematic of ADC targeting with and without MEK inhibitor 
treatment.  

  

We first tested the pMHC-ADC approach on SKMEL5 cells, targeting the SLC45A2 

pMHC as we know it has high expression with DMSO (~40,000 copies/cell) and even higher 

with MEK inhibitor treatment (100,000+ copies/cell). Higher expression may yield a higher drug 
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payload in cells and increase cytotoxicity (Figure 6-7-B). DMSO treated cells showed a 38% 

reduction in viability over untreated control cells with 30 nM Ab treatment, whereas cells 

pretreated with 1 µM binimetinib had a 47% reduction in cell viability, consistent with higher 

antigen target expression levels inducing higher cytotoxicity (Figure 6-8).  

 

 

Figure 6-8. Cell viability response to SLC45A2 ADC (pMHC-specific Ab targeting with MMAF-conjugated 
secondary antibody in SKMEL5 cells). Error bars represent standard deviation for n=3 replicates.  

  

We next tested the PRUNE2 antibody against SKMEL5 cells (~2000/7000 copies/cell 

with DMSO/MEKi) and A375 cells (~20/8000 copies/cell). We find that for SKMEL5 cells, both 

treatment conditions result in ~40% reduction in cell viability (Figure 6-9-A). For A375 cells, 

DMSO treatment showed a 25% reduction in viability and 45% with MEKi, representing a 

substantial difference between the two conditions (Figure 6-9-B). A maximal reduction in 

viability of ~50% is consistent with high ADC treatment concentrations in other similar studies. 

Of note, while the same number of A375 cells were seeded for each analysis, the MEKi pre-

treated cells exhibited much slower proliferation during the course of the assay, therefore it is 

possible some of the differences in viability are due to the cell populations having different 
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exposure levels to the MMAF secondary. Furthermore, the small decrease in viability observed 

in A375-treated DMSO cells may be due to toxicity of high concentrations of the Ab added, 

therefore subsequent analyses will include an additional control condition where cells are 

treated with the primary Ab but no secondary. Nevertheless, these preliminary results present 

compelling evidence that MEK inhibitors can be successfully combined with pMHC-specific 

ADCs for improved cell killing for high expressing antigens.  

 

 

Figure 6-9. Cell viability response to PRUNE2 ADC, i.e. pMHC-specific Ab targeting with MMAF-
conjugated secondary antibody in A SKMEL5 cells and B A375 cells. Error bars represent standard 
deviation for n=4 replicates.  

 

6-3 Discussion 

 TCR-like antibody-based therapies represent a promising new treatment modality for 

selective killing of tumor cells by targeting tumor-specific or tumor-associated pMHCs. Our 

previous results using SureQuant MHC was able to provide absolute quantification of pMHC 

copies/cell for DMSO and MEKi treated cells, and this data highlighted the wide range in 

expression levels of endogenous pMHCs within and across cell lines. We sought to utilize this 
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absolute quantitative information to develop targeted pMHC-based therapies that were tailored 

to the defined expression levels. For high expressing antigens like SLC45A2, we demonstrate 

proof of concept in using an ADC against this pMHC target for tumor killing. Furthermore, we 

highlight the differential killing of tumor cells with MEKi treatment, confirming earlier studies that 

suggest higher expression levels increase ADC therapeutic efficacy.  

 Still, additional work is required to better understand how to utilize pMHC-specific ADCs. 

First, a deep understanding of the expression level threshold required for efficacy is needed. 

This could be accomplished by using SureQuant MHC to quantify copies/cell of T2 cells 

stimulated with different concentrations of peptide to create a panel of cells with varying 

expression levels as described by Cohen et al.,431 followed by an ADC assay. Additionally, the 

temporal dynamics of ADCs require additional investigation. Cells were pre-treated with MEKi 

for 72 hours which showed superior results over cells co-treated with MEKi/ADCs, but the 

optimal dosing regimen beyond the initial 72 hours is unknown. Additional in vitro and in vivo 

studies will be informative in evaluating how best to combine MEK inhibitors and pMHC-targeted 

therapies.  

There are many variables regarding the ADCs that can also be optimized to increase the 

PK/PD profile including the payload selection, the cleavable linker, chemical/immunophenotypic 

properties of the antibody, or intratumoral payload concentration. Furthermore, exploring the 

use of a of a bispecific antibody may improve targeting and therapeutic efficacy by increasing 

valency.432,433  

One of the key limitations of utilizing ADCs and other targeted therapies are cohort 

selection for clinical trials. Many trials enroll patients without biomarker selection, and trials that 

do screen for target expression often rely on histology staining.434 For some applications like 

HER2 expression, IHC may be sufficient. However, for pMHCs mRNA and protein expression 
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do not necessarily correlate with pMHC expression levels, therefore targeted assays to identify 

and quantify assess pMHC expression like SureQuant MHC is required. 

Future work on this study also includes testing the existing antibodies’ efficacy with 

ADCC and the development and testing of a BiTE therapy against one or two (bi-specific) 

pMHC targets, currently under development by N. Rettko. These two applications will also 

benefit from experiments with a T2 pMHC expression panel to identify optimal thresholds for 

efficacy. Together, these data will begin to elucidate the relationship between pMHC expression 

pMHC-specific Ab response to better understand which therapeutic modality to use based on a 

patient’s pMHC expression levels.  
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6-4 Materials and Methods 

6-4-1 Flow cytometry 

All Analyses were performed on an LSRII (BD Biosciences) and data analyzed using FlowJo 

(version 10.6.2). 

 

SKMEL5 cells 

For analysis of cells by flow cytometry, cells were lifted with 0.05% Trypsin-EDTA and 

106 cells/mL were spun at 300 g for 3 minutes, washed with ice cold PBS supplemented with 1% 

FBS and 0.1% sodium azide (flow buffer) and incubated with fluorophore-conjugated antibody at 

0.5 μg mL-1 in flow buffer for 30 minutes on ice. After incubation, cells were washed again, and 

resuspended in flow buffer plus propidium iodide (PI) staining solution. Antibodies: Alexa Fluor 

488 HLA-A2*01, clone BB7.2 [Biolegend, cat # 343303], fluorophore (488) conjugated pMHC-

specific Abs. The gating strategy used for all experiments is located in the supplemental 

information in Stopfer et al.188 

 

T2 pMHC-Ab validation 

 T2 cells were seeded at a concentration of 1e6 cells/mL in round bottom plates, and 

media was supplemented with synthetic peptide standard at defined concentration (30 nM for 

pMHC-specific Abs). Cells were incubated with peptide at 37°C for 16-8 hours. Cells were 

incubated with the primary pMHC-specific antibodies or IgG isotype control at 10 µg/mL 

concentration for 20 minutes on ice. Cells were washed with flow buffer and incubated with 

protein A-488 conjugate for 20 minutes (1:1000 dilution). Cells were washed again with flow 

buffer and resuspended in PI staining solution. 
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6-4-2 Antibody-drug conjugate assay 

 Cells were seeded in 10 cm dishes and allowed to adhere overnight. For 72 hours, cells 

were treated with DMSO or 1µM binimetinib. Five thousand cells per well of pre-treated cells 

were seeded in a 96 well plate and pMHC-specific primary antibodies were added at a dilution 

spanning 0-30 nM at n=3 or n=4 for 10 minutes at 37°C. Next, 10 nM of the MMAF-conjugated 

IgG secondary antibody with cleavable linker (Moradec, CAT# AH-102-AF) was added to each 

well and cells were incubated at 37°C for 72 hours. Cell viability was assayed using CellTiter-

Glo luminescent cell viability assay (Promega), per manufacturer’s instructions. Percent viability 

was determined as fraction of luminescence relative to the 0 nM primary Ab control. Dose 

response curves were fit with 4 parameter variable slope regression curve in Prism 9.0.0.  

 

*Sample preparation, data acquisition, and data analysis for mass spectrometry analyses is 

described in the chapters where the data is first presented.  
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6-6 Supplementary Information 

 

 

Supplementary Figure 6-1. Comparison of changes in pMHC presentation levels between label free 
(purple) and TMT-labeled (grey) analyses of SKMEL5 cells treated with 100 nM MEKi.  

 

 

 

 

Supplementary Figure 6-2. Ranked abundance of pMHCs in SKMEL5 cells +/- binimetinib or trametinib. 
Antibody targets are highlighted in color, along with their % rank.  
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Supplementary Figure 6-3. ELISA results for top four Fab-phage clones for each pMHC target. Selected 
clones are highlighted with a box. Figure and data curtesy of N. Rettko, UCSF.  
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Supplementary Figure 6-4. Change in expression levels (DMSO vs. MEKi) in TMT-labeled analyses and 
SQ-MHC label free targeted quantitation. 

 

 

 

 

Supplementary Figure 6-5. Surface expression of HLA-A2*01 in SKMEL5 cells measured by flow 
cytometry for DMSO (grey) and 1 µM MEKi (teal).  
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CHAPTER 7: Quantitative consequences of protein carriers in 

immunopeptidomics and tyrosine phosphorylation MS2 analyses 

 

 

7-1 Introduction 

Mass spectrometry (MS)-based proteomics has historically been limited to analyzing 

bulk cell populations, largely due to losses during sample processing and limited instrument 

sensitivity. In recent years, several platforms have achieved protein expression profiling in 

single cells (e.g., single-cell proteomics (SCP)), a notable advancement in proteomics. To 

overcome sensitivity limitations and acquire deep proteomics datasets, the majority of these 

platforms rely on isobaric labeling (i.e., Tandem Mass Tags (TMT)) for sample multiplexing and 

a signal “boosting” sample, or “carrier proteome.”435–437 Carrier proteomes that have been 

utilized thus far contain a larger amount of protein than the non-carrier samples, an equivalent 

amount of protein but with a perturbation to increase the signal of interest438, or both.439 

Because all isobaric labels have an identical intact mass, the inclusion of a carrier proteome 

increases the precursor ion intensity, enabling enhanced detection of low-input or low-level 

samples.  

Use of a carrier proteome has also recently been applied to peptide major 

histocompatibility complex (pMHC) profiling (e.g., immunopeptidomics), and tyrosine 

phosphorylation (pTyr) analyses, both of which historically have required large sample inputs for 

sufficient signal detection by MS. For example, recent advances in pMHC profiling methods 

have decreased sample input requirements from >109 cells to ~107 cells, yet even this lower 

boundary still represents a major limitation in the clinical translatability of the approach.165,188 

Clinical specimens, including fine needle biopsies, typically do not  provide enough material for 
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deep pMHC profiling, and neoantigens are challenging to identify by MS, even with large 

sample quantities.158 Similarly, profiling pTyr peptides is possible using several hundred 

micrograms of input protein per channel in a multiplexed analysis384, but there is continued effort 

to reduce sample requirements to enable pTyr profiling of fine needle biopsies, tissue sections, 

or even single cells.  

Inclusion of a protein carrier has resulted in an increased number of identifiable peptides 

in multiplexed immunopeptidomics analyses as well as multiplexed phosphotyrosine analyses. 

Ramarathinam et al. utilized increased protein material, cellular or patient-derived xenograft 

tumors as a protein carrier in class I pMHC experiments, while Chua et al. used a protein carrier 

that had been treated with pervanadate (PV) treatment to halt tyrosine phosphatase activity and 

thereby increase tyrosine phosphorylation levels.439,440 However, the quantitative impact of 

boosting in both approaches remains poorly understood. Specifically, a carrier proteome may 

limit the instrument’s dynamic range leading to reporter ion ratio compression and increase the 

number of missing values, thereby reducing data quality and/or data quantity, potentially altering 

biological interpretation.441  

Several studies have begun to address these critical questions, albeit with limitations. 

For instance, experiments to assess ratio suppression typically evaluate whether constant ratios 

of protein input material are preserved in the presence of a protein carrier, which is not reflective 

of many biological systems where subtler changes in a subset of peptides demonstrate altered 

quantitation.439,441  Studies have also evaluated whether principal component analysis (PCA) 

can resolve differences between two cell populations in the presence of various protein carrier-

to-signal ratios. However, these experiments generally use distinct cell types or cell lines, which 

have higher heterogeneity in peptide quantitation.435,439,441,442  

Here, we describe results from analyses comparing MS2-based quantitation with and 

without the inclusion of a 20x protein carrier in pMHC analyses and a high (~100x) or low (~9x) 



 344 

carrier in pTyr analyses. We utilize EGF stimulation to drive a pTyr response in a subset of the 

tyrosine phosphoproteome, and titrated synthetic, isotopically labeled pMHCs along with 

CDK4/6 inhibitor treatment in pMHC experiments to shift the pMHC repertoire in pathways 

related to cell cycle control.188,227 In both applications, protein carriers alter peptide quantitation, 

which inhibited our ability to interpret the biology. Using these data, we define existing 

limitations for MS2-based analyses using protein carriers and highlight areas for future 

exploration that may enhance the data quality through altered experimental design or 

acquisition framework.   

  

 

7-2 Results 

7-2-1 Characterizing ion suppression using synthetic, heavy isotope-labeled pMHCs  

We prepared a set of 6 cell line-derived replicate samples comprised of 1x106 cells per 

channel for the analysis without a protein carrier (“no-boost”), and a parallel experiment using 2x 

fewer cells per sample (5x105 cells) for the “pMHC-boost” analysis (Figure 7-1-A, 

Supplementary Figure 7-1-A). As a protein carrier, we utilized 2 samples of 2.5x106 cells 

stimulated with 10 ng/mL interferon-gamma (IFN-γ) for 72h. IFN-γ stimulation increases pMHCs 

levels ~2x (Supplementary Figure 7-1-B, C), resulting in a ~10x boost per protein carrier 

sample and a combined signal-to-boost of ~20x, in line with recent published guidelines for SCP 

experiments.441  
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Figure 7-1. Experimental setup of hipMHC quantitative immunopeptidomic analyses +/- protein carrier.  

 

To measure the ion suppression, we utilized a panel of six synthetic, heavy-isotope 

labeled pMHCs (hipMHCs), which were titrated into cell lysates prior to pMHC isolation to 

generate an internal standard curve, as previously described188. HipMHCs were added at a ratio 

of 1:1:3:3:9:9 across the 6 samples, with concentrations between 1, 3, and 9 fmol in the pMHC-

boost analysis, and proportionally, 2, 6, and 18 fmol in the no-boost analysis. The protein carrier 
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channels each had 30 fmol of each hipMHC, 10x the median concentration used across non-

protein carrier samples (Supplementary Figure 7-1-A).  

After addition of hipMHCs, class I pMHC complexes were isolated from each sample by 

immunoprecipitation, acid elution, and size exclusion filtration. Peptides for each sample were 

subsequently labeled with TMT, combined, and analyzed by LC-MS/MS. From a single injection 

using just 25% of the labeled mixture, 3176 unique pMHCs were identified in the pMHC-boost 

sample, whereas 1619 were identified in the no-boost analysis (Figure 7-2-A). As expected, 

boosting with protein carrier enabled a strong increase in unique IDs using 50% less cellular 

input material for each channel. The peptides identified in both experiments followed expected 

length distributions (Figure 7-2-B), with 97% and 97.9% of 9-mers predicted to be allelic binders 

in no-boost and pMHC-boost analyses, respectively (Figure 7-2-C).  While both analyses had 

equivalent median coefficients of variation (CV) across replicates (Figure 7-2-D), PSMs in the 

boost analysis had a wider distribution of CV values. Together, these data suggest that while a 

20x protein carrier improves the number of unique IDs while not altering peptide properties of 

the resultant dataset, use of a protein carrier may result in slightly higher quantitative variation. 

Of note, the proportion of missing values between the protein carrier and non-carrier samples in 

the pMHC boost analysis were comparable (4% of PSMs in no-boost, 8% in pMHC-boost), 

suggestive of sufficient ion sampling for a majority of peptides (Supplementary Figure 7-1-D).  
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Figure 7-2. pMHC properties in pMHC-boost/no-boost analyses. A Number of unique pMHCs 

identified in a single analysis. B Length distribution of pMHCs. C Predicted binding affinity of 9-mers. 
97.9% and 97.0% of 9-mers in the pMHC-boost and no-boost analyses, respectively, were predicted to 
have a binding affinity ≤500 nM (dotted line). D Coefficients of variation of pMHC-boost and no-boost 
analyses. Boxes outline the interquartile range, and whiskers the 5 and 95th percentiles. pMHC-boost 
median CV= 8.23%, no-boost = 8.30%. 95% PSMs have CV <17.7% (no-boost) and 21.5% (pMHC-
boost). 

 

We next examined the intensity distributions across PSMs (Figure 7-3-A) and found that 

the protein carrier samples had 3.5-4x higher intensity than the other samples in the boost 

analysis. Our expected intensity ratios was ~10:1 (5x increase in sample in the protein carrier 

channels, coupled to a 2x increase in MHC expression due to IFN-g), and thus the observed 

peptide ratios demonstrate a ~2.5x reduction in signaling intensity, suggestive of ion 

suppression. 
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Ratios of the titrated hipMHCs were subsequently analyzed, and substantial ion 

suppression was observed in both analyses (Figure 7-3-B). In the no-boost analysis, the 

“GLFDQHFRL” peptide had a1.8x reduction in dynamic range, while the the “KLDVGNAEV” 

peptide had a 6.2x reduction.  

Other hipMHC peptides fell between these two extremes. Although the hipMHC intensity 

ratios did not match expected values in the no-boost analysis, sample intensities increased with 

increasing concentration of hipMHC. In the boost analysis, almost all of the hipMHC standards 

had comparable reporter ion intensities across all samples, despite a 9x increase in peptide 

concentration, with “GLFDQHRFR,” being the only exception (6.7x reduction in observed vs. 

expected dynamic range). Taken together, these data demonstrate that ion suppression exists 

in non-boost and boost experiments, however the presence of a protein carrier increased ion 

suppression to the extent that pMHCs up to 9-fold higher in concentration could not be 

differentiated via isobaric intensities. It is worth noting hipMHCs were added at relatively high 

concentrations, representing a range of ~1000-10,000 pMHCs/cell. Quantitative accuracy of 

endogenous pMHCs at lower presentation levels may be further negatively impacted by the 

presence of a protein carrier. 

 



 349 

 

Figure 7-3. Estimating ion suppression with hipMHCs. A Violin plots of reporter ion intensities for pMHC-
boost (left) and no-boost (right) analyses. Median: black dashed line, quartiles: colored dotted line. B 
Reporter ion intensities of hipMHC peptides normalized to the mean signal of the 1 fmol (pMHC-boost) or 
2 fmol (no-boost) samples. Solid line = linear fit, error bars = standard deviation. 

 

7-2-2 Protein carrier channel skews biological interpretation of palbociclib-induced 

pMHC repertoire alterations  

To assess the accuracy of quantifying endogenous pMHCs in boost compared to non-

boost analyses, we evaluated whether the presence of a protein carrier channel would affect 

data interpretation of melanoma cells treated with the CDK4/6 inhibitor palbociclib, which 

increases pMHC presentation and induces palbociclib-specific repertoire changes, as previously 
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described.188 Cells were treated with DMSO or 10 µM palbociclib for 72h in triplicate, and 

analyzed alone or with an IFN-γ stimulated protein carrier channel for a combined 20x signal-to-

boost ratio, using a similar set-up to the previous experiment (Figure 7-4-A, Supplementary 

Figure 7-2). Similar to the hipMHC experiment, “boosting” with a protein carrier yielded a 

greater number of unique peptides identified (Figure 7-4B), with similar length distributions 

(Figure 7-4-C). 

 

 

Figure 7-4. pMHC-boost/no-boost comparison of cells treated with CDK4/6i. A Experimental setup of 
pMHC analyses +/- protein carrier with 72h DMSO or 10 µM palbociclib treatment. B Number of unique 
peptides identified in pMHC-boost (2637) and no-boost (1602) analyses. C Length distribution of pMHCs. 

 

 However, while a majority of peptides showed an increase in presentation levels in the 

no-boost experiment (median fold change 1.17x) consistent with our previously reported 

results188 (Figure 7-5-A, B), peptides in the pMHC-boost experiment showed a narrower 
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distribution of changes, centered around a median fold change of just 1.05x. In line with this 

finding, principal component analysis showed superior separation of DMSO and palbociclib-

treated samples in the no-boost analysis due (Figure 7-5-C). 

To interrogate the data further, we considered the 1092 unique peptides quantified in 

both analyses (Supplementary Figure 7-3-A). We identified fewer peptides significantly 

increasing or decreasing in presentation in the boost analysis compared to the no-boost 

analysis (Figure 7-5-D), masking biological interpretation of the data. For example, 334 

common peptides significantly increased in presentation in the no-boost analysis, while only 80 

peptides in the boost analysis significantly increased. Of the 42 peptides significantly increased 

in the pMHC-boost analysis but not the no-boost analysis, 76% also showed an increase in 

expression in the no-boost analysis but did not achieve statiststical significance. The no-boost 

analysis had higher median coefficients of variation values than the boost analysis 

(Supplementary Figure 7-3-B), as ion suppression reduces variation in reporter-ion intensities, 

thereby increasing the likelihood of statistical significance. For example, the CSDE1-derived 

peptide, “KEVQDGIEL,” had an average fold-change of 1.36x in the no-boost analysis and 

1.21x in the boost analysis, though the significance values were 0.06 and 0.05, respectively, 

narrowly missing our selected significance threshold.  
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Figure 7-5. Protein carrier suppresses CDK4/6i-induced pMHC changes. A Volcano plot displaying the 
log2(palbociclib/DMSO) of pMHCs (x-axis), where the fold change is calculated from the mean intensity 
of n = 3 biological replicates per condition, versus significance (y-axis, mean adjusted p-value, unpaired 
two-sided t test). B Histogram distribution of unique pMHC fold change in expression. C Samples plotted 
by principal component 1 (PC1) and PC2 score for no-boost (left) and pMHC-boost (right) analysis, 
colored by treatment condition. Percentages are % variance explained by the plotted PC. D Venn 
diagram of peptides significantly increasing (upper) and decreasing (lower) with palbociclib treatment in 
the no-boost (blue) and pMHC-boost (grey) analyses. 

 

We next evaluated whether the altered quantitation in the boost analysis would change 

the previously described key findings of this analysis, namely that peptides derived from 

pathways known to be perturbed by CDK4/6 inhibition show significant positive enrichment 

(oxidative phosphorylation, OxPhos) and negative enrichment (G2M checkpoints and E2F 

targets).188 To this end, we performed an enrichment analysis in the MSigDB Hallmarks gene 
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set database by rank ordering the gene names for pMHC source proteins in decreasing order of 

fold-change.255,281,282 In the no-boost analysis, 10 µM palbociclib treatment showed significant 

enrichment in OxPhos, G2M checkpoints, and E2F targets, mirroring previously reported 

findings (Figure 7-6-A, B). None of the three pathways showed significant enrichment using the 

pMHC-boost dataset data. A comparison of E2F target peptides between the analyses 

illustrates this finding—most peptides with decreased expression in no-boost showed little 

change in expression in the presence of a protein carrier. (Figure 7-6-C). These data reaffirm 

that while utilizing a protein carrier channel can increase the number of peptides identified and 

quantified across samples using lower cellular input, ion suppression due to the presence of a 

protein carrier alters quantitative dynamics to the extent that known biological findings are 

masked, hiding relevant insight. 
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Figure 7-6. Known pMHC response to CDK4/6i masked by presence of a protein carrier. A pMHC 
enrichment plots for E2F targets for the no-boost (grey, p=0.13, q=0.88) and pMHC-boost (blue, p<0.001, 
q<0.001) analyses. Hits mark pMHCs of source proteins mapping to E2F targets. B Normalized 
enrichment scores from enrichment analyses of pMHC-boost (grey) and no-boost (blue) datasets. 
Positive/negative scores represent directionality of pathway enrichment. Significant enrichment is noted 
by **p<0.01, ***p<0.001, with FDR-q values < 0.25. C Change in expression for E2F target pMHCs, 

plotted by source protein, with palbociclib treatment for the no-boost analysis and corresponding 
expression levels for the pMHC-boost analysis. X denotes pMHCs which were not quantified in the 
pMHC-boost analysis. 

 

7-2-3 Vanadate-treated protein carrier obscures pTyr data due to missing values and 

isotopic interference  

To evaluate whether a protein carrier ‘boosting’ channel would impact quantitative 

accuracy in tyrosine phosphorylation analyses, we utilized A549 cells stimulated with 10 nM 

EGF for 0, 7, 15, 30, or 60 seconds to drive dynamic phosphorylation changes in the EGFR 
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signaling network.227 As a protein carrier, A549 cells were incubated with pervanadate (PV) to 

halt tyrosine phosphatase activity, driving elevated pTyr signal (Figure 7-7, Supplementary 

Figure 7-4). Peptide amounts were selected to match the upper and lower limits of sample input 

utilized by Chua et al., however we elected to use a lower concentration of pervanadate (30 µM 

versus 500 µM).439 Following tryptic digestion & standard sample procesing,100 µg of each 

EGF-stimulated sample was labeled with TMT, along with 1 mg of PV-treated sample in the 

“pTyr-boost” analysis. Tyrosine phosphorylated peptides were subsequently purified using two-

step enrichment and analyzed by LC-MS/MS.  
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Figure 7-7. Schematic of pTyr-boost vs. no-boost experimental layout and pTyr peptide enrichment.  

 

As expected, signal intensity distributions showed a substantial increase (100-150x) in 

reporter ion signal for the PV-treated protein carrier sample over the EGF stimulated samples in 

the pTyr-boost analysis (Figure 7-8-A), which is well outside the suggested protein carrier-to-

signal range recommended for SCP boost experiments. Still, the pTyr-boost analysis identified a 

considerably higher number of unique pTyr peptides compared to the no-boost analysis (1831 

vs. 328), however a majority of identified peptides were only quantified in the protein carrier 

channel, resulting in a large number of missing values (MVs) in the EGF-stimulated samples 

(64-91% of PSMs). Consequently, despite the greater number of overall pTyr-peptide 

identifications, the pTyr-boost analysis contained just 196 pTyr peptides quantifiable across all 

samples versus 321 in the no-boost analysis, suggesting inclusion of a protein carrier channel in 

this experimental setup reduces data quantity (Figure 7-8-B). 
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Figure 7-8. Protein carrier increases missing values. A Reporter ion intensities for pTyr-boost (left) and 
no-boost (right) analyses. Boxes outline the interquartile range, and whiskers the 10 and 90th percentiles. 
B Number of unique pTyr peptides identified in each sample. 

 

To assess whether the PV-treated protein carrier channel influenced the accuracy of the 

quantitative temporal signaling data data, the 98 peptides commonly quantified across both 

analyses were analyzed by hierarchical clustering, which identified several groups of peptides 

with distinct patterns of quantitative dynamics (Figure 7-9). Peptides in cluster A show 

increased pTyr with EGF stimulation over the 0 second control in both analyses, and include 

peptides derived from EGFR and adapter proteins GAB1 and SHC1 (Figure 7-10). While pTyr-

boost and no-boost peptides have correlated quantitative dynamics there is noticeable ratio 

compression in the data from the pTyr-boost analysis in all but one of the cluster A peptides 

(SHC1-pY250, S3C). For example, we measure a 6.5-fold increase in the no-boost pTyr for 

GAB1-pY627 at 60 seconds following EGF stimulation, which reduces to a 2-fold change when 

analyzed with a protein carrier. While the same trend of increased phosphorylation with EGF 

stimulation is preserved between the analyses, subtler pTyr changes may be masked by the 

effects of ion suppression, as seen in the pMHC analyses.  
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Figure 7-9. Clustering of pTyr sites across pTyr-boost and no-boost analyses. Hierarchical clustering 
(Euclidean) of Log2(fold change) values of pTyr sites identified in both analyses. Values are normalized to 
the 0 second EGF stimulated sample within each analysis. 

 

 

Figure 7-10. Quantitative dynamics of cluster A peptides. Log2(fold change) values of peptides in cluster 
A. Pearson correlation significance (two-tailed): *p<0.05, **p<0.01, #p < 0.1. 
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In contrast to cluster A, peptides in cluster B demonstrated inverse phosphorylation 

trends (Figure 7-11-A), and 18 peptides in cluster C showed no change in pTyr in the no-boost 

analysis, and decreased pTyr in the pTyr-boost analysis (Figure 7-11-B, C). These differences 

in quantitation are particularly concerning and would likely alter biological interpretation of the 

dataset. We suspected the decrease in pTyr signal relative to the 0 second control in the pTyr-

boost analysis may be a result of increased 0 second signal from isotopic interference of the 

protein carrier. 
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Figure 7-11. Quantitative dynamics in cluster B/C peptides. A-B Log2(fold change) values of peptides in 
cluster B (A) and cluster C (B). C Heatmap of Log2(fold change) values in cluster C.  
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Indeed, the 0 and 7 second EGF stimulated samples, located in the closest channel 

positions to the PV sample, had 1.4x and 1.3x higher mean reporter ion intensities than the 15, 

30, and 60 second samples in the TMT-boost analysis, a trend that was not reflected in the no-

boost analysis (Figure 7-8-A). We also observed the number of quantified peptides in 0 and 7 

second samples were increased compared to the other samples, whereas the number of 

quantifiable peptides in the no-boost analysis were similar between samples, again suggestive 

of isotope interference from the protein carrier channel. Data reported by Chua et al. follow a 

similar trend: the two samples closest in position to the PV-treated protein carrier had an 

increased number of identifiable peptides versus a third replicate sample further away. To 

reduce the effects of isotopic leakage, we included empty channels in between the protein 

carrier and EGF stimulated samples (Supplementary Figure 7-5). While this strategy mitigated 

isotopic interference, it also decreased the number of TMT tags available for sample 

multiplexing, diminishing the throughput and utility of this approach (Figure 7-12-A). 

Furthermore, a large percentage of MVs and dynamic range suppression were still observed 

with this setup, suggesting that a boost-to-signal ratio of this magnitude may adversely affect 

the quantitative accuracy of the experiment, regardless of isotopic leakage (Figure 7-12-B). 
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Figure 7-12. Empty channels adjacent to protein carrier still yields high MVs. A Reporter ion intensities 
for pTyr-boost (left) and no-boost (right) analyses. Boxes outline the interquartile range, and whiskers the 
10th and 90th percentiles. B Log2(fold change) of pTyr levels in SHB-pY246; data is normalized to the 0 
second control.   

 

7-2-4 Reduction in boost:signal ratio improves quantitative accuracy, still results in MVs  

To evaluate whether a smaller carrier proteome would result in better quantitative 

accuracy and fewer MVs, we performed a 10-plex analysis consisting of 3 replicates of A549 

cells were stimulated with 5 nM EGF for 0, 0.5, or 2 minutes (Figure 7-13, Supplementary 

Figure 7-6). One hundred µg of each sample was labeled with TMT along with a 900 µg protein 

carrier consisting of equal parts of each non-protein carrier sample in the pTyr-boost analysis for 

a boost-to-signal ratio of approximately 9x. This experimental setup should enhance detection of 

EGFR-mediated signaling, since the boosting protein carrier consists of EGF-stimulated 

samples. 
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Figure 7-13. Experimental layout of pTyr-boost and no-boost experiments with 9x protein carrier. 

 

Intensity distributions for each of the 9 EGF stimulated samples were similar in the boost 

and the no-boost analyses (Figure 7-14-A), while the protein carrier had a mean intensity 7.5-

9x higher than the non-protein carrier samples near the expected ratio. In contrast to the results 

of the palbociclib-treated pMHC analysis, replicates in the boost experiment had higher median 

coefficients of variation (17-19%) than the no-boost analysis (10-12%), suggesting presence of 

the protein carrier decreases quantitative accuracy, possibly due to reduced ion sampling of the 

non-protein carrier samples, as previously described (Figure 7-14-B).441  

 

 

Figure 7-14. Reporter ion intensities for 9x boost analysis. A Reporter ion intensities for no-boost (blue) 
and pTyr-boost (grey) analysis. Boxes outline the interquartile range, and whiskers the 10 and 90th 
percentiles. B Coefficients of variation of pTyr-boost (grey) and no-boost (blue) analyses. Boxes outline 
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the interquartile range, and whiskers the 5 and 95th percentiles. pTyr-boost median CV: 10-12%, no-
boost: 17-19%. 

 

Similar to the PV-stimulated protein carrier pTyr analysis, there were more MVs when a 

protein carrier was included (35-59% of PSMs) (Figure 7-15-A). Despite this improvement, a 

greater number of pTyr peptides were quantifiable in the no-boost analysis versus the pTyr-

boost analysis (282 vs. 91), suggesting the inclusion of a protein carrier still negatively affects 

data quantity in this context (Figure 7-15-B).  Hierarchical clustering of the 79 peptides 

quantified in both analyses identified two clusters of peptides where pTyr levels increased or 

decreased with EGF stimulation over the 0-minute control (Figure 7-16, Supplementary Figure 

7-7-A, B). While the quantitation of just three peptides in cluster A are significantly correlated 

(p<0.05), all cluster A/B peptides show comparable pTyr trends and with less ratio compression 

than the PV-stimulated pTyr-boost experiment (Figure 7-17).  
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Figure 7-15. Missing values in 9x boost analysis. A Percentage of total PSMs with missing values in each 
sample. B Number of unique, quantifiable pTyr peptides identified in each condition/analysis. 

 

 

Figure 7-16. Hierarchical clustering of peptides identified in both analyses, represented as log2(fold 
change) of each sample normalized to the mean reporter ion intensity of the 0-minute control.  
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Figure 7-17. Dynamics of select peptides in 9x boost and no-boost pTyr analyses. Log2(fold change) of 
pTyr signal in selected peptides. Error bars represent +/- standard deviation. Pearson correlation 
significance (two-tailed): *p<0.05. 

 

Beyond the peptides identified in these clusters, we looked to see how many peptides 

had significant changes in pTyr at the 2-minute timepoint. Twenty-seven peptides in the no-

boost analysis were significant versus 17 in pTyr-boost (Figure 7-18-A). Of the peptides that 

were not significant in the boost analysis, there was evidence of dynamic range suppression 

and altered quantitative dynamics (Figure 7-18-B) highlighting that not all peptides had 

comparable quantitation between the boost and no-boost analyses. In line with this observation, 

PCA revealed superior separation of the three treatment conditions in the no-boost analysis 

(Figure 7-18-C). Still, some separation was observed in the pTyr-boost analysis, suggesting 
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that a lower protein carrier-to-signal ratio offers some improvement in quantitative accuracy. 

Still, dynamic range suppression and large numbers of missing values were still observed, 

resulting in inferior data quantity and quality with the inclusion of a protein carrier. 

 

 

Figure 7-18. Dynamic range suppression with 9x protein carrier. A Venn diagram of peptides significantly 
increased or decreased with 2-minute EGF stimulation over the 0-minute control. B Log2(fold change) of 
pTyr signal in selected peptides. Error bars represent +/- standard deviation. Pearson correlation 
significance (two-tailed): *p<0.05. C Samples plotted ted by principal component 1 (PC1) and PC2 score 
for no-boost analysis (left) and PC1 vs. PC3 for pTyr-boost analysis, colored by EGF stimulation 
condition. Percentages are % variance explained by the plotted PC. Alternate PCs are plotted in 

Supplementary Figure 7-8. 

 

7-3 Discussion 

While the ability to reduce sample input and/or increase signal with a protein carrier is 

particularly appealing in immunopeptidomics and tyrosine phosphoproteomics, two applications 
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that are often limited by larger sample requirements, several critical limitations in MS2-based 

analyses exist. First, despite selecting a signal-to-boost ratio within SCP guidelines (20x,441 

pMHC analyses suffered from high ratio compression, which masked dynamic alterations in 

pMHC expression levels and obscured known biological finding. Triple-stage mass spectrometry 

(MS3) and/or high-field asymmetric waveform ion mobility spectrometry (FAIMS) has been 

shown to reduce ratio distortion, though this can come at a cost of sensitivity and data 

quantity.154,443 Additional experiments, similar in format to those described here, will be useful in 

determining whether MS3 can offer improved quantitative accuracy without compromising data 

quantity in this setting.  To enable such comparisons, hipMHCs provide a useful tool to evaluate 

ion suppression in place of exogenously added peptide standards. Ratio compression was 

similarly observed in pTyr analyses and was adversely impacted by increased signal in the 

protein carrier channel. However, MS3 is an unattractive solution due to its lower precision and 

fewer peptide identifications in phosphoproteomic applications compared to MS2.132  

Additionally, pTyr analyses specifically suffered from high numbers of MVs in protein 

carrier experiments, regardless of the boost-to-signal ratio.  Chua et al. also observed high MVs, 

but interpolated reporter ion intensities using expected ratio construction, a strategy that is not 

applicable for analyzing biological systems where the quantitative dynamics are unknown. 

Increasing the AGC target or maximum ion injection time (IT) to increase the non-protein carrier 

ion count may reduce MVs, but 65% of PSMs with two or more missing values already reach 

the maximum IT (350 ms) at the current AGC target (1e5), suggesting a significant increase in IT 

may be required for improvement. In turn, increasing IT and AGC targets will likely reduce the 

number of scans acquired and thus the number of identified peptides, though the balance 

between data quantity and data quality remains to be thoroughly explored in this application. 

Alternatively, decreasing the number of multiplexed samples would increase ions sampling of 

non-carrier samples, but limited multiplexing further reduces the utility of the assay. 
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These data illustrate that experiments leveraging protein carriers to generate quantitative 

data should rigorously evaluate the quantitative impact of the protein carrier (namely ion 

suppression, missing values, coefficients of variation, and isotope leakage) to avoid 

misinterpretation of biological data. Future studies exploring alternative instrument acquisition 

parameters and configurations will further illuminate whether protein carriers can be effectively 

used for quantitative studies in these applications, or whether improvements in sample 

preparation and instrument sensitivity may pave an alternative path forward in achieving high 

accuracy, high precision measurements without a signal boost. 

 

 

7-4 Materials and Methods 

7-4-1 Cell lines 

SKMEL5 and A549 cell lines were obtained from ATCC [ATCC HTB-70 and CCL-185, 

respectively). Cells were maintained in DMEM medium (SKMEL5, Corning) and RPMI-1640 

(Gibco, A549) supplemented with 10% FBS (Gibco) and 1% penicillin/streptomycin (Gibco). 

Cells were routinely tested for mycoplasma contamination, and maintained in 37°C, 5% CO2. 

Experiments were performed on passages 4-8.  

 

7-4-2 UV-mediated peptide exchange for hipMHCs 

UV-mediated peptide exchange was performed using recombinant, biotinylated Flex-T HLA-

A*02:01 monomers (BioLegend), using a modified version of the commercial protocol as 

previously described.188 Concentration of stable complexes following peptide exchange was 

quantified using the Flex-T HLA class I ELISA assay (BioLegend) as per the manufacturer’s 
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instructions. ELISA results were acquired using a Tecan plate reader Infinite 200 with Tecan 

icontrol version 1.7.1.12. 

 

7-4-3 Synthetic peptide standards 

Heavy leucine-containing peptides were synthesized at the MIT Biopolymers and 

Proteomics Lab using standard Fmoc chemistry using an Intavis model MultiPep peptide 

synthesizer with HATU activation and 5 μmol chemistry cycles. Starting resin used was Fmoc-

Amide Resin (Applied Biosystems). Cleavage from resin and simultaneous amino acid side 

chain deprotection was accomplished using: trifluoroacetic acid (81.5% v/v); phenol (5% v/v); 

water (5% v/v); thioanisole (5% v/v); 1,2-ethanedithiol (2.5% v/v); 1% triisopropylsilane for 1.5 

hr. Fmoc-Leu (13C6, 15N) was obtained from Cambridge Isotope Laboratories, and standard 

Fmoc amino acids were from NovaBiochem.  

Peptides were subjected to quality controlled by mass spectrometry and reverse phase 

chromatography using a Bruker MiroFlex MALDI-TOF and Agilent model 1100 HPLC system 

with a Vydac C18 column [300 angstrom, 5 micron, 2.1 x 150 mm] at 300 µL/min monitoring at 

210 and 280 nm with a trifluoroacetic acid/ H2O/MeCN mobile phase survey gradient. 

 

 
7-4-4 Peptide MHC isolation & TMT labeling 

Cells were seeded in 10 cm plates and treated the following day for 72 hours with DMSO 

control, palbociclib (Selleckchem, PD-0332991), 10 ng mL-1 human recombinant IFN-γ 

(ProSpec Bio). During harvest, cells were washed with 1x PBS, and lifted with 0.05% Trypsin-

EDTA (Gibco). Cells were pelleted, washed with 1x PBS, pelleted again, and resuspended in 

lysis buffer [20 nM Tris-HCl pH 8.0, 150 mM NaCl, 0.2 mM PMSF, 1% CHAPS, and 1x HALT 

Protease/Phosphatase Inhibitor Cocktail (Thermo Fisher)], followed by brief sonication to disrupt 
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cell membranes. Lysate was cleared by centrifugation and quantified using bicinchoninic acid 

protein assay kit (Pierce).  

Peptide MHCs were isolated by immunoprecipitation (IP), using 0.1 mg of pan-specific 

anti-human MHC Class I (HLA-A, HLA-B, HLA-C) antibody (clone W6/32, Bio X Cell [cat # 

BE0079]) per 1e6 cells, which was bound to 10 μL FastFlow Protein A Sepharose bead slurry 

(GE Healthcare) per 1e6 cells for 3 hours rotating at 4°C. Beads were washed 2x with IP buffer 

(20 nM Tris-HCl pH 8.0, 150 mM NaCl), after which lysate/hipMHCs were added and incubated 

rotating overnight at 4°C. Beads were washed with 1x TBS and water, and pMHCs were eluted 

in 10% formic acid for 20 minutes at room temperature (RT). Peptides were isolated from 

antibody and MHC molecules using a passivated 10K molecule weight cutoff filters (PALL Life 

Science), lyophilized, and stored at -80°C prior to TMT labeling.  

To label pMHCs, 50 μg of pre-aliquoted Tandem Mass Tag 6-plex (TMT-6, Thermo 

Scientific) was resuspended in 30 μL anhydrous acetonitrile, and lyophilized peptides were 

resuspended in 100 μL 150 mM triethylammonium bicarbonate, 50% ethanol. TMT/peptide 

mixtures were incubated on a shaker for 1 hour at RT, followed by 15 minutes of vacuum 

centrifugation. Samples were next combined and centrifuged to dryness. Sample cleanup was 

performed using solid-pot solid-phase enhanced sample preparation (SP3) as previously 

described. After combining labeled samples, we washed tubes 2x with 25% acetonitrile (MeCN) 

in 0.1% acetic acid (AcOH) and added it to the labeled mixture, which was subsequently 

centrifuged to dryness. Sample cleanup was subsequently performed using single-pot solid-

phase-enhanced sample preparation (SP3), as previously described.188,290  

 
7-4-5 pTyr sample preparation  

A549 cells were seeded in 10 cm plates and serum depleted for 72 hours prior to 

analysis. In EGF stimulation experiments, cells were stimulated with 5 or 10 nM EGF 
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(PeproTech), flash frozen in liquid nitrogen, and lysed in 8M urea. Pervanadate treated cells 

were incubated for 30 minutes with 30 µM pervanadate at 37°C and were subsequently washed 

1X with ice cold 1X PBS and lysed in 8M urea.  

Lysates were cleared by centrifugation at 5000 g for 5 min at 4°C and protein 

concentration was measured by bicinchoninic acid assay (BCA) (Pierce). Proteins were reduced 

with 10 mM dithiothreitol for 30 min at 56°C, alkylated with 55 mM iodoacetamide for 45 min at 

room temperature (RT) protected from light, and diluted 4-fold with 100 mM ammonium acetate, 

pH 8.9. Proteins were digested with sequencing grade modified trypsin (Promega) at an enzyme 

to substrate ratio of 1:50 overnight at RT. Enzymatic activity was quenched by acidifying with 

glacial acetic acid to 10% of the final solution volume, and peptides were desalted using C18 

solid phase extraction cartridges (Sep-Pak Plus Short, Waters). Peptides were eluted with 

aqueous 60% acetonitrile in 0.1% acetic acid and dried using vacuum centrifugation. Protein 

concentration was again measured by BCA to account for variation in sample processing, and 

peptides were subsequently lyophilized.  

Lyophilized peptides were labeled with TMT-10plex in ~35 mM HEPES and ~30% 

acetonitrile at pH 8.5 for 1 hour at room temperature. 100 ug aliquots utilized 400 µg TMT, 900 

µg-1 mg aliquots used 1600 µg TMT. Labeling reactions were quenched with 0.3% of 

hydroxylamine, and samples were pooled, dried in vacuum centrifugation, and stored at -80°C 

prior to analysis.  

Labeled peptide aliquots were resuspended in 400 μL of immunoprecipitation (IP) buffer 

[100 mM Tris-HCl, 0.3% NP-40, pH 7.4] and incubated with 60 μL protein G agarose bead slurry 

(Calbiochem) conjugated to an antibody cocktail containing 12 μg 4G10 (Millipore), 12 μg PT66 

(Sigma) and 6 μg of pY100 (Cell Signaling Technologies), rotating overnight at 4°C. Beads were 

washed 1x with IP buffer, 3x with 100 mM Tri-HCl, pH 7.4, and eluted in 2 rounds of 25 μL 0.2% 
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TFA. Phosphopeptides were further enriched using High-Select Fe-NTA Phosphopeptide 

Enrichment Kit (Thermo Scientific) following manufacturer’s instructions with minor adjustments. 

Modifications include reducing the peptide volume initially added to the Fe-NTA column (50 μL) 

and reducing the elution volume to 2 rounds of 20 μL elutions. Peptide elutions were dried down 

using vacuum centrifugation to <2 μL total volume and resuspended in 5% acetonitrile in 0.1% 

formic acid for a total volume of 10 μL. 

 

7-4-6 MHC MS data acquisition 

pMHC samples were analyzed using an Orbitrap Exploris 480 mass spectrometer 

(Thermo Scientific) coupled with an UltiMate 3000 RSLC Nano LC system (Dionex), Nanospray 

Flex ion source (Thermo Scientific), and column oven heater (Sonation). Samples were 

resuspended in 0.1% formic acid and directly loaded onto a 10-15 cm analytical capillary 

chromatography column with an integrated electrospray tip (~1 μm orifice), prepared and 

packed in house (50 μm ID × 20 cm & 1.9 μM C18 beads, ReproSil-Pur). Twenty-five percent of 

pMHC elutions were injected for each analysis. Peptides were eluted using a gradient with 8-

25% buffer B (70% Acetonitrile, 0.1% formic acid) for 50 minutes, 25-35% for 25 minutes, 35-

55% for 5 minutes, 55-100% for 2 minutes, hold for 1 minutes, and 100% to 3% for 2 minutes.  

Standard mass spectrometry parameters were as follows: spray voltage, 2.0 kV; no 

sheath or auxiliary gas flow; heated capillary temperature, 275 °C. The Exploris was operated in 

data dependent acquisition (DDA) mode. Full scan mass spectra (350-1200 m/z, 60,000 

resolution) were detected in the orbitrap analyzer after accumulation of 3e6 ions (normalized 

AGC target of 300%) or 25 ms. For every full scan, MS2 were collected during a 3 second cycle 

time. Ions were isolated (0.4 m/z isolation width) for a maximum of 150 ms or 75% AGC target 

and fragmented by higher energy collision dissociation (HCD) with 32% normalized collision 
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energy (nCE) at a resolution of 45,000. Charge states < 2 and > 4 were excluded, and 

precursors were excluded from selection for 30 seconds if fragmented n=2 times within 20 

second window. 

 
7-4-7 pTyr MS data acquisition 

LC-MS/MS analysis of pTyr peptides were performed on an Agilent 1260 liquid 

chromatography (LC) system coupled to a Q Exactive HF-X Hybrid Quadrupole-Orbitrap mass 

spectrometer (Thermo Fisher). Peptides were resuspended in 10 μL 0.1% acetic acid and onto 

an analytical capillary column with an integrated electrospray tip (~1 μm orifice) prepared in 

house ((50 μm ID × 12 cm with 5 μm C18 beads (YMC gel, ODS-AQ, 12 nm, S-5 μm, 

AQ12S05)). Peptides were eluted using a 140-minute gradient with 13-42% buffer B (70% 

Acetonitrile, 0.2M acetic acid) from 10-105 minutes and 42-60% buffer B from 105-115 minutes, 

60-100% B from 115-122 minutes, and 100-0% B from 128-130 minutes at a flow rate of 0.2 

mL/min for a flow split of approximately 10,000:1.  

Standard mass spectrometry parameters were as follows: spray voltage, 2.5 kV; no sheath or 

auxiliary gas flow; heated capillary temperature, 250°C. The mass spectrometer was operated 

in data-dependent acquisition with following settings for MS1 scans: m/z range: 350-2000; 

resolution: 60,000; AGC target: 3e6; maximum injection time (max IT): 50 ms. The top 15 

abundant ions were isolated (0.4 m/z) and fragmented by HCD with resolution: 60,000; AGC 

target: 1e5, max IT: 350 ms; nCE: 32%. Unassigned and charge states <+2 and >+6 were 

excluded, and dynamic exclusion was set to 20 seconds.  

Crude peptide analysis was performed on a Q Exactive Plus hybrid quadropole-orbitrap 

mass spectrometer coupled to an Agilent 1260 LC system to correct for variation in peptide 

loadings across TMT channels using 2.5 kV no sheath or auxiliary gas flow; heated capillary 

temperature, 250°C. Approximately 30 ng of the supernatant from pTyr IP was loaded onto an 
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in-house packed precolumn (100 um ID x 10 cm) packed with 10 μm C18 beads (YMC gel, 

ODS-A, AA12S11) connected in series to an analytical column (as previously described) and 

analyzed with a 75 min LC gradient [0-30% B from 0-40 minutes, 30-60% B from 40-50 minutes, 

60-100% B from 50-55 minutes, and 100-0% B from 60-65 minutes]. MS1 scans were 

performed with m/z range: 350-2000; resolution: 70,000; AGC target: 3e6; max IT: 50 ms. The 

top 10 abundant ions were isolated (isolation width 0.4 m/z) and fragmented (nCE = 33%) with 

70,000 resolution, max IT 150 ms, AGC target 1e5. Unassigned, +1, and >+7 charge states 

were excluded, and dynamic exclusion was set to 30 seconds.  

 

7-4-8 MHC MS search space and filtering  

All mass spectra were analyzed with Proteome Discoverer (PD, version 2.5) and 

searched using Mascot (version 2.4) against the human SwissProt database. No enzyme was 

used, variable modifications were set to include oxidized methionine, static modifications 

included N-terminal and lysine TMT.  

Heavy leucine-containing peptides were searched for separately with heavy leucine (+7), 

c-terminal amidation, and methionine oxidation as dynamic modifications against a custom 

database of the synthetic peptide standards. All analyses were filtered with the following criteria: 

search engine rank =1, isolation interference ≤ 30%, and length between 8 and 15 amino acids, 

ion score ≥ 15 and percolator q-value ≤ 0.05.  

Reporter ion intensities of PSMs assigned to the same peptide sequence were summed, 

and reporter ion intensities were corrected using hipMHC intensity values (CDK4/6i analysis 

only) as previously described.188 To evaluate differences between conditions, the log2 

transformed ratio of arithmetic mean intensity for drug- and DMSO-treated samples (n=3) was 
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calculated. To determine if peptides were significantly increasing, an unpaired, 2-sided t-test 

was performed, and peptides with p £ 0.05 were considered significantly increasing/decreasing. 

 

7-4-9 pTyr MS search space and filtering 

All mass spectra were analyzed with Proteome Discoverer (PD, version 2.5) and 

searched using Mascot (version 2.4) against the human SwissProt database. For pTyr 

analyses, Spectra were searched using the following parameters: enzyme: trypsin, maximum 

missed cleavages: 2, precursor mass tolerance: 10 ppm, fragment mass tolerance: 20 mmu. 

Static modifications included TMT-10-labeled lysine and N-terminal residues, as well as 

cysteine carbamidomethylation. Dynamic modifications included methionine oxidation, and 

tyrosine, serine, and threonine phosphorylation. Peptides were filtered with the following criteria: 

search engine rank =1, isolation interference ≤ 35%, ion score ≥ 20, and ≥1 tyrosine 

phosphorylated residue.  

Crude peptide mixture was searched with the following parameters: enzyme: trypsin, 

maximum missed cleavages: 2, precursor mass tolerance: 10 ppm, fragment mass tolerance: 

20 mmu. Static modifications included TMT-10-labeled lysine and N-terminal residues, as well 

as cysteine carbamidomethylation. Dynamic modifications included methionine oxidation. 

Peptides were filtered with the following criteria: search engine rank =1, ion score ≥ 20. 

Peptide spectrum matches (PSMs) with phosphorylated tyrosine residues and no 

reporter ion missing values were filtered according to search engine rank = 1, ion score ≥ 20. 

Reporter ion intensities were summed across matching PSMs. Phosphotyrosine peptide 

reporter ion areas were corrected for variations in sample loading within each analysis using the 

median of peptide ratios in the crude peptide analysis for each channel relative to channel. 
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Quantitation is represented as the fold change between the mean reporter ion signal of the 0 

second samples and the 30s/2m samples. PCA analysis was performed using Matlab R2019b.  

 

7-4-10 Peptide MHC binding affinity 

Binding affinity of pMHCs was estimated using NetMHCpan-4.0 against the allelic profile 

of SKMEL5 cells.99,280 Only 9-mers were evaluated, and the minimum predicted affinity (nM) of 

each peptide was used to assign peptides to their best predicted allele. The threshold for 

binding was set to 500 nM.  

 
7-4-11 Enrichment analyses 

For pMHC pathway enrichment analyses, gene names from peptide source proteins 

were extracted and rank ordered according to the average log2 fold change over DMSO treated 

cells. In cases where more than one peptide mapped to the same source protein, the 

maximum/minimum was chosen, depending on the directionality of enrichment analysis. We 

utilized gene set enrichment analysis (GSEA) 4.0.3 pre-ranked tool against the Molecular 

Signatures Database hallmarks gene sets with 1000 permutations, weighted enrichment statistic 

(p=1), and a minimum gene size of 15 for pMHC analyses.255,281,282 Results were filtered for FDR 

q-value £ 0.25, and nominal p-value £ 0.05.  
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7-6 Supplementary Information 

 

Supplementary Figure 7-1. A Experimental setup of isobaric labels, cell number, and concentration of 
hipMHC added for each sample. B Flow cytometry analysis of surface HLA expression in SKMEL5 cells 
after 72h of DMSO or IFN-g treatment. Data are presented as % of maximum fluorescence intensity 
signal. N=3 biological replicates per treatment condition. C Median MFI of flow cytometry measurements 
in B. Error bars represent standard deviation from n=3 biological replicates. D Percentage of total PSMs 
with missing values in each sample.  
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Supplementary Figure 7-2. Experimental setup of isobaric labels, cell number, and treatment conditions. 

 

 

 

Supplementary Figure 7-3. A Venn diagram of unique pMHC identified in the no-boost (blue) and 
pMHC-boost (grey) analysis. B Coefficients of variation of pMHC-boost and no-boost analyses. Boxes 
outline the interquartile range, and whiskers the 5 and 95th percentiles. pMHC-boost median CV: DMSO= 

9.27%, palbociclib: 7.56%, no-boost DMSO = 9.72%, palbociclib = 13.39%. 
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Supplementary Figure 7-4. Experimental setup of isobaric labels and treatment conditions.  

 

 

Supplementary Figure 7-5. Experimental setup of isobaric labels and treatment conditions. 

 

 

Supplementary Figure 7-6. Experimental setup of isobaric labels and treatment conditions. 
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Supplementary Figure 7-7. A Venn diagram of unique pTyr peptides in each analysis. B Clustergram of 
peptides in cluster A and B in Figure 4E. ^ denotes peptide miscleavage. 

 

 

 

Supplementary Figure 7-8. Samples plotted by principal component 1 (PC1) and PC2 score for no-boost 
analysis (left) and PC1 vs. PC3 for pTyr-boost analysis, colored by EGF stimulation condition. 
Percentages are % variance explained by the plotted PC. 
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CHAPTER 8: Tumor-derived pMHCs cross presented by dendritic cells 

show bias in cellular compartment of source proteins 

 

 

8-1 Dendritic cell cross presented peptides 

As of late, the most successful immunotherapies rely on blocking co-inhibitory receptors 

like CTLA-4 and PD-1, “releasing the breaks” on the anti-tumor immune response and allowing 

for CD8+ T cell proliferation, activation, and killing of tumor cells.444 However, T cell activity 

relies on efficient priming by professional antigen presenting cells such as dendritic cells 

(DCs).445,446 DCs provide a link between the innate and adaptive immune system (Figure 8-1). 

In the tumor microenvironment, DCs ingest, process, and present peptide antigens on MHC-I 

and II molecules to adaptive immune cells.447,448 Upon pMHC recognition by a naïve T-cell, 

assisted by costimulatory molecules, DCs can prime T cells to induce an immune response 

against tumor or infected cell types.449 As a result, there is a great interest in understanding how 

to modulate DC function in cancer to improve the anti-tumor immune response.450  
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Figure 8-1. Schematic of dendritic cells and their role in anti-tumor immunity. 

 

The molecular mechanisms of DC professing and presentation have been elucidated, 

however DCs utilize a variety of strategies for peptide cross presentation that differ in terms of 

peptide digestion and loading, peptide recognition, retention time in endolysosomes prior to 

processing, and more.448,451–453 As a consequence, it is probably that cross-presented pMHC 

repertoire by DCs are biased in the sub-cellular compartments they sample. However, it 

remains poorly understood which peptides of apoptotic tumor material are cross presented and 

where they are derived from.454 To date, only a single MS-based analysis has been performed 

to investigate cross-presented peptides, and their findings were focused solely on class II 

peptides and on validating prediction algorithms rather than improving the anti-tumor immune 

response.60 

To this end, we began a collaboration with Stefani Spranger and Tim Fessenden to 

investigate cross presentation with the goal of understanding whether there is bias in the cellular 
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compartments cross-presented peptides are derived from. The experimental setup developed 

by Spranger and Fessenden relies on irradiated mouse B16F10 melanoma cells and dendritic 

cells. Unfortunately, traditional immunopeptidomics methods cannot distinguish between 

endogenous pMHCs and pMHCs derived from engulfed tumor material.  

SILAC labeling one of the cell types provides an apart solution. However, unlike 

standard tryptic peptide-based proteomics experiments where lysine (K) and arginine (R) 

residues can be labeled, MHC peptides are non-tryptic and H-2Kb/H-2Db mouse molecules do 

not contain K/R anchor residues.  As a result, we developed a custom SILAC labeling scheme 

to explore tumor cell/DC cross presentation in vitro (Figure 8-2).  

 

 

Figure 8-2. Schematic of SILAC-labeled peptides cross presented on DCs. 

 

8-2 Results 

8-2-1 Custom SILAC labeling scheme for H-2Db/Kb pMHCs 

To select which amino acids to heavy label, we analyzed previously generated data on 

MC38 cells169, a mouse C57/BL6 colon adenocarcinoma- derived in vitro cell line which contains 



 385 

the same allelic profile as B16F10 cells. We looked at which amino acids had the highest 

representation among pMHCs and found that 77% of H-2Kb/H-2Db peptides contain leucine (L), 

followed by ~40% asparagine (N), and 46/36% for phenylalanine/tyrosine (F/Y) (Figure 8-3-A). 

If all four amino acids are labeled, our data estimates 98% of pMHCs will contain at least one 

heavy label (Figure 8-3-B). Importantly, of the 10 pMHCs identified in MC38 cells that do not 

contain at least 1 of the four selected amino acids for SILAC labeling, 90% are not predicted to 

be  a binder of H-2Kb/H-2Db.  

 

 

Figure 8-3. Amino acid distribution in H-2Kb/H-2Db pMHCs. A Fraction of peptides in MC38 analysis with 
each amino acid. B Cumulative fraction of peptides containing the labeled amino acid plus amino acids to 
the left. Ex. N = peptides with N and/or L.  

 

The amino acids selected for labeling align with published peptide motifs and anchor 

residues for these alleles: the fifth amino acid position in H-2Kb peptides shows a preference for 

F/Y, whereas the fifth position in H-2Db show an enrichment for N (Figure 8-4). Both alleles 

have an enrichment for L as the last amino acid, which is consistent with L having the highest 

representation among pMHCs in our datasets.455 
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Figure 8-4. Sequence motifs of H-2 alleles in mice. 

 

8-2-2 IP antibody influences pMHC data quantity and quality 

 Critical to the success of this work, we discovered that the selection of antibody used for 

immunoprecipitation greatly influences the quality and quantity of pMHCs isolated. A pan mouse 

anti-H-2 antibody, documented to bind all H-2 haplotypes, pulled down a fraction (137) of 

peptides from IFN-γ stimulated B16F10 cells compared to using a combination of H-2Db/H-2Kb 

specific antibodies, which yielded 274 unique peptides (Figure 8-5-A). Of the total number of 

peptides isolated, only 50% were of the correct length (8-12 amino acids) in the pan H-2 

analysis versus 72% in the allele-specific analysis (Figure 8-5-B). Importantly, allele-specific 

antibodies yielded peptides that matched known sequence motifs of Db/Kb peptides, whereas 

the pan H-2 antibody did not show motif-specific enrichment (Figure 8-5-C). These results 

suggest that while using the pan-specific antibody is less expensive, its poor specificity requires 

the use of the allele-specific antibodies for high quality pMHC identifications.  
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Figure 8-5. Antibody comparison for IP of  H-2Db/Kb peptides. A Number of unique peptides identified. B 
Length distribution of pMHCs identified. C Weblogos of 8 and 9-mer peptides.  

 

8-2-3 Validation of cross presentation experimental workflow 

 To verify that we could detect cross-presented peptides by LC-MS/MS, we first utilized a 

B16F10 melanoma cell line engineered to present the SIY peptide, “SIYRYYGL,” which B16F10 

cells and the DCs do not endogenously present. A LC-MS/MS analysis of B16-SIY cells 

demonstrated that the SIY peptide had the second highest abundance of all peptides present, 

with a tumor associated antigen peptides derived from DCT (gp100) having comparable 

intensity (Figure 8-6-A). Next, B16-SIY expressing cells were irradiated and incubated with 
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dendritic cells, after which class I pMHCs were isolated and analyzed by LC-MS/MS. Of the 

pMHCs on DCs, the SIY peptide was identified and was similarly one of the most abundant 

pMHCs presented (Figure 8-6-B), validating that cross presented peptides can be identified 

using this experimental platform.  

 

 

Figure 8-6. SIY pMHC abundance in B16F10 and DC cells. A pMHCs rank ordered by abundance 
(integrated precursor ion area for A B16F10 cells and B cross-presented/endogenous pMHCs on 
dendritic cells. The SIY peptide is highlighted in red, with a ranked abundance of 99.97% in B16F10 cells 
and 99.04% in DCs. 

  

8-2-4 Tumor-derived cross-presented peptides on DCs 

To identify cross presented peptides, we first labeled B16F10 melanoma cells in the 

custom SILAC labeling media for ~6+ population doublings to reach near 100% SILAC 

incorporation. We tested SILAC incorporation by performing a tryptic digest of SILAC cells, and 

found that Y, F, N, and L amino acids were 98%, 99%, 91%, and 98% SILAC labeled, 

respectively. Labeled B16F10 cells were then irradiated and incubated with DCs, after which 

class I pMHCs were isolated by immunoprecipitation and purified with size exclusion filtration. 

We also analyzed the endogenous pMHCs presented by B16F10 cells.  
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B16F10 cells yielded 396 unique pMHCs, and DCs yielded 194 SILAC labeled pMHCs 

and 192 non-SILAC labeled pMHCs. Of the SILAC labeled “cross presented” peptides, only 10 

were identified endogenously on B16 cells (Table 8-1). Furthermore, only 22 were predicted to 

be high affinity binders (< 2% rank) ( 

Peptide Gene 
FAPVNVTTEVK EEF1A1 
SAPENAVRM GRCC10 
ITQTLSDM DNAH1 
GGIQNVGHI IMPDH2 
VAGGAGLAVPG PKD2 
PEAPPPALPAGA RYR1 
YNIVGLRSN MCCC1 
GEPLQAAAS F8A1 
PMMVTKQENI CDH13 
NFASHAIVEDNV PIGO 

 

 

Table 8-2). Three of these high affinity binders are common to both B16 cells and cross-

presented DCs, derived from EEG1A1, GRCC10 and IMPDH2.  

 To ensure that we were not isolating pMHCs from B16F10 cells, a separate experiment 

was performed where SILAC-labeled B2M knockout B16F10 cells were incubated with DCs, 

and pMHCs subsequently isolated. Without B2M, B16F10 cells cannot endogenous present 

pMHCs on the cell surface. The results yielded a 459 non-labeled pMHCs and 563 SILAC 

labeled, “cross-presented” peptides, 15 of which were predicted to be high affinity binders 

(Table 8-3). Two peptides were common to the high affinity binders in the initial cross-

presentation analysis, including EEF1A1-derived peptide, “FAPVNVTTEVK,” and VAT1-derived 

peptide, “RTVENVTVF.” 

  

8-2-5 Cytosolic peptides enriched amongst cross-presented repertoire 
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 We next investigated whether the source proteins for cross-presented peptides were 

enriched amongst any cellular compartments. This analysis was led by Tim Fessenden, who 

found that peptides derived from cytosolic proteins were overrepresented amongst cross 

presented peptides, present at 60% (Figure 8-7-A, B). This is much higher than the fraction 

present in the endogenous repertoires of B16F10 and DC cells, where ~35% of peptides were 

derived from cytosolic proteins. A similar trend was observed on the B2M KO cells, though to a 

lesser extent (Figure 8-7-C). Intriguingly, Abelin et al. investigated cross presentation of 

peptides on DCs in human samples and found mitochondria and heat shock-derived peptides to 

be overrepresented, which are in disagreement with our in vitro mouse results.60  
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Figure 8-7. Fraction of peptides derived from each cellular compartment (A-C). A Blue line represents a 
slope of 1, representing a 1:1 relationship between plotted conditions. B  B2M B16F10 cells, C, B2M KO 
B16F10 cells. Image and analyses curtesy of T. Fessenden. 

 

8-3 Discussion 

While the number of SILAC-labeled, cross presented peptides is relatively high, 

representing nearly 50% of all DC-presented peptides in both the B2M KO and wild-type 

analysis, very few of these peptides are predicted be high affinity binders. In fact, a lower 

proportion of peptides identified on DCs are predicted to be binders in comparison to B16F10 

cells (Figure 8-8).  
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Figure 8-8. Fraction of pMHCs predicted to bind to Db/Kb alleles from each analysis. Image and analysis 
curtesy of T. Fessenden. 

 

It is possible that the prediction algorithms generally perform poorly for these alleles, 

however this seems unlikely as pMHCs isolated MC38 cells showed ~60% of peptides were 

predicted to be high affinity binders. Still, this is lower than our analyses of well-studied human 

alleles, where binding affinity predictions for humans approach 95% or higher. One explanation 

may be that the prediction algorithms in panNetMHC are trained on datasets derived from 

common H-2Db/Kb cell lines like B16F10 and MC38 and perform more poorly on cells presented 

by DCs. Additionally, it is possible DCs are able to present peptides of lower affinity. In vitro 

binding affinity assays fail to always predict the immunodominant T cell response observed in 

vivo, therefore identified pMHCs with low predicted affinity should still be considered in the 

context of this project.  

Another explanation for the low quantity of predicted binders is the lower MHC 

presentation levels on these cells. In lieu of an abundance of high intensity endogenous 

peptides, more non-specific peptides may be identified by LC-MS/MS. These analyses identified 

several hundred pMHCs, whereas our human analyses identify several thousand. Perhaps 
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many endogenously presented peptides are below the limit of detection, wherein advancements 

in sample preparation and instrument sensitivity may improve yields in applications such as this.   

Future studies related to this project by the Spranger lab include the use of a functional 

cross-presentation assay, where Cas9 gene editing is used to generate tumor cell lines that 

express the model antigen SIY linked to a fluorescent protein, tagged to proteins endogenously 

expressed in particular cellular compartments. Live cell microscopy can then be utilized to 

visualize cell debris and DC engulfment, and quantitative mass spectrometry can be used to 

compare the efficiency of cross presentation of the model antigen derived from different cellular 

compartments. Additional experiments will aim to apply cytotoxic therapy that may augment 

presentation of cross-presented antigens derived from particular cellular compartments that may 

be leveraged to selectively modulate antigen cross-presentation in cancer for efficient priming of 

T cells.  
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8-4 Materials and Methods 

8-4-1 Cell culture 

B16F10 mouse melanoma cells were obtained from ATCC (CRL-6475) and maintained 

in DMEM medium (Corning) supplemented with 10% FBS (Gibco) and 1% 

penicillin/streptomycin (Gibco). Cells were routinely tested for mycoplasma contamination, and 

maintained in 37 °C, 5% CO2.  

For antibody optimization experiments, cells were seeded in T-175 flasks (CELLSTAR) 

and stimulated with 10 ng/mL of recombinant mouse IFN-γ (Thermo Scientific, CAT# PMC4034) 

for 24 hours prior to cell harvesting and lysis.  

 

8-4-2 SILAC media preparation  
Adapted from a protocol prepared by Joshua Mesfin.  

 
Reagents 
-DMEM without Amino Acids (Powdered, US Biological, d9800-13) 
-Normal Amino Acids 

• L-Arginine hydrochloride (Sigma Aldrich cat. No. A6969-25G) 
• L-Cystine 2HCl (Sigma Aldrich cat. No. C6727-25G) 
• L-Histidine hydrochloride-H2O (Sigma Aldrich cat. No. H6034-25G) 
• L-Isoleucine (Sigma Aldrich cat. No. I7403-25G) 
• L-Lysine hydrochloride (Sigma Aldrich cat. No. L8662-25G) 
• L-Methionine (Sigma Aldrich cat. No. M5308-10MG) 
• L-Serine (Sigma Aldrich cat. No. S4311-25G) 
• L-Threonine (Sigma Aldrich cat. No. T8441-25G) 
• L-Tryptophan (Sigma Aldrich cat. No. T8941-25G) 
• L-Valine (Sigma Aldrich cat. No. V0513-25G) 
• Glycine (Sigma Aldrich cat. No. G5417-100G) 

 
-Heavy labelled amino acids 

• Tyrosine (Sigma Aldrich cat. No. 492868-100MG) 
• Asparagine (Sigma Aldrich cat. No. 641960-250MG) 
• Phenylalanine (Sigma Aldrich cat. No. 490091-250MG) 
• Leucine (Sigma Aldrich cat. No. 608068-100MG) 
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-D-Glucose (Sigma Aldrich cat. No. G8270-100G) 
-L-Glutamine (Sigma Aldrich cat No. G7513-100ML) 
 

Protocol 

1. Determine amount of each amino acid to add for desired media volume. 
Concentrations are based off of Corning DMEM media formulation.  

Normal Amino Acids Corning Stock (mg/L)  
Glycine 30 
L-Arginine hydrochloride 84 
L-Cystine 2HCl 62.57 
L-Histidine hydrochloride-H2O 30 
L-Isoleucine 42 
L-Lysine hydrochloride 146.2 
L-Methionine 30 
L-Serine 42 
L-Threonine 95.2 
L-Tryptophan 16 
L-Valine 94 

 

SILAC Amino Acids Corning Stock (mg/L)  
Tyrosine 103.79 
Leucine 104.8 
Phenylalanine 66 
Asparagine (Non Essential Amino Acid) 52.848 

 

Glucose Conc (g/L)  
Needed Conc of Glucose (g/L) 4.5 
DMEM stock concentration (g/L) 1 

 
2. Calculate the amount of glucose needed to add to master mix. Multiply the difference 

of needed concentration of glucose (4.5 g/L) and the stock of glucose in DMEM 

powder (1 g/L) by the desired volume.  

• For a final volume of 1 L, (4.5-1)*1 = 3.5 g to be added to the master mix. 

3. Calculate the final concentration of L-glutamine to add to DMEM. 



 396 

• Dissolve master mix of amino acids and D-glucose in L-glutamine (stock is 

2.93 g/L).  

• For a final volume of 1 L, the needed concentration of L-glutamine is 584 mg.  

It is recommended to aliquot a master mix of amino acids and glucose in L-glutamine. 

4. For a final volume of 1000 mL, dissolve 8.32 g of DMEM powder into 800-900 mL of 

ddH2O, stirring gently until completely soluble. If the desired volume is different, 

dissolve a proportional amount (1000/desired volume) of DMEM powder. 

5. Add master mixture of amino acids and L-glutamine to media. Mix until completely 

soluble. 

6. If needed, add sodium bicarbonate to increase pH by 0.1-0.3. Using a pH probe, 

check the pH of the media is 7.4. Mix until completely soluble.  

7. Add remaining amount of ddH2O to get to the desired volume. 

8. Bring dissolved DMEM into TC hood and filter media (0.2 µm, Corning) with vacuum 

filtration.  

 

8-4-3 pMHC isolation 

 pMHCs were isolated from whole cell lysate as previously described.169 Briefly, cells 

were pelleted, washed twice with 1X PBS, and resuspended in lysis buffer buffer [20 nM Tris-

HCl pH 8.0, 150 mM NaCl, 0.2 mM PMSO, 1% CHAPS, and 1x HALT Protease/Phosphatase 

Inhibitor Cocktail (Thermo Scientific)], followed by brief sonication. Lysate was cleared by 

centrifugation and incubated with Protein A Sepharose bead conjugated to the anti-MHC 

antibody overnight, rotating at 4°C. Peptides were eluted with 10% acetic acid, filtered using 

10K molecular weight cutoff filters, lyophilized, and stored at -80°C prior to analysis. A total of 

250 ug of antibody was used for each analysis, split 125 ug H-2Kb/H-2Db for allele-specific Ab 

analysis.  
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Antibodies: H-2Db monoclonal antibody (Thermo Scientific, clone B22-249.R1, CAT# MA5-

17992), H-2Kb monoclonal antibody (BioXcell, clone Y-3, CAT# BE0172), MHC Class I (H-2) 

(BioXcell, clone M1/42.3.9.8, CAT# BE0077).  

 

8-4-4 LC-MS/MS data acquisition 

pMHC samples were analyzed using an Exploris 480 Hybrid Quadrupole-Orbitrap mass 

spectrometer (Thermo Scientific) coupled with an UltiMate 3000 RSLC Nano LC system 

(Dionex), Nanospray Flex ion source (Thermo Scientific), and column oven heater (Sonation). 

Samples were resuspended in 0.1% formic acid and directly loaded onto a 10-15 cm analytical 

capillary chromatography column with an integrated electrospray tip (~1 μm orifice), prepared 

and packed in house (50 μm ID × 20 cm & 1.9 μM C18 beads, ReproSil-Pur). pMHC elutions 

were injected in four 15% fractions for improved coverage of the immunopeptidome with the 

exception of the SIY analysis, where one fraction containing 30% of the pMHC elution was 

used. 

Peptides were eluted using a gradient with 6-25% buffer B (70% Acetonitrile, 0.1% 

formic acid) for 75 minutes, 25-45% for 5 minutes, 45-100% for 2 minutes, hold for 1 minute, 

and 100% to 2% for 2 minutes. Standard mass spectrometry parameters were as follows: spray 

voltage, 2.0 kV; no sheath or auxiliary gas flow; heated capillary temperature, 275 °C. The 

Exploris was operated in data dependent acquisition (DDA) mode. Full scan mass spectra (350-

1200 m/z, 60,000 resolution) were detected in the orbitrap analyzer after accumulation of 3e6 

ions (normalized AGC target of 300%) or 25 ms. For every full scan, MS2 were collected during 

a 3 second cycle time. Ions were isolated (0.4 m/z isolation width) for a maximum of 250 ms or 

75% AGC target and fragmented by HCD with 30% collision energy at a resolution of 60,000. 
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Charge states < 2 and > 4 were excluded, and precursors were excluded from selection for 30 

seconds if fragmented n=2 times within 20 second window. 

 

8-4-5 pMHC data analysis  

All mass spectra were analyzed with Proteome Discoverer (PD, version 2.5) and 

searched using Mascot (version 2.4) against the human SwissProt database. Non-SILAC 

labeled pMHCs were searched with variable F/Y/L/N modifications, and peptides with any heavy 

labeled amino acids were filtered out. Peptides were further filtered according to the following 

criteria: length = 8-15 amino acids, ion score ≥ 15, isolation interference ≤ 30%, search 

engine rank = 1. SILAC labeled peptides were identified by searching with F/Y/L/N static 

modifications and filtered according to the same criteria. pMHCs with 100% 

incorporation of SILAC-labeled F/Y/L/N in search results with variable modifications 

were compared against the pMHCs identified with static modification search criteria, 

which yielded an overlap of 146 peptides (87% of variable peptides). Peptides with 

incomplete SILAC labeling were ignored. Binding affinity prediction was performed using 

PanNetMHC 4.0 against H-2Kb and H2-Db. Peptides with a %rank < 2% were considered as 

binders.  

*All cell compartment analyses were performed by Tim Fessenden; therefore, related methods 

are not described in this thesis.  
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8-6 Tables 

Table 8-1. Peptides identified in B16F10 and X-presented DCs. 

Peptide Gene 
FAPVNVTTEVK EEF1A1 
SAPENAVRM GRCC10 
ITQTLSDM DNAH1 
GGIQNVGHI IMPDH2 
VAGGAGLAVPG PKD2 
PEAPPPALPAGA RYR1 
YNIVGLRSN MCCC1 
GEPLQAAAS F8A1 
PMMVTKQENI CDH13 
NFASHAIVEDNV PIGO 

 

 

Table 8-2. High affinity, cross presented peptides on DCs.  

Peptide Min rank nM Gene 
NSIRNLDTI 0.0043 4.6463 ATXN10 
ASVLNVNHI 0.0078 16.406 ANKRD17 
INFDFPKL 0.0087 5.5085 DDX6 
SAPENAVRM 0.0088 23.4417 GRCC10 
KAPDNRETL 0.0115 41.7685 STT3B 
TSVRFTQL 0.0184 10.0975 NOSIP 
VAFDFTKV 0.0204 10.7461 PICALM 
SQPVNPHSL 0.0237 80.6889 ZSWIM8 
GGIQNVGHI 0.0449 173.2446 IMPDH2 
TGPSNVDKL 0.0464 181.4227 CHEK1 
RTVENVTVF 0.0545 218.574 VAT1 
SAPRNFVENF 0.0736 276.711 ELP2 
VNFEFPEF 0.0792 31.6201 RPS7 
VNFEKMRM 0.0976 38.4143 RAPGEF4 
RAVANETGAFF 0.1871 751.6148 VCP 
VQNKNSSYF 0.2199 907.1068 TUBB5 
AAPADNSEL 0.2826 1224.0697 OSBP2 
FAPVNVTTEVK 0.459 1973.6716 EEF1A1 
RMYKMVIV 0.9612 470.804 PTPRB 
QISEFSFL 1.0647 528.8588 MTMR4 
KIQLYQGI 1.702 928.3353 EGFL6 
VATYIPGI 1.9476 1098.7549 DOLK 
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Table 8-3. High affinity binders in B2M-KO B16F10 cells X-presented on DCs. 

Peptide Gene % Rank Affinity (nM) 
RTVENVTVF VAT1 0.0545 218.574 
YQVINWRL UGT3A1 0.3188 1387.1729 
FAPVNVTTEVK EEF1A1 0.459 1973.6716 
YQVAKGMAFL KIT 0.6151 2683.0674 
TLLRDRDEL ERP44 0.7864 3470.5002 
SAPRHGSL RPL3 0.793 360.5833 
RGFLSAGF STARD8 0.828 382.8167 
RVPTPNVSVV GAPDH 0.9965 4427.6226 
AQVMSLSTIL NR2C2 1.0402 4596.3198 
VGYQHGRTVF PNPLA7 1.0885 541.7628 
KVVKVANVSLL RPS23 1.3944 6001.354 
RMQSKEYPV TBX5 1.7257 5887.3853 
VTPQNGLASGI GLIS1 1.7285 7140.7314 
SGYQRDGYQQNF CAPRIN1 1.78 978.0981 
RSFSTSVV ATP5PO 2.0773 1193.9838 
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“The flexibility and potential of mass spectrometry remains to be 
fully exploited, and the creativity of mass spectrometry 
researchers is only limited by the questions they are asking.” 

S. Sidoli, K Kulej, and B. Garcia 
Why proteomics is not the new genomics and the 

 future of mass spectrometry in cell biology (2016)	
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CHAPTER 9: Conclusions and future directions 

 

 

In this thesis, I present a collection of mass spectrometry-based platforms that aim to 

address existing methodological limitations in tyrosine phosphoproteomics and 

immunopeptidomics and generate novel datasets that advance the field of cancer research. 

However, there are many more opportunities for method advancements and applications using 

the tools and techniques described herein.  

 

9-1 Future directions 

9-1-1 SureQuant pTyr panel extension for targeted pTyr profiling 

 This thesis describes the development of a targeted pTyr assay, utilizing 340 tyrosine 

phosphorylated peptide targets to capture key nodes on a handful of tyrosine-mediated 

signaling pathways. While we demonstrate the utility of this limited panel, broader coverage is 

required for a deeper understanding of a sample’s signaling state. To this end, I analyzed over 

10 discovery pTyr mass spectrometry analyses generated in the laboratory on a variety of 

different cancer types to generate a list of over 2,000 unique pTyr sites. Using this expanded 

list, a new panel of over 1,000 sites was curated (led by Cameron Flower), and a subset of this 

larger panel has been synthesized in collaboration with Thermo Fisher for SureQuant pTyr 2.0. 

This broader panel, in combination with new data analysis and visualization tools (also led by 

Cameron Flower), and advancements in sample preparation techniques (led by Ishwar Kohale) 

holds the potential to rapidly and reproducibly characterize and identify therapeutic targets in 

human tumors. Other future work may focus on the development of an automated platform to 
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process and analyze tumors with SureQuant pTyr, which greatly advance the feasibility of this 

technique integrating into clinical settings.  

 

9-1-2 Expanding our understanding of therapy-induced pMHC changes in cancer 

While the bulk of this thesis focuses on the pMHC repertoire-induced alterations driven 

by MEK and CDK4/6 inhibitors in melanoma, there is a vast opportunity for expansion of 

multiplexed, quantitative, immunopeptidomics to profile repertoire responses to different classes 

of therapies (chemotherapy, targeted therapies, cytokines, checkpoint blockade) across 

different cancer types. In collaboration with Alex Jaegar, we profiled the pMHC response to 

HSP90 inhibitors, and found that a sub-cytotoxic dose (but not a higher dose) increased antigen 

presentation, further highlighting the potential of therapeutic agents to modulate 

immunogenicity.169 Expansion of analyses in this area may be particularly informative in cancers 

that are historically viewed as “immunologically cold,” with little to no immunogenicity such as 

ovarian cancer tumors, which are generally unresponsive to therapies that enhance the immune 

response like immune checkpoint blockade.456,457  

Enhancing immunogenicity can transform a non-responsive tumor into a responsive 

tumor, and one possible way to boost tumor immunogenicity is through upregulation of HLA 

molecules with anti-cancer therapies.458 Immunogenicity is also influence by the tumor 

microenvironment, such as efficient presentation of antigens by dendritic cells, another axis that 

can be modulated to improve the anti-cancer immune response.459 As demonstrated by the 

novel methods developed in in chapters 3, 4, and 8, immunopeptidomics data can generate 

data which informs our understanding of tumor immunity.  

Furthermore, future studies interrogating the temporal dynamics of the repertoire’s 

response is required, as clinical use of targeted therapies is generally not limited to a single 
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dose. While an initial study described in SKMEL5 cells treated for 10 days of therapy showed a 

sustained increase in antigen expression, evaluating later timepoints and dosing regimens will 

be informative. If cells are dosed with drug for 7 days and then taken off drug for 7 days, does 

HLA expression and repertoire alterations remain? If cells become resistant to therapy, how 

does that affect the repertoire? Furthermore, evaluating which order combination therapies 

should be administered also requires additional investigation.   

  

9-1-3 Reducing sample input in immunopeptidomics 

 One of the major limitations in immunopeptidomics is the quantity of sample input 

required for pMHC profiling. While the number of cells required has dropped by several orders 

of magnitude over the past several decades, deep pMHC profiling still requires high cell 

numbers, and limited quantity in vivo samples like fine needle biopsies still do not provide 

enough material.  

Still, the number of pMHCs I’ve been able to measure from the same quantity of lysate in 

MDA-MD-231 cells has increased significantly over the course of my PhD, due to improvements 

in instrument sensitivity, parameter optimization, and chromatography. To further reduce sample 

inputs and increase throughput of analysis, I believe miniaturizing and automating pMHC 

sample processing is required. This may come in the format of a 96/384 well plate or 

microfluidic platform. Inspiration may also come from single cell platforms like nanopots, which 

similarly aim to reduce sample handling and volumes to increase protein yields from very limited 

starting material.460 Optimally, all processing steps including IP, peptide isolation, and labeling 

will be done in a single platform.  

  Indeed, profiling pMHCs on limited sample, particularly single cells have exciting 

potential. The field has largely been limited to analyses of bulk pMHc profiling, which is unlikely 
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to capture intratumoral heterogeneity. Recently, Demmers et al. profiled pMHC repertoires on 

organoids derived from single cell clones, representing the first paper investigating cell-to-cell 

differences in pMHC repertoires.177 While the data highlighted potential clonal differences in 

expression levels, analyses were performed with label-free quantification, and differences in 

peptides identified and expression levels could simply be explained by run-to-run variation. In 

lieu of single-cell methods, this approach may prove valuable when combined with the relative 

and absolute quantification methods described in this work to determine cell-to-cell variation in 

pMHC expression. Several interesting applications come to mind, including analyzing the 

repertoires on different drug-resistant cell clones, metastases of the same tumor, or even to 

characterize the variation in targeted immunotherapy antigen targets, to better understand what 

proportion of a cell population may be susceptible to therapeutic targeting.  

 

9-1-4 Additional applications of SureQuant MHC 

Applying the SureQuant IS-PRM framework to immunopeptidomics was utilized in this 

thesis to perform absolute quantification estimates of select antigens. However, this framework 

can be adjusted and applied to a range of applications in immunopeptidomics. One area for 

future work, described in Chapter 6, is using SureQuant MHC to generate a panel of cells with 

varying expression levels for evaluating optimal thresholds of expression required for targeted 

immunotherapy efficacy.  

Another useful application of SureQuant MHC is in estimating sample losses. As a 

preliminary experiment, I utilized two isotopologues to estimate pMHC losses associated with 

sample processing by comparing the intensities peptide isotopologues added exogenously prior 

to analysis with isotopologue added as hipMHCs prior to immunoprecipitation (Figure 9-1). I 

found that losses at 1 fmol concentration (~100 copies/cell in this experimental setup) ranged 
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from 19-92%, underscoring our previous claims that exogenous peptide standards cannot be 

used for absolute quantification estimates. Future work may involve testing the range of losses 

using differing sample input amounts or peptides of different properties (chemical, binding 

affinity) to better understand existing limitations in immunopeptidomics, as well as to test and 

compare new sample processing and analysis platforms.  

 

 

Figure 9-1. Isotopologues estimate pMHC sample processing losses.  

 

 Apart from absolute quantification with isotopologues, the SureQuant MHC framework 

may be effectively used for targeted identification of antigens of interest. This may be relevant in 

clinical settings to identify whether a tumor presents a particular epitope essential to a targeted 

immunotherapy, as current methods for patient profiling rely largely on allelic profiling and target 

transcript/protein expression. Additionally, we describe in Chapter 5 our findings that peptides < 

100 copies/cell were not identified in a discovery analysis of human tumors, whereas the same 

peptides were easily identified using our targeted method. We also show that we can detect 

peptides at < 1 copy/cell using fewer than 1e7 cells, highlighting the potential using SureQuant 
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MHC in identifying low-abundance antigens. This is particularly relevant for neoantigen 

identification, which are historically challenging to identify by LC-MS/MS.  

 

9-1-5 Combatting ion suppression in pMHC analyses 

One significant limitation in the MS2-based immunopeptidomics workflow described in 

Chapter 3 is dynamic range suppression, where a known 10-fold change appears as a 3-fold 

change with reporter ion intensities. The SureQuant MHC data showed that in some cases, 

changes as large as 40-80x were compressed to 10-fold changes, suggesting ~10x is the 

dynamic range limit for pMHC analyses in this setting. HipMHCs are a useful tool for estimating 

ion suppression, however data described in Chapter 2 shows that all peptides are differently 

impacted by ion suppression, likely related to their abundance, chemical properties, and the 

peptides that co-elute around them. While hipMHCs and SureQuant MHC can be used to 

identify the magnitude of expression level changes, synthesizing the isotopically labeled 

standards for every target of interest is expensive and not scalable.  

One possible avenue to improve ion suppression is to use SPS-MS3, which has been 

shown in other contexts to reduce dynamic range compression. While SPS-MS3 has been 

applied in immunopeptidomics in a few cases180,440, an important study will be to perform a 

comparative analysis between MS2 and MS3-based analyses to evaluate differences in ion 

suppression, pMHC properties, and whether MS3 analysis result in more losses, as is the case 

in pTyr analyses. hipMHCs standards can be leveraged for controlled comparisons of both 

losses and ion suppression. Additionally, we evaluated the quantitative impact of using a protein 

carrier channel for pMHC analyses, which is suggested as a way to circumvent existing 

limitations in sample input requirements, but we find that the protein carrier obscures 

quantitation in MS2-based analyses. Comparing the use of a protein carrier in MS2 versus MS3 
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will be critical to determining whether use of a protein carrier may offer a way forward under 

certain applications.  

 

9-2 Concluding remarks 

In conclusion, proteomics holds great potential to expand our understanding of disease 

biology, identify biomarkers, and be used for clinical therapeutic selection in cancer research 

and beyond. Mass spectrometers offer a powerful and versatile tool for obtaining this 

information, and creative implementations and methodological designs continue to offer new 

data types. It is my sincere hope that innovations in sample processing and analysis 

automation, as well as continued advancements in instrument sensitivity, bring MS closer to 

widespread clinical adoption in the coming decade. Targeted acquisition platforms like 

SureQuant are an important step, and studies demonstrating their utility will hopefully pave the 

way for the integration of proteomics into clinical decision making.  
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