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'The time has come,' the Walrus said,
'To talk of many things:

Of shoes-and ships-and sealing wax-
Of cabbages-and kings-

And why the sea is boiling hot-
and whether pigs have wings.'

Lewis Carroll, The Walrus and the Carpenter
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ABSTRACT

Stiff chain aramids are polymers composed of alternating aromatic ring and amide moieties which,
due to the rigidity of the individual components and the parallel propagation of the chain contour, exhibit
rodlike behavior in the individual macromolecule. This rodlike behavior leads to the formation of
nematic liquid crystal mesophases above a critical concentration of polymer in solution and enables the
realization of unusually high degrees of molecular orientation and crystallization in spun fibers. These
aramids are characterized by high melting points and good thermal stability up to 550 0C, and the
practicality of high orientation of fully extended chains makes tneir fibers attractive as high strength, high
modulus reinforcing materials. This work addresses the topic of the solid state structure and properties of
such molecular architectures, with specific emphasis on poly(p-phenylene terephthalamide) (PPTA), at the
scale of atomic level organization.

A static atomistic model was developed to simulate the geometry and potential energy characteristics
in the ordered solid state of a crystal-forming polymer. This model represents the local atomic structure
as an imperfect pseudocrystalline parallelepiped embedded within a larger crystalline matrix. It requires
no adjustable parameters. Minimization of potential energy simultaneously with respect to both intra-
molecular and intermolecular degrees of freedom permits the prediction of detailed atomic structure and
cohesive energy and estimation of the Hildebrand solubility parameter. Quantitative prediction and
diagrammatic representation of the x-ray scattering pattern from these structures was made. Application
of the simulation methods to PPTA yielded a plurality of viable polymorphs having cohesive energies on
the order of 39 kcal/mole of repeat units; both energy and (in select cases) geometry predictions were in
agreement with available literature information. Detailed analysis of interchain interactions was used to
demonstrate the hierarchy of the primary behaviors leading to the formation of hydrogen-bonded sheets
and three dimensional structure.

A series of simulated deformations of the minimum energy structures was used to predict the full
twenty-one independent elements of the stiffness and compliance tensors. Thermodynamic and statistical
mechanical analyses demonstrate that our values, calculated from considerations of potential energy only,
overestimate the true elastic constants by 3% to 27%. Elastic properties of aramid fibers were estimated
by symmetrizing the single crystal elastic tensors in the limits of uniform distribution of strain and stress
to yield Voigt and Reuss bounds, respectively, for the elastic moduli. For one structure of PPTA the
calculated extensional, transverse, and torsional moduli are in the ranges 215-325 GPa, 5.2-21.1 GPa, and
4.1-13.3 GPa, respectively, in good agreement with observed values.

Validation of the model was performed through an experimental program which included the design
and construction of a dry-jet wet spinning apparatus suitable for the production of highly oriented
crystalline monofilament of 20pm to 40p1m dry fiber diameter from quantities of polymer less than one
gram. Analysis by wide angle x-ray scattering of as-spun and annealed fibers confirmed the polymorphic
behavior of PPTA and the accuracy of the structure predictions from the simulation.

The effects of atomic scale modification were addressed through the simulation of chlorinated
PPTA's. Polymer chains having chlorines substituted in the 2 and 6 positions of the phenylene ring and
their regular isomeric forms exhibiting entirely head-to-head, tail-to-tail or entirely head-to-tail linkages of
asymmetric units were considered by simulation. Cohesive energies roughly 90% to 93% of that for



PPTA were found for these modified polymers. The primary cause for this reduction is the expansion of
the atomic lattice. The hierarchy of structure-determining factors and the estimated fiber moduli are little
changed from their PPTA counterparts.

Thesis Supervisor: Ulrich W. Suter

Title: Professor of Macromolecular Chemistry, Institut fUr Polymere, Eidgenissische
Technische Hochschule, ZUrich, and Visiting Senior Lecturer, Department of
Chemical Engineering, Massachusetts Institute of Technology, Cambridge.
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1. INTRODUCTION

1.1 Motivation

The rapidly expanding field of rigid rod polymers represents a commercially significant and

scientifically fascinating class of new, high performance materials. Interest in this general class of

polymers dates back to the work of Morgan and Kwolek in the sixties and seventies on wholly aromatic

polyamides which resulted in patents [Kwolek, 1972; Morgan, 1975] to the Dupont Company and

eventual commercialization of the trademark fibers Nomex® and Kevlar®. Today, this class has expanded

to include, in addition to the original polyamides, a wide variety of new polyamides, polyesters,

polyhydrazides, polyoxazoles and polythiazoles, to name a few. Commercially, these materials have

attracted interest due to their unusual thermal stability and impressive mechanical properties, which hold

promise for a new era of light weight, high strength composites and cords; an indication of the

impressive strength-to-weight properties of these polymers, relative to conventional reinforcing materials,

is illustrated in Figure 1.1 [Adams and Eby, 1987]. In the scientific arena, the rigid rod polymers have

stimulated renewed interest in the theoretical and phenomenological ramifications of long range molecular

rigidity to melt and solution behavior, processing, and solid state properties. The ease with which high

degrees of molecular orientation may be realized and the impressive mechanical properties achievable with

such stiff chains suggest the importance of atomic scale structural character to macroscopic structure and

properties of the bulk polymer.

Efforts to develop improved high strength organic fibers have followed several paths. Some research

has been directed towards modifications of aramids or development of entirely new chemistries to produce

polymers which have a different combination of material properties or which may not be susceptible to

some of the performance flaws characteristic of aramids, such as hydrolytic instability or poor compres-

sive strength. Other efforts have sought to facilitate or improve processing methods to yield better

performing fibers at reduced costs, either through chemical modification or process design. In our own

laboratory research into the placement of substituents on the ring moiety of the diamide monomer and

control of polymerization over the range of constitutional isomers which may result has led to the

production of more soluble polymers which appear to retain the essential rigidity of the unsubstituted

molecules. These new polymers are well-characterized in terms of the locus of substituents along the



Figure 1.1: Plot of specific strength versus specific modulus for a variety of fibers [Adams and Eby,
1987].
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length of the chain; as such, they provide appropriate model polymers for exploring the effects of atomic

level modifications on bulk properties.

Lacking to date is a complete description of the linkage between atomic scale detail and macroscopic
material properties for these and other new, high performance polymers. Such understanding is required

before one can proceed to the ideal of designed materials for engineered applications. The concept of
perceptive design of new materials is a topic of great current interest. The goal is to understand the
source of, and by so doing reliably predict, the properties of new materials in the bulk from knowledge
of the constituent structure. In the past, such attempts have been largely empirical and phenomenological

in nature, devised to mimic nature rather than provide an atomistic basis for understanding. With the

ongoing explosion in computational resources, the application of more exacting and detailed approaches to

property prediction than have heretofore been possible may now be attempted. Such methods as

Molecular Mechanics (MM) and Molecular Dynamics (MD), and even the computationally demanding

calculations of quantum mechanics, have been and are currently being developed for idealized concep-
tualization of increasingly complex systems, beginning with isolated molecules but including in a few

instances polymeric liquids and solids of glassy and crystalline structure. However, no such attempt has

previously been made to apply these techniques to the unique problems of conformationally constrained

stiff chain macromolecules in their highly ordered solid state.

With the congruence of enhanced computational resources and the current emphasis on the design of
new materials, the opportunity arises to further the development of novel computational techniques as well

as establish a uniquely detailed basis for understanding the connection between structure and properties of

a new class of materials. The insights gained should serve to expand our understanding of the

fundamental relations between atomic structure and material behavior as well as augment the palette of
computational software available for the development of such information. The results obtained should

provide some direction for future synthetic efforts towards the next generation of high performance

polymers.

1.2 Objectives

The goal of this work is to simulate the solid state structure of a commercially relevant aramid and
its family of ring-substituted isomers and correlate calculated predictions with experimental results. For
this purpose, we have selected the polymer poly(p-phenylene terephthalamide), referred to hereafter as
PPTA, and its di-substituted isomers having chlorines on the aromatic ring of either the diamine or diacid
monomer in the ortho positions. This broad scope entails the following specific objectives:



1) Development of a static atomistic model of a polymer chain in a highly ordered (i.e. pseudocrystal-

line, crystalline) solid state using available a priori geometric and energy information characteristic of the

constituent subunits of the polymer, without the introduction of adjustable parameters. The model must

be applicable to the specific features of extended chain conformation polymers and encompass all features

relevant to the quantitative determination of geometry and potential energy.

2) Use of this model to derive predictions of structure, x-ray diffraction, selected thermodynamic

properties, and detailed mechanical properties of the solid state of a model stiff chain polymer system and

the atomic scale source of these properties.

3) Validation of the model by comparison with experimental data on structure and mechanical behavior.

For this purpose, this work encompasses an experimental program to design and build an apparatus for

spinning small quantities of fiber of sufficient crystalline perfection for comparison to simulation results.

The validation procedure entails wide angle x-ray scattering (WAXS) analysis of such fibers produced

under different processing conditions and direct comparison of simulation results with experimental data at

both the atomic and the phenomenological levels.

4) Extension of the simulation process to the analysis of derivatives of the parent polymer for purposes

of relating discrete atomic-scale variations to observable macroscopic properties. These derivatives may

vary in the type of substitution (e.g. chlorine, methyl, nitro, or methoxy), the location of substitution (e.g.

on the diacid phenylene ring or the diamine phenylene ring), and in the order of substitution along the

polymer backbone (e.g. "head-to-head, tail-to-tail" polymerized comonomers or "head-to-tail" polymerized

comonomers). For this purpose, 2,6-dichloro-substituted derivatives of poly(p-phenylene terephthalamide)

are to be studied in detail.

The remainder of this document is organized to address these objectives in order. The state of the

art leading up to this work is summarized in Chapter 2. Chapter 3 addresses the development of the

computer model and discusses the special considerations required to simulate the oriented solid state.

Chapter 4 details the application of the model to the parent polymer, PPTA. Chapter 5 then discusses

the simulation procedure for the prediction of mechanical properties, again with application to the parent

polymer. Chapter 6 deals with the experimental aspects of fiber spinning, x-ray analysis of fibers, and

validation of the model. Finally, Chapter 7 deals with the extension of the method to the prediction of

properties of the related polymers, with particular attention to the specific effects of atomic substitution

and constitutional order.



2. STATE OF THE ART

2.1 Aramids

2.1.1 Early Development

Aromatic polyamides, or aramids, represent the first, chronologically, and to date commercially

foremost of the high performance stiff chain polymers. By definition, aramids are synthetic long chain

molecules containing amide moieties wherein at least 85% of the amide linkages are attached directly to

two aromatic rings [Preston, 1987]. They are generally produced via step growth polymerization, or

polycondensation, of (1) a monomer consisting of one or more aromatic moieties and having a primary

amine at one end and a carboxylic acid or acid chloride at the other, or (2) comonomers comprised of an

aromatic diamine on the one hand and an aromatic diacid (or diacid chloride) on the other. The

introduction of aramids into the literature resulted from the work of Morgan, Kwolek, and co-workers at

Dupont in the early seventies on the self-condensation of p-aminobenzoyl chloride to yield

poly(p-benzamide) (PBA) and bipolymer condensation of m- or p-phenylene diamine with a phthaloyl

dichloride to yield poly(m-phenylene isophthalamide) (MPIA) or poly(p-phenylene terephthalamide)

(PPTA), commercialized under the trade names Nomex ® and Kevlar ® [Kwolek, 1972; Morgan, 1977;

Kwolek et al., 1977; Bair et al., 1977; Schaefgen et al., 1979]; these polymers are shown in Figure 2.1.

Of these, Kevlar® has attracted the greatest attention for its high temperature stability and good strength-

to-weight properties; a list of its characteristics is given in Table 2.1. Since that time, numerous

variations in the area of rigid and semirigid polymers that lead to high performance materials have been

reported. These include molecular chains with modifications of the aromatic rings [Kwolek, 1972; Bair et

al., 1977; Jadhav et al., 19881, terpolymers with flexible subunits [Lenk et al., 1977; Aoki et al., 1978],

azomethines [Morgan et al., 1984], and poly(amide-hydrazides) [Morgan, 1978; Preston and Hofferbert,

1978], to name a few. As a result of their unusual properties, these aramids are finding application in

such end uses as structural composites, ropes and cables, protective apparel, and abrasion-resistant

moldings. The high performance tensile properties of these aramid fibers are commonly attributed to the

unusually stiff extended conformational characteristics of the molecules and the relative ease with which

these macromolecular chains may be aligned along the fiber axis during fiber formation. The resulting

fibers and yarns are conjectured to bear tensile loads almost entirely along the molecular axis which,



Figure 2.1: Common aramid polymers.
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Table 2.1

Properties of Kevlar® aramid fiber •b

High crystallinity (>95%)
High orientation
Extended chain structure
High melting point (ZST 640 0 C)
High glass transition temperature (375 0C)
Low density (1.45 - 1.48 g/cm3 )
Low creep
High cut resistance
Good flex resistance and textile processability
Outstanding tensile properties (modulus: 180 GPa; strength: 3.5 GPa)
Low elongation at break (2 - 4%)
High damping vs. organic fibers
Nonconductive; good dielectric properties
Good abrasion resistance
Moderate compressive strength (500 MPa)

a from Schaefgen et al., (1979), as per Gentile [1988]
b Dupont Kevlar product literature



being extended, may not elongate significantly without bond scission. Tensile strengths approach the

theoretical limits of chemical bond strengths.

2.1.2 Chain Rigidity and Solution Structure

it-bonding electron orbitals above and below the plane of the phenylene ring and the conjugated

double bond character of the carbon-nitrogen and carbon-oxygen bonds in the amide link lend structural

rigidity to the individual backbone moieties; thus molecular flexibility is possible only through rotation

about bonds connecting successive moieties. The barrier to rotation and chain folding about the amide

bond is on the order of 20 kcal/mol, with only a rare occurrence of cis conformations [Jorgensen and

Swensen, 1985; Ramachandran and Mitra, 1976]. Rotation about the bonds connecting successive

phenylene rings and amide groups is also restricted by the energetically advantageous tendency toward

electron delocalization realized when these moieties are coplanar, on the one hand, and repulsive overlap

of atomic spheres, on the other. Furthermore, such rotation produces little conformational change when

the chain extending bonds on the ring are in the para positions. As such, these polymers resemble

wormlike chains in solution, with typical persistence lengths on the order of 150 to 250 A [Arpin and

Strazielle, 1977; Zero and Aharoni, 1987; Millaud and Strazielle, 1978].

The lack of conformational flexibility and high degree of chain extension has two important

ramifications. First, a relatively limited number of additional conformations are available to the polymer

in solution or melt over that available in the solid state; for this reason, the entropies of solution and

melting are expected to be unusually small. This contributes to the characteristically high melting points

of aramids, on the order of 500+'C; these polymers typically undergo decomposition concurrent with or

prior to melting. As such, they must be processed from lyotropic phases. However, since dissolution is

little aided by entropic effects, the solubility of these aramids is largely determined by the enthalpies of

dissolution. PPTA, for example, is only soluble in highly aggressive polar solvents, such as concentrated

sulfuric acid, chloro or methyl sulfonic acids, or hydrogen fluoride, making processing difficult and

expensive.

Second, above a critical concentration the polymer forms a stable anisotropic solution mesophase. In

general, such anisotropic mesophases may arise upon cooling of the neat liquid (thermotropic liquid

crystals) or upon increasing concentration in a solvent (lyotropic liquid crystals). This ordered phase

formation in aramids has been anticipated through the use of lattice models predicting nematic liquid

crystal phase formation for monodispserse and polydisperse rods [Flory, 1956; Flory and Ronca, 1979;

Flory and Ronca, 1979; Flory, 1984]. In liquid crystals, the molecular chains are already ordered in local

domains in the quiescent melt or solution. The nematic mesophase is characterized by coalignment of

rods within each domain but with no preferred ordering perpendicular or translationally parallel to the



axis of local orientation; smectic and cholesteric mesophases, which will not be dealt with in detail here,

exhibit additional translational ordering into molecular layers and rotational correlation between layers.

The formation of the nematic phase results from directionally dependent interactions between molecular

chains, which may be either hard (i.e. hard body steric exclusion) or soft (i.e. distance-dependent

anisotropic intermolecular energetic interactions) in nature. The former case has been effectively

described in terms of the aspect ratio x of the molecule, which may be calculated using the expressions:

x = (MIJMV)(lJdch) (2.1)

dch = (Mr/pNAru) 1/2  (2.2)

From this, the critical volume fraction at which a metastable ordered phase forms may be estimated by

the equation:

V -- (8/x)/(1 - 2/x) ; x > 10 (2.3)

While this equation was derived for metastable phase formation, its slight tendency towards overestima-

tion has shown it to be a useful predictor for the onset of the stable nematic phase. The aspect ratio x

must exceed xn, = 6.42 for the formation of an ordered phase; as x --+ 0, the ratio of volume fractions in

the two phases (ordered/disordered) at the transition approaches 1.465. The effects of polydispersity serve

to widen the concentration range over which both isotropic and anisotropic phases are stable, and lead to

fractionation of species such that higher aspect ratios are distributed preferentially into the anisotropic

phase. During processing, imposition of an external field (e.g. flow or magnetic) induces common

alignment of domains with minimal entanglement of molecules, which is important to achieving high

orientation in conventional fiber-forming processes [Morgan, 1977].

Experimental studies on PBA, PPTA, and some of their chlorinated derivatives in dilute solution

confirm the extended conformations of these chains (Table 2.2). Further studies [Papkov et al., 1974;

Kwolek et al., 1977; Bair et al., 1977; Panar and Beste, 1977; Balbi et al., 1980; Gentile, 1988] of phase

behavior for PBA and chloro-substituted PPTA in dimethyacetamide (DMAc) plus LiCl and PPTA in

H2SO4 demonstrate (1) the tendency among these systems (including the chloro-substituted) to form

nematic phases, (2) the reduction in critical polymer concentration for nematic phase formation at higher

molecular weights (i.e. higher aspect ratio) in qualitative agreement with the lattice model (Figure 2.2),

and (3) the critical point behavior associated with adding LiCI (i.e. increasing the interaction between



Figure 2.2: Critical volume concentration Vp* versus axial ratio and comparison between threory and
experiments for PBA and PPTA [Flory, 1984].
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Table 2.2

Conformational behavior of some aramids

Polymer Solvent Persistence Mark-Houwink
Length (A) Viscosity Dependence

PPTAab 96% H2SO4  150-200 1.09
PPTAb  HSO 3CI 400-500 1.36
PBAab 96% H2SO4  400-600 1.5
Cl-PPTAb 96% H2SO 4  150
CI-PPTAb HSO 3CI 400
Cl-PPTAc 96% H2 SO 4  - 0.8
PPTA (calculated)d 420 -
PBA (calculated)d 410

a Arpin and Strazielle, 1977
b Millaud and Strazielle, 1978
c Aoki et al., 1978
d Erman et al., 1980



chains) to the solvent/polymer system. Deviations from theoretical behavior have been explained in terms

of wormlike flexibility for PPTA at higher molecular weight (higher x in Figure 2.2) in concentrated

sulfuric acid, resulting from protonation of the carbonyl oxygens and loss of double bond conjugation

[Gardner et al., 1984].

2.1.3 Constitutional Isomerism

2.1.3.1 Definition

Recently, the possibility for control of constitutional isomerism in condensation polymers has been

applied to the development of new and well-characterized substituted aramids from both theoretical and

experimental perspectives [Murano, 1972; Korshak et al.,1975; Pino et al., 1978; Slonim et al., 1980;

Steinman et al., 1981; Suter and Pino, 1984; Schmucki et al., 1985; Gentile, 19881. Constitutional

isomerism, as dealt with in this work, refers to polymers which have the same chemical composition and

are produced from the same set of monomer reactants, but which differ in the nature or sequence of

bonding, or atom connectivity. This is distinct from configurational isomerism and conformational

isomerism, which refer to polymers of like constitution which differ either "permanently" in their

sequence of sites of stereoisomerism or "nonpermanently" in the spatial arrangements of the constituent

atoms such as might be induced by rotation about an internal bond. Such constitutional isomerism has

long been recognized in vinyl polymers such as polystyrene, where the pendant phenyl rings may be on

adjacent carbons (i.e. "head-to-head, tail-to-tail" isomer) or may be separated by an intervening carbon

(i.e. "head-to-tail" isomer). Similar isomerism in condensation polymers is likewise possible in those

cases where one or more of the monomers is nonsymmetric.

For the simplest case of bicomponent polycondensation, the nonsymmetric monomer may be denoted

XabX and the symmetric monomer YccY, which may then be reacted to yield sequences of the type

-acca-, -accb-, or -bccb-, with the elimination of XY. Polymerization may then result in a variation of

molecular constitution between three possible extremes: 1) strictly alternating head-to-head, tail-to-tail

sequences; 2) completely random distribution of head-to-head and head-to-tail sequences; 3) strictly head-

to-tail sequences. The degree of order may be quantified using the parameter s, defined as [Suter and

Pino, 1984]:

s = [accb]/( [acca]+[accb]+[bccb] ) (2.4)

where [ ] is the molar concentration of each sequence



By this convention, s = 0 describes the regular head-to-head, tail-to-tail isomer, s = 1 describes the

regular head-to-tail isomer, and an equal distribution of head-to-head and head-to-tail junctions cor-

responds to s = ½. However, as noted by Gentile [1988], intermediate values of the order parameter

provide no information about the distribution, or "blockiness", of the head-to-head and head-to-tail

sequences; for this, one requires details of diad and triad statistics, which are currently unavailable.

Of particular interest to this work are the demonstrably large variations in physical properties with

variations in structural regularity exhibited by constitutional isomers of polycondensates. Previous

experimental work with polyesters, polyureas, and polyamides has demonstrated the anticipated variations

in isomeric order and correlated this degree of regularity with changes in physical properties. Order

parameters as low as s = 0.005 have been achieved with polyamide condensation and as high as s = 0.89

with polyurea condensation [Steinman, 1981]. Melting point decreases on the order of 300 to 400C and

solubility increases of an order of magnitude have been reported for several irregular isomers over their

more regular head-to-head, tail-to-tail counterparts. The work of Gado [1985], and more recently Gentile

[1988], have dealt directly with the considerations of atomic substitution on monomers composing the

parent chain of PPTA. These works resulted in the realization of asymmetric constitutional units in the

polymer chain and the controlled synthesis of polymers having different sequences of these asymmetric

units (i.e. constitutional isomers).

2.1.3.2 Kinetic Model and Homogeneous Phase Amidation

The development of structural isomerism for homopolymer and bipolymer systems has been modeled

under the assumptions of first order, single step, irreversible kinetics in a homogeneous reaction phase

[Suter and Pino, 1984; Gentile, 1988]. By this model, structural order (s) at high conversion depends
upon: (1) the degree of conversion X,; (2) the relative reactivity (r) of the two functional groups of the

asymmetric monomer XabX; (3) the reactivity induction parameters (ga and gb), indicative of a change in

reactivity of the second -cY end of the symmetric monomer upon reaction of the first -cY end with either

-aX or -bX, respectively; and (4) the rate and order of addition of each monomer to the reaction mixture;

this refers to the possibility for immediate combination of both monomers, or the finite rate addition of

one monomer to the other. Different combinations of these variables leads to several possible polymer-

ization cases; these are summarized in Table 2.3, abstracted from Gentile [19881.

By means of controlled addition syntheses, wherein a novel'homogeneous phase amidation system

was required, ring-substituted derivatives of PPTA were successfully polymerized over a range of

intermediate degrees of isomeric order. Ring substitutions were performed exclusively on the diamine

monomer. Polymers included poly(2,6-dichloro-p-phenylene terephthalamide), poly(2-nitro-p-phenylene

terephthalamide), poly(2-methoxy-p-phenylene terephthalamide), and poly(2,6-dimethoxy-p-phenylene

terephthalamide). Of these, the first met with the greatest success, with inherent viscosities Tri , as high



Table 2.3

Polymer order versus kinetic parameters under different mixing mechanisms

r = 1, ga = gb = I (s = ; under all mixing
conditions)

Mixing mechanisms involving infinitely slow or

Case B: r # 1, g, = gb = 1

- YccY slowly added to XabX

- XabX slowly added to YccY or
infinitely fast mixing of XabX
and YccY

Case C r# , g,g = g 1I
and Case D: r # 1, g, • gb # 1

- YccY slowly added to XabX
(same as Case B)

- XabX slowly added to YccY
(same as Case B)

- Infinitely fast mixing of XabX
and YccY

fast addition of one monomer to the other.

(0 _ s <5 )

s = s(r)

(0 < s 1)

s = s(r)

s = :

s = s(g",r)
g --- 0, s -- I
g, - , s -4 0

Mixing mechanisms involving finite rates of addition of one monomer to the other

Case B: r # 1, g, = gb = 1 (0 • s ! 5)

- YccY added to XabX s = s(r, feed rate)

- XabX added to YccY s = 2

Case C: r 1, ga = gb 1 (0 s 51)
and Case D: r # 1, g gb 1

- YccY added to XabX s = s(g., r, feed rate)

- XabX added to YccY s = s(g,, gb, r, feed rate)

- XabX and YccY added to each
(slower controls as listed above)

Case A:



as 5.68 dl/g (for the s = 1 isomer) and order parameters ranging from 0.07 up to 0.60 (inherent

viscosities around 0.5 dl/g were produced at the extremes of order). These dichloro-substituted polymers

were further demonstrated to be soluble in N-methylpyrrolidone (NMP) up to 80 mg/ml (s = / isomer);

maximum soluble concentrations decreased with increases in isomeric order in the polymer chain. It was

further demonstrated that these substituted polymers exhibited nematic phase formation at concentrations

comparable to those exhibited by the unsubstituted polymer; in the absence of changes in enthalpic

interactions, such behavior confirms the retention of the essential rigidity of the chain in the modified

polymers. Thus minute changes in atomic structure, and even more subtle variations in structural order,

were shown to have measurable effects on polymer solubility without greatly altering chain flexibility.

By process of elimination, one may conjecture that it is changes in enthalpic or energetic interactions

between polymer chains and between polymer/solvent combinations that are responsible for the observed

variation in macroscopic phase behavior, and that these changes arise due to subtle changes at the atomic

level.

In light of these results, it seems clear that the ultimate cohesive behavior of the polymer is a

function not only of composition, but of structural order as well. Qualitatively, one could argue simply

that larger substituents and a higher degree of substitution serve to force main chain segments apart,

disrupting specific interactions associated with the condensation linkages (e.g. hydrogen bonding of amide

linkages), and that increasing disorder in the placement of substituents accentuates interferences. This

work exploits our ability, by the methods described above, to preselect variations in (1) substituent

composition and (2) isomeric order as part of the effort to clarify the relation between molecular level

parameters and macroscopic material properties. These polymers have the advantages that they are well

characterized and that they show changes in macroscopic behavior as a result of minute variations in

atomic structure.

2.2 Solid State Structure and Properties

2.2.1 General

Because of the close proximity of atomic groups in the solid state, the specifics of molecular struc-

ture should play a large role in determining condensed phase behavior. Stereoregularity and tacticity in

vinyl polymers are known to be important factors in determining whether these polymers can crystallize

and in what form [Alexander, 19691; regularity of structure is vital to the organization of crystalline

order. In most cases, polymers which tend to crystallize do so only partially, resulting in a patchwork of

crystallites embedded within an amorphous matrix, such as illustrated in Figure 2.3a, the degree of



Figure 2.3: Schematic representations of ordered phase formations in polymers: (a) semicrystalline
matrix of unoriented crystallites embedded in an amorphous matrix; (b) quasinematic
alignment of semicrystal domains; (c) microfibril paracrystal.
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crystallinity and crystallite orientation being highly dependent upon processing history. In this

morphology individual chains weave in and out of both phases. Flexible chain polymers may crystallize

by chain folding, giving the common lamellar structures seen in polyethylene and the resulting spherulitic

crystallites common in melt crystallization. In oriented (e.g. fiber) form, these flexible semicrystalline

polymers may be represented by a two-phase composite model (Figure 2.3b) [Alexander, 1969; Prevorsek,

19821. In this picture, crystal domains contain chains or chain folded lamellae aligned along the major

orientation axis and are in turn separated from one another by discrete amorphous zones; this model is

representative of aliphatic polyamides and polyesters, as well as polyethylene terephthalate. Depending

upon the molecular rigidity, polymers which do not exhibit folding over long distances may be considered

as a single phase "condensed nematic", wherein individual molecules are aligned along a common

pseudocrystalline axis, and there is no distinct amorphous phase. This view is illustrated in Figure 2.3c.

The solid state structure may also demonstrate translational registry between neighboring repeat units and

dimensional order perpendicular to the fiber axis [Moncricff, 1963; Norhtolt and Van Aartsen, 1977].

Ultimately, order in all three dimensions would denote a single crystal or polycrystal solid state.

In conventional crystallography of low molecular weight compounds, one identifies a unit cell,

consisting of one or a few molecules, which when replicated periodically in three dimensions in space

describes the long range ordered structure of the crystalline solid. By analogy, the common practice for

crystal-forming polymers has been to define unit cells which consist of a finite and small number of

constitutional repeat units of the polymer chain. However, in polymeric solids one encounters the

additional constraints of intramolecular bonding between unit cells, which is not a priori compatible with

the periodicity convention assumed by crystallography. In order to satisfy periodicity within a single

macromolecule, the individual chain must assume a preferred helical (or degenerate helical, i.e. rodlike or

zig-zag) conformation. These helices may then pack into one or more energetically favorable crystal
lattice geometries, depending upon the helix itself and the possibility for interactions between helices.

Translational periodicity along the unit cell dimension parallel to the chain axis implies commensuration

of the helix over a finite section of the chain. The individual crystallites then exhibit dimensional

periodicity, which may be classified using conventional crystallographic nomenclature. Multiple crystal

forms may result where either two or more individual helix conformations or two or more packing

geometries for the same helix are comparably stable.

Conventional crystal nomenclature begins to break down upon detailed consideration of real

polymers, where the unit cells are composed of portions of molecular chains and must conform as well to
intramolecular bond geometries. In this case one must consider the possibility of nonintegral, or
incommensurate, helical stiuctures, determined by preferred bond geometries, which preclude perfect
translational periodicities over finite distances. Poly(oxymethylene) and poly(tetrafluoroethylene) are two
polymers which have been proposed to have practically incommensurate helical structures in the solid

[Carazzolo, 1963; Gramlich, 1976; Weeks et al., 19811. Saruyama et al. [1985] have proposed periodic



defects (discommensurations) within a regular (commensurate) helix, as an alternative to the incommen-

surate helix description, in order to explain additional reflections in drawn poly(oxymethylene) and to

suggest a means for interconversion between polymorphic forms.

A further categorization of crystalline structure relevant to these polymers has been described by
Hosemann and Bagchi [1962] and is designated paracrystallinity. In this description of the atomic lattice,
the true atomic positions are displaced from the regular lattice points according to some a priori

distribution function. Hosemann postulates that real crystal structures are subject to two kind of

distortions. Distortions of the first kind preserve the long range periodicity of the lattice; atomic positions

are displaced about the points of the lattice described by the reference unit cell. Such distortions are

indistinguishable from thermal vibration distortions. Distortions of the second kind involve fluctuations in

the periodicity vectors in relation to the nearest-neighbor lattice points, rather than the ideal lattice points.
Thus the absolute deviation of atomic positions from the ideal lattice points defined by the reference unit
cell is cumulative and increases as the square of the distance from the reference cell.

2.2.2 Aramid Solid State

Previous investigators have reported on the considerable structural complexity of fibrous PPTA

[Dobb et al., 1977; Dobb et al., 1977; Panar et al., 1983]. For length scales greater than tens of
nanometers, one speaks of a supramolecular structure composed of superposed periodic defect layers

(35nm period) and radially-oriented sheet structures with periodic pleats (500nm period), microfibrillar

morphology (600nm diameter), and a skin-core differentiation in Kevlar® fibers; recently, Kelvar 149 ® has
been reported to exhibit a higher degree of crystallinity and crystallite size and to be devoid of both pleat
and microfibrillar macromorphologies as well as of skin-core differentiation [Kwolek et al., 1987]. On
the molecular scale, chain ordering has been portrayed using crystalline and paracrystalline descriptions.

Correlations of the breadths of meridional x-ray diffraction peaks with the square of reflection order, as
predicted by a one-dimensional paracrystal model having distortions of the second kind, and with tensile
modulus have been used to suggest a distorted lattice paracrystalline structure in PPTA [Northolt and Van
Aartsen, 1977; Barton, 1985; Hindeleh et al., 1984]. In addition to unusual chain rigidity, the aramids
experience strong intermolecular cohesive forces in the solid state due to interactions between the polar
amide moieties on neighboring chains. This cohesive ability presumably improves the mechanical
properties of the bulk polymer transverse to the axis of orientation, for resistance to shear and compres-
sive failure, and leads to high thermal stability; however, this strong cohesion also causes the chains to
associate and reduces the enthalpic driving force for mixing, thus contributing to the poor solubility of the
polymer. The choice of balance in this trade-off has been previously considered only subjectively and the
optimum condition has been unclear.



Other investigators have suggested that PPTA may coexist in several packing modes, or polymorphs

[Northolt, 1974; Hancock et al., 1977; Haraguchi et al., 1979; Gardner et al., 1984]. To date, two

different but related polymorphs for the pure polymer [Northolt, 1974; Haraguchi et al., 1979], as well as

one crystal solvate structure, involving PPTA and sulfuric acid [Gardner et al., 1984], have been isolated

and identified through the use of conventional x-ray analytical techniques. In the first, denoted

Modification 1, the derived unit cell is pseudo-orthorhombic with two chains per unit cell; this structure is

shown in Figure 2.4a. The chain conformation is fully extended with ring rotation angles of -30' and

+380. The chains are rotated about their axes such that the amide planes lie 40 out of the be crystal-

lographic facet. The second polymorph, denoted Modification II and shown in Figure 2.4b, was derived

as a variation of Modification I. Here, the same chain conformation is maintained, with location of the

second chain shifted from [%,1] in the ab-facet to [v2,0]; however, the resolution of the scattering data in

this case was insufficient to determine a unique setting angle. The occurrence of the two polymorphs

results from the different environments in which each is coagulated and the ability of the coagulant to

interfere with interchain hydrogen bonding during solidification [Haraguchi et al., 19791. Under certain

conditions Modification II may transform to Modification I upon annealing. The unit cell descriptions for

each of the pure polymer structures are listed in Table 2.4. The reported structure for the crystal solvate

is essentially a swollen version of the pure polymer Modification I, wherein the sulfuric acid molecules

coordinate primarily with the amide moieties of the polymer chains in a two-to-one ratio and incorporate

into the hydrogen bonding sheets of the bc crystal facet, with the excess solvent nonstoichiometrically

included between sheets.

2.2.3 Processing

Because of the multiple crystal forms often exhibited by polymers, processing history is a necessary

consideration in solid state analysis. For aramids, the process of primary interest is fiber formation,

which is best suited to achieving high uniaxial orientation for mechanical reinforcement applications.

Fiber spinning operations usually fall into one of three categories:

(1) melt spinning; in this process, neat polymer is extruded as a melt, with solidification induced by

cooling of the polymer filament below its melting temperature. Reported spin velocities may be quite

high (e.g. 4000 m/min) [Montgomery, 1971] as solidification requires only thermal transfer and not

diffusive transfer. Such processing is possible for aliphatic amides and even some stiff chain polyesters.

However, as previously stated, the melt temperatures for aramids are typically comparable to the

temperatures at which these materials decompose; thus this class of processes is precluded for aramid

fiber spinning.



Figure 2.4: The two reported crystal structures for poly(p-phenylene terephthalamide): (a) Modifica-
tion I (Northolt, 1974]; (b) Modification II [Haraguchi et al., 1979].
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Table 2.4

Crystallographic parameters of previously reported modifications of PPTA

Modification a.d Modification IIb,d Crystal Solvate•,d

a (A) 7.87 8.0 16.35
b (A) 5.18 5.1 9.59
c (A) 12.9 12.9 12.9
y (degrees) 90 90 90
chain locations [0,0];[, ,0]; [0,0]J[,0] [0,0]; [ý,]
# of H2SO 4  - ca. 9 per cell
Space Group Pn or P21n Pa or P2 1a
density (g/cm3) 1.50 1.50 1.12

a Northolt, 1974.
b Haraguchi et al., 1979.
c Gardner et al., 1984.
d monoclinic cell type.
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(2) dry spinning; in this process, polymer is extruded as a solution in a volatile solvent. Solidification

of the extruded filament is induced by volatilization of the solvent species, which is then carried away by
an inert gas. Because diffusion and volatilization of a light compound is required, process rates are

generally slower (e.g. 1000 m/min) than those in melt spinning. Filament uniformity is affected by the

relative rates of diffusion of solvent within the filament and evaporation of solvent at the filament

surface. This in turn may be controlled by the temperature and flow rate of the carrier gas. Again, this

process is precluded in aramid fiber manufacture due to the insolubility of these polymers in readily

volatilized solvents.

(3) wet spinning; this process resembles dry spinning, except that solidification of the extruded filament

is induced by diffusive exchange of solvent and nonsolvent species in a coagulating bath. This process

typically requires the slowest spin rates (e.g. 100 m/min), depending upon the rates of diffusion of the

solvent and nonsolvent species involved and the diameter of the filaments extruded. Best results are

generally obtained when polymer concentrations are as high as possible, subject to the limits imposed by

polymer solubility and solution viscosity [Knudsen, 1963 (from Montgomery, 1971)]. Coagulation should

ideally occur as slowly as possible, to allow for uniform precipitation of the polymer filament and to

avoid dissimilar morphologies within the cross section of the fiber. Coagulation rate may usually be

reduced either by addition of solvent to the coagulant bath or by reduction of the coagulating temperature

[Allcock and Lampe, 1981]. Because a ternary system is involved, filament solidification may actually

entail separation into a biphasic system, from which the residual solvent/nonsolvent component must

subsequently be removed.

(4) gel spinning; this process requires polymer of sufficient molecular weight to form a gel at polymer

concentrations as low as 2% to 8% by weight. This gel phase is extruded as a filament which is

precipitated in a coagulant bath such that up to 98% of the solvent/nonsolvent phase remains within the

fiber. The primary difference lies in the character of the precipitated fiber, which consists of high

molecular weight, unoriented, low entanglement density polymer chains. Hot drawing of this filament

then results in primary extension and alignment of the unentangled chain segments between crossover

points in the gel to yield well-oriented, high strength fibers upon removal of the solvent/nonsolvent phase.

Elongation during the drawing process may range from 30 to 100 times the original length, but process

rates are generally very slow compared even to wet spinning processes, on the order of cm/min [Jaffe,

1987]. Gel spinning essentially seeks to achieve, by means of dilution, the low entanglement densities in

flexible polymers that are realized by stiff chain polymers upon microdomain formation in the quiescent

liquid crystal phase. Low entanglement density is a prerequisite to achieving high alignment of polymer

chains in the solid filament.

Aramids have been processed into both film and fiber form by means of solvent/nonsolvent

exchange. For the formation of highly oriented, pseudocrystalline morphologies, the dry-jet wet spinning



process described by Blades [Blades, 1973; Blades, 1975], represents the best means currently available.

By this process, the polymer in solution is extruded first through a "dry zone" prior to entry into the

coagulation bath. While isotropic spin dopes may be used, the highest degrees of molecular orientation

require the use of a liquid crystal solution dope. These domains may be conveniently oriented on a

molecular scale prior to solidification [Hancock et al., 1977; White and Fellers, 1978; Valenti et al., 1981;

Conio et al. 1987]. Without preorientation in solution, the long relaxation time for polymer motion

prevents adequate molecular orientation within the time frame of the spinning process [Chung, 1986]. An

extensional flow gradient, which is most pronounced in the dry zone, is realized by collecting the

precipitated fiber at a greater linear velocity than that at which the solution exits the spinning die;

increasing the extensional flow field improves the degree of orientation along the major axis of the fiber

[Kwolek et al., 1977]. In the coagulation bath, a shear gradient is created due to the differential between

filament and coagulant flow velocities, which may be reduced by providing for cocurrent coagulant flow

in the vicinity of the fiber. Depending on the relative solvency strengths and diffusivities of the solvent

and coagulant, a skin layer may form on the fiber, resulting in a differentiation between a fiber "skin",

wherein solidification has occurred most rapidly, and a fiber core, where solidification and crystallization

proceeds more slowly and to greater perfection. Thus the final product may be affected by changes in

many processing factors, such as solution and coagulant temperatures, residence time and relaxation time

of the solution/solid mixture in each zone, shear rates at the spin die and in the bath, the magnitude and

distribution of extensional stresses along the fiber path, and the evolution of polymer/solvent/nonsolvent

composition along the spin line. Such processing variables may enable the formation of kinetically-frozen

structures, especially important in the morphology of the fiber skin, analogous to the concept of

mechanically equilibrated structure in polymer glasses.

Postspin heat treatments near the melt temperature may provide the chains with sufficient mobility in

the solid state to "melt out" kinetically frozen crystal forms in favor of the thermodynamically most

favorable form. Table 2.5 demonstrates some reported variations in mechanical behavior for PBA and

PPTA as functions of spin solution composition, draw ratio during spinning, and annealing. A significant

jump in tensile modulus follows upon heat treatment and the average molecular weight increases due to
end linking of chains [Kwolek et al., 1977]. The resulting increase in mechanical properties is illustrated

for PBA in Figure 2.5. Tenacity and modulus both increase with decreases in orientation angle, a

measure of crystallite alignment obtained through x-ray diffraction analysis. Orientation is improved by
increased solution anisotropy in the quiescent state or by an increased extensional flow gradient during
solidification.



Table 2.5

Some reported properties of aramid fibers as functions of process parameters

polymer variable 71in tensile tensile orientationc

strength modulus
(dl/g) (GPa) (GPa) (degrees)

dPBA iso. soln." 2.1 0.56 23.4 33
low aniso.' 2.1 1.09 42.4 20
high aniso.' 2.1 1.24 54.6 16

dPBA free fallb 1.48 0.41 18.0 39
1.90b 1.48 0.50 30.2 37
2.56" 1.48 0.71 36.0 26
3.83 b  1.48 0.89 50.2 22
5.11" 1.48 1.10 60.5 22

ePBA - - 2.11 72.1
ePPTA - 2.53 53.6
fPBA annealed - - 180.
fPPTA annealed - - 139.

solution morphology: isotropic or anisotropic fractions
spin draw ratio: linear velocity of draw wheel over the linear velocity at the die exit
orientation is expressed in degrees as the angle of orientation, which is calculated as the
azimuthal peak width at which the intensity of x-ray scattering in a single reflection falls to
half its peak intensity; the angle is a measure of deviation of the crystallites from perfect
alignment, so that smaller angles correspond to more perfect crystallite alignment
Kwolek et al., 1977, p1390.
Dobb et al., 1977, p237.
Ii et al., 1986, p1809.



Figure 2.5: Effect of heat treatment of a few seconds duration on properties of poly(1,4-benzamide)
fibers [Kwolek et al., 1977].
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2.3 Atomistic Simulation of Dense Polymer Systems

2.3.1 General

The methods of Molecular Mechanics and Molecular Dynamics have proven considerably useful in

the correlation of macroscopic behavior with atomic level structural detail. Usually, these methods are

employed to obtain atomic potential energy functions in systems of experimentally known structure or,
conversely, to elucidate the characteristics of a previously identified region of phase space. The methods

prove especially useful in those instances where simplifying assumptions, such as independent behavior of

single molecules, structural periodicity, or idealized stochastic disorder, are both realistic and quantifiable.

Applications to isolated macromolecules are numerous [e.g. Brant and Flory, 1965; Suter, 1979; Brisson

and Brisse, 1986; Allegra et al., 1970; Scott and Scheraga, 1966; Ooi et al., 1967; Tashiro et al., 1977].
However, the detailed treatment of atomic level interactions and chain packing of macromolecules at glass

and crystal densities are considerably fewer.

2.3.2 Polymer Glasses

An extensive analysis of local structure in glasses originated in the work of Theodorou and Suter
[1985, 1986]. This model entailed the simulation of a vinyl polymer glass, atactic polypropylene at

-400C, as a static structure in detailed mechanical equilibrium. A single chain of degree of polymeriza-

tion (DP) 76 was generated in a cube having edge lengths of 18.15 A by a Metropolis Monte Carlo

procedure using the Rotational Isomeric State (RIS) scheme with fixed bond lengths and bond angles.

The cube filling process employed periodic boundary conditions (i.e. a chain segment which extends

through one face of the cube re-enters through the opposite face) and proceeded by means of an

algorithm which took into consideration long range interactions in order to avoid large vacancies in the

structure. The initial guess so generated was then relaxed to mechanical equilibrium by minimization of

the potential energy of the system with respect to the torsional degrees of freedom of the chain. Here it
is important to note that the final structure need not satisfy the criteria for thermodynamic equilibrium

(i.e. minimum free energy) but instead satisfies the criteria for mechanical equilibrium (i.e. minimum
potential energy in a static structure), consistent with the view of a polymer glass as a state of frozen
liquid disorder. Nonbonded interatomic interactions were calculated explicitly up to a finite distance (R =

2.30, where a refers to the minimum energy separation in the nonbonded interatomic potential function

used, and is pairwise atom-dependent). The contribution to the system potential energy from long range
interactions was then made by assuming a spatially uniform distribution of all species at large distances
(i.e. no long range structural order) and integrating over all species pair interactions from 2.33 to infinity.

Macroscopic and microscopic properties of the glass were deduced from averages over fifteen such



minimized structures. Imposed deformations of the cube were then employed successfully to predict the

elastic constants to within 15% of their experimental values.

This model was extended by Ludovice and Suter [1989] to include polar interactions and was

applied to polyvinylchloride (PVC) of DP 76 (cube edge = 17.84 A), and in a single instance to a chain

of DP 200 (cube edge = 24.64 -A), at 250C. Significant here was the introduction of charged atomic

species, which was handled through the assignment of partial atomic charges to the individual atoms and

the addition of a Coulombic interaction term. A distance-dependent dielectric constant was introduced to

reflect the diminution effects due to induced polarization of the intervening medium on field strength

experienced by charges separated by larger distances. This approach was shown to reproduce consistent

dipole moments and reasonable cohesive energies in glassy PVC. This model of the glassy state has

since been further employed to simulate constrained dynamics in PVC [Ludovice, 1989] and glassy

polymer structure of atactic polypropylene confined between semi-infinite surfaces [Mansfield and

Theodorou, 1989].

2.3.3 Polymer Crystals

Modelling efforts aimed at single crystals of flexible polymers tend to fall into two categories: (1)

predictions of elastic properties of known crystal forms, or (2) derivation of structural and thermodynamic

properties. For elastic constants, the investigator generally assumes that it is the response of potential

energy to deformation that dominates elastic behavior in crystals. As early as 1967 Anand applied the

concepts of atom-based force fields to predict the elastic constants for a known structure of orthorhombic

polyethylene. McCullough and co-workers [1973, 1974] developed a matrix technique for representing

crystalline assemblies of chains of fixed conformation, with consideration of certain chain defects (e.g.

chain kinking or folding). Elastic constants in polyethylene were studied by considering potential energy

interactions within a single chain and between selected nearest-neighbor chains in a given orthorhombic

assembly. Crystal/crystal transformation pathways were proposed by mapping the potential energies of

assemblies of chains as a function of selected packing parameters. However, minimization of the

potential energies with respect to either intramolecular or intermolecular parameters was not attempted.

Tashiro and co-workers also reported a method for the calculation of the three dimensional elastic moduli

of assemblies of chains. This method relied largely upon a priori crystal symmetries to expedite

calculations and was applied to polyethylene (PE), poly(vinyl alcohol), and Nylon 6 [Tashiro et al., 1978;

Tashiro et al., 1978; Tashiro and Tadokoro, 1981].

Tripathy et al. [1981] dealt with the prediction of crystalline packing of chain moleciles by

minimizing the intermolecular interaction energies of assemblies of chains of fixed conformation using a

row formalism for the single chain which enabled one to calculate interactions between infinitely long



chains. However, this formalism was not amenable to extension to three dimensions. From their study

of PE, these authors concluded that, lateral to the chain axis, packing geometry was fixed primarily by

interactions with the nearest-neighbor shell of chains, while for packing energy one required the additional

inclusion of at least the next-nearest-neighbor shell. A limited investigation of poly(vinylidene fluoride)

in a fixed geometry led these authors to conclude that a distance-dependent dielectric term such as that

employed by Ludovice for glasses is most suitable for correct geometry predictions. These authors also

recognized the problems associated with the identification of all local minima in such densely packed

systems.

Recently, Sorensen et al. [1988] have incorporated the simultaneous minimization of packing energy

with respect to both intramolecular conformation and intermolecular packing parameters, a feature

important to the prediction of structure at solid state densities. These authors went on to deduce elastic

constants, using the second derivative matrix of potential energy with respect to the independent variables

at the minimum energy configuration, and vibrational dispersion curves, from which the thermodynamic

quantities were calculated. Again, application to PE and poly(oxymethylene) showed remarkably good

agreement between calculated and experimental values for packing geometry and lattice energy, and

reasonable agreement for elastic constants and heat capacities between 500C and 3500C. Lattice energy

differences were proposed to explain the stability of the two polymorphs of poly(oxymethylene).

Despite this considerable attention to simulations of flexible chain aliphatic polymers, there have

been no reports of application of these methods to the case of the rigid rod polymers. Flory and co-

workers [Hummel and Flory, 1980; Erman et al., 1980] addressed the question of conformational

energetics in p-phenylene polyamides and polyesters, with subsequent predictions of chain persistence

lengths. Tashiro et al. [1977] also performed single chain calculations on the three relevant aramids,

poly(p-benzamide), poly(m-phenylene isophthalamide), and poly(p-phenylene terephthalamide), in order to

elucidate conformational energetics and tensile moduli, based on the assumption that intermolecular effects

contribute negligibly to axial moduli, with reasonable success. Both groups produced parameterized force

fields to describe the conformational behavior of the isolated chain and, in the latter case, its response to

extensional deformation. However, in the solid state one encounters an environment that is both

conformationally constrained and densely packed. Under such strong opposing forces, one cannot expect

to decouple the problems associated with the possibly antagonistic criteria for optimization of chain

conformation and long range crystalline regularity. It is especially important to recognize that inter-

molecular forces may be sufficient to induce changes in chain conformation and, by so doing, influence

the intramolecular interactions. Conflicts between conformational intramolecular constraints and

crystallographic intermolecular constraints are sufficient to induce the formation of nonrational helices or

helix discommensurations such as those proposed by Saruyama et al. [1985]. One may further anticipate

that intermolecular interactions between nonuniform helices or helices possessing some form of constitu-

tional disorder would lead to anomalous packing behavior between neighboring chain segments.



It becomes apparent, then, that some attempts have been made to address the simulation of

polymeric systems in the limit of isolated chain behavior and, in densely packed systems, at the extremes

of crystalline order and liquidlike disorder. However, the emerging materials technologies include

polymers which do not fit neatly into either extreme. For example, even in atactic PVC one observes

local association of polymer segments and gelation. Ludovice and Suter [19871 have proposed subtle

electrostatic interactions suggested by glass simulation results to account for this behavior. The presence

of strong intermolecular as well as intramolecular forces and localized or anisotropic assemblages of

chains or chain segments may be responsible for many of the desirable properties of the new polymeric

materials, but pose particular problems of representation and numerical analysis to the materials

investigator. The task remains to establish the quantitative connection between that which can be

described and designed, and that which is actually observed in such cases.



3. ATOMISTIC SIMULATION OF ORDERED STRUCTURE

3.1 General Approach

The static atomistic modelling methodology assumes that the energy of the material in question may

be calculated from a set of force interactions, corresponding to a total potential energy characteristic of

the structure. It is composed of two fundamental parts: (1) a method for representation of the material as

an ensemble of atoms, or atomic groups; (2) a realistic representation of the forces operating between

individual members of the ensemble. In the ideal crystal representation, the first is defined completely

throughout space by the local coordinates of the conformational repeat unit, in conjunction with

transformations required to describe symmetry-related elements within the unit cell and the three

periodicity vectors which define the replication of the unit cell in space. This periodicity may also be

used to simplify the calculation of interatomic interactions, as will be described later. The approach

which follows begins with the determination of the conformation behavior of the single chain, as

prescribed by intramolecular interactions. From the single chain an explicit multichain structure is

generated which reflects short-range intermolecular interactions in the nearest-neighbor and next-nearest-

neighbor shells, and invokes periodicity simplifications only to estimate the appropriate long-range

compaction forces. The calculations assume that the force interactions may be realistically represented by

empirical bond length, bond angle, and bond torsion deformation functions, and additive two-body

interactions in the case of nonbonded species or species whose interaction distance is conformationally

dependent. Iterations along a decreasing potential energy trajectory are performed using a Quasi-Newton

algorithm with simultaneous variation of all intramolecular and intermolecular degrees of freedom.

3.2 Structural Representation

3.2.1 Chain Generation and Helix Alignment

The generation of the representative chain involves the specification of the set of three dimensional
coordinates locating the atoms or rigid moieties which comprise the chain and entails 3n-3 intramolecular



degrees of freedom, n being the number of atoms (or moieties) in the (finite) chain. This set may be

specified directly in Cartesian space or generated as a function of internal parameters, such as bond

lengths, bond angles, and dihedral angles, as is common in amorphous polymer glass simulations; the

latter has been facilitated by the introduction of the generator matrix formalism of Flory [1969]. In the

case of polymer glasses, successive atom placements are generated stochastically, so that one can not

expect repetition in structure along the chain. One special feature of macromolecular crystals is the

coupling between periodicity along the contour of the polymer chain and periodicity along the lattice

dimension parallel to the chain propagation. In the case of ideal crystals the higher level order of the

crystal implies translational periodicity along the chain and thus the formation of a rational helical

conformation (one may consider rodlike and zig-zag conformations to be degeneracies of the general helix

description); to ensure periodicity, one employs a feature of the multichain ensemble, a lattice dimension,

in describing the structure of the helix and hence the chain conformation. Previous simulations of ideal

crystals have taken advantage of the periodicity characteristic of perfect crystals to generate additional

transformations whose elements involve intermolecular distances and orientations derived from the

dimensions, angles, and symmetries of the crystal lattice [McCullough, 1974; Sorensen and Boyd, 1988].

The result is a perfectly periodic ensemble created by replication in three dimensions of the minimum

basis set of coordinates belonging to a single repeat unit of the rational helix. If one assumes only the

existence of a "conformational repeat unit" (referred to hereafter as CRU), a substructure which is

internally indistinguishable from any other along the chain contour in terms of conformation, the chain

generation method satisfies the more general condition of helical periodicity. The special case of

translational periodicity, or rational helicity, may be superposed by substituting a helix axis translation

parameter for one of the internal degrees of freedom. In these cases, the number of intramolecular

positional degrees of freedom reduces to 3NcRU- 3, where NCRU is the number of atoms in the CRU. This

repeat unit is typically taken to be one chemical repeat, but could just as well be an integer multiple

thereof. This number of internal degrees of freedom may be further reduced through the introduction of

virtual bonds or other conformational constraints.

In the procedure developed here, we treat the polymer chain as a finite segment of the general

coiling backbone polymer. Following Flory [19691, the Cartesian coordinate vector X for all atoms i in a

single chain in the frame of reference of the first atom is generated:

Xi' = Li + T1 L2 + T1 T2 L3 + ... + T1 T2..Ti-.L i  (3.1)

Li = i 0 0] (3.2)



cos(5i) sin(a i) 0
Ti = sin(1i)cos(di) -cos(*i)cos(4 i)  sin(4 i) (3.3)

sin( i)sin (oi) -cos(4i)sin(Oi) -cos( i)

li, Oi, and Oi are the bond length, bond angle complement, and dihedral angle locating atom i in the
frame of reference of atom i-1. In this convention, Oi = 0 corresponds to the trans dihedral conforma-
tion. This may be accomplished using the generator matrix A:

Xi = A[ A2 A3 A4 ... Ai-lAi] , i>1 (3.4)

Aj [T Lj 4 x 4 matrix (3.5)

with A = [ T L 3 x 4 matrix (3.6)

and Ai =Li 4 x 1 matrix (3.7)

In highly ordered polymer structures, it is appropriate to limit the set of unique conformational
parameters to those of the CRU. The helical superstructure may be defined in terms of the translation
along the helix axis (pitch, dh), the directional rotation (twist, Oh) between identical points in successive
structural units, and the radius (Ph), the distance from the axis to a reference point on the chain. The
nonuniform helix is considered to be a perturbation of the uniform conformation. In order to capture
local perturbations in helical structure, this model allows continuous variation of chain conformation
during energy minimization through nonrational as well as rational helix conformations and includes the
special cases of zig-zag and extended chain conformations. For the fully extended (i.e. zero helix twist)
conformation it is necessary to introduce a switch from true helix representation and alignment to an
approximation based on alignment of the major axis of the radius of gyration of the finite chain segment,
in order to overcome the singularity in helix radius and consequent alignment problem which occurs in
the helix treatment. These calculations are presented in greater detail in Appendix A. Imperfect helix
alignment, rigorously interpreted, creates the possibility for steric interference between neighboring chains
at points remote from the region explicitly described in the model. In allowing imperfect alignment of
neighboring helices within the dominant explicit representation one must ensure that the deviation from
alignment be quantifiably small over large distances; that is, either (a) minor, low energy torsional correc-



tions (e.g. discommensurations) spaced at large intervals along the chain are capable of "periodically

realigning" the set of chain propagation vectors or (b) the correlation lengths of the "crystallites" are

sufficiently small relative to the alignment deviation to preclude any significant remote steric interferen-

ces. The first condition may be allowed through minor torsions which produce changes in chain

alignment but which are energetically insignificant (e.g. an amide torsion of only 10 out of plane requires

less than 0.05 kcal/mol, but may alter the backbone contour vector by 20, and can create a local helix

twist displacement of approximately 100); the second condition may be deduced from the minimum

dimension at which energetically-significant steric overlap occurs.

3.2.2 Multichain Packing

The multichain structure is created through successive independent molecular coordinate generation

accompanied by alignment of the primary chain axes. Again, the problem may be computationally

simplified by assuming that individual chains are conformationally indistinguishable, analogous to the

CRU assumption. In this case structure generation reduces to replication and reorientation of the parent

chain conformation at points on a two-dimensional field. In a "disordered lattice", each neighboring chain

may be located by a set of independent parameters describing orientation and translation of that chain

from the "parent" position. In the paracrystalline structure, the vectors joining points in the "net" vary in

magnitude and direction according to an a priori statistical probability. One may further limit the degrees

of freedom by requiring correlation between the orientation of chains located at regular points in the net.

In the perfect crystal, the net simplifies to a regular grid of translationally periodic points with only one

or two characteristic orientations describing the setting of the chain at each of the grid points.

In these calculations, we employ the single conformation and periodic grid assumptions. The

primitive cell parallelepiped has edge vectors A, B, and C, and angles ZAB=ý, ZAC=--, and ZBC=t.

Figure 3.1 illustrates this description of the crystal. We define the translation lengths, A and B, and the

angles, ý, u, and T, that orient the point net with respect to the major chain propagation axis C, chosen

to coincide with the z coordinate axis; the A vector is arbitrarily chosen to lie in the xz-plane of the

parent frame of reference. Chains are located at mA+nB, m and n being positive or negative integers.

Each of the NC independent chains may be oriented about its center of mass through the use of ap-

propriate Euler angles and No-1 chains may be translated (relative to the parent chain) along their axes.

From this selection of A, B, T, %, and r, it follows that, in Cartesian coordinates:

A cos(90°0 -i) B cos(90 0- t)cos' 1
A = 0 B = B cos(900 - t)sinC'

A sin(900-,) B sin(90- ) (3.8)
(3.8)



Figure 3.1: Definition of chain packing parameters.
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cos0' = (cos0 - costcosu)/(sintsinu)
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Rj=mjA+njB in

[ x
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of individual atomic coordinates for each atom i in chain j (which

the frame of the "parent") is accomplished by:

L W R
01

Xi'1[ i1

is located at

I + fjd Wi

cosXjcosW cos(o
-sinXjsinm

sinxjcosvjcosoj
+cosjsilnWj

sinmyjcosoj

-cosXjcosjsinomj
-sinXjcoswj
-sinxjcoswjsino
+cosxjcosoj
-sinmjsinm)

d is the helix translation per structural repeat length (pitch), fj is the translation, expressed as a fraction of

the pitch, of chain j along its axis, and xj, Wi, and j are the Euler angles for placement of the jth chain

(for details, refer to Appendix A: Figure A.2). For the crystalline case, A, B, T, u, and r are constant,

while in the paracrystal these may vary. While the Wj matrix is formulated generally above, in long

chain polymers rj is limited to values near 00 and 1800 due to constraints on helix alignment. Chains

which are mirror images of the parent are handled through multiplication of Wj with an inversion matrix.

Under these conditions, helix translation along its axis may be sufficiently considered by -0.5 < fj < +0.5.
With the introduction of the regular point net the number of intermolecular degrees of freedom becomes

4NC+4, while further simplification via =j-0 and j--=0 yields 2N,+4 degrees of freedom.

3.3 Energy Representation

3.3.1 Explicit Description

In order to calculate the potential energy for a representative crystal form, this method first assumes
pairwise additivity of effective intermolecular interactions. The completely general description of the total
potential energy for a construction consisting of L polymer chains may be represented as:

w.

(3.9)

-cosxjsin4j

-sinXjsinjv

cosVj

(3.10)

where



Ecxpl = Etintra + ; / Et,,i'ne (3,
all chains all chains all chains

SI 1'•1

I and 1' refer to each of the L chains in the structure. Under the simplifying assumptions of structural

repetition within and between chains, the average potential energy per structural repeat unit for a

construction may be calculated explicitly as:

Eiun = Eexpl / LNr (3.

.11)

.12)

= (1/NcNr)[
Nc

I Emintra + ;1
mrn=

m refers to the each of the Nc chains in the structure which are not related by a symmetry operation.

The first term represents the total of the intramolecular interactions. For a single chain of h helix units,

each consisting of k interacting centers, the intramolecular energy may be calculated as:

Eintra =
h-k

I E(i,j)
j=l

(3.14)

where E(ij) is the general form describing the interaction between two atoms i and j. The second term

in Equation (3.13) represents the intermolecular potential energy. For two conformationally identical,

parallel, interacting chains involving only distance-dependent interactions, one may take advantage of the

nondirectional nature of spherically symmetric interactions to obtain the complete potential energy

description from a reduced set of coordinates; this is employed only as an expedient to keep the memory

requirements of the program to a minimum. For two interacting chains m and 1, each of h helical

repeat units consisting of k interacting centers per helical repeat, the interaction energy may be calculated

as (where im refers to the ith atom of chain m):

in general:

Einter
(h-k/2)+k

i=h.k/2

h-k

I E(ji,im)
j=1

(3.15a)

L

SE, inter"

Ism
l#rn

(3.13)



special case for parallel helices:

k h-k h-k k
E intla' = 1 E(j1,im) + I I E(jI,im) (3.15b)

i=1 j=l i=k+1 j=l

3.3.2 Lattice Summation

While the above equations apply generally to multibodied systems, crystalline solids are most often

idealized as perfectly periodic structures in three dimensions. This simplification precludes the representa-

tion of defects such as dislocations or discommensurations. However, it allows one to expedite the

calculation of pairwise interactions through the use of lattice summations in three dimensions. A similar

summation was employed by Anand [1967] in arriving at an analytical equation for the cohesive energy

of the infinite crystal in the absence of electrostatic forces. The simplification is conceptually identical to

a numerical approximation of the Madelung Constant for each new simulation. The translationally

periodic infinite solid in three dimensions may be viewed as a construction consisting of unit cells

displaced from a "parent" by an integer multiple of its edge vectors, where the only unique pairwise

interactions that must be considered are those between the atoms making up one helical repeat unit of the

parent chain and those of one helical repeat unit in each of the neighboring independent chains (i.e. those

chains not displaced from the parent by a symmetry operation). The distance-dependent interaction may

then be computed for an arbitrarily large construction through the use of a lattice summation:

N Ni Ni
El"i = (NCU/Ni) Ai.n Y.L Vn(dj) (3.16)

n=1 i=1 j=l

where i and j refer to the Ni interacting atoms that are crystallographically unique (i.e. belonging to the

NC independent chains). Thus if No=l, Ni is equal to k, the number of atoms comprising one period of

the helix. In general, Ni = kN,. The premultiplier ensures that E ni"' and El'"" are calculated on the

same basis. Vn is the distance-dependant potential function (e.g. dij', dij-6 or dij 12) having multiplier Aij,
for atoms i and j; YAijV,(dj ) is the potential energy of interaction between a pair of atoms i and j

(summation over n implied). The summation over the distance-dependent function in Equation 3.16,

XL Vn(dij), is the lattice sum:

EL Vn(di) = •l Xh E Vn( [d Tij,abc dijabc) (3.17)



= dj - di + XA + XbB + C (

di is the location vector of atom i. A, B, and C are, again, the parallelepiped edge vectors; the

summation coefficients •a, X,, and X• are selected large enough to effectively capture all significant

interactions. Values of Xa, Xb,and h, up to 20 (= 100A for most organic crystals) have been explored in

this work, but in general truncation of X•, X, 3b at values between 4 and 8 (depending upon geometry

and potential energy description) was found to be adequate to approximate the energy of the infinite

lattice to within 0.1 kcal/mole. This is in agreement with the findings of Tripathy et al. [1981], who

concluded that the inclusion of a next-nearest-neighbor shell in the simulation of polyvinylidene fluoride

was required to accurately estimate stabilization energy but that the inclusion of additional shells was

unnecessary.

The above equations may be rewritten for helical periodicity as a summation over only the atoms of

the helical subunits of each crystallographically unique chain. Then Equation (3.16) holds with Ni being

the number of interacting centers in the helical subunit. The lattice sum becomes:

EL Vn(dij) = 1, E, Es Vn( [dTij,abs dijbs]a ) (3.19)

dijabs = s(dj-dij )̂ + dij - di + XA + XB + sF (3.20)

F = [ 0d ] (3.21)

cos(seh) -sin(seh) 0
WS = sin(seh) cos(seh) 0 (3.22)

0 0 1

In this equation, dijA is the vector describing the displacement of a point on the axis of the helix

containing atom j from that on the axis of the helix containing atom i. The latter representation, while

more computationally demanding than the case of translational periodicity in three dimensions, has the

advantage that it can simulate incommensurate helices throughout the lattice. However, time trials using

code optimized for concurrency on an Alliant FX/80 superminicomputer resulted in roughly an eightfold

increase in CPU time for the helical periodicity representation. Under the special condition of helix

(3.18)



commensuration (i.e. C=nd, s=nc, and nEh= m360 0 , m and n being integers) Equation 3.20 reduces to the

form of Equation 3.18.

In our calculations we have retained the explicit potential energy calculation (Equation 3.13) within a

central "core" region consisting of the reference chain segment and its nearest-neighbor shell (3 x 3 x

DP6: an array of chain segments three chains on a side, each segment possessing six monomer units) or

in some cases the next-nearest-neighbor shell (5 x 5 x DPI0). This region contains the dominant energy
contributions which define the geometry of the structure. The explicit calculation allows one to represent

local inhomogeneities such as defects in chemical constitution or tacticity or helix discommensuration and

accounts for over 90% of the total calculated energy (98% in the 5 x 5 x DP10 case). The lattice

summation calculates the contribution to the system energy of interactions with the surroundings, which

ensures an accurate estimate of densification and the total cohesive energy of the condensed phase

structure. Thus the total energy to be minimized consists of both an explicit energy per unit contribution

within a central parallelepiped and a lattice summation contribution for points outside of this paral-

lelepiped:

Eta  = EM i ( KxK array,N, repeat units ) + E' t"'i (Ic Xal I >K/2, I kI >N/2 ) (3.24)

The resulting picture, illustrated in Figure 3.2, may be viewed as a potentially defective pseudocrystalline

parallelepiped embedded within a defect-free crystalline universe. In this manner the model attempts to

capture both geometry and energy features of pseudocrystalline solid structures.

3.3.3 Force Field

The choice of a potential energy force field depends upon the molecular architecture. The potential

energy summation must converge as its range is extended over successive interaction shells. Akin to

earlier work described in the literature [McCullough, 1974; Tashiro et al., 1977; Pertsin and

Kitaigorodsky, 1987], this model uses a modified Valence Force Field (VFF) description for bonded two-

and three-atom deformations, and empirical torsional energy functions for bonded four-atom deformations.

Nonbonded interactions are represented by a modified 12-6-1 Lennard-Jones/Coulomb energy function:



Figure 3.2: Representation of the packing structure as a local domain, described explicitly in terms
of mutable atomic positions, embedded within an implicit perfect crystal.

Explicit Domain: 3 x 3 x DP 6



Eij = Aij. 12/dj 12 + Aij 6/dij6 + Aij.1/(Ddij)

where Aij,12 = 0.5 Aij,6 (ri + r,)6  (3.26)

Aij,6 = -(Ei>)1 2 (r, + rj)6  (3.27)

Aij, = qiqj / 41co (3.28)

D(dij) =1 ; dj < d* (3.29)

= DB exp( -c/dij ) dij > d*

K = ln(D.) d* (3.30)

i and j refer to the atoms separated by the distance di,; E and r are atom contributions to the van der

Waals potential energy well depth and location, respectively, and the q are partial atomic charges, which

may be derived from data on low molecular weight compounds or estimated using well-established

quantum mechanical methods. Eo refers to the vacuum permittivity. A distance-dependent dielectric

constant has been employed, using the approximation of Block and Walker [1973] to reflect the different

dielectric environments experienced by short and long range charge interactions. At short distances, the

effective dielectric constant is unity; at larger distances, it asymptotically approaches its static bulk value,

Dg. The constant Ki is chosen to ensure convergence of the two portions of the dielectric function at the

crossover distance d*. A quintic spline in D between 1.0 < di/d* < 1.1 is used to join the regions

smoothly. A similar attenuation was employed with good results in the modeling of a polar polymer

glass [Ludovice, 1989]. It is readily demonstrated that interactions of higher than third order in inverse

distance (e.g. the sixth order and twelfth order induction/dispersion terms) are convergent as interaction

distances become infinite (Appendix B); such is not necessarily the case of the first order electrostatic

term. To ensure convergence of the summation over the electrostatic interactions one requires that the

structure be electrically neutral; the electrostatic term then becomes equivalent to a summation of

interactions only of dipoles and higher moments, which interact as functions of distance of third order or

higher. Secondly, it is necessary in this method that the characteristic crossover distance d* be constant

for all atoms in the structure, in order to ensure that there is no net accumulation of residual electrostatic

interaction as an artifact of the boundary between explicit energy calculation and lattice summation.

The representation of electrostatic interactions as partial atomic charges merits further discussion. An

alternative to the use of a partial charge representation for polar species and subsequent use of a

Coulombic potential would be to represent the polar character of each electrically neutral moiety by its

dominant, or lowest nonzero, multipole and then to employ multipole interaction potentials. For all

electrically neutral conformational subunits, the zeroth moment (total charge) is, by definition, zero. For

(3.25)



the amide moiety, the first nonzero moment is the dipole moment, and for the phenylene ring it is, by
symmetry, the quadrupole moment. All higher nonzero moments depend on the choice of the frame of
reference [Gray and Gubbins, 1984] and are of secondary importance. Thus one may employ an
electrostatic interaction potential involving dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole
interactions, as shown in Equation 3.31.

Eel'  = [1/4irD(dij)o] [ (-jixxj'/dij3)(2cos9 cos02-sin6 sin02e) (3.31)

+ (3/2dij4)(iiej (cos0 1(3cos202-1)-2sin6 sinO2cos0 2cos0} - 4j i (cos8 2(3cos 2
1 -1)

-2sine1sine 2cos01cosp})

+ (381 8/4dij5 )(1 -5cos201 -5cos 2e2
+1 7cos2 1cos 202+2sin2 01 si 2

2COS20
-16sinOjsin 02cos 0$cosO 2cos0 ) ]

01, 02, and ( are angles of orientation (see Appendix B: Figure B.1 for details). This representation
requires the identification and assignment of higher order moments to subunits of the polymer chain. If
we may assume that the distances over which interactions occur are large with respect to the separation
of the poles of the relevant electrostatic moment, then the field may be approximated by a set of charges
located at vectorial positions ri. One may then define a series of multipole moments [Maitland et al.,
1981]:

zeroth moment: total charge q = X qi (3.32)

first moment: dipole 4t = X qi ri (3.33)

second moment: quadrupole 8 = X qi ri ri (3.34)

third moment: octopole O = - qi ri ri r, (3.35)

etc.

The use of partial atomic charges has the advantages that (1) the charge may be selected to reproduce
any higher order moments for neutral moieties, (2) select atomic substitutions are readily handled through
introduction of atomic potential parameters characteristic of the new atoms, and (3) the energy calculation
is entirely a function of atomic separation distance, and not orientations of groups of atoms. This last
feature facilitates calculation and reduces the simulation time requirements. This is especially crucial to



the implementation of the rapid lattice sum calculation, which assumes that interactions are only distance-

dependent.

3.4 Prediction of X-ray Scattering

3.4.1 Structural Contributions to Intensity

Information about the microstructure of matter may be obtained experimentally only by indirect

means. The most common approach to materials analysis proceeds by deduction of atomic structure from

observations of scattered radiation; this is the method of conventional crystallography, whereby one

proposes a unit cell which is consistent with, but by no means unique to, the observed scattering of x-rays

at wide angles. Our detailed atomistic modelling approach instead predicts stable structures from a priori

considerations of potential energy. This process of construction from atomic building blocks may be

extended to the a priori prediction of the unique pattern of scattering of x-rays to be observed from such

energetically stable structures. In this sense, our calculation of theoretical x-ray diffraction patterns is

conceptually the reverse of the conventional crystallographic method and ensures the additional constraint

of stability of structure with respect to potential energy.

The scattering of x-ray radiation at wide angles (i.e. at angles greater than 50 divergent from the

incident beam) is the primary source of indirect information concerning atomic structure, where the

scattering bodies are roughly 2 to 20 A apart. Here, the incident radiation interacts with the electron

cloud distribution centered around the atomic nuclei. Scattering, or secondary emission associated with

the electrons, takes the form of coherent scattering, which is unmodified in wavelength and phase, and

incoherent scattering, which is modified. The latter type, frequently termed Compton scattering,

contributes to the diffuse background in x-ray diffraction and is not related to structural features, and for

this reason is not considered further in the following discussion. The coherent scattering power ft of an

atom j at zero scattering angle 20, where all scattering is in phase, increases in proportion to the number

of electrons around the atom and decreases with increasing scattering angle.

For two scattering bodies displaced from each other by the vector r, we define the scattering vector

S as:

S = (s -so)A/ (3.36)



where so is the path of the incident radiation and s is the path of the diffracted radiation, forming an

angle of 20 with the incident beam path. k is the wavelength of radiation. Thus the phase difference of

the diffracted radiation is 2nrS.r and the magnitude of the scattering vector is given by Equation 3.37.

We may express fj, the atomic scattering factor alternatively as fj(S) or fj(20).

= Isi =I (2sine)/X (3.37)

For a system of N atoms, the inte

intensity Ie of x-rays scattered by

conjugate F'(S) as follows:

I(S)

F(S)

ensity of the scattered radiation may be expressed in terms of the

an electron by defining the structure factor F(S) and its complex

= le F(S) F'(S)

N
= , ff(S) exp(2ntiS-r1 )

The nature of the problem then becomes to calculate the structure factor. In crystalline systems, where

the entire structure is simply a composite of identical unit cells, one proceeds by describing all the atoms

i=l to N in terms of the unit cell k to which the atom belongs and the atom j within the unit cell which

corresponds to i.

IC(S) =

G(S)F,,(S)

I, G(S)Fcr(S) G'(S)Fr*'(S) (3.40)

(3.41)1= exp(2xiS-Rk) , fj(S) exp(21iS.rj)
k

where now Rk is the placement vector which locates the kth unit cell and rj is the local placement vector

which locates the jth atom within the unit cell. By this decomposition of the spatial description, it is

clear that:

(3.38)

(3.39)



ri = Rk + rj

By invoking the familiar reciprocal lattice coordinate system, defined by

a* = (bxc)/V b" = (cxa)/V c * = (axb)/V (3.43)

(3.44)V = a.(bxc) = b.(cxa) = c.(axb)

and expressing the scattering vector in reciprocal space and the coordinates of the jth atom in the unit
cell in term of its fractional (real space) coordinates (xi, yj, and zj), one can take advantage of the Laue
functions for G(S) in the limit of a very large parallelepiped crystal having sidelengths La, Mb, and Nc,

to obtain the following expression for the scattered intensity [Tadokoro, 1979]:

I(hkl) =

where

Fcr(hkl) =

Ie (L2 M2N2 ) Fcr(hkl)Fcr*(hkl)

= ha* + kb* + Ic*

= xja + yjb + zjc

Iz f(S)j=1

(3.45)

(3.46)

(3.47)

(3.48)exp[2 1ti(hxj + kyj + lzj)]

n
•1 fj(S) [cos21r(hx, + kyj + 1z) + isin2x(hxj + kyj + zj)]j=1

The summation in Equation 3.48 is taken over n, the number of atoms in the unit cell. h, k, and I are
indices defined by

S-c = I

(3.42)

S-a = h S-b = k (3.49)



Fc(hkl) Fcr'(hkl) = Fcr(hkl)1 2

Isr(hkl) = I (L2M2N2) X fj(S) [cos 22x(hxj + ky + lz) + sin22r(hxj + ky + lzj)] (3.50)
j=1

This is the structural contribution to diffraction intensity for a static periodic structure in the

crystallite size. Since the atom positions are fixed on a three dimensional composite lattice,

diffraction pattern consists of a set of Dirac spikes of magnitude Icr(hkl) whose positions are

the vectors S(hkl).

3.4.2

limit of large
the

described by

Modifications to the Structure Factor Intensity

Thermal Motion. In practice, several experimental factors contribute to modify the observed intensity.

At finite temperatures the atoms vibrate about their lattice points. If we presume that these vibrations are

isotropic for all atoms, then we may express the temperature factor correction to observed intensity in

terms of the mean square displacement ,si2 of each atom i. This effect is indistinguishable from that

caused by isotropic displacements considered in the Hosemann theory of paracrystals of the first kind

[Hosemann and Bagchi, 1962]. For simplicity, we may assume a single common 1.,2 for all atoms and

carry the temperature correction term out of the summation in Equation 3.50. The premultiplier becomes:

exp(-2x2S2s, 2) (3.51)

= expl -8ir 2p 2(sin2O%2)

In reality, due to atomic bonds and directionally-correlated interactions in the crystal, such motions

are quite probably anisotropic. As a first approximation, one would expect the greatest anisotropy to

occur between motions parallel to the chain axis and those lateral to it. To reflect this anisotropy,

Equation 3.51 may be modified by recasting the dependence upon (sinO/X) 2 in terms of h2, k2, and 12, the

squared indices of the reflection, and introducing two mean square displacements •t,2 and h±±2. The

anisotropic thermal correction may then be expressed as:

= expI -2(r2 ((h2+k2 )g.t2 + 12p1
2

] (

Using the relation we obtain finally

(3.52)



Absorption. The absorption factor A reflects the reduction in scattered intensity due to absorption of
radiation as it travels through the specimen. This factor depends upon specimen size, shape and
elemental composition, and the wavelength of x-rays used. The absorption correction is therefore
addressed in the discussion of experimental x-ray measurement.

Multiplicity. The multiplicity factor J reflects the number of identical reflections which superimpose
during the scattering experiment. This depends upon the crystal system and the distribution of crystallite
orientations within a polycrystalline sample. For example, for the cubic crystal system and completely
random orientation of crystallites, the vectors a', b', and c' are of equal magnitude and equally
distributed in all orientations; thus only the total magnitude of I hI + I k + [ I I is significant. The
multiplicity in this system of (hOO) = (OhO) = (00h) is 6, while the multiplicity of (hhh) is 8 and that of
(hh0)=(h0h)=(0hh) is 12. By including the entire set of hkl indices greater than, equal to, and less than
zero in the calculation of the set of intensities I,(hkl) and summing redundant reflections, multiplicity due
to crystal symmetry is implicitly considered. For the distribution of crystallite orientation in fiber
samples, we assume cylindrical symmetry about the molecular chain axis, c in our convention, and
uniform distribution of crystallite orientations lateral to this axis. In this case, those reflections which

scatter in the equatorial or meridional planes contribute equally to two reflections, resulting in a halving
of each reflection intensity prior to summing of redundant reflections, while those which scatter within a
quadrant contribute equally to reflections in all four quadrants, resulting in a quartering of each reflection
intensity.

Polarization and Lorentz Factors. The x-rays scattered by the electrons are plane polarized to a
degree that is dependent upon the scattering angle. This correction may be expressed as:

P(hkl) = (1+cos2O)/2 (3.53)

The Lorentz factor corrects for the relative fraction of time in which a given family of planes exists in a
narrow angular range to reflect x-rays and is a function of the inclination of the planes to the axis of
rotation of a crystal or the fiber axis in the case of cylindrical symmetry. Tadokoro [1979] suggests the
use of the correction:

L(hkl) = cosO/[sin20(cos 2 -sin 20)' 12] for all reflecting planes (3.54)



Here, 0 is the angle between the normal to the reflecting planes and the fiber axis. However, de Wolff

[1962] suggests that in the case of fiber patterns, more satisfactory results may be obtained using:

L(hkl) =

L(001) =

(sin20 cosO sin) ~'

(t sin20 cosO)'

for general reflections

for meridional reflections

t is given to a reasonable approximation in terms of the azimuthal angle 13P2, in radians, at which the

intensity of the reflection falls to one half of its peak value (at 3=0 0), by

t = 0.81531,

The final observed intensity, then becomes:

Ilb(hkl) = A J M(hkl) P(hkl) L(hkl) I,(hkl)

In application, the structures generated by our model are highly ordered, pseudocrystalline geometries

which deviate only locally from the ideal crystal description. Thus we consider it appropriate to apply
the intensity analysis for periodic lattices to our structures; this is also consistent with the aforementioned

view of our model as a local structure embedded within a perfect crystal matrix. The calculation first

assumes a "pseudo unit cell", consisting of the domain of explicitly represented atoms or some sub-

structure thereof. In this work, we have selected a substructure composed of one helix repeat unit or an

approximation thereof from each chain type placed independently on the lattice. Then the Cartesian

coordinates of all atoms comprising the cell are converted to fractional coordinates in a straightforward

manner (see Appendix B). For all combinations of h, k, and I having I h I, I k I, or I 11 less than

some preselected value (e.g. 6 to 9) we calculate the scattering vector, from which one obtains the

scattering angle 20 by Equations 3.46 and 3.37 and the azimuthal angle 03 by use of the relation

(s-c / Is I I )

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)cos3 =



which for a fiber sample oriented perpendicular to the incident beam, simplifies to

cosl3 = (S.c / Is Ic) (3.60)

The structure factor square F,2(hkl) is obtained from a summation of Equation 3.50 over all atoms in the

pseudo unit cell and the final intensity is corrected for thermal motion, polarization and Lorentz factors,

Equation 3.58, and normalized by the most intense observed reflection; in this manner, all factors which

moderate equally the intensities of all reflections are eliminated and we obtain a set of relative observable

intensities which are directly comparable to experimental x-ray data. The following chapter details the

specifics of application of these calculations to the case study of PPTA.



4. APPLICATION TO POLY(P-PHENYLENE TEREPHTHALAMIDE)

4.1 Introduction

This model was developed primarily with an interest in the particular features of highly extended,

stiff chain polymers such as the wholly aromatic polyamides, polyesters, and other conformationally

restricted long chain polymers. In the solid state, these materials are characterized by a high degree of

molecular alignment. However, as a result of their relative inflexibility, they do not exhibit the

conventional crystalline domain/amorphous domain segregation typical of more flexible polymers, as

evidenced by the lack of an amorphous halo in x-ray diffraction measurement [Northolt and Van Aartsen,

1977]. Instead, the solid state structures tend to arrange into condensed phase nematic arrays. Aramid

fibers specifically exhibit evidence of paracrystalline distortions of the second kind along the chain

alignment axis. The modelling approach described above lends itself to the analysis of imperfection

along the chain contour and the elucidation of the nature and molecular scale source of multiple orders

(i.e. polymorphism).

For purposes of developing and testing the model we directed out attention to the in depth analysis

of poly(p-phenylene terephthalamide). This structure possesses several features which recommend it for

our purposes. First, PPTA has been discussed extensively in the literature and is the only such rigid rod

polyamide for which there exists a sufficient set of experimental data, encompassing crystallographic and

macromorphological descriptions, thermo-mechanical behavior, solution behavior, radiation absorption, and

response to chemical exposure. Second, as was reviewed in the discussion of constitutional isomerism, a

procedure exists to introduce controlled atomic substitutions on the parent chain and to vary the isomeric

order of the PPTA derivatives; this is particularly useful in studying in a stepwise manner the sensitivity

and range of applicability of the model. Third, PPTA is readily available, in the form of Dupont's

Kevlar® fiber, for additional processing and testing against model predictions.

Even on a stand-alone basis, PPTA possesses several features of particular interest for molecular

analysis. 1) This polymer consists entirely of alternating para-linked phenylene rings and amide linkages;

each of these rigid moieties is a polyatomic group which acts in a concerted manner. The phenylene

moiety may rotate without significant effect on the helical chain conformation, but with possibly major

impact on chain packing. 2) The amide moiety is known to form intermolecular hydrogen bonds between



proximate hydrogens and oxygens. 3) There is the possibility for further energetically-favorable

interactions due to rt-bond overlap between adjacent phenylene and amide moieties within a chain or

between proximate phenylene moieties between chains. These features create a vastly different environ-

ment from the neutral, flexible chain aliphatics addressed by other investigators. New problems of both

intramolecular description and intermolecular behaviors must be addressed in order to produce a

meaningful picture by atomistic modelling.

4.2 Chain Description

The polymer chain is described as an ensemble in Cartesian space of its constituent atoms, all of

which are expressed explicitly. The repeat unit of the polymer chain is illustrated in Figure 4.1. All

atoms in the chain are treated as point centers of force for calculation of interaction energies. We hold

all bond lengths and bond angles constant, with the exception of the eight "backbone" angles (labelled i5

through Og in Figure 4.1); during the course of this work, we discovered that the optimization trajectory

was considerably improved when these crucial angles were allowed to change during ring rotation. The

phenylene rings are represented as rigid, hexagonal constructions of the ten bonded constituent atoms.

The bonding at the trivalent amide carbons and nitrogens in the amide group are fixed in the planar sp2

hybridization configuration. In this way the number of internal degrees of freedom was reduced from

eighty-four to fourteen: the eight bond angles and six torsion angles (01 through 06 in Figure 4.1) of the

structural unit.

4.3 Parameterization of the Force Field

Where possible, we have drawn upon proven force field parameterizations for use in this model.

The reasons for this are twofold: first, the parameterizations taken from the literature have already been

shown to reproduce structural features and thermodynamic quantities in related low molecular weight

models and thus have some degree of credibility prior to their usage here; second, such a selection is

philosophically compatible with the idea of the self-consistent force field and transferability of atomic

parameters from one system to another, a concept central to the generalization of atomistic modelling

methods.

A simple VFF description was employed for the eight bond angles, using values taken from Tashiro

et al. [1977]. Table 4.1 gives the important parameters for the VFF description, along with all the bond

lengths and bond angles required. Parameterization of the 12-6-1 nonbonded interatomic potential energy



Figure 4.1: A segment of poly(p-phenylene terephthalamide) (PPTA) with all torsion angles in their
zero positions.
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function for the amide moiety has been taken directly from the work of Lifson and co-workers on the

development of a self-consistent force field encompassing low molecular weight alkane, alkene, amide,

and carboxylic acid crystals [Lifson and Warshel, 1968; Warshel and Lifson, 1970; Hagler et al., 1974;

Lifson et al., 1979]; this force field has been designed to reproduce hydrogen-bonding interactions

implicitly. For the carbons and hydrogens of the aromatic rings, we initially attempted to use the values

suggested by Lifson and co-workers for aliphatic carbons and hydrogens, as has been done previously by

others [Bernstein and Hagler, 1978; Hummel and Flory, 1980]. The van der Waals radii for the aromatic

carbons were eventually reduced by ten percent from the aliphatic carbon values suggested by these

investigators, in order to improve the torsional energy approximation for ring rotation (see below). We

deem this slight correction to be minor in light of the margin of error inherent in such estimates of van

der Waals radii.

The partial atomic charges required for the atom-centered electrostatic interactions involving

phenylene ring atoms, however, are not generally available. To estimate these, it was necessary to

embark upon a series of calculations using various semiempirical quantum mechanics packages for a

homologous series of low molecular weight aromatic amides. In each case, molecules in the series were

completely optimized with respect to bond lengths, bond angles, and bond torsions, subject to the

restriction of planar hexagonal phenylene rings, in accord with the model description. Results for the

members of the series were compared for internal consistency of geometry and charge distribution.

Where possible, individual members were checked for agreement with available experimental data for ring

torsions and nonzero electrostatic moments. The procedures used and results obtained are detailed in

Appendix C. The final atomic charges were chosen to reproduce dipole and quadrupole data through

assignment of partial charges and to ensure local charge neutrality in the amide N-H, the amide C=O, and

the phenylene ring. The calculated charges on the atoms of the amide group are comparable to those

proposed independently by Hagler et al. [1974] and used in conjunction with their induction/dispersion

parameters; the latter were retained in our work for purposes of consistency. Partial atomic charge and

nonbonded potential energy parameters for all atoms are tabulated in Table 4.2.

For the C-N amide torsion, we have used the potential energy function of Jorgensen and Swensen

[1985], derived from NMR data on N-methylacetamide. The interaction between the adjacent ring and

amide moieties prefers coplanarity of the bond planes of these two groups in order to effect the

delocalization of electrons in x-bond orbitals; however, this coplanarity is precluded by steric overlap

between the hydrogens on the ring and the pendant atoms (O and H) on the amide group. Numerous

(disparate) estimates for the phenylene-amide correlated torsion energy have been reported, indicating the

general lack of consistent quantitative information on this type of distributed interaction. Estimates have

originated from semiempirical quantum mechanics calculations [Laupr6tre and Monnerie, 19781, t-bond

group additivity considerations [Tashiro et al., 1977, p413], and empirical fitting to experimental crystal

data for low molecular weight analogues [Hummel and Flory, 1980]. We have further explored this



Table 4.1

Fixed bond lengths and Valence Force Field (VFF) constants for variable backbone angles

Angleab  2 Bond I
(kcal/deg2 ) (A)

CCoO (2) 0.088 C,-Car 1.40
CCoN (O1,17) 0.088 Car-H 1.10
CONH (14) 0.050 C,,-C, 1.50
CONC (*3,15) 0.088 Cr-N 1.41
CNH (O1) 0.050 C,=m- 1.24
NCoO (Os) 0.088 Cam-N 1.39

N-H 1.00

Angle bending energy = ki (i - 0o) where io = 120* in all cases.
b Co is the sp2-carbonyl carbon atom

Table 4.2

6-12 Nonbonded atomic potential parameters and elementary charges used in the electrostatic potential

Atom e r qa
(kcal/mole) (A) (elementary charge)

C (phenylene, 1 and 4) 0.039 1.96 -0.06
C (phenylene, 2 and 3) 0.039 1.96 -0.12
H (phenylene) 0.038 1.37 +0.14
C (amide) 0.147 2.03 +0.38
H (amide) 0.0 0.0 +0.28
N 0.169 1.96 -0.28
0 0.232 1.60 -0.38

a The value for the bulk dielectric constant DB
distance d* was 3.3A.

was 3.5, and the Block-Walker crossover



torsion using AM1 semiempirical quantum mechanics calculations, as described in Appendix C. Figure
4.2 shows several energy functions reported in the literature, along with AM I results for the rotation of

the phenylene ring connected to the amide nitrogen in benzanilide. Figure 4.3 shows similar predictions,

including AMI rotation results for the ring connected to the amide carbon in benzanilide. For paramet-

erization purposes, we have employed two-parameter cycloidic torsion energy functions which, in

combination with the nonbonded atomic interactions, are consistent with the available torsional energy

estimates. These, along with the amide torsional energy function of Jorgensen and Swensen, are

reproduced below, with parameters presented in Table 4.3. Because the nonbonded interactions are
retained explicitly for interactions between atoms in the ring and the amide group, the torsional potentials

describing ring rotation may be attributed to the phenomenon of electron distribution between the two
moieties.

Eu
tramide = , Va,1 (1-cos) 2) + 2 Va,2 (1-cos24 2) [same for 04] (4.1)

Edel,ph eylm e'c -C = , V d (1 + cos(y)) (4.2)

45 = I(y-mdsin(y)) + 7r [same for (45-01)1

Edel,phey lene-N-H = , Vd (1- COS(Z)) (4.3)

06 = (z-mdsin(z)) [same for (6"-03)1

4.4 Simulation Procedure

The approach to structure optimization plays a major role in the validity of model predictions. Time

and computational constraints limit the thoroughness of any such general investigation. Approaches to.
analysis by simulation may, however, be classified according to the goals they seek to achieve. Where
one is interested primarily in elucidation of a known structure or defined region of parameter space, or in
comparisons between such predefined domains, it is possible to take advantage of previous (e.g.

experimental) information to limit the range of investigation, making it relatively straightforward to
identify-minima of immediate interest and to establish the nature of the local parameter space. This
solution contains no assertions about the global nature of the minima thus identified and may depend
strongly upon the choice of a starting point. Where one is concerned with a first principles approach to



Figure 4.2: Rotation energy functions suggested for the phenylene ring connected to the amide
nitrogen in benzanilide: (a) x-bond additivity [Tashiro et al., 1977]; (b) empirical fit
[Hummel and Flory, 19801; (c) PCILO calculation [Laupratre and Monnerie, 19781; (d)
AMI calculation (this work); (e) composite force field (this work).
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Figure 4.3: Rotation energy functions suggested for the phenylene ring connected to the amide
carbon in benzanilide: (a) it-bond additivity [Tashiro et al., 1977]; (b) empirical fit
[Hummel and Flory, 1980]; (c) PCILO calculation [Laupr~tre and Monnerie, 1978]; (d)
AMI calculation (this work); (e) composite force field (this work).
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Table 4.3

Intrinsic torsional energy function parameters'

Torsion Va,~b Va,2b Vdb  md

amide (02,04) 2.8 21.2

diacid ring (5,5-01) - - 9.0 0.2

diamide ring (46,06-03) 13.0 0.4

asee text for details, Equations 4.1 - 4.3
ball values in kcal/mol



materials investigation, it is necessary not only to locate minima, but to establish confidence in their

global relation. Unfortunately, this may only be assured by investigating the whole of parameter space

and identification of all minima therein, a time intensive process whose end cannot be a priori guaran-

teed. The latter problem necessitates an initial grid scan of parameter space, with a decision criterion

established to identify relevant regions of the parameter field for further analysis. This approach, of

course, suffers from grid density dependencies and response of the minimization algorithm to the

convolution of the multivariate phase space.

Our analysis to identify likely structures for polymer packing proceeds according to the following

strategy. As an initial approximation, we assume that chain conformation and chain packing considera-

tions may be decoupled and considered independently. This is the most common approach taken in

molecular mechanics and x-ray structure factor fitting procedures and, as was mentioned previously, is

where most previous efforts have stopped. As a result of this approximation, we may first employ single

chain simulations to identify those conformations which are of lowest energy and are most likely to meet

packing density criteria. In addition, we are primarily interested in the highly oriented structures

produced during fiber spinning. Such elongational processing steps are known to favor the formation of

extended chain conformations prior to vitrification or crystallization and concurrent loss of conformational

mobility. Based on this, we exclude conformations of low helical pitch from further consideration.

As a second step, we perform successive grid scans of the multivariate packing parameter space

using fixed chain conformations at a predetermined packing density, initially without minimization of

energy with respect to intermolecular packing parameters, starting with conformations of smallest helix

diameter; we conclude the search with those conformations which are of sufficiently large helix diameter

to preclude the realization of reasonable packing energies in the entire parameter space. In some cases,

such scans are repeated with minimization of potential energy with respect to packing parameters. The

grid density was chosen based on experience with the polymer in question and reflects a subjective trade-

off between computation time and comprehensiveness. Table 4.4 lists the starting point mesh parameters,

ranges, and mesh densities employed in PPTA.

In the third step, we drop the approximation of independent intramolecular and intermolecular

behaviors and concentrate on those areas of conformation/chain packing space that signal the location of

low energy local minima. The relevant domains thus identified are searched by means of nonlinear

multivariate potential energy minimizations using an unconstrained Davidon-Fletcher-Powell Quasi-Newton

algorithm with "approximate Hessian" estimation [Fletcher, 1972].



Table 4.4

Starting point mesh used in multichain search-minimization

Parameter Range Step Size

interchain distance (A) 4.5 - 9.0 2.25

interaxial angle (degrees) 30 - 90 20

chain placement angle (degrees) 0- 360 20

chain translation' -0.5 - +0.5 0.25

achain translation is expressed as a fraction of the helix translation distance; values
outside of this range are redundant with respect to rotation/translation



4.5 PPTA Simulation Results: Single Chain

In order to reduce the parameter space of relevance for chain packing calculations, we first looked

for the preferred conformation behavior of the isolated chain. For this purpose, we consider the PPTA

chain as a string of torsion angle triplets, composed of the phenylene-C-N, amide, and C-N-phenylene.

torsions (03, 02 and 01, respectively, in Figure 4.4), each triplet being identical and alternating in order

along the chain due to the symmetry of the monomer units. This simplification arises from the

assumption that intramolecular interactions are essentially decoupled across the rigid phenylene moieties.

Since the amide torsion exhibits a strong preference for the trans or cis conformation, it suffices to study

the conformation energy as a function of 0, and 03, with 02 always assuming a position of minimum

energy. Figure 4.4 shows such an energy contour map for benzanilide with the amide torsion optimized

about its trans conformation; a similar map with minimization of the amide torsion about the cis

conformation exhibits minima near [300,1500] and [1500,300], but these are energetically less favorable

(by 4-5 kcal/mole of repeat units) compared to the trans amide conformation. Of the possible monomer

conformations, only those of a highly extended character will pack to densities realized in the solid state

for PPTA without unreasonable penalties in intermolecular energy. Based on this, we have concentrated

on those conformations having rodlike or crankshaftlike conformations for chain packing studies. Of

these, only the all-trans rodlike conformations appear in the final list of lowest energy packed structures,

as will be seen in the next section. Table 4.5 lists the internal coordinates of the lowest energy rodlike

conformations assumed by the PPTA chain in the current force field representation. This essential

rigidity ensures that chain alignment plays a dominant role in packed structure formation.

4.6 PPTA Simulation Results: Multichain

4.6.1 Selection and Presentation of Results

A screening of the packing energy using the most probable conformations in a general grid assembly

and minimizing simultaneously with respect to both intramolecular and intermolecular degrees of freedom

indicates considerable correlation between chain orientations in the packed structures. This is demon-

strated in Figure 4.5, where the concentration of packing minima along the diagonals of a plot of total

potential energy versus chain setting angles o (for a lattice composed of two independent chains initially

in the all-trans conformation with successive phenylene rings oppositely rotated; o is defined by the

rotation of the first amide plane of the chain out of the AC-plane of the parallelepiped, Figure 3.1) is

indicative of the predominant formation of sheetlike structures in PPTA; similar maps were found for

packing of chains in other initial conformations.



Potential energy contour for benzanilide as a function of the ring torsions 01 and 03.
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Table 4.5

Most favored isolated chain conformations

Structure

Internal Coordinate

Bond Angles (degrees)

Car-Cam-N
Car-Cam--O
Cam-N-H
Cam-N-Car
Car-N-H
Car-N-Cam
N-Cam-=O
N-Cam-Car

Torsions (degrees)

N-Cam-Cam-N
Cam-Cam-N-N
Cam-N-N-Cam
N-N-Cam-Cam

Out-of-Plane Ring Rotations
(degrees)
diacid phenylene
diamide phenylene

Helix Parameters

Pitch (A)
Twist (degrees)

Potential Energy
(kcal/mol of repeat units)

119.2
120.6
117.4
124.8
117.7
125.0
120.3
120.5

119.1
120.5
117.2
125.1
117.6
125.2
120.4
120.5

55.0
8.9

62.6
9.0

-0.4
8.5
1.1

-9.0

151
33

13.1
0

0.0

13.1
128

0.469



Figure 4.5: Energy contours for packing of extended conformations of two independently orientable
chains of like conformation of PPTA, as a function of the two setting angles o( and oz.
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From such maps, those structures having the lowest total potential energy were identified as possible

crystal structures. By means of the scan-and-search procedure, a listing of local minima is obtained; the

length of this listing depends on the severity of the convolution of the potential energy hypersurface, the

number of reasonably advantageous packing geometries available to the material in question, and the

comprehensiveness of the scan-and-search employed. If we are only interested in the most probable

polymorphs, we may discard as irrelevant those minima whose Boltzman-weighted probabilities fall below

a designated significance level. That is, for some cut-off criterion 0 < f < 1:

AEi = Etot, allmorph i tot, global minimm allomorph - 2 8E (4.4)

where SE is the estimated accuracy of the energies calculated

discard all allomorphs i such that: exp( -AEi/RT ) < f (4.5)

For a 8E of roughly 1 kcal/mol and a cut-off criterion f of 0.2, or 20% probability of occurrence, at

298K, the cut-off in energy for a significant local minimum above that of the global minimum cor-

responds to 2.9 kcal/mol of repeat units (12 cal/g). On this basis, we discard those local minima whose

energy exceeds this criterion to obtain a final basis set of significant energy-minimized structures.

The final analysis suggests up to eight distinct and viable crystalline polymorphs, all having cohesive

energies within a variance of 6%, or a range of 2.4 kcal/mol (10 cal/g) between the highest and the

lowest energies. These eight structures are demonstrated in the sets of orthographic projections presented

in Figure 4.6(a)-(h). In these projections, the leftmost perspective looks down the chain axis, and van der

Waals spheres (the dashed lines) have been included to illustrate the density of atomic packing in these

structures. The middle perspective is perpendicular to the ac-facet of the structure, and the rightmost

perspective is orthogonal to the previous two. In these perspectives, the carbons are black, the amide

hydrogens white, the nitrogens lightly shaded, the oxygens more darkly shaded, and the ring hydrogens

have been omitted from the second two perspectives for clarity. Quantitative description is given in

Table 4.6. It may be noted that in the construction of this model we have intentionally favored a general

parallelepiped description for chain packing, involving the vectors A, B, and C, over a presumed unit cell

or superposition-of-unit cells description. There are also some minor quantitative differences between the

parameters listed in Table 4.6 and those which may be deduced from Figure 4.5, due to refinements of

the model and elimination of redundant structures prior to tabulation in Table 4.6. For ease of

clarification, we have converted the structural parameters in Table 4.6 from the generalized parallelepiped

description to a parameter set more amenable to crystallographic interpretation and have reported

parameters in both conventions. The appropriate unit cell descriptions were selected from the infinite



Table 4.6

Multichain energy minimization results: structural parameters for eight most probable unit cells

Structure ID -- 1 2 3 4 5 6 7 8

Structural Parameters
I1

a (A)
b (A)
c (A)
a (degrees)
13 (degrees)
7 (degrees)

6.8
6.2

13.2
90
90
88

Chain Locations
(ab projection)

Chain Setting
Angles (degrees),
relative to the
bc-facet

Inter-sheet
Translation (A)

Helix Twist 8h
(degrees)

Monomer Phenylene
Ring Rotation (degrees)

diacid ring 05:
diamide ring (,)6:

Cohesive Energy
(kcal/mole of repeat units )

Density (g/cm3)

Parallelepiped
Descri ' n:

A () )
B (A)
C (A)
,r (degrees)
u (degrees)
( (degrees)
(o0 (degrees)
oh (degrees)
f2

7.1
5.9

13.1
93
92
92

8.3
5.0

13.1
90
90
92

8.4
4.9

13.1
86
78
89

8.4
4.9

13.1
80
89
90

8.5
4.6

13.1
79
94
93

8.4
4.9

13.1
85
93
90

[0,01 [0,01 [0,0] [0,01 [0,01 [0,0] [0,01
[1,t ] [4,61 [1,; 1 [1,4] [1 ,0] [[,0] [4,0]

6 2
-174 2

18
-161

4.8
5.0

13.1
55
95
96

[0,0]

2

6.2 6.6 5.9 6.6 2.4 3.1 6.6 2.7

0 0 4 6 3 0 1 4

-16
15

-30
21

-43
40

40.5 38.5 38.3 38.2 38.1 39.3 39.7 39.6

1.42 1.45 1.45 1.49 1.50 1.57 1.47 1.56

4.7
4.6

13.2
90
90
85

127
-53

0.47

4.5
4.7

13.1
90
94
81

128
128

0.50

4.8
4.9

13.1
90
90
62

101
-79

0.45

4.9
4.8

13.1
81
77
61

110
110

0.50

4.2
6.4

13.1
97
89
50
92
92

0.18

6.2
4.4

13.1
98
88
48

146
146

-0.25

6.4
4.2

13.1
93
88
50

138
138

0.50

5.0
4.8

13.1
95
55
96
92
92
0.0



Figure 4.6: Orthographic perspectives of the eight primary structures for PPTA suggested by
simulation. The sets (a) through (h) correspond to the structures labelled 1 through 8, in
order, in Table 4.6. Left: z-axis perspective; Middle: perspective perpendicular to the
ac-plane; Right: perspective perpendicular to the previous two perspectives.

(a)

PPTA Structure #1

PPTA Structure. #2

b a bb a b



Figure 4.6: Orthographic perspectives of the eight primary structures for PPTA suggested by
simulation (continued).

(c)
PPTA Structure

PPTA Structure #4
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Figure 4.6: Orthographic perspectives of the eight primary structures for PPTA suggested by
simulation (continued).

(e)

PPTA Structure #5

PPTA Structure #6
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Figure 4.6: Orthographic perspectives of the eight primary structures for PPTA suggested by
simulation (continued).

(g)

PPTA Structure #7
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PPTA Structure #8
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number of possible descriptions based on a preference for interaxial angles a=Lbc, 3=-Zac, and L=Zab

closest to 900. It may readily be seen that the crystallographic cell, described by the vectors a, b, and c,

obeys the relations: cliC and axbllAxB. Similarly, the chain setting angles are reported relative to the

bc-facet (the bxc plane), as was done by Northolt for PPTA, rather than relative to the arbitrarily selected

AxC plane of the parallelepiped.

4.6.2 Evaluation of Polymorphs

From this basis set of lowest energy packing minima, one may draw several conclusions concerning

the preferred structure of PPTA:

1) The backbone features of individual chain conformations are in reasonable agreement with those

employed by Northolt in his crystal structure analysis. Table 4.7 shows the final values of the important

backbone angles and torsions of the chain conformation in the packed geometries. Angles of 10 +± 40

are formed between the phenylene rings and the chain propagation axis, and torsions about the amide

bond vary from 20 to 70 and are generally balanced by alternate plus/minus torsions of equal magnitude

in consecutive amide moieties. This conformation orients the amide dipoles in all cases in nearly

antiparallel fashion as one travels along the chain axis. Phenylene ring positions about the C1-C4 axes

relative to the plane of the adjacent amide bond show a preference for out-of-plane rotation (see Table

4.7), as expected from the isolated chain energetics reported in the previous section and from reports in

the literature [Northolt, 1977; Tashiro et al., 1977 p413; Hummel and Flory, 19801. Packing considera-

tions do not appear to preclude either of the two possible directions of ring rotation. However, the chain

packing does appear to have a considerable effect on the magnitude of out-of-plane rotation, with values

ranging between roughly 150 and 430 for either ring.

2) While no hydrogen bonding potential energy function has been explicitly included, nevertheless the

geometry and energy character of "hydrogen bonding" between amide groups in neighboring chains is

reasonably reproduced. This is in good agreement with the findings of Hagler et al. [19741. For the

final eight structures, the average O.--H "bond" distance is 2.3 A, with a N-H.--O angle of 160*. The

interaction energy attributable to the hydrogen bond varies between 1.8 and 3.8 kcal/mole, and is largely

due to the strong electrostatic attraction between the hydrogen-oxygen pair. Hagler et al. suggest that

their force field for the amide moiety, employed unchanged in this work, yields an optimum hydrogen

bonding distance of 2.1 A and a "bond energy" of 2.4 kcal/mol; in their study of low molecular weight

amide crystals, predicted hydrogen bond lengths were slightly lower, ranging from 1.9A up to 2.1A, with

a N-H..-O angle of 1450 to 1750. Our calculated bond length of 2.3 A lies intermediate between these

values and the 2.9 A proposed by Ladell and Post f19541 to be typical for amide crystals. The 1600



Table 4.7

Chain conformations realized in packed structures

Structure --

Internal Coordinate

Bond Angles (degrees)

Car-Cam-N
Car-Cam--O
Cam-N-H
Cam-N-Car
Car-N-H
Car-N-Cam
N-Cam---O
N-Cm-C.,

1 2 3 4 5 6 7 8

118.6
120.2
115.1
129.3
115.7
129.1
121.3
120.4

118.9
119.4
115.4
128.3
116.2
128.4
121.7
119.4

118.9
122.0
118.8
123.1
118.4
122.7
119.2
121.9

119.3
120.6
118.2
124.1
118.5
123.9
120.4
120.2

118.3
121.8
118.4
123.1
117.7
125.0
120.7
119.0

118.6
121.7
117.8
124.2
117.8
124.5
119.6
121.4

Torsions (degrees)

118.7
120.7
117.3
124.8
117.9
124.8
120.6
120.6

119.0
120.8
117.3
126.0
116.8
125.9
120.4
120.4

N-C,-Cam-N
C,-Cam-N-N
C,-N-N-Cam
N-N-Ca-Cam

Out-of-Plane Ring Rotations
(degrees)
diacid phenylene
diamide phenylene

Helix Parameters

Pitch (A)
Twist (degrees)

0.3
7.3

-0.4
-7.1

164
15

0.5
7.3
0.3

-7.3

151
19

-3.0
5.6

-0.8
-6.6

-3.3
3.8

-1.9
-4.8

-4.1
4.4
0.1
-3.5

-0.4
3.1
0.4

-3.3

-0.6
4.1

--0.1
-4.4

-5.7
7.8

-1.6
-4.3

154 146 138 37
43 37 40 35

13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1
0 1 4 6 3 0 1 4



angle is essentially identical to that assumed by Schroeder and Lippincott [1957] in their explicit potential

function representation of the N-H .-O hydrogen bond.

3) The nature of the chain-chain interactions are consistent across the set of eight structures, as

suggested by the orientation correlation maps, and determine the extent of lateral order (perpendicular .to

the chain axis) seen in the polymorphs. The hydrogen bonding interactions for each chain lie roughly

within a plane as a result of the chains' all-trans conformations; this leads to the association of chains by

hydrogen bonding into sheets and allows one to distinguish between interchain energies within and

between sheets. These energies may be broken down into their van der Waals and electrostatic

components for each cell structure. Table 4.8 shows the sources of interactions within a sheet. In each

case, the dominant contribution (66% to 90% of the total) is electrostatic. Furthermore, the electrostatic

component may be decomposed into amide-amide interactions and phenylene-phenylene interactions as

shown, with the remainder being a cross contribution from amide-phenylene interactions; clearly, the

electrostatic interaction is predominantly between amide moieties and is quite specific in nature. Thus

one finds an interaction of considerable magnitude and moiety-to-moiety specificity between chains within

a hydrogen-bonded sheet, which ensures axial register and consistent interchain separation distances. This

interaction takes priority in organizing the packing of chains lateral to the axis of chain alignment in the

solid state. Table 4.9, on the other hand, illustrates the nonspecific nature of the interchain energetics

between chains in neighboring sheets. Of particular interest is the magnitude of the total energy, which,

contrary to previous conjecture, is comparable to that between chains within a sheet. However, the

source of this interaction energy is evenly split between van der Waals and electrostatic contributions, and

the latter in turn is relatively evenly split among the interactions between different moieties. From this

one may conclude that while sheet-sheet separation is a high energy process, sheet-sheet slip remains a

viable deformation mode, and the lack of preferred register between sheets is largely responsible for the

multiplicity of crystal forms witnessed in the model analysis. This tendency towards slip is consistent

with compressive failure observations reported in the literature [Knoff, 1987; Morgan et al., 1983].

4) The predicted densities lie between 1.42 and 1.57 g/cm3; these values result largely from the

choice of 12-6-1 potential energy parameters. While the model does not explicitly consider thermal

effects, the force field parameters implemented were derived from experimental data on low molecular

weight amide crystals at 250C, and therefore incorporate thermal motion effects into the force field

parameters themselves. The resulting densities are in good agreement with reported PPTA solid densities

of 1.45 to 1.50 g/cm3.

5) The cohesive energy is defined as the increase in internal energy per mole of a substance upon

removal of all intermolecular forces [Van Krevelen, 1976]. This value is readily calculated as the

difference between the energy of the packed structure and the energy of the most stable isolated chain



Table 4.8

Intermolecular bonding energy; component contributions to chain-chain interaction
within a sheet (all values in kcal/mole of repeat units)

Cell ID 1 2 3 4 5 6 7 8

Total 12-6 2.1 2.6 2.8 2.2 2.6 1.4 2.5 0.9

Total
electrostatic 5.8 5.1 5.4 6.9 7.1 8.1 7.5 8.3

Amide-amide
electrostatic 3.8 3.3 3.5 5.7 5.9 7.4 5.7 6.8

Phenylene-phenylene
electrostatic 0.7 1.1 1.9 1.7 1.5 1.9 2.1 2.1

Total 7.9 7.7 8.2 9.1 9.7 9.5 10.0 9.2

Table 4.9

Intermolecular bonding energy; component contributions to chain-chain interaction
between sheets (all values in kcal/mole of repeat units)

Cell ID 1 2 3 4 5 6 7 8

Total 12-6 4.4 3.8 3.2 3.4 4.4 4.3 4.5 4.6

Total
electrostatic 2.5 2.5 4.6 2.7 3.8 2.5 4.8 3.1

Amide-amide
electrostatic 0.8 1.1 1.7 1.2 0.8 0.3 1.7 0.2

Phenylene-phenylene
electrostatic 1.3 1.6 1.5 1.2 1.3 2.1 2.6 2.2

Total 6.9 6.3 7.8 6.1 8.2 6.8 9.3 7.7



conformation. The Hildebrandt solubility parameter may then be calculated as the square root of the

cohesive energy density:

5 = (Eco/V) 1 2  = (Ecohp/Mw) (4.6)

In this manner, for the cohesive energy and corresponding solubility parameter for PPTA based on the set

of eight packing structures we obtain (per mole of repeat units):

Ecoh = 39.0 ± 1 kcal/mol

15.3 [cal/cm 3]'112 < 5 < 16.1 [cal/cm 3]1/2

or 31.2x10 3 [J/m 3]1/2  < 8 < 32.8x103 [J/m 3 ]1/2

This range is quite reasonable in light of the relative insolubility and high temperature melting behavior

of PPTA. While experimental values for solubility parameters of aromatic polyamides are not available,

values for some related aliphatic polyamides are 12.7 and 13.6 [cal/cm3 ]1 2 (or 25.9x10 3 and 27.7x10 3

[J/m 3] /2) for poly(8-aminocaprylic acid) and poly(hexamethylene adipamide), respectively [Van Krevelen,

1972, p88]; we would expect the aromatic polyamide value to be somewhat higher, reflective of its

reduced solubility in all but the most aggressive solvents.

Finally, significant differences between the eight final structures should be noted. All geometries

except Structure #8 contain two chains per unit cell. The chains in Structures #1 through #4 all intersect

the ab-plane at [0,0] and [%,½]. Of these, Structures #1 and #3 each contain conformations having

oppositely rotated phenylene rings and sheet packing such that amide moieties in successive sheets are in

register along the c dimension with alternating direction of the amide dipoles; Structures #2 and #4 are

the analogues, respectively, of #1 and #3 with the distinction being the codirection of amide dipoles in

successive sheets. The chains in Structures #5 through #7 intersect the ab-plane at [0,0] and N[,0]. Only

Structure #5 has the adjacent rings rotated in the opposite sense as seen in the first four structures;

Structures #6 and #7 have similarly rotated rings along the chain. The seventh structure is an analogue

to the sixth, with the former having improved register between amide moieties in neighboring sheets.

The eighth structure contains only one chain per unit cell but with an ca angle of 550 that effectively

creates the axial shift between hydrogen-bonded sheets seen in the other seven structures.



Calculation of X-ray Scattering

Applying the principles described in the previous chapter, we calculated the sets of x-ray diffractions

anticipated from each of the eight possible structures for PPTA. Atomic scattering factors were

calculated using exponential functions of x = (sin/X.) in the range 0 5 x 5 1, as described in Appendix

D, using tabulated values of the atomic scattering factors readily available in the International Table for

X-Ray Crystallography [19681. By invoking fiber symmetry, the complete scattering pattern may be

predicted from a plot of reflection intensity versus scattering angle 20 and azimuthal angle 13 in a single

quadrant (e.g. the 0 5 20, 0 5 13 5 90 quadrant). The calculated intensities are normalized by the most

intense reflection (generally the [2001 reflection for PPTA) to yield values between 0 and 100%; these are

tabulated for all reflections greater than 1% observable intensity in Appendix E, Table E.I. More

illustrative, however, is the graphical recreation of the entire fiber diffractogram for immediate visual

comparison to experimental films. We have presented patterns of intensity directly in polar form as

functions of the scattering angle 20 and the azimuthal angle 13, which corresponds to projection of the

scattering on a hemisphere with the sample positioned at its origin. For purposes of display, the

calculated reflections were assumed to be distributed about their mean positions according to Gaussian

probabilities in 20 and 13. The breadths of these distributions represent the expected peak broadening due

to finite crystallite sizes, the crystal mosaic, and paracrystal displacements of the second kind, which are

not available a priori from the model calculations. Additionally, we require an estimate for 1/2 for the

Lorentz correction of meridional reflection intensities. The peak broadening distributions were selected of

the form:

y = A exp[-ln2 (2(x-xo) 2/Ao2) ] (4.7)

A is the amplitude of the distribution at xo and oa, is the breadth of the distribution at y=A/2. Then the

intensity at any point of the diagram may be calculated by summation of the contributions from all

reflections at that point; the calculated intensity I, of each reflection i located at (20i, 43 ) equals the

integrated volume of the distribution in 20 and 13:

I,(hkl) = Aorabg.t/•4ln2 (4.8)

Is(xx 2) = Ai (exp( -ln2[2(xl-20i)/(o2] 2})
ix (exp l22 

(4.9)x (exp { -ln212(x2-13i)/Os1]2}) (4.9)

4.6.3



We require only three parameters not available through the model, the root mean square thermal

displacement amplitude and estimates of f2 and w, in order to recreate the entire fiber diffractogram.
For our universal isotropic thermal displacement factor we employed the B value used successfully by
Boon and Magr6 [19701 for poly(p-phenylene oxides) and by Northolt [1974] for the experimental

analysis of scattering from PPTA:

B - 8X.t,2  = 5x10 1 6 cm2

corresponding to a root mean square displacement of 0.25 A. For 020 and O values of 1.5 degrees and

15 degrees, respectively, were found to be appropriate, corresponding to 312 equal to 7.5 degrees. At

this level of projection, it was not deemed justified to incorporate anisotropy of the thermal motion

correction into the pattern simulations.

Due to the nature of the simulation, the calculated structures are inherently triclinic, so that observed

reflections are actually groups of reflections of related diffraction planes; the slight displacement of these

planes further contributes to the diffuseness of reflections expected in observable patterns and illustrates

the potential complexity of reflections whose composite appears as a single "reflection" on film. The

composites of reflections are illustrated in the recreated fiber diffractograms presented in Figures 4.7 (a)

through (h), again corresponding to the eight PPTA structures described previously. These simulated fiber

diffraction patterns were generated on an IRIS 4D series workstation with GT graphics and a 1280x1024

pixel display terminal. The grid density (20 by 3) was 500 points by 450 points per quadrant, or steps

of 0.1 degrees in 20 and 0.2 degrees in P. Visual resolution was enhanced using a nonproportional gray

scale to achieve the greatest visual sensitivity at the lower intensities characteristic of the majority of

reflections; a scale is provided in each diffractogram for clarification.

Diagrammatic representations of the calculated x-ray diffraction patterns provide a simple yet

effective means for distinguishing between polymorphs at the phenomenological level, both for comparing

and contrasting the various results of the model analyses, and for latter comparison to actual experimental

data. For example, common to all the final polymorphs are the intense [002], [004], and [006]

meridional reflections, characteristic of the extended chain conformations and the approximate 21 screw

symmetry of chains; inclination of the normal to the ab-facet away from the chain axis results in these

reflections appearing slightly off-meridian in a few cases. Only in the fifth, sixth, and eighth structures,

where translation between neighboring sheets is 2.5 to 3.0 A, are weak [001] and [0051 meridional

reflections observed. Most characteristic of the simulated PPTA patterns is the fingerprint of the

equatorial and first layer lines of each structure. Here one can easily distinguish, by means of the



Figure 4.7: Simulated x-ray fiber diffraction patterns for the eight primary structures for PPTA. The
sets (a) through (h) correspond to the structures labelled 1 through 8, in order, in Table
4.6.

(a)

(c)

(b)

(d)



Figure 4.7: Simulated x-ray fiber diffraction patterns for the eight primary structures for PPTA
(continued).

(e)

(g) (h)



presence or absence of [0111 or [111] families of reflections (relative to the intense [110] reflection),

between structures #1 and #3, having oppositely-directed amide dipoles in successive hydrogen-bonded

sheets, and structures #2 and #4, having codirected dipoles in successive sheets. Structures #6 and #7,

having face-centered unit cells and phenylene rings that are similarly rotated with respect to the amide

bonding planes (and hence with respect to the hydrogen bonded sheets) have characteristically intense

second layer reflections (i.e. [112] or [2121 families of reflections). Structures #1 and #3 bear the

hallmarks of the first modification of PPTA, reported by Northolt. As can be seen from a comparison of

the unit cell parameters listed in Table 4.6 with those presented earlier in Chapter 2, Table 2.4, Structure

#3 agrees most closely with the reported unit cell dimensions of Modification I. Only Structure #5

appears to exhibit any resemblance to Modification II reported by Haraguchi et al. (Table 2.4), most

notably in the appearance of a [0101 reflection and the combination of [2101 and [211] sets of reflections,

which reproduces the intensity attributed by Haraguchi entirely to the [211] planes in Modification II.

However, in this case the agreement between simulation and experiment is not as satisfying in general.

This is due in part to the considerable tilt (120) of the normal to the ab-facet with respect to the chain

axis in the simulated structure, resulting in the splitting of most reflections along the layer lines.

However, it should also be noted that Modification II shows evidence of being a kinetically-frozen

structure which can convert irreversibly to Modification I upon high temperature annealing. That this

modification is not as faithfully predicted by simulation as is the first modification could be due in large

part to the specific set of process conditions, namely spinning into an aqueous environment with no

subsequent annealing, required to realize Modification II in practice, conditions which are in no way

incorporated into the model.

4.7 Summary

The methodology presented in the preceding chapter serves to generate from a priori considerations

predictions for the atomistic structural detail of highly ordered polymeric solids. In addition to its

suitability in representing ideal periodic structures of packed helical molecules, such as have been almost

exclusively dealt with in the past, this representation provides a method by which imperfections of either

a periodic or local nature may be accurately incorporated into the analysis. This additional capability

becomes especially important as interest increases in polymers of a paracrystalline or polycrystalline

nature. Application of this procedure to the study of a representative stiff chain polymer, PPTA, reveals

that, due to the convolution of the potential energy hypersurface, one may expect a multiplicity of viable

candidates for stable geometries; the first point to address, then, becomes the selection of what informa-

tion one chooses to derive from such an analysis and reduction of the output data to a minimum relevant

basis set. Second, in the presence of strong intermolecular packing forces, one encounters competing

trends of similar magnitude, one driven by bonded interactions within a chain and the other by non-



bonded interactions of the type commonly attributed to hydrogen bonds between chains. One may

prioritize the development of structure according to the magnitude and specificity of interaction energies;

for PPTA, the key traits are the chain stiffness arising from the rigidity of the moieties, the coplanar

hydrogen bonding between chains arising from the rodlike conformation of each chain and the consequent

persistent formation of sheet structures, and the relative variety of packing of sheets which leads to the

occurance of distinguishable polymorphs having comparable stability and capable of coexistence at the

microscopic level. Lastly, where several polymorphs are equally stable, each may be distinguished and

identified by its characteristic x-ray diffraction pattern. This enables one to address the comparison

between different simulated structures and between simulation and experimental data at the level of the

identifying phenomenon (i.e. scattering) itself. Such analysis allows one to group the polymorphs

according to intensity and location of reflections and to identify those which most closely agree with

experimental observations.



5. MECHANICAL PROPERTIES BY SIMULATION

5.1 Thermodynamic Analysis

5.1.1 Classical Thermodynamics of Deformation

Thermodynamic stability of structure is defined by minimization of the free energy with respect to

the degrees of freedom describing the structure; as such, it is composed of both an internal energy

contribution (potential and kinetic) and an entropic contribution, as described by Equation 5.1. It is worth

emphasizing at this point that so far we have spoken entirely of the relative stability of geometries based

on a criterion of minimum potential energy, as is common practice in molecular mechanics methods. The

justification for this simplification is several fold. First, we speak only of static structures in which

atoms are assumed to behave as stationary centers of force; kinetic energy effects enter only through the

selection of the force field parameters themselves, such as the effective van der Waals radii, which are

derived from crystal data at finite temperatures. Thus for determination of relative stability of structure,

kinetic energy factors are lumped into the potential energy implicitly. Second, we relax our criterion of

thermodynamic equilibrium in favor of one of mechanical equilibrium, a condition more suitable to the

visualization of dense polymer systems, which is by definition the minimum internal energy with respect

to the degrees of freedom describing the structure. It may be mentioned that to the extent that we are

simulating crystalline or pseudocrystalline solids at room temperature or lower, we would not anticipate

large entropic contributions to stabilization energy. For example, Tadokoro [1979] calculates a total

contribution of roughly 1 kcal per mole of CH 2 units in crystalline polyethylene between 0 K and 300 K.

This translates into 17 kcal/mole in the PPTA case, on an equivalent per gram basis, or less than 50% of

the stabilization potential energy. This estimate should be even smaller for stiff chain polymers such as

PPTA. Even so, it is not the absolute magnitude of the entropic contribution, but its difference from

structure to structure, that affects the relative stability; this is certain to be smaller yet

The calculation of elastic compliances and elastic stiffnesses, however, is another matter. Here, we

require the second derivatives of the Helmholtz free energy A with respect to deformation stress or strain:



S U -TS

= dU - TdS - SdT

= dU - TdS for isothermal deformations

The elements of the fourth order elastic stiffness tensor are defined as:

(a 2A/aLMaENK O = VoCLMNK

where the elements of the Lagrangian (material) strain tensor ELM are defined using:

2ELM = audIXM + auM/aXL

3
+ Z aul/aXL a/aXM

I=1

u is the displacement vector describing deformation. The subscript LM refers to deformation of the L

surface acting in the M direction. For small deformations, we may neglect the terms of second order in

displacement.

Consider first an arbitrary elastic solid subjected to an arbitrary isothermal small deformation; the

internal energy U may be expressed as a Taylor series expansion about the undeformed state. Neglecting

terms higher than second order, one writes for the difference in internal energy between the deformed

state and the ground state:

= Udef - U

= ILM (aU/aELM)i o FL- + L ELM INK (a2U/a LM••E N O ELN ENK (5.6)

From Weiner [1983], we have the following relations:

(aU/aeLMý = (aA/ELMý - T(aS/aELM 0O (isothermal)

(OA/aFeLM.O = VoOLM

(5.7a)

(5.7b)

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)



(aS/aELM) 0 = YLMCe

(a 2U/aEL~ NK O = ()2A/&LMaENKJ O T(a2S/a ELMNK O

(a2S/ELMaENK o0 = -Vo(aalM/aT&aNK) -Vo(aCLMNK/aT)

(5.7c)

(5.7d)

(5.7e)

which in conjunction with Equation 5.4 may be used to rewrite Equation 5.6 as follows [Theodorou and

Suter, 19861:

dU = ILM VO[oLM + PoCETYLMI ELM + "' ILM ZNK Vo[CLINK - T(aCILK/aT)] EL2 ENK (5.8)

For direct application to the model description presented in Chapter 3, we convert this equation to an

expression for the change in internal energy on the basis of a mole of polymeric repeat units:

dU = ELM Mru[ILM/Po + CcTYLM] ELM + 3 E1LM INK (M/PO)[CULMNK - T(aCILK/aT)] eLN E~NK (5.9)

The first term in Equation 5.9 is the internal residual stress, which by formulation is zero in our

simulations where we have allowed for variation of density during minimization. The second term

reflects the connection between the elastic stiffnesses and the second derivatives of internal energy with

respect to strain. To assess the relative importance of the contributions of internal energy and entropy to

the elastic constants, we may proceed to evaluate the second derivative of Helmholtz energy with respect

to strain:

VoCLM.K = (aA/aELMaENK 0 = (O2U/ L.•ENK)ý O - T(a2S/aELUaENK o0 (5.10)

Entropic effects are relatively unimportant if:

I T(a2S/aELMaENK) o / (a2A/L tE NKg oI << 1

I T(aCLMNK/aT)/CLPK I = I alnCLMK/alnT I << 1

(5.11a)

(5.11b)



The subscript O indicates the minimum internal energy (i.e. reference) structure. Evaluation of this

inequality requires data for the elastic stiffnesses as functions of temperature at constant strain levels.

Because such constant strain data is generally difficult to obtain, this criterion has been re-expressed in

terms of constant stress derivatives [Theodorou and Suter, 1986]:

(rC LMNK) [ (CLMNKT a - ZLM XNK CLMK aNK (aCLMK/a LM T.a(LM) << 1 (5.12)

For an isotropic solid characterized in the reference (undeformed) state by an isotropic stress distribution,

the above criterion simplifies to:

(1/CLMNK) [ T(CLNK/aTJ P + (apT/•r)(ClK/aPK T ] << 1 (5.13)

However, such is not the case for the crystal lattice, where elastic response to imposed stress is generally

anisotropic; instead, one requires the complete thermal expansion tensor a, expressed alternatively by the

Grtneisen tensor components YLM:

apQ = (C,/Vo)SPQLMYLM (5.14)

Unfortunately, the complete thermal expansion tensor or the Grifneisen tensor are rarely available for the

anisotropic solid. One must usually settle for a few select elements, typically the diagonal elements, of

either tensor. This issue will be readdressed in Section 5.1.3.

5.1.2 Statistical Mechanics of Deformation

Alternatively, in order to understand the contributions to the macroscopic thermodynamic properties

of changes in structural description at the atomic scale, we may recast these state variables in terms of

the canonical (ensemble) partition function for an N body system:



Q(N,V,T) = 1 exp( -3Ej(N,V))J (5.15)

where f3 = 1/kT and the Ej are the total (free) energies of the states j available to the system. The

thermodynamic state variables then become:

A = -kT IlnQ

U = kT2 (alnQ/aT), v

S = kT (al1nQ/aT)N,v + k InQ

(5.16)

(5.17)

(5.18)

For a system of distinguishable particles, such as the lattice points in a crystal, the canonical partition

function may be decomposed into parts for additional treatment by either classical or quantum mechanical

methods:

Q(N,V,T) = qtransqrotqvib = Qcss Qquant (5.19)

Now, we choose to treat the crystal lattice in the vicinity of its minimum internal energy configuration as

a regular structure of discrete lattice points at which are located the N bodies (or atoms) of the system;

each body vibrates about its local lattice point. The total internal energy may then be expressed as a

function of an arbitrary set of structure-defining variables s as a Taylor series expansion about the

minimum energy configuration s=so:

N N
U(s) = U(s=so) +1 (aU/a(Asi))ý As + 2

i=1 i=l
(5.20)I (0U/a(Asi)b(As)l o AsiAs

j=1

where the first term, the potential energy at the minimum, is a function only of the soft variables and

will be referred to hereafter as Uptin,, and the second term, the kinetic term, is a function of vibratory

displacements about this static minimum, due either to oscillations in such hard variables as bond lengths

and bond angles or small oscillations in soft variables such as bond torsion or interchain distance, which

are further assumed to be independent of so.
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The positions described by the vector of change As = 0 correspond to the minimum energy

configuration, where by the definition of mechanical equilibrium (aU/a(Asi)) o = 0. The quadratic term

represents a set of coupled harmonic oscillators. By next assuming that the crystal behaves as a large

polyatomic molecule whose atoms occupy lattice points connected by "springs", and introducing normal

coordinate analysis, one may decompose the system into a set of independent oscillators, with a maximum

of 3N-6 - 3N (for N on the order of 102 atoms) normal mode vibration frequencies vj, each contribut-

ing its own component qibj tO the quantized portion of the partition function. Equating U(s) with the set

of energies Ej available to the system in the vicinity of the lattice minimum and substituting the

independent partition functions qvibj for the component oscillators in the quadratic term, one obtains:

3N
Q(N,V,T) = exp( -PUPOmin) qvi,,j (5.21)

j=1

where qvibj = exp(-phv/2)/(1 - exp(-phvy)) (5.22)

For the Helmholz energy and its second derivatives, this yields:

3N
A = Uptmin + kT X ln(qvib,j) (5.23)

j=1

3N

(a2A/aELMaENK) (a 2 UPtminW~LMaE•K) + kT . (d2ln(qvibj)/aFEE-.K) (5.24)
j=1

For the calculation of elastic stiffnesses, our interest lies in the term ( A/iELENOK) = VCL.NK.
Clearly, if the normal mode frequencies are independent of deformation in the small deformation regime,

then the second term on the right hand side drops out and (a2A//LMaENK) may be replaced by

(a2UPOt"rin/!LM~INK), suggesting that oscillatory freedom makes at most a minor contribution to elastic

response; this is the strict Harmonic Approximation. Thus for evaluation of the significance of entropic

contributions to elastic stiffnesses, one requires either normal mode vibrational frequencies for deformed

structures as well as undeformed structures, or experimental data for elastic constants versus temperature.

Applying the same criterion for significance of entropic contributions as given in Equation 5.1 la, one

obtains:

3N
kT I (VPln(qvibj)/ L.ENK) / VC.MK << 1 (5.25)

j=1



Both the numerator and the denominator of this equation are size dependent, the numerator on the

number of oscillators in the system and the denominator on the volume of the system. Taking advantage

of the equality (N/V),Y,. = (N/V).it ,, = No/Vo and differentiating Equation 5.22 with respect to the

components of strain, one may write:

3N
NokT Y ()ln(qvibj)/aEfLENK) / NVoCLNK << 1

j=l

3N
(No/PNVoCLVK) I hp(H* + A)(a2VjO/.MENK) - (hp) 2(A+A 2)(aj/LM)(OVj/.FNK) < I

pjl

A = 1/(exp(hovi) - 1)

(5.26)

(5.27)

As will be suggested by

(1)
and (2)
then for a new criterion,

the data presented in the next section, if we assume that:

avj / aeLM = Kv, a constant for all j, LM

a2vj / a.M.aENK = 0 for all j, LM, NK

we obtain:

3N
-(No~fNVoCLMNK) (h3Kv)2 7 (A+A 2 )

j=I
<< 1 (5.28)

For large N, we may approximate the summation by introducing a distribution function g(v) for the

normal mode frequencies and integrate over all frequencies:

-(No/PNVoCL,•K) (hpKV) 2 [ exp(h3v)g(v)/(exp(h3v)-1) 2 dv

(5.29)

= 3N
fo g(v) dv
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It only remains to determine the distribution function g(v), which should be easier than the complete

set of individual frequencies. According to McQuarrie [1976], the normal frequencies of a crystal vary

from essentially zero to some value of the order of 1013 cycles per second. Normal frequencies are not

due to the vibrations of single atoms, but are concerted harmonic motions of all the atoms; such

concerted motion is called a normal mode. Unfortunately, complete distributions are not generally

available. Nevertheless, we may proceed by introducing the same approximations for the normal mode

vibrations of a crystal as have been employed so successfully in the prediction of low temperature heat

capacities, namely the Einstein and Debye approximations:

Einstein Approximation: Here it is assumed that each normal mode has the same frequency vE, i.e. each

member of the lattice sees the same environment and acts as an independent oscillator:

gp(v) = 3N 8 (v-vw)

which, when substituted into Equation 5.29, yields:

-(3No/PVOCLMK) (hp3K) 2 [ exp(h3vE)/(exp(hp3v)-1) ] << I (5.31)

(5.30)

Debye Approximation: Here it is reasoned that only low frequencies, up to a characteristic frequency VD,

are important; these long wavelength oscillations are insensitive to the detailed atomic character of the

solid and may be calculated by assuming that the crystal is a continuous elastic body. This leads to:

gD(v) = 9Nv 2/VD3

= 0

(5.32)0 5 v VD
V> vD

which, when substituted into Equation 5.29 and making the substitution x=h3v, leads to:

-(3NokT/VoCL.•NK)Kv 2/(hPVD 3) [hVD
0

x2exp(x)/(exp(x)-l) dx << 1
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which may be integrated numerically for a given vD. These criteria for the significance of the entropic

contributions to the elastic moduli, expressed in equations 5.12, 5.31, and 5.33, are addressed in the next

section with respect to the particular case of the stiff chain polymer.

5.1.3 Estimation of Entropic Contributions

Ii et al. [1986, 1986, 19871 in a series of papers reported lattice thermal expansion data and some

thermomechanical properties for PPTA and PBA aramid fibers obtained by means of x-ray analysis of the

crystal lattice spacings under given axial (c-axis) loadings. Relevant properties which may be deduced

from this work are reproduced in Table 5.1. Based on these values, we may calculate the stiffness

criterion for a2A/&E33
2, assuming that only the axial stiffness constant C3333 is significantly affected by

the introduction of an axial stress 033. In the second term of Equation 5.12, one would expect that for

such oriented chains aC333 3/-a 33 should far exceed all other aCLNK/jaLM due to the deformation of

internal bond lengths, angles, and torsions required by an imposed stress in this direction, rather than the

deformation of weaker intermolecular interactions allowed under stress in the other directions; the possible

exception in the aramid case is the C,111 /0o1,,, which involves deformation of the hydrogen bonds.

However, the fact that C3333 should also be much greater than the other moduli, and that a11 and am are

greater than zero and thus would offset somewhat the negative a 3 3 contribution, should ensure that the

estimate calculated below is a worst case scenario:

(T/C3333)[ C3333/
•, I C3333a3 3aC333 3/3 /a 33 T -= 0.27 (PPTA)

= 0.32 (PBA)

These numbers imply that the true modulus of PPTA is at least 79% of the value calculated solely from

internal energy contributions.

For our consideration of the analysis based on statistical mechanics, we refer to the work of Galiotis

et al. [1985], who have investigated the strain dependence of the Raman frequencies of Kelvar 49* fiber,

in the range 1100 to 1700 cm-', between 0% and 2% axial strain (E33). The frequencies and peak shifts

of six vibrational modes are reproduced in Table 5.2. From their data, the gradients in frequency appear

to be roughly independent of both frequency and strain. Hence we make the simplifications suggested in

the previous section, i.e. that the second derivatives of frequency with respect to strain are essentially
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Table 5.1

Thermomechanical properties of PPTA and PBA"

PPTA PBA

all 8.3x10-5 K-' 7.0x10-5 K- 1

4.7x10 5- K' 4.1x10 5 K-'

a33 -2.9x10-6 K-1' -7.7x10 -5 K-1

C3333 = 1/S3333  (at 298 K) 168 GPa 188 GPa

aC3333/••1 a33---0.5 GPa

= -S3333- 2 aS3333/ai a33=0.5 GPa -0.181 GPa/K -0.247 GPa/K

aC3333/()331 300K ý "S3333-2 S33333/• 331 300K 59 32

a from Ii et al. [1986, 1986, and 19871.

Table 5.2

Strain dependence of Raman frequencies in PPTAV

Frequency (cm-') v j/aE33 (cm-'/%) A+A 2

1649.5 -2.2 + 0.2 3.65x10 4

1613.5 -4.4 ± 0.2 4.33
1519.2 -4.2 ± 0.7 6.82
1330.9 -3.4 + 0.3 16.9
1280.1 -3.6 + 0.3 21.5
1183.7 -0.5 + 0.3 34.3

a from Galiotis et al. [1985].
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zero, and take an average value for Kv = -3cm-'/% (i.e. -300cm' 1). At 298K, we have hi = 0.0048cm,

Vo is 5.26x10-2cm 3 (the unit cell volume), No is taken to be the 56 atoms for PPTA (two repeat units

per unit cell) and (kT/VoC3333 ) = 0.00466.

Estimation of the Einstein and Debye frequencies of such a material is subjective, at best. Bondi

[1968] reports Debye temperatures (@D) between 1000 and 4000C for monatomic solids, which cor-

responds to vD = k(/h between 70cm-' and 280cm-1. Values for glassy polymers are on the order of

1200C. Unfortunately, there exist no good estimates for Debye or Einstein temperatures for polymeric

crystals. However, guided by those systems for which such data is available, we may presume a

conservative value of:

D = 100 C; OF = 0.758, = 750C

which corresponds to:

VD = 70cm1'; vE = 52cm-1

Einstein Approximation:

-(3NokT/VoCMLK) (hPK -)2 [ exp(h3vE)/(exp(hvE)-1) ] = .066 << 1

Debye Approximation:

-(3NokT/VoCLMNK)Kv2/(hP3vD 3)
PD

0

x2exp(x)/(exp(x)-1) dx = .024 << 1

These values would suggest that entropic and kinetic energy contributions to the elastic moduli in

polymeric crystals are actually less than 7% of the total response of free energy to deformation, a quarter

of that determined from thermomechanical data for axial deformation. In the following sections, we will

adhere to calculations of the elastic constants from changes in the potential energy for deformed

structures, with the realization that these estimates may be 10% to 30% too high.

106



5.2 Method of Calculation

In the case of static crystals fully minimized in potential energy with respect to both intramolecular

and intermolecular degrees of freedom, the first order coefficients of Equation 5.6 are all zero (i.e. there

is no internal residual stress or thermal expansion). To obtain the twenty-one independent CL.NK'S one

requires twenty-one deformation "experiments"; these are selected as follows:

3 uniaxial tensions (EL)

3 simple shears (EL)

3 biaxial tensions (EL, E•)

3 dual component shears (ELM, ENK)

9 combined tension/shear (ELL, NK)

The first six require the minimum energy configuration plus two deformed configurations (±E), from

which an estimate of CWMK may be calculated using a three point formula. The other fifteen cases each

require an additional two deformed configurations (+eLM,+ENK and -tLM,-eNK), which in combination

with the previous deformed structures yield estimates of CLMNK through use of a seven point formula.

3-point: a2 f/8x2 = ( f(1,0) - 2f(0,0) + f(-1,0) )/(hx)2  (5.34)

7-point: D2f/axay= -(f(1,0) + f(0,1) + f(-1,0) + f(0,-1) - 2f(0,0) - f(1,1) - f(-l,-l) )/2n(h) 2  (5.35)

hx is the step size in x, hy is the step size in y, n = h/h x > I

A2f/axay provides an estimate of dU/ELMENK. From Equation 5.9, in the absence of entropic contribu-

tions, the elements of the compliance matrix may be obtained as

CuNK = (dU/ELMENK) (o/Mu) (5.36)

Because of the feature of chain alignment within the model, deformation parallel to the chain

propagation direction and lateral to it may not be treated identically. Tensile deformation in the latter

case is solely a function of intermolecular packing parameters and may be imposed by appropriately

straining the packing geometry. Tensile deformation along the chain direction is an implicit function of

intramolecular parameters and may be imposed by applying a forcing function to cause deformation of the
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chain axis. On the other hand, simple shear in a plane containing the chain axis may be induced by

altering the intermolecular description, while shear in a plane cutting the chain axis is precluded by

formulation of the model, which defines the z-axis of the global coordinate system as the alignment

direction of the chain axes. In the actual "experiments" we impose engineering strains elm where it is

possible to impose deformations of lateral dimensions in the chain direction (i.e. e13 and e2 may be

nonzero). Then EL = eLL and e- = E, = ietm. With the imposition of strain and reminimization

with respect to intramolecular and intermolecular degrees of freedom, the components of the structure

may respond in a nonaffine manner; this process is conceptually consistent with a realistic phenomenon of

atomic rearrangement in a system involving bonded and nonbonded atoms.

5.3 Elasticity of Poly(p-phenylene terephthalamide)

5.3.1 Modification of the Chain Description

The model used for PPTA is a modification of the simple chain description used to identify optimal

crystal structures. The latter described the single chain using fixed bond lengths, hexagonal planar phenyl

rings, and planar sp2 bond orientations at the amide carbons and nitrogens, requiring only six torsional

degrees of freedom and eight valence bond angle degrees of freedom. While this was deemed sufficient

internal freedom for the chain to adjust to its preferred packing configuration, this chain description was

too restricted to respond realistically to imposed strains acting along the chain axis. The new chain

description relaxes the planarity constraint at the amide nitrogens and carbons, resulting in ten torsional

degrees of freedom. The rigid phenylene ring was replaced by a planar symmetric ring which may be

described using only one bond angle and two bond length degrees of freedom. Finally, the bonds in the

chain backbone were allowed to respond to deformation, adding six more bond iengths to the degrees of

freedom, for a total of ten bond angle and ten bond length degrees of freedom for the PPTA repeat unit.

Valence Force Field potentials [Tashiro et al., 1977] were introduced to describe the potential energy of

these deformations, with the equilibrium positions chosen so as to reproduce the original chain upon

energy minimization. Table 5.3 shows the correlation between corresponding values for the above

mentioned degrees of freedom at the minimum energy cell configuration for PPTA Structure #3 using the

two chain descriptions. The intermolecular degrees of freedom remained unchanged (i.e. two periodicity

lengths, three periodicity orientation angles, two setting angles, and one translational displacement). The

cohesive energy of this structure calculated using the second chain description is within 0.5 kcal/mol of

that obtained using the simpler description; this lends further confidence to the accuracy and adequacy of

the simpler version for structure and cohesive energy calculations. Lastly, it remains to define the

coordinate axes of mechanical deformation. It must be noted that the selection of axes in use at this
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Table 5.3

Comparison of the two chain descriptions used for structure and mechanical property calculations

Type 1 (22 DOF)

Bond Length (A)
C-C
C,,3-,,sCar,2"i Car.,3
C-N
Car,1-N

Bond Angle (degrees)
Car,6-Cari-Cr,2
C 'l-C=-Car, _
Carjl-C-N
Car,1 -N-H
Car,-N-C

Bond Torsion (degrees)
Car-Cari -C-N
C,,,2-Car, -C=O
Car.1-C-N-Car.1'.
Car,2-Car, 1-N-C
Car.2-Car. -N-H

Intermolecular
A (A)
B (A)
a (degrees)
3 (degrees)
y (degrees)
mo* (degrees)
o2 (degrees)
f2

Density (g/cm3)

Cohesive Energy
(kcal/mol)

1.50
1.40
1.40
1.39
1.41

(fixed)
(fixed)
(fixed)
(fixed)
(fixed)

Type 2 (38 DOF)

1.504,
1.404,
1.400,
1.385,
1.398,

119.4.
118.9,
121.8,
118.1,
122.9,

120 (fixed)
118.9, 118.9
122.0, 121.9
118.1, 118.4
123.1, 122.7

-26.0, -153.7
(dependent)
5.6, -6.6
-137.3, -43.1
(dependent)

4.78
4.90
90.3
89.9
62.1
101.4
-79.5
0.45

1.46

38.3

1.508
1.402
1.396
1.385
1.400

120.3
119.9
122.0
118.1
122.6

-25.7, -159.0
19.0, 172.0
5.8, -6.9
-134.6, -44.4
137.8, -167.8

4.78
4.93
89.7
89.5
61.5
99.5
-81.4
0.45

1.46

37.8
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point differ slightly from those used to report crystal structures in Chapter 4. In the mechanical property

presentation, as in the model development, the x3-axis corresponds to the c-axis of the pseudocrystal,

along which the chain axes are aligned; the x,-x3 plane, i.e. the "2" face, contains the ac-facet of the

pseudocrystal wherein lie the hydrogen-bonded sheets; the x2-axis and the bc-facet are defined by

orthogonality and crystal periodicity relationships, respectively. Crystal structures provided in Table 4.6

follow the convention that the hydrogen-bonded sheets lie in the bc-facet; however, this is employed

purely for reasons of consistency with the common practice in crystallography of selecting the "a"

dimension such that "a" is larger than "b", as has been done for the structures previously reported in the

literature.

5.3.2 Determination of Crystallite Compliance and Stiffness Matrices

Initially, the multichain structure was subjected to ±0.4% tensile strains along the crystallographic c

(chain) axis, with all other internal and external degrees of freedom allowed to adjust (i.e. lateral

contraction of the structure in addition to chain conformation adjustment). The resulting E33 modulus was

303 GPa; the resulting densities of the strained structures deviated from the strain free value by +0.16%,

indicative of a slight expansion (compression) of the lattice upon extension (compression).

In a second set of experiments, the full complement of twenty-one deformations was performed,

allowing only degrees of freedom internal to the unit cell to relax (i.e. the optionally-strained lattice

dimensions a, b, c, and the interaxial angles a, 13, and y were fixed). The complete stiffness matrix is

presented below in the 6x6 Voigt format. In this convention, only one subscript is required to identify

the appropriate element of stress or strain, and two for the corresponding stiffness and compliance

matrices (e.g. EL = ELL for L=1,2,3, and E4 = E23, E5 = E13, E6 = e12). The magnitudes of imposed

strains were selected to be large enough to give numerically significant differences in potential energy

(i.e. eL = 0.4% for L=3 and 0.8% for L=1,2; eL = 1.6% for L=4,5,6). The resulting precision in the

reported values are on the order of ±5%, or ±1 to 5 GPa. Deformations imposed by e33 and e23,

representing roughly the extremes of elastic response, where checked for various strain levels; the

calculated stiffness elements remained consistent up to 3.2% strain or higher. Removal of the imposed

deformation and reminimization of potential energy with respect to the internal coordinate degrees of

freedom gives back the original undeformed configuration, ensuring that the strain levels employed are

within the domain of elastic response.

The compliance matrix is calculated by inversion of the stiffness matrix:

S = C-1 (5.37)
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From the compliance matrix are calculated the Young's moduli Ei, the shear moduli Gi, and the first six

Poisson's ratios vij:

Ei = 1/Sii ; i= 1,2,3

Gj = 1/Sii ; i=4,5,6 and j=i-3

vij = -Si/Sý ; ij=1,2,3

(5.38a)

(5.38b)

(5.38c)

For the simulated structure which most closely resembles the thermodynamically stable Modification I

reported in the literature, PPTA Structure #3, the full stiffness and compliance matrices are calculated to

be:

C

S =

40.5
23.3
12.9
0.1
1.2
2.4

4.85
-4.17
0.35
1.80
0.21

-1.76

23.3
30.6
40.7

1.5
3.2
1.9

-4.17
7.52

-0.74
-2.47
-0.52

1.67

12.9
40.7

360.
0.3
5.0

11.2

0.35
-0.74
0.37
0.50
0.02

-0.66

0.1
1.5
0.3
5.5
3.7
2.7

1.80
-2.47
0.50

25.0
-2.82
-8.52

1.2
3.2
5.0
3.7

22.0
3.2

0.21
-0.52
0.02

-2.82
5.26

-1.16

2.4
1.9

11.2
2.7
3.2
7.5

-1.76
1.67

-0.66
-8.52
-1.16
18.0

GPa

x10 -2 GPa-1

El = 20.6 GPa

G, = 4.0 GPa

V 12 = 0.55

V3 1 = -0.07

E2 = 13.3 GPa

G2 = 19.0 GPa

V2 1 = 0.86

v23 = 2.01

E3 = 270 GPa

G3 = 5.6 GPa

v13. = -0.94

v32 = 0.10

The obvious trends to be noted here are that the transverse moduli E1 and E2 are roughly 5% to 8%

of the axial modulus E3. As was presaged in the discussion of interchain total interaction energies within

and between hydrogen bonded sheets in Chapter 4, the two transverse moduli are of comparable
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magnitude. The shear moduli G, and G3, corresponding to motions of the hydrogen-bonded sheets of

chains parallel and perpendicular, respectively, to the chain axes, are roughly 1% to 2% of the axial

modulus; the large value calculated for G2 is indicative of the expected resistance to shear deformation of

the hydrogen-bonded sheet structure itself. The values for vij satisfy the inequalities for positive strain

energy for a body having orthorhombic symmetry [Ward, 19831, which this structure approximates:

S122 < S11
2  (5.39)

S13
2 < %, S33 (S 11 + S12) (5.40)

5.3.3 Isolated Chain Compliance and Comparison to Crystallite Compliance

For comparison to calculations in the literature, the isolated chain was also subjected to fixed axial

strains of +0.4%, which yielded a chain modulus of 195 GPa. By comparison, Tashiro et al. [1977]

calculate a value of 182 GPa for the isolated chain modulus (referred to there as the crystallite modulus).

Fielding-Russell [1971] calculates a value of 200 GPa for the all-trans planar conformation. The

observed tensile modulus falls in the range 120 GPa to 200 GPa [Tashiro et al., 1977; Gaymans et al.,

1976; Kwolek et al., 1987; Allen, 19881. It is significant that whereas the tensile stiffness C3333

calculated for the single chain is in good agreement with previous estimates, that estimated for the packed

structure is considerably higher, both with and without inclusion in the optimization parameter list of

those variables describing lateral packing (i.e. 303 GPa and 360 GPa, respectively). In order to determine

the source of this difference, the component breakdowns of energy contributions in both the single chain

and packed chain estimations were computed. For this purpose, the intramolecular contribution was

defined as that change in energy attributable to changes in intramolecular variables upon deformation,

which includes bond stretching, bond angle bending, torsion angle rotation, intramolecular van der Waals

interactions, and intramolecular Coulombic interactions. For the packed structure, intermolecular

interaction contributions were defined as changes upon deformation attributable to intermolecular van der

Waals and Coulombic interactions. The contributions to changes in energy upon ±0.4% strain along the

c-axis (the chain axis) is shown in Table 5.4.

A careful study of these values in the case of the isolated chain indicates that the minimum energy

conformation represents a balance between interactions tending to promoted chain compression (i.e. bonds

and valence angles) and others promoting chain extension (i.e. torsions and nonbonded interactions); thus

small deformations are accompanied by trade-offs in these interactions, such that the total change in

internal energy is not large. In the packed chain structure, however, it is the intramolecular and
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Table 5.4

Distribution of strain energy among the degrees of freedom of the structure
for isolated chain and packed chain simulations

Isolated Chain (intramolecular only)

Ebond

0.427
-0.243

+0.4%
-0.4%

A-angl

0.464
-0.339

-0.210
0.583

AEvdW

-0.597
0.002

AEcoul

-0.007
0.037

A intra

0.078
0.042

Packed Chains

(Intramolecular)

+0.4%
-0.4%

AEbond

-0.331
0.421

Eangl

-0.389
0.488

0.093
-0.007

5
EvdW

0.649
-0.688

AECoul

0.040
-0.022

Eintra

0.193
0.061

(Intermolecular)

+0.4%
-0.4%

AEvdW

0.030
-0.032

-0.105
0.075

AEinter

-0.074
0.042

0.118
0.103
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intermolecular interactions that compensate each other. Due to impinging intermolecular interactions, the

chain conformation is no longer the minimum energy conformation represented by the isolated chain, and

as a result the trade-off between intramolecular contributions concurrent with axial strain are no longer

balanced, but tend to pay a higher penalty for extension than witnessed previously. On the other hand,

intermolecular interactions, primarily the Coulombic interactions, actually favor extension, thus offsetting

the higher penalty for conformational extension. This trend may be understood as follows: extension

leads to a net separation of atom centers, which decreases the cohesive energy contributions due to van

der Waals interactions. However, charge interactions in the packed structure are not randomly oriented,

but are so arranged such that attractive interactions predominate. In particular, species of opposite charge

are preferentially located closer together. Even an affine extension imposes larger absolute changes in

charge separation for those species which are farther apart, i.e. species of like charge, resulting in a net

improvement of the total Coulombic interaction. Nonaffine deformations such as the one performed here

will be even more preferential in distributing charge separation. In the sum, both intramolecular and

intermolecular interactions contribute to resist compression, while the advantages gained in intermolecular

interaction only partially offset the resistance of chain conformation to extension. The net result is the

increase in the stiffness constant C3333. This illustrates not only the importance of intermolecular

contributions to resistance to deformation, but the complexity of changes in intramolecular response which

accompany the changes in conformation that result from interactions with neighboring chains.

5.3.4 Consideration of a Second Allomorph

From the results of the atomistic simulation, several discrete pseudocrystalline polymorphs of

comparable energy are obtained. The results presented above correspond to that model structure which

most closely resembles the reported most stable crystal structure for PPTA [Northolt, 1974]. However, at

least one other crystal allomorph has been isolated by precipitation from acid solution into water under

controlled conditions of polymer concentration and postprecipitation heat treatment [Haraguchi, 19791.

Other energetically stable packing geometries may also exist to lesser extents in the actual polymer fiber.

The above procedure was repeated for a second model geometry which more closely approximates the

second crystal polymorph reported in the literature, although it should be noted that none of the model

structures derived by minimization of total potential energy replicated this reported structure to the extent

seen in the first case. Shown below is a summary of the stiffness and compliance matrices for the PPTA

Structure #5. (It should be noted that negative values for elements of the stiffness matrix are physically

impossible, but arise here due to the limit of numerical precision involved in performing the computer

strain "experiments".)

114



54.6 18.2 0.6 17.6 9.1 -4.9
18.2 59.9 12.0 2.0 1.9 -2.9
0.6 12.0 291. 9.0 36.3 30.3

17.6 2.0 9.0 9.4 1.5 2.6
9.1 1.9 36.3 1.5 20.2 -2.4

L -4.9 -2.9 30.3 2.6 -2.4 20.4

8.72 -2.02 0.79 -16.8 -3.61 2.38
-2.02 2.20 -0.32 3.48 1.01 -0.03

S _ 0.79 -0.32 0.69 -1.58 -1.54 -0.85 x10.2 GPa1
-16.8 3.48 -1.58 43.8 6.09 -6.13

-3.61 1.01 -1.54 6.09 9.00 1.84
L 2.38 -0.03 -0.85 -6.13 1.84 7.74 J

El = 11.5 GPa E2 = 45.5 GPa E3 = 146 GPa

G, = 2.3 GPa G2 = 11.1 GPa G3 = 12.9 GPa

v12 = 0.92 v21 = 0.23 V13 = -1.15

V31 = -0.09 v23 = 0.46 V32 = 0.14

Significant differences to note between these two model structures are the values for extensional and

tranverse moduli, which in the second structure would appear to be considerably smaller for axial

deformation but larger for transverse deformation. This would be expected for a chain packing in which

the conformation of the individual chains is reduced in pitch (12.87 A in the second geometry) relative to

the most stable isolated chain conformation (13.10 A in the first geometry) in exchange for more

favorable lateral interchain interactions in the packed geometry; in this case, the penalty in energy for

extensional deformation of the chain is smaller than that in the previous case, where the chains were

closer to a conformational energy minimum, while the penalty in energy for deformation of the lateral

interactions is proportionally greater. The range for torsional modulus is roughly the same for both cases.
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5.4 Moduli Involving Fiber Symmetry

5.4.1 Derivation of Fiber Symmetry Relations

One may derive estimates for the moduli of the polycrystal mosaic from the complete elastic

constant matrices by applying assumptions concerning the crystal packing morphology and the distribution

of stress and strain over the packed crystals. For this purpose, we treat the fiber as a polycrystalline

structure possessing perfect alignment of the molecular axes along the fiber axis, but random orientation

of the crystallites in the planes lateral to the fiber axis. We also presume the absence of any second

phase elastic matrix material. We can then calculate the mean elastic constants for the assumed fiber

orientation function. If we assume that an imposed strain is distributed uniformly over all elements of

the polycrystalline fiber, then we may calculate the fiber stiffness matrix as the cylindrical average of the

crystalline stiffness matrix. We invert this matrix to obtain the fiber compliance matrix and obtain the

elastic moduli as previously described; this is the volume average of stiffnesses, or Voigt limit, which

provides an upper bound to the elastic constants. Alternatively, we may assume that stress, rather than

strain, is uniformly distributed, resulting in the analogous volume average of compliances, or Reuss limit

These two assumptions, while neither being exactly correct, provide the upper and lower limits to the

elastic constants for the cylindrically symmetric polycrystal "composite", within which the true elastic

constants must lie [Arridge, 1985].

In general, the mean value of an element of the stiffness matrix, for example, may be expressed

analytically as

<Ci'j'k'l> = ii j'jjk'k11 Cijk1 (X,'F,K) sinX dX d'F d2 (5.41)

where 0(X,V,2) is the function describing the distribution of crystallite orientations and the li'i are given

by Arridge [1985]:

11.1 = cosi2cosXcosT - sin.2sinT (5.42a)

11.2 = -cos~sinT - sinficosXcosP (5.42b)

I, 3 = sinXcosTf (5.42c)

12., = cosf~cosXsinT + sinfcosP (5.42d)

12,2 = -sinQcosXsinP + cos2cosT (5.42e)
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12'3 = sinXsin'Y

13'1 = -cosd2sinX

13.2 = sinfsinX

/3'3 = COsX

(5.420

(5.42g)

(5.42h)

(5.42i)

For the case of fiber symmetry, where we assume perfect alignment of the crystal elements along

the z-axis and a uniform orientation distribution lateral to this axis, we may express the compliance as a

function of crystallite orientation in tensorial form as:

(5.43)Co = Tn Tn C TnT TurT

where To is the rotation matrix:

To =
cosO sine 0
-sinQ cosi 0
0 0 1

Given any three conformable matrices, A, B, and C, it can be shown that

SA B C ),o = (A @ CT ) { B col (5.45)

where { }, denotes the column array of the elements of the matrix enclosed therein, the elements being

arranged in "reading" order, i.e. by rows, and ® signifies the direct matrix product. Then the above

equation for Ca becomes:

{ Ca )col = (Ta n To Tn T n ) ( C ),Co (5.46)

or, using the reduced notation where Txp indicates the self-direct product of degree p of the matrix T
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(5.47){(C) = Tox4 {C}

Then the cylindrical average over f becomes:

< {Cn) > = (1/27) T1xa4 (C) dC = < Tnx4 > (C)

Upon integration, one obtains 41 nonzero terms in < T, X 4 >, of which 21 are independent. Taking

advantage of the symmetries in C, one can derive simple equations for the six independent terms of the

cylindrically averaged stiffness matrix < Co >, which may be collected into Voigt form as shown below:

< C > =

0

E
DJ

Voigt Average (5.49)

= (1/8)( 3C,, + 3C,, + 2C1, + 4C,, )

= (1/8)( C11 + C22 + 6C12 - 4C66, )

= (1/2)( C13 + C23 )

= (1/8)( C,1 + C22 2C 12 + 4C66)

= (1/2)( C44 + C55 )

= C.

Similarly, the cylindrically averaged compliance matrix may be expressed as:

0

E
D

<So> = Reuss Average (5.50)
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where A = (1/8)( 3S1i + 3S22 + 2S 12 + S66 )

B = (1/8)( S11 + S22 + 6S12 - S66 )

C = (1/2)( S13 + S23 )

D = (1/2)( S11 + S22 - 2S 12 + S6 6 )

E = (1/2)( S44 + S55 )

F = S33

These equations are in agreement with the more general orientation equations given by Arridge to

describe averaged elasticity matrices where actual crystallite alignment functions are experimentally

available. Where only the moduli of the fibers are ultimately required, the number of simulated

deformation "experiments" is drastically reduced from forty-two to eighteen. However, the reduced

experiment set must be used with caution in those cases where one obtains the compliance matrix by

inversion of the stiffness matrix. For structures that are clearly triclinic, some of the elements of the

single crsytal stiffness matrix which are not required by Equation 5.49 may nevertheless deviate

significantly from zero. This is not a problem for calculating the Voigt average elastic properties.

However, in cases where these elements are nonzero, inversion of this estimation of the single crystal

stiffness matrix introduces error into the estimation of the single crystal compliance matrix and in turn

into the estimation of the Reuss average elastic constants. For this reason, the latter may in some cases

be artificially high. In the following, we have only reported Reuss average elastic constants in those

cases where the complete twenty-one independent element stiffness matrices were determined.

5.4.2 Voigt and Reuss Limits for PPTA

Applying this approach to the crystallographic stiffness and compliance matrices given previously, we

arrive at upper (Voigt) and lower (Reuss) limits for the fiber elastic constants. In Table 5.5, these

constants are listed for PPTA Structure #3, using the more usual, experimentally-defined terminology.

Also shown are the available experimentally-determined moduli for PPTA (Kevlar) fibers, as well as the

results of calculations reported by Northolt and van Aartsen using bond deformation models. Values for

G3 and v31 are not independent, but may be determined easily by the relations:

G3 = 3E, / (1+v12) (5.51)

v31 = v13E1 / E3 (5.52)
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Table 5.5

PPTA fiber elastic constants (GPa): theoretical (Structure #3) and experimental

Voigt Reuss Predicted Experiment Northolta
Rangeh

Extensional Modulus (E3) 335 272 325 - 215 120 - 200b,c,d,e 220
Transverse Modulus (E1,E2) 21.8 6.6 21.1 - 5.2 - 16 - 29'
Torsional Modulus (G1,G2) 13.7 5.2 13.3 - 4.1 2 b, 0.95 - 2 .2 8 2.5 - 5.7'
Extensional Poisson's 0.46 0.54 -

Ratio (v13,v23)
Transverse Poisson's 0.60 0.66

Ratio (v12,v21)

a Northolt and van Aartsen [1977].
b Allen [1988].
c Tashiro et al. [1977].
d Gaymans et al. [1976].
0 Kwolek et al. [1987].
f based on the assumption that linear hydrogen bonds are the dominant interactions between chains
g Knoff [1987].
h after correction for entropy contributions, upper bound is 97% of the Voigt limit and lower bound

is 79% of the Reuss limit.

Table 5.6

PPTA fiber theoretical elastic constants (GPa): Structures #4 and #5

Structure #4 Structure #5

Voigt Predicted Voigt Reuss Predicted
Rangea Rangea

Extensional Modulus (E3) 369 358 - 292 290 146 281 - 115
Transverse Modulus (E1,E) 55.1 53.4 - 43.5 52.2 21.9 50.6 - 17.3
Torsional Modulus (G,,G9) 15.8 15.4 - 12.5 14.8 3.8 14.4 - 3.0
Extensional Poisson's Ratio (v13,v23) -0.19 - 0.08 -0.34 -
Transverse Poisson's Ratio (v12,v21) 0.14 - 0.31 0.24

a after correction for entropy contributions, upper
is 79% of the Voigt limit for Structure #4 and

bound is 97% of the Voigt limit and lower bound
79% of the Reuss limit for Structure #5.

120



The values calculated for the PPTA Structure #3 exhibit considerable spread between the upper

(Voigt) and lower (Reuss) bounds. The values for all moduli tend to be somewhat higher than the

experimentally measured values, as expected; the former may be as much as 30% higher than the true

crystal lattice values, due to neglect of entropic effects, while the latter may be expected to be lower due

to imperfections in the bulk. Taking these considerations into effect, the calculated lower bounds for E3

and G1 may be as low as 215 GPa and 4.1 GPa, respectively, in excellent agreement with experimental

values.

Table 5.6 lists the fiber moduli calculated for two additional predicted structures of PPTA: Structure

#4, which is closely related to Structure #3 above and differs primarily in the orientation of neighboring

sheets, and Structure #5 previously discussed. It must be noted here that the data for Structure #4 were

calculated using the reduced experimental data set. Based on the Voigt averages for Structure #4, one

observes similar magnitudes for the extensional and torsional moduli of PPTA structures #3 and #4 but a

significant increase in the transverse modulus, probably due to slightly higher hydrogen-bonding energies

in the latter geometry. Structure #5, on the other hand, exhibits somewhat lower Reuss bounds than

Structure #3 for E3 and G1 (based on the full stiffness matrix calculation); the implication is that this

structure might lead to a slightly more extensible fiber if predominant in the actual final product (e.g. a

predominance of Modification II).

5.5 Estimation of Resistance to Shear

Returning to the discussion of Section 5.3, one may take advantage of the complete stiffness matrix

to look at candidates for orientation of failure. It is not possible to draw rigorous conclusions about yield

behavior based only on an estimation of the elastic compliance matrix for a body. However, we may

attempt to define that mode of deformation for which the required work is a minimum, or the orientation

at which the resistance to shear deformation is least. For this purpose, we proceed analogously to the

consideration of yield criteria for isotropic bodies. We first define our criteria for imposed strain and

the resulting stress response in terms of the first three tensorial invariants, described by equations 5.53,

5.54, and 5.55, in order to establish a condition of equal deformation. We define a constant state of

strain using the first three invariants of the matrix a, where a may be strain e or stress 0:

J, = (1/3)Tr(a) (for a = a this is the negative of hydrostatic
pressure) (5.53)

J2 = 3Tr(a - (1/3)Tra13 )2  (5.54)

J3 = (1/3)Det(a) (5.55)
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such that our critical stress criterion may be described as:

- f( J1, J2, J3 )

To a first approximation, we assume that the critical mode of shear deformation is independent of t

hydrostatic component of stress, as in metals, although this may not be strictly true for polymers.

following the approach of von Mises for analysis of yield phenomena, we propose that the critical

mode does not involve J3 and that stresses in simple tension and compression are equal (i.e. no

Bauschinger effect [Ward, 1983 p34 01). This leads to a criterion analogous to the von Mises yield

criterion; Equation 5.56 simplifies to:

= f( J2 ) = constant

(5.56)

he

Then,

shear

(5.57)

For a fixed value of J2 of E we can then compute a and J2 of a via equations 5.54 and 5.58:

a = CE (5.58)

We propose to define for T a "stress resistance", which is independent of the magnitude of J2(E), as

low shear equivalent of the Von Mises Yield Stress (the second invariant of the stress matrix) over

Work Equivalent Shear Strain (the second invariant of the strain matrix):

= ( J1(a) / J2(e) )1/2 (5.59)

For simplicity, we take the condition J1(E) = J3(E) = 0. The minimum stress resistance, Ti,, may be

identified by selecting an arbitrary strain tensor and operating rotations of this tensor on the elastic

stiffness tensor describing the response of the elastic body to determine those orientations at which T is a

minimum. For the calculation of J,(a) where a is e or a, we use:
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J2 (Cll-ot'22)2 + (a22-a 33)
2 + (a33-a 11)2 +6(a 12

2 + a. 2 + a 13
2)

Applying this approach to the stiffness tensor calculated for the PPTA Structure #3, we obtain a

minimum shear resistance T of 6.9 GPA for a deformation having principle axes and corresponding

deformation eigenvalues of:

X = +0.4082 J2(E) X = [ 0.486 -0.662 -0.571 ]

Y = -0.4082 J2(E) Y = [ 0.401 0.749 -0.527 ]

Z = 0. Z = [ 0.777 0.027 0.629 ]

corresponding to the following tensorial strain description:

0.031 -0.254 -0.027
= .J2(E) -0.254 -0.051 0.316 (5.61)

-0.027 0.316 0.020

One may immediately observe that the E-2 and E23 elements are predominant, indicative of motions

primarily of sheet-sheet slip lateral and parallel, respectively, to the chain axis. This could be anticipated

from the nearly equal but low magnitudes of the shear moduli G1 and G3 relative to that for G2 for this

structure. The plane of this deformation corresponds closely to deformation in the [1021 crystallographic

plane; this is illustrated in Figure 5.1, showing the calculated unit cell, the [102] plane, and the principle

axes of deformation in this plane. From the minimum energy configuration, the lowest energy deforma-

tion process involves a motion of the chain simultaneously longitudinal and lateral to neighboring chains

in the next hydrogen-bonded sheet. This is consistent with the view that deformation in PPTA occurs

with the retention of the integrity of the hydrogen-bonded sheets.
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Figure 5.1 Illustration of the mode of least resistance to shear deformation in the simulated PPTA
Structure #3. Shown are the unit cell, the orientation of the [102] crystallographic
planes which contain this deformation mode, and the principle axes describing the
orientation of deformation within this plane.
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6. FIBER SPINNING AND X-RAY ANALYSIS

6.1 Objective

Simulations of real materials are only as good as the validity of information they provide. Any

computational development inherently invokes a series of approximations, whose purpose is to make the

problem tractable without sacrificing accuracy. In the end, the validity of the model must be checked

against a known material system. For this reason, we found it necessary to undertake an experimental

program whereby we could produce aramid polymers of the types to be modelled in a highly ordered

form for comparison with simulation results. Our objective did not involve an exhaustive research into

the complex interrelationships between material and process conditions, but rather exploitation of the best

technology available sufficient for the purpose of producing highly oriented and crystalline samples of

PPTA and its derivatives. As was addressed in Chapter 2, the method of choice for this purpose is the

dry-jet wet-spinning of aramid fiber from anisotropic solutions. This chapter discusses the criteria behind

the design of our embodiment of the dry-jet wet-spinning process, followed by a description of the

equipment and the process itself. Experimental procedures and general considerations are discussed prior

to a description of the fibers produced from solutions of PPTA in sulfuric acid. Finally, the analysis of

fibers via x-ray diffractometry is discussed.

6.2 Equipment Design

6.2.1 Preliminary Considerations

Several requirements guided the choice of process design and selection of methods and materials for

our application. These are considered below; where possible, the equipment was constructed to maximize

versatility without sacrificing on these minimum requirements.

First, the process must be capable of processing small quantities of polymer into representative fiber.

This requirement was based on the limit imposed by current synthetic capabilities in our lab to produce



constitutionally modified and constitutionally isomeric polymers of both sufficient molecular weight and

sufficient regularity of structure. The polymers reported by Gentile [1988] and referred to in the section

on constitutional isomerism by controlled Homogenous Phase Amidation were in all cases isolated in

quantities of less than one gram. The maximum batch size of polymer currently achievable is on the

order of five grams, the primary limitation being lack of in-house capability to purify the requisite

monomers in sufficient quantity to conduct larger scale polymerizations. The importance of this limit on

polymer availability (for the modified polymers) is exacerbated by the nature of fiber spinning, which is

inherently a continuous or semicontinuous process. Each trial consists of start-up, steady state, and

transition phases; fiber generated during start-up or between changes of operating conditions during the

spin is not discussed. One would ideally opt for a process involving the largest quantity of polymer

possible, in order to reduce the significance of the start-up phase. As a balance, solution quantities on

the order of 5 ml, corresponding to roughly one gram of polymer at 10 wt % in sulfuric acid, were

considered to be the appropriate requisite spin dope volume which could be obtained and converted into

quality fiber.

Second, the primary feature believed to be responsible for the desirable mechanical properties of

aramid fibers and the dominant assumption in the constructions simulated in the model is a high degree

of molecular alignment. Two major factors contribute to the development of orientation in aramid fibers.

(1) The first factor is the formation of an anisotropic phase prior to filament formation; this may be

controlled procedurally, by working at concentrations and temperatures at which liquid crystal phases

form. For simplicity, dope preparation may be decoupled from subsequent processing. (2) The second

requirement is the capability to control both the spin line speed and the draw-down ratio DR, defined as

the ratio of the linear velocity of the fiber at the collection wheel to that at the die exit, which produces

the extensional flow field that causes co-orientation of the directors of the nematic domains.

Third, the corrosive nature of the polymer/solvent system poses special problems. The use of con-

centrated acids imposes severe restrictions on the selection of materials of construction, and the complete

removal of solvent is critical if the fibers are to be exposed to high temperatures, as residual acid will

accelerate degradation of the polymer. The use of small filament diameters reduces the magnitude of

concentration gradients of solvent within the filament during coagulation and permits more complete

removal of solvent from the fiber core. The smaller diameter also ensures a more homogeneous

coagulation process, which should minimize the skin/core morphology differentiation often noted in wet-

spun fibers. Previous workers typically report the greatest success with spinnerette dies of diameter on

the order of 25 pLm to 200 pam [Montgomery, 1971; Blades, 1973; Valenti et al., 1981]. The selection of

the spinnerette diameter reflects a trade-off between the improved coagulation efficiency possible with

small diameter and the ease of handling of larger diameters.
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Fourth, the dopes considered are quite viscous. Ideally, one would prefer that the concentration of

polymer in the spin dope be as high as possible, in order to promote solution anisotropy and to reduce

solvent removal requirements. However, such concentrations lead to very high viscosities in the quiescent

solution. Viscosities as high as 4000 poise are reported for PBA (Tlin = 3.9 g/dl) in hydrofluoric acid at

00 C [Schaefgen et al., 1979]. Aoki et al. [1980] report viscosity versus shear rate curves for Kevlar® in

H2SO4 at both 25 0C and 600C, in concentrations up to 12% polymer by weight; this data shows

considerable shear thinning behavior (from 30000 poise at a shear rate of 0.01 sec -' down to 300 poise at

8 sec 1) of the anisotropic solution (10 wt % solution) at 25 0C, but relatively constant viscosities on the

order of 1000 poise or lower at 600C. We have assumed an representative value of 1000 poise for

design purposes.

Fifth, we require certain postspin treatments; these include multiple washing and neutralization steps

and heat treatment of the fiber. Postspin treatments are decoupled from the spin line for ease of

operation. Washing and neutralization ensure complete removal of acid and prevent later degradation.

Annealing at temperatures above 450'C have been shown to produce significant improvements in fiber

mechanical properties in aramids. Blades [19731 reports increases in modulus as large as 100% with heat

treatments at 5500C for 1 to 6 seconds. Morgan et al. [1983] and Chatzi and Koenig [1987] suggest that

the fibers should be elongated by about 0.5% under such conditions with a tension of 6 g/denier (0.8 GPa

for PPTA). Kwolek et al. [1977] report increases in modulus for PBA from 450 g/denier (60 GPa) up to

1000 g/denier (132 GPa) at 540 0C, and similar increases in tensile strength from 6.5 g/denier (0.86 GPa)

to 17 g/denier (2.3 GPa). These large increases in mechanical stiffness are indicative of changes in the

morphology of the fibers, presumably in the direction of higher orientation of the molecules or increased

crystallinity or both. The morphology change could also reflect a transformation from one polymorph

characterized by a low tensile modulus, such as that for PPTA Structure #5 presented in Table 5.6, to

another polymorph characterized by a higher tensile modulus, such as that for either PPTA Structure #3

or Structure #4. For purposes of comparison with the results generated under the idealized view

presumed by the simulation, experimental data from fibers of greatest molecular orientation and highest

degree of crystallinity should prove most appropriate.

6.2.2 Design Specifications

In light of the these considerations, our process as a minimum requires: first, an effective means for

forming the highly viscous spin dopes; second, equipment and controls sufficient to spin this dope as a

very fine diameter filament under controlled extrusion and wind-up velocity constraints; third, a means for

conducting very short duration annealing of the fibers under at least modest tension. The process and

requisite apparatus were implemented as follows:
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(1) Decoupled dissolution, spinning, and postspin washing, neutralization and heat treatment steps.
(2) Low-shear dope preparation, by means of a special mechanically-driven threaded shaft mixer, to

ensure complete polymer dissolution at high concentration without causing shear-induced

degradation

(3) Volumetric displacement extruder (syringe and plunger design) for extrusion, rather than a

pressure-driven extrusion, in order to ensure accurate control of extrusion velocity regardless of

solution inhomogeneities or variations in solution dynamic properties from trial to trial.

(4) Monofilament spinning, to simplify start-up and operation of the spin line
(5) Washing and neutralization of the wet filament while on the collection roller by submersion in

agitated baths.

(6) High temperature, short duration heat treatment, by passage of the fiber samples through a

furnace at a predetermined velocity to realize the desired residence time, under sufficient tension

to maintain the carrier lines taut. This serves to generate high degrees of crystallinity and to

mitigate the effects of imperfect process conditions on microstructure.

Figure 6.1 illustrates the entire fiber preparation process, including the prespinning and postspinning

treatment steps. During the course of this work, fibers were generated through two different embodi-

ments of this process. However, the fundamental features of process operation and fiber formation did

not vary between these two pieces of equipment; the later version included accurate computer control,

measurement, and data acquisition of important process variables. Monitored parameters were the

extruder and collector drive motor rates, the extruder temperature, and the plunger drive force, from

which were calculated extrusion and collection linear velocities, plunger position, and extrusion pressure.

The critical components are presented in greater detail in Appendix F. Table 6.1 summarizes the most

important design specifications which determine the range of available spin conditions.

6.3 Experimental Procedure

6.3.1 Dope Preparation

Our PPTA solutions consisted exclusively of Kevlar 29®, supplied by E.I. DuPont de Nemours and

known to consist primarily of PPTA [Penn et al., 1976; Morgan et al., 1983], redissolved in 100%

H2SO 4. The inherent viscosity of the polymer was 6.1 dl/g in 96% H2SO4 (determined using an Ostwald

viscometer and a standard concentration of 0.05 g of polymer in 10ml of solvent) at 250C. Assuming

that at concentrations of 0.5 g/dl rinh = [r1] and using Mark-Houwink constants of K = 8x10-5 dl/g and a

= 1.09 [Arpin and Strazielle, 1977], this corresponds to an approximate molecular weight of 30000
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Figure 6.1: Schematic of the experimental program for polymer dissolution, fiber spinning, and post-
spin heat treatment.
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Table 6.1

Equipment design specifications

Syringe volume 6.2 ml
Syringe barrel diameter 10 mm
Spinnerette orifice diameter 50 rpm to 120 mun
Spinnerette die profile 2 mm to 1 mm to orifice diameter
Spinnerette temperature 250 to 80 0C
Plunger velocity -42.5 to +42.5 mm/min
Wind-up wheel radius 35 mm
Wind-up velocity -3000 to +3000 rpm
Maximum plunger force 10,000 N (1.27x10 8 Pa, 1260 atm)
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g/mole (DP - 240). The spin dopes were prepared by combining the polymer staple with solvent under

an inert atmosphere, heating to 600 to 800C, and thoroughly mixing by slow stirring (i.e. _< 60 rpm )

using the threaded mixer. Concentrations from 4.0 wt % to 17.5 wt % were made (VP' is about 7 wt %

to 8 wt % polymer in sulfuric acid at 250C); for most trials, a solution of 10 wt % polymer in solvent

was used. In some instances, the polymer was first dried at 110 0C under vacuum for two hours prior to

combination with the solvent, which was then allowed to impregnate the fiber staple overnight before

heating was initiated. In either case, homogeneous anisotropic dopes could be prepared in thirty minutes

to one hour. Change in molecular weight due to shear-induced degradation or thermal decomposition was

checked by viscometry and found to be insignificant. Anisotropy was confirmed by stir opalescence and

polarized light microscopy.

6.3.2 Fiber Formation

Approximately 5 ml of the polymer dope was loaded by spatula into a prefilter, which attached to

the open end of the assembled syringe barrel. By means of a hand-operated screw which forced the

solution through a stainless steel filter screen, the solution was filtered and homogenized while being

loaded to the syringe. The dope was then extruded through the die orifice by means of a motor-driven

plunger, with the extruded filament falling vertically from the spinnerette die face upon exit. Spinnerette

die diameters from 60 p.m up to 120 pm were used, but the 60-G.m dies were preferred (generally

specified to have a 1:1 length to diameter ratio, but in all but a few cases the capillary length could not

be confirmed). Operative filament velocities at the orifice ranged from 5 to 80 m/min, depending upon

plunger rate and orifice diameter; 40 m/min was typical. The filament passed initially through an air gap

of 5 to 10 mm and then through the aqueous coagulation bath at room temperature (240C), along a path

length on the order of 105 cm, at ambient temperature. Finally, the precipitated polymer filament was

collected on the wind-up roller, whose rotation speed was selected relative to the linear velocity of the

plunger to induce draw-down of the filament. The collected fiber sample was then washed in water,

followed by neutralization overnight of residual acid in a 1 wt % NaOH solution bath, followed in turn

by a final water wash and drying at 600 to 800 C. This constitutes the denoted "as-spun" fiber. Fiber

samples for x-ray analysis were prepared by impregnating a section of the wound filament with epoxy

and then cutting a multifilament sample of length 110 mm directly from the collection spool.

6.3.3 Heat Treatment

The samples were optionally tied or glued to long leaders of Kevlar 29® which were used to thread

the annealing line prior to heat-up. The sample was drawn through a high temperature zone under inert

atmosphere one or more times to produce the denoted "annealed" fiber. A residence time of two seconds



at 500 0C was employed, in accordance with recommendations in the literature [Kwolek, 1972; Morgan et

al., 1980]. Subsequent annealing passes did not appear to alter the structural characteristics observed by
x-ray analysis to any significant extent.

Polarized and unpolarized light microscopy (Nikon Optiphot-pol light microscope with Microflex

AFX-II photomicrographic attachment, magnifications of 40x, 200x, and 400x) were used to verify the

liquid crystal phase formation and to evaluate fiber diameter variations. Magnifications typically used

were 40x for the former and 400x for the latter.

6.4 Spinning Trials for PPTA

The primary factor effecting molecular orientation during the spinning process is the draw-down ratio

DR, a measure of the extensional flow field acting to orient the nematic domains. We generally quote a

nominal draw-down ratio, or spin-stretch factor, based on the known extrusion and wind-up linear

velocities. The actual extensional flow field depends upon the true draw-down ratio, which is augmented

by the tendency for the extruded filament to swell as it exits the spinnerette; this swelling is caused by

the relaxation upon transition from confined to free surface flow of residual stresses imposed upon the

extrudate by flow through the die geometry. Die swell is defined as the ratio of the diameter of the

relaxed fiber to that of the extrudate exiting the die face. In the range of shear rate y,, defined as in

Equation 6.1, from 6000 to 17200 s-', Conio et al. [1987] found die swell in PBA (11inh of 1.37 dl/g and

1.85 dl/g) to increase from 1 at very low extrusion speeds up to 1.3 at an extrusion speed of 13 m/min.

Jaffe and Jones [1985] report a linear correlation between the logarithms of die swell and shear rate at

the wall for PPTA; in the range ,,, = 25000 to 90000 s-, die swell varied from roughly 1.1 up to 1.7.

For a 10% by weight solution of polymer in 100% H2SO4 spun at 300C, we determined that wind-up

velocity necessary to match exactly the linear velocity of the swollen filament without inducing draw or

allowing slack in the spin line. By assuming that the filament does not undergo additional dimensional

changes, other than those due to relaxation, before the collection roller, we may calculate the die swell as

the square root of the ratio of linear velocities, as indicated in Equation 6.2. With the assumption of

incompressible Newtonian flow behavior in the die capillary, we obtain values for the shear rate and

shear stress at the wall of the die using Equations 6.1 and 6.3, respectively:

w = 8 v. / Dorifi (6.1)

die swell = (ve / Vw) 12 (6.2)
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= Dorifice P / 4 Lorifice

P refers to the driving pressure for extrusion, assumed to be equal to the force per unit area at the end of

the moving plunger. Figure 6.2 shows the variation of die swell and shear stress with shear rate in the

range 30000 s-' < y• < 185000 s'-1 for our apparatus using a spinnerette of diameter 60 pm and capillary

length of 100 Wmn and a 10 wt % polymer dope. Die swell remains essentially constant over the range of

shear rates employed in this work, while shear stress increases almost linearly with shear rate. From the

slope of the latter curve, we obtain a coefficient of viscosity of 160 poise for the 10 wt % dope at 300C.

The shear thinning behavior under these conditions is considerably less pronounced than that reported by

Aoki et al. [1979] for a similar dope at 250C. However, the shear rates employed here are considerably

higher than those reported by Aoki et al., and the calculated coefficient of viscosity is half the value

obtained at their ultimate (highest) shear rates; this would suggest a transition from shear thinning to

Newtonian behavior at higher shear rates, consistent with some rheological observations for rigid rod

polymers [Larson, 1988]. The die swell is somewhat larger than that observed by other investigators; this

is probably due to differences in the extrusion geometry and the imposition and relaxation of applied

stresses prior to the extruder exit. Conio et al. suggest that this effect should decrease with increasing

polymer concentration and higher extrusion temperatures. In agreement with these observations, using a

17.5 wt % solution of PPTA in 100% H2SO4 spun at 800 C through the same orifice (i.e. 60 4m x 100

pm), we observe a die swell of only 1.3 in the range 37000 s'1 < y" < 127000 s-1.

Table 6.2 summarizes some results of variations in draw-down ratio. Here we adhere to the use of

nominal draw-down ratios and report the estimated die swell, where possible. Unfortunately, we do not

have die swell data for fibers spun using the first apparatus; however, based on the similarity of design

we expect the phenomenon to be similar to that observed in trials using the second spin apparatus under

similar operating conditions. The trends are consistent with those suggested in the literature for the

related polymer, polybenzamide [Kwolek et al., 1977]. Specifically, we note that fiber radius decreases

with increasing draw-down ratio for as-spun fiber, consistent with dimensional changes normally
accompanying extensional flow. Orientation angle, determined as the azimuthal breadth at one half the

maximum intensity of the x-ray diffraction peak at 20 = 22.50, decreases with increasing draw ratio for

as-spun fiber; this is in line with expectations for alignment of nematic domains upon exposure to linear

accelerations after leaving the spinnerette. Our annealing method produces no measurable dimensional

change in the fiber, but results in a decreased orientation angle for those fibers initially spun at low draw

ratio. At higher draw ratios we observe a limiting orientation angle which is actually lower (i.e. better

alignment) for the 10 wt % polymer dope. At this point, we presume that this discrepancy is due to

geometry factors different between the two embodiments of the spin apparatus design. A similar limit in

fiber properties is reported by Valenti et al. [1981] for modulus as a function of draw ratio for their work
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Shear stress at the wall and die swell as functions of shear rate at the wall for the
spinning of PPTA from a 10 wt % solution in 100% H2SO 4 at 300 C using a spinnerette
of diameter 60 jtm and capillary length 100 jtm.

Data for 60g die diameter, L/D = 1.867
10% by weight PPTA in 100% H2804, 30 C
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Table 6.2

Summary of Selected Fiber Spinning Trials

Nominal Dry fiber Orientation Angle
draw diameter (degrees)
ratio (Pm) as spun [annealed]

TRIAL 1: Polymer concentration : 10 wt % 0.3 28 66
Extrusion temperature : 30 'C 0.5 23 43
Extrusion rate : 31 m/min
Spinnerette diameter : 55 Wpm
Die swell : 2.0

TRIAL 2: Polymer concentration : 10 wt % 1.3 38 63 [46]
Extrusion temperature : 25 'C 2.0 24 34 [28]
Extrusion rate : 36 m/min 2.6 21 20 [20]
Spinnerette diameter : 60 pm 2.9 22 25 [201
Die swell : (unknown) 3.2 22 20 [22]

TRIAL 3: Polymer concentration 17.5 wt % 0.9 35 46
Extrusion temperature : 80 'C 1.2 32 32
Extrusion rate : 30 m/min 1.7 24 30
Spinnerette diameter : 63 p.m
Die swell : 1.3

TRIAL 4: Polymer concentation : 17.5 wt % 1.0 31 36
Extrusion temperature : 80 °C 1.7 25 33
Extrusion rate : 60 m/min 2.0 22 35
Spinnerette diameter : 63 Wpn 2.5 19 31
Die swell : 1.3 pm 3.0 18 31
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on X-500, the polyterephthalamide of p-aminobenzhydrazide, with a break occuring near DR = 1.5. The

ultimate orientation angle values are comparable to values reported in the literature. Hindeleh et al.

[1984] report values of 12.40 and 18.90 for commercial Kevlar 49® and Kevlar 29®, respectively, while

the original patent of Kwolek [1972] reports values between 110 and 500. This suggests that our process

produces representative fibers. Lastly, we mention that we observe no evidence of an amorphous halo in

the x-ray diffraction scans for the annealed fiber. Even in the as-spun fiber, adequate reproductions of

the diffraction traces were achieved with the consideration solely of the apparent peaks. From this we

conclude that our fiber contains at most a very small amorphous fraction.

6.5 X-ray Analysis

6.5.1 Equipment and Procedures

As our initial interest lies in the analysis of microstructure, wide angle x-ray scattering is the natural

choice for evaluation of the quality of fiber spinning and the concurrence between experimental and

simulation results. This technique provides the most accurate and direct information about atomic

structure and molecular orientation. Infrared absorption provides information about the vibratory freedom

of the component atoms and was used as a second independent check for variations in the local atomic

environment and for the identification of specific intermolecular interactions such as hydrogen bonds.

Two different WAXS apparatuses were used to gather data during the course of this work. Both

machines were rotating anode diffractometers equipped with four-circle goniometers and scintillation

counters and employed Cu Kac radiation (k = 1.5418A). The first machine was a Rigaku D4148H2 12

kW High Brilliance generator operated at 40 kV and 150 mA, with a 0.10 slit collimator and nickel

filtered radiation. The second machine was a Siemens D500 generator with DACO-MP control, operated

at 40 kV and 35 mA, with a 1.2 mm pinhole collimator and bent quartz crystal monochromator.

Multifilament samples were held together by embedding the filament ends in epoxy. The samples were

mounted on a frame suitable for positioning in the incident x-ray beam and were manually extended and

fixed to the opposite end of the frame with tape; good filament alignment was thus possible in the fiber

holder, but no extensional deformation was applied. Typical sample sizes were 2 mm in diameter and 20

mm long but contained considerable void space. Absorptions of individual samples were determined from

a ratio of the scattering intensity of the 20 = 21.670 peak of polyethylene with and without the sample

placed in front of the counter; the absorption (expressed as it, the linear absorption coefficient ý. in cm-1

times the sample thickness in cm) was determined using Equation 6.4.
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= -In( IA / IO )

Io refers to the unmodified intensity and IA refers to the absorption-modified intensity. Typical values for

(4tt) were generally about 0.2. At this level of absorption, corrections were deemed unnecessary for our

samples in either normal or symmetrical transmission modes [International Tables for X-ray Crystal-

lography, 1968; Tadokoro, 1979].

WAXS analysis of the experimental fiber samples proceeded in two stages. The first was an initial

evaluation of crystallinity and molecular order by means of equatorial (perpendicular to the fiber axis) and

meridional (parallel to the fiber axis) scans of diffracted intensity versus scattering angle 20. This also

included a routine scan of diffracted intensity versus azimuthal angle P for a major reflection, generally

the intense equatorial reflection at 20 = 22.50, for purposes of determining orientation angle and

crystallite orientation within the fiber sample. Care was taken in all cases to first align the fibers and

identify 3 = 00, where the equatorial diffractions are maxima. This analysis provided a rapid evaluation

of the fiber spinning process and recommended samples for further evaluation. The second stage entailed

the generation of the full two-dimensional fiber diffraction pattern for comparison to simulation results.

Scans of intensity versus 20 were generally in the range of 100 to 550 by steps of 0.10 in 20 at the

desired 3. Azimuthal scans were performed in steps of 10 or 20 in P at the desired 20. Complete fiber

diagrams were recreated from successive radial scans of intensity versus 20 at different 3 between 00 and

900. The full fiber diagram was generated by mirror replication of the first quadrant in the other three

quadrants. Counting times were selected to ensure a signal error level (i.e. the square root of intensity

divided by intensity) < 5%.

Infrared measurements were made using a Mattson Cygnus 100 FTIR apparatus. Samples were

prepared from cut fiber cast in potassium bromide at roughly 2% by weight. Measurements were

generally made in the range 4000 cm-' to 400 cm-'.

It is worth noting that neither small angle x-ray scattering nor mechanical property measurement

were undertaken within the scope of this work. The first provides information primarily about the macro-

structure of the polymer solid on the length scale of tens to hundreds of angstroms, which is beyond the

scale of the information currently generated by the model. Mechanical property evaluation of fibers, on

the other hand, could perform two useful functions: First, it could provide useful information about the

elastic properties of fibers for evaluation of fiber integrity and uniformity; it has been suggested [Prof. P.

Smith, UCSB, personal communication] that mechanical behavior is more sensitive to small changes in

molecular orientation in the limit of high degrees of order than is the magnitude of the measured

orientation angle. Second, the obtained elastic moduli would be available for direct comparison to
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simulation predictions, in much the same manner as x-ray scattering has been used to check structure

predictions. However, such a program has not been attempted here, due to the sensitivity of such results

to many other factors not related to atomic microstructure and for which no account has been made in

the theoretical analysis. For example, small imperfections in fiber macrostructure, such as internal or

surface voids, are to a large extent invisible to WAXS analysis, but may dominate and grossly distort the

conclusions of a mechanical property analysis. A necessary component of any rigorous mechanical

property evaluation, especially for purposes of comparison to an idealized model, would be the more

extensive evaluation of the fiber spinning process than has been attempted here, concentrating on the

development of both microstructure and macrostructure as a function of operating variables.

6.5.2 Methods of Data Analysis

The experimental x-ray diffraction data for fiber patterns were checked visually in the same manner

as were the predicted patterns from the simulation structures. The only correction applied was the

subtraction of background radiation and normalization of intensities prior to construction of the intensity

versus (20, 03) grid for interpolation and display on the IRIS 4D GT system; all other corrections have

already been applied in the calculation of the simulated reflection intensities. The same routines were

used to create the visual display as were employed in the cases of the simulated structures; in this

manner, comparable fiber diffraction patterns were displayed for both simulated and experimental data

sets.

As a further check for experimental accuracy, selected experimental diffraction patterns were

analyzed by conventional methods for indexing of significant reflections. This evaluation proceeded by

selecting a finite number of Gaussian peaks to fit to the two-dimensional experimental pattern, of the

form described by Equations 4.9 and 4.10 used for the representation of reflections generated by the

simulated structures. The fitting procedure entailed minimization of the relative deviation, calculated as

shown in Equation 6.5; of the complete pattern intensity distribution, as a function of the peak heights Ai,

positions (20,P3i) and widths at half intensity (o2o,op) for all peaks i=-1,n.

n20 n3
I 1 (ICp,ij - IWc,ij) 2
i=1 j=1

RD = (6.5)
n29 nP

S (Ij= )2
i=l j=l
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Allowing all parameters to vary independently describes a set of 5np independent variables; this set was

initially, restricted by requiring all peaks to have the same set of peak widths, reducing the independent

parameter set to (3np + 2). The fitting procedure was initiated with different numbers of peaks and

different initial peak assignments, until a best fit (i.e. minimum relative deviation RD) was achieved; the
variance was generally less than 10%. Subsequent reoptimization allowing each peak to vary indepen-
dently in width did not produce significant improvements in fitting. Figure 6.3 illustrates in one

dimension (i.e. 20) the quality of fit possible. From the final set of Gaussian peaks describing the best

fit to the experimental pattern, the total intensity attributable to each reflection was calculated using

Equation 4.9.

6.5.3 Evaluation of PPTA Fibers and Comparison to Simulation

Figures 6.4 (a) and (b) show reconstructed experimental x-ray diffractograms for our DR = 3.2 fiber

(Trial 2, Table 6.2) before and after annealing, respectively. Results from the quantitative analysis and

deconvolution of peaks are reported in Table 6.3, along with a summary of the reflection identifications

reported by Northolt [1974] and Haraguchi et al. [1979] for Modifications I and II, respectively. In

comparing our results with the two crystal modifications reported in the literature, we note the following:

The as-spun fiber exhibits a poorly resolved diffraction pattern, which is to be expected from a

morphology determined primarily by kinetic constraints operative during coagulation. Prior to annealing,
the possibility for imperfect crystallinity or multiple coexisting crystalline polymorphs is significantly

greater. There is no assurance that such a morphology should consist entirely, or even primarily, of the

thermodynamically most stable allomorph; it is not expected, then, that the as-spun fiber diffraction

pattern must conform to one predicted by simulation calculations. The most notable feature of the as-

spun fiber is the appearance of equatorial reflections at 17.90 and 22.60 in 20, in agreement with

Modification II, and of a new equatorial reflection at 27.70, indicative of an [hk0] reflection not

previously reported; Haraguchi et al. report an off-equatorial reflection of medium intensity that they

attribute to the [211] diffraction planes. These reflections are in agreement with a structure possessing

chains at the [0,0] and [1,0] locations in the ab-facet of the unit cell, suggestive of the simulation

structures #5 through #8. The last three of these, #6, #7 and #8, all possess similarly-rotated phenylene

rings with respect to the amide bond plane in the chain conformation, with the resulting generation of

significant second layer nonmeridional reflections. This leaves PPTA Structure #5 as that most consistent

with the as-spun fiber. This structure also predicts significant reflections attributable to both [210] and

[211] sets of diffraction planes; the former, while not noted by Haraguchi et al. in Modification II, is
consistent with our as-spun fiber and, in conjunction with the close-lying [211] reflection, reproduces well
the intensity previously attributed solely to the [211] planes. However, peak resolution in our as-spun

fiber is generally insufficient to justify a more detailed analysis of crystal structure. We do observe that,
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Figure 6.3: Experimental and calculated equatorial intensity distributions for a sample of annealed
PPTA fiber. The calculated intensity is a summation of fitted Gaussian distributions
which best reproduce the experimental trace.

15 20 25 30 35 40 45 50 55

Two theta (degrees)

140

160

140

120

100

80

60

CU
a.

40

20

0
10



Figure 6.4: Representative x-ray fiber patterns for PPTA fibers spun during the course of this work:
(a) as-spun fiber produced at a nominal draw-down ratio of 3.2; (b) same fiber after
annealing for 2 sec at 5000C.
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Table 6.3

Exprimentally determined reflections in PPTA fibers produced in this work
and those reported in the literature for Modifications I and II

Modification Id Modification Ile

I 20 03 I 20 03 I 20 0 I

17.9 0 31

22.6 0 100

27.7 0 45

13.7 84 3

20.4 0 81

22.5 0 100

13.7 m 7

17.4 e s

20.5 e 81

21.7 g 8

22.6 e 100 22.2 e vs

28.4 82 28.0 86 12 27.7 m 30 27.9 m m

29.1 13 23 29.3 g 14 (c) g

29.8 74 5

33.4 57 5

39.2 72 8

41.0 29 9 37.3 23 6 37.4

38.4 0 10 38.5 e 4

43.7 85 35 43.4 85 26 42.0 m 35 (c) m m

45.6 80 15 43.6 g 11

49.0 15 50.0 g 4

49.9 0 8 46.1 e 1

47.2 g

a X = 1.542 A.
b e, m, and g refer to equatorial, meridional, and

azimuthal angles of reflection are not reported.
S the observed d spacing is not reported.
d Northolt [1974].
C Haraguchi et al. [19791.
f corresponds to 3.2 draw ratio fiber from Trial 2

general reflections, respectively, since

(Table 6.2)
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in agreement with the simulation results, the meridional reflections located at 28.40 and 43.70, attributable

to the [004] and [0061 reflections and determined primarily by chain conformation, are indicative of an

extended chain conformation.

Upon annealing we note a structural transformation such as that reported by other investigators

[Haraguchi et al., 1979; Haraguchi et al., 1979; English, 1986]. The equatorial reflections at 17.9°0 and

27.70 disappear in favor of a strong reflection at 20.50 and an off-equatorial reflection at 29.10,

characteristic of Modification I. Other strong equatorial reflections occur at 25.50 and 38.40. Only the

[1111 reflection predicted to occur at 21.70 fails to appear in our patterns. Reflections along the meridian

shift to 28.00 and 43.40, indicative of a slight extension of the chains during annealing, but remain

consistently higher in 20 than those reported by Northolt [1974]. Intensities of meridional reflections are

also lower, but we see increased intensities of off-meridional reflections such as [106] and [104]. The

final dominant structure in the annealed fiber agrees well with Modification I.

The same trend in structure transformation was followed using IR spectroscopy, with particular

attention paid to the band shifts from 630 cm-1 to 673 cm 1 and from 720 cm-' to 730 cm~', reported by

Haraguchi et al. [1979] to signal the transition from Modification II to Modification I. However, our IR

data was not sensitive to such a transition upon annealing. Rather, we observe an obvious absorption at

720 cm-', characteristic of Modification II, in both as-spun and annealed fibers, despite the clear

predominance suggested by the x-ray results of Modification I over Modification II in the annealed fibers.

The breadth of the absorption band between 600 cm1' and 690 cm-1 prevented us from drawing any

conclusions about a band shift in this range as the result of annealing.

From these results we infer that, prior to annealing, the individual chains are essentially extended

and arranged in a reasonably oriented packing array, but that lateral chain packing is not well defined,

and two or more such packing modes for the extended chains are probably present. Both of the

structures previously reported are partially consistent with the observed diffractogram and could be present

in the as-spun fiber. Annealing serves to refine the packing structure in favor of a single dominant

packing geometry, as a result of paracrystal-crystal transformation, crystal-crystal transformation, or

similar processes.

Of the eight polymorphs suggested by simulation, the PPTA structures identified in Chapter 4 as

Structure #3 and Structure #4 bear the greatest resemblance to Modification I and hence to our annealed

fiber. With the exception of the overlap of the intense [200] and [110] reflections in the simulated

patterns for PPTA Structures #3 and #4 in Figure 4.7(c) and (d), the agreement in position and intensity

of the remaining significant reflections is encouraging. Structure #3 most closely approximates the

experimental pattern. One notes that in the simulated pattern for Structure #4, the [001] reflections lie off

the meridian; this is due to the deviation in the crystallographic angle 0 from 900, indicative of a slight
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shift between successive sheets of hydrogen-bonded chains. The annealed fiber appears to exhibit

characteristics of both polymorphic forms. The reflection "families" (Appendix E, Table E.1) may be

compared directly with the integrated intensities for the annealed fiber listed in Table 6.3, deduced from

the two-dimensional Gaussian deconvolution procedure. The major reflections are represented in each
calculated structure, while the minor reflections could derive from the presence of either or both possible

contributors. The weaker meridional reflections predicted by simulation may be traced to the distortion,

dictated by local packing constraints, of the 2, screw symmetry of the chain conformation. The unit cells

deduced by Northolt [1974] and Tashiro et al. [1977] directly from WAXS data on well-annealed fibers
are similar to Structure #3 but possess higher crystal symmetry.
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7. EXTENSION TO ISOMERS BASED ON DICHLORO-SUBSTITUTED MONOMERS

7.1 Introduction

A primary consideration of model development, and one of the ultimate goals of this work, is the
extension of the simulation procedures to the analysis of other similar molecular architectures. At
present, the first step in the development of a new model of this type remains the validation of the
method using a material of known behavior. This study has been discussed in detail in the previous
chapters. However, the real advantage of the method lies in the insight it provides into the connection
between chemical structure and material behavior and in its accuracy as a predictive tool and a guide for
targeting synthetic efforts. One of the original sources of motivation for this computational development
and a running consideration guiding selection of options during development of the model was the more
general interest in our group in producing improved, modified aramids which circumvent the weaknesses
of the existing list of available stiff chain aramid reinforcement polymers, namely the poor solubility and
inferior compressive strength of the Kevlar* family and other rigid rod polymers such as
poly(p-phenylene benzobisoxazole) (PBO) and poly(p-phenylene benzobisthiazole) (PBT). The constitu-
tionally isomeric versions of ring-substituted PPTA show promise as reinforcing materials of improved
processability, and are especially attractive from the point of view of simulation as materials having
controllable atomic-level variations leading to observable macroscopic behavioral changes.

In order to test and demonstrate the extension of the method to new materials, we chose to
concentrate on a single representative modification. Variations of interest, based on the previous
discussion of constitutional isomerism and the reaction kinetics model, are several: 1) Location of
substitution may occur on the phenylene ring of either or both monomers, in order to create the one or
two asymmetric monomer units required for control of the reaction kinetics. 2) Substitution may be
mono- or di-substitution on one or both carbons, respectively, ortho to the C1 position on the ring. 3)
The substituent considered may be either monatomic in nature, such as a halogen, or polyatomic, such as
a methoxy group. 4) One may envision an analysis which entails either extreme of order of isomerism
(i.e. entirely head-to-head, tail-to-tail linkages or entirely head-to-tail linkages), the completely randomly
structured isomer, or some intermediate degree of regularity. We concentrate here on the analysis of
modifications involving dual substitution of chlorines in the 2 and 6 positions of the phenylene ring in the
limits of complete isomeric regularity, that is, either head-to-head, tail-to-tail (referred to hereafter as
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HHTr) or head-to-tail (referred to hereafter as HT). For purposes of model and force field development

we consider dichloro-polyamides based on the polymerization of 2,6-dichloro-p-phenylene diamine with

terephthalic acid, referred to hereafter as 2,6-DiCI-PPTA, and the polymerization of 2,6-dichloro-

terephthalic acid with p-phenylene diamine, referred to hereafter as PP-2,6-DiCI-TA; these dichioro-

polyamides will be denoted collectively as Cl-PPTA. For packing calculations, we limit ourselves to the

study of the HHTT and HT isomers of 2,6-DiCI-PPTA. One structural repeat unit of each of these two

isomers is illustrated in Figure 7.1. Schematically, the symmetric diacid monomer is represented as an

open circle and the asymmetric diamine monomer as a filled triangle. Substitution on the diamine

monomer was chosen based upon previous successes in the actual synthesis of polymers based on this

monomer [Gentile, 1988].

7.2 Chain and Force Field Modification

The selection of Cl-PPTA for the study of controlled variation has the advantage that it requires only

minor changes in the chain description and parameterization of the force field and may be considered as

a perturbation of the unsubstituted PPTA. In the first instance, it is sufficient to employ the same chain

creation and duplication procedure, with the simple removal of pendant hydrogens and replacement by

chlorines at appropriate positions along the chain. In practice, this is performed by a delete-and-replace

subroutine prior to replication of the parent chain on the lattice. Provisions for generation of packed

structures of the random isomer were also implemented by allowing for substitution after chain replica-

tion, in randomly selected sequences of head-to-head and head-to-tail orientations, which may differ from

chain to chain; however, such calculations will not be discussed within the scope-of this work.

Parameterization of the force field requires a redefinition of the set of unique interactions associated

with the substituted phenylene ring. In our previous considerations, we treated all the rings as symmetric

units. In the modified description, this view is altered to distinguish between a "substituted end" of the

ring and an "unsubstituted end" of the ring. In implementation, this requires the definition of a new set

of atoms for the phenylene ring, as shown in Figure 7.2: the substituted end consists of the Cl carbon,

located between the two chlorines and bonded to the amide moiety, the C2 and C6 carbons, positioned

ortho to the C1 carbon and bonded to the two chlorines, and the chlorines themselves; the unsubstituted

end consists of the C4 carbon, located between the two hydrogens and bonded to the opposite amide

moiety, the C3 and C5 carbons, positioned meta to the C1 carbon and bonded to the two remaining

hydrogens, and the hydrogens, for a total of six atomic species, as opposed to the previous description

composed of three atomic species. Secondly, we require a new parameterization of the ring-amide
torsional interaction potential to describe the modified behavior of the substituted end. For the un-

modified ring and the unsubstituted end of the modified ring, we retain the previous torsion potentials
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Figure 7.1: Segments of poly(2,6-dichloro-p-phenylene terephthalamide) (2,6-DiCI-PPTA) with all
torsion angles in their zero positions: (a) head-to-head, tail-to-tail isomer; (b) head-to-tail
isomer.
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Figure 7.2: Definition of "atom types" for the dihalo-substituted phenylene ring moiety.

CI

CI

from the PPTA force field. In this way we have tried to incorporate the predominant changes involved

in performing the stated ring substitutions with a minimum of changes to the chain construction or the

force field description.

The parameters for the modified force field were generated in exactly the same manner as was

previously employed for the parameterization of the ring potential for PPTA. The carbon-carbon and

carbon-hydrogen bond lengths and the van der Waals radii and well depth parameters ri and ei for carbon

and hydrogen were carried over from the PPTA simulation unchanged. The corresponding values for the

chlorine atoms were taken from the work of Bernstein and Hagler [1978, 1978] on the crystal structure of

the model compound p-(N-chlorobenzylidene)-p-chloroaniline, based on their ab initio quantum mechanical

calculations. For partial atomic charges, we again resorted to the procedure of estimation based on AMI

semiempirical quantum mechanical calculations, discussed previously in Chapter 4 and outlined in greater

detail in Appendix C. The revised set of atomic nonbonded potential parameters is listed in Table 7.1.

The intrinsic torsional energy function was determined for substitution on either the ring of the diamine

monomer or the ring of the diacid monomer by appropriate rotations of each ring during AMI simula-

tions of N-[2,6-dichlorophenyl]-benzamide and 2,6-dichlorobenzanilide, respectively. The variation in

potential energy with ring position in each case was best reproduced by the use of a curtate of the form

given previously by Equation 4.3. The parameters for these two ring-amide interaction potentials are

given in Table 7.2. It is interesting to note that the best fit to the semiempirical AMI calculations for

substitution on the C-N-phenylene torsion requires a significantly increased potential well depth of 32

kcal/mole and a very steep curtate curvature, whereas an adequate fit in the case of the N-C-phenylene

torsion is obtained with no additional torsion potential; these curves are shown in Figure 7.3 along with

the data points from AM I calculation. This would imply a significant differentiation between tc-bond

electron delocalization in the case of the substituted diamine monomer and that in the case of the

substituted diacid monomer. However, it would be premature to draw any conclusions concerning

electron behavior between moieties based on such a simplified representation. The revised curtates

probably reflect a procedural requirement necessitated by the larger hard sphere repulsion of the chlorine

atoms in order to emulate the curvature of the rotation potential suggested by AMI, rather than any
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Table 7.1

6-12 Nonbonded atomic potential parameters and elementary charges used in the electrostatic potential

Atom

(phenylene,
(phenylene,
(phenylene,
(phenylene,
(phenylene)
(amide)
(amide)

(kcal/mole)

1)
4)
2 and
3 and

0.039
0.039
0.039
0.039
0.038
0.147

0.0
0.169
0.232
0.243

r

(A)

1.96
1.96
1.96
1.96
1.37
2.03

0.0
1.96
1.60
1.80

qa

(elementary charge)

-0.02
-0.06
-0.03
-0.12
+0.17
+0.38
+0.28
-0.28
-0.38
+0.02

a The value for the bulk dielectric constant D1 was 3.5, and the Block-Walker crossover distance d*
was 3.3A.

Table 7.2

Intrinsic torsional energy function parametersa

Torsion Vdb md

diacid ring (05,4 5-0 )  0.0 0.0

diamide ring (06,,6-43) 32.0 0.8

asee text for details, Equation 4.3
ball values in kcal/mol
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Phenylene ring rotation energy functions suggested for dichloro-substituted rings.
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significant redistribution of electron probability; the very low barrier at 901 in the C-N-phenylene case is
considered to be of minor significance relative to the general form of the curve. More interesting is the
distribution of partial atomic charges among the components of the substituted ring. The pendant

chlorines exhibit a very slight positive charge, and appear to effectively counterbalance the tendency for
redistribution of electron density to the carbon members of the ring. The pendant hydrogens, on the

other hand, retain a significant positive charge, resulting in a notably biased atomic charge distribution at

the aromatic C-H bonds. Such assignment of atomic charges accurately reproduces the dipole moment of

m-dichlorobenzene (see Appendix C).

7.3 Simulation Results: Single Chain

At this stage, we still consider chains of both 2,6-DiCI-PPTA and PP-2,6-DiCI-TA. As in the case

of the unsubstituted polymer PPTA, the isolated chain energetics were first considered in terms of torsion

angle triplets. Again, one assumes that intermolecular interactions are essentially decoupled across the

rigid phenylene rings. With this simplification, the triplets of the isolated chains of the HHTT isomer

and the HT isomer become equivalent; one need only consider the two cases of substitution location.

Figures 7.4 and 7.5 show the energy contours for N-[2,6-dichlorophenyl]-benzanride and 2,6-dichloro-

benzanilide, respectively, as a function of the phenylene-C-N and C-N-phenylene torsions (%3 and @1)
with the amide torsion @2 assuming a position of minimum energy in the vicinity of the trans conforma-

tion. As before, contours with the amide torsion in the vicinity of the cis conformation all lie 5

kcal/mole or more above that of the minimum energy conformations. Not surprisingly, the location of

the minima and the barrier heights of the unsubstituted rings remain essentially unaltered from the plain

benzanilide case. The substituted rings rotate considerably out of the plane of the amide linkage, showing

broad minima between 60 and 120 degrees, with very low barriers to rotation within this range. This

increased freedom of rotation about the phenylene ring axis should not alter greatly the extensional

rigidity of the chain, since it involves rotation about the CI-C4 axis of the ring; this has been confirmed

by Gentile [1988] for both random and ordered isomers of CI-PPTA, which exhibit the onset of a

nematic phase at concentrations comparable to those for PPTA of similar molecular weight and consistent

with Flory's lattice model for the mesophase transition in rodlike molecules. However, such rotational

freedom implies an increase in the entropy of the isolated chains in the solution phase over that for the

unsubstituted PPTA.
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Figure 7.4: Potential energy contour for N-[2,6-dichlorophenyl]-benzamide as a function of the ring
torsions 01 and 43.
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Figure 7.5: Potential energy contour for 2,6-dichlorobenzanilide as a function of the ring torsions 41
and 03.
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7.4 Simulation Results: Multichain

7.4.1 Approaches to Identification of Minima

At this point we focus on the packing of chains of 2,6-DiCI-PPTA. Two approaches recommend
themselves to the identification of the set of structures of local minimum energy likely to occur in nature.
The first is a repetition of the process described in Section 4.4 for the initial identification of energy
minima in PPTA; this involves a multistep procedure of scanning and searching through the multivariate

parameter space. However, equally consistent with the concept of a first principles approach to structure
elucidation and considerably less time-consuming is a process of minimization which assumes that the

modified structures are likely to exhibit packed geometries which are perturbations of the geometries of
the unsubstituted polymer. This assumption obviates the lengthy grid scanning phase and recommends a
finite set of minimizations within predetermined regions of parameter space. Its major weakness lies in
the implication that the modification does not involve any significant new interactions which would
stabilize new, unrelated geometries. In order to determine the comparability of the two methods and in

particular the comprehensiveness of the latter, both procedures were followed in the analysis of the HHTT
and HT isomers of 2,6-DiCI-PPTA.

7.4.2 Packing of Head-to-Head, Tail-to-Tail Isomers

CRU Definition: .For the HHTT isomer, two possible representations of the CRU were initially

considered. The first and simplest assumes that the dimer constitutes the basic conformational unit,

analogous to PPTA. In a head-tail-tail-head sequence, consisting of four monomers defining two

oppositely-directed dimers, the set of conformation-determining angles and torsions are identical for both

dimer subunits, regardless of their respective orientations; in this description, the number of independent

internal degrees of freedom required to describe the chain remains fourteen. The validity of such a

simplification was checked by considering a second representation in which the tetramer constitutes the
basic conformational unit, consisting of the complete head-tail-tail-head sequence, or two independently

conformable dimers, for a total of twenty-eight internal degrees of freedom.

Location and Description of HHTT Energ• Minima: Employing the dimer CRU representation and

following the same procedure as described in Chapter 4 with a cut-off criterion of 0.2 for identification

of those polymorphs of interest, the analysis suggests a list of four viable crystal polymorphs for the fully
ordered HHTT isomer of 2,6-DiCI-PPTA. These are presented in Table 7.3 in the same format as was
used for the polymorphs of the unsubstituted PPTA; orthographic projections are provided in Figure

7.6(a)-(d) for ease of visualization. Of these, only Structure #2 derives from one of the eight original
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Table 7.3

Multichain energy minimization results: structural parameters for four most probable unit
cells of 2,6-dichloro-PPTA; head-to-head, tail-to-tail polymorphs

Structure ID -- 1 2 3 4

Structural
Parameters

a (A) 8.54 8.88 8.53 5.46
b (A) 6.11 5.79 6.15 4.58
c (A) 25.4 26.2 26.2 26.2
cx (degrees) 107 90 96 107
F (degrees). 87 90 89 88
y (degrees) 98 82 97 101

Chain Locations [0,0] [0,0] [0 [0,0] [10,0
(ab projection) ] [i,4] [4,t]

Chain Setting Angle (degrees)
relative to the bc-facet -20 23 -16 22

-20 -157 -16 22

Inter-sheet Translation (A) 0.0 6.6 13.1 0.0

Helix Twist Oh (degrees) 1 0 1 0

Monomer Phenylene
Ring Rotation (degrees)

diacid ring s5: 5 -6 5 -6
diamide ring 46: 61 57 63 60

Cohesive Energy (kcal/mol) 35.8 35.4 35.4 35.1

Density (g/cm 3) 1.63 1.53 1.69 1.69

Parallelepiped Description:
A (A) 4.89 5.63 4.95 5.46
B (A) 5.59 4.95 5.55 4.58
C (A) 25.4 26.2 26.2 26.2
t (degrees) 102 90 94 107
u (degrees) 98 90 93 88
C (degrees) 110 66 108 102
o0 (degrees) 61 107 78 83
02 (degrees) 61 -73 78 83
f2 0.0 0.50 1.0 0.0
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Figure 7.6: Orthographic perspectives of the four primary structures for the HHTT isomers of
2,6-DiCI-PPTA suggested by simulation. The sets (a) through (d) correspond to the
structures labelled I through 4, in order, in Table 7.3. Left: z-axis perspective; Middle:
perspective perpendicular to the bc-plane; Right: perspective perpendicular to the previous
two perspectives.
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Figure 7.6: Orthographic perspectives of the four primary structures for the HHTT isomers of
2,6-DiCl-PPTA suggested by simulation (continued).
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PPTA structures. Significantly, this second structure derives from PPTA Structure #3, the calculated

allomorph which bears the greatest likeness to the experimentally-determined Modification I.

Trends in Structure: The density of the HHTT isomers is on the average roughly 10% greater than

that of PPTA. Accounting for the higher molecular weight of the substituted polymer, this corresponds to

an average increase in unit cell volume of 15% to 20%. One may immediately note that again there is

no significant deviation from the fundamental extended conformational behavior of the chain; the helix

twist deviates insignificantly from zero degrees. Successive phenylene rings may be either similarly or

oppositely rotated with respect to the amide bond plane. However, the trend is for the ring rotation

angles to remain within a relatively narrow range of five to six degrees or fifty-seven to sixty-three

degrees for the phenylene ring of the diacid monomer or the phenylene ring of the diamine monomer,

respectively. This suggests two striking implications for the substituted polymer: First, both rings tend to

fall within a very narrow angular range in the packed structure, an unexpected result given the magnitude

of the intermolecular forces and the range of low energy angular fluctuation available to the rings

suggested by single chain simulations. Second, the unsubstituted ring of the diacid monomer has been

forced considerably and consistently away from its minimum energy position for the isolated chain. From

these observations, one would conclude that the packing of chains of the HHTT isomer significantly alters

and restricts the conformation space of the chain itself; qualitatively, this implies a significantly different

environment for both the potential energy and conformational entropy of the chain in the solid state from

that in the isolated (e.g. dilute solution) state. Consistent with the PPTA case, the 2,6-DiCI-PPTA HHTT

packed chain geometries exhibit a strong correlation between chain setting angles, with the implication

again that the chains associate into sheets held together by hydrogen bonds between chains. Within the

unit cell, the predominance of hydrogen bonding interactions ensures the maintenance of translational

register between amide moieties and phenylene moieties, respectively. Between chains in successive

sheets, the substituted phenylene ring may be in register with another substituted ring of like orientation

(HHTT structures #1 and #4), with a substituted ring of opposite orientation (HHTT Structure #3), or

with an unsubstituted ring (HHTT Structure #2). That is, all three types of register are represented in

these four equipotential crystal structures. There does not appear to be any justification for the

supposition that the introduction of chlorines on the rings creates or prohibits any specific structural

juxtaposition between the modified moieties.

Trends in Potential Eneryv: The total cohesive energy, expressed on a per dimer basis, is slightly

lower than that found for PPTA. Predicted densities range from as low as 1.53 g/cm3 up to 1.69 g/cm3.

For the set of four HHTT isomer packing geometries, we obtain:

E, = 35.4 ± 0.5 kcal/mol
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13.3 [cal/cm3 11/2  < 8 < 14.0 [cal/cm 3]'12

or 27.1xl0 [J/m 3]1/ 2  < 8 < 28.5x10 3 [J/m3]1 2

These values are roughly 90% of the corresponding values predicted for PPTA. Despite the similarities
in the nature of interactions between the unsubstituted polymer and the HHTT isomer, the total cohesive

forces are measurably smaller in the latter. The implication is that the introduction of ring substituents

compels an expansion of the lattice which in turn leads to a weakening of the net cohesive forces. This
reduced cohesiveness provides the main argument for the greater solubility of the HHTT isomer over that

of the unsubstituted polymer. The new Hildebrand solubility parameter estimates are comparable to those

reported for aliphatic polyamides.

These trends are further confirmed by the decomposition of the chain-chain bonding energies (on a
per dimer basis) listed in Table 7.4, this time in terms of chains related by crystallographic location; the

hydrogen bonded sheets, by earlier convention, lie in the bc-facet in each case. The moiety-specific

amide-to-amide electrostatic interaction accounts for 40% to 65% of the total interaction energy between

neighboring chains within the bc-facet, corresponding to hydrogen bond energies of 1.5 to 3.0 kcal/mole,

in perfect accord with the hydrogen bond energies expressed in PPTA. By contrast, interactions between

neighboring chains in the ac-facet exhibit very low total interaction energies. The "diagonal" interactions

listed in Table 7.4 refer to the largest interchain interaction energies which cross from one sheet to

another. With the exception of Structure #4, intersheet interactions are comparable to intrasheet

interactions, with magnitudes of 6.5 to 7.3 kcal/mole. We conclude that the introduction of substitution

on the ring appears to alter the magnitude, but not the distribution or moiety-to-moiety specificity, of

interaction energy between chains from that seen in the PPTA case.

The Tetramer CRU: The second chain representation, involving four rings in the CRU, was adopted

for repetition of the minimizations initiated at the original PPTA structures. The resulting minima

realized, on the average, an increase of 1.5 kcal/mole of dimer in cohesive energy. Densities were

comparable to those found using the CRU representation with only two rings. The greater freedom

allowed to the chain conformation resulted in new twists in the helical structure of the molecule, usually

consisting at most of compensating rotations of ±100 to 150 about the virtual bonds spanning the

phenylene rings of the two diamine monomer components; such compensating rotations result in a net
helix twist close to zero degrees, but with every two successive amide dipoles along the chain contour

lying in a plane 150 rotated from the preceding pair. However, this slight variation did not justify the

large increase in computational resources required to accommodate the more demanding tetramer

calculations. Packing geometry remained essentially unchanged. For this reason, further exploration

using this representation was not deemed necessary.
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Table 7.4

Chain-to-chain bonding energies for 2,6-dichloro-PPTA; head-to-head, tail-to-tail polymorphs
(all values in kcal/mole of dimer)

Cell ID 1 2 3 4

Cell typea fc fc fc p
ac-facet:

total 12-6 0.5 0.2 0.5 2.6
total electrostatic -0.2 0.0 -0.2 0.3
amide-amide elec. 0.0 0.0 0.0 -0.6
phenyl-phenyl elec. -0.1 0.0 -0.1 0.5
total 0.3 0.2 0.4 2.9

bc-facet:
total 12-6 2.0 3.1 1.8 3.4
total electrostatic 4.5 4.2 4.6 6.0
amide-amide elec. 3.4 2.8 3.5 6.0
phenyl-phenyl elec. 0.4 0.8 0.4 2.0
total 6.5 7.3 6.4 9.4

diagonal:
total 12-6 2.7 3.8 2.8 1.4
total electrostatic 4.0 3.2 4.3 1.6
amide-amide elec. 2.8 1.8 2.7 0.7
phenyl-phenyl elec. 1.0 0.2 2.0 0.2
total 6.7 7.0 7.1 3.0

" Cell type identifies chain intersections with the ab-facet: fc indicates chains at [0,0] and
[1,4]; ec indicates chains at [0,0] and [3,0]; p refers to a primitive cell with chains
only at the corners. Intrasheet interactions are consistently in the bc-facet. Closest
intersheet interactions are diagonal in the fc cell type but are in the ac-facet in the ec
cell type; in the p cell type both types of interactions are intersheet in nature.
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7.4.3 Packing of Head-to-Tail Isomers

Chain Directionality: With the HT isomer, the problems of appropriate chain representation are
slightly different from those of the HHTT isomer. In this case, it is again reasonable and sufficient to
consider only the dimer CRU, as was suggested in the case of the unsubstituted polymer, since there is
no distinction of orientation between dimer units along the contour of the chain. However, the HT

isomer possesses directionality as a whole. For this reason, one must now consider, instead of multiple

representations of the internal chain description, multiple non-interconvertible intermolecular relationships
between chain directions during packing. Specifically, we consider two cases: one where all chains pack

with parallel directionality, and one where chains may pack with antiparallel directionality. These two

cases will be designated as HT(P) and HT(A) variations, respectively. In the latter case, one could as

well assume that the two distinguishable chain types (e.g. "up" and "down" chains) have different CRU's,
leading again to a doubling of the number of internal degrees of freedom; for simplicity, we have

considered only one common CRU for both chain types in all cases. However, we have considered the

possibility for the "up" and "down" chain types to be mirror images of one another, effected during

simulation by reflecting the parent chain of "up" type through the yz-plane prior to replication and

reorientation of a "down" chain.

Location and Definition of ]IT Energy Minima: Because of the directionality of the HT chain and the

consequent escalation in number of variations of packing to be considered, the final list of viable

structures is somewhat longer than for the HHTT isomer, even for the same conditions of search and

selection. Table 7.5(a) lists the four HT(P) polymorphs, identified through the scan and search procedure;

orthographic projections are presented in Figure 7.7(a)-(d). As in the case of the HHTT isomers, the
minimizations were also performed based on initial conditions defined by the original eight PPTA

structures. Here, as many as three of the four HT(P) allomorphs, structures #1, #2, and #3, derive from

the original PPTA structures. Furthermore, these three allomorphs derive in particular from PPTA

structures #3, #4 and #7; again, the first of these is that which most closely resembles the experimentally-

determined Modification I. This continued recurrence and persistence lends further credence to the

accuracy of the PPTA analysis reported in Chapter 4 and hints at the relative importance of this basic

geometric unit, in both the substituted and unsubstituted polymers. The HT(P) structures #2 and #3 bear

the same relation to #1 as was reported earlier for the corresponding structures in PPTA.

Table 7.5(b) shows the features of the HT(A) isomers, with corresponding orthographic projections in

Figure 7.7(e)-(j). These must be considered in common with the HT(P) versions, since these are all

structures based on the same chemistry and could be obtained separately or mixed in the actual bulk solid

state. Of the structures listed in Table 7.5(b), #5 through #7 contain "up" and "down" chains that are
related only by rigid body translation and rotation; #8 through #10 contain chains which are reflected

through the yz-plane prior to translation and rotation operations. In this set of antiparallel structures, one
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Table 7.5a

Multichain energy minimization results: structural parameters for four most probable unit cells
of 2,6-dichloro-PPTA: parallel head-to-tail polymorphs

Structure ID --

Structural
Parameters

a (A)
b (A)
c (A)
a (degrees)
53 (degrees)
y (degrees)

Chain Locations
(ab projection)

Chain Setting Angle (degrees)
relative to the bc-facet

Inter-sheet
Translation (A)

Helix Twist 8h (degrees)

Monomer Phenylene
Ring Rotation (degrees)

diacid ring 05:
diamide ring ,6:

Cohesive Energy (kcal/mol)

Density (g/cm3)

Parallelepiped
Descrption:

A ( ) .
B (A)
c (A)
t (degrees)
u (degrees)
C (degrees)
o), (degrees)-
o02 (degrees)
f2

8.68
5.88
13.1

90
85
81

[0,0]

25
-154

6.6

3

-17
59

36.7

1.55

5.60
4.85
13.1

86
86
68

105
-76

0.50

8.97
5.60
13.1

87
81
80

[0,0]
[C1%]

24
24

6.6

2

-23
54

35.2

1.59

5.70
4.88
13.1

84
81
63

107
108

0.50

8.04
5.96
13.1.

87
82
92

[0,0]
[D,0]

22
20

6.6

8

18
60

36.1

1.65

7.04
4.02
13.1

82
83
58

112
114

0.50

4.96
5.52
13.0

91
92
72

[0,0]

32
32

0.0

1

5
65

34.9

1.51

5.51
4.96
13.0

92
91
72

162
162
0.0
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Table 7.5b

Multichain energy minimization results: structural parameters for most probable unit cells
of 2,6-dichloro-PPTA: antiparallel head-to-tail polymorphs

Structure ID -4 5 6 7 8 9 10

Structural
Parameters

a (A)
b (A)
c (A)
a (degrees)
P (degrees)
y (degrees)

8.73
5.68
13.1

92
81
91

9.37
5.35
13.1

98
84
82

7.86
5.89
13.1

92
86
90

10.06
4.65
13.1

92
82
83

8.78
5.85
13.1

90
91
82

8.87
6.58

13.1
83
75

115

Chain Locations
(ab projection)

Chain Setting
Angles (degrees),
relative to the
bc-facet

Inter-sheet
Translation (A)

Helix Twist @h
(degrees)

Monomer Phenylene
Ring Rotation (degrees)

diacid ring 05:
diamide ring 06:

10,01 10,0o] 0,01] 0,01] 0,0) 10,0]
[10,o] [,0] [J,0] [t,4] [,%,] [4,0]

31
20

24
-20

5.3 0.4 6.4 2.9 6.7 0.5

1 4 17 2 1 6

-34
55

Cohesive Energy
(kcal/mol)

37.1 37.1 36.0 37.3 35.8 35.3

1.59 1.59 1.69 1.71 1.53 1.58Density (g/cm3)

Parallelepiped
Descrhtion:

B (A)
C (A)
T (degrees)
v (degrees)
C (degrees)
(o1 (degrees)
02 (degrees)
f,

7.13
4.37
13.1

92
84
53

120
168

0.25

7.57
4.68
13.1

98
91
45
99
58

-0.19

3.92
7.10
13.1

95
92
56

104
159

0.26

5.81
5.26
13.1

96
89
49

115
-72

-0.42

5.60
4.93
13.1

90
91
67

113
108

0.29

6.19
4.43
13.1

83
69
74

168
-42

-0.08
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Figure 7.7: Orthographic perspectives of the ten primary structures for the HT isomers of 2,6-DiCI-
PPTA suggested by simulation. The sets (a) through (j) correspond to the structures
labelled 1 through 10, in order, in Tables 7.5a and 7.5b. Left: z-axis perspective;
Middle: perspective perpendicular to the bc-plane; Right: perspective perpendicular to the
previous two perspectives.

(a)

2, 6-C1-PPTA

2,6-C1-PPTA

(HT) Structure #1

(HT) Structure #2.

b b a
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Figure 7.7: Orthographic perspectives of the ten primary structures for the HT isomers of 2,6-DiCI-
PPTA suggested by simulation (continued).

(c)

2, 6-C1-PPTA

(d) 2, 6-C1-PPTA

(HT) Structure #3

(HT) Structure #4

b b a
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Figure 7.7: Orthographic perspectives of the ten primary structures for the HT isomers of 2,6-DiCI-
PPTA suggested by simulation (continued).

2, 6-C1-PPTA

2,6-C1-PPTA

(HT) Structure

(HT) Structure #6.

b b a
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Figure 7.7: Orthographic perspectives of the ten primary structures for the HT isomers of 2,6-DiCI-
PPTA suggested by simulation (continued).

(g)

2. 6-C1-PPTA (HT) Structure #7

(h) 2, 6-C1-PPTA (HT) Structure #8

b b a
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Figure 7.7: Orthographic perspectives of the ten primary structures for the HT isomers of 2,6-DiCl-
PPTA suggested by simulation (continued).

(i)
2, 6-C1-PPTA

2, 6-C1-PPTA

(HT) Structure

(FRTJ .Structure #10

b b a
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may note that, with the restriction that all chains possess the same conformation, the correlation of chain

orientations is significantly altered in order to accommodate steric packing of the large ring moieties.

Thus in Structure #5 the identification of hydrogen-bonded sheets is still possible, but with the amide

dipoles in one sheet rotated with respect to those in successive sheets, while in structures #6 and #7 the

hydrogen bonding between chains in every second (i.e. antiparallel) sheet completely breaks down. It

was this observation that led to the suggestion that antiparallel chains based on the same CRU may

realize better packing as mirror images; in structures #8 through #10 are again realized the common

pattern of correlated chain orientation and hydrogen bonded sheet formation. HT(A) Structures #8 and #9

bear a marked resemblance to the HT(P) Structure #2, and in turn to the PPTA Structure #4, differing

primarily in the axial register between sheets. HT(A) Structure #10 exhibits the basic features found also

in HT(P) Structure #4 and PPTA Structure #7.

Trendv in Potential Energy: Considering these ten HT packing geometries in unison, we observe that

the cohesive energy lies intermediate between that of the HHTT isomer geometries and that reported for

the PPTA geometries:

Ecoh  = 36.2 ± 1.3 kcal/mol

The best cohesive energies are found in the HT(A) simulations, although within the margin of accuracy

of the energy calculations both parallel and antiparallel packings may be considered feasible. The

cohesive energy is roughly 93% of that for PPTA. Calculated densities range from 1.51 g/cm3 up to

1.71 g/cm3. The predicted Hildebrand solubility parameters are:

13.1 [cal/cm3] 12 < 8 < 14.4 [cal/cm3 ]1/2

26.7x10 3 [J/m 3]'1 < 8 < 29.4x10 3 [J/m 3]l2

The decomposition of the interaction energy into its chain-to-chain contributions is presented in Tables

7.6(a) and (b), in the same manner as before, with identifiable "sheets" parallel to the bc crystallographic

facet. Total energies of interaction within sheets range from 6 to 10 kcal/mol. Interactions between

sheets vary from 4.5 to 10 kcal/mol depending upon the orientation of interaction. For intrasheet

interactions, the trends in hydrogen-bond energies and percentage contributions from each set of moiety-

moiety interactions are the same as in the HHTT cases. Contributions vary considerably for interactions

between sheets. In both structure and distribution of cohesive forces, the HT isomers exhibit behaviors

intermediate between those of PPTA and those of the substituted HHTT counterpart. The HT structures
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Table 7.6a

Chain-to-chain bonding energies for 2,6-dichloro-PPTA: parallel head-to-tail polymorphs
(all values in kcal/mole of dimer)

Cell ID 1 2 3 4

Cell typea  fc fc ec p
ac-facet:

total 12-6 0.3 0.2 6.1 2.9
total electrostatic 0.0 0.0 3.4 0.0
amide-amide elec. 0.0 0.0 2.8 -0.9
phenyl-phenyl elec. 0.0 0.0 -0.7 0.0
total 0.3 0.2 9.5 2.9

bc-facet:
total 12-6 3.0 3.6 3.1 3.2
total electrostatic 4.5 4.4 4.7 4.0
amide-amide elec. 3.0 3.2 3.5 2.7
phenyl-phenyl elec. 0.7 0.7 0.7 0.9
total 7.5 8.0 7.8 7.2

diagonal:
total 12-6 4.0 4.0 1.4 1.8
total electrostatic 3.5 1.6 -0.8 4.5
amide-amide elec. 1.6 1.2 -0.2 3.4
phenyl-phenyl elec. 0.2 0.6 -0.4 0.4
total 7.5 5.6 0.6 6.3

a Cell type identifies chain intersections with the ab-facet: fc indicates chains at [0,01 and
[1,1]; ec indicates chains at [0,0] and [½,0]; p refers to a primitive cell with chains
only at the comers. Intrasheet interactions are consistently in the bc-facet. Closest
intersheet interactions are diagonal in the fc cell type but are in the ac-facet in the ec
cell type; in the p cell type both types of interactions are intersheet in nature.
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Table 7.6b

Chain-to-chain bonding energies for 2,6-dichloro-PPTA: antiparallel head-to-tail polymorphs
(all values in kcal/mole of dimer)

Cell ID 5 6 7 8 9 10

Cell typea ec ec ec fc fc ec

ac-facet:
total 12-6 5.4 4.6 3.0 0.1 2.4 4.6
total electrostatic 4.6 4.1 3.8 0.0 0.0 2.2
amide-amide elec. 2.7 1.4 2.8 0.0 0.0 -1.0
phenyl-phenyl elec. 1.0 1.5 0.6 0.0 0.0 1.0
total 10.0 8.7 6.8 0.1 2.4 6.8

bc-facet:
total 12-6 3.4 3.2 5.5 3.4 3.1 1.7
total electrostatic 4.1 3.8 4.3 6.5 4.4 4.4
amide-amide elec. 3.7 2.6 3.9 6.8 3.0 2.4
phenyl-phenyl elec. 0.4 0.9 0.4 0.9 0.7 0.2
total 7.5 7.0 9.8 9.9 7.5 6.1

diagonal:
total 12-6 0.9 0.6 0.1 3.6 3.9 2.7
total electrostatic -0.8 -0.2 0.2 0.9 3.1 4.9
amide-amide elec. -0.4 -0.2 0.2 0.7 1.7 2.6
phenyl-phenyl elec. -0.3 0.0 0.0 1.0 0.2 0.6
total 0.1 0.4 0.3 4.5 7.0 7.6

a Cell type identifies chain intersections with the ab-facet: fc indicates chains at [0,0] and
[e,]; ec indicates chains at [0,0] and [t,0]; p refers to a primitive cell with chains
only at the corners. Intrasheet interactions are consistently in the bc-facet. Closest
intersheet interactions are diagonal in the fc cell type but are in the ac-facet in the ec
cell type; in the p cell type both types of interactions are intersheet in nature.
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are more clearly perturbations of the unsubstituted polymer, and exhibit a multiplicity of forms. Both

parallel and antiparallel arrangements of neighboring chains realize satisfactory cohesive energies. Again,

lattice expansion appears to be the primary factor leading to reductions in total cohesive energy relative to

the unsubstituted polymer. One may observe that the antiparallel structures are, on the average, roughly

V4 kcal/mol more stable that their parallel-oriented counterparts; however, the long range total dipole

moments of the asymmetric chains appear to have relatively little effect at the local scale, where structure

definition and stability are primarily determined. We may assert that, in this case of substitution for

PPTA, monatomic substitution on every second ring of the chain is sufficient to force expansion of the

lattice, but the low density of substitution and the specific features of ring orientation within the most

probable structures, namely the misalignment of ring edges and the greater or lesser isolation of each

modified ring from other modified rings, preclude any specific interaction, steric or otherwise, which

would alter properties anisotropically.

In the absence of experimental data for direct comparison, and in consideration of the multiplicity of

polymorphs for the substituted isomers, we shall not attempt to discuss at this point the calculated x-ray

fiber diffraction patterns for the dichloro-substituted polymers. Such predictions have been made,

however, and both tabulated intensities and recreated diffractograms are provided in Appendix E for

reference purposes.

7.5 Prediction of Fiber Mechanical Properties

By analogy to the study described in Chapter 5 for the prediction of the elastic behavior of PPTA,

we may simulate small scale deformation of the dichloro-substituted polymers in order to predict their

mechanical behavior. For this purpose, we concentrate on five of the predicted geometries from the total

of fourteen viable candidates. These were selected as follows: The first two, HHTT Structure #2 and

HT(P) Structure #1, are the modified geometries for the two isomers which are analogous to the PPTA

Structure #3 considered in depth in Chapter 5; these were selected for direct comparison to that important

PPTA polymorph. The third, HHTT Structure #3, represents a packing geometry wherein the chains have

been shifted to bring chlorine substituents on neighboring chains into closest proximity (see Figure

7.6(c)), where they are likely to have the greatest effect on mechanical properties. This structure was

selected for comparison to the HHTT Structure #2. The last two, HT(A) Structures #5 and #6, describe

packing geometries analogous to PPTA Structure #5 and the related Modification II; the two differ

primarily in the axial register of the chlorine substituents between neighboring chains, with the sub-

stituents in closest proximity in HT(A) Structure #6 (see Figure 7.7(f)). A comparison of mechanical

behavior for these two geometries should describe the largest difference to be observed in the HT isomers

attributable to the placement of the monatomic ring substituents.
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The modification of the chain description, the method of calculation, and the magnitudes of imposed

deformations, were identical to those employed for PPTA and described in depth in Chapter 5. However,

rather than generate the full twenty-one element compliance matrix, we concentrated on those elements

necessary to determine the Voigt model fiber elastic constants. These are presented in Table 7.7(a) and

7.7(b) for the HHTT isomers and the HT isomers, respectively. In all five cases, the extensional moduli

are of the same order of magnitude, ranging from 230 GPa up to 290 GPa. While this range still

exceeds the estimated tensile modulus of the isolated chain, it is somewhat lower than the 290 to 370

GPa range of upper limits anticipated for the PPTA structures, indicative of a slight weakening of the

load bearing capacity along the fiber axis. Based on the previous discussion, one may conjecture that

this slight reduction is due primarily to changes in intermolecular packing interactions. Transverse moduli

in the substituted structures HHTT #2 and HT(P) #1 tend to be 50% to 100% greater than the

corresponding PPTA #3 transverse modulus. However, the alternate HHTT #3 allomorph involving

proximate chlorines again exhibits a transverse modulus comparable to the PPTA value. A comparison of

the HHTT structures #5 and #6, which differ primarily in the register between chlorine-modified rings,

reveals almost identical sets of elastic constants for these two geometries. In all cases, the torsional

moduli are consistently 2% to 5% of the extensional modulus; the absolute values of these moduli are

comparable to those for PPTA. It appears that the introduction of chlorines as substituents on every

other ring of the chain should have only a moderate effect on the mechanical behavior of the resulting

fibers. The simulations suggest that the most likely effect is a slight reduction in the extensional

modulus, but little or no change in the torsional modulus. The orientation of the dichloro-substituted

rings in each structure appears to preclude the operation of the bulky chlorines as barriers to chain slip.

As a result, one should expect to observe little change in shear deformation behavior from that seen

previously in PPTA.
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Table 7.7a

2,6-DiCl-PPTA HHTT theoretical fiber elastic constants (GPa): Structures #2 and #3

Structure #2 Structure #3
Voigt Predicted Voigt Predicted

Range' Range'

Extensional Modulus (E3) 288 279 - 228 258 250 - 204
Transverse Modulus (E1,E2) 45 44 - 35 20 19 - 15
Torsional Modulus (G1,G2) 12 12 - 9.5 13 13 - 10
Extensional Poisson's Ratio (v13,v23) -0.12 - 0.33
Transverse Poisson's Ratio (v12,v21) 0.11 - 0.72

a after correction for entropic contributions.

Table 7.7b

2,6-DiCl-PPTA HT theoretical fiber elastic constants (GPa): Structures #1, #5 and #6

Structure #1 Structure #5 Structure #6

Voigt Predicted Voigt Predicted Voigt Predicted
Rangea Range' Rangea

Extens. Mod (E3) 232 225 - 183 275 268 - 217 252 244 - 199
Transv. Mod (E1,E2) 31 30 - 24 32 31 - 25 31 30 - 24
Tors. Mod (G,,G 2) 9.4 9.1 - 7.4 7.3 7.1 - 5.8 8.0 7.8 - 6.3
Extens. Poisson's Ratio (v13,v23) 0.29 - 0.08 0.27
Transv. Poisson's Ratio (v12,v2t) 0.36 - 0.39 0.49

a after correction for entropic contributions.
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8. CONCLUSION

8.1 Summary

As was proposed at the outset of this work, we have attempted to take advantage of current

computational capabilities and unique chemistries in order to address the issues of structure and property
prediction relevant to the growing field of engineered polymeric materials. The materials selected for

study were the para-linked aramids based on poly(p-phenylene terephthalamide) oriented in the solid state.

The contents of this study may be summarized as follows:

(1) A complete methodology was developed for the geometric representation of a general ordered

polymer structure composed of many polymer chains aligned along their helical or pseudohelical axes, the

generation of requisite parameters for force field potentials, and exploration of the entire multivariate

phase space in order to identify the structures of minimum potential energy in a densely packed solid

state. The methods used are readily applicable to other helix-forming polymers through a simple change

of repeat unit generation and force field calculation routines. The importance of helix imperfection and

long range interatomic interactions have been addressed quantitatively. The method is based on atomic-

scale considerations and requires no adjustable parameters

(2) Select thermodynamic and phenomenological characteristics, in particular the solid state cohesive

energy, Hildebrand solubility parameter, and scattering of x-rays from fiber specimens, were generated

deterministically from simulated structures. These predictive methods do not require or presume the
availability of experimental data for the material in question, except to the extent that appropriate force

field parameterizations may be deduced from data of low molecular weight analogues or other calculation-

al procedures.

(3) The model was validated through application to the study of PPTA, a well-known stiff chain aramid.

The results suggest the viability of a plurality of pseudocrystalline forms for PPTA. Predictions of

cohesive energy density (39 ± 1 kcal/mole), Hildebrand solubility parameter (15.3 [cal/cm 3] /2 < 8 < 16.1

[cal/cm 3] 1/2), and x-ray scattering are in accord with expectations based on available data in the literature.

Through a detailed analysis of the polymorphic forms, we are able to distinguish, prioritize, and quantify

the features which lead to the development of ordered structure, or lack thereof.
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(4) The model description was modified to enable deformation "experiments" of select pseudocrystalline

polymorphs. The experiments account only for the potential energy contribution to the elastic stiffnesses,
which is shown to overestimate moduli by 3% to 27%. We have calculated the complete twenty-one

independent element elastic stiffness and compliance tensors for the general triclinic crystal. We have

also predicted the complete set of conventional fiber elastic constants in the Voigt and Reuss limits.

Finally, we have proposed a novel approach based on our knowledge of the complete material stiffness

tensor for the single crystal to identify the orientation of least resistance to shear.

(5) The design of a fiber spinning apparatus suitable for the production of quality fibers from small (less

than one gram) quantities of polymer is presented. The equipment described is suitable for temperature-

controlled dry-jet wet spinning (or alternatively, of course, simple wet spinning) of polymer solutions in

corrosive solvents up to 100 0C, with postspin fiber treatments at temperatures up to 500 0C. Representa-

tive fibers of PPTA were generated, along with data concerning die swell, draw ratio, and annealing

effects in this process. The resulting fibers were analyzed by IR spectroscopy and WAXS for com-

parison with the model predictions.

(6) The simulation methodology was extended to the study of the effects of controlled atomic variation

on solid state structure, cohesive energy density and solubility parameter, x-ray scattering, and mechanical

property evaluation. Atomic substitution and the order of substitution along the chain contour were

addressed using the regular head-to-head, tail-to-tail and head-to-tail isomers of the polyterephthalamides

of 2,6-dichlorophenylene diamine. The results confirm the reduced cohesiveness of these modified

pseudocrystalline structures, leading to the observed improvement of solubility in common solvents.

Mechanical property predictions suggest that such substitutions should play a relatively minor role in the

mechanical behavior of these fibers.

We conclude from this work that the methods of atomistic modelling are applicable to the prediction

of detailed structure even in cases where the chemical complexity is considerable. The wealth of ther-

modynamic, phenomenological, and mechanical property information which may be anticipated by this

method makes it especially attractive. Current limitations to applicability result primarily from the

numerical difficulties associated with the highly convoluted potential energy hypersurface characteristic of

the dense solid state and the limited accuracy in predicting small strain moduli.
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8.2 Recommendations for Future Work

Based on our experience developed during the current work, a number of recommendations for

improvements and extensions of the methods and ideas described herein may be proposed.

(1) Improvement of the efficiency of the search procedure for minima. To our knowledge, there is no

theory or method currently available to guarantee a priori the identification of a global minimum; one

may only identify a set of local minima, under the assumption that by means of a sufficiently comprehen-
sive search procedure the global minimum is contained therein. However, it would be desireable to

develop an "intelligent" search algorithm which recognizes the constraints of the independent parameter

set and takes advantage of these to step past irrelevant local minima.

(2) The concepts of paracrystallinity are relevant to the study of crystallinity in polymers; it would be

feasible to reformulate the structure generation procedures to incorporaLe distribution functions which

describe distortions of the second kind. It may be possible to redescribe the polymorphism presented in

this work in terms of a reduced number of structurally significant parameter distributions employing

internal coordinates rather than Cartesian coordinates.

(3) It would be of further value to take advantage of the software and minimum potential energy
packing geometries generated within this work to explore specific structure transformation processes such

as ring flip motion, chain rotation about or translation parallel to the molecular axis, and deviation from

perfect co-alignment of molecular axes. Such analyses could produce information about intermediate

activated state geometries and energy barriers to transformation of particular interest to spectroscopic

analyses.

(4) The method may be applied to more varied chemistries. The simulation procedure is especially

valuable as a guide to proposing modified chemistries in that it can describe the structural changes that

occur upon the introduction of chemical changes. Here we have only considered the most minor form of

structural modification, the introduction of a larger monatomic species at regular points along the chain

contour. Further interesting changes would include the study of random substitutions along the chain

contour, the substitution of functional moieties which would force the introduction of a new inter-

molecular interaction, or introduction into the chain backbone of specific moieties which either reduce the

stiffness of the main chain or create a fixed alteration of the chain helicity, which would break down the

hydrogen bonded sheets and force the formation of a new set of intermolecular interactions. Specific

examples, some of which are currently under pursuit, are the study of the effects of fixed chain twist,

such as that found in MPIA, the characterization of solid state crosslinking in a system containing fusible

rings, and the analysis of dopant retention in a crystalline polymer.
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(5) The experimental apparatus and WAXS scattering procedures are readily applicable to the production

of fibers of new materials; a program of experimental work would go hand in hand with the theoretical
analysis of proposed new materials suggested by Point 4. Of immediate relevance to the results presented
here would be the processing of regularly substituted dichloro-PPTA's into fiber for x-ray and structure
analysis and comparison to simulation results. The means currently exist to produce the HHTT isomer

with an order parameter of s < 0.1; this synthesis and processing effort is currently in progress and will

be presented in a later publication. The dipole moment of the repeat unit of the 2,6-DiCI-PPTA isomer

is on the order of 2.8 Debye, based on our AM1 calculations for p-(2,6-dichlorophenylene) diformamide.

The simulation results presented here suggest the possibility for an electrically active polymer fiber

containing parallel arrays of regular HT isomers of 2,6-DiCI-PPTA; Synthetic routes to the HT isomer of

this polymer having order parameter s > 0.9 are currently under investigation;

(6) A final ambitious recommendation would be a study of the linkage between structure at the atomic

scale addressed within this work and structure at the macromorphological scale tenfold or a hundredfold

larger than the current simulation scale. Such an undertaking would require the consideration of the

extent to which local structure determines long range structure and how kinetic processing parameters

influence this determination. The fruits of such a study would include a more accurate predictive method

for real mechanical properties and could lend new insight into the formation of macrofeatures in the bulk,

such as microfibrils or periodic defect structures.
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NOTATION

real space continuation vectors for the crystallographic unit cell.

reciprocal space continuation vectors for the crystallographic unit
cell.

lattice continuation vectors in the parallelopiped description.

magnitudes of the lattice continuation vectors A, B, and C.

Helmholtz free energy.

the generalized potential function multiplier

helix rotation matrix and translation vector, as defined by
Miyazawa et al., describing the helix conformation.

an element of the material stiffness tensor C.

Specific heat of a solid at constant strain.

helix pitch, or projected length of one repeat unit on the helix
axis.

diameter of the molecular "cylinder".

the interatomic distance between i and j

the critical crossover distance for the distance-dependent dielectric
constant

the bulk dielectric constant.

the in-line draw-down ratio during fiber spinning, defined as the
ratio of the linear velocity of the fiber at collection over the linear
velocity at the spinnerette.

the diameter of the spinnerette orifice.

an element of the engineering strain tensor e.

elastic modulus.

cohesive energy of a multichain geometry.

the total internal energy calculated in the explicit domain.

the intramolecular internal energy of chain 1.

the intermolecular internal energy between chains I and 1'.

(A)

(A)

(A)

(kcal/mol)

(GPa)

(kcal/mol/K)

(A)

(A)

(A)

(A)

(Pm)

(GPa)

(kcal/mol)

(kcal/mol)

(kcal/mol)

(kcal/mol)

Dafice
eLM

Ei

EcM

Eexp1

E/intra

,,
inter
"



Ex'ame the total internal energy calculated in the outer lattice domain, per (kcal/mol)
repeat unit.

EuM the total internal energy of a structure, per repeat unit. (kcal/mol)

Eunit  the internal energy of the explicit domain, per repeat unit. (kcal/mol)

fi the fractional translation in the lattice of chain i along its axis.

fj(S) the atomic scattering factor for atom type j, which is a function of
the length of the scattering vector S.

F the helix translation vector, akin to BH, employed in imposing (A)
helical symmetry.

F(S),Fcr(S) general and crystallographic x-ray structure factor based on atom
positions.

ga, gb induction parameters, in reaction kinetics model for constitutional
isomerism.

Gi shear modulus. (GPa)

G(S) crystallographic x-ray structure factor based on unit cell period-
icity.

G real space metric tensor, defined by HTH.

h Planck constant (0.662x10 -33 J-s). (J-s)

h,k,l Miller indices denoting the sets of crystallographic planes.

H coordinate transformation matrix for Cartesian to fractional coor-
dinate systems.

le the intensity of x-rays scattered by an electron.

I(S),Icr(S) calculated general and crystallographic intensities of scattered x-ray
radiation, as functions of the scattering vector S.

Iobs(S) observed x-ray intensity.

Iu the projected "length" of the repeat unit. (A)

ii  the length of bond i. (A)

J1, J2 , J3  first, second, and third tensorial invariants.

k Boltzmann constant (8.31 J/mole-K). (J/mole-K)

L(hkl) Lorentz Factor for x-ray intensity. correction for diffraction from a
set of planes hkl.

Lorifice the capillary length of the spinnerette orifice. (4tm)

Mw weight average molecular weight. (g/mol)
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NA

NCRU

NC

Ni

Np

Nr

P

P(hkl)

qi

Q

r

molecular weight of the repeat unit.

Avogadro Number (6.022x0I").

the number of atoms in a conformational repeat unit (CRU).

the number of independent chains on the lattice.

the number of crystallographically unique atoms.

the number of additive components of the total nonbonded poten-
tial description.

the number of repeat units in the chain.

octopole moment of an atomic moiety.

Pressure.

the polarization factor for x-ray intensity correction for diffraction
from a set of planes hkl.

the partial atomic charge of atom i.

canonical partition function in statistical mechanics.

relative reactivity of ends of an asymmetric monomer, used in
reaction kinetics model for constitutional isomerism.

the van der Waals radius of atom i.

location vectors describing unit cell and atomic positions in an
arbitrary frame of reference.

the order parameter to describe constitutional isomerism.

the paths of incident and scattered radiation, respectively.

the scattering vector for incident radiation along the path so and
radiation scattered along the path s.

entropy.

an element of the material compliance tensor S.

the rotation matrix describing alignment of the helix axis of the
polymer chain along the Cartesian z-axis.

temperature.

displacement vector of atomic coordinates describing deformation.

internal energy.

linear extrusion velocity of a filament during spinning.

ri

Rkri

sos

S

(g/mol)

(mol-')

(A3)

(Pa)

(A)

(A)

(kcal/mol/K)

(GPa-')

(OC,K)

(A)
(kcal/mol)

(m/min)

S

TH



V
W

V, Vo

V,

VP

Wj

x

x

XI
X

a,3,y

aP

Yw

YLM

C,vw

182

linear collection, or wind-up, velocity of filament during spinning.

volume (eg. unit cell).

the generalized distance dependent potential function.

the critical volume fraction for anisotropic phase formation.

the rotation matrix used to orient the polymer chain j about its
center of gravity by means of the appropriate Euler angle rotations
xj, #j, and oj.

the helix twist matrix employed in imposing helical symmetry in
the lattice summation for potential energy.

aspect ratio of a rigid rod molecule.

the eigenvector matrix for the radius of gyration tensor H

degree of conversion during polymerizaton.

the vector of Cartesian coordinates for atoms.

real space interaxial angles for the crystallographic unit cell.

an element of the thermal expansion tensor a.

the azimuthal angle of scattered radiation in x-ray scattering.

shear rate at the wall of the spinnerette orifice in fiber spinning

an element of the Graineisen tensor y.

interaxial angles describing lattice continuation in the paral-
lelepiped description.

Hildebrandt solubility parameter.

the Lennard-Jones potential well depth parameter for atom i.

the permittivity of a vacuum.

an element of the material strain tensor e.

inherent viscosity, approximated at 0.5g polymer per dl.

the scattering angle in x-ray diffraction, also referred to as half the
Bragg angle 20.

the complement of the bond angle at atom i-1, used in describing
the location of atom i.

helix twist, or the amount of rotation about the helix axis occuring
over one repeat unit.

Einstein and Debye temperatures, defined as vEh/k or vDh/k.

(m/min)

(A3)

(kcal/mol)

(A)
(degrees)

(K)-'

(degrees)

(sec-1)

(degrees)

(cal/cm3)1
2

(kcal/mol)

(kcal-I•/C 2)-1

(dlg)

(degrees)

(degrees)

(degrees)

(K),

8

Ei

o 0

ELM

Tlinh

0

@E,e D



0

iCT

Xa,Xb,Xc

)1

,i2 2

9t

V

VE

VD

vij

P

Ph

oLM

'gw

quadrupole moment of an atomic moiety.

isothermal compressibility.

wavelength of radiation.

summation coefficients along the lattice continuation vectors.

eigenvalues of the radius of gyration tensor - of the finite chain
segment.

elementary dipole moment of an atomic moiety.

isotropic mean square displacement of atoms due to thermal
vibration, for an atom i and universally for all atoms.

sample absorption in an x-ray beam, as the product of the lipear
absorption coefficient gt and the sample thickness t

vibrational frequency.

characteristic frequency in the Einstein Approximation.

characteristic frequency in the Debye Approximation.

Poisson's ratio.

the radius of gyration tensor for the finite chain segment.

density.

helix radius, defined at an arbitrary point on the helix.

an element of the material stress tensor a.

shear stress at the wall of the spinnerette orifice in fiber spinning.

the torsion angle between atoms i-2 and i-1, used in describing the
location of atom i.

the Euler angles orienting chain i on the lattice.

the Euler angles describing the crystallite orientation
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(A2)

(kcal/mol.m3)

(A)

(A)

(cm2)

(cm)'

(cm)-'

(cmy'

(A)

(g/cm3)

(A)

(GPa)

(Pa)

(degrees)

(degrees)

(degrees)



ABBREVIATIONS

AM1

Cl-PPTA

CNDO

CPU

CRU

DP

HHTT

HT

IR

MNDO

MPIA

PBA

PE

PPTA

PP-2,6-DiCI-TA

2,6-DiCl-PPTA

PVC

VFF

WAXS

Austin Model 1. AMPAC version available through the Department of
Chemistry, Indiana University, Bloomington, Indiana, 47405, QCPE Program
#506.

generic reference to chlorine-modified versions of poly(p-phenylene tereph-
thalamide)

Complete Neglect of Differential Overlap quantum mechanics package

Central Procesing Unit

Conformational Repeat Unit

Degree of Polymerization

Constitutional isomer of head-to-head, tail-to-tail alignment of repeat units

Constitutional isomer of head-to-tail alignment of repeat units

Infrared spectroscopy

Modified Neglect of Differential Overlap quantum mechanics package

Poly(m-phenylene isophthalamide)

Poly(benzamide)

Polyethylene

Poly(p-phenylene terephthalamide)

Poly(p-phenylene 2,6-dichloroterephthalamide)

Poly(2,6-dichloro-p-phenylene terephthalamide)

Poly(vinylchloride)

Valence Force Field

Wide Angle X-ray Scattering
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APPENDIX A: Helix Representation of Chain Conformation

The helix described entirely in terms of internal bond coordinates may be fairly simple or severely

convoluted within a single helical repeat distance and there is no constraint on the rationality of the helix.

We derive the corresponding helix rotation matrix AH and translation vector BH of Miyazawa and Sugeta

[Miyazawa, 1961; Sugeta and Miyazawa, 1967] from our earlier generator matrices:

=k Yk j-1

where:

such that:

Yk

= A[ A 2 ... Aj. 1

= A A 2 ... AjtAj ... Ak-1

= A1  Xj' + Bl

= AHT Xk1 _ BH

j and k are the corresponding

greater than or equal to 3.

0
Yj 0

1

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

atoms in two successive conformational repeat units m and m+l, and j is

From AH and B1 one can calculate the three helix parameters for a uniform, nondegenerate helix

and the rotation matrix required to align the helix axis with the z-axis.

C = (AHT - E4 )B H

C' = (E 4 - AH)B H
(Es is the identity matrix of order S)
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B = (BHT BH)P

C = (CT C)

from which it follows that: (refer to Figure A.1)

(A.7)

(A.8)

(A.9)

(A.10)



Figure A.1: Definition of the vectors B, B', B", C, and C' and the helical parameters p and O (after
Sugeta and Miyazawa [1967]).
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= (CT C')/C2

-= ½C/(1-coseh)

= BH(CT C')/(C2sinO)

= T Xi' + D

=
Ph 0 0 ]

el(x)
e2(x)
e3(x)

el(y) ej(z)
e2(y) e2(z)
e3(y) e3(z)

(A.16)

(A.17)

(A.18)

(A.19)

S C/C
= cT

e3  e1

= (CT C')/C2 Sineh

For the special case where = 180", one must substitute an alternative calculation for the pitch and for a

section of the orientation matrix:

= (AH + E)BH

= ½ BH*/d

(A.20)

(A.21)

(A.22)

However, in applications involving finite chain lengths, this helical coordinate conversion encounters a

singularity in radius Ph for the degenerate straight rod helix (h=-0, C--O). This singularity produces a

discontinuity in helix alignment, whereby conformations infinitesimally displaced from the straight rod

become sections of infinitely large spirals, with the result that alignment is rotated by 900 in space. To

surmount this numerical problem, we have chosen to substitute in this vicinity of parameter space a

coordinate transformation which approximates the helix axis with the major axis of the radius of gyration

tensor for the finite chain segment, with a transition between the two transformations at a finite value of
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coseh

Ph

dh

and then:

(A.11)

(A.12)

(A.13)

where

(A.14)

(A.15)



Oh. The radius of gyration tensor for the finite chain segment is calculated using only the coordinates of
the "backbone" atoms, i.e. those carbon and nitrogen atoms which lie on the backbone bond (and virtual

bond) contour of the chain. For a segment containing Ni such atoms, the elements of the radius of
gyration tensor are calculated simply by:

Ni Ni  Ni
-jk j= (ejr)(ek.r)/N - I (ek.r)/Ni (ek.ri)/Ni (A.23)

i=1 i=1 i=1

Here, ej is a coordinate axis unit vector, where j and k take the values 1, 2, and 3, corresponding to the
Cartesian x-, y- and z-axes of the real space coordinate system. Diagonalization of B by successive

Jacobi transformations yields the eigenvalues (X,, X2, and K3) of this tensor, which correspond to the
magnitudes of the principle axes of the chain segment, and the matrix x of eigenvectors, which

correspond to the unit vectors of the principle axes. The principle axes are sorted such that K3 > •, > X2

to yield the rotation matrix TH = xT. The helix is centered and aligned such that its primary axis lies

along the Cartesian z-axis and the secondary axis lies in the Cartesian xz-plane:

Ni
Xi  = TH ( ri  - (e-r i)/Ni ) (A.24)

i=1

This approximation allows the model to handle all cases of chain conformation in a numerically

continuous manner for finite chains segments of sufficient length. However, it may readily be seen that

the above transformation of coordinates is dependent upon N1, or the length of the chain segment; this

dependence becomes less sensitive as Ni increases for segments which are rodlike in conformation, since

X3 increases faster than either X1 or X2. It does not, of course, ensure perfect alignment of the near-rod

helices along their true propagation axes except in the limit of extremely large Ni.

Individual chains are characterized by their local Cartesian frames of reference, defined by the helix

axis (or the longest principle axis of the radius of gyration) along the z-axis, the first amide bond plane

(or the second longest principle axis) in the xz-plane, and the y-axis chosen to form a right-handed

orthonormal coordinate system. The chain may then be oriented in general by application of three

rotations, X, xV, and o, about the z-axis (counterclockwise), the y'-axis (clockwise), and the z"-axis

(counterclockwise), respectively, as shown in Figure A.2. The necessary rotation matrix W by this
definition is as follows:
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= W W, Wx

W,

= F
= F

cosX -sinx
sinx cosX

0 0

cos1 0
0 1

sinW 0

COSW
sin0a

0

-sineo
COS(

0

0
0
1

-sinW
0
cos",

0
0
1

(A.25)

(A.26)

(A.27)

(A.28)

which, when multiplied as shown in Equation A.25, yield the rotation matrix given by Equation 3.10.

196



Figure A.2: Definition of Euler angles for orientation of a chain about its center of gravity.
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APPENDIX B: Summation Representation of a Periodic Structure and Convergence of Terms

Lattice Summation In gener

power m(p) in distance:

E

one may write the total energy

the form:

al, for a force field of the type described below, with p terms of inverse

= Y AP (1/d)-m(P) (B.1)

of interaction of one atom i with an entire lattice of Nj atoms of type j in

(B.2)Ei= I,j = S Ap (1/di=j)-m(p)

J P

In general, for a periodic lattice described in three dimensions by the periodicity vectors a, b, and c, the

interatomic distance may be described by the lattice point (h,k,1) and the vector do locating the j lattice

relative to the atom i=1:

di 2 = (dj Td ,j)

(ha + kb + Ic + do)T(ha + kb + Ic + do )

(d1,hk d1 ,.hkl)

(B.3)

(B.4)

(B.5)

which yields, in Cartesian coordinates, for the interaction of the lattice centered on atom j=l with the

atom i=1:

El,1i (B.6)= X XI I A, 1 ,p (dl,hkTdl,jl)" -m(p)/2
p h k I
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This may be generalized for a structural unit consisting of Ni atoms interacting with an entire composite

lattice having Nj atoms in its simplest subunit. The total energy per unit of Ni atoms is given by

Equation B.7; this equation is essentially the lattice summation in the form presented in the text in

Equations 3.16, 3.17, and 3.18.

Elattice = (B.7)
N i N/

11 I I Aij,p (d1,hk of j d1,hk of jm(p)/2
p i j h k I

Transformation from Cartesian to lattice coordinate system This may be converted into a lattice-based

coordinate system (i.e. "fractional coordinates") by means of the transformation matrix H

Xc = H xr where

to the

asin3

H = 0

acosp

x, refers to the lattice coordinates and Xc refers

Cartesian coordinates.

b(cosy--cosacosp)/sinn3

b(sin2 -cosy-cos 2 a+2cos acosfcosy)

bcosa

0

0

c

H has been defined with the crystallographic system oriented within the Cartesian system as described in

Chapter 3, i.e. c parallels the Cartesian z-axis, a lies in the xz-plane, and b completes a right-handed

system. Then we may write:

S Xcj - Xci = H (xj - xfr) (B.10)

In general, the atoms reside at fractional coordinates described

coordinate system. We redefine the vector do in lattice space

d o = H dro ;
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by xr = [h k l] in the lattice-based

as:

(B.11)

(B.8)

(B.9)

dro = [ h' k' I' ]



For ease of expression we define the following condensed notation:

xh ofj - (x- xri) = [h+h' k+k' 1+1' ]

The summation may be rewritten as:

Ni Nj
Elattic = ~ N 1 Aij,p (X of Gxt of j)f-m)2

P i j h k

G is the real space metric tensor:

G = HTH =

a
2

ab(cosy)

ac(cosp3)

ab(cosy)

b2

bc(cosa)

ac(cosp)

bc(cosa)

Convergence of Lattice Terms

from successive triclinic "shells"

To demonstrate

of atoms Nj

convergence, we write E15 ,,, as a summation of AE's

Elatice = AEshcli I + AEshell 2 + shll3 + ... + AEshll n + .--

We demonstrate convergence of Euic as n goes to ,o by scaling arguments. For large h,k,l:

Sxh 2 -- h2 + k2 + 12 oc n2

(B.15)

(B.16)

and the number of terms in the shell goes as (n3 - (n-2)3) cc n2. Therefore, lim Eshell n is a "p series" of
n-400a
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order of magnitude O(n2-m(P), which converges for m > 3 and converges conditionally for m = 3.

Thus all induction/dispersion terms and interactions of electrostatic moments higher than dipole/dipole

and charge/quadrupole are convergent. The last two are slowly divergent (harmonic) series in the limit

n--oo. The charge/quadrupole term may be discarded in the limit n--oo for systems in which the total

charge is zero, since separation of charges becomes insignificant in the limit of infinite interaction

distance, and only the total charge is important.

The special case of the dipole/dipole term may be written as [Maitland et al., 1981]:

Edd = -(p.tL'/r 3) (2cose0cos0 2 - sin 1 sin02coso) (B.17)

where 60, 02, and ) are angles of orientation defined as in Figure B.1. In the amorphous limit, one may

assume that at very large distances, all orientations of the second dipole with respect to the first are

sampled equally. In this case, it is easily shown, by integration of 02 and 0 over all possible orienta-

tions relative to the first dipole, that the total contribution from each set of interacting dipoles becomes

zero. Such an approximation is not rigorous in the case of periodic structures; however, in translationally

periodic locations of dipoles of fixed local orientation, as one proceeds through successive shells of radius

r and thickness 8r, each shell contains an increasing number of dipoles describing a broader range of

(discrete) dipole orientations relative to the first dipole, making such an approximation reasonable, if not

rigorous, at large distances.
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Figure B.1: Definition of angles describing the relative orientation of two linear charge distributions
(from Maitland et al., 1981)
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APPENDIX C: Semiempirical Quantum Calculations

Central to the success in application of the atomistic modelling methods is the validity and

comprehensiveness of the force fields used to describe internal energy and their dependence on conforma-

tional and structural variables. Ideally, one would attempt to achieve the greatest degree of validity and

comprehensiveness by applying the most fundamental concepts of interactions between bodies charac-

terized by mass and charge distributions. For this purpose, the theories of quantum mechanics could, in

principle, be used to describe the energetics of many body/many electron systems. However, in practice

these calculations are far too complex even in relatively small polyatomic molecules for rigorous

evaluation. Thus one must strike a balance between rigor and sufficiency. Even ab initio quantum

calculations on small molecules already involve (albeit well accepted) simplifications of de rigueur

quantum theory. Next are the semiempirical quantum calculations, which employ approximations of the

wave functions to simplify calculations with (hopefully) little loss of validity; however, these approxima-

tions must be parameterized using data from real molecules, and thus have individual limits of utility,

depending upon the nature of the approximations and parameterizations used. For atomistic modelling of

large multichain systems such as are involved in this work, time and calculational constraints mandate

even further simplification of the set of equations used to describe the system energetics. Most common

are the two-body interaction potentials used to describe the energy of interaction as a function of distance

of separation, such as the Lennard-Jones or Buckingham potentials. Other modelling efforts have

employed orientation-dependent interactions, such as the "hydrogen bond potential", inductive effects in

electrostatics, such as field-induced polarizabilities, or higher moment interactions, such as dipole-dipole or

quadrupole-quadrupole interactions.

We have attempted to satisfy the criteria of sufficiency and simplicity entirely through the use of

atom-centered, distance-dependent, two-body interactions to describe all nonbonded interactions. Where

possible, these potentials are parameterized using experimental data from real systems; where such data is

unavailable, we resort to predictions based on the more rigorous semiempirical quantum methods

mentioned previously. The validity of these results, in turn, are checked against available structural and

electrostatic moments of real molecules. For the aramid system, the following approach was undertaken.

A homologous series of amide, aromatic, and aromatic amide compounds representing subunits of

poly(p-phenylene terephthalamide), end-capped with hydrogens, were optimized for heat of formation with

respect to geometry. The series consisted of:
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(1) formamide (CH3NO)
(2) benzene (C6H6)
(3) benzamide (C7 H7NO)
(4) formanilide (C7 H7NO)
(5) terephthalamide (C8H8N 2O2)
(6) p-phenylene diformamide (C8sHN 20 2)
(7) benzanilide (C13HINO)

The heat of formation of each compound was minimized (using the Davidon-Fletcher-Powell Method)
with respect to bond lengths, bond angles, and bond torsions, with the restrictions that equivalent bond
lengths and bond angles be equal (e.g. benzene) and all phenylene rings retain a hexagonal planar
conformation (consistent with the description of the phenylene ring in the simulations). The results are
tabulated in Table C.l(a)-(g), showing atomic charge assignment (in units of "partial atomic charge"),

dipole moments, heats of formation, and relevant bond torsions. Initial conformations were chosen with
trans-planar amide bonds and phenylene rings rotated by 300 from the plane of the amide bond. In each

case, AMI, MNDO, and CNDO (in part) semiempirical quantum calculations were performed and
compared. Partial atomic charges for each atom are calculated as the difference between the number of
outer shell electrons and the calculated electron density attributed to that atom in the compound. No
conformational averaging was involved in any case. The calculated dipoles were compared, where
possible, with experimentally measured values. Also noted are the percentages of the dipole moments
attributed to hybridization, as these represent that part of the dipole moment not captured by the atom-
centered partial charges; a larger calculated percentage hybridization translates into a greater error in using
only the stated partial atomic charges to describe the electrostatic moments. Also shown are the final

values for the amide and ring torsions.

From this analysis, we note that CNDO tends to predict the smallest charges, and in many cases of

different sign from the MNDO and AM I results, and the largest hybridization percentages. AMI

generally calculates the largest partial atomic charges and the lowest percentage hybridization. CNDO

and AMI both appear to predict reasonably good estimates of dipole moments across the series, but only

the AM1 charges comes close to reproducing the experimental quadrupole moment of benzene of
-8.7xI0-26 esu cm2 [Battaglia et al., 1981]. MNDO performs poorest in estimating dipole moments and

generally overestimates the torsions of the amide bond and that about the bond connecting the rings and

amide moieties; in this respect, it is worth noting that AMI was designed specifically to correct problems

experienced by MNDO in predicting correct bond geometries in aromatic compounds. Based on these

observations, we used AMI exclusively from this point onward to obtain estimates for partial atomic

charges.

Partial atomic charges for use in the 12-6-1 energy function in the polymer crystal simulations were
determined as follows. (1) We require a minimum number of distinct atom types; in the unsubstituted

polymer, this corresponds to seven atomic species: the amide nitrogen, amide oxygen, amide carbon and
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amide hydrogen, the aromatic hydrogen, the aromatic carbons in the para position (no distinction is made
between those connected to the amide nitrogen and those connected to the amide carbon), and the
aromatic carbons in the ortho position. For these, the weighted average of AM1 charges across the
homologous series are given in Table C.2, along with the standard deviations of actual values from the
mean. In calculating the averages, charges in the larger compounds, which more closely approximate the
electronic structure of the polymer, are preferentially weighted: the last three compounds in the series
each contribute fully to the average; the first two are weighted by 1/3, and the second two by 2/3. (2)
We require total charge neutrality on each of the N-H and C=O bond groups of the amide moiety (as per
Hagler et al., [19741) and on the phenylene ring. To achieve this, the residual charge for each of these
three groups was uniformly redistributed among the elements of the group. This is a subjective

correction, but one of only minor significance, given the small magnitude of residual charge in all cases

but the N-H bond group. The final "adjusted partial atomic charges" are also listed in Table C.2, along
with the charges suggested by the self-consistent force field of Hagler et al. [1974] for the atoms of the

amide moiety.

The procedure described above has a significant advantage in that it may be readily extended to the

parameterization of chains of modified constitution. This is, of course, a critical advantage to this work,
which presumes to analyze chlorine-substituted polymers as an extension of the parent polymer poly-

(p-phenylene terephthalamide). This procedure, which is tested for PPTA and with results compared to

available experimental data, must be applied blindly to the homologous series based on aromatic amides

having chlorines substituted in the ortho position on the ring, as experimental data, other than the dipole

moment. of m-dichlorobenzene, is essentially nonexistent. In this case, the homologous series consists of:

(1) m-dichlorobenzene (C6H4C12)
(2) 2,6-dichlorobenzamide (C7HSNOCI2)
(3) 2,6-dichloroformanilide (C7H5NOCI2)
(4) 2,6-dichloroterephthalamide (C8H6N20 2CI2)
(5) p-(2,6-dichloro)phenylene diformamide (CSH6N20 2CI2)
(6) N-[2,6-dichlorophenyl]-benzamide (C13H9 NOC12)
(7) 2,6-dichlorophenylbenzanilide (C13HNOC12)

The set of unique species in the phenylene ring now become: the carbon in the 1 position (between the

chlorines), the carbon in the 4 position (between the hydrogens), the carbons in the 2 and 6 positions

(bonded to the chlorines), the carbons in the 3 and 5 positions ,bonded to the hydrogens), the hydrogens,

and the chlorines. As before, the charge and geometry results for each compound in the series are

presented in Table C.3(a)-(g); the average, standard deviation, and adjusted partial atomic charges are

tabulated in Table C.4.

It is worth noting that the amide charges have changed insignificantly from their values calculated

for the unsubstituted compounds, which lends support to the premise that the substituted materials may be
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treated as simple modifications of the unsubstituted materials. Secondly, the charges on the I and 4

carbons remain very close to zero and the carbon and hydrogn charges of the C-H bonds remain close to
their original values (within the confidence limit of the averaging method employed); it is the C-Cl bond

species in the ring that alter, to the extent that now charge is actually more evenly distributed between

the two bonded atoms than before.

Rotation potentials for the unsubstituted and substituted phenylene rings about the bond connecting to

the amide nitrogen or amide carbon were calculated using benzanilide, (2,6-dichlorophenyl)benzamide, and

(2,6-dichlorophenyl)formanilide. In the first case, each ring was driven through a 900 rotation in

increments of 150, with the opposite ring fixed at 300 out-of-plane rotation. In the latter cases, only the

substituted rings were driven in this manner; it was assumed here, and in the simulation work, that the

ring rotation potential was a function only of the connected ring and amide atoms, and not of substitution

at the other side of the ring or on the ring across the amide group. These results have been dealt with

in greater detail in chapters 4 and 7.
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Table C.1

Tabulated results of semiempirical quantum mechanics calculations

FORMAMIDE

2 C --- N 3

ATOM

CNDO

-. 041
+.348
-. 247
+.225
+.210
-.632

CHARGE

MNDO

+.056
+.376
-. 430
+.182
+.187
-.371

AMi

+.119
+.257
-. 448
+.219
+.223
-. 371

DIPOLE MOMENT: total (% hybrid)

3.728
(57.5)

3.361
(23.4)

3.703
(17.6)

HEAT OF FORMATION: (kcal/mole)

-39.31

TORSIONS:

1-2-3-5

-39.05

1800

-44.75

1800

207

(a)

Exp.

3.37-3.86



BENZENE

C --- C

/2 3\
H --- C 1 4 C--- H

\ 6 5 / 10
C --- C

H
12

C1
C2
C3
C4
C5
C6
H7
H8
H9
H10
H11
H12

H
II

CNDO

+.008
+.008
+.008
+.008
+.008
+.008
-.008
-.008
-.008
-.008
-.008
-.008

DIPOLE MOMENT: total (% hybrid)

0.0 0.0 0.0

HEAT OF FORMATION: (kcal/mole)

-47.10 21.32

208

ATOM CHARGE

MNDO

-.059
-.059
-.059
-.059
-.059
-.059
+.059
+.059
+.059
+.059
+.059
+.059

AM1

-.130
-.130
-. 130
-.130
-.130
-.130
+.130
+.130
+.130
+.130
+.130
+.130

Exp.

0.0

22.02



BENZAMIDE

9 15
H H

C --- C
/2 3\

H -- C 1 4 C---C
\ 6 5 / 12 \

C --- C

H
10

CNDO

+.018
+.005
+.018
-. 027
+.024
+.005
-. 005
-. 005
-. 009
+.006
-. 004
+.319
-. 353
-. 260
+.117
+.128

N --- H
14

DIPOLE MOMENT: total (% hybrid)

3.857
(58.2)

3.411
(26.8)

HEAT OF FORMATION: (kcal/mole)

TORSIONS:

3.710
(17.4)

-15.69

3-4-12-14
13-12-14-15

ATOM CHARGE

C1
C2
C3
C4
C5
C6
H7
H8
H9
H10
H11
C12
013
N14
H15
H16

MNDO

-.034
-. 071
-. 007
-. 121
-. 017
-.069
+.064
+.066
+.071
+.066
+.066
+.361
-.336
-. 336
+.146
+.152

AM1

-. 108
-. 140
-. 104
-. 121
-. 077
-.138
+.135
+.136
+.133
+.157
+.139
+.343
-. 371
-. 434
+.220
+.231

Exp.

3.65-3.88

-16.03

690
-1500

330
-1740

209



FORMANILIDE

9 15
H O

C --- C

/2 3\
H --- C 1 4 C--- N

C --- H
14

\ 6 5 I' 12 \
C --- C

CNDO

-.014
+.024
-.036
+.141
-.044
+.023
-.003
-.004
+.012
+.002
-.004
-.204
+.101
+. 342
-. 291
-.042

CHARGE

MNDO

-.068
-.048
-. 046
+.086
-.090
-. 046
+.062
+.063
+.076
+.059
+.061
-.370
+.172
+.372
-. 343
+.058

DIPOLE MOMENT: total (% hybrid)

3.397
(81.4)

2.849
(32.2)

HEAT OF FORMATION: (kcal/mole)

-8.334

TORSIONS:

3-4-12-14
13-12-14-15

ATOM

C1
C2
C3
C4
C5
C6
H7
H8
H9
H10
H11
N12
H13
C14
015
H16

AM1

-. 154
-.106
-.149
+.065
-. 181
-. 106
+.133
+.135
+.169
+.128
+.131
-. 339
+.230
+.267
-. 345
+.122

Exp.

3.373.156
(25.0)

-9.716

600
-1680

170
-1760

210

\ 6 5/ 12



TEREPHTHALAMIDE

17
H

10 14
H H

O C --- c
\ / 5 6\ /

C --- C 4 7 C---C
1 /3 \9 8/ 12\

H H
15 18

ATOM

H1
N2
C3
C4
C5
C6
C7
C8
C9
H10
H11
C12
N13
H14
H15
016
H17
H18
019
H20

H
11

CHARGE

MNDO

+.160
-. 343
+.361
-. 094
-. 033
-. 016
-. 095
-. 030
-. 016
+.077
+.071
+.358
-. 337
+.149
+.152
-. 334
+.069
+.077
-. 332
+.156

DIPOLE MOMENT: total (% hybrid)

0.248
(25.0)

HEAT OF FORMATION: (kcal/mole)

TORSIONS:

16-3-2-15
2-3-4-5
13-12-7-6
14-13-12-19

N --- H
13

AM1

+.234
-.432
+.341
-. 099
-. 089
-.111
-.101
-. 089
-. 114
+.142
+.159
+.341
-. 428
+.221
+.224
-. 366
+.159
+.141
-. 364
+.231

0.156
(92.9)

-16.03-52.30

-1530
-980
-750
1500

-1770
-1410

-350
1700

211

(e)

H --- N C --- C



P-PHENYLENE DIFORMAMIDE

17
H

10 14
H O

H C ---
\ /5 6\ /

N --- C 4 7 C --- N
1 /3 \9 8/ 12\
H --- C 2 C --- C

0 H
15 18

CHARGE

MNDO
+.058
+.384
-. 390
+.097
-.077
-.024
+.072
-.060
-.048
+.074
+.065
-.388
+.379
-.350
-.349
+.182
+.066
+.075
+.178
+.057

DIPOLE MOMENT: total (% hybrid)

0.212
(18.9)

HEAT OF FORMATION: (kcal/mole)

-38.06

TORSIONS:

16-3-2-15
2-3-4-5
13-12-7-6
14-13-12-19

-1720
-1270

-740
174 0

212

C --- H
13

ATOM

H1
C2
N3
C4
C5
C6
C7
C8
C9
H10
H11
N12
C13
014
015
H16
H17
H18
H19
H20

AM1
+.122
+.266
-.333
+.041
-.156
-.128
+.043
-. 156
-. 126
+.174
+.134
-.335
+.268
-.350
-.350
+.230
+.133
+.172
+.230
+.121

0.138
(2.9)

-41.56

-1770
-1680

-60
1790



BENZANILIDE

9 1
H O

5

C --- C
/2 3\ /

7 H --- C 1 4 C --- N
\ 6 5 / 12 \

c c
/ 17 18 \

C --- C 16 19 C --- H
14 \ 21 20 /

C --- C

C --- C

ATOM

Cl
C2
C3
C4
C5
C6
H7
H8
H9
H10
H11
N12
H13
C14
015
C16
C17
C18
C19
C20
C21
H22
H23
H24
H25
H26

CHARGE

MNDO

-. 056
-.058
-.029
+.070
-. 072
-.054
+.062
+.062
+.072
+.059
+.061
-. 357
+.171
+.394
-.334
-.118
-.009
-.068
-.035
-.068
-. 021
+.069
+.066
+.065
+.065
+.064

AM1

-. 155
-. 107
-. 145
+.071
-. 181
-. 107
+.132
+.135
+.168
+.129
+.130
-.326
+.231
+.351
-.343
-.127
-.105
-.137
-.108
-.137
-. 078
+.137
+.138
+.136
+.140
+.155

DIPOLE MOMENT: total (% hybrid)

3.193
(27.2)

HEAT OF FORMATION: (kcal/mole)
1

TORSIONS:
3-4-12-14
15-14-12-13 :
12-14-16-17 :

3.449
(22.1)

19.66

240
-1720

410

6.19

840
-1640

890

213

Exp.

3.38,3.83

\



Partial atomic charges

Table C.2

from AMI calculations: unsubstituted compounds

Hamde amide amide amide Cph,para ph,ortho Hph

Weighted average charge

Standard deviation

Residual charge on N-H
Residual charge on C=O
Residual charge on phenylene

"Adjusted" charge

HHL chargea

0.226

0.005

-0.151
-0.047
-0.050

0.302

0.28

-0.378

0.051

-0.302

-0.28

0.309

0.040

0.333

0.38

-0.356

0.011

-0.333

-0.38

-0.065

0.085

-0.124

0.028

0.144

0.015

-0.060 -0.119 0.149

a values suggested by Hagler, Huler,and Lifson [1974].
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Atom type:



Table C.3

Tabulated results of semicmpirical quantum mechanical calculations: dichloro compounds

(a) M-DICHLORO-BENZENE

8
C1

C --- C
/2 3\

H --- C 1 4 C ---
\ 6 5 /
C --- C

Cl
12

H
10

H
11

ATOM

C1
C2
C3
C4
C5
C6
H7
C18
H9
H10
H11
C112

CNDO

+.016
+.076
+.022
+.002
+.022
+.076
+.029
-.142
+.016
+.011
+.016
-. 142

CHARGE

MNDO

-. 020
-.000
-.033
-.052
-.033
-.000
+.094
-.096
+.081
+.076
+.081
-.096

AM1

121
055
125
112
125
055
161
006
149
144
149
006

DIPOLE MOMENT: total (% hybrid)

1.649
(0.1)

1.745
(1.1)

1.222
(3.1)

HEAT OF FORMATION: (kcal/mole)

6.63 8.23

215

Exp.

1.22-1.68

+.

+.

+.

+.



2,6-DICHLORO-BENZAMIDE

9 15
Cl H

C --- C

/2 3\
H --- C 1 4 C--- C

\ 6 5 / 12

N --- H

/ 14

C --- C

033
041
045
076
029
039
077
087
075
094
087
366
315
326
149
159

DIPOLE MOMENT: total (% hybrid)

4.266
(22.1)

HEAT OF FORMATION: (kcal/mole)

-25.83

TORSIONS:

3-4-12-14
13-12-14-15

880
-1520

216

CHARGE
MNDO AM1

ATOM

C1
C2
C3
C4
C5
C6
H7
H8
C19
C110
H11
C12
013
N14
H15
H16

-.100
-.130
-.034
-.108
-.023
-. 130
+.146
+.155
+. 007
+.017
+.156
+.352
-.342
-. 426
+.226
+.234

4.315
(12.7)

-25.15

770
1770



2,6-DICHLORO-FORMANILIDE

9 15
C1 0

C --- C
/2 3\

H --- C 1 4 C--- N

C --- H
14

\ 6 5 / 12 \
C --- C

ATOM

C1
C2
C3
C4
C5
C6
H7
H8
C19
C110
H11
N12
H13
C14
015
H16

CHARGE

MNDO

-. 051
-. 031
+.022
+.113
-. 010
-.027
+.075
+.084
-. 080
-.099
+.084

-.376
+.184
+.380
-.335
+.067

DIPOLE MOMENT: total (% hybrid)

2.854
(30.5)

2.917
(24.5)

HEAT OF FORMATION: (kcal/mole)

TORSIONS:

3-4-12-14
13-12-14-15 :

AM1

-.119
-. 116
-. 046
+.061

-.079
-. 112
+.146
+.153
+.014
-.018
+.154
-.344
+.236
+.268
-.326
+.128

-20.35

880
-1630

-19.01

660
-1630

217

(c)



2,6-DICHLORO-TEREPHTHALAMIDE

10 14
Cl H

N --- H
13

O C --- C
/ 5 6\ /

C --- C 4 7 C --- C
1 /3 \9 8/ 12\

H --- N 2 C --- C

H H
15 18

CHARGE

MNDO

+.162
-. 334
+.357
-. 092
-. 004
+.033
-. 054
+.015
+.010
-. 064
-. 082
+.362
-. 326
+.152
+.152
-. 322
+.089
+.096
-. 313
+.162

DIPOLE MOMENT: total (% hybrid)

1.531
(18.3)

HEAT OF FORMATION: (kcal/mole)

-60.89

TORSIONS:

16-3-2-15 :
2-3-4-5
13-12-7-6 :
14-13-12-19

-153"
-108 °

-880
1510

218

17

16

ATOM

H1
N2
C3
C4
C5
C6
C7
C8
C9
C110
C111
C12
N13
H14
H15
016
H17
H18
019
H20

AM1

+.236
-. 429
+.342
-. 089
-.084
-.043
-.092
-.032
-. 109
+.024
+.024
+.348
-.423
+.228
+.226
-.357
+.175
+.158
-.340
+.235

1.988
(12.5)

-61.70

-1760
-1400

-770
-1760



P-(2, 6-DICHLORO-)PHENYLENE DIFORMAMIDE

10 14
C1 O

H C --- C
/\ 5 6\

N --- C 4 7 C---N

C --- H
13

/ 3 \ 9 8 / 12 \

11

CHARGE

MNDO

+.067
+.377
-. 385
+.101
-.058
-.022
+.117
+.014
-. 019
+.084
+.084
-. 402
+.394
-. 345
-. 337
+.183
+.084
+.096
+.194
+.066

AM1

+.130
+.268
-.336
+.085
-.175
-. 017
+.032
-. 050
-.141
+.013
-.002
-. 346
+.269
-.331
-. 336
+.235
+.150
+.189
+.237
+.126

DIPOLE MOMENT: total (% hybrid)

2.245
(29.4)

HEAT OF FORMATION: (kcal/mole)

-49.35

TORSIONS:

16-3-2-15
2-3-4-5
13-12-7-6
14-13-12-19

-1650
-1140

-930
1780

219

H --- C 2 C --- C

ATOM

H1
C2
N3
C4
C5
C6
C7
C8
C9
0110
0111
N12
C13
014
015
H16
H17
H18
H19
H20

2.800
(14.2)

-50.18

-1770
-1610

-700
1670

/ 3 \ 9 8 / 12 \
13



N-[2,6-DICHLOROPHENYL]-BENZAMIDE
22

H
23

H
9 15

Cl 0

C --- C

/2 3\
7 H --- C 1 4 C --- N

\ 6 5 / 12
C --- C

H
11

C1
10

ATOM

C1
C2
C3
C4
C5
C6
H7
H8
C19
C110
H11
N12
H13
C14
015
C16
C17
C18
C19
C20
C21
H22
H23
H24
H25
H26

C --- C
\ / 17 18 \
C --- C 16 19 C --- H
/ 14 \ 21 20 /

C --- C

H
25

CHARGE

MNDO

-. 054
-. 030
+.019
+.124
-. 011
-. 027
+.075
+.084
-. 085
-. 100
+.083
-. 373
+.188
+.413
-. 329
-. 121
-. 009
-. 071
-. 033
-. 070
-. 012
+.071
+.067
+.064
+.067
+.068

AM1

-. 117
-. 119
-. 040
+.062
-. 075
-. 117
+.144
+.153
+.017
-. 004
+.151
-.337
+.237
+.352
-. 326
-. 124
-. 100
-. 139
-. 108
-. 138
-. 080
+.142
+.137
+.136
+.139
+.154

DIPOLE MOMENT: total (% hybrid)

2.807
(28.3)

HEAT OF FORMATION: (kcal/mole)
4

TORSIONS:
3-4-12-14
15-14-12-13 :
12-14-16-17 :

.50

830
1630

770

2.946
(22.5)

10.35

750
-1620

420

220

(f)



2,6-DICHLOROBENZANILIDE
23

H
9 15

H O
\ /

C --- C
/2 3\

7 H --- C 1 4 C --- N
\ 6 5 / 12
C --- C

c --- c
\ / 17 18 \
C --- C 16 19 --- H

/ 14 \ 21 20 /

H Cl
13 26

H
25

H
10

ATOM CHARGE

MNDO

C1
C2
C3
C4
C5
C6
H7
H8
H9
H10
H11
N12
H13
C14
015
C16
C17
C18
C19
C20
C21
C122
H23
H24
H25
C126

065
050
044
092
081
049
062
062
076
062
060
361
181
409
320
079
040
042
033
041
034
080
086
078
087
086

DIPOLE MOMENT: total (% hybrid)
4.185
(20.1)

HEAT OF FORMATION: (kcal/mole)
6.64

TORSIONS:
3-4-12-14 : 580
15-14-12-13 : -1690
12-14-16-17 : 870

221

AM1

-. 154
-. 107
-. 146
+.072
-. 178
-. 107
+.133
+.135
+.169
+.130
+.131
-. 317
+.235
+.360
-.317
-. 118
-. 027
-. 130
-. 097
-. 130
-.029
+.018
+.156
+.148
+.156
+.017

4.078
(17.8)

10.57

220
-1770

880

SC --- C



Table C.4

Partial atomic charges from AM I calculations: dichloro compounds

Atom type: Hamide Namide Camide Oamide C1  C 4  C2.6  C3,5  Hph Clph

Average 0.233 -0.368 0.321 -0.334 -0.033 -0.071 -0.042 -0.125 0.155 0.013
Charge

Standard 0.005 0.045 0.041 0.012 0.082 0.075 0.018 0.021 0.029 0.028
Deviation

Residual charge on N-H -0.102
Residual charge on C=O -0.136
Residual charge on phenylene -0.014

"Adjusted" 0.301 -0.301 0.328 -0.328 -0.023 -0.061 -0.031 -0.115 0.165 0.023
Charge
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APPENDIX D: Atomic Scattering Factor Functions

For purposes of calculating the structure factors for the crystal based on the ensemble of atoms and

atom coordinates, the atomic scattering factors are required in functional form. Tables of mean atomic

scattering values are readily available from the International Tables of X-Ray Crystallography, [Volume

III, 1968] page 201. Following Moore [1963], we have used functions of the form:

(D.1)fj(xi) = Aj exp(-ajxi 2) + Bj exp(-bjxi2) + Cj

j = H,C,N,O, CI

xi = sin(0i)Af

These have been fitted to the mean atomic scattering factors derived by self-consistent or variational wave

functions in the range (0 < sin(Oi)/X 5 1) using the recommended weighting function for CuKa radiation:

= exp[ -(xi-_,) 2 I (D.2)

The resulting function parameters and the corresponding sum of squares of the regression obtained using

the RSI graphics and statistical analysis software package [BBN Research Systems, Cambridge, MA], are

presented in Table D.1. The quality of fit is illustrated in Figure D.1.

Table D.1

Function parameters for atomic scattering factors

Atom type Ai  ai Bi bi  Ci  E

H 0.391 7.483 0.596 30.072 0.011 0.268
C 1.248 2.517 3.678 23.747 1.044 0.414
N 1.778 3.836 3.938 19.226 1.260 0.309
0 2.836 4.423 3.773 17.229 1.373 0.218
Cl 8.066 0.973 7,983 22.093 0.946 ---

223



Figure D.1: Atomic scattering factor functions for hydrogen, carbon, nitrogen, oxygen, and chlorine
(in order from bottom to top). Points are recommended mean atomic scattering factors
from self-consistent or variational wave functions (from the International Tables for X-
Ray Crystallography [1968]); curves are fitted functions of the form given by Equation
D.1 using parameters listed in Table D.1.

Atomic Scattering Factor Functions

16

14

12

10
01"N

0
0.0 0.1 0.2 0.3 0.Lt 0.5 0.6 0.7 0.8

sin(0)/X
0.9 1.0

224
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APPENDIX E: Detailed X-ray Scattering Intensities from Simulated Structures
X-ray Fiber Diffraction Patterns for Chlorine-modified Isomers

and Simulated

Table E.la

Summary of x-ray reflections in molecular simulation structures of PPTA

Structure #1 Structure #2 Structure #3 Structure #4

20. 0 I 20 p I 20 p3

19.6 0
19.0 0

87]
65

20.0 0
19.3 0

21.0 0
20.5 0

I 20 03

4]1 21.0 0
3 21.2 0

26.2 0 100 25.2 0 100 21.4 0 100 21.5 0 100

42.1 0 4
42.9 0 2

54.0 0 1

41.9 0
40.8 0

16.9 24 .6
16.2 25 6J

20.2 20 3
20.7 19 4
20.7 19 4
20.2 19 3J

27.1 14 '1

30.4
31.1
31.1
30.4

37.7 0
36.7 0

37.3 0
37.7 0

13.8 29 3

19.0 21 21
19.9 20 41

22.1 18 1]

22.1 18 2]

22.5 18 2
22.5 18 2J

31.2
29.8
30.0
30.4

34.6 11 1]
33.0 12 1

29.2
28.4
28.5
29.2

27.6
30.0
28.6
30.3

110
11iTo

200

310
310

400

101

011
011

111Ol 1111i

1 11

201
201

211
211
211
211

121
121

301

002

112
112

202
202

022

312
312

132

28.5 0 1 13.5 86 5 13.5 90 5 13.8 78 5

23.4 35 1
23.5 35 2

29.2 28 2

34.2 23 2

50.5 16 1

40.2 20 11
40.2 20 1

24.9 33 2

27.9 29 2

37.0 22 1

225

I

21J

38.0 10 1

34.7 11 2



Table E.la (continued)

21.4 72 21
25.3 54 1

26.7 50 226.1 51 4
24.7 55 2]

28.3 46 2]
28.3 46 2J

29.8 43 21
29.7 44 1i

103
103

013
013

113
113

203
203
213
213

303

004

104

114
114

105

015

006

106
106

016
016

116
116

206
206

27.1 90 17

31.6 40 2

35.1 35.8 2

27.3 86 25 27.2 90 13 27.8 78 17

40.0 43 3
34.5 52 333.3 55 21

32.9 56 1J

34.5 82 1

38.4 63 2

41.2 90 17 41.4 86 36

43.4 72 11
43.4 72 1J

43.7 71 1
43.8 71 11

47.7 61 1
46.4 64 2

50.0 57 11
48.2 60 2J

41.3 90 9 42.3 78 17

42.8 75 41
42.8 75 41

44.3 69 3.4

43.7 72 2

226

35.8 35 21
37.6 33 1J



Table E.lb

Summary of x-ray reflections in molecular simulation structures of PPTA

Structure #5 Structure #6 Structure #7 Structure #8

I 20 p I 20 p I 20 p

21.9 0 100

18.4 0 49 19.5 0 47 18.1 0 46 18.7 0

29.8 0 27

21.3 0 100 21.1 0 100 21.1 0 100

44.7 0

29.4 0
28.3 0

49.9 0 1
28.1 0 35

44.6 0 2 42.8 0 1

43.3 0 1

46.8 0 1

6.9 80 9 6.9 79 4

100

010

110

200

020

210
210

220

400

410

001

101

011
011
11I
111
111
111

211
211
211

002

102

012

112
112
112
112

202

212
212

122
122

8.3 55 2

20.2 20 2

19.5 20 1

.21.8 18
21.6 18 1 21.4 18

22.8 17

13.8 80 5

16.9 53 1

27.1 30 21
27.2 30 3

13.6 84 10

23.6 35.0 3

24.9 33
23.6 35
28.1 29

24.6 33 4

31.1 26 3]
32.6 25 6

41.6 19 2

16.6 54.8 2

34.5 23 2

27.7 29.4 5

24.9 33 2i

43.6 18 1]
40.5 20 1

40.6 20 1

227

20 p

28.2 0
28.3 0

18.5 21 11
20.8 19 1)

21.5 18 21

23.4 17 4

28.5 14
29.9 13
29.9 13



Table E.lb (continued)

34.9 23
35.3 23

38.5 21

35.5
34.1

40.2
41.5

44.7 18 2

302
302

312
312

402

003

103

013

113
113
113
113

303

004

104

014
014

114
114

214
214

005

015

115

006

106

016

116
1 16
116

206

216

20.7 89 1

25.8 52 1

27.2 49 1 27.9 47 11
28.8 45 1i 27.4 48 1

38.2 33 1

27.7 80 4 27.7 79 11 27.3 84 13 33.5 55 4

27.5 82 8

39.3 44 3
36.1 50 1 37.0 48 2 34.3 53 2

35.0 52 2
37.7 47 1

42.5 40 3
39.8 44 2

34.9 80 2 34.8 79 2

36.6 70 1 36.8 68 1

38.0 65 1

42.1 80 4

43.1 74 7

44.1 70

45.4 66 2
43.8 71 6J

41.5 84 15

3 44.1 70 3 42.1 80 4

45.0 67 2

48.3 60 1 57.3 47 3

48.3 60 1
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23.1 62 4

27.3 48 4

32.2 40 1,



Table E.2

Summary of x-ray reflections in molecular simulation structures for 2,6-dichloro-PPTA;
head-to-head, tail-to-tail polymorphs

Structure #1

hkl 20 3 I

100

010

110 17.4 0 2
110 6.1 0 6J
1To
200 21.0 0 3

020 31.0 0 1

D10

310 37.3 0 1

001 3.7 72 100

o01
002
102

T102
112

202
202

022

212
212
212
212

003

013

103
113

113
004

005
015
105
006
016

007

008

Structure #2

20 0 I

17.2 0 9
19.6 0 22J

20.2 0 17

32.3 0 9

3.4 90 100

Structure #3

20 3 I

16.9 0 51
19.0 0 15

21.0 0 5

29.4 0 2

36.7 0 3

14.6 13 1

7.3 72 37 6.8 84 100

22.2 18 11
22.4 18 1

Structure #4

20 3 I

16.5 0 14

20.7 0 1

23.9 0 2
29.1 0 2J

35.9 0 2

3.6 73 100

7.2 73 58

31.5 13 .2

22.0 18 1
22.1 18 2J

30.9 13 2

11.0 72 37

18.3 72 8

28.1 14 3
24.7 16 2
28.1 14 3
24.7 16 2J

10.1 90 59

20.0 31 1
20.1 30 1

13.5 90 4

16.9 90 19

16.9 37 2

14.6 44 1

13.6 84 3

21.3 53 1

20.1 58 1

20.5 84 3

23.8 90 2

10.8 73 32

19.7 32 1

14.4 73 3

18.0 73 3

24.4 45 1

25.2 55 2

28.9 73 1
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Table E.3

Summary of x-ray reflections in molecular simulation structures for 2,6-dichloro-PPTA;
parallel head-to-tail polymorphs

Structure #1 Structure #2 Structure #3 Structure #4

hkl 20 0 I 20 p I 20 p I 20 0

14.9 0 14 16.9 0 3

18.8 0 7

17.6 0
20.5 0

20.8 0 25 20.2 0 37 22.4 0 34

27.8 0 1

34.5 0 1 35.5 0 2

37.3 0 2
32.8 0 9 32.1 0 15.

27.6 0
26.4 0 253251

36.6 0. 2

6.8 88 100

11.9 35 41
12.8 32 2J

11.3 37 8]
13.0 31 4

16.6 24 1 17.7 22 101
17.4 23 2J

18.7 21 11l
18.2 22 1J

12.2 34 31
13.8 29 3J

010

100

110
110
200

210
210

220

310
310

001

101
101

o0 1
011

OIl
111
211

211

211
211

22.0 18 1
30.1 13 1

23.7
28.3
25.7
29.5

32.7 12 1

301 31.6 12 1 30.2 13 3 33.6 12 2

311 36.3 11 1

13.6 85 100

21.5 39 31
22.3 37 3j

13.7 81 100 13.7 82 100

19.7 44 11
20.9 41 5J

13.6 88 20

21.1
23.5
25.3
24.0

.26.2

230

17.1 0
19.8 0

13]
24)

21.1 0
29.2 0

21.1 19
19.4 20
19.7 20

24.4
28.2
25.3
29.1

002

012
012

112
1 12
112
112

202



Table E.3 (continued)

29.1 28
28.7 28
32.7 25

36.7 22 1 39.5 20 1

38.2 21 1

20.5 88 7

212
212
212

222

312

003

103

013
013

113
113
113

113

213

303

004

114
114
114

024
204

214

314
314

105
105
115

215

006

016

116
116

206

31.8 59 11

32.9 56 1

43.7 39

37.0 48

22.0 68 7

28.1
27.1
26.3
30.0

42.5

38.2

36.4

34.9 79 4

37.5 66 2

39.4 61 2

41.5 85 10 41.9 81 9 41.8 82

43.8 71

43.9 71
45.9 65

44.1 71

41.6 88 2

44.9 68 2

231

29.2

34.4

27.6

22.1 67 3 21.6 71

26.0 52
25.4 54 1 26.7 50

29.4 44 11]
27.8 47 1

35.5 50 2

39.3
44.2

34.8
37.8



Table E.4a

Summary of x-ray reflections in molecular simulation structures for 2,6-dichloro-PPTA;
antiparallel head-to-tail polymorphs

Structure #5 Structure #6 Structure #7

hkl 20 0 I 20 p I 20 p

15.8 0 7 16.8 0 9 15.1

11.3

18.9

19.4

23.8
27.6

36.7

22.7

27.3 0 4

38.3

6.9 79 100 6.8

13.4
10.9 38

18.9 21

19.3 21 1]
19.0 21 1

17.0 23
16.1 25

20.3 19

1

100

2

1
2

010

100

11TO

200

210
210

220
220

001

101
101

011
011

T111
111

201
201

211
211
211

211

002

102
102

112

003

104
T104

005

006

25.1 16 11
29.8 13 2J

13.8 79 7

15.5 61 1
18.1 49 1

23.0 36

20.4 85

34.8 79 3

42.1 79 2 41.5 85 2

232

20.4 0

25.9 0
25.8 0

6.8 80 100

24.0 16 1]
23.4 17 2

27.6 14
27.3 14
25.9 15

20.6 80

29.8 66
29.1 69



Table E.4b

Summary of x-ray reflections in molecular simulation structures for 2,6-dichloro-PPTA;
antiparallel head-to-tail polymorphs

Structure #8 Structure #9 Structure #10

hkl 20 A I 20 0 I 20 0

15.8 0 14

20.3 0 6 17.2 0
22.6 0 2 19.5 0

17.8 0 46 20.4 0

28.3 0 1

31.1 0 14 32.6 0

6.9 81 23 6.7 89

11.6 36 5]
10.9 38 1

010

110
110
200

210
210

220

310

001

101
101

011

1 11

1111

201

211

211

211211
221
221

301

311
311

002

102

112
112
112

202
202

23.2 36
26.0 32
24.5 34

22.9

33.7
20.8

29.2

5

100 7.2 69 100

19.6 20 2

18.4 22 1]
18.6 21 1

22.1 18 2

24.9
28.1
24.7
28.2

31.3 13 1]
28.9 14 1

13.5 89 2 14.5 69 11

4
1
3.

23.7 35 2
21.9 38 3

233

21.7 18 1

22.2 18 7]

22.5 16 1
24.7 16 3

25.1 15.8 21
30.2 13 4

28.2 14 6J

28.2 14 4

31.6 13 2]
37.2 11 1

13.7 81 100

16.8 54 2



Table E.4b (continued)

212
212

302
302

003

103

013
013

203

303

104
104

114
114

204
214

005

105

205

006

106

016

116

25.8 32 1

20.3 89 9

33.4 24 2

31.1 26 11
29.5 28 2J

20.7 81 11

23.0 62 1

26.2 51 21
30.7 42 1

26.5 50 3

35.2 36 3

29.7 67 1
28.6 73 4i

32.4 58 2
33.0 56 2,

32.1 59 2

38.8 45 2

34.8 81 2

38.3 64 2

42.0 81 3

43.6 72 2

43.7 72.0 4

35.6 75 1

41.3 89 4

41.7 83 1

42.3 79 1
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Figure E.1: Simulated x-ray fiber diffraction patterns
PPTA, head-to-head, tail-to-tail isomers.
structures labelled I through 4, in order,

for the four primary structures for 2,6-DiCI-
The sets (a) through (d) correspond to the
in Table 7.3.
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Figure E.2: Simulated x-ray fiber diffraction patterns for the ten primary structures for
2,6-DiCI-PPTA, head-to-tail isomers. The sets (a) through (j) correspond to the
structures labelled I through 10, in order, in Table 7.5.

(c) (d)
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Figure E.2: Simulated x-ray fiber diffraction patterns for the ten primary structures for
2,6-DiCI-PPTA, head-to-tail isomers (continued).

(e) (f)

(g) (h)
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Figure E.2: Simulated x-ray fiber diffraction patterns for the ten primary structures for
2,6-DiCI-PPTA, head-to-tail isomers (continued).

(i) (j)
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APPENDIX F: Description of Apparatus for Fiber Spinning

The basic process flow has been provided in Chapter 6. Included here are the details of the

important components of the process. Figure F.1 shows front and side views of the extrusion apparatus.

Figures F.2 through F.6 present, in order, the fiber spinning extruder (F.2), the detail of the syringe-and-

plunger design (F.3), the solution pre-filter, used to homogenize and filter the solution while loading to

the syringe for spinning (F.4), the control loop for process control and data acquisition (F.5) and the

annealing operation (F.6). The dope was prepared using a teflon "screw" mixer, composed of a shaft 9.5

mm in diameter with a thread 6.4 mm in width and height winding the shaft with a pitch of 38.1 mm,

fitted into a round-ended glass tube of roughly 30 mm inside diameter. The coagulation tank consisted

simply of a plexiglass trough 91.3 cm long by 15.2 cm wide by 20.2 cm deep, with two freely-rotating,

grooved wheels 7.6 cm in diameter located 9.0 cm from either end of the trough, to serve as guides for

the coagulating filament. Table F.1 lists the parts specifications for the major components of the spinning

apparatus. Figure F.7 illustrates the data output from a sample spinning trial, indicating control of

temperature and both motor speeds, and monitoring of plunger position and extrusion force required.

Finally, a listing of the FORTRAN control program follows.
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Table F.1

Equipment parts list for fiber spinning apparatus

Drive Screw

Drive Motor

Wind-up Motor

Force Trans-
ducer

Heating
Elements

Thermocontrol

Star Linear-Schlitten #1285-110-02, 5mm pitch screw
Traverse: Ausfiihrung B, 240mm Hub

Sanyo "Super R" R 511-T002E 11 DC Servo-Motor -3000rpm - +3000rpm
Sanyo E500200C31 Optical Shaft Encoder 200impulses/rev
353:1 Gear Box
4-Quadrant PDT-A03-20 regulator with PS1116 transformer

Sanyo "Super R" R 301-T011 DC Servo-Motor -3000rpm - +3000rpm
Litton 820A LDBZ-500-236-12-A Optical Shaft Encoder 500 impulses/rev
4-Quadrant PDT-A01-10 regulator with PS1114 transformer

Hottinger Baldwin Messtechnik C9/10kN with MC3
converter

VIMO-CNS 200 watt

Pt 100 passive thermal sensing element
Amplification to O1mV/OC, accuracy to ±0.10 C
PID temperature regulator

0-10kN

0- 100 0C

Data Acquisition MetraByte DAS-20 for IBM PC/XT/AT compatibles
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Figure F.1: Front and side views of the extrusion apparatus.
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Figure F.2: Diagram of the fiber spinning extrusion apparatus.
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Figure F.3: Diagram of the syringe and plunger design to spin polymer dope.
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Figure F.4: Diagram of the solution pre-filter for homogenization and loading of the solution to the
syringe.
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Figure F.5: Schematic of the process control and data acquisition loop for fiber spinning.

245

D Optical Shaft Encoder (A signal, B signal, Reference)

Z DC Servo-Motor

@ Tachogcncrator

@ Upper Interrupt Switch for Drive Motor

V Lower Interrupt Switch for Drive Motor

@ Plunger Position Reference Switch

0 Plunger Stop Switch

@ Force

@ Tcmpcrature

@ Program Control Interrupt Switch

O Regulator

* MBC DAS-20 Digital Input

* MBC DAS-20 Analog Output (-10 to +10 volts)

O MBC DAS-20 Analog Input (differential input; -10 to +10 volts): Control Program
I . I



Figure F.6: Diagram of the fiber heat treatment process step.
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Figure F.7: Data output from a sample spinning experiment illustrating motor control at various
rates. The spinnerette used in this example was 120t in diameter.
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PROGRAM SPINCON
C
C Control program for operation and data acquisition during fiber
C spinning experiments.
C
C Version: December, 1989
C G.C. Rutledge
C
C Microsoft FORTRAN77 v4.01
C
C Motor control via DAS-20 modes 3 (A/D), 7 (D/A), 14 (DI) and 23
C (Frequency counter).
C

CHARACTER*10 OUTF1
CHARACTER*10 OUTF2
INTEGER*2 DAPl(10),DAP2(10),FRP1(10),FRP2(10),DIP(10),ADP(10)
INTEGER*2 BASE, INTLEV, DMALEV
INTEGER*2 IERR, DAMODE, FRMODE, DIMODE, INP, IMODE, ADMODE
INTEGER*2 DAS20, SEGADR, OFFADR, SEGPTR, OFFPTR
INTEGER*2 TRIG, RCODE
INTEGER*2 I, J, K, N
INTEGER*2 JHR,JMIN,JSEC,JHUN,KHR,KMIN,KSEC,KHUN
INTEGER*4 JCLOCK
INTEGER*4 CRATE, BUFFER, ALLOC
INTEGER*4 WORD1,WORD2,MASKl(16),mask2(16)
INTEGER*4 BSZ,BSZM1,BSZD
REAL*8 SRATE, RATE, RLIMIT, PI, Z
REAL R301(2),R501(2)

C
C MASK to identify rotation direction:
C

DATA MASK1/ 0,1,-1,2,-1,0,2,1,1,2,0,-1,2,-1,1,0 /
DATA MASK2/ 0,1,-1,2,-1,0,2,1,1,2,0,-1,2,-1,0 /

C
C R501 and R301 motor calibration curve parameters (in rpm):
C (eg) DAO = R301(1)*RPM + R301(2)
C

DATA R501/ 0.6804, -6. /
DATA R301/ 0.6338, -5. /
DATA PLDIAM/ 10. /
DATA DWDIAM/ 35. /
DATA PLIMIT/ .138.5 /
DATA VISC /500./
DATA FSLP,FINT / 1846, -20 /
DATA TSLP,TINT / 100, 0 /

CONSTANTS
EPS = 1E-5
PI = 3.1415926535
SRATE = 5000000.0
RLIMIT = 76.3
OFFSET = 0
BASE = #300
INTLEV = 2
DMALEV = 1
BSZ = 32766
BSZD = 2*BSZ

C
C Input error message and redistribution
C

GO TO 50
60 CONTINUE

WRITE(*,*) 'Invalid Input. Please, try again !'
GO TO (101,201) IERR

50 CONTINUE

C Initialize DAS-20 Board using mode 0 and allocate buffer:
IMODE = 0
DAP1(1) = BASE
DAP1(2) = INTLEV
DAP1(3) = DMALEV
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RCODE = DAS20(IMODE, DAP1)
IF (RCODE .NE. 0) WRITE(*, 120) IMODE, RCODE

100 CONTINUE
BUFFER = ALLOC(BSZ)
IF (BUFFER .EQ. 0) WRITE(*,*) 'Cannot Allocate Buffer'

C
C Step 0: Print out experiment configuration and start clock
C

WRITE(*,*) 'Insert spinnerette diameter (mm) >
READ(*,*) DIEDIAM
WRITE(*,*) 'Insert capillary length (mm) >
READ(*,*) DIELEN
WRITE(*,*) 'Spinnerette Diameter (mm) : ',DIEDIAM
WRITE(*,*) 'Capillary Length (mm) : ',DIELEN
WRITE(*,*) 'Approx. Solution Visc (p) : ',VISC
WRITE(*,*) 'Draw Wheel Diameter (mm) : ',DWDIAM
WRITE(*,*)

C
C "Start" clock
C

CALL GETTIM( KHR,KMIN,KSEC,KHUN )
LHR = KHR
LMIN = KMIN
LSEC = KSEC
LHUN = KHUN

C
C Set modes of operation:
C

ADMODE = 3
DAMODE = 7
FRMODE = 23
DIMODE = 14
DAPl(l) = 0
DAP2(1) = 1
FRP1(2) = 1
FRP2(2) = 2

C
C Initialize motor operation and control:
C

DR1CRT = 30.
DR2CRT = 30.
DR1 = 0.
DR2 = 0.
DAP1(2) = NINT( R501(1)*DR1 + R501(2) )
DAP2(2) = NINT( R301(1)*DR2 + R301(2) )
RCODE = DAS20( DAMODE,DAP1 )
RCODE = DAS20( DAMODE,DAP2 )
FRP1(1) = 125
FRP2(1) = 125
RCODE = DAS20( FRMODE,FRP1 )
RCODE = DAS20( FRMODE,FRP2 )
FREQ1 = REAL( FRP1(3) )*300./REAL( FRP1(1) )
FREQ2 = REAL( FRP2(3) )*120./REAL( FRP2(1) )
POS1 = 0.
POS2 = 0.

C
C Zero counters for motor directional control
C

IDO1 = 0
IDO2 = 0
NERR1 = 0
NERR2 = 0
KROT1 = 0
KROT2 = 0
KDIR1 = SIGN( 1,DR1 )
KDIR2 = SIGN( 1,DR2 )

C
NOUT = 0

C
C Step 1: Raise plunger from current position to Positionschalter
C
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OUTF1 = 'TSPIN1.DAT'
OUTF2 = 'CSPINl.DAT'
OPEN (UNIT=11, FILE=OUTF1)
OPEN (UNIT=10, FILE=OUTF2)

890 CLOSE(UNIT=11)
CLOSE (UNIT=10)
DAP2(2) = NINT( R301(2)
RCODE = DAS20( DAMODE,DAP2 )
WRITE(*,*) 'Raising plunger to zero position ...
DR1 = -2900.
DAP1(2) = NINT( R501(1)*DR1 + R501(2)
RCODE = DAS20( DAMODE,DAP1 )

800 RCODE = DAS20( DIMODE,DIP )
IBIT7 = DIP(1)/128
IF( IBIT7*KOSHTDN.GT.0 ) GO TO 810
KOSHTDN = MAX( 0,IBIT7 )
GO TO 800

810 CONTINUE
POS1 = 0.
WRITE(*,*) 'Plunger position initialized

C
C Step 2: Lower plunger to Load Point position (30 mm)
C

DR1 = 0.
DAPl(2) = NINT( R501(2) )
RCODE = DAS20( DAMODE,DAP1 )
PAUSE 'Hit RET to lower plunger to load point pos. '
WRITE(*,*) 'Lowering plunger to Load Point ...
DR1 = 2500.
PLOAD - 25.
DAPl(2) = NINT( R501(1)*DR1 + R501(2)
CALL GETTIM( KHR,KMIN,KSEC,KHUN )
RCODE = DAS20( DAMODE,DAP1 )

820 CALL GETTIM( JHR,JMIN,JSEC,JHUN )
JCLOCK = 100*(60*(60*(JHR-KHR) + (JMIN-KMIN)) + (JSEC-KSEC))

+ + .(JHUN-KHUN)
KHR = JHR
KMIN = JMIN
KSEC = JSEC
KHUN = JHUN
DCLOCK = REAL(JCLOCK)/6000.
POS1 = POS1 + DRI*DCLOCK*5./353.
IF( POS1.GE.PLOAD ) GO TO 830
GO TO 820

830 CONTINUE
DR1 = 0
DAP1(2) = NINT( R501(2)
RCODE = DAS20( DAMODE,DAP1 )
RCODE = DAS20( FRMODE,FRP1 )
RCODE = DAS20( FRMODE,FRP2 )
FREQ1 = REAL( FRPl(3) )*300./REAL( FRP1(1) )
FREQ2 = REAL( FRP2(3) )*120./REAL( FRP2(1) )
IF( FREQ1.GT.2 ) WRITE(*,*) 'Motor 1 not stationary'
IF( FREQ2.GT.2 ) WRITE(*,*) 'Motor 2 not stationary'
PAUSE 'Load Plunger and hit RETURN to continue >>> '

C
C Step 3: Lower plunger into barrel
C

WRITE(*,*) 'Enter approximate quantity of solution loaded (ml) >
READ(*,*) QSOLN
PFULL = 4000.*QSOLN/PI/PLDIAM**2
WRITE(*,*) 'Lowering plunger to Solution ...
DR1 = 2000.
PSOLN = PLIMIT - PFULL - 2.
IF(PLIMIT-PSOLN.LE.0.1) WRITE(*,*) 'WARNING: No Solution'
DAPl(2) = NINT( R501(1)*DR1 + R501(2)
CALL GETTIM( KHR,KMIN,KSEC,KHUN )
RCODE = DAS20( DAMODE,DAP1 )

840 CALL GETTIM( JHR,JMIN,JSEC,JHUN )
JCLOCK = 100*(60*(60*(JHR-KHR) + (JMIN-KMIN)) + (JSEC-KSEC))

+ + (JHUN-KHUN)
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KHR = JHR
KMIN = JMIN
KSEC = JSEC
KHUN = JHUN
DCLOCK = REAL(JCLOCK)/6000.
POS1 = POS1 + DR1*DCLOCK*5./353.
IF( POS1.GE.PSOLN ) GO TO 850
GO TO 840

850 CONTINUE
DR1 = 0.
DAPl(2) = NINT( R501(2)
RCODE = DAS20( DAMODE,DAP1 )
RCODE = DAS20( FRMODE,FRP1 )
RCODE = DAS20( FRMODE,FRP2 )
FREQ1 = REAL( FRPl(3) )*300./REAL( FRP1(1) )
FREQ2 = REAL( FRP2(3) )*120./REAL( FRP2(1) )
IF( FREQ1.GT.3 ) WRITE(*,*) 'Motor 1 not stationary'
IF( FREQ2.GT.3 ) WRITE(*,*) 'Motor 2 not stationary'
PAUSE 'Plunger in barrel position; hit RETURN to continue >>> '
NOUT = NOUT + 1
OUTF1 = 'TSPIN'//CHAR(NOUT + ICHAR('O'))//'.DAT'
OUTF2 = 'CSPIN'//CHAR(NOUT + ICHAR('O'))//'.DAT'
OPEN(UNIT=11,FILE=OUTFl)
OPEN(UNIT=10,FILE=OUTF2)
WRITE(11,*) ' TIME POSITION RATE1 RATE2 FORCE TEMP' C

C Enter loop size

IERR = 1
101 CONTINUE

WRITE(*,*) 'Enter size of control loop > '
READ(*, 132, ERR = 60) NLP
IF( NLP.LT.1 ) GO TO 60

C Load motor speed setpoint
C (max range is -42.5 to +42.5 mm/min;
C maximum is approximated using F = 8(pi)uLv
C F in newtons, u in poise, L in mm, and v in mm/min

FMAX = 10000.
FVMAX = 2.387E7*FMAX*(DIEDIAM/PLDIAM)**2/VISC/DIELEN

400 WRITE(*,41)
WRITE(*,42) FVMAX/1000.

41 FORMAT(lX,'Input linear extrusion rate ie nom fiber velocity')
42 FORMAT(1X,' (up to ',f8.2,' m/min) >')

READ(*,*) FASER
VRPM1SET = (DIEDIAM/PLDIAM)**2*FASER*1000.
RPM1SET = VRPMlSET*70.6
WRITE(*,*) 'Input draw wheel linear rate ',

'(-329 to +329 m/min) >'
READ(*,*) VRPM2SET
IF (ABS(FASER).GE.EPS) THEN
DRAWRAT = VRPM2SET/FASER

ELSE
DRAWRAT = 9999999.

END IF
WRITE(*,*) 'Nominal draw ratio: ',DRAWRAT
RPM2SET = VRPM2SET*1000./DWDIAM/PI
WRITE(*,*) 'Is this correct? (0=no,l=yes) >
READ(*,*) KORREKT
CALL GETTIM( JHR,JMIN,JSEC,JHUN )
LCLOCK = 100*(60*(60*(JHR-LHR) + (JMIN-LMIN)) + (JSEC-LSEC))

+ + (JHUN-LHUN)
CUMTIME = REAL(LCLOCK)/100.
WRITE(10,1) CUMTIME ,faser,vrpm2set,drawrat
IF(KORREKT.NE.1) GO TO 400
IF (ABS(FASER).LE.EPS) THEN

DR1 = 0
DAP1(2) = NINT( R501(2)
RCODE = DAS20( DAMODE,DAP1 )
RCODE = DAS20( FRMODE,FRP1 )
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FREQ1 = REAL( FRPl(3) )*300./REAL( FRP1(1) )
END IF
IF (ABS(VRPM2SET).LE.EPS) THEN
DR2 = 0
DAP2(2) = NINT( R301(2) )
RCODE = DAS20( DAMODE,DAP2 )
RCODE = DAS20( FRMODE,FRP2 )
FREQ2 = REAL( FRP2(3) )*120./REAL( FRP2(1) )

END IF
WRITE(*,*) 'Beginning Spin ...

C
C Gate interval must be set based on RPM at low RPM:
C Motorl sends 200 impulses/cycle; Motor2 sends 500 impulses/cycle
C

MINCLK = 50
MN1GATE = 300*MINCLK/(ABS(RPMlSET) + 1.)
MN2GATE = 120*MINCLK/(ABS(RPM2SET) + 1.)
FRP1(1) = MAX( 125,MN1GATE )
FRP2(1) = MAX( 125,MN2GATE )
FR1CNV = 300./REAL( FRPl(1) )
FR2CNV = 120./REAL( FRP2(1) )

450 CONTINUE
C
C Set a maximum speed step for transitions
C

STPCNT = 50.
IBIT6C = 0
IBIT7C = 0

C
C Begin Control Loop >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
C

DO 1000 LP=1,NLP
C
C Compute signal(s) to send to motor(s) (variable gain):
C

DELTA1 = RPM1SET - FREQ1*KDIR1
IF( ABS(DELTA1/(RPMlSET+EPS)).LE.0.025 ) THEN
GADJ1 = .05

ELSE IF( ABS(DELTA1/(RPMlSET+EPS)).LE.0.1 ) THEN
GADJ1 = .2

ELSE
GADJ1 = .7

END IF
STPMAX = REAL( FREQ1/100 + 1 )*STPCNT
STPM = MIN( STPMAX,ABS(DELTA1)
SGN = SIGN( 1.,DELTA1 )
DGAIN1 = STPM/( DELTA1*SGN + EPS )*GADJ1
DR1 = ( DELTA1*DGAIN1 + DR1 )
DR1 = MAX( -3000.,MIN( 3000.,DR1)
DAPl(2) = NINT( R501(1)*DR1 + R501(2) )

C
DELTA2 = RPM2SET - FREQ2*KDIR2
IF( ABS(DELTA2/(RPM2SET+EPS)) .LE.0.025 ) THEN
GADJ2 = .05

ELSE IF( ABS(DELTA2/(RPM2SET+EPS)).LE.0.1 ) THEN
GADJ2 = .2

ELSE
GADJ2 = .7

END IF
STPMAX = REAL( FREQ2/100 + 1 )*STPCNT
STPM = MIN( STPMAX,ABS(DELTA2)
SGN = SIGN( 1.,DELTA2 )
DGAIN2 = STPM/( DELTA2*SGN + EPS )*GADJ2
DR2 = ( DELTA2*DGAIN2 + DR2 )
DR2 = MAX( -3000.,MIN( 3000.,DR2)
DAP2(2) = NINT( R301(1)*DR2 + R301(2)

C
C Get time of iteration, update postions, and send signal(s)
C

CALL GETTIM( JHR,JMIN,JSEC,JHUN )
JCLOCK = 100*(60*(60*(JHR-KHR) + (JMIN-KMIN)) + (JSEC-KSEC))
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+ + (JHUN-KHUN)
LCLOCK = 100*(60*(60*(JHR-LHR) + (JMIN-LMIN)) + (JSEC-LSEC))

+ + (JHUN-LHUN)
DCLOCK = REAL(JCLOCK)/6000.
CUMTIME = REAL(LCLOCK)/100.
POS1 = POS1 + REAL(KDIR1)*FREQ1*DCLOCK*5./353.

IF( (LP.NE.1).AND.((MAX(REAL(KDIR1)*PLIMIT,0.)-REAL(KDIR1)*POS1)
+ .LE.0.01) ) GO TO 490

POS2 = POS2 + FREQ2*DCLOCK
RCODE = DAS20( DAMODE,DAP1 )
RCODE = DAS20( DAMODE,DAP2 )
KHR = JHR
KMIN = JMIN
KSEC = JSEC
KHUN = JHUN

Read frequency counters

RCODE
RCODE
FREQ1
FREQ2

DAS20( FRMODE,FRP1 )
DAS20( FRMODE,FRP2 )
REAL( FRP1(3) )*FR1CNV
REAL( FRP2(3) )*FR2CNV

Force Transducer (CHO), Temperature (CH1) and Program Switch (CH2)
******* For reasons not understood, it appears to be necessary to read
******* each AI twice in succession to get accurate values
******* possibly a board communicaiton problem

ADP(1) = 3
ADP(2) = 0
RCODE = DAS20( ADMODE,ADP
ADP(1) = 3-
ADP(2) = 0
RCODE = DAS20( ADMODE,ADP
IF(RCODE.NE.0) WRITE(*,*)
FVOLTS = ADP(1)*10./4096.
ADP(1) = 4
ADP(2) = 1
RCODE = DAS20( ADMODE,ADP
ADP(1) = 4
ADP(2) = 1
RCODE = DAS20( ADMODE,ADP
IF(RCODE.NE.0) WRITE(*,*)
TVOLTS = ADP(1)*1./4096.
ADP(1) = 1
ADP(2) = 2
RCODE = DAS20( ADMODE,ADP
ADP(1) = 1
ADP(2) = 2
RCODE = DAS20( ADMODE,ADP
IF(RCODE.NE.0) WRITE(*,*)
SVOLTS = ADP(1)*20./4096.
INTERUPT = NINT(SVOLTS/5.)

'RCODE ERROR ',RCODE

'RCODE ERROR ',RCODE

'RCODE ERROR ',RCODE

Record data

CEXP = CUMTIME
PEXP = POS1
R1EXP - REAL(KDIR1)*((FREQ1/70.6)*(PLDIAM/DIEDIAM)**2)

+ /1000
R2EXP = REAL(KDIR2)*FREQ2*DWDIAM*PI/1000
FEXP = FVOLTS*FSLP + FINT
TEXP = TVOLTS*TSLP + TINT
WRITE(11,1) CEXP/60,PEXP,R1EXP,R2EXP,FEXP/100,TEXP/10
WRITE(*,5) LP,CEXP,PEXP,R1EXP,R2EXP,FEXP,TEXP

Check for software shutdown endswitches open

RCODE = DAS20( DIMODE,DIP
IBIT7 = DIP(1)/128
NDIP = DIP(1) - IBIT7*128
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IBIT6 = NDIP/64
KNSHTDN = KDIR1*( IBIT6 - IBIT7
IF( KNSHTDN*KOSHTDN.GT.0 ) GO TO 490
KOSHTDN = MAX( 0,KNSHTDN
IF(LP.EQ.1) KOSHTDN = 0

C
C If motor(s) currently run below critical speed, determine direction of
C rotation (unless motor(s) is essentially idle; ie rpm < 1)
C

LOW1 = 1
LOW2 = 1
IF( (FREQ1.GT.DR1CRT).OR.(FREQ1.LE.2.0) ) LOW1 = 0
IF( (FREQ2.GT.DR2CRT).OR.(FREQ2.LE.2.0) ) LOW2 = 0
IF( (LOW1.NE.l).AND.(LOW2.NE.1) ) GO TO 1100
NCNT = 0
NDXO1 = 0
NDXO2 = 0
NCYC1 = 0
NCYC2 = 0
NERR1 = 0
NERR2 = 0
KTLY1 = 0
KTLY2 = 0
IDO1 = 0
IDO2 = 0

1200 RCODE = DAS20( DIMODE,DIP
C
C Check for software shutdown endswitches open
C

IBIT7 = DIP(1)/128
NDIP = DIP(l) - IBIT7*128
IBIT6 = NDIP/64
KNSHTDN = KDIR1*( IBIT6 - IBIT7
IF( KNSHTDN*KOSHTDN.GT.0 ) GO TO 490
KOSHTDN = MAX( 0,KNSHTDN

C
C Signal decomposition:
C

NDIP = NDIP - IBIT6*64
IBIT5 = NDIP/32
NDIP = NDIP - IBIT5*32
IBIT4 = NDIP/16
NDIP = NDIP - IBIT4*16
IBIT3 = NDIP/8
NDIP = NDIP - IBIT3*8
IBIT2 = NDIP/4
NDIP = NDIP - IBIT2*4
IBIT1 = NDIP/2
IBITO = NDIP - IBIT1*2
IF( LOWl.NE.1) GO TO 1210
NDXN1 = IBITO
NCYCl = NCYC1 + ABS(NDXN1 - NDXO1)

IDN1 = 2*IBIT1 + IBIT2
NELEM = 4*IDO1 + IDN1 + 1
KDR = MASK1(NELEM)
NERR1 = NERR1 + KDR/2

IF( ABS(KDR).EQ.1 ) THEN
NERR1 = NERR1 + ABS(KDR-KDIR1)/2
KTLY1 = KTLY1 + KDR
KDIR1 = SIGN(1,KTLY1)

END IF
IDO1 = IDN1
NDXO1 = NDXN1
IF(NCYCl.GT.1) LOW1 = 2

1210 IF( LOW2.NE.1) GO TO 1220
NDXN2 = IBIT3
NCYC2 = NCYC2 + ABS(NDXN2 - NDXO2)

IDN2 = 2*IBIT4 + IBIT5
NELEM = 4*ID02 + IDN2 + 1
KDR = MASK2(NELEM)
NERR2 = NERR2 + KDR/2
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IF( ABS(KDR).EQ.1 ) THEN
NERR2 = NERR2 + ABS(KDR-KDIR2)/2
KTLY2 = KTLY2 + KDR
KDIR2 = SIGN(1,KTLY2)

END IF
IDO2 = IDN2
NDXO2 = NDXN2
IF(NCYC2.GT.1) LOW2 = 2

1220 IF( (LOW1.EQ.1).OR.(LOW2.EQ.1) ) GO TO 1200
IF( LOW1.EQ.2 ) THEN
ERROR1 = REAL(NERR1)/REAL(200*NCYC1)
IF( ERROR1.GT.0.009 ) WRITE(*,*) 'Low speed error 1 = '

+ ERROR1
END IF
IF( LOW2.EQ.2 ) THEN
ERROR2 = REAL(NERR2)/REAL(500*NCYC2)
IF( ERROR2.GT.0.009 ) WRITE(*,*) 'Low speed error 2 =

+ ERROR2
END IF

GO TO 1010
1100 CONTINUE

KDIR1 = SIGN( 1,DR1
KDIR2 = SIGN( 1,DR2

1010 IF(INTERUPT.EQ.1) GO TO 220
1000 CONTINUE
220 WRITE(*,*) ' 1,2,3,4,5 - REINITIALIZE, Reset LOOPSIZE, SPEEDS,',

+ ' REPEAT, END
IERR = 2

201 CONTINUE
READ(*, 132, ERR = 60 ) INP
IF ((INP .GT. 5) .OR. (INP .LE. 0)) GOTO 60
GOTO ( 890,101,400,450,600 ) INP

490 CONTINUE
IF( IBIT6.EQ.1 ) WRITE(*,*) 'Endschalter unten geschlossen'
IF( IBIT7.EQ.1 ) WRITE(*,*) 'Positionschalter oben geschlossen'

500 CONTINUE
DAP1(2) = NINT( R501(2) )
DAP2(2) = NINT( R301(2) )
RCODE = DAS20( DAMODE,DAP1
RCODE = DAS20( DAMODE,DAP2
GO TO 220

600 CONTINUE
DAP1(2) = NINT( R501(2) )
DAP2(2) = NINT( R301(2) )
RCODE = DAS20( DAMODE,DAP1
RCODE = DAS20( DAMODE,DAP2
STOP

120 FORMAT (' Mode ', 12, ' , Error = ', 14)
132 FORMAT (1617)
1 FORMAT(1X,F10.2,2X,F6.2,2X,F6.2,2X,F6.2,2X,F7.1,2X,F6.1)
5 FORMAT(1X,I4,F10.2,2X,F6.2,2X,F6.2,2X,F6.2,2X,F7.1,2X,F6.1)

END
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APPENDIX G: FORTRAN Listing of Program for Simulation of Ordered Polymer Structure

This appendix contains one version of the FORTRAN code used to simulate the polymer solid state,

calculate potential energy, and minimize with respect to degrees of freedom. It also contains the

subroutines required for imposing deformation. The following subroutines are listed for the main

program:

CMODEL (main)
CELGEN
LDVAR
LDCHN
RANDS1
COORDN
PHENYL
HELIX
GYRA

UNITCEL
DENS
NONBOND
SUBSET
ENERGY
RTRNS
STRAIN
DATARD
RDWRITE

RDSTRAIN
ATRNS
MM
MV
VV
MT
MA
JACOBI
ELJ

EES
VECTORIZ
CURTATE
CURINV
MULMAX
VA1OA
MCI1A

Following the main code is a listing of the major replacement subroutines required for simulating the

modified chain description used to generate mechanical property information. Lastly, sample input files

required by the program are provided.
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PROGRAM CMODEL
C
C *********************************************************************

C * *
C * POLYMER CRYSTAL SIMULATION PROGRAM *
C * *
C * GREGORY C. RUTLEDGE *
C * *
C * DEPARTMENT OF CHEMICAL ENGINEERING *
C * MASSACHUSETTS INSTITUTE OF TECHNOLOGY
C * NOVEMBER 1989 *
C * *
C * *
C * (C) Copywrite 1989: Gregory C. Rutledge, Ulrich W. Suter *
C * *
C ********************************************************************

C
C The Polymer Crystal Simulation Program (PCSP) is designed for the
C purpose of conducting general studies into the nature and structure
C of linearly connected (macromolecular) systems. The simulation is
C based upon a Molecular Mechanics interpretation of atomic level
C energetic interactions. In simulating crystallinity, the program
C assumes an infinite connectivity along the backbone of the molecular
C chain, such that the crystal may be represented by a subset of the
C molecular architecture which describes a helical curve in space.
C The program then constructs a regular repetition of this represent-
C ative unit in three dimensions, subject to variations and con-
C constraints specified in the material representation. The internal
C energy, both intramolecular and intermolecular, of such a material
C representation is then calculated based on appropriately parameter-
C ized two-body force interactions between atoms or atomic groups and
C other functions appropriate to an energetic description of the
C displacement degrees of freedom available to the atoms in the
C structure. Minimization of the total (summed) energy with respect
C to all degrees of freedom leads then to the prediction of the
C energetically most stable local material representation.
C
C The main program serves to control the call and execution of the
C Polymer Crystal Simulation. Other subroutines control the genera-
C tion of atomic coordinates for the representative (parent) chain
C subset and the corresponding helical parameters for the parent chain
C conformation (either a true helix or an estimate based on the radius
C of gyration tensor of the suset). The parent chain is mapped onto a
C regular non-orthogonal lattice of chain positions, subject to
C additional translational and/or orientational variations. The
C resulting explicit (and potentially irregular) three dimensional
C construction may then be "embedded" in an implicit regular three
C dimensional array of atomic interaction points of unlimited size.
C The minimum set of energetic interations may then be determined and
C computed and summed for use by a standard non-derivative minimiza-
C tion routine. The code as written here is specific for the simula-
C tion of isomers of the family of ring-substituted poly-(p-phenylene
C terephthalamide) as isolated chains or as identical chains packed in
C a regular lattice. Program options include scanning of intramolec-
C ular (conformational) and/or intermolecular (crystal packing)
C variables and optimization of same. A fixed strain may be imposed
C on the unitcell by means of the inut file US.dt, which assumes one
C of twelve predefined unitcell representations for the general lattice.
C
C COMMON blocks and PARAMETER statements are set up to enable easy
C variation of the scale of simulation. Important dimensions of the
C simulation are shown below; change of the appropriate dimension in
C all PARAMETER statements will introduce the change throughout the
C simulation:
C
C Description of Program Dimension Parameters
C NKIND = Numger of atom types of interest
C NIBB = Number of internal building blocks per repeat unit
C MNRU = Maximum number of repeat units per chain
C MNCH = Maximum number of chains (a square number)
C MNAT = Maximum number of atoms per chain + 1
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C MNIC = Maximum number of independently orientable chains
C MCOP = MNIC*5
C MOPT = MCOP+6
C
C Some parameters are specific to the PPTA polymer family
C NRNG = Number of rotatable rings per repeat unit = 2
C NSUB = Number of substitutions possible per repeat unit = 2
C MNSB = NSUB*MNRU
C NDOF = NIBB + NRNG
C
C For the Head-to-Head, Tail-to-Tail isomer, it is possible to
C reconfigure the code to consider a 56 atom repeat unit:
C NRNG -- > 4
C NIBB -- > 16
C NDOF -- > 20
C Arrays G,H,W dimension --> 5995
C LMV(2,9) -- > LMV(2,18)
C VARS(97) -- > VARS(109)
C OMVARS(97) --> OMVARS(109)
C GRAD(97) --> GRAD(109)
C disable "NUNIQ = 2" option in DATARD subroutine
C
C
C
C
C **************************************************************
C
C The simulation control proceeds as follows:
C
C MAIN
C Input Variables, Ranges, <-- DATARD <-- RDSTRAIN
C and Control Intructions
C
C Inititialize Parameters
C
C Loop Over All Lattices:
C Loop Over All Conformations: <----------------------
C
C CELGEN
C Execute Model: or VA1OA,CELGEN
C
C Load Current Parameters <-- LDVAR
C Generate Parent Chain <-- COORD <--PHENYL
C Determine Helix <-- HELIX (GYRA)
C Generate Lattice <-- UNITCEL <--STRAIN
C Initialize Charge and <-- NONBOND
C Connectivity
C [Perform Ring Substitution] <-- SUBSET <-- RANDS1
C Load Lattice Multiplicity <-- MULMAX
C Calculate Model Energy <-- ENERGY <-- ELJ,
C EES
C
C Output Results <-- RESWR
C ---------------------- >
C End
C
C *
C

CHARACTER*10 FNAME
PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,

+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51 )
COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),

+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

COMMON /SCAN/ NSTOT,NSANG,NSCAN(NDOF),SCANO(NDOF),SCAND(NDOF),
+ NCTOT,NCMUT,NMUT(MOPT),CMUTO(MOPT),CMUTD(MOPT)

COMMON /CELL/ CELD(3),CELA(3),CHSPEC(5,MNCH),CHLOC(3,MNCH),
+ NUNIV,KONDENS,TEMP,DENSC

COMMON /CNTR/ IENTRY1,IENTRY2
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COMMON G(97),H(4753),W(291)
COMMON /MINIM/ LMV(2,9),LCV(5,11),OMVARS(97)
COMMON /OPRS/ NVAR,VARS(97),GRAD(97) ,GRADNM
COMMON /STRN/ KUC,KASE,ST(3,3),SUCV(3,3),DINIT,DPRIME,DCON
DIMENSION PHISTR(NDOF),INDSC(NDOF),SPECSTR(MOPT),INDMU(MOPT),

+ THESTR(NIBB)
DIMENSION PHISTRTP(NDOF),INSTR(5)
EXTERNAL CELGEN
DEGRAD = 3.1415926535/180.
IENTRY1 = 0
IENTRY2 = 0

C
C Read variable/instruction input file and open output file
C

MODE = 1
CALL DATARD( NVAR,INSTR,MODE

c WRITE(*,*) ' Input PCSP Results Filename (up to 10 characters)',
c + >
c READ(*,2) FNAME

FNAME = 'U.res'
OPEN (UNIT=11, FILE=FNAME )

c WRITE(11,3) FNAME
C
C Initial values of variables which may be scanned must first be
C stored for future use. These variables are the torsion angles
C (PHI(8) and PHIR(2)) of the repeat unit, loaded into PHISTR and
C PHISTRTP, and the crystal specifications (CHSPEC(3,J) for the first
C nine chains,CELD(3),CELA(3)), loaded into SPECSTR.
C

DO 100 I=1,NDOF
IF (I.LE.NIBB) THEN
PHISTR(I) = PHI(I)
PHISTRTP(I) = PHI(I)
THESTR(I) = THETA(I)

ELSE
PHISTR(I) = PHIR(I-NIBB)
PHISTRTP(I) = PHIR(I-NIBB)

END IF
INDSC(I) = 1

100 CONTINUE
C

DO 200 J=1,MNIC
DO 200 I=1,5

KK = I+(J-1)*5
SPECSTR(KK) = CHSPEC(I,J)
INDMU(KK) = 1

200 CONTINUE
cvd$ noconcur

DO 250 I=1,3
KK = MCOP+I
SPECSTR(KK) = CELD(I)
INDMU(KK) = 1

250 CONTINUE
cvd$ noconcur

DO 260 I=1,3
KK = MCOP+3+I
SPECSTR(KK) = CELA(I)
INDMU(KK) = 1

260 CONTINUE

C
C If optimization is desired, set parameters for VA10A
C

IF (NVAR.EQ.0) GO TO 300
TENRGY = 0.

c MODE = 1
MAXCL = 10000
IPRINT = 1
STEPL = 0.001
EPSVA = 0.001

300 CONTINUE

259



C **********************************************************************

C Here begin the nested loops for scanning of variables. The complete
C scan space is divided into two nested loops: LOOP 1000 scans through
C all conformational variables; LOOP 1100 scans through all cell
C packing variables.
C

DO 1000 LOOPP = 1,NSTOT
DO 1100 LOOPS = 1,NCTOT

MXCALL = MAXCL
IEXIT = 1

C
C Test for inadmissable angle combinations in CELA(3):
C

CELANEW = CELA(3)
TLIM = SIN(CELA(1)*DEGRAD)*SIN(CELA(2)*DEGRAD) +

+ COS(CELA(1)*DEGRAD)*COS(CELA(2)*DEGRAD)
BLIM = -SIN(CELA(1)*DEGRAD)*SIN(CELA(2)*DEGRAD) +

+ COS(CELA(1)*DEGRAD)*COS(CELA(2)*DEGRAD)
IF( COS((CELA(3)-l.)*DEGRAD).LT.TLIM ) THEN

IF( COS((CELA(3)+1.)*DEGRAD).GT.BLIM ) THEN
GO TO 480

ELSE
CELANEW = ACOS( BLIM )/DEGRAD - 5.

END IF
ELSE
CELANEW = ACOS( TLIM )/DEGRAD + 5.

END IF
IF( ABS(CELANEW-CELA(3)).LE.15.) GO TO 470
WRITE(11,*) 'Exit due to Inadmissable Cell Angles'
GO TO 600

470 CELA(3) = CELANEW
C WRITE(11,*)'Initial Gamma Angle Correction:Gamma= ',CELA(3)

480 CONTINUE
C
C Call Case Simulation using either optimization or no-optimization
C mode:
C

IF (NVAR.EQ.0) THEN
C
C No optimization desired:
C

CALL CELGEN(NVAR,VARS,TENRGY)
ELSE

C
C Optimization desired:
C
C Load cell parameters into VARS vector and call CELGEN once
C to get initial values for DEE, RHO, THT before starting VA10A
C

CALL LDVAR( NVAR,VARS,+1,KMOL )
CALL CELGEN(NVAR,VARS,TENRGY)
CALL VA1OA(CELGEN,NVAR,VARS,TENRGY,G,H,W,

+ 0.,OMVARS,STEPL,EPSVA,MODE,
+ MXCALL,IPRINT,IEXIT)

SQGRAD = 0.
DO 650 I=1,NVAR

GRAD(I) = G(I)
650 SQGRAD = SQGRAD + G(I)**2

GRADNM = SQRT(SQGRAD)
END IF

C
C End Case Simulation
C

CALL LDVAR( NVAR,VARS,-1,KMOL
IF (IEXIT.NE.1) WRITE(6,4) IEXIT

C IF(TENRGY.LE.40.) CALL RESWR( INSTR )
CALL RESWR( INSTR

C
C Set specifications for next cell structure
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600 CONTINUE
DO 400 NC = 1,MOPT
N = MOPT+1-NC
IF(NMUT(N).EQ.0) GO TO 400
INDMU(N) = INDMU(N) + 1
IF(INDMU(N).LE.NMUT(N)) GO TO 410
INDMU(N) = 1

400 CONTINUE
410 DO 450 K = 1,MOPT

IF(K.GT.MCOP) GO TO 420
J = (INT((K-.01)/5)) + 1
I = K - (J-1)*5
CHSPEC(I,J) = SPECSTR(K)
IF(NMUT(K).EQ.0) GO TO 450
CHSPEC(I,J) = CMUTO(K) + (INDMU(K)-1)*CMUTD(K)
GO TO 450

420 IF(K.GT.(MCOP+3)) GO TO 430
I = K-MCOP
CELD(I) = SPECSTR(K)
IF(NMUT(K).EQ.0) GO TO 450
CELD(I) = CMUTO(K) + (INDMU(K)-1)*CMUTD(K)
GO TO 450

430 I = K-MCOP-3
CELA(I) = SPECSTR(K)
IF(NMUT(K).EQ.0) GO TO 450
CELA(I)' = CMUTO(K) + (INDMU(K)-l)*CMUTD(K)

450 CONTINUE
C
C Reinitialize conformation parameters:
C

DO 700 I=1,NDOF
IF(I.LE.NIBB) THEN

PHI(I) = PHISTRTP(I)
THETA(I) = THESTR(I)

ELSE
PHIR(I-NIBB) = PHISTRTP(I)

END IF
700 CONTINUE

1100 CONTINUE
C
C ************* End of Cell Packing Scan LOOP 1100 **************
C
C Set angles for next conformation:
C

DO 500 ND=l,NDOF
N = NDOF+1-ND
IF(NSCAN(N).EQ.0) GO TO 500
INDSC(N) = INDSC(N) + 1
IF(INDSC(N).LE.NSCAN(N)) GO TO 510
INDSC(N) = 1

500 CONTINUE
510 DO 550 I=1,NDOF

IF(I.LE.NIBB) THEN
PHI(I) = PHISTR(I)
THETA(I) = THESTR(I)

ELSE
PHIR(I-NIBB) = PHISTR(I)

END IF
PHISTRTP(I) = PHISTR(I)
IF(NSCAN(I).EQ.0) GO TO 550
IF(I.LE.NIBB) THEN
PHI(I) = SCANO(I) + (INDSC(I)-1)*SCAND(I)
PHISTRTP(I) = PHI(I)

ELSE
PHIR(I-NIBB) = SCANO(I) + (INDSC(I)-l)*SCAND(I)
PHISTRTP(I) = PHIR(I-NIBB)

END IF
550 CONTINUE

1000 CONTINUE
C
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C ************* End of Conformation Scan LOOP 1000 **************

CLOSE (UNIT=11)
FORMAT( A10 )
FORMAT(1X,' PCSP Simulation Results in File: ',A10 )
FORMAT(IX,'IEXIT = ',13)
END

SUBROUTINE CELGEN( NVAR,VARS,TENRGY )

Function routine for Polymer Crystal Simulation. Calls routines
required to build a parent chain, determine its primary axis and
align the chain along this axis, perform chemical substitutions
on the chain, replicate the parent chain in a regular lattice, and
calculate a total potential energy for the construction.

PARAMETER( NKIND-9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,
MNSB-24,NDOF=I0,MNIC=9,MCOP=45,MOPT=51 )

COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),
KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
NUNIQ

COMMON /SCAN/ NSTOT,NSANG,NSCAN(NDOF),SCANO(NDOF),SCAND(NDOF),
NCTOT,NCMUT,NMUT(MOPT),CMUTO(MOPT),CMUTD(MOPT)

COMMON /CELL/ CELD(3),CELA(3),CHSPEC(5,MNCH),CHLOC(3,MNCH),
NUNIV, KONDENS, TEMP, DENSC

COMMON /ENRG/ EDEF,EDEL,ENOB1,ENOB2,ECOU1,ECOU2,EULJ,EUES,
EULJP,EUESP,ECFF,ETOT

COMMON /CNTR/ IENTRY1,IENTRY2
DIMENSION VARS(NVAR),KCMV(56)

For the helix calculation, NHLXI identifies the first atom of the
repeat unit for purposes of helix aligmnent, and the KCMV vector
contains a list of atom identities for use in centering the helix
in the case of THT = 0 (either by HELIX or GYRA):

NHLXI = 13
KCM = 0

cvd$ noconcur
DO 200 I=1,NARU/28

DO 200 J=1,28
IX = (I-1)*28
IF( (J.EQ.1).OR.(J.EQ.2).OR.(J.EQ.11).OR.(J.EQ.13).OR.

+ (J.EQ.15).OR.(J.EQ.16).OR.(J.EQ.25).OR.(J.EQ.27) ) THEN
KCM = KCM + 1
KCMV(KCM) = IX + J

ELSE
END IF

200 CONTINUE

CALL LDVAR(NVAR,VARS,-l,KMOL)
IF ((NSTOT.EQ.1).AND.(NVAR.EQ.0)) KMOL = 0
IF ((KMOL.EQ.0).AND.(TENRGY.NE.0.)) GO TO 100
NFLAG = 0
CALL COORDN
NHLXF = NHLXI + NARU
CALL HELIX( A(1,1,NHLXI),A(1,1,NHLXF),KCM,KCMV,NFLAG )
IF (NFLAG.EQ.0) CALL GYRA( KCM,KCMV )
IF (KMOL.EQ.0) CALL LDCHN( 1 )

100 IF (KMOL.EQ.0) CALL LDCHN( -1 )
CALL UNITCEL
CALL NONBOND( IENTRY2 )
CALL SUBSET( IENTRY1 )
CALL ENERGY
TENRGY = ETOT
RETURN
END
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SUBROUTINE LDVAR( NVAR,VARS,LDIR,KMOL
C
C If LDIR > 1 : Loads PHI'S, THETA'S, CELD'S, CELA'S, and CHSPEC'S
C into the variable vector VARS according to the
C information in LMV and LCV and sets their proper
C order of magnitude
C If LDIR < 1 : Loads VARS into the above mentioned arrays according
C to the information in LMV and LCV
C Normalizes VARS to the range -180. to +180, where appropriate:
C

PARAMETER( NKIND=9, NIBB=8, MNRU=6, MNCH=9, MNAT=179, NRNG=2, NSUB=4,
+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51 )

COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),
+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

COMMON /CELL/ CELD(3),CELA(3),CHSPEC(5,MNCH),CHLOC(3,MNCH),
+ NUNIV,KONDENS,TEMP,DENSC

COMMON /MINIM/ LMV(2,9),LCV(5,11),OMVARS(97)
COMMON /SV2/ TVARL
DIMENSION VARS(NVAR),TROT(9),KCORR(9)
DO 50 J=1,MNIC

50 KCORR(J) = 0
C NORMALIZE, WHERE APPROPRIATE:

IF (LDIR.GT.0) GO TO 300
DO 400 I=1,NVAR

IF (OMVARS(I).NE.100.) GO TO 400
VARS(I) = MOD(VARS(I),360.)
IF (VARS(I).LT.-180.) VARS(I) = VARS(I) + 360.
IF (VARS(I).GT.+180.) VARS(I) = VARS(I) - 360.

400 CONTINUE
C LOAD VECTOR/ARRAYS:

300 NV = 1
KMOL = 1
NIBBL = NIBB + NRNG/2
DO 100 J=1,NIBBL

DO 100 1=1,2
IF (LMV(I,J).EQ.0) GO TO 100
IF (LDIR.LT.0) GO TO 120
OMVARS(NV) = 100.
IF (J.GT.NIBB) VARS(NV) = PHIR( (J-NIBB-1)*2 + I
IF (J.GT.NIBB) GO TO 130
IF (I.EQ.1) VARS(NV) = PHI(J)
IF (I.EQ.2) VARS(NV) = THETA(J)

GO TO 130
120 IF (J.GT.NIBB) PHIR( (J-NIBB-1)*2 + I ) = VARS(NV)

IF (J.GT.NIBB) GO TO 130
IF (I.EQ.1) PHI(J) = VARS(NV)
IF (I.EQ.2) THETA(J) = VARS(NV)

130 NV = NV+1
100 IF (NV.GT.NVAR) GO TO 500

IF (NV.EQ.1) KMOL = 0
DO 200 J=1,11

DO 200 I=1,5
IF (LCV(I,J).EQ.0) GO TO 200
IF (LDIR.LT.0) GO TO 220

IF (J.GT.MNIC) GO TO 260
VARS(NV) = CHSPEC(I,J)
IF (I.EQ.1) OMVARS(NV) = 1.
IF (I.EQ.2) OMVARS(NV) = 0.1
IF (I.EQ.2) TVARL = CHSPEC(I,J)
IF (I.EQ.3) OMVARS(NV) = 100.
IF (I.EQ.4) OMVARS(NV) = 100.
IF (I.EQ.5) OMVARS(NV) = 100.
GO TO 230

260 IF (J.GT.(MNIC+1)) GO TO 270
VARS(NV) = CELD(I)
OMVARS(NV) = 10.
GO TO 230

270 VARS(NV) = CELA(I)

263



OMVARS(NV) = 100.
GO TO 230

220 IF (J.GT.MNIC) GO TO 620
IF (I.NE.2) GO TO 450

C Potential energy minimization appears to be very sensitive to the chain
C translation variable; VA1OA tends to make large steps in CHSPEC(2,J) if
C the initial guess creates atomic overlap. For this reason, steps in
C this variable are limited in magnitude. The value returned to VA1OA is
C altered; only when VA10OA begins to take steps less than STPMX will the
C corresponding Gradient and Hessian be correct.
C
C Even then, there may accumulate a significant deviation between the
C chain translation variable and the correponding VARS variable. Thus,
C where the initial condition may be poor and large steps are likely,
C SFRAC should be restricted, perhaps to 5% (SFRAC = 0.05); where small
C steps are expected and the corresponding minimization results are
C intended for reuse, this restriction should be lifted (SFRAC = 1.0)
C

SFRAC = 1.0
IF(TVARL.GE.999.) THEN

CHSPEC(I,J) = VARS(NV)
TVARL = VARS(NV)

ELSE
STPMX = SFRAC*REAL(NUNIQ)
VDIF = VARS(NV) - TVARL
STP = SIGN( MIN(STPMX,ABS(VDIF)),VDIF )
IF( (SFRAC.GT.0.9).AND. (ABS(STP-VDIF).GT.lE-5) )

+ WRITE(11,*) 'WARNING: translation has been restricted'
CHSPEC(I,J) = CHSPEC(I,J) + STP
END IF

C
C Chain translation along the chain axis must be restricted for
C model chains of finite length; here, helix symmetry may be used
C to limit translation without imposing constraints on optimization.
C The appropriate range should center about zero and equal the number
C of repeat units required to define all unique segments (ie: range
C = -0.5 to 0.5 for symmetric repeat units or isomers of head-to-tail
C alignment, = -1.0 to 1.0 for isomers of head-to-head, tail-to-tail
C alignment.
C
C Correct translation to the range -0.1 to 0.1:
C Translation correction may be disabled by setting TURNS = 0.

TURNS = AINT( CHSPEC(I,J)
C TURNS = 0.

CDIF = CHSPEC(I,J)-TURNS
IF (NUNIQ.NE.1) GO TO 280

C For range -0.5 to 0.5, enable the following line:
IF (ABS(CDIF).GT.0.5) TURNS = TURNS+SIGN(1.,CDIF)

280 CONTINUE
C

CHSPEC(I,J) = CHSPEC(I,J) - NUNIQ*TURNS
TROT(J) = NUNIQ*TURNS*THT
KCORR(J) = 1
VARS(NV) = CHSPEC(I,J)
TVARL = VARS(NV)
GO TO 230

620 IF (J.GT.(MNIC+1)) GO TO 630
CELD(I) = VARS(NV)
GO TO 230

630 IF (J.GT.(MNIC+2)) GO TO 230
CELA(I) = VARS(NV)
IF (CELA(I).LT.0.) CELA(I) = CELA(I)+180.
GO TO 230

450 CHSPEC(I,J) = VARS(NV)
230 NV = NV+1
200 IF (NV.GT.NVAR) GO TO 500
500 DO 510 J=1,MNIC
510 IF (KCORR(J).EQ.l) CHSPEC(5,J) = CHSPEC(5,J)+TROT(J)

RETURN
END
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SUBROUTINE LDCHN( LDIR )
C
C If KMOL = 0, it is not necessary to regenerate the parent chain
C for each iteration; LDCHN is a computational expedient which stores
C the coordinates of the parent chain for use by later iterations.
C If LDIR > 0 : loads parent into PCH
C If LDIR > 0 : loads PCH back into XYZ
C

PARAMETER( NKIND-9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,
+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51 )

COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),
+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

DO 100 I=1,NRUS*NARU+l
DO 100 J=1,4

IF(LDIR.GT.0) PCH(J,I) = XYZ(J,I,1)
100 IF(LDIR.LT.0) XYZ(J,I,1) = PCH(J,I)

RETURN
END

REAL FUNCTION RANDS1(SEED)
C
C This is a special function for Random number generation
C on 32-bit machines that do not support long integer
C multiplication and truncation. The technique used is to do
C the multiplication and addition in parts, by splitting all
C integers in a 'high' and a 'low' part. The algorithm is
C exact, and should give machine-independent results.
C

INTEGER*4 SEED,IA,IB,I1,I2,I3

C The algorithm implemented is (following D.E. Knuth):
C seed = seed*1592653589 + 453816691
C if (seed.lt.0) seed = seed + 1 + 2147483647
C Note that 1592653589 = 48603*2**15 + 30485

IA = SEED/32768
IB = MOD(SEED,32768)
Il = IA*30485
12 = IB*30485
13 = IB*48603
Il = MOD(I1,65536)
13 = MOD(I3,65536)
Il = Il + 13 + 13849 + 12/32768 + MOD(IA,2)*32763
12 = MOD(I2,32768) + 12659
Il = Il + 12/32768
12 = MOD(I2,32768)
Il = MOD(I1,65536)

SEED = 11*32768 + 12
RANDS1 = SEED*4.65661287308D-10
RETURN
END

265



SUBROUTINE COORDN
C
C Builds a Poly(p-phenylene terephthalamide) chain consisting of
C alternating diacid and diamine units. The phenyl rings are assumed
C to be hexagonal planar, and the amide carbons and nitrogens are
C assumed to form sp2 planar bonds but angles are not required to be
C 120 degrees.
C
C ********* *********************************************************

C Numbering of internal angles
C used to place atoms:
C O
C
C
C H PHIR(2) 7 C ----
C ---- 8
c 6 /
C PHIR(1) 3 N ---- ---- N
C ---- 4 \ 5\
C / \ 2/ ----
C ---- ---- C H
C 1 \
C ----

C O
C
C ****** **************************************************************

C
C

PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,
+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51 )

COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),
+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

DIMENSION AL(4,4),KATOM(11),XYZL(4,11)
DATA DCN,DNH,DCO/1.39,1.00,1.24/
DO 50 I=1,NIBB/8

KRU = (I - 1)*8
BL(1+KRU) = DCO
BL(2+KRU) = DCN
BL(3+KRU) = DNH
BL(5+KRU) = DNH
BL(6+KRU) = DCN
BL(7+KRU) = DCO

50 CONTINUE
NST = 3
NTYP = 1

C
C Start building:
C First phenyl ring lies along the X axis; ring rotation angle must be
C corrected for PHI(2) = 0
C

PHI2 = PHIR(NTYP)-PHI(2)
CALL PHENYL( NTYP,PHI2,KATOM,XYZL )
NTYP = 2
DO 100 I=1,11
KIND(I,1) = KATOM(I)
DO 100 J=1,4

XYZ(J,I,1) = XYZL(J,I)
100 IF( J.EQ.1 ) XYZ(J,I,1) = XYZ(J,I,1) - XYZL(J,1)

C
C First amide bond has PHI = 0, first carbonyl has PHI - 180, by
C default; since no previous A-matrix exits, load both directly:
C

CALL ATRNS( 180.,THETA(1),XYZ(1,11,1),AL )
DO 120 I=1,4
DO 120 J=1,4

120 A(I,J,12) = AL(I,J)
XYZ(1,12,1) = BL(1)
XYZ(2,12,1) = 0.
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XYZ(3,12,1) = 0.
XYZ(4,12,1) = 1.
KIND(12,1) = 6
CALL ATRNS( 0.,THETA(2),XYZ(1,11,1),AL )
DO 140 I=1,4

DO 140 J=1,4
140 A(I,J,13) = AL(I,J)

XYZ(1,13,1) = BL(2)
XYZ(2,13,1) = 0.
XYZ(3,13,1) = 0.
XYZ(4,13,1) = 1.
KIND(13,1) = 5
NUMA = 14
DO 160 I=12,13

160 CALL MV( A(1,1,I),4,3,XYZ(1,I,1),4,XYZ(1,I,1) )
C
C Loop over all repeat units:
C

DO 500 NR=l,NRUS
C
C Loop over all points in repeat unit:
C

DO 400 NF=NST,NIBB-1,2
PHI(NF) = PHI(NF+1) + 180.
NUMAM = NUMA-1
DO 400 NA=1,2
NMKR = NF+NA-1
IF( .NOT.(MOD(NMKR,4).EQ.0) ) GO TO 200
CALL PHENYL( NTYP,PHIR(NTYP),KATOM,XYZL
NTYP = 1 + MOD(NTYP,NRNG)
BL(NMKR) = XYZL(1,11)
DO 220 I=1,11

KIND(NUMA,1) = KATOM(I)
DO 240 J=1,4

240 XYZ(J,NUMA,1) = XYZL(J,I)
CALL ATRNS( PHI(NMKR),THETA(NMKR) ,BL(NF-1),AL
CALL MM( A(1,1,NUMAM),AL,A(1,1,NUMA),4,4,4,4,4,4 )
CALL MV( A(1,1,NUMA),4,3,XYZ(1,NUMA,1),4,XYZ(1,NUMA,) )

220 NUMA = NUMA+l
GO TO 400

200 XYZ(1,NUMA,l) = BL(NMKR)
XYZ(2,NUMA,1) = 0.
XYZ (3,NUMA,1) = 0.
XYZ(4,NUMA,1) = 1.
KIND(NUMA,l) = 4
IF( MOD(NMKR+2,8).EQ.0 ) KIND(NUMA,l) = 3
IF( MOD(NMKR+6,8).EQ.0 ) KIND(NUMA,1) = 5
IF( (MOD(NMKR+7,8).EQ.0).OR.(MOD(NMKR+1,8).EQ.0)

+ KIND(NUMA,1) = 6
C
C For first element of second and successive repeat units, draw upon
C A-matrix of last atom positioned in previous repeat unit:
C

IF (NF.EQ.1) THEN
CALL ATRNS( PHI(NMKR),THETA(NMKR) ,BL(NIBB) ,AL )
CALL MM( A(1,1,NUMAM),AL,A(1,1,NUMA),4,4,4,4,4 )

ELSE
CALL ATRNS( PHI(NMKR),THETA(NMKR),BL(NF-1) ,AL )
CALL MM( A(1,1,NUMAM),AL,A(1,1,NUMA),4,4,4,4,4 )

END IF
C
C Transform to Frame 0O
C

CALL MV( A(1,1,NUMA),4,3,XYZ(1,NUMA,1),4,XYZ(1,NUMA,) )
NUMA = NUMA+l

400 CONTINUE
NST = 1

500 CONTINUE
RETURN
END
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SUBROUTINE PHENYL( NTYP,PHI,KATM,XLOC)
C
C Builds a phenyl ring within the frame of reference of the first
C atom preceeding the phenyl ring and returns atom types and local
C coordinates
C
C 10, 6,
C 9 5
C C ----- c
C /
C /
C ----- C 1 2 C - C (OR N)
C / 11
C /
C C ----- C
C 7, 3,
C 8 4
C

DIMENSION KATM(12),RGBL(12),RGPH(12),RGTH(12),XLOC(4,12)
DIMENSION ALOC(4,4)
DATA DPH,DCPH,DNPH,DHPH/1.40,1.50,1.41,1.10/
IF( MOD(NTYP,2).EQ.1 ) THEN

RGBL(1) = DCPH
ELSE
RGBL(1) = DNPH

END IF
RGC = RGBL(1) + DPH
RGBL(2) = RGC + DPH
RGBL(11) = RGBL(2) + RGBL(1)
DO 100 I=1,2

100 KATM(I) = 1
KATM(11) = 3
IF( MOD(NTYP,2).EQ.0 ) KATM(11) = 5
DO 200 I=3,9,2

KATM(I) = 1
RGBL(I) = DPH
RGPH(I) = PHI
IF( (I.EQ.5).OR.(I.EQ.9) ) RGPH(I) = RGPH(I) + 180.
RGTH(I) = 120.

200 IF( (I.EQ.7).OR.(I.EQ.9) ) RGTH(I) = 60.
DO 300 I=4,10,2

KATM(I) = 2
RGBL(I) = DPH+DHPH
RGPH(I) = PHI
IF( (I.EQ.6).OR.(I.EQ.l0) ) RGPH(I) = RGPH(I) + 180.
RGTH(I) = 120.

300 IF( (I.EQ.8).OR.(I.EQ.10) ) RGTH(I) = 60.
DO 500 I=1,11
XLOC(1,I) = RGBL(I)
XLOC(2,I) = 0.
XLOC(3,I) = 0.

500 XLOC(4,I) = 1.
DO 600 I=3,10

CALL ATRNS( RGPH(I),RGTH(I),RGC,ALOC )
600 CALL MV( ALOC,4,3,XLOC(1,I),4,XLOC(l,I)

RETURN
END

SUBROUTINE HELIX( AO,AX,KCM,KCMV,NFLAG )
C
C Calculates Helix Parameters (Pitch, Twist, and Radius) and converts
C XYZ coordinates into a frame of reference wherein the helix axis
C corresponds to the Z axis. For this purpose, AO and AX are sectors
C of the A-matrix locating corresponding atoms in successive molecular
C repeat units, retrieved for the purpose of calculating the net
C transformation (AH) per repeat unit and the translation vector (BH)
C per repeat unit; these are equivalent to the A matrix and B vector
C of Sugeta & Miyazawa (BIOPOLYMERS,5,673,1967)
C
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C >>>>>> MODIFIED TO RETURN COORDINATES UNTRANSFORMED <<<<<<<
C >>>>>> FOR VALUES OF THT BELOW THTCRIT <<<<<<<
C

PARAMETER (EPSILON = l.E-6)
PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,

+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51 )
COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),

+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

DIMENSION AO(4,4),AX(4,4),AH(4,4),BH(4),AP(4,4),AZ(4,4)
DIMENSION EMAT(4,4),AT(4,4),CA(4),CB(4),BN(3,2)
DIMENSION TX(3),TY(3),TZ(3),T(4,4)
DIMENSION KCMV(KCM)
THTCRIT = 30.*(3.1415926535/180.)
KK = 0

C
C Determine AH and BH:
C Expeditious choice of AO such that AO = inverse of AO enables the
C following shortcut:
C

CALL MM( AX,AO,AH,4,4,4,4,4,4 )
DO 100 I=1,4

100 BH(I) = AX(I,4) - AO(I,4)
C
C Determine helix:
C

DO 200 I=1,4
DO 200 J=1,4

EMAT(I,J) = 0.
200 IF (I.EQ.J) EMAT(I,J) = 1.

CALL MT( AH,AT,3,4 )
CALL MA( AT,EMAT,AT,3,4,-1. )
CALL MA( EMAT,AH,AP,3,4,-1. )
CALL MV( AT,4,3,BH,3,CA )
CALL MV( AP,4,3,BH,3,CB )
CASQ = CA(1)**2 + CA(2)**2 + CA(3)**2
CBSQ = CB(1)**2 + CB(2)**2 + CB(3)**2
CSQ = MAX(CASQ,CBSQ)
BSQ = BH(1)**2 + BH(2)**2 + BH(3)*l2
CDC = CA(1)*CB(1)+CA(2)*CB(2)+CA(3)*CB(3)
IF ( ((1.-AH(1,1)*AH(2,2)*AH(3,3)).GE.(100.*EPSILON)) .OR.

+ ((AH(1,1)+AH(2,2)+AH(3,3)).LT.0.) ) GO TO 300
C
C Special Case: THT = 0; straight line helix
C

THT = 0.
DEE = SQRT( BSQ )
RHO = 0.
GO TO 360

C
C Special Case: BH vector corresponds to helix axis but THT is nonzero
C ("twisted rod"); for this case, determine THT by applying AH
C rotation to an arbitrary unit vector normal to axis (valid for BH(1)
C not equal to zero)
C

300 CONTINUE
IF (CSQ.GT.EPSILON) GO TO 320
IF( BH(1).LT.EPSILON ) WRITE(*,*) 'Invalid Assumption: HELIX'
BRTO = BH(3)/BH(1)
BN(1,1) = SQRT( BRTO**2/(l.+BRTO**2)
BN(2,1) = 0.
BN(3,1) = -BN(1,1)/BRTO
CALL MV( AH,4,3,BN(1,l),3,BN(1,2)
BN1SQ = BN(1,1)**2 + BN(2,1)**2 + BN(3,1)**2
BN2SQ = BN(1,2)**2 + BN(2,2)**2 + BN(3,2)**2
THT = ACOS( (BN(1,1)*BN(1,2)+BN(2,1)*BN(2,2)+BN(3,1)*BN(3,2))

+ /SQRT(BNlSQ*BN2SQ))
RHO = 0.
DEE = SQRT( BSQ )
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360 CONTINUE
DO 350 I=1,3
TZ(I) = (XYZ(I,NARU+1,1)-XYZ(I,1,1))/DEE

350 TX(I) = TZ(I)
IF (ABS(TZ(3)).LT.EPSILON) THEN

TX(1) = 0.
TX(2) = 0.
TX(3) = -1.

ELSE IF (ABS(TZ(3)-1.).LT.EPSILON) THEN
TX(1) = 1.
TX(2) = 0.
TX(3) = 0.

ELSE
ALPHA = ACOS(TZ(3))
TX(3) = -1.*SQRT(TX(1)**2+TX(2)**2)*TAN(ALPHA)

END IF
TXL = SQRT( TX(1)**2 + TX(2)**2 + TX(3)**2 )
DO 330 I=1,3

330 TX(I) = TX(I)/TXL
GO TO 500

320 CONTINUE
IF (ABS(CDC/CSQ-1.).LT.EPSILON) THEN
CDC = CSQ

ELSE IF (ABS(CDC/CSQ+1.).LT.EPSILON) THEN
CDC = -CSQ

ELSE
END IF
THT = ACOS( CDC/CSQ )
RHO = SQRT(CSQ)/( 2*(l.-COS(THT)) )

C
C Special Case: THT=180; Planar zigzag helix
C

IF (ABS(THT-3.1415926535).GT.EPSILON) GO TO 400
CALL MA( AH,EMAT,AZ,3,4,+. )
CALL MV( AZ,4,3,BH,3,TZ )
TZM2 = 0.
DO 365 I=1,3

365 TZM2 = TZM2 + TZ(I)**2
TZM = SQRT(TZM2)
DEE = TZM/2.
DO 370 I=1,3
TX(I) = CA(I)/SQRT( CSQ )

370 TZ(I) = TZ(I)/TZM
GO TO 500

400 CALL VV( CA,CB,TZ,3 )
BCC = 0.
DO 310 I=1,3

310 BCC = BCC + BH(I)*TZ(I)
DEE = BCC/(CSQ*SIN(THT))
TZL = SQRT( TZ(1)**2 + TZ(2)**2 + TZ(3)**2 )
DO 450 I=1,3

TZ(I) = TZ(I)/TZL
450 TX(I) = CA(I)/SQRT( CSQ )
500 CALL VV( TZ,TX,TY,3 )
750 DO 550 I=1,3

T(1,I) = TX(I)
T(2,I) = TY(I)
T(3,I) = TZ(I)

550 T(4,I) = 0.
T(1,4) = RHO
T(2,4) = 0.
T(3,4) = 0.
T(4,4) = 1.

C
C >>>>>>> MODIFIED RETURN FOR THT < THTCRIT <<<<<<<

IF( THT.LT.THTCRIT ) RETURN
C >>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<
C
C Convert from initial coordinates to helix coordinates:
C
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DO 600 J=I,NARU*NRUS+l
600 CALL MV( T,4,3,XYZ(l,J,1),4,XYZ(,J,) )

IF (ABS(THT).GT.EPSILON) GO TO 800
C
C For THT = 0 helix radius is arbitrary; for this case, center
C molecule about the average projection of the KCM atoms previously
C specified in the KCMV vector:
C

IF (KK.EQ.l) GO TO 800
NN = 0
XI = 0.
YI = 0.
DO 700 I=1,NARU

DO 740 J=1,KCM
IF( I.EQ.KCMV(J) ) THEN

XI = XI + XYZ(1,I,1)
YI = YI + XYZ(2,I,1)
NN = NN + 1

ELSE
END IF

740 CONTINUE
700 CONTINUE

XI = XI/NN
YI = YI/NN
RHO = SQRT( XI**2 + YI**2 )
TX(1) = -XI/RHO
TX(2) = -YI/RHO
TX(3) = 0.
TY(1) = YI/RHO
TY(2) - -XI/RHO
TY(3) = 0.
TZ(1) = 0.
TZ(2) = 0.
TZ(3) = 1.
KK = 1
GO TO 750

800 THT = THT*180./3.1415926535
NFLAG = 1
RETURN
END

SUBROUTINE GYRA( KCM,KCMV )
C
C Calculates the Radius of Gyration matris for a polymer chain and
C then transforms coordinates to a frame aligning the primary axis
C of the point distribution along the Z axis
C

PARAMETER (EPSILON=1.E-6)
PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,pMNAT=179,NRNG=2,NSUB=4,

+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51 )
COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),

+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

DIMENSION RG(4,4),RA(4),EVC(4,4),EVT(4,4),EVL(3),BVI(3),
+ BV2(3),ZV(3),PVl(3),PV2(3)

DIMENSION KCMV(KCM)
PI = 3.1415926535
DO 100 I=1,4

RA(I) = 0.
DO 100 J=1,4
EVC(I,J) = 0.
EVT(I,J) = 0.

100 RG(I,J) = 0.
EVT(4,4) = 1.

C
C Determine RG of backbone atomic coordinates.
C

M= 0
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RGSCALE = 0.
NBBA = NIBB*NRUS
DO 200 I=1,NRUS
DO 200 J=1,NARU

M = M+1
DO 200 JCMP=1,KCM

IF( J.EQ.KCMV(JCMP) ) THEN
DO 220 K=1,3

RA(K) = RA(K) + XYZ(K,M,1)/NBBA
DO 220 L=K,3

RG(K,L) = RG(K,L)•+XYZ(K,M,1)*XYZ(L,M,1)/NBBA
220 CONTINUE

ELSE
END IF

200 CONTINUE
RG(3,1) = RG(1,3)
RG(2,1) = RG(1,2)
RG(3,2) = RG(2,3)
DO 250 K=1,3
DO 250 L=1,3

250 RG(K,L) = RG(K,L) - RA(K)*RA(L)
C
C Determine eigenvalues and eigenvectors by method of Jacobi
C Transformations (Press et.al., NUMERICAL RECIPES, Cambridge
C University Press, 1986, P342.
C

CALL JACOBI( RG,3,4,EVL,EVC,NROT )
C
C Sort eigenvalues in order EVL3 > EVL1 > EVL2 and rearrange eigen-
C vectors accordingly:
C

DO 300 I=1,2
K= I
T = EVL(I)
DO 320 J=I+1,3

IF(EVL(J).LE.T) THEN
K =J
T = EVL(J)

END IF
320 CONTINUE

IF(K.NE.I) THEN
EVL(K) = EVL(I)
EVL(I) = T
DO 340 J=1,3

T = EVC(J,I)
EVC(J,I) = EVC(J,K)

340 EVC(J,K) = T
END IF

300 CONTINUE
T = EVL(1)
EVL(1) = EVL(2)
EVL(2) = T
DO 360 J=1,3

T = EVC(J,1)
EVC(J,1) = EVC(J,2)

360 EVC(J,2) = T
C
C Ensure right-handedness of rotation matrix:
C

DET = EVC(1,1)*EVC(2,2)*EVC(3,3)+EVC(2,1)*EVC(3,2)*EVC(1,3)+
+ EVC(3,1)*EVC(1,2)*EVC(2,3)-EVC(1,1)*EVC(3,2)*EVC(2,3)-
+ EVC(2,1)*EVC(1,2)*EVC(3,3)-EVC(3,1)*EVC(2,2)*EVC(1,3)

IF((ABS(DET)-1.).GT.EPSILON) WRITE(*,*)
+ 'ERROR: Eigenvector Matrix'

IF(ABS(DET-1.).LE.EPSILON) GO TO 410
DO 400 I=1,3

400 EVC(I,2) = -EVC(I,2)
410 CONTINUE

C
C Transform coordinates to Primary Axis frame of reference
C
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DO 520 I=1,4
DO 520 J=1,4

520 EVT(J,I) = EVC(I,J)
DO 500 I=1,NARU*NRUS+1
DO 540 J=1,3

540 XYZ(J,I,l) = XYZ(J,I,1) - RA(J)
CALL MV( EVT,4,3,XYZ(1,I,1),4,XYZ(l,I,l)

500 CONTINUE
C
C Determine comparable "helix" parameters:
C (NOTE: backbone atoms only, code is model specific)
C

DEE = XYZ(3,NARU+1,1) - XYZ(3,1,1)
GRHO = 0.
DO 600 I=1,3

IF(ABS(EVL(3)-EVL(I)) .GT.EPSILON) GRHO = GRHO+EVL(I)
600 CONTINUE

RHO - SQRT(GRHO)
C
C For GTHT determination, the relative rotation of the vertical plane
C intersecting an arbitrary bond vector (carbonyl C-O) is chosen
C

N1 = 27
N2 = 28
N3 = N1+NARU
N4 = N2+NARU
DO 650 I=1,3
BVl(I) = XYZ(I,N2,1) - XYZ(I,N1,1)
BV2(I) = XYZ(I,N4,1) - XYZ(I,N3,1)

650 ZV(I) = 0.
ZV(3) = 1.
CALL VV( BV1,ZV,PV1,3 )
CALL VV( BV2,ZV,PV2,3 )
DOT = 0.
PV1M = 0.
PV2M = 0.
DO 660 1-1,3

DOT = DOT + PV1(I)*PV2(I)
PV1M = PV1M + PVI(I)**2

660 PV2M = PV2M + PV2(I)**2
DOT = DOT/SQRT(PVlM*PV2M)
IF( ABS(ABS(DOT)-l.).LE.EPSILON ) DOT = SIGN(l.,DOT)
GTHT = ACOS( DOT )
THT = GTHT*180./PI
RETURN
END

SUBROUTINE UNITCEL
C
C Creates a unit cell consisting of a regular array of identical chains
C based on an initial parent chain. The configuration of the array of
C chain centers is determined by the dimensions (CELD(1),CELD(2))
C between the parent (P) and two neighboring chains (Nl,N2) and the
C angle (CELA(3)) between these neighbors (Nl-P-N2). The array of
C centers is oriented relative to the parent axis (Z-axis) by the
C angles CELA(1) (Z-P-N1) and CELA(2) (Z-P-N2). Finally, each chain
C may be rotated about its center and/or translated along its local
C chain axis independently according to the Eulerian angles and
C fractional translation values in CHSPEC.
C
C (Z axis extends out of paper):
C
C A Y Angles: Z14 = ALPHA [ CELA(1) ]
C I Z12 = BETA [ CELA(2) ]
C 5 1 4 3 412 = GAMMA [ CELA(3) ]
C
C / I / / Dimensions: 1-2 = A [ CELD(1) ]
C / / / 1-4 = B [ CELD(2)
C 6* ---- ---- ------- > X 1-Z = C [ CELD(3) ]
C / /1 /2
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C
C * ---- * *

C 7 8 9
C
C
C >>>>>>>>>>>> Modified to impose the following constraints: <<<<<<<<<
C 1. All odd-number designated chains translated identically
C according to CHSPEC(2,1); all even-number designated chains
C translated according to CHSPEC(2,2).
C 2. All odd-number designated chains rotated identically
C according to CHSPEC(3-5,1); all even-number designated chains
C rotated according to CHSPEC(3-5,2)
C >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
C

PARAMETER( EPSILON=1.E-6
PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,

+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51 )
COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),

+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

COMMON /CELL/ CELD(3),CELA(3),CHSPEC(5,MNCH),CHLOC(3,MNCH),
+ NUNIV,KONDENS,TEMP,DENSC

COMMON /STRN/ KUC,KASE,ST(3,3),SUCV(3,3),DINIT,DPRIME,DCON
DIMENSION CROT(4,4),UCV(3,3)
DEGRAD = 3.1415926535/180.
CELD(3) = DEE

C
C >>>>>>>>>> Modified to allow only two chain types <<<<<<<<<<<<<<<<<
C

DO 50 I=3-,NCH,2
DO 50 J=1,5

CHSPEC(J,I) = CHSPEC(J,1)
50 CHSPEC(J,I-1) = CHSPEC(J,2)

IF(MOD(NCH,2).NE.0) GO TO 55
CHSPEC(1,NCH) = CHSPEC(1,2)
CHSPEC(2,NCH) = CHSPEC(2,2)
CHSPEC(3,NCH) = CHSPEC(3,2)
CHSPEC(4,NCH) = CHSPEC(4,2)
CHSPEC(5,NCH) = CHSPEC(5,2)

55 CONTINUE
C
C >>>>>>>>>> End Modification <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
C
C Convert unit cell parameters CELD and CELA into placement vectors
C used to locate chains on a regular periodic lattice: these are the
C vectors 1-2 and 1-4 (see diagram above) stored in CHLOC(1,2) and
C CHLOC(1,4), of which all other chain locations are linear
C combinations
C

DO 100 I=1,3
DO 100 J=1,NCH

100 CHLOC(I,J) = 0.
CALL VECTORIZ( CELD,CELA,UCV,KERR
IF(KERR.EQ.1) WRITE(11,*) 'VECTORIZ ERROR: Invalid Angle Set'
DO 200 I=1,3

CHLOC(I,2) = UCV(I,1)
200 CHLOC(I,4) = UCV(I,2)

C
C If specified, fix lattice density:
C

IF(NCH.GT.1)
+ CALL DENS( CELD,CHLOC(1,2),CHLOC(1,4),TEMP,KONDENS,DENSC

C
C Determine location vector CHLOC(I,J) of each chain J up to J = NCH,
C the total number of chains, in a spiral counterclockwise protocol:
C
C Here the cell strain is imposed. CELD and CELA should not be
C optimized. This is triggered by KUC not equal to 0.

IF (KUC.NE.0) CALL STRAIN(KUC,KASE,DINIT,ST,SUCV,CHLOC,DPRIME)
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DO 300 I=1,3
300 CHLOC(I,3) = CHLOC(I,2) + CHLOC(I,4)

IF(NCH.GT.4) THEN
ITRAN = IFIX( (SQRT(FLOAT(NCH))+0.1)/2
JTRAN = 1
JTRK = -1
KTRK = 1
DO 320 NTRK=5,NCH

DO 340 I=1,3
340 CHLOC(I,NTRK) = JTRK*CHLOC(I,2) + KTRK*CHLOC(I,4)

IF(NTRK.GE. ((2*JTRAN+1)**2)) JTRAN = JTRAN+1
IF( ( JTRAN.EQ.JTRK).AND.( JTRAN.NE.KTRK)) THEN
KTRK = KTRK+1

ELSE IF((-JTRAN.NE.JTRK).AND.( JTRAN.EQ.KTRK)) THEN
JTRK = JTRK-1

ELSE IF((-JTRAN.EQ.JTRK).AND.(-JTRAN.NE.KTRK)) THEN
KTRK = KTRK-1

ELSE IF(( JTRAN.NE.JTRK).AND.(-JTRAN.EQ.KTRK)) THEN
JTRK = JTRK+1

ELSE
JTRK = JTRK+l

END IF
320 CONTINUE

ELSE
END IF

C
C For each chain desired, duplicate parent chain and apply
C specified rotation/translation:
C -- For Location I: CHSPEC(1,I)= 0. Position not occupied
C = 1. Position occupied
C CHSPEC(2,I)= Chain Translation (given as a fraction
C of the C dimension)
C CHSPEC(3,I)= the first Eulerian angle (LAMBDA)
C CHSPEC(4,I)= the second Eulerian angle (XI)
C CHSPEC(5,I)= the third Eulerian angle (OMEGA)
C
C The order of operations to place each chain is:
C 1. duplicate chain
C 2. center about origin
C 3. rigid body rotation about Eulerian angles
C 4. translation along crystallographic (CELD) dimensions
C 5. translation (CHSPEC(2,I)) along chain axis
C

ZSHFT = ( XYZ(3,NARU*NRUS+1,1)+XYZ(3,1,1) )/2.
DO 450 I= NCH,1,-1

ROM = CHSPEC(3,I)*DEGRAD
RPS = CHSPEC(4,I)*DEGRAD
RXI = CHSPEC(5,I)*DEGRAD
CROT(1,1) = COS(RXI)*COS(RPS)*COS(ROM)-SIN(RXI)*SIN(ROM)
CROT(1,2) = -COS(RXI)*COS(RPS)*SIN(ROM)-SIN(RXI)*COS(ROM)
CROT(1,3) = -COS(RXI)*SIN(RPS)
CROT(1,4) = CHLOC(1,I)
CROT(2,1) = SIN(RXI)*COS(RPS)*COS(ROM)+COS(RXI)*SIN(ROM)
CROT(2,2) = -SIN(RXI)*COS(RPS)*SIN(ROM)+COS(RXI)*COS(ROM)
CROT(2,3) = -SIN(RXI)*SIN(RPS)
CROT(2,4) = CHLOC(2,I)
CROT(3,1) = SIN(RPS)*COS(ROM)
CROT(3,2) = -SIN(RPS)*SIN(ROM)
CROT(3,3) = COS(RPS)
CROT(3,4) = CHLOC(3,I)
CROT(4,1) = 0.
CROT(4,2) = 0.
CROT(4,3) = 0.
CROT(4,4) = 1.
DO 400 J=1,NARU*NRUS

KIND(J,I) = KIND(J,1)
XYZ(I,J,I) = XYZ(1,J,1)
XYZ(2,J,I) = XYZ(2,J,1)
XYZ(3,J,I) = XYZ(3,J,1) - ZSHFT
XYZ(4,J,I) = 1.
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CALL MV( CROT,4,3,XYZ(1,J,I),4,XYZ(1,J,I) )
XYZ(1,J,I) = XYZ(1,J,I)+CHSPEC(2,I)*DEE*COS(RXI)*SIN(RPS)
XYZ(2,J,I) = XYZ(2,J,I)+CHSPEC(2,I)*DEE*SIN(RXI)*SIN(RPS)
XYZ(3,J,I) = XYZ(3,J,I)+CHSPEC(2,I)*DEE*COS(RPS)
XYZ(4,J,I) = 1.

400 CONTINUE
450 CONTINUE

RETURN
END

SUBROUTINE DENS( D,V1,V2,TEMP,KD,DENSC )
C
C If KD = 1 : Calculates polymer density based on group additivities
C and temperature expansion, and determines cell para-
C meter CELD(1)
C If KD = 0 : Computes polymer density based on specified composition
C and placement vectors
C

PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,
+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51 )

COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),
+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

DIMENSION V(2),D(3),W(2),Vl(3),V2(3),V3(3),V4(3),WX(9),VX(9)
DATA WPH,WAM /74.,43./
DATA WX /0.,1.,0.,0.,0.,0.,19.,35.5,79.9 /
DATA VPH,VAM / 56.3,24.9/
DATA VX /0.,3.3,0.,0.,0.,0.,10.9,19.9,33.6 /
DATA GLCR,AA,BB/ 1.07,0.914,0.00029 /
DEGRAD = 3.1415926535/180.

C
C Calculate molecular weight and molar volume of glassy repeat unit:
C

WGO = 2*( WPH + WAM + 2*WX(2) ) + KSB(4)*WX(KSB(1)) -
+ KSB(4)*WX(2)

VGO = 2*( VPH + VAM + 2*VX(2) ) + KSB(4)*VX(KSB(1)) -
+ KSB(4)*VX(2)

WGO = REAL(NARU/28)*WGO
VGO = REAL(NARU/28)*VGO
VG1 = GLCR/(VGO*(AA+BB*TEMP))

C
C Compute cell volume:
C

DO 200 I=1,3
VI(I) = Vl(I)/D(1)
V2(I) = V2(I)/D(2)

200 V3(I) = 0.
V3(3) = 1.
CALL VV( Vl,V2,V4,3
VVOL = 0.
DO 300 I=1,3

300 VVOL = VVOL + V3(I)*V4(I)
VVOL = ABS(VVOL)
IF( KD.NE.1 ) GO TO 500

C
C Two Cases for fixed density calculations:
C 1) If D(1).eq.D(2) : fix density such that this equality is
C maintained (eg. hexagonal packing calculations
C 2) If D(l).ne.D(2) : (usual case) fix D(2) and density while varying
C D(1)
C

AB = 1./(D(3)*VVOL*.602205*VG1)
IF(ABS(D(1)-D(2)).LT.1.E-6) GO TO 400
D(1) = AB/D(2)
GO TO 500

400 D(1) = SQRT(AB)
D(2) = D(1)

500 CONTINUE
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DENSC = VG1*WGO
DO 600 I=1,3

Vl(I) = Vl(I)*D(1)
V2(I) = V2(I)*D(2)

600 CONTINUE
C
C Variable density case:
C

IF(KD.NE.1) DENSC = WGO/(VVOL*D(1)*D(2)*D(3)*.602205)
RETURN
END

SUBROUTINE NONBOND( IENTRY
C
C Creates Table of Connectivity and assigns partial atomic charges to
C atoms of the parent polymer form (PPTA)
C
C Need be executed only once for a given cell composition, but must
C be called after all chains have been created
C

PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,
+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51 )

COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),
+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

DATA CHARGC,CHARGO,CHARGN,CHARGH/.38,-.38,-.28,.28/
c DATA CHARGC,CHARGO,CHARGN,CHARGH/.0, .0, .0, .0/

DATA CHARGPPC,CHARGNPC,CHARGPH/ -0.06,-0.12,0.15 /
C

IF( IENTRY.EQ.1 ) RETURN
C

DO 100 I=1,NARU*NRUS
DO 120 J=1,NCH

120 CHRG(I,J) = 0.
DO 130 J=I,NARU*NRUS

130 KONEC(I,J) = 0.
100 CONTINUE

C
C All atoms within a given phenyl ring or amide bond plane are fixed
C relative to one another; atoms directly bonded to each ring/plane
C are fixed relative to that ring/plane
C
C Amide atom charges are assigned:
C

NMER = NARU/28
DO 500 LL = 1,NCH
KTYP = 10
MARK = 0
DO 200 I=1,NMER*NRUS
DO 200 II=1,4

DO 300 J=MARK+1,MARK+KTYP
IF(KTYP.EQ.10) GO TO 310

IF(KIND(J,LL).EQ.3) THEN
CHRG(J,LL) = CHARGC

ELSE IF(KIND(J,LL).EQ.4) THEN
CHRG(J,LL) = CHARGH

ELSE IF(KIND(J,LL).EQ.5) THEN
CHRG(J,LL) = CHARGN

ELSE IF(KIND(J,LL).EQ.6) THEN
CHRG(J,LL) = CHARGO

ELSE
END IF

310 CONTINUE
C
C Three independent charges allowed: carbons 1&4, carbons 2,3,5&6,
C and all hydrogens
C
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IF(KTYP.EQ.4) GO TO 315
IF(J.LE.(MARK+2)) THEN
CHRG(J,LL) = CHARGPPC

ELSE
IF(KIND(J,LL).EQ.1) CHRG(J,LL) = CHARGNPC
IF(KIND(J,LL).EQ.2) CHRG(J,LL) = CHARGPH

END IF
315 CONTINUE

C

IF(LL.NE.1) GO TO 300
DO 320 K=J+1,MARK+KTYP+1

320 KONEC(J,K) = 1
300 CONTINUE

IF(LL.EQ.1) THEN
MARK = MARK+KTYP
IF(KTYP.NE.10) GO TO 400
KTYP = 4
KONEC(MARK-9,MARK+2) = 1
KONEC(MARK-9,MARK+3) = 1
KONEC(MARK-9,MARK+4) = 1
KONEC(MARK-8,MARK+2) = 1
KONEC(MARK-8,MARK+3) = 1
KONEC(MARK-8,MARK+4) = 1
IF( MARK.GE.(NRUS*NARU-4)) GO TO 317
KONEC(MARK-9,MARK+5) = 1
KONEC(MARK-9,MARK+6) = 1
KONEC(MARK-8,MARK+5) = 1
KONEC(MARK-8,MARK+6) = 1
IF( MARK.GE.(NRUS*NARU-18)) GO TO 317
KONEC(MARK-9,MARK+15) = 1
KONEC(MARK-8,MARK+15) = 1

317 CONTINUE
IF( MARK.LE.10 ) GO TO 200
DO 370 L=1,14

370 KONEC(MARK-11,MARK-10+L) = 1
KONEC(MARK-10,MARK-9) = 1
KONEC(MARK-10,MARK-8) = 1
KONEC(MARK-10,MARK+1) = 1
IF(MARK.GE.(NARU*NRUS-4)) GO TO 318
KONEC(MARK-11,MARK+5) = 1
KONEC(MARK-11,MARK+6) = 1
IF(MARK.GE.(NARU*NRUS-18)) GO TO 318
KONEC(MARK-11,MARK+15) = 1

318 CONTINUE
GO TO 200

400 KTYP = 10
IF( MARK.EQ.(NARU*NRUS) ) GO TO 200
KONEC(MARK-2,MARK+2) = 1
KONEC(MARK-2,MARK+11) = 1
KONEC(MARK-3,MARK+1) = 1
KONEC(MARK-3,MARK+2) = 1
KONEC(MARK-3,MARK+11)= 1

ELSE
MARK = MARK+KTYP
IF(KTYP.EQ.10) THEN

KTYP = 4
ELSE

KTYP = 10
END IF

END IF
200 CONTINUE
500 CONTINUE

IENTRY = 1
RETURN
END
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SUBROUTINE SUBSET( IENTRY
C
C Generates a key (KSUB) for phenyl ring substitution based on the
C info in KSB, and then recalculates substituent positions and
C assigns partial atomic charges.
C
C >>>> NOTE: IT IS CURRENTLY ASSUMED THAT THE QHAL DATA <<<<<<
C >>>> STATEMENT CONTAINS THE CORRECT MONO- OR DI-SUB VVALUES <<<<<<
C
C All substitution occurs on one ring per repeat unit.
C KEY: KSB(1): Substituent atom/group ID;
C 2 = H (ie. no substitution)
C 7 = F, 8 = Cl, 9 = Br
C KSB(2): Substition location (1 = acid, 2 = amide)
C KSB(3): Substitution order (0 = random, i = head-to-head,
C tail-to-tail, 2 = head-to-tail)
C KSB(4): Substitution type (0 = none, 1 = mono-sub at the
C 2 position, 2 = di-sub at the 2,6 positions)
C

INTEGER*4 SEED
PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,

+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51 )
COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),

+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

COMMON /SUBS/ WTED(4)
DIMENSION KSUB(MNSB,MNCH),DX(9),PV(3),QHAL(10,3)
SAVE KSUB
DATA QHAL/ -0.22,0.22,0.22,0.,0.,0.,0.,0.,0.,0.,

+ -.02,-.06,-.12,-.12,-.03,-.03,+.17,+.17,+.02,+.02,
+ +.02,-.06,-.09,-.09,-.14,-.14,+.17,+.17,+.08,+.08/

DATA DX/ .,l.,l., 1.,l.,l.,1.42,1.70,1.87/
C
C If no substitution required, normalize phenyl ring EDEL weightings
C and RETURN immediately:
C

IF( (KSB(1).NE.2).AND.(KSB(4).NE.0) ) GO TO 30
DO 40 I=1,4

40 WTED(I) = 1.
RETURN

30 CONTINUE
C
C Generate substitution vector KSUB (only on initial entry)
C

IF( IENTRY.EQ.1 ) GO TO 400
DO 50 I=1,4

50 WTED(I) = 0.
SEED = 1
DO 100 J=1,NCH

DO 100 I=4,2*NRNG*NRUS,4
KM = 3
IF( KSB(2).EQ.2 ) KM = 1
IF( KSB(3).EQ.0 ) THEN
KS = I - KM + NINT( RANDS1(SEED)

ELSE IF( KSB(3).EQ.1 ) THEN
KS = I - KM + MOD(KS,2)
IF( I.EQ.4 ) KS = I - KM

ELSE IF( KSB(3).EQ.2) THEN
KS = I - KM

ELSE
WRITE(*,*) 'ERROR: Invalid KSB value in SUBSET'

END IF
DO 200 K=I-3,I
KSUB(K,J) = 0
IF( K.EQ.KS ) KSUB(K,J) = KSB(1)
IF( K.NE.KS ) WTED(K-I+4) = WTED(K-I+4) +

+ 2./REAL(NRNG*NRUS*NCH)
200 CONTINUE
100 CONTINUE
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IENTRY = 1

400 CONTINUE
DO 500 J=1,NCH
DO 500 I=1,2*NRNG*NRUS

KSTEP = MOD(I,2)
IF( KSUB(I,J).EQ.0 ) GO TO 500

Perform substitution:
1) Recalculate group coordinates:

KNRU = (1-1)/4
KLOC = KNRU*28 + (I-4*KNRU)/3*14 + 3 + MOD(I,2)*4
DO 300 L=1,KSB(4)

LLOC = KLOC+(L-1)*2
PVM2 = 0.
DO 350 K=1,3

PV(K) = XYZ(K,LLOC+1,J) - XYZ(K,LLOC,J)
PVM2 = PVM2 + PV(K)**2

PVM = SQRT( PVM2 )
DO 360 K=1,3

XYZ(K,LLOC+1,J) = XYZ(K,LLOC,J)+
PV(K)*DX(KSUB(I,J))/PVM

KIND(LLOC+1,J) = KSUB(I,J)
300 CONTINUE

2) Reassign ring charges according to substitution:
Ten independent charges allowed, in the following vector order:

Cl C4 C3 C5 C2 C6 H3 H5 X2 X(or H)6

IF(KSTEP.EQ.1) THEN
CHRG(KLOC-6,J)
CHRG(KLOC-5,J)
CHRG(KLOC-4,J)
CHRG(KLOC-3,J)
CHRG (KLOC-2,J)
CHRG(KLOC-1,J)
CHRG(KLOC ,J)
CHRG (KLOC+1, J)
CHRG(KLOC+2,J)
CHRG(KLOC+3,J)

ELSE
CHRG (KLOC-1, J)
CHRG (KLOC-2, J)
CHRG (KLOC+4, J)
CHRG(KLOC+5,J)
CHRG(KLOC+6,J)
CHRG(KLOC+7,J)
CHRG(KLOC ,J)
CHRG(KLOC+1,J)
CHRG(KLOC+2, J)
CHRG(KLOC+3,J)

END IF
500 CONTINUE

RETURN
END

= QHAL(1,KSUB(I,J)-6)
= QHAL(2,KSUB(I,J) -6)
= QHAL(3,KSUB(I,J) -6)
= QHAL(7,KSUB(I,J)-6)
= QHAL(4,KSUB(I,J)-6)
= QHAL(8,KSUB(I,J)-6)
= QHAL(5,KSUB(I,J)-6)
= QHAL(9,KSUB(I,J)-6)
= QHAL(6,KSUB(I,J)-6)
= QHAL(10,KSUB(I,J)-6)

= QHAL(1,KSUB(I,J)-6)
= QHAL(2,KSUB(I,J)-6)
= QHAL(3,KSUB(I,J)-6)
= QHAL(7,KSUB(I,J)-6)
= QHAL(4,KSUB(I,J)-6)
= QHAL(8,KSUB(I,J)-6)
= QHAL(5,KSUB(I,J)-6)
= QHAL(9,KSUB(I,J)-6)
= QHAL(6,KSUB(I,J)-6)
= QHAL(10,KSUB(I,J)-6)

SUBROUTINE ENERGY

C Calculates the total potential energy per residue of the simulation
C stucture, based on a polymer of the PPTA family

C Contributions: EDEF (Bond Angle Deformation,. Valence FF)
C EDEL (Conjugated Bond Interaction Energy)
C ENOB1 (Intramolecular LJ Interaction)
C ECOU1 (Intramolecular Coulombic Interactions)
C ENOB2 (Intermolecular LJ INTERACTIONS)
C ECOU2 (Intermolecular Coulombic Interactions)
C EULJP (Intramolec. LJ Lattice Correction)
C EUESP (Intramolec. ES lattice Correction)
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C EULJ (Intermolec. LJ Lattice Correction)
C EUES (Intermolec. ES lattice Correction)
C
C The reference unit for calculating the potential energy depends on
C the choice of RBASE and the size of the Helical Repeat Unit (HRU):
C
C Case 1: Single chain simulation: disregard "helical basis region";
C calculate interaction of first RBASE residues with rest of
C chain.
C Case 2: THT = 0: HRU is identical to chemical repeat unit, thus
C similar to Case 1
C Case 3: HRU consists of NRUS-2 or fewer structural repeat units;
C region may be treated exactly
C Case 4: HRU exceeds NRUS-2 or is incommensurate: Region is
C arbitrarily set equal to the chemical repeat unit
C
C ANGERR is the angular discrepancy allowed in determining the number
C of turns of the helix required to obtain an integral number of
C complete 360 degree rotations
C
C This version of ENERGY provides a compiled toggle option between the
C two lattice sum methods: 3D Periodicity (LSTOGG=0) or Helical Period-
C idity (LSTOGG=1, enable MV call in lattice sum section). On a
C representative minimization (eg. 9 PPTA chains w/22 degrees of freedom) C the following
comparison times were obtained
C

LOGICAL FIRST,REDUND
PARAMETER( EPSILON=lE-6 )
PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2, NSUB=4,

+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51 )
COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),

+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

COMMON /CELL/ CELD(3),CELA(3),CHSPEC(5,MNCH),CHLOC(3,MNCH),
+ NUNIV,KONDENS,TEMP,DENSC

COMMON /ENRG/ EDEF,EDEL,ENOB1,ENOB2,ECOU1,ECOU2,EULJ,EUES,
+ EULJP,EUESP,ECFF,ETOT

COMMON /SUBS/ WTED(4)
COMMON /STRN/ KUC,KASE,ST(3,3),SUCV(3,3),DINIT,DPRIME,DCON
DIMENSION ANGZ(12),ANGO(12),DCL(3,3)
DIMENSION FMULT(MNCH,MNCH)
DIMENSION VDWR(NKIND),ALPHA(NKIND),EFFNE(NKIND)
DIMENSION UX(3),UY(3),UZ(3),DVECT(4),R(4,4,21)
DIMENSION SUM1(3136),SUM6(3136),SUM12(3136),SUM1P(3136),

+ SUM6P(3136),SUM12P(3136),TMP1(3136),TMP6(3136),
+ TMP12(3136),TMP1P(3136),TMP6P(3136),TMPl2P(3136)

DATA VDWR/ 1.96,1.37,2.03.,1.37,1.96,1.60,1.35,1.80,1.95/
DATA ALPHA/0.768,0.330,2.16,0., 1.95,1.02,0.38,1.41,3.34/
DATA EFFNE/5.2, 0.9, 5.2, 0.9,6.1, 7., 8., 12., 21./
DATA ANGZ/ .088,.088,.050, .088,.050,.088, .088,.088,

+ .088,.050,.050,.088 /
DATA ANGO/ 120.,120.,120.,120.,120.,120.,120.,120.,

+ 120.,120.,120.,120. /
DATA BO,BOO,CO,COO,B1,B2/9.0,13.0,.2,.4,2.8,21.2 /
DATA BX0,BX00,CXO,CX00 /0.0,32.0,.0,.8/
DATA DE/ 3.5 /
DATA ANGERR/ 5. /
DATA BWDIST/ 3.3 /

C
FIRST = .TRUE.
DEGRAD = 3.1415926535/180.
LSTOGG = 0

C
C Initialize VDWR, ALPHA, and EFFNE arrays:
C

CALL ELJ( NKIND,1,1,VDWR,ALPHA,EFFNE,3.,3.,FIRST,POTINIT
C

RBASE = REAL( NUNIQ )
ECFF = 0.
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EDEF = 0.
EDEL = 0.
ENOB1 = 0.
ECOU1 = 0.
ENOB2 = 0.
ECOU2 = 0.
EULJ = 0.
EUES = 0.
EULJP = 0.
EUESP = 0.
NATOMS = NARU*NRUS
NM1 = NATOMS-1

C
C Initialize intermolecular interaction multiplier matrix:
C

NCH2 = NCH**2
L1MAX = 1
IF( NCH.NE.1 ) CALL MULMAX( MNCH,NCH,NCH2,L1MAX,FMULT )

C
IF ( (NCH.EQ.1).OR.(ABS(THT).LT.ANGERR) ) GO TO 100
DO 50 M=1,NRUS-2

PANG = M*THT/360.
IPANG = INT(PANG+0.5)
IF( ABS(PANG-IPANG).LE.(M*ANGERR/360.) ) GO TO 70

50 CONTINUE
C WRITE(11,1)
C 1 FORMAT(lX,'HELICAL REPEAT LENGTH EXCEEDS CHAIN LENGTH')
C NER = NRUS-2

NER = 1
GO TO 80

70 NER = M
GO TO 80

100 NER = 1
80 CONTINUE

LATM = INT(RBASE*NER*NARU+1.01)
C
C Bond angle deformation energy:
C

L = 1
IF(ABS(CHSPEC(1,L)).NE.1.) GO TO 900
DO 300 K=1,NARU/28

KADD = (K-1)*NARU/2
KADE = (K-1)*NIBB/2

DO 300 J=1,12
IF( J.EQ.9 ) THEN
KA = 12 + KADD
KB = 13 + KADD
KC = 11 + KADD

ELSE IF( J.EQ.10 ) THEN
KA - 14 + KADD
KB = 15 + KADD
KC = 13 + KADD

ELSE IF( J.EQ.11 ) THEN
KA = 26 + KADD
KB = 27 + KADD
KC = 25 + KADD

ELSE IF( J.EQ.12 ) THEN
KA = 28 + KADD
KB = 29 + KADD
KC = 27 + KADD

ELSE
END IF
IF( J.LE.8 ) THEN
EDEF = EDEF+0.5*ANGZ(J)*(THETA(J+KADE)-ANGO(J))**2

ELSE
CSQ = (XYZ(1,KA,L)-XYZ(1,KB,L))**2 +

+ (XYZ(2,KA, L)-XYZ(2,KB,L))**2 +
+ (XYZ(3,KA,L)-XYZ(3,KB,L))**2

ASQ = (XYZ(1,KB,L)-XYZ(1,KC,L))**2 +
+ (XYZ(2,KB,L)-XYZ(2,KC,L))**2 +
+ (XYZ(3,KB,L)-XYZ(3,KC,L))**2
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BSQ = (XYZ(1,KC,L)-XYZ(1,KA,L))**2 +
+ (XYZ(2,KC,L)-XYZ(2,KA,L))**2 +
+ (XYZ(3,KC,L)-XYZ(3,KA,L))**2

ANGT= ACOS( (ASQ+BSQ-CSQ)/ (2*SQRT (ASQ*BSQ)) )
ANGT= ANGT/DEGRAD
EDEF = EDEF+0.5*ANGZ(J)*(ANGT - ANGO(J))**2

END IF
300 CONTINUE

C
C Conjugated bond interaction energy:
C Note: with the introduction of substitution on the ring (potentially
C in a random sequence and without equal occurance at the two 'ends'
C of the ring) with different delocalization potentials, it becomes
C necessary to compute EDEL weighted by the appropriate loci of
C substitutions:
C

NRT = NARU/28
DO 400 K=1.,NRT

NRR = (K-1)*NRNG/NRT
NRP = (K-1)*NIBB/NRT
EDEL = EDEL + WTED(2)*CURTINV( (PHIR(1+NRR)-PHI(2+NRP)),

+ BO,CO )
EDEL = EDEL + WTED(3)*CURTATE( PHIR(2+NRR),B00,COO
EDEL = EDEL + WTED(4)*CURTATE( (PHIR(2+NRR)-PHI(6+NRP)),

+ BOO,C00 )
EDEL = EDEL + WTED(1)*CURTINV( PHIR(1+NRR),BO,CO )
EDEL = EDEL + (1.- WTED(2))*CURTATE( (PHIR(1+NRR)-

+ PHI(2+NRP)),BXO,CXO )
EDEL = EDEL + (1.- WTED(3))*CURTATE( PHIR(2+NRR),BXOO,CXOO )
EDEL = EDEL + (1.- WTED(4))*CURTATE( (PHIR(2+NRR)-

+ PHI(6+NRP)),BX00,CX00 )
EDEL = EDEL + (1.- WTED(1))*CURTATE( PHIR(1+NRR),BXO,CXO )
EDEL = EDEL + B1/2*(l.-COS(PHI(4+NRP) *DEGRAD))

+ + B2/2*(l.-COS(2*PHI(4+NRP) *DEGRAD))
EDEL = EDEL + BI/2*(l.-COS(PHI(8+NRP) *DEGRAD))

+ + B2/2*(l.-COS(2*PHI(8+NRP) *DEGRAD))
400 CONTINUE

DO 500 L1=1,LlMAX
IF(Ll.NE.1) GO TO 530

C
C Intramolecular nonbonded interactions:
C

DO 520 I=1,NM1
IP1 = I+1
DO 510 J=IP1,NATOMS

IF( KONEC(I,J).EQ.1 ) GO TO 510
IF( I.GE.LATM ) GO TO 510
D2 = (XYZ(1,I,Ll)-XYZ(1,J,Ll))**2 +

+ (XYZ(2,I,L1)-XYZ(2,J,L1))**2 +
+ (XYZ(3,I,L1)-XYZ(3,J,L1))**2

DIS = SQRT(D2)
CALL ELJ( NKIND,KIND(I,L1),KIND(J,L1),VDWR,ALPHA,EFFNE,

+ D2,D2,FIRST,POTLJ )
ENOB1 = ENOB1 + POTLJ
CALL EES( BWDIST,DIS,DE,CHRG(I,L1),CHRG(J,L1),POTES )
ECOU1 = ECOU1 + POTES

510 CONTINUE
520 CONTINUE
530 CONTINUE

IF (NCH.EQ.1) GO TO 500
LP1 = Ll+1

C
C Intermolecular interactions:
C

DO 550 L2=LP1,NCH
IF( INT(FMULT(L1,L2)*100.).EQ.0 ) GO TO 550
IF( INT(ABS(CHSPEC(1,L2))+.01).NE.1 ) GO TO 550
ENOBT = 0.
ECOUT = 0.
DO 570 I=1,NATOMS
DO 560 J=1,NATOMS
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IF (I.LT.LATM) THEN
D2 = (XYZ(1,I,Ll)-XYZ(1,J,L2))**2 +

+ (XYZ(2,I,Ll)-XYZ(2,J,L2))**2 +
+ (XYZ(3,I,L1)-XYZ(3,J,L2))**2

DIS = SQRT(D2)
CALL ELJ( NKIND,KIND(I,L1),KIND(J,L2),VDWR,ALPHA,EFFNE,

+ D2,D2,FIRST,POTLJ )
ENOBT = ENOBT + POTLJ
CALL EES( BWDIST,DIS,DE,CHRG(I,L1),CHRG(J,L2),POTES
ECOUT = ECOUT + POTES
ELSE
IF (J.LT.LATM) THEN
D2 = (XYZ(1,I,Ll)-XYZ(l,J,L2))**2 +

+ (XYZ(2,I,L1)-XYZ(2,J,L2))**2 +
+ (XYZ(3,I,L1)-XYZ(3,J,L2).)**2

DIS = SQRT(D2)
CALL ELJ( NKIND,KIND(I,L1),KIND(J,L2),VDWR,ALPHA,EFFNE,

+ D2,D2,FIRST,POTLJ )
ENOBT - ENOBT + POTLJ
CALL EES( BWDIST,DIS,DE,CHRG(I,L1),CHRG(J,L2),POTES
ECOUT = ECOUT + POTES
ELSE
END IF
END IF

560 CONTINUE
570 CONTINUE

ENOB2 = ENOB2 + 0.5*ENOBT
ECOU2 = ECOU2 + 0.5*ECOUT

550 CONTINUE
500 CONTINUE'

C
C Infinite Lattice Correction:
C (specific for two-chain-type lattices, with interchain interactions
C 1-1, 1-2, 2-1, and 2-2 only; of these, only half of the 1-1 and 2-2
C interactions are unique, and the 1-2 interactions are identical to
C the 2-1 interactions. NUNIV represents "infinite" lattice size)
C

IF( NUNIV.EQ.0 ) GO TO 630
DO 610 K=1,3
UX(K) = CHLOC(K,2) - CHLOC(K,4)
UY(K) = CHLOC(K,2) + CHLOC(K,4)
UZ(K) = 0.

610 DVECT(K) = 0.
UZ(3) = RBASE*REAL(NER)*DEE
DVECT(4) = 1.
NCM2 = NINT(SQRT(REAL(NCH))-2)
NNCM = -NCM2-1
ESPWR = BWDIST*LOG(DE)

C
C Set up helix periodicity transforms beforehand:
C

IF(LSTOGG.EQ.0) GO TO 625
DO 620 LZN = 1,2*NUNIV+l

LZ = LZN-NUNIV-1
RTN = RBASE*REAL(LZ*NER)
RTH = RTN*THT
RDE = RTN*DEE
CALL RTRANS( RTH,RDE,R(1,1,LZN)

620 CONTINUE
625 CONTINUE

C
DO 600 Ll=1,2
DO 600 L2=L,2

KFIJ = L1+L2-1
LXS = -NUNIV
IF( KFIJ.NE.2 ) LXS = 0
NNLX = NUNIV-LXS+1
NNLY = 2*NUNIV+l
NNLZ = NNLY

C
C Zero all atom-atom summations:
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DO 645 I=1,LATM-1
DO 645 J=1,LATM-1

NTMP = (I-1)*(LATM-1) + J
SUM1P(NTMP) = 0.
SUM6P(NTMP) = 0.
SUM12P(NTMP) = 0.
SUM1(NTMP) = 0.
SUM6(NTMP) = 0.
SUM12(NTMP) = 0.

645 CONTINUE
C
C Loop over all lattice points, checking for redundancy with explicit
C calculation scheme for Ll-L2:
C
cvd$ noconcur

DO 680 LX=LXS,NUNIV
cvd$ noconcur

DO 680 LY=-NUNIV,NUNIV
cvd$ noconcur

DO 680 LZ=-NUNIV,NUNIV
NRED = (LX-LXS)*NNLY*NNLZ + (LY+NUNIV)*NNLZ +

+ (LZ+NUNIV) + 1
IF( (KFIJ.NE.2).AND.(LX.EQ.0).AND.(LY.LE.0) ) THEN
REDUND = .TRUE.
GO TO 680

ELSE
REDUND = .FALSE.

END IF
IF( ABS(LZ).LE.(NRUS-1) ) THEN

IF (KFIJ.NE.2) THEN
REDUND = ( (ABS(LX)+ABS(LY)).LE.NCM2 )

ELSE
IF( (LX+LY).NE.NCM2 ) THEN

REDUND = ( ((ABS(LX)+ABS(LY)).LE.NCM2).OR.
+ ((LX.LT.0).AND.(LY.LT.0).AND.((LX+LY).EQ.NNCM))

END IF
END IF

END IF
IF( REDUND ) GO TO 680

C
C Loop over all atoms of the units of L1 and L2 at this lattice point
C to get inverse distances:
C

DO 650 I=1,LATM-1
DO 650 J=1,LATM-1

NTMP = (I-1)*(LATM-1) + J
C ESPWR = ( VDWR(KIND(I,L1))+VDWR(KIND(J,L2)) )*LOG(DE)

IF( LSTOGG.EQ.0 ) THEN
DVECT(1) = XYZ(1,J,L2) - XYZ(1,I,L1)
DVECT(2) = XYZ(2,J,L2) - XYZ(2,I,L1)
DVECT(3) = XYZ(3,J,L2) - XYZ(3,I,L1)
DVV = (DVECT(1)+LX*UX(1)+LY*UY(I)+LZ*UZ(1))**2

+ + (DVECT(2)+LX*UX(2)+LY*UY(2)+LZ*UZ(2))**2
+ + (DVECT(3)+LX*UX(3)+LY*UY(3)+LZ*UZ(3))**2

ELSE
LZN = LZ + NUNIV + 1
DVECT(1) = XYZ(1,J,L2) - CHLOC(1,L2)
DVECT(2) = XYZ(2,J,L2) - CHLOC(2,L2)
DVECT(3) = XYZ(3,J,L2) - CHLOC(3,L2)

C Next line disabled only to allow for better concurrency optimization; C must be enabled
for use of helical periodicity calculations
C CALL MV( R(1,1,LZN),4,3,DVECT,4,DVECT )

DVECT(1) = DVECT(1) + CHLOC(1,L2) - XYZ(1,I,L1)
DVECT(2) = DVECT(2) + CHLOC(2,L2) - XYZ(2,I,L1)
DVECT(3) = DVECT(3) + CHLOC(3,L2) - XYZ(3,I,L1)
DVV = (DVECT(1)+LX*UX(1)+LY*UY(l))**2

+ + (DVECT(2)+LX*UX(2)+LY*UY(2))**2
+ + (DVECT(3)+LX*UX(3)+LY*UY(3))**2

END IF
DVROOT = SQRT(DVV)
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C Note: discontinuity in S1 is possible, may have to spline (5/16/88)
S1 = EXP(ESPWR/DVROOT)/DVROOT
IF( DVROOT.LE.BWDIST ) S1 = DE/DVROOT
S6 = l./DVV**3
S12 = S6**2
IF( (KFIJ.NE.2).AND.(LX.EQ.0).AND.(LY.EQ.0) ) THEN
TMP1P(NTMP) = Sl
TMP6P(NTMP) = S6
TMP12P(NTMP) = S12

ELSE
TMP1(NTMP) - S1
TMP6(NTMP) = S6
TMP12(NTMP) = S12

END IF
650 CONTINUE

C
C Add this element to summation
C

DO 655 I=1,LATM-1
DO 655 J=1,LATM-1

NTMP = (I-1)*(LATM-1) + J
SUM1P(NTMP) = SUM1P(NTMP) + TMP1P(NTMP)
SUM6P(NTMP) = SUM6P(NTMP) + TMP6P(NTMP)
SUM12P(NTMP) = SUM12P(NTMP) + TMP12P(NTMP)
SUM1(NTMP) = SUM1(NTMP) + TMP1(NTMP)
SUM6(NTMP) = SUM6(NTMP) + TMP6(NTMP)
SUM12(NTMP) = SUM12(NTMP) + TMP12(NTMP)

655 CONTINUE
680 CONTINUE

C
C Finally, calculate the energies for each atom-atcm pair:
C

DO 665 I=1,LATM-1
DO 665 J=1,LATM-1

NTMP = (I-1)*(LATM-1) + J
CALL ELJ( NKIND,KIND(I,L1),KIND(J,L2),VDWR,ALPHA,EFFNE,

+ SUM6(NTMP),SUM12(NTMP),FIRST,POTLJ
EULJ = EULJ + 0.5*POTLJ
EUES = EUES + 166.*SUM1(NTMP)*CHRG(I,Ll)*CHRG(J,L2)/DE
IF( (SUM6P(NTMP).EQ.0.).AND.(SUM12P(NTMP).EQ.0.) ) GO TO 665
CALL ELJ( NKIND,KIND(I,L1),KIND(J,L2),VDWR,ALPHA,EFFNE,

+ SUM6P(NTMP),SUM12P(NTMP),FIRST,POTLJP
EULJP = EULJP + 0.5*POTLJP
EUESP = EUESP + 166.*SUMlP(NTMP)*CHRG(I,Ll)*CHRG(J,L2)/DE

665 CONTINUE
600 CONTINUE
630 CONTINUE

C
C Here is calculated the penalty function that fixes chain pitch DEE
C

IF( KUC.NE.0 ) ECFF = DCON*( DEE - DPRIME )**2
C
C Total energy per residue:
C

ENOB1 = ENOB1/NER/RBASE
ENOB2 = ENOB2/NER/RBASE
ECOUl = ECOU1/NER/RBASE
ECOU2 = ECOU2/NER/RBASE
EULJ = EULJ/NER/RBASE
EUES = EUES/NER/RBASE
EULJP = EULJP/NER/RBASE
EUESP = EUESP/NER/RBASE
ETOT = EDEF + EDEL + ENOB1 + ENOB2 + ECOUI + ECOU2 + ECFF +

+ EULJ + EUES + EULJP + EUESP
RETURN

900 CONTINUE
WRITE(11,*) 'ERROR: No parent chain available'
RETURN
END
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SUBROUTINE RTRANS( TH,D,R )
C "R" Matrix Generation
C
C N D
C R= I
C 0 1 i
C

DIMENSION R(4,4)
RTH = TH*3.1415926535/180.
R(1,l) = COS(RTH)
R(1,2) = -SIN(RTH)
R(1,3) = 0.
R(1,4) = 0.
R(2,1) = SIN(RTH)
R(2,2) = COS(RTH)
R(2,3) = 0.
R(2,4) = 0.
R(3,1) = 0.
R(3,2) = 0.
R(3,3) = 1.
R(3,4) - D
R(4,1) = 0.
R(4,2) = 0.
R(4,3) = 0.
R(4,4) = 1.
RETURN
END

SUBROUTINE STRAIN( KUC,KASE,CEE,ST,SUCV,CHLOC,CEEP)
C
C Invokes a fixed strain on the chain locations. KUC and KASE specify
C the unitcell convention and relative orthogonal axes, for frame of
C reference purposes. ST is the orthogonal strain tensor (elements of
C which are fractional change; eg. 0.01). CHLOC(i,2) and CHLOC(i,4) are
C used to relate unitcell and are returned in strained form. Changes
C along the chain axis dimension must be handled using a penalty
C function, such that the undeformed length CEE becomes the deformed
C length CEEP
C

DIMENSION ST(3,3),STP(3,3),CHLOC(3,9),CRT(3,3),CV(2),DV(2),
+ SFR(3,3),SFRI(3,3),UCV(3,3),SUCV(3,3)

C
C First, define placement of unit cell in lattice (Type 1 - 12: see key)
C and establish coordinate rotation tensor
C

KONV = 1
UCV(1,3) = 0.
UCV(2,3) - 0.
UCV(3,3) = CEE

500 CONTINUE
IF( KUC.EQ.1 ) THEN

C Type 1: a=1-9, b-l-3
IF( KONV.EQ.1 ) THEN

DO 110 I=1,3
UCV(I,1) = CHLOC(I,2) - CHLOC(I,4)

110 UCV(I,2) = CHLOC(I,2) + CHLOC(I,4)
ELSE

DO 115 I=1,3
CHLOC(I,2) = 0.5*(UCV(I,2) + UCV(I,1))

115 CHLOC(I,4) = 0.5*(UCV(I,2) - UCV(I,1))
END IF

ELSE IF (KUC.EQ.2 ) THEN
C Type 2: a=1-9, b-1-51

IF( KONV.EQ.1 ) THEN
DO 120 I=1,3
UCV(I,l) = CHLOC(I,2) - CHLOC(I,4)

120 UCV(I,2) = 3*CHLOC(I,2) - CHLOC(I,4)
ELSE
DO 125 I=1,3

CHLOC(I,2) = 0.5*(UCV(I,2) - UCV(I,1))
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CHLOC(I,4) = 0.5*(UCV(I,2) - 3.*UCV(I,1))
END IF

ELSE IF (KUC.EQ.3) THEN
C Type 3: a=1-9, b=1-35

IF( KONV.EQ.1 ) THEN
DO 130 I=1,3
UCV(I,1) = CHLOC(I,2) - CHLOC(I,4)

130 UCV(I,2) = 3*CHLOC(I,4) - CHLOC(I,2)
ELSE

DO 135 I=1,3
CHLOC(I,2) = 0.5*(UCV(I,2) + 3.*UCV(I,1))

135 CHLOC(I,4) = 0.5*(UCV(I,2) + UCV(I,1))
END IF

ELSE IF (KUC.EQ.4 ) THEN
C Type 4: a=1-9, b=1-ll

IF( KONV.EQ.1 ) THEN
DO 140 I=1,3
UCV(I,1) = CHLOC(I,2) - CHLOC(I,4)

140 UCV(I,2) = 2*CHLOC(I,2)
ELSE

DO 145 I=1,3
CHLOC(I,2) = 0.5*UCV(I,2)

145 CHLOC(I,4) = 0.5*UCV(I,2) - UCV(I,1)
END IF

ELSE IF (KUC.EQ.5) THEN
C Type 5: a=1-7, b=l-ll

IF( KONV.EQ.1 ) THEN
DO 150 I=1,3

UCV(I,1) = -CHLOC(I,2) - CHLOC(I,4)
150 UCV(I,2) = 2*CHLOC(I,2)

ELSE
DO 155 I=1,3

CHLOC(I,2) = 0.5*UCV(I,2)
155 CHLOC(I,4) = -UCV(I,1) - 0.5*UCV(I,2)

END IF
ELSE IF (KUC.EQ.6 ) THEN

C Type 6: a=1-9, b=1-15
IF( KONV.EQ.1 ) THEN
DO 160 I=1,3

UCV(I,1) = CHLOC(I,2) - CHLOC(I,4)
160 UCV(I,2) = 2*CHLOC(I,4)

ELSE
DO 165 I=1,3

CHLOC(I,2) = UCV(I,1) + 0.5*UCV(I,2)
165 CHLOC(I,4) = 0.5*UCV(I,2)

END IF
ELSE IF( KUC.EQ.7 ) THEN

C Type 7: a=1-3, b=1-15
IF( KONV.EQ.1 ) THEN

DO 170 I=1,3
UCV(I,1) = CHLOC(I,2) + CHLOC(I,4)

170 UCV(I,2) = 2*CHLOC(I,4)
ELSE

DO 175 I=1,3
CHLOC(I,2) = UCV(I,1) - 0.5*UCV(I,2)

175 CHLOC(I,4) = 0.5*UCV(I,2)
END IF

ELSE IF (KUC.EQ.8 ) THEN
C Type 8: a=1-9, b=1-2

IF( KONV.EQ.1 ) THEN
DO 180 I=1,3

UCV(I,1) = CHLOC(I,2) - CHLOC(I,4)
180 UCV(I,2) = CHLOC(I,2)

ELSE
DO 185 I=1,3

CHLOC(I,2) = UCV(I,2)
185 CHLOC(I,4) = UCV(I,2) - UCV(I,1)

END IF
ELSE IF (KUC.EQ.9) THEN

C Type 9: a=1-7, b=1-2
IF( KONV.EQ.1 ) THEN
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DO 190 I=1,3
UCV(I,1) = -CHLOC(I,2) - CHLOC(I,4)
UCV(I,2) = CHLOC(I,2)

ELSE
DO 195 I=1,3

CHLOC(I,2) = UCV(I,2)
195 CHLOC(I,4) = -UCV(I,2) - UCV(I,1)

END IF
ELSE IF (KUC.EQ.10 ) THEN

C Type 10: a=1-9, b=1-4
IF( KONV.EQ.1 ) THEN
DO 200 I=1,3

UCV(I,1) = CHLOC(I,2) - CHLOC(I,4)
200 UCV(I,2) = CHLOC(I,4)

ELSE
DO 205 I=1,3

CHLOC(I,2) = UCV(I,2) + UCV(I,1)
205 CHLOC(I,4) = UCV(I,2)

END IF
ELSE IF (KUC.EQ.11) THEN

C Type 11: a=1-3, b=1-4
IF( KONV.EQ.1 ) THEN
DO 210 I=1,3

UCV(I,1) = CHLOC(I,2) + CHLOC(I,4)
210 UCV(I,2) = CHLOC(I,4)

ELSE
DO 215 I=1,3

CHLOC(I,2) = UCV(I,l) - UCV(I,2)
215 CHLOC(I,4) = UCV(I,2)

END IF
ELSE IF (KUC.EQ.12 ) THEN

C. Type 12: a=1-2, b=1-4
IF( KONV.EQ.1 ) THEN

DO 220 I=1,3
UCV(I,1) = CHLOC(I,2)

220 UCV(I,2) = CHLOC(I,4)
ELSE

DO 225 I=1,3
CHLOC(I,2) = UCV(I,1)

225 CHLOC(I,4) = UCV(I,2)
END IF

ELSE
WRITE(*,*) 'ERROR: invalid cell definition in STRAIN'

END IF
IF( KONV.EQ.2 ) GO TO 600

By convention, strain tensor is given in a Unit Cell Frame of
Reference (UCV):
2 possibilites: UCV(i,1) lies in ST xz plane (KASE 1)

or: UCV(i,2) lies in ST yz plane (KASE 2)
Rotate UCV to correspond to strain tensor F.O.R., deform UCV,
rotate back into original F.O.R., then decompose back to CHLOC
vectors

DO 300 I=1,3
DO 300 J=1,3

300 SFR(I,J) = 0.
SFR(3,3) = 1.
CV(1) = UCV(1,KASE)
CV(2) = UCV(2,KASE)
CVM = SQRT(CV(1)**2 + CV(2)**2)
KOTHER = MOD(KASE,2)+l
SFR(1,1) = CV(KASE)/CVM
SFR(1,2) = REAL(KOTHER-KASE)*CV(KOTHER)/CVM
SFR(2,1) = -SFR(1,2)
SFR(2,2) = SFR(1,1)

C
DO 400 I=1,3

DO 450 J=1,3
450 STP(I,J) = ST(J,I)
400 STP(I,I) = STP(I,I) + 1.
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CALL MM( SFR,UCV,UCV,3,3,3,3,3,3 )
CALL MM( STP,UCV,UCV,3,3,3,3,3,3 )
SFR(1,2) = -SFR(1,2)
SFR(2,1) = -SFR(2,1)
CALL MM( SFR,UCV,UCV,3,3,3,3,3,3 )
CEEP = UCV(3,3)
KONV = KONV + 1
GO TO 500

C
600 CONTINUE

DO 700 I=1,3
DO 700 J=1,3

700 SUCV(I,J) = UCV(I,J)
RETURN
END

SUBROUTINE DATARD( NVAR,INSTR,MODE )
C
C Reads variable/instruction input file (U.dt) and loads scan range
C control vectors
C

PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,
+ MNSB=24, NDOF=10,MNIC=9, MCOP45,MOPT=51 )

COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),
+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

COMMON /CELL/ CELD(3),CELA(3),CHSPEC(5,MNCH),CHLOC(3,MNCH),
+ NUNIV,KONDENS,TEMP,DENSC

COMMON /SCAN/ NSTOT,NSANG,NSCAN(NDOF),SCANO(NDOF),SCAND(NDOF),
+ NCTOT,NCMUT,NMUT(MOPT),CMUTO(MOPT),CMUTD(MOPT)

COMMON /MINIM/ LMV(2,9),LCV(5",11),OMVARS(97)
DIMENSION INSTR(5)
DEGRAD = 3.1415926535/180.
OPEN (UNIT=10, FILE='U.dt',STATUS='OLD')

C
C Read output format instruction codes, mode for Hessian in
C minimization, simulation dimensions, and ring substitution
C

READ(10,2) (INSTR(I),I=1,5)
READ(10,2) MODE
READ(10,1) NARU,NRUS,NCH,NUNIV,KONDENS,TEMP
IF (NRUS.GT.MNRU) NRUS = MNRU
READ(10,2) (KSB(I),I=1,4)

C
C The polymer generation routines create a single polymer type
C (unsubstituted poly(p-phenylene terephthalamide). Modifications
C of the chemistry are intructed by KSB(4), which is translated into
C a ring substitution sequence by the subroutine SUBSET.
C Substitution on the ring also affects the number of monomer units
C required to describe a unique structural unit (ie. one repeat unit
C if unsubstituted or head-to-tail, two if head-to-head,tail-to-tail);
C this information is used by LDVAR to limit chain translation during
C optimization and is passed by NUNIQ. Here, determine NUNIQ:
C
C If the 56 atom HHTT isomer representation is used, disable NUNIQ = 2:
C

NUNIQ = 1
IF( KSB(3).EQ.1 ) NUNIQ = 2

C
C *Read conformation paramters THETA, PHI, optimization flags for these
C two variables, and scan instructions for PHI. Same for PHIR.
C

DO 100 I=1,NIBB
100 NSCAN(I) = 0

NVAR = 0
NSTOT = 1
NSANG = 0
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DO 200 I=1,NIBB
READ(10,5) THETA(I),PHI(I),(LMV(J,I),J=1,2),

+ ISCAN,SCO,SCX,SCD
IF (LMV(1,I).GT.0) NVAR=NVAR+1
IF (LMV(2,I).GT.0) NVAR=NVAR+1
IF (ISCAN.LT.1) GO TO 200
PHI(I) = SCO
SCANO(I) = SCO
SCAND(I) = SIGN(SCD,SCX-SCO)
NSCAN(I) = INT(1.01+(SCX-SCO)/SCAND(I))
NSANG = NSANG + 1
NSTOT = NSTOT*NSCAN(I)

200 CONTINUE
DO 210 I=1,NRNG

KTAG = MOD( (I+1),2 ) + 1
ITAG = NIBB + I/3 + 1.
JTAG = NIBB + I
READ(10,9) PHIR(I),LMV(KTAG,ITAG) ,ISCAN,SCO,SCX,SCD
IF (LMV(KTAG,ITAG).GT.0) NVAR=NVAR+l
IF (ISCAN.LT.1) GO TO 210
PHIR(I) - SCO
SCANO(JTAG) = SCO
SCAND(JTAG) = SIGN(SCD,SCX-SCO)
NSCAN(JTAG) = INT(1.01+(SCX-SCO)/SCAND(JTAG))
NSANG = NSANG + 1
NSTOT = NSTOT*NSCAN(JTAG)

210 CONTINUE
C
C Read cell packing parameters CELD (with optimization flag and scan
C intructions), CELA (with flag and scan), and CHSPEC (with flag and
C scan, up to a maximum of first nine chains)
C

DO 400 I=1,MOPT
400 NMUT(I) = 0

NCTOT = 1
NCMUT = 0
DO 420 1=1,3

READ(10,6) CELD(I),LCV(I,MNIC+I),IDVAR,DVO,DVX,DVD
IF(IDVAR.LT.1) GO TO 420
KK = MCOP+I
CELD(I) = DVO
CMUTO(KK) = DVO
CMUTD(KK) = SIGN(DVD,DVX-DVO)
NMUT(KK) = INT(1.01+(DVX-DVO)/CMUTD(KK))
NCMUT = NCMUT+l
NCTOT = NCTOT*NMUT(KK)

420 CONTINUE
DO 440 I=1,3
READ(10,6) CELA(I),LCV(I,MNIC+2),IDVAR,DVO,DVX,DVD
IF(IDVAR.LT.1) GO TO 440
KK = MCOP+3+I
CELA(I) = DVO
CMUTO(KK) = DVO
CMUTD(KK) = SIGN(DVD,DVX-DVO)
NMUT(KK) = INT(1.01+(DVX-DVO)/CMUTD(KK))
NCMUT = NCMUT+1
NCTOT = NCTOT*NMUT(KK)

440 CONTINUE
DO 460 I=1,3

460 IF(CELD(I).LT.1.) CELD(I) = 1000.
DO 300 J=1,MNIC

DO 300 I=1,5
READ(10,7) CHSPEC(I,J),LCV(I,J),ICVAR,CVO,CVX,CVD
IF (ICVAR.LT.1) GO TO 300
KK = I+(J-1)*5
CHSPEC(I,J) = CVO
CMUTO(KK) = CVO
CMUTD(KK) = SIGN(CVD,CVX-CVO)
NMUT(KK) = INT(1.01+(CVX-CVO)/CMUTD(KK))
NCMUT = NCMUT+1
NCTOT = NCTOT*NMUT(KK)
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300 CONTINUE
DO 500 J=1,MNIC+2

DO 500 I=1,5
500 IF (LCV(I,J).GT.0) NVAR=NVAR+l

CLOSE (UNIT=10)
C
C Call strain input file
C

CALL RDSTRAIN( MODE
C

RETURN
1 FORMAT( 5(I4),F8.3
2 FORMAT( 5(14) )
5 FORMAT( 2(F8.3),3(I4,4X),3(F8.3)
6 FORMAT( F8.3,2(I4,4X),3(F8.3) )
7 FORMAT( F8.3,2(I4,4X),3(F8.3) )
9 FORMAT( F8.3,2(I4,4X),3(F8.3) )

10 FORMAT( 4(14)
END

SUBROUTINE RESWR( INSTR
C
C Output simulation results to a file opened in the main program,
C according to instructions contained in INSTR
C

PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,
+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51 )

COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),
+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

COMMON /CELL/ CELD(3),CELA(3),CHSPEC(5,MNCH),CHLOC(3,MNCH),
+ NUNIV,KONDENS,TEMP,DENSC

COMMON /ENRG/ EDEF,EDEL,ENOB1, ENOB2,ECOU1, ECOU2,EULJ,EUES,
+ EULJP,EUESP,ECFF,ETOT

COMMON /OPRS/ NVAR,VARS(97),GRAD(97) ,GRADNM
COMMON G(97),H(4753),W(291)
COMMON /STRN/ KUC,KASE,ST(3,3),SUCV(3,3),DINIT,DPRIME,DCON
DIMENSION INSTR(5)
CHARACTER*2 KAR(NKIND)
DATA KAR/'C','H','C','H','N','O','F','CL','BR'/

C
NHELEM = NVAR*(NVAR+1)/2
IF(INSTR(1).NE.1) GO TO 210
WRITE(11,1)
WRITE(11,2)
NIBB2 = INT(NIBB/2)
DO 110 J=1,NIBB2

110 WRITE(11,20) THETA(J),PHI(J),THETA(J+NIBB2),PHI(J+NIBB2)
WRITE(11,21) (PHIR(I),I=1,NRNG)
WRITE(11,23) (KSB(I),I=1,4)

210 IF(INSTR(2).NE.1) GO TO 220
WRITE(11,4) DEE,RHO,THT

220 IF(INSTR(3).NE.1) GO TO 230
WRITE(11,5)
WRITE(11,24) TEMP,DENSC,NUNIV
WRITE(11,6) (CELD(I),I=1,3)
WRITE(11,7) (CELA(I),I=1,3)
WRITE(11,8)
DO 200 J=1,2

IF(ABS(CHSPEC(1,J)).EQ.0.) GO TO 200
WRITE(11,9) J,(CHSPEC(I,J),I=2,5)

200 CONTINUE
230 IF(KUC.EQ.0) GO TO 235

WRITE(11,31)
WRITE(11,32) KUC,KASE
WRITE(11,33) (ST(1,I),I=1,3)
WRITE(11,33) (ST(2,I),I=1,3)
WRITE(11,33) (ST(3,I),I=1,3)
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WRITE(11,34)
WRITE(11,33) (SUCV(1,I),I=1,3)
WRITE(11,33) (SUCV(2,I),I=1,3)
WRITE(11,33) (SUCV(3,I),I=1,3)
WRITE(11,*)

235 IF(INSTR(4).NE.1) GO TO 240
EINTRA = EDEF+EDEL+ECFF+ENOBI+ECOU1+EULJP+EUESP
EINTER = ENOB2+ECOU2+EULJ+EUES

C
C Keep all energies.within bounds for printout:
C

EDEF = MAX( -999.,MIN( 999.,EDEF ) )
EDEL = MAX( -999.,MIN( 999.,EDEL )
ECFF = MAX( -999.,MIN( 999.,ECFF )
ENOB1 = MAX( -999.,MIN( 999.,ENOB1 ) )
ECOUl = MAX( -999.,MIN( 999.,ECOUl ) )
EULJP = MAX( -999.,MIN( 999.,EULJP ) )
EUESP = MAX( -999.,MIN( 999.,EUESP ) )
EINTRA = MAX( -999.,MIN( 999.,EINTRA ) )
ENOB2 = MAX( -9999.,MIN( 9999.,ENOB2 ) )
ECOU2 = MAX( -9999.,MIN( 9999.,ECOU2 ) )
EULJ = MAX( -9999.,MIN( 9999.,EULJ ) )
EUES = MAX( -9999.,MIN( 9999.,EUES ) )
EINTER = MAX( -9999.,MIN( 9999.,EINTER ) )
ETOT = MAX( -9999.,MIN( 9999.,ETOT )
WRITE(11,10)
WRITE (11, 11)
WRITE(11,27) EDEF,EDEL, ECFF,ENOB1,ECOU1, EULJP,EUESP, EINTRA
WRITE(11, 12)
WRITE(11,28) ENOB2, ECOU2, EULJ, EUES, EINTER, ETOT
IF (NVAR.NE.0) WRITE(11,22) NVAR,GRADNM

240 IF(INSTR(5).NE.1) GO TO 250
WRITE(11, 13)
LCNT = 0
DO 300 L=1,MIN(9,NCH)

IF(ABS(CHSPEC(1,L)).NE.1.) GO TO 300
LCNT = LCNT+1
IO = 1+(LCNT-1)*NARU*NRUS
IX = LCNT*NARU*NRUS
DO 350 I=IO,IX

IM = I-IO+1
IF ((I.LE.9).AND.(KIND(IM,L).LE.7))

+ WRITE(11,14) KAR(KIND(IM,L)),I,(XYZ(J,IM,L),J=1,3)
IF (((I.GT.9).AND.(I.LE.99)).AND.(KIND(IM,L).LE.7))

+ WRITE(11,15) KAR(KIND(IM,L)),I,(XYZ(J,IM,L),J=1,3)
IF (((I.GT.99).AND.(I.LE.999)).AND.(KIND(IM,L).LE.7))

+ WRITE(11,16) KAR(KIND(IM,L)),I,(XYZ(J,IM,L),J=1,3)
IF ((I.GT.999).AND.(KIND(IM,L).LE.7))

+ WRITE(11,25) KAR(KIND(IM,L)),I, (XYZ(J,IM,L),J=1,3)
IF ((I.LE.9).AND.(KIND(IM,L).GT.7))

+ WRITE(11,17) KAR(KIND(IM,L)),I,(XYZ(J,IM,L),J=1,3)
IF (((I.GT.9).AND.(I.LE.99)).AND.(KIND(IM,L).GT.7))

+ WRITE(11,18) KAR(KIND(IM,L)),I, XYZ(J,IM,L),J=1,3)
IF (((I.GT.99).AND.(I.LE.999)).AND.(KIND(IM,L).GT.7))

+ WRITE(11,19) KAR(KIND(IM,L)),I,(XYZ(J,IM,L),J=1,3)
IF ((I.GT.999).AND.(KIND(IM,L).GT.7))

+ WRITE(11,26) KAR(KIND(IM,L)),I,(XYZ(J,IM,L),J=1,3)
350 CONTINUE
300 CONTINUE
250 CONTINUE
1 FORMAT( /IX,'***** RESIDUE INTERINAL PARAMETERS **************' )
2 FORMAT( 6X,'THETA',5X,' PHI ',9X,'THETA',5X,' PHI ')
4 FORMAT( 1X,'***** HELIX PARAMETERS; DEE,RHO,THT:',2X,
+ 3(1X,F9.5))
5 FORMAT( /1X,'***** UNIT CELL PARAMETERS *******************'
6 FORMAT( 3X,' PRINCIPLE AXES; A,B,C :',10X,3(1X,F9.5) )
7 FORMAT( 3X,' PRINCIPLES ANGLES; ALPHA,BETA,GAMMA:',3(1X,F9.5) )
8 FORMAT( 3X,' CHAIN NUMBER TRANSL ORIENT/ROTATION')
9 FORMAT( 6X,I3,9X,F7.5,3X,F6.1,1X,F6.1,2X,F8.3)

10 FORMAT( 1X,'***** POTENTIAL ENERGIES ********************' )
11 FORMAT( 1X,'* INTRA: EDEF',4X,'EDEL',4X,'ECFF',4X,
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27 FORMAT(
12 FORMAT(

+28 FORMAT(
28 FORMAT(
22 FORMAT(

+13 FORMAT(
13 FORMAT(
14 FORMAT(
15 FORMAT(
16 FORMAT(
17 FORMAT(
18 FORMAT(
19 FORMAT(
25 FORMAT(
26 FORMAT(

C 20 FORMAT(
20 FORMAT(
21 FORMAT(

+23 FORMAT(
23 FORMAT(
24 FORMAT(
31 FORMAT(

32
33
34

1002
1003

FORMAT(
FORMAT(
FORMAT(
FORMAT(
FORMAT(
RETURN
END

'ENOBI',3X,'ECOUl',3X,'EULJP',3X,'EUESP',3X,'EINTRA')
1X,8(1X,F7.3) )
lX,'* INTER: ENOB2',4X,'ECOU2',4X,'EULJ',5X,
'EUES', 5X,'EINTER',3X,'ETOT')
1X,6(1X,F8.3) )
1X,'* MINIMIZATION: NVAR = ',I3,2X,'GRADIENT NORM =
F8.4)
/1X,'***** XYZ COORDINATES, BY ATOM NUMBER **********' )
A1,I1,5X,3F12.4 )
A1, I2,4X,3F12.4 )
A1,I3,3X,3F12.4 )
A2,I1,4X,3F12.4 )
A2,I2,3X,3F12.4 )
A2,I3,2X,3F12.4 )
A1,I4,3X,3F12.4 )
A2,I4,2X,3Fl2.4 )
5X,3(F8.3,2X),5X,3(F8.3,2X)
5X,F8.3,2X,F8.3,6X,F8.3,2X,F8.3 )
4X,'RING ROTATION ANGLES: ',F8.3,2X,F8.3,4X,F8.3,2X,
F8.3 )
4X,'RING SUBSTITUTION CODE: ',413 )
3X,' TEMP(K), DENS(G/CC), CELL SUM:',8X,2(F9.5,1X),I4)
/1X,' ** IMPOSED STRAIN: CELL TYPE, CASE, STRAIN ',
'TENSOR **' )
10X,I4,4X,I4 )
10X,3(F9.4,2X))
/1X,' ** STRAINED UNIT CELL VECTORS ** ')
5E15.7 )
214 )

SUBROUTINE RDSTRAIN( MODE )

C Reads special file for unitcell definition and strain tensor
C

PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,
+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51 )

COMMON /CHAINS/ PHI(NIBB),THETA(NIBB),BL(NIBB),PHIR(NRNG),
+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

COMMON /CELL/ CELD(3),CELA(3),CHSPEC(5,MNCH),CHLOC(3,MNCH),
+ NUNIV,KONDENS,TEMP,DENSC

COMMON /STRN/ KUC,KASE,ST(3,3),SUCV(3,3),DINIT,DPRIME,DCON
COMMON /MINIM/ LMV(2,9),LCV(5,11),OMVARS(97)
COMMON /OPRS/ NVAR,VARS(97),GRAD(97),GRADNM
COMMON G(97),H(4753),W(291)
COMMON /SV2/ TVARL
NHELEM = NVAR*(NVAR+1)/2
OPEN(UNIT=10,FILE='US.dt',STATUS=' OLD')
READ(10,*) KUC,KASE
READ(10,*) DINIT,DCON
READ(l0,*) (ST(1,I),I=l,3)
READ(10,*) (ST(2,I),I=l,3)
READ(10,*) (ST(3,I),I=l,3)
CLOSE (UNIT=10)

Read Existing Hessian, if it exists

IF( MODE.EQ.1 ) GO TO 100
OPEN(UNIT-=0,FILE='HESS',STATUS='OLD')
READ(10,1002) ( H(J),J=1,NHELEM )

100 CLOSE( UNIT=10 )

C If Hessian exists, read in corresponding geometry
C

IF( MODE.EQ.1 ) GO TO 300
OPEN(UNIT=10,FILE='GEOM' ,STATUS='OLD')
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READ(10,1002) (VARS(J),J=1,NVAR
CLOSE( UNIT=10 )
TVARL = 1000.
CALL LDVAR( NVAR,VARS,-1,KMOL)

1002 FORMAT( 5E15.7 )
1003 FORMAT( 214
300 CONTINUE

RETURN
END

SUBROUTINE ATRNS( PHI,THETA,BL,A )
C
C "A" Matrix Generation
C "T"-Matrix as per Flory, STAT. MECH. OF CHAIN MOLECULES, p.2 1
C
C I T L I I BLI
C A=I I L = 0 1
C I 0 1 i0
C

DIMENSION A(4,4)
COMPL(X) = (180.-X)*3.1415926535/180.

C
TH = COMPL(THETA)
PH = PHI*3.1415926535/180.
CT = COS(TH)
ST = SIN(TH)
CP = COS(PH)
SP = SIN(PH)
A(1,1) - CT
A(1,2) = ST
A(1,3) = 0.
A(1,4) = BL
A(2,1) = ST*CP
A(2,2) = -CT*CP
A(2,3) = SP
A(2,4) = 0.
A(3,1) = ST*SP
A(3,2) = -CT*SP
A(3,3) = -CP
A(3,4) = 0.
A(4,1) = 0.
A(4,2) = 0.
A(4,3) = 0.
A(4,4) = 1.
RETURN
END

SUBROUTINE MV( A,NFORMA,NA,V,N,R )
C
C - Multiplies matrix with vector: R = A * V
C - Input : A NA x N Matrix
C NFORMA First dimension of A in calling program
C NA Number of rows in A
C V Vector of length N
C N Length of vector V
C - Output: R Resultant vector of length NA, can be V
C

DIMENSION A(NFORMA,NFORMA), V(N), R(NA), RR(20)
IF (NA.GT.NFORMA) RETURN
DO 100 I=1,NA

X - 0.
DO 200 K-1,N

200 X = X + A(I,K)*V(K)
100 RR(I) = X

DO 300 I=1,NA
300 R(I) = RR(I)

RETURN
END
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SUBROUTINE VV( A,B,C,N )

C Calculates the vector cross product C = A X B, where A,B, and C
C have length N
C

DIMENSION A(N),B(N),C(N),K(2)
DO 100 I=1,N

DO 200 J=1,2
200 K(J) = MOD( (I+J-1),N ) +1

C(I) = A(K(1))*B(K(2)) - A(K(2))*B(K(1))
100 CONTINUE

RETURN
END

SUBROUTINE MM( A,B,C,NFORMA,NFORMB,NFORMC,NA,MA,MB
C
C - Multiplies matrix with matrix: C = A X B
C (C can be A or B)
C

DIMENSION CC(20,20),A(NFORMA,NFORMA),B(NFORMB,NFORMB)
DIMENSION C(NFORMC,NFORMC)
DO 100 I=1,NA
DO 100 J=1,MB

X = 0.
DO 200 K=1,MA

200 X = X + A(I,K)*B(K,J)
100 CC(I,J) = X

DO 300 I=1,NA
DO 300 J=1,MB

300 C(I,J) = CC(I,J)
RETURN
END

SUBROUTINE MT( A,B,N,NP )
C
C Calculates the transpose of the N x N matrix A contained within
C the physical array NP x NP, and returns as the matrix B
C

DIMENSION A(NP,NP),B(NP,NP)
DO 100 I=1,NP

DO 100 J=1,NP
100 B(I,J) = A(I,J)

DO 200 I=1,N
DO 200 J=1,I
B(J,I) = A(I,J)

200 B(I,J) = A(J,I)
RETURN
END

SUBROUTINE MA( A,B,C,N,NP,S )
C
C If S = 1 : Adds matrices A and B to form C
C If S =-1 : Subtracts matrix B from A to form C
C All matrices are N x N, contained within arrays having physical
C dimensions NP x NP
C

DIMENSION A(NP,NP),B(NP,NP),C(NP,NP)
DO 100 I=1,N
DO 100 J=1,N

100 C(I,J) = A(I,J) + S*B(I,J)
RETURN
END
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SUBROUTINE VECTORIZ( SLEN,SANG,VECT,KERR
C
C Converts scalar data (lengths, angles) to three placement vectors
C Convention: SLEN(3) lies along Z axis
C SLEN(1) lies within X-Z plane
C SLEN(2) placement determined by above
C SANG(i) is the angle between SLEN(J) and SLEN(k), etc.
C KERR normally equals 0; KERR = 1 if the set of input angles do not
C make a viable set
C

DIMENSION SLEN(3),SANG(3),VECT(3,3),ARA(3,3),ARB(3,3)
COMPL(X) = (90.-X)*3.1415926535/180.
EPSILON = 1E-6
DEGRAD = 3.1415926535/180.
KERR = 0
DO 100 I=1,3
DO 100 J=1,3
ARA(I,J) = 0.
ARB(I,J) = 0.

100 VECT(I,J) = 0.
VECT(1,1) = SLEN(1)
VECT(1,2) = SLEN(2)
VECT(3,3) = SLEN(3)
COSGP = ( COS(SANG(3)*DEGRAD)-COS(SANG(1)*DEGRAD)*COS(SANG(2)

+ *DEGRAD) )/( SIN(SANG(1)*DEGRAD)*SIN(SANG(2)*DEGRAD)
IF((ABS(COSGP)-l.) .GT.EPSILON) GO TO 900
IF(ABS(ABS(COSGP)-1.).LE.EPSILON) COSGP = SIGN(1.,COSGP)

GP = ACOS(COSGP)
CA = COMPL(SANG(1))
CB = COMPL(SANG(2))
ARA(1,1) = COS(CB)
ARA(1,3) = -SIN(CB)
ARA(2,2) = 1.
ARA(3,1) = SIN(CB)
ARA(3,3) = COS(CB)
ARB(1,1) = COSGP*COS(CA)
ARB(1,2) = -SIN(GP)
ARB(1,3) = -COSGP*SIN(CA)
ARB(2,1) = SIN(GP)*COS(CA)
ARB(2,2) = COSGP
ARB(2,3) = -SIN(GP)*SIN(CA)
ARB(3,1) = SIN(CA)
ARB(3,3) = COS(CA)
CALL MV( ARA,3,3,VECT(1,1),3,VECT(1,1) )
CALL MV( ARB,3,3,VECT(l,2),3,VECT(l,2) )

RETURN
900 CONTINUE

KERR = 1
RETURN
END

SUBROUTINE ELJ(NKIND,NUC1,NUC2,VDWR,ALPHA,EFFNE,R2,S2,FIRST,
+ POTENT)

C
C Calculates the 6-12 attraction/repulsion potential between two nuclei
C separated by the distance R (R2 = R**2)
C A shifted 3-segment-potential is used:
C - For R .LE. RCRIT-H/2 : 6-12 potential with R, shifted
C - For R .GE. RCRIT+H/2 : 0.
C - For RCRIT-H/2 < R < RCRIT+H/2 : A spline-like cubic polynomial
C between these two potentials
C (NKIND must not exceed MAXA)
C

LOGICAL FIRST
PARAMETER( MAXA=9,EPSILON=lE-6
DIMENSION VDWR(NKIND),ALPHA(NKIND),EFFNE(NKIND)
COMMON /SV1/ A(MAXA,MAXA),C(MAXA,MAXA),EMLH(MAXA,MAXA),

+ YLH(MAXA,MAXA),YRH(MAXA,MAXA),FSTRL(MAXA,MAXA),
+ RR,RL,RR2,RL2

C
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C Note: spline portion not in use...
C
C Modified to pass two distances, R2 and S2. If R2=S2=distance**2, the
C routine operates normally, and splining is possible; otherwise, R2
C represents the inverse 6th order distance sum and S2 represents the
C inverse 12th order distance sum, as supplied by infinite lattice sum
C calculations.
C

DATA RCRIT,H/ .1,1. /
IF (FIRST) GO TO 500

100 POTENT = 0.
IF (ABS(R2/S2-1.).GE.EPSILON) GO TO 300
IF (R2.GE.RR2) RETURN
IF (R2.LE.RL2) GO TO 200
R = SQRT( R2
D1 = RR - R
D2 = R - RL
POTENT = EMLH(NUC1,NUC2)*D2*(Dl**2)
+ + YLH(NUCI,NUC2)*(Dl**2)*(2.*D2+H)
+ + YRH(NUCl,NUC2)*(D2**2)*(2.*Dl+H) - FSTRL(NUC1,NUC2)
RETURN

200 D1 = R2**3
D2 = Dl**2
POTENT = A(NUC1,NUC2)/D2 - C(NUC1,NUC2)/Dl - FSTRL(NUC1,NUC2)
RETURN

300 POTENT = A(NUCI,NUC2)*S2 - C(NUC1,NUC2)*R2
RETURN

C
C Initialize potential parameters on first pass
C

500 CONTINUE
IF (RCRIT.LT.1.) RCRIT = 500.
IF (H.LT.0.1) H=0.1

C
C Calculate A(I,J) and C(I,J):
C

DO 600 I=1,NKIND
DO 600 J=1,NKIND

IF( ((ALPHA(I)-0.).LT.EPSILON).AND.
+ ((ALPHA(J)-0.).LT.EPSILON) ) THEN

C(I,J) = 0.
ELSE

C(I,J) = 365.*ALPHA(I)*ALPHA(J)/
+ (SQRT(ALPHA(I)/EFFNE(I))+SQRT(ALPHA(J)/EFFNE(J)))

END IF
A(I,J) = 0.5*C(I,J)*(VDWR(I)+VDWR(J))**6

600 CONTINUE
C
C Calculate polynomial parameters:
C

RL = RCRIT - H/2.
RR = RCRIT + H/2.
RL2 = RL**2
RR2 = RR**2
RC2 = RCRIT**2
R6 = RL**6
R12 = R6**2
R7 = R6*RL
R13 = R12*RL
RC6 = RC2**3
RC12 = RC6**2
DO 700 I=I,NKIND

DO 700 J=1,NKIND
FSTRL(I,J) = A(I,J)/RC12 - C(I,J)/RC6
EMLH(I,J) = (-12.*A(I,J)/Rl3 + 6.*C(I,J)/R7)/(H**2)
YLH(I,J) = (A(I,J)/R12 - C(I,J)/R6)/(H**3)
YRH(I,J) = FSTRL(I,J)/(H**3)

700 CONTINUE
FIRST = .FALSE.
GO TO 100
END
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SUBROUTINE EES( BWD,DIST,EBULK,AC1,AC2,EEL
C
C Calculates Coulombic interaction between two charge centers using
C a distance-dependent dielectric constant:
C DIST < Critical Dist (BWD) : EPS = 1
C SVDW < DIST < (1+FACT)*BWD : EPS = Quintic spline
C DIST > (1+FACT)*BWD : EPS = Block-Walker Approx.
C

DATA FACT/ 0.1 /
C

P12 = BWD*LOG(EBULK)
RC = BWD + (FACT * BWD)

C
IF (DIST.LE.BWD) THEN

EPS=1.
ELSEIF ((DIST.GT.BWD) .AND. (DIST.LT.RC)) THEN

DELTA = BWD*FACT
S = EBULK*EXP(-Pl2/RC)
SP = (EBULK*P12/RC**2)*EXP(-P12/RC)
SDP = ((Pl2/RC)-2.)*(EBULK*Pl2/(RC**3))*EXP(-Pl2/RC)
D=(10.*(S-1.) / (DELTA**3)) - (4*SP/(DELTA**2) ) +(0.5*SDP/DELTA)
E=(-15.*(S-1.)/(DELTA**4))+(7.*SP/(DELTA**3))-(SDP/DELTA**2)
F=(6.*(S-1.)/(DELTA**5))-(3.*SP/(DELTA**4))+(.5*SDP/DELTA**3)
ETA = DIST - BWD
EPS = 1.+D*ETA**3+E*ETA**4+F*ETA**5

ELSE
EPS = EBULK*EXP(-Pl2/DIST)

ENDIF
C

EEL = 332.*AC1*AC2/EPS/DIST
RETURN
END

SUBROUTINE JACOBI(A,N,NP,D,V,NROT)
C
C Jacobi Transformation of a symmetric matrix A, having dimensions
C N x N, stored in an array NP x NP. On output, upper elements of
C A are destroyed. D contains the eigenvalues and V contains the
C normalized eigenvectors
C From: Press et.al., NUMERICAL RECIPES, p346.
C

PARAMETER (NMAX=100,EPSILON=2E-7)
DIMENSION A(NP,NP),D(NP),V(NP,NP),B(NMAX),Z(NMAX)
DO 12 IP=1,N

DO 11 IQ=1,N
V(IP,IQ)=0.

11 CONTINUE
V(IP,IP)=1.

12 CONTINUE
DO 13 IP=1,N
B(IP)=A(IP,IP)
D(IP)=B(IP)
Z(IP)=0.

13 CONTINUE
NROT=0
DO 24 I=1,50

SM=0.
DO 15 IP=1,N-1
DO 14 IQ=IP+1,N

SM=SM+ABS(A(IP,IQ))
14 CONTINUE
15 CONTINUE
C *** Modified for PC where underflow is not set to zero : GCR 10/87 ***
C IF(SM.EQ.0.)RETURN

IF(SM.LT.EPSILON) RETURN
C ********************************************************************

IF(I.LT.4)THEN
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TRESH=0.2*SM/N**2
ELSE

TRESH=O.
ENDIF
DO 22 IP=1,N-1
DO 21 IQ=IP+1,N

G=100.*ABS(A(IP,IQ))
IF((I.GT.4).AND.(ABS(D(IP))+G.EQ.ABS(D(IP)))

.AND. (ABS(D(IQ))+G.EQ.ABS(D(IQ))))THEN
A(IP, IQ)=O.

ELSE IF(ABS(A(IP,IQ)) .GT.TRESH)THEN
H=D (IQ) -D (IP)
IF (ABS (H)+G.EQ.ABS(H) )THEN

T=A(IP, IQ)/H
ELSE

THETA=0.5*H/A(IP, IQ)
T=1./(ABS(THETA) +SQRT(1.+THETA**2))
IF(THETA.LT.0.)T=-T

ENDIF
C=1./SQRT (1+T**2)
S=T*C
TAU=S/(1.+C)
H=T*A (IP, IQ)
Z (IP)=Z (IP) -H
Z(IQ)=Z(IQ)+H
D(IP)=D(IP) -H
D (IQ) =D (IQ) +H
A(IP, IQ)=O.
DO 16 J=1,IP-1

G=A(J, IP)
H=A(J, IQ)
A(J, IP)=G-S* (H+G*TAU)
A(J, IQ)=H+S* (G-H*TAU)

16 CONTINUE
DO 17 J=IP+1,IQ-1

G=A(IP, J)
H=A(J, IQ)
A(IP,J)=G-S* (H+G*TAU)
A(J, IQ)=H+S* (G-H*TAU)

17 CONTINUE
DO 18 J=IQ+1,N

G=A(IP,J)
H=A(IQ, J)
A(IP, J)=G-S* (H+G*TAU)
A(IQ,J)=H+S* (G-H*TAU)

18 CONTINUE
DO 19 J=1,N

G=V(J, IP)
H=V(J, IQ)
V(J, IP)=G-S* (H+G*TAU)
V (J, IQ) =H+S* (G-H*TAU)

19 CONTINUE
NROT=NROT+1

ENDIF
21 CONTINUE
22 CONTINUE

DO 23 IP=1,N
B (IP)=B (IP) +Z (IP)
D(IP)=B(IP)
Z(IP)=O.

23 CONTINUE
24 CONTINUE

PAUSE '50 iterations should never happen'
RETURN
END
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REAL FUNCTION CURTATE( X,AP,CP )

C Returns the Y value of X of a curtate function described by
C AP (magnitude) and CP (curvature), X in degrees.
C

EPS = 1.0E-6
IMAX = 5000
DEGRAD = 3.1415926535/180.

C Find T by iteration:
XRAD = X*DEGRAD
T = XRAD
DO 100 I=1,IMAX
TINC = 2.*XRAD - T + CP*SIN(T)
IF( ABS(TINC).LE.EPS ) GO TO 200

100 T = T+TINC
200 CONTINUE

IF( I.GE.IMAX ) WRITE(*,*) 'WARNING: Iteration Limit in Curtate:
+ TINC = ',TINC

C Calculate curtate function value:
CURTATE = (AP/2.)*(i.-COS(T))
RETURN
END

REAL FUNCTION CURTINV( X,AP,CP
C
C Returns the Y value of X of an inverted curtate function described
C by AP (magnitude) and CP (curvature), X in degrees.
C

EPS = 1.E-6
IMAX = 5000
PI = 3.1415926535
DEGRAD = PI/180.

C Find T by iteration:
XRAD = X*DEGRAD
T = XRAD - PI
DO 100 I=1,IMAX
TINC = 2.*XRAD - T + CP*SIN( T ) +PI
IF(ABS(TINC).LE.EPS) GO TO 200

100 T = T+TINC
200 CONTINUE

IF( I.GE.IMAX ) WRITE(*,*) 'WARNING: Iteration Limit in InvCurt:
+ TINC = ',TINC

C Calculate inverted curtate function value:
CURTINV = (AP/2.)*(l.+COS(T))
RETURN
END

SUBROUTINE MULMAX( MNCH,NCH,NCH2,L1MAX,FMULT
C
C For a regular lattice packing geometry having chains of identical
C placement parameters, intermolecular potential calculations may be
C expedited by recognition of multiplicative interactions. For a
C lattice consisting of only two chain types (designated by odd or even
C numbering) in an counterclockwise alternating protocol, this routine
C generates the multiplicity matrix FMULT by which unique energetic
C interactions must be multiplied to determine relative probabilities
C of occurance.
C
C The use of the intermolecular multiplier matrix assumes
C periodicity within the lattice of the form:
C
C Two types of chains: all even numbered chains alike
C all odd numbered chains alike
C Chain 1 forms lattice center; chains 2 - 9 form first shell
C about the center, proceeding counterclockwise from a position
C "east" of chain 1; chains 10 - 25 form second shell about
C center, proceeding ccw form a position "east" of chain 9, etc.
C For a given lattice size (eg. 3x3, 4x4, 5x5) all edge-to-edge
C intermolecular interactions are ignored (ie. in the 3x3

301



lattice, interactions between chains separated by a third chain
are ignored, in the 4x4 lattice, those separated by two chains
are ignored, etc.)

NOTE: The Lattice Sum Method does not require an interaction
multiplicity correction; however, it does recognize repetitive
interactions within the "explicit cell" in order to minimize
computation time. Statements which only serve to correct the
(non-zero) MAGNITUDE of the multiplicity correction have been
disabled and marked by an asterix

C (NCH must not exceed MAXC, MAXC2 = MAXC**2)
C

PARAMETER( MAXC=25,MAXC2=625
DIMENSION FMULT(MNCH,MNCH),LOC(2,MAXC),IA(5,MAXC2),FA(MAXC2)
DO 100 I=1,NCH

DO 100 J=1,NCH
100 FMULT(I,J) = 0

DO 120 I=1,NCH**2
FA(I) = 0.
DO 120 J=1,5

120 IA(J,I) = 0
NCPS = INT(SQRT(REAL(NCH))+.1)

C*** RUPC = REAL((NCPS-1)**2)
C
C Build a test array to locate chains:
C

DO 150 I=1,4
DO 150 J=1,2

150 LOC(I,J) = 0
LOC(1,2) = 1
LOC(1,3) = 1
LOC(2,3) = 1
LOC(2,4) = 1
IF(NCH.GT.4) THEN
ITRAN = INT( (REAL(NCPS)+0.1)/2
JTRAN = 1
JTRK = -1
KTRK = 1
DO 200 NTRK=5,NCH
DO 250 I=1,3

250 LOC(I,NTRK) = JTRK*LOC(I,2) +
IF(NTRK.GE.((2*JTRAN+1)**2)) JT
IF( ( JTRAN.EQ.JTRK).AND.(
KTRK = KTRK+1

ELSE IF((-JTRAN.NE.JTRK).AND. (
JTRK = JTRK-1

ELSE IF((-JTRAN.EQ.JTRK).AND.(-
KTRK = KTRK-1

ELSE IF(( JTRAN.NE.JTRK).AND.(-
JTRK = JTRK+l

ELSE
JTRK = JTRK+l

END IF
200 CONTINUE

ELSE
END IF

KTRK*LOC(I,4)
RAN = JTRAN+l
JTRAN.NE.KTRK)) THEN

JTRAN.EQ.KTRK)) THEN

JTRAN.NE.KTRK)) THEN

JTRAN.EQ.KTRK)) THEN

C. Loop through all interactions to determine multiplicities of all
C unique interactions:
C

NINT = 1
IA(l,1) = 1
IA(2,1) = 0
IA(3,1) = 0
IA(4,1) = 1
IA(5,1) = 2
FA(1) = 1.
IF( NCH.EQ.4 ) FA(1) = .5
DO 300 I=1,NCH-1

IP1 = I+1
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DO 300 J=IP1,NCH
IF((I.EQ.1).AND.(J.EQ.2)) GO TO 450

C
C Determine orientation of present interaction:
C

NXS.= LOC(1,J) - LOC(l,I)
NYS = LOC(2,J) - LOC(2,I)
IF( ABS(NXS).LT.ABS(NYS) ) THEN
NDS - NXS
NYS = SIGN( (ABS(NYS)-ABS(NXS)),NYS )
NXS = 0

ELSE IF( ABS(NXS).GT.ABS(NYS) ) THEN
NDS - NYS
NXS - SIGN( (ABS(NXS)-ABS(NYS)),NXS )
NYS = 0

ELSE
NDS = SIGN( NXS,(NXS*NYS) )
NXS = 0
NYS = 0

END IF
C
C Discard if too distant (ie. edge-to-edge)
C

IF( NCH.EQ.4 ) GO TO 470
ND = ABS(NXS) + ABS(NYS) + ABS(NDS)
IF( ND.GT.(NCPS-2) ) GO TO 450

470 CONTINUE
C***
C**Determine scale factor (1 if interior, 1/2 if along border of finite
C**cube):
C**

C** IF( (I.GT.((NCPS-2)**2)).AND.((J-I).LT.NCPS).AND.
C** + (NDS.EQ.0) ) THEN

SCALE = .5
C** ELSE
C** SCALE = 1.
C** END IF
C** IF( (J.EQ.NCH).AND.(NDS.EQ.0) ) SCALE = .5
C****

C Compare to previous interactions for multiplicity:
C

DO 400 K=1,NINT
IF(MOD((I+IA(4,K))/2.,l.).EQ.0.) THEN

IF((NXS.EQ.IA (, K)).AND.(NYS.EQ.IA(2,K)).AND.
+ (NDS.EQ.IA(3,K))) THEN

FA(K) = FA(K)+SCALE
GO TO 450

ELSE
END IF

ELSE
END IF
IF(MOD((I+IA(5,K))/2.,l.).EQ.0.) THEN
IF((-NXS.EQ.IA(1,K)).AND.(-NYS.EQ.IA(2,K)).AND.

+ (-NDS.EQ.IA(3,K)).AND.((NXS.NE.0).OR.(NYS.NE.0))) THEN
FA(K) = FA(K)+SCALE
GO TO 450

ELSE
END IF
ELSE
END IF

400 CONTINUE
NINT = NINT+1
IA(1,NINT) - NXS
IA(2,NINT) = NYS
IA(3,NINT) = NDS
IA(4,NINT) = I
IA(5,NINT) = J
FA(NINT) = SCALE

450 CONTINUE
300 CONTINUE

C
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C Load Multiplier matrix:
C

L1MAX = 1
DO 500 I=1,NINT

L1 = IA(4,I)
L2 = IA(5,I)
L1MAX = MAX(L1MAX,L1)

500 FMULT(L1,L2) = FA(I)
C**500 FMULT(L1,L2) = FA(I)/RUPC

RETURN
END

SUBROUTINE VA1OA(FUNCT,N,X,F,G,H,W,DFN,XM,HH,EPS,MODE,MAXFN,
1 IPRINT,IEXIT)

C HARWELL - LIBRARY ROUTINE VA10A: OPTIMIZATION WITHOUT DERIVATIVES
C USING A FLETCHER-POWELL ALGORITHM. ROUTINES REQUIRED: MC11A.
C
C ARRAY-DIMENSIONS IN THE CALLING ROUTINE:
C X, XM : LENGTH N
C G, H, W : LENGTH N*(N+1)/2 OR 3*N, WHICHEVER IS LARGER
C
C CALLING PROCEDURES HAVE BEEN CHANGED FROM THE ORIGINAL ICL-FORTRAN
C EXTERNAL DECLARATON ADDED FOR PORTABILILTY GCR 19.4.89
C

REAL X(1),G(1),H(1),W(1) ,XM(1)
EXTERNAL FUNCT
IF(IPRINT.NE.0)PRINT 1000

1000 FORMAT('1ENTRY TO VA10A'/)
NN=N* (N+1)/2
IG=N
IGG-N+N
IS=IGG
IDIFF=1
IEXIT=0
IR=N
IF(MODE.EQ.3)GOTO15
IF(MODE.EQ.2)GOTO10
IJ=NN+1
DO 5 I=1,N
DO 6 J=1,I
IJ=IJ-1

6 H(IJ)=0.
5 H(IJ)=1.

GOTO15
10 CONTINUE

CALL MC11B(H,N,G,DUMMY,G,IR,IDUMMY,DUMMY)
IF(IR.LT.N) RETURN

15 CONTINUE
Z=F
ITN-0

C =======-====== ---===-----===- ===3-

CALL FUNCT(N,X,F)
C -===== === =============--===-- --- -- -- -- ==

IFN=1
DF=DFN
IF(DFN.EQ.0.)DF=F-Z
IF(DFN.LT.0. )DF=ABS(DF*F)
IF(DF.LE.0.)DF=1.

17 CONTINUE
LINK=1
IF(IDIFF-1)100,100,110

18 CONTINUE
IF(IFN.GE.MAXFN)GOTO90

20 CONTINUE
IF(IPRINT.EQ.0)GOTO21.
IF(MOD(ITN,IPRINT).NE.0)GOTO21
PRINT 1001,ITN,IFN

1001 FORMAT(24I5)
PRINT 1002,F

1002 FORMAT((5E15.7))

304



IF(IPRINT.LT.0)GOTO21
PRINT 1002, (X(I),I=1,N)
PRINT 1002,(W(IG+I),I=1,N)

C ******* Statements inserted by GCR to save updates of Hessian *******
NHELM = NN
IF(N.LT.5) NHELM = 3*N
OPEN(UNIT=12,FILE='GEOM')
WRITE(12,1002) (X(I),I=1,N)
CLOSE(UNIT=12)
OPEN(UNIT=12,FILE='HESS')
WRITE(12,1002) (H(J),J=1,NHELM)
CLOSE (UNIT=12)

C *****************************************************************
21 CONTINUE

ITN=ITN+1
DO 22 I=1,N

22 W(I)=-W(IG+I)
CALL MC11E(H,N,W,DUMMY,G,IR,IDUMMY,DUMMY)
Z=0.
GSO=0.
DO 29 I=1,N
W(IS+I)=W(I)
IF(Z*XM(I).GE.ABS(W(I)))GOT029
Z=ABS(W(I))/XM(I)

29 GSO=GSO+W(IG+I)*W(I)
AEPS=EPS/Z
IEXIT=2
IF(GSO.GE.0.)GOTO92
ALPHA=-2.*DF/GSO
IF(ALPHA.GT.1.)ALPHA=1.
FF=F
TOT=0.
INT=0
IEXIT=1

30 CONTINUE
IF(IFN.GE.MAXFN)GOTO90
DO 31 I=1,N

31 W(I)=X(I)+ALPHA*W(IS+I)
C

CALL FUNCT(N,W,F1)

IFN=IFN+1
IF(Fl.GE.F)GOTO40
F2=F
TOT=TOT+ALPHA

32 CONTINUE
DO 33 I=1,N

33 X(I)=W(I)
F=F1
IF(INT-1)35,49,50

35 CONTINUE
IF(IFN.GE.MAXFN) GOT90
DO 34 I=1,N

34 W(I)=X(I)+ALPHA*W(IS+I)

CALL FUNCT (N, W, F1)

IFN=IFN+1
IF(F. GE.F)GOTO50
IF(FI+F2.GE.F+F.AND.7.*Fl+5.*F2.GT.12.*F)INT=2
TOT=TOT+ALPHA
ALPHA=2.*ALPHA
GOTO32

40 CONTINUE
IF(ALPHA.LT.AEPS) GOT92
IF(IFN.GE.MAXFN)GOTO90
ALPHA=.5*ALPHA
DO 41 I=1,N

41 W(I)=X(I)+ALPHA*W(IS+I)

CALL FUNCT(N,W,F2)
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IFN=IFN+1
IF(F2.GE.F)GOTO45
TOT=TOT+ALPHA
F=F2
DO 42 I=1,N

42 X(I)=W(I)
GOTO49

45 CONTINUE
Z=.1
IF(Fl+F.GT.F2+F2)Z=1.+.5*(F-F1)/(F+F1-F2-F2)
IF(Z.LT..1)Z=.1
ALPHA=Z*ALPHA
INT=1
GOTO30

49 CONTINUE
IF(TOT.LT.AEPS)GOT092

50 CONTINUE
ALPHA=TOT
DO 56 I=1,N

56 W(I) W(IG+I)
LINK=2
IF(IDIFF-1)100,100,110

54 CONTINUE
IF(IFN.GE.MAXFN)GOTO90
GYS=0.
DO 55 I=1,N
GYS=GYS+W(IG+I)*W(IS+I)

55 W(IGG+I)=W(I)
DF-FF-F
DGS=GYS-GSO
IF(DGS.LE.0.)GOTO20
IF(DGS+ALPHA*GSO.GT.0.)GOTO70

C COMPLEMENTARY DFP FORMULA
SIG=1./GSO
IR--IR
CALL MC11A(H,N,W,SIG,G,IR,1,0.)
DO 60 I=1,N

60 G(I)=W(IG+I)-W(IGG+I)
SIG=1./(ALPHA*DGS)
IR=-IR
CALL MC11A(H,N,G,SIG,W,IR,0,0.)
GOT020

70 CONTINUE
C DFP FORMULA

ZZ=ALPHA/(DGS-ALPHA*GS0)
SIG=-ZZ
CALL MC11A(H,N,W,SIG,G, IR, 1,1E-7)
Z=DGS*ZZ-1.
DO 71 I=1,N

71 G(I)=W(IG+I)+Z*W(IGG+I)
SIG=1./(ZZ*DGS**2)
CALL MC11A(H,N,G,SIG,W,IR,0,0.)
GOTO20

90 CONTINUE
IEXIT=3
GOTO94

92 CONTINUE
IF(IDIFF.EQ.2)GOTO94
IDIFF=2
GOT017

94 CONTINUE
DO 95 I=1,N

95 G(I)=W(IG+I)
C ***************** ATTENTION, NEXT STATEMENT INSERTED BY UWS *********

MAXFN=IFN
C ***************TO PASS NUMBER OF FUNCTION CALLS BACK TO CALLER*******

IF(IPRINT.EQ.0) RETURN
PRINT 1001,ITN,IFN,IEXIT
PRINT 1002,F
PRINT 1002,(X(I),I=1,N)
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PRINT 1002,(G(I),I=1,N)
C ******* Statements inserted by GCR to save updates of Hessian *******

NHELM = NN
IF(N.LT.5) NHELM = 3*N
OPEN(UNIT=12,FILE='GEOM')
WRITE(12,1002) (X(I),I=1,N)
CLOSE(UNIT=12)
OPEN(UNIT=12,FILE='HESS')
WRITE(12,1002) (H(J),J=1,NHELM)
CLOSE (UNIT=12)

C ******************************************************

RETURN
100 CONTINUE

DO 101 I=1,N
Z=HH*XM(I)
ZZ=X(I)
X(I)=ZZ+Z

CALL FUNCT(N,X,F1)

W(IG+I)=(Fl-F)/Z
101 X(I)=ZZ

IFN=IFN+N
GOTO(18, 54), LINK

110 CONTINUE
DO 111 I=1,N
Z=HH*XM(I)
ZZ=X(I)
X(I)=ZZ+Z

CALL FUNCT(N,X,F1)

X(I)=ZZ-z

CALL FUNCT(N,X,F2)

W(IG+I)=(Fl-F2) /(2.*Z)
111 X(I)=ZZ

IFN=IFN+N+N
GOTO(18,54) ,LINK
RETURN
END

SUBROUTINE MC11A(A,N,Z,SIG,W,IR,MK,EPS)
C ***********ENTRY STATEMENTS CHANGED FROM ORIGINAL ICL FORTRAN**UWS***

DIMENSION A(1),Z(1),W(1)
C UPDATE FACTORS GIVEN IN A BY SIG*Z*ZTRANSPOSE

IF(N.GT.1)GOTO1
A(1)=A(1)+SIG *Z(1)**2
IR=1
IF(A(1).GT.0.)RETURN
A(1)=0.
IR=0
RETURN

1 CONTINUE
NP-N+1
IF(SIG.GT.0.)GOTO40
IF(SIG.EQ.0..OR.IR.EQ.0)RETURN
TI=1./SIG
IJ=1
IF(MK.EQ.0)GOTO10
DO 7 I=1,N
IF(A(IJ).NE.0.)TI=TI+W(I)**2/A(IJ)

7 IJ=IJ+NP-I
GOTO20

10 CONTINUE
DO 11 I=1,N

11 W(I)=Z(I)
DO 15 I-1,N
IP=I+1
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V=W (I)
IF(A(IJ) .GT.0.) GOT12
W(I)=0.
IJ=IJ+NP-I
GOTO15

12 CONTINUE
TI=TI+V**2/A (IJ)
IF (I.EQ. N)GOTO14
DO 13 J=IP,N
IJ=IJ+1

13 W(J)=W(J)-V*A(IJ)
14 IJ=IJ+1
15 CONTINUE
20 CONTINUE

IF(IR.LE.0 )GOTO21
IF(TI.GT.0.)GOT022
IF (MK-1) 40, 40,23

21 TI=0.
IR=-IR-1
GOTO23

22 TI=EPS/SIG
IF(EPS.EQ.0.)IR-IR-1

23 CONTINUE
MM=1
TIM=TI
DO 30 I=1,N
J=NP- I
IJ=IJ-I
IF(A(IJ).NE.0.) TIM=TI-W(J)**2/A(IJ)
W(J) TI

30 TI-TIM
GOTO41

40 CONTINUE
MM-0
TIM1. /SIG

41 CONTINUE
IJ=1
DO 66 I=1,N
IP=I+1
v-z (I)
IF(A(IJ) .GT.0.) GOT053
IF(IR.GT.0 .OR.SIG.LT.0..OR.V.EQ.0.)GOT052
IR=1-IR
A(IJ)=V**2/TIM
IF(I.EQ.N)RETURN
DO 51 J=IP,N
IJ=IJ+1

51 A(IJ)=Z(J)/V
RETURN

52 CONTINUE
TI=TIM
IJ-IJ+NP-I
GOTO66

53 CONTINUE
AL=V/A (IJ)
IF(MM)54,54, 55

54 TI=TIM+V*AL
GOT056

55 TI=W(I)
56 CONTINUE

R=TI/TIM
A(IJ)=A(IJ)*R
IF(R.EQ.0.)GOTO70
IF(I.EQ.N)GOTO70
B=AL/TI
IF(R.GT.4.)GOT062
DO 61 J=IP,N
IJ=IJ+1
Z (J) =Z (J) -V*A (IJ)

61 A(IJ)=A(IJ)+B*Z(J)
GOTO64
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62 GM=TIM/TI
DO 63 J=IP,N
IJ=IJ+1
Y=A (IJ)
A(IJ)=B*Z (J) +Y*GM

63 Z(J)=Z(J)-V*Y
64 CONTINUE

TIM=TI
IJ=IJ+1

66 CONTINUE
70 CONTINUE

IF(IR.LT.0)IR=-IR
RETURN

C FACTORIZE A MATRIX GIVEN IN A
ENTRY MC11B(A,N,Z, SIG,W, IR,MK,EPS)
IR=N
IF(N.GT.1)GOTO100
IF(A(1) .GT.0.) RETURN
A(1)=0.
IR=0
RETURN

100 CONTINUE
NP=N+1
II=1
DO 104 I=2,N
AA=A (II)
NI=II+NP-I
IF(AA.GT.0.)GOTO101
A(II)=0.
IR=IR-1
II=NI+1
GOTO104

101 CONTINUE
IP=II+1
II=NI+1
JK= II
DO 103 IJ=IP,NI
V=A(IJ)/AA
DO 102 IK=IJ,NI
A(JK)=A(JK) -A(IK) *V

102 JK=JK+1
103 A(IJ)=V
104 CONTINUE

IF(A(II) .GT.0.)RETURN
A(II)=0.
IR=IR-1
RETURN

C MULTIPLY OUT THE FACTORS GIVEN IN A
ENTRY MC11C(A,N,Z,SIG,W,IR,MK,EPS)
IF(N.EQ.1)RETURN
NP=N+1
II=N*NP/2
DO 202 NIP=2,N
JK=II
NI=II-1
II=II-NIP
AA=A (II)
IP=II+1
IF(AA.GT.0. )GOTO203
DO 204 IJ=IP,NI

204 A(IJ)=0.
GOTO202

203 CONTINUE
DO 201 IJ=IP,NI
V=A(IJ) *AA
DO 200 IK=IJ,NI
A(JK)=A(JK)+A(IK)*V

200 JK=JK+1
201 A(IJ)=V
202 CONTINUE

RETURN
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C MULTIPLY A VECTOR Z BY THE FACTORS GIVEN IN A
ENTRY MC11D(A,N,Z,SIG,W,IR,MK,EPS)
IF(N.GT.1)GOTO300
Z (1) =Z (1) *A(1)
W(1)=Z(1)
RETURN

300 CONTINUE
NP=N+1
II=1
N1=N-1
DO 303 I=1,N1
Y-Z(I)
IF(A(II) .EQ.0.) GOT302
IJ=II
IP-I+1
DO 301 J=IP,N
IJ=IJ+1

301 Y=Y+Z(J)*A(IJ)
302 Z(I)=Y*A(II)

W(I)=Z (I)
303 II=II+NP-I

Z(N)=Z(N)*A(II)
W(N)=Z (N)
DO 311 K=1,N1
I=N-K
II=II-NP+I
IF(Z(I) .EQ.0.) GOTO311
IP-I+1
IJ=II
Y=Z(I)
DO 310 J=IP,N
IJ=IJ+1

310 Z(J)=Z(J)+A(IJ)*Z(I)
311 CONTINUE

RETURN
C MULTIPLY A VECTOR Z BY THE INVERSE OF THE FACTORS GIJEN IN A

ENTRY MC11E(A,N,Z,SIG,W,IR,MK,EPS)
IF(IR.LT.N)RETURN
W(1)=Z(1)
IF(N.GT.1)GOTO400
Z(1)=Z(1)/A(1)
RETURN

400 CONTINUE
DO 402 I=2,N
IJ=I
Il=I-1
V=Z (I)
DO 401 J=1,Il
V=V-A(IJ) *Z (J)

401 IJ=IJ+N-J
W(I)=V

402 Z(I)=V
Z (N)=Z (N)/A(IJ)
NP=N+1
DO 411 NIP=2,N
I=NP-NIP
II-IJ-NIP
V-Z (I)/A (II)
IP=I+1
IJ=II

DO 410 J=IP,N
II-II+1

410 V=V-A(II)*Z(J)
411 Z(I)=V

RETURN
C COMPUTE THE INVERSE MATRIX FROM FACTORS GIVEN IN A

ENTRY MC11F (A, N, Z, SIG, W, IR, MK, EPS)
IF(IR.LT .N)RETURN
A(1)=1./A(1)
IF(N.EQ.1) RETURN
NP=N+1
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N1=N-1
II=2
DO 511 I=2,N
A(II)=-A(II)
IJ=II+1
IF(I.EQ.N)GOTO502
DO 501 J=I,N1
IK=II
JK=IJ
V=A(IJ)
DO 500 K=I,J
JK=JK+NP-K
V=V+A(IK) *A(JK)

500 IK=IK+1
A(IJ)=-V

501 IJ=IJ+1
502 CONTINUE

A(IJ)=1./A(IJ)
II=IJ+1
AA=A (IJ)
IJ= I
IP=I+1
NI=N-I
DO 511 J=2,I
V=A(IJ) *AA
IK=IJ
K=IJ-IP+J
I1=IJ-1
NIP=NI+IJ
DO 510 JK=K, I
A(JK)=A(JK)+V*A(IK)

510 IK=IK+NIP-JK
A(IJ)=V

511 IJ=IJ+NP-J
RETURN

C--------------------------- END OF OPTIMIZING ROUTINE
END
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*********** ****ff rtX*****t*************** ***************

Select Modifications to PCSP Subroutines
Required for Second Chain Type Description

for use in Deformation Experiments

Gregory C. Rutledge (November 1989)

COMMON blocks and PARAMETER statements are set up to enable easy
variation of the scale of simulation. Important dimensions of the
simulation are shown below; change of the appropriate dimension in
all PARAMETER statements will introduce the change throughout the
simulation:

Description of Program Dimension Parameters
NKIND = Numger of atom types of interest

C* NIBB = Number of internal building blocks per repeat unit
MNARU = Maximum number of atoms per repeat unit
MNRU = Maximum number of repeat units per chain
MNCH = Maximum number of chains (a square number)
MNAT = Maximum number of atoms per chain + 1
MNIC = Maximum number of independently orientable chains
MCOP = MNIC*5
MOPT = MCOP+6

Some parameters are specific to the PPTA polymer family
NRNG = Number of rotatable rings per repeat unit = 2
NSUB = Number of substitutions possible per repeat unit = 2
MNSB = NSUB*MNRU

C* NDOF = NIBB + NRNG
MDOF = NNARU = 28

In the modified chain description, the method of chain description
and the numbering of atoms in the chain have been altered. These
changes are contained primarily in the routines COORDN, NONBOND,
and ENERGY, to reflect the new construction, atom numbering, degrees
of freedom, and force field. However, the following routines are
also effected through the dimensioning of arrays, the control of DO
loop executions, and atomic numbering, but do not diffsr sufficiently
from the previous versions to justify reproduction in their entirety.
(*) indicates that only changes to PARAMETER and COMMON statements are
required

CMODEL
LDVAR
DATARD
RDSTRAIN *
GYRA *
DENS *

CELGEN
LDCHN *
RESWR
HELIX *
UNITCELL *
SUBSET

SUBROUTINE COORDN

Generates a chain of poly(p-phenylene terephthalamide) with all
bond lengths, valence angles, and torsion angles independently
specified.
For use in generating elastic constants. This routine replaces
COORDN and PHENYL in previous versions.

C ************* ***********************************
C
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Numbering of Atoms:

19 28
H 0

C --- C 27 C ---
S/ 16 18 \ /

C --- C 13 N --- C 15 20 C -- N 21
1 /2 4 \ / \ 24 22/ \
--- C 6 C ---- C 7 C --- C

\10 8 / \ / \
C --- C O 12 H 25 H 23

H 26

C ********************************
C

PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,
MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51,MNARU=28 )

COMMON /CHAINS/ PHI(MNARU),THETA(MNARU),BL(MNARU),PHIR(NRNG),
KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
NUNIQ

DIMENSION AL(4,4),KATOM(11),XYZL(4,11)

'Constraints:
a) planar sp2 hydridization at amide nitrogens

PHI(11) = PHI(12) + 180.
PHI(13) = PHI(14) + 180.
PHI(25) = PHI(26) + 180.
PHI(27) = PHI(28) + 180.

b) 1-parameter (angle) ring deformation
DO 110 I=7,21,14

ALPHA = THETA(I)
BETA = 180. - 0.5*ALPHA
GAMMA = 90. + 0.25*ALPHA
THETA(I-6) = BETA
THETA(I-4) = BETA
THETA(I-2) = BETA
THETA(I-1) = BETA
THETA(I+2) = BETA
THETA(I-5) = GAMMA
THETA(I-3) = GAMMA
THETA(I+1) = GAMMA
THETA(I+3) = GAMMA

110 CONTINUE
C c) Selected bond deformation

DO 120 I=1,15,14
BL(I+5) = BL(I+1)
BL(I+7) = BL(I+1)
BL(I+9) = BL(I+3)

120 CONTINUE

and carbons

(ring symmetric)

Start building...
All atoms added pair-wise, one "backbone" and one "pendant"

DO 2100 NREP=1,NRUS+1
DO 2100 NODD=I,MNARU-1,2
DO 2100 NPAIR=1,2

Add only first atom of N+1st repeat unit:

IF( (NREP.EQ.(NRUS+1)).AND.((NODD.NE.1).OR.(NPAIR.NE.1))
+ GO TO 2100

NODD1 = NODD - 1
NLOC = NODD1 + NPAIR
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NLOC1 = NLOC-1
NCURR = NLOC+NARU*(NREP-1)
NCURRI = NCURR-1
NATD1 = NCURR-NPAIR
IF(NLOC1.EQ.0) NLOC1 = 28

C
XYZ(1,NCURR,1) = BL(NLOC)
XYZ(2,NCURR,1) = 0.
XYZ(3,NCURR,l) = 0.
XYZ(4,NCURR,1) = 1.
KIND(NCURR,1) = 1

C
C First atom fixes Cartesian space to coincide with first bond; no
C further manipulation necessary
C

IF( NCURR.EQ.1 ) GO TO 2100
C
C Determine atom type:
C

IF(MOD(NLOC,2).EQ.1) KIND(NCURR,l) = 2
IF((NLOC.EQ. 1).OR.(NLOC.EQ.15)) THEN
KIND(NCURR,l) = 1

ELSE IF((NLOC.EQ. 7).OR.(NLOC.EQ.27)) THEN
KIND(NCURR,1) = 3

ELSE IF((NLOC.EQ.14).OR.(NLOC.EQ.26)) THEN
KIND(NCURR,1) = 4

ELSE IF((NLOC.EQ.13).OR.(NLOC.EQ.21)) THEN
KIND(NCURR,1) = 5

ELSE IF((NLOC.EQ.12).OR.(NLOC.EQ.28)) THEN
KIND(NCURR,1) = 6

END IF
C
C Second atom placed in xy plane: PHI=O. Load A matrix directly.
C Otherwise, obtain A matrix from previous connection
C

IF(NCURR.EQ.2) THEN
CALL ATRNS( 0.,THETA(1),BL(1),AL)-
DO 2320 I=1,4
DO 2320 J=1,4

2320 A(I,J,NCURR) = AL(I,J)
ELSE

IF( ((NLOC.GE.12).AND. (NLOC.LE.16)).OR.
+ (NLOC.GE.26).OR.(NLOC.LE.2) ) THEN

IF( (NLOC.EQ.12).OR.(NLOC.EQ.26) ) THEN
CALL ATRNS( PHI(NLOC1),THETA(NLOC1) ,BL(NLOC-5),AL)
CALL MM( A(1,1,NCURR-5),AL,A(1,1,NCURR),4,4,4,4,4,4)

ELSE IF( (NLOC.EQ.13).OR.(NLOC.EQ.27) ) THEN
CALL ATRNS( PHI(NLOC1),THETA(NLOC1) ,BL(NLOC-6) ,AL)
CALL MM( A(1,1,NCURR-6),AL,A(1,1,NCJ•RR),4,4,4,4,4,4)

ELSE
NLOT = NLOC-MOD(NCURR,2)-i
IF(NLOC.EQ.1) NLOT = 27
NATT = NCURR-MOD(NCURR,2)-1
CALL ATRNS( PHI(NLOC1),THETA(NLOC1) ,BL(NLOT),AL)
CALL MM( A(1,1,NATT),AL,A(1,1,NCURR) ,4,4,4,44,4,4)

END IF
ELSE

CALL ATRNS( PHI(NLOC1),THETA(NLOC1) ,BL(NODD1) ,AL)
CALL MM( A(1,1,NATD1),AL,A(1,1,NCURR),4,4,4,4,4,4)

END IF
END IF

C TRANSFORM TO FRAME 0:
CALL MV( A(1,1,NCURR),4,3,XYZ(1,NCURR,1),4,XYZ(1,NCURR,) )

2100 CONTINUE
RETURN
END
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SUBROUTINE NONBOND( IENTRY )
C
C Creates Table of Connectivity and assigns partial atomic charges to
C atoms of the parent polymer form (PPTA)
C
C Need be executed only once for a given cell composition, but must
C be called after all chains have been created
C
C Replaces NONBOND in previous versions involving alternate chain
C description
C

PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,
+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51,MNARU=28 )

COMMON /CHAINS/ PHI(MNARU),THETA(MNARU),BL(MNARU),PHIR(NRNG),
+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

DATA CHARGC,CHARGO,CHARGN,CHARGH/.38,-.38,-.28,.28/
DATA CHARGPPC,CHARGNPC,CHARGPH/ -0.06,-0.12,0.15 /

C
IF( IENTRY.EQ.1 ) RETURN

C
DO 100 I=l,NARU*NRUS

DO 120 J=1,NCH
120 CHRG(I,J) = 0.

DO 130 J=1,NARU*NRUS
130 KONEC(I,J) = 0.
100 CONTINUE

C
C All atoms within a given phenyl ring or amide bond plane are fixed
C relative to one another; atoms directly bonded to each ring/plane
C are fixed relative to that ring/plane
C
C Amide atom charges are assigned:

NMER = NARU/28
DO 500 LL = 1,NCH
KTYP = 10
MARK = 0
DO 200 I=1,NMER*NRUS
DO 200 II=1,4

DO 300 J=MARK+1,MARK+KTYP
IF(KTYP.EQ.10) GO TO 310

JXX = J
IF(J.EQ.(MARK+1)) JXX = J - 4
IF(KIND(JXX,LL).EQ.3) THEN

CHRG(JXX,LL) = CHARGC
ELSE IF(KIND(JXX,LL).EQ.4) THEN
CHRG(JXX,LL) = CHARGH

ELSE IF(KIND(JXX,LL).EQ.5) THEN
CHRG(JXX,LL) = CHARGN

ELSE IF(KIND(JXX,LL).EQ.6) THEN
CHRG(JXX,LL) = CHARGO

END IF
310 CONTINUE

C
C Three independent charges allowed: carbons 1&4, carbons 2,3,5&6,
C and all hydrogens
C

IF(KTYP.EQ.4) GO TO 315
IF((J.EQ.(MARK+1)).OR.(J.EQ.(MARK+6))) THEN

CHRG(J,LL) = CHARGPPC
ELSE IF (J.EQ.(MARK+7)) THEN

CHRG(J+4,LL) = CHARGPH
ELSE IF (KIND(J,LL).EQ.1) THEN

CHRG(J,LL) = CHARGNPC
ELSE

CHRG(J,LL) = CHARGPH
END IF

315 CONTINUE
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300 CONTINUE
MARK = MARK+KTYP
IF(KTYP.EQ.10) THEN

KTYP = 4
ELSE

KTYP = 10
END IF

200 CONTINUE
500 CONTINUE

C
MARK = 0
KEND = 0
DO 700 I=1,NMER*NRUS

DO 720 L=0,14,14
DO 710 J=1,8
DO 710 K=1,9

IF( (KEND.EQ.1).AND.((J+K+L).GT.28) ) GO TO 710
KONEC(MARK+J+L,MARK+J+K+L) = 1

710 CONTINUE

KONEC(MARK+4+LMARK+12+L) = 0
KONEC(MARK+4+L,MARK+13+L) = 0
KONEC(MARK+8+L,MARK+12+L) = 0
KONEC(MARK+8+LMARK+13+L) = 0
KONEC(MARK+7+L,MARK+16+L) = 0
KONEC(MARK+6+L,MARK+15+L) = 0

C
KONEC(MARK+8+L,MARK+17+L) = 0
KONEC(MARK+1+L,MARK+11+L) = 1
KONEC(MARK+1+L,MARK+7+L) = 0
KONEC(MARK+2+L,MARK+9+L) = 0
KONEC(MARK+4+L,MARK+11+L) = 0
IF((KEND.EQ.0).AND.(L.EQ.0)) KONEC(MARK+8+L,MARK+16+L) = 0
KONEC(MARK+7+L,MARK+11+L) = 0
DO 730 J=1,3

KONEC(MARK+3+L,MARK+6+J+L) = 0
KONEC(MARK+3+L,MARK+10+J+L) = 0
KONEC(MARK+5+L,MARK+8+J+L) = 0
KONEC(MARK+5+L,MARK+11+J+L) = 0
IF( (KEND.EQ.1).AND.((J+L).GT.15) ) GO TO 730
KONEC(MARK+8+L,MARK+13+J+L) = 0

730 CCONTINUE
KONEC(MARK+9+L,MARK+10+L) = 1
KONEC(MARK+9+L,MARK+11+L) = 1
KONEC(MARK+10+L,MARK+11+L) = 1
DO 740 J=1,3

IF((KEND.EQ.1).AND.((J+L).GT.16)) GO TO 732
KONEC(MARK+12+L,MARK+12+J+L) = 1
KONEC(MARK+13+L,MARK+12+J+L) = 1

732 IF((KEND.EQ.1).AND.((J+L).GT.15)) GO TO 734
KONEC(MARK+14+L,MARK+13+J+L) = 1

734 IF(KEND.EQ.1) GO TO 740
KONEC(MARK+13+L,MARK+15+J+L) = 1

740 CONTINUE
KONEC(MARK+14+L,MARK+16+L) = 0

IF((KEND.EQ.1).AND.(L.EQ.14)) GO TO 720
KONEC(MARK+13+L,MARK+22+L) = 1
KONEC(MARK+13+L,MARK+24+L) = 1
KONEC(MARK+13+L,MARK+25+L) = 1

720 CONTINUE
MARK=MARK+NARU
IF(I.EQ.(NRUS-1)) KEND = 1

700 CONTINUE
C

IENTRY = 1
RETURN
END
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SUBROUTINE ENERGY
C
C Calculates the total potential energy per residue of the simulation
C stucture, based on a polymer of the PPTA family
C
C Contributions: EDEF (Bond Angle Deformation, Valence FF)
C EDEL (Conjugated Bond Interaction Energy)
C ENOB1 (Intramolecular LJ Interaction)
C ECOUl (Intramolecular Coulombic Interactions)
C ENOB2 (Intermolecular LJ INTERACTIONS)
C ECOU2 (Intermolecular Coulombic Interactions)
C EULJP (Intramolec. LJ Lattice Correction)
C EUESP (Intramolec. ES lattice Correction)
C EULJ (Intermolec. LJ Lattice Correction)
C EUES (Intermolec. ES lattice Correction)
C
C The reference unit for calculating the potential energy depends on
C the choice of RBASE and the size of the Helical Repeat Unit (HRU):
C
C Case 1: Single chain simulation: disregard "helical basis region";
C calculate interaction of first RBASE residues with rest of
C chain.
C Case 2: THT = 0: HRU is identical to chemical repeat unit, thus
C similar to Case 1
C Case 3: HRU consists of NRUS-2 or fewer structural repeat units;
C region may be treated exactly
C Case 4: HRU exceeds NRUS-2 or is incommensurate: Region is
C arbitrarily set equal to the chemical repeat unit
C
C ANGERR is the angular discrepancy allowed in determining the number
C of turns of the helix required to obtain an integral number of
C complete 360 degree rotations
C
C This version of ENERGY provides a compiled toggle option between the
C two lattice sum methods: 3D Periodicity (LSTOGG=0O) or Helical Period-
C idity (LSTOGG=l, enable MV call in lattice sum section).
C

LOGICAL FIRST,REDUND
PARAMETER( EPSILON=lE-6 )
PARAMETER( NKIND=9,NIBB=8,MNRU=6,MNCH=9,MNAT=179,NRNG=2,NSUB=4,

+ MNSB=24,NDOF=10,MNIC=9,MCOP=45,MOPT=51,MNARU=28 )
COMMON /CHAINS/ PHI(MNARU),THETA(MNARU),BL(MNARU),PHIR(NRNG),

+ KSB(4),PCH(4,MNAT),NARU,NRUS,NCH,
+ A(4,4,MNAT),XYZ(4,MNAT,MNCH),KIND(MNAT,MNCH),
+ CHRG(MNAT,MNCH),KONEC(MNAT,MNAT),DEE,THT,RHO,
+ NUNIQ

COMMON /CELL/ CELD(3),CELA(3),CHSPEC(5,MNCH),CHLOC(3,MNCH),
+ NUNIV,KONDENS,TEMP,DENSC

COMMON /ENRG/ EDEF1,EDEL, ENOB, ENOB2,ECOU,ECOU2,EULJ,EUES,
+ EULJP,EUESP,ECFF,ETOT,EDEF2

COMMON /SUBS/ WTED(4)
COMMON /STRN/ KUC,KASE,ST(3,3),SUCV(3,3),DINIT,DPRIME,DCON

c
C common /atmp/ BXO,BXOO,CXO,CX00
c

DIMENSION ANGZ(12),ANGO(12),DCL(3,3)
DIMENSION BNDZ(30),BNDO(30),VALZ(48),VALO(48)
DIMENSION FMULT(MNCH,MNCE)
DIMENSION VDWR(NKIND),ALPHA(NKIND),EFFNE(NKIND)
DIMENSION UX(3),UY(3),UZ(3),DVECT(4),R(4,4,21)
DIMENSION REDUND(125)
DIMENSION SUM1(3136),SUM6(3136),SUM12(3136),SUMIP(3136),

+ SUM6P(3136),SUM12P(3136),TMP1(3136),TMP6(3136),
+ TMP12(3136),TMPlP(3136),TMP6P(3136),TMP12P(3136)

DATA VDWR/ 1.96,1.37,2.03,1.37,1.96,1.60,1.35,1.80,1.95/
DATA ALPHA/0.768,0.330,2.16,0., 1.95,1.02,0.38,1.41,3.34/
DATA EFFNE/5.2, 0.9, 5.2, 0.9,6.1, 7., 8., 12., 21./
DATA B0,B00,C0,C00,Bl,B2/9.0,13.0,.2,.4,2.8,21.2 /
DATA BNDZ/ 648.,925.,900.,925.,900.,925.,648.,925.,900.,925.,

+ 900.,1263.,880.,861.,648.,925.,900.,925.,900.,925.,
+ 648.,925.,900.,925.,900.,861.,880.,1263.,925.,925. /
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DATA BNDO/ 1.48,1.40,1.10,1.40,1.10,1.40,1.48,1.40,1.10,1.40,
1.10,1.24,1.37,1.00,1.38,1.40,1.10,1.40,1.10,1.40,
1.38,1.40,1.10,1.40,1.10,1.00,1.37,1.24,1.40,1.40 /

DATA VALZ/ 0., 0.,.041, 0., 0., .041,.041,.041,.041, 0.,
0.,.041, 0., 0.,.041,.088,.088,.088,.050,.050,

.088, .041,.041,.041, 0., 0.,.041, 0., 0.,.041,

.041,.041,.041, 0., 0.,.041, 0., 0.,.041,.050,

.050,.088,.088,.088,.088,.041,.041,.041 /
DATA VALO/ 120.,120.,119.,120.,120.,119.,119.,119.,122.,120.,

120.,119.,120.,120.,119.,120.,120.,120.,120.,120.,
120.,119.,123.,119.,120.,120.,119.,120.,120.,119.,
119.,119.,123.,120.,120.,119.,120.,120.,119.,120.,
120.,120.,120.,120.,120.,119.,122.,119. /

DATA
DATA
DATA
DATA
DATA
DATA

PCARBZ,PCARBO/ .0131,180. /
NHZ,COZ/ .004,.025 /
BXO,BXOO,CXO,CX00 /0.0,32.0,.0,.8/
DE/ 3.5 /
ANGERR/ 5. /
BWDIST/ 3.3 /

FIRST = .TRUE.
DEGRAD = 3.1415926535/180.
LSTOGG = 0

Initialize VDWR, ALPHA, and EFFNE arrays:

CALL ELJ( NKIND,1,1,VDWR,ALPHA,EFFNE, 3.,3.,FIRST,POTINIT )

RBASE = REAL( NUNIQ )
ECFF - 0.
EDEF1 = 0.
EDEF2 = 0.
EDEL = 0.
ENOB1 = 0.
ECOUl = 0.
ENOB2 = 0.
ECOU2 = 0.
EULJ = 0.
EUES = 0.
EULJP = 0.
EUESP = 0.
NATOMS = NARU*NRUS
NM1 = NATOMS-1

Initialize intermolecular interaction multiplier matrix:

NCH2 = NCH**2
L1MAX = 1
IF( NCH.NE.1 ) CALL MULMAX( MNCH,NCH,NCH2,L1MAX,FMULT )

IF ( (NCH.EQ.1).OR.(ABS(THT).LT.ANGERR) ) GO TO 100
DO 50 M=1,NRUS-2
PANG = M*THT/360.
IPANG = INT(PANG+0.5)
IF( ABS(PANG-IPANG).LE.(M*ANGERR/360.) ) GO TO 70

50 CONTINUE
NER = 1
GO TO 80

70 NER = M
GO TO 80

100 NER = 1
80 CONTINUE

LATM = INT(RBASE*NER*NARU+1.01)

Bond length deformation: (two extra for ring closure)

DO 3100 I=1,28
IF( KIND(I,1).EQ.8 ) THEN
BNDO(I) = 1.70
RCCL = SQRT( (XYZ(1,I,1)-XYZ(1,I-1,1))**2 +

(XYZ(2,I,1)-XYZ(2,I-1,1 

)**2 +

318



+ (XYZ(3,I,1)-XYZ(3,I-1, ))**2 )
BL(I) = RCCL

END IF
EDEF1 = EDEF1 + 0.5*BNDZ(I)*(BL(I) - BNDO(I))**2

3100 CONTINUE
DO 3150 I=1,2

II = (I-1)*14 + 1
RCB = SQRT( (XYZ(1,II,l)-XYZ(1,II+9,1))**2 +

+ (XYZ(2,II,1) -XYZ(2,II+9,))**2 +
+ (XYZ(3,II,1)-XYZ(3,II+9,1))**2 )

EDEFI = EDEF1 + 0.5*BNDZ(I+28)*(RCB - BNDO(I+28))**2
3150 CONTINUE

C
C Valence angle deformation
C

MKR = 0
DO 3200 I=1,16

IHAF = MOD(I,8)
IA = (I/9)*14 + 2*IHAF
IB = IA-2
IC = IA+1
ID = IA+2
IF( IHAF.EQ.1 ) THEN

IB = IA-1
ELSE IF( IHAF.EQ.5 ) THEN

ID = IA-9
ELSE IF( IHAF.EQ.6 ) THEN

IA = IA-5
IB = IA-1
IC = IA+5
ID = IA+6

ELSE IF( IHAF.EQ.7 ) THEN
IA = IA-1
IB = IA-6
IC = IA+1
ID = IA+2

ELSE IF( IHAF.EQ.0 ) THEN
IA = (I/9)*14 + 15
IB = IA-2
IC = IA+l
ID = IA+9

ELSE
END IF
MKR = MKR + 1
CALL ANGL( XYZ(1,IB,1),XYZ(1,IC,1),XYZ(1,IA,1),VA
EDEF2 = EDEF2 + 0.5*VALZ(MKR)*( VA - VALO(MKR) )**2
MKR = MKR + 1
CALL ANGL( XYZ(1,IC,1),XYZ(1,ID,i),XYZ(1,IA,1),VA )
EDEF2 = EDEF2 + 0.5*VALZ(MKR)*( VA - VALO(MKR) )**2
MKR = MKR + 1
CALL ANGL( XYZ(1,ID,1),XYZ(1,IB,1),XYZ(1,IA,1),VA
EDEF2 = EDEF2 + 0.5*VALZ(MKR)*( VA - VALO(MKR) )**2

3200 CONTINUE
C
C Conjugated bond interaction energy:
C Note: with the introduction of substitution on the ring (potentially
C in a random sequence and without equal occurance at the two 'ends'
C of the ring) with different delocalization potentials, it becomes
C necessary to compute EDEL weighted by the appropriate loci of
C substitutions:
C

NRT = NARU/28
DO 400 K=1,NRT
NRR = (K-1)*NRNG/NRT
NRP = (K-1)*NIBB/NRT
EDEL = EDEL + WTED(2)*CURTINV(-PHI(12+NRP),B0,CO )
EDEL = EDEL + WTED(3)*CURTATE( (PHI(15+NRP)+180.),B00,C00
EDEL = EDEL + WTED(4)*CURTATE(-PHI(26+NRP),B,C0000 )
EDEL = EDEL + WTED(1)*CURTINV( (PHI(1+NRP)+180.),B,CO )
EDEL = EDEL + (1.- WTED(2))*CURTATE(-PHI(12+NRP),BXO,CXO
EDEL = EDEL + (1.- WTED(3))*CURTATE( (PHI(15+NRP)+180.),
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+ BOO,COO )
EDEL = EDEL + (1.- WTED(4))*CURTATE(-PHI(26+NRP),B00,C00
EDEL = EDEL + (1.- WTED(1))*CURTATE((PHI(1+NRP)+180.),

+ B0,CO )
EDEL = EDEL + B1/2*(l.-COS(PHI(14+NRP) *DEGRAD))

+ + B2/2*(1.-COS(2*PHI(14+NRP) *DEGRAD))
EDEL = EDEL + B1/2*(1.-COS(PHI(28+NRP) *DEGRAD))

+ + B2/2*(1.-COS(2*PHI(28+NRP) *DEGRAD))
400 CONTINUE

C
C Out-of-plane bending for amide N-H and C=O
C

OOPB1 = ABS( PHI(12) - PHI(11) + SIGN(180.,PHI(11)) )
OOPB2 = ABS( PHI(14) - PHI(13) + SIGN(180.,PHI(13)) )
OOPB3 = ABS( PHI(26) - PHI(25) + SIGN(180.,PHI(25)) )
OOPB4 = ABS( PHI(28) - PHI(27) + SIGN(180.,PHI(27)) )
IF (OOPB1.GT.180.) OOPB1 = 360. - OOPB1
IF (OOPB2.GT.180.) OOPB2 = 360. - OOPB2
IF (OOPB3.GT.180.) OOPB3 = 360. - OOPB3
IF (OOPB4.GT.180.) OOPB4 = 360. - OOPB4
EDEF2 = EDEF2 + 0.5*NHZ*( OOPB2**2 + OOPB3**2 )
EDEF2 = EDEF2 + 0.5*COZ*( OOPB1**2 + OOPB4**2 )

C
C Add phenyl-cargon torsions (6 per ring)
C

DO 3300 I=1,NRNG
ICI = (I-1)*14
DO 3300 J=1,6

IF(J.EQ.1) THEN
IA = IC1 + 1
IB = IA + 1
IC = IB + 2
ID = IC + 2

ELSE IF(J.EQ.4) THEN
IA = J*2 - 2 + IC1
IB = IA + 2
IC = IB + 2
ID = IC - 9

ELSE IF(J.EQ.5) THEN
IA = J*2 - 2 + ICl
IB = IA + 2
IC = IB - 9
ID = IC + 1

ELSE IF(J.EQ.6) THEN
IA = J*2 - 2 + ICl
IB = IA - 9
IC = IB + 1
ID = IC + 2

ELSE
IA = J*2 - 2 + ICI
IB = IA + 2
IC = IB + 2
ID = IC + 2

END IF
CALL TORSION( XYZ(1,IA,1),XYZ(1,IB,1),XYZ(1,IC,1),

+ XYZ(1,ID,1),BTR )
IF(BTR.LE.-180.) BTR = BTR + 360.
IF(BTR.LE.0.) BTR = BTR + 180.
EDEL = EDEL + 0.5*PCARBZ*(BTR - PCARBO)**2

3300 CONTINUE
C

DO 500 L1=1,L1MAX
IF(L1.NE.1) GO TO 530

C
C Intramolecular nonbonded interactions:
C

DO 520 I=1,NM1
IP1 = I+1
DO 510 J=IP1,NATOMS

IF( KONEC(I,J).EQ.1 ) GO TO 510
IF( I.GE.LATM ) GO TO 510
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D2 = (XYZ(1,I,Ll)-XYZ(!,J,L1))**2 +
+ (XYZ(2,I,Ll)-XYZ(2,J,L1))**2 +
+ (XYZ(3,I,L1)-XYZ(3,J,L1))**2

DIS = SQRT(D2)
CALL ELJ( NKIND,KIND(I,L1),KIND(J,L1),VDWR,ALPHA,EFFNE,

+ D2,D2,FIRST,POTLJ )
ENOB1 = ENOB1 + POTLJ
CALL EES( BWDIST,DIS,DE,CHRG(I,L1),CHRG(J,L1),POTES )
ECOUI = ECOU1 + POTES

510 CONTINUE
520 CONTINUE
530 CONTINUE

IF (NCH.EQ.1) GO TO 500
LP1 = L1+1

C
C Intermolecular interactions:
C

DO 550 L2=LP1,NCH
IF( INT(FMULT(Ll,L2)*l00.).EQ.0 ) GO TO 550
IF( INT(ABS(CHSPEC(1,L2))+.01).NE.l ) GO TO 550
ENOBT = 0.
ECOUT = 0.
DO 570 I=1,NATOMS

DO 560 J=1,NATOMS
IF (I.LT.LATM) THEN
D2 = (XYZ(1,I,L1)-XYZ(1,J,L2))**2 +

+ (XYZ(2,I,L1)-XYZ(2,J,L2))**2 +
+ (XYZ(3,I,L1)-XYZ(3,J,L2))**2

DIS = SQRT(D2)
CALL ELJ( NKIND,KIND(I,L1),KIND(J,L2),VDWR,ALPHA,EFFNE,

+ D2,D2,FIRST,POTLJ )
ENOBT = ENOBT + POTLJ
CALL EES( BWDIST,DIS,DE,CHRG(I,L1),CHRG(J,L2),POTES
ECOUT = ECOUT + POTES
ELSE
IF (J.LT.LATM) THEN
D2 = (XYZ(1,I,L1)-XYZ(1,J,L2))**2 +

+ (XYZ(2,I,Ll)-XYZ(2,J,L2))**2 +
+ (XYZ(3,I,L1)-XYZ(3,J,L2))**2

DIS = SQRT(D2)
CALL ELJ( NKIND,KIND(I,L1),KIND(J,L2),VDWR,ALPHA,EFFNE,

+ D2,D2,FIRST,POTLJ )
ENOBT = ENOBT + POTLJ
CALL EES( BWDIST,DIS,DE,CHRG(I,L1),CHRG(J,L2),POTES
ECOUT = ECOUT + POTES
ELSE
END IF
END IF

560 CONTINUE
570 CONTINUE

ENOB2 = ENOB2 + 0.5*ENOBT
ECOU2 = ECOU2 + 0.5*ECOUT

550 CONTINUE
500 CONTINUE

C
C Infinite Lattice Correction:
C (specific for two-chain-type lattices, with interchain interactions
C 1-1, 1-2, 2-1, and 2-2 only; of these, only half of the 1-1 and 2-2
C interactions are unique, and the 1-2 interactions are identical to
C the 2-1 interactions. NUNIV represents "infinite" lattice size)
C

IF( NUNIV.EQ.0 ) GO TO 630
DO 610 K=1,3

UX(K) = CHLOC(K,2) - CHLOC(K,4)
UY(K) - CHLOC(K,2) + CHLOC(K,4)
UZ(K) = 0.

610 DVECT(K) = 0.
UZ(3) = RBASE*REAL(NER)*DEE
DVECT(4) = 1.
NCM2 = NINT(SQRT(REAL(NCi))-2)
NNCM = -NCM2-1
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ESPWR = BWDIST*LOG(DE)
C
C Set up helix periodicity transforms beforehand:
C

IF(LSTOGG.EQ.0) GO TO 625
DO 620 LZN = 1,2*NUNIV+l

LZ = LZN-NUNIV-1
RTN = RBASE*REAL(LZ*NER)
RTH = RTN*THT
RDE = RTN*DEE
CALL RTRANS( RTH,RDE,R(1,1,LZN)

620 CONTINUE
625 CONTINUE

C
DO 600 L1=1,2
DO 600 L2=L,2
KFIJ = Ll+L2-1
LXS = -NUNIV
IF( KFIJ.NE.2 ) LXS = 0
NNLX - NUNIV-LXS+1
NNLY = 2*NUNIV+l
NNLZ = NNLY

C
C Zero all atom-atom summations:
C

DO 645 I=1,LATM-1
DO 645 J=1,LATM-1
NTMP = (I-1)*(LATM-1) + J
SUM1P(NTMP) = 0.
SUM6P(NTMP) = 0.
SUM12P(NTMP) = 0.
SUM1(NTMP) = 0.
SUM6(NTMP) = 0.
SUM12(NTMP) = 0.

645 CONTINUE
C
C Loop over all lattice points, checking for redundancy with explicit
C calculation scheme for Ll-L2:
C
cvdS noconcur

DO 680 LX=LXS,NUNIV
cvdS noconcur

DO 680 LY=-NUNIV,NUNIV
cvd$ noconcur

DO 680 LZ=-NUNIV,NUNIV
NRED = (LX-LXS)*NNLY*NNLZ + (LY+NUNIV)*NNLZ +

+ (LZ+NUNIV) + 1
IF( (KFIJ.NE.2).AND.(LX.EQ.0).AND.(LY.LE.0) ) THEN
REDUND(NRED) = .TRUE.
GO TO 680

ELSE
REDUND(NRED) = .FALSE.

END IF
IF( ABS(LZ).LE.(NRUS-1) ) THEN

IF (KFIJ.NE.2) THEN
REDUND(NRED) = ( (ABS(LX)+ABS(LY)).LE.NCM2 )

ELSE
IF( (LX+LY).NE.NCM2 ) THEN
REDUND(NRED) = ( ((ABS(LX)+ABS(LY)).LE.NCM2).OR.

+ ((LX.LT.0).AND.(LY.LT.0).AND.((LX+LY).EQ.NNCM))
END IF

END IF
END IF
IF( REDUND(NRED) ) GO TO 680

C
C Loop over all atoms of the units of L1 and L2 at this lattice point
C to get inverse distances:
C

DO 650 I=1,LATM-1
DO 650 J=1,LATM-1
NTMP = (I-1)*(LATM-1) + J
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ESPWR = ( VDWR(KIND(I,Ll))+VDWR(KIND(J,L2)) )*LOG(DE)
IF( LSTOGG.EQ.0 ) THEN
DVECT(1) = XYZ(1,J,L2) - XYZ(1,I,L1)
DVECT(2) = XYZ(2,J,L2) - XYZ(2,I,L1)
DVECT(3) = XYZ(3,J,L2) - XYZ(3,I,L1)
DVV = (DVECT(1)+LX*UX(1)+LY*UY(1)+LZ*UZ(1))**2

+ (DVECT(2)+LX*UX(2)+LY*UY(2)+LZ*UZ(2))**2
+ (DVECT(3)+LX*UX(3)+LY*UY(3)+LZ*UZ(3))**2

ELSE
LZN = LZ + NUNIV + 1
DVECT(1) = XYZ(1,J,L2) - CHLOC(1,L2)
DVECT(2) = XYZ(2,J,L2) - CHLOC(2,L2)
DVECT(3) = XYZ(3,J,L2) - CHLOC(3,L2)
CALL MV( R(1,1,LZN),4,3,DVECT,4,DVECT
DVECT(1) = DVECT(1) + CHLOC(1,L2) - XYZ(1,I,L1)
DVECT(2) = DVECT(2) + CHLOC(2,L2) - XYZ(2,I,L1)
DVECT(3) = DVECT(3) + CHLOC(3,L2) - XYZ(3,I,L1)
DVV = (DVECT(1)+LX*UX(1)+LY*UY(l))**2

+ + (DVECT(2)+LX*UX(2)+LY*UY(2))**2
+ + (DVECT(3)+LX*UX(3)+LY*UY(3))**2

END IF
DVROOT = SQRT(DVV)

C Note: discontinuity in S1 is possible, may have to spline
S1 = EXP(ESPWR/DVROOT)/DVROOT
IF( DVROOT.LE.BWDIST ) Sl = DE/DVROOT
S6 = l./DVV**3
S12 = S6**2

IF( (KFIJ.NE.2).AND.(LX.EQ.0).AN3 D.(LY.EQ.0) ) T
TMP1P(NTMP) = S1
TMP6P(NTMP) = S6
TMP12P(NTMP) = S12

ELSE
TMP1(NTMP) = S1
TMP6(NTMP) = S6
TMP12(NTMP) = S12

END IF
650 CONTINUE

(5/16/88)

'HEN

C Add this element to summation

DO 655 I=1,LATM-1
DO 655 J=1,LATM-1
NTMP = (I-1)*(LATM-1) + J
SUM1P(NTMP) = SUM1P(NTMP) + TMP1P(NTMP)
SUM6P(NTMP) = SUM6P(NTMP) + TMP6P(NTMP)
SUM12P(NTMP) = SUM12P(NTMP) + TMP12P(NTMP)
SUM1(NTMP) = SUM1(NTMP) + TMP1(NTMP)
SUM6(NTMP) = SUM6(NTMP) + TMP6(NTMP)
SUM12(NTMP) = SUM12(NTMP) + TMP12(NTMP)

655 CONTINUE
680 CONTINUE

C Finally, calculate the energies for each atom-atom pair:

DO 665 I=1,LATM-1
DO 665 J=1,LATM-1

NTMP = (I-1)*(LATM-1) + J
CALL ELJ( NKIND,KIND(I,L1),KIND(J,L2),VDWR,ALPHA,EFFNE,

+ SUM6(NTMP),SUM12(NTMP) ,FIRST,POTLJ
EULJ = EULJ + 0.5*POTLJ
EUES = EUES + 166.*SUM1(NTMP)*CHRG(I,Ll)*CHRG(J,L2)/DE
IF( (SUM6P(NTMP).EQ.0.).AND.(SUM12P(NTMP).EQ.0.) ) GO TO 665
CALL ELJ( NKIND,KIND(I,L1),KIND(J,L2),VDWR,ALPHA,EFFNE,

+ SUM6P(NTMP),SUM12P(NTMP),FIRST,POTLJP
EULJP = EULJP + 0.5*POTLJP
EUESP = EUESP + 166.*SUMlP(NTMP)*CHRG(I,Ll)*CHRG(J,L2)/DE

665 CONTINUE
600 CONTINUE
630 CONTINUE

C Here is calculated the penalty function that fixes chain pitch DEE
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IF( KUC.NE.0 ) ECFF = DCON*( DEE - DPRIME )**2
C
C Total energy per residue:
C

ENOB1 = ENOBl/NER/RBASE
ENOB2 = ENOB2/NER/RBASE
ECOU1 = ECOUl/NER/RBASE
ECOU2 = ECOU2/NER/RBASE
EULJ = EULJ/NER/RBASE
EUES = EUES/NER/RBASE
EULJP = EULJP/NER/RBASE
EUESP = EUESP/NER/RBASE
ETOT = EDEF1 + EDEL + ENOB1 + ENOB2 + ECOUl + ECOU2 + ECFF +

+ EULJ + EUES + EULJP + EUESP + EDEF2
RETURN

900 CONTINUE
WRITE(11,*) 'ERROR: No parent chain available'
RETURN
END

SUBROUTINE ANGL( AA,BB,CC,ANGLE
C CALCULATES THE BOND ANGLE AA-CC-BB AND THEN RETURNS THE ENERGY
C ASSOCIATED WITH DEFORMATION OF THIS ANGLE FROM AO:

DIMENSION AA(3),BB(3),CC(3)
ASQ = 0.
BSQ = 0.
CSQ = 0.
DO 100 I=1,3

CSQ = CSQ+(AA(I)-BB(I))**2
ASQ = ASQ+(BB(I)-CC(I))**2

100 BSQ = BSQ+(CC(I)-AA(I))**2
ANGLE = ACOS( 0.5*(ASQ+BSQ-CSQ)/SQRT(ASQ*BSQ)
ANGLE = ANGLE*180./3.1415926535
RETURN
END

SUBROUTINE TORSION( AA,BB,CC,DD,TOR
C CALCULATES THE TORSION ANGLE AA-BB-CC-DD AND THEN RETURNS THE ENERGY
C ASSOCIATED WITH DEFORMATION OF THIS ANGLE FROM TO:

DIMENSION AA(3),BB(3),CC(3),DD(3),AB(3),BC(3),DC(3)
DIMENSION ABC(3),BCD(3)
ABM = 0.
BCM = 0.
DCM = 0.
DOT = 0.
ABCM = 0.
BCDM = 0.
DO 100 I=1,3
AB(I) = BB(I) - AA(I)
BC(I) = CC(I) - BB(I)
DC(I) = CC(I) - DD(I)
ABM = ABM + AB(I)**2
BCM = BCM + BC(I)**2

100 DCM = DCM + DC(I)**2
DO 200 I=1,3

AB(I) = AB(I)/SQRT(ABM)
BC(I) = BC(I)/SQRT(BCM)

200 DC(I) = DC(I)/SQRT(DCM)
CALL VV( AB,BC,ABC,3 )
CALL VV( BC,DC,BCD,3 )
DO 300 I=1,3

DOT = DOT + ABC(I)*BCD(I)
ABCM = ABCM + ABC(I)**2

300 BCDM = BCDM + BCD(I)**2
ARG = DOT/SQRT(ABCM*BCDM)
IF( ABS(ARG-1.).LE.1E-6 ) ARG = 1.
IF( ABS(ARG+1.).LE.1E-6 ) ARG = -1.
TOR = ACOS( ARG )*180./3.1415926535

C DETERMINE TORSION DIRECTION:
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DTX = 0.
DO 400 I=1,3

400 DTX = DTX + AB(I)*BCD(I)
ARG2 = DTX/SQRT(ABM*BCDM)
IF( ABS(ARG2-1.).LE.1E-6 ) ARG2 = 1.
IF( ABS(ARG2+1.) .LE.1E-6 ) ARG2 = -1.
DRX = ACOS( ARG2 )*180./3.1415926535
TOR = SIGN( TOR, (90.-DRX))
RETURN
END
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Data Input File U.dt:

1 1 1 1 0
1

28 6 9 2 0 205.
2 2 2 2

120. 180. 0 0 0 0. 180. 0.
120. 0. 0 0 0 0. 180. 60.
120. 180. 0 0 0 0. 0. 0.
122. 5. 0 0 0 -10. 10. 10.
120. 180. 0 0 0 0. 0. 0.
122. 0. 0 0 0 0. 180. 60.
120. 180. 0 0 0 0. 0. 0.
120. -5. 0 0 0 -10. 10. 10.
150. 0 0 25. 155. 130.
30. 0 0 0. 180. 15.
4.9 0 0 0. 0. 0.
4.9 0 0 4.5 9. 1.5
13.1 0 0 0. 0. 0.
90. 0 0 90. 60. -15.
90. 0 0 90. 60. -15.
90. 0 0 30. 90. 15.
1. 0 0 -1. 1. 2.
0. 0 0 0.1 0.5 0.2
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.

120. 0 0 0. 150. 30.
1. 0 0 -2. 2. 1i.
0.4 0 0 -0.4 0.5 0.1
0. 0 0 0. 0. 0.
0. 0 0 0. 180. 180.

-60. 0 0 -180. 150. 30.
1. 0 0 -1. 1. 2.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
1. O 0 -1. 1. 2.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. 0 0 0. 180. 10.
1. 0 0 -1. 1. 2.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
1. 0 0 -1. 1. 2.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. O 0 -1. 1. 2.
0. O 0 0. 0. 0.
0. O 0 0. 0. 0.
0. O 0 0. 0. 0.
0. O 0 0. 0. 0.
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0. 0 0 -1. 1. 2.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. 0 0 -1. 1. 2.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.
0. 0 0 0. 0. 0.

Data Input File US.dt:

1 1
13.1066 0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
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APPENDIX H: FORTRAN Listing of program to Calculate and Plot X-ray Scattering Diagrams

The following is a listing of one version of the program used to simulate x-ray scattering behavior.

This version is appropriate for use with the output file from the structure simulation program and contains

graphics subroutines for use with the IRIS 4D-GT multicolor display. This listing contains the following

routines:

UCANAL (main) XRSHADE MV
UCDRAW RANDSI MM
FRCOORD PALETTE LUBKSB
STRUFA VECTORIZ LUDCMP
PLORG LATCON ATSCAT
GOURPLOT VV

328



PROGRAM UCANAL
C
C ********************************************************************

C * *
C * POLYMER CRYSTAL X-RAY DIFFRACTION *
C * *
C * GREGORY C. RUTLEDGE *
C * *
C * DEPARTMENT OF CHEMICAL ENGINEERING *
C * MASSACHUSETTS INSTITUTE OF TECHNOLOGY *
C * NOVEMBER 1989 *
C * *
C * (C) Copywrite 1989: Gregory C. Rutledge, Ulrich W. Suter *
C * *
C ********************************

C
C This is the driver program to interpret results output by the Polymer
C Crystal Simulation Program. Reads simulation crystal variables and
C Cartesian coordinates of the first four chains, estimates the best
C unit cell type (out of twelve possibilities provided), converts
C atom coordinates to fractional coordinates, and outputs a plot file
C for use by SCHAKAL88 or CHARON (PLUTO derivative) to draw unit cell
C schematic (in subroutine UCDRAW).
C If specified, the calculation will proceed to call ro~utines to
C generate a list of the x-ray diffraction positions and intensities
C for crystal planes hkl up to a pre-determined limit in h, k, and 1;
C it is assumed that the chain axes lie along the crystallographic c
C axis, which corresponds in turn to the fiber axis. A representative
C x-ray fiber diagram may be recreated for display.
C
C The input file is PCS.IN; Output files are UNCL.OUT for unit cell
C representation, SF.RES for a listing of the x-ray reflection positions
C and intensities, and UCDRAW.OUT for the unit cell plot file.
C
C This version contains markers for modification required to simulate
C larger repeat units (eg. HHTT isomers) and antiparallel chain types
C (eg. HT(A) isomers). These are also marked in the subroutines
C FRCOORD, UCDRAW, and STRUFA.
C *** marks modifications for HHTT isomers
C &&& marks modications for antiparallel chains
C

CHARACTER*64 TITLE,RARG
CHARACTER*1 KIND(84,4),GARB1(72),KGB

c*** CHARACTER*1 KIND(168,4),GARB1(72),KGB
INTEGER*2 LNBLNK
DIMENSION UCT(3,3),GCT(3,3,12),GCL(3,12),GCA(3,12),GHYB(4),

+ ARA(3,3),ARB(3,3),SS(3),SA(3)
DIMENSION XYZ(3,84,4),KCTST(12)

c*** DIMENSION XYZ(3,168,4),KCTST(12)
COMPL(X) = (90.-X)*3.141526535/180.
DEGRAD = 3.1415926535/180.
NARU = 28

c*** NARU = 56
WRITE(*,*) 'Input Structure Designation (up to 36 characters) >'
READ(*,1) TITLE

1 FORMAT( A64 )
140 WRITE(*,*) 'Do you want to generate or plot x-ray info: [NO] >'

READ(*,1) RARG
LEN = LNBLNK(RARG)
IF( LEN.GE.1 ) THEN
IF( (RARG(1:1).EQ.'Y').OR.(RARG(1:1).EQ.'y') ) THEN
KXRFD = 0

ELSE IF( (RARG(1:1).EQ.'N').OR.(RARG(1:1).EQ.'n') ) THEN
KXRFD = 1

ELSE
GO TO 140

END IF-
ELSE
KXRFD = 1

END IF
OPEN( UNIT=9,FILE='PCS.IN',STATUS='OLD'
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OPEN( UNIT=10,FILE='UNCL.OUT')
DO 100 I=1,25
IF(I.EQ.14) THEN
READ(9,10) (GARB1(J),J=1,40),SS(l),SS(2),SS(3)

ELSE IF (I.EQ.15) THEN
READ(9,10) (GARB1(J),J=1,40),SA(1),SA(2),SA(3)

ELSE IF (I.EQ.17) THEN
READ(9,11) (GARB1(J),J=1,16),TNUL, (GARB1(J),J=1,18),OMI

ELSE IF (I.EQ.18) THEN
READ(9,11) (GARBl(J),J=1,16),TX,(GARB1(J),J=1,18),OM2

ELSE
READ(9,12) (GARB1(J),J=l,72)

END IF
100 CONTINUE

C
C For HHTT species, use 56 atom NARU with NRUC=3 and larger arrays
C For anti-parallel HTHT, must read
C from the opposite end
C
c### NRUC = 3

NRUC = 6
DO 120 I=1,NARU*NRUC*4

II = I/(NARU*NRUC+l) + 1
III = I - (II-1)*NARU*NRUC
IF(III.LE.84) THEN

c*** IF(III.LE.168) THEN
READ(9,14,ERR=130,END=130)
ELSE
READ(9,14,ERR=130,END=130)
END IF

c&&& IF(MOD(II,2).EQ.l) THEN
c&&& IF(III.LE.84) THEN
c&&& READ(9,14,ERR=130,END=130)
c&&& ELSE
c&&& READ(9,14,ERR=130,END=130)
c&&& END IF
c&&& ELSE
c&&& IF(III.LE.84) THEN
c&&& READ(9,14,ERR=130,END=130)
c&&& ELSE
c&&& IIX = NARU*NRUC-III+l
c&&& READ(9,14,ERR=130,END=130)
c&&& END IF
c&&& END IF
120 CONTINUE
130 CONTINUE

CLOSE( UNIT=9 )

atoms of even-numbered chains

KIND(III,II),(XYZ(J,III,II),J=1,3)

KGB,XGB,YGB,ZGB

KIND(III,II),(XYZ(J,III,II),J=1,3)

KGB,XGB,YGB,ZGB

KGB,XGB,YGB, ZGB

KIND(IIX,II),(XYZ(J,IIX,II),J=1,3)

C Convert Simulation variables into corresponding vectors:
C

* ss(3) = 2.*ss(3)
CALL VECTORIZ( SS,SA,UCT )

12 General Cell Formats:
1) 2 CHAINS, FC, GENERAL; a=l1-9,b=1-3
2) 2 CHAINS, FC, GENERAL; a=l-9,b=l-51
3) 2 CHAINS, FC, GENERAL; a=l-9,b=l-35
4) 2 CHAINS, EC, GENERAL; a=1-9,b=l-ll
5) 2 CHAINS, EC, GENERAL; a=l-7,b=l-ll
6) 2 CHAINS, EC, GENERAL; a=l-9,b=l-15
7) 2 CHAINS, EC, GENERAL; a=l-3,b=1-15
8) 1 CHAIN, TRANS = 0,1/2; a=l1-9,b=l-2
9) 1 CHAIN, TRANS = 0,1/2; a=l-7,b=1-2
10) 1 CHAIN, TRANS = 0,1/2; a=l-9,b=1-4
11) 1 CHAIN, TRANS - 0,1/2; a=l-3,b=1-4
12) 1 CHAIN, TRANS = 0,1/2; a=1-2,b=l-4

C Calculate unit cell vectors:

DO 200 I=1,3
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GCT(I,1,1) = UCT(I,1) - UCT(I,2)
GCT(I,2,1) = UCT(I,1) + UCT(I,2)
GCT(I,3,1) = UCT(I,3)
GCT(I,2,2) = 3.*UCT(1I,) - UCT(I,2)
GCT(I,2,3) = 3.*UCT(I,2) - UCT(I,1)
GCT(I,2,4) = 2.*UCT(I,1)
GCT(I,2,5) = 2.*UCT(I,1)
GCT(I,2,6) = 2.*UCT(I,2)
GCT(I,2,7) = 2.*UCT(I,2)
GCT(I,2,8) = UCT(I,1)
GCT(I,2,9) = UCT(I,1)
GCT(I,2,10) = UCT(I,2)
GCT(I,2,11) = UCT(I,2)
GCT(I,1,12) = UCT(I,1)
GCT(I,2,12) = UCT(I,2)
GCT(I,3,12) = UCT(I,3)
DO 200 J=2,11
IF( (J.EQ.51.OR.(J.EQ.9) ) THEN
GCT(I,1,J) - -UCT(I,1) - UCT(I,2)

ELSE IF ( (J.EQ.7).OR.(J.EQ.11) ) THEN
GCT(I,1,J) = UCT(I,l) + UCT(I,2)

ELSE
GCT(I,1,J) = GCT(I,1,1)

END IF
200 GCT(I,3,J) = UCT(I,3)

C
C Calculate unit cell scalars: sidelengths and angles:
C

DO 300 K=1,12
DOT1 = 0.
DOT2 = 0.
DOT3 = 0.

DO 320 J=1,3
GCL(J,K) = SQRT( GCT(1,J,K)**2+GCT(2,J,K)**2+GCT(3,J,K)**2 )
DOT1 = DOT1 + GCT(J,2,K)*GCT(J,3,K)
DOT2 = DOT2 + GCT(J,3,K)*GCT(J,1,K)

320 DOT3 = DOT3 + GCT(J,1,K)*GCT(J,2,K)
GCA(l,K) = ACOS( DOT1/GCL(2,K)/GCL(3,K) )/DEGRAD
GCA(2,K) = ACOS( DOT2/GCL(3,K)/GCL(1,K) )/DEGRAD
GCA(3,K) = ACOS( DOT3/GCL(1,K)/GCL(2,K) )/DEGRAD

300 CONTINUE
C
C Calculate potential hydrogen bonding orientations, distances, and
C translational registers:
C

DOT1 = O.
DOT2 = 0.
DOT3 = 0.
DOT4 = 0.
UCTIM = SQRT( UCT(l,l)**2 + UCT(2,1)**2 )
UCT2M = SQRT( UCT(1,2)**2 + UCT(2,2)**2 )
GCT1M = SQRT( GCT(1,1,1)**2 + GCT(2,1,1)**2 )
GCT2M = SQRT( GCT(1,2,1)**2 + GCT(2,2,1)**2 )
D1M = SQRT((UCT(1,2)-GCT(1,1,l))**2+(UCT(2,2)-GCT(2,1,1))**2)
DO 400 J=1,2

DOT1 = DOT1 + UCT(J,1)*GCT(J,1,1)
DOT2 = DOT2 + UCT(J,1)*GCT(J,2,1)
DOT3 = DOT3 + UCT(J,1)*(UCT(J,2)-GCT(J,1,1))

400 DOT4 = DOT4 + UCT(J,1)*UCT(J,2)
GHYB(1) = OM1 + ACOS( DOT1/UCTlM/GCTIM )/DEGRAD
GHYB(2) = OM1 - ACOS( DOT2/UCTlM/GCT2M )/DEGRAD
GHYB(3) = OMI - ACOS( DOT3/UCTlM/DIM )/DEGRAD
GHYB(4) = OM1 - ACOS( DOT4/UCTlM/UCT2M )/DEGRAD
ASHFT = SS(1)/SS(3)*COS(SA(2)*DEGRAD)
BSHFT = SS(2)/SS(3)*COS(SA(1)*DEGRAD)
TXM1 = ASHFT - BSHFT
TXM2 = ASHFT + BSHFT
TXM3 = TX - TXM1 + BSHFT
TXM4 = TX + BSHFT

C
C Determine the 'best' unit cell representation:

331



DO 600 I = 1,12
KCTST(I) = ((I-1)/7)*5 + 1
DO 610 J=1,3

610 KCTST(I) = KCTST(I) + 9-NINT(ABS(GCA(J,I)-90.)/10.)
IF( ABS(TX).LE..1) GO TO 600

DO 630 J=8,12
630 KCTST(J) = 0.
600 CONTINUE

KCELL = 1
KCOUNT = 0
DO 650 I=1,12

IF(KCTST(I).LT.KCOUNT) GO TO 650
KCELL = I
KCOUNT = KCTST(I)

650 CONTINUE
660 WRITE(*,*) 'KCELL = ',KCELL

WRITE(*,*) 'Do you agree? [Yes] >
READ(*,1) RARG
LEN = LNBLNK(RARG)
IF( LEN.GE.1 ) THEN

IF( (RARG(1:1).EQ.'Y').OR.(RARG(1:1).EQ.'y') ) THEN
ELSE IF( (RARG(1:1).EQ.'N').OR.(RARG(1:1).EQ.'n') ) THEN

WRITE(*,*) 'Input desired cell type (1 - 12): > '
READ(*,*) KF
IF((KF.LT.1).OR.(KF.GT.12)) THEN
WRITE(*,*) 'Invalid cell ID .
GO TO 660

ELSE
KCELL = KF

END IF
ELSE

GO TO 660
END IF

ELSE
END IF

C
C For selected cell configuration , compute chain setting angles
C relative to bc facet.
C

COX = XYZ(1,12,1)-XYZ(1,11,1)
COY = XYZ(2,12,1)-XYZ(2,11,1)
SETX = GCT(1,1,KCELL)*COX
SETY = GCT(2,1,KCELL)*COY
COM = COX**2 + COY**2
GCTM = GCT(1,1,KCELL)**2 + GCT(2,1,KCELL)**2
SETAl = ACOS( (SETX+SETY)/SQRT(COM*GCTM)
SETAl = SETA1/DEGRAD
COX = XYZ(1,12,2)-XYZ(1,1l,2)
COY = XYZ(2,12,2)-XYZ(2,11,2)

c&&& COX = XYZ(1,1,2)-XYZ(1,2,2)
c&&& COY = XYZ(2,1,2)-XYZ(2,2,2)

SETX = GCT(1,1,KCELL)*COX
SETY = GCT(2,1,KCELL)*COY
COM = COX**2 + COY**2
GCTM = GCT(1,1,KCELL)**2 + GCT(2,1,KCELL)**2
SETA2 = ACOS( (SETX+SETY)/SQRT(COM*GCTM)
SETA2 = SETA2/DEGRAD

C
COX = XYZ(1,12,1)-XYZ(1,11,1)
COY = XYZ(2,12,1)-XYZ(2,11,1)
SETX = GCT(1,2,KCELL)*COX
SETY = GCT(2,2,KCELL)*COY
COM = COX**2 + COY**2
GCTM = GCT(1,2,KCELL)**2 + GCT(2,2,KCELL)**2
SETA3 = ACOS( (SETX+SETY)/SQRT(COM*GCTM))
SETA3 = SETA3/DEGRAD
COX = XYZ(1,12,2)-XYZ(1,11,2)
COY = XYZ(2,12,2)-XYZ(2,11,2)

c&&& COX = XYZ(1,1,2)-XYZ(1,2,2)
c&&& COY = XYZ(2,1,2)-XYZ(2,2,2)
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SETX = GCT(1,2,KCELL)*COX
SETY = GCT(2,2,KCELL)*COY
COM = COX**2 + COY**2
GCTM = GCT(1,2,KCELL)**2 + GCT(2,2,KCELL)**2
SETA4 = ACOS( (SETX+SETY)/SQRT(COM*GCTM)
SETA4 = SETA4/DEGRAD

C
C Output cell conversion results:
C

WRITE(10,1) TITLE
WRITE(10,13) KCELL
DO 900 K=1,12
WRITE(10,9) K
WRITE(10,2) GCL(1,K),GCL(2,K),GCL(3,K)

900 WRITE(10,3) GCA(1,K),GCA(2,K),GCA(3,K)
WRITE(10,*)
WRITE(10,4) GHYB(1),GHYB(2),GHYB(3),GHYB(4)
WRITE(10,8) GCTIM,GCT2M,D1M,UCT2M
WRITE(10,7) TXM1,TXM2,TXM3,TXM4
WRITE(10,5) (OM1-OM2)
WRITE(10,6) TX
WRITE(10,*) ' '
WRITE(10,*) 'SET ANGLES REL TO GCT(1): ',SETA1,SETA2
WRITE(10,*) 'SET ANGLES REL TO GCT(2): ',SETA3,SETA4
CLOSE(UNIT=10)

C
C Generate data file for CHARON plotting and X-Ray fiber diagram:
C

CALL UCDRAW( KCELL,KIND,XYZ,GCT(1,1,KCELL),GCL(1,KCELL),
+ GCA(1,KCELL),TITLE,KXRFD )

C
2 FORMAT(' Sidelengths a,b & c :',3(F7.2) )
3 FORMAT(' Cell Angles al,be,ga :',3(F7.2) )
4 FORMAT(' 4 Potential H-Bondings:',4(F7.1) )
5 FORMAT(' Relative Chain Rotate :',F7.1
6 FORMAT(' Relative Chain Transl.:',F7.3
7 FORMAT(' H-Bond Register :',4(F7.3) )
8 FORMAT(' H-Bond Chain Distance :',4(F7.2) )
9 FORMAT(' General Cell Type ',13 )

13 FORMAT(.' Best Cell Representation: ',12)
10 FORMAT(40A1,3F10.5)
11 FORMAT(16A1,F9.5,18A1,F8.3)
12 FORMAT(72A1)
14 FORMAT(Al,6X,3(2X,F10.4))

END

SUBROUTINE UCDRAW( KCELL,KIND,XYZ,VECT,SIDE,ANG,PTITLE,KXR )
C
C Routine to create SCHAKAL88B files for drawing unit cells of PPTA
C simulations; used in conjunction with UCANAL, which provides
C parameters necessary for unit cell definition.
C
C *** marks modifications for HHTT isomers
C

CHARACTER*1 KIND(84,4),FKIND(28,6)
c*** CHARACTER*1 KIND(168,4),FKIND(56,6)

CHARACTER*8 FILENAME
CHARACTER*72 GARB72
CHARACTER*64 PTITLE
INTEGER HPLOT
DIMENSION XYZ(3,84,4),VECT(3,3),PXYZ(3,28,6),VTX(3,8)

c*** DIMENSION XYZ(3,168,4),VECT(3,3),PXYZ(3,56,6),VTX(3,8)
DIMENSION SIDE(3),ANG(3),FXYZ(3,28,6)

c*** DIMENSION SIDE(3),ANG(3),FXYZ(3,56,6)
NARU = 28

c*** NARU = 56
C WRITE(*,*) 'INPUT TITLE >'
C READ(*,7) PTITLE
C
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C Calculate unit cell vertices and fractional coordinates
C of unique atoms (2 chains)
C

DO 220 I=1,3
220 VTX(I,l) = ( XYZ(I,NARU+11,1) + XYZ(I,NARU+13,1) )/2.

D13 = 0.
D24 = 0.
DO 200 1=1,3
VTX(I,2) = VTX(I,1) + VECT(I,1)
VTX(I,3) = VTX(I,2) + VECT(I,2)
VTX(I,4) = VTX(I,1) + VECT(I,2)
VTX(I,5) = VTX(I,1)
VTX(I,6) = VTX(I,2)
VTX(I,7) = VTX(I,3)
VTX(I,8) = VTX(I,4)
D13 = D13 + (VTX(I,3)-VTX(I,1))**2

200 D24 = D24 + (VTX(I,4)-VTX(I,2))**2
DO 250 I=5,8

250 VTX(3,I) = VTX(3,I) + SIDE(3)
IF (KCELL.LE.3) THEN

ZC = 0.5*( VTX(3,3) + VTX(3,1) )
ELSE IF (KCELL.LE.7) THEN

ZC = 0.5*( VTX(3,4) + VTX(3,1) )
ELSE IF (KCELL.LE.11) THEN

ZC = VTX(3,4)
ELSE

ZC = VTX(3,2)
END IF
KSECOND = 2
IF( MOD(INT(KCELL/2),2).EQ.1 ) KSECOND = 4
IF(KCELL.EQ.2) KSECOND = 2
DO 240 I=1,3*NARU

IF (KCELL.NE.2) THEN
ZRSFT = 0.

ELSE
ZRSFT = VECT(3,1)

END IF
240 IF((XYZ(3,I,KSECOND)+ZRSFT).GE.ZC) GO TO 260
260 NC = I - 1

IF((MOD(NC,NARU).NE.1).AND.(MOD(NC,NARU) .NE.1-)) GO TO 280
c*** IF((MOD(NC,NARU) .NE.1) .AND.(MOD(NC,NARU) .NE.15).and.
c*** + (MOD(NC,NARU).NE.29).AND.(MOD(NC,NARU).NE.43)) GO TO 280

IF( (ZC-ZRSFT-XYZ(3,NC,KSECOND))/(XYZ(3,NC+1,KSECOND)-
+ XYZ(3,NC,KSECOND)).LT.0.5) THEN

NC = NC - 1
ELSE
NC = NC + 9

END IF
280 CONTINUE

DO 270 J=1,NARU
J1 = NARU + 12 + J
J2 = NC + J
FKIND(J,l) = KIND(J1,1)
FKIND(J,2) = KIND(J2,2)
PXYZ(1,J,1) = XYZ(1,J1,1)
PXYZ(2,J,1) = XYZ(2,J1,1)
PXYZ(3,J,1) = XYZ(3,J1,1)
PXYZ(1,J,2) = XYZ(l,J2,KSECOND)
PXYZ(2,J,2) = XYZ(2,J2,KSECOND)

270 PXYZ(3,J,2) = XYZ(3,J2,KSECOND)

C
CALL FRCOORD( PXYZ,VECT,VTX(1,1),3,28,6,3,3,28,2,FXYZ)

c*** CALL FRCOORD( PXYZ,VECT,VTX(1,1),3,56,6,3,3,56,2,FXYZ)
C
C Generate symmetry related coordinates appropriate to cell specified
C

IF (KCELL.LE.3) THEN
NCH = 5
DO 400 I=1,NARU
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FKIND(I,3) = FKIND(I,1)
FKIND(I,4) = FKIND(I,1)
FKIND(I,5) = FKIND(I,1)
DO 410 J=1,3

DO 410 K=3,5
410 FXYZ(J,I,K) = FXYZ(J,I,1)

IF(KCELL.EQ.2) FXYZ(1,I,2) = FXYZ(1,I,2) + 1.
FXYZ(1,I,3) = FXYZ(1,I,3) + 1.
FXYZ(1,I,4) = FXYZ(1,I,4) + 1.
FXYZ(2,I,4) = FXYZ(2,I,4) + 1.

400 FXYZ(2,I,5) = FXYZ(2,I,5) + 1.
ELSE IF (KCELL.LE.7) THEN
NCH = 6
DO 420 I=1,NARU

FKIND(I,3) = FKIND(I,1)
FKIND(I,4) = FKIND(I,1)
FKIND(I,5) = FKIND(I,1)
FKIND(I,6) = FKIND(I,2)
DO 430 J=1,3

FXYZ(J,I,6) = FXYZ(J,I,2)
DO 430 K=3,5

430 FXYZ(J,I,K) = FXYZ(J,I,1)
FXYZ(1,I,3) = FXYZ(1,I,3) + 1.
FXYZ(1,I,4) = FXYZ(1,I,4) + 1.
FXYZ(2,I,4) = FXYZ(2,I,4) + 1.
FXYZ(2,I,5) = FXYZ(2,I,5) + 1.

420 FXYZ(1,I,6) = FXYZ(1,I,6) + 1.
ELSE IF (KCELL.LE.11) THEN
NCH = 4
DO 440 I=1,NARU

FKIND(I,3) = FKIND(I,1)
FKIND(I,4) = FKIND(I,2)
DO 450 J=1,3
FXYZ(J,I,3) = FXYZ(J,I,1)

450 FXYZ(J,I,4) = FXYZ(J,I,2)
FXYZ(1',I,3) = FXYZ(1,I,3) + 1.

440 FXYZ(1,I,4) = FXYZ(1,I,4) + 1.
ELSE
NCH = 4
DO 460 I=1,NARU

FKIND(I,3) = FKIND(I,1)
FKIND(I,4) = FKIND(I,2)
DO 470 J=1,3
FXYZ(J,I,3) = FXYZ(J,I,1)

470 FXYZ(J,I,4) = FXYZ(J,I,2)
FXYZ(1,I,3) = FXYZ(1,I,3) + 1.
FXYZ(2,I,3) = FXYZ(2,I,3) + 1.
FXYZ(1,I,4) = FXYZ(1,I,4) - 1.

460 FXYZ(2,I,4) = FXYZ(2,I,4) + 1.
END IF

C
C If specified, initiate generation of X-Ray Fiber Diagram:
C

IF(KXR.EQ.0) CALL STRUFA(NARU,1,2,FKIND,FXYZ,
+ PTITLE,VECT,SIDE,ANG

C
OPEN(UNIT=11,FILE=' UCDRAW.OUT')

C
C This code is specific for the generating SCHAKAL88 plot files
C

WRITE(11,3) PTITLE
WRITE(11,10) (SIDE(I),I=l,3),(ANG(I),I=l,3)
MARK = 0

C DO 500 N=1,NCH
N= 0

510 N = N+1
DO 500 I=1,NARU
MARK = MARK + 1
IF(MARK.LE.9) THEN
WRITE(11,4) FKIND(I,N),MARK,(FXYZ(J,I,N),J=1,3)

ELSE IF(MARK.LE.99) THEN
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WRITE(11,5) FKIND(I,N),MARK,
ELSE

WRITE(11,6) FKIND(I,N),MARK,
END IF

500 CONTINUE
IF(N.EQ.1) THEN

WRITE(11,*) 'SYMM X+1,Y,Z'
WRITE(11,*) 'SYMM X+1,Y+1,Z'
WRITE(11,*) 'SYMM X,Y+I,Z'
IF(NCH.GT.4) GO TO 510

ELSE IF(NCH.EQ.6) THEN
WRITE(11,*) 'SYMM X+1,Y,Z'

ELSE
END IF
WRITE(11, 9)
CLOSE( UNIT=11 )

FORMAT(A1,7X,3(2X,F10.4))
FORMAT('TITLE ',A64)
FORMAT('ATOM ',Al,Il,5X,3(F8.4,2X))
FORMAT('ATOM ',A1,I2,4X,3(F8.4,2X))
FORMAT('ATOM ',A1,I3,3X,3(F8.4,2X))
FORMAT (A64)
FORMAT (A72)
FORMAT('END')
FORMAT('CELL ',6(IX.F6.2)

(FXYZ(J,I,N),J=1,3)

(FXYZ(J,I,N),J=1,3)

END

SUBROUTINE FRCOORD( CXYZ,UCV,ORIG,ND,NA,NM,NU,N1,N2,N3,FXYZ)

Converts coordinates from Cartesian to Fractional:
ND x NA x NM is the size of the array containing the Cartesian
coordinates: first dimension is coordinate, second dimension is
atoms in a molecule, third dimension is number of molecules.
N1 x N2 x N3 is the in-use portion of the array.
UCV is the unit cell lattice vector array, having phsyical dimensions
NU x NU. ORIG(i) is the Cartesian coordinate of the origin

C DIM
DIM

c*** DIM

ENSION CXYZ(ND,NA,NM),FXYZ(ND,NA,NM),UCV(NU,NU),ORIG(NU),
ENSION CXYZ(3,28,6),FXYZ(3,28,6),UCV(3,3),ORIG(3),
ENSION CXYZ(3,56,6),FXYZ(3,56,6),UCV(3,3),ORIG(3),

UCM(3),UCVT(3,3),UCVTI(3,3),INDX(3),CSHFT(3)
DO 100 K=1,N3
DO 100 J=1,N2

DO 100 I=1,3
100 FXYZ(I,J,K) = 0.

C Compute inverse lattice vector matrix:

DO 200 I=1,3
DO 200 J=1,3

200 UCVT(J,I) = UCV(J,I)
DO 220 I=1,3

DO 210 J=l,3
210 UCVTI(I,J) = 0.
220 UCVTI(I,I) = i.

CALL LUDCMP( UCVT,3,3,INDX,D )
DO 230 J=1,3

230 CALL LUBKSB( UCVT,3,3,INDX,UCVTI(1,J) )

C Convert to fractional coordinates:

DO 300 K = 1,N3
DO 300 J=1,N2

DO 310 I=1,3
310 CSHFT(I) = CXYZ(I,J,K) - ORIG(I)
300 CALL MV( UCVTI,3,3,CSHFT,3,FXYZ(1,J,K) )

RETURN
END
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SUBROUTINE STRUFA( NARU,NRUC,NCH,FKIND,FXYZ,
+ TITLE,VECT,SIDE,ANG)

C
C Program generates theoretical WAXS data for stuctures predicted
C by Polymer Crystal Model program. The required input is the
C Number of Atoms per Repeat Unit, Number of Repeat Units generated per
C Chain, the Number of CHains per cell, the x-ray WaVeLength, the range
C of H,K,L of interest, and the identity (atomic number) and cartesian
C coordinates of each atom in the unit cell, the "primary axes" and
C "primary interaxial angles" as defined within PCM program.
C Also used are the "half-beta angle" (Lorentz factor calculation as
C per Wolff [Alexander,"X-Ray Diffraction Methods in Polymer Science",
C p41] ) and the Bragg angle for monochromator (polarization factor
C calculation (Alexander, p40] ).
C
C The program calculates the conventional crystallographic axes/angles,
C determines the type of unit cell, converts to fractional coordinates,
C and calculates the d spacing, 2*theta angle, beta angle, polarization
C factor, Lorentz factor, structure factor, and reflection intensity for
C each (H,K,L) of interest.
C
C If a fiber diagram is requested, the user is prompted for plotting
C information required by subroutine STIPLOT (for Laserjet printing)
C or GOURPLOT (for display on IRIS 4D-GT) (via PLORG)
C

INTEGER H
LOGICAL FRST
CHARACTER*64 TITLE,RARG
CHARACTER*1 FKIND(28,6)

c*** CHARACTER*1 FKIND(56,6)
INTEGER*2 LNBLNK
PARAMETER (EPSILON=lE-6,NSPT=1000)
COMMON /VECT/ CRAX(3,3),RLV(3,3),VOL
COMMON /PEAKS/ NS,TWOTH(NSPT),BETA(NSPT),AMP(NSPT)
COMMON /UNICOM/ IOPORT,MODEL,XCORNER,YCORNER,AXL,TTM,ARCRESOL,

+ SPOTRESOL,PERO
DIMENSION CXM(3),CAN(3),RHO(3),VECT(3,3),SIDE(3),ANG(3)
DIMENSION KIND(28,2),FXYZ(3,28,6)

c*** DIMENSION KIND(56,2),FXYZ(3,56,6)
DIMENSION D(-6:6,-6:6,-6:6),BTA(-6:6,-6:6,-6:6)

c*** DIMENSION D(-9:9,-9:9,-9:9),BTA(-9:9,-9:9,-9:9)
DIMENSION TTA(-6:6,-6:6,-6:6),F(-6:6,-6:6,-6:6)

c*** DIMENSION TTA(-9:9,-9:9,-9:9),F(-9:9,-9:9,-9:9)
DIMENSION P(-6:6,-6:6,-6:6),Z(-6:6,-6:6,-6:6),E(-6:6,-6:6,-6:6)

c*** DIMENSION P(-9:9,-9:9,-9:9),Z(-9:9,-9:9,-9:9),E(-9:9,-9:9,-9:9)
DIMENSION MILLER(3,NSPT)
PI = 3.1415926535
BEE = 5.
FRST = .TRUE.
DO 100 I=1,3

CXM(I) = SIDE(I)
CAN(I) = ANG(I)*PI/180.
DO 100 J=1,3

100 CRAX(I,J) = VECT(I,J)
DO 120 I=1,2

DO 120 J=1,NARU
IF(FKIND(J,I).EQ.'C') THEN
KIND(J,I) = 6

ELSE IF(FKIND(J,I).EQ.'H') THEN
KIND(J,I) = 1

ELSE IF(FKIND(J,I).EQ.'N') THEN
KIND(J,I) = 7

ELSE IF(FKIND(J,I).EQ.'O') THEN
KIND(J,I) = 8

ELSE IF(FKIND(J,I).EQ.'L') THEN
KIND(J,I) = 17

ELSE
END IF

120 CONTINUE
C
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OPEN (UNIT=11, FILE='SF.RES')
OPEN (UNIT=12, FILE='SF.PLT')

200 WRITE(*,*) 'Do you to plot a fiber diagram? [NO] >
READ(*,7) RARG
LEN = LNBLNK(RARG)
IF( LEN.GE.1 ) THEN

IF( (RARG(1:1).EQ.'Y').OR.(RARG(1:1).EQ.'y') ) THEN
KPLOT = 1

ELSE IF( (RARG(1:1).EQ.'N').OR.(RARG(1:1).EQ.'n') ) THEN
KPLOT = 0

ELSE
GO TO 200

END IF
ELSE

KPLOT = 0
END IF
WRITE(*,*) 'Input Wavelength, MO, and MX >
READ (*,*) WVL,MO,MX
WRITE(*,*) 'Input Beta orientation and monochromator angles >'
READ (*,*) BETAHAF,CHROM
TEE = 0.815*BETAHAF*PI/180.
CHROM = CHROM*PI/180.

Generate reciprocal lattice vectors:

CALL LATCON

Determine Space Group (l=Cubic, 2=Tetragonal, 3=Orthorhombic,
4=Hexagonal, 5=Monoclinic, 6=Triclinic ) Symmetry:

KSG = 1
IF( (CXM(1).NE.CXM(2)).OR.(CXM(1).NE.CXM(3)).OR.

+ (CXM(2).NE.CXM(3)) ) KSG = 2
IF((CXM(1).NE.CXM(2)) .AND.(CXM(1) .NE.CXM(3)).AND.

+ (CXM(2).NE.CXM(3))) KSG = 3
IF( ABS(CAN(3)-PI/2.).GT.EPSILON ) THEN

IF( ABS(CAN(3)-2.*PI/3.).LE.EPSILON ) THEN
KSG = 4

ELSE
KSG = 5

END IF
ELSE
END IF
IF( (ABS(CAN(1)-PI/2.).GT.EPSILON).OR.(ABS(CAN(2)-PI/2.).GT.

+ EPSILON)) KSG = 6

EHA = 0.
N= 1
WRITE(*,*) 'Calculating Intensities...'
DO 500 H=MO,MX
DO 500 K=MO,MX
DO 500 L=0,MX

IF( (H.EQ.0).AND.(K.EQ.0).AND.(L.EQ.0)
RH = REAL(H)
RK = REAL(K)
RL = REAL(L)
A = 0.
B 0.

GO TO 500

DET1 =(RH/CXM(1)+COS(CAN(1))*COS(CAN(2))*RK/CXM(2)+
COS(CAN(3))*COS(CAN(l))*RL/CXM(3))-(RH/CXM(1)*
COS(CAN(l))**2+COS(CAN(3))*RK/CXM(2)+
COS(CAN(2))*RL/CXM(3))

DET2 =(RK/CXM(2)+COS(CAN(2))*COS(CAN(3))*RL/CXM(3)+
COS(CAN(1))*COS(CAN(2))*RH/CXM(1))-(RK/CXM(2)*
COS(CAN(2))**2+COS(CAN(l))*RL/CXM(3)+
COS(CAN(3))*RH/CXM(1))

DET3 =(RL/CXM(3)+COS(CAN(3))*COS(CAN(1))*RH/CXM(1)+
COS(CAN(2))*COS(CAN(3))*RK/CXM(2))-(RL/CXM(3)*
COS(CAN(3))**2+COS(CAN(2))*RH/CXM(1)+
COS(CAN(1))*RK/CXM(2))

DET4 =(l.+2.*COS(CAN(1))*COS(CAN(2))*COS(CAN(3)))-
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+ (COS(CAN(1))**2+COS(CAN(2))**2+COS(CAN(3))**2)
D(H,K,L) = 1./(SQRT( (RH*DET1/CXM(1)+RK*DE/CXCXM(2)+RL*DET3/

+ CXM(3))/DET4))
IF( (REAL(N)*WVL/2).GT.D(H,K,L) ) GO TO 500
ORD = REAL(N)/2./D(H,K,L)
TTA(H,K,L) = ASIN( WVL*ORD )

C
C Sum over all atoms in the unit cell:
C

DO 550 NCN=1,NCH
DO 550 NAT=1,NARU
FATM = ATSCAT(KIND(NAT,NCN),ORD)
ARG=RH*FXYZ(1,NAT,NCN)+RK*FXYZ(2,NAT,NCN) +

+ RL*FXYZ(3,NAT,NCN)
A = A + FATM*COS(2.*PI*ARG)
B = B + FATM*SIN(2.*PI*ARG)

550 CONTINUE
F(H,K,L) = SQRT( A**2 + B**2

C
C Calculate Lorentz Factor (paratropic, general, or diatropic)
C and azimuthal angle of reflection beta:
C

IF (L.EQ.0) THEN
Z(H,K,L) = l./( (SIN(TTA(H,K,L)))**2*COS(TTA(H,K,L))
BTA(H,K,L) = 0.

ELSE
RHOM = 0.
PDOT = 0.
DO 700 I=1,3

RHO(I) = RH*RLV(I,1)+RK*RLV(I,2)+
+ RL*RLV(I,3)

PDOT = PDOT + RHO(I)*CRAX(I,3)
700 RHOM = RHOM + RHO(I)**2

PARG = PDOT/CXM(3)/SQRT(RHOM)
IF(ABS(PARG-1.) .LT.EPSILON) PARG = 1.
PHI = ACOS( PARG )
BTA(H,K,L) = 90. - PHI*180./PI
IF( (H.NE.0).OR. (K.NE.0) ) THEN
Z(H,K,L) = l./((SIN(TTA(H,K,L)))**2*COS(TTA(H,K,L))

+ *SIN(PHI))
ELSE

Z(H,K,L) = l./((SIN(TTA(H,K,L)))**2*COS(TTA(H,K,L))*TEE)
END IF

END IF
P(H,K,L) = (1.+(COS(CHROM))**2*(COS(2.*TTA(H,K,L)))**2)/

+ (1.+(COS(CHROM))**2)
THRM = -2.*BEE*ORD**2
E(H,K,L) = F(H,K,L)**2*P(H,K,L)*Z(H,K,L)*EXP(THRM)

C
C Additional intensity correction (2x) required for equatorial and
C azimuthal reflections due to reflection distribution among half as
C many spots in the Fiber Diagram Representation, and again (2x) for
C all reflections L > 0, since these have been omitted from the loops
C based on symmerty. Net: Azimuthal reflections doubled...
C

IF((90.-BTA(H,K,L)).LE.10*EPSILON) E(H,K,L) = 2.*E(H,K,L)
EHA = MAX( EHA,E(H,K,L)

500 CONTINUE
NS = 0
DO 650 L=MX,0,-l
DO 650 K=MX,MO,-1
DO 650 H=MX,MO,-l

NS = NS + 1
MILLER(1,NS) = H
MILLER(2,NS) = K
MILLER(3,NS) = L
TWOTH(NS) = 2.*TTA(H,K,L)*180./PI
BETA(NS) = BTA(H,K,L)
AMP(NS) = E(H,K,L)
IF( (AMP(NS)/EHA).LT.0.00125) THEN
NS = NS - 1
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GO TO 650
ELSE
END IF
NSS = NS - 1
IF( NS.EQ.1 ) GO TO 650
DO 660 NCMP = 1,NSS
IF( (ABS(TWOTH(NS)-TWOTH(NCMP)).LT.1E-3).AND.

+ (ABS(BETA(NS)-BETA(NCMP)).LT.1E-3) THEN
AMP(NCMP) = AMP(NCMP)+AMP(NS)
NS = NSS
GO TO 650

ELSE
END IF

660 CONTINUE
650 CONTINUE

EHIGH = 0.
DO 600 N=1,NS

600 EHIGH = MAX( EHIGH,AMP(N)
WRITE(11, 14)
WRITE(11,20) KSG
WRITE(11,15) (CXM(I),I=1,3)
WRITE(11,16) ((CAN(I)*180./PI),I=1,3)
WRITE(11,18) EHIGH

C WRITE(12,6) TITLE
WRITE(11, 11)
DO 610 N=1,NS

AMP(N) = AMP(N)/EHIGH*100.
IF( AMP(N).GT.0.25 ) THEN
H = MILLER(l,N)
K = MILLER(2,N)
L = MILLER(3,N)

C WRITE(12,13) H,K,L,P(H,K,L),Z(H,K,L),F(H,K,L),AMP(N)
WRITE(11,17)H,K,L,TWOTH(N),BETA(N),AMP(N)
WRITE(12,17)H,K,L,TWOTH(N),BETA(N),AMP(N)

ELSE
END IF

610 CONTINUE
C
C Plot if desired:
C

ENDFILE(12)
REWIND (12)
IF( KPLOT.GT.0 ) CALL PLORG

C
CLOSE (UNIT=11)
CLOSE (UNIT=12)

1 FORMAT( 314,F8;4,214 )
2 FORMAT( 3F8.4 )
3 FORMAT( I4,3F8.4 )
4 FORMAT( 2F8.4 )
5 FORMAT( A72 )
6 FORMAT( 1X,A72 )
7 FORMAT( A64)

11 FORMAT( lX,'Theoretical Structure Factors F(H,K,L)' )
12 FORMAT( 1X,3('F(',I1,',',I1,',',I1,') ',F9.3,3X) )
13 FORMAT( 1X,'H,K,L:M,P,Z,F,E ',312,I4,4F9.3 )
14 FORMAT( 1X,'Crystallographic Unit Cell Parameters')
15 FORMAT( 1X,'Sidelengths: ',3F8.3 )
16 FORMAT( 1X,'Internal Angles: ',3F8.3 )
17 FORMAT( 1X,313,3F9.3 )
18 FORMAT( 1X,'Max Absolute Intensity: ',E10.3 )
20 FORMAT( 1X,'Space Group Symmetry: ',12 )

END
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SUBROUTINE PLORG

Reformats simulation-generated peaks (discrete intensities at
various 2*theta,beta) to a 2*theta,beta grid of intensity
appropriate for STIPLOT (for Laserjet output) or GOURPLOT (for IRIS
4D-GT display)

Reflections are converted from Dirac spikes of intensity I to
Gaussian distributions through 2 dimensions (beta and two*theta)
having volumes equal to I. The peak shape and resolution to
low intensity are controlled by WB and WT (peak widths at 50%
amplitude) and CO (cut-off intensity fraction, 0 < CO < 1 )

C Gaussian: Y = A*exp( -1n2 * ((X - P)/W)**2 )

C Peaks are mapped onto a grid having resolution RB degrees in beta
C and RT degrees in two*theta
C

PARAMETER (NMAX=1001,NSPT=1000)
COMMON /DPLOT/ NT,NB,TGO,TGX,BGO,BGX,Z(NMAX,NMAX)
COMMON /PEAKS/ NS,TWOTH(NSPT),BETA(NSPT),AMP(NSPT)
WRITE(*,*) ' '
WRITE(*,*) 'Input Gaussian Widths (degrees): Two*Theta,Beta >'
READ(*,*) WT,WB
WRITE(*,*) 'Input Gaussian cutoff % (between 0 and 1) >'
READ(*,*) CO
WRITE(*,*) 'Input Diagram grid stepsize (2T,B) (degrees) >'
READ(*,*) RT,RB
PI = 3.1415926535
DELBT - WB*SQRT( LOG(l./CO)/LOG(2.) )
DELTT = WT*SQRT( LOG(l./CO)/LOG(2.) )
DO 100 J=1,NMAX

DO 100 I=1,NMAX
100 Z(I,J) = 0.

TGO = 10.
TGX = 0.
BGO = 0.
BGX = 0.
DO 200 I=1,NS

IF( AMP(I).LT.0.01 ) GO TO 200
AMPMAX = MAX( AMPMAX,AMP(I)
TGO = MIN( TGO,TWOTH(I)
TGX = MAX( TGX,TWOTH(I)
BGO = MIN( BGO,BETA(I)
BGX = MAX( BGX,BETA(I) )

200 CONTINUE
SCL = AMPMAX*4.*LOG(2.)/PI/WB/WT/100.
TGX = MIN( TGX,50.
TGO - MAX( TGO,0.
WRITE(*,*) ' WARNING: Two Theta Limit in PLORG is 50 degrees'
BGX = 90.
BGO = MAX( BGO,0.
NT = NINT( (TGX-TGO)/RT ) + 1
NB = NINT( (BGX-BGO)/RB ) + 1
NSZB = NINT( DELBT/RB )
NSZT = NINT( DELTT/RT )
WRITE(*,*) ' Number of Peaks Predicted : ',NS
WRITE(*,*) ' Calculated Grid Size NTxNB : ',NT,NB
WRITE(*,*) ' Calculated Peak Grid Size NSZTxNSZB: ',NSZT,NSZB
DO 500 I=1,NS

AG = AMP(I)*4.*LOG(2.)/WB/WT/PI/SCL
KTT = NINT( REAL(NT)* (TWOTH(I)-TGO)/(TGX-TGCO ) +1
KBT = NINT( REAL(NB)*(BETA(I) -BGO)/(BGX-BGO) ) +1
DO 520 JB=1,NSZB

JBG = KBT - NINT(REAL(NSZB)/1.99) + JB
IF( JBG.LE.0 ) GO TO 520
IF( JBG.GT.NMAX ) GO TO 520
DBSQ = ( REAL(JBG-KBT)*RB )**2
BFUNC = EXP( -LOG(2.)*4.*DBSQ/WB**2 )
DO 540 JT=1,NSZT
JTG = KTT - NINT(REAL(NSZT)/1.99) + JT
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IF( JTG.LE.0 ) GO TO 540
IF( JTG.GT.NMAX ) GO TO 540
DTSQ = ( REAL(JTG-KTT)*RT )**2
TFUNC = EXP( -LOG(2.)*4.*DTSQ/WT**2)
Z(JTG,JBG)=Z(JTG,JBG)+BFUNC*TFUNC*AG

540 CONTINUE
520 CONTINUE
500 CONTINUE

C
C XRC.DAT is the calculated intensity grid file for later comparison
C to experiment
C

OPEN( UNIT=I0,FILE='XRC.DAT')
WRITE(10, 101) TGO,TGX,NT
WRITE(10,101) BGO,BGX,NB
DO 400 J=1,NB
DO 400 I=1,NT,10

IP = MIN(NT,I+9)
WRITE(10,102) (Z(K,J),K=I,IP)

400 CONTINUE
101 FORMAT(1X,2F8.2,I4)
102 FORMAT(10(IX,F7.2))

CLOSE( UNIT=10)
C
C CALL STIPLOT

CALL GOURPLOT
RETURN
END

SUBROUTINE GOURPLOT
C
C This routine is modified for use with Gouraud shading display on
C the IRIS workstation
C
C Generates a stipled-pattern fiber diagram from regulary-gridded
C X-ray data in 2*theta vs beta format. The diagram appearance and
C sensitivity may be adjusted by means of ZCH, ZCL, and NREF; ZCH is
C the upper critical percent intensity, above which the diagram is
C saturated, while ZCL is the lower critical percent intensity, below
C which intensity is not recorded. Between these two intensities
C stipling is controlled by a cubic spline function of raw intensity.
C NREF is a reference linear dot density at half the radius of the
C plot.
C
C Generates all four quadrants
C Data passed in common block DPLOT
C

CHARACTER*72 TITLE
CHARACTER*1 QTITLE(72)
EQUIVALENCE (QTITLE(1),TITLE)
PARAMETER (NMAX=1001)
COMMON /DPLOT/ NT,NB,TGO,TGX,BGO,BGX,Z(NMAX,NMAX)
DIMENSION X(NMAX,NMAX),Y(NMAX,NMAX)
DIMENSION KCC,ZCLK(8),ZCHK(8),JSTIP(4)
DIMENSION CDEF(3,8),ZCDF(8),ZKEY(8)
DEGRAD = 3.1415926535/180.

C
C DEFINE PLOTTING PARAMETERS:
C

WRITE(*,*) ' Enter TITLE of Plot >
READ(*,3) TITLE
WRITE(*,*) ' Enter Origin of Window (X,Y) (pixels) > '
READ(*,*) XWO,YWO
WRITE(*,*) ' Enter Window Size (pixels, square) >
READ(*,*) WSL
WRITE(*,*) ' Enter (Fractional) Origin of Plot in Window (X,Y) >
READ(*,*) XCO,YCO
WRITE(*,*) ' Enter Desired Axis Length (Fractional) > '
READ(*,*) AXL2
WRITE(*,*) ' Enter Maximum Two*Theta (degrees) >

342

L



READ(*,*) TTM
WRITE(*,*) ' Enter Palette Color Code, ZCL AND ZCH > '
READ(*,*) KCC,ZCL,ZCH

C
ZMAX = -1.E6
ZMIN = 1.E6
DO 100 J=1,NB
DO 100 I=I,NT

ZMAX = MAX( ZMAX,Z(I,J) )
ZMIN = MIN( ZMIN,Z(I,J) )

100 CONTINUE
TGXA = MIN( TGX,TTM
TSTP = (TGXA-TGO)/(NT-1)
BSTP = (BGX-BGO)/(NB-1)
WRITE(*,*) ' 2*Theta Range : ',TGO,' to ',TTM
WRITE(*,*) ' Beta Range : ',BGO,' to ',BGX
WRITE(*,*) ' Intensity Range: ',ZMIN,' to ',ZMAX

C
DO 200 J=0,NB-1
DO 200 I=0,NT-1

ZLOC = ( Z(I+1,J+1)-ZMIN )/(ZMAX-ZMIN)
TLOC = TGO + REAL(I)*TSTP
BLOC = BGO + REAL.(J)*BSTP
XLOC = TLOC*COS( BLOC*DEGRAD
YLOC = TLOC*SIN( BLOC*DEGRAD
Z(NT+I,NB+J) = ZLOC
X(NT+I,NB+J) = XLOC
Y(NT+I,NB+J) = YLOC
IF( J.NE.0) THEN
Z(NT+I,NB-J) = ZLOC
X(NT+I,NB-J) = XLOC
Y(NT+I,NB-J) = -YLOC

END IF
200 CONTINUE

NB = 2*NB - 1
DO 250 J=1,NB
DO 250 I=1,NT-1

Z(NT-I,J) = Z(I+NT,J)
X(NT-I,J) = -X(I+NT,J)
Y(NT-I,J) = Y(I+NT,J)

250 CONTINUE
NT = 2*NT - 1
ZCL = ZCL/100.
ZCH = ZCH/100.
ZDIF = ZCH - ZCL
ZDF2 = ZDIF**2
ZDF3 = ZDF2*ZDIF
ZCL2 = ZCL**2
AF = -2./ZDF3
BF = 6.*ZCL/ZDF3 + 3./ZDF2
CF = -6.*(ZCL2/ZDF3 + ZCL/ZDF2)
DF = 2.*ZCL2*ZCL/ZDF3 +3.*ZCL2/ZDF2

C
C Define specific points on the color scale:
C

CALL PALETTE( KCC,NCOL,CDEF,ZKEY
DO 610 NC=1,NCOL

ZZ = ZKEY(NC)*100.
ZCDF(NC) = (ZZ - ZCL)/ZDIF
ZCDF(NC) = ZCDF(NC)/100.

610 CONTINUE

C
C Renormalize grid values with new sensitivity range:
C Loop over grid points:
C

KPRN = 10
DO 700 I=1,NB
DO 700 J=1,NT

IF( Z(J,I).LE.ZCL ) THEN
Z(J,I) = 0.
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ELSE IF( Z(J,I).GE.ZCH ) THEN
Z(J,I) = 1.

ELSE
ZZ = Z(J,I)
Z(J,I) = (ZZ - ZCL)/ZDIF

END IF
700 CONTINUE

CALL XRSHADE( XWO,YWO,WSL,XCO,YCO,AXL2,KCC,NT,NB,
+ X,Y,Z,QTITLE,NCOL,ZKEY,ZCDF,CDEF )

RETURN
C

1 FORMAT(A25,3F12.5)
2 FORMAT(5F12.5)
3 FORMAT( A72

END

REAL FUNCTION RANDS1(SEED)
C
C This is a special function for Random number generation
C on 32-bit machines that do not support long integer
C multiplication and truncation. The technique used is to do
C the multiplication and addition in parts, by splitting all
C integers in a 'high' and a 'low' part. The algorithm is
C exact, and should give machine-independent results.
C

INTEGER*4 SEED,IA,IB,I1,I2,I3

C The algorithm implemented.is (following D.E. Knuth):
C seed = seed*1592653589 + 453816691
C if (seed.lt.0) seed = seed + 1 + 2147483647
C Note that 1592653589 = 48603*2**15 + 30485

IA = SEED/32768
IB = MOD(SEED,32768)
Il = IA*30485
12 = IB*30485
13 = IB*48603
Il = MOD(I1,65536)
13 = MOD(I3,65536)
Il = Il + 13 + 13849 + 12/32768 + MOD(IA,2)*32768
12 = MOD(I2,32768) + 12659
Il = Il + 12/32768
12 = MOD(I2,32768)
Il = MOD(I1,65536)

SEED = 11*32768 + 12
RANDS1 = SEED*4.65661287308D-10
RETURN
END

SUBROUTINE XRSHADE( XWO,YWO,WSL,XCO,YCO,CSL,NPL,
+ NPH,NPV,XP,YP,ZP,QTITLE,
+ NCOL,ZKEY,ZCDF,CDEF )

C
C Given a rectangular array of values (XP,YP,ZP), creates a x-ray
C fiber diagram using Gouraud shading technique
C

INTEGER*4 KXO,KYO,KXE,KYE
INTEGER*4 WINOPE
CHARACTER*72 CHARS
CHARACTER*1 QTITLE(72),TLAB1, TLAB2,TLAB3,TLAB4,TLAB5
PARAMETER (NMAX=1001)
REAL BGD(3),CNO(3),PVTX(3,4),VTXC(3,4)
REAL CDEF(3,8),ZCDF(8), ZKEY(8)
REAL XP(NMAX,NMAX),YP(NMAX,NMAX),ZP(NMAX,NMAX)
REAL XAX(2,2),YAX(2,2),XTIC(4,15),YTIC(4,15)

C
C First, set array to be "colored" and normalize:
C
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ZPMAX
ZPMIN
XPMAX
XPMIN
YPMAX
YPMIN

-lE61E6

-1E6
1E6

-1E6
1E6

C
C Renormalize data array (range = 0 - 1):

DO 100 J=1,NPV
DO 110 K=1,NPH

ZPMAX = MAX(ZPMAX,ZP(K,J))
ZPMIN = MIN(ZPMIN,ZP(K,J))
XPMAX = MAX(XPMAX,XP(K,J))
XPMIN = MIN(XPMIN,XP(K,J))
YPMAX = MAX(YPMAX,YP(K,J))
YPMIN = MIN(YPMIN,YP(K,J))

110 CONTINUE
100 CONTINUE

IF(ZPMIN.LT.0.) WRITE(*,*) "ZPMIN less than zero; corrected"
DO 120 J=1,NPV

DO 120 I=1,NPH
IF( ZPMIN.LT.0. ) THEN

ZP(I,J) = (ZP(I,J)-ZPMIN)/(ZPMAX-ZPMIN)
ELSE

ZP(I,J) = ZP(I,J)/ZPMAX
END IF

120 CONTINUE
WRITE(*,*) 'ZPMAX,ZPMIN: ',ZPMAX,ZPMIN
WRITE(*,*) 'XPMAX,XPMIN: ',XPMAX,XPMIN
WRITE(*,*) 'YPMAX,YPMIN: ',YPMAX,YPMIN

C
C Determine axis construction:
C

TICDIST = 10.
XCE = XCO + CSL
YCE = YCO + CSL
XAX(l,1) = XCO
XAX(2,1) = YCO + CSL/2.
XAX(1,2) = XCE
XAX(2,2) = XAX(2,1)
YAX(l,1) = XCO + CSL/2.
YAX(2,1) = YCO
YAX(1,2) = YAX(1,1)
YAX(2,2) = YCE
NXTIC = NINT((XPMAX-XPMIN)/TICDIST) + 1
NYTIC = NINT((YPMAX-YPMIN)/TICDIST) + 1
DO 200 I=1,NXTIC

XTIC(1,I) = XCO + REAL(I-1)/REAL(NXTIC-1)*CSL
XTIC(2,I) = XAX(2,1) - CSL/50.
XTIC(3,I) = XTIC(l,I)

200 XTIC(4,I) = XAX(2,1) + CSL/50.
DO 220 I=1,NYTIC

YTIC(1,I) = YAX(1,1) - CSL/50.
YTIC(2,I) = YCO + REAL(I-1)/REAL(NYTIC-1)*CSL
YTIC(3,I) = YAX(1,1) + CSL/50.

220 YTIC(4,I) = YTIC(2,I)
DO 230 I=1,72
J = 73-I
IF(QTITLE(J).NE.' ') GO TO 240

230 CONTINUE
240 LENT = J

Define background and notation colors:
backgound corresponds to zero intensity;
notation corresponds to complement thereof

DO 250 I=1,3
BGD(I) = CDEF(I,1)
CNO(I) = 0.3*(1. - BGD(I))

250 CONTINUE
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C Open window and transform coordinates; define picture size and
C configure monitor:

WRITE(*,*) 'Ready to set up plot'
KXO = INT(XWO)
KXE = INT(XWO'+ WSL)
KYO = INT(YWO)
KYE = INT(YWO + WSL)
CALL PREFPO( KXO,KXE,KYO,KYE )
CALL NOBORD
STATUS = WINOPE( "COLARRAY PROGRAM",20)
CALL ORTHO2( 0.,1.,0.,l.
CALL RGBMOD
CALL GCONFI
CALL C3F(BGD)
CALL CLEAR

C Loop over all polygons:

NPHM1 = NPH - 1

NPVM1 = NPV - 1

XSCL = CSL/(XPMAX - XPMIN)
YSCL = CSL/(YPMAX - YPMIN)
DO 300 I=1,NPHM1
DO 300 J=1,NPVM1

C Test for shading required:

IF( (ZP(I,J).LE.ZCDF(1)).AND.(ZP(I+1,J).LE.ZCDF(1)).AND.
+ (ZP(I,J+1).LE.ZCDF(1)).AND.(ZP(I+1,J+1).LE.ZCDF(l))
+ GO TO 300

C Assign colors to the four vertices:
C

DO 400 NC=1,NCOL-1
IF( ZP(I,J).GE.ZCDF(NC) )

+ NC1 = NC
IF( ZP(I+1,J).GE.ZCDF(NC) )

+ NC2 = NC
IF( ZP(I+1,J+1).GE.ZCDF(NC)

+ NC3 = NC
IF( ZP(I,J+1).GE.ZCDF(NC)

+ NC4 = NC
400 CONTINUE

C
PAR1 = (ZP(I,J)-ZCDF(NCl))/(ZCDF(NC1+1)-ZCDF(NCl))
PAR2 = (ZP(I+1,J)-ZCDF(NC2))/(ZCDF(NC2+1)-ZCDF(NC2))
PAR3 = (ZP(I+1,J+1)-ZCDF(NC3))/(ZCDF(NC3+1)-ZCDF(NC3))
PAR4 = (ZP(I,J+1)-ZCDF(NC4))/(ZCDF(NC4+1)-ZCDF(NC4))
DO 450 K=1,3

VTXC(K,1) = CDEF(K,NC1)+PAR1*(CDEF(K,NC1+1)-CDEF(K,NCl)
VTXC(K,2) = CDEF(K,NC2)+PAR2*(CDEF(K,NC2+1)-CDEF(K,NC2)
VTXC(K,3) = CDEF(K,NC3)+PAR3*(CDEF(K,NC3+1)-CDEF(K,NC3)
VTXC(K,4) = CDEF(K,NC4)+PAR4*(CDEF(K,NC4+1)-CDEF(K,NC4)

450 CONTINUE

C Place this polygon:

PVTX(1, 1)
PVTX(2,1)
PVTX (1, 2)
PVTX (2,2)
PVTX (1, 3)
PVTX (2,3)
PVTX (1, 4)
PVTX (2,4)

(XP(I,J) - XPMIN)*XSCL + XCO
(YP(I,J) - YPMIN)*YSCL + YCO
(XP(I+1,J) - XPMIN)*XSCL + XCO
(YP(I+1,J) - YPMIN)*YSCL + YCO
(XP(I+1,J+l) - XPMIN)*XSCL + XCO
(YP(I+1,J+l) - YPMIN)*YSCL + YCO
(XP(I,J+1) - XPMIN)*XSCL + XCO
(YP(I,J+1) - YPMIN)*YSCL + YCO

C Color Polygon (Gouraud Shading)
C

CALL BGNPOL()
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CALL C3F(VTXC(1,1) )
CALL V2F(PVTX(1, 1) )
CALL C3F(VTXC(1,2))
CALL V2F(PVTX(1,2))
CALL C3F(VTXC(1,3))
CALL V2F(PVTX(1,3))
CALL C3F(VTXC(1,4))
CALL V2F(PVTX(1,4))
CALL ENDPOL()

300 CONTINUE
C
C Draw Equatorial Axis
C

CALL C3F(CNO)
CALL BGNLIN
CALL V2F(XAX(1,l))
CALL V2F(XAX(1,2))
CALL ENDLIN
DO 500 I=1,NXTIC

CALL BGNLIN
CALL V2F(XTIC(1,I))
CALL V2F(XTIC(3,I))
CALL ENDLIN

500 CONTINUE
C
C Draw Azimuthal Axis
C

CALL BGNLIN
CALL V2F(YAX(1,1))
CALL V2F(YAX(1,2))
CALL ENDLIN
DO 520 I=1,NYTIC
CALL BGNLIN
CALL V2F(YTIC(1,I))
CALL V2F(YTIC(3,I))
CALL ENDLIN

520 CONTINUE
C
C Label Upper Half of Azimuth
C

NLAB = (NYTIC - 1)/2
DO 530 I=1,NLAB

J = I + NYTIC - NLAB
PLAB1 = YTIC(3,J) + CSL/100.
PLAB2 = YTIC(4,J)
TLAB1 = CHAR(I+ICHAR('0'))
TLAB2 = '0'
CALL CMOV2( PLAB1,PLAB2
CALL CHARST( TLAB, 1 )
CALL CHARST( TLAB2,1 )

530 CONTINUE
C
C Draw Title
C

PLAB1 = XCO + CSL/2. - REAL(LENT/2)*(CSL/WSL)*25.
PLAB2 = YCE + 25./WSL
CALL CMOV2( PLAB1,PLAB2 )
DO 540 I=1,LENT

CALL CHARST( QTITLE(I),1 )
540 CONTINUE

C
C Create Key
C

PLAB1 = XCE - 60.*CSL/WSL - 60*CSL/WSL
PLAB2 = YCE - 25.*CSL/WSL
DO 600 I=2,NCOL

CALL C3F(CNO)
CALL CMOV2( PLAB1,PLAB2 )
TKEY = ZKEY(I)*100.
IF( TKEY.GE.100. ) THEN
KEY = INT(TKEY)
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KEYI = KEY/100
KEY2 = (KEY-KEY1*100)/10
KEY3 = KEY-KEY1*100-KEY2*10

ELSE IF( TKEY.GE.10. ) THEN
KEY = INT(TKEY)
KEY1 = ICHAR(' ') - ICHAR('(
KEY2 = KEY/10
KEY3 = KEY-KEY2*10

ELSE IF( TKEY.GE.1. ) THEN
KEY1 = ICHAR(' ') - ICHARC('
KEY2 = ICHAR(' ') - ICHAR('(
KEY3 = INT(TKEY)

ELSE

' )

0' )
0')

KEY1 = INT(TKEY)
KEY2 = ICHAR('.') - ICHAR('O')
KEY3 = INT(TKEY*10.) - KEY1*10

END IF
TLAB1 = CHAR(KEY1+ICHAR('O'))
TLAB2 = CHAR(KEY2+ICHAR('0'))
TLAB3 = CHAR(KEY3+ICHAR('O'))
TLAB4 = '%'
TLAB5 =
CALL CMOV2( PLAB1,PLAB2
CALL CHARST( TLAB1,1 )
CALL CHARST( TLAB2,1 )
CALL CHARST( TLAB3,1 )
CALL CHARST( TLAB4,1 )
CALL CHARST( TLAB5,1 )
PKXLO = PLAB1 + 110.*CSL/WSL
PKYLO = PLAB2
PKXHI = PKXLO + 60.*CSL/WSL
PKYHI = PKYLO + 9.*CSL/WSL
CALL C3F(CDEF(1,I))
CALL RECTF( PKXLO,PKYLO,PKXHI,PKYHI
PLAB2 = PLAB2 - 40.*CSL/WSL

600 CONTINUE
C
C Wait 10 seconds (or pause indefinitely)
C CALL SLEEP(10)

PAUSE
C and exit

END

SUBROUTINE PALETTE( NPL,N,A,Z
REAL A(3,8),Z(8)

DO 75 J=1,4
Z(J) = 0.
DO 75 I=1,3

A(I,J) = 0.
75 CONTINUE

GO TO ( 10,20,30,40,50,60,70,80,90,100,110,120,130,140,
+ 150 ) NPL

C Black to White:
10 CONTINUE

N = 2
Z(2) = 1.
DO 11 I=1,3

A(I,2) = 1.
11 CONTINUE

GO TO 9999
C Black to Red:

20 CONTINUE
N= 2
Z(2) = 1.
A(1,2) = 1.
GO TO 9999

C Black to Green:
30 CONTINUE

N = 2
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Z(2) = 1.
A(2,2) = 1.
GO TO 9999

C Black to Blue:
40 CONTINUE

N= 2
Z(2) = i.
A(3,2) = 1.
GO TO 9999

C Red to White:
50 CONTINUE

N= 2
Z(2) = 1.
A(1,1) = 1.
DO 51 I=1,3

51 A(I,2) = 1.
GO TO 9999

C Green to White:
60 CONTINUE

N= 2
Z(2) = 1.
A(2,1) = 1.
DO 61 1=1,3

61 A(I,2) = 1.
GO TO 9999

C Blue to White:
70 CONTINUE

N= 2
Z(2) = 1.
A(3,1) = 1.
DO 71 I=1,3

71 A(I,2) = 1.
GO TO 9999

C Blue to Red:
80 CONTINUE

N = 2
Z(2) = 1.
A(3,1) = 1.
A(1,2) = 1.
GO TO 9999

C Cyan to Magenta:
90 CONTINUE

N= 2
Z(2) = 1.
A(2,1) = 1.
A(3,1) = 1.
A(1,2) = 1.
A(3,2) = 1.
GO TO 9999

C Black to Blue to Cyan to Green to Yellow to Red to Magenta to White
100 CONTINUE

N = 8
DO 101 I=2,N

101 Z(I) = REAL(I-1)/REAL(N-1)
A(3,2) = 1.
A(3,3) = 1.
A(2,3) = 1.
A(2,4) = 1.
A(2,5) = 1.
A(1,5) = 1.
A(1,6) = 1.
A(1,7) = 1.
A(3,7) = 1.
A(1,8) = 1.
A(2,8) = 1.
A(3,8) = 1.
GO TO 9999

C Variable distribution of colors: black-grayl-gray2-gray3-white
110 CONTINUE

N= 5
WRITE(*,*) '5 GRAYS: DEFINE INTENSITY LEVELS (0 - 1) >'
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READ(*,*) (Z(I),I=1,5)
IF(Z(1).GT.0.) Z(1) = 0.
DO 111 I=1,3

A(I,2) = 0.25
A(I,3) = 0.50
A(I,4) = 0.75
A(I,5) = 1.

111 CONTINUE
GO TO 9999

C Variable distribution of colors: black-redl-red2-red3-red4
120 CONTINUE

N = 5
WRITE(*,*) '5 REDS: DEFINE INTENSITY LEVELS (0 - 1) >'
READ(*,*) (Z(I),I= , 5)
IF(Z(1).GT.0.) Z(1) = 0.
A(1,2) = 0.25
A(,1,3) = 0.50
A(1,4) = 0.75
A(1,5) = 1.
GO TO 9999

C Variable distribution of colors: black-red-magenta-yellow-white
130 CONTINUE

N = 5
WRITE(*,*) '5 COLORS: DEFINE INTENSITY LEVELS (0 - 1) >'
READ(*,*) (Z(I),I=1,5)
IF(Z(1).GT.0.) Z(1) = 0.
A(1,2) = 1.
A(1,3) = 1.
A(3,3) = 1.
A(1,4) = 1.
A(2,4) = 1.
A(1,5) = 1.
A(2,5) = 1.
A(3,5) = 1.
GO TO 9999

C Variable distribution of colors: black-blue-cyan-yellow-white
140 CONTINUE

N = 5
WRITE(*,*) '5 COLORS: DEFINE INTENSITY LEVELS (0 - 1) >'
READ(*,*) (Z(I),I=1,5)
IF(Z(1).GT.0.) Z(1) = 0.
A(3,2) = 1.
A(2,3) = 1.
A(3,3) = 1.
A(1,4) = 1.
A(2,4) = 1.
A(1,5) = 1.
A(2,5) = 1.
A(3,5) = 1.
GO TO 9999

C
C Variable distribution of colors: black-blue-cyan-yellow-white

150 CONTINUE
N = 5
WRITE(*,*) '5 COLORS: DEFINE INTENSITY LEVELS (0 - 1) >'
READ(*,*) (Z(I),I=l,N)
IF(Z(1).GT.0.) Z(1) = 0.
A(1,l) = .25
A(2,1) = .25
A(3,1) = .25
A(3,2) = .75
A(1,3) = .8
A(2,3) = .5
A(3,3) = .85
A(2,4) = 1.
A(3,4) = A(3,3)
A(1,5) = 1.
A(2,5) = A(2,4)
A(3,5) = A(3,4)
GO TO 9999

C
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9999 CONTINUE
RETURN
END

SUBROUTINE VECTORIZ( SLEN,SANG,VECT
C
C Converts scalar data (lengths, angles) to three placement vectors
C Convention: SLEN(3) lies along Z axis
C SLEN(1) lies within X-Z plane
C SLEN(2) placement determined by above
C SANG(i) is the angle between SLEN(J) and SLEN(k), etc.
C

DIMENSION SLEN(3),SANG(3),VECT(3,3),ARA(3,3),ARB(3,3)
COMPL(X) = (90.-X)*3.1415926535/180.
DEGRAD = 3.1415926535/180.
DO 100 I=1,3
DO 100 J=1,3

ARA(I,J) = 0.
ARB(I,J) = 0.

100 VECT(I,J) = 0.
VECT(1,1) = SLEN(1)
VECT(1,2) = SLEN(2)
VECT(3,3) = SLEN(3)
COSGP = ( COS(SANG(3)*DEGRAD)-COS(SANG(1)*DEGRAD)*COS(SANG(2)

+ *DEGRAD) )/( SIN(SANG(1)*DEGRAD)*SIN(SANG(2)*DEGRAD)
GP = ACOS(COSGP)
CA = COMPL(SANG(1))
CB = COMPL(SANG(2))
ARA(1,1) = COS(CB)
ARA(1,3) = -SIN(CB)
ARA(2,2) = 1.
ARA(3,1) = SIN(CB)
ARA(3,3) = COS(CB)
ARB(I,1) = COSGP*COS(CA)
ARB(1,2) = -SIN(GP)
ARB(1,3) = -COSGP*SIN(CA)
ARB(2,1) = SIN(GP)*COS(CA)
ARB(2,2) = COSGP
ARB(2,3) = -SIN(GP)*SIN(CA)
ARB(3,1) = SIN(CA)
ARB(3,3) = COS(CA)
CALL MV( ARA,3,3,VECT(1,1),3,VECT(1,1) )
CALL MV( ARB,3,3,VECT(1,2),3,VECT(l,2) )
RETURN
END

SUBROUTINE LATCON
C
C This subroutine generate the unit cell volume and reciprocal lattice
C vectors from unit cell vectors. Cell vectors should be defined such
C thac the c axis coincides with the z axis.
C

COMMON /VECT/ CRAX(3,3),RLV(3,3),VOL
DIMENSION TEMP(3)
CALL VV(CRAX(1,2),CRAX(1,3),TEMP,3)
VOL = 0.
DO 100 I=1,3

100 VOL = CRAX(I,1)*TEMP(I) + VOL
DO 300 J=1,3

JP1 = MOD( J,3 ) +1
JP2 = MOD( (J+1),3 ) +1
CALL VV(CRAX(1,J),CRAX(1,JP1),TEMP,3)
DO 200 I=1,3

200 RLV(I,JP2) = TEMP(I)/VOL
300 CONTINUE

RETURN
END
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SUBROUTINE VV( A,B,C,N )

C Calculates the vector cross product C = A x B, where A,B, and C
C have length N
C

DIMENSION A(N),B(N),C(N),K(2)
DO 100 I=1,N
DO 200 J=1,2

200 K(J) = MOD( (I+J-1),N ) +1
C(I) = A(K(1))*B(K(2)) - A(K(2))*B(K(l))

100 CONTINUE
RETURN
END

SUBROUTINE MV( A,NFORMA,NA,V,N,R
C
C Multiplies matrix and vector: R = A * V
C Input: A NA x N matrix
C NFORMA First dimension of A in calling program
C NA Number of rows in A
C V Vector of length N
C N Length of vector V
C Output: R Resultant vector of length NA, can be A
C

DIMENSION A(NFORMA,NFORMA), V(N), R(NA), RR(20)
IF (NA.GT.NFORMA) RETURN
DO 100 I=1,NA
X = 0.
DO 200 K=1,N

200 X = X + A(I,K)*V(K)
100 RR(I) = X

DO 300 I=I,NA
300 R(I) = RR(I)

RETURN
END

SUBROUTINE MM( A,B,C,NFORMA,NFORMB,NFORMC,NA,MA,MB
C
C - Multiplies matrix with matrix: C = A X B
C (C can be A or B)
C

DIMENSION CC(20,20),A(NFORMA,NFORMA),B(NFORMB,NFORMB)
DIMENSION C(NFORMC,NFORMC)
DO 100 I=1,NA

DO 100 J=1,MB
X = 0.
DO 200 K=1,MA

200 X = X + A(I,K)*B(K,J)
100 CC(I,J) = X

DO 300 I=1,NA
DO 300 J=1,MB

300 C(I,J) = CC(I,J)
.RETURN
END

FUNCTION ATSCAT( KA,X )
C
C Calculates atomic scattering factor, given atom type and ordinate
C function sin(theta)/lambda , where theta is scattering angle and
C lambda is the incident x-ray wavelength. the sca ttering factors
C are calculated from a best fit curve of the form:
C
C F(X) = P(1)*EXP(-P(2)*X**2) + P(3)*EXP(-P(4)*X**2) + P(5)
C
C Applied to values provided by L.E. Alexander, 'X-ray Diffraction
C Methods in Polymer Science', Wiley-Interscience,1969,p533, taken
C in turn from 'International Tables for X-ray Crystallography',
C Volume III, p202.
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C ordinate range = 0.0 - 1.0
C weighting factor = exp( -(x-0.5)**2 )
C Data in P array correspond to: P(i,l) = carbon
C P(i,2) = hydrogen
C P(i,3) = nitrogen
C P(i,4) = oxygen
C P(i,5) = [empty]
C P(i,6) = chlorine
c P(i,7) = bromine
C

DIMENSION P(5,7)
DATA P/1.248 ,2.517,3.678 ,23.747,1.044,

+ 0.3916,7.483,0.5958,30.072,0.0107,
+ 1.778 ,3.836,3.938 ,19.226,1.260,
+ 2.836 ,4.423,3.773 ,17.229,1.373,
+ 0.,0.,0.,0.,0.,
+ 8.066 ,0.9734,7.983,22.093,0.9458,
+ 19.47 ,2.192,8.390 ,27.804,7.083/

C
C Convert atomic numbers to array identification:
C

IF( KA.EQ.6 ) THEN
K= 1

ELSE IF( KA.EQ.1 ) THEN
K= 2

ELSE IF( KA.EQ.7 ) THEN
K= 3

ELSE IF( KA.EQ.8 ) THEN
K = 4

ELSE IF( KA.EQ.9 ) THEN
K 5

ELSE IF( KA.EQ.17 ) THEN
K = 6

ELSE IF( KA.EQ.35 ) THEN
K= 7

ELSE
WRITE(*,*) 'ERROR: Atomic Scattering Curve Not Available'

END IF
ATSCAT=P(1,K)*EXP(-P(2,K)*X*X2)+P(3,K)*EXP(-P(4,K)*X**2)+P(5,K)
RETURN
END

SUBROUTINE LUBKSB(A,N,NP,INDX,B)
DIMENSION A(NP,NP),INDX(N),B(N)
II=0
DO 12 I=l,N

LL=INDX(I)
SUM=B(LL)
B(LL)=B(I)
IF (II.NE.0)THEN

DO 11 J=II,I-1
SUM-SUM-A(I,J)*B(J)

11 CONTINUE
ELSE IF (SUM.NE.0.) THEN

II=I
ENDIF
B(I)-SUM

12 CONTINUE
DO 14 I=N,1,-l

SUM=B(I)
IF(I.LT.N)THEN
DO 13 J-I+1,N

SUM-SUM-A(I,J)*B(J)
13 CONTINUE

ENDIF
B(I)=SUM/A(I,I)

14 CONTINUE
RETURN
END
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SUBROUTINE LUDCMP(A,N,NP,INDX,D)
PARAMETER (NMAX=100, TINY=1. E-20)
DIMENSION A(NP,NP), INDX(N),VV(NMAX)
D=l.
DO 12 I=1,N
AAMAX= 0.
DO 11 J=1,N

IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J))
11 CONTINUE

IF (AAMAX.EQ.0.) PAUSE 'Singular matrix.'
VV(I)=. /AAMAX

12 CONTINUE
DO 19 J=1,N

IF (J.GT.1) THEN
DO 14 I=1,J-1

SUM=A(I, J)
IF (I.GT.1)THEN
DO 13 K=1,I-1

SUM=SUM-A (I, K) *A (K, J)
13 CONTINUE

A(I,J)=SUM
ENDIF

14 CONTINUE
ENDIF
AAMAX= 0.
DO 16 I=J,N

SUM=A (I, J)
IF (J.GT.1)THEN
DO 15 K=1,J-1

SUM=SUM-A(I,K) *A(K,J)
15 CONTINUE

A(I, J)=SUM
ENDIF
DUM=W (I) *ABS (SUM)
IF (DUM.GE.AAMAX) THEN

IMAX=I
AAMAX=DUM

ENDIF
16 CONTINUE

IF (J.NE.IMAX)THEN
DO 17 K=1,N

DUM=A ( IMAX, K)
A(IMAX,K)=A(J,K)
A(J,K)=DUM

17 CONTINUE
D=-D
VV (IMAX) =W (J)

ENDIF
INDX (J) =IMAX
IF (J.NE.N) THEN

IF(A(J,J).EQ.0.)A(J,J)=TINY
DUM=1. /A (J, J)
DO 18 I=J+1,N

A(I, J) =A(I, J) *DUM
18 CONTINUE

ENDIF
19 CONTINUE

IF(A(N,N) .EQ.0.)A(N,N)=TINY
RETURN
END

354


