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Abstract
Artificial intelligence can be more powerful than human intelligence. Many problems are
perhaps challenging from a human perspective. These could be seeking statistical patterns
in complex and structured objects, such as drug molecules and the global financial system.
Advances in deep learning have shown that the key to solving such tasks is to learn a good
representation. Given the representations of the world, the second aspect of intelligence is
reasoning. Learning to reason implies learning to implement a correct reasoning process,
within and outside the training distribution.

In this thesis, we address the fundamental problem of modeling intelligence that can
learn to represent and reason about the world. We study both questions from the lens of
graph neural networks, a class of neural networks acting on graphs. First, we can abstract
many objects in the world as graphs and learn their representations with graph neural
networks. Second, we shall see how graph neural networks exploit the algorithmic structure
in reasoning processes to improve generalization.

This thesis consists of four parts. Each part also studies one aspect of the theoretical
landscape of learning: the representation power, generalization, extrapolation, and opti-
mization. In Part I, we characterize the expressive power of graph neural networks for
representing graphs, and build maximally powerful graph neural networks. In Part II, we
analyze generalization and show implications for what reasoning a neural network can
sample-efficiently learn. Our analysis takes into account the training algorithm, the network
structure, and the task structure. In Part III, we study how neural networks extrapolate
and under what conditions they learn the correct reasoning outside the training distribution.
In Part IV, we prove global convergence rates and develop normalization methods that
accelerate the training of graph neural networks. Our techniques and insights go beyond
graph neural networks, and extend broadly to deep learning models.

Thesis Supervisor: Stefanie Jegelka
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Overview

Artificial intelligence can be more powerful than human intelligence. This thesis is about

modeling intelligence that can learn to represent and reason about the world.

Representation. The world consists of objects, from a quark to a planet. A core part of

intelligence is being able to capture and then predict certain properties of these objects.

While humans are good at inferring from visual hues, their innate power is perhaps more

limited when they have to make sense of other complex and structured objects. For example,

it is challenging to tell whether a drug molecule is lethal or effective without having seen it

before. As another example, experienced human traders may well understand the macro, but

they inevitably miss the high-frequency and statistical hues of the financial market.

The advances of modern deep learning have shown that an effective approach to the

questions above is to learn a good representation [LeCun et al., 2015]. That is, we train a

neural network 𝑓 : 𝒳 → R𝑑 to map an object defined over 𝒳 to the vector space R𝑑, with

which we can apply a linear transform to make the prediction1. Hence, we hope to build

neural networks that can almost universally act on the objects in the world. In other words,

we define 𝒳 to be general enough to abstract many objects, and design neural networks 𝑓

that can effectively act on and learn representations in 𝒳 . In fact, 𝒳 = R𝑚×𝑛 was sufficient

1The linear transform is often a part of the neural network, learned end to end.
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for some domains such as images. A more general choice of 𝒳 is the space of graphs. We

can define a graph 𝐺 = (𝑉,𝐸) by its graph structure (𝑉,𝐸), node features ℎ𝑣 ∈ R𝑚1 for

𝑣 ∈ 𝑉 , and edge features ℎ(𝑢,𝑣) ∈ R𝑚2 for (𝑢, 𝑣) ∈ 𝐸. One can easily see that the space

of graphs generalizes the image space R𝑚×𝑛 by encoding the positional information in the

node features. Indeed, many objects are either explicitly or implicitly represented by graphs,

for instance, molecules, the global financial system, and 3D objects as meshes or point

clouds. Hence, we consider the space of graphs and study representation from the lens of

graph neural networks (GNNs), a class of neural networks acting on graphs [Gori et al.,

2005, Scarselli et al., 2009].

Effective representation requires powerful and expressive models that can capture fine-

grained information of the graphs. In the first part of the thesis, we address the core question

regarding representation learning of graphs:

How can we build powerful graph neural networks?

We theoretically analyze the learned representation and expressive power of GNNs, and

apply our theory to build maximally powerful GNNs. Specifically, we solve two problems.

First, surprisingly, deeper GNNs often underperform shallow GNNs in node prediction

tasks. We give a theoretical explanation for this puzzle and propose more powerful and

flexible models to overcome such issues. Second, we ask how powerful GNNs are for

distinguishing non-isomorphic graphs, i.e., solving the graph isomorphism problem. We

introduce a framework to characterize the discriminative power of GNNs and design a

simple yet powerful GNN architecture.

Reasoning. The second core part of intelligence is reasoning. Given the representations

of the objects in the world, we are curious about how they relate, interact, and evolve.

For example, one may be asked to reason about and predict how a set of physical objects

would evolve in the next few seconds [Wu et al., 2017]. One may also be interested in

learning to solve puzzles or mathematical equations after having been exposed to some

examples [Santoro et al., 2018]. To reach an answer to questions like these, we need a

corresponding reasoning process. We may understand a reasoning process as an algorithm

𝑔 : 𝒳 → R𝑑 where 𝒳 is the space of a collection or a graph of objects, for example,
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those used to solve a mathematical equation. Hence, learning to reason implies learning to

implement a correct reasoning algorithm.

While many neural architectures are able to represent these complex, structured reasoning

processes by the universal approximation properties [Hornik et al., 1989], the solutions they

find via stochastic gradient descent often do not generalize well to unseen situations. The

successful cases often possess specific network structure. For example, GNNs acting on a

graph of the objects have shown to succeed in a broad range of reasoning problems, such as

visual question answering, intuitive physics, and mathematical reasoning. The graph that the

GNN acts on may be constructed based on prior knowledge or may simply be a complete

graph. Theoretically, there is still limited understanding of what affects the generalization of

neural networks, what reasoning they can learn, and what are the limitations. This is also

crucial for modeling network architectures for new reasoning tasks. We ask the following

fundamental question:

What can neural networks reason about?

To answer the question above, we must understand the generalization properties of

neural networks, in particular structured networks like GNNs, for both the interpolation

and extrapolation regimes. In the interpolation regime, we assume the training distribution

𝒫train and test distribution 𝒫test are the same. In the extrapolation regime, we may be asked

to predict for situations outside the training domain 𝒟, i.e., 𝒫test is defined over 𝒳 ∖ 𝒟.

Suppose we train a neural network 𝑓 : 𝒳 → R𝑑 with training examples {(𝑥𝑖, 𝑦𝑖)}𝑛
𝑖=1 ⊆ 𝒟

by some training algorithm such as gradient descent. Let 𝑔 : 𝒳 → R𝑑 be the underlying

function (a correct reasoning process) and ℓ a loss function. Our goal is to understand under

what conditions a neural network generalizes (interpolate or extrapolate) well in a task, i.e.,

the generalization or extrapolation error E𝑥∼𝒫test [ℓ(𝑓(𝑥), 𝑔(𝑥))] is small.

Recent advances in deep learning show that highly over-parameterized models may

generalize even better, suggesting the complexity of model space alone is not the determining

factor of generalization [Zhang et al., 2017]. In our analysis, we take into account all the

following factors: the training algorithm (e.g., gradient descent), the inductive biases of

network structure, the task structure, and the training data distribution.
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Approach Assumptions Practical implication Regime
Complexity based

[Scarselli et al., 2018]
[Garg et al., 2020]

VC dimension,
covering number

via norms

Norms are unknown
before training Interpolation

Graph NTK
[Du et al., 2019b]

(Chapter 5)
+ Training algorithm

Provable learning of
simple functions Interpolation

Algorithmic alignment
[Xu et al., 2020]

[Xu et al., 2021b]
(Chapter 6 and 8)

+ Network structure
& task structure

Structured functions
like algorithms

Interpolation
& extrapolation

Table 1.1: Approaches of generalization analysis of GNNs. The first row shows existing
approaches, and the second and third rows are our approaches. From top to bottom, more
factors are assumed and taken into account, and in return we get more practical implications
and refined analysis. In Chapter 5, we assume the training algorithm and show provable
learning of simple functions on graphs. In Chapter 6 and 8, we additionally assume the
network and task structure to analyze learning more complex and structured functions like
reasoning algorithms. An important advantage of our approaches compared to complexity
based approaches is that we can better predict in which tasks a network can perform well
before actually training the neural network.

We study generalization for both interpolation and extrapolation, and show implica-

tions for reasoning. The table above provides an overview of the existing approaches and

our approaches for generalization analysis of GNNs and demonstrates the differences in

assumptions and practical implications. As a warm-up, we first study the learning dynam-

ics of over-parameterized GNNs trained by gradient descent, and show equivalence to a

graph neural tangent kernel. This relation gives generalization error bounds for GNNs and

provable learning of simple functions on graphs. Second, we generalize our analysis to

general network architectures, and show how the interplay of the network structure and the

algorithmic structure of the reasoning process affects the sample efficiency. Our theory

explains the success and limitations of GNNs, precisely characterizes what reasoning a

neural network may sample-efficiently learn, and provides guidance for designing new

architectures. Finally, we study how neural networks trained by gradient descent extrapolate,

i.e., what they learn outside the support of the training distribution. We identify conditions

under which feedforward neural networks and GNNs extrapolate well. Our analysis suggests
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implications for building models that generalize and extrapolate well for reasoning.

Above is our introduction to the main results of the thesis. In the last part of the thesis,

to complete the picture of the theoretical understanding of GNNs, we present additional

results on the optimization of GNNs. First, we analyze the optimization dynamics to show

global convergence and implicit acceleration results. Second, we practically improve the

training of GNNs by developing a normalization method which significantly accelerates the

training as well as improves generalization.

1.2 Outline

This thesis consists of four parts. In Part I, we build models for representation learning. In

Part II and Part III, we focus on reasoning. Each part also respectively studies one aspect

of the theoretical landscape of learning: Part I studies expressive power; Part II studies

generalization; Part III analyzes extrapolation; Part IV is about optimization.

Part I asks how to build powerful models for representation learning of graphs. We start

by giving background in Chapter 2 on the problem formulation and graph neural networks.

In Chapter 3, which is based on [Xu et al., 2018], we solve the puzzle of why deeper GNNs

often underperform shallow GNNs, and propose a solution – Jumping Knowledge Networks

(JK-Nets). Then in Chapter 4, based on [Xu et al., 2019], we introduce a theoretical

framework to characterize the expressive power of GNNs for distinguishing non-isomorphic

graphs, i.e., the graph isomorphism problem, and develop a maximally powerful GNN – the

Graph Isomorphism Network (GIN).

Part II asks how to build models that generalize well for reasoning and what are the the-

oretical limits. We start with a warm-up in Chapter 5, based on [Du et al., 2019b], where we

draw an equivalence of the learning dynamics of over-parameterized GNNs to that of graph

neural tangent kernel (GNTK). This relation gives us generalization bound and provable

learning of simple functions on graphs. We then answer the questions regarding reasoning

in Chapter 6, based on [Xu et al., 2020], for general neural network architectures including

GNNs. We introduce a theoretical framework, algorithmic alignment, that measures how

well the network architecture aligns with the underlying reasoning process. We derive
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sample complexity bound that decreases with better alignment. Our framework implies

GNNs can sample-efficiently learn dynamic programming, an algorithmic paradigm which

solves a broad range of reasoning problems.

Part III asks how to design models that extrapolate well, i.e., generalize to unseen

domains outside the training distribution. Extrapolation is especially desirable for reasoning.

In Chapter 7, based on [Xu et al., 2021b], we analyze how feedforward neural networks

trained by gradient descent extrapolate, and identify conditions under which they extrapolate

well. Building upon the results of feedforward neural networks, in Chapter 8, we study how

networks with more complex structures like GNNs extrapolate, and introduce the linear

algorithmic alignment framework for improving extrapolation. Our analysis takes into

account all the following factors: the training algorithm, the network architecture, the task

structure, and the training distribution (e.g., data geometry and graph structure).

Finally, Part IV complements the previous parts and asks how to improve the optimization

of GNNs. In Chapter 9, which is based on [Xu et al., 2021a], we establish that gradient

descent training of linearized GNNs converges to a global minimum with a linear rate. Our

results hold for GNNs with any finite depth, with or without skip connections. In addition,

we study how factors like skip connections and depth influence the speed of convergence.

In Chapter 10, based on [Cai et al., 2021], we practically improve the training of GNNs.

We adapt, evaluate, and theoretically understand how normalization methods may help

with training. As an example, we explain the effectiveness of InstanceNorm based on a

preconditioning argument, and explain why BatchNorm is less effective by the variance of

batch statistics in graphs. Our understanding further leads to GraphNorm, a method which

significantly accelerates the training and improves the generalization.

1.3 Related Research

We first provide the complete references of the works covered in this thesis, and then other

related works by the author not covered in this thesis.

• Part I - Chapter 3 [Xu et al., 2018]

Representation Learning on Graphs with Jumping Knowledge Networks.

26



Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi,

Stefanie Jegelka. In Proceedings of the 35th International Conference on Machine

Learning, 2018.

• Part I - Chapter 4 [Xu et al., 2019]

How Powerful are Graph Neural Networks?

Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka. In Proceedings of the 7th

International Conference on Learning Representations, 2019.

• Part II - Chapter 5 [Du et al., 2019b]

Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph

Kernels.

Simon S. Du, Kangcheng Hou, Barnabas Poczos, Ruslan Salakhutdinov, Ruosong

Wang, Keyulu Xu. Advances in Neural Information Processing Systems, 2019.

• Part II - Chapter 6 [Xu et al., 2020]

What Can Neural Networks Reason About?

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Ste-

fanie Jegelka. In Proceedings of the 8th International Conference on Learning

Representations, 2020.

• Part III - Chapter 7 and 8 [Xu et al., 2021b]

How Neural Networks Extrapolate: From Feedforward to Graph Neural Net-

works.

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S. Du, Ken-ichi Kawarabayashi, Ste-

fanie Jegelka. In Proceedings of the 9th International Conference on Learning

Representations, 2021.

• Part IV - Chapter 9 [Xu et al., 2021a]

Optimization of Graph Neural Networks: Implicit Acceleration by Skip Con-

nections and More Depth.
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Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, Kenji Kawaguchi. In Proceedings of the

38th International Conference on Machine Learning, 2021.

• Part IV - Chapter 10 [Cai et al., 2021]

GraphNorm: A Principled Approach to Accelerating Graph Neural Network

Training.

Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-Yan Liu, Liwei Wang. In Proceed-

ings of the 38th International Conference on Machine Learning, 2021.

Here we list other works by the author. While these papers are strongly related to the

thesis, they were left out to maintain a clearer story.

• Work on natural language processing [Zhang et al., 2019b]:

Are Girls Neko or Shōjo? Cross-Lingual Alignment of Non-Isomorphic Embed-

dings with Iterative Normalization.

Mozhi Zhang, Keyulu Xu, Ken-ichi Kawarabayashi, Stefanie Jegelka, Jordan Boyd-

Graber. In Proceedings of the 57th Conference of the Association for Computational

Linguistics, 2019,

• Work on adversarial learning on graphs [Liao et al., 2021]:

Information Obfuscation of Graph Neural Networks.

Peiyuan Liao, Han Zhao, Keyulu Xu, Tommi Jaakkola, Geoffrey Gordon, Stefanie

Jegelka, Russ Salakhutdinov. In Proceedings of the 38th International Conference on

Machine Learning, 2021.

• Work on spectral graph theory [Harvey and Xu, 2016]:

Generating Random Spanning Trees via Fast Matrix Multiplication.

Nicholas J. A. Harvey and Keyulu Xu. Latin American Theoretical Informatics

Symposium, 2016.

• Work on noisy labels and algorithmic alignment [Li et al., 2020b]:
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Jingling Li, Mozhi Zhang, Keyulu Xu, John P. Dickerson, Jimmy Ba.

• Work on generative models [Li et al., 2017]:

Distributional Adversarial Networks.

Chengtao Li, David Alvarez-Melis, Keyulu Xu, Stefanie Jegelka, Suvrit Sra. Interna-

tional Conference on Learning Representations workshop, 2018.

In connection to the current thesis, Zhang et al. [2019b] studies generalization across

languages, a special type of extrapolation. Liao et al. [2021] states the inherent trade-off

of task performance and adversarial defense for GNNs, complementing the generalization

analysis in non-adversarial settings. Li et al. [2020b] is an extension and application of

algorithmic alignment to the setting of training with noisy labels.
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Chapter 2

Preliminaries

In this chapter, we introduce the basic problem setup and background on deep learning and

graph neural networks1.

Representation of graphs. Many objects in the world can be represented with graphs,

explicitly or implicitly. A graph 𝐺 = (𝑉,𝐸) is defined by its graph structure (𝑉,𝐸), node

features 𝑋𝑣 ∈ R𝑚1 for 𝑣 ∈ 𝑉 , and edge features 𝑋(𝑢,𝑣) ∈ R𝑚2 for (𝑢, 𝑣) ∈ 𝐸. For example,

a molecular graph encodes the atom types in node features and bond information in edge

features; a global financial system encodes the institutional information in node features and

inter-institutional information in edge features. One can generalize the image space R𝑚×𝑛

or the sequence space R𝑚×𝑙 to the graph space by encoding the positional information in

the nodes or edges. It is also common to not have any node or edge features, in which case

what matters is the graph structure. For such graphs, we can use a fixed vector (e.g., all-one

vector) as node features.

Given the graph as input, there are mainly three types of prediction of interest: (1) Node

prediction, where each node 𝑣 ∈ 𝑉 has an associated label 𝑦𝑣 and the goal is to learn a

representation vector ℎ𝑣 ∈ R𝑑 of 𝑣 such that 𝑣’s label can be predicted as 𝑦𝑣 = 𝑓 𝑙(ℎ𝑣) where

𝑓 𝑙 : R𝑑 → R is a linear transform often learned end to end; (2) Graph prediction, where,

given a set of graphs {𝐺1, ..., 𝐺𝑁} ⊆ 𝒢 and their labels {𝑦1, ..., 𝑦𝑁} ⊆ 𝒴 , we aim to learn a

representation vector ℎ𝐺 ∈ R𝑑 that helps predict the label of an entire graph, 𝑦𝐺 = 𝑓 𝑙(ℎ𝐺).
1We may use slightly different notations in each chapter for simplicity of exposition.
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(3) Edge prediction, where a pair of nodes (𝑢, 𝑣) has an associated label 𝑦(𝑢,𝑣) and the goal

is to predict 𝑦(𝑢,𝑣) using either node representations ℎ𝑢 and ℎ𝑣 or additionally learn edge

representations ℎ(𝑢,𝑣) for prediction.

In general, we consider the supervised learning setting. We have a set of training

examples {𝐺1, ..., 𝐺𝑁}. For each 𝐺𝑖 we have label 𝑦𝑖 for the entire graph, or labels for (a

set of) the nodes on 𝐺𝑖, or labels for the edges. Let 𝑓 be a graph neural network (GNN)

that acts on a graph. The GNN 𝑓 produces the 1) node representations ℎ𝑣 for 𝑣 ∈ 𝑉 , and

2) graph representation ℎ𝐺 for the entire graph2. Sometimes edge representations are also

produced. We can train the GNN 𝑓 by specifying a loss function on the labels (graph-level,

node-level, or edge-level). For example, in the case of graph prediction with squared loss,

we have the following loss:

𝑁∑︁
𝑖=1

(︁
𝑓 𝑙(𝑓(𝐺𝑖)) − 𝑦𝑖

)︁2
, (2.1)

where the linear transform 𝑓 𝑙 : R𝑑 → R and 𝑓 : 𝒢 → R𝑑 are trained together end to end. We

train the GNN by minimizing the loss function with a training algorithm such as stochastic

gradient descent. Next, we introduce background on GNNs.

Graph neural networks. GNN is a class of neural networks acting on graphs. The

concept was initially proposed by [Gori et al., 2005, Scarselli et al., 2009]. GNNs use the

graph structure, node features 𝑋𝑣, and edge features 𝑋(𝑢,𝑣) to learn representation vectors

of the nodes ℎ𝑣 and the entire graph ℎ𝐺.

Modern GNNs follow a recursive message passing (or neighbor aggregation) frame-

work [Gilmer et al., 2017, Xu et al., 2018, 2019], where we iteratively update the repre-

sentation of a node ℎ(𝑘)
𝑣 in iteration 𝑘 by aggregating representations of its neighbors ℎ(𝑘)

𝑢 ,

where 𝑢 ∈ 𝒩 (𝑣) are adjacent to 𝑣. The initial node representations ℎ(0)
𝑣 are set to the input

node features ℎ(0)
𝑣 = 𝑋𝑣. After 𝑘 iterations of aggregation or message passing, a node’s

2We sometimes use bold symbols to indicate vectors. The notation depends on the specific chapter.
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representation captures the information within its 𝑘-hop neighborhood.

𝑎(𝑘)
𝑣 = AGGREGATE(𝑘)

(︁{︁
ℎ(𝑘−1)

𝑢 : 𝑢 ∈ 𝒩 (𝑣)
}︁)︁
, (2.2)

ℎ(𝑘)
𝑣 = COMBINE(𝑘)

(︁
ℎ(𝑘−1)

𝑣 , 𝑎(𝑘)
𝑣

)︁
, (2.3)

where ℎ(𝑘)
𝑣 is the feature vector of node 𝑣 in the 𝑘-th iteration/layer, and 𝒩 (𝑣) is a set of

nodes adjacent to 𝑣. The choice of AGGREGATE(𝑘)(·) and COMBINE(𝑘)(·) in GNNs is

crucial, and many architectures for AGGREGATE have been proposed [Duvenaud et al.,

2015, Defferrard et al., 2016, Kearnes et al., 2016, Kipf and Welling, 2017]. To incorporate

edge features, we can simply apply the following similar framework:

ℎ(𝑘)
𝑣 = AGGREGATE(𝑘)

(︁{︁(︁
ℎ(𝑘−1)

𝑢 , ℎ(𝑘−1)
𝑣 , 𝑋(𝑢,𝑣)

)︁
: 𝑢 ∈ 𝒩 (𝑣)

}︁)︁
. (2.4)

For node prediction or edge prediction, the node representation ℎ(𝐾)
𝑣 of the final iteration is

used for prediction. We can also use node representations from previous iterations. We will

see the benefits of doing so in Chapter 3.

For graph prediction, we aggregate node representations for all nodes on the graph to

obtain the entire graph’s representation ℎ𝐺:

ℎ𝐺 = READOUT
(︁{︁
ℎ(𝐾)

𝑣

⃒⃒⃒
𝑣 ∈ 𝐺

}︁)︁
. (2.5)

READOUT can be a simple permutation invariant function such as summation or a more

sophisticated function. In the main thesis, we will understand how to build the AGGREGATE

and READOUT for better expressive power, generalization, and extrapolation. For now, let

us see a few example architectures from the previous works.

In Graph Convolutional Networks (GCN) [Kipf and Welling, 2017], the element-wise

mean pooling is used for aggregating messages. Let 𝑊 𝑘 denote a learnable weight matrix

and ReLU the non-linearity activation function ReLU(𝑥) = max(0, 𝑥). The update steps of

GCN are as follows:

ℎ(𝑘)
𝑣 = ReLU

(︁
𝑊 𝑘 · MEAN

{︁
ℎ(𝑘−1)

𝑢 , ∀𝑢 ∈ 𝒩 (𝑣) ∪ {𝑣}
}︁)︁
. (2.6)
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The following update with a slightly different normalization is also used for GCNs:

ℎ(𝑘)
𝑣 = ReLU

(︂
𝑊 𝑘 ·

∑︁
𝑢∈ ̃︀𝒩 (𝑣)

(deg(𝑣)deg(𝑢))−1/2 ℎ(𝑘−1)
𝑢

)︂
, (2.7)

where deg(v) stands for the degree of node v in 𝐺, and ̃︁𝒩 (𝑣) denotes 𝒩 (𝑣) ∪ 𝑣.

A second example is GraphSAGE [Hamilton et al., 2017], whose AGGREGATE has

been formulated as

𝑎(𝑘)
𝑣 = MAX

(︁{︁
ReLU

(︁
𝑊 𝑘 · ℎ(𝑘−1)

𝑢

)︁
, ∀𝑢 ∈ 𝒩 (𝑣)

}︁)︁
, (2.8)

where MAX represents an element-wise max-pooling. Other versions of GraphSAGE are

also possible, e.g., using MEAN or RNN in place of MAX. The COMBINE step is a

concatenation followed by a linear mapping 𝑊 ·
[︁
ℎ(𝑘−1)

𝑣 , 𝑎(𝑘)
𝑣

]︁
.

Other examples are Graph Attention Network (GAT) [Velickovic et al., 2018] and Trans-

former [Vaswani et al., 2017], whose update step uses the attention mechanism [Bahdanau

et al., 2014], i.e., weighted average with learned weights. There are multiple ways to

parameterize the attention weights, e.g., by dot product or a feedforward neural network.

We refer to the respective papers for the specific attention operation used. It is worth

mentioning that Transformers are proposed for natural language processing where the input

is often a sequence, and it has been successfully applied to many other domains such as

images [Dosovitskiy et al., 2020]. We can view the structure of Transformer as a message

passing GNN acting on a complete graph, where each node is a word in a sequence and the

node feature encodes the positional information.

Besides the message passing view, we can also view GNNs as structured neural net-

works with weight shared modules that parameterize the messages. This view is helpful in

understanding GNNs for learning reasoning problems.

Reasoning with graph neural networks. Reasoning spans a variety of tasks, for instance,

visual and text-based question answering [Johnson et al., 2017a, Weston et al., 2015, Hu

et al., 2017, Fleuret et al., 2011, Antol et al., 2015], intuitive physics, i.e., predicting the
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time evolution of physical objects [Battaglia et al., 2016, Watters et al., 2017, Fragkiadaki

et al., 2016, Wu et al., 2017], mathematical reasoning [Saxton et al., 2019, Chang et al.,

2019] and visual IQ tests [Santoro et al., 2018, Zhang et al., 2019a].

It is often more sample efficient to separate reasoning from perception or representa-

tion [Mao et al., 2019, Yi et al., 2018a]. Hence, following previous works, we assume access

to the representation of objects in a world or universe 𝑆, i.e., a configuration/set of objects

to reason about. Each object 𝑠 ∈ 𝑆 is represented by a representation vector 𝑋𝑠. The repre-

sentation could be descriptions prepared by humans or features learned by representation

learning steps such as image segmentation [Santoro et al., 2017]. Information about the

specific question can also be included in the object representations. Given a set of universes

{𝑆1, ..., 𝑆𝑀} and answer labels {𝑦1, ..., 𝑦𝑀} ⊆ 𝒴 , we aim to learn a function 𝑔 (a reasoning

process) that can answer questions about unseen universes, 𝑦 = 𝑔 (𝑆). Mathematically, a

universe 𝑆 can be a set, a sequence, or a graph, depending on the information available

between the objects.

There are many reasoning models. Here we introduce GNNs for reasoning and defer

the introduction of other models to the main thesis. Suppose the input 𝑆 is a set of object

representations. GNNs can act on the set by considering objects as nodes and assuming all

objects pairs are connected, i.e., a complete graph:

ℎ(𝑘)
𝑠 =

∑︁
𝑡∈𝑆

MLP(𝑘)
1

(︁
ℎ(𝑘−1)

𝑠 , ℎ
(𝑘−1)
𝑡

)︁
, ℎ𝑆 = MLP2

(︂∑︁
𝑠∈𝑆

ℎ(𝐾)
𝑠

)︂
, (2.9)

where ℎ𝑆 is the answer/output and 𝐾 is the number of GNN layers. Each object’s represen-

tation is initialized as ℎ(0)
𝑠 = 𝑋𝑠. MLP stands for multilayer perceptron, a.k.a. feedforward

neural networks. We can also easily incorporate edge features into the MLP module of

(2.9). The slight differences of the most popular GNN architectures for representation

and reasoning perhaps stem from the difference of the underlying function, e.g., statistical

patterns in graphs or a reasoning process.
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Part I

Representation: Expressive Power
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Chapter 3

Puzzle of the Underperformance of

Deeper GNNs

This part of the thesis is about modeling intelligence for representation. A good representa-

tion requires powerful and expressive models that can capture fine-grained information of

an object. In the following two chapters, we address two fundamental questions regarding

representation learning of graphs. First, surprisingly, deeper GNNs often underperform

shallow GNNs in node prediction tasks. We give an explanation for this puzzle and propose

a solution. Second, we ask how powerful GNNs are for distinguishing non-isomorphic

graphs, i.e., the graph isomorphism problem. We introduce a framework to analyze the

discriminative power of GNNs and design a simple yet powerful GNN architecture.

3.1 Introduction

Graphs are a ubiquitous structure. Real-world graphs such as social networks, financial

networks, and biological networks represent important statistical information through its

structures, for example, the communities a person is in, the functional role of a molecule,

and the sensitivity of the assets of an enterprise to external shocks.

Representation learning of nodes in graphs aims to extract high-level features from a

node as well as its neighborhood, and has proved extremely useful for many applications,

such as node classification, clustering, and link prediction [Perozzi et al., 2014, Monti et al.,
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2017, Grover and Leskovec, 2016, Tang et al., 2015]. Graph neural networks (GNNs) are an

effective framework for representation learning of nodes and graphs [Scarselli et al., 2009].

These models learn to iteratively aggregate the hidden features of every node in the graph

with its adjacent nodes’ as its new hidden features, where an iteration is parametrized by a

layer of the neural network. Theoretically, an aggregation process of k iterations makes use

of the subgraph structures within 𝑘 hops.

Such promising models sometimes lead to surprises. For example, it has been observed

that the best performance with one of the existing GNN models, Graph Convolutional

Networks (GCN), is achieved with a 2-layer model. Deeper versions of the model that,

in principle, have access to more information, perform worse [Kipf and Welling, 2017].

A similar degradation of learning for computer vision problems is resolved by residual

connections [He et al., 2016] that greatly aid the training of deep models. But, even with

residual connections, GCNs with more layers do not perform as well as the 2-layer GCN on

many datasets, especially for node prediction tasks.

Motivated by this puzzle, in this chapter, we address two questions. First, we study

properties and resulting limitations of the learned node representations of message passing

GNNs. Our analysis explains the puzzle by relating the learned representations to the

subgraph structure (e.g., expanders or trees) and suggests how the optimal depth depends

on the structure. Second, based on this analysis, we propose a more powerful architecture

that, as opposed to existing models, enables adaptive, structure-aware representations and

makes deeper GNNs perform better. Such representations are particularly interesting for

representation learning on large complex graphs with diverse subgraph structures.

Model analysis. To understand the learned node representations of message passing

GNNs, we analyze the effective range of nodes that any given node’s representation draws

from. We summarize this sensitivity analysis by what we name the influence distribution of

a node. This effective range implicitly encodes prior assumptions on what are the “nearest

neighbors” that a node should draw information from. In particular, we will see that this

influence is heavily affected by the graph structure, raising the question whether “one size

fits all”, in particular in graphs whose subgraphs have varying properties (such as more
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(a) 4 steps at expander (b) 4 steps at tree (c) 5 steps at tree

Figure 3-1: Expansion of a random walk and influence distribution starting at square
nodes in subgraphs with different structures. Different subgraph structures result in very
different effective neighborhood sizes.

tree-like or more expander-like).

In particular, our more formal analysis connects influence distributions with the spread

of a random walk at a given node, a well-understood phenomenon as a function of the graph

structure and eigenvalues [Lovász, 1993]. For instance, in some cases and applications, a

2-step random walk influence that focuses on local neighborhoods can be more informa-

tive than higher-order features where some of the information may be “washed out” via

averaging.

Changing locality. To illustrate the effect and importance of graph structure, recall that

many real-world graphs possess locally strongly varying structure. In biological and citation

networks, the majority of the nodes have few connections, whereas some nodes (hubs) are

connected to many other nodes. Social and web networks usually consist of an expander-like

core part and an almost-tree (bounded treewidth) part, which represent well-connected

entities and the small communities respectively [Leskovec et al., 2009, Maehara et al., 2014,

Tsonis et al., 2006].

Besides node features, this subgraph structure has great impact on the result of neighbor-

hood aggregation. The speed of expansion or, equivalently, growth of the influence radius, is

characterized by the random walk’s mixing time, which changes dramatically on subgraphs

with different structures [Lovász, 1993]. Thus, the same number of iterations (layers) can

lead to influence distributions of very different locality. As an example, consider the social
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network in Figure 3-1 from GooglePlus [Leskovec and Mcauley, 2012]. The figure illustrates

the expansions of a random walk starting at the square node. The walk (a) from a node

within the core rapidly includes almost the entire graph. In contrast, the walk (b) starting at a

node in the tree part includes only a very small fraction of all nodes. After 5 steps, the same

walk has reached the core and, suddenly, spreads quickly. Translated to graph representation

models, these spreads become the influence distributions or, in other words, the averaged

features yield the new feature of the walk’s starting node. This shows that in the same graph,

the same number of steps can lead to very different effects. Depending on the downstream

task, wide-range or small-range feature combinations may be more desirable. A too rapid

expansion may average too broadly and thereby lose information, while in other parts of the

graph, a sufficient neighborhood may be needed for stabilizing predictions. When a majority

of the nodes are in such expander subgraphs, a two-layer network may outperform deeper

networks.

JK networks. The above observations raise the question whether it is possible to adap-

tively adjust (i.e., learn) the influence radii for each node and task, and hence make it

possible for GNNs to go deeper. To achieve this, we explore an architecture that learns to

selectively exploit information from neighborhoods of differing locality. This architecture

selectively combines different aggregations at the last layer, i.e., the representations “jump”

to the last layer. Hence, we name the resulting networks Jumping Knowledge Networks

(JK-Nets). We will see that empirically, when adaptation is an option, the networks indeed

learn representations of different orders for different graph substructures. Moreover, we

show that applying our framework to various state-of-the-art GNN base models consistently

improves their performance.

3.1.1 Background on Graph Theory

We define two graph structures: expanders and bounded treewidth graphs.

Expanders. Intuitively, an expander is a possibly sparse graph that has strong connectivity

properties, which can be quantified via vertex, edge or spectral expansion. A graph is an

40



expander if it has high expansion parameters, e.g., high edge expansion.

Definition 3.1 (Edge expansion). The edge expansion (or Cheeger constant) ℎ(𝐺) of a

graph 𝐺 with 𝑛 vertices is defined as

ℎ(𝐺) = min
0<|𝑆|≤ 2

𝑛

|𝜕𝑆|
|𝑆|

,

where the edge boundary 𝜕𝑆 = {(𝑢, 𝑣) ∈ 𝐸(𝐺) : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉 (𝐺) ∖ 𝑆}

The higher the expansion parameter, the larger the smallest graph cut, which implies

such expander graphs are highly connected. When we start a random walk on an expander,

due to the highly connected structure, the random walk expands very rapidly and will cover

almost the entire graph in a few iterations.

Some examples of expander graphs are random regular graphs, where each node is

connected to a fixed number of neighbors randomly. In many real-world graphs, such as

social networks and citation networks, there usually exist expander parts.

Bounded treewidth graphs. In contrast to expanders, the properties of bounded treewidth

graphs are similar to trees. Trees induce small cuts. Hence, a random walk starting in a

tree-like structure expands slowly. We can formally define tree-like graphs by the treewidth

and tree decomposition [Arnborg et al., 1987]. The smaller the treewidth, the more tree-like

the graph is. The treewidth of a graph can be computed via tree decomposition. In our

analysis, we do not need to perform tree decomposition to compute the treewidth of a graph.

We will instead be using the fact that real-world graphs contain bounded treewidth parts and

random walk expansion on such subgraphs are slow.

3.2 Understanding How Deeper GNNs May Underperform

We present a theoretical framework “influence distributions” for analyzing the properties of

GNN architectures. Our analysis framework relates a GNN architecture and its learned node

representations to a random walk distribution. The behavior of a random walk distribution

is highly related to the graph structure where it starts from, e.g., expanders or bounded
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treewidth graphs. Therefore, we effectively relate the effect of a GNN aggregation procedure

to the graph structures it is acting on. From there, we conclude that we need to build more

powerful GNN models are structure-aware, in the sense that the optimal number of random

walk steps is adaptively applied to different subgraph structures.

3.2.1 Influence Distribution and Random Walks

We start by exploring some important properties of the message passing schemes of GNNs.

Related to ideas of sensitivity analysis and influence functions in statistics [Koh and Liang,

2017] that measure the influence of a training point on parameters, we study the range of

nodes whose features affect a given node’s representation. This range gives insight into how

large a neighborhood a node is drawing information from.

We measure the sensitivity of node 𝑥 to node 𝑦, or the influence of 𝑦 on 𝑥, by measuring

how much a change in the input feature of 𝑦 affects the representation of 𝑥 in the last layer.

For any node 𝑥, the influence distribution captures the relative influences of all other nodes.

Definition 3.2. (Influence score and distribution). For a simple graph 𝐺 = (𝑉,𝐸), let ℎ(0)
𝑥

be the input feature and ℎ(𝑘)
𝑥 be the learned hidden representation of node 𝑥 ∈ 𝑉 at the 𝑘-th

(last) layer of the model. The influence score 𝐼(𝑥, 𝑦) of node 𝑥 by any node 𝑦 ∈ 𝑉 is the sum

of the absolute values of the entries of the Jacobian matrix
[︂

𝜕ℎ
(𝑘)
𝑥

𝜕ℎ
(0)
𝑦

]︂
. We define the influence

distribution 𝐼𝑥 of 𝑥 ∈ 𝑉 by normalizing the influence scores: 𝐼𝑥(𝑦) = 𝐼(𝑥, 𝑦)/∑︀𝑧 𝐼(𝑥, 𝑧),

or

𝐼𝑥(𝑦) = 𝑒𝑇

[︃
𝜕ℎ(𝑘)

𝑥

𝜕ℎ
(0)
𝑦

]︃
𝑒
⧸︂(︃∑︁

𝑧∈𝑉

𝑒𝑇

[︃
𝜕ℎ(𝑘)

𝑥

𝜕ℎ
(0)
𝑧

]︃
𝑒

)︃
,

where 𝑒 is the all-ones vector.

Later, we will see connections of influence distributions with random walks. For

completeness, we also define random walk distributions.

Definition 3.3. (Random walk distribution). Consider a random walk on ̃︀𝐺, the graph 𝐺

with self-loops, starting at a node 𝑣0; if at the 𝑡-th step we are at a node 𝑣𝑡, we move to any
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neighbor of 𝑣𝑡 (including 𝑣𝑡) with equal probability. The 𝑡-step random walk distribution 𝑃𝑡

of 𝑣0 is defined as

P𝑡 (𝑖) = P (𝑣𝑡 = 𝑖) . (3.1)

Analogous definitions apply for random walks with non-uniform transition probabilities.

An important property of the random walk distribution is that it becomes more spread

out as 𝑡 increases and converges to the limit distribution if the graph is non-bipartite. The

rate of convergence depends on the structure of the subgraph and can be bounded by the

spectral gap (or the conductance) of the random walk’s transition matrix [Lovász, 1993].

Model Analysis The influence distribution for different aggregation models and nodes can

give insights into the information captured by the respective representations. The following

results show that the influence distributions of common aggregation schemes are closely

connected to random walk distributions. This observation hints at specific implications –

strengths and weaknesses – that we will discuss.

With a randomization assumption of the ReLU activations similar to that in [Kawaguchi,

2016, Choromanska et al., 2015], we can draw connections between GCNs and random

walks:

Theorem 3.1. (Equivalence to random walk distribution). Given a 𝑘-layer GCN, assume

that all paths in the computation graph of the model are activated with the same probability

of success 𝜌. Then the influence distribution 𝐼𝑥 for any node 𝑥 ∈ 𝑉 is equivalent, in

expectation, to the 𝑘-step random walk distribution on ̃︀𝐺 starting at node 𝑥.

Proofs of all theorems may be found in Appendix.

Similarly, we can show that neighborhood aggregation schemes with directional biases

(e.g., attention models) resemble biased random walk distributions.

Empirically, we observe that, despite somewhat simplifying assumptions, our theory is

close to what happens in practice. We visualize the heat maps of the influence distributions

for a node (labeled square) for trained GCNs, and compare with the random walk distribu-

tions starting at the same node. Figure 3-2 shows example results. Darker colors correspond
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(a) 2 layer GCN (b) 4 layer GCN (c) 6 layer GCN

(d) 2 step r.w. (e) 4 step r.w. (f) 6 step r.w.

Figure 3-2: Equivalence of influence distribution and random walk. Top panel shows
influence distributions of GCNs and bottom panel shows random walk distributions starting
at the square node.

to higher influence probabilities. To show the effect of skip connections, Figure 3-3 visual-

izes the analogous heat maps for one example—GCN with residual connections. Indeed, we

observe that the influence distributions of networks with residual connections approximately

correspond to lazy random walks: each step has a higher probability of staying at the current

node. Local information is retained with similar probabilities for all nodes in each iteration;

this cannot adapt to diverse needs of specific upper-layer nodes. Further visualizations may

be found in the appendix.

3.2.2 Fast Collapse on Expanders

To better understand the implication of Theorem 3.1 and the limitations of the corresponding

neighborhood aggregation algorithms, we revisit the scenario of learning on a social network

shown in Figure 3-1. Random walks starting inside an expander converge rapidly in

𝑂(log |𝑉 |) steps to an almost-uniform distribution [Hoory et al., 2006]. After 𝑂(log |𝑉 |)
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(a) 2 layer Res (b) 4 layer Res (c) 6 layer Res

(d) 2 step lazy r.w. (e) 4 step lazy r.w. (f) 6 step lazy r.w.

Figure 3-3: Equivalence of influence distribution and lazy random walk. Top panel
shows influence distributions of GCNs with residual connections and bottom panel shows
random walk distributions starting at the square node with lazy factor 0.4.

iterations of neighborhood aggregation, by Theorem 3.1 the representation of every node is

influenced almost equally by any other node in the expander. Thus, the node representations

will be representative of the global graph and carry limited information about individual

nodes. In contrast, random walks starting at the bounded tree-width (almost-tree) part

converge slowly, i.e., the features retain more local information. Models that impose a fixed

random walk distribution inherit these discrepancies in the speed of expansion and influence

neighborhoods, which may not lead to the best representations for all nodes.

Answers to the Puzzles Given our analysis, we restate an explanation for the puzzle.

First, as we have already seen in the analysis of fast collapse on expanders, more

layers will lead to rapid expansion of influence distribution on expanders and thus possible

degradation in performance depending on the downstream task and noise ratio in the more

distant neighbors. Suppose a majority of the nodes are in expander subgraphs. Though

more layers may lead to better performance in bounded treewidth parts, when a fixed
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(a) 2-layer (b) 3-layer (c) 4-layer

(d) 2-layer (e) 3-layer (f) 4-layer

(g) 2-layer (h) 3-layer (i) 4-layer

(j) 2-layer (k) 3-layer (l) 4-layer

Figure 3-4: Subgraph structures where two-layer GCNs make a mistake, whereas three and
four-layer GCNs make the correct prediction.
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(a) 2-layer (b) 3-layer (c) 4-layer

(d) 2-layer (e) 3-layer (f) 4-layer

(g) 2-layer (h) 3-layer (i) 4-layer

(j) 2-layer (k) 3-layer (l) 4-layer

Figure 3-5: Subgraph structures where three and four-layer GCNs make a mistake, whereas
two-layer GCNs make the correct prediction.
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number of layers ia applied and no structure-aware adaptivity is available, the averaged best

performance may be achieved with only two GNN layers.

Second, why does residual connection not resolve the problem? As we have seen in

Figure 3-3, skip connections like residual connections play a role of “laziness” in the random

walk expansion. The laziness, however, cannot fundamentally resolve, but at most alleviate,

the problem of discrepancy in expansion speed in different graph structures. Therefore, a

new architecture to address the problem is desirable. In contrast, in computer vision, the

images (formulated as regular grid graphs) are far from expanders and the structures are the

same almost everywhere. Hence, the same problem may not occur there.

We give more empirical evidence via visualization of the misclassfication results in node

classification tasks. We demonstrate the typical subgraph structures where two-layer GCN

models tend to make a mistake, whereas models with 3 or 4 layers are able to make the

correct prediction, and vice versa. These visualization further complements Figure 3-1 and

Theorem 3.1. In Figure 3-4, a two-layer GCN tends to make incorrect predictions if the

local subgraph structure is tree-like (bounded treewidth). Thus, it would be desirable to

look beyond the direct neighbors and draw information from nodes that are 3 or 4 hops

away to learn a better representation. On the other hand, in Figure 3-5, three or four-

layer GCNs may draw much information from less relevant neighbors and thus cannot

learn the right representations. In expander subgraphs, models with 3 or 4 layers are

essentially taking into account every node. Such global representations might not be ideal

for the prediction for the node. In another scenario, despite possessing the locally bounded

treewidth structure, because of the “bridge-like” structures, looking at distant nodes might

imply drawing information from a completely different community, which would act like

noises and influence the prediction results.

3.3 Jumping Knowledge Network (JK-Net)

In this section, we develop a more powerful architecture Jumping Knowledge Networks

(JK-Nets), which can be applied on top of any base GNNs and enable adaptively learning the

node representations and appropriate influence radii with respect to the subgraph structures.
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N. A.

Input feature of node v: 𝑋" ∈ ℝ%&

Layer aggregation
Concat/Max-pooling/LSTM-attn
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Figure 3-6: Jumping Knowledge Network (JK-Net). N.A. stands for neighborhood
aggregation. The intermediate layer representations are aggregated at the final layer via e.g.,
concatenation, max-pooling, and LSTM-attention.

In particular, JK-Net enables deep GNNs.

Our theory above raise the question whether the fixed but structure-dependent influence

radius size induced by common aggregation schemes really achieves the best representations

for all nodes and tasks. Large radii may lead to too much averaging, while small radii

may lead to instabilities or insufficient information aggregation. Hence, we propose two

simple yet powerful architectural changes – jump connections and a subsequent selective

but adaptive aggregation mechanism.

Figure 3-6 illustrates the main idea: as in common neighborhood aggregation networks,

each layer increases the size of the influence distribution by aggregating neighborhoods

from the previous layer. At the last layer, for each node, we carefully select from all of

those itermediate representations (which “jump” to the last layer), potentially combining

a few. If this is done independently for each node, then the model can adapt the effective
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neighborhood size for each node as needed, resulting in exactly the desired adaptivity.

Our model permits general layer-aggregation mechanisms. We explore three approaches;

others are possible too. Let ℎ(1)
𝑣 , ..., ℎ(𝑘)

𝑣 be the jumping representations of node 𝑣 (from 𝑘

layers) that are to be aggregated.

Concatenation. A concatenation
[︁
ℎ(1)

𝑣 , ..., ℎ(𝑘)
𝑣

]︁
is the most straightforward way to com-

bine the layers, after which we may perform a linear transformation. If the transformation

weights are shared across graph nodes, this approach is not node-adaptive. Instead, it

optimizes the weights to combine the subgraph features in a way that works best for the

dataset overall. One may expect concatenation to be suitable for small graphs and graphs

with regular structure that require less adaptivity; also because weight-sharing helps reduce

overfitting.

Max-pooling. An element-wise max
(︁
ℎ(1)

𝑣 , ..., ℎ(𝑘)
𝑣

)︁
selects the most informative layer

for each feature coordinate. For example, feature coordinates that represent more local

properties can use the feature coordinates learned from the close neighbors and those

representing global status would favor features from the higher-up layers. Max-pooling is

adaptive and has the advantage that it does not introduce any additional parameters to learn.

LSTM-attention. An attention mechanism identifies the most useful neighborhood ranges

for each node 𝑣 by computing an attention score 𝑠(𝑙)
𝑣 for each layer 𝑙

(︁∑︀
𝑙 𝑠

(𝑙)
𝑣 = 1

)︁
, which

represents the importance of the feature learned on the 𝑙-th layer for node 𝑣. The aggregated

representation for node 𝑣 is a weighted average of the layer features
∑︀

𝑙 𝑠
(𝑙)
𝑣 · ℎ(𝑙)

𝑣 . For LSTM

attention, we input ℎ(1)
𝑣 , ..., ℎ(𝑘)

𝑣 into a bi-directional LSTM [Hochreiter and Schmidhuber,

1997] and generate the forward-LSTM and backward-LSTM hidden features 𝑓 (𝑙)
𝑣 and 𝑏(𝑙)

𝑣

for each layer 𝑙. A linear mapping of the concatenated features [𝑓 (𝑙)
𝑣 ||𝑏(𝑙)

𝑣 ] yields the scalar

importance score 𝑠(𝑙)
𝑣 . A Softmax layer applied to {𝑠(𝑙)

𝑣 }𝑘
𝑙=1 yields the attention of node 𝑣

on its neighborhood in different ranges. Finally we take the sum of [𝑓 (𝑙)
𝑣 ||𝑏(𝑙)

𝑣 ] weighted by

SoftMax({𝑠(𝑙)
𝑣 }𝑘

𝑙=1) to get the final layer representation. Another possible implementation

combines LSTM with max-pooling. LSTM-attention is node adaptive because the attention

scores are different for each node. We shall see that the this approach shines on large
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(a) tree-like (b) tree-like (c) affiliate (d) affiliate (e) hub

Figure 3-7: JK-Net learns to adapt to different subgraph structures

complex graphs, although it may overfit on small graphs (fewer training nodes) due to its

relatively higher complexity.

3.3.1 JK-Net Learns to Adapt to Subgraph Structure

The key idea for the design of layer-aggregation functions is to determine the importance

of a node’s subgraph features at different ranges after looking at the learned features on

all layers, rather than to optimize and fix the same weights for all nodes. Under the same

assumption on the ReLU activation distribution as in Theorem 3.1, we show below that

layer-wise max-pooling implicitly learns the influence locality adaptively for different nodes.

The proof for layer-wise attention follows similarly.

Proposition 3.2. Assume that paths of the same length in the computation graph are

activated with the same probability. The influence score 𝐼(𝑥, 𝑦) for any 𝑥, 𝑦 ∈ 𝑉 under

a 𝑘-layer JK-Net with layer-wise max-pooling is equivalent in expectation to a mixture

of 0, .., 𝑘-step random walk distributions on ̃︀𝐺 at 𝑦 starting at 𝑥, the coefficients of which

depend on the values of the layer features ℎ(𝑙)
𝑥 .

Contrasting this result with the influence distributions of other aggregation mechanisms,

we see that JK-networks indeed differ in their node-wise adaptivity of neighborhood ranges.

Figure 3-7 illustrates how a 6-layer JK-Net with max-pooling aggregation learns to

adapt to different subgraph structures on a citation network. Within a tree-like structure, the

influence stays in the “small community” the node belongs to. In contrast, 6-layer models

whose influence distributions follow random walks, e.g. GCNs, would reach out too far into

irrelevant parts of the graph, and models with few layers may not be able to cover the entire

“community”, as illustrated in Figure 3-1, and Figures 3-4, 3-5. For a node affiliated to a
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“hub”, which presumably plays the role of connecting different types of nodes, JK-Net learns

to put most influence on the node itself and otherwise spreads out the influence. GCNs,

however, would not capture the importance of the node’s own features in such a structure

because the probability at an affiliate node is small after a few random walk steps. For hubs,

JK-Net spreads out the influence across the neighboring nodes in a reasonable range, which

makes sense because the nodes connected to the hubs are presumably as informative as the

hubs’ own features. For comparison, Table A.1 in the appendix includes more visualizations

of how models with random walk priors behave.

3.3.2 Dense JK-Nets

Looking at Figure 3-6, one may wonder whether the same inter-layer connections could be

drawn between all layers. The resulting architecture is approximately a graph correspondent

of DenseNets, which were introduced for computer vision problems [Huang et al., 2017],

if the layer-wise concatenation aggregation is applied. This version, however, would

require many more features to learn. Viewing the DenseNet setting (images) from a graph-

theoretic perspective, images correspond to regular, in fact, near-planar graphs. Such

graphs are far from being expanders, and do not pose the challenges of graphs with varying

subgraph structures. Indeed, as we shall see, models with concatenation aggregation, e.g.,

JK-Concat, perform well on graphs with more regular structures such as images and well-

structured communities. On the other hand, on graphs with more diverse structures, the

node-wise adaptive methods like JK-LSTM perform better. As a more general framework,

JK-Net admits general layer-wise aggregation models and enables better structure-aware

representations on graphs with complex structures.

3.4 Experiments

We evaluate JK-Nets on four node classification benchmark datasets. (I) The task on citation

networks (Citeseer, Cora) [Sen et al., 2008] is to classify academic papers into different

subjects. The dataset contains bag-of-words features for each document (node) and citation

links (edges) between documents. (II) On Reddit [Hamilton et al., 2017], the task is to predict
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the community to which different Reddit posts belong. Reddit is an online discussion forum

where users comment in different topical communities. Two posts (nodes) are connected if

some user commented on both posts. The dataset contains word vectors as node features.

(III) For protein-protein interaction networks (PPI) [Hamilton et al., 2017], the task is to

classify protein functions. PPI consists of 24 graphs, each corresponds to a human tissue.

Each node has positional gene sets, motif gene sets and immunological signatures as features

and gene ontology sets as labels. 20 graphs are used for training, 2 graphs are used for

validation and the rest for testing. Statistics of the datasets are summarized in Table 3.1.

Settings. In the transductive setting, we are only allowed to access a subset of nodes in one

graph as training data, and validate/test on others. Our experiments on Citeseer, Cora and

Reddit are transductive. In the inductive setting, we use a number of full graphs as training

data and use other completely unseen graphs as validation/testing data. Our experiments on

PPI are inductive.

We compare against three baselines: Graph Convolutional Networks (GCN) [Kipf

and Welling, 2017], GraphSAGE [Hamilton et al., 2017] and Graph Attention Networks

(GAT) [Velickovic et al., 2018].

Dataset Nodes Edges Classes Features
Citeseer 3,327 4,732 6 3,703

Cora 2,708 5,429 7 1,433
Reddit 232,965 avg deg 492 50 300

PPI 56,944 818,716 121 50

Table 3.1: Dataset statistics

Citeseer & Cora

For experiments on Citeseer and Cora, we choose GCN as the base model since on our

data split, it is outperforming GAT. We construct JK-Nets by choosing MaxPooling (JK-

MaxPool), Concatenation (JK-Concat), or LSTM-attention (JK-LSTM) as final aggregation

layer. When taking the final aggregation, besides normal graph convolutional layers, we also

take the first linear-transformed representation into account. The final prediction is done via
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Model Citeseer Model Cora
GCN (2) 77.3 (1.3) GCN (2) 88.2 (0.7)
GAT (2) 76.2 (0.8) GAT (3) 87.7 (0.3)

JK-MaxPool (1) 77.7 (0.5) JK-Maxpool (6) 89.6 (0.5)
JK-Concat (1) 78.3 (0.8) JK-Concat (6) 89.1 (1.1)
JK-LSTM (2) 74.7 (0.9) JK-LSTM (1) 85.8 (1.0)

Table 3.2: Results of GCN-based JK-Nets on Citeseer and Cora. The baselines are GCN
and GAT. The number in parentheses next to the model name indicates the best-performing
number of layers among 1 to 6. Accuracy and standard deviation are computed from 3
random data splits.

a fully connected layer on top of the final aggregated representation. We split nodes in each

graph into 60%, 20% and 20% for training, validation and testing. We vary the number of

layers from 1 to 6 for each model and choose the best performing model with respect to the

validation set. Throughout the experiments, we use the Adam optimizer [Kingma and Ba,

2015] with learning rate 0.005. We fix the dropout rate to be 0.5, the dimension of hidden

features to be within {16, 32}, and add an 𝐿2 regularization of 0.0005 on model parameters.

The results are shown in Table 3.2.

Results. We observe in Table 3.2 that JK-Nets outperform both GCN and GAT baselines in

terms of prediction accuracy. Though JK-Nets perform well in general, there is no consistent

winner and performance varies slightly across datasets.

Taking a closer look at results on Cora, both GCN and GAT achieve their best accuracies

with only 2 or 3 layers, suggesting that local information is a stronger signal for classification

than global ones. However, the fact that JK-Nets achieve the best performance with 6 layers

indicates that global together with local information will help boost performance. This

is where models like JK-Nets can be particularly beneficial. LSTM-attention may not be

suitable for such small graphs because of its relatively high complexity.

Reddit

The Reddit data is too large to be handled well by current implementations of GCN or

GAT. Hence, we use the more scalable GraphSAGE as the base model for JK-Net. It has

skip connections and different modes of node aggregation. We experiment with Mean and
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Node
JK

GraphSAGE Maxpool Concat LSTM

Mean 0.950 0.953 0.955 0.950
MaxPool 0.948 0.924 0.965 0.877

Table 3.3: Results of GraphSAGE-based JK-Nets on Reddit. The baseline is GraphSAGE.
Model performance is measured in Micro-F1 score. Each column shows the results of a
JK-Net variant. For all models, the number of layers is fixed to 2.

Node
JK

SAGE MaxPool Concat LSTM

Mean (10 epochs) 0.644 0.658 0.667 0.721
Mean (30 epochs) 0.690 0.713 0.694 0.818

MaxPool (10 epochs) 0.668 0.671 0.687 0.621*

Table 3.4: Results of GraphSAGE-based JK-Net on the PPI data. The baseline is Graph-
SAGE (SAGE). Each column, excluding SAGE, represents a JK-Net with different layer
aggregation. All models use 3 layers, except for those with “*”, whose number of layers
is set to 2 due to GPU memory constraints. 0.6 is the corresponding 2-layer GraphSAGE
performance.

MaxPool node aggregators, which take mean and max-pooling of a linear transformation

of representations of the sampled neighbors. Combining each of GraphSAGE modes

with MaxPooling, Concatenation or LSTM-attention as the last aggregation layer gives

6 JK-Net variants. We follow exactly the same setting of GraphSAGE as in the original

paper [Hamilton et al., 2017], where the model consists of 2 hidden layers, each with 128

hidden units and is trained with Adam with learning rate of 0.01 and no weight decay.

Results are shown in Table 3.3.

Results. With MaxPool as node aggregator and Concat as layer aggregator, JK-Net

achieves the best Micro-F1 score among GarphSAGE and JK-Net variants. Note that

the original GraphSAGE already performs fairly well with a Micro-F1 of 0.95. JK-Net

reduces the error by 30%. The communities in the Reddit dataset were explicitly chosen

from the well-behaved middle-sized communities to avoid the noisy cores and tree-like

small communities [Hamilton et al., 2017]. As a result, this graph is more regular than the

original Reddit data, and hence not exhibit the problems of varying subgraph structures. In

such a case, the added flexibility of the node-specific neighborhood choices may not be as
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Model PPI
MLP 0.422
GAT 0.968 (0.002)

JK-Concat (2) 0.959 (0.003)
JK-LSTM (3) 0.969 (0.006)

JK-Dense-Concat (2)* 0.956 (0.004)
JK-Dense-LSTM (2)* 0.976 (0.007)

Table 3.5: Micro-F1 scores of GAT-based JK-Nets on the PPI data. The baselines are GAT
and MLP (Multilayer Perceptron). While the number of layers for JK-Concat and JK-LSTM
are chosen from {2, 3}, the ones for JK-Dense-Concat and JK-Dense-LSTM are directly set
to 2 due to GPU memory constraints.

relevant, and the stabilizing properties of concatenation instead come into play.

Protein-to-protein Interaction (PPI)

We demonstrate the power of adaptive JK-Nets, e.g., JK-LSTM, with experiments on the

PPI data, where the subgraphs have more diverse and complex structures than those in the

Reddit community detection dataset. We use both GraphSAGE and GAT as base models

for JK-Net. The implementation of GraphSAGE and GAT are quite different: GraphSAGE

is sample-based, where neighbors of a node are sampled to be a fixed number, while GAT

considers all neighbors. Such differences cause large gaps in terms of both scalability and

performances. Given that GraphSAGE scales to much larger graphs, it appears particularly

valuable to evaluate how much JK-Net can improve upon GraphSAGE.

For GraphSAGE we follow the setup as in the Reddit experiments, except that we use

3 layers when possible, and compare the performance after 10 and 30 epochs of training.

The results are shown in Table 3.4. For GAT and its JK-Net variants we stack two hidden

layers with 4 attention heads computing 256 features (for a total of 1024 features), and

a final prediction layer with 6 attention heads computing 121 features each. They are

further averaged and input into sigmoid activations. We employ skip connections across

intermediate attentional layers. These models are trained with Batch-size 2 and Adam

optimizer with learning rate of 0.005. The results are shown in Table 3.5.
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Results. JK-Nets with the LSTM-attention aggregators outperform the non-adaptive mod-

els GraphSAGE, GAT and JK-Nets with concatenation aggregators. In particular, JK-LSTM

outperforms GraphSAGE by 0.128 in terms of micro-F1 score after 30 epochs of training.

Structure-aware node adaptive models are especially beneficial on such complex graphs

with diverse structures.

3.5 Discussion

We studied the first fundamental question of representation learning of graphs. Motivated

by observations that reveal great differences in neighborhood information ranges for graph

node embeddings in different graph structures, we propose a more flexible and powerful

architecture – Jumping Knowledge Networks (JK-Nets) for GNNs that can adapt neigbor-

hood ranges to nodes individually by exploiting the subgraph structures. This JK-network

can improve representations in particular for graphs that have subgraphs of diverse local

structure, and may hence not be well captured by fixed numbers of neighborhood aggrega-

tions. We also present an analysis framework for the influence distributions of GNNs, which

relate the influence distributions of learned node representations to random walks and their

neighborhood subgraph structures. Our model analysis provides insight into when a model

would fail and how our model can help in these cases.

Interesting directions for future work include exploring other layer aggregators and

studying the effect of the combination of various layer-wise and node-wise aggregators on

different types of graph structures.

Since the release of this work, there have been many follow-up papers of the work that

this chapter is based on. Many of these papers study how to make deeper GNNs perform

better by extending the skip connections presented in this chapter to larger models, more

refined connections, and better training techniques [Li et al., 2019, Chen et al., 2020a,

Dehmamy et al., 2019, Klicpera et al., 2018, Li et al., 2020a]. Other approaches consider

feature normalization and dropout techniques [Rong et al., 2020, Zhao and Akoglu, 2020].

In Chapter 10, we will see normalization techniques that improve the training of GNNs also

implicitly help improve the issue presented in this chapter. More theoretical follow-up papers
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give a fine-grained analysis of the phenomenon in this chapter for ReLU activation [Oono

and Suzuki, 2020a], and justify the optimization and generalization benefits of the multiscale

skip connections as in JK-Nets [Oono and Suzuki, 2020b]. In Chapter 9, we will analyze

the optimization dynamics of GNNs and give further justification for JK-Nets in terms of

convergence rates to global minima.
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Chapter 4

How Powerful are Graph Neural

Networks

4.1 Introduction

This chapter addresses the second fundamental problem of representation of graphs. In the

last few years, many GNN variants with different aggregation and graph-level readout have

been proposed [Scarselli et al., 2009, Defferrard et al., 2016, Duvenaud et al., 2015, Hamilton

et al., 2017, Kearnes et al., 2016, Kipf and Welling, 2017, Velickovic et al., 2018, Santoro

et al., 2017, Xu et al., 2018, Ying et al., 2018, Zhang et al., 2018a]. Empirically, these GNNs

have achieved state-of-the-art performance in many tasks such as node classification, link

prediction, and graph classification. However, the design of new GNNs is mostly based on

empirical intuition, heuristics, and experimental trial-and-error. There is little theoretical

understanding of the properties and limitations of GNNs, and formal analysis of GNNs’

representational capacity is limited.

We present a theoretical framework for analyzing the representational power of GNNs.

We formally characterize how expressive different GNN variants are in learning to represent

and distinguish between different graph structures. Our framework is inspired by the

close connection between GNNs and the Weisfeiler-Lehman (WL) graph isomorphism

test [Weisfeiler and Lehman, 1968], a powerful test known to distinguish a broad class

of graphs [Babai and Kucera, 1979]. Similar to GNNs, the WL test iteratively updates a

59



given node’s feature vector by aggregating feature vectors of its network neighbors. What

makes the WL test so powerful is its injective aggregation update that maps different node

neighborhoods to different feature vectors. Our key insight is that a GNN can have as large

discriminative power as the WL test if the GNN’s aggregation scheme is highly expressive

and can model injective functions.

To mathematically formalize the above insight, our framework first represents the set of

feature vectors of a given node’s neighbors as a multiset, i.e., a set with possibly repeating

elements. Then, the neighbor aggregation in GNNs can be thought of as an aggregation

function over the multiset. Hence, to have strong representational power, a GNN must be

able to aggregate different multisets into different representations. We rigorously study

several variants of multiset functions and theoretically characterize their discriminative

power, i.e., how well different aggregation functions can distinguish different multisets. The

more discriminative the multiset function is, the more powerful the representational power

of the underlying GNN.

Our main results are summarized as follows:

1) We show that GNNs are at most as powerful as the WL test in distinguishing graph

structures.

2) We establish conditions on the neighbor aggregation and graph readout functions

under which the resulting GNN is as powerful as the WL test.

3) We identify graph structures that cannot be distinguished by popular GNN variants,

such as GCN [Kipf and Welling, 2017] and GraphSAGE [Hamilton et al., 2017], and

we precisely characterize the kinds of graph structures such GNN-based models can

capture.

4) We develop a simple neural architecture, Graph Isomorphism Network (GIN), and

show that its discriminative/representational power is equal to the power of the WL

test.

We validate our theory via experiments on graph classification datasets, where the

expressive power of GNNs is crucial to capture graph structures. In particular, we compare
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the performance of GNNs with various aggregation functions. Our results confirm that

the most powerful GNN by our theory, i.e., Graph Isomorphism Network (GIN), also

empirically has high representational power as it almost perfectly fits the training data,

whereas the less powerful GNN variants often severely underfit the training data. In addition,

the representationally more powerful GNNs outperform the others by test set accuracy and

achieve state-of-the-art performance on many graph classification benchmarks.

Graph isomorphism test. The graph isomorphism problem asks whether two graphs

are topologically identical. This is a challenging problem: no polynomial-time algorithm

is known for it yet [Garey, 1979, Garey and Johnson, 2002, Babai, 2016]. Apart from

some corner cases [Cai et al., 1992], the Weisfeiler-Lehman (WL) test of graph isomor-

phism [Weisfeiler and Lehman, 1968] is an effective and computationally efficient test

that distinguishes a broad class of graphs [Babai and Kucera, 1979]. Its 1-dimensional

form, “naïve vertex refinement”, is analogous to neighbor aggregation in GNNs. The WL

test iteratively (1) aggregates the labels of nodes and their neighborhoods, and (2) hashes

the aggregated labels into unique new labels. The algorithm decides that two graphs are

non-isomorphic if at some iteration the labels of the nodes between the two graphs differ.

Based on the WL test, Shervashidze et al. [2011] proposed the WL subtree kernel

that measures the similarity between graphs. The kernel uses the counts of node labels at

different iterations of the WL test as the feature vector of a graph. Intuitively, a node’s label

at the 𝑘-th iteration of WL test represents a subtree structure of height 𝑘 rooted at the node

(Figure 4-1). Thus, the graph features considered by the WL subtree kernel are essentially

counts of different rooted subtrees in the graph.

4.2 Theoretical Framework of Expressive Power

We start with an overview of our framework for analyzing the expressive power of GNNs.

Figure 4-1 illustrates our idea. A GNN recursively updates each node’s feature vector to

capture the network structure and features of other nodes around it, i.e., its rooted subtree

structures (Figure 4-1). Throughout the chapter, we assume node input features are from
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Graph Rooted subtree

2 WL test iterations

Multiset

GNN aggregation

….

Captures structures

Figure 4-1: Overview of our theoretical framework. Middle panel: rooted subtree struc-
tures (at the blue node) that the WL test uses to distinguish different graphs. Right panel: if
a GNN’s aggregation function captures the full multiset of node neighbors, the GNN can
capture the rooted subtrees in a recursive manner and be as powerful as the WL test.

a countable universe. For finite graphs, node feature vectors at deeper layers of any fixed

model are also from a countable universe. For notational simplicity, we can assign each

feature vector a unique label in {𝑎, 𝑏, 𝑐 . . .}. Then, feature vectors of a set of neighboring

nodes form a multiset (Figure 4-1): the same element can appear multiple times since

different nodes can have identical feature vectors.

Definition 4.1 (Multiset). A multiset is a generalized concept of a set that allows multiple

instances for its elements. More formally, a multiset is a 2-tuple 𝑋 = (𝑆,𝑚) where 𝑆 is the

underlying set of 𝑋 that is formed from its distinct elements, and 𝑚 : 𝑆 → N≥1 gives the

multiplicity of the elements.

To study the representational power of a GNN, we analyze when a GNN maps two nodes

to the same location in the embedding space. Intuitively, a maximally powerful GNN maps

two nodes to the same location only if they have identical subtree structures with identical

features on the corresponding nodes. Since subtree structures are defined recursively via

node neighborhoods (Figure 4-1), we can reduce our analysis to the question whether a

GNN maps two neighborhoods (i.e., two multisets) to the same embedding or representation.

A maximally powerful GNN would never map two different neighborhoods, i.e., multisets

of feature vectors, to the same representation. This means its aggregation scheme must

be injective. Thus, we abstract a GNN’s aggregation scheme as a class of functions over

multisets that their neural networks can represent, and analyze whether they are able to

represent injective multiset functions.
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Next, we use this reasoning to develop a maximally powerful GNN. In Section 4.4,

we study popular GNN variants and see that their aggregation schemes are inherently not

injective and thus less powerful, but that they can capture other interesting properties of

graphs.

4.3 Building Powerful Graph Neural Networks

First, we characterize the maximum representational capacity of a general class of GNN-

based models. Ideally, a maximally powerful GNN could distinguish different graph

structures by mapping them to different representations in the embedding space.

This ability to map any two different graphs to different embeddings, however, implies

solving the challenging graph isomorphism problem. That is, we want isomorphic graphs to

be mapped to the same representation and non-isomorphic ones to different representations.

In our analysis, we characterize the representational capacity of GNNs via a slightly weaker

criterion: a powerful heuristic called Weisfeiler-Lehman (WL) graph isomorphism test, that

is known to work well in general, with a few exceptions, e.g., regular graphs [Cai et al.,

1992, Douglas, 2011, Evdokimov and Ponomarenko, 1999].

Lemma 4.1. (Upper bound of expressive power). Let𝐺1 and𝐺2 be any two non-isomorphic

graphs. If a graph neural network 𝒜 : 𝒢 → R𝑑 maps 𝐺1 and 𝐺2 to different embeddings,

the Weisfeiler-Lehman graph isomorphism test also decides 𝐺1 and 𝐺2 are not isomorphic.

Proofs of all Lemmas and Theorems can be found in the Appendix. Hence, any

aggregation-based GNN is at most as powerful as the WL test in distinguishing differ-

ent graphs. A natural follow-up question is whether there exist GNNs that are, in principle,

as powerful as the WL test? Our answer, in the following Theorem, is yes: if the neighbor

aggregation and graph-level readout functions are injective, then the resulting GNN is as

powerful as the WL test.

Theorem 4.2. (Conditions for achieving maximal power). Let 𝒜 : 𝒢 → R𝑑 be a GNN.

With a sufficient number of GNN layers, 𝒜 maps any graphs 𝐺1 and 𝐺2 that the Weisfeiler-
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Lehman test of isomorphism decides as non-isomorphic, to different embeddings if the

following conditions hold:

a) 𝒜 aggregates and updates node features iteratively with

ℎ(𝑘)
𝑣 = 𝜑

(︁
ℎ(𝑘−1)

𝑣 , 𝑓
(︁{︁
ℎ(𝑘−1)

𝑢 : 𝑢 ∈ 𝒩 (𝑣)
}︁)︁)︁

,

where the functions 𝑓 , which operates on multisets, and 𝜑 are injective.

b) 𝒜’s graph-level readout, which operates on the multiset of node features
{︁
ℎ(𝑘)

𝑣

}︁
, is

injective.

We prove Theorem 4.2 in the appendix. For countable sets, injectiveness well charac-

terizes whether a function preserves the distinctness of inputs. Uncountable sets, where

node features are continuous, need some further considerations. In addition, it would be

interesting to characterize how close together the learned features lie in a function’s image.

We leave these questions for future work, and focus on the case where input node features

are from a countable set (that can be a subset of an uncountable set such as R𝑛).

Lemma 4.3. (Countablility of hidden features). Assume the input feature space 𝒳 is

countable. Let 𝑔(𝑘) be the function parameterized by a GNN’s 𝑘-th layer for 𝑘 = 1, ..., 𝐿,

where 𝑔(1) is defined on multisets 𝑋 ⊂ 𝒳 of bounded size. The range of 𝑔(𝑘), i.e., the space

of node hidden features ℎ(𝑘)
𝑣 , is also countable for all 𝑘 = 1, ..., 𝐿.

Here, it is also worth discussing an important benefit of GNNs beyond distinguishing

different graphs, that is, capturing similarity of graph structures. Note that node feature

vectors in the WL test are essentially one-hot encodings and thus cannot capture the similarity

between subtrees. In contrast, a GNN satisfying the criteria in Theorem 3 generalizes the

WL test by learning to embed the subtrees to low-dimensional space. This enables GNNs to

not only discriminate different structures, but also to learn to map similar graph structures to

similar embeddings and capture dependencies between graph structures. Capturing structural

similarity of the node labels is shown to be helpful for generalization particularly when the

co-occurrence of subtrees is sparse across different graphs or there are noisy edges and node

features [Yanardag and Vishwanathan, 2015].
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4.3.1 Graph Isomorphism Network (GIN)

Having developed conditions for a maximally powerful GNN, we next develop a simple

architecture, Graph Isomorphism Network (GIN), that provably satisfies the conditions in

Theorem 4.2. This model generalizes the WL test and hence achieves maximum discrimina-

tive power among GNNs.

To model injective multiset functions for the neighbor aggregation, we develop a theory

of “deep multisets”, i.e., parameterizing universal multiset functions with neural networks.

Our next lemma states that sum aggregators can represent injective, in fact, universal

functions over multisets.

Lemma 4.4. Assume 𝒳 is countable. There exists a function 𝑓 : 𝒳 → R𝑛 so that ℎ(𝑋) =∑︀
𝑥∈𝑋 𝑓(𝑥) is unique for each multiset 𝑋 ⊂ 𝒳 of bounded size. Moreover, any multiset

function 𝑔 can be decomposed as 𝑔 (𝑋) = 𝜑 (∑︀𝑥∈𝑋 𝑓(𝑥)) for some function 𝜑.

We prove Lemma 4.4 in the appendix. The proof extends the setting in [Zaheer et al.,

2017] from sets to multisets. An important distinction between deep multisets and sets is that

certain popular injective set functions, such as the mean aggregator, are not injective multiset

functions. With the mechanism for modeling universal multiset functions in Lemma 4.4 as a

building block, we can conceive aggregation schemes that can represent universal functions

over a node and the multiset of its neighbors, and thus will satisfy the injectiveness condition

(a) in Theorem 4.2. Our next corollary provides a simple and concrete formulation among

many such aggregation schemes.

Corollary 4.5. (Universal aggregation). Assume 𝒳 is countable. There exists a function

𝑓 : 𝒳 → R𝑛 so that for infinitely many choices of 𝜖, including all irrational numbers,

ℎ(𝑐,𝑋) = (1 + 𝜖) · 𝑓(𝑐) + ∑︀
𝑥∈𝑋 𝑓(𝑥) is unique for each pair (𝑐,𝑋), where 𝑐 ∈ 𝒳 and

𝑋 ⊂ 𝒳 is a multiset of bounded size. Moreover, any function 𝑔 over such pairs can be

decomposed as 𝑔 (𝑐,𝑋) = 𝜙 ((1 + 𝜖) · 𝑓(𝑐) +∑︀
𝑥∈𝑋 𝑓(𝑥)) for some function 𝜙.

We can use multi-layer perceptrons (MLPs) to model and learn 𝑓 and 𝜙 in Corollary 4.5,

thanks to the universal approximation theorem [Hornik et al., 1989, Hornik, 1991]. In

practice, we model 𝑓 (𝑘+1) ∘𝜙(𝑘) with one MLP, because MLPs can represent the composition
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of functions. In the first iteration, we do not need MLPs before summation if input features

are one-hot encodings as their summation alone is injective. We can make 𝜖 a learnable

parameter or a fixed scalar. Then, GIN updates node representations as

ℎ(𝑘)
𝑣 = MLP(𝑘)

(︂(︁
1 + 𝜖(𝑘)

)︁
· ℎ(𝑘−1)

𝑣 +
∑︁

𝑢∈𝒩 (𝑣) ℎ
(𝑘−1)
𝑢

)︂
. (4.1)

Generally, there may exist many other powerful GNNs. GIN is one such example among

many maximally powerful GNNs, while being simple.

4.3.2 Graph-level Readout of GIN

Node embeddings learned by GIN can be directly used for tasks like node classification and

link prediction. For graph classification tasks we use the following “readout” function that,

given embeddings of individual nodes, produces the embedding of the entire graph.

An important aspect of the graph-level readout is that node representations, correspond-

ing to subtree structures, get more refined and global as the number of iterations increases.

A sufficient number of iterations is key to achieving good discriminative power. Yet, fea-

tures from earlier iterations may sometimes generalize better. To consider all structural

information, we use information from all depths/iterations of the model. We achieve this

by Jumping Knowledge Networks (JK-Nets) [Xu et al., 2018] introduced in the previous

chapter, where we replace the graph-level readout using the final node representations with

graph representations concatenated across all iterations/layers of GIN:

ℎ𝐺 = CONCAT
(︂

READOUT
(︂{︁

ℎ(𝑘)
𝑣 |𝑣 ∈ 𝐺

}︁)︂ ⃒⃒⃒
𝑘 = 0, 1, . . . , 𝐾

)︂
. (4.2)

By Theorem 4.2 and Corollary 4.5, if GIN replaces READOUT in 4.2 with summing all

node features from the same iterations (we do not need an extra MLP before summation for

the same reason as in 4.1), it provably generalizes the WL test and the WL subtree kernel.
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4.4 Less Powerful but Still Interesting GNNs

Next, we study GNNs that do not satisfy the conditions in Theorem 4.2, including GCN [Kipf

and Welling, 2017] and GraphSAGE [Hamilton et al., 2017]. We conduct ablation studies on

two aspects of the aggregator in 4.1: (1) 1-layer perceptrons instead of MLPs and (2) mean

or max-pooling instead of the sum. We will see that these GNN variants get confused by

surprisingly simple graphs and are less powerful than the WL test. Nonetheless, models with

mean aggregators like GCN perform well for node classification tasks. To better understand

this, we precisely characterize what different GNN variants can and cannot capture about a

graph and discuss the implications for learning with graphs.

4.4.1 One-layer Perceptrons are not Sufficient

The function 𝑓 in Lemma 4.4 helps map distinct multisets to unique embeddings. It can

be parameterized by an MLP by the universal approximation theorem [Hornik, 1991].

Nonetheless, many existing GNNs instead use a 1-layer perceptron 𝜎 ∘ 𝑊 [Duvenaud

et al., 2015, Kipf and Welling, 2017, Zhang et al., 2018a], a linear mapping followed by

a non-linear activation function such as a ReLU. Such 1-layer mappings are examples of

Generalized Linear Models [Nelder and Wedderburn, 1972]. Therefore, we are interested

in understanding whether 1-layer perceptrons are enough for graph learning. Lemma 4.6

suggests that there are indeed network neighborhoods (multisets) that models with 1-layer

perceptrons can never distinguish.

Lemma 4.6. There exist finite multisets 𝑋1 ̸= 𝑋2 so that for any linear mapping 𝑊 ,∑︀
𝑥∈𝑋1 ReLU (𝑊𝑥) = ∑︀

𝑥∈𝑋2 ReLU (𝑊𝑥) .

The main idea of the proof for Lemma 4.6 is that 1-layer perceptrons can behave much

like linear mappings, so the GNN layers degenerate into simply summing over neighborhood

features. Our proof builds on the fact that the bias term is lacking in the linear mapping.

With the bias term and sufficiently large output dimensionality, 1-layer perceptrons might be

able to distinguish different multisets. Nonetheless, unlike models using MLPs, the 1-layer

perceptron (even with the bias term) is not a universal approximator of multiset functions.
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Consequently, even if GNNs with 1-layer perceptrons can embed different graphs to different

locations to some degree, such embeddings may not adequately capture structural similarity,

and can be difficult for simple classifiers, e.g., linear classifiers, to fit. In Section F.3, we will

empirically see that GNNs with 1-layer perceptrons, when applied to graph classification,

sometimes severely underfit training data and often perform worse than GNNs with MLPs

in terms of test accuracy.

4.4.2 Structures that Confuse Less Powerful GNNs

What happens if we replace the sum in ℎ (𝑋) = ∑︀
𝑥∈𝑋 𝑓(𝑥) with mean or max-pooling as

in GCN and GraphSAGE? Mean and max-pooling aggregators are still well-defined multiset

functions because they are permutation invariant. But, they are not injective. Figure 4-2

ranks the three aggregators by their representational power, and Figure 4-3 illustrates pairs

of structures that the mean and max-pooling aggregators fail to distinguish. Here, node

colors denote different node features, and we assume the GNNs aggregate neighbors first

before combining them with the central node labeled as 𝑣 and 𝑣′.

In Figure 4-3a, every node has the same feature 𝑎 and 𝑓(𝑎) is the same across all nodes

(for any function 𝑓 ). When performing neighborhood aggregation, the mean or maximum

over 𝑓(𝑎) remains 𝑓(𝑎) and, by induction, we always obtain the same node representation

everywhere. Thus, in this case mean and max-pooling aggregators fail to capture any

structural information. In contrast, the sum aggregator distinguishes the structures because

2 ·𝑓(𝑎) and 3 ·𝑓(𝑎) give different values. The same argument can be applied to any unlabeled

graph. If node degrees instead of a constant value is used as node input features, in principle,

mean can recover sum, but max-pooling cannot.

Fig. 4-3a suggests that mean and max have trouble distinguishing graphs with nodes that

have repeating features. Let ℎcolor (𝑟 for red, 𝑔 for green) denote node features transformed

by 𝑓 . Fig. 4-3b shows that maximum over the neighborhood of the blue nodes 𝑣 and 𝑣′ yields

max (ℎg, ℎr) and max (ℎg, ℎr, ℎr), which collapse to the same representation (even though

the corresponding graph structures are different). Thus, max-pooling fails to distinguish

them. In contrast, the sum aggregator still works because 1
2 (ℎg + ℎr) and 1

3 (ℎg + ℎr + ℎr)
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sum - multiset

>
mean - distribution max - set

>
Input

Figure 4-2: Ranking by expressive power for sum, mean and max aggregators over
a multiset. Left panel shows the input multiset, i.e., the network neighborhood to be
aggregated. The next three panels illustrate the aspects of the multiset a given aggregator is
able to capture: sum captures the full multiset, mean captures the proportion/distribution of
elements of a given type, and the max aggregator ignores multiplicities (reduces the multiset
to a simple set).

vs. v0
v

(a) Mean and Max both
fail

vs.
v

v0

(b) Max fails

vs.
v v0

(c) Mean and Max both
fail

Figure 4-3: Examples of graph structures that mean and max aggregators fail to dis-
tinguish. Between the two graphs, nodes 𝑣 and 𝑣′ get the same embedding even though
their corresponding graph structures differ. Figure 4-2 gives reasoning about how different
aggregators “compress” different multisets and thus fail to distinguish them.
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are in general not equivalent. Similarly, in Fig. 4-3c, both mean and max fail as 1
2 (ℎg + ℎr) =

1
4 (ℎg + ℎg + ℎr + ℎr).

To characterize the class of multisets that the mean aggregator can distinguish, consider

the example 𝑋1 = (𝑆,𝑚) and 𝑋2 = (𝑆, 𝑘 · 𝑚), where 𝑋1 and 𝑋2 have the same set of

distinct elements, but 𝑋2 contains 𝑘 copies of each element of 𝑋1. Any mean aggregator

maps 𝑋1 and 𝑋2 to the same embedding, because it simply takes averages over individual

element features. Thus, the mean captures the distribution (proportions) of elements in a

multiset, but not the exact multiset.

Corollary 4.7. Assume 𝒳 is countable. There exists a function 𝑓 : 𝒳 → R𝑛 so that for

ℎ(𝑋) = 1
|𝑋|
∑︀

𝑥∈𝑋 𝑓(𝑥), ℎ(𝑋1) = ℎ(𝑋2) if and only if multisets 𝑋1 and 𝑋2 have the same

distribution. That is, assuming |𝑋2| ≥ |𝑋1|, we have 𝑋1 = (𝑆,𝑚) and 𝑋2 = (𝑆, 𝑘 ·𝑚) for

some 𝑘 ∈ N≥1.

The mean aggregator may perform well if, for the task, the statistical and distributional

information in the graph is more important than the exact structure. Moreover, when

node features are diverse and rarely repeat, the mean aggregator is as powerful as the sum

aggregator. This may explain why, despite the limitations identified in Section 4.4.2, GNNs

with mean aggregators are effective for node classification tasks, such as classifying article

subjects and community detection, where node features are rich and the distribution of the

neighborhood features provides a strong signal for the task.

The examples in Figure 4-3 illustrate that max-pooling considers multiple nodes with

the same feature as only one node (i.e., treats a multiset as a set). Max-pooling captures

neither the exact structure nor the distribution. However, it may be suitable for tasks where it

is important to identify representative elements or the “skeleton”, rather than to distinguish

the exact structure or distribution. Qi et al. [2017] empirically show that the max-pooling

aggregator learns to identify the skeleton of a 3D point cloud and that it is robust to noise

and outliers. Later in Chapter 8, we shall also see that the inductive biases of max may be

useful for learning some graph algorithms. For completeness, the next corollary shows that

the max-pooling aggregator captures the underlying set of a multiset.
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Corollary 4.8. Assume 𝒳 is countable. Then there exists a function 𝑓 : 𝒳 → R∞ so that for

ℎ(𝑋) = max𝑥∈𝑋 𝑓(𝑥), ℎ(𝑋1) = ℎ(𝑋2) if and only if 𝑋1 and 𝑋2 have the same underlying

set.

Remarks on other aggregators There are other non-standard neighbor aggregation

schemes that we do not cover, e.g., weighted average via attention [Velickovic et al., 2018]

and LSTM pooling [Hamilton et al., 2017]. We emphasize that our theoretical framework is

general enough to characterize the representaional power of any aggregation-based GNNs.

In the future, it would be interesting to apply our framework to analyze and understand other

aggregation schemes.

4.5 Experiments

We evaluate and compare the training and test performance of GIN and less powerful GNN

variants. Training set performance allows us to compare different GNN models based on

their representational power and test set performance quantifies generalization ability.

Datasets. We use 9 graph classification benchmarks: 4 bioinformatics datasets (MUTAG,

PTC, NCI1, PROTEINS) and 5 social network datasets (COLLAB, IMDB-BINARY, IMDB-

MULTI, REDDIT-BINARY and REDDIT-MULTI5K) [Yanardag and Vishwanathan, 2015].

Importantly, our goal here is not to allow the models to rely on the input node features

but mainly learn from the network structure. Thus, in the bioinformatic graphs, the nodes

have categorical input features but in the social networks, they have no features. For social

networks we create node features as follows: for the REDDIT datasets, we set all node

feature vectors to be the same (thus, features here are uninformative); for the other social

graphs, we use one-hot encodings of node degrees. Dataset statistics are summarized in

Table 5.1, and more details of the data can be found in Appendix B.2.

Models and configurations. We evaluate GINs ( (4.1) and (4.2)) and the less powerful

GNN variants. Under the GIN framework, we consider two variants: (1) a GIN that learns 𝜖
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in 4.1 by gradient descent, which we call GIN-𝜖, and (2) a simpler (slightly less powerful)1

GIN, where 𝜖 in (4.1) is fixed to 0, which we call GIN-0. As we will see, GIN-0 shows

strong empirical performance: not only does GIN-0 fit training data equally well as GIN-𝜖,

it also demonstrates good generalization, slightly but consistently outperforming GIN-𝜖 in

terms of test accuracy. For the less powerful GNN variants, we consider architectures that

replace the sum in the GIN-0 aggregation with mean or max-pooling2, or replace MLPs

with 1-layer perceptrons, a linear mapping followed by ReLU. In Figure 4-4 and Table 4.1,

a model is named by the aggregator/perceptron it uses. Here mean–1-layer and max–1-layer

correspond to GCN and GraphSAGE, respectively, up to minor architecture modifications.

We apply the same graph-level readout (READOUT in 4.2) for GINs and all the GNN

variants, specifically, sum readout on bioinformatics datasets and mean readout on social

datasets due to better test performance.

Following [Yanardag and Vishwanathan, 2015, Niepert et al., 2016], we perform 10-fold

cross-validation with LIB-SVM [Chang and Lin, 2011]. We report the average and standard

deviation of validation accuracies across the 10 folds within the cross-validation. For all

configurations, 5 GNN layers (including the input layer) are applied, and all MLPs have 2

layers. Batch normalization [Ioffe and Szegedy, 2015] is applied on every hidden layer. We

use the Adam optimizer [Kingma and Ba, 2015] with initial learning rate 0.01 and decay the

learning rate by 0.5 every 50 epochs. The hyper-parameters we tune for each dataset are: (1)

the number of hidden units ∈ {16, 32} for bioinformatics graphs and 64 for social graphs; (2)

the batch size ∈ {32, 128}; (3) the dropout ratio ∈ {0, 0.5} after the dense layer [Srivastava

et al., 2014]; (4) the number of epochs, i.e., a single epoch with the best cross-validation

accuracy averaged over the 10 folds was selected. Note that due to the small dataset sizes,

an alternative setting, where hyper-parameter selection is done using a validation set, is

extremely unstable, e.g., for MUTAG, the validation set only contains 18 data points. We

also report the training accuracy of different GNNs, where all the hyper-parameters were

fixed across the datasets: 5 GNN layers (including the input layer), hidden units of size

64, minibatch of size 128, and 0.5 dropout ratio. For comparison, the training accuracy

1There exist certain (somewhat contrived) graphs that GIN-𝜖 can distinguish but GIN-0 cannot.
2For REDDIT-BINARY, REDDIT–MULTI5K, and COLLAB, we did not run experiments for max-pooling

due to GPU memory constraints.
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Figure 4-4: Training set performance of GIN, less powerful GNN variants, and the WL
subtree kernel.

of the WL subtree kernel is reported, where we set the number of iterations to 4, which is

comparable to the 5 GNN layers.

Baselines. We compare the GNNs above with a number of state-of-the-art baselines for

graph classification: (1) the WL subtree kernel [Shervashidze et al., 2011], where 𝐶-SVM

[Chang and Lin, 2011] was used as a classifier; the hyper-parameters we tune are 𝐶 of the

SVM and the number of WL iterations ∈ {1, 2, . . . , 6}; (2) state-of-the-art deep learning

architectures, i.e., Diffusion-convolutional neural networks (DCNN) [Atwood and Towsley,

2016], PATCHY-SAN [Niepert et al., 2016] and Deep Graph CNN (DGCNN) [Zhang et al.,

2018a]; (3) Anonymous Walk Embeddings (AWL) [Ivanov and Burnaev, 2018]. For the

deep learning methods and AWL, we report the accuracies reported in the original papers.

4.5.1 Results

Training set performance. We validate our theoretical analysis of the representational

power of GNNs by comparing their training accuracies. Models with higher representational

power should have higher training set accuracy. Figure 4-4 shows training curves of GINs

and less powerful GNN variants with the same hyper-parameter settings. First, both the

theoretically most powerful GNN, i.e. GIN-𝜖 and GIN-0, are able to almost perfectly fit all

the training sets. In our experiments, explicit learning of 𝜖 in GIN-𝜖 yields no gain in fitting
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Datasets IMDB-B IMDB-M RDT-B RDT-M5K COLLAB MUTAG PROTEINS PTC NCI1

D
at

as
et

s # graphs 1000 1500 2000 5000 5000 188 1113 344 4110

# classes 2 3 2 5 3 2 2 2 2

Avg # nodes 19.8 13.0 429.6 508.5 74.5 17.9 39.1 25.5 29.8

B
as

el
in

es

WL subtree 73.8 ± 3.9 50.9 ± 3.8 81.0 ± 3.1 52.5 ± 2.1 78.9 ± 1.9 90.4 ± 5.7 75.0 ± 3.1 59.9 ± 4.3 86.0 ± 1.8 *

DCNN 49.1 33.5 – – 52.1 67.0 61.3 56.6 62.6

PATCHYSAN 71.0 ± 2.2 45.2 ± 2.8 86.3 ± 1.6 49.1 ± 0.7 72.6 ± 2.2 92.6 ± 4.2 * 75.9 ± 2.8 60.0 ± 4.8 78.6 ± 1.9

DGCNN 70.0 47.8 – – 73.7 85.8 75.5 58.6 74.4

AWL 74.5 ± 5.9 51.5 ± 3.6 87.9 ± 2.5 54.7 ± 2.9 73.9 ± 1.9 87.9 ± 9.8 – – –

G
N

N
va

ri
an

ts

SUM–MLP (GIN-0) 75.1 ± 5.1 52.3 ± 2.8 92.4 ± 2.5 57.5 ± 1.5 80.2 ± 1.9 89.4 ± 5.6 76.2 ± 2.8 64.6 ± 7.0 82.7 ± 1.7
SUM–MLP (GIN-𝜖) 74.3 ± 5.1 52.1 ± 3.6 92.2 ± 2.3 57.0 ± 1.7 80.1 ± 1.9 89.0 ± 6.0 75.9 ± 3.8 63.7 ± 8.2 82.7 ± 1.6
SUM–1-LAYER 74.1 ± 5.0 52.2 ± 2.4 90.0 ± 2.7 55.1 ± 1.6 80.6 ± 1.9 90.0 ± 8.8 76.2 ± 2.6 63.1 ± 5.7 82.0 ± 1.5

MEAN–MLP 73.7 ± 3.7 52.3 ± 3.1 50.0 ± 0.0 20.0 ± 0.0 79.2 ± 2.3 83.5 ± 6.3 75.5 ± 3.4 66.6 ± 6.9 80.9 ± 1.8

MEAN–1-LAYER (GCN) 74.0 ± 3.4 51.9 ± 3.8 50.0 ± 0.0 20.0 ± 0.0 79.0 ± 1.8 85.6 ± 5.8 76.0 ± 3.2 64.2 ± 4.3 80.2 ± 2.0

MAX–MLP 73.2 ± 5.8 51.1 ± 3.6 – – – 84.0 ± 6.1 76.0 ± 3.2 64.6 ± 10.2 77.8 ± 1.3

MAX–1-LAYER (GraphSAGE) 72.3 ± 5.3 50.9 ± 2.2 – – – 85.1 ± 7.6 75.9 ± 3.2 63.9 ± 7.7 77.7 ± 1.5

Table 4.1: Test set classification accuracies (%). The best-performing GNNs are high-
lighted with boldface. On datasets where GINs’ accuracy is not strictly the highest among
GNN variants, we see that GINs are still comparable to the best GNN because a paired
t-test at significance level 10% does not distinguish GINs from the best; thus, GINs are also
highlighted with boldface. If a baseline performs significantly better than all GNNs, we
highlight it with boldface and asterisk.

training data compared to fixing 𝜖 to 0 as in GIN-0. In comparison, the GNN variants using

mean/max pooling or 1-layer perceptrons severely underfit on many datasets. In particular,

the training accuracy patterns align with our ranking by the models’ representational power:

GNN variants with MLPs tend to have higher training accuracies than those with 1-layer

perceptrons, and GNNs with sum aggregators tend to fit the training sets better than those

with mean and max-pooling aggregators.

On our datasets, training accuracies of the GNNs never exceed those of the WL subtree

kernel. This is expected because GNNs generally have lower discriminative power than the

WL test. For example, on IMDBBINARY, none of the models can perfectly fit the training

set, and the GNNs achieve at most the same training accuracy as the WL kernel. This pattern

aligns with our result that the WL test provides an upper bound for the representational

capacity of the aggregation-based GNNs. However, the WL kernel is not able to learn how

to combine node features, which might be quite informative for a given prediction task as

we will see next.

Test set performance. Next, we compare test accuracies. Although our theoretical results

do not directly speak about the generalization ability of GNNs, it is reasonable to expect
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that GNNs with strong expressive power can accurately capture graph structures of interest

and thus generalize well. Table 4.1 compares test accuracies of GINs (Sum–MLP), other

GNN variants, as well as the state-of-the-art baselines.

First, GINs, especially GIN-0, outperform (or achieve comparable performance as) the

less powerful GNN variants on all the 9 datasets, achieving state-of-the-art performance.

GINs shine on the social network datasets, which contain a relatively large number of

training graphs. For the Reddit datasets, all nodes share the same scalar as node feature. Here,

GINs and sum-aggregation GNNs accurately capture the graph structure and significantly

outperform other models. Mean-aggregation GNNs, however, fail to capture any structures

of the unlabeled graphs (as predicted in Section 4.4.2) and do not perform better than random

guessing. Even if node degrees are provided as input features, mean-based GNNs perform

much worse than sum-based GNNs (the accuracy of the GNN with mean–MLP aggregation

is 71.2±4.6% on REDDIT-BINARY and 41.3±2.1% on REDDIT-MULTI5K). Comparing

GINs (GIN-0 and GIN-𝜖), we observe that GIN-0 slightly but consistently outperforms

GIN-𝜖. Since both models fit training data equally well, the better generalization of GIN-0

may be explained by its simplicity compared to GIN-𝜖.

4.6 Conclusion

In this chapter, we developed theoretical foundations for reasoning about the expressive

power of GNNs, and proved tight bounds on the representational capacity of popular GNN

variants. We also designed a provably maximally powerful GNN under the message passing

framework. An interesting direction for future work is to go beyond message passing in

order to pursue possibly more powerful architectures for learning with graphs.

Since the release of this work, there have been many follow-up papers of the work

that chapter is based on. We may approximately classify these into a few approaches for

designing GNNs with more expressive power. First, our analysis assumed the node features

do not contain any special number that identifies a node, because such identifiers do not

easily extend to unseen graphs and thus isomorphic graphs may be mapped to different

representations. A few works explore adding auxiliary node identifiers and empirically show
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that random features are useful in practice [Sato et al., 2019, 2020, Vignac et al., 2020].

In general, this approach can result in very powerful GNNs but it also requires a careful

treatment of the node identifiers for good generalization performance. The second approach

considers the specific application domains, such as logic, chemistry, and social networks,

and exploit additional structure and information in these domains for more expressive

GNNs [Barceló et al., 2020, Zhang et al., 2019c, You et al., 2019, Klicpera et al., 2020].

The third approach uses higher-order GNNs with computational structures that are more

expressive but also significantly more expensive than the message passing scheme [Keriven

and Peyré, 2019, Maron et al., 2019, Murphy et al., 2019, Tahmasebi and Jegelka, 2020,

Chen et al., 2020b]. While these models are theoretically more expressive, it has been

observed that their generalization performance is often not as good as simple message

passing GNNs, and they are computationally intractable for large graphs. We believe this

relates to the inductive biases of the architectures for generalization, which we shall discuss

in Chapter 6 and Chapter 8. Finally, other follow-up works look at the expressive power

of GNNs from the perspective of function approximation, counting substructures, and

communication complexity [Chen et al., 2019, 2021, 2020b, Dehmamy et al., 2019, Garg

et al., 2020, Loukas, 2020a,b].

To complete the picture, it would also be interesting to understand and improve the

generalization properties of GNNs as well as better understand their optimization dynamics.

In the remaining chapters of the thesis, we will study all these theoretical aspects of GNNs:

generalization, extrapolation, and optimization.
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Part II

Reasoning: Generalization
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Chapter 5

Dynamics and Generalization of

Over-parameterized GNNs

The second part of the thesis is about modeling intelligence for reasoning. Learning to

reason implies learning to implement a reasoning process, within and outside the training

distribution. While many neural architectures are able to represent these complex, structured

reasoning processes, the solutions they find via stochastic gradient descent often do not

generalize well to unseen situations. Hence, to understand how to build models for reasoning,

we must understand what affects the generalization of neural networks, for both interpolation

(in-distribution) and extrapolation (out of distribution) regimes. In general, this depends on

the training algorithm, network structure, task structure, and training data. In Chapter 5,

we start by taking into account the training algorithm, gradient descent, and training data.

In Chapter 6, we further take into account the network structure and task structure. Both

chapters focus on in-distribution generalization. In Part III, we will study extrapolation.

5.1 Introduction

In this chapter, we study the generalization properties of GNNs. In particular, we analyze

the learning dynamics of GNNs trained by gradient descent, which then gives generalization

bounds and provable learning of simple functions on graphs. Here, we will focus on learning

simple and general functions, and do not yet take into account the task structure of reasoning,
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which we will do in the next chapter.

In general, the function that a neural network implements depends on the training.

However, due to the non-convex nature of the training procedure, it has been often difficult to

analyze the learned GNNs directly. For example, one may ask whether GNNs can provably

learn certain class of functions. This question seems hard to answer given our limited

theoretical understanding of deep learning.

Recent advances of deep learning theory establishes a connection between the over-

parameterized neural networks and a specific neural tangent kernel [Arora et al., 2019b,c,

Du et al., 2019a, Jacot et al., 2018]. Inspired by this connection, we show that over-

parameterized GNNs trained by gradient descent are equivalent to Graph Neural Tangent

Kernel (GNTK), where the word “tangent” corresponds to the training algorithm — gradient

descent. Moreover, when the width goes to infinity, we show analytic formulas for computing

such infinitely wide GNNs via GNTK, exactly and efficiently.

First, we present a general recipe which translates a GNN architecture to its correspond-

ing GNTK. This recipe works for a wide range of GNNs, including graph isomorphism

network (GIN) [Xu et al., 2019], graph convolutional network (GCN) [Kipf and Welling,

2017], and GNN with jumping knowledge [Xu et al., 2018]. Second, we conduct a theoreti-

cal analysis of GNTK, and hence over-parameterized GNNs. We show for a broad range

of smooth functions over graphs, simple GNNs can learn them with polynomial number

of samples. To our knowledge, this is the first sample complexity analysis in the GNN

literature. As a by-product, we empirically find such infinitely wide GNNs generalize well

and outperform the finite GNNs on graph classification tasks.

Notations

We introduce several notations. In this chapter, we refer to the neighbor aggregation or

message passing step in GNNs as a BLOCK operation.

BLOCK Operation. We denote the number of fully-connected layers in each BLOCK

operation, i.e., the number of hidden layers of an MLP, by 𝑅.
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When 𝑅 = 1, the BLOCK operation can be formulated as

BLOCK(ℓ)(𝑢) =
√︂
𝑐𝜎

𝑚
· 𝜎

⎛⎝𝑊ℓ · 𝑐𝑢

∑︁
𝑣∈𝒩 (𝑢)∪{𝑢}

ℎ(ℓ−1)
𝑣

⎞⎠ . (5.1)

Here, 𝑊ℓ are learnable weights, initialized as Gaussian random variables. 𝜎 is an activation

function like ReLU. 𝑚 is the output dimension of 𝑊ℓ. We set the scaling factor 𝑐𝜎 to 2,

following the initialization scheme in He et al. [2015]. 𝑐𝑢 is a scaling factor for neighbor

aggregation. Different GNNs often have different choices for 𝑐𝑢. In Graph Convolution

Network (GCN) [Kipf and Welling, 2017], 𝑐𝑢 = 1
|𝒩 (𝑢)|+1 , and in Graph Isomorphism

Network (GIN) [Xu et al., 2019], 𝑐𝑢 = 1, which correspond to averaging and summing over

neighbor features, respectively.

When the number of fully-connected layers 𝑅 = 2, the BLOCK operation can be written

as

BLOCK(ℓ)(𝑢) =
√︂
𝑐𝜎

𝑚
𝜎

⎛⎝𝑊ℓ,2

√︂
𝑐𝜎

𝑚
· 𝜎

⎛⎝𝑊ℓ,1 · 𝑐𝑢

∑︁
𝑣∈𝒩 (𝑢)∪{𝑢}

ℎ(ℓ−1)
𝑣

⎞⎠⎞⎠ , (5.2)

where 𝑊ℓ,1 and 𝑊ℓ,2 are learnable weights. BLOCK operations can be defined similarly

for 𝑅 > 2.

5.2 Graph Neural Tangent Kernel

In this section we present our general recipe which translates a GNN architecture to its

corresponding GNTK. GNTK computes the kernel value, i.e., similarity, of a pair of graphs.

We first provide some intuition on neural tangent kernels (NTKs). We refer readers to Jacot

et al. [2018], Arora et al. [2019c] for more comprehensive descriptions.

5.2.1 Intuition of Formulas

Consider a general neural network 𝑓(𝜃, 𝑥) ∈ R where 𝜃 ∈ R𝑚 is all the parameters in the

network and 𝑥 is the input. Given a training dataset {(𝑥𝑖, 𝑦𝑖)𝑛
𝑖=1}, consider training the
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Figure 5-1: Illustration of NTK theory. Consider a general neural network with 𝐿 layers
𝜃(1), . . . , 𝜃(𝐿), given input 𝑥𝑖 and 𝑥𝑗 , the neural network will output 𝑓(𝜃(𝑡), 𝑥𝑖), 𝑓(𝜃(𝑡), 𝑥𝑗).
When trained by gradient descent, evolution of 𝑢(𝑡) follows 𝑑𝑢

𝑑𝑡
= −𝐻(𝑡)(𝑢(𝑡) − 𝑦). One

can show that when the number of parameters in the neural network is large enough, and
parameters of the neural network are initialized as Gaussian variables, 𝐻(𝑡) ≈ 𝐻(0) and
can be calculated analytically.

neural network by minimizing the squared loss over training data

ℓ(𝜃) = 1
2

𝑛∑︁
𝑖=1

(𝑓(𝜃, 𝑥𝑖) − 𝑦𝑖)2.

Suppose we minimize the squared loss ℓ(𝜃) by gradient descent with infinitesimally small

learning rate, i.e., 𝑑𝜃(𝑡)
𝑑𝑡

= −∇ℓ(𝜃(𝑡)). Let 𝑢(𝑡) = (𝑓(𝜃(𝑡), 𝑥𝑖))𝑛
𝑖=1 be the network outputs.

𝑢(𝑡) follows the evolution

𝑑𝑢

𝑑𝑡
= −𝐻(𝑡)(𝑢(𝑡) − 𝑦), (5.3)

where

𝐻(𝑡)𝑖𝑗 =
⟨
𝜕𝑓(𝜃(𝑡), 𝑥𝑖)

𝜕𝜃
,
𝜕𝑓(𝜃(𝑡), 𝑥𝑗)

𝜕𝜃

⟩
for (𝑖, 𝑗) ∈ [𝑛] × [𝑛]. (5.4)

Recent advances in optimization of neural networks have shown, for sufficiently over-

parameterized neural networks, the matrix 𝐻(𝑡) keeps almost unchanged during the training

process [Arora et al., 2019b,c, Du et al., 2019a, Jacot et al., 2018], in which case the

training dynamics is identical to that of kernel regression. Moreover, under a random
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initialization of parameters, the random matrix 𝐻(0) converges in probability to a certain

deterministic kernel matrix, which is called Neural Tangent Kernel (NTK) [Jacot et al.,

2018] and corresponds to infinitely wide neural networks. See Figure 5-1 for an illustration.

Explicit formulas for NTKs of fully-connected neural networks have been given in Jacot

et al. [2018]. Recently, explicit formulas for NTKs of convolutional neural networks are

given in Arora et al. [2019c]. The goal of this section is to give an explicit formula for

NTKs that correspond to GNNs defined previously. Let 𝑓(𝜃,𝐺) ∈ R be the output of the

corresponding GNN under parameters 𝜃 and input graph 𝐺, for two given graphs 𝐺 and 𝐺′,

to calculate the corresponding GNTK value, we need to calculate the expected value of

⟨
𝜕𝑓(𝜃,𝐺)

𝜕𝜃
,
𝜕𝑓(𝜃,𝐺′)

𝜕𝜃

⟩

in the limit that 𝑚 → ∞ and 𝜃 are all Gaussian random variables, which can be viewed as a

Gaussian process. For each layer in the GNN, we use Σ to denote the covariance matrix of

outputs of that layer, and Σ̇ to denote the covariance matrix corresponds to the derivative

of that layer. Due to the multi-layer structure of GNNs, these covariance matrices can be

naturally calculated via dynamic programming.

5.2.2 Exact Computation of Infinitely Wide GNNs

Given two graphs 𝐺 = (𝑉,𝐸), 𝐺′ = (𝑉 ′, 𝐸 ′) with |𝑉 | = 𝑛, |𝑉 ′| = 𝑛′ and a GNN with 𝐿

BLOCK operations and 𝑅 fully-connected layers with ReLU activation in each BLOCK

operation. We give the GNTK formula of pairwise kernel value Θ(𝐺,𝐺′) ∈ R induced by

this GNN.

We first define the covariance matrix between input features of two input graphs 𝐺,𝐺′,

which we use Σ(0)(𝐺,𝐺′) ∈ R𝑛×𝑛′ to denote. For two nodes 𝑢 ∈ 𝑉 and 𝑢′ ∈ 𝑉 ′,[︁
Σ(0)(𝐺,𝐺′)

]︁
𝑢𝑢′

is defined to be ℎ⊤
𝑢 ℎ𝑢′ , where ℎ𝑢 and ℎ𝑢′ are the input features of 𝑢 ∈ 𝑉

and 𝑢′ ∈ 𝑉 ′.

BLOCK Operation. A BLOCK operation in GNTK calculates a covariance matrix

Σ(ℓ)
(𝑅)(𝐺,𝐺′) ∈ R𝑛×𝑛′ using Σ(ℓ−1)

(𝑅) (𝐺,𝐺′) ∈ R𝑛×𝑛′ , and calculates intermediate kernel
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values Θ(ℓ)
(𝑟)(𝐺,𝐺′) ∈ R𝑛×𝑛′ , which will be later used to compute the final output.

More specifically, we first perform a neighborhood aggregation operation

[︁
Σ(ℓ)

(0)(𝐺,𝐺
′)
]︁

𝑢𝑢′
=𝑐𝑢𝑐𝑢′

∑︁
𝑣∈𝒩 (𝑢)∪{𝑢}

∑︁
𝑣′∈𝒩 (𝑢′)∪{𝑢′}

[︁
Σ(ℓ−1)

(𝑅) (𝐺,𝐺′)
]︁

𝑣𝑣′
,

[︁
Θ(ℓ)

(0)(𝐺,𝐺
′)
]︁

𝑢𝑢′
=𝑐𝑢𝑐𝑢′

∑︁
𝑣∈𝒩 (𝑢)∪{𝑢}

∑︁
𝑣′∈𝒩 (𝑢′)∪{𝑢′}

[︁
Θ(ℓ−1)

(𝑅) (𝐺,𝐺′)
]︁

𝑣𝑣′
.

Here we define Σ(0)
(𝑅)(𝐺,𝐺′) and Θ(0)

(𝑅)(𝐺,𝐺′) as Σ(0)(𝐺,𝐺′), for notational convenience.

Next we perform 𝑅 transformations that correspond to the 𝑅 fully-connected layers with

ReLU activation. Here 𝜎(𝑧) = max{0, 𝑧} is the ReLU activation function. We denote

�̇�(𝑧) = 1[𝑧 ≥ 0] to be the derivative of the ReLU activation function.

For each 𝑟 ∈ [𝑅], we define

• For 𝑢 ∈ 𝑉, 𝑢′ ∈ 𝑉 ′,

[︁
𝐴

(ℓ)
(𝑟) (𝐺,𝐺′)

]︁
𝑢𝑢′

=

⎛⎜⎝
[︁
Σ(ℓ)

(𝑟−1)(𝐺,𝐺)
]︁

𝑢,𝑢

[︁
Σ(ℓ)

(𝑟−1)(𝐺,𝐺′)
]︁

𝑢𝑢′[︁
Σ(ℓ)

(𝑟−1)(𝐺′, 𝐺)
]︁

𝑢𝑢′

[︁
Σ(ℓ)

(𝑟−1)(𝐺′, 𝐺′)
]︁

𝑢′𝑢′

⎞⎟⎠ ∈ R2×2.

• For 𝑢 ∈ 𝑉, 𝑢′ ∈ 𝑉 ′,

[︁
Σ(ℓ)

(𝑟)(𝐺,𝐺
′)
]︁

𝑢𝑢′
=𝑐𝜎E(𝑎,𝑏)∼𝒩

(︁
0,

[︁
𝐴

(ℓ)
(𝑟)(𝐺,𝐺′)

]︁
𝑢𝑢′

)︁ [𝜎 (𝑎)𝜎 (𝑏)] , (5.5)

[︁
Σ̇(ℓ)

(𝑟) (𝐺,𝐺′)
]︁

𝑢𝑢′
=𝑐𝜎E(𝑎,𝑏)∼𝒩

(︁
0,

[︁
𝐴

(ℓ)
(𝑟)(𝐺,𝐺′)

]︁
𝑢𝑢′

)︁ [�̇�(𝑎)�̇�(𝑏)] . (5.6)

• For 𝑢 ∈ 𝑉, 𝑢′ ∈ 𝑉 ′,

[︁
Θ(ℓ)

(𝑟)(𝐺,𝐺
′)
]︁

𝑢𝑢′
=
[︁
Θ(ℓ)

(𝑟−1)(𝐺,𝐺
′)
]︁

𝑢𝑢′

[︁
Σ̇(ℓ)

(𝑟) (𝐺,𝐺′)
]︁

𝑢𝑢′
+
[︁
Σ(ℓ)

(𝑟) (𝐺,𝐺′)
]︁

𝑢𝑢′
.

Note in the above we have shown how to calculate Θ(ℓ)
(𝑅)(𝐺,𝐺′) for each ℓ ∈ {0, 1, . . . , 𝐿}.

These intermediate outputs will be used to calculate the final output of the corresponding

GNTK.
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Figure 5-2: Illustration of our recipe that translates a GNN to a GNTK. For a GNN
with 𝐿 = 2 BLOCK operations, 𝑅 = 1 fully-connected layer in each BLOCK operation, and
jumping knowledge, the corresponding GNTK is calculated as follow. For two graphs 𝐺 and
𝐺′, we first calculate

[︁
Θ(0)

(1)(𝐺,𝐺′)
]︁

𝑢𝑢′
=
[︁
Σ(0)

(1)(𝐺,𝐺′)
]︁

𝑢𝑢′
=
[︁
Σ(0)(𝐺,𝐺′)

]︁
𝑢𝑢′

= ℎ⊤
𝑢 ℎ𝑢′ .

We follow our GNTK formula to calculate Σ(ℓ)
(0),Θ

(ℓ)
(0) using Σ(ℓ−1)

(𝑅) ,Θ(ℓ−1)
(𝑅) (Aggregation)

and calculate Σ(ℓ)
(𝑟), Σ̇

(ℓ)
(𝑟),Θ

(ℓ)
(𝑟) using Σ(ℓ)

(𝑟−1),Θ
(ℓ)
(𝑟−1) (Nonlinearity). The final output is

Θ(𝐺,𝐺′) = ∑︀
𝑢∈𝑉,𝑢′∈𝑉 ′

[︁∑︀𝐿
ℓ=0 Θ(ℓ)

(𝑅)(𝐺,𝐺′)
]︁

𝑢𝑢′
.
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READOUT Operation. Given these intermediate outputs, we can now calculate the final

output of GNTK using the following formula.

Θ(𝐺,𝐺′) =

⎧⎪⎪⎨⎪⎪⎩
∑︀

𝑢∈𝑉,𝑢′∈𝑉 ′

[︁
Θ(ℓ)

(𝑅) (𝐺,𝐺′)
]︁

𝑢𝑢′
without jumping knowledge∑︀

𝑢∈𝑉,𝑢′∈𝑉 ′

[︁∑︀𝐿
ℓ=0 Θ(ℓ)

(𝑅)(𝐺,𝐺′)
]︁

𝑢𝑢′
with jumping knowledge

.

To better illustrate our general recipe, in Figure 5-2 we give a concrete example in which

we translate a GNN with 𝐿 = 2 BLOCK operations, 𝑅 = 1 fully-connection layer in each

BLOCK operation, and jumping knowledge, to its corresponding GNTK.

5.3 Generalization Bound

In this section, we analyze the generalization ability of GNTK which corresponds to over-

parameterized GNNs trained by gradient descent. We consider the standard supervised

learning setup. We are given 𝑛 training data {(𝐺𝑖, 𝑦𝑖)}𝑛
𝑖=1 drawn i.i.d. from the underlying

distribution 𝒟, where 𝐺𝑖 is the 𝑖-th input graph and 𝑦𝑖 is its label. Consider a GNN

with a single BLOCK operation, followed by the READOUT operation (without jumping

knowledge). Here we set 𝑐𝑢 =
(︁⃦⃦⃦∑︀

𝑣∈𝒩 (𝑢)∪{𝑢} ℎ𝑣

⃦⃦⃦
2

)︁−1
. We use Θ ∈ R𝑛×𝑛 to denote

the kernel matrix, where Θ𝑖𝑗 = Θ(𝐺𝑖, 𝐺𝑗). Here Θ(𝐺,𝐺′) is the kernel function that

corresponds to the simple GNN. Throughout the discussion, we assume that the kernel

matrix Θ ∈ R𝑛×𝑛 is invertible.

For a testing point 𝐺𝑡𝑒, the prediction of kernel regression using GNTK on this testing

point is

𝑓𝑘𝑒𝑟(𝐺𝑡𝑒) = [Θ(𝐺𝑡𝑒, 𝐺1),Θ(𝐺𝑡𝑒, 𝐺1), . . . ,Θ(𝐺𝑡𝑒, 𝐺𝑛)]⊤ Θ−1𝑦.

The following result is a standard result for kernel regression proved using Rademacher

complexity. For a proof, see Bartlett and Mendelson [2002].

Theorem 5.1 (Bartlett and Mendelson [2002]). Given 𝑛 training data {(𝐺𝑖, 𝑦𝑖)}𝑛
𝑖=1 drawn

i.i.d. from the underlying distribution 𝒟. Consider any loss function ℓ : R × R → [0, 1] that

is 1-Lipschitz in the first argument such that ℓ(𝑦, 𝑦) = 0. With probability at least 1 − 𝛿, the
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population loss of the GNTK predictor can be upper bounded by

𝐿𝒟 (𝑓𝑘𝑒𝑟) = E(𝐺,𝑦)∼𝒟 [ℓ(𝑓𝑘𝑒𝑟(𝐺), 𝑦)] = 𝑂

⎛⎝
√︁

𝑦⊤Θ−1𝑦 · tr (Θ)
𝑛

+
√︃

log(1/𝛿)
𝑛

⎞⎠ .
Note that this theorem presents a data-dependent generalization bound which is related

to the kernel matrix Θ ∈ R𝑛×𝑛 and the labels {𝑦𝑖}𝑛
𝑖=1. Using this theorem, if we can

bound 𝑦⊤Θ−1𝑦 and tr (Θ), then we can obtain a concrete sample complexity bound. We

instantiate this idea to study the class of graph labeling functions that can be efficiently

learned by GNTKs.

The following two theorems guarantee that if labels are generated as described in (5.7),

then the GNTK that corresponds to the simple GNN described above can learn this function

with polynomial number of samples. We first give an upper bound on 𝑦⊤Θ−1𝑦.

Theorem 5.2. For each 𝑖 ∈ [𝑛], if the labels {𝑦𝑖}𝑛
𝑖=1 satisfy

𝑦𝑖 = 𝛼1
∑︁
𝑢∈𝑉

(︁
ℎ

⊤
𝑢 𝛽1

)︁
+

∞∑︁
𝑙=1

𝛼2𝑙

∑︁
𝑢∈𝑉

(︁
ℎ

⊤
𝑢 𝛽2𝑙

)︁2𝑙
, (5.7)

where ℎ𝑢 = 𝑐𝑢
∑︀

𝑣∈𝒩 (𝑢)∪{𝑢} ℎ𝑣, 𝛼1, 𝛼2, 𝛼4, . . . ∈ R, 𝛽1,𝛽2,𝛽4, . . . ∈ R𝑑, and 𝐺𝑖 = (𝑉,𝐸),

then we have

√︁
𝑦⊤Θ−1𝑦 ≤ 2|𝛼1| · ‖𝛽1‖2 +

∞∑︁
𝑙=1

√
2𝜋(2𝑙 − 1)|𝛼2𝑙| · ‖𝛽2𝑙‖2𝑙

2 .

The following theorem gives an upper bound on tr (Θ).

Theorem 5.3. If for all graphs 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) in the training set, |𝑉𝑖| is upper bounded by

𝑉 , then tr(Θ) ≤ 𝑂(𝑛𝑉 2). Here 𝑛 is the number of training samples.

Combining Theorem 5.2 and Theorem 5.3 with Theorem 5.1, we know if

2|𝛼1| · ‖𝛽1‖2 +
∞∑︁

𝑙=1

√
2𝜋(2𝑙 − 1)|𝛼2𝑙| · ‖𝛽2𝑙‖2𝑙

2

is bounded, and |𝑉𝑖| is bounded for all graphs 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) in the training set, then the

GNTK that corresponds to the simple GNN described above can learn functions of forms
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in (5.7), with polynomial number of samples. To our knowledge, this is the first sample

complexity analysis in the GK and GNN literature.

5.4 Experiments

In this section, we demonstrate that such infinitely-wide GNNs in fact perform well in prac-

tice, and can even outperform the finite GNNs. In particular, we validate the effectiveness

of GNTKs with experiments on graph classification tasks. Following common practices of

evaluating performance of graph classification models Yanardag and Vishwanathan [2015],

we perform 10-fold cross validation and report the mean and standard deviation of validation

accuracies. More details about the experiment setup can be found in the Appendix.

Datasets. The benchmark datasets include four bioinformatics datasets MUTAG, PTC,

NCI1, PROTEINS and three social network datasets COLLAB, IMDB-BINARY, IMDB-

MULTI. For each graph, we transform the categorical input features to one-hot encoding

representations. For datasets where the graphs have no node features, i.e. only graph

structure matters, we use degrees as input node features.

Results We compare GNTK with various state-of-the-art graph classification algorithms:

(1) the WL subtree kernel [Shervashidze et al., 2011]; (2) state-of-the-art deep learning

architectures, including Graph Convolutional Network (GCN) [Kipf and Welling, 2017],

GraphSAGE [Hamilton et al., 2017], Graph Isomorphism Network(GIN) [Xu et al., 2019],

PATCHY-SAN [Niepert et al., 2016] and Deep Graph CNN (DGCNN) [Zhang et al., 2018a];

(3) Graph kernels based on random walks, i.e., Anonymous Walk Embeddings [Ivanov and

Burnaev, 2018] and RetGK [Zhang et al., 2018b]. For deep learning methods and random

walk graph kernels, we report the accuracies reported in the original papers. The experiment

setup is deferred to Appendix.

The graph classification results are shown in Table 5.1. The best results are highlighted

as bold. Infinitely wide GNNs, i.e., GNTKs, are powerful and achieve state-of-the-art

classification accuracy on most datasets. In four of them, we find GNTKs outperform all
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Method COLLAB IMDB-B IMDB-M PTC NCI1 MUTAG PROTEINS
G

N
N

GCN 79.0 ± 1.8 74.0 ± 3.4 51.9 ± 3.8 64.2 ± 4.3 80.2 ± 2.0 85.6 ± 5.8 76.0 ± 3.2
GraphSAGE – 72.3 ± 5.3 50.9 ± 2.2 63.9 ± 7.7 77.7 ± 1.5 85.1 ± 7.6 75.9 ± 3.2
PatchySAN 72.6 ± 2.2 71.0 ± 2.2 45.2 ± 2.8 60.0 ± 4.8 78.6 ± 1.9 92.6 ± 4.2 75.9 ± 2.8
DGCNN 73.7 70.0 47.8 58.6 74.4 85.8 75.5
GIN 80.2 ± 1.9 75.1 ± 5.1 52.3 ± 2.8 64.6 ± 7.0 82.7 ± 1.7 89.4 ± 5.6 76.2 ± 2.8

G
K

WL subtree 78.9 ± 1.9 73.8 ± 3.9 50.9 ± 3.8 59.9 ± 4.3 86.0 ± 1.8 90.4 ± 5.7 75.0 ± 3.1
AWL 73.9 ± 1.9 74.5 ± 5.9 51.5 ± 3.6 – – 87.9 ± 9.8 –
RetGK 81.0 ± 0.3 71.9 ± 1.0 47.7 ± 0.3 62.5 ± 1.6 84.5 ± 0.2 90.3 ± 1.1 75.8 ± 0.6

GNTK 83.6 ± 1.0 76.9 ± 3.6 52.8 ± 4.6 67.9 ± 6.9 84.2 ± 1.5 90.0 ± 8.5 75.6 ± 4.2

Table 5.1: Classification results (in %) for graph classification datasets. GNN: graph
neural network based methods. GK: graph kernel based methods. GNTK: fusion of GNN
and GK.

baseline methods. In particular, GNTKs achieve 83.6% accuracy on COLLAB dataset

and 67.9% accuracy on PTC dataset, compared to the best of baselines, 81.0% and 64.6%

respectively. Notably, GNTKs give the best performance on all social network datasets.

Moreover, In our experiments, we also observe that with the same architecture, GNTK is

more computational efficient that its GNN counterpart. On IMDB-B dataset, running GIN

with the default setup (official implementation of Xu et al. [2019]) takes 19 minutes on a

TITAN X GPU and running GNTK only takes 2 minutes.

Conclusion. In this chapter, we kept our focus simple, and studied the generalization of

over-parameterized GNNs for general and simple functions on graphs. In the next chapter,

we will go back to our core question of modeling intelligence for reasoning. Our analysis

will take into account the task structure of reasoning problems.

89



90



Chapter 6

What Can Neural Networks Reason

About

This chapter asks what reasoning a neural network can learn. To this end, we analyze the

generalization and sample complexity of neural networks (e.g., GNNs) in learning reasoning

problems, by considering the interplay of the network structure and the task structure.

6.1 Introduction

Recently, there have been many advances in building neural networks that can learn to

reason. Reasoning spans a variety of tasks, for instance, visual and text-based question

answering [Johnson et al., 2017a, Weston et al., 2015, Hu et al., 2017, Fleuret et al.,

2011, Antol et al., 2015], intuitive physics, i.e., predicting the time evolution of physical

objects [Battaglia et al., 2016, Watters et al., 2017, Fragkiadaki et al., 2016, Chang et al.,

2017], mathematical reasoning [Saxton et al., 2019, Chang et al., 2019] and visual IQ

tests [Santoro et al., 2018, Zhang et al., 2019a].

Curiously, neural networks that perform well in reasoning tasks usually possess specific

structures [Santoro et al., 2017]. Many successful models follow the Graph Neural Network

(GNN) framework [Battaglia et al., 2018, 2016, Palm et al., 2018, Mrowca et al., 2018,

Sanchez-Gonzalez et al., 2018, Janner et al., 2019]. These networks explicitly model pair-

wise relations and recursively update each object’s representation by aggregating its relations
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with other objects. Other computational structures, e.g., neural symbolic programs [Yi et al.,

2018a, Mao et al., 2019, Johnson et al., 2017b], are effective on specific tasks.

However, there is limited understanding of the relation between the generalization ability

and network structure for reasoning. Answering the following fundamental question is

crucial for understanding the empirical success and limitations of existing models, and for

designing better models for new reasoning tasks.

What tasks can a neural network sample efficiently learn to reason about?

This chapter answers this fundamental question by developing a theoretical framework

to characterize what tasks a neural network can reason about. We build on a simple

observation that reasoning processes resemble algorithms. Hence, we study how well

a reasoning algorithm aligns with the computation graph of the network. Intuitively, if

they align well, the network only needs to learn simple algorithm steps to simulate the

reasoning process, which leads to better sample efficiency. We formalize this intuition with

a numeric measure of algorithmic alignment, and show initial support for our hypothesis

that algorithmic alignment facilitates learning: Under simplifying assumptions, we show a

sample complexity bound that decreases with better alignment.

Our framework explains the empirical success of popular reasoning models and suggests

their limitations. As concrete examples, we study four categories of increasingly complex

reasoning tasks: summary statistics, relational argmax (asking about properties of the result

of comparing multiple relations), dynamic programming, and NP-hard problems (Figure 6-

1). Using alignment, we characterize which architectures are expected to learn each task

well: Networks inducing permutation invariance, such as Deep Sets [Zaheer et al., 2017],

can learn summary statistics, and one-iteration GNNs can learn relational argmax. Many

other more complex tasks, such as intuitive physics, visual question answering, and shortest

paths – despite seeming different – can all be solved via a powerful algorithmic paradigm:

dynamic programming (DP) [Bellman, 1966]. Multi-iteration GNNs algorithmically align

with DP and hence are expected to sample-efficiently learn these tasks. Indeed, they do.

Our results offer an explanation for the popularity of GNNs in the relational reasoning

literature, and also suggest limitations for tasks with even more complex structure. As an
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Summary statistics
What is the maximum value 
difference among treasures?

Relational argmax
What are the colors of the 
furthest pair of objects?

Dynamic programming
What is the cost to defeat monster X 

by following the optimal path?

NP-hard problem
Subset sum: Is there a 
subset that sums to 0?

Figure 6-1: Overview of reasoning tasks with increasingly complex structure. Each task
category shows an example task on which we perform experiments. Algorithmic alignment
suggests that (a) Deep Sets and GNNs, but not MLP, can sample efficiently learn summary
statistics, (b) GNNs, but not Deep Sets, can learn relational argmax, (c) GNNs can learn
dynamic programming, an algorithmic paradigm that we show to unify many reasoning
tasks, (d) GNNs cannot learn subset sum (NP-hard), but NES, a network we design based
on exhaustive search, can generalize. Our theory agrees with empirical results (Figure 6-3).

example of such a task, we consider subset sum, an NP-hard problem where GNNs indeed

fail. Overall, empirical results (Figure 6-3) agree with our theoretical analysis based on

algorithmic alignment (Figure 6-1). These findings also suggest how to take into account

task structure when designing new architectures.

The perspective that structure in networks helps is not new. For example, in a well-

known position paper, Battaglia et al. [2018] argue that GNNs are suitable for relational

reasoning because they have relational inductive biases, but without formalizations. Here,

we take such ideas one step further, by introducing a formal definition (algorithmic align-

ment) for quantifying the relation between network and task structure, and by formally

deriving implications for learning. These theoretical ideas are the basis for characterizing

what reasoning tasks a network can learn well. Our algorithmic structural condition also

differs from structural assumptions common in learning theory [Vapnik, 2013, Bartlett and

Mendelson, 2002, Bartlett et al., 2017, Neyshabur et al., 2015, Golowich et al., 2018] and

specifically aligns with reasoning.

In summary, we introduce algorithmic alignment to analyze learning for reasoning. Our

initial theoretical results suggest that algorithmic alignment is desirable for generalization.

On four categories of reasoning tasks with increasingly complex structure, we apply our

framework to analyze which tasks some popular networks can learn well. GNNs algorith-

mically align with dynamic programming, which solves a broad range of reasoning tasks.
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Finally, our framework implies guidelines for designing networks for new reasoning tasks.

Experimental results confirm our theory.

6.1.1 Preliminaries

We begin by introducing notations and a few example architectures that we analyze for

reasoning tasks. It is often more sample efficient to separate reasoning from perception or

representation [Mao et al., 2019, Yi et al., 2018a]. Hence, following previous works, we as-

sume access to the representation of objects in a world or universe 𝑆, i.e., a configuration/set

of objects to reason about. Each object 𝑠 ∈ 𝑆 is represented by a representation vector

𝑋𝑠. The representation could be descriptions prepared by humans or features learned by

representation learning steps such as image segmentation [Santoro et al., 2017]. Information

about the specific question can also be included in the object representations. Given a set of

universes {𝑆1, ..., 𝑆𝑀} and answer labels {𝑦1, ..., 𝑦𝑀} ⊆ 𝒴 , we aim to learn a function 𝑔 (a

reasoning process) that can answer questions about unseen universes, 𝑦 = 𝑔 (𝑆). Mathe-

matically, a universe 𝑆 can be a set, a sequence, or a graph, depending on the information

available between the objects.

Multi-layer perceptron. For a single-object universe, applying an MLP, a.k.a. feedfor-

ward neural network, on the object representation usually works well. But when there are

multiple objects, simply applying an MLP to the concatenated object representations often

does not generalize [Santoro et al., 2017].

Deep Sets. Suppose the collection of objects is a set, i.e., we do not have other order or

dependence information. As the input to the reasoning function is an unordered set, the

function should be permutation-invariant, i.e., the output is the same for all input orderings.

To induce permutation invariance in a neural network, Zaheer et al. [2017] propose Deep

Sets, of the form

𝑦 = MLP2

(︂∑︁
𝑠∈𝑆

MLP1 (𝑋𝑠)
)︂
. (6.1)
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Graph Neural Networks. If we have a graph of objects, constructed based on prior

knowledge, we can apply GNNs to this graph. If we are given a set of objects and there is

no present graph, GNNs can be adopted for reason about the set by considering objects as

nodes, and assume all objects pairs are connected, i.e., a complete graph:

ℎ(𝑘)
𝑠 =

∑︁
𝑡∈𝑆

MLP(𝑘)
1

(︁
ℎ(𝑘−1)

𝑠 , ℎ
(𝑘−1)
𝑡

)︁
, ℎ𝑆 = MLP2

(︂∑︁
𝑠∈𝑆

ℎ(𝐾)
𝑠

)︂
, (6.2)

where ℎ𝑆 is the answer/output and 𝐾 is the number of GNN layers. Each object’s repre-

sentation is initialized as ℎ(0)
𝑠 = 𝑋𝑠. Although other aggregation functions are proposed,

we use sum in our experiments (we shall see in Chapter 8 that the aggregation does not

matter much for interpolation, but matters for extrapolation). Similar to Deep Sets, GNNs

are also permutation invariant. While Deep Sets focus on individual objects, GNNs can

also focus on pairwise relations. The GNN framework includes many reasoning mod-

els. Relation Networks [Santoro et al., 2017] and Interaction Networks [Battaglia et al.,

2016] resemble one-layer GNNs. Recurrent Relational Networks [Palm et al., 2018] apply

LSTMs [Hochreiter and Schmidhuber, 1997] after aggregation.

Neural symbolic programs. This class of neural models usually target a specific task,

such as visual question answering, and pre-encode a library of symbolic operations to be

executed [Yi et al., 2018a, Mao et al., 2019, Johnson et al., 2017b]. The neural networks

learn which symbolic operations to execute. With an appropriate library and training, neural

symbolic programs often show impressive generalization and even extrapolation. However,

they are also limited in the scope of tasks as the library needs to be carefully designed for

the specific task.

6.2 Algorithmic Alignment: Inductive Biases and Sample

Complexity

Next, we study how the network structure and task may interact, and implications for

generalization. Empirically, different network structures have different degrees of success

95



for  k  =  1 … GNN iter:

hu(k)  =  Σv  MLP(hv(k-1), hu(k-1))

Graph Neural Network

  for  u  in  S:

for  k  =  1 … |S| - 1:

   d[k][u]  =  minv d[k-1][v] + cost (v, u)

Bellman-Ford algorithm 

  for  u  in  S:

Learns a simple reasoning step

No need to learn for-loops

Figure 6-2: Our framework suggests that better algorithmic alignment improves gen-
eralization. As an example, our framework explains why GNN generalizes when learning to
answer shortest paths. A correct reasoning process for the shortest paths task is the Bellman-
Ford algorithm. The computation structure of a GNN (left) aligns well with Bellman-Ford
(right): the GNN can simulate Bellman-Ford by merely learning a simple reasoning step,
i.e., the relaxation step in the last line (a sum, and a min over neighboring nodes 𝑣) via its
aggregation operation. In contrast, a giant MLP or Deep Set must learn the structure of the
entire for-loop. Thus, the GNN is expected to generalize better when learning shortest paths,
as is confirmed in experiments (Section 6.3.3).

in learning reasoning tasks, e.g., GNNs can learn relations well, but Deep Sets often fail

(Figure 6-3). However, all these networks are universal approximators (Propositions 6.1 and

6.2). Thus, their differences in test accuracy must come from generalization.

We observe that the answer to many reasoning tasks may be computed via a reasoning

algorithm; we shall further illustrate the algorithms for some reasoning tasks. Many neural

networks can represent algorithms [Pérez et al., 2019]. For example, Deep Sets can uni-

versally represent permutation-invariant set functions [Zaheer et al., 2017, Wagstaff et al.,

2019]. This also holds for GNNs and MLPs, as we show in Propositions 6.1 and 6.2:

Proposition 6.1. Let 𝑓 : R𝑑×𝑁 → R be any continuous function over sets 𝑆 of bounded

cardinality |𝑆| ≤ 𝑁 . If 𝑓 is permutation-invariant to the elements in 𝑆, and the elements

are in a compact set in R𝑑, then 𝑓 can be approximated arbitrarily closely by a GNN (of

any depth).

Proposition 6.2. For any GNN 𝒩 , there is an MLP that can represent all functions 𝒩 can

represent.

But, empirically, not all network structures work well when learning these algorithms,

i.e., they generalize differently. Intuitively, a network may generalize better if it can represent
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a function “more easily”. We formalize this idea by algorithmic alignment, formally defined

in Definition 6.2. Indeed, not only the reasoning process has an algorithmic structure: the

neural network’s architecture induces a computational structure on the function it computes.

This corresponds to an algorithm that prescribes how the network combines computations

from modules. Figure 6-2 illustrates this idea for a GNN, where the modules are its MLPs

applied to pairs of objects. In the shortest paths problem, the GNN matches the structure of

the Bellman-Ford algorithm: to simulate the Bellman-Ford with a GNN, the GNN’s MLP

modules only need to learn a simple update equation (Figure 6-2). In contrast, if we want

to represent the Bellman-Ford algorithm with a single MLP, it needs to simulate an entire

for-loop, which is much more complex than one update step. Therefore, we expect the GNN

to have better sample complexity than MLP when learning to solve shortest path problems.

This perspective suggests that a neural network which better aligns with a correct

reasoning process (algorithmic solution) can more easily learn a reasoning task than a neural

network that does not align well. If we look more broadly at reasoning, there may also

exist solutions which only solve a task approximately, or whose structure is obtuse. In this

work, we focus on reasoning tasks whose underlying reasoning process is exact and has

clear algorithmic structure. We leave the study of approximation algorithms and unknown

structures for future work.

6.2.1 Formalization of Algorithmic Alignment

We formalize the above intuition in a PAC learning framework [Valiant, 1984]. PAC

learnability formalizes simplicity as sample complexity, i.e., the number of samples needed

to ensure low test error with high probability. It refers to a learning algorithm 𝒜 that, given

training samples {𝑥𝑖, 𝑦𝑖}𝑀
𝑖=1, outputs a function 𝑓 = 𝒜({𝑥𝑖, 𝑦𝑖}𝑀

𝑖=1). The learning algorithm

here is the neural network and its training method, e.g., gradient descent. A function is

simple if it has low sample complexity.

Definition 6.1. (PAC learning and sample complexity). Fix an error parameter 𝜖 > 0 and

failure probability 𝛿 ∈ (0, 1). Suppose {𝑥𝑖, 𝑦𝑖}𝑀
𝑖=1 are i.i.d. samples from some distribution

𝒟, and the data satisfies 𝑦𝑖 = 𝑔(𝑥𝑖) for some underlying function 𝑔. Let 𝑓 = 𝒜({𝑥𝑖, 𝑦𝑖}𝑀
𝑖=1)

97



be the function generated by a learning algorithm 𝒜. Then 𝑔 is (𝑀, 𝜖, 𝛿)-learnable with 𝒜 if

P𝑥∼𝒟 [‖𝑓(𝑥) − 𝑔(𝑥)‖ ≤ 𝜖] ≥ 1 − 𝛿. (6.3)

The sample complexity 𝒞𝒜 (𝑔, 𝜖, 𝛿) is the minimum 𝑀 so that 𝑔 is (𝑀, 𝜖, 𝛿)-learnable with

𝒜.

With the PAC learning framework, we define a numeric measure of algorithmic alignment

(Definition 6.2), and under simplifying assumptions, we show that the sample complexity

decreases with better algorithmic alignment (Theorem 6.4).

Formally, a neural network aligns with an algorithm if it can simulate the algorithm via

a limited number of modules, and each module is simple, i.e., has low sample complexity.

Definition 6.2. (Algorithmic alignment). Let 𝑔 be a reasoning function and 𝒩 a neural

network with 𝑛 modules 𝒩𝑖. The module functions 𝑓1, ..., 𝑓𝑛 generate 𝑔 for 𝒩 if, by

replacing 𝒩𝑖 with 𝑓𝑖, the network 𝒩 simulates 𝑔. Then 𝒩 (𝑀, 𝜖, 𝛿)-algorithmically aligns

with 𝑔 if (1) 𝑓1, ..., 𝑓𝑛 generate 𝑔 and (2) there are learning algorithms 𝒜𝑖 for the 𝒩𝑖’s such

that 𝑛 · max𝑖 𝐶𝒜𝑖
(𝑓𝑖, 𝜖, 𝛿) ≤ 𝑀 .

Good algorithmic alignment, i.e., small 𝑀 , implies that all algorithm steps 𝑓𝑖 to simulate

the algorithm 𝑔 are easy to learn. Therefore, the algorithm steps should not simulate complex

programming constructs such as for-loops, whose sample complexity is large (Theorem 6.3).

Next, we show how to compute the algorithmic alignment value 𝑀 . Algorithmic

alignment resembles Kolmogorov complexity [Kolmogorov, 1998] for neural networks.

Thus, it is generally non-trivial to obtain the optimal alignment between a neural network

and an algorithm. However, one important difference to Kolmogorov complexity is that any

algorithmic alignment that yields decent sample complexity is good enough (unless we want

the tightest bound). We will see several examples where finding a good alignment is not

hard. Then, we can compute the value of an alignment by summing the sample complexity

of the algorithm steps with respect to the modules, e.g. MLPs. For ilustration, we show an

example of how one may compute sample complexity of MLP modules.

A line of works show one can analyze the optimization and generalization behavior

of overparameterized neural networks via neural tangent kernel (NTK) [Allen-Zhu et al.,
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2019a, Arora et al., 2019b,c, 2020, Du et al., 2019c,a, Jacot et al., 2018, Li and Liang, 2018].

In the previous chapter, we have shown that infinitely-wide GNNs trained with gradient

descent can provably learn certain smooth functions [Yi et al., 2018a, Mao et al., 2019,

Johnson et al., 2017b]. This chapter further takes into account the task structure.

Here, Theorem 6.3, proved in the Appendix, summarizes and extends Theorem 6.1 of

Arora et al. [2019b] for over-parameterized MLP modules to vector-valued functions. Our

framework can be used with other sample complexity bounds for other types of modules,

too.

Theorem 6.3. (Sample complexity for overparameterized MLP modules). Let 𝒜 be an

overparameterized and randomly initialized two-layer MLP trained with gradient descent

for a sufficient number of iterations. Suppose 𝑔 : R𝑑 → R𝑚 with components 𝑔(𝑥)(𝑖) =∑︀
𝑗 𝛼

(𝑖)
𝑗

(︁
𝛽

(𝑖)⊤
𝑗 𝑥

)︁𝑝
(𝑖)
𝑗 , where 𝛽(𝑖)

𝑗 ∈ R𝑑, 𝛼 ∈ R, and 𝑝(𝑖)
𝑗 = 1 or 𝑝(𝑖)

𝑗 = 2𝑙 (𝑙 ∈ N+). The

sample complexity 𝒞𝒜(𝑔, 𝜖, 𝛿) is

𝒞𝒜(𝑔, 𝜖, 𝛿) = 𝑂
(︂max𝑖

∑︀𝐾
𝑗=1 𝑝

(𝑖)
𝑗 |𝛼(𝑖)

𝑗 | · ‖𝛽(𝑖)
𝑗 ‖𝑝

(𝑖)
𝑗

2 + log (𝑚/𝛿)
(𝜖/𝑚)2

)︂
. (6.4)

Theorem 6.3 suggests that functions that are “simple” when expressed as a polynomial,

e.g., via a Taylor expansion, are sample efficiently learnable by an MLP module. Thus,

algorithm steps that perform computation over many objects may require many samples

for an MLP module to learn, since the number 𝐾 of polynomials or ‖𝛽(𝑖)
𝑗 ‖ can increase in

Eqn. (6.4). “For loop” is one example of such complex algorithm steps.

6.2.2 Better Algorithmic Alignment Implies Better Generalization

We show an initial result demonstrating that algorithmic alignment is desirable for gen-

eralization. Theorem 6.4 states that, in a simplifying setting where we sequentially train

modules of a network with auxiliary labels, the sample complexity bound increases with

algorithmic alignment value 𝑀 .

While we do not have auxiliary labels in practice, we observe the same pattern for end-to-

end learning in experiments. We leave sample complexity analysis for end-to-end-learning
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to future work. We prove Theorem 6.4 in Appendix D.1.4.

Theorem 6.4. (Algorithmic alignment improves sample complexity). Fix 𝜖 and 𝛿. Sup-

pose {𝑆𝑖, 𝑦𝑖}𝑀
𝑖=1 ∼ 𝒟, where |𝑆𝑖| < 𝑁 , and 𝑦𝑖 = 𝑔(𝑆𝑖) for some 𝑔. Suppose 𝒩1, ...,𝒩𝑛 are

network 𝒩 ’s MLP modules in sequential order. Suppose 𝒩 and 𝑔 (𝑀, 𝜖, 𝛿)-algorithmically

align via functions 𝑓1, ..., 𝑓𝑛. Under the following assumptions, 𝑔 is (𝑀,𝑂(𝜖), 𝑂(𝛿))-

learnable by 𝒩 .

a) Algorithm stability. Let 𝒜 be the learning algorithm for the 𝒩𝑖’s. Suppose 𝑓 =

𝒜({𝑥𝑖, 𝑦𝑖}𝑀
𝑖=1), and 𝑓 = 𝒜({�̂�𝑖, 𝑦𝑖}𝑀

𝑖=1). For any 𝑥, ‖𝑓(𝑥) − 𝑓(𝑥)‖ ≤ 𝐿0 · max𝑖 ‖𝑥𝑖 − �̂�𝑖‖,

for some 𝐿0.

b) Sequential learning. We train 𝒩𝑖’s sequentially: 𝒩1 has input samples {�̂�(1)
𝑖 , 𝑓1(�̂�(1)

𝑖 )}𝑁
𝑖=1,

with �̂�(1)
𝑖 obtained from 𝑆𝑖. For 𝑗 > 1, the input �̂�(𝑗)

𝑖 for 𝒩𝑗 are the outputs from the previous

modules, but labels are generated by the correct functions 𝑓𝑗−1, ..., 𝑓1 on �̂�(1)
𝑖 .

c) Lipschitzness. The learned functions 𝑓𝑗 satisfy ‖𝑓𝑗(𝑥) − 𝑓𝑗(�̂�)‖ ≤ 𝐿1‖𝑥− �̂�‖, for some

𝐿1.

In our analysis, the Lipschitz constants and the universe size are constants going into

𝑂(𝜖) and 𝑂(𝛿). As an illustrative example, we use Theorem 6.4 and 6.3 to show that

GNN has a polynomial improvement in sample complexity over MLP when learning simple

relations. Indeed, GNN aligns better with summary statistics of pairwise relations than MLP

does (Section 6.3.1).

Corollary 6.5. Suppose universe 𝑆 has ℓ objects 𝑋1, ..., 𝑋ℓ, and 𝑔(𝑆) = ∑︀
𝑖,𝑗(𝑋𝑖 −𝑋𝑗)2.

In the setting of Theorem 6.4, the sample complexity bound for MLP is 𝑂(ℓ2) times larger

than for GNN.

6.3 Predicting What Neural Networks Can Reason About

Next, we apply our framework to analyze several neural networks for reasoning introduced

previously: MLP, Deep Sets, and GNNs. Using algorithmic alignment, we predict whether

each model can generalize on four categories of increasingly complex reasoning tasks:

summary statistics, relational argmax, dynamic programming, and an NP-hard problem

100



GNN3 GNN1 Deep
Sets

MLP Sorted
MLP

100% 95% 96%

9%

100%

(a) Maximum value difference.

GNN3 GNN1 Deep
Sets

MLP

95% 92%

21% 9%

(b) Furthest pair.

GNN7 GNN4 GNN3 GNN2 GNN1 Deep
Sets

MLP

96% 94% 91%
62%

27% 11% 8%

(c) Monster trainer.

NES GNN6 GNN1 Deep
Sets

MLP

98%
72% 69% 61% 60%

(d) Subset sum. Random yields 50%.

Figure 6-3: Test accuracies on reasoning tasks with increasingly complex structure.
Figure 6-1 shows an overview of the tasks. GNN𝑘 is GNN with 𝑘 iterations. (a) Summary
statistics. All models except MLP generalize. (b) Relational argmax. Deep Sets fail. (c)
Dynamic programming. Only GNNs with sufficient iterations generalize. (d) An NP-hard
problem. Even GNNs fail, but NES generalizes.

(Figure 6-3). Our theoretical analysis is confirmed with experiments (Dataset and training

details are in Appendix D.2). To empirically compare sample complexity of different models,

we make sure all models perfectly fit training sets through extensive hyperparameter tuning.

Therefore, the test accuracy reflects how well a model generalizes.

The examples in this section, together with our framework, suggest an explanation why

GNNs are widely successful across reasoning tasks: Popular reasoning tasks such as visual

question answering and intuitive physics can be solved by DP. GNNs align well with DP,

and hence are expected to learn sample efficiently.

6.3.1 Summary Statistics

As discussed previously, we assume each object𝑋 has a state representation𝑋 = [ℎ1, ℎ2, ..., ℎ𝑘],

where each ℎ𝑖 ∈ R𝑑𝑖 is a feature vector. An MLP can learn simple polynomial functions of

the state representation (Theorem 6.3). In this section, we show how Deep Sets use MLP as

building blocks to learn summary statistics.

Questions about summary statistics are common in reasoning tasks. One example from

CLEVR [Johnson et al., 2017a] is “How many objects are either small cylinders or red

things?” Deep Sets (Eqn. 6.1) align well with algorithms that compute summary statistics
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over individual objects. Suppose we want to compute the sum of a feature over all objects.

To simulate the reasoning algorithm, we can use the first MLP in Deep Sets to extract the

desired feature and aggregate them using the pooling layer. Under this alignment, each MLP

only needs to learn simple steps, which leads to good sample complexity. Similarly, Deep

Sets can learn to compute max or min of a feature by using smooth approximations like

the softmax max𝑠∈𝑆 𝑋𝑠 ≈ log(∑︀𝑠∈𝑋𝑠
exp(𝑋𝑠)). In contrast, if we train an MLP to perform

sum or max, the MLP must learn a complex for-loop and therefore needs more samples.

Therefore, our framework predicts that Deep Sets have better sample complexity than MLP

when learning summary statistics.

Maximum value difference. We confirm our predictions by training models to compute

the maximum value difference task. Each object in this task is a treasure 𝑋 = [ℎ1, ℎ2, ℎ3]

with location ℎ1, value ℎ2, and color ℎ3. We train models to predict the difference in value

between the most and the least valuable treasure, 𝑦(𝑆) = max𝑠∈𝑆 ℎ2(𝑋𝑠) − min𝑠∈𝑆 ℎ2(𝑋𝑠).

The test accuracy follows our prediction (Figure 6-3a). MLP does not generalize and

only has 9% test accuracy, while Deep Sets has 96%. Interestingly, if we sort the treasures

by value (Sorted MLP in Figure 6-3a), MLP achieves perfect test accuracy. This observation

can be explained with our theory—when the treasures are sorted, the reasoning algorithm

is reduced to a simple subtraction: 𝑦(𝑆) = ℎ2(𝑋|𝑆|) − ℎ2(𝑋1), which has a low sample

complexity for even MLPs (Theorem 6.3). GNNs also have high test accuracies. This is

because summary statistics are a special case of relational argmax, which GNNs can learn

as shown next.

6.3.2 Relational Argmax

Next, we study relational argmax: tasks where we need to compare pairwise relations and

answer a question about that result. For example, a question from Sort-of-CLEVR [Santoro

et al., 2017] asks “What is the shape of the object that is farthest from the gray object?”,

which requires comparing the distance between object pairs.

One-iteration GNN aligns well with relational argmax, as it sums over all pairs of objects,

and thus can compare, e.g. via softmax, pairwise information without learning the “for
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loops”. In contrast, Deep Sets require many samples to learn this, because most pairwise

relations cannot be encoded as a sum of individual objects:

Claim 6.6. Suppose 𝑔(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦. There is no 𝑓 such that 𝑔(𝑥, 𝑦) =

𝑓(𝑥) + 𝑓(𝑦).

Therefore, if we train a Deep Set to compare pairwise relations, one of the MLP modules

has to learn a complex “for loop”, which leads to poor sample complexity. Our experiment

confirms that GNNs generalize better than Deep Sets when learning relational argmax.

Furthest pair. As an example of relational argmax, we train models to identify the furthest

pair among a set of objects. We use the same object settings as the maximum value difference

task. We train models to find the colors of the two treasures with the largest distance. The

answer is a pair of colors, encoded as an integer category:

𝑦(𝑆) = (ℎ3(𝑋𝑠1), ℎ3(𝑋𝑠2)) s.t. {𝑋𝑠1 , 𝑋𝑠2} = arg max𝑠1,𝑠2∈𝑆‖ℎ1(𝑋𝑠1) − ℎ1(𝑋𝑠2)‖ℓ1

Distance as a pairwise function satisfies the condition in Claim 6.6. As predicted by our

framework, Deep Sets has only 21% test accuracy, while GNNs have more than 90%

accuracy.

6.3.3 Dynamic Programming

We observe that a broad class of relational reasoning tasks can be unified by the powerful

algorithmic paradigm dynamic programming (DP) [Bellman, 1966]. DP recursively breaks

down a problem into simpler sub-problems. It has the following general form:

Answer[𝑘][𝑖] = DP-Update({Answer[𝑘 − 1][𝑗]} , 𝑗 = 1...𝑛), (6.5)

where Answer[𝑘][𝑖] is the solution to the sub-problem indexed by iteration 𝑘 and state

𝑖, and DP-Update is an task-specific update function that computes Answer[𝑘][𝑖] from

Answer[𝑘 − 1][𝑗]’s.
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GNNs algorithmically align with a class of DP algorithms. We can interpret GNN as a

DP algorithm, where node representations ℎ(𝑘)
𝑖 are Answer[𝑘][𝑖], and the GNN aggregation

step is the DP-Update. Therefore, Theorem 6.4 suggests that a GNN with enough iterations

can sample efficiently learn any DP algorithm with a simple DP-update function, e.g.

sum/min/max.
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Figure 6-4: Test accuracy vs. training set size for models trained on sub-sampled training
sets and evaluated on the same test set of monster trainer (DP task). Test accuracies increase
faster when a neural network aligns well with an algorithmic solution of the task. For
example, the test accuracy of GNN4 increases by 23% when the number of training samples
increases from 40, 000 to 80, 000, which is much higher than that of Deep Sets (0.2%).

Shortest paths. As an example, we experiment with GNN on Shortest paths, a standard

DP problem. Shortest paths can be solved by the Bellman-Ford algorithm [Bellman, 1958],

which recursively updates the minimum distance between each object 𝑢 and the source 𝑠:

distance[1][𝑢] = cost(𝑠, 𝑢), distance[𝑘][𝑢] = min𝑣

{︁
distance[𝑘 − 1][𝑣] + cost(𝑣, 𝑢)

}︁
,

(6.6)

As discussed above, GNN aligns well with this DP algorithm. Therefore, our framework

predicts that GNN has good sample complexity when learning to find shortest paths. To

verify this, we test different models on a monster trainer game, which is a shortest path

variant with unkown cost functions that need to be learned by the models. Appendix D.2.3

describes the task in details.

In Figure 6-3c, only GNNs with at least four iterations generalize well. The empirical

result confirms our theory: a neural network can sample efficiently learn a task if it aligns
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with a correct algorithm. Interestingly, GNN does not need as many iterations as Bellman-

Ford. While Bellman-Ford needs 𝑁 = 7 iterations, GNNs with four iterations have almost

identical test accuracy as GNNs with seven iterations (94% vs 95%). This can also be

explained through algorithmic alignment, as GNN aligns with an optimized version of

Bellman-Ford, which we explain in Appendix D.2.3.

Figure 6-4 shows how the test accuracies of different models vary with the number of

sub-sampled training points. Indeed, the test accuracy increases more slowly for models

that align worse with the task, which implies they need more training samples to achieve

similar generalization performance. Again, this confirms our theory.

After verifying that GNNs can sample-efficiently learn DP, we show that two popu-

lar families of reasoning tasks, visual question answering and intuitive physics, can be

formulated as DP. Therefore, our framework explains why GNNs are effective in these tasks.

Visual question answering. The Pretty-CLEVR dataset [Palm et al., 2018] is an exten-

sion of Sort-of-CLEVR [Santoro et al., 2017] and CLEVR [Johnson et al., 2017a]. GNNs

work well on these datasets. Each question in Pretty-CLEVR has state representations and

asks “Starting at object 𝑋 , if each time we jump to the closest object, which object is 𝐾

jumps away?”. This problem can be solved by DP, which computes the answers for 𝑘 jumps

from the answers for (𝑘 − 1) jumps.

closest[1][𝑖] = arg min𝑗 𝑑(𝑖, 𝑗), closest[𝑘][𝑖] = closest[𝑘 − 1]
[︂
closest[1][𝑖]

]︂
for 𝑘 > 1,

(6.7)

where closest[𝑘][𝑖] is the answer for jumping 𝑘 times from object 𝑖, and 𝑑(𝑖, 𝑗) is the distance

between the 𝑖-th and the 𝑗-th object.

Intuitive physics. Battaglia et al. [2016] and Watters et al. [2017] train neural networks

to predict object dynamics in rigid body scenes and n-body systems. Chang et al. [2017] and

Janner et al. [2019] study other rigid body scenes. If the force acting on a physical object

stays constant, we can compute the object’s trajectory with simple functions (physics laws)

based on its initial position and force. Physical interactions, however, make the force change,
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which means the function to compute the object’s dynamics has to change too. Thus, a DP

algorithm would recursively compute the next force changes in the system and update DP

states (velocity, momentum, position etc of objects) according to the (learned) forces and

physics laws [Thijssen, 2007].

for 𝑘 = 1..𝐾 : time = min𝑖,𝑗 Force-change-time(state[𝑘 − 1, 𝑖], state[𝑘 − 1, 𝑗]), (6.8)

for 𝑖 = 1..𝑁 : state[𝑘][𝑖] = Update-by-forces(state[𝑘 − 1][𝑗], time), 𝑗 = 1..𝑁, (6.9)

Force-change-time computes the time at which the force between object 𝑖 and 𝑗 will change.

Update-by-forces updates the state of each object at the next force change time. In rigid

body systems, force changes only at collision. In datasets where no object collides more

than once between time frames, one-iteration algorithm/GNN can work [Battaglia et al.,

2016]. More iterations are needed if multiple collisions occur between two consecutive

frames [Li and Liang, 2018]. In n-body systems, forces change continuously but smoothly.

Thus, finite-iteration DP/GNN can be viewed as a form of Runge-Kutta method [DeVries

and Hamill, 1995].

6.3.4 Designing Neural Networks with Algorithmic Alignment

While DP solves many reasoning tasks, it has limitations. For example, NP-hard problems

cannot be solved by DP. It follows that GNN also cannot sample-efficiently learn these hard

problems. Our framework, however, goes beyond GNNs. If we know the structure of a

suitable underlying reasoning algorithm, we can design a network with a similar structure to

learn it. If we have no prior knowledge about the structure, then neural architecture search

over algorithmic structures will be needed.

Subset Sum. As an example, we design a new architecture that can learn to solve the

subset sum problem: Given a set of numbers, does there exist a subset that sums to 0?

Subset sum is NP-hard [Karp, 1972] and cannot be solved by DP. Therefore, our framework

predicts that GNN cannot generalize on this task. One subset sum algorithm is exhaustive

search, where we enumerate all 2|𝑆| possible subsets 𝜏 and check whether 𝜏 has zero-sum.
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Following this algorithm, we design a similarly structured neural network which we call

Neural Exhaustive Search (NES). Given a universe, NES enumerates all subsets of objects

and passes each subset through an LSTM followed by a MLP. The results are aggregated

with a max-pooling layer and MLP:

MLP2(max𝜏⊆𝑆 MLP1 ∘ LSTM(𝑋1, ..., 𝑋|𝜏 | : 𝑋1, ..., 𝑋|𝜏 | ∈ 𝜏)). (6.10)

This architecture aligns well with subset-sum, since the first MLP and LSTM only need to

learn a simple step, checking whether a subset has zero sum. Therefore, we expect NES to

generalize well in this task. Indeed, NES has 98% test accuracy, while other models perform

much worse (Figure 6-3d).

6.4 Discussion

This chapter studies the fundamental question of formally understanding how neural net-

works can learn to reason. In particular, we answer what tasks a neural network can learn to

reason about well, by studying the generalization ability of learning the underlying reasoning

processes for a task. To this end, we introduce an algorithmic alignment framework to

formalize the interaction between the structure of a neural network and a reasoning process,

and provide preliminary results on sample complexity. Our results explain the success and

suggest the limits of current neural architectures: Graph neural networks generalize in many

popular reasoning tasks because the underlying reasoning processes for those tasks resemble

dynamic programming.

Our algorithmic alignment perspective may inspire neural network design and opens up

theoretical avenues. An interesting direction for future work is to design, e.g. via algorithmic

alignment, neural networks that can learn other reasoning paradigms beyond dynamic

programming, and to explore the neural architecture search space of algorithmic structures.

It is also interesting to apply our insights to deep reinforcement learning. From a broader

standpoint, reasoning assumes a good representation of the concepts and objects in the

world. To complete the picture, it would also be interesting to understand how to better
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disentangle and eventually integrate “representation” and “reasoning”.

Since the release of this work, there have been several follow-up works applying the

principles of algorithmic alignment. Several works design neural architectures that better

align with their respective underlying algorithms [Veličković et al., 2020, Georgiev and Lió,

2020, Puny et al., 2020, Thost and Chen, 2021, Cappart et al., 2021]. Several other works

apply the idea to reinforcement learning [Deac et al., 2020, Li and Littman, 2020]. A paper

by the author studies the noisy label setting, and shows that neural networks which well

align with the signal, but not the noise, learn a good representation (e.g., representations

before the last layer) even if the overall accuracy may be bad [Li et al., 2020b].

By this chapter, we have assumed the interpolation regime, where the training and

test data are from the same distribution. Hence, nothing has been said yet about what the

neural network implements out of the training distribution. In the next part, we will study

generalization under the extrapolation regime.
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Part III

Reasoning: Extrapolation
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Chapter 7

How Neural Networks Extrapolate

This part of the thesis completes the picture of learning to reason with neural networks. We

ask what a neural network implements outside the training distribution, and under what

conditions it extrapolates well, i.e., generalizes to unseen domains.

7.1 Introduction

Humans extrapolate well in many tasks. For example, we can apply arithmetics to arbitrarily

large numbers. One may wonder whether a neural network can do the same and generalize

to examples arbitrarily far from the training data [Lake et al., 2017]. Curiously, previous

works report mixed extrapolation results with neural networks. Early works demonstrate

feedforward neural networks, a.k.a. multilayer perceptrons (MLPs), fail to extrapolate

well when learning simple polynomial functions [Barnard and Wessels, 1992, Haley and

Soloway, 1992]. However, recent works show Graph Neural Networks (GNNs) [Scarselli

et al., 2009], a class of structured networks with MLP building blocks, can generalize to

graphs much larger than training graphs in challenging algorithmic reasoning tasks, such

as predicting the time evolution of physical systems [Battaglia et al., 2016], learning graph

algorithms [Velickovic et al., 2020], and solving mathematical equations [Lample and

Charton, 2020].

To explain this puzzle, we formally study how neural networks trained by gradient

descent (GD) extrapolate, i.e., what they learn outside the support of training distribution.
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Figure 7-1: How ReLU MLPs extrapolate. We train MLPs to learn nonlinear functions
(grey) and plot their predictions both within (blue) and outside (black) the training distri-
bution. MLPs converge quickly to linear functions outside the training data range along
directions from the origin (Theorem 7.1). Hence, MLPs do not extrapolate well in most
nonlinear tasks. But, with appropriate training data, MLPs can provably extrapolate linear
target functions (Theorem 7.3).

We say a neural network extrapolates well if it learns a task outside the training distribution.

At first glance, it may seem that neural networks can behave arbitrarily outside the training

distribution since they have high capacity [Zhang et al., 2017] and are universal approxi-

mators [Cybenko, 1989, Funahashi, 1989, Hornik et al., 1989, Kurková, 1992]. However,

neural networks are constrained by gradient descent training [Hardt et al., 2016, Soudry

et al., 2018]. In our analysis, we explicitly consider such implicit bias through the analogy

of the training dynamics of over-parameterized neural networks and kernel regression via

the neural tangent kernel (NTK) [Jacot et al., 2018].

Starting with feedforward networks, the simplest neural networks and building blocks

of more complex architectures such as GNNs, we establish that the predictions of over-

parameterized MLPs with ReLU activation trained by GD converge to linear functions along

any direction from the origin. We prove a convergence rate for two-layer networks and

empirically observe that convergence often occurs close to the training data (Figure 7-1),

which suggests ReLU MLPs cannot extrapolate well for most nonlinear tasks. We emphasize

that our results do not follow from the fact that ReLU networks have finitely many linear

regions [Arora et al., 2018a, Hanin and Rolnick, 2019, Hein et al., 2019]. While having

finitely many linear regions implies ReLU MLPs eventually become linear, it does not say

whether MLPs will learn the correct target function close to the training distribution. In

contrast, our results are non-asymptotic and quantify what kind of functions MLPs will learn

close to the training distribution. Second, we identify a condition when MLPs extrapolate

well: the task is linear and the geometry of the training distribution is sufficiently “diverse”.
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Figure 7-2: How GNNs extrapolate. Since MLPs can extrapolate well when learning
linear functions, we hypothesize that GNNs can extrapolate well in dynamic programming
(DP) tasks if we encode appropriate non-linearities in the architecture (left) and input
representation (right; through domain knowledge or representation learning). The encoded
non-linearities may not be necessary for interpolation, as they can be approximated by MLP
modules, but they help extrapolation. We support the hypothesis theoretically (Theorem 8.2)
and empirically (Figure 8-1).

To our knowledge, our results are the first extrapolation results of this kind for feedforward

neural networks.

We then relate our insights into feedforward neural networks to GNNs, to explain

why GNNs extrapolate well in some algorithmic tasks. Prior works report successful

extrapolation for tasks that can be solved by dynamic programming (DP) [Bellman, 1966],

which has a computation structure aligned with GNNs [Xu et al., 2020]. DP updates can

often be decomposed into nonlinear and linear steps. Hence, we hypothesize that GNNs

trained by GD can extrapolate well in a DP task, if we encode appropriate non-linearities in

the architecture and input representation (Figure 7-2). Importantly, encoding non-linearities

may be unnecessary for GNNs to interpolate, because the MLP modules can easily learn

many nonlinear functions inside the training distribution as we have seen in the previous

chapter [Cybenko, 1989, Hornik et al., 1989, Xu et al., 2020], but it is crucial for GNNs

to extrapolate correctly. We prove this hypothesis for a simplified case using Graph NTK,

which we have developed in Chapter 5 [Du et al., 2019b]. Empirically, we validate the

hypothesis on three DP tasks: max degree, shortest paths, and 𝑛-body problem. We show

GNNs with appropriate architecture, input representation, and training distribution can

predict well on graphs with unseen sizes, structures, edge weights, and node features. Our

theory explains the empirical success in previous works and suggests their limitations:
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successful extrapolation relies on encoding task-specific non-linearities, which requires

domain knowledge or extensive model search. From a broader standpoint, our insights go

beyond GNNs and apply broadly to other neural networks.

To summarize, we study how neural networks extrapolate. First, ReLU MLPs trained

by GD converge to linear functions along directions from the origin with a rate of 𝑂(1/𝑡).

Second, to explain why GNNs extrapolate well in some algorithmic tasks, we prove that

ReLU MLPs can extrapolate well in linear tasks, leading to a hypothesis: a neural network

can extrapolate well when appropriate non-linearities are encoded into the architecture and

features. We prove this hypothesis for a simplified case and provide empirical support for

more general settings.

Related work. Early works show example tasks where MLPs do not extrapolate well,

e.g. learning simple polynomials [Barnard and Wessels, 1992, Haley and Soloway, 1992].

We instead show a general pattern of how ReLU MLPs extrapolate and identify conditions

for MLPs to extrapolate well. More recent works study the implicit biases induced on

MLPs by gradient descent, for both the NTK and mean field regimes [Bietti and Mairal,

2019, Chizat and Bach, 2018, Song et al., 2018]. Related to our results, some works show

MLP predictions converge to “simple” piecewise linear functions, e.g., with few linear

regions [Hanin and Rolnick, 2019, Maennel et al., 2018, Savarese et al., 2019, Williams

et al., 2019]. Our work differs in that none of these works explicitly studies extrapolation,

and some focus only on one-dimensional inputs. Recent works also show that in high-

dimensional settings of the NTK regime, MLP is asymptotically at most a linear predictor

in certain scaling limits [Ba et al., 2020, Ghorbani et al., 2019]. We study a different setting

(extrapolation), and our analysis is non-asymptotic in nature and does not rely on random

matrix theory.

Prior works explore GNN extrapolation by testing on larger graphs [Battaglia et al.,

2018, Santoro et al., 2018, Saxton et al., 2019, Velickovic et al., 2020]. We are the first

to theoretically study GNN extrapolation, and we complete the notion of extrapolation to

include unseen features and structures.
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7.1.1 Problem Setting

We begin by introducing our setting in this chapter. Let 𝒳 be the domain of interest, e.g.,

vectors or graphs. The task is to learn an underlying function (e.g., reasoning process)

𝑔 : 𝒳 → R with a training set {(𝑥𝑖, 𝑦𝑖)}𝑛
𝑖=1 ⊂ 𝒟, where 𝑦𝑖 = 𝑔(𝑥𝑖) and 𝒟 is the support of

training distribution. Previous works have extensively studied in-distribution generalization

where the training and the test distributions are identical [Valiant, 1984, Vapnik, 2013]; i.e.,

𝒟 = 𝒳 . In contrast, extrapolation addresses predictions on a domain 𝒳 that is larger than

the support of the training distribution 𝒟. We will say a model extrapolates well if it has a

small extrapolation error.

Definition 7.1. (Extrapolation error). Let 𝑓 : 𝒳 → R be a model trained on {(𝑥𝑖, 𝑦𝑖)}𝑛
𝑖=1 ⊂

𝒟 with underlying function 𝑔 : 𝒳 → R. Let 𝒫 be a distribution over 𝒳 ∖ 𝒟 and let ℓ : R ×

R → R be a loss function. We define the extrapolation error of 𝑓 as E𝑥∼𝒫 [ℓ(𝑓(𝑥), 𝑔(𝑥))].

We focus on neural networks trained by gradient descent (GD) or its variants with

squared loss. We study two network architectures: feedforward and graph neural networks.

We will refer to the following GNN architecture in our analysis in this chapter.

ℎ(𝑘)
𝑢 =

∑︁
𝑣∈𝒩 (𝑢)

MLP(𝑘)
(︂

ℎ(𝑘−1)
𝑢 ,ℎ(𝑘−1)

𝑣 ,𝑤(𝑣,𝑢)

)︂
, ℎ𝐺 = MLP(𝐾+1)

(︂ ∑︁
𝑢∈𝐺

ℎ(𝐾)
𝑢

)︂
. (7.1)

Here, ℎ(𝑘)
𝑢 stands for the representations of node 𝑢 at iteration 𝑘, 𝑤(𝑢,𝑣) is the edge feature

of (𝑢, 𝑣), and 𝒩 (𝑢) is the set of nodes adjacent to 𝑢.

7.2 How Feedforward Neural Networks Extrapolate

Feedforward networks are the simplest neural networks and building blocks of more complex

architectures such as GNNs, so we first study how they extrapolate when trained by GD.

Throughout this part of the thesis, we assume ReLU activation. Section 7.2.3 contains

preliminary results for other activations.
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7.2.1 Linear Extrapolation Behavior of ReLU MLPs

By architecture, ReLU networks learn piecewise linear functions, but what do these regions

precisely look like outside the support of the training data? Figure 7-1 illustrates examples

of how ReLU MLPs extrapolate when trained by GD on various nonlinear functions. These

examples suggest that outside the training support, the predictions quickly become linear

along directions from the origin. We systematically verify this pattern by linear regression

on MLPs’ predictions: the coefficient of determination (𝑅2) is always greater than 0.99

(Appendix E.3.2). That is, ReLU MLPs “linearize" almost immediately outside the training

data range.

We formalize this observation using the implicit biases of neural networks trained by

GD via the neural tangent kernel (NTK): optimization trajectories of over-parameterized

networks trained by GD are equivalent to those of kernel regression with a specific neural

tangent kernel, under a set of assumptions called the “NTK regime” [Jacot et al., 2018]. We

provide an informal definition here; for further details, we refer the readers to Jacot et al.

[2018] and Appendix E.1.

Definition 7.2. (Informal) A neural network trained in the NTK regime is infinitely wide,

randomly initialized with certain scaling, and trained by GD with infinitesimal steps.

Prior works analyze optimization and in-distribution generalization of over-parameterized

neural networks via NTK [Allen-Zhu et al., 2019a,b, Arora et al., 2019b,c, Cao and Gu,

2019, Du et al., 2019c,a, Li and Liang, 2018, Nitanda and Suzuki, 2021]. We instead analyze

extrapolation.

Theorem 7.1 formalizes our observation from Figure 7-1: outside the training data range,

along any direction 𝑡𝑣 from the origin, the prediction of a two-layer ReLU MLP quickly

converges to a linear function with rate 𝑂(1
𝑡
). The linear coefficients 𝛽𝑣 and the constant

terms in the convergence rate depend on the training data and direction 𝑣. The proof is in

Appendix E.2.1.

Theorem 7.1. (Linear extrapolation). Suppose we train a two-layer ReLU MLP 𝑓 : R𝑑 → R

with squared loss in the NTK regime. For any direction 𝑣 ∈ R𝑑, let 𝑥0 = 𝑡𝑣. As 𝑡 → ∞,
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Figure 7-3: Extrapolation performance of ReLU MLPs. We plot the distributions of
MAPE (mean absolute percentage error) of MLPs trained with various hyperparameters
(depth, width, learning rate, batch size). (a) Learning different target functions; (b) Different
training distributions for learning linear target functions: “all” covers all directions, “fix1”
has one dimension fixed to a constant, and “neg𝑑” has 𝑑 dimensions constrained to negative
values. ReLU MLPs generally do not extrapolate well unless the target function is linear
along each direction (Figure 7-3a), and extrapolate linear target functions if the training
distribution covers sufficiently many directions (Figure 7-3b).

𝑓(𝑥0 + ℎ𝑣) − 𝑓(𝑥0) → 𝛽𝑣 · ℎ for any ℎ > 0, where 𝛽𝑣 is a constant linear coefficient.

Moreover, given 𝜖 > 0, for 𝑡 = 𝑂(1
𝜖
), we have |𝑓(𝑥0+ℎ𝑣)−𝑓(𝑥0)

ℎ
− 𝛽𝑣| < 𝜖.

ReLU networks have finitely many linear regions [Arora et al., 2018a, Hanin and Rolnick,

2019], hence their predictions eventually become linear. In contrast, Theorem 7.1 is a more

fine-grained analysis of how MLPs extrapolate and provides a convergence rate. While

Theorem 7.1 assumes two-layer networks in the NTK regime, experiments confirm that

the linear extrapolation behavior happens across networks with different depths, widths,

learning rates, and batch sizes (Appendix E.3.1 and E.3.2). Our proof technique potentially

also extends to deeper networks.

Theorem 7.1 implies which target functions a ReLU MLP may be able to match outside

the training data: only functions that are almost-linear along the directions away from the

origin. Indeed, Figure 7-3a shows ReLU MLPs do not extrapolate target functions such as

𝑥⊤𝐴𝑥 (quadratic),
∑︀𝑑

𝑖=1 cos(2𝜋 · 𝑥(𝑖)) (cos), and
∑︀𝑑

𝑖=1
√

𝑥(𝑖) (sqrt), where 𝑥(𝑖) is the 𝑖-th

dimension of 𝑥. With suitable hyperparameters, MLPs extrapolate the L1 norm correctly,

which satisfies the directional linearity condition.

Figure 7-3a provides one more positive result: MLPs extrapolate linear target functions

well, across many different hyperparameters. While learning linear functions may seem
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Figure 7-4: Conditions for ReLU MLPs to extrapolate well. We train MLPs to learn
linear functions (grey) with different training distributions (blue) and plot out-of-distribution
predictions (black). Following Theorem 7.3, MLPs extrapolate well when the training
distribution (blue) has support in all directions (first panel), but not otherwise: in the two
middle panels, some dimensions of the training data are constrained to be positive (red
arrows); in the last panel, one dimension is a fixed constant.

very limited at first, in Section 8.1 this insight will help explain extrapolation properties of

GNNs in non-linear practical tasks. Before that, we first theoretically analyze when MLPs

extrapolate well.

7.2.2 When ReLU MLPs Provably Extrapolate Well

Figure 7-3a shows that MLPs can extrapolate well when the target function is linear. How-

ever, this is not always true. In this section, we show that successful extrapolation depends

on the geometry of training data. Intuitively, the training distribution must be “diverse”

enough for correct extrapolation.

We provide two conditions that relate the geometry of the training data to extrapolation.

Lemma 7.2 states that over-parameterized MLPs can learn a linear target function with only

2𝑑 examples.

Lemma 7.2. Let 𝑔(𝑥) = 𝛽⊤𝑥 be the target function for 𝛽 ∈ R𝑑. Suppose {𝑥𝑖}𝑛
𝑖=1 contains

an orthogonal basis {�̂�𝑖}𝑑
𝑖=1 and {−�̂�𝑖}𝑑

𝑖=1. If we train a two-layer ReLU MLP 𝑓 on

{(𝑥𝑖, 𝑦𝑖)}𝑛
𝑖=1 with squared loss in the NTK regime, then 𝑓(𝑥) = 𝛽⊤𝑥 for all 𝑥 ∈ R𝑑.

Lemma 7.2 is mainly of theoretical interest, as the 2𝑑 examples need to be carefully

chosen. Theorem 7.3 builds on Lemma 7.2 and identifies a more practical condition for

successful extrapolation: if the support of the training distribution covers all directions (e.g.,

a hypercube that covers the origin), the MLP converges to a linear target function with

sufficient training data.
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Theorem 7.3. (Conditions for extrapolation). Let 𝑔(𝑥) = 𝛽⊤𝑥 be the target function for

𝛽 ∈ R𝑑. Suppose {𝑥𝑖}𝑛
𝑖=1 is sampled from a distribution whose support 𝒟 contains a

connected subset 𝒮 , where for any non-zero 𝑤 ∈ R𝑑, there exists 𝑘 > 0 so that 𝑘𝑤 ∈ 𝒮. If

we train a two-layer ReLU MLP 𝑓 : R𝑑 → R on {(𝑥𝑖, 𝑦𝑖)}𝑛
𝑖=1 with squared loss in the NTK

regime, 𝑓(𝑥) 𝑝−→ 𝛽⊤𝑥 as 𝑛 → ∞.

Experiments: geometry of training data affects extrapolation. The condition in Theo-

rem 7.3 formalizes the intuition that the training distribution must be “diverse” for successful

extrapolation, e.g., 𝒟 includes all directions. Empirically, the extrapolation error is indeed

small when the condition of Theorem 7.3 is satisfied (“all” in Figure 7-3b). In contrast, the

extrapolation error is much larger when the training examples are restricted to only some

directions (Figure 7-3b and Figure 7-4).

Relating to previous works, Theorem 7.3 suggests why spurious correlations may hurt

extrapolation, complementing the causality arguments [Arjovsky et al., 2019, Peters et al.,

2016, Rojas-Carulla et al., 2018]. When the training data has spurious correlations, some

combinations of features are missing; e.g., camels might only appear in deserts in an image

collection. Therefore, the condition for Theorem 7.3 no longer holds, and the model may

extrapolate incorrectly. Theorem 7.3 is also analogous to an identifiability condition for

linear models, but stricter. We can uniquely identify a linear function if the training data

has full (feature) rank. MLPs are more expressive, so identifying the linear target function

requires additional constraints.

To summarize, we analyze how ReLU MLPs extrapolate and provide two insights:

(1) MLPs cannot extrapolate most nonlinear tasks due to their linear extrapolation (Theo-

rem 7.1); and (2) MLPs extrapolate well when the target function is linear, if the training

distribution is “diverse” (Theorem 7.3). In the next section, these results help us understand

how more complex networks extrapolate.

7.2.3 MLPs with Other Activation Functions

Before moving on to GNNs, we complete the picture of MLPs with experiments on other

activation functions: tanh 𝜎(𝑥) = tanh(𝑥), cosine 𝜎(𝑥) = cos(𝑥) [Lapedes and Farber,
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Figure 7-5: Extrapolation performance of MLPs with other activation. MLPs can
extrapolate well when the activation is “similar” to the target function. When learning
quadratic with quadratic activation, 2-layer networks (quad-2) extrapolate well, but 4-layer
networks (quad-4) do not.

1987, McCaughan, 1997, Sopena and Alquezar, 1994], and quadratic 𝜎(𝑥) = 𝑥2 [Du and

Lee, 2018, Livni et al., 2014]. Details are in Appendix E.3.4. MLPs extrapolate well when

the activation and target function are similar; e.g., tanh activation extrapolates well when

learning tanh, but not other functions (Figure 7-5). Moreover, each activation function has

different limitations. To extrapolate the tanh function with tanh activation, the training

data range has to be sufficiently wide. When learning a quadratic function with quadratic

activation, only two-layer networks extrapolate well as more layers lead to higher-order

polynomials. Cosine activations are hard to optimize for high-dimensional data, so we only

consider one/two dimensional cosine target functions. Related to our work, an improved

initialization has shown to help with the optimization of periodic activation like sine and

cosine, and they are shown to have good inductive biases for representing fine-grained

details of graphics [Sitzmann et al., 2020].

In the next chapter, we will apply our insights into feedforward neural networks to more

complex architectures such as GNNs, and to reasoning tasks.
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Chapter 8

Extrapolation via Linear Algorithmic

Alignment

8.1 How Graph Neural Networks Extrapolate

In the last chapter, we saw that extrapolation in nonlinear tasks is hard for MLPs. Despite

this limitation, GNNs have been shown to extrapolate well in some nonlinear reasoning

tasks, such as intuitive physics [Battaglia et al., 2016, Janner et al., 2019], graph algo-

rithms [Battaglia et al., 2018, Velickovic et al., 2020], and symbolic mathematics [Lample

and Charton, 2020]. To address this discrepancy, we build on our MLP results and study

how GNNs trained by GD extrapolate.

We start with an example: training GNNs to solve the shortest path problem. For

this task, prior works observe that a modified GNN architecture with min-aggregation can

generalize to graphs larger than those in the training set [Battaglia et al., 2018, Velickovic

et al., 2020]:

ℎ(𝑘)
𝑢 = min

𝑣∈𝒩 (𝑢)
MLP(𝑘)

(︁
ℎ(𝑘−1)

𝑢 ,ℎ(𝑘−1)
𝑣 ,𝑤(𝑣,𝑢)

)︁
. (8.1)

We first provide an intuitive explanation (Figure 7-2a). Shortest path can be solved by the
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Bellman-Ford (BF) algorithm [Bellman, 1958] with the following update:

𝑑[𝑘][𝑢] = min
𝑣∈𝒩 (𝑢)

𝑑[𝑘 − 1][𝑣] + 𝑤(𝑣, 𝑢), (8.2)

where 𝑤(𝑣, 𝑢) is the weight of edge (𝑣, 𝑢), and 𝑑[𝑘][𝑢] is the shortest distance to node 𝑢

within 𝑘 steps. The two equations can be easily aligned: GNNs simulate the BF algorithm if

its MLP modules learn a linear function 𝑑[𝑘 − 1][𝑣] + 𝑤(𝑣, 𝑢). Since MLPs can extrapolate

linear tasks, this “alignment” may explain why min-aggregation GNNs can extrapolate well

in this task.

For comparison, we can reason why we would not expect GNNs with the more commonly

used and more expressive sum-aggregation to extrapolate well in this particular task. With

sum-aggregation, the MLP modules need to learn a nonlinear function to simulate the BF

algorithm, but Theorem 7.1 suggests that they will not extrapolate most nonlinear functions

outside the training support.

8.2 Linear Algorithmic Alignment Helps Extrapolation

We can generalize the above intuition to other reasoning tasks. As we have seen in Chap-

ter 6, many tasks where GNNs extrapolate well can be solved by dynamic programming

(DP) [Bellman, 1966], an algorithmic paradigm with a recursive structure similar to GNNs’

[Xu et al., 2020].

Definition 8.1. Dynamic programming (DP) is a recursive procedure with updates

Answer[𝑘][𝑠] = DP-Update({Answer[𝑘 − 1][𝑠′]} , 𝑠′ = 1...𝑛), (8.3)

where Answer[𝑘][𝑠] is the solution to a sub-problem indexed by iteration 𝑘 and state 𝑠,

and DP-Update is a task-specific update function that solves the sub-problem based on the

previous iteration.

From a broader standpoint, we hypothesize that: if we encode appropriate non-linearities

into the model architecture and input representations so that the MLP modules only need to
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learn nearly linear steps, then the resulting neural network can extrapolate well.

Hypothesis 8.1. (Linear algorithmic alignment). Let 𝑓 : 𝒳 → R be the underlying function

and 𝒩 a neural network with 𝑚 MLP modules. Suppose there exist 𝑚 linear functions

{𝑔𝑖}𝑚
𝑖=1 so that by replacing 𝒩 ’s MLP modules with 𝑔𝑖’s, 𝒩 simulates 𝑓 . Given 𝜖 > 0, there

exists {(𝑥𝑖, 𝑓(𝑥𝑖))}𝑛
𝑖=1 ⊂ 𝒟 ( 𝒳 so that 𝒩 trained on {(𝑥𝑖, 𝑓(𝑥𝑖))}𝑛

𝑖=1 by GD with squared

loss learns 𝑓 with ‖𝑓 − 𝑓‖ < 𝜖.

Our hypothesis builds on the algorithmic alignment framework introduced in Chap-

ter 6 [Xu et al., 2020], which states that a neural network interpolates well if the modules

are “aligned” to easy-to-learn (possibly nonlinear) functions. Successful extrapolation is

harder: the modules need to align with linear functions.

Applications of linear algorithmic alignment. In general, linear algorithmic alignment

is not restricted to GNNs and applies broadly to neural networks. To satisfy the condition, we

can encode appropriate nonlinear operations in the architecture or input representation (Fig-

ure 7-2). Learning DP algorithms with GNNs is one example of encoding non-linearity

in the architecture [Battaglia et al., 2018]. Another example is to encode log-and-exp

transforms in the architecture to help extrapolate multiplication in arithmetic tasks [Trask

et al., 2018, Madsen and Johansen, 2020]. Neural symbolic programs take a step further and

encode a library of symbolic operations to help extrapolation [Johnson et al., 2017b, Mao

et al., 2019, Yi et al., 2018a].

For some tasks, it may be easier to change the input representation (Figure 7-2b).

Sometimes, we can decompose the target function 𝑓 as 𝑓 = 𝑔 ∘ ℎ into a feature embedding

ℎ and a “simpler” target function 𝑔 that our model can extrapolate well. We can obtain ℎ via

specialized features or feature transforms using domain knowledge [Lample and Charton,

2020, Webb et al., 2020], or via representation learning (e.g., BERT) with unlabeled

out-of-distribution data in 𝒳 ∖ 𝒟 [Chen et al., 2020a, Devlin et al., 2019, Hu et al.,

2020b, Mikolov et al., 2013b, Peters et al., 2018]. This brings a new perspective of how

representations help extrapolation in various application areas. For example, in natural

language processing, pretrained representations [Mikolov et al., 2013a, Wu and Dredze,

2019] and feature transformation using domain knowledge [Yuan et al., 2020, Zhang et al.,
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2019b, 2020a] help models generalize across languages, a special type of extrapolation. In

quantitative finance, identifying the right “factors” or features is crucial for deep learning

models as the financial markets may frequently be in extrapolation regimes [Banz, 1981,

Fama and French, 1993, Ross, 1976].

Linear algorithmic alignment explains successful extrapolation in the literature and

suggests that extrapolation is harder in general: encoding appropriate non-linearity often

requires domain expertise or model search. Next, we provide theoretical and empirical

support for our hypothesis.

8.2.1 Theoretical and Empirical Support

We validate our hypothesis on three DP tasks: max degree, shortest path, and 𝑛-body

problem, and prove the hypothesis for max degree. We highlight the role of graph structures

in extrapolation.

Theoretical analysis. We start with a simple yet fundamental task: learning the max

degree of a graph, a special case of DP with one iteration. As a corollary of Theorem 7.1,

the commonly used sum-based GNN cannot extrapolate well (proof in Appendix E.2.4).

Corollary 8.1. GNNs with sum-aggregation and sum-readout do not extrapolate well in

Max Degree.

To achieve linear algorithmic alignment, we can encode the only non-linearity, the max

function, in the readout. Theorem 8.2 confirms that a GNN with max-readout can extrapolate

well in this task.

Theorem 8.2. (Extrapolation with GNNs). Assume all nodes have the same feature. Let 𝑔

and 𝑔′ be the max/min degree function, respectively. Let {(𝐺𝑖, 𝑔(𝐺𝑖)}𝑛
𝑖=1 be the training set.

If {(𝑔(𝐺𝑖), 𝑔′(𝐺𝑖), 𝑔(𝐺𝑖) · 𝑁max
𝑖 , 𝑔′(𝐺𝑖) · 𝑁min

𝑖 )}𝑛
𝑖=1 spans R4, where 𝑁max

𝑖 and 𝑁min
𝑖 are

the number of nodes that have max/min degree on 𝐺𝑖, then one-layer max-readout GNNs

trained on {(𝐺𝑖, 𝑔(𝐺𝑖))}𝑛
𝑖=1 with squared loss in the NTK regime learn 𝑔.

Theorem 8.2 does not follow immediately from Theorem 7.3, because MLP modules

in GNNs only receive indirect supervision. We analyze the Graph NTK [Du et al., 2019b]
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Figure 8-1: Extrapolation for algorithmic tasks. Each column indicates the task and mean
average percentage error (MAPE). Encoding appropriate non-linearity in the architecture
or representation is less helpful for interpolation, but significantly improves extrapolation.
Left: In max degree and shortest path, GNNs that appropriately encode max/min extrapolate
well, but GNNs with sum-pooling do not. Right: With improved input representation, GNNs
extrapolate better for the 𝑛-body problem.

path   
4regular   

ladder   
cycle   

expander   
complete   

tree   
general   

94.5
12.5

11.0
6.4

0.1
0.1
0.0
0.0

(a) Max degree with max-pooling GNN.

complete   
expander   

general   
4regular   

ladder   
cycle   
tree   
path   

8.9
2.4

0.0
0.4

11.6
13.8

19.3
33.6

(b) Shortest path with min-pooling GNN.

Figure 8-2: Importance of the training graph structure. Rows indicate the graph structure
covered by the training set and the extrapolation error (MAPE). In max degree, GNNs with
max readout extrapolate well if the max/min degrees of the training graphs are not restricted
(Theorem 8.2). In shortest path, the extrapolation errors of min GNNs follow a U-shape in
the sparsity of the training graphs. More results may be found in Appendix E.4.2.
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to prove Theorem 8.2 in Appendix E.2.5. While Theorem 8.2 assumes identical node

features, we empirically observe similar results for both identical and non-identical features

(Figure E-9 in Appendix).

Interpretation of conditions. The condition in Theorem 8.2 is analogous to that in The-

orem 7.3. Both theorems require diverse training data, measured by graph structure in

Theorem 8.2 or directions in Theorem 7.3. In Theorem 8.2, the condition is violated if all

training graphs have the same max or min node degrees, e.g., when training data are from

one of the following families: path, 𝐶-regular graphs (regular graphs with degree 𝐶), cycle,

and ladder.

Experiments: architectures that help extrapolation. We validate our theoretical anal-

ysis with two DP tasks: max degree and shortest path (details in Appendix E.3.5 and E.3.6).

While previous works only test on graphs with different sizes [Battaglia et al., 2018, Velick-

ovic et al., 2020], we also test on graphs with unseen structure, edge weights and node

features. The results support our theory. For max degree, GNNs with max-readout are better

than GNNs with sum-readout (Figure 8-1a), confirming Corollary 8.1 and Theorem 8.2.

For shortest path, GNNs with min-readout and min-aggregation are better than GNNs with

sum-readout (Figure 8-1a).

Experiments confirm the importance of training graphs structure (Figure 8-2). Interest-

ingly, the two tasks favor different graph structure. For max degree, as Theorem 8.2 predicts,

GNNs extrapolate well when trained on trees, complete graphs, expanders, and general

graphs, and extrapolation errors are higher when trained on 4-regular, cycles, or ladder

graphs. For shortest path, extrapolation errors follow a U-shaped curve as we change the

sparsity of training graphs (Figure 8-2b and Figure E-11 in Appendix). Intuitively, models

trained on sparse or dense graphs likely learn degenerative solutions.

Experiments: representations that help extrapolation. Finally, we show a good input

representation helps extrapolation. We study the 𝑛-body problem [Battaglia et al., 2016,

Watters et al., 2017] (Appendix E.3.7), that is, predicting the time evolution of 𝑛 objects in

a gravitational system. Following previous work, the input is a complete graph where the
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nodes are the objects [Battaglia et al., 2016]. The node feature for 𝑢 is the concatenation of

the object’s mass 𝑚𝑢, position 𝑥(𝑡)
𝑢 , and velocity 𝑣(𝑡)

𝑢 at time 𝑡. The edge features are set to

zero. We train GNNs to predict the velocity of each object 𝑢 at time 𝑡+ 1. The true velocity

𝑓(𝐺;𝑢) for object 𝑢 is approximately

𝑓(𝐺;𝑢) ≈ 𝑣𝑡
𝑢 + 𝑎𝑡

𝑢 · 𝑑𝑡, 𝑎𝑡
𝑢 = 𝐶 ·

∑︁
𝑣 ̸=𝑢

𝑚𝑣

‖𝑥𝑡
𝑢 − 𝑥𝑡

𝑣‖3
2

·
(︂

𝑥𝑡
𝑣 − 𝑥𝑡

𝑢

)︂
, (8.4)

where 𝐶 is a constant. To learn 𝑓 , the MLP modules need to learn a nonlinear function.

Therefore, GNNs do not extrapolate well to unseen masses or distances (“original features”

in Figure 8-1b). We instead use an improved representation ℎ(𝐺) to encode non-linearity.

At time 𝑡, we transform the edge features of (𝑢, 𝑣) from zero to 𝑤
(𝑡)
(𝑢,𝑣) = 𝑚𝑣 ·

(︁
𝑥(𝑡)

𝑣 −

𝑥(𝑡)
𝑢

)︁
/‖𝑥(𝑡)

𝑢 − 𝑥(𝑡)
𝑣 ‖3

2. The new edge features do not add information, but the MLP modules

now only need to learn linear functions, which helps extrapolation (“improved features” in

Figure 8-1b).

8.3 Connections to Other Out-of-Distribution Settings

We discuss several related settings. Intuitively, from the viewpoint of our results above,

methods in related settings may improve extrapolation by 1) learning useful non-linearities

beyond the training data range and 2) mapping relevant test data to the training data range.

Domain adaptation studies generalization to a specific target domain [Ben-David et al.,

2010, Blitzer et al., 2008, Mansour et al., 2009]. Typical strategies adjust the training

process: for instance, use unlabeled samples from the target domain to align the target and

source distributions [Ganin et al., 2016, Zhao et al., 2018]. Using target domain data during

training may induce useful non-linearities and may mitigate extrapolation by matching the

target and source distributions, though the correctness of the learned mapping depends on

the label distribution [Zhao et al., 2019].

Self-supervised learning on a large amount of unlabeled data can learn useful non-

linearities beyond the labeled training data range [Chen et al., 2020a, Devlin et al., 2019,
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Peters et al., 2018]. Hence, our results suggest an explanation why pre-trained represen-

tations such as BERT improve out-of-distribution robustness [Hendrycks et al., 2020]. In

addition, self-supervised learning could map semantically similar data to similar representa-

tions, so some out-of-domain examples might fall inside the training distribution after the

mapping.

Invariant models aim to learn features that respect specific invariances across multiple

training distributions [Arjovsky et al., 2019, Rojas-Carulla et al., 2018, Zhou et al., 2021]. If

the model indeed learns these invariances, which can happen in the linear case and when

there are confounders or anti-causal variables [Ahuja et al., 2021, Rosenfeld et al., 2021],

this may essentially increase the training data range, since variations in the invariant features

may be ignored by the model.

Distributional robustness considers small adversarial perturbations of the data distribu-

tion, and ensures that the model performs well under these [Goh and Sim, 2010, Sagawa

et al., 2020, Sinha et al., 2018, Staib and Jegelka, 2019]. We instead look at more global

perturbations. Still, one would expect that modifications that help extrapolation in general

also improve robustness to local perturbations.

8.4 Conclusion

This chapter studies the fundamental problem of formally understanding how neural net-

works trained by gradient descent extrapolate, and suggests implications for reasoning. We

identify conditions under which MLPs and GNNs extrapolate as desired. We also suggest

an explanation how GNNs may be able to extrapolate well in complex reasoning tasks:

encoding appropriate non-linearity in architecture and features can help extrapolation. Our

results and hypothesis agree with empirical results, in this work and in the literature.

An interesting future direction is to apply the ideas in this work to design better pre-

training algorithms for both representation and reasoning. Other interesting directions

include discovering frameworks and nonlinearities that are broadly helpful for reasoning.
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Finally, we conclude that artificial intelligence is beyond human intelligence. While human

intelligence has much to offer, we have also succeeded in building intelligence that achieves

what humans cannot.
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Part IV

Optimization
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Chapter 9

Convergence and Implicit Acceleration

This part of the thesis complements all previous parts and addresses the optimization of

GNNs. Optimization is an essential part of learning, and it closely relates to generalization.

In the following two chapters, we study two main questions regarding the training of

GNNs. First, we analyze the gradient descent dynamics to show global convergence and

implicit acceleration results. We show the training of GNNs is implicitly acclerated by skip

connections and more depth. Second, we practically improve the training of GNNs via

normalization methods.

9.1 Introduction

We have studied the expressive power, generalization, and extrapolation of GNNs in the

previous chapters. So far, the understanding of the optimization properties of GNNs has

still remained limited. For example, we have built powerful GNNs in Chapter 3 and 4.

Researchers working on this fundamental problem of designing more expressive GNNs hope

and often empirically observe that more powerful GNNs better fit the training set [Xu et al.,

2019, Sato et al., 2020, Vignac et al., 2020]. However, theoretically, given the non-convexity

of GNN training, it is still an open question whether better representational power always

translates into smaller training loss. This motivates the more general questions:

Can gradient descent find a global minimum for GNNs?

What affects the speed of convergence in training?
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In this chapter, we take an initial step towards answering the questions above by ana-

lyzing the trajectory of gradient descent, i.e., gradient dynamics or optimization dynamics.

A complete understanding of the dynamics of GNNs, and deep learning in general, is

challenging. Following prior works on gradient dynamics [Saxe et al., 2014, Arora et al.,

2019a, Bartlett et al., 2019], we consider the linearized regime, i.e., GNNs with linear

activation. Despite the linearity, key properties of nonlinear GNNs are present: The objec-

tive function is non-convex and the dynamics are nonlinear [Saxe et al., 2014, Kawaguchi,

2016]. Moreover, we observe the learning curves of linear GNNs and ReLU GNNs are

surprisingly similar, both converging to nearly zero training loss at the same linear rate

(Figure 9-1). Similarly, prior works report comparable performance in node classification

benchmarks even if we remove the non-linearities [Thekumparampil et al., 2018]. Hence,

understanding the dynamics of linearized GNNs is a valuable step towards understanding

the general GNNs.
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Figure 9-1: Training curves of linearized GNNs vs. ReLU GNNs on the Cora node
classification dataset.

Our analysis leads to an affirmative answer to the first question. We establish that

gradient descent training of a linearized GNN with squared loss converges to a global

minimum at a linear rate. Experiments confirm that the assumptions of our theoretical

results for global convergence hold on real-world datasets. The most significant contribution

of our convergence analysis is on multiscale GNNs, i.e., GNN architectures that use skip

connections to combine graph features at various scales [Xu et al., 2018, Li et al., 2019, Abu-

El-Haija et al., 2020, Chen et al., 2020a, Li et al., 2020a]. The skip connections introduce
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complex interactions among layers, and thus the resulting dynamics are more intricate. To

our knowledge, our results are the first convergence results for GNNs with more than one

hidden layer, with or without skip connections.

We then study what may affect the training speed of GNNs. First, for any fixed depth,

GNNs with skip connections train faster. Second, increasing the depth further accelerates

the training of GNNs. Third, faster training is obtained when the labels are more correlated

with the graph features, i.e., labels contain “signal” instead of “noise”. Overall, experiments

for nonlinear GNNs agree with the prediction of our theory for linearized GNNs.

Our results provide the first theoretical justification for the empirical success of multiscale

GNNs in terms of optimization, and suggests that deeper GNNs with skip connections may

be promising in practice. In the GNN literature, skip connections are initially motivated

by the “over-smoothing” problem as we have seen in Chapter 4 [Xu et al., 2018]: via

the recursive neighbor aggregation, node representations of a deep GNN on expander-like

subgraphs would be mixing features from almost the entire graph, and may thereby “wash

out” relevant local information. In this case, shallow GNNs may perform better. Multiscale

GNNs with skip connections can combine and adapt to the graph features at various scales,

i.e., the output of intermediate GNN layers, and such architectures are shown to help with

this over-smoothing problem [Xu et al., 2018, Li et al., 2019, 2020a, Abu-El-Haija et al.,

2020, Chen et al., 2020a]. However, the properties of multiscale GNNs have mostly been

understood at a conceptual level. Xu et al. [2018] relate the learned representations to

random walk distributions and Oono and Suzuki [2020b] take a boosting view, but they

do not consider the optimization dynamics. We give an explanation from the lens of

optimization. The training losses of deeper GNNs may be worse due to over-smoothing. In

contrast, multiscale GNNs can express any shallower GNNs and fully exploit the power by

converging to a global minimum. Hence, our results suggest that deeper GNNs with skip

connections are guaranteed to train faster with smaller training losses.
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9.2 Convergence Analysis

9.2.1 Problem Setup

We first introduce our notation for this chapter. Let 𝐺 = (𝑉,𝐸) be a graph with 𝑛 vertices

𝑉 = {𝑣1, 𝑣2, · · · , 𝑣𝑛}. Its adjacency matrix 𝐴 ∈ R𝑛×𝑛 has entries 𝐴𝑖𝑗 = 1 if (𝑣𝑖, 𝑣𝑗) ∈ 𝐸

and 0 otherwise. The degree matrix associated with 𝐴 is 𝐷 = diag (𝑑1, 𝑑2, . . . , 𝑑𝑛) with

𝑑𝑖 = ∑︀𝑛
𝑗=1 𝐴𝑖𝑗 . For any matrix𝑀 ∈ R𝑚×𝑚′ , we denote its 𝑗-th column vector by𝑀*𝑗 ∈ R𝑚,

its 𝑖-th row vector by 𝑀𝑖* ∈ R𝑚′ , and its largest and smallest (i.e., min(𝑚,𝑚′)-th largest)

singular values by 𝜎max(𝑀) and 𝜎min(𝑀), respectively. The data matrix 𝑋 ∈ R𝑚𝑥×𝑛 has

columns 𝑋*𝑗 corresponding to the feature vector of node 𝑣𝑗 , with input dimension 𝑚𝑥.

The task of interest is node classification or regression. Each node 𝑣𝑖 ∈ 𝑉 has an

associated label 𝑦𝑖 ∈ R𝑚𝑦 . In the transductive (semi-supervised) setting, we have access

to training labels for only a subset ℐ ⊆ [𝑛] of nodes on 𝐺, and the goal is to predict the

labels for the other nodes in [𝑛] ∖ ℐ . Our problem formulation easily extends to the inductive

setting by letting ℐ = [𝑛], and we can use the trained model for prediction on unseen graphs.

Hence, we have access to �̄� = |ℐ| ≤ 𝑛 training labels 𝑌 = [𝑦𝑖]𝑖∈ℐ ∈ R𝑚𝑦×�̄�, and we train

the GNN using 𝑋, 𝑌,𝐺. Additionally, for any 𝑀 ∈ R𝑚×𝑚′ , ℐ may index sub-matrices

𝑀*ℐ = [𝑀*𝑖]𝑖∈ℐ ∈ R𝑚×�̄� (when 𝑚′ ≥ 𝑛) and 𝑀ℐ* = [𝑀𝑖*]𝑖∈ℐ ∈ R�̄�×𝑚 (when 𝑚 ≥ 𝑛).

We let 𝑋(𝑙) =
[︁
ℎ1

(𝑙), ℎ
2
(𝑙), · · · , ℎ𝑛

(𝑙)

]︁
∈ R𝑚𝑙×𝑛 denote the hidden features of a GNN, and

set 𝑋(0) as the input features 𝑋 . Here, the node hidden representations 𝑋(𝑙) are updated by

aggregating and transforming the neighbor representations:

𝑋(𝑙) = 𝜎
(︁
𝐵(𝑙)𝑋(𝑙−1)𝑆

)︁
∈ R𝑚𝑙×𝑛, (9.1)

where 𝜎 is a nonlinearity such as ReLU,𝐵(𝑙) ∈ R𝑚𝑙×𝑚𝑙−1 is the weight matrix, and 𝑆 ∈ R𝑛×𝑛

is the GNN aggregation matrix, whose formula depends on the exact variant of GNN. In

Graph Isomorphism Networks (GIN) [Xu et al., 2019], 𝑆 = 𝐴+𝐼𝑛 is the adjacency matrix of

𝐺 with self-loop, where 𝐼𝑛 ∈ R𝑛×𝑛 is an identity matrix. In Graph Convolutional Networks

(GCN) [Kipf and Welling, 2017], 𝑆 = �̂�− 1
2 (𝐴 + 𝐼𝑛)�̂�− 1

2 is the normalized adjacency

matrix, where �̂� is the degree matrix of 𝐴+ 𝐼𝑛.
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We first formally define linearized GNNs.

Definition 9.1. (Linear GNN). Given data matrix 𝑋 ∈ R𝑚𝑥×𝑛, aggregation matrix 𝑆 ∈

R𝑛×𝑛, weight matrices 𝑊 ∈ R𝑚𝑦×𝑚𝐻 , 𝐵(𝑙) ∈ R𝑚𝑙×𝑚𝑙−1 , and their collection 𝐵 =

(𝐵(1), . . . , 𝐵(𝐻)), a linear GNN with 𝐻 layers 𝑓(𝑋,𝑊,𝐵) ∈ R𝑚𝑦×𝑛 is defined as

𝑓(𝑋,𝑊,𝐵) = 𝑊𝑋(𝐻), 𝑋(𝑙) = 𝐵(𝑙)𝑋(𝑙−1)𝑆. (9.2)

Throughout this chapter, we use multiscale GNNs to refer to Jumping Knowledge

Network (JK-Net) [Xu et al., 2018], which connects the output of all intermediate GNN

layers to the final layer:

Definition 9.2. (Multiscale linear GNN). Given data 𝑋 ∈ R𝑚𝑥×𝑛, aggregation matrix 𝑆 ∈

R𝑛×𝑛, weight matrices𝑊(𝑙) ∈ R𝑚𝑦×𝑚𝑙 ,𝐵(𝑙) ∈ R𝑚𝑙×𝑚𝑙−1 with𝑊 = (𝑊(0),𝑊(1), . . . ,𝑊(𝐻)),

a multiscale linear GNN with 𝐻 layers 𝑓(𝑋,𝑊,𝐵) ∈ R𝑚𝑦×𝑛 is defined as

𝑓(𝑋,𝑊,𝐵) =
𝐻∑︁

𝑙=0
𝑊(𝑙)𝑋(𝑙), (9.3)

𝑋(𝑙) = 𝐵(𝑙)𝑋(𝑙−1)𝑆. (9.4)

Given a GNN 𝑓(·) and a loss function ℓ(·, 𝑌 ), we can train the GNN by minimizing the

training loss 𝐿(𝑊,𝐵):

𝐿(𝑊,𝐵) = ℓ
(︁
𝑓(𝑋,𝑊,𝐵)*ℐ , 𝑌

)︁
, (9.5)

where 𝑓(𝑋,𝑊,𝐵)*ℐ corresponds to the GNN’s predictions on nodes that have training

labels and thus incur training losses. The pair (𝑊,𝐵) represents the trainable weights:

𝐿(𝑊,𝐵) = 𝐿(𝑊(1), . . . ,𝑊(𝐻), 𝐵(1), . . . , 𝐵(𝐻))

For completeness, we define the global minimum of GNNs.

Definition 9.3. (Global minimum). For any 𝐻 ∈ N0, 𝐿*
𝐻 is the global minimum value of
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the 𝐻-layer linear GNN 𝑓 :

𝐿*
𝐻 = inf

𝑊,𝐵
ℓ
(︁
𝑓(𝑋,𝑊,𝐵)*ℐ , 𝑌

)︁
. (9.6)

Similarly, we define 𝐿*
1:𝐻 as the global minimum value of the multiscale linear GNN 𝑓 with

𝐻 layers.

We are ready to present our main results on global convergence for linear GNNs and

multiscale linear GNNs.

9.2.2 Convergence to Global Minima and Convergence Rates

In this section, we show that gradient descent training a linear GNN or a multiscale linear

GNN with squared loss converges linearly to a global minimum. Our conditions for global

convergence hold in practice on real-world datasets and provably hold under assumptions,

e.g., initialization.

In linearized GNNs, the loss 𝐿(𝑊,𝐵) is non-convex (and non-invex) despite the linearity.

The graph aggregation 𝑆 creates interaction among the data and poses additional challenges

in the analysis. We show a fine-grained analysis of the GNN’s gradient dynamics can

overcome these challenges. Following previous works on gradient dynamics [Saxe et al.,

2014, Huang and Yau, 2020, Ji and Telgarsky, 2020, Kawaguchi, 2021], we analyze the

GNN learning process via the gradient flow, i.e., gradient descent with infinitesimal steps:

∀𝑡 ≥ 0, the network weights evolve as

𝑑

𝑑𝑡
𝑊𝑡 = − 𝜕𝐿

𝜕𝑊
(𝑊𝑡, 𝐵𝑡),

𝑑

𝑑𝑡
𝐵𝑡 = − 𝜕𝐿

𝜕𝐵
(𝑊𝑡, 𝐵𝑡), (9.7)

where (𝑊𝑡, 𝐵𝑡) represents the trainable parameters at time 𝑡 with initialization (𝑊0, 𝐵0).

Linearized GNNs

Theorem 9.1 states our main result on global convergence for linear GNNs.
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Theorem 9.1. Let 𝑓 be an 𝐻-layer linear GNN and ℓ(𝑞, 𝑌 ) = ‖𝑞 − 𝑌 ‖2
𝐹 where 𝑞, 𝑌 ∈

R𝑚𝑦×�̄�. Then, for any 𝑇 > 0,

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝐻 (9.8)

≤ (𝐿(𝑊0, 𝐵0) − 𝐿*
𝐻)𝑒−4𝜆

(𝐻)
𝑇 𝜎2

min(𝑋(𝑆𝐻)*ℐ)𝑇 ,

where 𝜆(𝐻)
𝑇 is the smallest eigenvalue 𝜆(𝐻)

𝑇 := inf𝑡∈[0,𝑇 ] 𝜆min((�̄�(1:𝐻)
𝑡 )⊤�̄�

(1:𝐻)
𝑡 ) and �̄�(1:𝑙) :=

𝐵(𝑙)𝐵(𝑙−1) · · ·𝐵(1) for any 𝑙 ∈ {0, . . . , 𝐻} with �̄�(1:0) := 𝐼 .

Proof. (Sketch) We decompose the gradient dynamics into three components: the graph

interaction, non-convex factors, and convex factors. We then bound the effects of the graph

interaction and non-convex factors through 𝜎2
min(𝑋(𝑆𝐻)*ℐ) and 𝜆min((�̄�(1:𝐻)

𝑡 )⊤�̄�
(1:𝐻)
𝑡 ) re-

spectively. The complete proof is in Appendix F.1.1.

Theorem 9.1 implies that convergence to a global minimum at a linear rate is guaranteed

if 𝜎2
min(𝑋(𝑆𝐻)*ℐ) > 0 and 𝜆𝑇 > 0. The first condition on the product of 𝑋 and 𝑆𝐻

indexed by ℐ only depends on the node features 𝑋 and the GNN aggregation matrix 𝑆. It is

satisfied if rank(𝑋(𝑆𝐻)*ℐ) = min(𝑚𝑥, �̄�), because 𝜎min(𝑋(𝑆𝐻)*ℐ) is the min(𝑚𝑥, �̄�)-th

largest singular value of 𝑋(𝑆𝐻)*ℐ ∈ R𝑚𝑥×�̄�. The second condition 𝜆
(𝐻)
𝑇 > 0 is time-

dependent and requires a more careful treatment. Linear convergence is implied as long as

𝜆min((�̄�(1:𝐻)
𝑡 )⊤�̄�

(1:𝐻)
𝑡 ) > 0 and does not converge to 0 for all times 𝑡 before stopping.

x

Empirical validation of conditions. We verify both the graph condition 𝜎2
min(𝑋(𝑆𝐻)*ℐ) >

0 and the time-dependent condition 𝜆(𝐻)
𝑇 > 0 for (discretized) 𝑇 > 0. First, on the popular

graph datasets, Cora and Citeseer Sen et al. [2008], and the GNN models, GCN Kipf and

Welling [2017] and GIN Xu et al. [2019], we have 𝜎2
min(𝑋(𝑆𝐻)*ℐ) > 0 (Figure 9-2a).

Second, we train linear GCN and GIN on Cora and Citeseer to plot an example of how the

𝜆
(𝐻)
𝑇 = inf𝑡∈[0,𝑇 ] 𝜆min((�̄�(1:𝐻)

𝑡 )⊤�̄�
(1:𝐻)
𝑡 ) changes with respect to time 𝑇 (Figure 9-2b). We

further confirm that 𝜆(𝐻)
𝑇 > 0 until convergence, lim𝑇 →∞ 𝜆

(𝐻)
𝑇 > 0 across different settings,

e.g., datasets, depths, models (Figure 9-2c). Our experiments use the squared loss, random

initialization, learning rate 1e-4, and set the hidden dimension to the input dimension (note
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Figure 9-2: Empirical validation of assumptions for global convergence of linear GNNs.
Left panel confirms the graph condition 𝜎2

min(𝑋(𝑆𝐻)*ℐ) > 0 for datasets Cora and Citeseer,
and for models GCN and GIN. Middle panel shows the time-dependent 𝜆(𝐻)

𝑇 for one training
setting (linear GCN on Cora). Each point in right panel is 𝜆(𝐻)

𝑇 > 0 at the last iteration for
different training settings.

that Theorem 9.1 assumes the hidden dimension is at least the input dimension). Further

experimental details are in Appendix F.3. Along with Theorem 9.1, we conclude that linear

GNNs converge linearly to a global minimum. Empirically, we indeed see both linear

and ReLU GNNs converging at the same linear rate to nearly zero training loss in node

classification tasks (Figure 9-1).

Guarantee via initialization. Besides the empirical verification, we theoretically show

that a good initialization guarantees the time-dependent condition 𝜆𝑇 > 0 for any 𝑇 > 0.

Indeed, like other neural networks, GNNs do not converge to a global optimum with certain

initializations: e.g., initializing all weights to zero leads to zero gradients and 𝜆(𝐻)
𝑇 = 0

for all 𝑇 , and hence no learning. We introduce a notion of singular margin and say an

initialization is good if it has a positive singular margin.

Definition 9.4. (Singular margin). The initialization (𝑊0, 𝐵0) is said to have singular

margin 𝛾 > 0 with respect to a layer 𝑙 ∈ {1, . . . , 𝐻} if 𝜎min(𝐵(𝑙)𝐵(𝑙−1) · · ·𝐵(1)) ≥ 𝛾 for all

(𝑊,𝐵) such that 𝐿(𝑊,𝐵) ≤ 𝐿(𝑊0, 𝐵0).

Proposition 9.2 then states that an initialization with positive singular margin 𝛾 guaran-

tees 𝜆(𝐻)
𝑇 ≥ 𝛾2 > 0 for all 𝑇 :

Proposition 9.2. Let 𝑓 be a linear GNN with 𝐻 layers and ℓ(𝑞, 𝑌 ) = ‖𝑞 − 𝑌 ‖2
𝐹 . If the

initialization (𝑊0, 𝐵0) has singular margin 𝛾 > 0 with respect to the layer𝐻 and𝑚𝐻 ≥ 𝑚𝑥,
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then 𝜆(𝐻)
𝑇 ≥ 𝛾2 for all 𝑇 ∈ [0,∞).

Proposition 9.2 follows since 𝐿(𝑊𝑡, 𝐵𝑡) is non-increasing with respect to time 𝑡 (proof

in Appendix F.1.2).

Relating to previous works, our singular margin is a generalized variant of the deficiency

margin of linear feedforward networks [Arora et al., 2019a, Definition 2 and Theorem 1]:

Proposition 9.3. (Informal) If initialization (𝑊0, 𝐵0) has deficiency margin 𝑐 > 0, then it

has singular margin 𝛾 > 0.

The formal version of Proposition 9.3 is in Appendix F.1.3.

To summarize, Theorem 9.1 along with Proposition 9.2 implies that we have a prior

guarantee of linear convergence to a global minimum for any graph with rank(𝑋(𝑆𝐻)*ℐ) =

min(𝑚𝑥, �̄�) and initialization (𝑊0, 𝐵0) with singular margin 𝛾 > 0: i.e., for any desired

𝜖 > 0, we have that 𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝐻 ≤ 𝜖 for any 𝑇 such that

𝑇 ≥ 1
4𝛾2𝜎2

min(𝑋(𝑆𝐻)*ℐ) log 𝐿(𝐴0, 𝐵0) − 𝐿*
𝐻

𝜖
. (9.9)

While the margin condition theoretically guarantees linear convergence, empirically, we

have already seen that the convergence conditions of across different training settings for

widely used random initialization.

Theorem 9.1 suggests that the convergence rate depends on a combination of data

features 𝑋 , the GNN architecture and graph structure via 𝑆 and 𝐻 , the label distribution

and initialization via 𝜆𝑇 . For example, GIN has better such constants than GCN on the Cora

dataset with everything else held equal (Figure 9-2a). Indeed, in practice, GIN converges

faster than GCN on Cora (Figure 9-1). In general, the computation and comparison of the

rates given by Theorem 9.1 requires computation such as those in Figure 9-2. In Section 9.3,

we will study an alternative way of comparing the speed of training by directly comparing

the gradient dynamics.

Multiscale Linear GNNs

Without skip connections, the GNNs under linearization still behave like linear feedforward

networks with augmented graph features. With skip connections, the dynamics and analysis
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become much more intricate. The expressive power of multiscale linear GNNs changes

significantly as depth increases. Moreover, the skip connections create complex interactions

among different layers and graph structures of various scales in the optimization dynamics.

Theorem 9.4 states our convergence results for multiscale linear GNNs in three cases: (i) a

general form; (ii) a weaker condition for boundary cases that uses 𝜆𝐻′
𝑇 instead of 𝜆1:𝐻

𝑇 ; (iii)

a faster rate if we have monotonic expressive power as depth increases.

Theorem 9.4. Let 𝑓 be a multiscale linear GNN with 𝐻 layers and ℓ(𝑞, 𝑌 ) = ‖𝑞 − 𝑌 ‖2
𝐹

where 𝑞, 𝑌 ∈ R𝑚𝑦×�̄�. Let 𝜆(1:𝐻)
𝑇 := min0≤𝑙≤𝐻 𝜆

(𝑙)
𝑇 . For any 𝑇 > 0, the following hold:

(i) (General). Let 𝐺𝐻 := [𝑋⊤, (𝑋𝑆)⊤, . . . , (𝑋𝑆𝐻)⊤]⊤ ∈ R(𝐻+1)𝑚𝑥×𝑛. Then

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
1:𝐻 (9.10)

≤ (𝐿(𝑊0, 𝐵0) − 𝐿*
1:𝐻)𝑒−4𝜆

(1:𝐻)
𝑇 𝜎2

min((𝐺𝐻)*ℐ)𝑇 .

(ii) (Boundary cases). For any 𝐻 ′ ∈ {0, 1, . . . , 𝐻},

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝐻′ (9.11)

≤ (𝐿(𝑊0, 𝐵0) − 𝐿*
𝐻′)𝑒−4𝜆

(𝐻′)
𝑇 𝜎2

min(𝑋(𝑆𝐻′ )*ℐ)𝑇 .

(iii) (Monotonic expressive power). If there exist 𝑙, 𝑙′ ∈ {0, . . . , 𝐻} with 𝑙 < 𝑙′ such that

𝐿*
𝑙 ≥ 𝐿*

𝑙+1 ≥ · · · ≥ 𝐿*
𝑙′ or 𝐿*

𝑙 ≤ 𝐿*
𝑙+1 ≤ · · · ≤ 𝐿*

𝑙′ , then

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝑙′′ (9.12)

≤ (𝐿(𝑊0, 𝐵0) − 𝐿*
𝑙′′)𝑒−4

∑︀𝑙′

𝑘=𝑙
𝜆

(𝑘)
𝑇 𝜎2

min(𝑋(𝑆𝑘)*ℐ)𝑇 ,

where 𝑙′′ = 𝑙 if 𝐿*
𝑙 ≥ 𝐿*

𝑙+1 ≥ · · · ≥ 𝐿*
𝑙′ , and 𝑙′′ = 𝑙′ if 𝐿*

𝑙 ≤ 𝐿*
𝑙+1 ≤ · · · ≤ 𝐿*

𝑙′ .

Proof. (Sketch) A key observation in our proof is that the interactions of different scales

cancel out to point towards a specific direction in the gradient dynamics induced in a space

of the loss value. The complete proof is in Appendix F.1.4.
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Similar to Theorem 9.1 for linear GNNs, the most general form (i) of Theorem 9.4

implies that convergence to the global minimum value of the entire multiscale linear GNN

𝐿*
1:𝐻 at linear rate is guaranteed when 𝜎2

min((𝐺𝐻)*ℐ) > 0 and 𝜆
(1:𝐻)
𝑇 > 0. The graph

condition 𝜎2
min((𝐺𝐻)*ℐ) > 0 is satisfied if rank((𝐺𝐻)*ℐ) = min(𝑚𝑥(𝐻 + 1), �̄�). The

time-dependent condition 𝜆(1:𝐻)
𝑇 > 0 is guaranteed if the initialization (𝑊0, 𝐵0) has singular

margin 𝛾 > 0 with respect to every layer (Proposition 9.5 is proved in Appendix F.1.5):

Proposition 9.5. Let 𝑓 be a multiscale linear GNN and ℓ(𝑞, 𝑌 ) = ‖𝑞 − 𝑌 ‖2
𝐹 . If the

initialization (𝑊0, 𝐵0) has singular margin 𝛾 > 0 with respect to every layer 𝑙 ∈ [𝐻] and

𝑚𝑙 ≥ 𝑚𝑥 for 𝑙 ∈ [𝐻], then 𝜆(1:𝐻)
𝑇 ≥ 𝛾2 for all 𝑇 ∈ [0,∞).

We demonstrate that the conditions of Theorem 9.4 (i) hold for real-world datasets,

suggesting in practice multiscale linear GNNs converge linearly to a global minimum.

Cora CiteSeer
10 20

10 13

10 5

103

GCN GIN

(a) Graph 𝜎2
min((𝐺𝐻)*ℐ)

0 1500 3000
Iteration (T)

4.9

5.0

5.1

T

1e 3

(b) Time-dependent 𝜆
(1:𝐻)
𝑇

10 6 10 5 10 4 10 3 10 2

T

(c) lim𝑇 →∞ 𝜆
(1:𝐻)
𝑇

Figure 9-3: Empirical validation of assumptions for global convergence of multiscale
linear GNNs. Left panel confirms the graph condition 𝜎2

min((𝐺𝐻)*ℐ) > 0 for Cora and
Citeseer, and for GCN and GIN. Middle panel shows the time-dependent 𝜆(1:𝐻)

𝑇 for one
training setting (multiscale linear GCN on Cora). Each point in right panel is 𝜆(1:𝐻)

𝑇 > 0 at
the last iteration for different training settings.

Empirical validation of conditions. On datasets Cora and Citeseer and for GNN models

GCN and GIN, we confirm that 𝜎2
min((𝐺𝐻)*ℐ) > 0 (Figure 9-3a). Moreover, we train

multiscale linear GCN and GIN on Cora and Citeseer to plot an example of how the 𝜆(1:𝐻)
𝑇

changes with respect to time 𝑇 (Figure 9-3b), and we confirm that at convergence, 𝜆(1:𝐻)
𝑇 > 0

across different settings (Figure 9-3c). Experimental details are in Appendix F.3.

Boundary cases. Because the global minimum value of multiscale linear GNNs 𝐿*
1:𝐻 can

be smaller than that of linear GNNs 𝐿*
𝐻 , the conditions in Theorem 9.4(i) may sometimes
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be stricter than those of Theorem 9.1. For example, in Theorem 9.4(i), we require 𝜆(1:𝐻)
𝑇 :=

min0≤𝑙≤𝐻 𝜆
(𝑙)
𝑇 rather than 𝜆(𝐻)

𝑇 to be positive. If 𝜆(𝑙)
𝑇 = 0 for some 𝑙, then Theorem 9.4(i)

will not guarantee convergence to 𝐿*
1:𝐻 .

Although the boundary cases above did not occur on the tested real-world graphs

(Figure 9-3), for theoretical interest, Theorem 9.4(ii) guarantees that in such cases, multiscale

linear GNNs still converge to a value no worse than the global minimum value of non-

multiscale linear GNNs. For any intermediate layer 𝐻 ′, assuming 𝜎2
min(𝑋(𝑆𝐻′)*ℐ) > 0 and

𝜆
(𝐻′)
𝑇 > 0, Theorem 9.4(ii) bounds the loss of the multiscale linear GNN 𝐿(𝑊𝑇 , 𝐵𝑇 ) at

convergence by the global minimum value 𝐿*
𝐻′ of the corresponding linear GNN with 𝐻 ′

layers.

Faster rate under monotonic expressive power. Theorem 9.4(iii) considers a special

case that is likely in real graphs: the global minimum value of the non-multiscale linear

GNN 𝐿*
𝐻′ is monotonic as 𝐻 ′ increases. Then (iii) gives a faster rate than (ii) and linear

GNNs. For example, if the globally optimal value decreases as linear GNNs get deeper. i.e.,

𝐿*
0 ≥ 𝐿*

1 ≥ · · · ≥ 𝐿*
𝐻 , or vice versa, 𝐿*

0 ≤ 𝐿*
1 ≤ · · · ≤ 𝐿*

𝐻 , then Theorem 9.4 (i) implies

that

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝑙 (9.13)

≤ (𝐿(𝑊0, 𝐵0) − 𝐿*
𝑙 )𝑒−4

∑︀𝐻

𝑘=0 𝜆
(𝑘)
𝑇 𝜎2

min(𝑋(𝑆𝑘)*ℐ)𝑇 ,

where 𝑙 = 0 if 𝐿*
0 ≥ 𝐿*

1 ≥ · · · ≥ 𝐿*
𝐻 , and 𝑙 = 𝐻 if 𝐿*

0 ≤ 𝐿*
1 ≤ · · · ≤ 𝐿*

𝐻 . Moreover, if

the globally optimal value does not change with respect to the depth as 𝐿*
1:𝐻 = 𝐿*

1 = 𝐿*
2 =

· · · = 𝐿*
𝐻 , then we have

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
1:𝐻 (9.14)

≤ (𝐿(𝑊0, 𝐵0) − 𝐿*
1:𝐻)𝑒−4

∑︀𝐻

𝑘=0 𝜆
(𝑘)
𝑇 𝜎2

min(𝑋(𝑆𝑘)*ℐ)𝑇 .

We obtain a faster rate for multiscale linear GNNs than for linear GNNs, as

𝑒−4
∑︀𝐻

𝑘=0 𝜆
(𝑘)
𝑇 𝜎2

min(𝑋(𝑆𝑘)*ℐ)𝑇 ≤ 𝑒−4𝜆
(𝐻)
𝑇 𝜎2

min(𝑋(𝑆𝐻)*ℐ)𝑇 .
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Interestingly, unlike linear GNNs, multiscale linear GNNs in this case do not require

any condition on initialization to obtain a prior guarantee on global convergence since

𝑒−4
∑︀𝐻

𝑘=0 𝜆
(𝑘)
𝑇 𝜎2

min(𝑋(𝑆𝑘)*ℐ)𝑇 ≤ 𝑒−4𝜆
(0)
𝑇 𝜎2

min(𝑋(𝑆0)*ℐ)𝑇 with 𝜆(0)
𝑇 = 1 and 𝑋(𝑆0)*ℐ = 𝑋*ℐ .

To summarize, we prove global convergence rates for multiscale linear GNNs (Thm. 9.4(i))

and experimentally validate the conditions. Part (ii) addresses boundary cases where the

conditions of Part (i) do not hold. Part (iii) gives faster rates assuming monotonic expressive

power with respect to depth. So far, we have shown multiscale linear GNNs converge faster

than linear GNNs in the case of (iii). Next, we compare the training speed for more general

cases.

9.3 Implicit Acceleration

In this section, we study how the multiscale skip connections, depth of GNN, and label dis-

tribution may affect the speed of training for GNNs. Similar to previous works [Arora et al.,

2018b], we compare the training speed by comparing the per step loss reduction 𝑑
𝑑𝑡
𝐿(𝑊𝑡, 𝐵𝑡)

for arbitrary differentiable loss functions ℓ(·, 𝑌 ) : R𝑚𝑦 → R. Smaller 𝑑
𝑑𝑡
𝐿(𝑊𝑡, 𝐵𝑡) implies

faster training. Loss reduction offers a complementary view to the convergence rates in

Section 9.2, since it is instant and not an upper bound.

We present an analytical form of the loss reduction 𝑑
𝑑𝑡
𝐿(𝑊𝑡, 𝐵𝑡) for linear GNNs and

multiscale linear GNNs. The comparison of training speed then follows from our formula

for 𝑑
𝑑𝑡
𝐿(𝑊𝑡, 𝐵𝑡). For better exposition, we first introduce several notations. We let �̄�(𝑙′:𝑙) =

𝐵(𝑙)𝐵(𝑙−1) · · ·𝐵(𝑙′) for all 𝑙′ and 𝑙 where �̄�(𝑙′:𝑙) = 𝐼 if 𝑙′ > 𝑙. We also define

𝐽(𝑖,𝑙),𝑡 := [�̄�(1:𝑖−1)
𝑡 ⊗ (𝑊(𝑙),𝑡�̄�

(𝑖+1:𝑙)
𝑡 )⊤],

𝐹(𝑙),𝑡 := [(�̄�(1:𝑙)
𝑡 )⊤�̄�

(1:𝑙)
𝑡 ⊗ 𝐼𝑚𝑦 ] ⪰ 0,

𝑉𝑡 := 𝜕𝐿(𝑊𝑡, 𝐵𝑡)
𝜕𝑌𝑡

,

where 𝑌𝑡 := 𝑓(𝑋,𝑊𝑡, 𝐵𝑡)*ℐ . For any vector 𝑣 ∈ R𝑚 and positive semidefinite matrix
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𝑀 ∈ R𝑚×𝑚, we use ‖𝑣‖2
𝑀 := 𝑣⊤𝑀𝑣.1 Intuitively, 𝑉𝑡 represents the derivative of the loss

𝐿(𝑊𝑡, 𝐵𝑡) with respect to the model output 𝑌 = 𝑓(𝑋,𝑊𝑡, 𝐵𝑡)*ℐ . 𝐽(𝑖,𝑙),𝑡 and 𝐹(𝑙),𝑡 represent

matrices that describe how the errors are propagated through the weights of the networks.

Theorem 9.6, proved in Appendix F.1.6, gives an analytical formula of loss reduction for

linear GNNs and multiscale linear GNNs.

Theorem 9.6. For any differentiable loss function 𝑞 ↦→ ℓ(𝑞, 𝑌 ), the following hold for any

𝐻 ≥ 0 and 𝑡 ≥ 0:

(i) (Non-multiscale) For 𝑓 as in Definition 9.1:

𝑑

𝑑𝑡
𝐿1(𝑊𝑡, 𝐵𝑡) = −

⃦⃦⃦
vec

[︁
𝑉𝑡(𝑋(𝑆𝐻)*ℐ)⊤

]︁⃦⃦⃦2

𝐹(𝐻),𝑡

(9.15)

−
𝐻∑︁

𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻),𝑡 vec

[︁
𝑉𝑡(𝑋(𝑆𝐻)*ℐ)⊤

]︁⃦⃦⃦2

2
.

(ii) (Multiscale) For 𝑓 as in Definition 9.2:

𝑑

𝑑𝑡
𝐿2(𝑊𝑡, 𝐵𝑡) = −

𝐻∑︁
𝑙=0

⃦⃦⃦
vec

[︁
𝑉𝑡(𝑋(𝑆𝑙)*ℐ)⊤

]︁⃦⃦⃦2

𝐹(𝑙),𝑡

(9.16)

−
𝐻∑︁

𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙),𝑡 vec
[︁
𝑉𝑡(𝑋(𝑆𝑙)*ℐ)⊤

]︁⃦⃦⃦⃦⃦
2

2
.

In what follows, we apply Theorem 9.6 to predict how different factors affect the training

speed of GNNs.

9.3.1 Acceleration with Skip Connections

We first show that multiscale linear GNNs tend to achieve faster loss reduction 𝑑
𝑑𝑡
𝐿2(𝑊𝑡, 𝐵𝑡)

compared to the corresponding linear GNN without skip connections, 𝑑
𝑑𝑡
𝐿1(𝑊𝑡, 𝐵𝑡). It

1We use this Mahalanobis norm notation for conciseness without assuming it to be a norm, since 𝑀 may
be low rank.
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(c) Signal vs. noise.

Figure 9-4: Comparison of the training speed of GNNs. Left: Multiscale GNNs train
faster than non-multiscale GNNs. Middle: Deeper GNNs train faster. Right: GNNs train
faster when the labels have signals instead of random noise. The patterns above hold for
both ReLU and linear GNNs. Additional results are in Appendix F.2.

follows from Theorem 9.6 that

𝑑

𝑑𝑡
𝐿2(𝑊𝑡, 𝐵𝑡) − 𝑑

𝑑𝑡
𝐿1(𝑊𝑡, 𝐵𝑡) (9.17)

≤ −
𝐻−1∑︁
𝑙=0

⃦⃦⃦
vec

[︁
𝑉𝑡(𝑋(𝑆𝑙)*ℐ)⊤

]︁⃦⃦⃦2

𝐹(𝑙),𝑡

,

if
∑︀𝐻

𝑖=1(‖𝑎𝑖‖2
2 + 2𝑏⊤

𝑖 𝑎𝑖) ≥ 0, where 𝑎𝑖 = ∑︀𝐻−1
𝑙=𝑖 𝐽(𝑖,𝑙),𝑡 vec[𝑉𝑡(𝑋(𝑆𝑙)*ℐ)⊤], and 𝑏𝑖 =

𝐽(𝑖,𝐻),𝑡 vec[𝑉𝑡(𝑋(𝑆𝐻)*ℐ)⊤]. The assumption of
∑︀𝐻

𝑖=1(‖𝑎𝑖‖2
2 + 2𝑏⊤

𝑖 𝑎𝑖) ≥ 0 is satisfied in

various ways: for example, it is satisfied if the last layer’s term 𝑏𝑖 and the other layers’ terms

𝑎𝑖 are aligned as 𝑏⊤
𝑖 𝑎𝑖 ≥ 0, or if the last layer’s term 𝑏𝑖 is dominated by the other layers’

terms 𝑎𝑖 as 2‖𝑏𝑖‖2 ≤ ‖𝑎𝑖‖2. Then equation (9.17) shows that the multiscale linear GNN

decreases the loss value with strictly many more negative terms, suggesting faster training.

Empirically, we indeed observe that multiscale GNNs train faster (Figure 9-4a), both for

(nonlinear) ReLU and linear GNNs. We verify this by training multiscale and non-multiscale,

ReLU and linear GCNs on the Cora and Citeseer datasets with cross-entropy loss, learning

rate 5e-5, and hidden dimension 32. Results are in Appendix F.2.

9.3.2 Acceleration with Depth

Our second finding is that deeper GNNs, with or without skip connections, train faster.

For any differentiable loss function 𝑞 ↦→ ℓ(𝑞, 𝑌 ), Theorem 9.6 states that the loss of the
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Figure 9-5: The scale of the first term dominates the second term of the loss reduction
𝑑
𝑑𝑡
𝐿(𝑊𝑡, 𝐵𝑡) for linear GNNs trained with the original labels vs. random labels on Cora.

multiscale linear GNN decreases as

𝑑

𝑑𝑡
𝐿(𝑊𝑡, 𝐵𝑡) = −

𝐻∑︁
𝑙=0

⃦⃦⃦
vec

[︁
𝑉𝑡(𝑋(𝑆𝑙)*ℐ)⊤

]︁⃦⃦⃦2

𝐹(𝑙),𝑡⏟  ⏞  
≥0⏟  ⏞  

further improvement as depth 𝐻 increases

(9.18)

−
𝐻∑︁

𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙),𝑡 vec
[︁
𝑉𝑡(𝑋(𝑆𝑙)*ℐ)⊤

]︁⃦⃦⃦⃦⃦
2

2
.⏟  ⏞  

≥0⏟  ⏞  
further improvement as depth 𝐻 increases

In equation (9.18), we can see that the multiscale linear GNN achieves faster loss reduction

as depth 𝐻 increases. A similar argument applies to non-multiscale linear GNNs.

Empirically too, deeper GNNs train faster (Figure 9-4b). Again, the acceleration applies

to both (nonlinear) ReLU GNNs and linear GNNs. We verify this by training multiscale

and non-multiscale, ReLU and linear GCNs with 2, 4, and 6 layers on the Cora and Citeseer

datasets with learning rate 5e-5, hidden dimension 32, and cross-entropy loss. Results are in

Appendix F.2.

9.3.3 Label Distribution: Signal vs. Noise

Finally, we study how the labels affect the training speed. For the loss reduction (9.15) and

(9.16), we argue that the norm of 𝑉𝑡(𝑋(𝑆𝑙)*ℐ)⊤ tends to be larger for labels 𝑌 that are more
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correlated with the graph features 𝑋(𝑆𝑙)*ℐ , e.g., labels are signals instead of “noise”.

Without loss of generality, we assume 𝑌 is normalized, e.g., one-hot labels. Here, 𝑉𝑡 =
𝜕𝐿(𝐴𝑡,𝐵𝑡)

𝜕𝑌𝑡
is the derivative of the loss with respect to the model output, e.g., 𝑉𝑡 = 2(𝑌𝑡 − 𝑌 )

for squared loss. If the rows of 𝑌 are random noise vectors, then so are the rows of 𝑉𝑡, and

they are expected to get more orthogonal to the columns of (𝑋(𝑆𝑙)*ℐ)⊤ as 𝑛 increases. In

contrast, if the labels 𝑌 are highly correlated with the graph features (𝑋(𝑆𝑙)*ℐ)⊤, i.e., the

labels have signal, then the norm of 𝑉𝑡(𝑋(𝑆𝑙)*ℐ)⊤ will be larger, implying faster training.

Our argument above focuses on the first term of the loss reduction, ‖𝑉𝑡(𝑋(𝑆𝑙)*ℐ)⊤‖2
F.

We empirically demonstrate that the scale of the second term,
⃦⃦⃦∑︀𝐻

𝑙=𝑖 𝐽(𝑖,𝑙),𝑡 vec
[︁
𝑉𝑡(𝑋(𝑆𝑙)*ℐ)⊤

]︁⃦⃦⃦2

2
,

is dominated by that of the first term (Figure 9-5). Thus, we can expect GNNs to train faster

with signals than noise.

We train GNNs with the original labels of the dataset and random labels (i.e., selecting

a class with uniform probability), respectively. The prediction of our theoretical analysis

aligns with practice: training is much slower for random labels (Figure 9-4c). We verify

this for mutliscale and non-multiscale, ReLU and linear GCNs on the Cora and Citseer

datasets with learning rate 1e-4, hidden dimension 32, and cross-entropy loss. Results are in

Appendix F.2.

9.4 Related Work

Theoretical analysis of linearized networks. The theoretical study of neural networks

with some linearized components has recently drawn much attention. Tremendous efforts

have been made to understand linear feedforward networks, in terms of their loss land-

scape [Kawaguchi, 2016, Hardt and Ma, 2017, Laurent and Brecht, 2018] and optimization

dynamics [Saxe et al., 2014, Arora et al., 2019a, Bartlett et al., 2019, Du and Hu, 2019, Zou

et al., 2020]. Recent works prove global convergence rates for deep linear networks under

certain conditions [Bartlett et al., 2019, Du and Hu, 2019, Arora et al., 2019a, Zou et al.,

2020]. For example, Arora et al. [2019a] assume the data to be whitened. Zou et al. [2020]

fix the weights of certain layers during training. Our work is inspired by these works but

differs in that our analysis applies to all learnable weights and does not require these specific
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assumptions, and we study the more complex GNN architecture with skip connections.

GNNs consider the interaction of graph structures via the recursive message passing, but

such structured, locally varying interaction is not present in feedforward networks. Further-

more, linear feedforward networks, even with skip connections, have the same expressive

power as shallow linear models, a crucial condition in previous proofs [Bartlett et al., 2019,

Du and Hu, 2019, Arora et al., 2019a, Zou et al., 2020]. In contrast, the expressive power

of multiscale linear GNNs can change significantly as depth increases. Accordingly, our

proofs significantly differ from previous studies.

Another line of works studies the gradient dynamics of neural networks in the neural

tangent kernel (NTK) regime [Jacot et al., 2018, Li and Liang, 2018, Allen-Zhu et al., 2019b,

Arora et al., 2019b, Chizat et al., 2019, Du et al., 2019a,c, Nitanda and Suzuki, 2021].

With over-parameterization, the NTK remains almost constant during training. Hence, the

corresponding neural network is implicitly linearized with respect to random features of the

NTK at initialization [Lee et al., 2019, Yehudai and Shamir, 2019, Liu et al., 2020]. On the

other hand, our work needs to address nonlinear dynamics and changing expressive power.

Learning dynamics and optimization of GNNs. Closely related to our work, Du et al.

[2019b], Xu et al. [2021b] from previous chapters study the gradient dynamics of GNNs via

the Graph NTK but focus on GNNs’ generalization and extrapolation properties. We instead

analyze optimization. Only Zhang et al. [2020b] also prove global convergence for GNNs,

but for the one-hidden-layer case, and they assume a specialized tensor initialization and

training algorithms. In contrast, our results work for any finite depth with no assumptions

on specialized training. Other works aim to accelerate and stabilize the training of GNNs

through normalization techniques [Cai et al., 2021] and importance sampling [Chen et al.,

2018b,a, Huang et al., 2018, Chiang et al., 2019, Zou et al., 2019]. Our work complements

these practical works with a better theoretical understanding of GNN training.

9.5 Discussion

This chapter studies the training properties of GNNs through the lens of optimization

dynamics. For linearized GNNs with or without skip connections, despite the non-convex
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objective, we show that gradient descent training is guaranteed to converge to a global

minimum at a linear rate. The conditions for global convergence are validated on real-

world graphs. We further find out that skip connections, more depth, and/or a good label

distribution implicitly accelerate the training of GNNs. Our results suggest deeper GNNs

with skip connections may be promising in practice, and serve as a first foundational step

for understanding the optimization of general GNNs.
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Chapter 10

Accelerating Training with GraphNorm

In the last chapter, we have studied the convergence rates of GNNs. In practice, the training

of GNNs is often unstable and the convergence is slow. In this chapter, we study how to

practically improve the training of GNNs via normalization.

10.1 Introduction

Normalization methods shift and scale the hidden representations and are shown to help the

optimization for deep neural networks [Ioffe and Szegedy, 2015, Ulyanov et al., 2016, Ba

et al., 2016, Salimans and Kingma, 2016, Xiong et al., 2020, Salimans et al., 2016, Miyato

et al., 2018, Wu and He, 2018, Santurkar et al., 2018]. Curiously, no single normalization

helps in every domain, and different architectures require specialized methods. For example,

Batch normalization (BatchNorm) is a standard component in computer vision [Ioffe and

Szegedy, 2015]; Layer normalization (LayerNorm) is popular in natural language process-

ing [Ba et al., 2016, Xiong et al., 2020]; Instance normalization (InstanceNorm) has been

found effective for style transfer tasks [Ulyanov et al., 2016] . This motivates the question:

What normalization methods are effective for GNNs?

We take an initial step towards answering the question above. First, we adapt the existing

methods from other domains, including BatchNorm, LayerNorm, and InstanceNorm, to

GNNs and evaluate their performance with extensive experiments on graph classification

tasks. We observe that our adaptation of InstanceNorm to GNNs, which for each individ-
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ual graph normalizes its node hidden representations, obtains much faster convergence

compared to BatchNorm and LayerNorm. We provide an explanation for the success of

InstanceNorm by showing that the shift operation in InstanceNorm serves as a precondi-

tioner of the graph aggregation operation. Empirically, such preconditioning makes the

optimization curvature smoother and makes the training more efficient. We also explain

why the widely used BatchNorm does not bring the same level of acceleration. The variance

of the batch-level statistics on graph datasets is much larger if we apply the normalization

across graphs in a batch instead of across individual graphs. The noisy statistics during

training may lead to unstable optimization.

Second, we show that the adaptation of InstanceNorm to GNNs, while being helpful in

general, has limitations. The shift operation in InstanceNorm, which subtracts the mean

statistics from node hidden representations, may lead to an expressiveness degradation for

GNNs. Specifically, for highly regular graphs, the mean statistics contain graph structural

information, and thus removing them could hurt the performance. Based on our analysis,

we propose GraphNorm to address the issue of InstanceNorm with a learnable shift (Step 2

in Figure 10-1). The learnable shift could learn to control the ideal amount of information to

preserve for mean statistics. Together, GraphNorm normalizes the hidden representations

across nodes in each individual graph with a learnable shift to avoid the expressiveness

degradation while inheriting the acceleration effect of the shift operation.

We validate the effectiveness of GraphNorm on eight popular graph classification bench-

marks. Empirical results confirm that GraphNorm consistently improves the speed of

converge and stability of training for GNNs compared to those with BatchNorm, Instan-

ceNorm, LayerNorm, and those without normalization. Furthermore, GraphNorm helps

GNNs achieve better generalization performance on most benchmarks.

Related work. Closely related to our work, InstanceNorm [Ulyanov et al., 2016] is

originally proposed for real-time image generation. Variants of InstanceNorm are also

studied in permutation equivalent data processing [Yi et al., 2018b, Sun et al., 2020]. We

instead adapt InstanceNorm to GNNs and find it helpful for the training of GNNs. Few works

have studied normalization in the GNN literature. Xu et al. [2019] adapts BatchNorm to GIN

152



(2) Learnable  

mean

Feature

Aggregation

Subtract graph mean

(1a) Preconditioning

Subtract batch mean

(1b) Heavy batch noise Divide std

Affine

Divide std

Affine

Divide std

Affine

Divide std

Affine

Subtract 

feature

mean

Figure 10-1: Overview. We evaluate and understand BatchNorm, LayerNorm, and In-
stanceNorm, when adapted to GNNs. InstanceNorm trains faster than LayerNorm and
BatchNorm on most datasets (Section 10.2.1), as it serves as a preconditioner of the aggrega-
tion of GNNs (1a, Section 10.2.2). The preconditioning effect is weaker for BatchNorm due
to heavy batch noise in graphs (1b, Section 10.2.3). We propose GraphNorm with a learnable
shift to address the limitation of InstanceNorm. GraphNorm outperforms other normalization
methods for both training speed (Figure 10-2) and generalization (Table 10.1, 10.2).
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as a plug-in component. Our proposed GraphNorm builds on and improves InstanceNorm

by addressing its expressiveness degradation with a learnable shift.

The reason behind the effectiveness of normalization has been intensively studied. While

scale and shift are the main components of normalization, most existing works focus on the

scale operation and the “scale-invariant” property: With a normalization layer after a linear

(or convolutional) layer, the output values remain the same as the weights are scaled. Hence,

normalization decouples the optimization of direction and length of the parameters [Kohler

et al., 2019], implicitly tunes the learning rate [Ioffe and Szegedy, 2015, Hoffer et al., 2018,

Arora et al., 2018c, Li and Arora, 2019], and smooths the optimization landscape [Santurkar

et al., 2018]. Our work offers a different view by instead showing specific shift operation

has the preconditioning effect and can accelerate the training of GNNs.

10.2 Evaluating and Understanding Normalization

We begin by introducing our notations for this chapter. For better exposition of our analysis,

we denote GNNs in the matrix form. GIN can be defined in matrix form as:

𝐻(𝑘) = MLP(𝑘)
(︁
𝑊 (𝑘)𝐻(𝑘−1)𝑄GIN

)︁
, (10.1)

where 𝐻(𝑘) =
[︁
ℎ

(𝑘)
1 , ℎ

(𝑘)
2 , · · · , ℎ(𝑘)

𝑛

]︁
∈ R𝑑(𝑘)×𝑛 is the feature matrix at the 𝑘-th layer where

𝑑(𝑘) denotes the feature dimension, and 𝑊 (𝑘) is the parameter matrix in layer 𝑘, 𝜉(𝑘) is a

learnable parameter and 𝑄GIN = 𝐴+ 𝐼𝑛 + 𝜉(𝑘)𝐼𝑛. GCN can be defined in matrix form as:

𝐻(𝑘) = ReLU
(︁
𝑊 (𝑘)𝐻(𝑘−1)𝑄GCN

)︁
, (10.2)

where ReLU stands for rectified linear unit, 𝑄GCN = ̂︁𝐷− 1
2 ̂︀𝐴̂︁𝐷− 1

2 , where ̂︀𝐴 = 𝐴+ 𝐼𝑛 and ̂︁𝐷
is the degree matrix of ̂︀𝐴. 𝐼𝑛 is the identity matrix.

Normalization. Generally, given a set of values {𝑥1, 𝑥2, · · · , 𝑥𝑚}, a normalization op-

eration first shifts each 𝑥𝑖 by the mean 𝜇, and then scales them down by standard devi-

ation 𝜎: 𝑥𝑖 → 𝛾 𝑥𝑖−𝜇
𝜎

+ 𝛽, where 𝛾 and 𝛽 are learnable parameters, 𝜇 = 1
𝑚

∑︀𝑚
𝑖=1 𝑥𝑖 and
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Figure 10-2: Training performance of GIN with different normalization methods and GIN
without normalization in graph classification tasks. The convergence speed of our adaptation
of InstanceNorm dominates BatchNorm and LayerNorm in most tasks. GraphNorm further
improves the training over InstanceNorm especially on tasks with highly regular graphs, e.g.,
IMDB-BINARY (See Figure 10-5 for detailed illustration). Overall, GraphNorm converges
faster than all other methods.

𝜎2 = 1
𝑚

∑︀𝑚
𝑖=1 (𝑥𝑖 − 𝜇)2. The major difference among different existing normalization

methods is which set of feature values the normalization is applied to. For example, in

computer vision, BatchNorm normalizes the feature values in the same channel across

different samples in a batch. In NLP, LayerNorm normalizes the feature values at each

position in a sequence separately.

We first adapt and evaluate existing normalization methods to GNNs. Then we give an

explanation of the effectiveness of the variant of InstanceNorm, and show why the widely

used BatchNorm fails to have such effectiveness. The understanding inspires us to develop

better normalization methods, e.g., GraphNorm.

10.2.1 Adapting and Evaluating Normalization for GNNs

To investigate what normalization methods are effective for GNNs, we first adapt three

typical normalization methods, i.e., BatchNorm, LayerNorm, and InstanceNorm, developed

in other domain to GNNs. We apply the normalization after the linear transformation as in

previous works [Ioffe and Szegedy, 2015, Xiong et al., 2020, Xu et al., 2019]. The general
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GNN structure equipped with a normalization layer can be represented as:

𝐻(𝑘) = 𝐹 (𝑘)
(︁
Norm

(︁
𝑊 (𝑘)𝐻(𝑘−1)𝑄

)︁)︁
, (10.3)

where 𝐹 (𝑘) is a function that applies to each node separately,𝑄 is an 𝑛×𝑛matrix representing

the neighbor aggregation, and 𝑊 (𝑘) is the weight/parameter matrix in layer 𝑘. We can

instantiate Eq. (10.3) as GCN and GIN, by setting proper 𝐹 (𝑘) and matrix 𝑄. For example,

if we set 𝐹 (𝑘) to be ReLU and set 𝑄 to be 𝑄GCN (Eq. (10.2)), then Eq. (10.3) becomes GCN

with normalization; Similarly, by setting 𝐹 (𝑘) to be MLP(𝑘) and 𝑄 to be 𝑄GIN (Eq. (10.1)),

we recover GIN with normalization.

We then describe the concrete operations of the adaptations of the normalization methods.

Consider a batch of graphs {𝐺1, · · · , 𝐺𝑏} where 𝑏 is the batch size. Let 𝑛𝑔 be the number of

nodes in graph 𝐺𝑔. We generally denote ̂︀ℎ𝑖,𝑗,𝑔 as the inputs to the normalization module, e.g.,

the 𝑗-th feature value of node 𝑣𝑖 of graph 𝐺𝑔, 𝑖 = 1, · · · , 𝑛𝑔, 𝑗 = 1, · · · , 𝑑, 𝑔 = 1, · · · , 𝑏.

The adaptations take the general form:

Norm
(︁̂︀ℎ𝑖,𝑗,𝑔

)︁
= 𝛾 ·

̂︀ℎ𝑖,𝑗,𝑔 − 𝜇

𝜎
+ 𝛽, (10.4)

where the scopes of mean 𝜇, standard deviation 𝜎, and affine parameters 𝛾, 𝛽 differ for

different normalization methods. For BatchNorm, normalization and the computation of 𝜇

and 𝜎 are applied to all values in the same feature dimension across the nodes of all graphs

in the batch as in Xu et al. [2019], i.e., over dimensions 𝑔, 𝑖 of ̂︀ℎ𝑖,𝑗,𝑔. To adapt LayerNorm

to GNNs, we view each node as a basic component, resembling words in a sentence, and

apply normalization to all feature values across different dimensions of each node, i.e., over

dimension 𝑗 of ̂︀ℎ𝑖,𝑗,𝑔.

For InstanceNorm, we regard each graph as an instance. The normalization is then

applied to the feature values across all nodes for each individual graph, i.e., over dimension

𝑖 of ̂︀ℎ𝑖,𝑗,𝑔.

In Figure 10-2 we show training curves of different normalization methods in graph

classification tasks. We find that LayerNorm hardly improves the training process in most
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tasks, while our adaptation of InstanceNorm can largely boost the training speed compared to

other normalization methods. The test performances have similar trends. We summarize the

final test accuracies in Table 10.1. In the following subsections, we provide an explanation

for the success of InstanceNorm and its benefits compared to BatchNorm, which is currently

adapted in many GNNs.

10.2.2 Shift in InstanceNorm as a Preconditioner

As mentioned previously, the scale-invariant property of the normalization has been investi-

gated and considered as one of the ingredients that make the optimization efficient. In our

analysis of normalizations for GNNs, we instead take a closer look at the shift operation

in the normalization. Compared to the image and sequential data, the graph is explicitly

structured, and the neural networks exploit the structural information directly in the aggrega-

tion of the neighbors. Such uniqueness of GNNs makes it possible to study how the shift

operation interplays with the graph data in detail.

We show that the shift operation in our adaptation of InstanceNorm serves as a precondi-

tioner of the aggregation in GNNs and hypothesize this preconditioning effect can boost the

training of GNNs. Though the current theory of deep learning has not been able to prove

and compare the convergence rate in the real settings, we calculate the convergence rate of

GNNs on a simple but fully characterizable setting to give insights on the benefit of the shift

operation.

We first formulate our adaptation of InstanceNorm in the matrix form. Mathematically,

for a graph of 𝑛 nodes, denote 𝑁 = 𝐼𝑛 − 1
𝑛
11⊤. 𝑁 is the matrix form of the shift operation,

i.e., for any vector z = [𝑧1, 𝑧2, · · · , 𝑧𝑛]⊤ ∈ R𝑛, z⊤𝑁 = z⊤ −
(︁

1
𝑛

∑︀𝑛
𝑖=1 𝑧𝑖

)︁
1⊤. Then the

normalization together with the aggregation can be represented as1

Norm
(︁
𝑊 (𝑘)𝐻(𝑘−1)𝑄

)︁
= 𝑆

(︁
𝑊 (𝑘)𝐻(𝑘−1)𝑄

)︁
𝑁, (10.5)

where 𝑆 = diag
(︂

1
𝜎1
, 1

𝜎2
, · · · , 1

𝜎
𝑑(𝑘)

)︂
is the scaling, and 𝑄 is the GNN aggregation matrix.

1Standard normalization has an additional affine operation after shifting and scaling. Here we omit it in
Eq. 10.5 for better demonstration. Adding this operation will not affect the theoretical analysis.
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Each 𝜎𝑖 is the standard deviation of the values of the 𝑖-th features among the nodes in the

graph we consider. We can see that, in the matrix form, shifting feature values on a single

graph is equivalent to multiplying 𝑁 as in Eq. (10.5). Therefore, we further check how this

operation affects optimization. In particular, we examine the singular value distribution of

𝑄𝑁 . The following theorem shows that 𝑄𝑁 has a smoother singular value distribution than

𝑄, i.e., 𝑁 serves as a preconditioner of 𝑄.

Theorem 10.1 (Shift Serves as a Preconditioner of 𝑄). Let 𝑄,𝑁 be defined as in Eq. (10.5),

0 ≤ 𝜆1 ≤ · · · ≤ 𝜆𝑛 be the singular values of 𝑄. We have 𝜇𝑛 = 0 is one of the singular

values of 𝑄𝑁 , and let other singular values of 𝑄𝑁 be 0 ≤ 𝜇1 ≤ 𝜇2 ≤ · · · ≤ 𝜇𝑛−1. Then

we have

𝜆1 ≤ 𝜇1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛−1 ≤ 𝜇𝑛−1 ≤ 𝜆𝑛, (10.6)

where 𝜆𝑖 = 𝜇𝑖 or 𝜆𝑖 = 𝜇𝑖−1 only if there exists one of the right singular vectors 𝛼𝑖 of 𝑄

associated with 𝜆𝑖 satisfying 1⊤𝛼𝑖 = 0.

The proof may be found in Appendix G.1.1.

We hypothesize that precoditioning 𝑄 can help the optimization. In the case of optimiz-

ing the weight matrix 𝑊 (𝑘), we can see from Eq. (10.5) that after applying normalization,

the term 𝑄 in the gradient of 𝑊 (𝑘) will become 𝑄𝑁 which makes the optimization curvature

of 𝑊 (𝑘) smoother, see Appendix G.1.5 for more discussions. Similar preconditioning effects

are believed to improve the training of deep learning models [Duchi et al., 2011, Kingma

and Ba, 2015], and classic wisdom in optimization has also shown that preconditioning

can accelerate the convergence of iterative methods [Axelsson, 1985, Demmel, 1997]. To

support our hypothesis that preconditioning may suggest better training, we investigate

a simple but characterizable setting of training a linear GNN using gradient descent in

Appendix G.1.2. In this setting, we prove that:

Proposition 10.2 (Concrete Example Showing Shift can Accelerate Training (Informal)).

With high probability over randomness of data generation, the parameter wShift
𝑡 of the model
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Figure 10-3: Singular value distribution of 𝑄 and 𝑄𝑁 for sampled graphs in different
datasets using GIN. More visualizations can be found in Appendix G.3.1

with shift at step 𝑡 converges to the optimal parameter wShift
* linearly:

⃦⃦⃦
wShift

𝑡 − wShift
*

⃦⃦⃦
2

= 𝑂
(︁
𝜌𝑡

1

)︁
,

where 𝜌1 is the convergence rate.

Similarly, the parameter wVanilla
𝑡 of the vanilla model converges linearly, but with a

slower rate:

⃦⃦⃦
wVanilla

𝑡 − wVanilla
*

⃦⃦⃦
2

= 𝑂
(︁
𝜌𝑡

2

)︁
and 𝜌1 < 𝜌2,

which indicates that the model with shift converges faster than the vanilla model.

The proof may be found in Appendix G.1.2.

To check how much the matrix 𝑁 improves the distribution of the spectrum of matrix

𝑄 in real practice, we sample graphs from different datasets for illustration, as showed in

Figure 10-3 (more visualizations for different types of graph can be found in Appendix

G.3.1). We can see that the singular value distribution of 𝑄𝑁 is much smoother, and the

condition number is improved. Note that for a multi-layer GNN, the normalization will be

applied in each layer. Therefore, the overall improvement of such preconditioning can be

more significant.
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Figure 10-4: Batch-level statistics are noisy for GNNs. We plot the batch-level/dataset-
level mean/standard deviation of models trained on PROTEINS (graph classification) and
CIFAR10 (image classification). We observe that the deviation of batch-level statistics from
dataset-level statistics is rather large for the graph task, while being negligible in image task.

10.2.3 Heavy Batch Noise in Graphs Makes BatchNorm Less Effective

The above analysis shows the adaptation of InstanceNorm has the effect of preconditioning

the aggregation of GNNs. Then a natural question is whether a batch-level normalization for

GNNs [Xu et al., 2019] has similar advantages. We show that BatchNorm is less effective in

GNNs due to heavy batch noise on graph data.

In BatchNorm, the mean 𝜇𝐵 and standard deviation 𝜎𝐵 are calculated in a sampled

batch during training, which can be viewed as random variables by the randomness of

sampling. During testing, the estimated dataset-level statistics (running mean 𝜇𝐷 and

standard deviation 𝜎𝐷) are used instead of the batch-level statistics [Ioffe and Szegedy,

2015]. To apply Theorem 10.1 to BatchNorm for the preconditioning effect, one could

potentially view all graphs in a dataset as subgraphs in a super graph. Hence, Theorem 10.1

applies to BatchNorm if the batch-level statistics are well-concentrated around dataset-level

statistics, i.e., 𝜇𝐵 ≈ 𝜇𝐷 and 𝜎𝐵 ≈ 𝜎𝐷. However, the concentration of batch-level statistics

is heavily domain-specific. While it is imaginable that the variation of batch-level statistics

in typical networks is small for computer vision, the concentration of batch-level statistics is

still unknown for GNNs.

We study how the batch-level statistics 𝜇𝐵, 𝜎𝐵 deviate from the dataset-level statistics
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𝜇𝐷, 𝜎𝐷. For comparison, we train a 5-layer GIN with BatchNorm on the PROTEINS dataset

and train a ResNet18 [He et al., 2016] on the CIFAR10 dataset. We set batch size to 128.

For each epoch, we record the batch-level max/min mean and standard deviation for the first

and the last BatchNorm layer on a randomly selected dimension across batches. In Figure

10-4, pink line denotes the dataset-level statistics, and green/blue line denotes the max/min

value of the batch-level statistics. We observe that for image tasks, the maximal deviation of

the batch-level statistics from the dataset-level statistics is negligible (Figure 10-4) after a

few epochs. In contrast, for the graph tasks, the variation of batch-level statistics stays large

during training. Intuitively, the graph structure can be quite diverse and the a single batch

cannot well represent the entire dataset. Hence, the preconditioning property also may not

hold for BatchNorm. In fact, the heavy batch noise may bring instabilities to the training.

More results may be found in Appendix G.3.2.

10.3 Graph Normalization

Although we provide evidence on the indispensability and advantages of our adaptation of

InstanceNorm, simply normalizing the values in each feature dimension within a graph does

not consistently lead to improvement. We show that in some situations, e.g., for regular

graphs, the standard shift (e.g., shifting by subtracting the mean) may cause information

loss on graph structures.

We consider 𝑟-regular graphs, i.e., each node has a degree 𝑟. We first look into the case

that there are no available node features, then 𝑋𝑖 is set to be the one-hot encoding of the

node degree [Xu et al., 2019]. In a 𝑟-regular graph, all nodes have the same encoding, and

thus the columns of 𝐻(0) are the same. We study the output of the standard shift operation

in the first layer, i.e., 𝑘 = 1 in Eq. (10.5). From the following proposition, we can see that

when the standard shift operation is applied to GIN for a 𝑟-regular graph described above,

the information of degree is lost:

Proposition 10.3. For a 𝑟-regular graph with features described above, we have for GIN,

Norm
(︁
𝑊 (1)𝐻(0)𝑄GIN

)︁
= 𝑆

(︁
𝑊 (1)𝐻(0)𝑄GIN

)︁
𝑁 = 0, i.e., the output of normalization

layer is a zero matrix without any information of the graph structure.
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Such information loss not only happens when there are no node features. For complete

graphs, we can further show that even each node has different features, the graph struc-

tural information, i.e., adjacency matrix 𝐴, will always be ignored after the standard shift

operation in GIN:

Proposition 10.4. For a complete graph (𝑟 = 𝑛 − 1), we have for GIN, 𝑄GIN𝑁 = 𝜉(𝑘)𝑁 ,

i.e., graph structural information in 𝑄 will be removed after multiplying 𝑁 .

The proof of these two propositions can be found in Appendix G.1. Similar results can be

easily derived for other architectures like GCN by substituting 𝑄GIN with 𝑄GCN. As we can

see from the above analysis, in graph data, the mean statistics after the aggregation sometimes

contain structural information. Discarding the mean will degrade the expressiveness of

the neural networks. Note that the problem may not happen in image domain. The mean

statistics of image data contains global information such as brightness. Removing such

information in images will not change the semantics of the objects and thus will not hurt the

classification performance.

This analysis inspires us to modify the current normalization method with a learnable

parameter to automatically control how much the mean to preserve in the shift operation.

Combined with the graph-wise normalization, we name our new method Graph Normaliza-

tion, i.e., GraphNorm. For each graph 𝐺, we generally denote value ̂︀ℎ𝑖,𝑗 as the inputs to

GraphNorm, e.g., the 𝑗-th feature value of node 𝑣𝑖, 𝑖 = 1, · · · , 𝑛, 𝑗 = 1, · · · , 𝑑. GraphNorm

takes the following form:

GraphNorm
(︁̂︀ℎ𝑖,𝑗

)︁
= 𝛾𝑗 ·

̂︀ℎ𝑖,𝑗 − 𝛼𝑗 · 𝜇𝑗

�̂�𝑗

+ 𝛽𝑗, (10.7)

where 𝜇𝑗 =
∑︀𝑛

𝑖=1
̂︀ℎ𝑖,𝑗

𝑛
, �̂�2

𝑗 =
∑︀𝑛

𝑖=1(̂︀ℎ𝑖,𝑗−𝛼𝑗 ·𝜇𝑗)2

𝑛
, and 𝛾𝑗, 𝛽𝑗 are the affine parameters as in

other normalization methods. By introducing the learnable parameter 𝛼𝑗 for each feature

dimension 𝑗, we are able to learn how much the information we need to keep in the mean.

To validate our theory and the proposed GraphNorm in real-world data, we conduct

an ablation study on two typical datasets, PROTEINS and IMDB-BINARY. As shown in

Figure 10-5, the graphs from PROTEINS and IMDB-BINARY exhibit irregular-type and
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Figure 10-5: Comparison of GraphNorm and InstanceNorm on different types of
graphs. Top: Sampled graphs with different topological structures. Bottom: Training
curves of GIN/GCN using GraphNorm and InstanceNorm.
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Table 10.1: Test performance of GIN/GCN with various normalization methods on graph
classification tasks.

Datasets MUTAG PTC PROTEINS NCI1 IMDB-B RDT-B COLLAB

# graphs 188 344 1113 4110 1000 2000 5000

# classes 2 2 2 2 2 2 2

Avg # nodes 17.9 25.5 39.1 29.8 19.8 429.6 74.5

WL SUBTREE [SHERVASHIDZE ET AL., 2011] 90.4 ± 5.7 59.9 ± 4.3 75.0 ± 3.1 86.0 ± 1.8 73.8 ± 3.9 81.0 ± 3.1 78.9 ± 1.9

DCNN [ATWOOD AND TOWSLEY, 2016] 67.0 56.6 61.3 62.6 49.1 - 52.1

DGCNN [ZHANG ET AL., 2018A] 85.8 58.6 75.5 74.4 70.0 - 73.7

AWL [IVANOV AND BURNAEV, 2018] 87.9 ± 9.8 - - - 74.5 ± 5.9 87.9 ± 2.5 73.9 ± 1.9

GIN+LAYERNORM 82.4 ± 6.4 62.8 ± 9.3 76.2 ± 3.0 78.3 ± 1,7 74.5 ± 4,4 82.8 ± 7.7 80.1 ± 0.8

GIN+BATCHNORM ([XU ET AL., 2019]) 89.4 ± 5.6 64.6 ± 7.0 76.2 ± 2.8 82.7 ± 1.7 75.1 ± 5.1 92.4 ± 2.5 80.2 ± 1.9
GIN+INSTANCENORM 90.5 ± 7.8 64.7 ± 5.9 76.5 ± 3.9 81.2 ± 1.8 74.8 ± 5.0 93.2 ± 1.7 80.0 ± 2.1

GIN+GraphNorm 91.6 ± 6.5 64.9 ± 7.5 77.4 ± 4.9 81.4 ± 2.4 76.0 ± 3.7 93.5 ± 2.1 80.2 ± 1.0

regular-type graphs, respectively. We train GIN/GCN using our adaptation of InstanceNorm

and GraphNorm under the same setting in Section 10.4. The training curves are presented in

Figure 10-5. The curves show that using a learnable 𝛼 slightly improves the convergence on

PROTEINS, while significantly boost the training on IMDB-BINARY. This observation ver-

ify that shifting the feature values by subtracting the mean may lose information, especially

for regular graphs. And the introduction of learnable shift in GraphNorm can effectively

mitigate the expressive degradation.

10.4 Experiments

In this section, we evaluate and compare both the training and test performance of Graph-

Norm with other normalization methods on graph classification benchmarks.

Settings. We use eight popularly used benchmark datasets of different scales in the experi-

ments [Yanardag and Vishwanathan, 2015, Xu et al., 2019], including four medium-scale

bioinformatics datasets (MUTAG, PTC, PROTEINS, NCI1), three medium-scale social

network datasets (IMDB-BINARY, COLLAB, REDDIT-BINARY), and one large-scale

bioinformatics dataset ogbg-molhiv, which is recently released on Open Graph Benchmark

(OGB) [Hu et al., 2020a]. Dataset statistics are summarized in Table 10.1. We use two

typical graph neural networks GIN [Xu et al., 2019] and GCN [Kipf and Welling, 2017]

for our evaluations. Specifically, we use a five-layer GCN/GIN. For GIN, the number of
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Table 10.2: Test performance on OGB.

Datasets OGBG-MOLHIV

# graphs 41,127
# classes 2
Avg # nodes 25.5

GCN [Hu et al., 2020a] 76.06 ± 0.97
GIN [Hu et al., 2020a] 75.58 ± 1.40

GCN+LayerNorm 75.04 ± 0.48
GCN+BatchNorm 76.22 ± 0.95
GCN+InstanceNorm 78.18 ± 0.42
GCN+GraphNorm 78.30 ± 0.69

GIN+LayerNorm 74.79 ± 0.92
GIN+BatchNorm 76.61 ± 0.97
GIN+InstanceNorm 77.54 ± 1.27
GIN+GraphNorm 77.73 ± 1.29

sub-layers in MLP is set to 2. Normalization is applied to each layer. To aggregate global

features on top of the network, we use SUM readout for MUTAG, PTC, PROTEINS and

NCI1 datasets, and use MEAN readout for other datasets, as in Xu et al. [2019]. Details of

the experimental settings are presented in Appendix G.2.

Results. We plot the training curves of GIN with GraphNorm and other normalization

methods on different tasks in Figure 10-2. The results on GCN show similar trends, and

are provided in Appendix G.3.3. As shown in Figure 10-2, GraphNorm enjoys the fastest

convergence on all tasks. Compared to BatchNorm used in Xu et al. [2019], GraphNorm

converges in roughly 5000/500 iterations on NCI1 and PTC datasets, while the model using

BatchNorm does not even converge in 10000/1000 iterations. Remarkably, though Instan-

ceNorm does not outperform other normalization methods on IMDB-BINARY, GraphNorm

with learnable shift significantly boosts the training upon InstanceNorm and achieves the

fastest convergence. We also validate the test performance and report the test accuracy in

Table 10.1,10.2. The results show that GraphNorm also improves the generalization on most

benchmarks.
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10.4.1 Ablation Study

In this subsection, we summarize the results of some ablation studies. Due to the space

limitation, the detailed results can be found in Appendix G.3.

BatchNorm with learnable shift. We conduct experiments on BatchNorm to investigate

whether simply introducing a learnable shift can already improve the existing normalization

methods without concrete motivation of overcoming expressiveness degradation. Specifi-

cally, we equip BatchNorm with a similar learnable shift as GraphNorm and evaluate its

performance. We find that the learnable shift cannot further improve upon BatchNorm (See

Appendix G.3), which suggests the introduction of learnable shift in GraphNorm is critical.

BatchNorm with running statistics. We study the variant of BatchNorm which uses

running statistics to replace the batch-level mean and standard deviation. At first glance,

this method may seem to be able to mitigate the problem of large batch noise. However,

the running statistics change a lot during training, and using running statistics disables the

model to back-propagate the gradients through mean and standard deviation. Results in

Appendix G.3 show this variant has even worse performance than BatchNorm.

The effect of batch size. We further compare the GraphNorm with BatchNorm with

different batch sizes (8, 16, 32, 64). As shown in Appendix G.3, our GraphNorm consistently

outperforms the BatchNorm on all the settings.

10.5 Discussion

In this chapter, we adapt and evaluate three normalization methods, i.e., BatchNorm, Lay-

erNorm, and InstanceNorm to GNNs. We give explanations for the successes and failures

of these adaptations. Based on our understanding of the strengths and limitations of ex-

isting adaptations, we propose Graph Normalization, which builds upon the adaptation of

InstanceNorm with a learnable shift to overcome the expressive degradation of the original

InstanceNorm. Experimental results show GNNs with GraphNorm not only converge faster,
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but also achieve better generalization performance on several benchmark datasets.

Though seeking theoretical understanding of normalization methods in deep learning

is challenging [Arora et al., 2018c] due to limited understanding on the optimization of

deep learning models and characterization of real world data, we take an initial step towards

finding effective normalization methods for GNNs with theoretical guidance in this chapter.

The proposed theories and hypotheses are motivated by several simple models. Although

we were not able to give concrete theoretical results to problems such as: the convergence

rate of general GNNs with normalization, the spectrum of 𝑄 normalized by learnable shift,

etc, we believe the analyses of more realistic but complicated settings, e.g., the dynamics of

GraphNorm on deep GNNs, are good future directions.
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Chapter 11

Conclusion

This thesis is about modeling intelligence that can learn to represent and reason about the

world. We studied both representation and reasoning from the lens of graph neural networks.

In Part I, we introduced theoretical frameworks for characterizing the representation power

and developed maximally powerful GNNs. In Part II, we answered what reasoning a neural

network can learn by analyzing how the interplay of network structure and task structure

affects the generalization. In Part III, we studied how neural networks extrapolate, and

showed implications for how neural models can possibly learn the reasoning outside the

training distribution. Then in Part IV, we completed the picture of the theoretical landscape

by analyzing and improving the optimization of GNNs. From a broader viewpoint, we have

presented several theoretical limits of building artificial general intelligence in terms of

representation power and generalization, but also have complemented those with promising

directions to explore in the future. This concludes the thesis.
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Appendix A

Puzzle of the Underperformance of

Deeper GNNs

A.1 Proofs

A.1.1 Proof of Theorem 3.1

We proceed the proof by considering the following GCN architecture.

ℎ(𝑙)
𝑣 = ReLU

(︂
𝑊𝑙 · 1̃︂deg(𝑣)

∑︁
𝑢∈ ̃︀𝑁(𝑣)

ℎ(𝑙−1)
𝑢

)︂

where ̃︂deg(𝑣) is the degree of node 𝑣 in ̃︀𝐺, i.e., 𝐺 with self-loops. It is straightforward to

extend our proofs to the following GCN architecture as well.

ℎ(𝑙)
𝑣 = ReLU

(︂
𝑊𝑙 ·

∑︁
𝑢∈ ̃︀𝑁(𝑣)

(deg(𝑣)deg(𝑢))−1/2 ℎ(𝑙−1)
𝑢

)︂

Denote by 𝑓 (𝑙)
𝑥 the pre-activated feature of ℎ(𝑙)

𝑥 , i.e. 1̃︁deg(𝑥)
· ∑︀

𝑧∈ ̃︀𝑁(𝑥) 𝑊𝑙ℎ
(𝑙−1)
𝑧 , for any

𝑙 = 1..𝑘, we have

𝜕ℎ(𝑙)
𝑥

𝜕ℎ
(0)
𝑦

= 1̃︂deg(𝑥)
· diag

(︁
1

𝑓
(𝑙)
𝑥 >0

)︁
·𝑊𝑙 ·

∑︁
𝑧∈ ̃︀𝑁(𝑥)

𝜕ℎ(𝑙−1)
𝑧

𝜕ℎ
(0)
𝑦
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By chain rule, we get

𝜕ℎ(𝑘)
𝑥

𝜕ℎ
(0)
𝑦

=
Ψ∑︁

𝑝=1

[︃
𝜕ℎ(𝑘)

𝑥

𝜕ℎ
(0)
𝑦

]︃
𝑝

=
Ψ∑︁

𝑝=1

1∏︁
𝑙=𝑘

1̃︂deg(𝑣𝑙
𝑝)

· diag
(︃

1
𝑓

(𝑙)
𝑣𝑙

𝑝
>0

)︃
·𝑊𝑙

Here, Ψ is the total number of paths 𝑣𝑘
𝑝𝑣

𝑘−1
𝑝 , ..., 𝑣1

𝑝, 𝑣
0
𝑝 of length 𝑘 + 1 from node 𝑥 to node

𝑦. For any path 𝑝, 𝑣𝑘
𝑝 is node 𝑥, 𝑣0

𝑝 is node 𝑦 and for 𝑙 = 1..𝑘 − 1, 𝑣𝑙−1
𝑝 ∈ ̃︁𝑁(𝑣𝑙

𝑝).

As for each path 𝑝, the derivative
[︂

𝜕ℎ
(𝑘)
𝑥

𝜕ℎ
(0)
𝑦

]︂
𝑝

represents a directed acyclic computation

graph, where the input neurons are the same as the entries of 𝑊1, and at a layer 𝑙. We can

express an entry of the derivative as

[︃
𝜕ℎ(𝑘)

𝑥

𝜕ℎ
(0)
𝑦

]︃(𝑖,𝑗)

𝑝

=
1∏︁

𝑙=𝑘

1̃︂deg(𝑣𝑙
𝑝)

Φ∑︁
𝑞=1

𝑍𝑞

1∏︁
𝑙=𝑘

𝑤(𝑙)
𝑞

Here, Φ is the number of paths 𝑞 from the input neurons to the output neuron (𝑖, 𝑗), in the

computation graph of
[︂

𝜕ℎ
(𝑘)
𝑥

𝜕ℎ
(0)
𝑦

]︂
𝑝
. For each layer 𝑙, 𝑤𝑙

𝑞 is the entry of 𝑊𝑙 that is used in the

𝑞-th path. Finally, 𝑍𝑞 ∈ {0, 1} represents whether the 𝑞-th path is active (𝑍𝑞 = 1) or not

(𝑍𝑞 = 0) as a result of the ReLU activation of the entries of 𝑓 (𝑙)
𝑣𝑙

𝑝
’s on the 𝑞-th path.

Under the assumption that the 𝑍’s are Bernoulli random variables with the same proba-

bility of success, for all 𝑞, Pr(𝑍𝑞 = 1) = 𝜌, we have E
[︃[︂

𝜕ℎ
(𝑘)
𝑥

𝜕ℎ
(0)
𝑦

]︂(𝑖,𝑗)

𝑝

]︃
= 𝜌 ·∏︀1

𝑙=𝑘
1̃︁deg(𝑣𝑙

𝑝)
·𝑤(𝑙)

𝑞 .

It follows that E
[︂

𝜕ℎ
(𝑘)
𝑥

𝜕ℎ
(0)
𝑦

]︂
= 𝜌 · ∏︀1

𝑙=𝑘 𝑊𝑙 ·
(︂∑︀Ψ

𝑝=1
∏︀1

𝑙=𝑘
1̃︁deg(𝑣𝑙

𝑝)

)︂
. We know that the 𝑘-step

random walk probability at 𝑦 can be computed by summing up the probability of all paths

of length 𝑘 from 𝑥 to 𝑦, which is exactly
∑︀Ψ

𝑝=1
∏︀1

𝑙=𝑘
1̃︁deg(𝑣𝑙

𝑝)
. Moreover, the random walk

probability starting at 𝑥 to other nodes sum up to 1. We know that the influence score 𝐼(𝑥, 𝑧)

for any 𝑧 in expectation is thus the random walk probability of being at 𝑧 from 𝑥 at the 𝑘-th

step, multiplied by a term that is the same for all 𝑧. Normalizing the influence scores ends

the proof.

Comment: ReLU is not differentiable at 0. For simplicity, we assume the (sub)gradient

to be 0 at 0.
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A.1.2 Proof of Proposition 3.2

Let
[︁
ℎ(𝑓𝑖𝑛𝑎𝑙)

𝑥

]︁
𝑖

be the i-th entry of ℎ(𝑓𝑖𝑛𝑎𝑙)
𝑥 , the feature after layer aggregation. For any node

𝑦, we have

𝐼 (𝑥, 𝑦) =
∑︁

𝑖

⃦⃦⃦⃦
⃦⃦𝜕
[︁
ℎ(𝑓𝑖𝑛𝑎𝑙)

𝑥

]︁
𝑖

𝜕ℎ
(0)
𝑦

⃦⃦⃦⃦
⃦⃦

1

=
∑︁

𝑖

⃦⃦⃦⃦
⃦⃦𝜕
[︁
ℎ(𝑗𝑖)

𝑥

]︁
𝑖

𝜕ℎ
(0)
𝑦

⃦⃦⃦⃦
⃦⃦

1

where 𝑗𝑖 = argmax
𝑙

(︁[︁
ℎ(𝑙)

𝑥

]︁
𝑖

)︁
. By Theorem 3.1, we have

E [𝐼(𝑥, 𝑦)] =
∑︁

𝑙

𝑐𝑙
𝑥 · 𝑧𝑙 · E

[︁
𝐼𝑥(𝑦)(𝑙)

]︁

where 𝐼𝑥(𝑦) is the 𝑙-step random walk probability at 𝑦, 𝑧𝑙 is a normalization factor and 𝑐𝑙
𝑥 is

the fraction of entries of ℎ(𝑙)
𝑥 being chosen by max-pooling. By Theorem 3.1, E

[︁
𝐼𝑥(𝑦)(𝑙)

]︁
is

equivalent to the 𝑙-step random walk probability at 𝑦 starting at 𝑥.

A.2 Visualization Results

We describe the details of the heat maps and present more visualization results. The colors

of the nodes in the heat maps correspond to their probability masses of either the influence

distribution or random walk distribution as shown in Figure A-1. As we see, the shallower

the color is, the smaller the probability mass. We use the same color for probabilities over

0.2 for better visual effects because there are few nodes with influence probability masses

over 0.2. Nodes with probability mass less than 0.001 are not shown in the heat maps.

Figure A-1: Color and probability correpondency for the heat maps
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2 layers / steps 4 layers / steps 6 layers / steps
GCN / r.w. GCN / r.w. GCN / r.w.

Table A.1: Influence distributions under GCN and random walk distributions
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2 layers / steps 4 layers / steps 6 layers / steps
GCN-Res / lazy r.w. GCN-Res / lazy r.w. GCN-Res / lazy r.w.

Table A.2: Influence distributions under GCN with residual connections (GCN-Res) and
lazy random walk distributions
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In Table A.1 and Tabel A.2, we present more visualization results to compare the

1) influence distributions under GCNs and the random walk distributions, 2) influence

distributions under GCNs with residual connections and lazy random walk distributions.

The visualization results further empirically validate the equivalence of random walks and

GCN influence distributions in Theorem 1. The nodes being influenced and the random

walk starting node are labeled square. The influence distributions for the nodes in Figure A.1

are computed according to Definition 3.2, under the same trained GCN (Res) models with

2, 4, 6 layers respectively. We use the hyper-parameters as described in Kipf and Welling

[2017] for training the models. The graph (dataset) is taken from the Cora citation network.

We compute the random walk distributions according to Definition 3.3 on the graph ̃︀𝐺. The

lazy random walks all share the same lazy factor 0.4, i.e. there’s an extra 0.4 probability of

staying at the current node at each step. This probability is chosen for visual comparison

with the GCN-ResNet. The visualization in Figure 3-7 has the same setting as mentioned

above. It is trained for the Cora dataset with a 6-layer JK Net with maxpooling layer

aggregation.
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Appendix B

How Powerful are Graph Neural

Networks

B.1 Proofs

B.1.1 Proof of Lemma 4.1

Suppose after 𝑘 iterations, a graph neural network 𝒜 has 𝒜(𝐺1) ̸= 𝒜(𝐺2) but the WL test

cannot decide 𝐺1 and 𝐺2 are non-isomorphic. It follows that from iteration 0 to 𝑘 in the

WL test, 𝐺1 and 𝐺2 always have the same collection of node labels. In particular, because

𝐺1 and 𝐺2 have the same WL node labels for iteration 𝑖 and 𝑖+ 1 for any 𝑖 = 0, ..., 𝑘 − 1,

𝐺1 and 𝐺2 have the same collection, i.e. multiset, of WL node labels
{︁
𝑙(𝑖)𝑣

}︁
as well as the

same collection of node neighborhoods
{︁(︁
𝑙(𝑖)𝑣 ,

{︁
𝑙(𝑖)𝑢 : 𝑢 ∈ 𝒩 (𝑣)

}︁)︁}︁
. Otherwise, the WL test

would have obtained different collections of node labels at iteration 𝑖+ 1 for 𝐺1 and 𝐺2 as

different multisets get unique new labels.

The WL test always relabels different multisets of neighboring nodes into different new

labels. We show that on the same graph 𝐺 = 𝐺1 or 𝐺2, if WL node labels 𝑙(𝑖)𝑣 = 𝑙(𝑖)𝑢 , we

always have GNN node features ℎ(𝑖)
𝑣 = ℎ(𝑖)

𝑢 for any iteration 𝑖. This apparently holds for

𝑖 = 0 because WL and GNN starts with the same node features. Suppose this holds for
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iteration 𝑗, if for any 𝑢, 𝑣, 𝑙(𝑗+1)
𝑣 = 𝑙(𝑗+1)

𝑢 , then it must be the case that

(︁
𝑙(𝑗)
𝑣 ,

{︁
𝑙(𝑗)
𝑤 : 𝑤 ∈ 𝒩 (𝑣)

}︁)︁
=
(︁
𝑙(𝑗)
𝑢 ,

{︁
𝑙(𝑗)
𝑤 : 𝑤 ∈ 𝒩 (𝑢)

}︁)︁

By our assumption on iteration 𝑗, we must have

(︁
ℎ(𝑗)

𝑣 ,
{︁
ℎ(𝑗)

𝑤 : 𝑤 ∈ 𝒩 (𝑣)
}︁)︁

=
(︁
ℎ(𝑗)

𝑢 ,
{︁
ℎ(𝑗)

𝑤 : 𝑤 ∈ 𝒩 (𝑢)
}︁)︁

In the aggregation process of the GNN, the same AGGREGATE and COMBINE are applied.

The same input, i.e. neighborhood features, generates the same output. Thus, ℎ(𝑗+1)
𝑣 = ℎ(𝑗+1)

𝑢 .

By induction, if WL node labels 𝑙(𝑖)𝑣 = 𝑙(𝑖)𝑢 , we always have GNN node features ℎ(𝑖)
𝑣 = ℎ(𝑖)

𝑢

for any iteration 𝑖. This creates a valid mapping 𝜑 such that ℎ(𝑖)
𝑣 = 𝜑(𝑙(𝑖)𝑣 ) for any 𝑣 ∈ 𝐺. It

follows from 𝐺1 and 𝐺2 have the same multiset of WL neighborhood labels that 𝐺1 and 𝐺2

also have the same collection of GNN neighborhood features

{︁(︁
ℎ(𝑖)

𝑣 ,
{︁
ℎ(𝑖)

𝑢 : 𝑢 ∈ 𝒩 (𝑣)
}︁)︁}︁

=
{︁(︁
𝜑(𝑙(𝑖)𝑣 ),

{︁
𝜑(𝑙(𝑖)𝑢 ) : 𝑢 ∈ 𝒩 (𝑣)

}︁)︁}︁

Thus,
{︁
ℎ(𝑖+1)

𝑣

}︁
are the same. In particular, we have the same collection of GNN node

features
{︁
ℎ(𝑘)

𝑣

}︁
for 𝐺1 and 𝐺2. Because the graph level readout function is permutation

invariant with respect to the collection of node features, 𝒜(𝐺1) = 𝒜(𝐺2). Hence we have

reached a contradiction.

B.1.2 Proof of Theorem 4.2

Let 𝒜 be a graph neural network where the condition holds. Let 𝐺1, 𝐺2 be any graphs which

the WL test decides as non-isomorphic at iteration 𝐾. Because the graph-level readout

function is injective, i.e., it maps distinct multiset of node features into unique embeddings,

it sufficies to show that 𝒜’s neighborhood aggregation process, with sufficient iterations,

embeds 𝐺1 and 𝐺2 into different multisets of node features. Let us assume 𝒜 updates node

representations as

ℎ(𝑘)
𝑣 = 𝜑

(︁
ℎ(𝑘−1)

𝑣 , 𝑓
(︁{︁
ℎ(𝑘−1)

𝑢 : 𝑢 ∈ 𝒩 (𝑣)
}︁)︁)︁
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with injective funtions 𝑓 and 𝜑. The WL test applies a predetermined injective hash function

𝑔 to update the WL node labels 𝑙(𝑘)
𝑣 :

𝑙(𝑘)
𝑣 = 𝑔

(︁
𝑙(𝑘−1)
𝑣 ,

{︁
𝑙(𝑘−1)
𝑢 : 𝑢 ∈ 𝒩 (𝑣)

}︁)︁

We will show, by induction, that for any iteration 𝑘, there always exists an injective function

𝜙 such that ℎ(𝑘)
𝑣 = 𝜙

(︁
𝑙(𝑘)
𝑣

)︁
. This apparently holds for 𝑘 = 0 because the initial node features

are the same for WL and GNN 𝑙(0)
𝑣 = ℎ(0)

𝑣 for all 𝑣 ∈ 𝐺1, 𝐺2. So 𝜙 could be the identity

function for 𝑘 = 0. Suppose this holds for iteration 𝑘 − 1, we show that it also holds for 𝑘.

Substituting ℎ(𝑘−1)
𝑣 with 𝜙

(︁
𝑙(𝑘−1)
𝑣

)︁
gives us

ℎ(𝑘)
𝑣 = 𝜑

(︁
𝜙
(︁
𝑙(𝑘−1)
𝑣

)︁
, 𝑓
(︁{︁
𝜙
(︁
𝑙(𝑘−1)
𝑢

)︁
: 𝑢 ∈ 𝒩 (𝑣)

}︁)︁)︁
.

Since the composition of injective functions is injective, there exists some injective function

𝜓 so that

ℎ(𝑘)
𝑣 = 𝜓

(︁
𝑙(𝑘−1)
𝑣 ,

{︁
𝑙(𝑘−1)
𝑢 : 𝑢 ∈ 𝒩 (𝑣)

}︁)︁
Then we have

ℎ(𝑘)
𝑣 = 𝜓 ∘ 𝑔−1𝑔

(︁
𝑙(𝑘−1)
𝑣 ,

{︁
𝑙(𝑘−1)
𝑢 : 𝑢 ∈ 𝒩 (𝑣)

}︁)︁
= 𝜓 ∘ 𝑔−1

(︁
𝑙(𝑘)
𝑣

)︁

𝜙 = 𝜓 ∘ 𝑔−1 is injective because the composition of injective functions is injective. Hence

for any iteration 𝑘, there always exists an injective function 𝜙 such that ℎ(𝑘)
𝑣 = 𝜙

(︁
𝑙(𝑘)
𝑣

)︁
.

At the 𝐾-th iteration, the WL test decides that 𝐺1 and 𝐺2 are non-isomorphic, that is

the multisets
{︁
𝑙(𝐾)
𝑣

}︁
are different for 𝐺1 and 𝐺2. The graph neural network 𝒜’s node

embeddings
{︁
ℎ(𝐾)

𝑣

}︁
=
{︁
𝜙
(︁
𝑙(𝐾)
𝑣

)︁}︁
must also be different for 𝐺1 and 𝐺2 because of the

injectivity of 𝜙.

B.1.3 Proof of Lemma 4.3

Before proving our lemma, we first show a well-known result that we will later reduce our

problem to: N𝑘 is countable for every 𝑘 ∈ N, i.e. finite Cartesian product of countable sets
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is countable. We observe that it suffices to show N × N is countable, because the proof then

follows clearly from induction. To show N × N is countable, we construct a bijection 𝜑

from N × N to N as

𝜑 (𝑚,𝑛) = 2𝑚−1 · (2𝑛− 1)

Now we go back to proving our lemma. If we can show that the range of any function

𝑔 defined on multisets of bounded size from a countable set is also countable, then the

lemma holds for any 𝑔(𝑘) by induction. Thus, our goal is to show that the range of such 𝑔

is countable. First, it is clear that the mapping from 𝑔(𝑋) to 𝑋 is injective because 𝑔 is a

well-defined function. It follows that it suffices to show the set of all multisets 𝑋 ⊂ 𝒳 is

countable.

Since the union of two countable sets is countable, the following set 𝒳 ′ is also countable.

𝒳 ′ = 𝒳 ∪ {𝑒}

where 𝑒 is a dummy element that is not in 𝒳 . It follows from the result we showed

above, i.e., N𝑘 is countable for every 𝑘 ∈ N, that 𝒳 ′𝑘 is countable for every 𝑘 ∈ N. It

remains to show there exists an injective mapping from the set of multisets in 𝒳 to 𝒳 ′𝑘 for

some 𝑘 ∈ N.

We construct an injective mapping ℎ from the set of multisets 𝑋 ⊂ 𝒳 to 𝒳 ′𝑘 for some

𝑘 ∈ N as follows. Because 𝒳 is countable, there exists a mapping 𝑍 : 𝒳 → N from

𝑥 ∈ 𝒳 to natural numbers. We can sort the elements 𝑥 ∈ 𝑋 by 𝑧(𝑥) as 𝑥1, 𝑥2, ..., 𝑥𝑛, where

𝑛 = |𝑋|. Because the multisets 𝑋 are of bounded size, there exists 𝑘 ∈ N so that |𝑋| < 𝑘

for all 𝑋 . We can then define ℎ as

ℎ (𝑋) = (𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑒, 𝑒, 𝑒...) ,

where the 𝑘−𝑛 coordinates are filled with the dummy element 𝑒. It is clear that ℎ is injective

because for any multisets 𝑋 and 𝑌 of bounded size, ℎ(𝑋) = ℎ(𝑌 ) only if 𝑋 is equivalent

to 𝑌 . Hence it follows that the range of 𝑔 is countable as desired.
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B.1.4 Proof of Lemma 4.4

We first prove that there exists a mapping 𝑓 so that
∑︀

𝑥∈𝑋
𝑓(𝑥) is unique for each multiset 𝑋

of bounded size. Because 𝒳 is countable, there exists a mapping 𝑍 : 𝒳 → N from 𝑥 ∈ 𝒳 to

natural numbers. Because the cardinality of multisets 𝑋 is bounded, there exists a number

𝑁 ∈ N so that |𝑋| < 𝑁 for all 𝑋 . Then an example of such 𝑓 is 𝑓(𝑥) = 𝑁−𝑍(𝑥). This

𝑓 can be viewed as a more compressed form of an one-hot vector or 𝑁 -digit presentation.

Thus, ℎ(𝑋) = ∑︀
𝑥∈𝑋

𝑓(𝑥) is an injective function of multisets.

𝜑 (∑︀𝑥∈𝑋 𝑓(𝑥)) is permutation invariant so it is a well-defined multiset function. For any

multiset function 𝑔, we can construct such 𝜑 by letting 𝜑 (∑︀𝑥∈𝑋 𝑓(𝑥)) = 𝑔(𝑋). Note that

such 𝜑 is well-defined because ℎ(𝑋) = ∑︀
𝑥∈𝑋

𝑓(𝑥) is injective.

B.1.5 Proof of Corollary 4.5

Following the proof of Lemma 4.4, we consider 𝑓(𝑥) = 𝑁−𝑍(𝑥), where 𝑁 and 𝑍 : 𝒳 → N

are the same as defined in Appendix B.1.4. Let ℎ(𝑐,𝑋) ≡ (1 + 𝜖) · 𝑓(𝑐) + ∑︀
𝑥∈𝑋 𝑓(𝑥).

Our goal is show that for any (𝑐′, 𝑋 ′) ̸= (𝑐,𝑋) with 𝑐, 𝑐′ ∈ 𝒳 and 𝑋,𝑋 ′ ⊂ 𝒳 , ℎ(𝑐,𝑋) ̸=

ℎ(𝑐′, 𝑋 ′) holds, if 𝜖 is an irrational number. We prove by contradiction. For any (𝑐,𝑋),

suppose there exists (𝑐′, 𝑋 ′) such that (𝑐′, 𝑋 ′) ̸= (𝑐,𝑋) but ℎ(𝑐,𝑋) = ℎ(𝑐′, 𝑋 ′) holds.

Let us consider the following two cases: (1) 𝑐′ = 𝑐 but 𝑋 ′ ̸= 𝑋 , and (2) 𝑐′ ̸= 𝑐. For

the first case, ℎ(𝑐,𝑋) = ℎ(𝑐,𝑋 ′) implies
∑︀

𝑥∈𝑋 𝑓(𝑥) = ∑︀
𝑥∈𝑋′ 𝑓(𝑥). It follows from

Lemma 4.4 that the equality will not hold, because with 𝑓(𝑥) = 𝑁−𝑍(𝑥), 𝑋 ′ ̸= 𝑋 implies∑︀
𝑥∈𝑋 𝑓(𝑥) ̸= ∑︀

𝑥∈𝑋′ 𝑓(𝑥). Thus, we reach a contradiction. For the second case, we can

similarly rewrite ℎ(𝑐,𝑋) = ℎ(𝑐′, 𝑋 ′) as

𝜖 · (𝑓(𝑐) − 𝑓(𝑐′)) =
⎛⎝𝑓(𝑐′) +

∑︁
𝑥∈𝑋′

𝑓(𝑥)
⎞⎠−

(︃
𝑓(𝑐) +

∑︁
𝑥∈𝑋

𝑓(𝑥)
)︃
. (B.1)

Because 𝜖 is an irrational number and 𝑓(𝑐) − 𝑓(𝑐′) is a non-zero rational number, L.H.S. of

B.1 is irrational. On the other hand, R.H.S. of B.1, the sum of a finite number of rational

numbers, is rational. Hence the equality in B.1 cannot hold, and we have reached a

contradiction.
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For any function 𝑔 over the pairs (𝑐,𝑋), we can construct such 𝜙 for the desired

decomposition by letting 𝜙 ((1 + 𝜖) · 𝑓(𝑐) +∑︀
𝑥∈𝑋 𝑓(𝑥)) = 𝑔(𝑐,𝑋). Note that such 𝜙 is

well-defined because ℎ(𝑐,𝑋) = (1 + 𝜖) · 𝑓(𝑐) +∑︀
𝑥∈𝑋 𝑓(𝑥) is injective.

B.1.6 Proof of Lemma 4.6

Let us consider the example𝑋1 = {1, 1, 1, 1, 1} and𝑋2 = {2, 3}, i.e. two different multisets

of positive numbers that sum up to the same value. We will be using the homogeneity of

ReLU.

Let 𝑊 be an arbitrary linear transform that maps 𝑥 ∈ 𝑋1, 𝑋2 into R𝑛. It is clear

that, at the same coordinates, 𝑊𝑥 are either positive or negative for all 𝑥 because all 𝑥

in 𝑋1 and 𝑋2 are positive. It follows that ReLU(𝑊𝑥) are either positive or 0 at the same

coordinate for all 𝑥 in 𝑋1, 𝑋2. For the coordinates where ReLU(𝑊𝑥) are 0, we have∑︀
𝑥∈𝑋1 ReLU (𝑊𝑥) = ∑︀

𝑥∈𝑋2 ReLU (𝑊𝑥). For the coordinates where 𝑊𝑥 are positive,

linearity still holds. It follows from linearity that

∑︁
𝑥∈𝑋

ReLU (𝑊𝑥) = ReLU
(︃
𝑊

∑︁
𝑥∈𝑋

𝑥

)︃

where 𝑋 could be 𝑋1 or 𝑋2. Because
∑︀

𝑥∈𝑋1 𝑥 = ∑︀
𝑥∈𝑋2 𝑥, we have the following as

desired. ∑︁
𝑥∈𝑋1

ReLU (𝑊𝑥) =
∑︁

𝑥∈𝑋2

ReLU (𝑊𝑥)

B.1.7 Proof of Corollary 4.7

Suppose multisets 𝑋1 and 𝑋2 have the same distribution, without loss of generality, let us

assume 𝑋1 = (𝑆,𝑚) and 𝑋2 = (𝑆, 𝑘 ·𝑚) for some 𝑘 ∈ N≥1, i.e. 𝑋1 and 𝑋2 have the same

underlying set and the multiplicity of each element in 𝑋2 is 𝑘 times of that in 𝑋1. Then we

have |𝑋2| = 𝑘|𝑋1| and
∑︀

𝑥∈𝑋2 𝑓(𝑥) = 𝑘 ·∑︀𝑥∈𝑋1 𝑓(𝑥). Thus,

1
|𝑋2|

∑︁
𝑥∈𝑋2

𝑓(𝑥) = 1
𝑘 · |𝑋1|

· 𝑘 ·
∑︁

𝑥∈𝑋1

𝑓(𝑥) = 1
|𝑋1|

∑︁
𝑥∈𝑋1

𝑓(𝑥)

Now we show that there exists a function 𝑓 so that 1
|𝑋|
∑︀

𝑥∈𝑋 𝑓(𝑥) is unique for distribu-
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tionally equivalent 𝑋 . Because 𝒳 is countable, there exists a mapping 𝑍 : 𝒳 → N from

𝑥 ∈ 𝒳 to natural numbers. Because the cardinality of multisets 𝑋 is bounded, there exists a

number 𝑁 ∈ N so that |𝑋| < 𝑁 for all 𝑋 . Then an example of such 𝑓 is 𝑓(𝑥) = 𝑁−2𝑍(𝑥).

B.1.8 Proof of Corollary 4.8

Suppose multisets 𝑋1 and 𝑋2 have the same underlying set 𝑆, then we have

max
𝑥∈𝑋1

𝑓(𝑥) = max
𝑥∈𝑆

𝑓(𝑥) = max
𝑥∈𝑋2

𝑓(𝑥)

Now we show that there exists a mapping 𝑓 so that max𝑥∈𝑋 𝑓(𝑥) is unique for 𝑋s with the

same underlying set. Because 𝒳 is countable, there exists a mapping 𝑍 : 𝒳 → N from

𝑥 ∈ 𝒳 to natural numbers. Then an example of such 𝑓 : 𝒳 → R∞ is defined as 𝑓𝑖(𝑥) = 1

for 𝑖 = 𝑍(𝑥) and 𝑓𝑖(𝑥) = 0 otherwise, where 𝑓𝑖(𝑥) is the 𝑖-th coordinate of 𝑓(𝑥). Such an

𝑓 essentially maps a multiset to its one-hot embedding.

B.2 Details of datasets

We give detailed descriptions of datasets used in our experiments. Further details can be

found in [Yanardag and Vishwanathan, 2015].

Social networks datasets. IMDB-BINARY and IMDB-MULTI are movie collaboration

datasets. Each graph corresponds to an ego-network for each actor/actress, where nodes

correspond to actors/actresses and an edge is drawn betwen two actors/actresses if they

appear in the same movie. Each graph is derived from a pre-specified genre of movies, and

the task is to classify the genre graph it is derived from. REDDIT-BINARY and REDDIT-

MULTI5K are balanced datasets where each graph corresponds to an online discussion

thread and nodes correspond to users. An edge was drawn between two nodes if at least one

of them responded to another’s comment. The task is to classify each graph to a community

or a subreddit it belongs to. COLLAB is a scientific collaboration dataset, derived from 3

public collaboration datasets, namely, High Energy Physics, Condensed Matter Physics and
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Astro Physics. Each graph corresponds to an ego-network of different researchers from each

field. The task is to classify each graph to a field the corresponding researcher belongs to.

Bioinformatics datasets. MUTAG is a dataset of 188 mutagenic aromatic and heteroaro-

matic nitro compounds with 7 discrete labels. PROTEINS is a dataset where nodes are

secondary structure elements (SSEs) and there is an edge between two nodes if they are

neighbors in the amino-acid sequence or in 3D space. It has 3 discrete labels, representing

helix, sheet or turn. PTC is a dataset of 344 chemical compounds that reports the carcino-

genicity for male and female rats and it has 19 discrete labels. NCI1 is a dataset made

publicly available by the National Cancer Institute (NCI) and is a subset of balanced datasets

of chemical compounds screened for ability to suppress or inhibit the growth of a panel of

human tumor cell lines, having 37 discrete labels.
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Appendix C

Graph Neural Tangent Kernel

C.1 Proofs

C.1.1 Proof of Theorem 5.2

For two graph 𝐺 and 𝐺′, the GNTK kernel function that corresponds to the simple GNN

can be described as

Θ(𝐺,𝐺′) =
∑︁

𝑢∈𝑉,𝑢′∈𝑉 ′

(︁[︁
Σ(1)

(0)(𝐺,𝐺
′)
]︁

𝑢𝑢′

[︁
Σ̇(1)

(1)(𝐺,𝐺
′)
]︁

𝑢𝑢′
+
[︁
Σ(1)

(1)(𝐺,𝐺
′)
]︁

𝑢𝑢′

)︁
.

Here, we have

[︁
Σ(1)

(0)(𝐺,𝐺
′)
]︁

𝑢𝑢′
= 𝑐𝑢𝑐𝑢′

⎛⎝ ∑︁
𝑣∈𝒩 (𝑢)∪{𝑢}

vecℎ𝑣

⎞⎠⊤⎛⎝ ∑︁
𝑣′∈𝒩 (𝑢′)∪{𝑢′}

vecℎ𝑣′

⎞⎠ = vecℎ⊤
𝑢 vecℎ𝑢′ .

Recall that

[︁
Σ(ℓ)

(𝑟)(𝐺,𝐺
′)
]︁

𝑢𝑢′
=𝑐𝜎E(𝑎,𝑏)∼𝒩

(︁
vec 0,

[︁
𝐴

(ℓ)
(𝑟)(𝐺,𝐺′)

]︁
𝑢𝑢′

)︁ [𝜎 (𝑎)𝜎 (𝑏)] ,

[︁
Σ̇(ℓ)

(𝑟) (𝐺,𝐺′)
]︁

𝑢𝑢′
=𝑐𝜎E(𝑎,𝑏)∼𝒩

(︁
vec 0,

[︁
𝐴

(ℓ)
(𝑟)(𝐺,𝐺′)

]︁
𝑢𝑢′

)︁ [�̇�(𝑎)�̇�(𝑏)]
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and

[︁
𝐴

(ℓ)
(𝑟) (𝐺,𝐺′)

]︁
𝑢𝑢′

=

⎛⎜⎝
[︁
Σ(ℓ)

(𝑟−1)(𝐺,𝐺)
]︁

𝑢,𝑢

[︁
Σ(ℓ)

(𝑟−1)(𝐺,𝐺′)
]︁

𝑢𝑢′[︁
Σ(ℓ)

(𝑟−1)(𝐺′, 𝐺)
]︁

𝑢𝑢′

[︁
Σ(ℓ)

(𝑟−1)(𝐺′, 𝐺′)
]︁

𝑢′𝑢′

⎞⎟⎠ ∈ R2×2.

Since 𝜎(𝑧) = max{0, 𝑧} is the ReLU activation function, and �̇�(𝑧) = 1[𝑧 ≥ 0] is the

derivative of the ReLU activation function, and ‖vecℎ𝑢‖2 = 1 for all nodes 𝑢, by calculation,

we have

[︁
Σ̇(1)

(1)(𝐺,𝐺
′)
]︁

𝑢𝑢′
=
𝜋 − arccos

(︁[︁
Σ(1)

(0)(𝐺,𝐺′)
]︁

𝑢𝑢′

)︁
2𝜋 ,

[︁
Σ(1)

(1)(𝐺,𝐺
′)
]︁

𝑢𝑢′
=
𝜋 − arccos

(︁[︁
Σ(1)

(0)(𝐺,𝐺′)
]︁

𝑢𝑢′

)︁
+
√︂

1 −
[︁
Σ(1)

(0)(𝐺,𝐺′)
]︁2

𝑢𝑢′

2𝜋 .

Since

arcsin(𝑥) =
∞∑︁

𝑙=0

(2𝑙 − 1)!!
(2𝑙)!! · 𝑥

2𝑙+1

2𝑙 + 1 ,

we have

[︁
Σ(1)

(0)(𝐺,𝐺
′)
]︁

𝑢𝑢′

[︁
Σ̇(1)

(1)(𝐺,𝐺
′)
]︁

𝑢𝑢′
= 1

4
[︁
Σ(1)

(0)(𝐺,𝐺
′)
]︁

𝑢𝑢′
+ 1

2𝜋
[︁
Σ(1)

(0)(𝐺,𝐺
′)
]︁

𝑢𝑢′
arcsin

(︁[︁
Σ(1)

(0)(𝐺,𝐺
′)
]︁

𝑢𝑢′

)︁
= 1

4
[︁
Σ(1)

(0)(𝐺,𝐺
′)
]︁

𝑢𝑢′
+ 1

2𝜋

∞∑︁
𝑙=1

(2𝑙 − 3)!!
(2𝑙 − 2)!! · (2𝑙 − 1) ·

[︁
Σ(1)

(0)(𝐺,𝐺
′)
]︁2𝑙

𝑢𝑢′

= 1
4 vecℎ⊤

𝑢 vecℎ𝑢′ + 1
2𝜋

∞∑︁
𝑙=1

(2𝑙 − 3)!!
(2𝑙 − 2)!! · (2𝑙 − 1) ·

(︁
vecℎ⊤

𝑢 vecℎ𝑢′

)︁2𝑙
.

Let vec Φ(2𝑙)(·) be the feature map of the polynomial kernel of degree 2𝑙, i.e.,

𝑘(2𝑙)(vec𝑥, vec 𝑦) =
(︁
vec𝑥⊤ vec 𝑦

)︁2𝑙
= vec Φ(2𝑙)(vec𝑥)⊤ vec Φ(2𝑙)(vec 𝑦).
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We have

[︁
Σ(1)

(0)(𝐺,𝐺
′)
]︁

𝑢𝑢′

[︁
Σ̇(1)

(1)(𝐺,𝐺
′)
]︁

𝑢𝑢′

=1
4 vecℎ⊤

𝑢 vecℎ𝑢′ + 1
2𝜋

∞∑︁
𝑙=1

(2𝑙 − 3)!!
(2𝑙 − 2)!! · (2𝑙 − 1) ·

(︁
vec Φ(2𝑙)(vecℎ𝑢)

)︁⊤
vec Φ(2𝑙)(vecℎ𝑢′).

Let

Θ1(𝐺,𝐺′) =
∑︁

𝑢∈𝑉,𝑢′∈𝑉 ′

[︁
Σ(1)

(0)(𝐺,𝐺
′)
]︁

𝑢𝑢′

[︁
Σ̇(1)

(1)(𝐺,𝐺
′)
]︁

𝑢𝑢′
,

we have

Θ1(𝐺,𝐺′) =1
4

(︃∑︁
𝑢∈𝑉

vecℎ𝑢

)︃⊤
⎛⎝ ∑︁

𝑢′∈𝑉 ′
vecℎ𝑢′

⎞⎠
+ 1

2𝜋

∞∑︁
𝑙=1

(2𝑙 − 3)!!
(2𝑙 − 2)!! · (2𝑙 − 1) ·

(︃∑︁
𝑢∈𝑉

vec Φ(2𝑙)(vecℎ𝑢)
)︃⊤

⎛⎝ ∑︁
𝑢′∈𝑉 ′

vec Φ(2𝑙)(vecℎ𝑢′)
⎞⎠ .

Since Θ = Θ1 + Θ2 where Θ2 is a kernel matrix (and thus positive semi-definite), for

any 𝑦 ∈ R𝑛, we have

vec 𝑦⊤Θ−1 vec 𝑦 ≤ vec 𝑦⊤Θ−1
1 vec 𝑦.

Recall that

𝑦𝑖 = 𝛼1
∑︁
𝑢∈𝑉

(︁
vecℎ⊤

𝑢 vec 𝛽1
)︁

+
∞∑︁

𝑙=1
𝛼2𝑙

∑︁
𝑢∈𝑉

(︁
vecℎ⊤

𝑢 vec 𝛽2𝑙

)︁2𝑙
.

We rewrite

𝑦𝑖 = 𝑦
(0)
𝑖 +

∞∑︁
𝑙=1

𝑦
(2𝑙)
𝑖 ,

where

𝑦
(0)
𝑖 = 𝛼1

(︃∑︁
𝑢∈𝑉

vecℎ𝑢

)︃⊤

vec 𝛽1,
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and for each 𝑙 ≥ 1,

𝑦
(2𝑙)
𝑖 = 𝛼2𝑙

∑︁
𝑢∈𝑉

(︁
vecℎ⊤

𝑢 vec 𝛽2𝑙

)︁2𝑙

= 𝛼2𝑙

∑︁
𝑢∈𝑉

(︁
vec Φ2𝑙

(︁
vecℎ𝑢

)︁)︁⊤
vec Φ2𝑙 (vec 𝛽2𝑙)

= 𝛼2𝑙

(︃∑︁
𝑢∈𝑉

vec Φ2𝑙
(︁
vecℎ𝑢

)︁)︃⊤

vec Φ2𝑙 (vec 𝛽2𝑙) .

We have

vec 𝑦 = vec 𝑦(0) +
∞∑︁

𝑙=1
vec 𝑦(2𝑙).

Thus,

√︁
vec 𝑦⊤Θ−1 vec 𝑦 ≤

√︁
vec 𝑦⊤Θ−1

1 vec 𝑦

≤
√︁

(vec 𝑦(0))⊤ Θ−1
1 vec 𝑦(0) +

∞∑︁
𝑙=1

√︁
(vec 𝑦(2𝑙))⊤ Θ−1

1 vec 𝑦(2𝑙).

When 𝑙 = 0, we have

√︁
(vec 𝑦0)⊤ Θ−1

1 vec 𝑦0 ≤ 2|𝛼1|‖ vec 𝛽1‖2.

When 𝑙 ≥ 1, we have

√︁
(vec 𝑦2𝑙)⊤ Θ−1

1 vec 𝑦2𝑙 ≤
√

2𝜋(2𝑙 − 1)|𝛼2𝑙|
⃦⃦⃦
vec Φ2𝑙 (vec 𝛽2𝑙)

⃦⃦⃦
2
.

Notice that

⃦⃦⃦
vec Φ2𝑙 (vec 𝛽2𝑙)

⃦⃦⃦2

2
=
(︁
vec Φ2𝑙 (vec 𝛽2𝑙)

)︁⊤
vec Φ2𝑙 (vec 𝛽2𝑙) = ‖vec 𝛽2𝑙‖4𝑙

2 .

Thus,

√︁
vec 𝑦⊤Θ−1 vec 𝑦 ≤ 2|𝛼1|‖ vec 𝛽1‖2 +

∞∑︁
𝑙=1

√
2𝜋(2𝑙 − 1)|𝛼2𝑙|‖ vec 𝛽2𝑙‖2𝑙

2 .
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C.1.2 Proof of Theorem 5.3

Recall that

Θ(𝐺,𝐺′) =
∑︁

𝑢∈𝑉,𝑢′∈𝑉 ′

(︁[︁
Σ(1)

(0)(𝐺,𝐺
′)
]︁

𝑢𝑢′

[︁
Σ̇(1)

(1)(𝐺,𝐺
′)
]︁

𝑢𝑢′
+
[︁
Σ(1)

(1)(𝐺,𝐺
′)
]︁

𝑢𝑢′

)︁
,

where

[︁
Σ(1)

(0)(𝐺,𝐺
′)
]︁

𝑢𝑢′
= 𝑐𝑢𝑐𝑢′

⎛⎝ ∑︁
𝑣∈𝒩 (𝑢)∪{𝑢}

vecℎ𝑣

⎞⎠⊤⎛⎝ ∑︁
𝑣′∈𝒩 (𝑢′)∪{𝑢′}

vecℎ𝑣′

⎞⎠ = vecℎ⊤
𝑢 vecℎ𝑢′

and

[︁
Σ̇(1)

(1)(𝐺,𝐺
′)
]︁

𝑢𝑢′
=
𝜋 − arccos

(︁[︁
Σ(1)

(0)(𝐺,𝐺′)
]︁

𝑢𝑢′

)︁
2𝜋 ,

[︁
Σ(1)

(1)(𝐺,𝐺
′)
]︁

𝑢𝑢′
=
𝜋 − arccos

(︁[︁
Σ(1)

(0)(𝐺,𝐺′)
]︁

𝑢𝑢′

)︁
+
√︂

1 −
[︁
Σ(1)

(0)(𝐺,𝐺′)
]︁2

𝑢𝑢′

2𝜋 .

Since for each node 𝑢, vecℎ𝑢 = 𝑐𝑢
∑︀

𝑣∈𝒩 (𝑢)∪{𝑢} vecℎ𝑣, and 𝑐𝑢 =
(︁⃦⃦⃦∑︀

𝑣∈𝒩 (𝑢)∪{𝑢} vecℎ𝑣

⃦⃦⃦
2

)︁−1
,

we have ‖ vecℎ𝑢‖2 = 1. Moreover,

[︁
Σ̇(1)

(1)(𝐺,𝐺
′)
]︁

𝑢𝑢′
=
𝜋 − arccos

(︁[︁
Σ(1)

(0)(𝐺,𝐺′)
]︁

𝑢𝑢′

)︁
2𝜋 ≤ 1/2

and

[︁
Σ(1)

(1)(𝐺,𝐺
′)
]︁

𝑢𝑢′
=
𝜋 − arccos

(︁[︁
Σ(1)

(0)(𝐺,𝐺′)
]︁

𝑢𝑢′

)︁
+
√︂

1 −
[︁
Σ(1)

(0)(𝐺,𝐺′)
]︁2

𝑢𝑢′

2𝜋 ≤ 1 + 𝜋

2𝜋 ≤ 1,

we have

Θ(𝐺,𝐺′) ≤ 2|𝑉 ||𝑉 ′|.

Thus,

tr(Θ) ≤ 2𝑛𝑉 2
.
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C.2 Experimental Setup

To calculate the expectation of the post-activation output, i.e., (5.5) and (5.6), we use the

same approach as in Arora et al. [2019c] (cf. Section 4.3 in Arora et al. [2019c]).

For GNTKs, we tune the following hyperparameters.

1. The number of BLOCK operations. We search from candidate values {1, 2, . . . , 14}.

2. The number of fully-connected layers in each BLOCK operation. We search from

candidate values {1, 2, 3}.

3. The parameter 𝑐𝑢. We search from candidate values
{︁
1, 1

|𝒩 (𝑢)|+1

}︁
.

To utilize the GNTKs we compute to perform graph classification, we test with kernel regres-

sion and 𝐶-SVM as the final classifier. In our experiments, the regularization parameter 𝐶

in 𝐶-SVM is determined using grid search from 120 values evenly chosen from [10−2, 104],

in log scale.

We would like to remark that GNTK has strictly smaller number of hyper-parameters

than GNN since we do not need to tune the learning rate, momentum, weight decay, batch

size and the width of the MLP layers for GNTK. Furthermore, we find on bioinformatics

datasets, we get consistently good results by setting the number of BLOCK operations to be

10, the number of MLP layers to be 1 and 𝑐𝑢 to be 1/|𝒩 (𝑢)|. We get 75.3% accuracy on

PROTEINS, 67.9% on PTC, and 83.6% on NCI1. For social network datasets, by setting

the number of BLOCK operations to be 2, the number of MLP layers to be 2 and 𝑐𝑢 to be 1,

we get 76.7% accuracy on IMDB-B, 52.8% on IMDB-M, and 83.3% on COLLAB.
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Appendix D

What Can Neural Networks Reason

About

D.1 Proofs

D.1.1 Proof of Proposition 6.1

We proceed the proof of the universal approximation of GNNs on complete graphs, i.e.,

sets, by showing that GNNs are at least as power as Deep Sets. We then apply the universal

approximation of Deep Sets for permutation invariant continuous functions.

We show any Deep Sets can be expressed by some GNN with one message passing

iteration. The computation structure of one-layer GNNs is shown below.

ℎ𝑠 =
∑︁
𝑡∈𝑆

𝜑 (𝑋𝑠, 𝑋𝑡) , ℎ𝑆 = 𝑔

(︃∑︁
𝑠∈𝑆

ℎ𝑠

)︃
, (D.1)

where 𝜑 and 𝑔 are parameterized by MLPs. If 𝜑 is a function that ignores 𝑋𝑡 so that

𝜑 (𝑋𝑠, 𝑋𝑡) = 𝜌(𝑋𝑠) for some 𝜌, e.g., by letting part of the weight matricies in 𝜑 be 0, then

we essentially get a Deep Sets in the following form.

ℎ𝑠 = 𝜌 (𝑋𝑠) , ℎ𝑆 = 𝑔

(︃∑︁
𝑠∈𝑆

ℎ𝑠

)︃
. (D.2)
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For any such 𝜌, we can get the corresponding 𝜑 via the construction above. Hence for any

Deep Sets, we can express it with an one-layer GNN. The same result applies to GNNs with

multiple layers (message passing iterations), because we can express a function 𝜌(𝑋𝑠) by the

composition of multiple 𝜌(𝑘)’s, which we can express with a GNN layer via our construction

above. It then follows that GNNs are universal approximators for permutation invariant

continuous functions by the following fact.

Zaheer et al. [2017] prove the universal approximation of Deep Sets under the restriction

that the set size is fixed and the hidden dimension is equal to the set size plus one. Wagstaff

et al. [2019] extend the universal approximation result for Deep Sets by showing that the set

size does not have to be fixed and the hidden dimension is only required to be at least as

large as the set size. The results for our purposes can be summarized as follows. Assume

the elements are from a compact set in R𝑑. Any continuous function on a set 𝑆 of size

bounded by 𝑁 , i.e., 𝑓 : R𝑑×𝑁 → R, that is permutation invariant to the elements in 𝑆 can

be approximated arbitrarily close by some Deep Sets model with sufficiently large width

and output dimension for its MLPs.

D.1.2 Proof of Proposition 6.2

For any GNN 𝒩 , we construct an MLP that is able to do the exact same computation as 𝒩 .

It will then follow that the MLP can represent any function 𝒩 can represent. Suppose the

computation structure of 𝒩 is the following.

ℎ(𝑘)
𝑠 =

∑︁
𝑡∈𝑆

𝑓 (𝑘)
(︁
ℎ(𝑘−1)

𝑠 , ℎ
(𝑘−1)
𝑡

)︁
, ℎ𝑆 = 𝑔

(︃∑︁
𝑠∈𝑆

ℎ(𝐾)
𝑠

)︃
, (D.3)

where 𝑓 and 𝑔 are parameterized by MLPs. Suppose the set size is bounded by 𝑀 (the

expressive power of GNNs also depend on 𝑀 Wagstaff et al. [2019]). We first show the

result for a fixed size input, i.e., MLPs can simulate GNNs if the input set has a fixed size,

and then apply an ensemble approach to deal with variable sized input.

Let the input to the MLP be a vector concatenated by ℎ(0)
𝑠 ’s, in some arbitrary ordering.

For each message passing iteration of 𝒩 , any 𝑓 (𝑘) can be represented by an MLP. Thus, for

each pair of (ℎ(𝑘−1)
𝑡 , ℎ(𝑘−1)

𝑠 ), we can set weights in the MLP so that the the concatenation of
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all 𝑓(ℎ(𝑘−1)
𝑡 , ℎ(𝑘−1)

𝑠 ) become the hidden vector after some layers of the MLP. With the vector

of 𝑓(ℎ(𝑘−1)
𝑡 , ℎ(𝑘−1)

𝑠 ) as input, in the next few layers of the MLP we can construct weights

so that we have the concatenation of ℎ(𝑘)
𝑠 = ∑︀

𝑡∈𝑆 𝑓
(𝑘)
(︁
ℎ(𝑘−1)

𝑠 , ℎ
(𝑘−1)
𝑡

)︁
as the result of the

hidden dimension, because we can encode summation with weights in MLPs. So far, we

can simulate an iteration of GNN 𝒩 with layers of MLP. We can repeat the process for 𝐾

times by stacking the similar layers. Finally, with a concatenation of ℎ(𝐾)
𝑠 as our hidden

dimension in the MLP, similarly, we can simulate ℎ𝑆 = 𝑔
(︁∑︀

𝑠∈𝑆 ℎ
(𝐾)
𝑠

)︁
with layers of MLP.

Stacking all layers together, we have obtained an MLP that can simulate 𝒩 .

To deal with variable sized inputs, we construct 𝑀 MLPs that can simulate the GNN

for each input set size 1, ...,𝑀 . Then we construct a meta-layer, whose weights represent

(universally approximate) the summation of the output of𝑀 MLPs multiplied by an indicator

function of whether each MLPs has the same size as the set input (these need to be input

information). The meta layer weights on top can then essentially select the output from of

MLP that has the same size as the set input and then exactly simulate the GNN. Note that the

MLP we construct here has the requirement for how we input the data and the information

of set sizes etc. In practice, we can have 𝑀 MLPs and decide which MLP to use depending

on the input set size.

D.1.3 Proof of Theorem 6.3

Theorem 6.3 is a generalization of Theorem 6.1 in [Arora et al., 2019b], which addresses

the scalar case. See [Arora et al., 2019b] for a complete list of assumptions.

Theorem D.1. [Arora et al., 2019b] Suppose we have 𝑔 : R𝑑 → R, 𝑔(𝑥) = ∑︀
𝑗 𝛼𝑗

(︁
𝛽⊤

𝑗 𝑥
)︁𝑝𝑗

,

where 𝛽𝑗 ∈ R𝑑, 𝛼 ∈ R, and 𝑝𝑗 = 1 or 𝑝𝑗 = 2𝑙 (𝑙 ∈ N+). Let 𝒜 be an overparameterized

two-layer MLP that is randomly initialized and trained with gradient descent for a sufficient

number of iterations. The sample complexity 𝒞𝒜(𝑔, 𝜖, 𝛿) is 𝑂
(︂∑︀

𝑗
𝑝𝑗 |𝛼𝑗 |·‖𝛽𝑗‖

𝑝𝑗
2 +log(1/𝛿)

𝜖2

)︂
.

To extend the sample complexity bound to vector-valued functions, we view each

entry/component of the output vector as an independent scalar-valued output. We can then

apply a union bound to bound the error rate and failure probability for the output vector, and

thus, bound the overall sample complexity.
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Let 𝜖 and 𝛿 be the given error rate and failure probability. Moreover, suppose we choose

some error rate 𝜖0 and failure probability 𝛿0 for the output/function of each entry. Applying

Theorem D.1 to each component

𝑔(𝑥)(𝑖) =
∑︁

𝑗

𝛼
(𝑖)
𝑗

(︁
𝛽

(𝑖)⊤
𝑗 𝑥

)︁𝑝
(𝑖)
𝑗 =: 𝑔𝑖(𝑥) (D.4)

yields a sample complexity bound of

𝒞𝒜(𝑔𝑖, 𝜖0, 𝛿0) = 𝑂

⎛⎜⎝∑︀𝑗 𝑝
(𝑖)
𝑗 |𝛼(𝑖)

𝑗 | · ‖𝛽(𝑖)
𝑗 ‖𝑝

(𝑖)
𝑗

2 + log (1/𝛿0)
𝜖2

0

⎞⎟⎠ (D.5)

for each 𝑔𝑖(𝑥). Now let us bound the overall error rate and failure probability given 𝜖0 and

𝛿0 for each entry. The probability that we fail to learn each of the 𝑔𝑖 is at most 𝛿0. Hence, by

a union bound, the probability that we fail to learn any of the 𝑔𝑖 is at most 𝑚 · 𝛿0. Thus, with

probability at least 1 − 𝑚𝛿0, we successfully learn all 𝑔𝑖 for 𝑖 = 1, ...,𝑚, so the error for

every entry is bounded by 𝜖0. The error for the vector output is then at most
∑︀𝑚

𝑖=1 𝜖0 = 𝑚𝜖0.

Setting 𝑚𝛿0 = 𝛿 and 𝑚𝜖0 = 𝜖 gives us 𝛿0 = 𝛿
𝑚

and 𝜖0 = 𝜖
𝑚

. Thus, if we can successfully

learn the function for each output entry independently with error 𝜖/𝑚 and failure rate 𝛿/𝑚,

we can successfully learn the entire vector-valued function with rate 𝜖 and 𝛿. This yields the

following overall sample complexity bound:

𝒞𝒜(𝑔, 𝜖, 𝛿) = 𝑂

⎛⎜⎝max𝑖
∑︀

𝑗 𝑝
(𝑖)
𝑗 |𝛼(𝑖)

𝑗 | · ‖𝛽(𝑖)
𝑗 ‖𝑝

(𝑖)
𝑗

2 + log (𝑚/𝛿)
(𝜖/𝑚)2

⎞⎟⎠ (D.6)

Regarding 𝑚 as a constant, we can further simplify the sample complexity to

𝒞𝒜(𝑔, 𝜖, 𝛿) = 𝑂

⎛⎜⎝max𝑖
∑︀

𝑗 𝑝
(𝑖)
𝑗 |𝛼(𝑖)

𝑗 | · ‖𝛽(𝑖)
𝑗 ‖𝑝

(𝑖)
𝑗

2 + log (1/𝛿)
𝜖2

⎞⎟⎠ . (D.7)

D.1.4 Proof of Theorem 6.4

We will show the learnability result by an inductive argument. Specifically, we will show

that under our setting and assumptions, the error between the learned function and correct
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function on the test set will not blow up after the transform of another learned function

𝑓𝑗 , assuming learnability on previous 𝑓1, ..., 𝑓𝑗−1 by induction. Thus, we can essentially

provably learn at all layers/iterations and eventually learn 𝑔.

Suppose we have performed the sequential learning. Let us consider what happens at

the test time. Let 𝑓𝑗 be the correct functions as defined in the algorithmic alignment. Let 𝑓𝑗

be the functions learned by algorithm 𝒜𝑗 and MLP 𝒩𝑗 . We have input 𝑆 ∼ 𝒟, and our goal

is to bound ‖𝑔(𝑆) − 𝑔(𝑆)‖ with high probability. To show this, we bound the error of the

intermediate representation vectors, i.e., the output of 𝑓𝑗 and 𝑓𝑗 , and thus, the input to 𝑓𝑗+1

and 𝑓𝑗+1.

Let us first consider what happens for the first module 𝒩1. 𝑓1 and 𝑓1 have the same input

distribution 𝑥 ∼ 𝒟, where 𝑥 are obtained from 𝑆, e.g., the pairwise object representations

as in Eqn. 6.2. Hence, by the learnability assumption on 𝒜1, ‖𝑓1(𝑥) − 𝑓1(𝑥)‖ < 𝜖 with

probability at least 1 − 𝛿. The error for the input of 𝒩2 is then 𝑂(𝜖) with failure probability

𝑂(𝛿), because there are a constant number of terms of aggregation of 𝑓1’s output, and we

can apply union bound to upper bound the failure probability.

Next, we proceed by induction. Let us fix a 𝑘. Let 𝑧 denote the input for 𝑓𝑘, which are

generated by the previous 𝑓𝑗’s, and let 𝑧 denote the input for 𝑓𝑘, which are generated by

the previous 𝑓𝑗’s. Assume ‖𝑧 − 𝑧‖ ≤ 𝑂(𝜖) with failure probability at most 𝑂(𝛿). We aim

to show that this holds for 𝑘 + 1. For the simplicity of notation, let 𝑓 denote the correct

function 𝑓𝑘 and let 𝑓 denote the learned function 𝑓𝑘. Since there are a constant number of

terms for aggregation, our goal is then to bound ‖𝑓(𝑧) − 𝑓(𝑧)‖. By triangle inequality, we

have

‖𝑓(𝑧) − 𝑓(𝑧)‖ = ‖𝑓(𝑧) − 𝑓(𝑧) + 𝑓(𝑧) − 𝑓(𝑧)‖ (D.8)

≤ ‖𝑓(𝑧) − 𝑓(𝑧)‖ + ‖𝑓(𝑧) − 𝑓(𝑧)‖ (D.9)

We can bound the first term with the Lipschitzness assumption of 𝑓 as the following.

‖𝑓(𝑧) − 𝑓(𝑧)‖ ≤ 𝐿1‖𝑧 − 𝑧‖ (D.10)
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To bound the second term, our key insight is that 𝑓 is a learnale correct function, so by the

learnability coefficients in algorithmic alignment, it is close to the function 𝑓 learned by the

learning algorithm 𝒜 on the correct samples, i.e., 𝑓 is close to 𝑓 = 𝒜 ({𝑧𝑖, 𝑦𝑖}). Moreover,

𝑓 is generated by the learning algorithm 𝒜 on the perturbed samples, i.e., 𝑓 = 𝒜 ({𝑧𝑖, 𝑦𝑖}).

By the algorithm stability assumption, 𝑓 and 𝑓 should be close if the input samples are only

slightly perturbed. It then follows that

‖𝑓(𝑧) − 𝑓(𝑧)‖ = ‖𝑓(𝑧) − 𝑓(𝑧) + 𝑓(𝑧) − 𝑓(𝑧)‖ (D.11)

≤ ‖𝑓(𝑧) − 𝑓(𝑧)‖ + ‖𝑓(𝑧) − 𝑓(𝑧)‖ (D.12)

≤ 𝐿0 max
𝑖

‖𝑧𝑖 − 𝑧𝑖‖ + 𝜖 w.p. ≥ 1 − 𝛿 (D.13)

where 𝑧𝑖 and 𝑧𝑖 are the training samples at the same layer 𝑘. Here, we apply the same

induction condition as what we had for 𝑧 and 𝑧: ‖𝑧𝑖 − 𝑧𝑖‖ ≤ 𝑂(𝜖) with failure probability

at most 𝑂(𝛿). We can then apply union bound to bound the probability of any bad event

happening. Here, we have 3 bad events each happening with probability at most 𝑂(𝛿). Thus,

with probability at least 1 −𝑂(𝛿), we have

‖𝑓(𝑧) − 𝑓(𝑧)‖ ≤ 𝐿1𝑂(𝜖) + 𝐿0𝑂(𝜖) + 𝜖 = 𝑂(𝜖) (D.14)

This completes the proof.

D.1.5 Proof of Corollary 6.5

Our main insight is that a giant MLP learns the same function (𝑋𝑖 − 𝑋𝑗)2 for ℓ2 times

and encode them in the weights. This leads to the 𝑂(ℓ2) extra sample complexity through

Theorem 6.3, because the number of polynomial terms (𝑋𝑖 −𝑋𝑗)2 is of order ℓ2.

First of all, the function 𝑓(𝑥, 𝑦) = (𝑥−𝑦)2 can be expressed as the following polynomial.

(𝑥− 𝑦)2 =
(︁
[1 − 1]⊤ [𝑥 𝑦]

)︁2
(D.15)

We have 𝛽 = [1 − 1], so 𝑝 · ‖𝛽‖𝑝 = 4. Hence, by Theorem 6.3, it takes 𝑂( log(1/𝛿)
𝜖2 ) samples
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for an MLP to learn 𝑓(𝑥, 𝑦) = (𝑥− 𝑦)2. Under the sequential training setting, an one-layer

GNN applies an MLP to learn 𝑓 , and then sums up the outcome of 𝑓(𝑋𝑖, 𝑋𝑗) for all pairs

𝑋𝑖, 𝑋𝑗 . Here, we essentially get the aggregation error 𝑂(ℓ2 · 𝜖) from ℓ2 pairs. However,

we will see that applying an MLP to learn 𝑔 will also incur the same aggregation error.

Hence, we do not need to consider the aggregation error effect when we compare the sample

complexities.

Now we consider using MLP to learn the function 𝑔. No matter in what order the objects

𝑋𝑖 are concatenated, we can express 𝑔 with the sum of polynomials as the following.

𝑔(𝑆) =
∑︁
𝑖𝑗

(𝛽⊤
𝑖𝑗 [𝑋1, ..., 𝑋𝑛])2, (D.16)

where 𝛽𝑖𝑗 has 1 at the 𝑖-th entry, −1 at the 𝑗-th entry and 0 elsewhere. Hence ‖𝛽𝑖𝑗‖𝑝 · 𝑝 = 4.

It then follows from Theorem 6.3 and union bound that it takes 𝑂((ℓ2 + log(1/𝛿))/𝜖2) to

learn 𝑔, where 𝜖 = ℓ2𝜖 and 𝛿 = ℓ2𝛿. Here, as we have discussed above, the same aggregation

error 𝜖 occurs in the aggregation process of 𝑓 , so we can simply consider 𝜖 for both. Thus,

comparing 𝑂(log(1/𝛿)/𝜖2) and 𝑂((ℓ2 + log(1/𝛿))/𝜖2) gives us the 𝑂(ℓ2) difference.

D.1.6 Proof of Claim 6.6

We prove the claim by contradiction. Suppose there exists 𝑓 such that 𝑓(𝑥)+𝑓(𝑦) = 𝑔(𝑥, 𝑦)

for any 𝑥 and 𝑦. This implies that for any 𝑥, we have 𝑓(𝑥) + 𝑓(𝑥) = 𝑔(𝑥, 𝑥) = 0. It

follows that 𝑓(𝑥) = 0 for any 𝑥. Now consider some 𝑥 and 𝑦 so that 𝑥 ̸= 𝑦. We must have

𝑓(𝑥) + 𝑓(𝑦) = 0 + 0 = 0. However, 𝑔(𝑥, 𝑦) ̸= 0 because 𝑥 ̸= 𝑦. Hence, there exists 𝑥 and

𝑦 so that 𝑓(𝑥) + 𝑓(𝑦) ̸= 𝑔(𝑥, 𝑦). We have reached a contradiction.

D.2 Experimental Details

D.2.1 Fantastic Treasure: Maximum Value Difference

Dataset generation. In the dataset, we sample 50, 000 training data, 5, 000 validation

data, and 5, 000 test data. For each model, we report the test accuracy with the hyperparam-
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eter setting that achieves the best validation accuracy. In each training sample, the input uni-

verse consists of 25 treasures 𝑋1, ..., 𝑋25. For each treasure 𝑋𝑖, we have 𝑋𝑖 = [ℎ1, ℎ2, ℎ3],

where the location ℎ1 is sampled uniformly from [0..20]8, the value ℎ2 is sample uniformly

form [0..100], and the color ℎ3 is sampled uniformly from [1..6]. The task is to answer what

the difference is in value between the most and least valuable treasure. We generate the

answer label 𝑦 for a universe 𝑆 as follows: we find the the maximum difference in value

among all treasures and set it to 𝑦. Then we make the label 𝑦 into one-hot encoding with

100 + 1 = 101 classes.

Hyperparameter setting. We train all models with the Adam optimizer, with learning

rate from 1𝑒− 3, 5𝑒− 4, and 1𝑒− 4, and we decay the learning rate by 0.5 every 50 steps.

We use cross-entropy loss. We train all models for 150 epochs. We tune batch size of 128

and 64.

For GNNs and HRN, we choose the hidden dimension of MLP modules from 128 and

256. For DeepSet and MLP, we choose the hidden dimension of MLP modules from 128,

256, 2500, 5000. For the MLP and DeepSet model, we choose the number of of hidden

layers for MLP moduels from 4 and 8, 16. For GNN and HRN, we set the number of hidden

layers of the MLP modules to 3, 4. Moreover, dropout with rate 0.5 is applied before the

last two hidden layers of MLP1, i.e., the last MLP module in all models.

D.2.2 Fantastic Treasure: Furthest Pair

Dataset generation. In the dataset, we sample 60, 000 training data, 6, 000 validation

data, and 6, 000 test data. For each model, we report the test accuracy with the hyperparam-

eter setting that achieves the best validation accuracy. In each training sample, the input uni-

verse consists of 25 treasures 𝑋1, ..., 𝑋25. For each treasure 𝑋𝑖, we have 𝑋𝑖 = [ℎ1, ℎ2, ℎ3],

where the location ℎ1 is sampled uniformly from [0..20]8, the value ℎ2 is sample uniformly

form [0..100], and the color ℎ3 is sampled uniformly from [1..6]. The task is to answer what

are the colors of the two treasure that are the most distant from each other. We generate the an-

swer label 𝑦 for a universe 𝑆 as follows: we find the pair of treasures that are the most distant

from each other, say (𝑋𝑖, 𝑋𝑗). Then we order the pair (ℎ3(𝑋𝑖), ℎ3(𝑋𝑗)) to obtain an ordered
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pair (𝑎, 𝑏) with 𝑎 ≤ 𝑏 (aka. 𝑎 = min{ℎ3(𝑋𝑖), ℎ3(𝑋𝑗)} and (𝑏 = max{ℎ3(𝑋𝑖), ℎ3(𝑋𝑗)}),

where ℎ3(𝑋𝑖) denotes the color of 𝑋𝑖. Then we compute the label 𝑦 from (𝑎, 𝑏) by counting

how many valid pairs of colors are smaller than (𝑎, 𝑏) (a pair (𝑘, 𝑙) is smaller than (𝑎, 𝑏) iff

i). 𝑘 < 𝑎 or ii). 𝑘 = 𝑎 and 𝑙 < 𝑏). The label 𝑦 is one-hot encoding of the minimum cost with

6 × (6 − 1)/2 + 6 = 21 classes.

Hyperparameter setting. We train all models with the Adam optimizer, with learning

rate from 1𝑒− 3, 5𝑒− 4, and 1𝑒− 4, and we decay the learning rate by 0.5 every 50 steps.

We use cross-entropy loss. We train all models for 150 epochs. We tune batch size of 128

and 64.

For the MLP and DeepSet model, we choose the number of of hidden layers of MLP

modules from 4 and 8, 16. For GNN and HRN models, we set the number of hidden layers

of the MLP modules from 3 and 4. For DeepSet and MLP models, we choose the hidden

dimension of MLP modules from 128, 256, 2500, 5000. For GNNs and HRN, we choose the

hidden dimension of MLP modules from 128 and 256. Moreover, dropout with rate 0.5 is

applied before the last two hidden layers of MLP1, i.e., the last MLP module in all models.

D.2.3 Monster Trainer

Task description. We are a monster trainer who lives in a world 𝑆 with 10 monsters. Each

monster 𝑋 = [ℎ1, ℎ2] has a location ℎ1 ∈ [0..10]2 and a unique combat level ℎ2 ∈ [1..10].

In each game, the trainer starts at a random location with level zero, 𝑋trainer = [𝑝0, 0], and

receives a quest to defeat the level-𝑘 monster. At each time step, the trainer can challenge

any more powerful monster 𝑋 , with a cost equal to the product of the travel distance

and the level difference 𝑐(𝑋trainer, 𝑋) = ‖ℎ1(𝑋trainer) − ℎ1(𝑋)‖ℓ1 × (ℎ2(𝑋) − ℎ2(𝑋trainer)).

After defeating monster 𝑋 , the trainer’s level upgrades to ℎ2(𝑋), and the trainer moves

to ℎ1(𝑋). We ask the minimum cost of completing the quest, i.e., defeating the level-𝑘

monster. The range of cost (number of classes for prediction) is 200. To make games even

more challenging, we sample games whose optimal solution involves defeating three to

seven non-quest monsters.

A DP algorithm for shortest paths that needs half of the iterations of Bellman-
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Ford. We provide a DP algorithm as the following. To compute a shortest-path from a

source object 𝑠 to a target object 𝑡 with at most seven stops, we run the following updates

for four iterations:

distance𝑠[1][𝑢] = cost(𝑠, 𝑢), distance𝑠[𝑘][𝑢] = min𝑣

{︁
distance𝑠[𝑘 − 1][𝑣] + cost(𝑣, 𝑢)

}︁
,

(D.17)

distance𝑡[1][𝑢] = cost(𝑢, 𝑡), distance𝑡[𝑘][𝑢] = min𝑣

{︁
distance𝑡[𝑘 − 1][𝑣] + cost(𝑢, 𝑣)

}︁
.

(D.18)

Update Eqn. D.17 is identical to the Bellman-Ford algorithm Eqn. 6.6, and distance𝑠[𝑘][𝑢]

is the shortest distance from 𝑠 to 𝑢 with at most 𝑘 stops. Update Eqn. D.18 is a reverse

Bellman-Ford algorithm, and distance𝑡[𝑘][𝑢] is the shortest distance from 𝑢 to 𝑡 with at most

𝑘 stops. After running Eqn. D.17 and Eqn. D.18 for 𝑘 iterations, we can compute a shortest

path with at most 2𝑘 stops by enumerating a mid-point and aggregating the results of the

two Bellman-Ford algorithms:

min𝑢

{︁
distance𝑠[𝑘][𝑢] + distance𝑡[𝑘][𝑢]

}︁
. (D.19)

Thus, this algorithm needs half of the iterations of Bellman-Ford.

Dataset generation. In the dataset, we sample 200, 000 training data, 6, 000 validation

data, and 6, 000 test data. For each model, we report the test accuracy with the hyperpa-

rameter setting that achieves the best validation accuracy. In each training sample, the

input universe consists of the trainer and 10 monsters 𝑋0, ..., 𝑋10, and the request level

𝑘, i.e., we need to challenge monster 𝑘. We have 𝑋𝑖 = [ℎ1, ℎ2], where ℎ1 = 𝑖 indicates

the combat level, and the location ℎ2 ∈ [0..10]2 is sampled uniformly from [0..10]2. We

generate the answer label 𝑦 for a universe 𝑆 as follows. We implement a shortest path

algorithm to compute the minimum cost from the trainer to monster 𝑘, where the cost is

defined in task description. Then the label 𝑦 is a one-hot encoding of minimum cost with

200 classes. Moreover, when we sample the data, we apply rejection sampling to ensure that

the minimum cost’s shortest path is of length 3, 4, 5, 6, 7 with equal probability. That is, we
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eliminate the trivial questions.

Hyperparameter setting. We train all models with the Adam optimizer, with learning

rate from 2𝑒− 4 and 5𝑒− 4, and we decay the learning rate by 0.5 every 50 steps. We use

cross-entropy loss. We train all models for 300 epochs. We tune batch size of 128 and 64.

For the MLP model, we choose the number of layers from 4 and 8, 16. For other models,

we choose the number of hidden layers of MLP modules from 3 and 4. For GNN models,

we choose the hidden dimension of MLP modules from 128 and 256. For DeepSet and MLP

models, we choose the hidden dimension of MLP modules from 128, 256, 2500. Moreover,

dropout with rate 0.5 is applied before the last two hidden layers of MLP1, i.e., the last MLP

module in all models.

D.2.4 Subset Sum

Dataset generation. In the dataset, we sample 40, 000 training data, 4, 000 validation

data, and 4, 000 test data. For each model, we report the test accuracy with the hyperpa-

rameter setting that achieves the best validation accuracy. In each training sample, the

input universe 𝑆 consists of 6 numbers 𝑋1, ..., 𝑋6, where each 𝑋𝑖 is uniformly sampled

from [-200..200]. The goal is to decide if there exists a subset that sums up to 0. In the

data generation, we carefully decrease the number of questions that have trivial answers:

1)we control the number of samples where 0 ∈ {𝑋1, ..., 𝑋6} to be around 1% of the total

training data; 2) we further control the number of samples where 𝑋1 + ... + 𝑋6 = 0 or

∃𝑖, 𝑗 ∈ [1..6] so that 𝑋𝑖 = −𝑋𝑗 to be around 1.5% of the total training data. In addition, we

apply rejection sampling to make sure that the questions with answer yes (aka. such subset

exists) and answer no (aka. no such subset exists) are balanced (i.e., 20,000 samples for

each class in the training data).

Hyperparameter setting. We train all models with the Adam optimizer, with learning

rate from 1𝑒− 3, 5𝑒− 4, and 1𝑒− 4, and we decay the learning rate by 0.5 every 50 steps.

We use cross-entropy loss. We train all models for 300 epochs. The batch size we use for all

models is 64.
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For DeepSets and MLP models, we choose the number of of hidden layers of the MLP

modules from 4, 8, 16. For GNN and HRN models, we set the number of hidden layers

of the last MLP modules to 4. For DeepSets and MLP, we choose the hidden dimension

of MLP modules from 128, 256, 2500, 5000. For GNN and HRN models, we choose the

hidden dimension of MLP modules from 128 and 256. Moreover, dropout with rate 0.5 is

applied before the last two hidden layers of MLP1, i.e., the last MLP module in all models.

The model Neural Exhaustive Search (NES) enumerates all possible non-empty subsets

𝜏 of 𝑆, and passes the numbers of 𝜏 to an MLP, in a random order, to obtain the hidden

feature. The hidden feature is then passed to a single-direction one-layer LSTM of hidden

dimension 128. Afterwards, NES applies an aggregation function to these 26 − 1 hidden

states obtained by the LSTM to obtain the final output. For NES, we set the number of

hidden layers of the last MLP, i.e., MLP2, to 4, the number of hidden layers of the MLPs

prior to the last MLP, i.e., MLP1, to 3, and we choose the hidden dimension of all MLP

modules from 128 and 256.
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Appendix E

How Neural Networks Extrapolate

E.1 Theoretical Background

In this section, we introduce theoretical background on neural tangent kernel (NTK), which

draws an equivalence between the training dynamics of infinitely-wide (or ultra-wide) neural

networks and that of kernel regression with respect to the neural tangent kernel.

Consider a general neural network 𝑓(𝜃,𝑥) : 𝒳 → R where 𝜃 ∈ R𝑚 is the parameters in

the network and 𝑥 ∈ 𝒳 is the input. Suppose we train the neural network by minimizing the

squared loss over training data, ℓ(𝜃) = 1
2
∑︀𝑛

𝑖=1(𝑓(𝜃,𝑥𝑖) − 𝑦𝑖)2, by gradient descent with

infinitesimally small learning rate, i.e., 𝑑𝜃(𝑡)
𝑑𝑡

= −∇ℓ(𝜃(𝑡)). Let 𝑢(𝑡) = (𝑓(𝜃(𝑡),𝑥𝑖))𝑛
𝑖=1 be

the network outputs. 𝑢(𝑡) follows the dynamics

𝑑𝑢(𝑡)
𝑑𝑡

= −𝐻(𝑡)(𝑢(𝑡) − 𝑦), (E.1)

where 𝐻(𝑡) is an 𝑛× 𝑛 matrix whose (𝑖, 𝑗)-th entry is

𝐻(𝑡)𝑖𝑗 =
⟨
𝜕𝑓(𝜃(𝑡),𝑥𝑖)

𝜕𝜃
,
𝜕𝑓(𝜃(𝑡),𝑥𝑗)

𝜕𝜃

⟩
. (E.2)

A line of works show that for sufficiently wide networks, 𝐻(𝑡) stays almost constant during

training, i.e., 𝐻(𝑡) = 𝐻(0) in the limit [Arora et al., 2019b,c, Allen-Zhu et al., 2019a, Du

et al., 2019c,a, Li and Liang, 2018, Jacot et al., 2018]. Suppose network parameters are
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randomly initialized with certain scaling, as network width goes to infinity, 𝐻(0) converges

to a fixed matrix, the neural tangent kernel (NTK) [Jacot et al., 2018]:

NTK(𝑥,𝑥′) = E
𝜃∼𝒲

⟨
𝜕𝑓(𝜃(𝑡),𝑥)

𝜕𝜃
,
𝜕𝑓(𝜃(𝑡),𝑥′)

𝜕𝜃

⟩
, (E.3)

where 𝒲 is Gaussian.

Therefore, the learning dynamics of sufficiently wide neural networks in this regime

is equivalent to that of kernel gradient descent with respect to the NTK. This implies the

function learned by a neural network at convergence on any specific training set, denoted by

𝑓NTK(𝑥), can be precisely characterized, and is equivalent to the following kernel regression

solution

𝑓NTK(𝑥) = (NTK(𝑥,𝑥1), ...,NTK(𝑥,𝑥𝑛)) · NTK−1
train𝑌 , (E.4)

where NTKtrain is the 𝑛×𝑛 kernel for training data, NTK(𝑥,𝑥𝑖) is the kernel value between

test data 𝑥 and training data 𝑥𝑖, and 𝑌 is the training labels.

We can in fact exactly calculate the neural tangent kernel matrix for certain architectures

and activation functions. The exact formula of NTK with ReLU activation has been derived

for feedforward neural networks [Jacot et al., 2018], convolutional neural networks [Arora

et al., 2019c], and Graph Neural Networks [Du et al., 2019b].

Our theory builds upon this equivalence of network learning and kernel regression to

more precisely characterize the function learned by a sufficiently-wide neural network given

any specific training set. In particular, the difference between the learned function and true

function over the domain of 𝒳 determines the extrapolation error.

However, in general it is non-trivial to compute or analyze the functional form of what

a neural network learns using (E.4), because the kernel regression solution using neural

tangent kernel only gives point-wise evaluation. Thus, we instead analyze the function

learned by a network in the NTK’s induced feature space, because representations in the

feature space would give a functional form.

Lemma E.1 makes this connection more precise: the solution to the kernel regression

using neural tangent kernel, which also equals over-parameterized network learning, is
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equivalent to a min-norm solution among functions in the NTK’s induced feature space that

fits all training data. Here the min-norm refers to the RKHS norm.

Lemma E.1. Let 𝜑(𝑥) be a feature map induced by a neural tangent kernel, for any 𝑥 ∈ R𝑑.

The solution to kernel regression (E.4) is equivalent to 𝑓NTK(𝑥) = 𝜑(𝑥)⊤𝛽NTK, where 𝛽NTK

is

min
𝛽

‖𝛽‖2

s.t. 𝜑(𝑥𝑖)⊤𝛽 = 𝑦𝑖, for 𝑖 = 1, ..., 𝑛.

We prove Lemma E.1 in Appendix E.2.6. To analyze the learned functions as the

min-norm solution in feature space, we also need the explicit formula of an induced feature

map of the corresponding neural tangent kernel. The following lemma gives a NTK feature

space for two-layer MLPs with ReLU activation. It follows easily from the kernel formula

described in Jacot et al. [2018], Arora et al. [2019c], Bietti and Mairal [2019].

Lemma E.2. An infinite-dimensional feature map 𝜑(𝑥) induced by the neural tangent kernel

of a two-layer multi-layer perceptron with ReLU activation function is

𝜑 (𝑥) = 𝑐
(︁
𝑥 · I

(︁
𝑤(𝑘)⊤

𝑥 ≥ 0
)︁
,𝑤(𝑘)⊤

𝑥 · I
(︁
𝑤(𝑘)⊤

𝑥 ≥ 0
)︁
, ...
)︁
, (E.5)

where 𝑤(𝑘) ∼ 𝒩 (0, 𝐼), with 𝑘 going to infinity. 𝑐 is a constant, and I is the indicator

function.

We prove Lemma E.2 in Appendix E.2.7. The feature maps for other architectures, e.g.,

Graph Neural Networks (GNNs) can be derived similarly. We analyze the Graph Neural

Tangent Kernel (GNTK) for a simple GNN architecture in Theorem 8.2.

We then use Lemma E.1 and E.2 to characterize the properties of functions learned

by an over-parameterized neural network. We precisely characterize the neural networks’

learned functions in the NTK regime via solving the constrained optimization problem

corresponding to the min-norm function in NTK feature space with the constraint of fitting

the training data.
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However, there still remains many technical challenges. For example, provable extrap-

olation (exact or asymptotic) is often not achieved with most training data distribution.

Understanding the desirable condition requires significant insights into the geometry proper-

ties of training data distribution, and how they interact with the solution learned by neural

networks. Our insights and refined analysis shows in R𝑑 space, we need to consider the

directions of training data. In graphs, we need to consider, in addition, the graph structure

of training data. We refer readers to detailed proofs for the intuition of data conditions.

Moreover, since NTK corresponds to infinitely wide neural networks, the feature space is of

infinite dimension. The analysis of infinite dimensional spaces poses non-trivial technical

challenges too.

Since different theorems have their respective challenges and insights/techniques, we

refer the interested readers to the respective proofs for details. In Lemma 7.2 (proof

in Appendix E.2.2), Theorem 7.3 (proof in Appendix E.2.3), and Theorem 7.1 (proof

in Appendix E.2.1) we analyze over-parameterized MLPs. The proof of Corollary 8.1

is in Appendix E.2.4. In Theorem 8.2 we analyze Graph Neural Networks (proof in

Appendix E.2.5).

E.2 Proofs

E.2.1 Proof of Theorem 7.1

To show neural network outputs 𝑓(𝑥) converge to a linear function along all directions 𝑣,

we will analyze the function learned by a neural network on the training set {(𝑥𝑖, 𝑦𝑖)}𝑛
𝑖=1, by

studying the functional representation in the network’s neural tangent kernel RKHS space.

Recall from Section E.1 that in the NTK regime, i.e., networks are infinitely wide,

randomly initialized, and trained by gradient descent with infinitesimally small learning rate,

the learning dynamics of the neural network is equivalent to that of a kernel regression with

respect to its neural tangent kernel.
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For any 𝑥 ∈ R𝑑, the network output is given by

𝑓(𝑥) =
(︁⟨
𝜑(𝑥), 𝜑(𝑥1)

⟩
, ...,

⟨
𝜑(𝑥), 𝜑(𝑥𝑛)

⟩)︁
· NTK−1

train𝑌 ,

where NTKtrain is the 𝑛 × 𝑛 kernel for training data,
⟨
𝜑(𝑥), 𝜑(𝑥𝑖)

⟩
is the kernel value

between test data 𝑥 and training data 𝑥𝑖, and 𝑌 is training labels. By Lemma E.1, the kernel

regression solution is also equivalent to the min-norm solution in the NTK RKHS space that

fits all training data

𝑓(𝑥) = 𝜑(𝑥)⊤𝛽NTK, (E.6)

where the representation coefficient 𝛽NTK is

min
𝛽

‖𝛽‖2

s.t. 𝜑(𝑥𝑖)⊤𝛽 = 𝑦𝑖, for 𝑖 = 1, ..., 𝑛.

The feature map 𝜑(𝑥) for a two-layer MLP with ReLU activation is given by Lemma E.2

𝜑 (𝑥) = 𝑐′
(︁
𝑥 · I

(︁
𝑤(𝑘)⊤

𝑥 ≥ 0
)︁
,𝑤(𝑘)⊤

𝑥 · I
(︁
𝑤(𝑘)⊤

𝑥 ≥ 0
)︁
, ...
)︁
, (E.7)

where 𝑤(𝑘) ∼ 𝒩 (0, 𝐼), with 𝑘 going to infinity. 𝑐′ is a constant, and I is the indicator

function. Without loss of generality, we assume the bias term to be 1. For simplicity of

notations, we denote each data 𝑥 plus bias term by, i.e., �̂� = [𝑥|1] [Bietti and Mairal, 2019],

and assume constant term is 1.

Given any direction 𝑣 on the unit sphere, the network outputs for out-of-distribution data

𝑥0 = 𝑡𝑣 and 𝑥 = 𝑥0 + ℎ𝑣 = (1 + 𝜆)𝑥0, where we introduce the notation of 𝑥 and 𝜆 for

convenience, are given by (E.6) and (E.7)

𝑓(𝑥0) =𝛽⊤
NTK

(︁
𝑥0 · I

(︁
𝑤(𝑘)⊤

𝑥0 ≥ 0
)︁
,𝑤(𝑘)⊤

𝑥0 · I
(︁
𝑤(𝑘)⊤

𝑥0 ≥ 0
)︁
, ...
)︁
,

𝑓(�̂�) =𝛽⊤
NTK

(︂
�̂� · I

(︁
𝑤(𝑘)⊤

�̂� ≥ 0
)︁
,𝑤(𝑘)⊤

�̂� · I
(︁
𝑤(𝑘)⊤

�̂� ≥ 0
)︁
, ...
)︂
,
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where we have 𝑥0 = [𝑥0|1] and �̂� = [(1 + 𝜆)𝑥0|1]. It follows that

𝑓(�̂�) − 𝑓(𝑥0) = 𝛽⊤
NTK

(︂
�̂� · I

(︁
𝑤(𝑘)⊤

�̂� ≥ 0
)︁

− 𝑥0 · I
(︁
𝑤(𝑘)⊤

𝑥0 ≥ 0
)︁
, (E.8)

𝑤(𝑘)⊤
�̂� · I

(︁
𝑤(𝑘)⊤

�̂� ≥ 0
)︁

− 𝑤(𝑘)⊤
𝑥0 · I

(︁
𝑤(𝑘)⊤

𝑥0 ≥ 0
)︁
, ...
)︂

(E.9)

By re-arranging the terms, we get the following equivalent form of the entries:

�̂� · I
(︁
𝑤⊤�̂� ≥ 0

)︁
− 𝑥0 · I

(︁
𝑤⊤𝑥0 ≥ 0

)︁
(E.10)

= �̂� ·
(︁
I
(︁
𝑤⊤�̂� ≥ 0

)︁
− I

(︁
𝑤⊤𝑥0 ≥ 0

)︁
+ I

(︁
𝑤⊤𝑥0 ≥ 0

)︁)︁
− 𝑥0 · I

(︁
𝑤⊤𝑥0 ≥ 0

)︁
(E.11)

= �̂� ·
(︁
I
(︁
𝑤⊤�̂� ≥ 0

)︁
− I

(︁
𝑤⊤𝑥0 ≥ 0

)︁)︁
+ (�̂� − 𝑥0) · I

(︁
𝑤⊤𝑥0 ≥ 0

)︁
(E.12)

= [𝑥|1] ·
(︁
I
(︁
𝑤⊤�̂� ≥ 0

)︁
− I

(︁
𝑤⊤𝑥0 ≥ 0

)︁)︁
+ [ℎ𝑣|0] · I

(︁
𝑤⊤𝑥0 ≥ 0

)︁
(E.13)

Similarly, we have

𝑤⊤�̂� · I
(︁
𝑤⊤�̂� ≥ 0

)︁
− 𝑤⊤𝑥0 · I

(︁
𝑤⊤𝑥0 ≥ 0

)︁
(E.14)

= 𝑤⊤�̂� ·
(︁
I
(︁
𝑤⊤�̂� ≥ 0

)︁
− I

(︁
𝑤⊤𝑥0 ≥ 0

)︁
+ I

(︁
𝑤⊤𝑥0 ≥ 0

)︁)︁
− 𝑤⊤𝑥0 · I

(︁
𝑤⊤𝑥0 ≥ 0

)︁
(E.15)

= 𝑤⊤�̂� ·
(︁
I
(︁
𝑤⊤�̂� ≥ 0

)︁
− I

(︁
𝑤⊤𝑥0 ≥ 0

)︁)︁
+ 𝑤⊤ (�̂� − 𝑥0) · I

(︁
𝑤⊤𝑥0 ≥ 0

)︁
(E.16)

= 𝑤⊤ [𝑥|1] ·
(︁
I
(︁
𝑤⊤�̂� ≥ 0

)︁
− I

(︁
𝑤⊤𝑥0 ≥ 0

)︁)︁
+ 𝑤⊤[ℎ𝑣|0] · I

(︁
𝑤⊤𝑥0 ≥ 0

)︁
(E.17)

Again, let us denote the part of 𝛽NTK corresponding to each 𝑤 by 𝛽𝑤. Moreover, let us

denote the part corresponding to (E.13) by 𝛽1
𝑤 and the part corresponding to (E.17) by 𝛽2

𝑤.
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Then we have

𝑓(�̂�) − 𝑓(𝑥0)
ℎ

(E.18)

=
∫︁

𝛽1⊤

𝑤 [𝑥/ℎ|1/ℎ] ·
(︁
I
(︁
𝑤⊤�̂� ≥ 0

)︁
− I

(︁
𝑤⊤𝑥0 ≥ 0

)︁)︁
dP(𝑤) (E.19)

+
∫︁

𝛽1⊤

𝑤 [𝑣|0] · I
(︁
𝑤⊤𝑥0 ≥ 0

)︁
dP(𝑤) (E.20)

+
∫︁

𝛽2
𝑤 · 𝑤⊤ [𝑥/ℎ|1/ℎ] ·

(︁
I
(︁
𝑤⊤�̂� ≥ 0

)︁
− I

(︁
𝑤⊤𝑥0 ≥ 0

)︁)︁
dP(𝑤) (E.21)

+
∫︁

𝛽2
𝑤 · 𝑤⊤[𝑣|0] · I

(︁
𝑤⊤𝑥0 ≥ 0

)︁
dP(𝑤) (E.22)

Note that all 𝛽𝑤 are finite constants that depend on the training data. Next, we show that as

𝑡 → ∞, each of the terms above converges in 𝑂(1/𝜖) to some constant coefficient 𝛽𝑣 that

depend on the training data and the direction 𝑣. Let us first consider (E.20). We have

∫︁
I
(︁
𝑤⊤𝑥0 ≥ 0

)︁
𝑑P(𝑤) =

∫︁
I
(︁
𝑤⊤[𝑥0|1] ≥ 0

)︁
dP(𝑤) (E.23)

=
∫︁
I
(︁
𝑤⊤[𝑥0/𝑡|1/𝑡] ≥ 0

)︁
dP(𝑤) (E.24)

−→
∫︁
I
(︁
𝑤⊤[𝑣|0] ≥ 0

)︁
dP(𝑤) as 𝑡 → ∞ (E.25)

Because 𝛽1
𝑤 are finite constants, it follows that

∫︁
𝛽1⊤

𝑤 [𝑣|0] · I
(︁
𝑤⊤𝑥0 ≥ 0

)︁
dP(𝑤) →

∫︁
𝛽1⊤

𝑤 [𝑣|0] · I
(︁
𝑤⊤[𝑣|0] ≥ 0

)︁
dP(𝑤), (E.26)

where the right hand side is a constant that depends on training data and direction 𝑣. Next,

we show the convergence rate for (E.26). Given error 𝜖 > 0, because 𝛽1⊤
𝑤 [𝑣|0] are finite

constants, we need to bound the following by 𝐶 · 𝜖 for some constant 𝐶,

|
∫︁

I
(︁
𝑤⊤𝑥0 ≥ 0

)︁
− I

(︁
𝑤⊤[𝑣|0] ≥ 0

)︁
dP(𝑤)| (E.27)

= |
∫︁

I
(︁
𝑤⊤[𝑥0|1] ≥ 0

)︁
− I

(︁
𝑤⊤[𝑥0|0] ≥ 0

)︁
dP(𝑤)| (E.28)

Observe that the two terms in (E.28) represent the volume of half-(balls) that are orthogonal

to vectors [𝑥0|1] and [𝑥0|0]. Hence, (E.28) is the volume of the non-overlapping part of
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the two (half)balls, which is created by rotating an angle 𝜃 along the last coordinate. By

symmetry, (E.28) is linear in 𝜃. Moreover, the angle 𝜃 = arctan(𝐶/𝑡) for some constant 𝐶.

Hence, it follows that

|
∫︁

I
(︁
𝑤⊤[𝑥0|1] ≥ 0

)︁
− I

(︁
𝑤⊤[𝑥0|0] ≥ 0

)︁
dP(𝑤)| = 𝐶1 · arctan(𝐶2/𝑡) (E.29)

≤ 𝐶1 · 𝐶2/𝑡 (E.30)

= 𝑂(1/𝑡) (E.31)

In the last inequality, we used the fact that arctan 𝑥 < 𝑥 for 𝑥 > 0. Hence, 𝑂(1/𝑡) < 𝜖

implies 𝑡 = 𝑂(1/𝜖) as desired. Next, we consider (E.19).

∫︁
𝛽1⊤

𝑤 [𝑥/ℎ|1/ℎ] ·
(︁
I
(︁
𝑤⊤�̂� ≥ 0

)︁
− I

(︁
𝑤⊤𝑥0 ≥ 0

)︁)︁
dP(𝑤) (E.32)

Let us first analyze the convergence of the following:

|
∫︁

I
(︁
𝑤⊤�̂� ≥ 0

)︁
− I

(︁
𝑤⊤𝑥0 ≥ 0

)︁
dP(𝑤)| (E.33)

= |
∫︁

I
(︁
𝑤⊤[(1 + 𝜆)𝑥0|1] ≥ 0

)︁
− I

(︁
𝑤⊤[𝑥0|1] ≥ 0

)︁
dP(𝑤)dP(𝑤)| (E.34)

= |
∫︁

I
(︂

𝑤⊤[𝑥0|
1

1 + 𝜆
] ≥ 0

)︂
− I

(︁
𝑤⊤[𝑥0|1] ≥ 0

)︁
dP(𝑤)dP(𝑤)| → 0 (E.35)

The convergence to 0 follows from (E.29). Now we consider the convergence rate. The

angle 𝜃 is at most 1 − 1
1+𝜆

times of that in (E.29). Hence, the rate is as follows

(︂
1 − 1

1 + 𝜆

)︂
·𝑂

(︂1
𝑡

)︂
= 𝜆

1 + 𝜆
·𝑂

(︂1
𝑡

)︂
= ℎ/𝑡

1 + ℎ/𝑡
·𝑂

(︂1
𝑡

)︂
= 𝑂

(︃
ℎ

(ℎ+ 𝑡)𝑡

)︃
(E.36)

Now we get back to (E.19), which simplifies as the following.

∫︁
𝛽1⊤

𝑤

[︂
𝑣 + 𝑡𝑣

ℎ
|1
ℎ

]︂
·
(︁
I
(︁
𝑤⊤�̂� ≥ 0

)︁
− I

(︁
𝑤⊤𝑥0 ≥ 0

)︁)︁
dP(𝑤) (E.37)

We compare the rate of growth of left hand side and the rate of decrease of right hand side
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(indicators).

𝑡

ℎ
· ℎ

(ℎ+ 𝑡)𝑡 = 1
ℎ+ 𝑡

→ 0 as 𝑡 → ∞ (E.38)

1
ℎ

· ℎ

(ℎ+ 𝑡)𝑡 = 1
(ℎ+ 𝑡)𝑡 → 0 as 𝑡 → ∞ (E.39)

Hence, the indicators decrease faster, and it follows that (E.19) converges to 0 with rate

𝑂(1
𝜖
). Moreover, we can bound 𝑤 with standard concentration techniques. Then the proofs

for (E.21) and (E.22) follow similarly. This completes the proof.

E.2.2 Proof of Lemma 7.2

Overview of proof. To prove exact extrapolation given the conditions on training data,

we analyze the function learned by the neural network in a functional form. The network’s

learned function can be precisely characterized by a solution in the network’s neural tangent

kernel feature space which has a minimum RKHS norm among functions that can fit all

training data, i.e., it corresponds to the optimum of a constrained optimization problem. We

show that the global optimum of this constrained optimization problem, given the conditions

on training data, is precisely the same function as the underlying true function.

Setup and preparation. Let 𝑋 = {𝑥1, ...,𝑥𝑛} and 𝑌 = {𝑦1, ..., 𝑦𝑛} denote the training

set input features and their labels. Let 𝛽𝑔 ∈ R𝑑 denote the true parameters/weights for the

underlying linear function 𝑔, i.e.,

𝑔(𝑥) = 𝛽⊤
𝑔 𝑥 for all 𝑥 ∈ R𝑑

Recall from Section E.1 that in the NTK regime, where networks are infinitely wide,

randomly initialized, and trained by gradient descent with infinitesimally small learning

rate, the learning dynamics of a neural network is equivalent to that of a kernel regression

with respect to its neural tangent kernel. Moreover, Lemma E.1 tells us that this kernel

regression solution can be expressed in the functional form in the neural tangent kernel’s

feature space. That is, the function learned by the neural network (in the ntk regime) can be
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precisely characterized as

𝑓(𝑥) = 𝜑(𝑥)⊤𝛽NTK,

where the representation coefficient 𝛽NTK is

min
𝛽

‖𝛽‖2 (E.40)

s.t. 𝜑(𝑥𝑖)⊤𝛽 = 𝑦𝑖, for 𝑖 = 1, ..., 𝑛. (E.41)

An infinite-dimensional feature map 𝜑(𝑥) for a two-layer ReLU network is described in

Lemma E.2

𝜑 (𝑥) = 𝑐′
(︁
𝑥 · I

(︁
𝑤(𝑘)⊤

𝑥 ≥ 0
)︁
,𝑤(𝑘)⊤

𝑥 · I
(︁
𝑤(𝑘)⊤

𝑥 ≥ 0
)︁
, ...
)︁
,

where 𝑤(𝑘) ∼ 𝒩 (0, 𝐼), with 𝑘 going to infinity. 𝑐′ is a constant, and I is the indicator

function. That is, there are infinitely many directions 𝑤 with Gaussian density, and each

direction comes with two features. Without loss of generality, we can assume the scaling

constant to be 1.

Constrained optimization in NTK feature space. The representation or weight of the

neural network’s learned function in the neural tangent kernel feature space, 𝛽NTK, consists

of weight vectors for each 𝑥 · I
(︁
𝑤(𝑘)⊤

𝑥 ≥ 0
)︁

∈ R𝑑 and 𝑤(𝑘)⊤
𝑥 · I

(︁
𝑤(𝑘)⊤

𝑥 ≥ 0
)︁

∈ R.

For simplicity of notation, we will use 𝑤 to refer to a particular 𝑤, without considering

the index (𝑘), which does not matter for our purposes. For any 𝑤 ∈ R𝑑, we denote by

𝛽𝑤 = (𝛽(1)
𝑤 , ...,𝛽(𝑑)

𝑤 ) ∈ R𝑑 the weight vectors corresponding to 𝑥 · I
(︁
𝑤⊤𝑥 ≥ 0

)︁
, and

denote by 𝛽′
𝑤 ∈ R𝑑 the weight for 𝑤⊤𝑥 · I

(︁
𝑤⊤𝑥 ≥ 0

)︁
.

Observe that for any 𝑤 ∼ 𝒩 (0, 𝐼) ∈ R𝑑, any other vectors in the same direction will

activate the same set of 𝑥𝑖 ∈ R𝑑. That is, if 𝑤⊤𝑥𝑖 ≥ 0 for any 𝑤 ∈ R𝑑, then (𝑘 ·𝑤)⊤𝑥𝑖 ≥ 0

for any 𝑘 > 0. Hence, we can reload our notation to combine the effect of weights for 𝑤’s in

the same direction. This enables simpler notations and allows us to change the distribution

of 𝑤 in NTK features from Gaussian distribution to uniform distribution on the unit sphere.
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More precisely, we reload our notation by using 𝛽𝑤 and 𝛽′
𝑤 to denote the combined

effect of all weights (𝛽(1)
𝑘𝑤, ...,𝛽

(𝑑)
𝑘𝑤) ∈ R𝑑 and 𝛽′

𝑘𝑤 ∈ R for all 𝑘𝑤 with 𝑘 > 0 in the same

direction of 𝑤. That is, for each 𝑤 ∼ Uni(unit sphere) ∈ R𝑑, we define 𝛽(𝑗)
𝑤 as the total

effect of weights in the same direction

𝛽(𝑗)
𝑤 =

∫︁
𝛽(𝑗)

𝑢 I
(︃

𝑤⊤𝑢

‖𝑤‖ · ‖𝑢‖
= 1

)︃
dP(𝑢), for 𝑗 = [𝑑] (E.42)

where 𝑢 ∼ 𝒩 (0, 𝐼). Note that to ensure the 𝛽𝑤 is a well-defined number, here we can work

with the polar representation and integrate with respect to an angle. Then 𝛽𝑤 is well-defined.

But for simplicity of exposition, we use the plain notation of integral. Similarly, we define

𝛽′
𝑤 as reloading the notation of

𝛽′
𝑤 =

∫︁
𝛽𝑢I

(︃
𝑤⊤𝑢

‖𝑤‖ · ‖𝑢‖
= 1

)︃
· ‖𝑢‖

‖𝑤‖
dP(𝑢) (E.43)

Here, in (E.43) we have an extra term of ‖𝑢‖
‖𝑤‖ compared to (E.42) because the NTK features

that (E.43) corresponds to, 𝑤⊤𝑥 · I
(︁
𝑤⊤𝑥 ≥ 0

)︁
, has an extra 𝑤⊤ term. So we need to

take into account the scaling. This abstraction enables us to make claims on the high-level

parameters 𝛽𝑤 and 𝛽′
𝑤 only, which we will show to be sufficient to determine the learned

function.

Then we can formulate the constrained optimization problem whose solution gives a

functional form of the neural network’s learned function. We rewrite the min-norm solution

in (E.40) as

min
𝛽

∫︁ (︁
𝛽(1)

𝑤

)︁2
+
(︁
𝛽(2)

𝑤

)︁2
+ ...+

(︁
𝛽(𝑑)

𝑤

)︁2
+ (𝛽′

𝑤)2 dP(𝑤) (E.44)

s.t.
∫︁

𝑤⊤𝑥𝑖≥0

𝛽⊤
𝑤𝑥𝑖 + 𝛽′

𝑤 · 𝑤⊤𝑥𝑖 dP(𝑤) = 𝛽⊤
𝑔 𝑥𝑖 ∀𝑖 ∈ [𝑛], (E.45)

where the density of 𝑤 is now uniform on the unit sphere of R𝑑. Observe that since 𝑤 is

from a uniform distribution, the probability density function P(𝑤) is a constant. This means

every 𝑥𝑖 is activated by half of the 𝑤 on the unit sphere, which implies we can now write

the right hand side of (E.45) in the form of left hand side, i.e., integral form. This allows us
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to further simplify (E.45) as

∫︁
𝑤⊤𝑥𝑖≥0

(︁
𝛽⊤

𝑤 + 𝛽′
𝑤 · 𝑤⊤ − 2 · 𝛽⊤

𝑔

)︁
𝑥𝑖 dP(𝑤) = 0 ∀𝑖 ∈ [𝑛], (E.46)

where (E.46) follows from the following steps of simplification

∫︁
𝑤⊤𝑥𝑖≥0

𝛽(1)
𝑤 𝑥

(1)
𝑖 + ..𝛽(𝑑)

𝑤 𝑥
(𝑑)
𝑖 + 𝛽′

𝑤 · 𝑤⊤𝑥𝑖dP(𝑤) = 𝛽(1)
𝑔 𝑥

(1)
𝑖 + ...𝛽(𝑑)

𝑔 𝑥
(𝑑)
𝑖 ∀𝑖 ∈ [𝑛],

⇐⇒
∫︁

𝑤⊤𝑥𝑖≥0

𝛽(1)
𝑤 𝑥

(1)
𝑖 + ...+ 𝛽(𝑑)

𝑤 𝑥
(𝑑)
𝑖 + 𝛽′

𝑤 · 𝑤⊤𝑥𝑖 dP(𝑤)

= 1∫︀
𝑤⊤𝑥𝑖≥0

dP(𝑤) ·
∫︁

𝑤⊤𝑥𝑖≥0

dP(𝑤) ·
(︁
𝛽(1)

𝑔 𝑥
(1)
𝑖 + ...+ 𝛽(𝑑)

𝑔 𝑥
(𝑑)
𝑖

)︁
∀𝑖 ∈ [𝑛],

⇐⇒
∫︁

𝑤⊤𝑥𝑖≥0

𝛽(1)
𝑤 𝑥

(1)
𝑖 + ...+ 𝛽(𝑑)

𝑤 𝑥
(𝑑)
𝑖 + 𝛽′

𝑤 · 𝑤⊤𝑥𝑖dP(𝑤)

= 2 ·
∫︁

𝑤⊤𝑥𝑖≥0

𝛽(1)
𝑔 𝑥

(1)
𝑖 + ...+ 𝛽(𝑑)

𝑔 𝑥
(𝑑)
𝑖 dP(𝑤) ∀𝑖 ∈ [𝑛],

⇐⇒
∫︁

𝑤⊤𝑥𝑖≥0

(︁
𝛽⊤

𝑤 + 𝛽′
𝑤 · 𝑤⊤ − 2 · 𝛽⊤

𝑔

)︁
𝑥𝑖 dP(𝑤) = 0 ∀𝑖 ∈ [𝑛].

Claim E.3. Without loss of generality, assume the scaling factor 𝑐 in NTK feature map

𝜑(𝑥) is 1. Then the global optimum to the constraint optimization problem (E.44) subject to

(E.46), i.e.,

min
𝛽

∫︁ (︁
𝛽(1)

𝑤

)︁2
+
(︁
𝛽(2)

𝑤

)︁2
+ ...+

(︁
𝛽(𝑑)

𝑤

)︁2
+ (𝛽′

𝑤)2 dP(𝑤) (E.47)

s.t.
∫︁

𝑤⊤𝑥𝑖≥0

(︁
𝛽⊤

𝑤 + 𝛽′
𝑤 · 𝑤⊤ − 2 · 𝛽⊤

𝑔

)︁
𝑥𝑖 dP(𝑤) = 0 ∀𝑖 ∈ [𝑛]. (E.48)

satisfies 𝛽𝑤 + 𝛽′
𝑤 · 𝑤 = 2𝛽𝑔 for all 𝑤.

This claim implies the exact extrapolation we want to prove, i.e., 𝑓NTK(𝑥) = 𝑔(𝑥). This
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is because, if our claim holds, then for any 𝑥 ∈ R𝑑

𝑓NTK(𝑥) =
∫︁

𝑤⊤𝑥≥0
𝛽⊤

𝑤 𝑥 + 𝛽′
𝑤 · 𝑤⊤𝑥 dP(𝑤)

=
∫︁

𝑤⊤𝑥≥0
2 · 𝛽⊤

𝑔 𝑥 dP(𝑤)

=
∫︁

𝑤⊤𝑥≥0
dP(𝑤) · 2𝛽⊤

𝑔 𝑥

= 1
2 · 2𝛽⊤

𝑔 𝑥 = 𝑔(𝑥)

Thus, it remains to prove Claim E.3. To compute the optimum to the constrained

optimization problem (E.47), we consider the Lagrange multipliers. It is clear that the

objective (E.47) is convex. Moreover, the constraint (E.48) is affine. Hence, by KKT,

solution that satisfies the Lagrange condition will be the global optimum. We compute the

Lagrange multiplier as

ℒ(𝛽, 𝜆) =
∫︁ (︁

𝛽(1)
𝑤

)︁2
+
(︁
𝛽(2)

𝑤

)︁2
+ ...+

(︁
𝛽(𝑑)

𝑤

)︁2
+ (𝛽′

𝑤)2 dP(𝑤) (E.49)

−
𝑛∑︁

𝑖=1
𝜆𝑖 ·

⎛⎜⎝ ∫︁
𝑤⊤𝑥𝑖≥0

(︁
𝛽⊤

𝑤 + 𝛽′
𝑤 · 𝑤⊤ − 2 · 𝛽⊤

𝑔

)︁
𝑥𝑖 dP(𝑤)

⎞⎟⎠ (E.50)

Setting the partial derivative of ℒ(𝛽, 𝜆) with respect to each variable to zero gives

𝜕ℒ
𝜕𝛽

(𝑘)
𝑤

= 2𝛽(𝑘)
𝑤 P(𝑤) +

𝑛∑︁
𝑖=1

𝜆𝑖 · 𝑥
(𝑘)
𝑖 · I

(︁
𝑤⊤𝑥𝑖 ≥ 0

)︁
= 0 (E.51)

𝜕ℒ
𝛽′

𝑤

= 2𝛽′
𝑤P(𝑤) +

𝑛∑︁
𝑖=1

𝜆𝑖 · 𝑤⊤𝑥𝑖 · I
(︁
𝑤⊤𝑥𝑖 ≥ 0

)︁
= 0 (E.52)

𝜕ℒ
𝜕𝜆𝑖

=
∫︁

𝑤⊤𝑥𝑖≥0

(︁
𝛽⊤

𝑤 + 𝛽′
𝑤 · 𝑤⊤ − 2 · 𝛽⊤

𝑔

)︁
𝑥𝑖 dP(𝑤) = 0 (E.53)

It is clear that the solution in Claim E.3 immediately satisfies (E.53). Hence, it remains

to show there exist a set of 𝜆𝑖 for 𝑖 ∈ [𝑛] that satisfies (E.51) and (E.52). We can simplify

(E.51) as

𝛽(𝑘)
𝑤 = 𝑐 ·

𝑛∑︁
𝑖=1

𝜆𝑖 · 𝑥
(𝑘)
𝑖 · I

(︁
𝑤⊤𝑥𝑖 ≥ 0

)︁
, (E.54)
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where 𝑐 is a constant. Similarly, we can simplify (E.52) as

𝛽′
𝑤 = 𝑐 ·

𝑛∑︁
𝑖=1

𝜆𝑖 · 𝑤⊤𝑥𝑖 · I
(︁
𝑤⊤𝑥𝑖 ≥ 0

)︁
(E.55)

Observe that combining (E.54) and (E.55) implies that the constraint (E.55) can be further

simplified as

𝛽′
𝑤 = 𝑤⊤𝛽𝑤 (E.56)

It remains to show that given the condition on training data, there exists a set of 𝜆𝑖 so

that (E.54) and (E.56) are satisfied.

Global optimum via the geometry of training data. Recall that we assume our training

data {(𝑥𝑖, 𝑦𝑖)}𝑛
𝑖=1 satisfies for any 𝑤 ∈ R𝑑, there exist 𝑑 linearly independent {𝑥𝑤

𝑖 }𝑑
𝑖=1 ⊂ 𝑋 ,

where 𝑋 = {𝑥𝑖}𝑛
𝑖=1, so that 𝑤⊤𝑥𝑤

𝑖 ≥ 0 and −𝑥𝑤
𝑖 ∈ 𝑋 for 𝑖 = 1..𝑑, e.g., an orthogonal

basis of R𝑑 and their opposite vectors. We will show that under this data regime, we have

(a) for any particular 𝑤, there indeed exist a set of 𝜆𝑖 that can satisfy the constraints

(E.54) and (E.56) for this particular 𝑤.

(b) For any 𝑤1 and 𝑤2 that activate the exact same set of {𝑥𝑖}, the same set of 𝜆𝑖 can

satisfy the constraints (E.54) and (E.56) of both 𝑤1 and 𝑤2.

(c) Whenever we rotate a 𝑤1 to a 𝑤2 so that the set of 𝑥𝑖 being activated changed, we

can still find 𝜆𝑖 that satisfy constraint of both 𝑤1 and 𝑤2.

Combining (a), (b) and (c) implies there exists a set of 𝜆 that satisfy the constraints for

all 𝑤. Hence, it remains to show these three claims.

We first prove Claim (a). For each 𝑤, we must find a set of 𝜆𝑖 so that the following hold.

𝛽(𝑘)
𝑤 = 𝑐 ·

𝑛∑︁
𝑖=1

𝜆𝑖 · 𝑥
(𝑘)
𝑖 · I

(︁
𝑤⊤𝑥𝑖 ≥ 0

)︁
,

𝛽′
𝑤 = 𝑤⊤𝛽𝑤

𝛽𝑤 + 𝛽′
𝑤 · 𝑤 = 2𝛽𝑔

Here, 𝛽𝑔 and 𝑤 are fixed, and 𝑤 is a vector on the unit sphere. It is easy to see that 𝛽𝑤 is
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then determined by 𝛽𝑔 and 𝑤, and there indeed exists a solution (solving a consistent linear

system). Hence we are left with a linear system with 𝑑 linear equations

𝛽(𝑘)
𝑤 = 𝑐 ·

𝑛∑︁
𝑖=1

𝜆𝑖 · 𝑥
(𝑘)
𝑖 · I

(︁
𝑤⊤𝑥𝑖 ≥ 0

)︁
∀𝑘 ∈ [𝑑]

to solve with free variables being 𝜆𝑖 so that 𝑤 activates 𝑥𝑖, i.e., 𝑤⊤𝑥𝑖 ≥ 0. Because the

training data {(𝑥𝑖, 𝑦𝑖)}𝑛
𝑖=1 satisfies for any 𝑤, there exist at least 𝑑 linearly independent 𝑥𝑖

that activate 𝑤. This guarantees for any 𝑤 we must have at least 𝑑 free variables. It follows

that there must exist solutions 𝜆𝑖 to the linear system. This proves Claim (a).

Next, we show that (b) for any 𝑤1 and 𝑤2 that activate the exact same set of {𝑥𝑖}, the

same set of 𝜆𝑖 can satisfy the constraints (E.54) and (E.56) of both 𝑤1 and 𝑤2. Because 𝑤1

and 𝑤2 are activated by the same set of 𝑥𝑖, this implies

𝛽𝑤1 = 𝑐 ·
𝑛∑︁

𝑖=1
𝜆𝑖 · 𝑥𝑖 · I

(︁
𝑤⊤

1 𝑥𝑖 ≥ 0
)︁

= 𝑐 ·
𝑛∑︁

𝑖=1
𝜆𝑖 · 𝑥𝑖 · I

(︁
𝑤⊤

2 𝑥𝑖 ≥ 0
)︁

= 𝛽𝑤2

Since 𝜆𝑖 already satisfy constraint (E.54) for 𝑤1, they also satisfy that for 𝑤2. Thus, it

remains to show that 𝛽𝑤1 +𝛽′
𝑤1 ·𝑤1 = 𝛽𝑤2 +𝛽′

𝑤2 ·𝑤1 assuming 𝛽𝑤1 = 𝛽𝑤2 , 𝛽′
𝑤1 = 𝑤⊤

1 𝛽𝑤1 ,

and 𝛽′
𝑤2 = 𝑤⊤

2 𝛽𝑤2 . This indeed holds because

𝛽𝑤1 + 𝛽′
𝑤1 · 𝑤1 = 𝛽𝑤2 + 𝛽′

𝑤2 · 𝑤2

⇐⇒ 𝛽′
𝑤1 · 𝑤⊤

1 = 𝛽′
𝑤2 · 𝑤⊤

2

⇐⇒ 𝑤⊤
1 𝛽𝑤1𝑤⊤

1 = 𝑤⊤
2 𝛽𝑤2𝑤⊤

2

⇐⇒ 𝑤⊤
1 𝑤1𝛽

⊤
𝑤1 = 𝑤⊤

2 𝑤2𝛽
⊤
𝑤2

⇐⇒ 1 · 𝛽⊤
𝑤1 = 1 · 𝛽⊤

𝑤2

⇐⇒ 𝛽𝑤1 = 𝛽𝑤1

Here, we used the fact that 𝑤1 and 𝑤2 are vectors on the unit sphere. This proves Claim (b).

Finally, we show (c) that Whenever we rotate a 𝑤1 to a 𝑤2 so that the set of 𝑥𝑖 being

activated changed, we can still find 𝜆𝑖 that satisfy constraint of both 𝑤1 and 𝑤2. Suppose

we rotate 𝑤1 to 𝑤2 so that 𝑤2 lost activation with 𝑥1,𝑥2, ...,𝑥𝑝 which in the set of linearly
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independent 𝑥𝑖’s being activated by 𝑤1 and their opposite vectors −𝑥𝑖 are also in the training

set (without loss of generality). Then 𝑤2 must now also get activated by −𝑥1,−𝑥2, ...,−𝑥𝑝.

This is because if 𝑤⊤
2 𝑥𝑖 < 0, we must have 𝑤⊤

2 (−𝑥𝑖) > 0.

Recall that in the proof of Claim (a), we only needed the 𝜆𝑖 from linearly independent 𝑥𝑖

that we used to solve the linear systems, and their opposite as the free variables to solve the

linear system of 𝑑 equations. Hence, we can set 𝜆 to 0 for the other 𝑥𝑖 while still satisfying

the linear system. Then, suppose there exists 𝜆𝑖 that satisfy

𝛽(𝑘)
𝑤1 = 𝑐 ·

𝑑∑︁
𝑖=1

𝜆𝑖 · 𝑥
(𝑘)
𝑖

where the 𝑥𝑖 are the linearly independent vectors that activate 𝑤1 with opposite vectors in

the training set, which we have proved in (a). Then we can satisfy the constraint for 𝛽𝑤2

below

𝛽(𝑘)
𝑤2 = 𝑐 ·

𝑝∑︁
𝑖=1

�̂�𝑖 · (−𝑥𝑖)(𝑘) +
𝑑∑︁

𝑖=𝑝+1
𝜆𝑖 · 𝑥

(𝑘)
𝑖

by setting �̂�𝑖 = −𝜆𝑖 for 𝑖 = 1...𝑝. Indeed, this gives

𝛽(𝑘)
𝑤2 = 𝑐 ·

𝑝∑︁
𝑖=1

(−𝜆𝑖) · (−𝑥𝑖)(𝑘) +
𝑑∑︁

𝑖=𝑝+1
𝜆𝑖 · 𝑥

(𝑘)
𝑖

= 𝑐 ·
𝑑∑︁

𝑖=1
𝜆𝑖 · 𝑥

(𝑘)
𝑖

Thus, we can also find 𝜆𝑖 that satisfy the constraint for 𝛽𝑤2 . Here, we do not consider the

case where 𝑤2 is parallel with an 𝑥𝑖 because such 𝑤2 has measure zero. Note that we can

apply this argument iteratively because the flipping the sign always works and will not create

any inconsistency.

Moreover, we can show that the constraint for 𝛽′
𝑤2 is satisfied by a similar argument as in

proof of Claim (b). This follows from the fact that our construction makes 𝛽𝑤1 = 𝛽𝑤2 . Then

we can follow the same argument as in (b) to show that 𝛽𝑤1 + 𝛽′
𝑤1 · 𝑤1 = 𝛽𝑤2 + 𝛽′

𝑤2 · 𝑤1.

This completes the proof of Claim (c).

In summary, combining Claim (a), (b) and (c) gives that Claim E.3 holds. That is, given
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our training data, the global optimum to the constrained optimization problem of finding the

min-norm solution among functions that fit the training data satisfies 𝛽𝑤 +𝛽′
𝑤 ·𝑤 = 2𝛽𝑔. We

also showed that this claim implies exact extrapolation, i.e., the network’s learned function

𝑓(𝑥) is equal to the true underlying function 𝑔(𝑥) for all 𝑥 ∈ R𝑑. This completes the proof.

E.2.3 Proof of Theorem 7.3

Proof of the asymptotic convergence to extrapolation builds upon our proof of exact extrapo-

lation, i.e., Lemma 7.2. The proof idea is that if the training data distribution has support

at all directions, when the number of samples 𝑛 → ∞, asymptotically the training set will

converge to some imaginary training set that satisfies the condition for exact extrapolation.

Since if training data are close the neural tangent kernels are also close, the predictions or

learned function will converge to a function that achieves perfect extrapolation, that is, the

true underlying function.

Asymptotic convergence of data sets. We first show the training data converge to a data

set that satisfies the exact extrapolation condition in Lemma 7.2. Suppose training data

{𝑥𝑖}𝑛
𝑖=1 are sampled from a distribution whose support contains a connected set 𝒮 that

intersects all directions, i.e., for any non-zero 𝑤 ∈ R𝑑, there exists 𝑘 > 0 so that 𝑘𝑤 ∈ 𝒮.

Let us denote by 𝒮 the set of datasets that satisfy the condition in Lemma 7.2. In fact,

we will use a relaxed condition in the proof of Lemma 7.2 (Lemma 7.2 in the main text uses

a stricter condition for simplicity of exposition). Given a general dataset 𝑋 and a dataset

𝑆 ∈ 𝒮 of the same size 𝑛, let 𝜎(𝑋,𝑆) denote a matching of their data points, i.e., 𝜎 outputs

a sequence of pairs

𝜎(𝑋,𝑆)𝑖 = (𝑥𝑖, 𝑠𝑖) for 𝑖 ∈ [𝑛]

𝑠.𝑡. 𝑋 = {𝑥𝑖}𝑛
𝑖=1

𝑆 = {𝑠𝑖}𝑛
𝑖=1

Let ℓ : R𝑑 × R𝑑 → R be the 𝑙2 distance that takes in a pair of points. We then define

the distance between the datasets 𝑑(𝑋,𝑆) as the minimum sum of 𝑙2 distances of their data
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points over all possible matching.

𝑑(𝑋,𝑆) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

𝜎

𝑛∑︀
𝑖=1

ℓ (𝜎 (𝑋,𝑆)𝑖) |𝑋| = |𝑆| = 𝑛

∞ |𝑋| ≠ |𝑆|

We can then define a “closest distance to perfect dataset” function 𝒟* : 𝒳 → R which

maps a dataset 𝑋 to the minimum distance of 𝑋 to any dataset in 𝒮

𝒟* (𝑋) = min
𝑆∈𝒮

𝑑 (𝑋,𝑆)

It is easy to see that for any dataset 𝑋 = {𝑥𝑖}𝑛
𝑖=1, 𝒟* (𝑋) can be bounded by the

minimum of the closest distance to perfect dataset 𝒟* of sub-datasets of 𝑋 of size 2𝑑.

𝒟* ({𝑥𝑖}𝑛
𝑖=1) ≤

⌊𝑛/2𝑑⌋
min
𝑘=1

𝒟*
(︁
{𝑥𝑗}𝑘*2𝑑

𝑗=(𝑘−1)*2𝑑+1

)︁
(E.57)

This is because for any 𝑆 ∈ 𝒮, and any 𝑆 ⊆ 𝑆′, we must have 𝑆′ ∈ 𝒮 because a dataset

satisfies exact extrapolation condition as long as it contains some key points. Thus, adding

more data will not hurt, i.e., for any 𝑋1 ⊆ 𝑋2, we always have

𝒟* (𝑋1) ≤ 𝒟* (𝑋2)

Now let us denote by 𝑋𝑛 a random dataset of size 𝑛 where each 𝑥𝑖 ∈ 𝑋𝑛 is sampled

from the training distribution. Recall that our training data {𝑥𝑖}𝑛
𝑖=1 are sampled from a

distribution whose support contains a connected set 𝒮* that intersects all directions, i.e., for

any non-zero 𝑤 ∈ R𝑑, there exists 𝑘 > 0 so that 𝑘𝑤 ∈ 𝒮*. It follows that for a random

dataset 𝑋2𝑑 of size 2𝑑, the probability that 𝒟*(𝑋2𝑑) > 𝜖 happens is less than 1 for any

𝜖 > 0.

First there must exist 𝑆0 = {𝑠𝑖}2𝑑
𝑖=1 ∈ 𝒮 of size 2𝑑, e.g., orthogonal basis and their

opposite vectors. Observe that if we scale any 𝑠𝑖 by 𝑘 > 0, the resulting dataset is still in 𝒮

by the definition of 𝒮 . We denote the set of datasets where we are allowed to scale elements
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of 𝑆0 by 𝒮0. It follows that

P (𝒟*(𝑋2𝑑) > 𝜖) = P
(︂

min
𝑆∈𝒮

𝑑 (𝑋2𝑑,𝑆) > 𝜖
)︂

≤ P
(︂

min
𝑆∈𝒮0

𝑑 (𝑋2𝑑,𝑆) > 𝜖
)︂

= P
(︃

min
𝑆∈𝒮0

min
𝜎

𝑛∑︁
𝑖=1

ℓ (𝜎 (𝑋2𝑑,𝑆)𝑖) > 𝜖

)︃

= 1 − P
(︃

min
𝑆∈𝒮0

min
𝜎

𝑛∑︁
𝑖=1

ℓ (𝜎 (𝑋2𝑑,𝑆)𝑖) ≤ 𝜖

)︃

≤ 1 − P
(︂

min
𝑆∈𝒮0

min
𝜎

𝑛max
𝑖=1

ℓ (𝜎 (𝑋2𝑑,𝑆)𝑖) ≤ 𝜖
)︂

≤ 𝛿 < 1

where we denote the bound of P (𝒟*(𝑋2𝑑) > 𝜖) by 𝛿 < 1, and the last step follows from

P
(︂

min
𝑆∈𝒮0

min
𝜎

𝑛max
𝑖=1

ℓ (𝜎 (𝑋2𝑑,𝑆)𝑖) ≤ 𝜖
)︂
> 0

which further follows from the fact that for any 𝑠𝑖 ∈ 𝒮0, by the assumption on training

distribution, we can always find 𝑘 > 0 so that 𝑘𝑠𝑖 ∈ 𝒮*, a connected set in the support of

training distribution. By the connectivity of support 𝒮*, 𝑘𝑠𝑖 cannot be an isolated point in

𝒮*, so for any 𝜖 > 0, we must have

∫︁
‖𝑥−𝑘𝑠𝑖‖≤𝜖,𝑥∈𝒮*

𝑓𝑋(𝑥)d𝑥 > 0
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Hence, we can now apply (E.57) to bound 𝒟*(𝑋𝑛). Given any 𝜖 > 0, we have

P (𝒟*(𝑋𝑛) > 𝜖) = 1 − P (𝒟*(𝑋𝑛) ≤ 𝜖)

≤ 1 − P
(︃

⌊𝑛/2𝑑⌋
min
𝑘=1

𝒟*
(︁
{𝑥𝑗}𝑘*2𝑑

𝑗=(𝑘−1)*2𝑑+1

)︁
≤ 𝜖

)︃

≤ 1 −

⎛⎝1 −
⌊𝑛/2𝑑⌋∏︁

𝑘=1
P
(︁
𝒟*

(︁
{𝑥𝑗}𝑘*2𝑑

𝑗=(𝑘−1)*2𝑑+1

)︁
> 𝜖

)︁⎞⎠
=

⌊𝑛/2𝑑⌋∏︁
𝑘=1

P
(︁
𝒟*

(︁
{𝑥𝑗}𝑘*2𝑑

𝑗=(𝑘−1)*2𝑑+1

)︁
> 𝜖

)︁
≤ 𝛿⌊𝑛/2𝑑⌋

Here 𝛿 < 1. This implies 𝒟*(𝑋𝑛) 𝑝−→ 0, i.e.,

lim
𝑛→∞

P (𝒟*(𝑋𝑛) > 𝜖) = 0 ∀𝜖 > 0 (E.58)

(E.58) says as the number of training samples 𝑛 → ∞, our training set will converge in

probability to a dataset that satisfies the requirement for exact extrapolation.

Asymptotic convergence of predictions. Let NTK(𝑥,𝑥′) : R𝑑 × R𝑑 → R denote the

neural tangent kernel for a two-layer ReLU MLP. It is easy to see that if 𝑥 → 𝑥*, then

NTK(𝑥, ·) → NTK(𝑥*, ·) (Arora et al. [2019c]). Let NTKtrain denote the 𝑛 × 𝑛 kernel

matrix for training data.

We have shown that our training set converges to a perfect data set that satisfies conditions

of exact extrapolation. Moreover, note that our training set will only have a finite number of

(not increase with 𝑛) 𝑥𝑖 that are not precisely the same as those in a perfect dataset. This

is because a perfect data only contains a finite number of key points and the other points

can be replaced by any other points while still being a perfect data set. Thus, we have

NTKtrain → 𝑁*, where 𝑁* is the 𝑛× 𝑛 NTK matrix for some perfect data set.

Because neural tangent kernel is positive definite, we have NTK−1
train → 𝑁*−1 . Recall
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that for any 𝑥 ∈ R𝑑, the prediction of NTK is

𝑓NTK(𝑥) = (NTK(𝑥,𝑥1), ...,NTK(𝑥,𝑥𝑛)) · NTK−1
train𝑌 ,

where NTKtrain is the 𝑛×𝑛 kernel for training data, NTK(𝑥,𝑥𝑖) is the kernel value between

test data 𝑥 and training data 𝑥𝑖, and 𝑌 is training labels.

Similarly, we have (NTK(𝑥,𝑥1), ...,NTK(𝑥,𝑥𝑛)) → (NTK(𝑥,𝑥*
1), ...,NTK(𝑥,𝑥*

𝑛)),

where 𝑥*
𝑖 is a perfect data set that our training set converges to. Combining this with

NTK−1
train → 𝑁*−1 gives

𝑓NTK
𝑝−→ 𝑓 *

NTK = 𝑔,

where 𝑓NTK is the function learned using our training set, and 𝑓 *
NTK is that learned using a

perfect data set, which is equal to the true underlying function 𝑔. This completes the proof.

E.2.4 Proof of Corollary 8.1

In order for GNN with linear aggregations

ℎ(𝑘)
𝑢 =

∑︁
𝑣∈𝒩 (𝑢)

MLP(𝑘)
(︂
ℎ(𝑘)

𝑢 , ℎ(𝑘)
𝑣 ,𝑥(𝑢,𝑣)

)︂
,

ℎ𝐺 = MLP(𝐾+1)
(︂ ∑︁

𝑢∈𝐺

ℎ(𝐾)
𝑢

)︂
,

to extrapolate in the maximum degree task, it must be able to simulate the underlying

function

ℎ𝐺 = max
𝑢∈𝐺

∑︁
𝑣∈𝒩 (𝑢)

1

Because the max function cannot be decomposed as the composition of piece-wise linear

functions, the MLP(𝐾+1) module in GNN must learn a function that is not piece-wise linear

over domains outside the training data range. Since Theorem 7.1 proves for two-layer

overparameterized MLPs, here we also assume MLP(𝐾+1) is a two-layer overparameterized

MLP, although the result can be extended to more layers. It then follows from Theorem 7.1
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that for any input and label (and thus gradient), MLP(𝐾+1) will converge to linear functions

along directions from the origin. Hence, there are always domains where the GNN cannot

learn a correct target function.

E.2.5 Proof of Theorem 8.2

Our proof applies the similar proof techniques for Lemma 7.2 and 7.3 to Graph Neural

Networks (GNNs). This is essentially an analysis of Graph Neural Tangent Kernel (GNTK),

i.e., neural tangent kernel of GNNs.

We first define the simple GNN architecture we will be analyzing, and then present the

GNTK for this architecture. Suppose 𝐺 = (𝑉,𝐸) is an input graph without edge feature,

and 𝑥𝑢 ∈ R𝑑 is the node feature of any node 𝑢 ∈ 𝑉 . Let us consider the simple one-layer

GNN whose input is 𝐺 and output is ℎ𝐺

ℎ𝐺 = 𝑊 (2) max
𝑢∈𝐺

∑︁
𝑣∈𝒩 (𝑢)

𝑊 (1)𝑥𝑣 (E.59)

Note that our analysis can be extended to other variants of GNNs, e.g., with non-empty

edge features, ReLU activation, different neighbor aggregation and graph-level pooling

architectures. We analyze this GNN for simplicity of exposition.

Next, let us calculate the feature map of the neural tangent kernel for this GNN. Recall

from Section E.1 that consider a graph neural network 𝑓(𝜃, 𝐺) : 𝒢 → R where 𝜃 ∈ R𝑚 is

the parameters in the network and 𝐺 ∈ 𝒢 is the input graph. Then the neural tangent kernel

is

𝐻𝑖𝑗 =
⟨
𝜕𝑓(𝜃, 𝐺𝑖)

𝜕𝜃
,
𝜕𝑓(𝜃, 𝐺𝑗)

𝜕𝜃

⟩
,

where 𝜃 are the infinite-dimensional parameters. Hence, the gradients with respect to all

parameters give a natural feature map. Let us denote, for any node 𝑢, the degree of 𝑢 by

ℎ𝑢 =
∑︁

𝑣∈𝒩 (𝑢)
𝑥𝑣 (E.60)
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It then follows from simple computation of derivative that the following is a feature map of

the GNTK for (E.59)

𝜑(𝐺) = 𝑐 ·
(︃

max
𝑢∈𝐺

(︁
𝑤(𝑘)⊤

ℎ𝑢

)︁
,
∑︁
𝑢∈𝐺

I
(︂
𝑢 = arg max

𝑣∈𝐺
𝑤(𝑘)⊤

ℎ𝑣

)︂
· ℎ𝑢, ...

)︃
, (E.61)

where 𝑤(𝑘) ∼ 𝒩 (0, 𝐼), with 𝑘 going to infinity. 𝑐 is a constant, and I is the indicator

function.

Next, given training data {(𝐺𝑖, 𝑦𝑖}𝑛
𝑖=1, let us analyze the function learned by GNN

through the min-norm solution in the GNTK feature space. The same proof technique is

also used in Lemma 7.2 and 7.3.

Recall the assumption that all graphs have uniform node feature, i.e., the learning task

only considers graph structure, but not node feature. We assume 𝑥𝑣 = 1 without loss of

generality. Observe that in this case, there are two directions, positive or negative, for

one-dimensional Gaussian distribution. Hence, we can simplify our analysis by combining

the effect of linear coefficients for 𝑤 in the same direction as in Lemma 7.2 and 7.3.

Similarly, for any 𝑤, let us define 𝛽𝑤 ∈ R as the linear coefficient corresponding to∑︀
𝑢∈𝐺

I
(︂
𝑢 = arg max

𝑣∈𝐺
𝑤⊤ℎ𝑣

)︂
· ℎ𝑢 in RKHS space, and denote by 𝛽′

𝑤 ∈ R the weight for

max
𝑢∈𝐺

(︁
𝑤⊤ℎ𝑢

)︁
. Similarly, we can combine the effect of all 𝛽 in the same direction as in

Lemma 7.2 and 7.3. We define the combined effect with 𝛽𝑤 and 𝛽′
𝑤. This allows us to

reason about 𝑤 with two directions, + and −.

Recall that the underlying reasoning function, maximum degree, is

𝑔(𝐺) = max
𝑢∈𝐺

ℎ𝑢.

We formulate the constrained optimization problem, i.e., min-norm solution in GNTK

feature space that fits all training data, as

min
𝛽,𝛽′

∫︁
𝛽2

𝑤 + 𝛽′2
𝑤dP(𝑤)

𝑠.𝑡.
∫︁ ∑︁

𝑢∈𝐺𝑖

I
(︂
𝑢 = arg max

𝑣∈𝐺
𝑤 · ℎ𝑣

)︂
· 𝛽𝑤 · ℎ𝑢 + max

𝑢∈𝐺𝑖

(𝑤 · ℎ𝑢) · 𝛽′
𝑤dP(𝑤) = max

𝑢∈𝐺𝑖

ℎ𝑢 ∀𝑖 ∈ [𝑛],
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where 𝐺𝑖 is the i-th training graph and 𝑤 ∼ 𝒩 (0, 1). By combining the effect of 𝛽, and

taking the derivative of the Lagrange for the constrained optimization problem and setting

to zero, we get the global optimum solution satisfy the following constraints.

𝛽+ = 𝑐 ·
𝑛∑︁

𝑖=1
𝜆𝑖 ·

∑︁
𝑢∈𝐺𝑖

ℎ𝑢 · I
(︂
𝑢 = arg max

𝑣∈𝐺𝑖

ℎ𝑣

)︂
(E.62)

𝛽− = 𝑐 ·
𝑛∑︁

𝑖=1
𝜆𝑖 ·

∑︁
𝑢∈𝐺𝑖

ℎ𝑢 · I
(︂
𝑢 = arg min

𝑣∈𝐺𝑖

ℎ𝑣

)︂
(E.63)

𝛽′
+ = 𝑐 ·

𝑛∑︁
𝑖=1

𝜆𝑖 · max
𝑢∈𝐺𝑖

ℎ𝑢 (E.64)

𝛽′
− = 𝑐 ·

𝑛∑︁
𝑖=1

𝜆𝑖 · min
𝑢∈𝐺𝑖

ℎ𝑢 (E.65)

max
𝑢∈𝐺𝑖

ℎ𝑢 = 𝛽+ ·
∑︁

𝑢∈𝐺𝑖

I
(︂
𝑢 = arg max

𝑣∈𝐺𝑖

ℎ𝑣

)︂
· ℎ𝑢 + 𝛽′

+ · max
𝑢∈𝐺𝑖

ℎ𝑢 (E.66)

+ 𝛽− ·
∑︁

𝑢∈𝐺𝑖

I
(︂
𝑢 = arg min

𝑣∈𝐺𝑖

ℎ𝑣

)︂
· ℎ𝑢 + 𝛽′

− · min
𝑢∈𝐺𝑖

ℎ𝑢 ∀𝑖 ∈ [𝑛] (E.67)

where 𝑐 is some constant, 𝜆𝑖 are the Lagrange parameters. Note that here we used the fact that

there are two directions +1 and −1. This enables the simplification of Lagrange derivative.

For a similar step-by-step derivation of Lagrange, refer to the proof of Lemma 7.2.

Let us consider the solution 𝛽′
+ = 1 and 𝛽+ = 𝛽− = 𝛽′

− = 0. It is clear that this solution

can fit the training data, and thus satisfies (E.66). Moreover, this solution is equivalent to

the underlying reasoning function, maximum degree, 𝑔(𝐺) = max𝑢∈𝐺 ℎ𝑢.

Hence, it remains to show that, given our training data, there exist 𝜆𝑖 so that the remaining

four constraints are satisfies for this solution. Let us rewrite these constraints as a linear

systems where the variables are 𝜆𝑖

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛽+

𝛽−

𝛽′
+

𝛽′
−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝑐 ·

𝑛∑︁
𝑖=1

𝜆𝑖 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑︀
𝑢∈𝐺𝑖

ℎ𝑢 · I
(︂
𝑢 = arg max

𝑣∈𝐺𝑖

ℎ𝑣

)︂
∑︀

𝑢∈𝐺𝑖
ℎ𝑢 · I

(︂
𝑢 = arg min

𝑣∈𝐺𝑖

ℎ𝑣

)︂
max
𝑢∈𝐺𝑖

ℎ𝑢

min
𝑢∈𝐺𝑖

ℎ𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(E.68)

By standard theory of linear systems, there exist 𝜆𝑖 to solve (E.68) if there are at least

226



four training data 𝐺𝑖 whose following vectors linear independent

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑︀
𝑢∈𝐺𝑖

ℎ𝑢 · I
(︂
𝑢 = arg max

𝑣∈𝐺𝑖

ℎ𝑣

)︂
∑︀

𝑢∈𝐺𝑖
ℎ𝑢 · I

(︂
𝑢 = arg min

𝑣∈𝐺𝑖

ℎ𝑣

)︂
max
𝑢∈𝐺𝑖

ℎ𝑢

min
𝑢∈𝐺𝑖

ℎ𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max
𝑢∈𝐺𝑖

ℎ𝑢 ·𝑁max
𝑖

min
𝑢∈𝐺𝑖

ℎ𝑢 ·𝑁min
𝑖

max
𝑢∈𝐺𝑖

ℎ𝑢

min
𝑢∈𝐺𝑖

ℎ𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(E.69)

Here, 𝑁max
𝑖 denotes the number of nodes that achieve the maximum degree in the graph

𝐺𝑖, and 𝑁min
𝑖 denotes the number of nodes that achieve the min degree in the graph 𝐺𝑖.

By the assumption of our training data that there are at least four 𝐺𝑖 ∼ 𝒢 with linearly

independent (E.69). Hence, our simple GNN learns the underlying function as desired.

This completes the proof.

E.2.6 Proof of Lemma E.1

Let 𝑊 denote the span of the feature maps of training data 𝑥𝑖, i.e.

𝑊 = span (𝜑 (𝑥1) , 𝜑 (𝑥2) , ..., 𝜑 (𝑥𝑛)) .

Then we can decompose the coordinates of 𝑓NTK in the RKHS space, 𝛽NTK, into a vector 𝛽0

for the component of 𝑓NTK in the span of training data features 𝑊 , and a vector 𝛽1 for the

component in the orthogonal complement 𝑊⊤, i.e.,

𝛽NTK = 𝛽0 + 𝛽1.

First, note that since 𝑓NTK must be able to fit the training data (NTK is a universal kernel as

we will discuss next), i.e.,

𝜑(𝑥𝑖)⊤𝛽NTK = 𝑦𝑖.
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Thus, we have 𝜑(𝑥𝑖)⊤𝛽0 = 𝑦𝑖. Then, 𝛽0 is uniquely determined by the kernel regression

solution with respect to the neural tangent kernel

𝑓NTK(𝑥) =
(︁⟨
𝜑(𝑥), 𝜑(𝑥1)

⟩
, ...,

⟨
𝜑(𝑥), 𝜑(𝑥𝑛)

⟩)︁
· NTK−1

train𝑌 ,

where NTKtrain is the 𝑛 × 𝑛 kernel for training data,
⟨
𝜑(𝑥), 𝜑(𝑥𝑖)

⟩
is the kernel between

test data 𝑥 and training data 𝑥𝑖, and 𝑌 is training labels.

The kernel regression solution 𝑓NTK is uniquely determined because the neural tangent

kernel NTKtrain is positive definite assuming no two training data are parallel, which can

be enforced with a bias term [Du et al., 2019c]. In any case, the solution is a min-norm by

pseudo-inverse.

Moreover, a unique kernel regression solution 𝑓NTK that spans the training data features

corresponds to a unique representation in the RKHS space 𝛽0.

Since 𝛽0 and 𝛽1 are orthogonal, we also have the following

‖𝛽NTK‖2
2 = ‖𝛽0 + 𝛽1‖2

2 = ‖𝛽0‖2
2 + ‖𝛽1‖2

2.

This implies the norm of 𝛽NTK is at least as large as the norm of any 𝛽 such that 𝜑(𝑥𝑖)⊤𝛽NTK =

𝑦𝑖. Moreover, observe that the solution to kernel regression (E.4) is in the feature span of

training data, given the kernel matrix for training data is full rank.

𝑓NTK(𝑥) =
(︁⟨
𝜑(𝑥), 𝜑(𝑥1)

⟩
, ...,

⟨
𝜑(𝑥), 𝜑(𝑥𝑛)

⟩)︁
· NTK−1

train𝑌 .

Since 𝛽1 is for the component of 𝑓NTK in the orthogonal complement of training data feature

span, we must have 𝛽1 = 0. It follows that 𝛽NTK is equivalent to

min
𝛽

‖𝛽‖2

s.t. 𝜑(𝑥𝑖)⊤𝛽 = 𝑦𝑖, for 𝑖 = 1, ..., 𝑛.

as desired.
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E.2.7 Proof of Lemma E.2

We first compute the neural tangent kernel NTK(𝑥,𝑥′) for a two-layer multi-layer perceptron

(MLP) with ReLU activation function, and then show that it can be induced by the feature

space 𝜑(𝑥) specified in the lemma so that NTK(𝑥,𝑥′) =
⟨
𝜑(𝑥), 𝜑(𝑥′)

⟩
.

Recall that Jacot et al. [2018] have derived the general framework for computing the

neural tangent kernel of a neural network with general architecture and activation function.

This framework is also described in Arora et al. [2019c], Du et al. [2019b], which, in

addition, compute the exact kernel formula for convolutional networks and Graph Neural

Networks, respectively. Following the framework in Jacot et al. [2018] and substituting the

general activation function 𝜎 with ReLU gives the kernel formula for a two-layer MLP with

ReLU activation. This has also been described in several previous works [Du et al., 2019c,

Chizat et al., 2019, Bietti and Mairal, 2019].

Below we describe the general framework in Jacot et al. [2018] and Arora et al. [2019c].

Let 𝜎 denote the activation function. The neural tangent kernel for an ℎ-layer multi-

layer perceptron can be recursively defined via a dynamic programming process. Here,

Σ(𝑖) : R𝑑 × R𝑑 → R for 𝑖 = 0...ℎ is the covariance for the 𝑖-th layer.

Σ(0)(𝑥,𝑥′) = 𝑥⊤𝑥′,

∧(𝑖) (𝑥,𝑥′) =

⎛⎜⎝ Σ(𝑖−1)(𝑥,𝑥) Σ(𝑖−1)(𝑥,𝑥′)

Σ(𝑖−1)(𝑥′,𝑥) Σ(𝑖−1)(𝑥′,𝑥′)

⎞⎟⎠ ,
Σ(𝑖)(𝑥,𝑥′) = 𝑐 · E

𝑢,𝑣∼𝒩 (0,∧(𝑖))
[𝜎(𝑢)𝜎(𝑣)] .

The derivative covariance is defined similarly:

Σ̇(𝑖)(𝑥,𝑥′) = 𝑐 · E
𝑢,𝑣∼𝒩 (0,∧(𝑖))

[�̇�(𝑢)�̇�(𝑣)] .

Then the neural tangent kernel for an ℎ-layer network is defined as

NTK(ℎ−1)(𝑥,𝑥′) =
ℎ∑︁

𝑖=1

(︃
Σ(𝑖−1)(𝑥,𝑥′) ·

ℎ∏︁
𝑘=𝑖

Σ̇(𝑘)(𝑥,𝑥′)
)︃
,
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where we let Σ̇(ℎ)(𝑥,𝑥′) = 1 for the convenience of notations.

We compute the explict NTK formula for a two-layer MLP with ReLU activation

function by following this framework and substituting the general activation function with

ReLU, i.e. 𝜎(𝑎) = max(0, 𝑎) = 𝑎 · I(𝑎 ≥ 0) and �̇�(𝑎) = I(𝑎 ≥ 0).

NTK(1)(𝑥,𝑥′) =
2∑︁

𝑖=1

(︃
Σ(𝑖−1)(𝑥,𝑥′) ·

ℎ∏︁
𝑘=𝑖

Σ̇(𝑘)(𝑥,𝑥′)
)︃

= Σ(0)(𝑥,𝑥′) · Σ̇(1)(𝑥,𝑥′) + Σ(1)(𝑥,𝑥′)

So we can get the NTK via Σ(1)(𝑥,𝑥′) and Σ̇(1)(𝑥,𝑥′), Σ(0)(𝑥,𝑥′). Precisely,

Σ(0)(𝑥,𝑥′) = 𝑥⊤𝑥′,

∧(1) (𝑥,𝑥′) =

⎛⎜⎝ 𝑥⊤𝑥 𝑥⊤𝑥′

𝑥′⊤𝑥 𝑥′⊤𝑥′

⎞⎟⎠ =

⎛⎜⎝ 𝑥

𝑥′

⎞⎟⎠ ·
(︂

𝑥 𝑥′
)︂
,

Σ(1)(𝑥,𝑥′) = 𝑐 · E
𝑢,𝑣∼𝒩 (0,∧(1))

[𝑢 · I(𝑢 ≥ 0) · 𝑣 · I(𝑣 ≥ 0)] .

To sample from 𝒩 (0,∧(1)), we let 𝐿 be a decomposition of ∧(1), such that ∧(1) = 𝐿𝐿⊤.

Here, we can see that 𝐿 = (𝑥,𝑥′)⊤. Thus, sampling from 𝒩 (0,∧(1)) is equivalent to first

sampling 𝑤 ∼ 𝒩 (0, 𝐼), and output

𝐿𝑤 = 𝑤⊤(𝑥,𝑥′).

Then we have the equivalent sampling (𝑢, 𝑣) = (𝑤⊤𝑥,𝑤⊤𝑥′). It follows that

Σ(1)(𝑥,𝑥′) = 𝑐 · E
𝑤∼𝒩 (0,𝐼)

[︁
𝑤⊤𝑥 · I

(︁
𝑤⊤𝑥 ≥ 0

)︁
· 𝑤⊤𝑥′ · I

(︁
𝑤⊤𝑥′ ≥ 0

)︁]︁

It follows from the same reasoning that

Σ̇(1)(𝑥,𝑥′) = 𝑐 · E
𝑤∼𝒩 (0,𝐼)

[︁
I
(︁
𝑤⊤𝑥 ≥ 0

)︁
· I
(︁
𝑤⊤𝑥′ ≥ 0

)︁]︁
.
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The neural tangent kernel for a two-layer MLP with ReLU activation is then

NTK(1)(𝑥,𝑥′) = Σ(0)(𝑥,𝑥′) · Σ̇(1)(𝑥,𝑥′) + Σ(1)(𝑥,𝑥′)

= 𝑐 · E
𝑤∼𝒩 (0,𝐼)

[︁
𝑥⊤𝑥′ · I

(︁
𝑤⊤𝑥 ≥ 0

)︁
· I
(︁
𝑤⊤𝑥′ ≥ 0

)︁]︁
+ 𝑐 · E

𝑤∼𝒩 (0,𝐼)

[︁
𝑤⊤𝑥 · I

(︁
𝑤⊤𝑥 ≥ 0

)︁
· 𝑤⊤𝑥′ · I

(︁
𝑤⊤𝑥′ ≥ 0

)︁]︁
.

Next, we use the kernel formula to compute a feature map for a two-layer MLP with ReLU

activation function. Recall that by definition a valid feature map must satisfy the following

condition

NTK(1)(𝑥,𝑥′) =
⟨
𝜑(𝑥), 𝜑(𝑥′)

⟩
It is easy to see that the way we represent our NTK formula makes it easy to find such a

decomposition. The following infinite-dimensional feature map would satisfy the require-

ment because the inner product of 𝜑(𝑥) and 𝜑(𝑥′) for any 𝑥, 𝑥′ would be equivalent to the

expected value in NTK, after we integrate with respect to the density function of 𝑤.

𝜑 (𝑥) = 𝑐′
(︁
𝑥 · I

(︁
𝑤(𝑘)⊤

𝑥 ≥ 0
)︁
,𝑤(𝑘)⊤

𝑥 · I
(︁
𝑤(𝑘)⊤

𝑥 ≥ 0
)︁
, ...
)︁
,

where 𝑤(𝑘) ∼ 𝒩 (0, 𝐼), with 𝑘 going to infinity. 𝑐′ is a constant, and I is the indicator

function. Note that here the density of features of 𝜑(𝑥) is determined by the density of 𝑤,

i.e. Gaussian.
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E.3 Experimental Details

In this section, we describe the model, data and training details for reproducing our experi-

ments. Our experiments support all of our theoretical claims and insights.

Overview. We classify our experiments into the following major categories, each of which

includes several ablation studies:

1) Learning tasks where the target functions are simple nonlinear functions in various

dimensions and training/test distributions: quadratic, cosine, square root, and l1 norm

functions, with MLPs with a wide range of hyper-parameters.

This validates our implications on MLPs generally cannot extrapolate in tasks with

nonlinear target functions, unless the nonlinear function is directionally linear out-

of-distribution. In the latter case, the extrapolation error is more sensitive to the

hyper-parameters.

2) Computation of the R-Squared of MLP’s learned functions along (thousands of)

randomly sampled directions in out-of-distribution domain.

This validates Theorem 7.1 and shows the convergence rate is very high in practice,

and often happens immediately out of training range.

3) Learning tasks where the target functions are linear functions with MLPs. These

validate Theorem 7.3 and Lemma 7.2, i.e., MLPs can extrapolate if the underlying

function is linear under conditions on training distribution. This section includes four

ablation studies:

a) Training distribution satisfy the conditions in Theorem 7.3 and cover all direc-

tions, and hence, MLPs extrapolate.

b) Training data distribution is restricted in some directions, e.g., restricted to

be positive/negative/constant in some feature dimensions. This shows when

training distribution is restrictive in directions, MLPs may fail to extrapolate.
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c) Exact extrapolation with infinitely-wide neural networks, i.e., exact computa-

tion with neural tangent kernel (NTK) on the data regime in Lemma 7.2. This

is mainly for theoretical understanding.

4) MLPs with cosine, quadratic, and tanh activation functions.

5) Learning maximum degree of graphs with Graph Neural Networks. Extrapolation on

graph structure, number of nodes, and node features. To show the role of architecture

for extrapolation, we study the following GNN architecture regimes.

a) GNN with graph-level max-pooling and neighbor-level sum-pooling. By The-

orem 8.2, this GNN architecture extrapolates in max degree with appropriate

training data.

b) GNN with graph-level and neighbor-level sum-pooling. By Corollary 8.1, this

default GNN architecture cannot extrapolate in max degree.

To show the importance of training distribution, i.e., graph structure in training set,

we study the following training data regimes.

a) Node features are identical, e.g., 1. In such regimes, our learning tasks only

consider graph structure. We consider training sets sampled from various graph

structure, and find only those satisfy conditions in Theorem 8.2 enables GNNs

with graph-level max-pooling to extrapolate.

b) Node features are spurious and continuous. This also requires extrapolation

on OOD node features. GNNs with graph-level max-pooling with appropriate

training sets also extrapolate to OOD spurious node features.

6) Learning the length of the shortest path between given source and target nodes, with

Graph Neural Networks. Extrapolation on graph structure, number of nodes, and edge

weights. We study the following regimes.

a) Continuous features. Edge and node features are real values. This regime

requires extrapolating to graphs with edge weights out of training range.
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Test graphs are all sampled from the “general graphs” family with a diverse range of

structure. Regarding the type of training graph structure, we consider two schemes.

Both schemes show a U-shape curve of extrapolation error with respect to the sparsity

of training graphs.

a) Specific graph structure: path, cycle, tree, expander, ladder, complete graphs,

general graphs, 4-regular graphs.

b) Random graphs with a range of probability 𝑝 of an edge between any two nodes.

Smaller 𝑝 samples sparse graphs and large 𝑝 samples dense graphs.

7) Physical reasoning of the 𝑛-Body problem in the orbit setting with Graph Neural

Networks. We show that GNNs on the original features from previous works fail to

extrapolate to unseen masses and distances. On the other hand, we show extrapolation

can be achieved via an improved representation of the input edge features. We consider

the following extrapolation regimes.

a) Extrapolation on the masses of the objects.

b) Extrapolation on the distances between objects.

We consider the following two input representation schemes to compare the effects of

how representation helps extrapolation.

a) Original features. Following previous works on solving 𝑛-body problem with

GNNs, the edge features are simply set to 0.

b) Improved features. We show although our edge features do not bring in new

information, it helps extrapolation.

E.3.1 Learning Simple Non-Linear Functions

Dataset details. We consider four tasks where the underlying functions are simple non-

linear functions 𝑔 : R𝑑 → R. Given an input 𝑥 ∈ R𝑑, the label is computed by 𝑦 = 𝑔(𝑥) for

all 𝑥. We consider the following four families of simple functions 𝑔.

234



a) Quadratic functions 𝑔(𝑥) = 𝑥⊤𝐴𝑥. In each dataset, we randomly sample 𝐴. In the

simplest case where 𝐴 = 𝐼 , 𝑔(𝑥) = ∑︀𝑑
𝑖=1 𝑥

2
𝑖 .

a) Cosine functions 𝑔(𝑥) = ∑︀𝑑
𝑖=1 cos (2𝜋 · 𝑥𝑖).

c) Square root functions 𝑔(𝑥) = ∑︀𝑑
𝑖=1

√
𝑥𝑖. Here, the domain 𝒳 of 𝑥 is restricted to the

space in R𝑑 with non-negative value in each dimension.

d) L1 norm functions 𝑔(𝑥) = |𝑥|1 = ∑︀𝑑
𝑖=1 |𝑥𝑖|.

We sample each dataset of a task by considering the following parameters

a) The shape and support of training, validation, and test data distributions.

i) Training, validation, and test data are uniformly sampled from a hyper-cube.

Training and validation data are sampled from [−𝑎, 𝑎]𝑑 with 𝑎 ∈ {0.5, 1.0}, i.e.,

each dimension of 𝑥 ∈ R𝑑 is uniformly sampled from [−𝑎, 𝑎]. Test data are

sampled from [−𝑎, 𝑎]𝑑 with 𝑎 ∈ {2.0, 5.0, 10.0}.

ii) Training and validation data are uniformly sampled from a sphere, where every

point has 𝐿2 distance 𝑟 from the origin. We sample 𝑟 from 𝑟 ∈ {0.5, 1.0}. Then,

we sample a random Gaussian vector 𝑞 in R𝑑. We obtain the training or valida-

tion data 𝑥 = 𝑞/‖𝑞‖2 ·𝑟. This corresponds to uniform sampling from the sphere.

Test data are sampled (non-uniformly) from a hyper-ball. We first sample 𝑟

uniformly from [0.0, 2.0], [0.0, 5.0], and [0.0, 10.0]. Then, we sample a ran-

dom Gaussian vector 𝑞 in R𝑑. We obtain the test data 𝑥 = 𝑞/‖𝑞‖2 · 𝑟. This

corresponds to (non-uniform) sampling from a hyper-ball in R𝑑.

b) We sample 20, 000 training data, 1, 000 validation data, and 20, 000 test data.

c) We sample input dimension 𝑑 from {1, 2, 8}.

d) For quadratic functions, we sample the entries of 𝐴 uniformly from [−1, 1].

235



Model and hyperparameter settings. We consider the multi-layer perceptron (MLP)

architecture.

MLP(𝑥) = 𝑊 (𝑑) · 𝜎
(︁
𝑊 (𝑑−1)𝜎

(︁
...𝜎

(︁
𝑊 (1)𝑥

)︁)︁)︁

We search the following hyper-parameters for MLPs

a) Number of layers 𝑑 from {2, 4}.

b) Width of each 𝑊 (𝑘) from {64, 128, 512}.

c) Initialization schemes.

i) The default initialization in PyTorch.

ii) The initialization scheme in neural tangent kernel theory, i.e., we sample entries

of 𝑊 𝑘 from 𝒩 (0, 1) and scale the output after each 𝑊 (𝑘) by
√︁

2
𝑑𝑘

, where 𝑑𝑘 is

the output dimension of 𝑊 (𝑘).

d) Activation function 𝜎 is set to ReLU.

We train the MLP with the mean squared error (MSE) loss, and Adam and SGD optimizer.

We consider the following hyper-parameters for training

a) Initial learning rate from {5𝑒− 2, 1𝑒− 2, 5𝑒− 3, 1𝑒− 3}. Learning rate decays 0.5

for every 50 epochs

b) Batch size from {32, 64, 128}.

c) Weight decay is set to 1𝑒− 5.

d) Number of epochs is set to 250.

Test error and model selection. For each dataset and architecture, training hyper-parameter

setting, we perform model selection via validation set, i.e., we report the test error by select-

ing the epoch where the model achieves the best validation error. Note that our validation

sets always have the same distribution as the training sets.
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We train our models with the MSE loss. Because we sample test data from different

ranges, the mean absolute percentage error (MAPE) loss, which scales the error by the

actual value, better measures the extrapolation performance

MAPE = 1
𝑛

⃒⃒⃒⃒
𝐴𝑖 − 𝐹𝑖

𝐴𝑖

⃒⃒⃒⃒
,

where 𝐴𝑖 is the actual value and 𝐹𝑖 is the predicted value. Hence, in our experiments, we

also report the MAPE.

E.3.2 R-squared for Out-of-distribution Directions

We perform linear regression to fit the predictions of MLPs along randomly sampled

directions in out-of-distribution regions, and compute the R-squared (or 𝑅2) for these

directions. This experiment is to validate Theorem 7.1 and show that the convergence rate

(to a linear function) is very high in practice.

Definition. R-squared, also known as coefficient of determination, assesses how strong

the linear relationship is between input and output variables. The closer R-squared is to 1,

the stronger the linear relationship is, with 1 being perfectly linear.

Datasets and models. We perform the R-squared computation on over 2, 000 combina-

tions of datasets, test/train distributions, and hyper-parameters, e.g., learning rate, batch size,

MLP layer, width, initialization. These are described in Appendix E.3.1.

Computation. For each combination of dataset and model hyper-parameters as described

in Section E.3.1, we save the trained MLP model 𝑓 : R𝑑 → R. For each dataset and model

combination, we then randomly sample 5, 000 directions via Gaussian vectors 𝒩 (0, 𝐼).

For each of these directions 𝑤, we compute the intersection point 𝑥𝑤 of direction 𝑤

and the training data distribution support (specified by a hyper-sphere or hyper-cube; see

Section E.3.1 for details).

We then collect 100 predictions of the trained MLP 𝑓 along direction 𝑤 (assume 𝑤 is
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normalized) with

{︂(︂
𝑥𝑤 + 𝑘 · 𝑟10 · 𝑤

)︂
, 𝑓
(︂

𝑥𝑤 + 𝑘 · 𝑟10 · 𝑤
)︂}︂100

𝑘=0
, (E.70)

where 𝑟 is the range of training data distribution support (see Section E.3.1). We perform

linear regression on these predictions in (E.70), and obtain the R-squared.

Results. We obtain the R-squared for each combination of dataset, model and training

setting, and randomly sampled direction. For the tasks of learning the simple non-linear

functions, we confirm that more than 96% of the R-squared results are above 0.99. This

empirically confirms Theorem 7.1 and shows that the convergence rate is in fact fast in

practice. Along most directions, MLP’s learned function becomes linear immediately out of

the training data support.

E.3.3 Learning Linear Functions

Dataset details. We consider the tasks where the underlying functions are linear 𝑔 : R𝑑 → R.

Given an input 𝑥 ∈ R𝑑, the label is computed by 𝑦 = 𝑔(𝑥) = 𝐴𝑥 for all 𝑥. For each dataset,

we sample the following parameters

a) We sample 10, 000 training data, 1, 000 validation data, and 2, 000 test data.

b) We sample input dimension 𝑑 from {1, 2, 32}.

c) We sample entries of 𝐴 uniformly from [−𝑎, 𝑎], where we sample 𝑎 ∈ {5.0, 10.0}.

d) The shape and support of training, validation, and test data distributions.

i) Training, validation, and test data are uniformly sampled from a hyper-cube.

Training and validation data are sampled from [−𝑎, 𝑎]𝑑 with 𝑎 ∈ {5.0, 10.0},

i.e., each dimension of 𝑥 ∈ R𝑑 is uniformly sampled from [−𝑎, 𝑎]. Test data are

sampled from [−𝑎, 𝑎]𝑑 with 𝑎 ∈ {20.0, 50.0}.

ii) Training and validation data are uniformly sampled from a sphere, where every

point has𝐿2 distance 𝑟 from the origin. We sample 𝑟 from 𝑟 ∈ {5.0, 10.0}. Then,
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we sample a random Gaussian vector 𝑞 in R𝑑. We obtain the training or valida-

tion data 𝑥 = 𝑞/‖𝑞‖2 ·𝑟. This corresponds to uniform sampling from the sphere.

Test data are sampled (non-uniformly) from a hyper-ball. We first sample 𝑟

uniformly from [0.0, 20.0] and [0.0, 50.0],. Then, we sample a random Gaussian

vector 𝑞 in R𝑑. We obtain the test data 𝑥 = 𝑞/‖𝑞‖2 · 𝑟. This corresponds to

(non-uniform) sampling from a hyper-ball in R𝑑.

e) We perform ablation study on how the training distribution support misses directions.

The test distributions remain the same as in d).

i) We restrict the first dimension of any training data 𝑥𝑖 to a fixed number 0.1, and

randomly sample the remaining dimensions according to d).

ii) We restrict the first 𝑘 dimensions of any training data 𝑥𝑖 to be positive. For input

dimension 32, we only consider the hyper-cube training distribution, where we

sample the first 𝑘 dimensions from [0, 𝑎] and sample the remaining dimensions

from [−𝑎, 𝑎]. For input dimensions 1 and 2, we consider both hyper-cube and

hyper-sphere training distribution by performing rejection sampling. For input

dimension 2, we consider 𝑘 from {1, 2}. For input dimension 32, we consider 𝑘

from {1, 16, 32}.

iii) We restrict the first 𝑘 dimensions of any training data 𝑥𝑖 to be negative. For input

dimension 32, we only consider the hyper-cube training distribution, where we

sample the first 𝑘 dimensions from [−𝑎, 0] and sample the remaining dimensions

from [−𝑎, 𝑎]. For input dimensions 1 and 2, we consider both hyper-cube and

hyper-sphere training distribution by performing rejection sampling. For input

dimension 2, we consider 𝑘 from {1, 2}. For input dimension 32, we consider 𝑘

from {1, 16, 32}.

Model and hyperparameter settings. For the regression task, we search the same set of

hyper-parameters as those in simple non-linear functions (Section E.3.1).We report the test

error with the same validation procedure as in Section E.3.1.
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Exact computation with neural tangent kernel Our experiments with MLPs validate

Theorem 7.3 asymptotic extrapolation for neural networks trained in regular regimes. Here,

we also validate Lemma 7.2, exact extrapolation with finite data regime, by training an

infinitely-wide neural network. That is, we directly perform the kernel regression with the

neural tangent kernel (NTK). This experiment is mainly of theoretical interest.

We sample the same test set as in our experiments with MLPs. For training set, we

sample 2𝑑 training examples according to the conditions in Lemma 7.2. Specifically, we

first sample an orthogonal basis and their opposite vectors 𝑋 = {𝑒𝑖,−𝑒𝑖}𝑑
𝑖=1. We then

randomly sample 100 orthogonal transform matrices 𝑄 via the QR decomposition. Our

training samples are 𝑄𝑋 , i.e., multiply each point in 𝑋 by 𝑄. This gives 100 training sets

with 2𝑑 data points satisfying the condition in Lemma 7.2.

We perform kernel regression on these training sets using a two-layer neural tangent

kernel (NTK). Our code for exact computation of NTK is adapted from Arora et al. [2020],

Novak et al. [2020]. We verify that the test losses are all precisely 0, up to machine precision.

This empirically confirms Lemma 7.2.

Note that due to the differences in hyper-parameter settings in different implementations

of NTK, to reproduce our experiments and achieve zero test error, the implementation

by Arora et al. [2020] is assumed.

E.3.4 MLPs with cosine, quadratic, and tanh Activation

This section describes the experimental settings for extrapolation experiments for MLPs

with cosine, quadratic, and tanh activation functions. We train MLPs to learn the following

functions:

a) Quadratic function 𝑔(𝑥) = 𝑥⊤𝐴𝑥, where 𝐴 is a randomly sampled matrix.

b) Cosine function 𝑔(𝑥) = ∑︀𝑑
𝑖=1 cos(2𝜋 · 𝑥𝑖).

c) Hyperbolic tangent function 𝑔(𝑥) = ∑︀𝑑
𝑖=1 tanh(𝑥𝑖).

d) Linear function 𝑔(𝑥) = 𝑊𝑥 + 𝑏.
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Dataset details. We use 20,000 training, 1,000 validation, and 20,000 test data. For

quadratic, we sample input dimension 𝑑 from {1, 8}, training and validation data from

[−1, 1]𝑑, and test data from [−5, 5]𝑑. For cosine, we sample input dimension 𝑑 from {1, 2},

training and validation data from [−100, 100]𝑑, and test data from [−200, 200]𝑑. For tanh,

we sample input dimension 𝑑 from {1, 8}, training and validation data from [−100, 100]𝑑,

and test data from [−200, 200]𝑑. For linear, we use a subset of datasets from Appendix E.3.3:

1 and 8 input dimensions with hyper-cube training distributions.

Model and hyperparameter settings. We use the same hyperparameters from Appendix E.3.1,

except we fix the batch size to 128, as the batch size has minimal impact on models. MLPs

with cos activation is hard to optimize, so we only report models with training MAPE less

than 1.

E.3.5 Max Degree

Dataset details. We consider the task of finding the maximum degree on a graph. Given

any input graph 𝐺 = (𝑉,𝐸), the label is computed by the underlying function 𝑦 = 𝑔(𝐺) =

max
𝑢∈𝐺

∑︀
𝑣∈𝒩 (𝑢) 1. For each dataset, we sample the graphs and node features with the following

parameters

a) Graph structure for training and validation sets. For each dataset, we consider one of

the following graph structure: path graphs, cycles, ladder graphs, 4-regular random

graphs, complete graphs, random trees, expanders (here we use random graphs with

𝑝 = 0.8 as they are expanders with high probability), and general graphs (random

graphs with 𝑝 = 0.1 to 0.9 with equal probability for a broad range of graph structure).

We use the networkx library for sampling graphs.

b) Graph structure for test set. We consider the general graphs (random graphs with

𝑝 = 0.1 to 0.9 with equal probability).

c) The number of vertices of graphs |𝑉 | for training and validation sets are sampled

uniformly from [20...30]. The number of vertices of graphs |𝑉 | for test set is sampled

uniformly from [50..100].
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d) We consider two schemes for node features.

i) Identical features. All nodes in training, validation and set sets have uniform

feature 1.

ii) Spurious (continuous) features. Node features in training and validation sets

are sampled uniformly from [−5.0, 5.0]3, i.e., a three-dimensional vector where

each dimension is sampled from [−5.0, 5.0]. There are two schemes for test sets,

in the first case we do not extrapolate node features, so we sample node features

uniformly from [−5.0, 5.0]3. In the second case we extrapolate node features,

we sample node features uniformly from [−10.0, 10.0]3.

e) We sample 5, 000 graphs for training, 1, 000 graphs for validation, and 2, 500 graphs

for testing.

Model and hyperparameter settings. We consider the following Graph Neural Network

(GNN) architecture. Given an input graph 𝐺, GNN learns the output ℎ𝐺 by first iteratively

aggregating and transforming the neighbors of all node vectors ℎ(𝑘)
𝑢 (vector for node 𝑢 in

layer 𝑘), and perform a max or sum-pooling over all node features ℎ𝑢 to obtain ℎ𝐺. Formally,

we have

ℎ(𝑘)
𝑢 =

∑︁
𝑣∈𝒩 (𝑢)

MLP(𝑘)
(︁
ℎ(𝑘−1)

𝑣 , ℎ(𝑘−1)
𝑢

)︁
, ℎ𝐺 = MLP(𝐾+1)

(︁
graph-pooling{ℎ(𝐾)

𝑢 : 𝑢 ∈ 𝐺}
)︁
.

(E.71)

Here, 𝒩 (𝑢) denotes the neighbors of 𝑢, 𝐾 is the number of GNN iterations, and graph-

pooling is a hyper-parameter with choices as max or sum. ℎ(0)
𝑢 is the input node feature of

node 𝑢. We search the following hyper-parameters for GNNs

a) Number of GNN iterations 𝐾 is 1.

b) Graph pooling is from max or sum.

c) Width of all MLPs are set to 256.
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d) The number of layers for MLP(𝑘) with 𝑘 = 1..𝐾 are set to 2. The number of layers

for MLP(𝐾+1) is set to 1.

We train the GNNs with the mean squared error (MSE) loss, and Adam and SGD

optimizer. We search the following hyper-parameters for training

a) Initial learning rate is set to 0.01.

b) Batch size is set to 64.

c) Weight decay is set to 1𝑒− 5.

d) Number of epochs is set to 300 for graphs with continuous node features, and 100 for

graphs with uniform node features.

Test error and model selection. For each dataset and architecture, training hyper-parameter

setting, we perform model selection via validation set, i.e., we report the test error by select-

ing the epoch where the model achieves the best validation error. Note that our validation

sets always have the same distribution as the training sets. Again, we report the MAPE for

test error as in MLPs.

E.3.6 Shortest Path

Dataset details. We consider the task of finding the length of the shortest path on a graph,

from a given source to target nodes. Given any graph 𝐺 = (𝑉,𝐸), the node features, besides

regular node features, encode whether a node is source 𝑠, and whether a node is target 𝑡. The

edge features are a scalar representing the edge weight. For unweighted graphs, all edge

weights are 1. Then the label 𝑦 = 𝑔(𝐺) is the length of the shortest path from 𝑠 to 𝑡 on 𝐺.

For each dataset, we sample the graphs and node, edge features with the following

parameters

a) Graph structure for training and validation sets. For each dataset, we consider one of

the following graph structure: path graphs, cycles, ladder graphs, 4-regular random

graphs, complete graphs, random trees, expanders (here we use random graphs with
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𝑝 = 0.6 which are expanders with high probability), and general graphs (random

graphs with 𝑝 = 0.1 to 0.9 with equal probability for a broad range of graph structure).

We use the networkx library for sampling graphs.

b) Graph structure for test set. We consider the general graphs (random graphs with

𝑝 = 0.1 to 0.9 with equal probability).

c) The number of vertices of graphs |𝑉 | for training and validation sets are sampled

uniformly from [20...40]. The number of vertices of graphs |𝑉 | for test set is sampled

uniformly from [50..70].

d) We consider the following scheme for node and edge features. All edges have

continuous weights. Edge weights for training and validation graphs are sampled from

[1.0, 5.0]. There are two schemes for test sets, in the first case we do not extrapolate

edge weights, so we sample edge weights uniformly from [1.0, 5.0]. In the second

case we extrapolate edge weights, we sample edge weights uniformly from [1.0, 10.0].

All node features are [ℎ, I(𝑣 = 𝑠), I(𝑣 = 𝑡)] with ℎ sampled from [−5.0, 5.0].

e) After sampling a graph and edge weights, we sample source 𝑠 and 𝑡 by randomly

sampling 𝑠, 𝑡 and selecting the first pair 𝑠, 𝑠 whose shortest path involves at most 3

hops. This enables us to solve the task using GNNs with 3 iterations.

f) We sample 10, 000 graphs for training, 1, 000 graphs for validation, and 2, 500 graphs

for testing.

We also consider the ablation study of training on random graphs with different 𝑝. We

consider 𝑝 = 0.05..1.0 and report the test error curve. The other parameters are the same as

described above.

Model and hyperparameter settings. We consider the following Graph Neural Network

(GNN) architecture. Given an input graph 𝐺, GNN learns the output ℎ𝐺 by first iteratively

aggregating and transforming the neighbors of all node vectors ℎ(𝑘)
𝑢 (vector for node 𝑢 in

layer 𝑘), and perform a max or sum-pooling over all node features ℎ𝑢 to obtain ℎ𝐺. Formally,
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we have

ℎ(𝑘)
𝑢 = min

𝑣∈𝒩 (𝑢)
MLP(𝑘)

(︁
ℎ(𝑘−1)

𝑣 , ℎ(𝑘−1)
𝑢 , 𝑤(𝑢,𝑣)

)︁
, ℎ𝐺 = MLP(𝐾+1)

(︂
min
𝑢∈𝐺

ℎ𝑢

)︂
. (E.72)

Here, 𝒩 (𝑢) denotes the neighbors of 𝑢,𝐾 is the number of GNN iterations, and for neighbor

aggregation we run both min and sum. ℎ(0)
𝑢 is the input node feature of node 𝑢. 𝑤(𝑢,𝑣) is the

input edge feature of edge (𝑢, 𝑣). We search the following hyper-parameters for GNNs

a) Number of GNN iterations 𝐾 is set to 3.

b) Graph pooling is set to min.

c) Neighobr aggregation is selected from min and sum.

d) Width of all MLPs are set to 256.

e) The number of layers for MLP(𝑘) with 𝑘 = 1..𝐾 are set to 2. The number of layers

for MLP(𝐾+1) is set to 1.

We train the GNNs with the mean squared error (MSE) loss, and Adam and SGD

optimizer. We consider the following hyper-parameters for training

a) Initial learning rate is set to 0.01.

b) Batch size is set to 64.

c) Weight decay is set to 1𝑒− 5.

d) Number of epochs is set to 250.

We perform the same model selection and validation as in Section E.3.5.

E.3.7 N-Body Problem

Task description. The n-body problem asks a neural network to predict how n stars in a

physical system evolves according to physics laws. That is, we train neural networks to

predict properties of future states of each star in terms of next frames, e.g., 0.001 seconds.
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Mathematically, in an n-body system 𝑆 = {𝑋𝑖}𝑛
𝑖=1, such as solar systems, all n stars

{𝑋𝑖}𝑛
𝑖=1 exert distance and mass-dependent gravitational forces on each other, so there were

𝑛(𝑛 − 1) relations or forces in the system. Suppose 𝑋𝑖 at time 𝑡 is at position 𝑥𝑡
𝑖 and has

velocity 𝑣𝑡
𝑖 . The overall forces a star 𝑋𝑖 receives from other stars is determined by physics

laws as the following

𝐹 𝑡
𝑖 = 𝐺 ·

∑︁
𝑗 ̸=𝑖

𝑚𝑖 ×𝑚𝑗

‖𝑥𝑡
𝑖 − 𝑥𝑡

𝑗‖3
2

·
(︁
𝑥𝑡

𝑗 − 𝑥𝑡
𝑖

)︁
, (E.73)

where 𝐺 is the gravitational constant, and 𝑚𝑖 is the mass of star 𝑋𝑖. Then acceralation 𝑎𝑡
𝑖 is

determined by the net force 𝐹 𝑡
𝑖 and the mass of star 𝑚𝑖

𝑎𝑡
𝑖 = 𝐹 𝑡

𝑖 /𝑚𝑖 (E.74)

Suppose the velocity of star 𝑋𝑖 at time 𝑡 is 𝑣𝑡
𝑖 . Then assuming the time steps 𝑑𝑡, i.e.,

difference between time frames, are sufficiently small, the velocity at the next time frame

𝑡+ 1 can be approximated by

𝑣𝑡+1
𝑖 = 𝑣𝑡

𝑖 + 𝑎𝑡
𝑖 · 𝑑𝑡. (E.75)

Given 𝑚𝑖, 𝑥𝑡
𝑖, and 𝑣𝑡

𝑖 , our task asks the neural network to predict 𝑣𝑡+1
𝑖 for all stars 𝑋𝑖. In

our task, we consider two extrapolation schemes

a) The distances between stars ‖𝑥𝑡
𝑖−𝑥𝑡

𝑗‖2 are out-of-distribution for test set, i.e., different

sampling ranges from the training set.

b) The masses of stars 𝑚𝑖 are out-of-distribution for test set, i.e., different sampling

ranges from the training set.

Here, we use a physics engine that we code in Python to simulate and sample the inputs

and labels. We describe the dataset details next.

Dataset details. We first describe the simulation and sampling of our training set. We

sample 100 videos of n-body system evolution, each with 500 rollout, i.e., time steps. We
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consider the orbit situation: there exists a huge center star and several other stars. We sample

the initial states, i.e., position, velocity, masses, acceleration etc according to the following

parameters.

a) The mass of the center star is 100𝑘𝑔.

b) The masses of other stars are sampled from [0.02, 9.0]𝑘𝑔.

c) The number of stars is 3.

d) The initial position of the center star is (0.0, 0.0).

d) The initial positions 𝑥𝑡
𝑖 of other objects are randomly sampled from all angles, with a

distance in [10.0, 100.0]𝑚.

e) The velocity of the center star is 0.

f) The velocities of other stars are perpendicular to the gravitational force between the

center star and itself. The scale is precisely determined by physics laws to ensure the

initial state is an orbit system.

For each video, after we get the initial states, we continue to rollout the next frames

according the physics engine described above. We perform rejection sampling of the frames

to ensure that all pairwise distances of stars in a frame are at least 30𝑚. We guarantee that

there are 10, 000 data points in the training set.

The validation set has the same sampling and simultation parameters as the training set.

We have 2, 500 data points in the validation set.

For test set, we consider two datasets, where we respectively have OOD distances and

masses. We have 5, 000 data points for each dataset.

a) We sample the distance OOD test set to ensure all pairwise distances of stars in a

frame are from [1..20]𝑚, but have in-distribution masses.

b) We sample the mass OOD test set as follows

i) The mass of the center star is 200𝑘𝑔, i.e., twice of that in the training set.
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ii) The masses of other stars are sampled from [0.04, 18.0]𝑘𝑔, compared to [0.02, 9.0]𝑘𝑔

in the training set.

iii) The distances are in-distribution, i.e., same sampling process as training set.

Model and hyperparameter settings. We consider the following one-iteration Graph

Neural Network (GNN) architecture, a.k.a. Interaction Networks. Given a collection of

stars 𝑆 = {𝑋𝑖}𝑛
𝑖=1, our GNN runs on a complete graph with nodes being the stars 𝑋𝑖.

GNN learns the star (node) representations by aggregating and transforming the interactions

(forces) of all other node vectors

𝑜𝑢 = MLP(2)

⎛⎝ ∑︁
𝑣∈𝑆∖{𝑢}

MLP(1)
(︁
ℎ𝑣, ℎ𝑢, 𝑤(𝑢,𝑣)

)︁⎞⎠ . (E.76)

Here, ℎ𝑣 is the input feature of node 𝑣, including mass, position and velocity

ℎ𝑣 = (𝑚𝑣,𝑥𝑣,𝑣𝑣)

𝑤(𝑢,𝑣) is the input edge feature of edge (𝑢, 𝑣). The loss is computed and backpropagated via

the MSE loss of

‖[𝑜1, ..., 𝑜𝑛] − [𝑎𝑛𝑠1, .., 𝑎𝑛𝑠𝑛]‖2,

where 𝑜𝑖 denotes the output of GNN for node 𝑖, and 𝑎𝑛𝑠𝑖 denotes the true label for node 𝑖 in

the next frame.

We search the following hyper-parameters for GNNs

a) Number of GNN iterations is set to 1.

b) Width of all MLPs are set to 128.

c) The number of layers for MLP(1) is set to 4. The number of layers for MLP(2) is set

to 2.

d) We consider two representations of edge/relations 𝑤(𝑖,𝑗).
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i) The first one is simply 0.

ii) The better representation, which makes the underlying target function more

linear, is

𝑤(𝑖,𝑗) = 𝑚𝑗

‖𝑥𝑡
𝑖 − 𝑥𝑡

𝑗‖3
2

·
(︁
𝑥𝑡

𝑗 − 𝑥𝑡
𝑖

)︁

We train the GNN with the mean squared error (MSE) loss, and Adam optimizer. We

search the following hyper-parameters for training

a) Initial learning rate is set to 0.005. learning rate decays 0.5 for every 50 epochs

b) Batch size is set to 32.

c) Weight decay is set to 1𝑒− 5.

d) Number of epochs is set to 2, 000.

E.4 Visualization and Additional Experimental Results

E.4.1 Visualization Results

In this section, we show additional visualization results of the MLP’s learned function out of

training distribution (in black color) v.s. the underlying true function (in grey color). We

color the predictions in training distribution in blue color.

In general, MLP’s learned functions agree with the underlying true functions in training

range (blue). This is explained by in-distribution generalization arguments. When out of

distribution, the MLP’s learned functions become linear along directions from the origin.

We explain this OOD directional linearity behavior in Theorem 7.1.

Finally, we show additional experimental results for graph-based reasoning tasks.
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Figure E-1: (Quadratic function). Both panels show the learned v.s. true 𝑦 = 𝑥2
1 + 𝑥2

2. In
each figure, we color OOD predictions by MLPs in black, underlying function in grey, and
in-distribution predictions in blue. The support of training distribution is a square (cube) for
the top panel, and is a circle (sphere) for the bottom panel.
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Figure E-2: (Cos function). Both panels show the learned v.s. true 𝑦 = cos(2𝜋 · 𝑥1) +
cos(2𝜋 · 𝑥2). In each figure, we color OOD predictions by MLPs in black, underlying
function in grey, and in-distribution predictions in blue. The support of training distribution
is a square (cube) for both top and bottom panels, but with different ranges.
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Figure E-3: (Cos function). Top panel shows the learned v.s. true 𝑦 = cos(2𝜋 · 𝑥1) +
cos(2𝜋 · 𝑥2) where the support of training distribution is a circle (sphere). Bottom panel
shows results for cosine in 1D, i.e. 𝑦 = cos(2𝜋 ·𝑥). In each figure, we color OOD predictions
by MLPs in black, underlying function in grey, and in-distribution predictions in blue.
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Figure E-4: (Sqrt function). Top panel shows the learned v.s. true 𝑦 = √
𝑥1 + √

𝑥2 where
the support of training distribution is a square (cube). Bottom panel shows the results for
the square root function in 1D, i.e. 𝑦 =

√
𝑥. In each figure, we color OOD predictions by

MLPs in black, underlying function in grey, and in-distribution predictions in blue.
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Figure E-5: (L1 function). Both panels show the learned v.s. true 𝑦 = |𝑥|. In the top panel,
the MLP successfully learns to extrapolate the absolute function. In the bottom panel, an
MLP with different hyper-parameters fails to extrapolate. In each figure, we color OOD
predictions by MLPs in black, underlying function in grey, and in-distribution predictions in
blue.
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Figure E-6: (L1 function). Both panels show the learned v.s. true 𝑦 = |𝑥1| + |𝑥2|. In the
top panel, the MLP successfully learns to extrapolate the l1 norm function. In the bottom
panel, an MLP with different hyper-parameters fails to extrapolate. In each figure, we
color OOD predictions by MLPs in black, underlying function in grey, and in-distribution
predictions in blue.
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Figure E-7: (Linear function). Both panels show the learned v.s. true 𝑦 = 𝑥1 + 𝑥2,
with the support of training distributions being square (cube) for top panel, and circle
(sphere) for bottom panel. MLPs successfully extrapolate the linear function with both
training distributions. This is explained by Theorem 7.3: both sphere and cube intersect all
directions. In each figure, we color OOD predictions by MLPs in black, underlying function
in grey, and in-distribution predictions in blue.
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E.4.2 Extra Experimental Results

In this section, we show additional experimental results.
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Figure E-8: Density plot of the test errors in MAPE. The underlying functions are linear,
but we train MLPs on different distributions, whose support potentially miss some directions.
The training support for “all” are hyper-cubes that intersect all directions. In “fix1”, we
set the first dimension of training data to a fixed number. In “posX”, we restrict the first X
dimensions of training data to be positive. We can see that MLPs trained on “all” extrapolate
the underlying linear functions, but MLPs trained on datasets with missing directions, i.e.,
“fix1” and “posX”, often cannot extrapolate well.
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path 4-regular ladder cycle expander complete tree general
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Figure E-9: Maximum degree: continuous and “spurious” node features. Here, each
node has a node feature in R3 that shall not contribute to the answer of maximum degree.
GNNs with graph-level max-pooling extrapolate to graphs with OOD node features and
graph structure, graph sizes, if trained on graphs that satisfy the condition in Theorem 8.2.
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Figure E-10: Maximum degree: max-pooling v.s. sum-pooling. In each sub-figure, left
column shows test errors for GNNs with graph-level max-pooling; right column shows test
errors for GNNs with graph-level sum-pooling. x-axis shows the graph structure covered in
training set. GNNs with sum-pooling fail to extrapolate, validating Corollary 8.1. GNNs
with max-pooling encodes appropriate non-linear operations, and thus extrapolates under
appropriate training sets (Theorem 8.2).
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Figure E-11: Shortest path: random graphs. We train GNNs with neighbor and graph-
level min-pooling on training sets whose graphs are random graphs with probability 𝑝 of an
edge between any two vertices. x-axis denotes the 𝑝 for the training set, and y-axis denotes
the test/extrapolation error on unseen graphs. The test errors follow a U-shape: errors are
high if the training graphs are very sparse (small 𝑝) or dense (large 𝑝). The same pattern is
obtained if we train on specific graph structure.
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Appendix F

Convergence and Implicit Acceleration

F.1 Proofs

In this section, we complete the proofs of our theoretical results. We show the proofs

of Theorem 9.1 in Appendix F.1.1, Proposition 9.2 in Appendix F.1.2, Proposition 9.3 in

Appendix F.1.3, Theorem 9.4 in Appendix F.1.4, Proposition 9.5 in Appendix F.1.5, and

Theorem 9.6 in Appendix F.1.6.

Before starting our proofs, we first introduce additional notation used in the proofs. We

define the corner cases on the products of 𝐵 as:

𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1) := 𝐼𝑚𝑙
if 𝐻 = 𝑙 (F.1)

𝐵(𝐻)𝐵(𝐻−1) . . . 𝐵(1) := 𝐼𝑚𝑥 if 𝐻 = 0 (F.2)

𝐵(𝑙−1)𝐵(𝑙−2) . . . 𝐵(1) := 𝐼𝑚𝑥 if 𝑙 = 1 (F.3)

Similarly, for any matrices 𝑀(𝑙), we define 𝑀(𝑙)𝑀(𝑙−1) · · ·𝑀(𝑘) := 𝐼𝑚 if 𝑙 < 𝑘, and

𝑀(𝑙)𝑀(𝑙−1) · · ·𝑀(𝑘) := 𝑀(𝑘) = 𝑀(𝑙) if 𝑙 = 𝑘. Given a scalar-valued variable 𝑎 ∈ R

and a matrix 𝑀 ∈ R𝑑×𝑑′ , we define

𝜕𝑎

𝜕𝑀
=

⎡⎢⎢⎢⎢⎢⎣
𝜕𝑎

𝜕𝑀11
· · · 𝜕𝑎

𝜕𝑀1𝑑′
... . . . ...

𝜕𝑎
𝜕𝑀𝑑1

· · · 𝜕𝑎
𝜕𝑀𝑑𝑑′

⎤⎥⎥⎥⎥⎥⎦ ∈ R𝑑×𝑑′
, (F.4)
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where 𝑀𝑖𝑗 represents the (𝑖, 𝑗)-th entry of the matrix 𝑀 . Given a vector-valued variable

𝑎 ∈ R𝑑 and a column vector 𝑏 ∈ R𝑑′ , we let

𝜕𝑎

𝜕𝑏
=

⎡⎢⎢⎢⎢⎢⎣
𝜕𝑎1
𝜕𝑏1

· · · 𝜕𝑎1
𝜕𝑏𝑑′

... . . . ...
𝜕𝑎𝑑

𝜕𝑏1
· · · 𝜕𝑎𝑑

𝜕𝑏𝑑′

⎤⎥⎥⎥⎥⎥⎦ ∈ R𝑑×𝑑′
, (F.5)

where 𝑏𝑖 represents the 𝑖-th entry of the column vector 𝑏. Similarly, given a vector-valued

variable 𝑎 ∈ R𝑑 and a row vector 𝑏 ∈ R1×𝑑′ , we write

𝜕𝑎

𝜕𝑏
=

⎡⎢⎢⎢⎢⎢⎣
𝜕𝑎1
𝜕𝑏11

· · · 𝜕𝑎1
𝜕𝑏1𝑑′

... . . . ...
𝜕𝑎𝑑

𝜕𝑏11
· · · 𝜕𝑎𝑑

𝜕𝑏1𝑑′

⎤⎥⎥⎥⎥⎥⎦ ∈ R𝑑×𝑑′
, (F.6)

where 𝑏1𝑖 represents the 𝑖-th entry of the row vector 𝑏. Finally, we recall the definition of the

Kronecker product product of two matrices: for matrices 𝑀 ∈ R𝑑𝑀 ×𝑑′
𝑀 and �̄� ∈ R𝑑�̄� ×𝑑′

�̄� ,

𝑀 ⊗ �̄� =

⎡⎢⎢⎢⎢⎢⎣
𝑀11�̄� · · · 𝑀1𝑑′

𝑀
�̄�

... . . . ...

𝑀𝑑𝑀 1�̄� · · · 𝑀𝑑𝑀 𝑑′
𝑀
�̄�

⎤⎥⎥⎥⎥⎥⎦ ∈ R𝑑𝑀 𝑑�̄� ×𝑑′
𝑀 𝑑′

�̄� . (F.7)

F.1.1 Proof of Theorem 9.1

We begin with a proof overview of Theorem 9.1. We first relate the gradients ∇𝑊(𝐻)𝐿 and

∇𝐵(𝑙)𝐿 to the gradient ∇(𝐻)𝐿, which is defined by

∇(𝐻)𝐿(𝑊,𝐵) := 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝑋(𝑆𝐻)*ℐ)⊤ ∈ R𝑚𝑦×𝑚𝑥 .

Using the proven relation of (∇𝑊(𝐻)𝐿,∇𝐵(𝑙)𝐿) and ∇(𝐻)𝐿, we first analyze the dynamics

induced in the space of 𝑊(𝑙)𝐵(𝑙)𝐵(𝑙−1) · · ·𝐵(1) in Appendix F.1.1, and then the dynamics

induced int the space of loss value 𝐿(𝑊,𝐵) in Appendix F.1.1. Finally, we complete the

proof by using the assumption of employing the square loss in Appendix F.1.1.

Let 𝑊(𝐻) = 𝑊 (during the proof of Theorem 9.1). We first prove the relationship of the
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gradients ∇𝑊(𝐻)𝐿, ∇𝐵(𝑙)𝐿 and ∇(𝐻)𝐿 in the following lemma:

Lemma F.1. Let 𝑓 be an𝐻-layer linear GNN and ℓ(𝑞, 𝑌 ) = ‖𝑞−𝑌 ‖2
𝐹 where 𝑞, 𝑌 ∈ R𝑚𝑦×�̄�.

Then, for any (𝑊,𝐵),

∇𝑊(𝐻)𝐿(𝑊,𝐵) = ∇(𝐻)𝐿(𝑊,𝐵)(𝐵(𝐻)𝐵(𝐻−1) . . . 𝐵(1))⊤ ∈ R𝑚𝑦×𝑚𝑙 , (F.8)

and

∇𝐵(𝑙)𝐿(𝑊,𝐵) = (𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1))⊤∇(𝐻)𝐿(𝑊,𝐵)(𝐵(𝑙−1)𝐵(𝑙−2) . . . 𝐵(1))⊤ ∈ R𝑚𝑙×𝑚𝑙−1 ,

(F.9)

Proof of Lemma F.1. From Definition 9.1, we have 𝑌 = 𝑓(𝑋,𝑊,𝐵)*ℐ = 𝑊(𝐻)(𝑋(𝐻))*ℐ

where 𝑋(𝑙) = 𝐵(𝑙)𝑋(𝑙−1)𝑆. Using this definition, we can derive the formula of 𝜕 vec[𝑌 ]
𝜕 vec[𝑊(𝐻)] ∈

R𝑚𝑦𝑛×𝑚𝑦𝑚�̄� as:

𝜕 vec[𝑌 ]
𝜕 vec[𝑊(𝐻)]

= 𝜕

𝜕 vec[𝑊(𝐻)]
vec[𝑊(𝐻)(𝑋(𝐻))*ℐ ]

= 𝜕

𝜕 vec[𝑊(𝐻)]
[((𝑋(𝐻))*ℐ)⊤ ⊗ 𝐼𝑚𝑦 ] vec[𝑊(𝐻)] = [((𝑋(𝐻))*ℐ)⊤ ⊗ 𝐼𝑚𝑦 ] ∈ R𝑚𝑦𝑛×𝑚𝑦𝑚�̄�

(F.10)
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We will now derive the formula of 𝜕 vec[𝑌 ]
𝜕 vec[𝐵(𝑙)] ∈ R𝑚𝑦𝑛×𝑚𝑙𝑚𝑙−1:

𝜕 vec[𝑌 ]
𝜕 vec[𝐵(𝑙)]

= 𝜕

𝜕 vec[𝐵(𝑙)]
vec[𝑊(𝐻)(𝑋(𝐻))*ℐ ]

= 𝜕

𝜕 vec[𝐵(𝑙)]
[𝐼𝑛 ⊗𝑊(𝐻)] vec[(𝑋(𝐻))*ℐ ]

= [𝐼𝑛 ⊗𝑊(𝐻)]
𝜕 vec[(𝑋(𝐻))*ℐ ]
𝜕 vec[𝐵(𝑙)]

= [𝐼𝑛 ⊗𝑊(𝐻)]
𝜕 vec[(𝑋(𝐻))*ℐ ]
𝜕 vec[𝑋(𝑙)]

𝜕 vec[𝑋(𝑙)]
𝜕 vec[𝐵(𝑙)]

= [𝐼𝑛 ⊗𝑊(𝐻)]
𝜕 vec[(𝑋(𝐻))*ℐ ]
𝜕 vec[𝑋(𝑙)]

𝜕 vec[𝐵(𝑙)𝑋(𝑙−1)𝑆]
𝜕 vec[𝐵(𝑙)]

= [𝐼𝑛 ⊗𝑊(𝐻)]
𝜕 vec[(𝑋(𝐻))*ℐ ]
𝜕 vec[𝑋(𝑙)]

𝜕[(𝑋(𝑙−1)𝑆)⊤ ⊗ 𝐼𝑚𝑙
] vec[𝐵(𝑙)]

𝜕 vec[𝐵(𝑙)]

= [𝐼𝑛 ⊗𝑊(𝐻)]
𝜕 vec[(𝑋(𝐻))*ℐ ]
𝜕 vec[𝑋(𝑙)]

[(𝑋(𝑙−1)𝑆)⊤ ⊗ 𝐼𝑚𝑙
] (F.11)

Here, we have that

vec[(𝑋(𝐻))*ℐ ] = vec[𝐵(𝐻)𝑋(𝐻−1)𝑆*ℐ ] = vec[(𝑆⊤)ℐ* ⊗𝐵(𝐻)] vec[𝑋(𝐻−1)]. (F.12)

and

vec[𝑋(𝐻)] = vec[𝐵(𝐻)𝑋(𝐻−1)𝑆*ℐ ] = vec[𝑆 ⊗𝐵(𝐻)] vec[𝑋(𝐻−1)]. (F.13)

By recursively applying (F.13), we have that

vec[(𝑋(𝐻))*ℐ ] = vec[(𝑆⊤)ℐ* ⊗𝐵(𝐻)] vec[𝑆⊤ ⊗𝐵(𝐻−1)] · · · vec[𝑆⊤ ⊗𝐵(𝑙+1)] vec[𝑋(𝑙)]

= vec[((𝑆𝐻−𝑙)⊤)ℐ* ⊗𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1)] vec[𝑋(𝑙)],

where

𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1) := 𝐼𝑚𝑙
if 𝐻 = 𝑙.

Therefore,
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𝜕 vec[(𝑋(𝐻))*ℐ ]
𝜕 vec[𝑋(𝑙)]

= vec[((𝑆𝐻−𝑙)⊤)ℐ* ⊗𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1)]. (F.14)

Combining (F.11) and (F.14) yields

𝜕 vec[𝑌 ]
𝜕 vec[𝐵(𝑙)]

= [𝐼𝑛 ⊗𝑊(𝐻)]
𝜕 vec[(𝑋(𝐻))*ℐ ]
𝜕 vec[𝑋(𝑙)]

[(𝑋(𝑙−1)𝑆)⊤ ⊗ 𝐼𝑚𝑙
]

= [𝐼𝑛 ⊗𝑊(𝐻)] vec[((𝑆𝐻−𝑙)⊤)ℐ* ⊗𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1)][(𝑋(𝑙−1)𝑆)⊤ ⊗ 𝐼𝑚𝑙
]

= [(𝑋(𝑙−1)(𝑆𝐻−𝑙+1)*ℐ)⊤ ⊗𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1)] ∈ R𝑚𝑦𝑛×𝑚𝑙𝑚𝑙−1 .

(F.15)

Using (F.10), we will now derive the formula of ∇𝑊(𝐻)𝐿(𝑊,𝐵) ∈ R𝑚𝑦×𝑚𝐻 :

𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑊(𝐻)]

= 𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

𝜕 vec[𝑌 ]
𝜕 vec[𝑊(𝐻)]

= 𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

[(𝑋(𝐻))⊤
*ℐ ⊗ 𝐼𝑚𝑦 ]

Thus, with 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

∈ R𝑚𝑦×𝑛,

∇vec[𝑊(𝐻)]𝐿(𝑊,𝐵) =
(︃
𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑊(𝐻)]

)︃⊤

= [(𝑋(𝐻))*ℐ ⊗ 𝐼𝑚𝑦 ]
(︃
𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

)︃⊤

= [(𝑋(𝐻))*ℐ ⊗ 𝐼𝑚𝑦 ] vec
[︃
𝜕𝐿(𝑊,𝐵)

𝜕𝑌

]︃

= vec
[︃
𝜕𝐿(𝑊,𝐵)

𝜕𝑌
(𝑋(𝐻))⊤

*ℐ

]︃
∈ R𝑚𝑦𝑚𝐻 .

Therefore,

∇𝑊(𝐻)𝐿(𝑊,𝐵) = 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝑋(𝐻))⊤
*ℐ ∈ R𝑚𝑦×𝑚𝐻 . (F.16)
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Using (F.15), we will now derive the formula of ∇𝐵(𝑙)𝐿(𝑊,𝐵) ∈ R𝑚𝑙×𝑚𝑙−1:

𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝐵(𝑙)]

= 𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

𝜕 vec[𝑌 ]
𝜕 vec[𝐵(𝑙)]

= 𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

[(𝑋(𝑙−1)(𝑆𝐻−𝑙+1)*ℐ)⊤⊗𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1)].

Thus, with 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

∈ R𝑚𝑦×𝑛,

∇vec[𝐵(𝑙)]𝐿(𝑊,𝐵) =
(︃
𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝐵(𝑙)]

)︃⊤

= [𝑋(𝑙−1)(𝑆𝐻−𝑙+1)*ℐ ⊗ (𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1))⊤]
(︃
𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

)︃⊤

= [𝑋(𝑙−1)(𝑆𝐻−𝑙+1)*ℐ ⊗ (𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1))⊤] vec
[︃
𝜕𝐿(𝑊,𝐵)

𝜕𝑌

]︃

= vec
[︃
(𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1))⊤𝜕𝐿(𝑊,𝐵)

𝜕𝑌
(𝑋(𝑙−1)(𝑆𝐻−𝑙+1)*ℐ)⊤

]︃
∈ R𝑚𝑙𝑚𝑙−1 .

Therefore,

∇𝐵(𝑙)𝐿(𝑊,𝐵) = (𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1))⊤𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝑋(𝑙−1)(𝑆𝐻−𝑙+1)*ℐ)⊤ ∈ R𝑚𝑙×𝑚𝑙−1 .

(F.17)

With (F.16) and (F.17), we are now ready to prove the statement of this lemma by

introducing the following notation:

∇(𝑙)𝐿(𝑊,𝐵) := 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝑋(𝑆𝑙)*ℐ)⊤ ∈ R𝑚𝑦×𝑚𝑥 .

Using this notation along with (F.16)

∇𝑊(𝐻)𝐿(𝑊,𝐵) = 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝑋(𝐻))⊤
*ℐ

= 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝐵(𝐻)𝑋(𝐻−1)(𝑆)*ℐ)⊤

= 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝐵(𝐻)𝐵(𝐻−1) . . . 𝐵(1)𝑋(𝑆𝐻)*ℐ)⊤

= ∇(𝐻)𝐿(𝑊,𝐵)(𝐵(𝐻)𝐵(𝐻−1) . . . 𝐵(1))⊤,
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Similarly, using (F.17),

∇𝐵(𝑙)𝐿(𝑊,𝐵) = (𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1))⊤𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝑋(𝑙−1)(𝑆𝐻−𝑙+1)*ℐ)⊤

= (𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1))⊤𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝐵(𝑙−1)𝐵(𝑙−2) . . . 𝐵(1)𝑋(𝑆𝑙−1𝑆𝐻−𝑙+1)*ℐ)⊤

= (𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1))⊤𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝐵(𝑙−1)𝐵(𝑙−2) . . . 𝐵(1)𝑋(𝑆𝐻)*ℐ)⊤

= (𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(𝑙+1))⊤∇(𝐻)𝐿(𝑊,𝐵)(𝐵(𝑙−1)𝐵(𝑙−2) . . . 𝐵(1))⊤

where 𝐵(𝑙−1)𝐵(𝑙−2) . . . 𝐵(1) := 𝐼𝑚𝑥 if 𝑙 = 1.

By using Lemma F.1, we complete the proof of Theorem 9.1 in the following.

Dynamics induced in the space of 𝑊(𝑙)𝐵(𝑙)𝐵(𝑙−1) · · ·𝐵(1)

We now consider the dynamics induced in the space of 𝑊(𝑙)𝐵(𝑙)𝐵(𝑙−1) · · ·𝐵(1). We first

consider the following discrete version of the dynamics:

𝑊 ′
(𝐻) = 𝑊(𝐻) − 𝛼∇𝑊(𝐻)𝐿(𝑊,𝐵)

𝐵′
(𝑙) = 𝐵(𝑙) − 𝛼∇𝐵(𝑙)𝐿(𝑊,𝐵).

This dynamics induces the following dynamics:

𝑊 ′
(𝐻)𝐵

′
(𝐻)𝐵

′
(𝐻−1) · · ·𝐵′

(1) = (𝑊(𝐻)−𝛼∇𝑊(𝐻)𝐿(𝑊,𝐵))(𝐵(𝐻)−𝛼∇𝐵(𝐻)𝐿(𝑊,𝐵)) · · · (𝐵(1)−𝛼∇𝐵(1)𝐿(𝑊,𝐵)).

Define

𝑍(𝐻) := 𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1),

and

𝑍 ′
(𝐻) := 𝑊 ′

(𝐻)𝐵
′
(𝐻)𝐵

′
(𝐻−1) · · ·𝐵′

(1).
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Then, we can rewrite

𝑍 ′
(𝐻) = (𝑊(𝐻) −𝛼∇𝑊(𝐻)𝐿(𝑊,𝐵))(𝐵(𝐻) −𝛼∇𝐵(𝐻)𝐿(𝑊,𝐵)) · · · (𝐵(1) −𝛼∇𝐵(1)𝐿(𝑊,𝐵)).

By expanding the multiplications, this can be written as:

𝑍 ′
(𝐻) =𝑍(𝐻) − 𝛼∇𝑊(𝐻)𝐿(𝑊,𝐵)𝐵(𝐻) · · ·𝐵(1)−

𝛼
𝐻∑︁

𝑖=1
𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1)∇𝐵(𝑖)𝐿(𝑊,𝐵)𝐵(𝑖−1) · · ·𝐵(1) +𝑂(𝛼2).

By vectorizing both sides,

vec[𝑍 ′
(𝐻)] − vec[𝑍(𝐻)]

= − 𝛼 vec[∇𝑊(𝐻)𝐿(𝑊,𝐵)𝐵(𝐻) · · ·𝐵(1)]

− 𝛼
𝐻∑︁

𝑖=1
vec[𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1)∇𝐵(𝑖)𝐿(𝑊,𝐵)𝐵(𝑖−1) · · ·𝐵(1)] +𝑂(𝛼2).

Here, using the formula of ∇𝑊(𝐻)𝐿(𝑊,𝐵) and ∇𝐵(𝐻)𝐿(𝑊,𝐵), we have that

vec[∇𝑊(𝐻)𝐿(𝑊,𝐵)𝐵(𝐻) · · ·𝐵(1)] = vec[∇(𝐻)𝐿(𝑊,𝐵)(𝐵(𝐻) . . . 𝐵(1))⊤𝐵(𝐻) · · ·𝐵(1)]

= [(𝐵(𝐻) . . . 𝐵(1))⊤𝐵(𝐻) · · ·𝐵(1) ⊗ 𝐼𝑚𝑦 ] vec[∇(𝐻)𝐿(𝑊,𝐵)],

and

𝐻∑︁
𝑖=1

vec[𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1)∇𝐵(𝑖)𝐿(𝑊,𝐵)𝐵(𝑖−1) · · ·𝐵(1)]

=
𝐻∑︁

𝑖=1
vec

[︁
𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1)(𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1))⊤∇(𝐻)𝐿(𝑊,𝐵)(𝐵(𝑖−1) . . . 𝐵(1))⊤𝐵(𝑖−1) · · ·𝐵(1)

]︁

=
𝐻∑︁

𝑖=1
[(𝐵(𝑖−1) . . . 𝐵(1))⊤𝐵(𝑖−1) · · ·𝐵(1) ⊗𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1)(𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1))⊤] vec

[︁
∇(𝐻)𝐿(𝑊,𝐵)

]︁
.
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Summarizing above,

vec[𝑍 ′
(𝐻)] − vec[𝑍(𝐻)]

= −𝛼[(𝐵(𝐻) . . . 𝐵(1))⊤𝐵(𝐻) · · ·𝐵(1) ⊗ 𝐼𝑚𝑦 ] vec[∇(𝐻)𝐿(𝑊,𝐵)]

− 𝛼
𝐻∑︁

𝑖=1
[(𝐵(𝑖−1) . . . 𝐵(1))⊤𝐵(𝑖−1) · · ·𝐵(1) ⊗𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1)(𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1))⊤] vec

[︁
∇(𝐻)𝐿(𝑊,𝐵)

]︁
+𝑂(𝛼2)

Therefore, the induced continuous dynamics of 𝑍(𝐻) = 𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1) is

𝑑

𝑑𝑡
vec[𝑍(𝐻)] = −𝐹(𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)] −

(︃
𝐻∑︁

𝑖=1
𝐽⊤

(𝑖,𝐻)𝐽(𝑖,𝐻)

)︃
vec

[︁
∇(𝐻)𝐿(𝑊,𝐵)

]︁
,

where

𝐹(𝐻) = [(𝐵(𝐻) . . . 𝐵(1))⊤𝐵(𝐻) · · ·𝐵(1) ⊗ 𝐼𝑚𝑦 ],

and

𝐽(𝑖,𝐻) = [𝐵(𝑖−1) . . . 𝐵(1) ⊗ (𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1))⊤].

This is because

𝐽⊤
(𝑖,𝐻)𝐽(𝑖,𝐻) = [(𝐵(𝑖−1) . . . 𝐵(1))⊤ ⊗𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1)][𝐵(𝑖−1) . . . 𝐵(1) ⊗ (𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1))⊤]

= [(𝐵(𝑖−1) . . . 𝐵(1))⊤𝐵(𝑖−1) . . . 𝐵(1) ⊗𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1)(𝑊(𝐻)𝐵(𝐻) · · ·𝐵(𝑖+1))⊤].

Dynamics induced int the space of loss value 𝐿(𝑊,𝐵)

We now analyze the dynamics induced int the space of loss value 𝐿(𝑊,𝐵). Using chain

rule,

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) = 𝑑

𝑑𝑡
𝐿0(𝑍(𝐻))

= 𝜕𝐿0(𝑍(𝐻))
𝜕 vec[𝑍(𝐻)]

𝑑 vec[𝑍(𝐻)]
𝑑𝑡

,
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where

𝐿0(𝑍(𝐻)) = ℓ(𝑓0(𝑋,𝑍(𝐻))*ℐ , 𝑌 ), 𝑓0(𝑋,𝑍(𝐻)) = 𝑍(𝐻)𝑋𝑆
𝐻 , and 𝑍(𝐻) = 𝑊(𝐻)𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1).

Since 𝑓0(𝑋,𝑍(𝐻)) = 𝑓(𝑋,𝑊,𝐵) = 𝑌 and 𝐿0(𝑍(𝐻)) = 𝐿(𝑊,𝐵), we have that

(︃
𝜕𝐿0(𝑍(𝐻))
𝜕 vec[𝑍(𝐻)]

)︃⊤

=
(︃
𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

𝜕 vec[𝑌 ]
𝜕 vec[𝑍(𝐻)]

)︃⊤

=
(︃
𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

(︃
𝜕

𝜕 vec[𝑍(𝐻)]
[(𝑋(𝑆𝐻)*ℐ)⊤ ⊗ 𝐼𝑚𝑦 ] vec[𝑍(𝐻)]

)︃)︃⊤

= [𝑋(𝑆𝐻)*ℐ ⊗ 𝐼𝑚𝑦 ] vec
[︃
𝜕𝐿(𝑊,𝐵)

𝜕𝑌

]︃

= vec
[︃
𝜕𝐿(𝑊,𝐵)

𝜕𝑌
(𝑋(𝑆𝐻)*ℐ)⊤

]︃

= vec[∇(𝐻)𝐿(𝑊,𝐵)]

Combining these,

𝑑

𝑑𝑡
𝐿(𝑊,𝐵)

= vec[∇(𝐻)𝐿(𝑊,𝐵)]⊤𝑑 vec[𝑍(𝐻)]
𝑑𝑡

= − vec[∇(𝐻)𝐿(𝑊,𝐵)]⊤𝐹(𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)] −
𝐻∑︁

𝑖=1
vec[∇(𝐻)𝐿(𝑊,𝐵)]⊤𝐽⊤

(𝑖,𝐻)𝐽(𝑖,𝐻) vec
[︁
∇(𝐻)𝐿(𝑊,𝐵)

]︁

= − vec[∇(𝐻)𝐿(𝑊,𝐵)]⊤𝐹(𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)] −
𝐻∑︁

𝑖=1
‖𝐽(𝑖,𝐻) vec

[︁
∇(𝐻)𝐿(𝑊,𝐵)

]︁
‖2

2

Therefore,

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) = − vec[∇(𝐻)𝐿(𝑊,𝐵)]⊤𝐹(𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)] −

𝐻∑︁
𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2

(F.18)

Since 𝐹(𝐻) is real symmetric and positive semidefinite,

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) ≤ −𝜆min(𝐹(𝐻))‖ vec[∇(𝐻)𝐿(𝑊,𝐵)]‖2

2 −
𝐻∑︁

𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2
.
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With 𝜆𝑊,𝐵 = 𝜆min(𝐹(𝐻)),

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) ≤ −𝜆𝑊,𝐵‖ vec[∇(𝐻)𝐿(𝑊,𝐵)]‖2

2 −
𝐻∑︁

𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2
(F.19)

Completing the proof by using the assumption of the square loss

Using the assumption that 𝐿(𝑊,𝐵) = ℓ(𝑓(𝑋,𝑊,𝐵)*ℐ , 𝑌 ) = ‖𝑓(𝑋,𝑊,𝐵)*ℐ − 𝑌 ‖2
𝐹 with

𝑌 = 𝑓(𝑋,𝑊,𝐵)*ℐ , we have

𝜕𝐿(𝑊,𝐵)
𝜕𝑌

= 𝜕

𝜕𝑌
‖𝑌 − 𝑌 ‖2

𝐹 = 2(𝑌 − 𝑌 ) ∈ R𝑚𝑦×𝑛,

and

vec[∇(𝐻)𝐿(𝑊,𝐵)] = vec
[︃
𝜕𝐿(𝑊,𝐵)

𝜕𝑌
(𝑋(𝑆𝐻)*ℐ)⊤

]︃
= 2 vec

[︁
(𝑌 − 𝑌 )(𝑋(𝑆𝐻)*ℐ)⊤

]︁
= 2[𝑋(𝑆𝐻)*ℐ ⊗ 𝐼𝑚𝑦 ] vec[𝑌 − 𝑌 ].

Therefore,

‖ vec[∇(𝐻)𝐿(𝑊,𝐵)]‖2
2 = 4 vec[𝑌 − 𝑌 ]⊤[(𝑋(𝑆𝐻)*ℐ)⊤𝑋(𝑆𝐻)*ℐ ⊗ 𝐼𝑚𝑦 ] vec[𝑌 − 𝑌 ]

(F.20)

Using (F.19) and (F.20),

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) ≤ − 𝜆𝑊,𝐵‖ vec[∇(𝐻)𝐿(𝑊,𝐵)]‖2

2 −
𝐻∑︁

𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2

≤ − 4𝜆𝑊,𝐵 vec[𝑌 − 𝑌 ]⊤[(𝑋(𝑆𝐻)*ℐ)⊤𝑋(𝑆𝐻)*ℐ ⊗ 𝐼𝑚𝑦 ] vec[𝑌 − 𝑌 ]

−
𝐻∑︁

𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2

= − 4𝜆𝑊,𝐵 vec[𝑌 − 𝑌 ]⊤
[︁
�̃�⊤

𝐻�̃�𝐻 ⊗ 𝐼𝑚𝑦

]︁
vec[𝑌 − 𝑌 ] −

𝐻∑︁
𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2

where the last line follows from the following definition:

�̃�𝐻 := 𝑋(𝑆𝐻)*ℐ .
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Decompose vec[𝑌 − 𝑌 ] as vec[𝑌 − 𝑌 ] = 𝑣 + 𝑣⊥, where 𝑣 = P�̃�⊤
𝐻⊗𝐼𝑚𝑦

vec[𝑌 − 𝑌 ],

𝑣⊥ = (𝐼𝑚𝑦𝑛 − P�̃�⊤
𝐻⊗𝐼𝑚𝑦

) vec[𝑌 −𝑌 ], and P�̃�⊤
𝐻⊗𝐼𝑚𝑦

∈ R𝑚𝑦𝑛×𝑚𝑦𝑛 represents the orthogonal

projection onto the column space of �̃�⊤
𝐻 ⊗ 𝐼𝑚𝑦 ∈ R𝑚𝑦𝑛×𝑚𝑦𝑚𝑥 . Then,

vec[𝑌 − 𝑌 ]⊤
[︁
�̃�⊤

𝐻�̃�𝐻 ⊗ 𝐼𝑚𝑦

]︁
vec[𝑌 − 𝑌 ] = (𝑣 + 𝑣⊥)⊤

[︁
�̃�⊤

𝐻 ⊗ 𝐼𝑚𝑦

]︁ [︁
�̃�𝐻 ⊗ 𝐼𝑚𝑦

]︁
(𝑣 + 𝑣⊥)

= 𝑣⊤
[︁
�̃�⊤

𝐻 ⊗ 𝐼𝑚𝑦

]︁ [︁
�̃�𝐻 ⊗ 𝐼𝑚𝑦

]︁
𝑣

≥ 𝜎2
min(�̃�𝐻)‖P�̃�⊤

𝐻⊗𝐼𝑚𝑦
vec[𝑌 − 𝑌 ]‖2

2

= 𝜎2
min(�̃�𝐻)‖P�̃�⊤

𝐻⊗𝐼𝑚𝑦
vec[𝑌 ] − P�̃�⊤

𝐻⊗𝐼𝑚𝑦
vec[𝑌 ]‖2

2

= 𝜎2
min(�̃�𝐻)‖ vec[𝑌 ] − P�̃�⊤

𝐻⊗𝐼𝑚𝑦
vec[𝑌 ] ± vec[𝑌 ]‖2

2

= 𝜎2
min(�̃�𝐻)‖ vec[𝑌 ] − vec[𝑌 ] + (𝐼𝑚𝑦𝑛 − P�̃�⊤

𝐻⊗𝐼𝑚𝑦
) vec[𝑌 ]‖2

2

≥ 𝜎2
min(�̃�𝐻)(‖ vec[𝑌 − 𝑌 ]‖2 − ‖(𝐼𝑚𝑦𝑛 − P�̃�⊤

𝐻⊗𝐼𝑚𝑦
) vec[𝑌 ]‖2)2

≥ 𝜎2
min(�̃�𝐻)(‖ vec[𝑌 − 𝑌 ]‖2

2 − ‖(𝐼𝑚𝑦𝑛 − P�̃�⊤
𝐻⊗𝐼𝑚𝑦

) vec[𝑌 ]‖2
2,

where we used the fact that the singular values of
[︁
�̃�⊤

𝐻 ⊗ 𝐼𝑚𝑦

]︁
are products of singular

values of �̃�𝐻 and 𝐼𝑚𝑦 .

By noticing that 𝐿(𝑊,𝐵) = ‖ vec[𝑌 − 𝑌 ]‖2
2 and 𝐿*

𝐻 = ‖(𝐼𝑚𝑦𝑛 − P�̃�⊤
𝐻⊗𝐼𝑚𝑦

) vec[𝑌 ]‖2
2 ,

vec[𝑌 − 𝑌 ]⊤
[︁
�̃�⊤

𝐻�̃�𝐻 ⊗ 𝐼𝑚𝑦

]︁
vec[𝑌 − 𝑌 ] ≥ 𝜎2

min(�̃�𝐻)(𝐿(𝑊,𝐵) − 𝐿*
𝐻).

Therefore,

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) ≤ −4𝜆𝑊,𝐵 vec[𝑌 − 𝑌 ]⊤

[︁
�̃�⊤

𝐻�̃�𝐻 ⊗ 𝐼𝑚𝑦

]︁
vec[𝑌 − 𝑌 ] −

𝐻∑︁
𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2

≤ −4𝜆𝑊,𝐵𝜎
2
min(�̃�𝐻)(𝐿(𝑊,𝐵) − 𝐿*

𝐻) −
𝐻∑︁

𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2

Since 𝑑
𝑑𝑡
𝐿*

𝐻 = 0,

𝑑

𝑑𝑡
(𝐿(𝑊,𝐵)−𝐿*

𝐻) ≤ −4𝜆𝑊,𝐵𝜎
2
min(�̃�𝐻)(𝐿(𝑊,𝐵)−𝐿*

𝐻)−
𝐻∑︁

𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2
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By defining L = 𝐿(𝑊,𝐵) − 𝐿*
𝐻 ,

𝑑L
𝑑𝑡

≤ −4𝜆𝑊,𝐵𝜎
2
min(�̃�𝐻)L −

𝐻∑︁
𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2
(F.21)

Since 𝑑
𝑑𝑡

L ≤ 0 and L ≥ 0, if L = 0 at some time 𝑡, then L = 0 for any time 𝑡 ≥ 𝑡.

Therefore, if L = 0 at some time 𝑡, then we have the desired statement of this theorem for

any time 𝑡 ≥ 𝑡. Thus, we can focus on the time interval [0, 𝑡] such that L > 0 for any time

𝑡 ∈ [0, 𝑡] (here, it is allowed to have 𝑡 = ∞). Thus, focusing on the time interval with L > 0

, equation (F.21) implies that

1
L
𝑑L
𝑑𝑡

≤ −4𝜆𝑊,𝐵𝜎
2
min(�̃�𝐻) − 1

L

𝐻∑︁
𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2

By taking integral over time

∫︁ 𝑇

0

1
L
𝑑L
𝑑𝑡
𝑑𝑡 ≤ −

∫︁ 𝑇

0
4𝜆𝑊,𝐵𝜎

2
min(�̃�𝐻)𝑑𝑡−

∫︁ 𝑇

0

1
L

𝐻∑︁
𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2
𝑑𝑡

By using the substitution rule for integrals,
∫︀ 𝑇

0
1
L

𝑑L
𝑑𝑡
𝑑𝑡 =

∫︀ L𝑇
L0

1
L𝑑L = log(L𝑇 ) − log(L0),

where L0 = 𝐿(𝑊0, 𝐵0) − 𝐿* and L𝑇 = 𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝐻 . Thus,

log(L𝑇 ) − log(L0) ≤ −4𝜎2
min(�̃�𝐻)

∫︁ 𝑇

0
𝜆𝑊,𝐵𝑑𝑡−

∫︁ 𝑇

0

1
L

𝐻∑︁
𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2
𝑑𝑡

which implies that

L𝑇 ≤ 𝑒log(L0)−4𝜎2
min(�̃�𝐻)

∫︀ 𝑇

0 𝜆𝑊,𝐵𝑑𝑡−
∫︀ 𝑇

0
1
L
∑︀𝐻

𝑖=1‖𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]‖2
2
𝑑𝑡

= L0𝑒
−4𝜎2

min(�̃�𝐻)
∫︀ 𝑇

0 𝜆𝑊,𝐵𝑑𝑡−
∫︀ 𝑇

0
1
L
∑︀𝐻

𝑖=1‖𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]‖2
2
𝑑𝑡

By recalling the definition of L = 𝐿(𝑊,𝐵) − 𝐿*
𝐻 and that 𝑑

𝑑𝑡
L ≤ 0, we have that if

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝐻 > 0, then 𝐿(𝑊𝑡, 𝐵𝑡) − 𝐿*

𝐻 > 0 for all 𝑡 ∈ [0, 𝑇 ], and

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝐻 ≤ (𝐿(𝑊0, 𝐵0) − 𝐿*

𝐻)𝑒−4𝜎2
min(�̃�𝐻)

∫︀ 𝑇

0 𝜆𝑊𝑡,𝐵𝑡 𝑑𝑡−
∫︀ 𝑇

0
1

𝐿(𝑊𝑡,𝐵𝑡)−𝐿*
𝐻

∑︀𝐻

𝑖=1‖𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊𝑡,𝐵𝑡)]‖2
2
𝑑𝑡
.

(F.22)
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Using the property of Kronecker product,

𝜆min([(𝐵(𝐻),𝑡 . . . 𝐵(1),𝑡)⊤𝐵(𝐻),𝑡 · · ·𝐵(1),𝑡⊗𝐼𝑚𝑦 ]) = 𝜆min((𝐵(𝐻),𝑡 . . . 𝐵(1),𝑡)⊤𝐵(𝐻),𝑡 · · ·𝐵(1),𝑡),

which implies that 𝜆(𝐻)
𝑇 = inf𝑡∈[0,𝑇 ] 𝜆𝑊𝑡,𝐵𝑡 . Thus, by noticing that

∫︁ 𝑇

0

1
𝐿(𝑊𝑡, 𝐵𝑡) − 𝐿*

𝐻

𝐻∑︁
𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊𝑡, 𝐵𝑡)]

⃦⃦⃦2

2
𝑑𝑡 ≥ 0

Equation (F.22) implies that

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝐻 ≤ (𝐿(𝑊0, 𝐵0) − 𝐿*

𝐻)𝑒−4𝜆
(𝐻)
𝑇 𝜎2

min(�̃�𝐻)𝑇 −
∫︀ 𝑇

0
1

𝐿(𝑊𝑡,𝐵𝑡)−𝐿*
𝐻

∑︀𝐻

𝑖=1‖𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊𝑡,𝐵𝑡)]‖2
2
𝑑𝑡

≤ (𝐿(𝑊0, 𝐵0) − 𝐿*
𝐻)𝑒−4𝜆

(𝐻)
𝑇 𝜎2

min(�̃�𝐻)𝑇

= (𝐿(𝑊0, 𝐵0) − 𝐿*
𝐻)𝑒−4𝜆

(𝐻)
𝑇 𝜎2

min(𝑋(𝑆𝐻)*ℐ)𝑇

F.1.2 Proof of Proposition 9.2

From Definition 9.4, we have that 𝜎min(�̄�(1:𝐻)) = 𝜎min(𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1)) ≥ 𝛾 for all

(𝑊,𝐵) such that 𝐿(𝑊,𝐵) ≤ 𝐿(𝑊0, 𝐵0). From equation (F.19) in the proof of Theorem 9.1,

it holds that 𝑑
𝑑𝑡
𝐿(𝑊𝑡, 𝐵𝑡) ≤ 0 for all 𝑡. Thus, we have that 𝐿(𝑊𝑡, 𝐵𝑡) ≤ 𝐿(𝑊0, 𝐵0) and

hence 𝜎min(�̄�(1:𝐻)
𝑡 ) ≥ 𝛾 for all 𝑡. Under this problem setting (𝑚𝐻 ≥ 𝑚𝑥), this implies that

𝜆min((�̄�(1:𝐻)
𝑡 )⊤�̄�

(1:𝐻)
𝑡 ) ≥ 𝛾2 for all 𝑡 and thus 𝜆(𝐻)

𝑇 ≥ 𝛾2.

F.1.3 Proof of Proposition 9.3

We first give the complete version of Proposition 9.3. Proposition F.2 is the formal version of

Proposition 9.3 and shows that our singular margin generalizes deficiency margin proposed

in Arora et al. [2019a]. Using the deficiency margin assumption, Arora et al. [2019a]
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analyzed the following optimization problem:

minimize
�̃�

�̃�(�̃�(1), . . . , �̃�(𝐻+1)) : = 1
2‖�̃�(𝐻+1)�̃�(𝐻) · · · �̃�(1) − Φ̃‖2

𝐹 (F.23)

= 1
2‖�̃�⊤

(1)�̃�
⊤
(2) · · · �̃�⊤

(𝐻+1) − Φ̃⊤‖2
𝐹 , (F.24)

where Φ̃ ∈ R�̃�𝑦×�̃�𝑥 is a target matrix and the last equality follows from ‖𝑀‖𝐹 = ‖𝑀⊤‖𝐹

for any matrix 𝑀 by the definition of the Frobenius norm. Therefore, this optimization

problem (F.23) from the previous work is equivalent to the following optimization problem

in our notation:

minimize
𝑊,𝐵

𝐿(𝑊,𝐵) := 1
2‖𝑊𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1) − Φ‖2

𝐹 , (F.25)

where 𝑊𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1) = �̃�(𝐻+1)�̃�(𝐻) · · · �̃�(1) (i.e., 𝑊 = �̃�(𝐻+1) with 𝐵(𝑙) =

�̃�(𝑙)) and Φ = Φ̃ if �̃�𝑦 ≥ �̃�𝑥, and 𝑊𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1) = �̃�⊤
(1)�̃�

⊤
(2) · · · �̃�⊤

(𝐻+1) (i.e.,

𝑊 = �̃�⊤
(1) with 𝐵(𝑙) = �̃�⊤

(𝐻+2−𝑙)) and Φ = Φ̃⊤ if �̃�𝑦 < �̃�𝑥. That is, we have Φ ∈

R𝑚𝑦×𝑚𝑥 where 𝑚𝑦 = �̃�𝑦 with 𝑚𝑥 = �̃�𝑥 if �̃�𝑦 ≥ �̃�𝑥, and 𝑚𝑦 = �̃�𝑥 with 𝑚𝑥 = �̃�𝑦

if �̃�𝑦 < �̃�𝑥. Therefore, our general problem framework with graph structures can be

reduced and applicable to the previous optimization problem without graph structures

by setting 1
𝑛
𝑋𝑋⊤ = 𝐼 , 𝑆 = 𝐼 , ℐ = [𝑛], 𝑓(𝑋,𝑊,𝐵) = 𝑊𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1), and

ℓ(𝑞,Φ) = 1
2‖𝑞 − Φ‖2

𝐹 where Φ ∈ R𝑚𝑦×𝑚𝑥 is a target matrix with 𝑚𝑦 ≥ 𝑚𝑥 without loss

of generality. An initialization (𝑊0, 𝐵0) is said to have deficiency margin 𝑐 > 0 if the

end-to-end matrix 𝑊0�̄�
(1:𝐻)
0 of the initialization (𝑊0, 𝐵0) has deficiency margin 𝑐 > 0 with

respect to the target Φ [Arora et al., 2019a, Definition 2]: i.e., Arora et al. [2019a] assumed

that the initialization (𝑊0, 𝐵0) has deficiency margin 𝑐 > 0 (as it is also invariant to the

transpose of �̃�(𝐻+1)�̃�(𝐻) · · · �̃�(1) − Φ̃).

Proposition F.2. Consider the optimization problem in [Arora et al., 2019a] by setting
1
𝑛
𝑋𝑋⊤ = 𝐼 , 𝑆 = 𝐼 , ℐ = [𝑛], 𝑓(𝑋,𝑊,𝐵) = 𝑊𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1), and ℓ(𝑞,Φ) =

1
2‖𝑞 − Φ‖2

𝐹 where Φ ∈ R𝑚𝑦×𝑚𝑥 is a target matrix with 𝑚𝑦 ≥ 𝑚𝑥 without loss of generality

(since the transpose of these two dimensions leads to the equivalent optimization problem

under this setting: see above). Then, if an initialization (𝑊0, 𝐵0) has deficiency margin
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𝑐 > 0, it has singular margin 𝛾 > 0.

Proof of Proposition F.2. By the definition of the deficiency margin [Arora et al., 2019a,

Definition 2] and its consequence [Arora et al., 2019a, Claim 1], if an initialization (𝑊0, 𝐵0)

has deficiency margin 𝑐 > 0, then any pair (𝑊,𝐵) for which 𝐿(𝑊,𝐵) ≤ 𝐿(𝑊0, 𝐵0)

satisfies 𝜎min(𝑊𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1)) ≥ 𝑐 > 0. Since the number of nonzero singu-

lar values is equal to the matrix rank, this implies that rank(𝑊𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1)) ≥

min(𝑚𝑦,𝑚𝑥) for any pair (𝑊,𝐵) for which 𝐿(𝑊,𝐵) ≤ 𝐿(𝑊0, 𝐵0). Since rank(𝑀𝑀 ′) ≤

min(rank(𝑀), rank(𝑀 ′)), this implies that

𝑚𝐻 ≥ min(𝑚𝑦,𝑚𝑥) = 𝑚𝑥, (F.26)

(as well as 𝑚𝑙 ≥ min(𝑚𝑦,𝑚𝑥) for all 𝑙), and that for any pair (𝑊,𝐵) for which 𝐿(𝑊,𝐵) ≤

𝐿(𝑊0, 𝐵0),

𝑚𝑥 = min(𝑚𝑦,𝑚𝑥) ≤ rank(𝑊𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1)) (F.27)

≤ min(rank(𝑊 ), rank(𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1))) (F.28)

≤ rank(𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1)) ≤ 𝑚𝑥. (F.29)

This shows that rank(𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1)) = 𝑚𝑥 for any pair (𝑊,𝐵) for which 𝐿(𝑊,𝐵) ≤

𝐿(𝑊0, 𝐵0). Since 𝑚𝐻 ≥ 𝑚𝑥 from (F.26) and the number of nonzero singular values is

equal to the matrix rank, this implies that 𝜎min(𝐵(𝐻)𝐵(𝐻−1) · · ·𝐵(1)) ≥ 𝛾 for some 𝛾 > 0

for any pair (𝑊,𝐵) for which 𝐿(𝑊,𝐵) ≤ 𝐿(𝑊0, 𝐵0). Thus, if an initialization (𝑊0, 𝐵0)

has deficiency margin 𝑐 > 0, then it has singular margin 𝛾 > 0.

F.1.4 Proof of Theorem 9.4

This section completes the proof of Theorem 9.4. We compute the derivatives of the output

of multiscale linear GNN with respect to the parameters 𝑊(𝑙) and 𝐵(𝑙) in Appendix F.1.4.

Then using these derivatives, we compute the gradient of the loss with respect to 𝑊(𝑙) in

Appendix F.1.4 and 𝐵(𝑙) in Appendix F.1.4. We then rearrange the formula of the gradients
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such that they are related to the formula of ∇(𝑙)𝐿(𝑊,𝐵) in Appendices F.1.4. Using the

proven relation, we first analyze the dynamics induced in the space of 𝑊(𝑙)𝐵(𝑙)𝐵(𝑙−1) · · ·𝐵(1)

in Appendix F.1.4, and then the dynamics induced int the space of loss value 𝐿(𝑊,𝐵) in

Appendix F.1.4. Finally, we complete the proof by using the assumption of using the square

loss in Appendices F.1.4–F.1.4. In the following, we first prove the statement for the case

of ℐ = [𝑛] for the simplicity of notation and then prove the statement for the general case

afterwards.

Derivation of formula for 𝜕 vec[𝑌 ]
𝜕 vec[𝑊(𝑙)] ∈ R𝑚𝑦𝑛×𝑚𝑦𝑚𝑙 and 𝜕 vec[𝑌 ]

𝜕 vec[𝐵(𝑙)] ∈ R𝑚𝑦𝑛×𝑚𝑙𝑚𝑙−1

We can easily compute 𝜕 vec[𝑌 ]
𝜕 vec[𝑊(𝑙)] by using the property of the Kronecker product as follows:

𝜕 vec[𝑌 ]
𝜕 vec[𝑊(𝑙)]

= 𝜕

𝜕 vec[𝑊(𝑙)]

𝐻∑︁
𝑘=0

vec[𝑊(𝑘)𝑋(𝑘)] = 𝜕

𝜕 vec[𝑊(𝑙)]

𝐻∑︁
𝑘=0

[𝑋⊤
(𝑘) ⊗ 𝐼𝑚𝑦 ] vec[𝑊(𝑘)]

= [𝑋⊤
(𝑙) ⊗ 𝐼𝑚𝑦 ] ∈ R𝑚𝑦𝑛×𝑚𝑦𝑚𝑙 (F.30)

We now compute 𝜕 vec[𝑌 ]
𝜕 vec[𝐵(𝑙)] by using the chain rule and the property of the Kronecker product

as follows:

𝜕 vec[𝑌 ]
𝜕 vec[𝐵(𝑙)]

= 𝜕

𝜕 vec[𝐵(𝑙)]

𝐻∑︁
𝑘=0

vec[𝑊(𝑘)𝑋(𝑘)]

= 𝜕

𝜕 vec[𝐵(𝑙)]

𝐻∑︁
𝑘=0

[𝐼𝑛 ⊗𝑊(𝑘)] vec[𝑋(𝑘)]

=
𝐻∑︁

𝑘=0
[𝐼𝑛 ⊗𝑊(𝑘)]

𝜕 vec[𝑋(𝑘)]
𝜕 vec[𝐵(𝑙)]

=
𝐻∑︁

𝑘=𝑙

[𝐼𝑛 ⊗𝑊(𝑘)]
𝜕 vec[𝑋(𝑘)]
𝜕 vec[𝑋(𝑙)]

𝜕 vec[𝑋(𝑙)]
𝜕 vec[𝐵(𝑙)]

=
𝐻∑︁

𝑘=𝑙

[𝐼𝑛 ⊗𝑊(𝑘)]
𝜕 vec[𝑋(𝑘)]
𝜕 vec[𝑋(𝑙)]

𝜕 vec[𝐵(𝑙)𝑋(𝑙−1)𝑆]
𝜕 vec[𝐵(𝑙)]

=
𝐻∑︁

𝑘=𝑙

[𝐼𝑛 ⊗𝑊(𝑘)]
𝜕 vec[𝑋(𝑘)]
𝜕 vec[𝑋(𝑙)]

𝜕[(𝑋(𝑙−1)𝑆)⊤ ⊗ 𝐼𝑚𝑙
] vec[𝐵(𝑙)]

𝜕 vec[𝐵(𝑙)]

=
𝐻∑︁

𝑘=𝑙

[𝐼𝑛 ⊗𝑊(𝑘)]
𝜕 vec[𝑋(𝑘)]
𝜕 vec[𝑋(𝑙)]

[(𝑋(𝑙−1)𝑆)⊤ ⊗ 𝐼𝑚𝑙
]
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Here, for any 𝑘 ≥ 1,

vec[𝑋(𝑘)] = vec[𝐵(𝑘)𝑋(𝑘−1)𝑆] = vec[𝑆⊤ ⊗𝐵(𝑘)] vec[𝑋(𝑘−1)].

By recursively applying this, we have that for any 𝑘 ≥ 𝑙,

vec[𝑋(𝑘)] = vec[𝑆⊤ ⊗𝐵(𝑘)] vec[𝑆⊤ ⊗𝐵(𝑘−1)] · · · vec[𝑆⊤ ⊗𝐵(𝑙+1)] vec[𝑋(𝑙)]

= vec[(𝑆𝑘−𝑙)⊤ ⊗𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1)] vec[𝑋(𝑙)],

where 𝑆0 := 𝐼𝑛 and

𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1) := 𝐼𝑚𝑙
if 𝑘 = 𝑙.

Therefore,

𝜕 vec[𝑋(𝑘)]
𝜕 vec[𝑋(𝑙)]

= vec[(𝑆𝑘−𝑙)⊤ ⊗𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1)].

Combining the above equations yields

𝜕 vec[𝑌 ]
𝜕 vec[𝐵(𝑙)]

=
𝐻∑︁

𝑘=𝑙

[𝐼𝑛 ⊗𝑊(𝑘)]
𝜕 vec[𝑋(𝑘)]
𝜕 vec[𝑋(𝑙)]

[(𝑋(𝑙−1)𝑆)⊤ ⊗ 𝐼𝑚𝑙
]

=
𝐻∑︁

𝑘=𝑙

[𝐼𝑛 ⊗𝑊(𝑘)] vec[(𝑆𝑘−𝑙)⊤ ⊗𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1)][(𝑋(𝑙−1)𝑆)⊤ ⊗ 𝐼𝑚𝑙
]

=
𝐻∑︁

𝑘=𝑙

[(𝑋(𝑙−1)𝑆
𝑘−𝑙+1)⊤ ⊗𝑊(𝑘)𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1)] ∈ R𝑚𝑦𝑛×𝑚𝑙𝑚𝑙−1 . (F.31)

Derivation of a formula of ∇𝑊(𝑙)𝐿(𝑊,𝐵) ∈ R𝑚𝑦×𝑚𝑙

Using the chain rule and (F.30), we have that

𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑊(𝑙)]

= 𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

𝜕 vec[𝑌 ]
𝜕 vec[𝑊(𝑙)]

= 𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

[𝑋⊤
(𝑙) ⊗ 𝐼𝑚𝑦 ].
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Thus, with 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

∈ R𝑚𝑦×𝑛, by using

∇vec[𝑊(𝑙)]𝐿(𝑊,𝐵) =
(︃
𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑊(𝑙)]

)︃⊤

= [𝑋(𝑙) ⊗ 𝐼𝑚𝑦 ]
(︃
𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

)︃⊤

= [𝑋(𝑙) ⊗ 𝐼𝑚𝑦 ] vec
[︃
𝜕𝐿(𝑊,𝐵)

𝜕𝑌

]︃

= vec
[︃
𝜕𝐿(𝑊,𝐵)

𝜕𝑌
𝑋⊤

(𝑙)

]︃
∈ R𝑚𝑦𝑚𝑙 .

Therefore,

∇𝑊(𝑙)𝐿(𝑊,𝐵) = 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

𝑋⊤
(𝑙) ∈ R𝑚𝑦×𝑚𝑙 . (F.32)

Derivation of a formula of ∇𝐵(𝑙)𝐿(𝑊,𝐵) ∈ R𝑚𝑙×𝑚𝑙−1

Using the chain rule and (F.31), we have that

𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝐵(𝑙)]

= 𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

𝜕 vec[𝑌 ]
𝜕 vec[𝐵(𝑙)]

= 𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

𝐻∑︁
𝑘=𝑙

[(𝑋(𝑙−1)𝑆
𝑘−𝑙+1)⊤⊗𝑊(𝑘)𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1)].

Thus, with 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

∈ R𝑚𝑦×𝑛,

∇vec[𝐵(𝑙)]𝐿(𝑊,𝐵) =
(︃
𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝐵(𝑙)]

)︃⊤

=
𝐻∑︁

𝑘=𝑙

[𝑋(𝑙−1)𝑆
𝑘−𝑙+1 ⊗ (𝑊(𝑘)𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1))⊤]

(︃
𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

)︃⊤

=
𝐻∑︁

𝑘=𝑙

[𝑋(𝑙−1)𝑆
𝑘−𝑙+1 ⊗ (𝑊(𝑘)𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1))⊤] vec

[︃
𝜕𝐿(𝑊,𝐵)

𝜕𝑌

]︃

=
𝐻∑︁

𝑘=𝑙

vec
[︃
(𝑊(𝑘)𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1))⊤𝜕𝐿(𝑊,𝐵)

𝜕𝑌
(𝑋(𝑙−1)𝑆

𝑘−𝑙+1)⊤
]︃

∈ R𝑚𝑙𝑚𝑙−1 .
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Therefore,

∇𝐵(𝑙)𝐿(𝑊,𝐵) =
𝐻∑︁

𝑘=𝑙

(𝑊(𝑘)𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1))⊤𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝑋(𝑙−1)𝑆
𝑘−𝑙+1)⊤ ∈ R𝑚𝑙×𝑚𝑙−1 .

(F.33)

Relating gradients to ∇(𝑙)𝐿

We now relate the gradients of the loss to ∇(𝑙)𝐿, which is defined by

∇(𝑙)𝐿(𝑊,𝐵) := 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝑋𝑆𝑙)⊤ ∈ R𝑚𝑦×𝑚𝑥 .

By using this definition and (F.32), we have that

∇𝑊(𝑙)𝐿(𝑊,𝐵) = 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

𝑋⊤
(𝑙)

= 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝐵(𝑙)𝑋(𝑙−1)𝑆)⊤

= 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝐵(𝑙)𝐵(𝑙−1) . . . 𝐵(1)𝑋𝑆
𝑙)⊤

= ∇(𝑙)𝐿(𝑊,𝐵)(𝐵(𝑙)𝐵(𝑙−1) . . . 𝐵(1))⊤,

where 𝐵(𝑙)𝐵(𝑙−1) . . . 𝐵(1) := 𝐼𝑚𝑥 if 𝑙 = 0. Similarly, by using the definition and (F.33),

∇𝐵(𝑙)𝐿(𝑊,𝐵) =
𝐻∑︁

𝑘=𝑙

(𝑊(𝑘)𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1))⊤𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝑋(𝑙−1)𝑆
𝑘−𝑙+1)⊤

=
𝐻∑︁

𝑘=𝑙

(𝑊(𝑘)𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1))⊤𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝐵(𝑙−1)𝐵(𝑙−2) . . . 𝐵(1)𝑋𝑆
𝑙−1𝑆𝑘−𝑙+1)⊤

=
𝐻∑︁

𝑘=𝑙

(𝑊(𝑘)𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1))⊤𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝐵(𝑙−1)𝐵(𝑙−2) . . . 𝐵(1)𝑋𝑆
𝑘)⊤

=
𝐻∑︁

𝑘=𝑙

(𝑊(𝑘)𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1))⊤∇(𝑘)𝐿(𝑊,𝐵)(𝐵(𝑙−1)𝐵(𝑙−2) . . . 𝐵(1))⊤

where 𝐵(𝑙−1)𝐵(𝑙−2) . . . 𝐵(1) := 𝐼𝑚𝑥 if 𝑙 = 1. In summary thus far, we have that

∇𝑊(𝑙)𝐿(𝑊,𝐵) = ∇(𝑙)𝐿(𝑊,𝐵)(𝐵(𝑙)𝐵(𝑙−1) . . . 𝐵(1))⊤ ∈ R𝑚𝑦×𝑚𝑙 , (F.34)
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and

∇𝐵(𝑙)𝐿(𝑊,𝐵) =
𝐻∑︁

𝑘=𝑙

(𝑊(𝑘)𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1))⊤∇(𝑘)𝐿(𝑊,𝐵)(𝐵(𝑙−1)𝐵(𝑙−2) . . . 𝐵(1))⊤ ∈ R𝑚𝑙×𝑚𝑙−1 ,

(F.35)

where ∇(𝑙)𝐿(𝑊,𝐵) := 𝜕𝐿(𝑊,𝐵)
𝜕𝑌

(𝑋𝑆𝑙)⊤ ∈ R𝑚𝑦×𝑚𝑥 , 𝐵(𝑘)𝐵(𝑘−1) · · ·𝐵(𝑙+1) := 𝐼𝑚𝑙
if 𝑘 = 𝑙,

𝐵(𝑙)𝐵(𝑙−1) . . . 𝐵(1) := 𝐼𝑚𝑥 if 𝑙 = 0, and 𝐵(𝑙−1)𝐵(𝑙−2) . . . 𝐵(1) := 𝐼𝑚𝑥 if 𝑙 = 1.

Dynamics induced in the space of 𝑊(𝑙)𝐵(𝑙)𝐵(𝑙−1) · · ·𝐵(1)

We now consider the Dynamics induced in the space of 𝑊(𝑙)𝐵(𝑙)𝐵(𝑙−1) · · ·𝐵(1). We first

consider the following discrete version of the dynamics:

𝑊 ′
(𝑙) = 𝑊(𝑙) − 𝛼∇𝑊(𝑙)𝐿(𝑊,𝐵)

𝐵′
(𝑙) = 𝐵(𝑙) − 𝛼∇𝐵(𝑙)𝐿(𝑊,𝐵).

This dynamics induces the following dynamics:

𝑊 ′
(𝑙)𝐵

′
(𝑙)𝐵

′
(𝑙−1) · · ·𝐵′

(1) = (𝑊(𝑙)−𝛼∇𝑊(𝑙)𝐿(𝑊,𝐵))(𝐵(𝑙)−𝛼∇𝐵(𝑙)𝐿(𝑊,𝐵)) · · · (𝐵(1)−𝛼∇𝐵(1)𝐿(𝑊,𝐵)).

Define

𝑍(𝑙) := 𝑊(𝑙)𝐵(𝑙)𝐵(𝑙−1) · · ·𝐵(1)

and

𝑍 ′
(𝑙) := 𝑊 ′

(𝑙)𝐵
′
(𝑙)𝐵

′
(𝑙−1) · · ·𝐵′

(1).

Then, we can rewrite

𝑍 ′
(𝑙) = (𝑊(𝑙) − 𝛼∇𝑊(𝑙)𝐿(𝑊,𝐵))(𝐵(𝑙) − 𝛼∇𝐵(𝑙)𝐿(𝑊,𝐵)) · · · (𝐵(1) − 𝛼∇𝐵(1)𝐿(𝑊,𝐵)).
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By expanding the multiplications, this can be written as:

𝑍 ′
(𝑙) =𝑍(𝑙) − 𝛼∇𝑊(𝑙)𝐿(𝑊,𝐵)𝐵(𝑙) · · ·𝐵(1)

− 𝛼
𝑙∑︁

𝑖=1
𝑊(𝑙)𝐵(𝑙) · · ·𝐵(𝑖+1)∇𝐵(𝑖)𝐿(𝑊,𝐵)𝐵(𝑖−1) · · ·𝐵(1) +𝑂(𝛼2)

By vectorizing both sides,

vec[𝑍 ′
(𝑙)] − vec[𝑍(𝑙)]

= −𝛼 vec[∇𝑊(𝑙)𝐿(𝑊,𝐵)𝐵(𝑙) · · ·𝐵(1)] − 𝛼
𝑙∑︁

𝑖=1
vec[𝑊(𝑙)𝐵(𝑙) · · ·𝐵(𝑖+1)∇𝐵(𝑖)𝐿(𝑊,𝐵)𝐵(𝑖−1) · · ·𝐵(1)] +𝑂(𝛼2)

Here, using the formula of ∇𝑊(𝑙)𝐿(𝑊,𝐵) and ∇𝐵(𝑙)𝐿(𝑊,𝐵), we have that

vec[∇𝑊(𝑙)𝐿(𝑊,𝐵)𝐵(𝑙) · · ·𝐵(1)] = vec[∇(𝑙)𝐿(𝑊,𝐵)(𝐵(𝑙) . . . 𝐵(1))⊤𝐵(𝑙) · · ·𝐵(1)]

= [(𝐵(𝑙) . . . 𝐵(1))⊤𝐵(𝑙) · · ·𝐵(1) ⊗ 𝐼𝑚𝑦 ] vec[∇(𝑙)𝐿(𝑊,𝐵)],

and

𝑙∑︁
𝑖=1

vec[𝑊(𝑙)𝐵(𝑙) · · ·𝐵(𝑖+1)∇𝐵(𝑖)𝐿(𝑊,𝐵)𝐵(𝑖−1) · · ·𝐵(1)]

=
𝑙∑︁

𝑖=1
vec

[︃
𝑊(𝑙)𝐵(𝑙) · · ·𝐵(𝑖+1)

𝐻∑︁
𝑘=𝑖

(𝑊(𝑘)𝐵(𝑘) · · ·𝐵(𝑖+1))⊤∇(𝑘)𝐿(𝑊,𝐵)(𝐵(𝑖−1) . . . 𝐵(1))⊤𝐵(𝑖−1) · · ·𝐵(1)

]︃

=
𝑙∑︁

𝑖=1

𝐻∑︁
𝑘=𝑖

vec
[︁
𝑊(𝑙)𝐵(𝑙) · · ·𝐵(𝑖+1)(𝑊(𝑘)𝐵(𝑘) · · ·𝐵(𝑖+1))⊤∇(𝑘)𝐿(𝑊,𝐵)(𝐵(𝑖−1) . . . 𝐵(1))⊤𝐵(𝑖−1) · · ·𝐵(1)

]︁

=
𝑙∑︁

𝑖=1

𝐻∑︁
𝑘=𝑖

[(𝐵(𝑖−1) . . . 𝐵(1))⊤𝐵(𝑖−1) · · ·𝐵(1) ⊗𝑊(𝑙)𝐵(𝑙) · · ·𝐵(𝑖+1)(𝑊(𝑘)𝐵(𝑘) · · ·𝐵(𝑖+1))⊤] vec
[︁
∇(𝑘)𝐿(𝑊,𝐵)

]︁
.

284



Summarizing above,

vec[𝑍 ′
(𝑙)] − vec[𝑍(𝑙)]

= −𝛼[(𝐵(𝑙) . . . 𝐵(1))⊤𝐵(𝑙) · · ·𝐵(1) ⊗ 𝐼𝑚𝑦 ] vec[∇(𝑙)𝐿(𝑊,𝐵)]

− 𝛼
𝑙∑︁

𝑖=1

𝐻∑︁
𝑘=𝑖

[(𝐵(𝑖−1) . . . 𝐵(1))⊤𝐵(𝑖−1) · · ·𝐵(1) ⊗𝑊(𝑙)𝐵(𝑙) · · ·𝐵(𝑖+1)(𝑊(𝑘)𝐵(𝑘) · · ·𝐵(𝑖+1))⊤] vec
[︁
∇(𝑘)𝐿(𝑊,𝐵)

]︁
+𝑂(𝛼2)

Therefore, the induced continuous dynamics of 𝑍(𝑙) = 𝑊(𝑙)𝐵(𝑙)𝐵(𝑙−1) · · ·𝐵(1) is

𝑑

𝑑𝑡
vec[𝑍(𝑙)] = −𝐹(𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)] −

𝑙∑︁
𝑖=1

𝐻∑︁
𝑘=𝑖

𝐽⊤
(𝑖,𝑙)𝐽(𝑖,𝑘) vec

[︁
∇(𝑘)𝐿(𝑊,𝐵)

]︁

where

𝐹(𝑙) = [(𝐵(𝑙) . . . 𝐵(1))⊤𝐵(𝑙) · · ·𝐵(1) ⊗ 𝐼𝑚𝑦 ],

and

𝐽(𝑖,𝑙) = [𝐵(𝑖−1) . . . 𝐵(1) ⊗ (𝑊(𝑙)𝐵(𝑙) · · ·𝐵(𝑖+1))⊤].

This is because

𝐽⊤
(𝑖,𝑘)𝐽(𝑖,𝑘) = [(𝐵(𝑖−1) . . . 𝐵(1))⊤ ⊗𝑊(𝑙)𝐵(𝑙) · · ·𝐵(𝑖+1)][𝐵(𝑖−1) . . . 𝐵(1) ⊗ (𝑊(𝑘)𝐵(𝑘) · · ·𝐵(𝑖+1))⊤]

= [(𝐵(𝑖−1) . . . 𝐵(1))⊤𝐵(𝑖−1) . . . 𝐵(1) ⊗𝑊(𝑙)𝐵(𝑙) · · ·𝐵(𝑖+1)(𝑊(𝑘)𝐵(𝑘) · · ·𝐵(𝑖+1))⊤].

Dynamics induced int the space of loss value 𝐿(𝑊,𝐵)

We now analyze the dynamics induced int the space of loss value 𝐿(𝑊,𝐵). Define

𝐿(𝑊,𝐵) := ℓ(𝑓(𝑋,𝑊,𝐵), 𝑌 ),
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where ℓ is chosen later. Using chain rule,

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) = 𝑑

𝑑𝑡
𝐿0(𝑍(𝐻), . . . , 𝑍(0))

=
𝐻∑︁

𝑙=0

𝜕𝐿0(𝑍(𝑙), . . . , 𝑍(0))
𝜕 vec[𝑍(𝑙)]

𝑑 vec[𝑍(𝑙)]
𝑑𝑡

,

where

𝐿0(𝑍(𝐻), . . . , 𝑍(0)) = ℓ(𝑓0(𝑋,𝑍), 𝑌 ), 𝑓0(𝑋,𝑍) =
𝐻∑︁

𝑙=0
𝑍(𝑙)𝑋𝑆

𝑙, and 𝑍(𝑙) = 𝑊(𝑙)𝐵(𝑙)𝐵(𝑙−1) · · ·𝐵(1).

Since 𝑓0(𝑋,𝑍) = 𝑓(𝑋,𝑊,𝐵) = 𝑌 and 𝐿0(𝑍(𝐻), . . . , 𝑍(0)) = 𝐿(𝑊,𝐵),

(︃
𝜕𝐿0(𝑍(𝑙), . . . , 𝑍(0))

𝜕 vec[𝑍(𝑙)]

)︃⊤

=
(︃
𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

𝜕 vec[𝑌 ]
𝜕 vec[𝑍(𝑙)]

)︃⊤

=
(︃
𝜕𝐿(𝑊,𝐵)
𝜕 vec[𝑌 ]

(︃
𝜕

𝜕 vec[𝑍(𝑙)]

𝐻∑︁
𝑘=0

[(𝑋𝑆𝑘)⊤ ⊗ 𝐼𝑚𝑦 ] vec[𝑍(𝑘)]
)︃)︃⊤

= [𝑋𝑆𝑙 ⊗ 𝐼𝑚𝑦 ] vec
[︃
𝜕𝐿(𝑊,𝐵)

𝜕𝑌

]︃

= vec
[︃
𝜕𝐿(𝑊,𝐵)

𝜕𝑌
(𝑋𝑆𝑙)⊤

]︃

= vec[∇(𝑙)𝐿(𝑊,𝐵)]

Therefore,

𝑑

𝑑𝑡
𝐿(𝑊,𝐵)

=
𝐻∑︁

𝑙=0
vec[∇(𝑙)𝐿(𝑊,𝐵)]⊤𝑑 vec[𝑍(𝑙)]

𝑑𝑡

= −
𝐻∑︁

𝑙=0
vec[∇(𝑙)𝐿(𝑊,𝐵)]⊤𝐹(𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]

−
𝐻∑︁

𝑙=1

𝑙∑︁
𝑖=1

𝐻∑︁
𝑘=𝑖

vec[∇(𝑙)𝐿(𝑊,𝐵)]⊤𝐽⊤
(𝑖,𝑙)𝐽(𝑖,𝑘) vec

[︁
∇(𝑘)𝐿(𝑊,𝐵)

]︁
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To simplify the second term, define𝑀(𝑙,𝑖) = ∑︀𝐻
𝑘=𝑖 vec[∇(𝑙)𝐿(𝑊,𝐵)]⊤𝐽⊤

(𝑖,𝑙)𝐽(𝑖,𝑘) vec
[︁
∇(𝑘)𝐿(𝑊,𝐵)

]︁
and note that we can expand the double sums and regroup terms as follows:

𝐻∑︁
𝑙=1

𝑙∑︁
𝑖=1

𝑀(𝑙,𝑖) =
𝐻∑︁

𝑙=1
𝑀(𝑙,1) +

𝐻∑︁
𝑙=2

𝑀(𝑙,2) + · · · +
𝐻∑︁

𝑙=𝐻

𝑀(𝑙,𝐻) =
𝐻∑︁

𝑖=1

𝐻∑︁
𝑙=𝑖

𝑀(𝑙,𝑖).

Moreover, for each 𝑖 ∈ {1, . . . , 𝐻},

𝐻∑︁
𝑙=𝑖

𝑀(𝑙,𝑖) =
𝐻∑︁

𝑙=𝑖

𝐻∑︁
𝑘=𝑖

vec[∇(𝑙)𝐿(𝑊,𝐵)]⊤𝐽⊤
(𝑖,𝑙)𝐽(𝑖,𝑘) vec

[︁
∇(𝑘)𝐿(𝑊,𝐵)

]︁

=
(︃

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
)︃⊤ (︃ 𝐻∑︁

𝑘=𝑖

𝐽(𝑖,𝑘) vec
[︁
∇(𝑘)𝐿(𝑊,𝐵)

]︁)︃

=
⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2

Using these facts, the second term can be simplified as

𝐻∑︁
𝑙=1

𝑙∑︁
𝑖=1

𝐻∑︁
𝑘=𝑖

vec[∇(𝑙)𝐿(𝑊,𝐵)]⊤𝐽⊤
(𝑖,𝑙)𝐽(𝑖,𝑘) vec

[︁
∇(𝑘)𝐿(𝑊,𝐵)

]︁

=
𝐻∑︁

𝑙=1

𝑙∑︁
𝑖=1

𝑀(𝑙,𝑖)

=
𝐻∑︁

𝑖=1

𝐻∑︁
𝑙=𝑖

𝑀(𝑙,𝑖)

=
𝐻∑︁

𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2

Combining these,

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) = −

𝐻∑︁
𝑙=0

vec[∇(𝑙)𝐿(𝑊,𝐵)]⊤𝐹(𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)] −
𝐻∑︁

𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2

(F.36)
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Since 𝐹(𝑙) is real symmetric and positive semidefinite,

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) ≤ −

𝐻∑︁
𝑙=0

𝜆min(𝐹(𝑙))‖ vec[∇(𝑙)𝐿(𝑊,𝐵)]‖2
2 −

𝐻∑︁
𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2

(F.37)

Completing the proof by using the assumption of the square loss

Using the assumption that 𝐿(𝑊,𝐵) = ℓ(𝑓(𝑋,𝑊,𝐵), 𝑌 ) = ‖𝑓(𝑋,𝑊,𝐵) − 𝑌 ‖2
𝐹 with

𝑌 = 𝑓(𝑋,𝑊,𝐵), we have

𝜕𝐿(𝑊,𝐵)
𝜕𝑌

= 𝜕

𝜕𝑌
‖𝑌 − 𝑌 ‖2

𝐹 = 2(𝑌 − 𝑌 ) ∈ R𝑚𝑦×𝑛,

and hence

vec[∇(𝑙)𝐿(𝑊,𝐵)] = vec
[︃
𝜕𝐿(𝑊,𝐵)

𝜕𝑌
(𝑋𝑆𝑙)⊤

]︃
= 2 vec

[︁
(𝑌 − 𝑌 )(𝑋𝑆𝑙)⊤

]︁
= 2[𝑋𝑆𝑙 ⊗ 𝐼𝑚𝑦 ] vec[𝑌 − 𝑌 ].

Therefore,

‖ vec[∇(𝑙)𝐿(𝑊,𝐵)]‖2
2 = 4 vec[𝑌 − 𝑌 ]⊤[(𝑋𝑆𝑙)⊤𝑋𝑆𝑙 ⊗ 𝐼𝑚𝑦 ] vec[𝑌 − 𝑌 ]. (F.38)

We are now ready to complete the proof of Theorem 9.4 for each cases (i), (ii) and (iii).
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Case (I): Completing The Proof of Theorem 9.4 (i)

Using equation (F.37) and (F.38) with 𝜆𝑊,𝐵 = min0≤𝑙≤𝐻 𝜆min(𝐹(𝑙)), we have that

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) ≤ −𝜆𝑊,𝐵

𝐻∑︁
𝑙=0

‖ vec[∇(𝑙)𝐿(𝑊,𝐵)]‖2
2 −

𝐻∑︁
𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2

≤ −4𝜆𝑊,𝐵

𝐻∑︁
𝑙=0

vec[𝑌 − 𝑌 ]⊤[(𝑋𝑆𝑙)⊤𝑋𝑆𝑙 ⊗ 𝐼𝑚𝑦 ] vec[𝑌 − 𝑌 ]

−
𝐻∑︁

𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2

≤ −4𝜆𝑊,𝐵 vec[𝑌 − 𝑌 ]⊤
[︃(︃

𝐻∑︁
𝑙=0

(𝑋𝑆𝑙)⊤𝑋𝑆𝑙

)︃
⊗ 𝐼𝑚𝑦

]︃
vec[𝑌 − 𝑌 ]

−
𝐻∑︁

𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2

= −4𝜆𝑊,𝐵 vec[𝑌 − 𝑌 ]⊤
[︁
𝐺⊤

𝐻𝐺𝐻 ⊗ 𝐼𝑚𝑦

]︁
vec[𝑌 − 𝑌 ]

−
𝐻∑︁

𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2

where the last line follows from the following fact:

𝐺⊤
𝐻𝐺𝐻 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋

𝑋𝑆
...

𝑋𝑆𝐻

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋

𝑋𝑆
...

𝑋𝑆𝐻

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

𝐻∑︁
𝑙=0

(𝑋𝑆𝑙)⊤𝑋𝑆𝑙.

Decompose vec[𝑌 − 𝑌 ] as vec[𝑌 − 𝑌 ] = 𝑣 + 𝑣⊥, where 𝑣 = P𝐺⊤
𝐻⊗𝐼𝑚𝑦

vec[𝑌 − 𝑌 ],

𝑣⊥ = (𝐼𝑚𝑦𝑛 − P𝐺⊤
𝐻⊗𝐼𝑚𝑦

) vec[𝑌 −𝑌 ], and P𝐺⊤
𝐻⊗𝐼𝑚𝑦

∈ R𝑚𝑦𝑛×𝑚𝑦𝑛 represents the orthogonal
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projection onto the column space of 𝐺⊤
𝐻 ⊗ 𝐼𝑚𝑦 ∈ R𝑚𝑦𝑛×(𝐻+1)𝑚𝑦𝑚𝑥 . Then,

vec[𝑌 − 𝑌 ]⊤
[︁
𝐺⊤

𝐻𝐺𝐻 ⊗ 𝐼𝑚𝑦

]︁
vec[𝑌 − 𝑌 ] = (𝑣 + 𝑣⊥)⊤

[︁
𝐺⊤

𝐻 ⊗ 𝐼𝑚𝑦

]︁ [︁
𝐺𝐻 ⊗ 𝐼𝑚𝑦

]︁
(𝑣 + 𝑣⊥)

= 𝑣⊤
[︁
𝐺⊤

𝐻 ⊗ 𝐼𝑚𝑦

]︁ [︁
𝐺𝐻 ⊗ 𝐼𝑚𝑦

]︁
𝑣

≥ 𝜎2
min(𝐺𝐻)‖P𝐺⊤

𝐻⊗𝐼𝑚𝑦
vec[𝑌 − 𝑌 ]‖2

2

= 𝜎2
min(𝐺𝐻)‖P𝐺⊤

𝐻⊗𝐼𝑚𝑦
vec[𝑌 ] − P𝐺⊤

𝐻⊗𝐼𝑚𝑦
vec[𝑌 ]‖2

2

= 𝜎2
min(𝐺𝐻)‖ vec[𝑌 ] − P𝐺⊤

𝐻⊗𝐼𝑚𝑦
vec[𝑌 ] ± vec[𝑌 ]‖2

2

= 𝜎2
min(𝐺𝐻)‖ vec[𝑌 ] − vec[𝑌 ] + (𝐼𝑚𝑦𝑛 − P𝐺⊤

𝐻⊗𝐼𝑚𝑦
) vec[𝑌 ]‖2

2

≥ 𝜎2
min(𝐺𝐻)(‖ vec[𝑌 − 𝑌 ]‖2 − ‖(𝐼𝑚𝑦𝑛 − P𝐺⊤

𝐻⊗𝐼𝑚𝑦
) vec[𝑌 ]‖2)2

≥ 𝜎2
min(𝐺𝐻)(‖ vec[𝑌 − 𝑌 ]‖2

2 − ‖(𝐼𝑚𝑦𝑛 − P𝐺⊤
𝐻⊗𝐼𝑚𝑦

) vec[𝑌 ]‖2
2,

where we used the fact that the singular values of
[︁
𝐺⊤

𝐻 ⊗ 𝐼𝑚𝑦

]︁
are products of singular

values of 𝐺𝐻 and 𝐼𝑚𝑦 .

By noticing that 𝐿(𝑊,𝐵) = ‖ vec[𝑌 − 𝑌 ]‖2
2 and 𝐿*

1:𝐻 = ‖(𝐼𝑚𝑦𝑛 − P𝐺⊤
𝐻⊗𝐼𝑚𝑦

) vec[𝑌 ]‖2
2

,

vec[𝑌 − 𝑌 ]⊤
[︁
𝐺⊤

𝐻𝐺𝐻 ⊗ 𝐼𝑚𝑦

]︁
vec[𝑌 − 𝑌 ] ≥ 𝜎2

min(𝐺𝐻)(𝐿(𝑊,𝐵) − 𝐿*
1:𝐻).

Therefore,

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) ≤ −4𝜆𝑊,𝐵 vec[𝑌 − 𝑌 ]⊤

[︁
𝐺⊤

𝐻𝐺𝐻 ⊗ 𝐼𝑚𝑦

]︁
vec[𝑌 − 𝑌 ] −

𝐻∑︁
𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2

≤ −4𝜆𝑊,𝐵𝜎
2
min(𝐺𝐻)(𝐿(𝑊,𝐵) − 𝐿*

1:𝐻) −
𝐻∑︁

𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2

Since 𝑑
𝑑𝑡
𝐿*

1:𝐻 = 0,

𝑑

𝑑𝑡
(𝐿(𝑊,𝐵)−𝐿*

1:𝐻) ≤ −4𝜆𝑊,𝐵𝜎
2
min(𝐺𝐻)(𝐿(𝑊,𝐵)−𝐿*

1:𝐻)−
𝐻∑︁

𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2
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By defining L = 𝐿(𝑊,𝐵) − 𝐿*
1:𝐻 ,

𝑑L
𝑑𝑡

≤ −4𝜆𝑊,𝐵𝜎
2
min(𝐺𝐻)L −

𝐻∑︁
𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2
(F.39)

Since 𝑑
𝑑𝑡

L ≤ 0 and L ≥ 0, if L = 0 at some time 𝑡, then L = 0 for any time 𝑡 ≥ 𝑡.

Therefore, if L = 0 at some time 𝑡, then we have the desired statement of this theorem for

any time 𝑡 ≥ 𝑡. Thus, we can focus on the time interval [0, 𝑡] such that L > 0 for any time

𝑡 ∈ [0, 𝑡] (here, it is allowed to have 𝑡 = ∞). Thus, focusing on the time interval with L > 0

, equation (F.39) implies that

1
L
𝑑L
𝑑𝑡

≤ −4𝜆𝑊,𝐵𝜎
2
min(𝐺𝐻) − 1

L

𝐻∑︁
𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2

By taking integral over time

∫︁ 𝑇

0

1
L
𝑑L
𝑑𝑡
𝑑𝑡 ≤ −

∫︁ 𝑇

0
4𝜆𝑊,𝐵𝜎

2
min(𝐺𝐻)𝑑𝑡−

∫︁ 𝑇

0

1
L

𝐻∑︁
𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2
𝑑𝑡

By using the substitution rule for integrals,
∫︀ 𝑇

0
1
L

𝑑L
𝑑𝑡
𝑑𝑡 =

∫︀ L𝑇
L0

1
L𝑑L = log(L𝑇 ) − log(L0),

where L0 = 𝐿(𝑊0, 𝐵0) − 𝐿*
1:𝐻 and L𝑇 = 𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*

1:𝐻 . Thus,

log(L𝑇 ) − log(L0) ≤ −4𝜎2
min(𝐺𝐻)

∫︁ 𝑇

0
𝜆𝑊,𝐵𝑑𝑡−

∫︁ 𝑇

0

1
L

𝐻∑︁
𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2
𝑑𝑡

which implies that

L𝑇 ≤ 𝑒log(L0)−4𝜎2
min(𝐺𝐻)

∫︀ 𝑇

0 𝜆𝑊,𝐵𝑑𝑡−
∫︀ 𝑇

0
1
L
∑︀𝐻

𝑖=1‖
∑︀𝐻

𝑙=𝑖
𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]‖2

2
𝑑𝑡

= L0𝑒
−4𝜎2

min(𝐺𝐻)
∫︀ 𝑇

0 𝜆𝑊,𝐵𝑑𝑡−
∫︀ 𝑇

0
1
L
∑︀𝐻

𝑖=1‖
∑︀𝐻

𝑙=𝑖
𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]‖2

2
𝑑𝑡

By recalling the definition of L = 𝐿(𝑊,𝐵) − 𝐿*
1:𝐻 and that 𝑑

𝑑𝑡
L ≤ 0, we have that if

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
1:𝐻 > 0, then 𝐿(𝑊𝑡, 𝐵𝑡) − 𝐿*

1:𝐻 > 0 for all 𝑡 ∈ [0, 𝑇 ], and

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
1:𝐻 ≤ (𝐿(𝑊0, 𝐵0) − 𝐿*

1:𝐻)𝑒−4𝜎2
min(𝐺𝐻)

∫︀ 𝑇

0 𝜆𝑊𝑡,𝐵𝑡 𝑑𝑡−
∫︀ 𝑇

0
1

𝐿(𝑊𝑡,𝐵𝑡)−𝐿*
∑︀𝐻

𝑖=1‖
∑︀𝐻

𝑙=𝑖
𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊𝑡,𝐵𝑡)]‖2

2
𝑑𝑡
.
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By noticing that 𝜆(1:𝐻)
𝑇 = inf𝑡∈[0,𝑇 ] 𝜆𝑊𝑡,𝐵𝑡 and that

∫︁ 𝑇

0

1
𝐿(𝑊𝑡, 𝐵𝑡) − 𝐿*

𝐻∑︁
𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊𝑡, 𝐵𝑡)]
⃦⃦⃦⃦
⃦

2

2
𝑑𝑡 ≥ 0

, this implies that

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
1:𝐻 ≤ (𝐿(𝑊0, 𝐵0) − 𝐿*

1:𝐻)𝑒−4𝜆
(1:𝐻)
𝑇 𝜎2

min(𝐺𝐻)𝑇 −
∫︀ 𝑇

0
1

𝐿(𝑊𝑡,𝐵𝑡)−𝐿*
∑︀𝐻

𝑖=1‖
∑︀𝐻

𝑙=𝑖
𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊𝑡,𝐵𝑡)]‖2

2
𝑑𝑡

≤ (𝐿(𝑊0, 𝐵0) − 𝐿*
1:𝐻)𝑒−4𝜆

(1:𝐻)
𝑇 𝜎2

min(𝐺𝐻)𝑇 .

This completes the proof of Theorem 9.4 (i) for the case of ℐ = [𝑛]. Since every step in this

proof is valid when we replace 𝑓(𝑋,𝑊,𝐵) by 𝑓(𝑋,𝑊,𝐵)*ℐ and 𝑋𝑆𝑙 by 𝑋(𝑆𝑙)*ℐ without

using any assumption on 𝑆 or the relation between 𝑆𝑙−1 and 𝑆, our proof also yields for the

general case of ℐ that

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
1:𝐻 ≤ (𝐿(𝑊0, 𝐵0) − 𝐿*

1:𝐻)𝑒−4𝜆
(1:𝐻)
𝑇 𝜎2

min((𝐺𝐻)*ℐ)𝑇 .

Case (ii): Completing The Proof of Theorem 9.4 (ii)

Using equation (F.37) and (F.38) , we have that for any 𝐻 ′ ∈ {0, 1, . . . , 𝐻},

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) ≤ −𝜆min(𝐹(𝐻′))‖ vec[∇(𝐻′)𝐿(𝑊,𝐵)]‖2

2

≤ −4𝜆min(𝐹(𝐻′)) vec[𝑌 − 𝑌 ]⊤[(𝑋𝑆𝐻′)⊤𝑋𝑆𝐻′ ⊗ 𝐼𝑚𝑦 ] vec[𝑌 − 𝑌 ]

= −4𝜆𝑊,𝐵 vec[𝑌 − 𝑌 ]⊤
[︁
�̃�⊤

𝐻′�̃�𝐻′ ⊗ 𝐼𝑚𝑦

]︁
vec[𝑌 − 𝑌 ],

where

𝜆𝑊,𝐵 := 𝜆min(𝐹(𝐻′)),

and

�̃�𝐻′ := 𝑋𝑆𝐻′
.
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Decompose vec[𝑌 − 𝑌 ] as vec[𝑌 − 𝑌 ] = 𝑣 + 𝑣⊥, where 𝑣 = P�̃�⊤
𝐻′ ⊗𝐼𝑚𝑦

vec[𝑌 − 𝑌 ],

𝑣⊥ = (𝐼𝑚𝑦𝑛 −P�̃�⊤
𝐻′ ⊗𝐼𝑚𝑦

) vec[𝑌 −𝑌 ], and P�̃�⊤
𝐻′ ⊗𝐼𝑚𝑦

∈ R𝑚𝑦𝑛×𝑚𝑦𝑛 represents the orthogonal

projection onto the column space of �̃�⊤
𝐻′ ⊗ 𝐼𝑚𝑦 ∈ R𝑚𝑦𝑛×𝑚𝑦𝑚𝑥 . Then,

vec[𝑌 − 𝑌 ]⊤
[︁
�̃�⊤

𝐻′�̃�𝐻′ ⊗ 𝐼𝑚𝑦

]︁
vec[𝑌 − 𝑌 ] = (𝑣 + 𝑣⊥)⊤

[︁
�̃�⊤

𝐻′ ⊗ 𝐼𝑚𝑦

]︁ [︁
�̃�𝐻′ ⊗ 𝐼𝑚𝑦

]︁
(𝑣 + 𝑣⊥)

= 𝑣⊤
[︁
�̃�⊤

𝐻′ ⊗ 𝐼𝑚𝑦

]︁ [︁
�̃�𝐻′ ⊗ 𝐼𝑚𝑦

]︁
𝑣

≥ 𝜎2
min(�̃�𝐻′)‖P�̃�⊤

𝐻′ ⊗𝐼𝑚𝑦
vec[𝑌 − 𝑌 ]‖2

2

= 𝜎2
min(�̃�𝐻′)‖P�̃�⊤

𝐻′ ⊗𝐼𝑚𝑦
vec[𝑌 ] − P�̃�⊤

𝐻′ ⊗𝐼𝑚𝑦
vec[𝑌 ]‖2

2

= 𝜎2
min(�̃�𝐻′)‖ vec[𝑌 ] − P�̃�⊤

𝐻′ ⊗𝐼𝑚𝑦
vec[𝑌 ] ± vec[𝑌 ]‖2

2

= 𝜎2
min(�̃�𝐻′)‖ vec[𝑌 ] − vec[𝑌 ] + (𝐼𝑚𝑦𝑛 − P�̃�⊤

𝐻′ ⊗𝐼𝑚𝑦
) vec[𝑌 ]‖2

2

≥ 𝜎2
min(�̃�𝐻′)(‖ vec[𝑌 − 𝑌 ]‖2 − ‖(𝐼𝑚𝑦𝑛 − P�̃�⊤

𝐻′ ⊗𝐼𝑚𝑦
) vec[𝑌 ]‖2)2

≥ 𝜎2
min(�̃�𝐻′)(‖ vec[𝑌 − 𝑌 ]‖2

2 − ‖(𝐼𝑚𝑦𝑛 − P�̃�⊤
𝐻′ ⊗𝐼𝑚𝑦

) vec[𝑌 ]‖2
2,

where we used the fact that the singular values of
[︁
�̃�⊤

𝐻′ ⊗ 𝐼𝑚𝑦

]︁
are products of singular

values of �̃�𝐻′ and 𝐼𝑚𝑦 .

By noticing that 𝐿(𝑊,𝐵) = ‖ vec[𝑌 − 𝑌 ]‖2
2 and 𝐿*

𝐻′ = ‖(𝐼𝑚𝑦𝑛 − P�̃�⊤
𝐻′ ⊗𝐼𝑚𝑦

) vec[𝑌 ]‖2
2

, we have that for any 𝐻 ′ ∈ {0, 1, . . . , 𝐻},

vec[𝑌 − 𝑌 ]⊤
[︁
�̃�⊤

𝐻′�̃�𝐻′ ⊗ 𝐼𝑚𝑦

]︁
vec[𝑌 − 𝑌 ] ≥ 𝜎2

min(�̃�𝐻′)(𝐿(𝑊,𝐵) − 𝐿*
𝐻′). (F.40)

Therefore,

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) ≤ −4𝜆𝑊,𝐵 vec[𝑌 − 𝑌 ]⊤

[︁
�̃�⊤

𝐻′�̃�𝐻′ ⊗ 𝐼𝑚𝑦

]︁
vec[𝑌 − 𝑌 ]

≤ −4𝜆𝑊,𝐵𝜎
2
min(�̃�𝐻′)(𝐿(𝑊,𝐵) − 𝐿*

𝐻′)

Since 𝑑
𝑑𝑡
𝐿*

𝐻′ = 0,

𝑑

𝑑𝑡
(𝐿(𝑊,𝐵) − 𝐿*

𝐻′) ≤ −4𝜆𝑊,𝐵𝜎
2
min(�̃�𝐻′)(𝐿(𝑊,𝐵) − 𝐿*

𝐻′)
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By defining L = 𝐿(𝑊,𝐵) − 𝐿*
𝐻′ ,

𝑑L
𝑑𝑡

≤ −4𝜆𝑊,𝐵𝜎
2
min(�̃�𝐻′)L (F.41)

Since 𝑑
𝑑𝑡

L ≤ 0 and L ≥ 0, if L = 0 at some time 𝑡, then L = 0 for any time 𝑡 ≥ 𝑡.

Therefore, if L = 0 at some time 𝑡, then we have the desired statement of this theorem for

any time 𝑡 ≥ 𝑡. Thus, we can focus on the time interval [0, 𝑡] such that L > 0 for any time

𝑡 ∈ [0, 𝑡] (here, it is allowed to have 𝑡 = ∞). Thus, focusing on the time interval with L > 0

, equation (F.41) implies that

1
L
𝑑L
𝑑𝑡

≤ −4𝜆𝑊,𝐵𝜎
2
min(�̃�𝐻′)

By taking integral over time

∫︁ 𝑇

0

1
L
𝑑L
𝑑𝑡
𝑑𝑡 ≤ −

∫︁ 𝑇

0
4𝜆𝑊,𝐵𝜎

2
min(�̃�𝐻′)𝑑𝑡

By using the substitution rule for integrals,
∫︀ 𝑇

0
1
L

𝑑L
𝑑𝑡
𝑑𝑡 =

∫︀ L𝑇
L0

1
L𝑑L = log(L𝑇 ) − log(L0),

where L0 = 𝐿(𝑊0, 𝐵0) − 𝐿* and L𝑇 = 𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝐻′ . Thus,

log(L𝑇 ) − log(L0) ≤ −4𝜎2
min(�̃�𝐻′)

∫︁ 𝑇

0
𝜆𝑊,𝐵𝑑𝑡

which implies that

L𝑇 ≤ 𝑒log(L0)−4𝜎2
min(�̃�𝐻′ )

∫︀ 𝑇

0 𝜆𝑊,𝐵𝑑𝑡

= L0𝑒
−4𝜎2

min(�̃�𝐻′ )
∫︀ 𝑇

0 𝜆𝑊,𝐵𝑑𝑡

By recalling the definition of L = 𝐿(𝑊,𝐵) − 𝐿*
𝐻′ and that 𝑑

𝑑𝑡
L ≤ 0, we have that if

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝐻′ > 0, then 𝐿(𝑊𝑡, 𝐵𝑡) − 𝐿*

𝐻′ > 0 for all 𝑡 ∈ [0, 𝑇 ], and

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝐻′ ≤ (𝐿(𝑊0, 𝐵0) − 𝐿*

𝐻′)𝑒−4𝜎2
min(�̃�𝐻′ )

∫︀ 𝑇

0 𝜆𝑊𝑡,𝐵𝑡 𝑑𝑡.
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By noticing that 𝜆(𝐻′)
𝑇 = inf𝑡∈[0,𝑇 ] 𝜆𝑊𝑡,𝐵𝑡 , this implies that for any 𝐻 ′ ∈ {0, 1, . . . , 𝐻},

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝐻′ ≤ (𝐿(𝑊0, 𝐵0) − 𝐿*

𝐻′)𝑒−4𝜆
(𝐻′)
𝑇 𝜎2

min(�̃�𝐻′ )𝑇

= (𝐿(𝑊0, 𝐵0) − 𝐿*
𝐻′)𝑒−4𝜆

(𝐻)
𝑇 𝜎2

min(𝑋𝑆𝐻′ )𝑇

This completes the proof of Theorem 9.4 (ii) for the case of ℐ = [𝑛]. Since every step in this

proof is valid when we replace 𝑓(𝑋,𝑊,𝐵) by 𝑓(𝑋,𝑊,𝐵)*ℐ and 𝑋𝑆𝑙 by 𝑋(𝑆𝑙)*ℐ without

using any assumption on 𝑆 or the relation between 𝑆𝑙−1 and 𝑆, our proof also yields for the

general case of ℐ that

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝐻′ ≤ (𝐿(𝑊0, 𝐵0) − 𝐿*

𝐻′)𝑒−4𝜆
(𝐻)
𝑇 𝜎2

min(𝑋(𝑆𝐻′ )*ℐ)𝑇

Case (iii): Completing The Proof of Theorem 9.4 (iii)

In this case, we have the following assumption: there exist 𝑙, 𝑙′ ∈ {0, . . . , 𝐻} with 𝑙 < 𝑙′

such that 𝐿*
𝑙 ≥ 𝐿*

𝑙+1 ≥ · · · ≥ 𝐿*
𝑙′ or 𝐿*

𝑙 ≤ 𝐿*
𝑙+1 ≤ · · · ≤ 𝐿*

𝑙′ . Using equation (F.37) and

(F.38) with �̃�𝑙 = 𝑋𝑆𝑙, we have that

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) ≤ −

𝐻∑︁
𝑙=0

𝜆min(𝐹(𝑙))‖ vec[∇(𝑙)𝐿(𝑊,𝐵)]‖2
2

≤ −4
𝐻∑︁

𝑙=0
𝜆min(𝐹(𝑙)) vec[𝑌 − 𝑌 ]⊤[(𝑋𝑆𝑙)⊤𝑋𝑆𝑙 ⊗ 𝐼𝑚𝑦 ] vec[𝑌 − 𝑌 ]

= −4
𝐻∑︁

𝑙=0
𝜆min(𝐹(𝑙)) vec[𝑌 − 𝑌 ]⊤[�̃�⊤

𝑙 �̃�𝑙 ⊗ 𝐼𝑚𝑦 ] vec[𝑌 − 𝑌 ]

Using (F.40), since vec[𝑌 −𝑌 ]⊤
[︁
�̃�⊤

𝑙 �̃�𝑙 ⊗ 𝐼𝑚𝑦

]︁
vec[𝑌 −𝑌 ] ≥ 𝜎2

min(�̃�𝑙)(𝐿(𝑊,𝐵)−𝐿*
𝑙 )

for any 𝑙 ∈ {0, 1, . . . , 𝐻},

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) ≤ −4

𝐻∑︁
𝑙=0

𝜆min(𝐹(𝑙))𝜎2
min(�̃�𝑙)(𝐿(𝑊,𝐵) − 𝐿*

𝑙 ). (F.42)

Let 𝑙′′ = 𝑙 if 𝐿*
𝑙 ≥ 𝐿*

𝑙+1 ≥ · · · ≥ 𝐿*
𝑙′ , and 𝑙′′ = 𝑙′ if 𝐿*

𝑙 ≤ 𝐿*
𝑙+1 ≤ · · · ≤ 𝐿*

𝑙′ . Then, using
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(F.42) and the assumption of 𝐿*
𝑙 ≥ 𝐿*

𝑙+1 ≥ · · · ≥ 𝐿*
𝑙′ or 𝐿*

𝑙 ≤ 𝐿*
𝑙+1 ≤ · · · ≤ 𝐿*

𝑙′ for some

𝑙, 𝑙′ ∈ {0, . . . , 𝐻}, we have that

𝑑

𝑑𝑡
𝐿(𝑊,𝐵) ≤ −4(𝐿(𝑊,𝐵) − 𝐿*

𝑙′′)
𝑙′∑︁

𝑘=𝑙

𝜆min(𝐹(𝑘))𝜎2
min(�̃�𝑘). (F.43)

Since 𝑑
𝑑𝑡
𝐿*

𝑙′′ = 0,

𝑑

𝑑𝑡
(𝐿(𝑊,𝐵) − 𝐿*

𝑙′′) ≤ −4(𝐿(𝑊,𝐵) − 𝐿*
𝑙′′)

𝑙′∑︁
𝑘=𝑙

𝜆min(𝐹(𝑘))𝜎2
min(�̃�𝑘).

By taking integral over time in the same way as that in the proof for the case of (i) and (ii),

we have that

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝑙′′ ≤ (𝐿(𝑊0, 𝐵0) − 𝐿*

𝑙′′)𝑒−4
∑︀𝑙′

𝑘=𝑙
𝜎2

min(�̃�𝑘)
∫︀ 𝑇

0 𝜆min(𝐹(𝑘),𝑡)𝑑𝑡 (F.44)

Using the property of Kronecker product,

𝜆min(𝐹(𝑙),𝑡) = 𝜆min([(𝐵(𝑙),𝑡 . . . 𝐵(1),𝑡)⊤𝐵(𝑙),𝑡 · · ·𝐵(1),𝑡⊗𝐼𝑚𝑦 ]) = 𝜆min((𝐵(𝑙),𝑡 . . . 𝐵(1),𝑡)⊤𝐵(𝑙),𝑡 · · ·𝐵(1),𝑡),

which implies that 𝜆(𝑘)
𝑇 = inf𝑡∈[0,𝑇 ] 𝜆min(𝐹(𝑘),𝑡). Therefore, equation (F.44) with 𝜆(𝑘)

𝑇 =

inf𝑡∈[0,𝑇 ] 𝜆min(𝐹(𝑘),𝑡) yields that

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝑙′′ ≤ (𝐿(𝑊0, 𝐵0) − 𝐿*

𝑙′′)𝑒−4
∑︀𝑙′

𝑘=𝑙
𝜆

(𝑘)
𝑇 𝜎2

min(�̃�𝑘)𝑇

= (𝐿(𝑊0, 𝐵0) − 𝐿*
𝑙′′)𝑒−4

∑︀𝑙′

𝑘=𝑙
𝜆

(𝑘)
𝑇 𝜎2

min(𝑋𝑆𝑘)𝑇 (F.45)

This completes the proof of Theorem 9.4 (iii) for the case of ℐ = [𝑛]. Since every step

in this proof is valid when we replace 𝑓(𝑋,𝑊,𝐵) by 𝑓(𝑋,𝑊,𝐵)*ℐ and 𝑋𝑆𝑙 by 𝑋(𝑆𝑙)*ℐ

without using any assumption on 𝑆 or the relation between 𝑆𝑙−1 and 𝑆, our proof also yields

for the general case of ℐ that

𝐿(𝑊𝑇 , 𝐵𝑇 ) − 𝐿*
𝑙′′ ≤ (𝐿(𝑊0, 𝐵0) − 𝐿*

𝑙′′)𝑒−4
∑︀𝑙′

𝑘=𝑙
𝜆

(𝑘)
𝑇 𝜎2

min(𝑋(𝑆𝑘)*ℐ)𝑇 .
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F.1.5 Proof of Proposition 9.5

From Definition 9.4, for any 𝑙 ∈ {1, 2, . . . , 𝐻}, we have that 𝜎min(�̄�(1:𝑙)) = 𝜎min(𝐵(𝑙)𝐵(𝑙−1) · · ·𝐵(1)) ≥

𝛾 for all (𝑊,𝐵) such that 𝐿(𝑊,𝐵) ≤ 𝐿(𝑊0, 𝐵0). From equation (F.37) in the proof of The-

orem 9.4, it holds that 𝑑
𝑑𝑡
𝐿(𝑊𝑡, 𝐵𝑡) ≤ 0 for all 𝑡. Thus, we have that 𝐿(𝑊𝑡, 𝐵𝑡) ≤ 𝐿(𝑊0, 𝐵0)

and hence 𝜎min(�̄�(1:𝑙)
𝑡 ) ≥ 𝛾 for all 𝑡. Under this problem setting (𝑚𝑙 ≥ 𝑚𝑥), this implies

that 𝜆min((�̄�(1:𝑙)
𝑡 )⊤�̄�

(1:𝑙)
𝑡 ) ≥ 𝛾2 for all 𝑡 and thus 𝜆(1:𝐻)

𝑇 ≥ 𝛾2.

F.1.6 Proof of Theorem 9.6

The proof of Theorem 9.6 follows from the intermediate results of the proofs of Theorem 9.1

and Theorem 9.4 as we show in the following. For the non-multiscale case, from equation

(F.18) in the proof of Theorem 9.1, we have that

𝑑

𝑑𝑡
𝐿1(𝑊,𝐵) = −‖ vec[∇(𝐻)𝐿(𝑊,𝐵)]‖2

𝐹(𝐻)
−

𝐻∑︁
𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)]

⃦⃦⃦2

2

where

‖ vec[∇(𝐻)𝐿(𝑊,𝐵)]‖2
𝐹(𝐻)

:= vec[∇(𝐻)𝐿(𝑊,𝐵)]⊤𝐹(𝐻) vec[∇(𝐻)𝐿(𝑊,𝐵)].

Since equation (F.18) in the proof of Theorem 9.4 is derived without the assumption on

the square loss, this holds for any differentiable loss ℓ. By noticing that ∇(𝐻)𝐿(𝑊,𝐵) =

𝑉 (𝑋(𝑆𝐻)*ℐ)⊤, we have that

𝑑

𝑑𝑡
𝐿1(𝑊,𝐵) = −‖ vec[𝑉 (𝑋(𝑆𝐻)*ℐ)⊤]‖2

𝐹(𝐻)
−

𝐻∑︁
𝑖=1

⃦⃦⃦
𝐽(𝑖,𝐻) vec[𝑉 (𝑋(𝑆𝐻)*ℐ)⊤]

⃦⃦⃦2

2
.

This proves the statement of Theorem 9.6 (i).
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For the multiscale case, from equation (F.36) in the proof of Theorem 9.4, we have that

𝑑

𝑑𝑡
𝐿2(𝑊,𝐵) = −

𝐻∑︁
𝑙=0

‖ vec[∇(𝑙)𝐿(𝑊,𝐵)]‖2
𝐹(𝑙)

−
𝐻∑︁

𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)]
⃦⃦⃦⃦
⃦

2

2
(F.46)

where

‖ vec[∇(𝑙)𝐿(𝑊,𝐵)]‖2
𝐹(𝑙)

:= vec[∇(𝑙)𝐿(𝑊,𝐵)]⊤𝐹(𝑙) vec[∇(𝑙)𝐿(𝑊,𝐵)].

Since equation (F.36) in the proof of Theorem 9.4 is derived without the assumption on

the square loss, this holds for any differentiable loss ℓ. Since every step to derive equation

(F.36) is valid when we replace 𝑓(𝑋,𝑊,𝐵) by 𝑓(𝑋,𝑊,𝐵)*ℐ and 𝑋𝑆𝑙 by 𝑋(𝑆𝑙)*ℐ without

using any assumption on 𝑆 or the relation between 𝑆𝑙−1 and 𝑆, the steps to derive equation

(F.36) also yields this for the general case of ℐ: i.e., ∇(𝑙)𝐿(𝑊,𝐵) = 𝑉 (𝑋(𝑆𝑙)*ℐ)⊤. Thus,

we have that

𝑑

𝑑𝑡
𝐿1(𝑊,𝐵) = −

𝐻∑︁
𝑙=0

‖ vec[𝑉 (𝑋(𝑆𝑙)*ℐ)⊤]‖2
𝐹(𝑙)

−
𝐻∑︁

𝑖=1

⃦⃦⃦⃦
⃦

𝐻∑︁
𝑙=𝑖

𝐽(𝑖,𝑙) vec[𝑉 (𝑋(𝑆𝑙)*ℐ)⊤]
⃦⃦⃦⃦
⃦

2

2

This completes the proof of Theorem 9.6 (ii).

F.2 Additional Experimental Results

In this section, we present additional experimental results.
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(d) ReLU and Citeseer.

Figure F-1: Multiscale skip connection accelerates GNN training. We plot the training
curves of GNNs with ReLU and linear activation on the Cora and Citeseer dataset. We use
the GCN model with learning rate 5𝑒− 5, six layers, and hidden dimension 32.
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(d) ReLU and multiscale.

Figure F-2: Depth accelerates GNN training. We plot the training curves of GNNs with
ReLU and linear activation, multiscale and non-multiscale on the Cora dataset. We use the
GCN model with learning rate 5𝑒− 5 and hidden dimension 32.
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Figure F-3: Depth accelerates GNN training. We plot the training curves of GNNs with
ReLU and linear activation, multiscale and non-multiscale on the Citeseer dataset. We use
the GCN model with learning rate 5𝑒− 5 and hidden dimension 32.
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Figure F-4: GNNs train faster when the labels have signal instead of random noise.
We plot the training curves of multiscale and non-multiscale GNNs with ReLU and linear
activation, on the Cora dataset. We use the two-layer GCN model with learning rate 1𝑒− 4
and hidden dimension 32.
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Figure F-5: GNNs train faster when the labels have signal instead of random noise.
We plot the training curves of multiscale and non-multiscale GNNs with ReLU and linear
activation, on the Citeseer dataset. We use the two-layer GCN model with learning rate
1𝑒− 4 and hidden dimension 32.
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(a) Linear GIN vs. ReLU GIN.
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(b) Linear GCN vs. ReLU GCN.

Figure F-6: Linear GNNs vs. ReLU GNNs. We plot the training curves of GCN and GIN
with ReLU and linear activation on the Cora dataset. The training curves of linear GNNs and
ReLU GNNs are similar, both converging to nearly zero training loss with the same linear
rate. Moreover, GIN trains faster than GCN, which agrees with our bound in Theorem 9.1.
We use the learning rate 1𝑒− 4, two layers, and hidden dimension 32.
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F.3 Experimental Setup

In this section, we describe the experimental setup for reproducing our experiments.

Dataset. We perform all experiments on the Cora and Citeseer datasets Sen et al. [2008].

Cora and Citeer are citation networks and the goal is to classify academic documents into

different subjects. The dataset contains bag-of-words features for each document (node) and

citation links (edges) between documents. The tasks are semi-supervised node classification.

Only a subset of nodes have training labels. In our experiments, we use the default dataset

split, i.e., which nodes have training labels, and minimize the training loss accordingly.

Tabel F.1 shows an overview of the dataset statistics.

Dataset Nodes Edges Classes Features
Citeseer 3,327 4,732 6 3,703

Cora 2,708 5,429 7 1,433

Table F.1: Dataset statistics

Training details. We describe the training settings for our experiments. Let us first

describe some common hyperparameters and settings, and then for each experiment or figure

we describe the other hyperparameters. For our experiments, to more closely align with the

common practice in GNN training, we use the Adam optimizer and keep optimizer-specific

hyperparameters except initial learning rate default. We set weight decay to zero. Next, we

describe the settings for each experiment respectively.

For the experiment in Figure 9-1, i.e., the training curves of linear vs. ReLU GNNs, we

train the GCN and GIN with two layers on Cora with cross-entropy loss and learning rate

1e-4. We set the hidden dimension to 32.

For the experiment in Figure 9-2a, i.e., computing the graph condition for linear GNNs,

we use the linear GCN and GIN model with three layers on Cora and Citeseer. For linear

GIN, we set 𝜖 to zero and MLP layer to one.

For the experiment in Figure 9-2b, i.e., computing and plotting the time-dependent

condition for linear GNNs, we train a linear GCN with two layers on Cora with squared loss
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and learning rate 1e-4. We set the hidden dimension the input dimension for both Cora and

for CiteSeer, because the global convergence theorem requires the hidden dimension to be at

least the same as input dimension. Note that this requirement is standard in previous works

as well, such as Arora et al. [2019a]. We use the default random initialization of PyTorch.

The formula for computing the time-dependent 𝜆𝑇 is given in the main paper.

For the experiment in Figure 9-2c, i.e., computing and plotting the time-dependent

condition for linear GNNs across multiple training settings, we consider the following

settings:

1. Dataset: Cora and Citeseer.

2. Model: GCN and GIN.

3. Depth: Two and four layers.

4. Activation: Linear and ReLU.

We train the GNN with the settings above with squared loss and learning rate 1e-4. We set

the hidden dimension to input dimension for Cora and CiteSeer. We use the default random

initialization of PyTorch. The formula for computing the time-dependent 𝜆𝑇 is given in the

main paper. For each point, we report the 𝜆𝑇 at last epoch.

For the experiment in Figure 9-3a, i.e., computing the graph condition for multiscale

linear GNNs, we use the linear GCN and GIN model with three layers on Cora and Citeseer.

For linear GIN, we set 𝜖 to zero and MLP layer to one.

For the experiment in Figure 9-3b, i.e., computing and plotting the time-dependent

condition for multiscale linear GNNs, we train a linear GCN with two layers on Cora with

squared loss and learning rate 1e-4. We set the hidden dimension to 2000 for Cora and

4000 for CiteSeer. We use the default random initialization of PyTorch. The formula for

computing the time-dependent 𝜆𝑇 is given in the main paper.

For the experiment in Figure 9-3c, i.e., computing and plotting the time-dependent

condition for multiscale linear GNNs across multiple training settings, we consider the

following settings:

1. Dataset: Cora and Citeseer.
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2. Model: Multiscale GCN and GIN.

3. Depth: Two and four layers.

4. Activation: Linear and ReLU.

We train the multiscale GNN with the settings above with squared loss and learning rate

1e-4. We set the hidden dimension to 2000 for Cora and 4000 for CiteSeer. We use the

default random initialization of PyTorch. The formula for computing the time-dependent 𝜆𝑇

is given in the main paper. For each point, we report the 𝜆𝑇 at last epoch.

For the experiment in Figure 9-4a, i.e., multiscale vs. non-multiscale, we train the GCN

with six layers and ReLU activation on Cora with cross-entropy loss and learning rate 5e-5.

We set the hidden dimension to 32.

We perform more extensive experiments to verify the conclusion for multiscale vs.

non-multiscale in Figure F-6. There, we train the GCN with six layers with both ReLU and

linear activation on both Cora and Citeseer with cross-entropy loss and learning rate 5e-5.

We set the hidden dimension to 32.

For the experiment in Figure 9-4b, i.e., acceleration with depth, we train the non-

multiscale GCN with two, four, six layers and ReLU activation on Cora with cross-entropy

loss and learning rate 5e-5. We set the hidden dimension to 32.

We perform more extensive experiments to verify the conclusion for acceleration with

depth in Figure F-2 and Figure F-3. There, we train both multiscale and non-multiscale

GCN with 2, 4, 6 layers with both ReLU and linear activation on both Cora and Citeseer

with cross-entropy loss and learning rate 5e-5. We set the hidden dimension to 32.

For the experiment in Figure 9-4c, i.e., signal vs. noise, we train the non-multiscale

GCN with two layers and ReLU activation on Cora with cross-entropy loss and learning

rate 1e-4. We set the hidden dimension to 32. For signal, we use the default labels of Cora.

For noise, we randomly choose a class as the label.

We perform more extensive experiments to verify the conclusion for signal vs. noise

in Figure F-4 and Figure F-5. There, we train both multiscale and non-multiscale GCN

with two layers with both ReLU and linear activation on both Cora and Citeseer with

cross-entropy loss and learning rate 1e-4. We set the hidden dimension to 32.
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For the experiment in Figure 9-5, i.e., first term vs. second term, we use the same setting

as in Figure 9-4c. We use the formula of our Theorem in the main paper.

Computing resources. The computing hardware is based on the CPU and the NVIDIA

GeForce RTX 1080 Ti GPU. The software implementation is based on PyTorch and PyTorch

Geometric [Fey and Lenssen, 2019]. For all experiments, we train the GNNs with CPU and

compute the eigenvalues with GPU.
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Appendix G

Accelerating Training with GraphNorm

G.1 Proofs

G.1.1 Proof of Theorem 10.1

We first introduce the Cauchy interlace theorem:

Lemma G.1 (Cauchy interlace theorem (Theorem 4.3.17 in Horn and Johnson [2012])).

Let 𝑆 ∈ R(𝑛−1)×(𝑛−1) be symmetric, 𝑦 ∈ R𝑛 and 𝑎 ∈ R be given, and let 𝑅 =

⎛⎜⎝ 𝑆 𝑦

𝑦⊤ 𝑎

⎞⎟⎠ ∈

R𝑛×𝑛. Let 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛 be the eigenvalues of 𝑅 and 𝜇1 ≤ 𝜇2 ≤ · · · ≤ 𝜇𝑛−1 be the

eigenvalues of 𝑆. Then

𝜆1 ≤ 𝜇1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛−1 ≤ 𝜇𝑛−1 ≤ 𝜆𝑛, (G.1)

where 𝜆𝑖 = 𝜇𝑖 only when there is a nonzero 𝑧 ∈ R𝑛−1 such that 𝑆𝑧 = 𝜇𝑖𝑧 and 𝑦⊤𝑧 = 0; if

𝜆𝑖 = 𝜇𝑖−1 then there is a nonzero 𝑧 ∈ R𝑛−1 such that 𝑆𝑧 = 𝜇𝑖−1𝑧, 𝑦⊤𝑧 = 0.

Using Lemma G.1, the theorem can be proved as below.

Proof. For any matrices 𝑃,𝑅 ∈ R𝑛×𝑛, we use 𝑃 ∼ 𝑅 to denote that the matrix 𝑃 is similar

to the matrix 𝑅. Note that if 𝑃 ∼ 𝑅, the eigenvalues of 𝑃 and 𝑅 are the same. As the

singular values of 𝑃 are equal to the square root of the eigenvalues of 𝑃⊤𝑃 , we have the

eigenvalues of 𝑄⊤𝑄 and that of 𝑁𝑄⊤𝑄𝑁 are {𝜆2
𝑖 }

𝑛
𝑖=1 and {𝜇2

𝑖 }
𝑛
𝑖=1, respectively.

309



Note that 𝑁 is a projection operator onto the orthogonal complement space of the

subspace spanned by 1, and 𝑁 can be decomposed as 𝑁 = 𝑈 diag

⎛⎜⎝1, · · · , 1⏟  ⏞  
×𝑛−1

, 0

⎞⎟⎠𝑈⊤ where

𝑈 is an orthogonal matrix. Since 1 is the eigenvector of 𝑁 associated with eigenvalue 0, we

have

𝑈 =
(︂
𝑈1

1√
𝑛
1
)︂
, (G.2)

where 𝑈1 ∈ R𝑛×(𝑛−1) satisfies 𝑈11 = 0 and 𝑈⊤
1 𝑈1 = 𝐼𝑛−1.

Then we have 𝑁𝑄⊤𝑄𝑁 = 𝑈 diag (1, · · · , 1, 0)𝑈⊤𝑄⊤𝑄𝑈 diag (1, · · · , 1, 0)𝑈⊤ ∼

diag (1, · · · , 1, 0)𝑈⊤𝑄⊤𝑄𝑈 diag (1, · · · , 1, 0).

Let

𝐷 = diag (1, · · · , 1, 0) =

⎛⎜⎝𝐼𝑛−1 0

0⊤ 0

⎞⎟⎠ , (G.3)

𝐵 =

⎛⎜⎝𝐼𝑛−1

0⊤

⎞⎟⎠ , (G.4)

𝐶 = 𝑄⊤𝑄, (G.5)

where 0 =

⎡⎢⎣0, · · · , 0⏟  ⏞  
×𝑛−1

⎤⎥⎦
⊤

.
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We have

𝑁𝑄⊤𝑄𝑁 ∼ 𝐷𝑈⊤𝐶𝑈𝐷 (G.6)

= 𝐷

⎛⎜⎝ 𝑈⊤
1

1√
𝑛
1⊤

⎞⎟⎠𝐶 (︂𝑈1
1√
𝑛
1
)︂
𝐷 (G.7)

= 𝐷

⎛⎜⎝ 𝑈⊤
1 𝐶𝑈1

1√
𝑛
𝑈⊤

1 𝐶1
1√
𝑛
1⊤𝐶𝑈1

1
𝑛
1⊤𝐶1

⎞⎟⎠𝐷 (G.8)

=

⎛⎜⎝ 𝐵⊤

0⊤ 0

⎞⎟⎠
⎛⎜⎝ 𝑈⊤

1 𝐶𝑈1
1√
𝑛
𝑈⊤

1 𝐶1
1√
𝑛
1⊤𝐶𝑈1

1
𝑛
1⊤𝐶1

⎞⎟⎠
⎛⎜⎝𝐵 0

0

⎞⎟⎠ (G.9)

=

⎛⎜⎝𝑈⊤
1 𝐶𝑈1 0

0⊤ 0

⎞⎟⎠ . (G.10)

Using Lemma G.1 and taking 𝑅 = 𝑈⊤𝐶𝑈 and 𝑆 = 𝑈⊤
1 𝐶𝑈1, we have the eigenvalues of

𝑈⊤
1 𝐶𝑈1 are interlacing between the eigenvalues of 𝑈⊤𝐶𝑈 . Note that the eigenvalues of

𝐷𝑈⊤𝐶𝑈𝐷 are 𝜇2
1 ≤ 𝜇2

2 ≤ · · · ≤ 𝜇2
𝑛−1 and 𝜇2

𝑛 = 0, and by Eq. (G.10), the eigenvalues of

𝐷𝑈⊤𝐶𝑈𝐷 contain the eigenvalues of 𝑈⊤
1 𝐶𝑈1 and 0. Since the eigenvalues of 𝑈⊤𝐶𝑈 are

𝜆2
1 ≤ 𝜆2

2 ≤ · · · ≤ 𝜆2
𝑛 (By similarity of 𝑈⊤𝐶𝑈 and 𝐶), we then have

𝜆2
1 ≤ 𝜇2

1 ≤ 𝜆2
2 ≤ · · · ≤ 𝜆2

𝑛−1 ≤ 𝜇2
𝑛−1 ≤ 𝜆2

𝑛. (G.11)

Moreover, the equality holds only when there is a nonzero 𝑧 ∈ R𝑛−1 that satisfies

𝑈⊤
1 𝐶𝑈1𝑧 = 𝜇𝑧, (G.12)

1⊤𝐶𝑈1𝑧 = 0, (G.13)

where 𝜇 is one of 𝜇2
𝑖 s.

Since 𝑈1 forms an orthogonal basis of the orthogonal complement space of 1 and

Eq. (G.13) is equivalent to “𝐶𝑈1𝑧 lies in the orthogonal complement space”, we have that
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there is a vector 𝑦 ∈ R𝑛−1 such that

𝐶𝑈1𝑧 = 𝑈1𝑦. (G.14)

Substituting this into Eq. (G.12), we have

𝑈⊤
1 𝑈1𝑦 = 𝜇𝑧. (G.15)

Since 𝑈⊤
1 𝑈1 = 𝐼𝑛−1, the equation above is equivalent to

𝑦 = 𝜇𝑧, (G.16)

which means

𝐶𝑈1𝑧 = 𝑈1𝑦 = 𝜇𝑈1𝑧, (G.17)

i.e., 𝑈1𝑧 is the eigenvector of 𝐶 associated with 𝜇. By noticing 𝑈1𝑧 lies in the orthogonal

complement space of 1 and the eigenvector of 𝐶 is right singular vector of 𝑄, we complete

the proof.

G.1.2 Concrete example of the acceleration

To get more intuition on how the preconditioning effect of the shift can accelerate the

training of GNNs, we provide a concrete example showing that shift indeed improves the

convergence rate. To make things clear without loss of intuition, we focus on a simple

linear GNN applied to a well-specified task where we are able to explicitly compare the

convergence rates.

Settings

Data. We describe each sample, i.e., graph, with 𝑛 nodes by a tuple 𝐺 = {𝑋,𝑄,p, 𝑦},

where
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• 𝑋 ∈ R𝑑×𝑛 is the feature matrix of the graph, where 𝑑 is the dimension of the of each

feature vector.

• 𝑄 ∈ R𝑛×𝑛 representing the matrix representing the neighbor aggregation as Eq. (10.3).

Note that this matrix depends on the aggregation scheme used by the chosen architecture,

but for simplicity, we model this as a part of data structure.

• p ∈ R𝑛×1 is a weight vector representing the importance of each node. This will be used

to calculate the READOUT step. Note that this vector is not provided in many real-world

datasets, so the READOUT step usually takes operations such as summation.

• 𝑦 ∈ R is the label.

The whole dataset 𝑆 = {𝐺1, · · · , 𝐺𝑚} consists of 𝑚 graphs where 𝐺𝑖 = {𝑋𝑖, 𝑄𝑖,p𝑖, 𝑦𝑖}.

We make the following assumptions on the data generation process:

Assumption 1 (Independency). We assume 𝑋𝑖, 𝑄𝑖, p𝑖 are drawn from three independent

distributions in an i.i.d. manner, e.g., 𝑋1, · · · , 𝑋𝑚 are i.i.d..

Assumption 2 (Structure of data distributions). For clearness and simplicity of statement,

we assume the number of nodes in each graph 𝐺𝑖 are the same, we will use 𝑛 to denote

this number and we further assume 𝑛 = 𝑑. We assume that the distribution of p𝑖 satisfies

E
[︁
pp⊤

]︁
= 𝐼𝑛,Ep = 0, which means the importance vector is non-degenerate. Let

E𝑋𝑄 = 𝑌 , we assume that 𝑌 is full ranl. We make the following assumptions on 𝑋𝑄:

1⊤𝑌 −1𝑋𝑄 = 0, which ensures that there is no information in the direction 1⊤𝑌 −1; there is a

constant 𝛿1 such that E(𝑋𝑄−𝑌 )(𝑋𝑄−𝑌 )⊤ ⪯ 𝛿1𝐼𝑑 and E(𝑋𝑄−𝑌 )𝑁(𝑋𝑄−𝑌 )⊤ ⪯ 𝛿1𝐼𝑑,

where 𝛿1 characterizes the noise level; none of the eigenvectors of 𝑌 𝑌 ⊤ is orthogonal to 1.

Remark G.1. A few remarks are in order, firstly, the assumption that each graph has the

same number of nodes and the number 𝑛 is equal to feature dimension 𝑑 can be achieved

by “padding”, i.e., adding dummy points or features to the graph or the feature matrix.

The assumption that 1⊤𝑌 −1𝑋𝑄 = 0 is used to guarantee that there is no information loss

caused by shift (1⊤𝑌 −1𝑌 𝑁𝑌 ⊤ = 0). Though we make this strong assumption to ensure no

information loss in theoretical part, we introduce “learnable shift” to mitigate this problem
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in the practical setting. The theory taking learnable shift into account is an interesting future

direction.

Assumption 3 (Boundness). We make the technical assumption that there is a constant 𝑏

such that the distributions of 𝑋𝑖, 𝑄𝑖,p𝑖 ensures

‖𝑋𝑖‖ ‖𝑄𝑖‖ ‖p𝑖‖ ≤
√
𝑏. (G.18)

Model. We consider a simple linear graph neural network with parameter w ∈ R𝑑×1:

𝑓Vanilla
w (𝑋,𝑄,p) = w⊤𝑋𝑄p. (G.19)

Then, the model with shift can be represented as:

𝑓Shift
w (𝑋,𝑄,p) = w⊤𝑋𝑄𝑁p, (G.20)

where 𝑁 = 𝐼𝑛 − 1
𝑛
11⊤.

Criterion. We consider using square loss as training objective, i.e.,

𝐿(𝑓) =
𝑚∑︁

𝑖=1

1
2 (𝑓(𝑋𝑖, 𝑄𝑖,p𝑖) − 𝑦𝑖)2 . (G.21)

Algorithm. We consider using gradient descent to optimize the objective function. Let

the initial parameter w0 = 0. The update rule of 𝑤 from step 𝑡 to 𝑡+ 1 can be described as:

w𝑡+1 = w𝑡 − 𝜂∇w𝐿(𝑓w𝑡), (G.22)

where 𝜂 is the learning rate.

Theorem G.2. Under Assumption 1,2,3, for any 𝜖 > 0 there exists constants 𝐶1, 𝐶2, such

that for 𝛿1 < 𝐶1,𝑚 > 𝐶2, with probability 1 − 𝜖, the parameter wVanilla
𝑡 of vanilla model

314



converges to the optimal parameter wVanilla
* linearly:

⃦⃦⃦
wVanilla

𝑡 − wVanilla
*

⃦⃦⃦
2

≤ 𝑂
(︁
𝜌𝑡

1

)︁
, (G.23)

while the parameter wShfit
𝑡 of the shifted model converges to the optimal parameter wShfit

*

linearly:

⃦⃦⃦
wShift

𝑡 − wShfit
*

⃦⃦⃦
2

≤ 𝑂
(︁
𝜌𝑡

2

)︁
, (G.24)

where

1 > 𝜌1 > 𝜌2, (G.25)

which indicates the shifted model has a faster convergence rate.

Proof. We firstly reformulate the optimization problem in matrix form.

Notice that in our linear model, the representation and structure of a graph 𝐺𝑖 =

{𝑋𝑖, 𝑄𝑖,p𝑖, 𝑦𝑖} can be encoded as a whole in a single vector, i.e., zVanilla
𝑖 = 𝑋𝑖𝑄𝑖p𝑖 ∈ R𝑑×1

for vanilla model in Eq. (G.19), and zShift
𝑖 = 𝑋𝑖𝑄𝑖𝑁p𝑖 ∈ R𝑑×1 for shifted model in

Eq. (G.20). We call z𝑖 and zShift
𝑖 “combined features”. Let𝑍Vanilla =

[︁
zVanilla

1 , · · · , zVanilla
𝑚

]︁
∈

R𝑑×𝑚 and𝑍Shift =
[︁
zShift

1 , · · · , zShift
𝑚

]︁
∈ R𝑑×𝑚 be the matrix of combined features of valinna

linear model and shifted linear model respectively. For clearness of the proof, we may abuse

the notations and use 𝑍 to represent 𝑍Vanilla. Then the objective in Eq. (G.21) for vanilla

linear model can be reformulated as:

𝐿(𝑓w) = 1
2
⃦⃦⃦
𝑍⊤w − y

⃦⃦⃦2

2
, (G.26)

where y = [𝑦1, · · · , 𝑦𝑚]⊤ ∈ R𝑚×1.

Then the gradient descent update can be explicitly writen as:

w𝑡+1 = w𝑡 − 𝜂
(︁
𝑍𝑍⊤w𝑡 − 𝑍y

)︁
(G.27)

= (𝐼𝑑 − 𝜂𝑍𝑍⊤)w𝑡 + 𝜂𝑍y, (G.28)
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which converges to w* =
(︁
𝑍𝑍⊤

)︁†
𝑍y according to classic theory of least square problem

[Horn and Johnson, 2012], where
(︁
𝑍𝑍⊤

)︁†
is the Moore–Penrose inverse of 𝑍𝑍⊤.

By simultaneously subtracting w* in the update rule, we have

w𝑡+1 − w* =
(︁
𝐼𝑑 − 𝜂𝑍𝑍⊤

)︁
(w𝑡 − w*) . (G.29)

So the residual of w𝑡 is

‖w𝑡 − w*‖ =
⃦⃦⃦⃦(︁
𝐼𝑑 − 𝜂𝑍𝑍⊤

)︁𝑡
w*

⃦⃦⃦⃦
(G.30)

≤
⃦⃦⃦
𝐼𝑑 − 𝜂𝑍𝑍⊤

⃦⃦⃦𝑡
‖w*‖ . (G.31)

Let 𝜎max(𝐴) and 𝜎min(𝐴) be the maximal and mininal positive eigenvalues of𝐴, respectively.

Then the optimial learning rate (the largest learning rate that ensures 𝐼𝑑 − 𝜂𝑍𝑍⊤ is positive

semidefinite) is 𝜂 = 1
𝜎max(𝑍𝑍⊤) . Under this learning rate we have the convergence rate

following Eq. (G.31):

‖w𝑡 − w*‖ ≤
⃦⃦⃦
𝐼𝑑 − 𝜂𝑍𝑍⊤

⃦⃦⃦𝑡
‖w*‖ (G.32)

≤

⎛⎝1 −
𝜎min

(︁
𝑍𝑍⊤

)︁
𝜎max (𝑍𝑍⊤)

⎞⎠𝑡

‖w*‖ . (G.33)

For now, we show that the convergence rate of the optimization problem with vanilla

model depends on
𝜎min(𝑍𝑍⊤)
𝜎max(𝑍𝑍⊤) . Follwing the same argument, we can show the convergence

rate of the optimization problem with shifted model depends on
𝜎min(𝑍Shift𝑍Shfit⊤)
𝜎max(𝑍Shift𝑍Shfit⊤) . We then

aim to bound this term, which we call effective condition number.

Similarly, we investigate the effective condition number for 𝑍𝑍⊤ first, and the analysis

of 𝑍Shift𝑍Shift⊤ follows the same manner. As multiplying a constant does not affect the

effective condition number, we first scale 𝑍𝑍⊤ by 1
𝑚

and expand it as:

1
𝑚
𝑍𝑍⊤ = 1

𝑚

𝑚∑︁
𝑖=1

z𝑖z⊤
𝑖 , (G.34)

which is the empirical estimation of the covariance matrix of the combined feature. By
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concentration inequality, we know this quantity is concentrated to the covariance matrix,

i.e.,

Ezzz⊤ = E𝑋,𝑄,p𝑋𝑄p (𝑋𝑄p)⊤

= E𝑋,𝑄𝑋𝑄
(︁
E
[︁
pp⊤

]︁)︁
(𝑋𝑄)⊤

= E𝑋,𝑄𝑋𝑄(𝑋𝑄)⊤ (By Assumption 1)

= 𝑌 𝑌 ⊤ + E𝑋,𝑄(𝑋𝑄− 𝑌 )(𝑋𝑄− 𝑌 )⊤.

Noticing that 0 ⪯ E𝑋,𝑄(𝑋𝑄 − 𝑌 )(𝑋𝑄 − 𝑌 )⊤ ⪯ 𝛿1𝐼𝑑 by Assumption 2, and 𝑌 is full

rank, we can conclude that 𝜎max
(︁
𝑌 𝑌 ⊤

)︁
≤ 𝜎max

(︁
Ezzz⊤

)︁
≤ 𝜎max

(︁
𝑌 𝑌 ⊤

)︁
+ 𝛿1, and

𝜎min
(︁
𝑌 𝑌 ⊤

)︁
≤ 𝜎min

(︁
Ezzz⊤

)︁
≤ 𝜎min

(︁
𝑌 𝑌 ⊤

)︁
+ 𝛿1 by Weyl’s inequality.

By similar argument, we have that 1
𝑚
𝑍Shift𝑍Shift⊤ concentrates to

EzShiftzShiftzShift⊤

=E𝑋,𝑄(𝑋𝑄)𝑁2(𝑋𝑄)⊤

=E𝑋,𝑄(𝑋𝑄)𝑁(𝑋𝑄)⊤ (𝑁2 = 𝑁)

=𝑌 𝑁𝑌 ⊤ + E𝑋,𝑄(𝑋𝑄− 𝑌 )𝑁(𝑋𝑄− 𝑌 )⊤.

By Assumption 2, we have

0 =1⊤𝑌 −1EzShiftzShiftzShift⊤

=1⊤𝑌 −1
(︁
𝑌 𝑁𝑌 ⊤ + E𝑋,𝑄(𝑋𝑄− 𝑌 )𝑁(𝑋𝑄− 𝑌 )⊤

)︁
=1⊤𝑌 −1E𝑋,𝑄(𝑋𝑄− 𝑌 )𝑁(𝑋𝑄− 𝑌 )⊤,

which means E𝑋,𝑄(𝑋𝑄−𝑌 )𝑁(𝑋𝑄−𝑌 )⊤ has the same eigenspace as 𝑌 𝑁𝑌 ⊤ with respect

to eigenvalue 0. Combining with 0 ⪯ E𝑋,𝑄(𝑋𝑄 − 𝑌 )𝑁(𝑋𝑄 − 𝑌 )⊤ ⪯ 𝛿1𝐼𝑑, we have

𝜎max
(︁
𝑌 𝑁𝑌 ⊤

)︁
≤ 𝜎max

(︁
EzShiftzShiftzShift⊤

)︁
≤ 𝜎max

(︁
𝑌 𝑁𝑌 ⊤

)︁
+ 𝛿1, and 𝜎min

(︁
𝑌 𝑁𝑌 ⊤

)︁
≤

𝜎min
(︁
EzShiftzShiftzShift⊤

)︁
≤ 𝜎min

(︁
𝑌 𝑁𝑌 ⊤

)︁
+ 𝛿1.

It remains to bound the finite sample error, i.e.,
⃦⃦⃦

1
𝑚
𝑍𝑍⊤ − Ezzz⊤

⃦⃦⃦
2

and
⃦⃦⃦

1
𝑚
𝑍Shift𝑍Shfit⊤ − Ezzz⊤

⃦⃦⃦
2
.

These bounds can be obtained by the following lemma:
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Lemma G.3 (Corollary 6.1 in Wainwright [2019]). Let z1, · · · , z𝑚 be i.i.d. zero-mean

random vectors with covariance matrix Σ such that ‖z‖2 ≤
√
𝑏 almost surely. Then for all

𝛿 > 0, the sample covariance matrix Σ̂ = 1
𝑚

∑︀𝑚
𝑖=1 z𝑖z⊤

𝑖 satisfies

Pr
[︁⃦⃦⃦

Σ̂ − Σ
⃦⃦⃦

2
≥ 𝛿

]︁
≤ 2𝑑 exp

(︃
− 𝛿2

2𝑏 (‖Σ‖2 + 𝛿)

)︃
. (G.35)

By this lemma, we further have

Lemma G.4 (Bound on the sample covariance matrix). Let z1, · · · , z𝑚 be i.i.d. zero-mean

random vectors with covariance matrix Σ such that ‖z‖2 ≤
√
𝑏 almost surely. Then with

probability 1 − 𝜖, the sample covariance matrix Σ̂ = 1
𝑚

∑︀𝑚
𝑖=1 z𝑖z⊤

𝑖 satisfies

⃦⃦⃦
Σ̂ − Σ

⃦⃦⃦
2

≤ 𝑂

⎛⎝√︃ log(1/𝜖)
𝑚

⎞⎠ , (G.36)

where we hide constants 𝑏, ‖Σ‖2 , 𝑑 in the big-O notation and highlight the dependence on

the number of samples 𝑚.
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Combining with previous results, we conclude that:

𝜎max
(︁
𝑌 𝑌 ⊤

)︁
−𝑂

⎛⎝√︃ log(1/𝜖)
𝑚

⎞⎠
≤𝜎max

(︂ 1
𝑚
𝑍𝑍⊤

)︂

≤𝜎max
(︁
𝑌 𝑌 ⊤

)︁
+ 𝛿1 +𝑂

⎛⎝√︃ log(1/𝜖)
𝑚

⎞⎠ ;

𝜎min
(︁
𝑌 𝑌 ⊤

)︁
−𝑂

⎛⎝√︃ log(1/𝜖)
𝑚

⎞⎠
≤𝜎min

(︂ 1
𝑚
𝑍𝑍⊤

)︂

≤𝜎min
(︁
𝑌 𝑌 ⊤

)︁
+ 𝛿1 +𝑂

⎛⎝√︃ log(1/𝜖)
𝑚

⎞⎠ ;

𝜎max
(︁
𝑌 𝑁𝑌 ⊤

)︁
−𝑂

⎛⎝√︃ log(1/𝜖)
𝑚

⎞⎠
≤𝜎max

(︂ 1
𝑚
𝑍Shift𝑍Shift⊤

)︂

≤𝜎max
(︁
𝑌 𝑁𝑌 ⊤

)︁
+ 𝛿1 +𝑂

⎛⎝√︃ log(1/𝜖)
𝑚

⎞⎠

𝜎min
(︁
𝑌 𝑁𝑌 ⊤

)︁
−𝑂

⎛⎝√︃ log(1/𝜖)
𝑚

⎞⎠
≤𝜎min

(︂ 1
𝑚
𝑍Shift𝑍Shift⊤

)︂

≤𝜎min
(︁
𝑌 𝑁𝑌 ⊤

)︁
+ 𝛿1 +𝑂

⎛⎝√︃ log(1/𝜖)
𝑚

⎞⎠ .

By now, we have transfered the analysis of 𝑍𝑍⊤ and 𝑍Shift𝑍Shfit⊤ to the analysis of

𝑌 𝑌 ⊤ and 𝑌 𝑁𝑌 ⊤. And the positive eigenvalues of 𝑌 𝑁𝑌 ⊤ is interlaced between the

positive eigenvalues of 𝑌 𝑌 ⊤ by the same argument as Theorem 10.1. Concretely, we have

𝜎min
(︁
𝑌 𝑌 ⊤

)︁
≤ 𝜎min

(︁
𝑌 𝑁𝑌 ⊤

)︁
≤ 𝜎max

(︁
𝑌 𝑁𝑌 ⊤

)︁
≤ 𝜎max

(︁
𝑌 𝑌 ⊤

)︁
. Noticing that none of

the eigenvectors of 𝑌 𝑌 ⊤ is orthogonal to 1, the first and last equalies can not be achieved,

so 𝜎min
(︁
𝑌 𝑌 ⊤

)︁
< 𝜎min

(︁
𝑌 𝑁𝑌 ⊤

)︁
≤ 𝜎max

(︁
𝑌 𝑁𝑌 ⊤

)︁
< 𝜎max

(︁
𝑌 𝑌 ⊤

)︁
. Finally, we can
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conclude for small enough 𝛿1 and large enough 𝑚, with probability 𝜖,

𝜎min

(︂ 1
𝑚
𝑍𝑍⊤

)︂

≤𝜎min
(︁
𝑌 𝑌 ⊤

)︁
+ 𝛿1 +𝑂

⎛⎝√︃ log(1/𝜖)
𝑚

⎞⎠
<𝜎min

(︁
𝑌 𝑁𝑌 ⊤

)︁
−𝑂

⎛⎝√︃ log(1/𝜖)
𝑚

⎞⎠
≤𝜎min

(︂ 1
𝑚
𝑍Shift𝑍Shift⊤

)︂

≤𝜎max

(︂ 1
𝑚
𝑍Shift𝑍Shift⊤

)︂

≤𝜎max
(︁
𝑌 𝑁𝑌 ⊤

)︁
+ 𝛿1 +𝑂

⎛⎝√︃ log(1/𝜖)
𝑚

⎞⎠
<𝜎max

(︁
𝑌 𝑌 ⊤

)︁
−𝑂

⎛⎝√︃ log(1/𝜖)
𝑚

⎞⎠
≤𝜎max

(︂ 1
𝑚
𝑍𝑍⊤

)︂
.

So

𝜌2 = 1 −
𝜎min

(︁
𝑍Shift𝑍Shift⊤

)︁
𝜎max (𝑍Shift𝑍Shift⊤)

<𝜌1 = 1 −
𝜎min

(︁
𝑍𝑍⊤

)︁
𝜎max (𝑍𝑍⊤) ,

where 𝜌1, 𝜌2 are the constants in the statement of the theorem. This inequality means the

shifted model has better convergence speed by Eq. (G.33).

G.1.3 Proof of Proposition 10.3

Proof. For 𝑟-regular graph, 𝐴 = 𝑟 · 𝐼𝑛 and 𝑄GIN =
(︁
𝑟 + 1 + 𝜉(1)

)︁
𝐼𝑛. Since 𝐻(0) is given

by one-hot encodings of node degrees, the row of 𝐻(0) can be represented as 𝑐 · 1⊤ where

𝑐 = 1 for the 𝑟-th row and 𝑐 = 0 for other rows. By the associative property of matrix

320



multiplication, we only need to show 𝐻(0)𝑄GIN𝑁 = 0. This is because, for each row

𝑐 · 1⊤𝑄GIN𝑁 = 𝑐 · 1⊤(𝑟 + 1 + 𝜉(1))𝐼𝑛

(︂
𝐼𝑛 − 1

𝑛
11⊤

)︂
(G.37)

= 𝑐
(︁
𝑟 + 1 + 𝜉(1)

)︁ (︂
1⊤ − 1⊤ · 1

𝑛
11⊤

)︂
= 0. (G.38)

G.1.4 Proof of Proposition 10.4

Proof.

𝑄GIN𝑁 = (𝐴+ 𝐼𝑛 + 𝜉(𝑘)𝐼𝑛)𝑁 == (11⊤ + 𝜉(𝑘)𝐼𝑛)𝑁 = 𝜉(𝑘)𝑁, (G.39)

G.1.5 Gradient of 𝑊 (𝑘)

We first calculate the gradient of𝑊 (𝑘) when using normalization. Denote𝑍(𝑘) = Norm
(︁
𝑊 (𝑘)𝐻(𝑘−1)𝑄

)︁
and ℒ as the loss. Then the gradient of ℒ w.r.t. the weight matrix 𝑊 (𝑘) is

𝜕ℒ
𝜕𝑊 (𝑘) =

(︂(︁
𝐻(𝑘−1)𝑄𝑁

)︁⊤
⊗ 𝑆

)︂
𝜕ℒ
𝜕𝑍(𝑘) , (G.40)

where ⊗ represents the Kronecker product, and thus
(︁
𝐻(𝑘−1)𝑄𝑁

)︁⊤
⊗ 𝑆 is an operator on

matrices.

Analogously, the gradient of 𝑊 (𝑘) without normalization consists a
(︁
𝐻(𝑘−1)𝑄

)︁⊤
⊗ 𝐼𝑛

term. As suggested by Theorem 10.1, 𝑄𝑁 has a smoother distribution of spectrum than 𝑄,

so that the gradient of 𝑊 (𝑘) with normalization enjoys better optimization curvature than

that without normalizaiton.
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G.2 Experimental Setup

Network architecture. For the medium-scale bioinformatics and social network datasets,

we use 5-layer GIN/GCN with a linear output head for prediction followed Xu et al. [2019]

with residual connection. The hidden dimension of GIN/GCN is set to be 64. For the

large-scale ogbg-molhiv dataset, we also use 5-layer GIN/GCN[Xu et al., 2019] architecture

with residual connection. Following Hu et al. [2020a], we set the hidden dimension as 300.

Baselines. For the medium-scale bioinformatics and social network datasets, we compare

several competitive baselines as in Xu et al. [2019], including the WL subtree kernel model

[Shervashidze et al., 2011], diffusion-convolutional neural networks (DCNN) [Atwood and

Towsley, 2016], Deep Graph CNN (DGCNN) [Zhang et al., 2018a] and Anonymous Walk

Embeddings (AWL) [Ivanov and Burnaev, 2018]. We report the accuracies reported in

the original paper [Xu et al., 2019]. For the large-scale ogbg-molhiv dataset, we use the

baselines in Hu et al. [2020a], including the Graph-agnostic MLP model, GCN [Kipf and

Welling, 2017] and GIN [Xu et al., 2019]. We also report the roc-auc values reported in the

original paper [Hu et al., 2020a].

Hyper-parameter configurations. We use Adam [Kingma and Ba, 2015] optimizer with

a linear learning rate decay schedule. We follow previous work Xu et al. [2019] and Hu

et al. [2020a] to use hyper-parameter search (grid search) to select the best hyper-parameter

based on validation performance. In particular, we select the batch size ∈ {64, 128}, the

dropout ratio ∈ {0, 0.5}, weight decay ∈ {5𝑒 − 2, 5𝑒 − 3, 5𝑒 − 4, 5𝑒 − 5} ∪ {0.0}, the

learning rate ∈ {1𝑒− 4, 1𝑒− 3, 1𝑒− 2}. For the drawing of the training curves in Figure

10-2, for simplicity, we set batch size to be 128, dropout ratio to be 0.5, weight decay to be

0.0, learning rate to be 1e-2, and train the models for 400 epochs for all settings.

Evaluation. Using the chosen hyper-parameter, we report the averaged test performance

over different random seeds (or cross-validation). In detail, for the medium-scale datasets,

following Xu et al. [2019], we perform a 10-fold cross-validation as these datasets do not

have a clear train-validate-test splitting format. The mean and standard deviation of the
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validation accuracies across the 10 folds are reported. For the ogbg-molhiv dataset, we

follow the official setting [Hu et al., 2020a]. We repeat the training process with 10 different

random seeds.

For all experiments, we select the best model checkpoint with the best validation accuracy

and record the corresponding test performance.

G.3 Additional Experimental Results

G.3.1 Visualization of the singular value distributions

As stated in Theorem 10.1, the shift operation 𝑁 serves as a preconditioner of 𝑄 which

makes the singular value distribution of 𝑄 smoother. To check the improvements, we sample

graphs from 6 median-scale datasets (PROTEINS, NCI1, MUTAG, PTC, IMDB-BINARY,

COLLAB) for visualization, as in Figure G-2.

G.3.2 Visualization of noise in the batch statistics

We show the noise of the batch statistics on the PROTEINS task in the main body. Here we

provide more experiment details and results.

For graph tasks (PROTEINS, PTC, NCI1, MUTAG, IMDB-BINARY datasets), we train

a 5-layer GIN with BatchNorm as in Xu et al. [2019] and the number of sub-layers in MLP

is set to 2. For image task (CIFAR10 dataset), we train a ResNet18 [He et al., 2016]. Note

that for a 5-layer GIN model, it has four graph convolution layers (indexed from 0 to 3)

and each graph convolution layer has two BatchNorm layers; for a ResNet18 model, except

for the first 3×3 convolution layer and the final linear prediction layer, it has four basic

layers (indexed from 0 to 3) and each layer consists of two basic blocks (each block has two

BatchNorm layers). For image task, we set the batch size as 128, epoch as 100, learning rate

as 0.1 with momentum 0.9 and weight decay as 5e-4. For graph tasks, we follow the setting

of Figure 10-2 (described in Appendix G.2).

The visualization of the noise in the batch statistics is obtained as follows. We first train

the models and dump the model checkpoints at the end of each epoch; Then we randomly
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sample one feature dimension and fix it. For each model checkpoint, we feed different

batches to the model and record the maximum/minimum batch-level statistics (mean and

standard deviation) of the feature dimension across different batches. We also calculate

dataset-level statistics.

As Figure 10-4 in the main body, pink line denotes the dataset-level statistics, and

green/blue line denotes the maximum/minimum value of the batch-level statistics respec-

tively. First, we provide more results on PTC, NCI1, MUTAG, IMDB-BINARY tasks,

as in Figure G-3. We visualize the statistics from the first (layer-0) and the last (layer-3)

BatchNorm layers in GIN for comparison. Second, we further visualize the statistics from

different BatchNorm layers (layer 0 to layer 3) in GIN on PROTEINS and ResNet18 in

CIFAR10, as in Figure G-4. Third, we conduct experiments to investigate the influence of

the batch size. We visualize the statistics from BatchNorm layers under different settings of

batch sizes [8, 16, 32, 64], as in Figure G-5. We can see that the observations are consistent

and the batch statistics on graph data are noisy, as in Figure 10-4 in the main body.

G.3.3 Training Curves on GCN

As shown in the main body, we train GCNs with different normalization methods (Graph-

Norm, InstanceNorm, BatchNorm and LayerNorm) and GCN without normalization in

graph classification tasks and plot the training curves in Figure 6. It is obvious that the

GraphNorm also enjoys the fastest convergence on all tasks. Remarkably, GCN with Instan-

ceNorm even underperforms GCNs with other normalizations, while our GraphNorm with

learnable shift significantly boosts the training upon InstanceNorm and achieves the fastest

convergence.

G.3.4 Further Results of Ablation Study

BatchNorm with learnable shift. We conduct experiments on BatchNorm to investigate

whether simply introducing a learnable shift can already improve the existing normalization

methods without concrete motivation of overcoming expressiveness degradation. Specif-

ically, we equip BatchNorm with a similar learnable shift (𝛼-BatchNorm for short) as
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GraphNorm and evaluate its performance. As shown in Figure below, the 𝛼-BatchNorm can-

not outperform the BatchNorm on the three datasets. Moreover, as shown in Figure 5 in the

main body, the learnable shift significantly improve upon GraphNorm on IMDB-BINARY

dataset, while it cannot further improve upon BatchNorm, which suggests the introduction

of learnable shift in GraphNorm is critical.

BatchNorm with running statistics. We study the variant of BatchNorm which uses

running statistics (MS-BatchNorm for short) to replace the batch-level mean and standard

deviation. At first glance, this method may seem to be able to mitigate the problem of large

batch noise. However, the running statistics change a lot during training, and using running

statistics disables the model to back-propagate the gradients through mean and standard

deviation. Thus, we also train GIN with BatchNorm which stops the back-propagation of

the graidients through mean and standard deviation (DT-BatchNorm for short). Both the

MS-BatchNorm and DT-BatchNorm underperform the BatchNorm by a large margin, which

shows that the problem of the heavy batch noise cannot be mitigated by simply using the

running statistics.

The effect of batch size. We further compare the GraphNorm and BatchNorm with

different batch sizes (8, 16, 32, 64). As shown in Figure below, our GraphNorm consistently

outperforms the BatchNorm on all the settings.
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Figure G-1: Training performance of GCN with different normalization methods and
GCN without normalization in graph classification tasks.
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Figure G-2: Singular value distribution of 𝑄 and 𝑄𝑁 . Graph samples from PROTEINS,
NCI1, MUTAG, PTC, IMDB-BINARY, COLLAB are presented.
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Figure G-3: Batch-level statistics are noisy for GNNs (Examples from PTC, NCI1, MU-
TAG, IMDB-BINARY datasets). We plot the batch-level mean/standard deviation and
dataset-level mean/standard deviation of the first (layer 0) and the last (layer 3) BatchNorm
layers in different checkpoints. GIN with 5 layers is employed.
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Figure G-4: Batch-level statistics are noisy for GNNs of different depth. We plot the
batch-level mean/standard deviation and dataset-level mean/standard deviation of different
BatchNorm layers (from layer 0 to layer 3) in different checkpoints. We use a five-layer
GIN on PROTEINS and ResNet18 on CIFAR10 for comparison.
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Figure G-5: Batch-level statistics are noisy for GNNs of different batch sizes. We
plot the batch-level mean/standard deviation and dataset-level mean/standard deviation of
different BatchNorm layers (layer 0 and layer 3) in different checkpoints. Specifically,
different batch sizes (8, 16, 32, 64) are chosed for comparison. GIN with 5 layers is
employed.
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Figure G-6: Training performance of GIN/GCN with GraphNorm and BatchNorm with
batch sizes of (8, 16, 32, 64) on PROTEINS and REDDITBINARY datasets.
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Figure G-7: Training performance of GIN with GraphNorm and variant BatchNorms (𝛼-
BatchNorm, MS-BatchNorm and DT-BatchNorm) on PROTEINS, PTC and IMDB-BINARY
datasets.
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