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Abstract

Static languages like C++ provide deep compiler support for optimization and analysis,
enabling high performance at the cost of burdening users with a low-level interface.
DSLs, or domain-specific languages, have traditionally complemented static languages
by adding custom idioms and optimizations in their particular areas. Unfortunately,
however, static languages are increasingly sidelined in many domains by dynamic
languages such as Python and Ruby, which, despite their flexibility, suffer from lower
performance. In this thesis, we propose Codon, a framework for implementing high-
performance DSLs based on Python. Whereas previously achieving high-performance
in dynamic languages has been difficult, often requiring separate compiled libraries,
we provide a robust base for analysis and optimization on a purely Pythonic base,
bridging the gap between dynamic and static languages. By combining a purpose-
built type checker and novel intermediate representation, Codon enables developers
to create intrinsically performant, modular DSLs with minimal implementation effort.
We validate this approach by showcasing several Codon DSLs, all of which achieve
sizeable speed-ups over Python and sometimes even C++. We further show that
Codon can be easily used to implement a variety of analyses and passes. Thus,
Codon enables a new class of DSLs that maintain dynamism and expressiveness,
without compromising performance.

Thesis Supervisor: Saman P. Amarasinghe
Title: Professor
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Chapter 1

Introduction

Traditionally, achieving high performance entailed developing in a statically-typed,

compiled language like C or C++. Such languages provide sophisticated compilers

which extensively analyze and optimize their code, at the expense of providing users

with a highly low-level interface. For many tasks, however, this lower-level view is

inconvenient and results in verbose, un-maintainable code. DSLs, or domain specific

languages, arose to increase the expressiveness of lower-level languages by extending

them with custom idioms for specific use-cases. These languages, typically embedded

in a high-performance base language, inherit the compiler support of their parents,

all the while leveraging increased semantic information to achieve even better perfor-

mance.

However, the lower-level languages used to create traditional DSLs like Halide [31]

are falling out of favor to dynamic languages like Python and Ruby, threatening DSL

adoption. Dynamic languages provide a considerably more flexible interface for devel-

opers, who benefit from increased productivity and easier prototyping. Unfortunately,

however, these languages’ lax rules make them notoriously difficult to analyze and

optimize: for Python, many tools such as PyPy [35] opt to substitute a more per-

formant interpreter for the standard implementation. Still others such as Cython [4]

retrofit type-checking and compilation for specific subsets of Python. Unfortunately,

these tools are unable to optimize large swaths of Pythonic code, minimizing their ad-

vantages. Another approach aims to create the illusion of high-performance though
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externally implemented libraries like NumPy [14] and TensorFlow [1]; nonetheless,

these libraries are essentially auxiliary to the core language and are unable to cover

all cases [32]. Consequently, general-purpose dynamic code often runs orders of mag-

nitude slower than in compiled languages.

The Seq language [37], a DSL for bioinformatics and genetics, addresses the pop-

ularity of dynamic languages by borrowing Python’s syntax, semantics, and memory

model. Rather than depending on its high-overhead interpreter, however, Seq sim-

ulates Python’s dynamism at compile-time by substituting a thoroughly compatible

and statically-typing compiler, composing it with highly-optimized domain-specific

features. While the language achieves “C-like performance,” it lacks compatibility

with a few common Python idioms like empty dictionary literals (i.e. x = {}), its

type-checking system lacking full support for duck-typing. Further, the language is

intimately tied to bioinformatics and does not easily support extension.

1.1 Contributions

In this thesis, we generalize the language’s compiler into Codon, an end-to-end frame-

work for creating custom Pythonic DSLs. To enable better compatibility with Python,

we augment Seq’s base with a Hindley-Milner-Dumas type checker. Additionally, we

introduce a novel intermediate representation (IR) that enables easy optimization and

extensibility. Finally, we incorporate a rich set of utilities and standard optimizations.

Taken together, these extensions enable the framework to contribute the following1:

• Comprehensive type-checking of dynamic source. We show using a tech-

nique called monomorphization, typically applied to strongly-typed languages

like C++, allows Codon to achieve impressive coverage of Pythonic syntax.

• Bidirectional intermediate representation. Unlike in traditional compil-

ers, Codon’s IR passes can re-invoke the type checker to generate new nodes

and types. This allows for considerable flexibility and generality in pass writing,

1These contributions are adapted from those of [32].
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allowing most implementation effort to be offloaded to the source itself.

• Framework for High-Performance Pythonic DSLs. Codon enables DSLs

with Pythonic syntax to be rapidly deployed; these languages inherit Codon’s

robust type system and optimization support. Most importantly, they are in-

trinsically high-performance.

Codon provides a novel solution for implementing easily-adoptable DSLs with

minimal development effort. Despite their flexible and familiar syntax, Codon DSLs

are intrinsically high-performance, inheriting the framework’s highly-efficient imple-

mentation. Thus, Codon introduces a new class of DSLs, which, by adopting zero-

overhead dynamic syntax, do not compromise between flexibility and performance.

1.2 Thesis Structure

In Chapter 2, we briefly explore the internals of compilation, specifically type-checking

and intermediate representations; Chapter 3 applies these concepts to introduce the

Codon framework. Chapter 4 explores Codon’s frontend and type-checker in depth.

Chapter 5 outlines the features and operation of Codon’s novel IR. In Chapter 6, we

apply Codon to various optimizations and DSLs. In Chapter 7, we overview some

of Codon’s standard passes and analyses. Finally, in Chapter 8, we address related

works and conclude with Chapter 9.
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Chapter 2

Background

In this chapter, we explore relevant topics on compilation and type systems, paying

special attention to concepts used by Codon’s compiler.

2.1 Type Systems

In assembly and machine code, all data is represented and manipulated in the same

way — as an ordered list of bits separated into words. Consider data of the form

struct X {uint16_t x; uint16_t y}; accessing either the x or y members requires

careful address calculation and/or bitwise manipulation. Beyond being difficult to

work with, this approach is extremely error prone: users can easily conflate data

organized differently (i.e. X with reversed members). Consequently, most higher level

programming languages have adopted notions of typing, which enforce some degree

of separation between different varieties of data. At minimum, type checking verifies

that data accesses and function calls are valid, or sound.

2.1.1 Varieties of Typed Languages

Within the space of typed languages, some systems perform type soundness checks

at compile time while others defer the checks until the program is run, the former

referred to as static typing and the latter as dynamic typing [29]. Dynamic languages
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tend to be less verbose and easier to use: freed from having to constantly consider

types, developers can more rapidly prototype. Further, dynamic languages can offer

more opportunities for flexibility; for example, variables can have differing type based

on the particular execution path. Unfortunately, however, deferring all type checking

to runtime has vast performance impacts since nearly every operation must check

for type correctness. Further, debugging can often be more difficult in dynamic

languages since type checks may occur long after the code was written and first run

[32]. Conversely, static languages can be difficult to master, lacking support for the

same expressiveness as dynamic languages, but offer superior performance.

Another divide results from the strictness of type systems: some languages like

C and C++ allow unsafe conversion between types, whereas others like Java allow

this only in certain situations with runtime checking. For example, a weakly typed

language like C may allow users to coerce pointers to one type to another pointer

type without complaint. Related to these concepts is duck typing, which extends

dynamic typing to rely on the so-called duck test — “if it quacks like a duck, it’s

a duck” [27]. Duck-typed languages rely on interface checks to verify soundness at

runtime. For example, a duck-typed function can accept a parameter x and access

various attributes and functions; so long as these accesses are valid at runtime, the

function is deemed sound. Consequently, languages that employ duck typing restrict

runtime checks to determining the existence of requested methods or members rather

than enforcing strict type checking.

Given the advantages of dynamic systems, much effort has been invested in allow-

ing statically checked languages to achieve dynamic qualities. Rather than requiring

manual annotation, many statically checked languages can infer the types of variables,

reducing developer overhead and verbosity. Similarly, statically typed languages can

achieve an approximation of duck-typing through parametric polymorphism, which

enables users to write functions that do not depend on the particular types of their

inputs [29]. Despite these techniques, achieving full coverage of dynamic features is

extremely challenging and often impossible, particularly when trying to apply a static

system to a dynamic language.
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For example, consider a dynamic dictionary type which can contain keys and

values of any type. In a duck-typed language, code can operate over such dictionaries

without added constraints, provided that each individual access and method call

is legal. In statically-typed languages, however, the type of each object must be

uniquely known, making this case difficult to handle. A similar issue arises from

Python’s ability to execute strings and manipulate functions at runtime — ahead-of-

time compilation becomes impossible.

2.1.2 Python’s Type System

As with all dynamically checked languages, Python defers type safety checks to run-

time. Since the language is duck-typed, users are free to pass objects of any type

into functions provided they implement the required interface. Further, the language

provides runtime support for inspecting the types of variables, allowing logic and even

return types to vary based on inputs. Nonetheless, Python is strongly typed, only

allowing types to be converted based on strict rules.

Given these characteristics, all types in Python are implemented as objects (or

structured data with functions), albeit with some optimization for “primitive” types

like int or float. Consequently, all operations, even simple addition and subtraction,

are implemented as function calls.

2.2 Compilation

Beyond the different type systems, programming languages split into two categories:

interpreted and compiled. Interpreted languages like Python rely on auxiliary pro-

grams to execute code and provide facilities like memory management and garbage

collection. Conversely, compiled languages are translated into machine code before

runtime and typically have better performance. Additionally, some languages adopt

aspects of both of these categories through JIT — just-in-time compilation. JIT, used

notably by Java, allows code to be partially interpreted, with hot-spots being com-

piled before runtime. This thesis specifically focuses on wholly-compiled languages.
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2.2.1 Stages

𝑃𝑎𝑟𝑠𝑖𝑛𝑔 𝑇𝑦𝑝𝑖𝑛𝑔 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑑𝑒𝑔𝑒𝑛 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐴𝑆𝑇 𝐴𝑆𝑇𝑡 𝐴𝑆𝑇𝑡 𝐵𝑦𝑡𝑒𝑐𝑜𝑑𝑒

Figure 2-1: Classic compilation pipeline.

Classically, compilation proceeds as outlined in Figure 2-1: source code is directly

translated by a parser into an abstract syntax tree, which maintains a 1-1 correspon-

dence with the underlying source. In statically typed languages, this AST is then

checked for soundness before being optimized and finally converted into the target

source. This approach has the benefit of being simple to implement, particularly if

the compiler targets some other language like LLVM IR [19] rather than machine

code. Unfortunately, ASTs, by virtue of their close correspondence with the source,

contain the full complexity of the language. This makes performing complex ma-

nipulations or analyses extremely tedious, as every optimization must consider every

possible variation of its target pattern. As such, many compilers insert simplified in-

termediate representations (IRs) between the typing and optimization stages, making

pass-writing easier.

2.2.2 Types of IRs

Typically, intermediate representations are hierarchical or linear [2]. IRs with tree-

like structure tend to at least superficially resemble the underlying source; indeed,

ASTs are one example of hierarchical IRs. Explicitly representing the source’s struc-

ture can be advantageous for highly language-dependent optimizations that benefit

from increased semantic information. In contrast, linear IRs such as LLVM IR [19]

deconstruct the source into a flat structure resembling assembly — sections of code

without branches are organized into basic blocks linked together with terminators.

This results in linear IRs being considerably lowered from the original source, a key

benefit for performing certain types of analyses.

Orthogonally, IRs also differ in how they represent variables. In source code, mem-

ory locations can be written to and read an arbitrary number of times. While some
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IRs maintain these semantics, others transform the code into single-static assignment

(SSA) form [33], in which variables are assigned to exactly once. As in linear IRs,

this form makes several analyses more straightforward.
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Chapter 3

Codon Primer

In this chapter, we provide an overview of Codon’s compilation pipeline, syntax, and

semantics.

3.1 Overview

def fib(n):
if n < 2:

return 1
else:

return fib(n - 1) + fib(n - 2)

Figure 3-1: A short example of Codon source.

Figure 3-1 contains a valid Codon Fibonacci function (originally shown in [32]).

In particular, note that the framework’s syntax and semantics are exactly identical

to those of Python. Indeed, this example is easily run using a standard Python

interpreter, giving the same results.

As a successor to the Seq [37] language, Codon mirrors its approach to maintaining

compatibility with Python. Wherever possible, Codon utilizes the same keywords and

syntax as Python. Additionally, Codon maintains the same memory model and often

requires no explicit type annotations. To that end, many Python programs can be

run without further intervention.
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While Codon is able to achieve impressive coverage of the vast majority of Python,

below are some key examples of features not yet supported:

• Inheritance: Codon does not currently support polymorphism in the tradi-

tional sense. By providing an “extension” idiom, users can add methods to

preexisting types.

• Monotype: Each variable in Codon must have exactly one type.

• Mixing types: Unlike in Python, users are not allowed to mix types in collec-

tions. For example, Python lists can contain objects of arbitrary types, but in

Codon all the elements must be the same type.

• Runtime patching: All methods and functions are realized at compile time.

As such, Codon cannot support dynamically replacing functions.

3.2 Compilation

def fib(n):
a, b = 0, 1
while a < n:

print a
a, b = b, a+b

fib(1000)

+

ba __add__ a b

Call
1

Instr

Func 2

+

ba
intintAbstract 

Syntax Tree Type Checker
Intermediate 

Representation
Source Code Optimization 

Passes
Target

int, int

DSL Plugin

Domain-specific 
optimizations

New syntax

Library modules

Bidirectional Compilation

Figure 3-2: Codon’s compilation pipeline.

Codon’s pipeline, shown in Figure 3-2 [32], begins with an OCaml parser that

reads the source code into an AST, which is federated into the main C++ compiler
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and simplified. We then apply a modified Hindley-Milner-Damas type checker to

infer unspecified types and check for soundness. This results in a typed AST that we

then convert into an intermediate representation (CIR, or Codon IR). The resultant

CIR code is then optimized and converted into LLVM IR, as in the original Seq [37]

implementation. Since we make use of LLVM as a backend, we are able to take

advantage of its rich optimization library and target multiple architectures without

additional work.

DSL developers are able to customize nearly all aspects of this pipeline. In par-

ticular, plugins can bundle standard library code, as Seq does with its bio standard

library. These libraries can be augmented with domain-specific syntax and optimiza-

tions. Importantly, these customizations are auxiliary to the core Codon pipeline,

enabling easy composition. In fact, we expect that users could use multiple DSL

components in a single program.

3.3 Type System

Type Examples Python? Codon Representation

Function Function[void, [int]] X LLVM function pointer.

Primitive int, float X LLVM primitive.

Reference Dict, Set X Pointer to an LLVM struct.

Record Tuple 7 LLVM struct

Table 3.1: Codon types.

Codon maintains the original Seq [37] implementation’s general static type sys-

tem, which is briefly listed in Table 3.1. Unlike in Python, types are mapped to

the simplest possible underlying data types. As such, primitives are represented

with lightweight LLVM types, but are nonetheless first-class members of Codon’s

object-oriented structure. Compound types such as classes are represented as “LLVM

aggregate type[s] or pointer[s] to one” [37]. In particular, note that Codon makes a

distinction between record and reference types, one that does not exist in Python.
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Record types are essentially passed by value (i.e. like C structs) and reference types

are passed by pointer.

As in C++ and other languages like Java, Codon supports generic types and func-

tions. To enable compatibility with Python’s duck-typing paradigm, functions and

types without specific type annotations are considered generic. During type checking,

unknown types are inferred and types/functions are instantiated using the appropri-

ate generic parameters. The details of this checking and instantiating process are

outlined in Chapter 4.

class Wrapper[T]:
val: T
def __init__(self, v: T):

self.val = v
def output(self):

print f'wrapped({str(self.val)})'

x = Wrapper(1)
x.out()

Figure 3-3: Generics and type inference in Codon.

Figure 3-3 shows a basic example of generics and automatic type realization. We

define a basic class Wrapper[T] that is generic on parameter T. This generic parameter

is used to define a variable val, which is set in __init__ and used in output. In

implementing the class, we make use of Codon’s support for explicit type annotations

to denote that the type of generic T is identical to that of val and the initialization

parameter. Once this initial legwork is complete, however, users are able to use the

class without explicitly specifying the type of T; in the example, T is inferred to be

int. Indeed, Codon’s type checker is able to infer the types of generics in most cases,

preventing users from having to manually annotate their code.

3.4 Syntax & Semantics

As can be seen in the examples above, Codon borrows Python’s keyword and general

structure. In addition to differences due to the type checker, Codon enforces a few
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conventions not present in Python. In particular, Codon uses strict scoping rules —

variables are only usable in their specific scope — unlike Python. Additionally, Codon

adds a few language features not present in Python, including pattern matching,

pipelines, and partial function features.

Codon’s support pattern matching using a match statement conceptually similar

to a large if statement tree. This construct supports matching on strings and entire

objects. Pipelines, denoted with the |> sigil, enable developers to compose stan-

dard functions and generators in a succinct manner. We additionally support parallel

pipelines using Tapir LLVM [36]. Finally, we allow users to manipulate partial appli-

cations of functions.
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Chapter 4

Language Frontend

This chapter explores in depth the frontend of Codon’s compiler. We first examine

Codon’s parser and simplification passes, before proceeding into a discussion of the

type checker.

4.1 Parsing

As overviewed in Chapter 2, parsing is the first step of compilation, by which source

code is ingested and converted into an in-memory representation. Typically, languages

will make use of either hand-written tools or parser generators that employ a given

formal grammar. Codon and Seq [37] both employ an OCaml-based parser generator

called Menhir1 [30]. The resulting OCaml AST is federated into C++ and manipulated

via a few simplification passes, outlined below.

4.1.1 AST Simplification

Codon’s AST is composed of expressions, which combine other expressions to produce

new values, and statements, which are typically structural in nature. For example,

for loops are represented as statements that contain the iteration value, itself an

expression. The statements and expressions listed in Tables A.1, A.2, and A.3 (all in

Appendix A) are sufficient to represent all elements of Codon source.
1This portion of the frontend will be replaced in a future revision.
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ExprStmt

CallExpr

IdExpr

’print’

StrExpr

’Hello World!’

Figure 4-1: Hello World AST.

Notably, however, the full complexity of this structure is not needed to accurately

represent computation in Codon. In particular, the framework mimics Python’s use of

magic functions, allowing the parser to simplify the AST by mechanically replacing

certain nodes with their function equivalents. We consider a few other important

transformations below.

• Literals: IntExpr, FloatExpr, and StrExpr can contain prefixes and suffixes.

If these are present, the constants are replaced with function calls. For example,

this mechanism allows binary constants like 0b110.

• Container Literals: Literals and comprehensions are transformed into a call

of the appropriate container initialization functions and __setitem__ calls.

• Classes: The simplifier adds various implicit magic methods to ClassStmt and

flattens them into a type and various functions.

• Pattern matching: match statements are fully resolved into if statement

trees with appropriate function calls at this stage.

In Figure 4-1, we show the equivalent AST for a simple print ’Hello World’

statement. As per the rules shown in Tables A.1, A.2, and A.3, the print statement

is desugared to a call and the constant is replicated as is.
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4.2 Type Checking

Unlike the classic Python implementation, Codon uses ahead-of-time compilation to

avoid relying on a virtual machine. As such, the compiler must determine the precise

data type and memory location of every value in the program; to avoid requiring type

annotations, this requires an inference algorithm. Codon’s predecessor [37] utilized a

simple uni-directional type checker akin to C++’s; analogous checkers for Ruby [23]

and Python [21] take the same approach.

Uni-directional type checkers simply iterate through the nodes of a program, pro-

gressively deciding types. If a type cannot be decided at its occurrence, an error is

thrown; thus, any ambiguity must be resolved with an explicit annotation. Unfor-

tunately, Pythonic code contains bountiful ambiguity, particularly around container

types, making this approach inappropriate. Furthermore, it does not allow easy im-

plementation of lambda functions or several other important constructs.

x = [] # illegal, x's type is unknown
x.append(1)

f = lambda y: y + 1 # illegal, f's type is unknown

Figure 4-2: Invalid Codon when using a unidirectional type checker.

Figure 4-2 contains an example of Codon source that would be unusable with a

undirectional type checker: the types of both x and f could not be determined. We

address these shortcomings by proposing a new type system, localized type system with

delayed instantiation (LTS-DI), which extends the classical Hindley-Milner-Damas

bidirectional type inference algorithm for easier use in Pythonic code [29]. To that

end, we make several departures from the “canonical ML” rules to enable better

compatibility without burdening developers.

4.2.1 Hindley-Milner-Damas Type Inference

Hindley-Milner-Damas [15, 25, 10] type checkers rely on the notions of type con-

straints, which designate rules for unbound types, and unification, which solves the

35



various constraints [29]. Intuitively, these checkers iteratively propagate type infor-

mation from known types (i.e. constants) to determine the types of all relevant

expressions in the program. Such checkers are bidirectional in that the type of each

expression does not have to be known immediately. Instead, types that may not be

realizable at first glance may become realizable when further constraints are known.

This allows for considerably more flexibility than unidirectional checkers.

4.2.2 Localized Type System with Delayed Instantiation

We introduce LTS-DI, a novel bidirectional type system inspired by Hindley-Milner-

Damas [15, 25, 10] type systems. LTS-DI, which supports parametric polymorphism,

allows types to be either concrete (i.e. int and List[str]) or generic (i.e. parame-

terized). Importantly, LTS-DI does not require all types to be decided immediately:

generics and indeed any type can be left ambiguous until resolved by later constraints.

Type checking begins with a context Γ initialized with various basic types, such

as primitives and builtin generics. Each type and function declaration, together

with variable assignments, adds to this context. Further, as types become known,

unification proceeds as in the traditional Hindley-Milner-Damas manner. Consider

the simple program a = None; a = Optional(1). When the checker encounters the

first assignment, Optional[𝛼] is added to Γ; at this stage, inferring the concrete

type of 𝛼 is not possible. On the second assignment, however, the checker can unify

Optional[𝛼] and Optional[int], giving 𝛼 = int.

This procedure proceeds for the entire program, until either all types have been

realized or no more unifications are possible. Naturally, if checking ends before all

types have been determined, further processing is impossible and an error is raised.

Figure 4-3 [32] presents a brief example of this process.

LTS-DI’s approach to checking functions is inspired by Standard ML-like [26,

29] type systems, which use a notion of let-polymorphism to implement functions.

Since Python programs rely heavily on duck-typing, we depart from Standard ML’s

approach by delaying generic function type inference until the function is instantiated

with bound types. This causes each unique combination of argument types to produce
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def List_append(self: List[T], what: T):
...

a = Optional() # a: Optional[𝛼]
b = List() # b: List[𝛽]
for i in range(3): # i: int

List_append(b, i) # List_append:
# Function[[List[𝛾], 𝛾], 𝜂]

# Type inference does the following steps:
# unify: 𝛾 ← 𝛽 ←int
# realize: List_append → List_append_int
# unify: 𝜂 ←void

a = Optional(b) # unify: 𝛼←List[int]

Figure 4-3: Example of type inference and function instantiation.

a completely new function (or instantiation), each of which is typed separately.

This technique, called monomorphization, is used by many static languages like

C++, specifically in its templating system. In LTS-DI, each instantiation’s body

and return type are inferred using only the argument types and generics supplied

at the time of realization. Intrinsically, this prevents function calls from being pro-

cessed until all argument types are known; the system simply defers such calls until

more constraints on the arguments become apparent. While this approach results

in moderately more total instantiations, it, together with parametric polymorphism,

allows LTS-DI to faithfully simulate Python’s runtime duck typing ahead of time.

Importantly, equivalent function instantiations are collapsed by the LLVM backend,

reducing the overhead of this procedure.

Unlike in ML-like systems, LTS-DI enforces localization: each function block is

type checked separately in its own distinct typing context Γ𝑓 . Consequently, each

block within the function must be independently resolvable without information from

other functions’ blocks.

These two departures allow LTS-DI much greater flexibility with generic functions.

In other ML-like systems, each function’s type is determined by its first application.

Consider the simple Pythonic snippet print(1); print(’hi’). With a conventional

type checker, the second expression would be illegal as the first application would
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cause the checker to irrevocably infer that print takes an integer argument. LTS-DI

resolves this issue by preserving functions’ genericity after their first application. This

strategy is maintained even through function passing: passed functions can in fact

be instantiated differently depending on the supplied arguments to the overall func-

tion. Maintaining function genericity is instrumental in allowing LTS-DI to achieve a

better level of compatibility with Python, specifically around its general lambda and

decorator support.

4.2.2.1 Static Evaluation

def foo(x):
if isinstance(x, int):

return 1
else:

x.append(1)

x: List[int] = []
foo(x) # legal, appends to x
print foo(1) # legal, prints 1

Figure 4-4: Static evaluation of if statements.

LTS-DI also differs from ML-like systems by providing support for static eval-

uation of if-statement conditions. In Python, conditioning branches and function

operation on the type of an input is a common pattern. For example, Figure 4-4

shows a function that performs different actions based on whether its argument x is

an integer. Most type checkers would treat these branches as runtime checks, over-

eagerly rejecting the function as unsound. LTS-DI, however, treats certain branches

as compile-time checks. To that end, the code is legal because only one of the branches

is ever executed.

Many Codon methods, particularly isinstance and hasattr, can in fact be re-

solved at compile time. Codon borrows the concept of static expressions (akin to

constexprs in C++) and allows such expressions to be evaluated at compile time. If

they appear in an if-statement’s condition, the checker only evaluates branches if
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Pattern Condition Result

x = <v> optional x x = wrap(<v>)

f(<v>) optional arg f(wrap(<v>))

f(<opt>) non-optional arg f(wrap(<opt>))

<opt>.<member> 7 unwrap(<opt>).<member>

<v> if <c> else <opt> 7 wrap(<v>) if <c> else <opt>

<opt> if <c> else <v> 7 <opt> if <c> else wrap(<v>)

Table 4.1: Optional value unwrapping/wrapping rules.

they correspond to a true static value.

Codon’s implementation of static evaluation also supports constant expressions.

For example, the framework’s variable length integer type is expressed as Int[N:

int], where N is an integer generic. Constant expression generics behave in the

same manner as standard ones, with different values resulting in totally different

instantiations. Further, they can be combined with simple arithmetic operations to

express complex constraints.

4.2.2.2 Special Rules

Optional Values In Python, every value can be None or some value and is repre-

sented essentially a pointer. For performance reasons, Codon enforces a distinction

between optional and non-optional values with its Optional[T] generic. While op-

tional values have the added flexibility of supporting None, they must be unwrapped

and checked for None before use. Similarly, passing a non-optional value to a function

that expects an optional requires wrapping. Since this distinction does not exist in

Python, we add compiler support for automatically wrapping/unwrapping optionals

in the cases shown in Table 4.1; this obviates most manual optional manipulation.

Functions/Methods Codon allows users to create and manipulate partial func-

tions either through Python’s functools.partial construct or via a new ellipsis

syntax (where f(42, ...) indicates a partial function call with only the first argu-

ment provided). Internally, we implement such partial calls as a unique named tuple

39



containing the provided arguments. As with vanilla functions, Codon allows partial

functions to be generic and instantiated differently depending on future applications.

To support lambdas and decorators, Codon automatically converts passed or returned

functions into partial calls, allowing the framework to safely support complex decora-

tors. Unfortunately, allowing generic function passing potentially results in different

partial functions being incompatible, despite having identical argument types. In

many cases, however, LTS-DI can automatically convert between compatible partial

types.

class Calculator:
val: int
def __init__(self):

self.val = 0

def add(self, val):
if isinstance(val, int):

self.val += val
elif isinstance(val, float):

self.val += int(round(val))
else:

assert False

def sub(self, val: int):
self.val -= val

def sub(self, val: float):
self.val -= int(round(val))

x = Calculator()
x.add('1') # compiles, run-time error
x.sub('1') # fails, compile-time error

Figure 4-5: Overloading methods.

Codon additionally supports explicit function overloading through type annota-

tion. While this can be supported with isinstance checks in Python, explicit over-

loading allows for cleaner, statically checked code. For example, in Figure 4-5, we

show add and sub methods, implemented with isinstance and overloading respec-

tively. While the isinstance method is more Pythonic, overloading ensures the
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desired behavior occurs by rejecting the program if types do not match.

Miscellaneous considerations In Python, imports are performed at runtime and

can be embedded in any location. Codon simulates this by wrapping import state-

ments in functions that are called only by the first statement that reaches it. LTS-DI

further automatically unwraps iterables and coerces integer and float types automat-

ically. The checker als implements some support for traits (specifically Callable and

Generator). Finally, Codon allows users to call Python through its pyobj interface;

in many cases, the checker can automatically unwrap this object into a native Codon

type.

Limitations

LTS-DI enables Codon to support the vast majority of Python, including compre-

hensions, iterators, generators, function manipulation, variable arguments, pattern

matching, and decorators. Much Pythonic code is usable without any intervention.

Additionally, the framework adds new features such as pipelines, static evaluation,

and compile time typing.

Nonetheless, Codon lacks support for a few Pythonic features. Due to its com-

piled nature, the framework does not allow for dynamic modification of types (e.g.

modifying dynamic method tables or adding or removing members at runtime). Ad-

ditionally, LTS-DI does not currently support inheritance or dynamic polymorphism,

but this support is planned for the next major release.
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Chapter 5

Intermediate Representation

This chapter discusses Codon’s intermediate representation, specifically its structure

and features, before discussing previous iterations.

5.1 Design

Codon’s IR (CIR) originates from the Seq [37] language’s need for a flexible mid-layer

on which to perform optimizations. This close dependence on the requirements of Seq

have caused it to develop novel features that are ideal for a dynamic context, as well

as a unique design.

CIR distills source code from the AST level to a vastly simplified representation.

Taking inspiration from LLVM [19], the representation relies on the notion of values —

computed results or instructions. Most values have fully-realized, non-generic types

and, in keeping with single-static assignment (SSA) form, all can only be assigned

once. To represent variables, CIR denotes them as memory locations, which can

naturally be modified repeatedly. This hybrid SSA is convenient for both analyses

and conversion to LLVM IR, the target of Codon compilation.

Unlike many IRs, CIR maintains a hierarchical structure, wherein values can be

easily nested and combined. This hierarchy extends even to the realm of control-flow:

rather than fully deconstruct the source into basic blocks, CIR maintains explicit

nodes called flows. This approach is similar to that taken by other IRs such as
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Figure 5-1: CIR class hierarchy.

Suif [40] and Taichi [16].

CIR’s hierarchical structure is particularly essential due to the underlying lan-

guage’s dynamism. Since patterns such as ranged iteration and generators often

obscure the underlying computation, maintaining the source’s structure is crucial for

optimization. One key example is the for flow: in Pythonic languages, the for x in

range(y) pattern is exceedingly common; maintaining explicit loops allows Codon to

easily recognize this pattern rather than having to decipher a maze of branches, as is

done in lower-level IRs like LLVM IR.

In Figure 5-1, we show the class hierarchy of CIR nodes, providing more detail on

each variety in Table 5.1. A full listing of CIR’s nodes can be found in Tables A.4,

A.5, and A.6, all in Appendix A.

Description LLVM Equivalent Examples

Node Parent class. N/a All CIR nodes.

Module Container for program. Module N/a

Type Value type. Type IntType, RecordType

Var Variable or function. AllocaInstr, GlobalVariable Var, Func

Func Function. Function BodiedFunc, LLVMFunc

Value Program value. Value VarValue, Instr

Const Constant. Constant IntConst, FloatConst

Instr Instruction. Constant IntConst, FloatConst

Flow Control flow node. Various ForFlow, IfFlow

Table 5.1: Listing of CIR node varieties.
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5.1.1 Converting to CIR

The AST described in Chapter 4 can be easily transformed into CIR. Most statements

are ported over directly into flows. For example, each ForStmt becomes a ForFlow.

Expressions, with few exceptions, are translated into function calls, implemented

using Pythonic magic methods. Wherever possible, these are implemented in Codon

source.

@extend
class int:

@llvm
def __add__(self, b: int) -> int:

%tmp = add i64 %self, %b
ret i64 %tmp

Figure 5-2: LLVM implementation of int.__add__.

Lower level operations like addition and subtraction often must be expressed in a

lower level representation. Rather than add specialized instructions for these opera-

tions, we enable functions to be written in raw LLVM IR, akin to how assembly can

be embedded in C++ code. This approach enables low-level operations to be written

without interfacing directly with the compiler. We show an example of this technique

in use by implementing the int.__add__ function in Figure 5-2 [32].

5.1.2 A Basic Example

For the remainder of this thesis, we show CIR code using a Lisp-like representation.

Figure 5-3 [32] contains the CIR equivalent of the code in Figure 3-1. In particular,

note that the function becomes a BodiedFunc with one int argument and no variables.

As explained above, the if statement becomes a flow, with each side having its own

ReturnInstr containing either a constant or magic function call.

5.1.3 Bidirectionality

As shown in Chapter 4, Codon makes extensive use of type and function special-

izations due to its LTS-DI type checker. This raises an interesting problem for CIR:
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(bodied_func
'"fib[int]"
(type '"fib[int]")
(args (var '"n" (type '"int") (global false)))
(vars)
(series

(if (call '"int.__lt__[int,int]" '"n" 2)
(series (return 1))
(series

(return
(call

'"int.__add__[int,int]"
(call

'"fib[int]"
(call '"int.__sub__[int,int]" '"n" 1))

(call
'"fib[int]"
(call '"int.__sub__[int,int]" '"n" 2))))))))

Figure 5-3: CIR equivalent of Fibonacci function.

nearly every type and function is generic, making raw manipulation of the IR difficult.

As a motivating example, consider a simple transformation that replaces multiplica-

tions by a power-of-2 with left shifts. A naive approach would simply look up the

__mul__ magic method, check for a constant power-of-2 multiple, and replace invo-

cations with a __lshift__ call. Unfortunately, however, the method may not even

exist as LTS-DI instantiates types and functions lazily.

To address this issue, we introduce the notion of a bidirectional IR, wherein passes

can easily interact with the type checker to generate new instantiations of types

and functions. Beyond enabling parity with other IRs, this approach has numerous

benefits:

• Language features and optimizations can be implemented in Codon itself. Sev-

eral optimizations in Seq [37] involve constructs impractical to implement in

either IR or LLVM. For example, the prefetch optimization involves a dynamic

scheduler. CIR’s bidirectionality enables language developers to offload most

implementation effort to Codon source.
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• Passes can generate new instantiations of types. Consider an optimization that

requires a list type: the pass can simply instantiate the List type as needed.

This can be a complex process as it requires fully invoking the type checker and

potentially realizing many new functions.

• Passes can utilize Codon’s expansive type system. IR passes can be generic and

operate over many types. Importantly, this does not require coding complex

rules for every target type.

This bidirectionality is implemented by maintaining some level of correspondence

between IR and AST objects. In particular, types, though fully realized and non-

generic, maintain references to their corresponding AST types. At pass time, de-

velopers can use these references to query for generics or to realize new types. For

example, a simple UInt8 type can be inspected to find the width generic (in this case

8) and used to realize a new List[UInt8]. Similarly, users can inspect the generics

of functions and realize new instantiations from different input types.

Figure 5-4 contains an implementation of the power-of-2 transformation discussed

above; we make use of Codon’s bidirectionality to look up and instantiate the shift-left

method. Far from being a convenience feature, though, CIR’s bidirectionality enables

many classes of optimizations that would not otherwise be possible without substan-

tial effort. In subsequent chapters of this thesis, we overview many optimizations

implemented using this approach.

5.1.4 Extensibility

Due to Codon’s flexibility and bidirectional IR, large portions of DSL implementation

can be conducted in the source itself. For example, Seq implements its custom types

and large portions of its optimizations in Codon source. This allows DSL code to be

intrinsically interoperable, with both the framework and other DSLs. To make use of

DSL code, we propose a plugin system to allow developers to bundle Codon source

with dynamic libraries. At runtime, the Codon compiler simply loads the library,

calling the appropriate hooks to register passes and analyses.
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struct InspectionResult {
bool valid; // true if pattern matched
Value *val; // value being multiplied
int64_t mul; // multiplier, must be power-of-2

};

class PowOfTwoOptimization : public OperatorPass {
void handle(CallInstr *v) {

auto *M = v->getModule();

// inspectCall not shown:
// 1) checks for pattern
// 2) extracts value and constant
InspectionResult r = inspectCall(v);
if (!r.valid) return;

auto *type = r.val->getType();
auto *shl = M->getOrRealizeMethod(type,

Module::LSHIFT_MAGIC_NAME,
{type, M->getIntType()});

v->replaceAll(util::call(shl, {r.val,
M->getInt(log_2(r.mul))}));

};

Figure 5-4: C++ implementation of a multiply-by-power-of-2 transformation.

On the IR level, Codon takes a different approach for customization than other

DSL frameworks like MLIR [20]. Many of these frameworks enable customization on

all aspects of the IR; this enables considerable flexibility. For a tool built with compat-

ibility and ease of use in mind, however, this adds complexity in terms of integrating

with existing or new passes and analyses. As such, Codon restricts customization

to a few narrow categories: flows, types, instructions, and constants (see Table 5.2).

DSL writers simply subclass the appropriate node (e.g. CustomType) and interact

with the remainder of the framework declaratively. For example, custom constants

must expose an LLVM “builder” to enable the runtime to construct the appropriate

bytecode.

We show an example of a custom type — a single-precision floating point type — in

Figure 5-5 [32]. The type simply inherits from the CustomType class and implements
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Description Examples

CustomType DSL type. Multidimensional arrays

CustomConst DSL constant. Single-precision float constant.

CustomFlow DSL control flow structure. Parallel loop.

CustomInstr DSL instruction. Multidimensional array access.

Table 5.2: Listing of CIR customizable nodes.

the getBuilder function. This allows the Codon framework to build the appropriate

LLVM type at compile time.

5.1.5 Code Generation

Codon uses LLVM to generate native code. The conversion from Codon IR to LLVM

IR is generally a straightforward process, following the mappings listed in Table 5.1.

Most Codon types also translate to LLVM IR types intuitively: int becomes i64,

float becomes double, bool becomes i8 and so on—these conversions also allow

for C/C++ interoperability. Tuple types are converted to structure types containing

the appropriate element types, which are passed by value (recall that tuples are

immutable in Python); this approach for handling tuples allows LLVM to optimize

them out entirely in most cases. Reference types like List, Dict etc. are implemented

as dynamically-allocated objects that are passed by reference, which follows Python’s

semantics for mutable types. Codon handles None values by promoting types to

Optional as necessary; optional types are implemented via a tuple of LLVM’s i1 type

and the underlying type, where the former indicates whether the optional contains

a value. Optionals on reference types are specialized so as to use a null pointer to

indicate a missing value.

Generators are a prevalent language construct in Python; in fact, most loops

iterates over a generator (e.g. for i in range(10) iterates over the range(10)

generator). Hence, it is critical that generators in Codon carry no extra overhead,

and compile to equivalent code as standard C for-loops whenever possible. To this
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class Float32TypeBuilder : public TypeBuilder {
llvm::Type *buildType(LLVMVisitor *v) {

return v->getBuilder()->getFloatTy();
}

llvm::DIType *buildDebugType(LLVMVisitor *v) {
auto *module = v->getModule();
auto &layout = module->getDataLayout();
auto &db = v->getDebugInfo();
auto *t = buildType(v);
return db.builder->createBasicType(

"float_32",
layout.getTypeAllocSizeInBits(t),
llvm::dwarf::DW_ATE_float);

}
};

class Float32 : public AcceptorExtend<CustomType> {
unique_ptr<TypeBuilder> getBuilder() const {

return make_unique<Float32TypeBuilder>();
}

};

Figure 5-5: Implementation of 32-bit float type.

end, Codon uses LLVM coroutines1 to implement generators. LLVM’s coroutine

passes elide all coroutine overhead (such as frame allocation) and inline the coroutine

iteration whenever the coroutine is created and destroyed in the same function. (We

found in testing that the original LLVM coroutine passes—which rely on explicit

“create” and “destroy” intrinsics—were too strict when deciding to elide coroutines,

so in Codon’s LLVM fork this process is replaced with a capture analysis of the

coroutine handle, which is able to elide coroutine overhead in nearly all real-world

cases.)

Codon uses a lightweight runtime library when executing code. In particular, the

Boehm garbage collector [5]—a drop-in replacement for malloc—is used to manage al-

located memory, in addition to OpenMP for handling parallelism and libbacktrace2

1LLVM coroutines are also used by Clang versions 6 and later to implement the C++ Coroutine
Technical Specification [28].

2https://github.com/ianlancetaylor/libbacktrace
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for exception handling. Codon offers two compilation modes: debug and release. De-

bug mode includes full debugging information, allowing Codon programs to be de-

bugged with tools like GDB and LLDB, and also includes full backtrace information

with file names and line numbers. Release mode performs a greater number of opti-

mizations (including standard -O3 optimizations from GCC/Clang) and omits debug

information. Users can therefore use debug mode for a seamless programming and

debugging cycle, and use release mode for high-performance in deployment.

5.2 Passes & Analyses

CIR provides a rich API for optimization via its PassManager construct. The

framework enforces a distinction between analyses, which do not modify the under-

lying IR but produce a result, and passes, which manipulate the IR. Both operations

can be easily implemented using various builtin utilities. In Figure 5-6, we show an

example of an integer constant folding pass implemented using the OperatorPass

utility, which automatically traverses the entire structure. Since Codon represents

binary operations as function calls, this pass simply recognizes appropriate function

calls and replaces them with the calculated value.

Complex passes can make easy use of CIR’s bidirectionality to create new types

and functions. This allows passes to be general and operate over many different types,

all the while taking advantage of Codon’s rich type system. Additionally, passes can

make use of a flexible match idiom, which allows pattern matching on entire IR tree

structures. We show full examples of these features in action in Chapter 6. Further,

we add a detailed description of important utilities in Appendix B.

5.3 Previous Design

Naturally, this intermediate representation has gone through many evolutions. Ini-

tially, we implemented a rigid, completely flattened representation similar to that of

Rust’s IR [24]. Rather than maintain a control-flow hierarchy, the entire program
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struct InspectionResult {
bool valid; // true if pattern matched
string magic; // the magic name
int64_t lhs; // value of the left
int64_t rhs; // value of the right

};

class IntFolder : public OperatorPass {
void handle(CallInstr *v) {

auto *M = v->getModule();

// inspectCall not shown:
// 1) checks for pattern
// 2) extracts magic name and constants
InspectionResult r = inspectCall(v);
if (!r.valid) return;

if (r.magic == Module::ADD_MAGIC_NAME) {
v->replaceAll(M->getInt(r.lhs + r.rhs));

} else if (r.magic == Module::MUL_MAGIC_NAME) {
v->replaceAll(M->getInt(r.lhs * r.rhs));

} else if (r.magic == Module::SUB_MAGIC_NAME) {
v->replaceAll(M->getInt(r.lhs - r.rhs));

} else if (r.magic == Module::FLOOR_DIV_MAGIC_NAME) {
v->replaceAll(M->getInt(r.lhs / r.rhs));

}
}

};

Figure 5-6: Implementation of a constant folding pass.

was converted into basic blocks linked together with terminators. Within each block,

instructions expressed the core computation, each comprised of an optional l-value, or

memory location, and an r-value. Each r-value was itself composed of operands. We

show a full listing of this structure in Figure 5-7 and Table A.7 (found in Appendix

A).

This design had numerous shortcomings. Its lack of value nesting forced the

IR generation step to create an excessive number of temporary variables. This is

extremely inefficient from a compilation perspective, forcing LLVM to attempt to

promote many temporary variables to SSA values. More concerningly, however, it
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Figure 5-7: Legacy CIR structure.

made analyses and passes extremely difficult. Since the structure was completely

disjoint from the original structure, recognizing patterns was challenging, requiring

complex analyses even for the most simple cases.

Consider, for example, a simple loop analyses that recognizes the number of iter-

ations of classic Pythonic for i in range(<const>) loops. In the previous design,

such a pass would have to traverse the entire basic block graph, detect cycles, find

the loop condition, and decipher multiple temporary variables to find the range gen-

erator. This generator must then be analyzed to extract the constant. In the new

IR, the pass can simply inspect the for flow’s generator.
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Chapter 6

Creating DSLs with Codon

In this chapter, we explore Codon’s performance on a variety of Pythonic tasks, with

and without optimizations. Then, we showcase various DSLs implemented using the

framework.

6.1 Python

Beyond implementing new DSLs, Codon can be used to vastly accelerate existing

Python programs.

6.1.1 Standard Codon
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Figure 6-1: Performance comparison on various Pythonic benchmarks.

To evaluate this impact, we show Codon’s runtime on a variety of benchmarks de-

rived from the standard Python performance testing suite1. Since the original Seq [37]
1https://github.com/python/pyperformance
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paper demonstrated increased performance over other Pythonic implementations, we

limit this analysis to Codon, CPython, and PyPy [35]. With minimal modification

(see Appendix C for full listings), Codon demonstrates orders of magnitude better

performance.

We show this comparison in Figure 6-1 [32]. For the loop benchmark, which

iteratively calculates
∑︀104−1

𝑖=1

∑︀104−1
𝑗=1 (𝑖+ 𝑗), Codon’s statically compiled nature allows

the central loop to be elided into a constant, resulting in an especially dramatic

speedup. Similar, albeit less dramatic, speedups occur across the benchmarks.

6.1.2 Dictionary Access

For many applications, dictionary querying and modification comprises a substantial

portion of runtime, particularly for counting tasks. In Pythonic code, this typically

manifests itself as a d[x] = d[x] <op> <value> pattern, which we denote the get/set

pattern. Unfortunately, however, this is extremely inefficient, paying the cost of two

dictionary lookups.

@extend
class Dict[K, V]:

# __dict_do_op__ not shown
def __dict_do_op_throws__[F, Z](self,

key: K,
other: Z,
op: F):

x = self._kh_get(key)
if x == self._kh_end():

raise KeyError(str(key))
else:

self._vals[x] = op(self._vals[x], other)

Figure 6-2: Codon component of dictionary optimization pass.

A better solution would lookup the appropriate value’s index in the dictionary’s

internal array and perform the modification in place. To maintain generality, we

implement this optimization using Codon’s bidirectional IR. In Figure 6-2, we show

the Codon component of this optimization, which accepts a key value, constant, and
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struct InspectionResult {
bool valid; // true if pattern matched
Func *func; // the function being applied
Value *dict; // the dictionary
Value *key; // the key
Value *val; // the other value
Const *dflt; // default value, may be nullptr

};

class GetSetOptimization : public OperatorPass {
void handle(CallInstr *v) {

auto *M = v->getModule();

// inspectCall not shown:
// 1) checks for pattern
// 2) verifies that key is not a function call
// 3) extracts and clones values
InspectionResult r = inspectCall(v);
if (!r.valid) return;

Func *func;

// Call non-throwing version if default is supplied
if (r.dflt) {

replacementFunc = M->getOrRealizeMethod(
r.dict->getType(), "__dict_do_op__",
{r.dict->getType(), r.key->getType(),
r.val->getType(), r.dflt->getType(),
r.func->getType()});

} else {
replacementFunc = M->getOrRealizeMethod(

r.dict->getType(), "__dict_do_op_throws__",
{r.dict->getType(), r.key->getType(),
r.val->getType(), r.func->getType()});

}

vector<Value *> args = {r.dict, r.key, r.val};
if (r.dflt)

args.push_back(r.dflt);

v->replaceAll(util::call(func, args));
}

};

Figure 6-3: Simplified C++ component of dictionary optimization pass.

57



from sys import argv
wc = {}
filename = argv[1]

with open(filename) as f:
for l in f:

for w in l.split():
wc[w] = wc.get(w, 0) + 1

print(len(wc))

Figure 6-4: Codon implementation of word-counting benchmark.

a function. At pass time (as can be seen in Figure 6-3), we recognize the get/set

pattern and replace it with a single call to a new instantiation of the appropriate

method, supplying the key, constant, and appropriate magic function. Importantly,

this pass can be used with any data type that implements the appropriate method.

0 0.5 1 1.5 2

Python

PyPy

C++

Codon

Codon (opt)

Speedup

Figure 6-5: Speedup for various word-count implementations.

While this appears to be a comparatively minor optimization, this has a mea-

surable impact for common applications. In Figure 6-4, we show the Codon im-

plementation of a simple word-counting benchmark. When tested on 100 million

lines of Wikipedia text [12], Codon, with and without the optimization, achieved a

measurable performance increase over Python and C++ (see Appendix C for imple-

mentations in other languages). This speedup, as can be seen in Figure 6-5 [32], was

especially dramatic between PyPy and the optimized Codon implementation, with

the optimization giving a noticeable advantage.

58



6.1.3 String Manipulation & I/O

void StrAdditionOptimization::handle(CallInstr *v) {
auto *M = v->getModule();

auto *f = util::getFunc(v->getCallee());
if (!f || f->getUnmangledName() != "__add__")

return;

InspectionResult r;
inspect(v, r);

if (r.valid && r.args.size() > 2) {
vector<Value *> args;
util::CloneVisitor cv(M);

for (auto *a : r.args) {
args.push_back(cv.clone(a));

}

auto *arg = util::makeTuple(args, M);
args = {arg};
auto *replacementFunc =

M->getOrRealizeMethod(M->getStringType(), "cat",
{arg->getType()});

seqassert(replacementFunc,
"could not find cat function");

v->replaceAll(util::call(replacementFunc, args));
}

}

Figure 6-6: Simplified C++ implementation of the string addition folder.

In Python, the most performant method to add strings is with a single str.cat

call. Often, however, developers implement this operation with large string addi-

tion trees. While easy-to-understand and idiomatic, this approach wastes resources

by creating an excessive number of temporary strings (one per addition). As such,

we implement a simple pass, shown in Figure 6-6. This pass simply checks for ad-

dition trees and collapses their arguments into a tuple, which it supplies to a new

instantiation of the str.cat method.

We take a similar approach for optimizing IO calls. Since both addition and
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format strings collapse into str.cat calls, we optimize file writing and printing by

eliminating the temporary string created by the concatenation. In applications with

extensive logging, eliding temporary strings can noticeably lower memory pressure,

providing a potential performance benefit for non-IO bound tasks.

6.2 Seq

Seq [37], the inspiration for the Codon project, adds many features to Codon’s core.

The language adds “sequence” and “𝑘-mer” (or length 𝑘 substrings) types to represent

genomic data. These types are augmented with a new standard library and biology-

specific optimizations. Since many genomics computations are easily implemented

using Codon’s pipeline syntax, we concentrate on optimizing them to reduce memory

access costs and superfluous computation.

6.2.1 Custom Nodes

Seq provides an optimized reverse compliment function for 𝑘-mers [37]. Since this

operation is non-trivial to implement in Codon source, we define a KmerRevcomp in-

struction; while this operation is not emitted by the parser, we define a corresponding

KmerRevcompInterceptor pass to convert __invert__ calls.

6.2.2 Prefetch Optimization

Many genomics applications involve repeated lookups into large data structures such

as FM-indices. Since these accesses can be random, cache misses take up a substantial

portion of runtime. As such, we add a @prefetch annotation to instruct the compiler

to overlap cache misses in a pipeline. We show a simpl

Consider a simple pipeline inputs |> search, where search is a simple func-

tion with the prefetch annotation. Rather than simply iterate over inputs and run

search for each value, the compiler converts the search function to a coroutine that

prefetches from the appropriate structure and then yields. These coroutines are man-
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@inline
def _dynamic_coroutine_scheduler[A,B,T,C](value: A,

coro: B,
states: Array[Generator[T]],
I: Ptr[int],
N: Ptr[int],
M: int,
args: C):

n = N[0]
if n < M:

states[n] = coro(value, *args)
N[0] = n + 1

else:
i = I[0]
while True:

g = states[i]
if g.done():

if not isinstance(T, void):
yield g.next()

g.destroy()
states[i] = coro(value, *args)
break

i = (i + 1) & (M - 1)
I[0] = i

Figure 6-7: Codon implementation of the dynamic scheduler.

aged by a dynamic scheduler, shown in Figure 6-7 [32] and implemented in Codon

itself, that resumes the coroutines when their inputs are ready.

A simplified implementation of this function transformation can be found in Figure

6-8 [32]. We benchmarked this optimization using a simple indexing task (shown in

Appendix C). As can be seen in Figure 6-9 [32], this optimization results in a large

speedup, particularly with larger 𝑘, or 𝑘-mer size.

6.2.3 Inter-align Optimization

We implement a similar optimization for alignment, a common task in genomics that

lines up sequences based on overlapping bases. Conventional alignment tools operate

on single pairs of sequence. To improve performance, we provide an @interalign
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class PrefetchFunctionTransformer : public Operator {
// return x --> yield x
void handle(ReturnInstr *x) override {

auto *M = x->getModule();
x->replaceAll(

M->Nr<YieldInstr>(x->getValue(), /*final=*/ true));
}

// idx[key] --> idx.__prefetch__(key); yield; idx[key]
void handle(CallInstr *x) override {

auto *func =
cast<BodiedFunc>(util::getFunc(x->getCallee()));

if (!func ||
func->getUnmangledName() != "__getitem__" ||
x->numArgs() != 2) return;

auto *M = x->getModule();
Value *self = x->front(), *key = x->back();
types::Type *selfType = self->getType();
types::Type *keyType = key->getType();
Func *prefetchFunc = M->getOrRealizeMethod(

selfType, "__prefetch__", {selfType, keyType});
if (!prefetchFunc) return;

Value *prefetch = util::call(prefetchFunc,
{self, key});

auto *yield = M->Nr<YieldInstr>();
auto *replacement = util::series(prefetch, yield);

util::CloneVisitor cv(M);
auto *clone = cv.clone(x);
see(clone); // don't visit clone
x->replaceAll(M->Nr<FlowInstr>(replacement, clone));

}
};

Figure 6-8: Simplified C++ implementation of the prefetch function transformation.
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Figure 6-9: Runtimes for FM queries at various 𝑘.

annotation that instructs the compiler to convert the functions into coroutines as

in the above optimization. Rather than prefetching however, the compiler batches

sequences waiting for alignment so that they can be aligned using vector instructions.

In the spirit of the Pythonic optimizations, we also add an transformation to

recognize common pipeline patterns and consolidate them into single function calls.

For example, it is common to arrange a kmers stage before a revcomp stage. These

can be combined into a single _kmers_revcomp stage, giving a noticeable performance

increase with 𝑘 > 5 [38].

6.3 Sequre

Secure multi-party computation (MPC) [9] is a conceptually simple class of protocols

that splits participants into data owners and computing parties. Data owners share

their data with computing parties such that no individual can recover the original.

After some communication with peers, the computing parties then share their sub-

results with the owners, who determine the final result.

The security of such protocols depends on splitting data into shares. For some

operations such as addition and subtraction, shares can be determined without com-
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munication. Unfortunately, more complex arithmetic operations such as multiplica-

tion depend on communication-heavy, high-overhead protocols like Beaver partition-

ing [3]. Optimizations like Beaver partition caching and polynomial evaluation [7]

aim to reduce this overhead by decreasing computation; however, these approaches

are challenging to implement and increase code complexity.

Sequre is a Codon DSL that aims to solve the complexity problem by combining a

batteries-included MPC library with robust compiler support. In particular, Sequre

adds two major CIR passes: beaver optimization and polynomial optimization. With

minimal annotation through the @secure, these passes automatically transform code

into its optimized secure MPC equivalent, vastly reducing communication overhead.

6.4 CoLa

Block-based approaches form the backbone of many important applications, such

as image and video compression, yet lack robust support in typical programming

languages. Indeed, new versions of compression algorithms, despite having many

similarities, often opt to re-implement themselves from scratch, resulting in complex,

large codebases. This results from a fundamental disconnect between the features pro-

vided by C/C++ (and other lower level languages) and the features necessary for con-

cise, reusable implementations of compression algorithms. CoLa, or the Compression

Language, derives from Codon to provide a better interface through purpose-built

abstractions, particularly in the areas of data representation, data traversals, and

data partitioning.

CoLa provides native, first-class datatypes called Views and Blocks that are mul-

tidimensional by design. Though they have no equivalent in the core Codon standard

library, they are both expressive and simply implemented in Codon source.

Traversals define what order individual units of CoLa’s data types are visited.

Often, these patterns are difficult to define with simple loops. As such, CoLa adds

special syntax, specifically the @traversal annotation, which instructs the compiler

that a function defines traversal. Such functions contain the tparams, rrot, rstep,
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and link keywords, which declaratively specify the pattern and step of the traversal.

At compile-time, CoLa recognizes these keywords and desugars the declaration into

a potentially complex loop nest.
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Chapter 7

Standard Analyses & Passes

This chapter discusses various builtin Codon analyses and passes.

7.1 Analyses

Codon provides several analyses based on the notion of control-flow graphs.

7.1.1 Control-flow Graphs

While CIR’s hierarchical structure is helpful for pattern recognition, it can occasion-

ally be a hindrance to certain other analyses, particularly those involving data flow.

Consequently, we define an auxiliary deconstructed version of CIR. This approach,

akin to that taken by Taichi [16], enables analyses to operate over a fully simpli-

fied structure without eliminating CIR’s nested structure too early. Importantly,

the framework can automatically construct control-flow graphs (CFGs) for all builtin

nodes; as with LLVM builders, custom nodes must define CFG builders to decon-

struct themselves. We package this tool into an analysis that can be registered in the

PassManager.

As in the classic formulation, we define basic blocks, which contain values, and

edges between these blocks [8]. A standard if/else flow, for example, will be decon-

structed into 2 blocks each leading to an “end” block. This structure is particularly
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useful because each value in a given block is guaranteed to execute without interrup-

tion. Therefore, analyses can often operate on blocks as a whole without having to

consider individual instructions.

entry

forBegin

endFor

forCheck

forNext

forBody

Figure 7-1: Example for loop control-flow graph.

In Figure 7-1, we show the control-flow of a Codon function containing a single

for loop. Codon defines control-flow graph conversion methods for all builtin nodes.

Custom nodes define builders to destruct themselves into graphs, allowing dependent

analyses to work without further intervention.

7.1.2 Reaching Definitions

Given a CFG, it is often useful to calculate the possible values, or definitions, of

variables at a particular stage in a program [8]. We implement these analyses by

determining the variable definitions generated (gen) and killed (kill) by each block.

Subsequently, we repeatedly calculate for each block 𝑏, in𝑏 =
⋃︀

𝑖∈preds𝑏
out 𝑖 and out 𝑏 =

(in𝑏−kill 𝑏)∪gen𝑏. Once these sets stabilize, the analysis is complete and the reaching

definitions can be easily propagated to each individual instruction.

Since custom nodes are supported by the control-flow analyses, reaching definitions

works as expected. We similarly package it into a PassManager analysis that depends

on the CFG construction. Users can query the definitions of variables at any point in

the CIR structure. We expect that this analysis will be useful for constant propagation

and other classical optimizations.
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7.1.3 Dominators

In a control-flow graph, a particular node 𝑑 dominates another node 𝑣 if all paths

from the entry to 𝑣 must go through 𝑑. Since this information can be useful for many

optimizations, we add support for this calculation as a standard analyses. We use a

simple approach, similar to that of reaching definitions: for each basic block 𝑏, we

repeatedly calculate, dom𝑏 = {𝑏} ∪ (
⋂︀

𝑖∈preds𝑏
dom 𝑖) until the sets stabilize.

7.2 Passes

Codon provides standard transformations such as dead-code elimination. Though the

LLVM [19] back-end provides many of the same optimizations, incorporating them

as CIR passes expands the reach of domain-specific passes with minimal performance

cost (less than a second for a large program). For example, a pass that depends on

constants will be more useful if folding and propagation is run first.

7.2.1 Loop Lowering

(for (call '"range.__iter__[range]"
(call '"range.__new__[int]" 10))

(var '"i")
(series)

)

Figure 7-2: Simplified CIR equivalent of a for loop.

In implementing the CoLa DSL (see Chapter 6), we found that Codon’s canonical

loop format can be cumbersome for some optimizations. Consider the simple loop

for i in range(10), which maps to the CIR in Figure 7-2. The loop condition,

implicitly 𝑖 < 10, is hidden under two magic method calls. Since this is an extremely

common case, we add the ImperativeForFlow node, which represents a simple C-like

loop, and a simple lowering pass shown in Figure 7-3. The pass simply checks for a

__iter__ call applied to a range, extracts the arguments, and creates a new loop.
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struct RangeMeta {
bool valid;
Value *start;
Value *end;
int64_t step;

};

void ImperativeForFlowLowering::handle(ForFlow *v) {
auto *M = v->getModule();

auto r = analyzeRange(v->getIter());
if (!r.valid || r.step == 0)

return;

v->replaceAll(M->N<ImperativeForFlow>(v->getSrcInfo(),
r.start,
r.step,
r.end,
v->getBody(),
v->getVar()));

}

Figure 7-3: Simplified C++ implementation of for loop lowering.

This is an example of “progressive lowering” [20]: the original loop form could be

useful to certain passes, while the lowered form may be more helpful for others. In

particular, we expect that the ImperativeForFlow will be helpful for loop unrolling.

7.2.2 Code Simplification

Given the reaching definitions analysis, it is possible to determine that a variable’s

value at a particular usage is a constant. To take advantage of this knowledge, we

incorporate a propagation optimization that replaces all such variables with their

constant value. We show its implementation in Figure 7-4: for each VarValue, we

simply check if it has a single, constant reaching definition. If so, we can safely replace

the old value with the constant.

This optimization results in a considerable number of arithmetic operations con-

taining only constants. We optimize this case with a folding/simplification pass that
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runs following constant propagation. Similarly, we resolve control flow (i.e. IfFlows

and TernaryInstr) at compile-time for constant conditions.
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class ConstPropPass : public OperatorPass {
private:

std::string reachingDefKey;
public:

// boilerplate and okConst not included
void handle(VarValue *v) override {

auto *r = getAnalysisResult<RDResult>(reachingDefKey);
if (!r)

return;

auto *c = r->cfgResult;
auto it = r->results.find(getParentFunc()->getId());
auto it2 = c->graphs.find(getParentFunc()->getId());
if (it == r->results.end() || it2 == c->graphs.end())

return;

auto *rd = it->second.get();
auto *cfg = it2->second.get();
auto reaching = rd->getReachingDefinitions(v->getVar(), v);

if (reaching.size() != 1)
return;

auto def = *reaching.begin();
if (def == -1)

return;

auto *constDef = cast<Const>(cfg->getValue(def));
if (!constDef || !okConst(constDef))

return;

util::CloneVisitor cv(v->getModule());
v->replaceAll(cv.clone(constDef));

}
};

Figure 7-4: Simplified C++ implementation of constant propagation.
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Chapter 8

Related Works

This chapter addresses relevant other works, specifically related to dynamic languages

and Codon’s type checker/IR.

8.1 Augmenting Dynamic Languages

Many tools have been developed to port some of the advantages of static languages,

in particular performance and early error reporting, to dynamic languages. Typically,

these approaches rely on external components like type checkers or re-implementations

of the original interpreters and runtimes.

8.1.1 Type Checking

For Python, Mypy [21] is the preeminent static type checker, relying on the language’s

builtin type annotation syntax (identical to that of Codon). While Mypy has a degree

of bidirectionality, this is limited to single statements. As a result, common cases

like empty list literals are undecidable; consequently, Mypy relies on frequent use of

unknown types (Any), which are determined at runtime. Additionally, Mypy runs

completely separately from the Python interpreter, making its use optional.

Other tools like InferDL [17], Hummingbird [34], and PRuby [13] apply similar

techniques to the Ruby language. In particular, these type checkers make use heuris-
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tics to apply constraints to unknown types, which are then resolved. Unfortunately,

these approaches are still completely outside the language itself and can result in

unknown types, making the performance of statically-typed languages unattainable.

Conversely, Codon integrates its type checker throughout its compiler.

8.1.2 Performance Optimization

Achieving high performance in Python can often re-implementing code hotspots in

C/C++ and calling the native code. Short of this, the Python ecosystem also offers

several frameworks and alternative interpreters to improve performance. Cython [4]

compiles a restricted subset of Python, converting it to C; while this achieves an

impressive speedup, it unfortunately cannot achieve full coverage of Pythonic code

and still relies on the high-overhead Python runtime. PyPy [35] is an alternative

interpreter that achieves some speed benefits. Like other alternative interpreters,

however, its speed gains are limited by Python’s dynamic nature and runtime.

8.2 DSL Frameworks

Many other frameworks for creating DSLs rely on embedding in strongly-typed lan-

guages, using meta-programming to create the illusion of custom syntax. Often, such

DSLs are legal examples of their parent languages, compilation involving running

the code and generating a new representation. One such framework is Delite [6],

which embeds in Scala. Rather than run directly, Delite code — itself valid Scala

— generates an intermediate representation, which DSL specific “re-write rules” and

“traversals” can operate on. Similarly, AnyDSL [22] embeds in another language called

Impala. For both frameworks, this IR is then converted to the target representation

before being run. While this technique obviates the need for a custom frontend,

developers are intrinsically limited by the syntax of the base language: adding new

patterns can be difficult to impossible. Further, this creates a large gap between the

optimization layer and the language source, minimizing expressiveness and restricting

the optimization space. Accordingly, users of these frameworks are unable to take
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advantage of their parent languages’ type systems.

A similar approach can also be taken in dynamic languages, including for Python.

MetaDSL [18] aims to bridge disparate Python libraries into a cohesive API. In par-

ticular, it uses Python source to generate an internal representation, which is then

converted to the desired execution format. Still other languages like Racket [11] in-

clude first-class support for this paradigm, with users even allowed to mix DSLs at

will. This approach can be advantageous as it only requires users to create thing

translation layers. Unfortunately, however, optimization can be difficult as the DSLs

are essentially sugar. Further, these languages often suffer from lower performance.

These dynamic DSLs can be improved by using higher-performance backends,

which can often JIT the source to achieve better performance. For Racket, Sham [39]

adds higher performance library functions that generate LLVM IR. Thus, DSL cre-

ators in Sham simply write Racket DSLs, but rewrite their code generation steps to

employ Sham functions. While this achieves better performance, this approach does

not allow for easy optimization, relying on an AST for compilation.

8.3 Intermediate Representations

Codon’s IR takes inspiration from many other successful IRs. In particular, CIR’s

structurally resembles the IRs of Taichi [16] and Suif [40] which have hierarchical

structures. In contrast, however, we use a far more restricted set of nodes. In that

sense, CIR resembles LLVM IR [19] and Rust’s [24] IR. CIR differs from other ex-

tensible IRs like MLIR [20] in terms of its strategy: while other frameworks enable

customization at nearly all levels, CIR restricts users to extending a limit subset of

features. This allows Codon to be intrinsically composeable.
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Chapter 9

Conclusion

In this thesis, we have introduced Codon, a framework for implementing peformant

Pythonic DSLs. The framework’s novel frontend, IR, and builtin passes allow for

easy extension and customization with minimal developer effort. These extensions

come with minimal performance cost, Codon often running faster than even C++.

Most importantly, however, Codon provides a model for applying high-performance

methodologies, typically reserved for static languages, to dynamic source.

9.1 Future Work

Future work will concentrate on increasing the amount of Python code immediately

compatible with Codon. In particular, we plan to add union types and inheritance.

On the IR side, we hope to develop additional builtin transformations and analyses,

all the while expanding the reach of existing passes. As far as library support, we

plan to port existing high-performance Python libraries like NumPy [14] to Codon;

this will allow Codon to become a drop-in replacement for Python in many domains.

Finally, we hope to deprecate the existing OCaml parsing layer, replacing it with a

hand-written alternative.
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Appendix A

Supplemental Listings

A.1 AST Nodes

Node Python Equivalent De-sugared to?

PassStmt pass 7

BreakStmt break 7

ContinueStmt continue 7

ExprStmt Expression. 7

AssignStmt Variable assignment. 7

UpdateStmt Variable update. 7

DelStmt del 7

PrintStmt print Function call.

ReturnStmt return 7

YieldStmt yield 7

AssertStmt assert Function call.

ImportStmt import Removed.

ThrowStmt throw 7

GlobalStmt global Removed.

YieldFromStmt yield from 7

Table A.1: Listing of simple AST statements.
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Node Python Equivalent De-sugared to?

SuiteStmt Block of statements. 7

WhileStmt while loop 7

ForStmt for loop 7

IfStmt if/else block 7

MatchStmt n/a If statements.

TryStmt try/catch block 7

FunctionStmt Function declaration. Function.

ClassStmt Class declaration. Type and flattened functions.

WithStmt with block. 7

CustomStmt n/a DSL-specific.

Table A.2: Listing of complex AST statements.
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Node Python Equivalent De-sugared to?

NoneExpr None Function call.

BoolExpr bool literal. 7

IntExpr Integer literal. 7

FloatExpr Float literal. 7

StringExpr str literal. 7

IdExpr Identifier. 7

StarExpr Unpack expression. Function argument.

KeywordStarExpr Keyword arg star. Function argument.

TupleExpr Tuple literal. Tuple construction.

ListExpr List literal. List construction.

SetExpr Set literal. Sect construction.

DictExpr Dictionary literal. Dictionary construction.

GeneratorExpr Comprehension. Construction and append.

DictGeneratorExpr Dictionary comprehension. Construction and append.

IfExpr Ternary operation. 7

UnaryExpr Unary expression. Function call.

BinaryExpr Binary expression. Function call.

ChainBinaryExpr Range comparison expression. Function call.

PipeExpr n/a 7

IndexExpr Index expression. Function call.

CallExpr Call expression. 7

DotExpr Member access expression. 7

SliceExpr Slice expression. Function call.

EllipsisExpr n/a Partial call.

TypeOfExpr Type-of expression. 7

LambdaExpr Lambda function expression. Function.

YieldExpr Yield-in expression. 7

AssignExpr n/a 7

RangeExpr n/a Function call.

StmtExpr n/a 7

PtrExpr n/a 7

TupleIndexExpr Tuple index expression. 7

StackAllocExpr n/a 7

Table A.3: Listing of AST expressions.
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A.2 CIR Nodes

Description LLVM Equivalent

IntType 64-bit integer. i64

FloatType 64-bit float. double

BoolType Boolean. i8

ByteType 8-bit integer. i8

VoidType Void. void

RecordType Struct. StructType

RefType Pointer to a struct. PointerType

FuncType Function type. FunctionType

PointerType Pointer. PointerType

OptionalType Optional value. PointerType

GeneratorType Generator. PointerType

IntNType Variable length integer. i{N}

Table A.4: Listing of builtin CIR types.

Type Description

Var Variable Global or local variable.

BodiedFunc Function CIR function.

LLVMFunc Function Function implemented in LLVM IR.

ExternalFunc Function Function implemented in library.

InternalFunc Function Function implemented in compiler.

Table A.5: Listing of CIR variables.
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Type Description

IntConst Constant Integer value.

FloatConst Constant Float value.

BoolConst Constant Boolean value.

StrConst Constant String value.

AssignInstr Instruction Sets a variable’s value.

ExtractInstr Instruction Gets a member.

InsertInstr Instruction Sets a member.

CallInstr Instruction Calls a function.

StackAllocInstr Instruction Allocates an array.

TypePropertyInstr Instruction Checks a type property.

YieldInInstr Instruction Gets a value yielded in.

TernaryInstr Instruction Ternary operator.

BreakInstr Instruction Breaks a loop.

ContinueInstr Instruction Continues a loop.

ReturnInstr Instruction Returns from a function.

YieldInstr Instruction Yields from a function.

ThrowInstr Instruction Throws an exception.

FlowInstr Instruction Executes a flow.

SeriesFlow Flow Basic block flow.

ForFlow Flow For loop.

WhileFlow Flow While loop.

IfFlow Flow Conditional flow.

IfFlow Flow Conditional flow.

TryCatchFlow Flow Exception handling flow.

PipelineFlow Flow Pipeline flow.

Table A.6: Listing of CIR values.
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A.3 Legacy CIR Nodes

Type Description
AssignInstr Instruction Stores the r-value into the l-value.

RvalueInstr Instruction Runs the r-value.

VarLvalue L-value Variable’s memory location.

VarMemberLvalue L-value Member’s memory location.

MemberRvalue R-value Value of member.

CallRvalue R-value Result of function call.

OperandRvalue R-value Value of operand.

StackAllocRvalue R-value Value of a stack-allocated array.

PartialCallRvalue R-value Value of a partial call.

MatchRvalue R-value Result of a pattern match.

PipelineRvalue R-value Result of a pipeline.

VarOperand Operand Value of a variable.

VarPointerOperand Operand Location of a variable.

LiteralOperand Operand Constant.

JumpTerminator Terminator Unconditional branch.

CondJumpTerminator Terminator Conditional branch.

ReturnTerminator Terminator Return.

YieldTerminator Terminator Yield.

ThrowTerminator Terminator Throws exception.

AssertTerminator Terminator Asserts a condition.

Table A.7: Listing of legacy CIR instructions, l-values, r-values, operands, and ter-
minators.
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Appendix B

CIR Utilities

Codon provides several useful utilities for manipulating IR. In this section, we show

several relevant utilities that are used in the body of this thesis.

B.1 IR Manipulation

Method Description

N<T> Constructs and registers an IR node.

getOrRealizeMethod Gets or realizes a method with a parent class.

getOrRealizeFunc Gets or realizes a function.

getOrRealizeType Gets or realizes a type.

get{primitive}Type Gets or the appropriate type.

get{primitive} Gets a constant of the appropriate type.

Table B.1: Listing of select Module utilities.

Method Description

replaceAll Replaces all instances of the value.

getUsedValues Gets all children values.

getUsedTypes Gets all children types.

getUsedVars Gets all children variables.

Table B.2: Listing of select Node utilities.
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Method Description

operator== Calls equality magic.

operator!= Calls inequality magic.

operator< Calls comparison magic.

operator> Calls comparison magic.

operator<= Calls comparison magic.

operator>= Calls comparison magic.

operator+ Calls addition magic.

operator- Calls subtraction magic.

operator/ Calls division magic.

operator% Calls modulo magic.

pow Calls power magic.

operator» Calls shift magic.

operator« Calls shift magic.

operator| Calls or magic.

operator& Calls and magic.

operatorˆ Calls xor magic.

operator|| Generates boolean or.

operator&& Generates boolean and.

operator[] Calls get item magic.

toInt Calls int magic.

toBool Calls bool magic.

toStr Calls string magic.

len Calls length magic.

iter Calls iter magic.

Table B.3: Listing of select Value utilities.
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B.2 Miscellaneous Tools

Visitor Description

Operator Visits all values in a program.

CloneVisitor Clones CIR nodes.

FormatVisitor Formats CIR nodes to a string.

match Compares two CIR nodes.

Table B.4: Listing of miscellaneous utilities.
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Appendix C

Benchmark Information

All benchmarks were run on a dual-socket system with Intel Xeon E5-2695 v2 CPUs

(2.40 GHz) with 12 cores each (totalling 24 cores and 48 hyper-threads) and 377GB

DDR3-1066 RAM with 30MB LLC per socket, and Linux OS.

C.1 Pythonic Benchmarks

C.1.1 PyPerformance

As in [32], we use benchmarks adapted from Python’s benchmark suite (github.com/

python/pyperformance):

• norm (bm_spectral_norm.py): Spectral norm benchmark – calculates the spec-

tral norm of an infinite matrix with specific entries; involves floating point op-

erations and list creation/iteration.

• nbody (bm_nbody.fpy): 𝑛-body simulation of several planets – repeatedly up-

dates the momentum and position of each body in the system; involves list

accesses, updates and iteration as well as floating point arithmetic.

• float (bm_float.py): Floating point-heavy benchmark – optimizes a vector in

3-dimensional space based on some criteria; as the name suggests, primarily

involves floating point operations, as well as list iteration.
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• go (bm_go.py): AI for playing the Go board game – chooses a move in a Go

game based on a tree search; involves tree construction and traversal as well as

updating game state.

The loop benchmark was taken from realpython.com/pypy-faster-python, and

is a simple double for-loop. Unlike the other benchmarks, this one was timed within

the code itself due to its speed in Codon.

C.1.2 Word Count

int main(int argc, char *argv[]) {
cin.tie(nullptr);
cout.sync_with_stdio(false);

if (argc != 2) {
cerr << "Expected one argument." << endl;
return -1;

}

ifstream file(argv[1]);
if (!file.is_open()) {

cerr << "Could not open file: " << argv[1] << endl;
return -1;

}

unordered_map<string, int> map;
for (string line; getline(file, line);) {

istringstream sin(line);
for (string word; sin >> word; )

map[word] += 1;
}

cout << map.size() << endl;
}

Figure C-1: C++ implementation of word-counting benchmark.
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C.2 Seq Benchmarks

C.2.1 Prefetch

Originally shown in [32]:

import sys, bio.fmindex
from bio import *

total = 0
def add(count):

global total
total += count

@prefetch
def s(s, index):

intv = index.interval(s[-1]) # initialize interval
s = s[:-1] # trim last base
while s and intv:

intv = index[intv, s[-1]] # extend interval
s = s[:-1] # trim last base

return len(intv) # number of hits

idx = bio.fmindex.FMIndex(argv[1]) # create the index
FASTQ(argv[2]) |> seqs |> split(k=20, step=20) |> s(idx) |> add

print(f'found {total} matches')

Figure C-2: Seq prefetching benchmark.
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